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There has been significant interest and progress in the understanding of cerebrospinal
fluid pressure and its relationship to glaucoma and other ophthalmic diseases. However,
just as every physiologic fluid pressure fluctuates, cerebrospinal fluid pressure (CSFP) is
similarly dynamic. Coupling this with the difficulty in measuring the pressure, there are
many obstacles in furthering this field of study. This review highlights some of the
difficulties in CSFP research, including fluid compartmentalization, estimation equations,
and pressure fluctuation. Keeping these limitations in mind will hopefully improve the
quality and context of this burgeoning field.

Keywords: translaminar pressure difference, translaminar pressure gradient, cerebrospinal fluid, glaucoma,
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INTRODUCTION

Glaucoma is the second leading cause of blindness worldwide and is characterized by a specific
pattern of nerve damage with corresponding visual field loss. Elevated intraocular pressure (IOP) is
the only clinically modifiable risk factor and as such is central to diagnosis and treatment. Many
theories exist to explain the pathophysiology of pressure-driven nerve damage including vascular
dysfunction (1), metabolic and axonal dysregulation (2), and mechanical damage (3). In general,
there is agreement that damaging IOP injures the optic nerve at the nerve head, where it disrupts
axonal flow to cause retrograde retinal ganglion cell (RGC) loss.

A growing body of research supports the notion that IOP is only part of the equation in the
process of pressure-driven optic nerve damage. In this paradigm, RGC damage is the product of the
net imbalance between two pressurized compartments: the intraocular space and the optic nerve
sheath subarachnoid space. These compartments typically have different pressures, and the force
exerted by IOP at the optic nerve head is opposed by the cerebrospinal fluid pressure (CSFP), or
intracranial pressure (ICP).
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The difference between these two compartments is termed
the translaminar pressure difference (TLPD). An increased
TLPD (IOP>CSFP) is postulated to precipitate glaucomatous
nerve damage, perhaps contributing to posterior bowing of the
lamina cribrosa (4–6). Elevations in IOP can certainly cause
this imbalance, but low ICP in the presence of a “normal” IOP
has also been linked with glaucomatous nerve damage. Several
studies have found a strong correlation between lower ICP and
glaucoma, while numerous animal-model studies have
identified a causal relationship. Ren et al. prospectively
studied patients with normal tension glaucoma (NTG) and
primary open angle glaucoma (POAG), and found that visual
field loss was strongly associated with an increased TLPD (7).
Berdahl et al. has published several large-scale retrospective
reviews of patients who had undergone lumbar puncture (LP),
and found that lower ICP and higher TLPG is associated with
POAG and NTG (8, 9). In 1979, Yablonski et al. sought to
develop a model for causality in cats by lowering ICP and
unilaterally lowering IOP, and found that eyes with a greater
difference between IOP and ICP (TLPD) developed more
cupping and posterior bowing of the LC (10). Twenty-six
years later, Zhao et al. used the electroretinogram to measure
changes in retinal function when varying IOP in rats with
normal ICP compared with reduced ICP, and found a larger
TLPG resulted in worse retinal function (11). Most recently,
Zhu et al. conducted an in vivo study of monkeys using optical
coherence tomography to image and quantify real-time
deformations of the LC, and found that lowering ICP resulted
in larger amplitude bowing of the LC in response to IOP
variations (12). Further evidence of a relationship of optic
nerve cupping related to changes in CSF pressure and flow
dynamics is highlighted by works by Gallina and colleagues that
examined the development of NTG in patients with shunt-
treated normal pressure hydrocephalus (13).

The relevant biomechanics of the LC include two key stress
forces with significantly different vectors: the forces acting from
opposing sides of the LC (IOP and CSFP) and the hoop stress
within the sclera, acting circumferentially around the LC (14).
Stress is defined as the force across a small boundary per unit
area of that boundary (15). Stress force when applied causes
strain, or measurable deformation. At the most fundamental
level, deformation of the LC is thought to directly damage nerve
and vascular tissue. The opposing forces of IOP and CSFP cause
stress at the level of the LC that is inversely proportional to the
thickness of the LC: stress decreases with increasing LC
thickness. Circumferential hoop stress at the level of the LC is
directly proportional to the IOP and inversely proportional to
the scleral thickness (or rigidity): as IOP increases, the hoop
stress translated to the LC increases, while as scleral thickness
increases, LC stress is decreased. It is worth noting that of the two
primary stress forces, the trans-laminar force is influenced by
CSFP whereas the hoop stress is not. Baneke and colleagues point
out that since hoop stress decreases with increasing scleral
rigidity, the increased scleral rigidity seen in aging can be
thought to make hoop stress less of a factor, and CSFP
mediated stress more significant (14).
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While much research has been dedicated to the role of CSFP
in the pathogenesis of glaucoma and the biomechanics of the LC,
the fluid pressure is very difficult to study. The purpose of this
review is to highlight some of the difficulties in the study of the
contribution of CSF in glaucomatous pathogenesis.
MEASUREMENT OF CSF PRESSURE

Central to our understanding of the translaminar pressure
gradient is accurate measurement of CSF pressure. This has
proven a challenge for the scientific community due to
limitations in techniques for invasive pressure monitoring as
well as shifting definitions of CSFP.

CSFP is classically assessed via the lumbar puncture (LP).
The LP was first introduced by Heinrich Quincke in 1891 but
the technique was not immediately adopted in clinical practice
(16). In 1950, Pierre Janny shed light on the clinical
applications of CSFP measurement in his examination of the
relationship between ophthalmologic signs and CSFP (17). The
LP remains the mainstay to the present day for clinical
a s ses sment o f CSFP . Thi s t echnique prov ides an
instantaneous measurement of the intrathecal CSFP, which
indirectly describes intracranial CSFP under Pascal’s principle
which assumes that CSF circulates freely throughout the
subarachnoid space. For much of the 20th century, the
intracranial CSFP was, by definition, synonymous with
intrathecal CSFP as alternative methods for assessing
intracranial CSFP did not exist. It should not be overlooked,
however, that the LP, while used ubiquitously to assess
intracranial CSFP, is ultimately an indirect measurement.
Lundberg was the first to attempt direct and continuous
measurement of ventricular CSFP in 1960 (18). Continued
developments in direct measurement of ventricular and brain-
tissue pressure have redefined true intracranial CSFP and
spawned several studies which examine the variation
between intrathecal CSFP and ICP measured by brain tissue
pressure-sensing transducers in patients in intensive care units
with continuous electrode monitoring (19). These studies have
been performed exclusively in neurocritical patients, the only
clinical population where such invasive monitoring is
routinely justified. Unfortunately, the results of these studies
are difficult to generalize as several other studies have
demonstrated that measurement of CSFP in critical care and
sedation settings may be unreliable, due to factors such as
hypercarbia and direct action of anesthetic agent (20).
Additionally, instrumentation in critically ill populations
confers additional risks including infection, hemorrhage and
development of neurological deficits, which make prospective
studies nonviable. Outside of the critically ill population,
Lenfeldt and colleagues performed a novel study which
employed a pressure control strategy in patients with
communicating hydrocephalus and found a high degree of
agreement between intracranial CSFP and CSFP measured by
LP (21). Again, these results are difficult to generalize given the
unique physiology of the population studied.
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The LP faces three key limitations as a reliable tool for
studies involving CSFP: it is an invasive sterile procedure
which requires a high level of skill, it is indirect in its
assessment of intracranial CSFP, and it is highly temporal,
providing only a snapshot of intrathecal CSFP (19). To tackle
the problem of the impracticability of an invasive, sterile
technique in most outpatient clinical settings, a myriad of
non-invasive techniques for CSFP estimation are currently
being developed. These innovations typically follow one of
two paths and provide either qualitative markers that suggest
the possibility of increased cranial CSFP or quantitative
measurements of intracranial CSFP or estimations based on
previous measurements (22). Optic nerve edema is commonly
employed as a qualitative indicator of elevated CSFP. By
extension, many studies have sought to quantify optic nerve
changes as a surrogate measurement of CSFP, typically
through measurement of optic nerve sheath diameter
(ONSD) via ultrasound, CT or MRI. Chen et al. performed
ultrasound measurement of ONSD 5 minutes before and after
LP and found that ONSD correlated closely with real-time
changes in CSFP (23) . Weidner e t a l . per formed
ultrasonographic measurement of ONSD in awake,
spontaneously breathing patients with continuous invasive
ICP monitoring, finding a strong correlation between ONSD
and CSFP (24). Bauerle et al. compared ultrasound and MRI
derived values of ONSD, and found a high degree of
agreement (25). As IOP measurement is readily obtained in
the outpatient setting without a sterile field and without risk of
harm to the patient, further exploration of the role TLPD
plays in the pathogenesis of glaucoma will be best served by
CSFP measurement techniques that are similarly non-
invasive. Thus far, ultrasound imaging of the ONSD
certainly shows the most promise as a potential surrogate
for general estimates of CSFP status.
THE RELATIONSHIP BETWEEN
INTRACRANIAL AND ORBITAL
CSF PRESSURE

One of the key questions facing CSF and ophthalmic disease
research is whether CSFP measured within the lumbar space
reliably represents the CSFP within the optic nerve sheath. In
most clinical studies examining the TLPG, the pressure
measured during LP was used as a surrogate for the pressure
posterior to the lamina cribrosa, or the orbital CSFP.
Considering the distance and differences in the anatomy
between the lumbar spine and the orbital subarachnoid space,
it is logical to question the utility of an LP to estimate orbital
CSFP. In a study on 10 patients with idiopathic normal pressure
hydrocephalus, Lenfeldt et al. compared the lumbar pressure to
parenchymal pressure in the brain and found an agreement
between the measurements (21). The authors conclude their
study with a caveat: the results depend on a communicating
CSF system. Clinically, especially in the elderly population,
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there is good reason to doubt whether such a communicating
CSF system exists (26). Studies applying CT myelography
demonstrate that a variety of processes like vertebral
degenerations, disc herniations, arachnoiditis and other
anatomic variations or obstructions can markedly narrow this
CSF pathway—and possibly completely obstruct CSF flow (27).
But even if the CSF pathway from the lumbar site to the
intracranial CSF spaces is patent, there is yet another
restriction point. The optic canal, within the lesser wing of
the Sphenoid, can be a critical bottleneck for free
communication from the intracranial compartment to the
lamina cribrosa. Computer-assisted imaging studies revealed
that the optic canal can be particularly narrow in some patients
with normal tension glaucoma when compared to
nonglaucoma controls (28). Similarly, computer-assisted
cisternography demonstrated impaired CSF dynamics
between the intracranial CSF spaces and the orbital
subarachnoid space in a series of patients with papilledema
and normal tension glaucoma, which proved the existence of an
optic nerve compartment syndrome (29, 30). Studies of animal
models have utilized an array of subarachnoid pressure-
sensitive probes placed at the level of the optic nerve to assess
for variations between intracranial and intraorbital CSFP and
found variability (31). Other studies have used various tracer
dyes to assess for continuity of the subarachnoid space into the
optic nerve and confirmed various bottlenecks (32). In general,
these studies suggest a positive relationship between CSFP
within the optic nerve and intracranial CSFP obtained via LP,
but also demonstrate highly variable intraorbital CSF inflow,
su spec t ed to be due to fibr i l l a r t i s sue and CSF
compartmentalization in the subarachnoid space. To assume
that the lumbar pressure is a reliable surrogate for the pressure
posterior to the lamina cribrosa is therefore speculative, likely
inaccurate in many subjects, and in need of further study by
new measurement technologies. But even if the pressure on
both sides of the lamina cribrosa was known accurately, the
area of the lamina cribrosa – an important component in the
definition of pressure, is not. Indeed, because of the space
occupying trabeculae in the subarachnoid space, the area of the
lamina cribrosa resembles a fractal ring anulus with a high
variability between individuals (33). Another potential
confounding variable is the thickness of the lamina cribrosa
and the transmission and action of pressure across this tissue.
The lamina is known to be thinner in patients with glaucoma,
possibly increasing the transmissibility of pressures (34).
Studying the role of CSFP and IOP counterbalance factoring
lamina cribrosa thickness and biomechanics is very difficult,
and an area in need of further study. Only William Morgan has
studied the TLPG in earnest, taking into account the thickness
of the lamina with the pipette-manometer measurement
technique, and it was clear that the thickness of this structure
was critical (35). These factors confound the accurate
measurement of TLPG.

Lastly, we question the importance of the “translaminar
pressure.” The translaminar pressure gradient or difference
would be between the eye and the retrolaminar optic nerve
June 2022 | Volume 2 | Article 896680
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tissue. If we consider the optic nerve subarachnoid space
(ONSAS) and the eye, the correct terminology would be the
transscleral pressure (Figure 1). Of course, the fluid pressure
Frontiers in Ophthalmology | www.frontiersin.org 4
around the nerve also affects the nerve tissue pressure itself, so it
is possible that any or all of these pressure relationships are most
critical (Figure 2).
FIGURE 1 | Relationship between optic nerve subarachnoid space (ONSAS) and the eye, highlighting that the pressure of interest is perhaps paralaminar instead of translaminar.
FIGURE 2 | Diagram and electronic micrographic image revealing the subarachnoid space, again highlighting the CSF-containing space in relation to the intraocular space (36).
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UTILITY OF SINGULAR PRESSURE
READINGS: WHAT IS KNOWN ABOUT
DIURNAL, LONGITUDINAL AND
POSITIONAL CHANGES IN CSFP

Glaucoma specialists are acutely aware of the limitations of a
single snap-shot IOP reading in guiding treatment decisions as
IOP fluctuates over time (37, 38). and is subject to normal
physiologic diurnal variation (39, 40). Furthermore, several
studies have identified exaggerated diurnal variation as an
independent risk factor for progression (41). Much like IOP,
CSFP fluctuates widely. A recent study by Downs et al. using
implanted telemetry devices in nonhuman primates found that
ICP was 92%–166% higher during sleeping hours than during
waking hours (42). If we think about glaucomatous optic
neuropathy as a product of the translaminar pressure,
fluctuations in IOP and CSFP can be represented with a wave
form. If IOP and CSFP are not measured simultaneously, then
the alignment between these two forces becomes random. Thus,
even in an ideal setting where both pressures are measured
simultaneously the TLPG will constantly change unless the
variations of IOP and CSFP are in perfect alignment – a
dubious expectation (Figures 3, 4).

Studies have validated the LP obtained in lateral decubitus for
the measurement of ICP, but have also found that intracranial
CSFP decreases to zero—or even subzero values—when standing
(21). In general, CSFP is found to be in the low teens when supine
and sub-atmospheric, and approaches equilibrium when sitting.
As such, the TLPD is expected to be highest when upright. A study
by Qvarlander et al. found a high degree of CSFP variation in the
upright position compared with a low degree of variation in supine
positioning, suggesting interindividual variation in capacity to
regulate upright CSFP (43). These variations in tandem with the
posture-dependence of CSFP further question the utility of a
Frontiers in Ophthalmology | www.frontiersin.org 5
singular LP measurement without accounting for its diurnal and
positional context.
ESTIMATION EQUATIONS

While IOP measurement is non-invasive and readily obtained in
clinic, an LP is a sterile procedure of its own and is not
concurrently attainable in the clinical setting. This makes
clinical assessment of the TLPD technically challenging and
highlights the importance of developing reliable non-invasive
modalities for measuring CSF pressure. The Beijing Intracranial
and Intraocular Pressure (iCOP) study developed a model for
estimation of intracranial pressure by MRI-assisted orbital
subarachnoid space measurement, and (44, 45) the study
established a training group in order to validate its utility.
However, a modification of the formula was used and termed
estimated cerebrospinal fluid pressure. The following formula
was used:

CSFP [mmHg] = 0.44 × Body Mass Index [kg/m(2)] + 0.16 ×
Diastolic Blood Pressure [mmHg]-0.18 × Age[Years]

No validation for this formula was ever given, and many
inaccurately reference the Xie et al. manuscript as the derivation
of this equation. What resulted was a series of studies that have
been published using this unvalidated equation, contributing
faulty data related to CSFP and ophthalmic disease research
(46–57).

A subsequent study by Fleischman et al. identified limitations
in multiple regression models to estimate CSFP without
radiographic data (58). As expected, the estimation equation
(and similarly-derived regression formulas from large datasets)
poorly predicted CSFP in individuals. While we have identified
and responded to studies that have used unvalidated estimation
equations for CSFP-associated ophthalmic research, reviewers
FIGURE 3 | Possible wave forms of IOP and CSFP over time. The vertical lines represent the measuring times. The distance between the two curves at different
times differ. The TLPG therefore varies over time.
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and journal editors should take note that these are not valid
methods of conducting CSF-related research.
CONCLUSION

IOP and CSFP are two highly dynamic pressures, which in
clinical practice are assessed with snap-shot measurements of
varying accuracy and applicability. The current methods used for
the determination of the TLPD need to be improved in order to
render more reliable data including modalities which allow for
continuous measurement of IOP and CSFP. Similarly,
appreciating the difference between orbital CSFP and lumbar
Frontiers in Ophthalmology | www.frontiersin.org 6
CSFP is important and methods to easily and accurately report
these fluid pressures need to be established. Discretization of the
fluid pressure curves need to be performed in order to process
the TLPD or gradient over time. As the role of the TLPD in the
pathogenesis of glaucoma and other eye diseases continues to be
explored, the nuances of CSF behavior and the technical
limitations in measuring intra-orbital CSFP must be appreciated.
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