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ABSTRACT

Robert Judith: ACTUATING SURFACE ATTACHED POSTS AS SENSORS FOR MICROFLUIDIC
APPLICATIONS

(Under the direction of Richard Superfine)

Cilia are hair-like projections from cells that act as sensors and micro-actuators. They are around 250 nm

in diameter and range in length from a few microns to hundreds of microns and beat in complex shapes to

generate fluid flow. Cilia are found across the entire eukaryotic tree, essentially unchanged, suggesting that

they are extremely efficient fluid flow generators and sensors. At this micro scale fluids behave differently,

viscous forces and surface tension become dominant, and gravity and inertial forces become minor forces.

Biomimetic actuators that mimic biological cilia have been developed to act as pumps, mixers, and potentially

sensors at the micron scale for applications in microfluidics. This dissertation focuses on understanding how

these micro-actuators operate. I begin with trying to understand how biological cilia function. I will show

experimental results demonstrating that the structural elements of the cilium, microtubules, are highly

curved when isolated from the axoneme and that this curvature is protein dependent. I will then propose a

new model for cilia actuation that takes this curvature into account, and show that it could account for some

of the missing force in the cilium. In the rest of the dissertation, I focus on developing a model for describing

the motion of biomimetic nickel poly-dimethylsiloxane (PDMS) composite actuating surface attached post

arrays (ASAP) that were developed previously in our lab. This model of the ASAP arrays takes into account

the magnetics, the transmitted light by the array, and the post fluid structure interaction. In the last sections

of the dissertation, I will demonstrate that the model can be used to describe the post motion in viscous

fluids and blood clots, which allows the biomimetic ASAP arrays to be used as sensors. The results of this

dissertation shows that ASAP arrays have the potential to be effective sensors along as well as pumps and

mixers in micro-fluidic systems.
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CHAPTER 1: Introduction

The micro scale world is a fascinating and fundamentally different place. It is a world where our every

day intuition of physics and motion breaks down. Gravity and inertia, which dominate our everyday life,

become only minor forces and forces that are merely corrections or even non apparent. At the macro scale

drag forces and surface effects dominate.

This dissertation is about a specific class micro-actuators in fluids at this small scale. These actuators,

whether they are biological (cilia) or man-made (actuating surface attached post arrays (ASAP)), are slender

filaments, roughly the aspect ratio of a yard stick, that beat to generate fluid flow. At this scale, the fluid

flow generated by these micro-actuators is very different than flow at the macro scale. Inertial forces are

nearly non existent and forces are in the quasi-static regime making it impossible for symmetrical motion

to generate fluid flow or enable a micro-scaled swimmer to swim. Purcell in his famous talk on swimming

at the micro-scale called this phenomena the scallop theorem (132). To generate fluid flow or swim, the

motion of the actuator must be non-symmetric in time. This can be done by actively driving the beat in a

non-symmetrical manner or by taking advantage of the interaction between the elastic forces of the actuator

and the fluid drag on the actuator. It turns out that this ratio of the internal elastic forces to the viscous

drag forces in the actuator determines how these micro actuators function (Chapter 4).

Cilia are conserved across the entire eukaryotic tree, which suggests that cilia are optimized micro-

actuators. These hair-like projections from eukaryotic cells are roughly 250 nm in diameter and are between

a few microns (human airway cilia) (141) to hundreds of microns (sea urchin sperm) in length (69). They

come in two varieties: passive cilia act as sensors to their local mechanical and chemical environment, and

active cilia beat in complex patterns to generate fluid flow in addition to their sensing functions. Every

active cilia contains thousands of molecular motors that coordinate to drive the cilium and generate their

complex beat shapes. These beat shapes enable single-celled organisms to swim (e.g, Chlamydomonas or

sperm), and generate fluid flow (e.g, mucus clearance.) As a complex molecular machine on the micro scale

the cilium is unequaled.

Section 1.1: Artificial micro-actuators and microfluidics

Biological cilia are an inspiration for man made actuators at the micron scale, (46; Fiser et al.; 168).

Biomimetic cilia are arrays of slender rods or flaps that are driven by an external force, electrostatic, magnetic,

1



optical, etc. These biomimetic cilia have applications in micro-fluidics that also operate at at the micron

scale (184).

In many cases, the features of fluid flow on the micro-scale are desirable and have lead to new technologies

such as extremely accurate chemical gradients for cell culture (186; 195), or rheometers that match the

pressure across multiple fluids in laminar flow (29); however, these features can also pose challenges. Because

of laminar flow, mixing becomes extremely difficult at the micro scale (122; 184) and pumps that can be

integrated into these small devices are often complex and difficult to create (145). Biomimetic cilia systems

have the potential to address these problems.

Many novel and efficient solutions to engineering problems have been discovered by studying nature. The

classic example of biomimicry is the development of velcro, which was inspired by burrs plants attaching to

fur and clothing. More recent examples include super-hydrophobic surfaces based off of the lotus leaf micro

structure (179), microscopic air flow sensors that mimic cricket hairs (87), or shatter resistant glass (113).

In nature, cilia are efficient pumps and mixers. Cilia clear mucus and particulates out of the lung, generate

the fluid flow responsible for left right asymmetry in the embryo (140), and help micro-organisms overcome

the diffusion limit for feeding by enhancing mass transport (149). Biomimetic cilia have already been shown

to be effective pumps and mixers (168; 151; 169).

Section 1.2: Overview of the thesis

This thesis is about both understanding how biological cilia function and how we can use biomimetic cilia

arrays as sensors. In Chapter 2, I will focus on biological cilia. I will describe the biological cilium structure,

the current theories of how it operates, and present experimental results demonstrating that the structural

elements of the cilium (microtubule doublets) are curved and this curvature is dependent on protein binding.

I will then present a new model of how the cilium actuates that incorporates this curvature and shows that

this new model is complementary to the current models.

The rest of the thesis will focus on biomimetic actuating surface attached posts (ASAP). In Chapter 3, I

will describe the biomimetic cilia arrays that our lab has developed as well as the manufacturing process. In

chapter 4, I will develop a comprehensive mathematical model of the ASAP system. The model will include

a model of how the transmitted intensity relates to the post deflection, the magnetic response of the post

arrays, and the fluid structure interactions. The fluid structure model will ultimately depend heavily on a

dimensionless parameter called the sperm-number, which came about from studying biological systems and

is named after sperm cilia (189; 91).

In the last two chapters, 5 and 6, I will focus on using the posts as sensors for two different applications.
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These chapters will use the model developed in chapter 4 to calculate the material properties of fluids by

monitoring the post response under a known drive signal. In chapter 5, I will confirm the model developed

in chapter 4 by using the posts as a rheometer for Newtonian fluids. In chapter 6, I show that the posts

can also be used as an elastomer to measure the elasticity of blood clots as they form. I will show that

the ASAP system correlates well with a commercial thromboelastographer (TEG) for identifying dilutional

coagulopathy, which is relevant for trauma victims.
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CHAPTER 2: The biological cilium

Section 2.1: Introduction

Cilia are hair-like projections from cells that act as sensors and beat to produce fluid flow. Found in all

forms of eukaryotic cells, from single celled organisms to humans, cilia are one of nature’s most amazing

and complex molecular machines. Each cilium is a complex structure with thousands of molecular motors

that coordinate to produce complex beat patterns. The current theory is that there is a single mechanism

to provide bending. The molecular motors generate shear stress between the structural elements causing

bending. =I will show that the structural elements of the cilium, i.e. the microtubule doublets (MTD), are

significantly curved, 0.8 1/ µm radius, compared to the curvature seen in the beats, 0.5 1/ µm radius (147),

when isolated from the cilium, and that this curvature depends on protein binding. The protein attachments

to the MTDs are dynamic over a single beat which suggests the bending observed in isolated MTD could

also be dynamic. I will show that this new model of producing curvature in the cilium can generate forces

on the correct scale to bend the cilium, and that the forces are complementary to the forces that the motors

produce.

Section 2.2: Overview of cilia in biology

Cilia are slender, hair-like organelles that project from eukaryotic cells, pictured in scanning electron

microscope (SEM) images in Figure 2.1 (114; 141). They are roughly 200 nm in diameter and range in

length from a couple microns, for human airway cilia, to hundred of microns, for sea-urchin sperm. These cell

projections perform two vital roles. First, they enable single-celled organisms to swim (e.g, Chlamydomonas

or sperm) and multicellular organisms to generate internal fluid flows (e.g, mucus clearance). Second, they

act as sensors for the cell’s local chemical and mechanical environment (141). Cilia are found across all

branches of the eukaryotic tree, and while they differ in length between species, they all are composed of the

same basic structure. This ubiquity suggests that cilia developed early in the eukaryotic tree, around one

billion years ago (Figure 2.2). The fact that they have existed relatively unchanged for so long suggests they

are well-suited solutions to the problems of generating fluid flows and sensing the local environment (114).

Cilia come in two varieties: passive cilia which act as sensors to the local environment, and active cilia

which generate fluid motion. Passive cilia are both mechanically sensitive to stimuli and also contain protein
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(a) Oviduct Cilia (141) (b) Human Airway Cilia

Figure 2.1: SEM images of biological cilia. a) is a example of human oviduct cilia, which help transport the
egg to the uterus. b) is an example of human airway cilia. In the airway cilia help transport mucus out of
the lung and into the stomach for sterilization. (Image taken by Jerome Carpenter.)

Figure 2.2: This diagram shows the two main branches of the eukaryotic tree: Bikonts and Unikonts. Motile
cilia with the basic 9+2 microtubule structure are found across all branches indicating that cilia originated
from a common ancestor at the beginning of the eukaryotic tree roughly a billion years ago. Source (114)
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receptors in their membranes that allow them to sense chemicals in the surrounding environment (141).

Active cilia —the focus of this chapter and referred to as cilia from now on— share passive cilia’s sensing

functionality but also oscillate and generate fluid flows in their respective environment (142; 114). These

cilia beat in complex beat shapes depending on their role. Nodal cilia, formed in mammalian embryos, beat

off axis in a circular beat pattern, sperm flagella beat in a helical pattern, and human airway cilia and

Chlamydomonas cilia beat in a planar shape (100).

Mostly the initial understanding of how cilia function came from studying diseases caused by cilia defects.

People with dysfunctional cilia, reduced mobility or immobile, develop the same set of problems, which are

indicative of the important roles cilia perform in the body. Chronic infections in their mucous membranes

can cause bronchitis or other respiratory diseases due to poor mucociliary clearance. Male patients are

almost always infertile because their sperm are incapable of moving without functioning cilia, and female

patients are often sub-fertile because cilia help transport eggs along the fallopian tubes (64). There are

slight differences in brain structure that are thought to compensate for the lack of water propelling cilia in

the brain (2; 141). By studying transmission electron microscopy (TEM) images of cilia from people with

defective cilia, the initial understanding of the cilium as a molecular machine was developed.

Section 2.3: The cilium is a complex molecular machine

All cilia have the same basic underlying structure across the entire eukaryotic tree despite having varying

beat shapes and functions (55; 66). Cilia have nine microtubule doublets (MTDs) arranged in a 220 nm

diameter ring (124; 125). These MTDs are structures unique to the cilium. Each MTD consists of a complete

circular microtubule, called the A tubule, connected to an incomplete slightly larger microtubule, the B tubule

(163), Figure 2.3(b). A protein complex called the nexin link attaches each MTD to its neighbor (124; 55).

Most cilia have an additional pair of singlet microtubules, known as the central pair, in their center. This

structure of nine microtubule doublets plus a central pair is known as the basic 9+2 structure, Figure 2.3.

Most passive cilia do not have the central microtubule pair and all active cilia missing the central pair beat

helically (97). The central pair are connected to the nine outer MTDs through protein complexes called

radial spokes (125; 124). Finally, cilia have thousands of dyneins (molecular motors) between the outer

MTDs, which according to the accepted model generate the force that bends the cilium. The pattern of

proteins repeats every 96 nm along the cilium length, and is known as the 96 nm repeat (Figure 2.4) (125).

The entire structure of proteins, without the membrane, is called the axoneme. Not all species have the

same number or type of proteins in the 96 nm repeat. Human cilia, for example have, a single radial spoke

per MTD per 96 nm repeat while Chlamydomonas has two radial spokes (130), see Figure 2.4.
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(a) Cilia Diagram (66) (b) TEM Cross-section

Figure 2.3: a) Diagram of cilia. Top section shows a cross section of the cilia axoneme. The 9 microtubule
doublets circle around the central pair of singlet microtubules. The outer microtubule doublets are connected
to the central pair by a protein complex known as the radial spokes, labeled RS. Dynein motors are attached
to one microtubule doublet and walk along their nearest neighbor. The dyneins are labeled IDA the inner
dyneins, and ODA for the outer dyneins. The sub-figure below shows how dynein motors cause bending in
the axoneme by generating a sliding motion between the microtubule doublets. Because the doublets are
fixed at the base the sliding motion in converted into curvature.(66) b) TEM cross-section of a cilium. The
protein structures diagram in (a) can be seen in the TEM.
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Each dynein complex consists of an arm, which permanently attaches to the A tubule in the MTDs, a

motor domain, which generates the motion, and a stalk and binding domain, which connects transiently to

the neighboring MTD. Each dynein arm will have one or more motor domains, which hydrolyze adenosine

triphosphate (ATP) and generate movement (125) (84; 72; 154; 23). Axonemal dynein is arranged in two

rows along the A microtubule of the MTD, an inner row and an outer row. Outer dynein arms are thought

to control the beat frequency and are all the same (61; 125). Inner dynein arms have multiple varieties in

the same organism, which repeat with the 96 nm repeat (125). The inner dynein arms are currently thought

to be critical for the beat shape (61; 100).

Figure 2.4: Four views of the 96 nm repeat. The 3D surface was created using cryoelectron tomography of
Chlamydomonas axonemes. The radial spokes are shown in red, the inner dynein arms are shown in dark
blue, the outer dynein arms are shown in light blue, and the MTD is shown in gray. Human cilia have only a
single radial spoke per 96 nm repeat, while the Chlamydomonas axoneme shown here has two radial spokes.
Reproduced from (130).

Section 2.4: Actuation theories

The currently accepted curvature mechanism in the axoneme is the sliding theory of curvature proposed

by Peter Satir in 1965 (139). Gibbons performed experiments that confirmed the sliding of microtubules in

8



cilia where the axonemes were partially digested with trypsin, Figure 7 (164). Trypsin is an enzyme that

cleaves proteins and preferentially digests the radial spokes and nexin links in the axoneme (164). These

partially-digested axonemes were exposed to ATP, activating the dynein motors. Gibbons and Summers

found that, in these damaged cilia, MTDs slid past one another and the axoneme disintegrated, Figure 2.5.

This has been a key piece of evidence for the sliding theory of curvature. In the axoneme, all microtubules

are oriented with their minus ends located at the base of the cilium. Dynein motors are minus directed

motors, which always generate force towards the minus end of the microtubule. In the axoneme, this causes

microtubules to slide towards the base of the cilium. This motion causes the axoneme to slide apart in

damaged axonemes, Figure 2.5, but in an intact axoneme the nexin links, radial spokes, and basal body all

prevent the sliding motion and convert it into bending, Figure 2.3. In order to generate a consistent beat

pattern, dynein motors on opposite sides of the cilium must coordinate. During the power stroke, dynein

motors on one side of the cilium must be active, while on the opposite side, the dyneins remain detached

or in a sliding state. When the recovery stroke begins, the sides must switch roles. Therefore, according

to sliding theory, only one side of the axoneme can generate force at a time. This model of ciliary function

is known as the “switch point hypothesis” as it requires a point where the active and passive sides of the

axoneme switch roles.

Figure 2.5: Dark field imaging of a cilia axoneme disintegrating after being treated with trypsin and being
dosed with ATP. These original images established that dynein caused sliding in the axoneme and led to
the original hypothesis that dynein causes bending by causing shear between the microtubule doublets. The
radius of curvature in this image is very similar to the radius of curvature we measure using the AFM. (164)

How dynein motors coordinate so that only one side of the axoneme is active at a time is currently up

for debate. The most popular theory is that local curvature of the microtubule doublets is sensed by the

dyneins mechanically, and the curvature controls the dynein activity. This local curvature control method

was proposed by Brokaw in the 1970s (18), who showed that if you input curvature dependent probability

curves for the dynein activity into computer models you could get oscillations similar to actual cilia. Brokaw

continued to expand his model to increasingly realistic simulation conditions, 3D, and multiple dynein types
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(14; 15; 17; 16). Brokaw’s postulated model of curvature control is entirely phenomenological: it assumes a

relationship between dynein activity and the local MTD curvature. Lindemann developed a ‘t-force’ model,

which attempts to provide a mechanism to Brokaw’s model. In Lindemann’s model, as the axoneme bends,

the cross-section of the axoneme distorts moving MTDs closer and further apart in the axoneme. Lindemann

proposed that these transverse forces control the dynein activity, and showed in computer models that a

‘t-force’ model is capable of simulating realistic cilia beats (98; 97). Both Brokaw and Lindemann cite

experiments and previous calculations where inactive cilia can be activated by inducing a curvature as

evidence for their theories (71).

However a less popular theory, has to do with the central pair. It has been observed in some organisms,

such as Chlamydomonas and Paramecium, that the orientation of the central pair change over the cilia beat,

(185; 126). This observation, combined with the fact that organisms with defects in the radial spokes do not

have functioning cilia (92; 191), have led to the proposal that the central pair might act as a ‘distributor’

and control dynein activity (185; 126). It has also been suggested that the central pair might contribute to

the asymmetric beat pattern by changing its stiffness over the course of a cilium’s beat (7). One common

theme among these models is that one side of the axoneme is active and has shear stress generated by active

dyneins, while the other side is passive and has the dyneins either detached or sliding.

With only one side of the cilium generating force at a time, there has been considerable interest in the

roll of twsting in the cilium’s beat. Lindemann and Brokaw’s early models ignore the possibility of twisting

in the cilium and the asymmetric forces generated is not even calculated. This assumption is justified by

experimental evidence that the structure does not twist (192), and early theoretical work that suggests that

the twist due to the dynein motors is negligible (70). Later models included twisting and suggested that

it plays a minor roll in the beat (16) Other models suggested that twisting plays a significant role in the

cilium’s beat (67), and the question of how much twisting plays a roll in the cilium is still up for debate.

There is also a question whether or not the dyneins can generate enough force to explain the beats

currently seen. Experimental studies that measured the force found roughly 5-6 pN of force per dynein

on the active side of the cilium in bull and human airway axonemes (143; 68). This number is within

the measured range for the force generated from a single axonemal dynein head of 6̃ pN (154). However

this requires that all the dynein heads to be activated simultaneously (143), which runs counter to other

experiments that suggest the outer dynein arm duty ratio is 0.1 or lower (148; 60). Schmitz and Lindemann

even remarked at the end of their paper:

“Moreover, we must insist that all of the dynein heads must contribute force, not just one per

dynein arm. This runs counter to the conception that only a small fraction of the heads are
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active at a given time (Johnson, 1986; Hamasaki et al., 1995). However, if we do not accept

this assertion, then we are left with the equally difficult proposition that the intact arms must

be much more powerful than can be justified by the in vitro data on isolated dynein. These are

surprising but unavoidable conclusions.”

where they measured the forces generated by the cilia in a bull sperm (143).

In our own lab, we have measured the force generated by a single human airway cilia (68), and came to

the same result that every single dynein head must be activated near their max force in order to match the

experimental results. If dyneins operate as experiments suggests, with a duty ratio below 0.1 (148; 60) and

a maximum force of 6̃ pN (154), then there is an order of magnitude of force missing in the cilium.

Section 2.5: Microtubule mechanical properties

To calculate these forces, the mechanical properties of the MTDs are key components of the model. If our

understanding of the MTD properties is wrong, then the force calculations will be wrong as well. Currently,

the material properties of the MTDs are inferred from their geometry and the mechanical properties of

singlet microtubules. The problem is that microtubule mechanical properties are known to vary depending

on their measurement conditions and the presence of microtubule-associated proteins (63). The assumption

that the microtubule doublets, which have numerous additional proteins, post-translational modifications,

and a unique structure, will have similar mechanical properties to their singlet counterparts is not trivial

(163; 41; 53).

Since the 1970s, it has be known that MTDs extruded from the axoneme curl up, Figure 2.5 (164). This

curvature was of interest in the late 1970s and early 1980s, but interest has since wained (112; 165; 111; 199).

It was even postulated that this curvature had something to do with the cilia beating, but this lost favor as

the sliding model gained traction (32).

I will show that isolated MTDs from human airway cilia are inherently curved and that this curvature is

dependent on protein binding even for single isolated microtubules. Because the sliding model cannot curve

an isolated MTD, this suggests an alternative mechanism for curvature generation in the cilium.

2.5.1: Methods

To study the mechanical properties of MTDs. Cilia axonemes were harvested from Human Bronchial

Epithelial cells, acquired from the UNC Cystic Fibrosis Center. Axonemes were then partially digested using

trypsin and supplied ATP, similar to the Gibbons procedure, resulting in MTD sliding. After the sliding

procedure, there are free MTDs in solution. MTDs were then either immediately mounted on substrates for
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imaging or treated with a salt solution to remove the outer dynein arms (62). We performed atomic force

microscopy (AFM) and transition electron microscopy (TEM) on the samples and analyzed the images for

curvature. See Appendix 6.5, for a complete description of all the procedures.

2.5.2: Single MTDs show dynein dependent curvature

The cilia isolation procedure was confirmed with AFM images, Figure 2.6A. Protein determination on the

resulting solution of axonemes determined that the protein concentrations were on the order of 50 µg/mL.

AFM images of the MTDs from the isolated axoneme showed consistent curvature of 0.80± .03 1/µm

(Figure 2.6). TEM images of similarly prepared MTDs show that the dynein arms are on the outside of the

curvature (Figure 2.7).

A silver staining gel of the salt-extracted axonemes show a near complete removal of the protein bands,

corresponding to one of the outer dynein arm heavy chains (Figure 2.8). This chain binds the outer dynein

arms permanently to the A microtubule in the MTD. Without this arm the dyneins cannot attach to the

MTD. This heavy chain shows up in the solution’s supernatant indicating that the outer dynein arms are

removed as we believe (Figure 2.8). The fact that the band is completely missing from the axoneme solution

in the silver staining gel confirms that a majority of the outer dynein arms are removed (62). MTDs that

have undergone the salt treatment procedure show a reduction of curvature, and a broader distribution of

curvatures. After salt extraction, a reduction in the average curvature is seen, .20± .01 1/µm, as well as a

broadening of the curvature distributions (Figure 2.6B,D).

Section 2.6: Protein-attachment model of microtubule curvature

As mentioned before this curvature is seen in the literature, Figure 2.5, and is consistently in the range of

0.5-0.9 1/µm. This value is remarkably similar to our value of .80± .03 1/µm. Because removal of the outer

dynein arms changes the microtubule curvature, i.e. straightens the MTDs, we propose that this curvature

is caused by the asymmetric binding along the MTD. Proteins bound to the microtubule doublet could

introduce curvature through multiple mechanisms, e.g steric interactions with their neighbors, electro-static

interactions, protein deformation at the binding site (116).

We will use a thermodynamic surface stress model to investigate the plausibility of our hypothesis.

This model is not unique but simply postulates that protein binding cause a change in the surface stress on

microtubule surface. The surface stress difference between the inner and outer surfaces causes the microtubule

doublet to bend, Figure 2.9.

This model has been used to understand how AFM cantilevers bend when proteins attach to a func-
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Figure 2.6: A) AFM image of frayed cilia axonemes. Images show that the microtubule doublets are curved.
B) Image of frayed cilia axonemes, after salt treatment. Salt treatment removes the outer dynein arms from
the cilia axonemes. C) Histogram of the radius of 1/Radius of curvature for the untreated doublets. D)
Histogram of 1/Radius of the salt-treated axonemes. There is a shift to lower levels of curvature after the
salt treatment.
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Figure 2.7: TEM image of a curved microtubule doublet. The dynein motors can clearly be seen along the
outer edge of the MTD, labeled with the red arrow.
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Figure 2.8: A silver staining gel, showing the proteins in the cilia axoneme, by molecular weight. The arrow
points out the band representing the outer dynein arms. A) Solution containing the extracted axonemes.
B) Axonemes after the salt extraction. The missing bands are from the extracted dynein outer arms. C)
Supernatant from the salt extraction. The bands representing the dynein arms are present in the salt
extraction as expected. Additional bands represent proteins that were removed unintentionally removed or
faint remnants of axonemes.

tionalized surface, and it has been used to study surface stress affects due to thin films, electrochemical

interactions, and biomolecules. (134; 117; 193; 161; 57) The ability of proteins to introduce a surface stress

upon binding has been used as the basis for highly sensitive biosensors (57; 22; 116). These techniques

calculate the change in surface stress by measuring the deflection of a cantilever. This deflection can be

translated into a change in surface stress using the Stoney equation, eq 2.1 (4).

∆σ = Et2

6Rc
(2.1)

where, ∆σ is the surface stress difference between the top and bottom of the cantilever, E is the elastic

modulus, t is the thickness of the cantilever, Rc is the radius of curvature of the cantilever. Often with

cantilevers, E is replaced with the biaxial modulus E/(1− ν), where ν is the Poisson ratio of the material

which accounts for counter-bending that occurs in thin plates. Because we model the MTDs as beams,

we will stick with the original form of the equation above, Figure 2.1, but we will need to generalize to

non-rectangular cross sections.
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Figure 2.9: A diagram outlining the surface stress model of MTD curvature. Proteins, blue bind to one side
of the microtubule, red, and generate a surface stress ∆σ. The surface stress acts across the entire width
of the MTD, w, and generates a force which acts with a lever arm of t on the MTD. From this we get the
Stoney equation, eq. 2.1
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We will take the Stoney equation 2.1 and multiply both sides by the thickness times the width:

∆σwt= Et2

6Rc
wt (2.2)

Using the second moment of inertia for a square beam, w ∗ t3/12, we can now write the surface stress as a

function of the second moment of inertia generalizing this equation to beams of different cross sections:

∆σwt= 2Et3w
12Rc

(2.3)

∆σ = 2EI
Rcwt

(2.4)

where w is the width over which the proteins are binding, and t is the thickness of the microtubule in the

bending plane, i.e. the length of the level arm the surface stress has. Eq. 2.3 makes physical sense because

the surface stress times the width gives the force, while the thickness of the MTD is the lever arm for the

generated moment, Figure 2.9.

Using the approximate modulus of microtubules from the literature, 600 MPa (63), a calculated second

moment of inertia for the MTD, 7.5e-8 µm4 (68), a width and thickness for the MTD, 25.8 nm to 38.2 nm

(163), and our measured radius of curvature of 1.25 µm , we can calculate an approximate surface stress

difference using the Stoney equation, equation 2.3. From this calculation we get the required surface stress

difference, ∆σ, is 0.06 N/m. This is well within the changes in surface stress caused by protein binding

in AFM experiments, 0.02-0.2 N/m (116; 135; 22) and other biological molecules (161). Therefore, it is

reasonable that the surface stress we see in the MTDs is caused by protein binding and that protein binding

is causing the curvature in the MTDs.

This curvature should be taken into account in models of cilia actuation. At a minimum it suggests

significant pre-stress in the structure, and because during a cilium beat the protein binding along the MTDs

is dynamic, it suggests a new method to generate force in the cilium. To give insight on how protein-attached

curvature could be critical for actuating the cilium, I would like to describe this alternate model of force

generation. In this model, the dynein motors walk simply to maintain attachment to the MTD. The cilia

actuation is entirely controlled by changes in surface stress along the structure as dynein motors attach and

detach from the MTDs. In this model, the active and passive sides of the cilium switch. The side with the

detached dynein motors generates force due to the asymmetric protein binding along the MTD, while the

bound dynein motors on the opposite side balance out the surface stress on the MTD and does not generate

force.

We sum up the moments generated by each of the “passive” side microtubules in a similar manner to
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Figure 2.10: Experiments with hybridizing DNA on cantilevers show that absorption of biomolecules on
surfaces asymmetrically can contribute significant stress, tens of mJ/m2 (161)
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calculations that calculated force generation for the sliding model (68). Using the stiffness of the entire

axoneme, Iax = 6.08Idm (68), we can calculate an expected value using simple beam mechanics.

The total moment generated by one half of the axoneme is:

Max =Mdm cos(70) +Mdm cos(30) +Mdm cos(10) +Mdm cos(50) (2.5)

Max = 2.84Mdm (2.6)

where Max is the moment over the entire axoneme, and Mdm is the moment across an MTD. The cosines

represent the geometry and are taken from Hill et al. 2010, Figure 2.11. By plugging in our values for Max

and Iax into the beam equation we can calculate an approximate curvature for the entire cilium.

Figure 2.11: A figure showing how the geometry of the microtubule doublet affects the summation of the
moments. Note that microtubule B is not perfectly horizontal but that the angle was too small to show in
the diagram. The angles were plugged in to equation 2.5.
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M =−EI
Rc

(2.7)

Max =−EIax
Rc

(2.8)

2.84Mdb =−6.08EIdm
Rc

(2.9)

Rc =−6.08
2.84

EIdm
Mdm

(2.10)

Rc = 2.14Rcdm (2.11)

Using our curvature value for a singlet microtubule, 0.80± 0.031/µm, we get the maximum possible

curvature generated by the MTD curvature alone is 0.4 1/ µm . This is within 20% of the actual maximum

curvature of human airway cilia which is 0.5 1/ µm , (147).

In reality, we suspect that the sliding model and the surface stress model are working in concert. The

surface stress model could help explain for some of the missing force in the cilium. Because on the “passive”

side of the cilium the dyneins are deactivated, a majority of them can be detached generating maximum

amount of force that our model predicts independent of the dynein duty cycle (60; 143; 68). This could

explain the missing force in the cilium (68; 143).

Section 2.7: Conclusions and future work

We have shown that MTDs extracted from human airway cilia have a mean curvature value of 00.80±

0.031/µm. In addition, salt extraction of the outer dynein arms, confirmed with a silver staining gel,

significantly reduces the curvature to 0.20± 0.011/µm. We proposed that this curvature is caused by the

asymmetric protein binding of the dynein chains on the MTD, and showed using a surface stress argument

that this level of curvature was consistent with surface stress changes due to protein binding seen in AFM

cantilever experiments. We proposed that because the protein distribution on the MTD is dynamic over the

cilia beat, the surface stress could be dynamic as well and contribute to the beat. We proposed a new model of

how the cilia beats, which reversed the active and passive sides of the cilium. The former “passive side” now

generates the force because of the asymmetric protein binding, and the dynein motors on the former active

side balance out the surface energies deactivating the“active side”. Using the same geometric arguments that

have been used to justify the ability of dynein to generate enough force to bend the cilium, we showed that

the forces generated from the surface energies model are capable to generate the observed curvatures of the

entire axoneme. We hypothesize the two models work in concert to generate force on both sides of the cilium

20



simultaneously, potentially addressing the missing force seen in experimental measurements of cilia.

Figure 2.12: This diagram represents the proteins on a Chlamydomonas microtubule doublet. Proteins
missing in the oda1 and pf22 Chlamydomonas mutants are highlighted blue.(66)

More experiments need to be completed to confirm that the MTD curvature is indeed caused by pro-

tein binding. The salt extraction step could be damaging the microtubules, which could be reducing the

curvature instead of the protein binding. I propose that future experiments use a model organism such as

Chlamydomonas reinhardtii where there are numerous genetic mutants available. The MTDs from Chlamy-

domonas mutants missing the outer dynein arms, mutant oda1 Figure 2.12, could be compared against wild

type, which would allow both samples to undergo the exact same treatment and ensure that differences in

curvature was due to protein binding and not a difference in the MTD treatment.

On the theoretical side, the next step is to build a computational model that includes the surface stress

effects. Even if the mutants do not show a protein dependent change in curvature, we have shown that the

curvature is significant on the scale of the cilium’s motion. Whether the curvature of MTDs is static or

dynamic, future models of the cilium need take these effects into account.
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CHAPTER 3: Biomimetic actuating surface attached posts (ASAP)

Section 3.1: Introduction

In this chapter, I introduce the biomimetic cilia arrays that are the focus of the rest of the thesis. In the

first section, I give a brief overview of current biomimetic cilia technology, the different actuation methods,

and current applications. I describe the ASAP arrays used in this thesis, their physical properties, and how

they were manufactured. I conclude the chapter with a brief discussion of some of the design limitations that

are imposed on the system due to surface energy effects. I leave application specific design considerations

for later chapters 5, 6.

Section 3.2: Biomimetic cilia arrays overview

3.2.1: Actuation mechanisms

In the last ten years, a large number of biomimetic cilia systems have been created that can operate as

pumps and mixers (168; 169; 180; 46), see Figure 3.1. I will keep the overview of actuating cilia brief, and

relevant to using cilia as sensors. For more details on using the ASAP artificial cilia as pumps and mixers,

see Briana Fiser’s (48), Ben Evans (45), or Adam Shields (150) theses.

At their most basic level biomimetic cilia are arrays of posts or flaps that respond to an actuating force.

The most straightforward way to classify the artificial cilia systems are by their actuating mechanism. The

most common mechanisms is magnetic actuation followed by electro-static actuation and there are some

designs that use other actuation mechanisms.

Some of the first artificial cilia where electrostatic actuators. In 1997, Suh created one of the first arrays of

biomimetic cilia with enough force to move particles. Suh used standard MEMS techniques to manufacture

the arrays out of layers of polyimide with different coefficients of thermal expansion. These arrays were

actuated using thermal expansion and electric forces and were capable of manipulating objects much heavier

than themselves (162). In 2008, Tooden created 20-100 um electro-static flaps out of polymers and showed

that they could be used as mixers (168). On a smaller scale, Lokanathan et al. created electrostatic cilia

arrays with lengths between 50-500 nm using cellulose nano-crystalsthat were attached to gold surfaces (104).

The negative charge of the cellulose nano-crystals allows the rods to be actuated using electro-static forces.
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Figure 3.1: An overview of artificial cilia technologies. A) Electro-static responsive cellulose nano-crystals.
The rods are 50-500 nm in length and bound to a gold surface (104). B) Self assembled magnetic bead
cilia. The beads are 2.5 µm in diameter and the cilia have lengths ranging from 6 µm up to 45 µm in
length (180). C) Magnetic nano-particle PDMS composite cilia (151). D) Nickel shell PDMS core artificial
cilia. E) Electro-static polymer flaps cilia. The cilia are 20 µm wide and 200 µm long (168). F) PDMS
core cilia that are coated with a thin carboxyl graphene film and titanium oxide layer. They are used as a
photo-catalyst film where the enhanced mixing from the actuating improves the photocatalytic activity over
3 times. The artificial cilia are on the mm length scale. (196). G) MEMS thermal and electro-statically
actuated cilia flaps (162). H) Magnetic nano-particle PDMS composite cilia on the mm scale (133). Images
taken from their respective citations.
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The most common type of artificial cilia are magnetically driven. Early magnetic systems were created

using standard MEMS techniques (102; 77; 76). Ben Evans, from our own lab, developed the first magnetic-

PDMS composite cilia by embedding magnetic nano-particles into PDMS (46), and other labs have made

similar magnetic polymer composite cilia (133; 197; 25; 73; 47). The other direction for creating magnetic

cilia have been using magnetic beads that are either permanently or magnetically linked to create arrays of

magnetic responsive cilia (175; 51; 155; 180). The first wires of magnetic particle beads were not created as

biomimetic cilia (51; 155), but simple strategies to create magnetic nano wires. Vilfan et al. in 2010, was

the first to use these types of structures successfully as artificial cilia and showed that they could generate

fluid flow (175). Later, Wang added a polymer coating step that allowed the micro self assembled arrays to

remain intact when the magnetic field was removed (180). These bead based cilia are attractive due to their

ease of manufacturing.

Other driving forces have been explored. In 2009, Oosten et al. developed artificial cilia actuators

that responded to multiple wavelengths of light liquid crystal composites that were ink jet printed (171).

These cilia are capable of complex motion by having multiple layers of light sensitive material with different

activation wavelengths. By activating different polymers at different times, they are capable of creating

complex motions. Liu et al. showed that colloidal polymer films can be used to create artificial cilia.

By using different copolymers they manufactured cilia that responded to different signals, pH, light, and

temperature (103).

3.2.2: Applications

The vast majority of artificial cilia papers focus on their use as mixers (152; 27; 105; 83; 168) or pumps

(152; 3; 73; 169). Shields, from the Superfine lab, showed that magnetically actuated arrays of artificial cilia

generated flow above the cilia tips, and created a region of enhanced diffusion below the cilia tips, see Figure

3.2. Shields also showed that the generated flow was similar to the flow generated by a moving boundary

condition. These experiments were performed with PDMS nano-composite posts, which were the precursors

to the current ASAP arrays.

Since then, there have been numerous experimental and numerical studies on the best beat shapes and

cilia distributions to achieve effective pumping or mixing (174; 40; 85; 26; 28; 3). Recent computational

work suggests that artificial cilia may be able to control particle distributions in the channel (107; 13; 54).

Their modeling suggests that depending on the ratio between the viscous and elastic forces, the artificial

arrays will either pull or push out particles of a given size (108; 13; 54).

There has been considerably less work on using artificial cilia arrays for microfluidic devices as sensors.
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The work has been focused passive posts that act as flow sensors (20; 21; 87; 65; 56; 128; 35; 36). These

systems are passive single rods or array of rods that deflect under fluid flow. The deflection is measured

and used to measure the shear stress. They have been shown to operate well in the low Reynolds number

regime (20) and in the high Reynolds regime (56); however, all the systems are passive and are not driven

arrays. There have not been any papers on using driven arrays of biomimetic cilia as sensors. The closest

analogue in the literature are AFM cantilever experiments (94; 172), where driven micro cantilevers response

is monitored and used to measure the fluid properties. However, these systems operate at high frequencies,

(102 -104 Hz), which limit their practicality for specimens where the low frequency material properties are of

interest, often the case in biological fluids such as mucus or synovial fluid (34; 146). AFM cantilever systems

are also difficult to integrate into micro-fluidic systems. Our ASAP arrays are unique as sensors because

they are arrays of driven micro-posts rather than passive sensors that operate in the low frequency regime.

Figure 3.2: A) A plot of the average fluid profile over an array of actuating cilia. Net flow is shown directly
over the cilia. Because the channel is closed there is a net back-flow further up in the channel. The flow is a
combination of Cuvette flow and Poiseuille flow. Reproduced from (151). B) A plot of the relative diffusivity
as a function of height over the cilia arrays. Below the tips of the cilia array diffusion is greatly enhance while
above the array the relative diffusifity quickly goes to one. Reproduced from (151). C) A figure showing a
computation model of a cilia array with particles. Masoud and Alexeev showed that in addition to moving
particles along with the generated fluid flow that, depending on the ratio of the viscous forces to elastic
forces, the cilia array will either pull particles into the cilia layer or push them out. Reproduced from (108)

Section 3.3: ASAP overview

The artificial cilia used in thesis this were developed by Briana Fiser (48) to address two issues with

magnetically actuated cilia. Magnetic bead cilia have little to no restoration force and collapse without

a magnetic field. Magnetic nano-particle PDMS composites couple the magnetic responsiveness with the
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material stiffness. As the fraction of magnetic material increases, the stiffness increases as well (48; 45).

Briana Fiser addressed this issue by designing a core shell structure using PDMS as the core and nickel as

the magnetic shell, separating the magnetic responsiveness and material properties (Fiser et al.; 48). The

post arrays used in this thesis have a diameter of 2 µm and a height of 25 µm . The nickel shell reaches

approximately half way down the post and is 200 nm thick, Figure 3.3. These dimensions where chosen to

maximum the post stability and the actuation force (48).

3.3.1: Manufacturing

The ASAP arrays in this thesis were fabricated either by Rheomics, Inc. (Chapel Hill, NC) or myself

using a modified version of the procedure developed by Fiser (48).

Figure 3.3: A) Cartoon of a single ASAP post. The key parameters for the post design are the total length
L, the Nickel shell length Lni, the length of the PDMS section Lpdms, and the post diameter D. B) An SEM
image of a finished ASAP array. C) A photo of the ASAP arrays mounted in a microfluidic chamber.

The posts are created using a template based molding process, that results in a 200 nm thick nickel shell

around a PDMS core, see Figure 3.3. The posts are molded using a track etch polycarbonate membrane,

which determines the post height, diameter, and density.

ASAP arrays were made using a template-based process that utilizes a polycarbonate track etched

(PCTE) membrane (it4ipTM, S.A., product number # 100M25) as a mold for the core-shell structures.

First, the nickel shell of the structure was created by coating one side of the track etched membrane with

a 200 nm thick layer of gold that served as the cathode for electro-deposition of nickel into the pores. To

prevent nickel deposition on the backside, a 10 nm later of aluminum is sputtered onto the gold layer. Nickel

does not deposit well on the aluminum oxide layer because of a mismatch in the crystal structure pacifying

the back side of the membrane, while the gold lip inside the pore is still exposed. Both layers were applied

using a Kurt Lesker PVD 75 sputter coater in a clean room.
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Figure 3.4: A diagram of the manufacturing process. 1) We start with a PCTE membrane with a thickness
equivalent to the desired post height, and with pores with the desired diameter and post density. 2) A 200
nm thick gold layer and 10 nm aluminum layer is sputtered onto the back of the template forming a gold
lip inside the pores. The entire membrane is mounted on conductive copper tape. 3) The membrane is
mounted into an electro deposition cell and nickel is deposited into the pores forming tubes. 4) PDMS at a
10:1 PDMS:Cross-linker ratio is filled into the membrane. 5) After curing the filled membrane is mounted
onto a glass substrate using plasma cleaning. 6) The nickel and gold layers are etched away using sodium
hydroxide and a nickel compatible gold etchant. The posts are then either used immediately or dried using
a critical point dryer or freeze dryer for later use.
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The membrane was mounted into an electrodeposition cell using double-sided copper tape to ensure

even electrical contact. Electro-deposition was performed in a custom electrolytic cell with an all-sulfate

plating bath (60 g/L NiSO4∗6H2O, 30 g/L H3BO3, pH 2.9 using H2SO4) (48). Nickel tube length is deter-

mined by the quantity of nickel deposited. Upon completion, the nickel containing track etched membranes

were rinsed with DI water and dried. The core of the structures was made by filling the membrane with

PDMS (Dow Corning, Sylgard 184) at a 10:1 base to cross linker ratio. Prior to curing the PDMS, a 22

x 22 mm coverslip (Corning, 2870-22) was pressed into the uncured elastomer to provide a rigid substrate

for the array. After curing the PDMS, the gold layer (cathode) was removed using a nickel compatible

gold etchant (Aldrich, 651842) and the posts were released by dissolving the polycarbonate template using

dichloromethane (ACROS Organics, 610300010). Released posts were then stored in ethanol until they were

dried using a critical point drier (Balzers Union, CPD 020). ASAP fabrication is summarized in Figure 3.4.

The procedure above is essentially the same as the procedure developed by Briana Fiser (Fiser et al.; 48),

except for the following additions the aluminum pacification layer, the copper tape adhesive, and the chemical

etching. Previously, posts were released from the gold layer by mechanical abrasion. These new additions

improved the fraction of functional arrays from around 10% to 40-50%. After these developments, Rheomics

Inc. began manufacturing the ASAP posts. They have made additional improvements to the manufacturing

process, not detailed here, to further improve yields and consistency.

3.3.2: Design limitations

The rest of this thesis will focus on the modeling and use of the ASAP arrays as sensors. In later

chapters, we will show that the post sensitivity depends on material properties, which can be adjusted

during the manufacturing process. Adjustable parameters include post density, post height, post diamter,

nickel-shell length, and nickel-shell thickness. Because of the ease of acquiring PCTE membranes of different

thickness, densities, or pore sizes, it is easy to change any of these parameters. Adjusting the nickel length is

simply a mater of changing the quantity of nickel deposited during electro deposition, and the shell thickness

can be controlled by the thickness of the sputter coated gold layer.

Unfortunately not all values of the parameters produce viable posts. Due to the high surface energy

of PDMS in water, there is adhesion causing PDMS to self adhere leading to irreversible collapse of the

post arrays. (136). Posts are considered collapsed when they are irreversibly bound to the ground (ground

collapse) or each other (lateral collapse).

Roca-Cusachs et al. developed an analytical model of both modes of collapse that we used set bounds

on our post properties. Because the posts are not entirely made out of PDMS and the top half is coated
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in nickel, these equations will over estimate the collapse criteria. The critical ratio between the post length

and diameter for ground collapse is given by:

(
h

b

)
G

= π5/3

211/331/2 (1−v2)−1/6
(
E

W

)2/3
b2/3 (3.1)

where h is the post height, b is the post diameter, s is the inter post spacing, E is the elastic modulus

of the material, v is the Poisson’s ratio, and W is the work of adhesion. W is 86 mN/m for PDMS in water

(136).

For lateral collapse the equation is:
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where s is the inter post spacing (136). Using these two equations we calculated the maximum aspect

ratios achievable at different post densities, see Figure 3.5.

We are able to create stable posts as long as we remain in the valid design space. From Figure 3.5, we

can see that for our post arrays with a diameter of 2 µm , and a post density of 1.5e6 1/cm2, and a height

of 23 µm , we are right at the limit for ground collapse. As posts get thicker lateral collapse becomes the

primary concern, see Figure 3.5.

The collapse criteria is not an absolute limit, but rather the limit of posts which are stable. Our lab has

successfully made posts outside of this valid regime. Fiser routinely made .55 µm diameter and 10 µm tall

core shell structures (48), and Ben Evans had similar success with nano-composite cilia (45); however, these

posts were highly susceptible to collapse when fluid was added or removed from the posts arrays. Ideally

posts will be made that exist inside the valid design space as they are more robust to dynamic environmental

conditions.
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Figure 3.5: This plot shows the maximum aspect ratio before ground collapse occurs, blue, and lateral
collapse, purple as a function of the post diameter. The shaded region is the design space of stable posts.
The purple dashed line shows how the reducing the post density by a factor of 4 increases the design space.
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CHAPTER 4: Modeling ASAP arrays

Section 4.1: Introduction

In this chapter, I will create a model of our ASAP arrays. In the ASAP system we apply a magnetic field

which causes the posts to deflect. It is possible to measure the post deflection directly using microscopy and

images of the posts, Figure 4.4A; however, it is simpler to measure the posts deflection indirectly by using

the intensity of transmitted light through the sample. The nickel portion of the composite rod is opaque

and as the posts deflect the nickel blocks more of the transmitted light reducing the intensity. In order to

understand the transmitted light signal at all, it is necessary to build a model of the post-fluid-microscope

system that takes into account the intensity signal, magnetic response, and the fluid structure interaction.

I will start this chapter by giving an overview of previous modeling work done on biological and biomimetic

cilia arrays (section 4.2). Then I will outline the different parts of the model and how they interact with

each other (section 4.3). In the following sections, I will then develop the model components (magnetic,

optical, and mechanical) separately and compare the results of the entire model to experimental results.

The mechanical model will consist of three different models of varying levels of sophistication. I will briefly

describe a simple model that neglects the fluid drag forces effects on the post motion. I will then develop

an analytical model of the composite post that fully incorporates the effects of the fluid drag and magnetic

forcing on the post motion. These analytical models neglect the no slip boundary of the floor benieth the

post and are limited to small angle oscillations. I will compare these two models to a finite element model of

a single post built in COMSOL that includes these effects. Finally, I will discuss the next steps for a more

advanced model and the possibility of introducing post-post interactions.

Section 4.2: Previous modeling work

Both numerical and modeling studies have been done on the flow around post arrays (26; 105; 82; 3;

28; 174; 85). Additionally, there is a considerable body of computational work that focuses on trying to

understand the dynamics of biological cilia arrays.(115; 157; 156) These models either assume a prescribed

motion of the posts and model the resulting fluid dynamics, or are complex numerical simulations. These

types of models are difficult to invert and use to calculate the material properties for a given post response

making them unsuitable for measurement applications.
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The dynamics of single-filament fluid structure interactions have been studied analytically (189; 188; 44;

5). These models have been used to describe artificial swimmers and fluid shear sensors (42; 20; 21). In

general, the dynamics of these systems depend on a dimensionless parameter known as the sperm number

(189). The sperm number represents the ratio of the viscous drag forces on the actuator to the internal

elastic forces and determines the shape of the post motions:

Sp= L

(
4πωη
EI

)
(4.1)

where L is the length of the flexible filament, ω is the angular frequency of the motion, η is the viscosity

of the fluid, E is the elastic modulus of the filament, and I is the second moment of inertia. At low sperm

numbers, Sp << 1, the elastic forces dominate and the deflection of the rod is well describe by standard

beam mechanics. At large sperm numbers, Sp >> 1, the viscous forces dominate and waves form along the

filament. The sperm number can be though of as the number of wavelengths that fit within the length of

the elastic filament (189).

In multi-post systems, the sperm number is equally important. Computational studies of the fluid flow

generated by actuating post arrays show that the nature of the flow depends heavily on the sperm number.

In the paper by Alexeev, they show in a computational model that as the post arrays are driven through

a sperm number of one, the fluid flow generated by the posts reverses direction (3). Further simulations

show that how particles interact with the post arrays and the surrounding fluid depends on sperm number

(107; 10).

Section 4.3: Model overview

To date no one has used these models and artificial cilia arrays as a rheometer or sensor for the physical

properties of the fluid that they are embedded in. Additionally, the composite nature of our posts requires

a new model. We will develop the model in a modular manner, see Figure 4.1, first developing a model for

how the light intensity is related to post deflection, then a model for the magnetic force on the posts, and

finally we will develop a model for the fluid structure interaction.

The raw experimental output of the ASAP arrays are the transmitted light intensity through the array

and the applied magnetic field, dark blue in Figure 4.1.
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Figure 4.1: Diagram of the different model parts and how they interact with each other. Dark blue represents
measured values. Green are the different components of the model, and light blue are calculated values. The
intensity is converted into a post angle using the tilt model. The angle and the applied field are then used to
calculate the torque on the rod. The angle and the torque signals are used with the fluid interaction model
to calculate the fluid properties.

Section 4.4: Tilt model

The intensity of the transmitted light through the posts is measured during the experiment. The goal

is to relate the transmitted light intensity to an angle of post deflection. This is done by how the nickel

shell blocks light as the post deflects. We model the nickel shell as a solid rectangle with a width, a, and a

length, b. The projected length of the nickel, L, can be calculated from the geometry and the angle of the

post using simple trig (Figure 4.2).

L= bsinθ+acosθ = csin(θ+φ) (4.2)

c=
√
b2 +a2 (4.3)

φ= arctan(b,a)≈ 10o (4.4)

where L is the projected length of the nickel, a and b are the long and short sides of the post respectively,

and φ is an angle correction for the fact that the projected length is the diagonal of the nickel rod.

Experimentally we measure the change in intensity. We will normalize the intensity to the maximum

intensity, i.e. when the magnetic field is off. We can then write the normalized change in intensity as:

∆I
Ioff

= Ioff − Ion
Ioff

= 1− Ion
Ioff

(4.5)
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where Ioff is the transmitted intensity with the magnets off and Ion is the transmitted intensity with

the magnets on (deflected posts). Ion is Ioff minus the area blocked by the posts. Because the posts are

not perfectly black due to scattered light and other optical effects there is a constant that represents the

contrast ratio. Ion is then:

Ion = Ioff −CNA(θ) = Ioff −CNA(θ) (4.6)

where C is the contrast ratio of the nickel to the PDMS, N is the number of posts in the field of view

(which is the density, ρ, times the field of view), and A(θ) is the area occluded by a post, which depends on

the angle of the tilt.

Figure 4.2: Diagram of the tilt model. The nickel portion of the rod is modeled as a solid rectangle with
width a and length b. The projected length, L, can then be calculated using trigonometry, eq. 4.2.

Combining equation 4.2, 4.5, and 4.6 we get the following equation for the change in intensity and the

post angle:
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∆I
Ioff

= Cρ(csin(θ+φ)
Ioff

(4.7)

The prefactor Cρ is calibrated using an image of the post bent over under a magnetic field. The average

projected length of the nickel is measured as well as the change in intensity between the images and is used

to calculate the tilt angle, see Figure 4.4A.

For every experiment we preform a tilt test, which is used to convert intensity changes to post deflections

by finding the value of Cρc for a given post array. The tilt test is a ramp of increasing magnetic field applied

to the posts. At each point an image is taken. The change in intensity at each step is measured along with

the nickel deflection (measured directly from the images). Equation 4.7 is then fitted to the results where

Cρc is used as the fitting parameter (Figure 4.4).

Section 4.5: Magnetic response

Ben Evans, Briana Fiser, and Adam Shields used a permanent magnet to actuate the posts (48; 150; 45).

The high magnetic field enabled them to use an energy minimization model for the magnetic forces on the

ASAP arrays. In this thesis, I will use an electromagnet to acquire more fine-grain control over the actuation

of the posts, but at lower field strengths. In order to model the magnetic forces below and above magnetic

saturation, a new magnetic model is needed.

Abbott developed a magnetic model for prolate and oblate spheroids of soft magnetic material (1), above

and below saturation. In Abbott’s model, the magnetic response of the posts is separated into two regimes.

Above saturation the same energy minimization model that Evans, Fiser, and Shields use holds. Below

saturation the magnetization is described by the following equation:

M = χaH (4.8)

χa = diag
(

χ

1 +nx
,

χ

1 +ny
,

χ

1 +nz

)
(4.9)

where M is the generated moment, χa is the magnetic susceptibility that depends on the material and ge-

ometry, χ is the materials magnetic susceptibility, and nx,y,z are the geometric demagnetization parameters.

If we assume a large value of χ, greater than 103, we can simplify χa to:
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χa = diag
(

1
na
,

1
nr
,

1
nr

)
(4.10)

where na is the geometric demagnetization factor for the long axis and nr is the demagnetization factor

for the short axis. na is determined by the following equation:

na = 1
R2−1

(
R

2
√
R2−1

ln
(
R+
√
R2−1

R−
√
R2−1

)
−1
)

(4.11)

R= Llong/Lshort (4.12)

We can calculate the angle of the induced moment by expanding the equation 4.8. Doing the calculation

gives us the angle of the magnetic moment:

ψ = tan−1
(
na
nr

tanφ
)

(4.13)

where ψ, is the angle between the post and the generated moment, and φ is the angle between the post

and the magnetic field (Figure 4.3).

Above saturation the equations change. The induced moment is constant, |M | = ms, and the angle of

the moment is calculated by minimizing the magnetic energy:

e= 1
2µ0v(nr−na)m2

s sin2ψ−µ0vms|H|cos(φ−ψ) (4.14)

where v is the nickel volume, e is the energy, µ0 is the permitivity of free space, ms is the saturation

moment, ψ is the angle between the long axis and the induced moment, and φ is the angle between the

magnetic field and the long axis of the rode. Minimizing this equation gives us the following nonlinear

equation for the induced moment angle, which can be solved numerically:

(nr−na)ms sin(2ψ) = 2|H|sin(φ−ψ) (4.15)

The saturation magnetic field is determined by the following equation (1):
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|H|sat = msnanr√
n2
a sin2φ+n2

r cos2φ
(4.16)

It is now possible to calculate the induced torque using the standard equation:

T = µ0vM ×H (4.17)

Combining equations 4.17, 4.13, 4.15, and 4.16, and including a remanent magnetic moment along the

long axis of the rod, mrem, we get the following equation for the torque on the rod:

|τmag|=mrem|B|sin(φ−ψ) +


v|nr−na|
2µ0nanr

|B|2 sin(2φ), |B|< |B|sat
µ0v|nr−na|

2 m2
s sin(2ψ), |B| ≥ |B|sat

(4.18)

where ψ is calculated using equation 4.15, and equation 4.13.

Section 4.6: Experimental validation of magnetic and tilt Models

To validate the magnetic and tilt models we performed a simple experiment. The posts are subjected

to increasing magnetic fields at a constant angle (10 degrees) from horizontal. As the field increased, the

angle of the posts was measured using the transmitted intensity and tilt model. The transmitted intensity

model is calibrated for a given post array by measuring the percent change in the average image intensity

with the magnetic field on and off, while simultaneously directly measuring the post angle by measuring the

projected length of the deflected nickel portions for a single magnetic field. This calibration point was used

to calculate the change in pre-factor, Cρ, in equation 4.7.

Deflections were calculated by solving the torque balance equation using the quasi-static assumption:

τmag + τpost = 0 (4.19)

where the torque due to bending, τpost, is calculated using an Euler-Bernulli Beam Model. Because the

magnetic field applies a pure torque, it is assumed that the PDMS portion of the posts bends with a

constant radius of curvature. This has been shown to introduce an error of less than 30% (46).
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Figure 4.3: The angle of the posts from vertical is θ, φ is the angle between the rod and the induced moment,
and ψ is the angle between the rod and the applied magnetic field.
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The torque is therefore:

τpost = dUE
dθ

= πEr4θ

LPDMS
(4.20)

where E is the elastic modulus of PDMS, r is the radius of the post and LPDMS is the length of the

PDMS portion of the rod. For the geometry of the model we assumed a nickel shell thickness of 200 nm, a

nickel shell length 13± 1µm and a post diameter of 2 µm. For material properties, the elastic modulus of

PDMS was fitted to be 0.85± .07 MPa and the permanent moment of the rod was fitted to the measured

post response (see below). The fitted permanent moment of the nickel shell was (4±1)×10−13 Am2. The

predicted deflection of the posts can be seen in Figure 3C.

The experimental deflection vs. field results agree well with the predicted results from the model, see

Figure 4.4. The model curve was calculated by numerically solving equation 4.19 using equations 4.18 and

4.20 for the magnetic and post torque. The only parameters that were fitted was the permanent moment

term, and the post stiffness. The rest of the model parameters were based off of known and measured values

for the posts, including the material properties of nickel, the post dimensions, length of the nickel rods, and

volume of the nickel shells. The fitted permanent moment, 2× 10−13Am2, was consistent with remanence

from a previous exposure to a magnetic field, as it was less than the predicted moment generated under the

largest applied fields ( 50 mT). The fitted PDMS elastic modulus of 0.85± .07 MPa is within the expected

range (50).

Prior to experiments ASAP arrays were pulsed with varying magnetic fields over the full range of a typical

experiment to test actuation. This initial exposure to the magnetic field likely introduced the permanent

magnetic moment. Additionally, because the magnetic susceptibility of a high ratio structure is dominated

by the geometry and not by the material properties, the equations for the induced magnetic moment should

not change significantly.

Section 4.7: Fluid-structure model of posts

4.7.1: Fluid modeling

To model the fluid-post interaction we will use the low Reynolds number approximation of the Navier-

Stokes equations. Previous theses on the ASAP arrays have gone into great depth on the Navier-Stokes

equations and their basic solutions applicable to the flow generated by cilia. I will not recreate their work

here and will simply refer the reader to their excellent theses (48; 150).
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Figure 4.4: A) Sample images of the post arrays with the magnetic field on and magnetic field off, 50 µm
Scale Bar. B) Measurements of ASAP deflection compared against the theoretical model, eq. 4.18. The
x-axis is the applied magnetic field and the post response in degrees of tilt is plotted on the y axis. The
purple line is the deflection predicted by our model with a single-parameter fit. All inputs were determined
from independent measurements or known material properties except for the remanent magnetization of the
posts.

In this thesis, I will focus on the Oseen Tensor and slender body theory for force on a rod, which we

will use to model the hydrodynamic interaction between the post and the fluid. We will start with the

Navier-Stokes equation as originally derived by Navier in 1827 for a incompressible Newtonian viscous fluid:

ρ

(
∂~u

∂t
+~u ·∇~u

)
=−∇p+η∇2~u+ρ~F (4.21)

where ρ is the density of the fluid, ~u is the velocity of an infinitesimal fluid unit, p is the pressure, η is the

viscosity, and ~F is the applied force.

We will make two assumptions to simplify the problem. The first assumption is that the instantaneous

flow is approximately steady state (20; 189), removing the ∂~u
∂t term. Additionally, because we are in the low

Reynolds number regime, Re= ρvl/η << 1, inertial effects are not significant so we can remove the nonlinear

inertial term, ~u ·∇~u. We are now left with the simplified linear Navier-Stokes equation and the conservation

of mass equation:
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−∇p(~r) +η∇2~u(~r) =−F (4.22)

∇~u= 0 (4.23)

It is important to note that these equations are now linear, which means that if two solutions f1 and f2

exist then f1 +f2 is also a solution. This enables us to model a slender beam, such as our posts, as a series

of point forces known as Stokeslets. A Stokeslet is the solution to equation 4.22 for a point force within the

fluid and boundary conditions that vanish at infinity, see Maciej Lisicki’s “Four approaches to hydrodynamic

Green’s functions” for a derivation for how to derive the flow and pressure fields for a Stokeslet (101; 81).

p(~r) =
~F ·vecr
4πr3 (4.24)

u(~r) =
~F

8πηr

(
I+ ~r~r

r2

)
(4.25)

where F is the magnitude of the point force, I is the identity tensor and ~r is the vector from the origin.

u(~r) is often known as the Oseen Tensor.

To calculate the force from the fluid on a slender rod or any other slender body, we will integrate a series

of Stokeslets along the centerline of the body. The Stokeslets force values will be chosen so that the fluid

velocity at the boundary of the rod will equal velocity of the boundary, i.e. no slip boundary conditions.

The force of the Stokeslets can then be integrated to calculate the force per unit length on the rod, see

“Computing Flows Around Microorganisms: Slender Body Theory and Beyond” for a detailed derivation of

this term (121). The end result is that for a slender body, such as our ASAP posts, the force along the posts

can be modeled as:

Oseen Drag = 4πηv
lnL/2D (4.26)

where η is the fluid viscosity, v is the velocity of the post, L is the total length of the rod, and D is the

diameter. From now on we will call this term the drag term which represents the force of the fluid per unit

length on the rod.
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4.7.2: Analytical model

In order to model the fluid structure interaction we will expand the model developed by Wiggins in 1998

(189) to include composite posts. In Wiggins’ model, the flexible filament is modeled as a slender beam

using beam mechanics. The forces on the rod due to the fluid are modeled as an Oseen drag term, see above

(189; 20; 173). In our case, instead of a purely elastic beam, we have a composite beam. The nickel portion

of the rod is over 3 orders of magnitude stiffer than the PDMS and will be considered as completely rigid.

Therefore, we will use the Wiggins model only on the flexible PDMS portion of the rod. The drag forces

and applied magnetic forces on the nickel portion will be included in the model as boundary conditions

applied at the end of the PDMS that depend on the motion of the rod and applied magnetic field, Figure

4.5. The motion of the nickel rod is entirely dependent on the motion of the end of the PDMS rod, Figure

4.5.

Figure 4.5: Diagram of the full model. The nickel portion of the rod is treated as a rigid and its movement
is entirely determined by the boundary conditions at point 2 (red). The angle is determined by the first
derivative and the location of the end w(s). The model solves for the PDMS shape using a fluid interaction
model developed by Wiggins, (189) s is the length along the arc length.

4.7.3: Equations

We will start using the same equations as Wiggins (189). Assuming that the deflections are small and

that the post motion is in the low Reynolds regime where inertia can be neglected, we get the following

differential equation for the deflection of the post from vertical as a function of the arc length s:
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EI
∂4w(s)
∂s4 = −i4πηω

ln(Ltot/2D)w(s) (4.27)

s

LPDMS
= α (4.28)

EI
∂4w(α)
∂α4 = −i4πηωL4

EI ln(Ltot/2D)w(α) (4.29)

∂4w(α)
∂α4 = −iSp4

ln(Ltot/2D)w(α) (4.30)

where E is the elastic modulus, I is the second moment of inertia, w is the displacement from vertical,

which is dependent on s distance along the centerline of the post, η is the viscosity, ω is the frequency of

the oscillation, Ltot is the total length of the nickel, and D is the post diameter. In the above equations

we nondimensionalize the equations using the parameter α = s/LPDMS where LPDMS is the length of

the PDMS portion. This allows us to ultimately write the equation in terms of the Sp4 and a term that

represents the ends effects. To put the equation in a standard form, we will sub in k4 for Sp4

ln(Ltot/2D) :

∂4w(α)
∂α4 =−ik4w(α) (4.31)

This differential equation has a known solution:

w(α) =
4∑
j=1

cje
ijz0kα (4.32)

z0 = e−iπ/8 (4.33)

where cj are the constants to be determined by the boundary conditions, and z0 is the fourth root of i.

Up until this point the analysis is the same as in Wiggins and the nickel portion of the rod is completely

ignored.

Boundary conditions

The nickel portion of the rod is included in the boundary conditions at the PDMS free end. The nickel

rod will have forces applied to it through the magnetic field and viscous drag that need to be balanced out

by the boundary conditions.

The first two boundary conditions are for the fixed PDMS end. These boundary conditions are simply:
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w(0) = 0 (4.34)
∂w(0)
∂α

= 0 (4.35)

The boundary conditions on the nickel end of the PDMS are the applied moment and shear from the

nickel portion of the rod. It is in these boundary conditions where the driving magnetic force and the drag

terms from the nickel portion of the rod come in. Because the movement of the nickel end of the rod is

entirely determined by the function w and its first derivative with respect to α at the end of the PDMS

section, we are able to write out these boundary conditions as functions of w (Figure 4.5):

∂2w(1)
∂2α

=
MappL

2
p

EI
+
MdragL

2
p

EI
(4.36)

MdragL
2
p

EI
= γ1w(1) +γ2

∂w(1)
∂α

(4.37)

∂3w(1)
∂3α

=
SappL

3
p

EI
= γ3w(1) +γ4

∂w(1)
∂α

(4.38)

where Mapp is the moment at the end of the rod, Lp is the length of the PDMS portion, Mmag is the

applied magnetic moment, Sapp is the shear applied at the end of the rod, and γ1,2,3,4 are constants that

represent the drag terms on the nickel portion of the rod that contribute to the moment γ1,2 and the shear

γ3,4

Determining γ1,2,3,4

To calculate the drag terms, we will use the same Oseen drag force for a slender rod, and the displacement

of the nickel portion of the rod (Figure 4.5). Applying these two terms we get the following equation for the

drag force per unit length on the nickel rod:

Dni = i4πωη
ln(Ltot/2D)

(
w(LPDMS) + (s−LPDMS)∂w(LPDMS)

∂s

)
(4.39)

Dni = i4πωη
ln(Ltot/2D)

(
w(1) + (α−1)∂w(1)

∂α

)
(4.40)

where Dni is the drag per unit length along the nickel potion of the rod.

If we substitute the drag term into the equation for the moment boundary condition 4.36, we get the
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following equations.

MdragL
2
PDMS

EI
= i4πωηL2

PDMS

EI ln(Ltot/2D)∫ Ltot

LP DMS

(s−LPDMS)
[
w(LPDMS) + (s−LPDMS)∂w(LPDMS)

∂s

]
ds

= ik4w(1)
∫ Lr

1
(α−1)dα+ ik4 ∂w(1)

∂α

∫ Lr

1
(α−1)2dα

(4.41)

by comparison to 4.36 we can now write γ1,γ2 as test:

γ1 = ik4
∫ Lr

1
(α−1)dα (4.42)

γ2 = ik4
∫ Lr

1
(α−1)2dα (4.43)

preforming the same analysis on the shear boundary conditions we get:

SappL
3
p

EI
= i4πωηL3

PDMS

EI ln(Ltot/2D)

∫ Ltot

LP DMS

w(s) + (s−LPDMS)∂w(LPDMS)
∂s

ds (4.44)

= ik4w(1)
∫ Lr

1
dα+ ik4 ∂w(1)

∂α

∫ Lr

1
(α−1)dα (4.45)

and γ3,γ4 equal:

γ3 = ik4
∫ Lr

1
dα (4.46)

γ4 = ik4
∫ Lr

1
(α−1)dα (4.47)

Now all that is left is to solve the system of four equations for the four unknowns. This is a trivial task

but quite messy. Some general comments about the solution: the term Mmag factors out of the solution

fully, implying that the beat shape is the same regardless of the magnetic field at a given sperm number and

the amplitude of motion is linearly dependent on the applied field. The solutions have a wavelength along

the PDMS portion of the rod, k. As k gets large there will be more and more nodes along the PDMS portion

of the rod, Figure 4.6.
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4.7.4: Computational models

The analytical model above does not include some important parameters. It assumes that the post

deflection is small, which is often true of the oscillations, but the oscillations are about an equilibrium

deflection. It also neglects to include boundary effects from the floor of the PDMS or post-post interactions.

To confirm that we get reasonable results even with these assumptions, we compared our results with a

finite element model created in COMSOL. COMSOL is a finite-element simulation package that specializes

in multi-physics problems, such as fluid-structure interactions. The computational model enables us to look

at the flow generated by a single post or an array as well as the post motion.

The post is modeled as a single post in a box of fluid with zero pressure boundaries in the direction of

the beat plane, Figure 8. The post is modeled as two materials with different elastic moduli, mimicking the

PDMS and Nickel composite structure. The magnetic force is modeled as a sinusoidal force couple applied to

the stiff nickel portion of the rod. The top bottom and sides of the box all are a no-slip boundary condition

(Figure 8. For a full description of the COMSOL model see appendix 6.5.

Section 4.8: Model results

The analytical model built here reveals two important factors about our composite ASAP rods. First,

the applied moment from the magnetic system factors out of the equation. This means that the beat shape

is independent of the applied moment and that the applied field simply determines the magnitude of the

beat shape. Second, the beat shape depends entirely on the ratio of the nickel to PDMS portion of the rod

and k or the sperm number. Intuitively this makes sense. The Ni/PDMS ratio is proportional to the ratio

of the forces on the stiff and flexible portions of the rod while the sperm number represents the ratio of the

viscous forces to elastic forces on the elastic portion of the rod.

In Figure 4.6, example beats at a variety of sperm numbers are shown for a composite rod that has a 1:1

Lni to LPDMS ratio. At low sperm numbers, Sp<< 1, the beat shape is symmetrical. As the sperm number

increases, asymmetry in the beat shape begins to develop. At a sperm number of two, a clear asymmetry of

the beat shapes develops. One interpretation of the sperm number is the wave length of the deflections along

the rod (189). At larger values of the sperm number, i.e. four (Figure 4.6), multiple wavelengths develop in

the flexible region of the rod. The number of wavelengths is proportional the sperm number.

In Figure 4.7, the phase between the driving force and the post response, measured as the angle formed

by the nickel shell, is plotted against sperm number for a variety of nickel lengths. The amplitude as a

function of sperm number is plotted as well. As the length of the nickel increases, the nickel drag dominates

and the model approaches the simplified model of constant beat shape, dashed black line. Eventually at
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Figure 4.6: Examples of the normalized beat shape according to the analytical model at different sperm
numbers. The normalized displacement from vertical is plotted on the x-axis while the distance along the
arc length is plotted on the y axis. As the sperm number increases the drag becomes more and more dominant
in the post motion. One full cycle of the beat is shown going from blue to read in time. As the sperm number
increases the amplitude of the post motion also decreases, see Figure 4.7 B.
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larger sperm numbers extremely large curvature begins to develop, causing the elastic forces to increase at

a faster rate the drag forces which causes the phase to drop.

Figure 4.7: Plots of the models predicted post response to a oscillating magnetic field in phase and normalized
post response. The left plot is the phase lag in radians plotted against the sperm number for different nickel
lengths. The right plot shows the normalized post amplitude as a function of sperm number for the same
nickel lengths. The ni-length in microns is varied for the same length of posts. All posts were 25 µm in
length total. The black dashed line represents the naive model of the post with a constant beat shape.

At low sperm numbers there is excellent agreement between the analytical model and the COMSOL result,

see Figure 4.8. As the sperm number increases, the discrepancy between the two models increases. This

is particularly obvious in the predicted phase response of the posts, Figure 4.9. While both the COMSOL

model and the analytical model begin decreasing phase as the sperm number increases for large sperm

numbers, the analytical model overestimates this change compared to the COMSOL model. This indicates

that the analytical model is overestimating the elastic component. The COMSOL model includes the effect

of the floor boundary, and the fluid motion, and does not assume that the cross-section does not deform as

the post bends. A lower bending rigidity to the posts would result in a larger phase lag as seen in Figure

4.8.

In an array of posts the fluid flow generated by neighboring posts is obviously important. In the later

chapters, I will show that it is not necessary to take this effect into account to use the posts as sensors. The

COMSOL model however shows that the posts generate significant fluid flow for their neighbors, Figure 4.10.

In posts that are separated by 15 µm, the fluid velocity drops by less than 20% between the posts. This

suggests that post-post interactions in our dense arrays, average spacing 5-6 µm, are extremely important.

Future work should focus on understanding how these post-post interactions effect the analytical model.
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Figure 4.8: Example beat shapes at three different sperm numbers. The normalized displacement, x-axis,
is plotted against the position along the rod, y-axis. The COMSOL simulation is in red while the black
represents the analytical model. The figure above shows that there is excellent agreement between the two
models. At larger sperm numbers, the discrepancy becomes larger.
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Figure 4.9: Plots of the phase lag of the post response vs sperm number for the naive model, blue, the
COMSOL model, purple, and full analytical model, red. Below a sperm number of 1.5 the full analytical
model and the COMSOL model give nearly identical predictions for the phase lag of the post response.
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Figure 4.10: A plot of the normalized viscosity as a function distance from the post tip perpendicular to
the beat plane. Different box sizes are shown, 30 µm, 40 µm, 50 µm, 50 µm no-slip boundary condition.
The slip boundary condition is equivalent to an array of posts with a spacing equal to the simulation box
width. The fact that velocity drops off by 20 percent over 30 µm suggests that there are strong post-post
interactions.
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Section 4.9: Conclusions and future work

In this chapter I developed an analytical model to convert the transmitted intensity signal into a post

angle, the magnetic applied magnetic field into a torque, and an analytical model of a single post bending

in fluid. The analytical model does not take into consideration the boundary of the floor or nearby posts.

As will be shown in the next chapter this model works well as long as the sperm number of the system is

below one, chapter 5. At larger sperm numbers the analytical model deviates from the experimental results

significantly.

Future work should be using the COMSOL model in conjunction with the analytical tool for investigating

the cause of this deviation. Previous modeling work of actuating arrays of posts show that there are significant

changes in the flow around the post arrays as they transition through the sperm number of one (13; 108; 3).

Particles will either be pulled into the cilia arrays or pushed out depending on the sperm number (13; 108).

The flow in the channel reverses directions as the system passes through a sperm number of one (3). The

COMSOL model developed in this chapter is an excellent model to investigate how the fluid flow changes

between low and high sperm numbers and how this affects the model. Future work with should focus on

understanding these effects.

On the analytical side there is the possibility of incorporating multiple posts and boundary conditions

in the model. Under prescribed motions other groups have used slender body theory to model arrays of

embryonic nodal cilia (158). In the model the nodal cilia have prescribed motions but the fluid flow and

forces on individual posts are calculated. Using the current analytical model to calculate beat shapes, a

similar model to the nodal cilia could be used as an alternate method to investigate the effects of post-post

interactions.
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CHAPTER 5: Oscillatory rheology

Section 5.1: Introduction

Rheology, the study of the mechanical properties of fluids, is important in biology and medicine (31;

37; 34). Conventional rheometers use relatively large volumes of material (hundreds of millileters) making

studies of precious and novel materials difficult (131). Because of the need for rheometers that use small

volumes of sample for biology and medical diagnostics, there has been significant interest in small volume

rheology over the last 10 years. Additionally, there is a current push towards lab on a chip technologies that

preform numerous tests or entire chemical production lines on a single chip, and there has been an increase

in interest in micro-fluidic rheometers that can integrate into these systems (123; 198; 78; 29).

In this chapter, we describe a magnetically actuated micro-post array based rheometer. Quantitative

viscosities over a range of three orders of magnitude are determined for samples of less than 20 µL with the

aid of the comprehensive analytical model that includes post viscoelasticity, magnetics of the post, optical

readout, and fluid structure interactions developed in chapter 4. In addition to sensing, these arrays are

multifunction and are capable of pumping or mixing like previous arrays (151; 181; 168; 182; 83). We also

show how the model can guide the design of new arrays with different physical parameters to expand the

range of measurements.

In the last 10 years, there have been numerous papers on biomimetic cilia arrays and their potential

applications for micro-fluidics applications. Like their biological counterparts artificial cilia arrays have been

shown to be effective mixers, (151; 168; 83; 105) effective pumps, and can manipulate particle settling(108;

162; 6). These artificial cilia arrays operate in the low Reynolds regime and are typically on the scale of a

few microns in diameter and tens of microns tall. Arrays have been created using a variety of techniques

including using self assembled micro beads (182), magnetic polymer composites (151; 133), electrostatic and

magnetic flaps (162; 196), and core shell structures (Fiser et al.). Considerable numerical and modeling

studies have been done as well trying to understand the flow around post arrays (27; 105; 82; 3; 85).

Driven artificial cilia arrays, however, have not been successfully used as a fluid rheometer. We have used

our nickel composite arrays as a sensor for the elastic properties of human blood clots (75), Chapter 6, but

did not measure the viscous properties of the clot.

In this chapter, we use the model developed in chapter 4. By using high resolution time measurements
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(10 kHz-bw) of the transmitted light through the post array, synchronized with the driving magnetic force,

we are able to monitor the phase of the post drive to the post response (driven at 1-30 Hz). We show that

while the single post model deviates significantly from the experimental behavior at large sperm number,

at low sperm numbers we are able to use the model to measure the viscosity of the fluid. Using the model,

we show how the post design can be modified to increase the range of fluids that fall into the slow sperm

number regime. Our ASAP arrays are easily integrated into microfluidic systems, do not require active flow

for rheology measurements, and are capable of being multi-purpose elements in lab on a chip devices.

Section 5.2: Methods

5.2.1: Making flow cells

PDMS channels were made by laser cutting negatives of the channels out of 250 µm transfer adhesive.

The channel negatives were then attached to the bottom of a 100 mm petri dish. Micro-fluidic ports (Value

plastics B000FP9YDO) were then mounted onto the transfer adhesive. PDMS (Sylgard-184) was mixed at

a 10:1 PDMS:crosslinker ratio. The PDMS was poured over the channel negatives and allowed to cure at

80 ◦C overnight. The channels were then cut out of the petri dish using a razor. The channels were plasma

cleaned for 30 seconds and coated with a thin layer of Norland optical adhesive and sealed onto the ASAP

arrays, which were mounted on an 18×18 mm number one cover slip.

5.2.2: Electromagnet microscope setup

ASAP actuation was performed with an opto-magnetic system as shown in Figure 5.1. The posts were

imaged using a 10x, 0.3 NA, Plan DL, Nikon objective mounted model number and a 60 Hz Firefly USB

2.0 camera (FMVU-03MTM-CS). The camera was interchangeable with a Thor Labs amplified photo diode

(Thor Labs PDA36A). The diode has a 13 mm2 detection area and is responsive from 250–1100nm light.

The camera was used to take images of the deflected posts for calibration purposes, while the photo diode

was used for measuring the deflection during the oscillatory experiments in phase with the magnetic field. A

collimated 780 nm high intensity LED from Thor labs (Cat# M780L3), with a polycarbonate diffuser, was

used as the light source. The noise level of the camera and LED system was less than 0.03% of the average

image intensity. To actuate the posts, an electromagnet consisting of tape-wound, silicon-steel, C-shaped

core with a 10 x 10 mm cross-section and a 16 mm gap was used. Magnetomotive force was produced by two

magnet coils, with 680 turns each, connected in parallel for a total of 1,380 turns. The magnetic field varies

less than 10% within 3 mm of the gap center, confirmed experimentally and with COMSOL simulations.
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The electromagnet was driven by a transconductance amplifier. The amplifier and magnets had a combined

bandwidth greater than 50Hz. The amplifier magnet combo was able to reproducibly produce a field within

the 1% precision of the gauss probe used to measure the signal. The amplifier has a noise level as a function

of frequency of approximately
√

1nA/Hz.

Figure 5.1: (A) Computer model of the experimental setup. The micro-fluidic channel is placed in between
the C shaped electromagnet core and is imaged using the microscope. The intensity of the transmitted light
from the light source, not shown, is monitored using either a camera or photo diode. B) Frontal view of the
microfluidic chamber in between the magnetic field. The face of the electromagnet is 10× 10 mm and the
gap is 16 mm. The magnetic is tilted at a 10o angle from the horizontal axis. C) A diagram showing the
microfluidic chamber. The chamber has a height of 250 µm . The PDMS base and posts have a total height
of 125 µm so that the gap height, G, between the top of the posts and the ceiling of the channel, is 125 µm
. The channel is 1 mm in diameter.

5.2.3: ASAP rheology protocol

For an ASAP rheology experiment, the posts are subject to an oscillatory magnetic field. The field is an

offset sine wave that goes from zero to a maximum and back to zero, never negative.

In order to calibrate the ASAP post post amplitude in different fluids with different indexes of refraction,

a steady state experiment is performed. Because all the materials used are visco-elastic or viscous fluids,

over long periods of time, the post deflection is determined entirely by the magnetic and material properties

that remain constant. A known magnetic field is applied to the post array, and the posts are allowed to

equilibrate. The change in intensity and images taken with the FlyCap camera at equilibrium are used to

calibrate the tilt model (eq. 4.7). This allows us to measure accurately the amplitude in different materials.
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A frequency sweep is then performed, typically from 1, to 30 Hz in 1 Hz intervals. At each frequency,

the phase and amplitude of the post motion and the magnetic field is recorded, using a NI instruments DAQ

board, PCI-6713. The magnetic field is read as the current being supplied to the magnetic field, and the

intensity is monitored with the photo diode.

Section 5.3: Results

5.3.1: Raw results

The raw output of the experiment is the current as a function of time being delivered to the magnet, and

the transmitted intensity through the post arrays as measured by the photo diode, Figure 5.2. The magnetic

field can be directly calculated from the current, because the silicon tape wound core has low remanence,

< 0.1 mT, and a bandwidth over 200 Hz, well above the maximum drive frequency (30 Hz). Because we

drive the magnet below the saturation threshold, there is a strictly linear relationship between magnetic field

and current.

Both the applied magnetic field and the transmitted intensity are converted into a post angle deflection

and applied torque using the model developed in chapter 4 (Figure 5.2).

Figure 5.2: A) Example images of the post array with the field on and off. Images like this are used to
calibrate the post deflection, measured directly using the images, and the change in intensity. B) Raw ASAP
results. The magnetic field and the transmitted intensity are measured simultaneously using a DAQ board.
The DAQ board measures the output voltage of the photo diode and the voltage across a 2 Ohm shunt
resistor in series with the electromagnet simultaneously. B) The measured post angle and applied torque
are calculated using the tilt and magnetic model explained in detail in chapter 4. From these results we get
the post amplitude, ∆θ, torque amplitude, ∆τ , and the phase, ∆φ, between the drive signal and the post
response.

From the processed results we can measure the change in post amplitude, ∆θ, the amplitude of the torque

motion, ∆τ , and the phase between the two, ∆φ. We extract the these parameters by fitting the data with

a sinusoid of the from:
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Asin(2πft) +B cos(2πft) (5.1)

where f is the drive frequency, t is the time, and A and B are fitting parameters. Because of the fact that

the magnetic field goes as the square of the magnetic field, there will be higher frequency components in the

drive signal and the response. However, by fitting the data with the sine specifically at the drive frequency

we will suppress the higher frequencies from the data.

Because we will work with the model in the complex frequency space, the fitted torque data and post

response will be converted into complex numbers:

Ampf=fmes
=B+ iA (5.2)

which is the complex response of the posts at a given frequency.

5.3.2: PDMS calibration

The final step to complete the model is to calculate the material properties of the posts. To do this we

will use the post response in water. In water, the PDMS material properties are dominant, so even if the

drag model is not completely accurate, we should get a reasonable measure of the post material properties.

The complex elastic modulus of PDMS is calculated from PDMS by solving for the elastic modules in

the model equation from chapter 4, using the phase and amplitude of the posts in water. The first derivative

of the solution from chapter 4 of the post motion can be related to the post amplitude using the small angle

approximation:

∂w(s,τ(ω),Sp)
∂s

∣∣∣∣
s=Lpdms

≈ θ(ω) (5.3)

where w(s,τ,Sp) is the solution to the post model from chapter 4 which depends on the position along the

rod s, the applied torque τ , and the sperm number Sp. The sperm number depends on the the viscosity η,

the frequency f , the elastic modulus of the posts E, and the second moment of inertia I. The experimental

results give us θ(ω) and τ(ω), and I, f , eta are all known. We solve for the sperm number using eq. 5.3 for

the post arrays in water. PDMS is a partially cross-linked polymer, and therefore has complex visco elastic
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properties and is represented as a complex number. Because the viscosity and frequency are determined, we

are able to solve for the complex elastic modulus of the PDMS, see Figure 5.3.

Figure 5.3: Plot of measured elastic modulus of the PDMS posts as a function of the drive frequency.
The circles represent the real component of the elastic modulus of the PDMS, while the triangles are the
imaginary part. These curves were calculated using equation 5.3 using water as the experimental fluid. The
curve from three different ASAP arrays are presented.

The real elastic modulus of the PDMS ranges between 5-10 MPa, while the imaginary component, which

is caused by free polymer chains, ranges between 1-3 MPa, Figure 5.3. The PDMS properties are not

consistent across arrays and therefore each array needs to be calibrated for each experiment. While the

PDMS properties measured are reasonable for PDMS (183; 43; 50), they are on the high end of the expected

range and are nearly a factor of 10 higher than the PDMS properties measured in the tilt tests (Figure 4.4).

It is likely that there are post-post interactions, and post-wall interactions occurring between the posts that

are being included in the PDMS calibration.
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5.3.3: Viscosity measurements

The calibrated results are plotted against the analytical model and a constant beat shape model in Figure

5.4. The phase is calculated between the drive and response signal using the fitted PDMS parameters in

the model (Figure 5.2). The frequency response of the posts in water, where the drag force is five orders of

magnitude below the post stiffness, is used to determine the PDMS properties, see section 5.3.2. The phase

lag due to the visco-elastic nature of the PDMS are subtracted out.

In the ASAP system, we start to get strong deviation from the model at a sperm number of one (Figure

5.4). We can use the model to calculate the viscosity of the sample as long as we limit our results to sperm

numbers below 1.0 (Figure 5.5). At low viscosity the uncertainty in the PDMS properties of our system

becomes dominant and limits the systems accuracy. We get results within 50% of the true viscosity over

three orders of magnitude (Figure 5.5).

Figure 5.4: A) A plot of the models predicted phase lag between the post response and magnetic drive. The
black curve is the full analytical model, while the blue curve is the simplified constant beat shape shape
model. The experimental results are plotted as circles. Different viscosity fluids are different color circles
going from red, water, to white, Karo, in increasing viscosity. The blue line represents a simple constant
shape post motion and is both under representing the phase at low sperm number and over estimating the
phase at high sperm number compared to the full model. At a sperm number near one, the full model, black
deviates significantly from the experimental Results. B) Zoomed in of the results in the low sperm number
range.

Section 5.4: Discussion

The ASAP system and our current model limits the range of viscosities that we can measure. At low

viscosities the viscoelastic properties of the PDMS dominate and swamp the signal. At large viscosities
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Figure 5.5: Correlation plot between the measured viscosity and true viscosity of sucrose solutions. Different
colors represent measurements with different arrays. The true viscosity was measured using a cone and plate
rheometer, while the measured viscosity was calculated using the frequency sweep of each sample but only
using conditions with a sperm number below one. Water, bright red, was used as the calibration fluid.
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the arrays enter the large sperm number, Sp > 1. At large sperm numbers our model breaks down and

the experimental results deviate. This deviation at a sperm number of one is interesting because, previous

computation studies of driven post arrays have shown that a Sp= 1 is a critical number. At a sperm number

of one the direction of generated flow reverses in the computer simulated post arrays (3). It is intriguing

that the deviation from experimental results occurs at this number and suggests that the deviation could

be caused by a change in the flow dynamics in the chamber that invalidates the single post model or the

calibration that was preformed at low sperm number. Computational work shows that the flow direction

reverses as the the sperm number of an array of posts travels through one (3).

It is possible that the PDMS calibration is including post-post interactions. Flow is typically viscosity

and frequency independent in the low Reynolds number regime. We calibrate for PDMS properties using the

post response in water, which may account for the post-post interactions. These interactions may explain

why we measure PDMS properties on the high end of the range. As the posts transition across a sperm

number of one, this calibration may become invalid as the flow in the channel fundamentally changes.

The limit of a sperm number of one for our results limits the experimental range of the system, shown

in Figure 5.6. It is possible to design the post arrays to bring the sperm number into the valid range for

any viscosity. The simplest and most direct way to adjust the post properties is by adjusting the aspect

ratio of the PDMS section. The sperm number, equation 4.1, has two geometric parameters, LPMDSand

I. I = πr4

4 for a cylinder, so the sperm number scales linearly with the aspect ratio of the PDMS region to

the post radius. At low viscosities, the uncertainty in the PDMS measurement becomes the limiting factor.

Uncertainty in the PDMS measurement swamps the phase signal.

The sperm number also depends on the frequency. This gives us a simple way to adjust the design of

the ASAP post arrays to enable measurement of higher or lower viscosity samples, see Figure 5.6. For the

design of the ASAP arrays, we are limited by ground and lateral collapse (48; 136). The phase accuracy

scales with the number of cycles measured, and at low frequencies the only limitation is a practical limit on

the experiment time. The maximum frequency we can drive the posts is 200Hz due to the bandwidth of the

silicon steel tape wound core.

Section 5.5: ASAP arrays for shear thinning fluids

ASAP arrays could have potential applications in shear thinning fluids such as mucus. Given our exper-

imental setup we can approximate the maximum shear that we can produce. If we model the tip of the post

as a 2 µm sphere we can easily use the equation for the shear around a bead derived from the equations for

stokes flow around a bead (33).
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|γ̇|= 3vs√
2rs

, (5.4)

where rs is the radius of the sphere, or post in our case, and vs is the velocity. The velocity at the tip of

the post is:

vtipmax = 2πθmaxLpostf (5.5)

where f is the drive frequency of the posts, θmaxis the max post deflection, and Lpostis the total length

of the posts. Combining the equations we get the following equation for the tip shear.

|γ̇|= 2π3θmaxLpostf√
2rs

(5.6)

Plugging in reasonable a post amplitude of 10 degrees at 30 Hz, we have a shear rate on the order 103 1/s,

which is plenty to induce shear thinning behavior in biological samples such as mucus and blood that have

significant shear thinning at shear rates below 103 1/s.(89; 8)

The actuating post arrays are an interesting potential platform to study mucus because the the ASAP

arrays are capable of measuring rheological properties in a way that directly mimics biological cilia in the

airway. Rheology of non-homogeneous samples such as mucus can vary as a function of the scale and the

actuation mechanism (89; 38).

The current post arrays are not stiff enough to effectively measure mucus at the high ranges of the

viscosity found in mucus while remaining in the low sperm number regime. This could be adjusted by

changing the aspect ratios of the posts (Figure 5.6). Posts that have twice the diameter and are 3/4 the

length of our current ASAP arrays could measure mucus rheology properties while remaining within the one

sperm number limit.

Section 5.6: Conclusions and future work

The post arrays have a number of unique advantages. They are easily integrable into micro-fluidic devices

and do not require flow reducing the amount of fluid necessary for experiments. The beat shape used for the

rheology measurements could be used for pumping as well (3), allowing for a single array to simultaneously
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Figure 5.6: Plot showing the experimental range of our current experimental set up, dark gray shaded area,
and a proposed alternate design with a 3 um radius and and a nickel shell that is 3/4 the length of the
rod, light-gray. Colored lines represent sample fluids that may be of experimental interest using our ASAP
system (31; 34; 19; 146; 88; 79). The black dashed line is the frequency limit of our amplifier.

63



generate fluid flow and measure the rheological properties of the fluid. For mixtures that change the viscosity

of their parts as they mix, it could be used as a both a mixer and a measure of the level of mixing. Or the

the same element could monitor the viscosity of the system while acting as a pump in a microfluidic system.

ASAP post arrays have now been shown to be both effective elastometer (75) and viscometers.

The next step with the post arrays is to apply the ASAP technology to visco-elastic samples. We have

performed initial experiments driving the posts in PEG solutions, which show considerable different post

behavior than the viscous solutions (Figure 5.7). Despite the large difference in viscosity between the PEG

(blue) and the 2.4M sucrose purple, the torque required for both systems is similar. This may be due to

increased coupling between the posts due to the visco-elasticity of the PEG solution. In the phase signal,

the 2.4M and PEG phase responses cross over in the 20Hz regime, which is unique for that sample. This

preliminary experiment suggests that the posts behave differently in visco-elastic materials. As such, further

work needs to be done on the model and analysis to effectively use the posts in these materials.

Figure 5.7: (A) The phase difference between the drive force and the post angle as a function of frequency in
different materials. Because the posts have an elasticity the phase lag of viscous materials is not 90 degrees.
(B) Torque as a function of frequency in different fluids. The amplitude of oscillation was maintained across
all frequencies using a feedback loop. As the viscosity of the fluid increases the torque required increases.
It is interesting to note that while the PEG and the 2.4M sucrose have similar amplitude responses as the
PEG, which is a visco-elastic fluid, despite the dramatically different viscosities. The PEG and the 2.4M
sucrose cross-over at 20 Hz which does not happen between any of the Newtonian fluids.
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CHAPTER 6: Blood clotting

Section 6.1: Blood diagnostics

Rheology is used throughout industry and academic research to study a wide range of materials, from

the mouth-feel of ice cream (167) to the mechanics of individual cells (86; 190). However, typical rheometers

require large specimen volumes, extensive preanalytical processing, and highly-trained operators. The last

two decades have seen the emergence of micro-rheology, the field of small-volume visco-elastic measurements

(178). Micro-rheology has been dominated by micro-bead rheology, but new microfluidic devices and micro-

cantilever technologies have also been developed (78; 198; 58; 59; 20; 9; 138). Lab-on-a-chip rheometers

simplify data collection and expand the reach of viscoelastic measurements. Potential applications exist in

medical diagnostics, process monitoring in manufacturing, and field environments.

Numerous microfluidic systems have been shown to successfully characterize viscoelastic materials. Many

rely on a flowing fluid (198; 78), which are not appropriate systems for materials that are primarily elastic.

However, these systems have had success in measuring changes in visco-elastic properties of whole blood

(78), but are not suitable to measuring the elastic properties of blood clots. Passive (58; 59; 20) and

resonant (9; 138; 78) techniques have measured viscoelastic fluids using micro-scaled beams. However, these

techniques have very high operating frequencies (102–104 Hz), limiting their utility when the specimenâĂŹs

low-frequency modulus is of interest. In this chapter we demonstrate qualitative elastometry using an array

of ASAP arrays. In this chapter, I show that by monitoring the post-motion while controlling the applied

torque, we can measure the elastic properties of a blood clot as it forms. The ASAPs are magnetically

actuated, and their tilt angle is detected by optical transmission. The physical dimensions and number of

posts per unit area is tightly controlled to allow consistent results across different ASAP elements. Aside

from the micro-posts themselves, the system has no moving parts or fluid pumps.

ASAP technology could enable elastic measurements in a wide range of natural and synthetic materials.

Here we focus on the application of ASAP to the in-vitro testing of blood coagulation and specifically on a

novel micro-fluidic implementation of a viscoelastic hemostatic assay (VHA), Figure 6.1. VHAs are a type

of in vitro diagnostic test for blood coagulation that measures over time the stiffness of a blood clot as it

forms(or clotting) inside a chamber. It has been shown that VHAs such as thromboelastography (TEG)

can guide transfusion therapy (160; 159) and may diagnose other acute bleeding conditions such as trauma-
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Figure 6.1: A thromboelastography (TEG) test qualitatively reports the life-cycle of a clot as a tuning
fork-shaped curve. In addition, it reports quantitative parameters regarding coagulation kinetics and clot
stability, such as the time to begin forming a clot (R), the clotting rate (α), clot stiffness or maximum
amplitude (MA), and clot lysis or dissolution (AâĂŹ).

induced coagulopathy (106; 90; 80; 24; 127). VHAs are distinct from traditional coagulation tests, which

measure the kinetic activity of the pro-coagulant cascade, often in platelet poor plasma. By contrast, VHAs

measure clot initiation, formation, mechanical stability, and lysis in whole blood. The result is a global

view of a patient’s overall hemostatic function, from which clinical insight can be gained, as shown in both

preclinical (90; 106) and clinical studies (80; 24; 127; 80).

Trauma centers increasingly use treatment algorithms that include hemostasis testing based on elas-

tometry (144). These algorithms improve survival (74) and reduce costs by limiting blood product use

(160; 159; 166). Surgical suites see similar benefits (187). While VHAs provide valuable clinical insight,

they suffer from the typical issues that affect rheometers. In the clinic VHAs suffer from standardization,

portability and usability issues (129). In the scientific community, VHAs use large volumes of blood (up

to 1 mL), which make non-terminal studies on mice difficult. Ultrasound based methods for measuring

clot properties are available but, like conventional VHAs, use large volumes of blood ( 400 µL or more)

(52; 177; 109). Clot elasticity can be measured in smaller volumes (150 µL) using acoustic spectroscopy with

optical vibrometry (RASOV), but the technique currently does not perform kinetic measurements such as

clotting time(194). Here we report on a novel technique for measuring the time dependent elastic properties

of micro-liter quantities (20 µL) of material and demonstrate its utility as a blood coagulation diagnostic
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tool.

Section 6.2: Methods

6.2.1: Experimental setup

Figure 6.2: A) Diagram of the experimental setup, where: A is the 120 fps Pulnix camera; B is a gauss
probe; C is a 10x Plan Nikon lens; D is the soft iron electromagnet; E is the heated holder for the ASAP
element; and F is the diffuse near-infrared LED. B) Top down view of the electromagnet. A is the magnetic
coil, and B is a silicon steel tape wound core. The gap is 16 mm wide and the faces are 10 by 10 mm. C)
Diagram of the microfluidic chamber used for the blood experiments. The entire channel is 200 µm tall. D)
A schematic showing the layers used in constructing the micro-fluidic chamber, where: 1 is a mylar top with
air vents cut out; 2 is an adhesive spacer that defines the chamber dimensions; 3 is a #1 18x18mm coverslip
with the post array mounted in the center. These layers are adhered to produce the final device as shown in
the bottom-right.

ASAP actuation was performed with an opto-magnetic system as shown in Figure 6.2. The posts were

imaged using a 10x, 0.3 NA, Plan DL, Nikon objective mounted 160 mm from a Pulnix TM-6710CL (648x484

pixels) camera, capable of up to 120 frames per second. A collimated 780nm high intensity LED from Thor

labs (Cat# M780L3), with a polycarbonate diffuser, was used as the light source. The noise level of the

camera and LED system was less than 0.03% of the average image intensity. To actuate the posts, an

electromagnet consisting of a soft iron C-shaped core with a 10 x 10 mm cross-section and a 16 mm gap

was constructed. Magnetomotive force was produced by two magnet coils, each with 680 turns, connected
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in parallel for a total of 1,380 turns. The magnetic field varies less than 10% within 3mm of the gap

center, confirmed experimentally and with COMSOL simulations. The electromagnet was driven by a

transconductance amplifier (49). The amplifier and magnets had a combined bandwidth greater than 50Hz.

The amplifier magnet combo was able to reproducibly produce a field within the 1% precision of the gauss

probe used to measure the signal. The amplifier has a noise level as a function of frequency of approximately

1
√
nA/Hz.

The transconductance amplifier was driven by a NI-Instruments PCI-6713 analog output board with 12-

bit resolution over the range -5 to 5 V and 1 MS/s update rate, using custom software written in MATLAB.

The output DAQ has a reported absolute accuracy of 7 mV. The dominate uncertainty, by an order of

magnitude, in the magnetic field is in the uncertainty in registering the ASAP array with respect to the

magnetic field.

6.2.2: Blood sample preparation

Human venous blood was collected from healthy consenting volunteers using butterfly needles (BD Va-

cutainer, BD Safety-Lok, Cat # 367283BD, Franklin Lakes, NJ) and stored in 4.5 mL citrated tubes (BD

Vacutainer, Buffered Cit. Na., Cat # 366415), and kept at 22 ℃.ÂăBlood sample procurement protocols

were approved by IRB of theÂăUniversity of North Carolina at Chapel Hill (IRB # 12-1592). Blood samples

were used within 24 hours of collection and run as split specimens on the ASAP system and a TEG 5000

analyzer (Haemonetics, Inc). For the dilution experiments, isotonic saline (0.90% w/v NaCl) was added to

the blood and mixed by gently inverting the tube.Âă Streptokinase, purchased from Sigma-Aldrich (product

# S3134-10KU), was diluted to a final concentration of 9.6 U/ml for the high dose lysis experiment (Figure

6.3, blue circles) and 1.2 U/mL for the low dose lysis experiment (Figure 6.3, green squares). Immediately

prior to data collection, all specimens were re-calcified by adding 1 µL of 0.2M CaCl2 per 17 µL of specimen

volume. A 20 µL droplet of blood was pipetted onto the opening of the micro-fluidic device, and the blood

wicked into the channel. The specimen volumes for the ASAP and TEG systems were 20 µL and 360 µL,

respectively. The TEG was run according to standard operating procedures.

6.2.3: SEM sample prep

Clotted specimens for SEM imaging were harvested from micro-fluidic devices approximately 45 minutes

after the initialization of clot formation. At that time, the top half of the flow cell was removed to expose

the clot and the ASAP array. The sample was then fixed by adding 4µL of 0.2% glutaraldehyde directly

onto the array and incubating at 37 ℃and 100% humidity for 30 minutes. The water in the sample was
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serially diluted in mixtures of increasing ethanol-to-phosphate buffered saline, ending in 100% ethanol. The

sample was critical point dried, then sputter coated with 7nm of 80:20, Au:Pd before imaging in a Hitachi

S-4700 scanning electron microscope (SEM).

6.2.4: ASAP actuation and analysis

An initial field of 10 mT was applied to the posts, and the post response was measured. The magnet was

then turned off, and the posts returned to their initial upright position. This on/off pulsing was repeated. As

the blood clot formed and restricted the post-motion, the deflection of the post would decrease if the applied

field were held constant. Instead, we used discrete-time proportional feedback control of the magnetic field

to maintain constant post deflection during the magnet-on periods throughout clot formation. The feedback

maintained a constant ratio of mean image brightness between the magnet-on and magnet-off conditions

by controlling the magnet drive current. The set point was determined (as described above) by the initial

response of the posts. The gain was set to maximize responsiveness without inducing instability. The use of

the ratio of the two most recent magnet-off and magnet-on image intensities made the system insensitive to

slow changes in overall image intensity (which can be induced by increasing turbidity during clotting). This

assumed that the overall intensity is proportional to the product rather than the sum of the contributions of

the post deflection and the overall clot intensity. We hypothesized that the nickel posts acted like a shutter

below the blood clot, blocking a percentage of the light depending on their deflection (Figure 5.2), which

was consistent with the multiplicative assumption.

The field required to maintain the post deflection was a measure of the mechanical resistance of the

post/clot system. Because the mechanical properties of the posts remained constant over the course of the

experiment (see Figure 6.3 blue curve) the change in applied field represented a change in the clot stiffness.

The maximum applied magnetic field is similar to the maximum amplitude measurement in a TEG system.

As a reference instrument, a TEG 5000 Thromboelastograph Hemostasis Analyzer from Haemonetics

was used. Blood samples were run on the TEG according to standard operating procedures provided by

Haemonetics.

Section 6.3: Results

In the system described above, a force is applied to the blood by the posts through an applied magnetic

field. Converting this applied field to an applied force requires a model of the magnetic response of the posts,

which was developed in chapter 4.

The torque on the posts is calculated using the model of axial symmetric soft magnetic bodies described
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Figure 6.3: Coagulation measurements performed by ASAP arrays. Results are reported as magnetic field
(mT), which is related to clot stiffness through equation 4.18. Three specimens are shown: normal blood
(red diamonds), blood spiked with a low streptokinase concentration (green squares), and blood spiked with
a high streptokinase concentration (blue circles). Streptokinase interference provides a model of clot lysis.
In low dose, the clot forms normally before collapsing. In high dose, the clot never forms, resulting in a flat
curve.
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in Abbott et al. (1). According to this model, as long as the magnetic susceptibility is large, X >> 1, the

induced moment is dominated by the geometry of the post. COMSOL modeling and experiments on the

magnet setup suggests that the gradient terms in the post region are negligible. Using the Abbott model

without the gradient term, the torque on the magnetic posts is described using the model developed in

chapter 4.

Assuming the absence of a surrounding material (such as blood), deflections were calculated numerically

using the quasi-static assumption and solving the torque balance equation between magnetic and deflection

torque contributions, eq. 4.17. Because the magnetic field applies a pure torque, it is assumed that the

PDMS portion of the posts bends with a constant radius of curvature. This has been shown to introduce an

error of less than 30% (46). For material properties, the elastic modulus of PDMS was fitted to be 0.85± .07

MPa (50) and the permanent moment of the rod was fitted to the measured post response (see below). The

fitted permanent moment of the nickel shell was (4±1)×10−13Am2. The predicted deflection of the posts

can be seen in Figure 4.4.

6.3.1: Demonstration of ASAP as a VHA

In a standard VHA measurement, clot stiffness vs. time is plotted, and the clotting time, clot stiffness,

and lysis are extracted from the curve shape. In TEG, a cup and bob style rheometer, the clot stiffness is

plotted as the amplitude of rotation of the inner bob over time for a constant cup rotation amplitude. In

the ASAP system, the magnetic field is pulsed on and off, and the post deflection is monitored. As the clot

forms around the posts, the posts deform the clot as they deflect. Feedback is used to maintain a constant

post deflection by increasing the magnetic field. The blood clot experiences shear, compressive, and tensile

stress because of the post-motion. The readout of the ASAP system is the required magnetic field as a

function of time. We studied the ASAP systemâĂŹs ability to detect coagulation and lysis of normal whole

blood, with and without streptokinase, a known mimic for hyperfibrinolysis (90) (Figure 6.3). The forming

clot restricts the post motion such that the feedback loop increases the applied field to maintain a constant

deflection. The normal blood shows a sudden increase in the applied field, indicating the clotting time

(called R time in TEG). As expected, normal blood does not show lysis over the course of 30 minutes, in

contrast with blood dosed with streptokinase. At low streptokinase concentration, the clot forms normally,

but subsequently breaks down, as shown by the drop in applied field. We note that this demonstrates that

ASAP is a reversible elastometer: it can measure both increases and decreases in stiffness. Blood with high-

dose streptokinase never clots, as indicated by the unchanged applied field over the course of the experiment,

and as confirmed by TEG.
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ASAP system noise is 0.1 mT, calculated by subtracting a smoothed curve (moving average with a one

minute window) from the raw data, and taking the standard deviation of the resulting signal. The maximum

error signal seen in the feedback loop is 0.3%. The two largest limitations on the devices precision are the

applied field, and post material properties. Posts have variations in magnetic response are up to 20% between

post arrays (Figure 4.4) and are the single largest limitation on the instruments precision. We suspect that

the main source of variability in ASAP properties is the geometry of the nickel shell, which could be made

more consistent by implementing the electro-deposition process in a higher-quality system.

Figure 6.4: Serial dilutions of blood were used to modify clot stiffness and compare the Haemonetics TEG
5000 with ASAP measurements using split specimens. A) Output of TEG on representative blood samples:
normal blood (blue circles), 33% dilution (cyan stars), 50% dilution (green squares), and 66% dilution (red
diamonds). Note the noiseless curves, which are the result of intense smoothing by the TEG software. B)
ASAP results for the same four specimens show the same features seen in TEG: as dilution increases, clotting
time are rate are slightly reduced, while clot stiffness is dramatically reduced. No smoothing was applied
to the ASAP results. C) ASAP and TEG systems show excellent correlation (r = 0.91). Clot stiffness is
plotted on the x-axis in TEG maximum amplitude and on the y-axis in terms of ASAP maximum applied
field. The consistency across platforms is surprising given that the ASAP system has a much higher surface
area to volume ration than TEG.

To compare ASAP and TEG measurements, we performed serial dilutions of normal blood with saline. In

both ASAP and TEG systems (Figure 6.4), clot stiffness varies with dilution as expected. The primary effect

of increasing dilution is a drop in maximum clot stiffness, along with slightly delayed clotting initiation and

a slower clotting rate (90). All of these features are apparent in both the ASAP and TEG results. Additional

dilution results are summarized in the correlation plot shown in Figure 6.4. The samples were a collection

of diluted specimens and whole blood specimens from multiple draws. The R value of the linear fit is 0.91,

indicating excellent agreement between the two systems.
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Section 6.4: Discussion

6.4.1: Comparing ASAP and TEG

Figure 6.4 shows that the broad features of clot stiffness over time are identified by both the ASAP and

TEG systems. Both produce the expected result for serial dilution of blood: the maximum clot stiffness

decreases as the saline concentration increases (90). The TEG curves are essentially noiseless, while ASAP

data show acceptable but noticeable noise. This comparison is misleading because the TEG software uses an

unknown smoothing algorithm that is easily confounded by vibration or other physical disturbance. We have

elected to report ASAP output in raw data format. The rotation period of the TEG instrument is about 10

seconds. The ASAP data are sampled at a rate of 1 Hz and assuming TEG samples once every half rotation

or every 5 seconds, then significant smoothing of the ASAP curves should be possible while maintaining

adequate time resolution. Finally, the clotting rate in the ASAP system is considerably faster than in the

TEG system. The faster clotting rate could have numerous causes, shear from the posts, differences in the

scale of the measurement (micro vs. macro), and or differences in the surface to volume ratio of the between

the sample chamber in the two devices. Surfaces are well known to initiate the clotting cascade, even though

the mechanism is not well understood (176). The two devices, ASAP and TEG, have a well-correlated

measurement of stiffness (r = 0.91). This agreement is surprising: ASAPs are 2 µm in diameter and deflect

on the order of 1-5 µm. At this scale ASAPs might well detect heterogeneities in fibrin cross-linking density

or platelet concentration. We hypothesize that ASAP measurement correlates with the bulk measurement

because of the large number of posts over which the measurement is performed, since a 1 mm2 patch of

posts has roughly 14,000 posts. To provide a context for relative length scales in the ASAP system, we

show an SEM image of a clot formed around the posts in Figure 6.5. TEG has a well known dependence on

hematocrit, as the red blood cell concentration increases the clot stiffness decreases (19; 12). While the ASAP

system correlates well with TEG in this dilution study, it is conceivable that because of the micro-structure

of the device the hematocrit dependence would differ between the devices.

6.4.2: Applications of ASAP elastometry

In Figure 6.6 A, we can see that the transmitted intensity is not constant during the entire experiment.

This is most likely caused by platelet aggregation and scattering caused by the blood fibers. Transmitted light

intensity has often been used as a method of measuring both platelet aggregation (96) and fiber formation

(120). In part Figure 6.6 B, you can see that the increase in intensity comes just before the increase in force.

This makes sense as ASAP posts are most likely interacting with the clot fibers. The platelet aggregation
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Figure 6.5: Scanning electron micro-graph (SEM) of a clot formed on the ASAP posts. The long strands
are fibrin and biconcave discs are red blood cells. The fact that all the key products of clot formation are
visible on the posts supports the notion that ASAP and TEG systems are measuring fundamentally similar
phenomena, despite their differences in geometry and length scales.
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that proceeds the clot formation does not change the resistance of the blood. Future work on the ASAP

arrays could use the combined signals of light intensity and force to get better separation between clotting

disorders that occur due to platelet malfunction, or poor fibrin formation.

Figure 6.6: A) Plot of the intensity as a function of time with the magnetics on and the magnets off for
a single experiment. As platelets aggregate the brightness transmitted through the sample increases and
begins to decrease during the fiber formation. B) Plot of the rate in change in the brightness vs the rate in
change of the applied current, magnetic field, to the ASAP arrays. You can see that the large increase in
brightness precedes the force rapidly increases.

Section 6.5: Conclusions and future work

We have demonstrated the design and use of a post-array elastometer that operates on micro-liter quan-

tities of blood. The postsâĂŹ behavior under an applied magnetic field could be described by our magneto-

mechanical modeling. We demonstrated that the ASAP posts measured the elasticity of a blood clot over

time, and that the maximum amplitude correlated well with a commercial blood elastomer (TEG). We also

showed demonstration curves that indicate that clot lysis and clotting kinetics could be measured on the

ASAP arrays. The ASAP array system uses dramatically less blood, 20 µL vs. 360 µL per test, making the

system applicable for small animal studies, where conventional blood elastometry is currently impractical,

such as experiments that require multiple tests and time course studies in mice. The ASAP device has

the potential to be made into a compact portable point of care device for trauma or critical care. Finally,

the ASAP element of the device is currently mounted in a small micro-fluidic chamber that could easily be

integrated into more complex micro-fluidic devices that perform sample preprocessing. Micro-fluidic devices
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have had recent success in reducing volumes in numerous blood applications, such as devices that perform

panels of tests (93), separate blood components (39; 30; 153; 119), or mimic blood vasculature for the study

of thrombus formation (137; 95; 170; 118). The ASAP technology presented here could be combined with

many of these technologies to perform panels of tests on a single device, and/or preprocessing of the blood

sample prior to testing.

Additionally future work with the ASAP system may enable the system to be used as a platelet aggre-

gometer and thrombo-elastograph simultaneously. The intensity signal (Figure 6.6) appears to be showing

the onset of platelet aggregation. Additional experiments need to be performed, but it is a well known fact

that as platelets aggregate, they increase the transmitted intensity of blood by reducing scattering which

has been used in devices to measure platelet aggregation (96).

Platelet aggregation is mediated by shear and platelet aggregation in response to shear is currently being

explored as another diagnostic of a persons’ ability to form clots (96; 110) Using the same equation, equation

5.6 for the shear generated that was used in chapter 5, we can calculate the amount of shear that the ASAP

system is capable of. Unfortunately, the shear rates of 1×103 1/s are a factor of four below the threshold

of 4000 1/s required to to activate platelets (96). The shear rate depends linearly on the post aspect ratio

and frequency, equation 5.6. Future work should focus on developing alternate posts that are capable of

shear activating platelets. A single device and test that can accurately asses platelet functionality and clot

strength independent of each other could improve the diagnosis of clotting disorders.
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Cilia methods

Growing Primary Airway Cilia

Human bronchial epithelial cells (HBE), primary passage, acquired from the UNC Cystic Fibrosis Center

Tissue Procurement and Cell Culture Core, were seeded on Collagen IV (Sigma C-7521) Millicells at a density

of 1.2-2.4 million in 5 ml of BEGM media per 60 mm diameter Millicell. The media was replaced from the

basal side of the cells three times a week. The primary cells were grown until they were confluent and were

well-ciliated. Cells were washed with PBS every time the media was replaced to prevent mucus buildup.

Cilia Axoneme Isolation

Cells were harvested for cilia axonemes once the culture reached confluence and cells were well-ciliated,

i.e. greater than 70% of cells being ciliated.

Two 60 mm Millicells were used in for a single extraction. Cell inserts were washed with room temperature

sterile PBS twice. The PBS in each was allowed to sit on the cells for 5 minutes at 37 ℃, to help release the

mucus. 1.5 mL of deciliation buffer (10 mM Tris, 50 mM NaCL, 10 mM CaCl2-H2O, 1mM EDTA, 7 mM

BME, .1% Triton X-100, pH-7.5) was made with 8 µL of protease inhibitor cocktail (PIC) (Sigma-Aldrich

P8340) to prevent axoneme degradation. 300 µL of deciliation buffer was added to each cell insert and

the cells were rocked gently for 1 minute by hand. The deciliation buffer was removed and put into 1.5

mL centrifuge tubes, one insert per tube. The inserts were washed one more time with deciliation buffer.

The centrifuge tubes were then spun at 500 RCF for 1 min to remove cellular debris. The supernatant was

decanted into a new tube, and the pellet was discarded. The supernatant was spun at 12,000 RCF, at 4

℃, to pellet the cilia axonemes. The supernatant was discarded and the pellet was resuspended in 500 µL

of resuspension buffer (50 mM K-Cl, 20 mM Tris-HCl, 5 mM Mg-SO4, 0.05 mM EDTA, 1mM DTT pH-8).

8 µL of protease inhibitor cocktail (Sigma-Aldrich P8340) was added to the resuspension buffer to prevent

axoneme degradation. 25 µL of 10% Triton X-100 was added to the resuspension buffer, and the axonemes

were incubated on ice for 15 min.

The axoneme solution was split between three tubes: 10% went into a single tube to be used for protein

determination, and the remaining solution was split between the last two tubes. All three tubes were

centrifuged at 12,000 RCF for 5 minutes, and the supernatant was removed.

The protein determination tube was resuspended in 30 µL of 0.5% SDS Solution. The axonemes in

SDS solution were then run through a Pierce BCA Protein Assay (Thermo Scientific) according to the kit

instructions to determine the protein content of the extraction. A typical extraction yields a final protein

concentration on the order of 50 µg/mL. The isolated axonemes were confirmed to be functional by mixing
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the axoneme solution 1:1 with the reactivation buffer. The axonemes were then monitored under an optical

microscope for beating and then discarded.

The remaining two samples were further processed to separate the microtubule doublets from the struc-

ture.

Micro-tubule Isolation

One of the remaining tubes was suspended in 100 µL/insert of resuspension buffer without PIC and the

other second insert was resuspended in µL/insert of salt extraction buffer (.5 M K-Cl, 20 mM Tris-HCL,

5 mM Mg-SO4, 0.05 mM EDTA, 10 mM ATP). The salt extraction buffer removed the outer dynein arm

proteins (62). The samples were then held at 4 ℃for 30 minutes. Typically, the protein determination

was run during this time. The tubes were then pelleted at 12,000 RCF for 5 min and the supernatant

discarded. Samples used for a silver staining gel, were frozen at -80 ℃until ready to be used. Each pellet

was resuspended in 50 µL/insert of resuspension buffer, and 50 µL/insert of reactivation buffer (400 mM

potassium acetate, 20 mM Tris-HCl, 6 mM MgSO4, 1mM DTT, 10 mM ATP, pH - 7.8). Trypsin was added

to the insert in proportion to protein quantity. In a typical experiment the goal was to add trypsin to the

solution at a 1:200, trypsin : axoneme ratio. This protocol is based off of the Summers and Gibbons sliding

protocols. (164). After 30 minutes on ice, an equal amount of soybean trypsin inhibitor was added to stop

cilia axoneme digestion. Axonemes were then ready to be imaged and analyzed.

AFM Sample Prep

1/2 by 1/2 cm mica squares were attached to glass slides. A fresh surface of mica was prepared by

cleaving the top layer off using scotch tape. Slides were then coated with poly-L-lysine by adding 30 µL

of 1 mg/mL poly-L-lysine and waiting 30 seconds and rinsing with water. The surface was dried using a

nitrogen air stream. 20-30 µL of microtubule samples were placed the slide and allowed to settle for 1-5

minutes before rinsing off with deionized water. Sample were allowed to air dry before imaging.

Image Analysis

AFM images were analyzed for curvature using a three point method with coarse graining as previously

described in (11). Images were subdivided into 1 by 1 µm squares. In each square, if there was an microtubule

doublet, the average curvature over the area was taken by circumscribing a circle to three points on the

microtubule. One point on the microtubule in the center of the square and the two ends where the microtubule

intersected the boundaries of the square. Microtubules that crossed or intersected another microtubule in
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Figure 7: Diagram of a cross section of the cilia axoneme. A zoom in shows the protein targets of the trypsin.
Trypsin preferentially attacks the radial spokes and nexin links between the microtubule doublets(164).
Figure source (99)
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the square region were not included. The data analysis was performed by hand, using a MATlab script to

help with the data acquisition.
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COMSOL methods

Figure 8: The COMSOL model showing the mesh and geometry of the COMSOL model. The model has no
slip boundary conditions on the top and bottom, blue, while the left and right sides can have either no-slip
or slip boundary conditions, red. The surfaces perpendicular to the plane of the post motion, orange, have
zero pressure boundary condition.

The mesh was an automatically generated triangular mesh. The mesh size was reduced until further

reductions of the mesh results in changes of the results of less than 1%. The maximum element size was

5.5 µm, while the minimum element size was 0.4 µm. The mesh was deformed with the post movement to

maintain mesh quality and was smoothed using Hyper-elastic mesh smoothing.

The fluid structure interaction was solved using the direct fully-coupled PARDISO solver in COMSOL.

Time stepping was performed using the backward differentiation formula (BDF) method with strict steps,

and a maximum step size of 0.001 seconds. The boundary conditions on the posts were specified to be fluid

structure interactions, with a fixed boundary condition on the base. The boundaries perpendicular to the

plane of the post motion were 0 pressure, which allowed the post to generate flow. The top and bottom
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of the channel were modeled as no-slip boundary conditions, while the sides of the channel (parallel to the

plane of post motion) were, depending on the simulation modeled, as no-slip boundary conditions or slip

boundary conditions. The slip boundary conditions in the plane of the post motion and the 0 pressure

boundary conditions modeled an infinite array of posts.

Because of the scale of the system the fluid motion was calculated using the low Reynolds approximation

to the Naiver Stokes equations, i.e. Stokes Flow. The solid mechanics equations used the quasi-static

approximation because they were over four orders of magnitude smaller than the elastic and drag forces.

The elastic portion of the rod was modeled as an elastic material with an elastic modulus of 1.5 MPa

and a Poisson ratio of .51. The nickel portion was modeled as an elastic material with an elastic modulus of

1GPa, and a Poisson ratio of .51. The magnetic force was modeled as a force couple applied at both ends of

the nickel portion of the rod parallel to the end surface. The force couple varied sinusoidally according to

the function:

F = F

2 −
F

2 cos(2πft) (1)

where F is the magnitude of the force couple, and f is the frequency of the driving force oscillation. The

force was determined by calculation from the known applied field in our magnetic system, the length of

the nickel shell and nickel volume using the magnetic model, eq. 4.18. The calculated force along with the

PDMS properties gave deflections in the same range as our experiments.
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