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ABSTRACT 

CYNTHIA JOY SNIDER: Effects of Malaria Endemicity on the Development of 
Immunity in Kenyan Children 

(Under the direction of Steve Meshnick, MD, PhD) 
 

The heterogeneity of Plasmodium falciparum (Pf-) malaria endemicity affords an 

opportunity to explore the differential effects of Pf-malaria infections on the 

development of immunity. Focusing on two areas in western Kenya with disparate 

Pf-malaria transmission intensities, this dissertation 1) examined how recurrent Pf-

malaria infections affected Epstein-Barr virus (EBV) lytic and latent antigen CD8+ T-

cell IFN-γ response among EBV co-infected infected children, and 2) described the 

differential patterns of Pf-malaria antibody responses and how they waned over 

time. We analyzed data collected over a two-year time period from children residing 

in Kisumu (high malaria transmission) and Nandi (low malaria transmission). We 

observed a 46% decrease in the prevalence of positive EBV lytic antigen IFN-γ 

response among children living in the Kisumu when compared to Nandi (PR: 0.54; 

95% CI: 0.30-0.99). Further analysis revealed impairment of EBV lytic antigen IFN-γ 

responses among 5-9 year olds. We did not identify any differences in Pf-malaria 

exposure and EBV latent antigen IFN-γ response. Results suggest there may be a 

loss of immunological control of the EBV lytic cycle among children repeatedly 

infected with Pf-malaria. Our second analysis on Pf-malaria antibody responses 

revealed that proportions of positive IgG responses to select blood-stage antigens 

(apical membrane antigens-1 3D7 and FVO strains) and the pre-erythrocytic liver 
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stage antigen-1 antigen were higher in Kisumu than Nandi (P < .05). There was a 

clear trend in the increase of IgG responses with age in Nandi but not in Kisumu 

where even the youngest age group had a high proportion of antibody responses. 

Overall, IgG responses waned over a six-month period in both districts. However the 

magnitude of the median relative change in antibody responses was generally 

greater in Nandi than Kisumu particularly among children 0-4 year olds to the 

antigens AMA-1 3D7, AMA-1 FVO, AND MSP-142 3D7 (P < .05). These findings 

indicate patterns of naturally acquired immunity evolve, and wane, differently as a 

result of heterogeneous Pf-malaria transmission intensities and age. 
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CHAPTER ONE: SPECIFIC AIMS 

 

Malaria is one of the leading causes of morbidity and mortality around the world, 

causing an estimated 225 million illnesses in 2009, resulting in approximately 

781,000 deaths.1  The global burden disproportionately affects those living in sub-

Saharan Africa where 78% of illnesses and 91% of deaths were reported.1  

Furthermore, children <5 years of age carry the highest burden of morbidity and 

mortality; globally 85% of deaths were in this age groups.1   

 Yet the morbidity and mortality estimates do not accurately convey the true 

burden of malaria because they do not take into account the consequences of co-

infections such as Pf-malaria and Epstein - Barr virus (EBV). These two pathogens 

have been implicated in the development of endemic Burkitt’s lymphoma (eBL).2  

eBL is the most common cancer among children in equatorial Africa and has been 

estimated to account for over 70% of childhood cancers in that region.3, 4  EBV 

infection has been hypothesized to be the first step in the multi-step carcinogenesis 

of eBL. EBV causes a life-long infection in B-lymphocytes.5  The second step in eBL 

carcinogenesis is believed to be recurrent Pf-malaria; however, the mechanism of its 

influence on EBV persistence is unclear. Studies have focused on establishing the 

relationship of each of these co-factors to eBL yet few studies have examined the 

interaction between these two pathogens.  
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What is clear is that the global burden of Pf-malaria infections reaches 

beyond the numbers. The incidence of malaria is decreasing in many parts of the 

world, but a need remains for an effective vaccine to supplement traditional control 

measures such as indoor residual spraying, insecticide treated bednets, and 

chemotherapy if reductions in morbidity and mortality are to be sustained.6  

Differential patterns of naturally acquired immunity exist between areas with varying 

levels of malaria transmission and this may be partially explained by the short 

lifespan of antibody responses. Studies have attempted to identify immunological 

markers of Pf-malaria infections in areas of high malaria transmission, but few 

studies have been conducted in areas of low malaria transmission.  

 We exploited the heterogeneous malaria transmission intensities of two areas 

in western Kenya to examine the issues we have raised. First, we investigated the 

role of recurrent Pf-malaria exposure on EBV-specific cellular immunity. Building 

upon cross-sectional ecological studies that have examined the effect of district-level 

Pf-malaria exposure on EBV infection, we incorporated additional time points to 

elucidate the longitudinal association of these two pathogens. We then explored the 

patterns of naturally acquired immunity in these two settings, describing the relative 

change in antibodies over time.  

 

Specific Aim 1. To assess the effect of recurrent Pf-malaria exposure on 

Epstein Barr Virus latent and lytic antigen CD8+ T-cell IFN-γ responses over 

time. 
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Hypothesis: Recurrent Pf-malaria infections deplete EBV-specific CD8+ T-cell IFN-γ 

responses.  

 

Overview: We used data collected from a cohort of children 10 months to 15 years of 

age residing in two areas of disparate malaria transmission intensities to examine 

changes in EBV-specific CD8+ T-cell lytic and latent responses over a two-year time 

period. We used a district- and individual-level definition of recurrent Pf-malaria to 

explore if malaria transmission intensity (district-level definition) is an adequate 

surrogate for individual-level Pf-malaria exposure.  

 

Specific Aim 2.  

a. To describe malaria antibody responses among children in malaria 

holoendemic and hypoendemic areas, contrasting any differences between 

the areas.  

Hypothesis: Children residing in holoendemic areas should have higher levels of 

antibodies to blood-stage antigens than children residing in hypoendemic areas. In 

addition, antibody responses to blood-stage antigens in the holoendemic area 

should show an age-trend whereas antibodies should be relatively evenly distributed 

across age groups in the hypoendemic area. 

 

b. To describe the relative change in malaria antibodies over time in malaria 

holoendemic and hypoendemic areas, highlighting any differences between 

the areas. 
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Hypothesis: Antibodies to blood-stage antigens are reportedly short-lived therefore 

antibodies should decrease over time. Yet children in holoendemic areas should 

have developed protective immunity such that the magnitude of their decrease 

should be less than children residing in malaria hypoendemic areas. 

 

Overview: We used data from a cohort of children 10 months to 15 years of age 

residing in two areas characterized by heterogeneous malaria transmission 

intensities to describe the prevalence of positive antibody responses to select blood-

stage antigens. We calculated the relative change in antibody responses over a six-

month period to characterize the change over time. 

  



   

 

 
CHAPTER TWO: BACKGROUND AND SIGNFICANCE 

 

Areas of heterogeneous malaria transmission intensity (MTI) provide a natural 

setting to investigate the influence of malaria infection on the development of 

immunity in children. The unique geographic distribution of eBL cases in high Pf-

malaria transmission areas of sub-Saharan Africa and Papua New Guinea led 

investigators to conclude that holoendemic Pf-malaria exposure played a role in the 

pathogenesis of eBL.7-9  Furthermore, differential patterns of naturally acquired 

immunity (NAI) to severe malaria between populations exposed to varying levels of 

malaria have been observed in a number of studies.10, 11  In this chapter, the role of 

Pf-malaria infection in the development of eBL and Pf-malaria humoral immunity will 

be reviewed after a general introduction to malaria.  

 

Malaria  

Malaria is a parasitic vectorborne-disease that led to approximately 225 million  

infections in 2009 resulting in an estimated 781,000 deaths, 85% of deaths in 

children < 5 years of age.1  The greatest burden of morbidity and mortality is in sub-

Saharan Africa where 78% of illnesses and 91% of deaths were reported.1  In 

Kenya, the incidence of malaria is highest among children <5 years old and is the 

most common cause of morbidity and mortality in children <2 years old.12   



   

 6

There are five species of the Plasmodium parasite that infect humans; we will 

focus on  Plasmodium  falciparum which is responsible for the majority of human 

infections, including severe manifestations such as cerebral malaria, severe anemia, 

respiratory distress, and kidney failure.13  Plasmodium parasites are restricted in 

geography to the distribution of the Anopheles vector.13  Generally, these are areas 

where the temperatures ranges from 16-33oC and the altitude is less than 2,000 

meters.14  Approximately 50% of the world’s population live in malarious areas of 

sub-Saharan Africa, Asia, Central and South America,  and the Pacific Islands 

(Figure 2.1).13, 15  Areas of high malaria transmission are found predominantly in 

sub-Saharan Africa and Southeast Asia.15 

The MTI depends on temperature, rainfall, vector, and the availability of 

infected humans. Historically, classification has been according to the proportion of 

children 2-9 years old with parasitemia or splenomegaly.14  Hypoendemic (<10%) 

and mesoendemic (11-50%) areas have seasonal or unstable malaria transmission 

whereas hyperendemic (50-75%) and holoendemic (>75%) areas have stable 

malaria transmission.14  In recent years, the use of entomological inoculations rates 

(EIR) has also been utilized to characterize MTI. Areas with an EIR < 10 have been 

used to describe areas of unstable and low transmission whereas areas with EIR > 

10 typically have high and stable transmission.16 

   

Recurrent Pf-malaria and EBV Co-infection 

It has been theorized that repeated infections with Pf-malaria adversely affects the 

immunological control of EBV persistent infection, leading to the development of  
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eBL.2  Yet the mechanism of interaction between the two pathogens remains 

unknown. To appreciate why this is, an understanding of eBL and EBV is necessary. 

Evidence linking these two diseases will be discussed as well as evidence that links 

Pf-malaria infections to eBL. Discussion about how Pf-malaria infection could affect 

EBV persistence will be followed by what is currently known about the interaction of 

the two pathogens as it relates to CD8+ T-cell response.   

 

Endemic Burkitt’s Lymphoma 

eBL  is an aggressive B-cell non-Hodgkin’s lymphoma in which tumors double in 

size within 24-48 hours.17-19  eBL is ultimately caused by a chromosomal 

translocation of the c-myc oncogene on chromosome 8 with one of the heavy or light 

immunoglobulin (Ig) chains.17, 20, 21  The c-myc proto-oncogene regulates cell 

apoptosis, differentiation and proliferation and the translocation of this gene leads to 

deregulation of vital cellular control.17, 22  Translocation is believed to be due to a 

very rare occurrence during gene rearrangement or class switching.23, 24   

eBL was first characterized in 1958 by Denis Burkitt when he published his 

observations on 32 Ugandan children between the ages of 2-14 who presented with 

a sarcoma of the jaw.20  Additional findings and reports determined eBL was 

commonly observed in equatorial Africa (referred to as “The Lymphoma Belt”) but 

not in northern or southern Africa (Figure 2.2).25-28   

eBL is the most common cancer among children in Equatorial Africa where it 

is estimated to account for over 70% of childhood cancers (Figure 2.3).17, 22  In 

Kenya alone, it accounts for 37-43% of childhood cancers.12  The incidence of eBL 
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in children <15 years in high malarious areas ranges from 5-15 per 100,000 per total 

population per year.17, 22, 25, 27, 29  eBL is commonly reported in children between the 

ages of 2-12 years with no cases reported in children <1 and few cases reported in 1 

year-old children.20, 21, 25, 30  In general, the peak age range is 4-8 years, while in 

Kenya the peak age is 6 years.8, 12, 31, 32  Males are more often diagnosed with eBL 

than females with a sex ratio ranging from 1.6-3.2 males for every female diagnosed 

with eBL.12, 25, 27, 32, 33  This observation cannot be explained as there are no 

apparent differences in admissions rates between males and females.25   

Although an aggressive cancer, eBL responds well to chemotherapy.8, 18, 26  

Chemotherapeutic drugs are able to target tumor cells effectively as a result of the 

rapid cell proliferation.26  In addition, if a portion of the tumor can be removed, either 

by surgery or chemotherapy, there is indication the patient’s own immune system 

can control and eliminate the rest.26   

The pathogenesis of eBL is hypothesized to involve EBV as the initiator and 

recurrent Pf-malaria as the promoter of EBV-infected B-lymphocyte proliferation, 

increasing the opportunity for a c-myc translocation, the hallmark of  eBL.2  Due to 

the limited geographic distribution of eBL in equatorial Africa, Burkitt initially 

suggested the cause of eBL was an “arthropod vectored-virus.”26  However, Dalldorf 

suggested in 1962 that two factors were responsible for eBL: 1) an agent found 

globally, and 2) an environmental factor such as Pf-malaria.8  It was just two years 

later when Epstein, Achong, and Barr identified a new virus in electron micrographs 

taken of cultured eBL cells, later named the Epstein-Barr Virus (EBV).34  In 1982, 

Klein synthesized contemporary research into a cohesive explanation of the three 
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stages of eBL evolution that still prevails today.2  The first stage entails primary EBV 

infection; dé The and colleagues identified that pre-eBL children had significantly 

higher antibody titers to the EBV viral capsid antigen (VCA) than matched controls.2, 

27  Immunological modulation by recurrent Pf-malaria exposure is the second step in 

the process. Pf-malaria has been proposed to impair EBV-specific T-cell immunity19, 

35 and/or lead to proliferation of EBV-infected B-lymphocytes.2, 19  This impairment 

and proliferation increases the probability of the occurrence of a c-myc translocation 

which leads to stage 3, the development of eBL.2, 19, 22   

Studies of eBL etiology that directly examine the relationship between 

recurrent Pf-malaria and EBV are challenging. The relatively low incidence of eBL 

cases, 5-15 per 100,000 per total population per year depending on location, makes 

longitudinal cohort studies of eBL difficult to conduct.17, 22, 25, 27, 29  A prospective 

seroepidemiological study was conducted over a two year span collecting samples 

from 42,000 children less than 9 years old, of which only 14 eBL cases  were 

available for inclusion in analyses.27  Furthermore, establishing temporality of 

exposure-outcome is an important concern for eBL case-control studies because 

there is no clearly established biomarker for the development of eBL. Likewise, there 

is no clear biomarker for the accumulation of repeated Pf-malaria infections.  

Furthermore, it is possible that EBV biomarkers (e.g., antibody titers, EBV load) 

assessed as exposures may in fact be the result of eBL disease (i.e., reverse 

causality).33   

The only two studies assessing the joint effects of Pf-malaria and EBV among 

eBL cases showed an important interaction.33, 36  Both case-control studies found the 
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odds of high antibody levels to both EBV and Pf-malaria in eBL cases to be 

significantly higher than controls with low antibody levels to both EBV and Pf-

malaria.33, 36  In one study, the odds ratio (OR) for the joint effect was 13.2 (95% 

confidence interval [CI]: 3.8-46.6) while the OR for Pf-malaria alone was 1.4 (95% 

CI: 0.3-6.3) and EBV alone was 5.7 (95% CI: 1.6-20.7).36  In the other study, the OR 

for the joint effect of EBV and Pf-malaria was 5.0 (95% CI: 2.8-8.9) while the OR for 

Pf-malaria alone was 1.1 (95% CI: 0.5-2.4) and EBV alone was 1.0 (95% CI: 0.5-

2.2).33  Although OR estimates are imprecise, the magnitude of association and the 

synergistic effect indicates that the interaction of the two pathogens play an 

important role in the pathogenesis of eBL.   

There is an important interaction between recurrent Pf-malaria and EBV yet 

the mechanism behind the interaction is not well understood.   In the absence of eBL 

longitudinal studies that could focus on the interplay between recurrent Pf-malaria 

and EBV, other types of studies can provide insights.    

 

Epstein-Barr Virus 

Epidemiology of EBV 

EBV is a ubiquitous virus that is transmitted orally through saliva.5, 13  Over 90% of 

adults carry antibodies to EBV and young children often contract the virus from 

sharing toys and consuming foods pre-chewed by parents.3, 5, 13, 37  EBV is shed 

continuously in the saliva of healthy EBV seropositive individuals although very few 

viruses are infectious.38   
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In developing countries, 99% of primary infections occur in children by the 

age of 3 years.22, 39  Maternal antibodies to EBV offers protection in young infants 

until 5-7 months.39  Infection in young children is asymptomatic and serological 

testing is often the only evidence of past infection.40-42  In contrast, the age of 

primary infection in developed countries is delayed until adolescence or young 

adulthood of which 35-50% presents as symptomatic infectious mononucleosis.5, 39, 

43  The difference in age of primary infection is attributed to improved living 

conditions and hygiene in developed countries. 41, 44  There has been some evidence 

that females have higher anti-VCA immunoglobulin (IgG) titers than males, although 

there does not appear to be any difference in the age of primary infection by sex.45, 

46  

 

Infection, Persistence, and Immune Response 

EBV is a double stranded DNA virus of the gamma herpes family that is B-

lymphotrophic.41  The location of viral replication is still debated but evidence 

suggests EBV infects epithelium cells and naïve B-lymphocytes of the 

oropharyngeal epithelium.5, 19, 38, 47, 48  Similar to other herpes viruses, EBV has two 

life cycles: lytic (productive) and latent (non-productive).41, 49  During lytic infection, 

the virus replicates within the epithelial cells and naïve B-lymphocytes, leading to 

cell death when virions are released.41  The control of EBV proliferation during this 

phase is brought about by T-cell response, especially cytotoxic CD8+ T-lymphocytes 

(CTL).50   
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EBV causes a life-long latent infection in resting memory B-lymphocytes.5, 19  

A proportion of EBV-infected naïve B-lymphocytes escape the host’s immune 

system by migrating to lymph nodes where they pass through the follicle to form 

germinal center reactions, colonizing the resting memory B-lymphocyte pool.5, 19, 47  

These EBV-infected memory B-lymphocytes contain viral genetic material but do not 

produce virions.5  Latently infected memory B-lymphocytes are capable of polyclonal 

proliferation or activation to the lytic cycle.41, 48  This latter shift occurs when latently-

infected memory B-lymphocytes differentiate into plasma cells.47, 51   

EBV primary infection leads to a strong T cell-mediated response which also 

dominates immunosurveillance and control of EBV latency.22, 35, 50, 52  Natural killer 

cells of the innate immune system are the first to respond during primary infection. 22  

This is quickly followed by CTL response which targets both lytic and latent viral 

proteins.19, 35, 50  In healthy EBV seropositive individuals, EBV-specific memory CTL 

cells represent up to 5% of all circulating CTL cells, indicating the pivotal role of T-

cell immunosurveillance in controlling EBV latent infection.19, 22, 50  EBV is a powerful 

B-lymphocyte mitogen that leads to continued proliferation in vivo and transformation 

to immortalized lymphoblastoid cell lines (LCL) in vitro.22, 42, 50, 53, 54  Failure to control 

latent infection leads to uncontrolled proliferation of EBV-infected B lymphocytes.22   

EBV-infected B-lymphocytes evade T-cell immunosurveillance through a 

number of mechanisms:  down-regulating expression of almost 100 viral genes to 

just 12 thereby rendering it non-immunogenic, reducing the expression of major 

histocompatibility complex (MHC) class I receptors on the cell surface to prevent 
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CTL recognition, producing viral cytokines that enhance B-lymphocyte infectivity and 

counteract immune response, and inhibiting apoptosis.17, 37, 55-57   

  After primary infection, EBV load is dependent on immunosurveillance of 

latent EBV infection. EBV load in healthy seropositive individuals is stable over time 

with 1-50 latently infected cells per million circulating B-lymphocytes.55, 58  Increases 

in EBV loads may be a consequence of reduced T-cell control, as observed in post-

transplantation patients and AIDS cases.49, 59  However no point prevalence 

correlation has been observed between EBV loads and EBV-specific CD8+ T-cell 

IFN-γ response.35  In addition, EBV DNA detected in plasma and serum is a 

combination of encapsidated and naked DNA, signifying active EBV replication and 

apoptosis, respectively.48, 58, 60  Individuals with a mixture of encapsidated and naked 

EBV DNA have the highest EBV loads.58   

Maintenance of EBV persistence is not well understood but is believed to be a 

balance between latent infection, replication (i.e., lytic phase), and the immune 

response.48, 57, 59, 61  EBV-infected resting memory B-lymphocytes are a reservoir for 

persistent infection and the shift from latent infection to replication occurs when a 

portion of these latently-infected lymphocytes differentiate into plasma cells.51, 56  

The signal that triggers plasma cell differentiation is unknown.56  EBV replication 

leads to viral shedding in the saliva and infection of naïve B-lymphocytes that 

migrate to the lymph nodes where they seed additional pools of uninfected resting 

memory B-lymphocytes.48, 56  Replication elicits an immune response which once 

again brings the virus under control.56, 57   

 



   

 14

Relationship between EBV and eBL 

EBV is a necessary but not a sufficient cause of eBL.24  It is recognized that 

chromosomal translocation of the c-myc oncogene initiates the development of eBL, 

yet there is evidence to suggest EBV has an active role in its pathogenesis.  First, 

EBV was discovered in electron micrographs of cultured eBL cells.34  Subsequent 

tumor studies found approximately 97-98% of eBL tumors were positive for EBV. 2, 

22, 50, 62  Second, eBL tumors develop from a cell (or cells) already infected with EBV, 

suggesting EBV infection occurs in the early stages of the pathogenesis of eBL 

rather than after tumor development.24, 63  Third, individuals diagnosed with eBL had 

high anti-VCA titers prior to development of eBL.41, 44, 64, 65  As anti-VCA titers are 

stable over time, the high titers before and after eBL onset may indicate suppression 

of EBV-specific T-cell immunity. Fourth, EBV leads to the transformation of normal 

B-lymphocytes to immortalized LCL in vitro; in vivo, EBV leads to proliferation of 

EBV-infected B-lymphocytes.22, 42, 50, 53, 54  This proliferation increases the risk for 

eBL to emerge. Finally, EBV is linked to other cancers, such as nasopharyngeal 

carcinoma, and has demonstrated neoplastic growth in immunocompromised 

individuals suffering from B-lymphocyte lymphoproliferative disease.24, 27   

 

Pf-malaria and EBV Co-infection 

Chronic Pf-malaria is immune-modulating.26  Studies of acute Pf-malaria infection 

during vaccination programs have found that Pf-malaria alters the capacity of 

children’s immune systems to mount a response.66-68  Immune competence rapidly 
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returns with parasite clearance indicating children with asymptomatic infection may 

still experience a degree of modulated immune response.22, 67-71   

Malaria is a powerful B-lymphocyte mitogen.  In vitro, the cysteine-rich 

interdomain region 1α  (CIDR1α) domain of  the P. falciparum erythrocyte 

membrane protein 1 (PfEMP1) is able to activate proliferation of B-lymphocytes from 

individuals with no previous malaria exposure.72  It targets activation of memory B-

lymphocytes and also provides protection against apoptosis.73  A recent study 

demonstrated a direct link between CIDRα and EBV infected B-lymphocytes 

suggesting CIDRα could trigger reactivation of EBV-infected B-lymphocytes during 

acute malaria infection.61  In areas of high malaria transmission, asymptomatic 

parasitemia may result in persistent proliferation of memory B-lymphocytes.73  

 

Relationship between Pf-malaria and eBL 

Pf-malaria is a cofactor in the pathogenesis of eBL (necessary but not sufficient). It 

is not Pf-malaria infection itself that is believed to be a cofactor but rather the 

prolonged exposure to Pf-malaria infection results in elevated risk of eBL 

development.2, 29, 31, 32  The highest incidence of eBL has been identified in malaria 

holoendemic areas where early investigations noted the similarity in the 

geographical distribution of eBL and holoendemic malaria in equatorial Africa and 

Papua New Guinea.26, 27, 30  For example, of the 1,005 eBL cases identified from 

1988-1997 in Kenya, only 7% were from malaria free areas.12  In addition, the 

introduction of antimalarials in areas of high malaria transmission led to a decrease 
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in the number of eBL cases thereby suggesting a link.7, 32  Furthermore in 

holoendemic areas where control programs were instituted, eBL is rarely detected.7   

The coincidence of Pf-malaria infection and eBL suggests a temporal 

relationship. Symptomatic Pf-malaria peaks in children aged 2-3 years while eBL 

peaks in 4-8 years.74  Two additional interesting observations are noted in Burkitt’s 

work in Uganda. First, the average  age of eBL patients in malarious areas was 8.1 

years, while in low risk malarious areas it was 16.2 years.25  In addition, immigrants 

from unstable  malaria transmission areas of Uganda who moved to holoendemic 

areas presented with eBL in late adolescents and adulthood, almost 50% over the 

age of 15.25  Morrow’s work also found a similar pattern as most adult cases of eBL 

that he identified were born in hypoendemic areas.32   

Furthermore, there is also evidence that children with sickle cell trait (HbAS), 

which protects from severe Pf-malaria infections,  have lower incidence of eBL than 

children without the trait (HbAA).75  Finally, eBL cells appear to have their origin in 

germinal-cells and chronic Pf-malaria infection induces germinal center 

hyperactivity.22, 24, 63  Viral reactivation coupled with expanded germinal centers 

increases the risk for a random mutation to occur in an EBV-infected germinal center 

lymphocyte.24, 63   

 

Current Knowledge of the Effect of Recurrent Pf-malaria Infections on EBV 

Infection  

This section focuses on current understanding of recurrent Pf-malaria infection and 

EBV T-cell response. A summary of studies can be found in Table 2.1. 
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An important criterion in establishing disease causality is that exposure 

occurs before disease. Recalling the chronology of the three stages of eBL 

progression – EBV infection, recurrent Pf-malaria, and eBL (i.e., c-myc translocation) 

– it is clear that there is the potential for chronic Pf-malaria to affect EBV latent 

infection, giving rise to eBL (Figure 2.4). As previously noted, 99% of primary EBV 

infections occur in children by the age of 3 years in developing countries.22, 39  In 

holoendemic areas, symptomatic Pf-malaria infections peak in children aged 2-3 

years, although infections continue into the teen years.74  This would indicate 

children are already EBV seropositive when they experience repeated Pf-malaria 

infections in their early childhood. Recall that eBL peaks in children 4-8 years, soon 

after the peak age-related incidence for Pf-malaria infection.74   

There are two prevailing, though not mutually exclusive, theories on the role 

of recurrent Pf-malaria on EBV infection and immunity. The first hypothesizes 

impaired EBV-specific T-cell immunity.19  EBV-specific T-cell immunity is responsible 

for immunosurveillance and control of EBV latent and lytic proteins; however, 

chronic Pf-malaria may impair EBV-specific T-cell immunity, resulting in inadequate 

immunosurveillance of EBV. 19, 35  The second theory hypothesizes that EBV-

infected B-lymphocytes proliferate as an individual is repeatedly exposed to Pf-

malaria.19  The increased number of EBV-infected B-lymphocytes thereby increases 

the risk for the emergence of an EBV-infected B-lymphocyte with the malignant 

mutation, leading to the development of eBL.19   

Acute Pf-malaria infection leads to impaired T-cell control of persistent EBV 

infection. Studies comparing children’s T-cell response during and 3-4 weeks after 
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Pf-malaria infection found a significant increase in the number of EBV-infected B-

lymphocytes and high regression indices, both supporting the conclusion of a loss of 

CTL function.76-78  By nature of these studies, it is clear that acute Pf-malaria 

infections have a transient effect on T-cell response. Furthermore, findings from 

case-control studies comparing acutely infected Pf-malaria individuals with healthy 

adults came to the same conclusion.69, 79   

The cumulative effect of Pf-malaria infections on T-cell control of persistent 

EBV infection has not been well researched. Two ecological studies comparing 

holoendemic areas to areas of unstable malaria transmission have been conducted 

yielding different conclusions. One study found a significant difference in T-cell 

function between the two areas, with individuals living in holoendemic areas showing 

a loss of T-cell response.80  However this study was conducted among adults who 

have mature immune systems as compared to children. A more recent study among 

children found no overall difference between the two areas; however, among 

children residing in the holoendemic area, a significant decrease in T-cell response 

was observed in children 5-9 years old compared to other age groups.35 Although 

using malaria transmission as a surrogate for cumulative Pf-malaria infections is not 

ideal, these findings provide the only understanding we currently have on the 

cumulative effect of Pf-malaria exposure on latent EBV infection. 

 

Naturally Acquired Immunity to Pf-malaria Infection 

Unlike other infectious diseases, such as measles, life-long protective immunity (i.e., 

sterilizing immunity) never develops to Pf-malaria and individuals remain vulnerable 
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to re-infection throughout life.16, 81  Yet partial immunity is developed over time 

whereby individuals progress from symptomatic illness with high parasite densities 

to asymptomatic illness and low density parasitemia.16   

To understand the complex weave of interactions between the parasite and 

immunity in the human host, an understanding of the parasite life cycle and the 

critical role of humoral immunity is necessary. This will set the foundation for the 

description of how NAI evolves and how the longevity of antibodies affects NAI. 

Finally, we will review how NAI is influenced by heterogeneous patterns of 

transmission and age and the implications this has for protection from symptomatic, 

or clinical, disease.  

  

Life Cycle of Pf-malaria 

Pf-malaria parasites require two hosts as part of their life cycle, female Anopheles 

mosquitoes and humans, but our focus will be on the lifecycle in the human host 

(Figure 2.5).82, 83  When an infected female mosquito bites a human host, she 

releases parasites called sporozoites into the bloodstream where they rapidly invade 

hepatocytes, or liver cells.82, 83  These parasites mature in liver cells during this pre-

erythrocytic, or liver stage.82, 83  Upon rupture, merozoites (extracellular form of the 

parasite) are released and invade erythrocytes, or red blood cells (RBCs). Invasion 

of the RBC begins with a reversible attachment between the merozoite and RBC 

(Figure 2.6).82, 84, 85  The merozoite then reorients its apical end to bring it in contact 

with the RBC where an irreversible, tight attachment is formed.82, 84, 85  It enters the 

RBC surrounded by a protective vacuole that seals once the merozoite is fully 
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integrated into the RBC82, 85 where they undergo asexual replication (referred to as 

erythrocytic or blood stage).83  Most parasites in the blood stage continue in asexual 

replication, infecting more RBCs when merozoites are released.82, 83  A small 

proportion of parasites do not return to asexual replication but enter the sexual stage 

where they differentiate into male or female gametocytes.82, 83  Gametocytes are 

ingested by mosquitoes to continue their lifecycle in mosquitos.83, 86   

Symptomatic infection in the human host is restricted to the asexual blood-

stage when merozoites replicate in RBCs and are released into the bloodstream.86, 

87  This release of merozoites leads to inflammatory responses that cause the 

hallmark malaria symptoms of fever, rigor, and nausea.86, 87  Parasites of the liver 

stage and gametocytes do not cause symptomatic illness and this has been 

hypothesized to be due to their poor immunogenic capacity.6  

 

Humoral Immunity to Pf-malaria Infection 

Studies in the early 1960’s demonstrated that gamma globulin from healthy 

malaria-immune adults were effective in reducing the parasite density and clinical 

symptoms of malaria in children hospitalized with malaria.88-90  These studies 

established the critical role of antibodies to blood-stage antigens as a significant 

component in NAI to malaria infections. The mechanisms by which antibodies can 

control Pf-malaria infection include direct elimination of parasites, prevention of 

merozoite invasion of RBCs, and aiding in the detection and clearance of infected 

RBCs.82, 91-93   
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Blood-stage antigens of particular interest are the apical membrane antigen 

(AMA)-1 and merozoite surface protein (MSP)-1 and both have been the focus of 

vaccine development. AMA-1 is a highly polymorphic antigen82 and is highly 

immunogenic.94, 95  Antibodies to AMA-1 antibodies have been shown to prevent 

reorientation of the merozoite on its apical end thereby preventing the critical 

attachment necessary for invasion.85  Recently, AMA-1 was also found to be 

expressed by sporozoites of the pre-erythrocytic stage. Once again, AMA-1 appears 

to play a vital role in cell invasion because antibodies to AMA-1 prevented invasion 

of hepatocytes.96  Like AMA-1, MSP-1 is a highly polymorphic antigen but it is not as 

immunogenic as AMA-1.95 97  MSP-1 coats the surface of merozoites but its precise 

function of remains unknown.84  It is processed into a number of fragments including 

MSP-142. and during invasion of the RBC, MSP-142. is further processed into MSP-

119 and MSP-133.91  Antibodies to MSP-1 have been shown to prevent merozoite 

invasion of RBCs.82, 98  In addition, animal studies demonstrated that antibodies to 

MSP-1 protected primates from infection.97  

Sporozoites of the pre-erythrocytic stage are reportedly poorly immunogenic 

because they have less antigenic polymorphisms, indicating less pressure from the 

host’s immune system.6  Yet antibodies to sporozoites have been detected 

suggesting a potentially contributory role in NAI.6  The suggested mechanisms of 

protection are similar to those proposed for blood stage antibodies - direct 

elimination of sporozoites, prevention of sporozoite invasion of hepatocytes, and 

clearance of infected hepatocytes.93  Levels of pre-erythrocytic antibodies, such as 

the liver stage antigen (LSA)-1, have been reported to appear only after many years 
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of Pf-malaria exposure,6, 93  although one study reported LSA-1 IgG levels in 

infants.99  However, IgG responses in children are reportedly lower than adults.100  

Even though IgG responses to pre-erythrocytic antigens have been observed to be 

consistently lower than levels of blood-stage antibodies,6, 93  comparisons between 

Pf-malaria immune and naïve individuals suggest that antibodies confer a degree of 

immunity against parasites.6  Furthermore, significantly higher levels of LSA-1 

antibodies were detected in high malaria transmission areas as compared to low 

areas indicating they may be involved in some level of protection.101  

 

Evolution of NAI 

Susceptibility to malaria is universal barring specific genetic traits that offer 

partial resistance to Pf-malaria infection.13, 87  Individuals with heterozygous sickle 

cell trait (HbAS) have partial resistance to Pf-malaria, leading to reduced parasite 

density and lower risks for severe forms of malaria whereas individuals homozygous 

for the trait (HbSS) appear to be at greater risk for severe disease.13, 87  Glucose-6-

phosphate dehydrogenase deficiency is another genetic trait that protects individuals 

from severe manifestations of Pf-malaria infection.102  

The development of NAI is a complex process that occurs between the Pf-

malaria parasites and human host. Parasites incorporate various techniques to 

evade, and even suppress, the human host’s immune response. The life cycle of 

parasites encompasses a diverse array of expressed antigens. Furthermore, 

parasites have developed polymorphic regions on antigens believed to be the result 

of frequent targeting by the host’s immune response.6, 82, 91, 93, 103  Allelic 
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polymorphisms have led to different genotypes, or strains, within a single species, 

such as 3D7 and FVO.16  The predilection of parasites for liver and RBCs with 

limited or no major histocompatibility complex molecules means an efficient T-cell 

response cannot be mounted.6, 82, 92  Immune suppression strategies include 

malaria-specific B- and T-cell apoptosis (cell-death) and the prevention of dendritic 

cells from maturing thereby preventing antigen recognition and presentation to T-

cells.6, 103, 104   

In this web of interactions with parasites, humans have evolved a complex 

immune response that manages to transform symptomatic illness to asymptomatic 

control of parasite density.16  This response has been described in three phases 

(Figure 2.7). During the first phase, immunity to severe, life threatening infections is 

acquired after just a few infections despite an increasing prevalence of parasites.81, 

93, 105  The next phase brings about clinical, or anti-disease, immunity whereby 

individuals no longer suffer from symptomatic illness in spite of relatively high 

parasite densities.16, 81  Acquisition of partial immunity to parasite immunity (anti-

parasite) is the final phase, where parasitemia density remains low throughout 

infection.16, 81   

The mechanisms responsible for this slow evolution of immunity are not well 

understood and should not be assumed to be similar for all phases.93  It has been 

reasoned that maturation of immunity requires years in order to be exposed to 

variants of each antigen, although there is evidence of partial immunity to 

heterologous strains in the form of lower parasite densities and shortened courses of 

symptomatic illness.16, 93  Symptomatic illness has been purported to be the result of 
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an individual being exposed to a novel variant in which there was no prior 

exposure.6, 106  As individuals experience repeated Pf-malaria infections, they 

accumulate a sufficient antibody repertoire such that they no longer suffer from 

symptomatic illness but continue to carry parasites.16, 93  Described in the 1900’s by 

Koch as “premunition,” low levels of parasites was believed to be necessary for 

maintaining immunity; interruption led to a loss in immune response.16, 81   

 

Longevity of Antibodies 

The loss of immunity has been attributed to the short lifespan of serum 

antibodies to Pf-malaria antigens107, 108 but this may not be universal nor this simple. 

Naïve B-cells that encounter merozoites differentiate into short-lived plasma cells 

(SLPCs), secreting over 5,000 IgG molecules per second.109 SLPCs have been 

estimated to survive between 8 hours to as long as 10 days.109  Meanwhile some 

naïve B-cells make their way into germinal centers of follicles in the lymph nodes 

where they develop into high affinity antibodies, either differentiated B-cells called 

long-lived plasma cells (LLPCs) or memory B-cells (MBCs).109-112 An estimated 80-

90% of LLPCs are sequestered in the bone marrow where they continuously secrete 

antibodies, maintaining serum antibody levels even in the absence of infection; their 

lifespan in humans is unknown.109-113  SLPCs and LLPCs are vital for the initial 

control in infection.109-111  MBCs are critical for rapid secondary responses, having a 

low threshold for activation but peaking 6-8 days after re-exposure to their cognate 

antigen.109, 111   



   

 25

A hallmark of the immune response is the ability to recognize antigens that 

have already encountered. A lack of recognition therefore implies an absence of 

memory. The immune response to Pf-malaria infections suggests an absence of 

memory because people become repeatedly infected and ill. Therefore attempts 

have been made to delineate the contribution of LLPCs and MBCs to serum 

antibody levels but conclusions have been conflicting.92  One study concluded there 

was a defect in MBCs to specific Pf-malaria antigens,98 but another study reported 

slow and steady acquisition of MBCs to the same Pf-malaria antigens investigated in 

the first study.111  Once again, the hurdle in developing long-term memory may be 

the challenges created by the Pf-malaria parasite whereby appropriate, high affinity 

antibody responses cannot be developed due to an ever changing repertoire of 

antigens on the merozoites.109, 111  Although the activation of MBCs is typically 

antigen-dependent, there is evidence of antigen-independent activation (referred to 

as bystander activation) of Pf-malaria-specific MBCs antibodies.109-111, 114   

Evidence arguing for the short lifespan of serum antibodies is numerous.  

First, high levels of antibody responses have been associated with parasitemia,97, 98, 

109, 115, 116 but antibody responses declined after symptomatic infection ceased97 or 

once effective treatment commenced.6, 97  In areas that experience seasonal 

transmission of Pf-malaria, studies have found that antibodies wane over time from 

the high to low season.6, 100, 107, 117, 118  Furthermore, a commonly cited situation is 

when adults return to malaria endemic areas and suffer from symptomatic infection 

despite repeated Pf-malaria infection during their childhood.92  Studies have reported 

that antibody responses to MSP-1 and other antigens are short-lived in infants119, 120 
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and children compared to adults.92, 109, 117  Yet these differences may be due to the 

maturity of immune systems in adults compared to infants and children. 

Studies that have estimated the half-lives of antibodies have been limited and 

inconsistent. IgG1 responses were reported to have a half-life of 21 days.108 

However, another study that examined IgG1 responses specific to Pf-malaria IgG 

responses (combination of blood-stage antigens including MSP-1 and AMA-1) 

reported IgG1 responses had a half-life of 10 days.107 Still another study determined 

the half-life of MSP-119 responses was 49 years.94  The contradictory findings may 

be attributed to different antigens tested but nevertheless, the half-life of antibodies 

remains an open area for research and discussion. 

What is likely a more accurate description about the longevity of antibody 

responses is that there is a careful and coordinated balance between both short- 

and long-lived responses whereby clinical immunity develops rather than parasite 

immunity.109 The short life-span of antibodies is not indicative of a lack of 

immunological memory especially because rapid proliferation of antibody responses 

have been observed after exposure.6  In addition, regardless of the MTI, only a few 

Pf-malaria infections may be necessary to protect from severe,  non-cerebral 

malaria.105  Reexamining the example of adults returning to malaria endemic areas, 

what is often overlooked is that their course of illness is often shorter in duration and 

their risk of severe forms are less than immune naïve individuals.6  For example, in 

Madagascar after the unraveling of intense malaria control efforts from previous 

decades, a 1987 malaria outbreak left young adults and children with high 

proportions of symptomatic illness whereas older adults who were exposed to 
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repeated Pf-malaria infections as children suffered from less disease.121  Hence 

antibodies do persist in the absence of antigens that stimulate an immune 

response.109   

 

Malaria Transmission Intensity and Age Effect on the Evolution of Immunity 

The patterns of NAI in individuals vary by malaria transmission intensity and 

age with the exception of infection in infants. Maternal antibodies appear to provide 

protection among infants from fever, high density parasitemia, and severe illness 

until they are about 6 months old when protection begins to wane.16, 87, 99, 102, 122, 123  

In areas of stable and high malaria transmission, symptomatic Pf-malaria 

infection, including severe forms, disproportionately affect children < 3 years old with 

monthly parasite prevalence among this age group reported to be as high as 90%.10, 

11, 87, 119, 122-125  At 6 months of age, infants become susceptible to infection.16, 87, 102, 

122, 123  Parasite densities were observed to peak in infants 6-11 months followed by 

a rapid decline with age.122, 126  There is a subsequent decline in symptomatic illness 

and eventual decrease in parasite density with age, which is attributed to the 

accumulation of antibodies in response to repeated infection.10, 122  This same 

pattern of acquired immunity is also observed for adults who move from low to high 

malaria endemicity areas.10, 16   

Immunity in individuals residing in areas of low malaria transmission is not 

well as developed as demonstrated by the burden of symptomatic Pf-malaria 

infections being distributed across all age ranges while severe Pf-malaria infections 



   

 28

typically is reported in 1-5 year olds.10, 11, 14, 16, 123, 125, 126  High febrile illnesses 

among all ages have been reported during periodic outbreaks.6   

Studies of antibody responses have generally found IgG responses to AMA-

1,94, 95, 101 MSP-119,94, 95, 101, 127, 128 and LSA-1 94, 101, 129 to be greater in high 

transmission areas as compared to low areas. In high transmission areas, they have 

also shown that the prevalence of AMA-195, 101, 119, 130 including AMA-1 FVO131, MSP-

119
95, 120, 128, 132, 133, MSP-142

130, and LSA-199-101, 119 antibodies increase with age but 

not always for MSP-119
134, 135 or  LSA-1130, 136. Limited studies have been conducted 

in areas of low malaria transmission and these have found that AMA-195, 101 and 

MSP-119 
95, 101, 128 increased with age but not consistently for AMA-1 FVO131 or MSP-

119.134, 137 LSA-1 responses were significantly higher in adults in one study118 but 

another study detected no age trend.101 An interesting observation was that 

symptomatic illness was not found to be correlated with parasite density in areas of 

high malaria transmission whereas in areas of low transmission, there was a clear 

correlation.16  

There is evidence that age may be independently related to the NAI although 

teasing out its independent effect in areas of high malaria transmission has been 

problematic. Adults who move into high malaria transmission areas suffer from 

symptomatic illness yet they develop the ability to prevent fever and control 

parasitemia faster than children.16  Furthermore, adults are at greater risk for severe 

illness as compared to children as MTI declines.16, 138  The risk of cerebral malaria is 

low in all children < 5 years old regardless of MTI, but in areas of low- or moderate-

transmission, there is a J-shaped association with increasing age, whereas in areas 
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of high transmission, risk of cerebral malaria remains low.138  The initial decrease in 

the J-shape was hypothesized to be due to the acquisition of immunity to severe 

malaria among young infants.105, 138   

   

Evidence of Clinical Protection from Pf-malaria Infection 

Efforts have been underway to develop of an effective vaccine for Pf-malaria 

infection. There is growing evidence that a multivalent vaccine that can elicit an 

immune response to a number of antigens will be necessary.82, 93, 103, 119  As 

previously mentioned, the vaccine will have to overcome the vast array of evasive 

strategies utilized by parasites. To compound this problem, a further challenge has 

been identifying antibodies that are immunological markers of protection.92  Few 

studies have examined the protective effect of antibodies to multiple antigens.136, 139 

What complicates research further is that less than <1% of known antigens have 

been studied thus far.92  Prioritizing antigens for investigation has been hindered by 

the lack of knowledge on the precise function of a majority of the known antigens.82  

Finally, most studies have been conducted in areas of stable malaria transmission 

but patterns of NAI vary across MTI. Therefore it is unclear if the mechanism driving 

NAI in these areas are relevant to individuals infrequently exposed to Pf-malaria.  

 Studies of protection from symptomatic Pf-malaria infection in sub-Saharan 

Africa have generally found little evidence of protection associated with AMA-1. Only 

one study found that AMA-1 antibodies were protective140  and another determined a 

combination of AMA-1 and MSP-2 antibodies reduced the risk of symptomatic Pf-

malaria infection.141  Still the majority of studies indicated no association.127, 132, 136, 
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142  Evidence of a protective effect of MSP-119 antibodies is inconsistent. Although 

positive associations have been detected127, 128, 133, 137, 141 there have also been 

reports of no association.132, 134, 135, 140, 142 Limited studies on 3D7 and FVO strains 

have generally suggested antibodies to AMA-1 3D7,130, 131 AMA-1 FVO131, and MSP-

1 3D7130 are protective of symptomatic Pf-malaria infection, but antibodies to MSP-1 

FVO are not.130 Finally, the MSP-119  block 2 has been linked with protection from 

symptomatic illness.143-145 

A recent meta-analysis of population-based longitudinal studies generally 

corroborated these findings between AMA-1 and MSP-1 and protection from 

symptomatic Pf-malaria infection.91  Antibodies to the 3D7 strain of AMA-1 reduced 

the risk of symptomatic illness whereas results for the FVO strain of AMA-1 were not 

as conclusive.91  Antibodies to MSP-119 led to an 18% decrease in the risk of 

symptomatic illness among individuals with detectable IgG responses as compared 

to non-responders.91  Further analysis revealed that there was a 15% decline in the 

risk of symptomatic illness for every doubling of antibody responses (log base 2).91  

Studies of MSP-142 were not reported.  

LSA-1 antibodies independent of other pre-erythrocytic antigens does not 

appear to confer clinical immunity.129  However, in conjunction with other pre-

erythrocytic antigens, LSA-1 antibodies have been reported to be protective of 

symptomatic illness.136, 139   
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Summary 

The burden of Pf-malaria infections is not independent of other infectious 

diseases circulating in a community. The repeated interaction of Pf-malaria parasites 

with persistent EBV infections can lead to eBL but the precise mechanism of 

interaction is shrouded in uncertainty. Two critical components to improve our 

understanding of the interaction between these two pathogens are 1) the use of an 

individual-level definition of Pf-malaria that accounts for recurrent Pf-malaria rather 

than acute, and 2) a study time period that allows for an examination of EBV 

persistence and immunity in response to recurrent Pf-malaria exposure. This 

dissertation aimed to incorporate these two missing components to gain further 

insight on the interplay of these two co-factors of eBL.  

The disproportionate burden of Pf-malaria infections in sub-Saharan Africa, 

particularly among children, justified on-going research and treatment to ensure a 

continuing reduction in the rate of illness. Vaccine trials are underway in the hopes 

of creating an effective addition to current malaria control strategies. Yet could 

differences in antibody responses between areas of disparate malaria transmission 

intensities affect the effectiveness of vaccines? Furthermore the reported short 

lifespan of antibodies presents challenges in the development of long-lasting 

immunity. This dissertation aimed to improve the understanding of the differential 

patterns of immunity development between areas of heterogeneous malaria 

transmission intensities, including the decay of immune responses over time.  
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TABLE 2.1.  Summary of Pf-malaria and EBV research related to T-cell response. 

Authors Study Design Results 
Moss80, 
1983 
 
Papua New 
Guinea 

Ecological; adults 
from 
holoendemic and 
sporadic areas 
as well as and 
Caucasian 
controls 

1. Higher regression endpoints for 
individuals in holoendemic area compared 
to control groups. No difference between 
two control groups.  
2.  No differences among three groups to 
anti-EBNA or anti-VCA. 
3. Spontaneous transformation of uninfected 
cells in individuals from holoendemic area 
but not control groups. 
 

Kataaha53, 
1984 
 
UK 

Laboratory; 
adults with no 
history of Pf-
malaria infection 

1. EBV can induce normal lymphocytes into 
LCL in vitro. 
2. P. falciparum products can induce normal 
lymphocytes into LCL in vitro. 
 

Whittle78, 
1984 
 
Gambia 

Case-control; 
During/post P. 
falciparum 
infection in 
children 5-18 
years old. 

1. High regression indices during acute P. 
falciparum infection.  
2. During acute P. falciparum infection, 
number and proportion of T-helper cells was 
reduced. 
3. Proportion of B-lymphocytes increased 
during acute P. falciparum infection.   
 

Gunapala69, 
1990 
 
UK 

Case-control; 
acute P. 
falciparum 
infection in UK 
residents aged 
11-51 years, 
healthy EBV 
seropositive UK 
adults   

1. A larger proportion of cases had higher 
regression endpoints than controls.  
2. Cases had higher numbers of B-
lymphocytes and CD8+ T-cells; ratio of 
CD4:CD8 reduced compared to controls. 
3. The proportion of lymphocytes 
transformed to LCL in cases was 
significantly higher than controls. 
4. Cases had higher anti-VCA titers than 
controls. 
 

Moormann35, 
2007 
 
Kenya 
 

Ecological; 
Children 1-14 yo 
from 
holoendemic and 
sporadic areas 

1. No difference in cytotoxic T-cell response 
between two areas but in holoendemic area 
observed a loss of T-cell response in 
children 5-9 years old compared to younger 
and older children. 
2.  Children in holoendemic area had 
significantly less Interleukin 10 responses to 
EBV lytic peptides than those in the 
sporadic area.  
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Authors Study Design Results 
 

Njie79,  2009 
 
Gambia 

Case-control; 
Children 3-14 
years old with 
symptomatic P. 
falciparum, age-
matched children 
with no 
parasitemia, 
Gambian adults 
not parasitemic, 
UK adults with no 
parasitemia, all 
seropositive for 
EBV 

1. Gambian adults had significantly higher 
viral loads than UK adults. 
2. Gambian children with acute Pf-malaria 
had viral loads 5-6 times higher than control 
children (p<0.001). 
3. EBV loads higher in children 3-5 years 
old than older children although not 
statistically significant. 
4. No significant difference in EBV loads in 
children with acute Pf-malaria 4-6 weeks 
after infection. 
5. Gambian children had weak T-cell 
responses during acute Pf-malaria infection 
compared to adult controls; recovery levels 
were similar to adult controls (no 
significance testing due to small sample 
size). 
 

 

 

 

 

 

 

 



   

  

 
CHAPTER THREE: DESCRIPTION OF DATA SOURCES 

 

Study Setting 

The Kisumu/Nandi Cohort Study was established in western Kenya, an area located 

within the eBL “Lymphoma Belt” (Figure 2. 2). Two sites with disparate MTI levels 

were selected (Figure 3.1). The first site was located in Kisumu District in Nyanza 

Province, located in the lowlands on the banks of Lake Victoria. Malaria transmission 

in this area has been described as high and perennial, i.e. holoendemic. The other 

site was in Nandi District in the Rift Valley Province, located in the highlands 150 km 

northeast of Kisumu where malaria transmission has been characterized as low, 

unstable and prone to epidemics, i.e. hypoendemic. These areas were referred to by 

their district names, Kisumu (holoendemic) and Nandi (hypoendemic).   

 

Study Population 

In Kisumu district, Kanyawegi sublocation was selected for participation based on 

interest in the study and willingness of children (with parental permission) to provide 

venous blood samples. An estimated 3,000 individuals reside in the 6-7 villages in 

this sublocation. Fishing was the predominant occupation. The Kipsamoite 

sublocation in Nandi District was also selected and similar to Kanyawegi, there were 

6-7 villages with an estimated population of 3,500 residents. Subsistence farming 



   

 41

was the main occupation in this area. In both locations, homes were built using 

locally available materials. 

 

Study Sampling 

Local meetings were held to introduce and explain the purpose of the study to 

community members. Study staff waited to enroll children for a few months after the 

introductory meetings to provide parents an opportunity to consider the study.  

Each household and household member had been assigned a unique study 

identification number in 1999 for a demographic study. This information was used to 

randomly sample households for inclusion in the study. The number of participants 

enrolled from each village was set to ensure proportional geographic representation 

of each study site. Written informed consent was obtained from parents or guardians 

of study participants. 

Investigators enrolled a total of 236 children. Based on the age-incidence of 

eBL in western Kenya, investigators made an effort to enroll approximately the same 

number of children within the following age groups: 2-4 years, 5-9 years, and 10-14 

years (Table 3.1). It should be noted during the enrollment process, 13 children aged 

5 months - 23 months and 2 teenagers aged 15 year olds were enrolled. 

Investigators also enrolled approximately the same ratio of children by sex.  

 

Selection Criteria 

The following inclusion criteria were used for enrollment in the study: 
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- Permanent residency in the study site as defined by sleeping in the home at 

least 10 months of the year; 

- “Healthy” appearance as assessed by the clinical officer (i.e., no signs of 

chronic illness or malnutrition); 

- Parental consent for blood sample collection. 

 

The following criteria were used to exclude children from the study: 

- Clinical officer observed signs of severe Pf-malaria infection; 

- HIV infection was known or suspected. 

 

Data Collection 

Three surveys were conducted between July, 2002 and August, 2004. The timing of 

the surveys and corresponding number of participants are summarized in Table 3.2.  

During each survey, a standardized form was used to collect general 

demographic information (e.g., date of birth, sex), and malaria related information 

(e.g. bednet use). A copy of the form can be found in Appendix A. In addition, blood 

was collected for Pf-malaria testing (thick and thin blood smears), Pf-malaria 

serology testing (AMA-1 and MSP-142 to 3D7 and FVO strains, and LSA-1) and EBV 

testing (EBV-specific CD8+ T cell IFN-γ). 

 

Human Subjects Research 

The Office of Human Research Ethics at the University of North Carolina at Chapel 

Hill determined the proposed research (Study # 08-1117) did not require IRB 
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approval as it did not constitute human subjects research. The original study was 

under the auspices of a National Institute of Health K08 Award (Principal Investigator 

– Dr. Moormann), AI51565, and approved by the University Hospitals of Cleveland, 

Case Western Reserve University IRB and the Ethical Review Committee for the 

Kenya Medical Research Institute. Letters from these organizations can be made 

available upon request to Dr. Moormann (by phone at (508) 856-8826 or by email at 

ann.moormann@umassmed.edu). 
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TABLE 3.2. Summary of survey periods and corresponding number of participants. 

Study Period Number of Participants 
July– August 2002 
(baseline) 236 

February–March 2003 
(6-month follow up) 210 

July–August 2004 
(2-year follow up) 174 

 

 

 

 

 

 

 



   

 

 
CHAPTER FOUR: METHODS 

 

Specific Aim 1 

To assess the effect of recurrent Pf-malaria exposure on Epstein Barr Virus latent 

and lytic antigen CD8+ T-cell IFN-γ responses over time. 

 

Study Design Overview 

Using the Kisumu/Nandi Cohort, we assessed the cumulative effect of repeated Pf-

malaria infections on EBV latent and lytic antigen CD8+ T-cell IFN-γ responses over 

time. We used data from all three surveys from this cohort because the setting (i.e., 

holoendemic and hypoendemic) permitted exploration of district- and individual-level 

definition of recurrent Pf-malaria infections. Furthermore, EBV and Pf-malaria test 

results at three time points over a two-year period were available to address our 

objective. 

 

Selection Criteria 

Inclusion criteria: All cohort members who were seropositive for EBV at baseline. 

Exclusion criteria: Children with uninterpretable EBV latent and lytic antigen CD8+ T-

cell IFN-γ responses.  

 

Measurements
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Outcome: EBV latent and lytic antigen CD8+ T-cell IFN-γ response from each of the 

three survey periods was a dichotomous variable. Originally measured as a 

continuous variable by the IFN-γ enzyme-linked immunospot (ELISPOT) assay, the 

Χ2 Fisher’s Exact Test was used to classify responses (1=positive response, 0=no 

response).  

  

Exposure: Two definitions of Pf-malaria were used to explore the impact of Pf-

malaria at the district and individual level.  

- At the district level, recurrent Pf-malaria exposure was a time-invariant 

exposure defined according to the level of malaria transmission 

(1=Kisumu - holoendemic, 0=Nandi - sporadic).  

- At the individual level, recurrent Pf-malaria infection was a time-varying 

exposure defined as the cumulative average of Pf-malaria infections 

(ranges from 0 to 1 at each survey period, where 1= parasitemia detected 

at present and previous survey periods and 0=no parasitemia detected at 

present or previous survey periods. ).  

 

Additional covariates:  

At the individual level, age, district of residence, HIV status, nutritional status, 

schistosomiasis infection, sex, and socioeconomic status (SES) have been identified 

as potential confounders of the exposure-outcome relationship.  

- HIV testing was not conducted as part of study activities; unmeasured 

potential confounder.  
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- Nutritional status was not assessed; unmeasured potential confounder. 

- Schistosomiasis testing was not conducted; unmeasured potential 

confounder.  

- Information on SES was not collected; unmeasured potential confounder. 

 

Age and sex will be included in our analysis as covariates.  

- Age was modeled as a time-varying covariate using dummy indicators. 

The categories were selected for comparison with previous work (0-4 

years, 5-9 years, >10 years). The >10 year age group was used as the 

referent group. 

- District of residence (site) was a time-invariant dichotomous variable 

(1=Kisumu, 0=Nandi). 

- Sex was a time-invariant dichotomous variable (1=Male, 0=Female). 

- Survey time period was modeled as a time-invariant covariate using 

dummy indicators. The baseline survey period was used as the referent 

group. 

 

Data Analysis 

We used weighted log-binomial regression models with generalized estimate 

equations (GEE) and robust variance estimators to characterize variation of EBV 

latent and lytic antigen CD8+ T-cell IFN-γ responses over time with 1) recurrent Pf-

malaria exposure (district) as an exposure, and 2) recurrent Pf-malaria infection 

(individual) as an exposure.   
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The GEE approach was used account for repeated outcome measures.147, 148  

Random effects models could have been used, however the GEE was preferred for 

our analyses because we were interested in estimating the population-averaged 

change in the outcome for a unit change in the exposure whereas random effects 

models estimate the change in the outcome for each cluster in the population.149 A 

limitation of the GEE approach is that to estimate robust standard errors, large 

numbers of clusters with few repeated measures are needed. 149 Fortunately the 

Kisumu/Nandi cohort fulfilled this criteria as it was composed of 230 clusters (i.e., 

subjects) with three repeated measures.149  

GEEs use a “quasi-likelihood” approach, an extension of the maximum 

likelihood estimation.147, 148  Estimates are interpreted similarly to linear or logistic 

regression models.150, 151  

The GEE takes the same form as the Generalized Linear Model (GLM)  

                               p 

g(μ) = β0 + Σ βh Xh 

                       h=1 

where μ is the mean response E(Y), g(μ) is a function of the mean, β0 is the 

baseline mean when all predictor variables equal 0, p are independent variables, Xh 

represents the vector of predictor variables, and βh is the mean change when Xh 

=1.150  

 The difference between GLM and GEE is the underlying assumptions and 

approach to estimating the parameters and variances.150, 151 Both models require 
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specification of the link function and variance function;  however, GEEs require 

specification of the working correlation matrix.150, 151 The inclusion of the correlation 

parameters allows GEE to model within-subject correlation.150, 151 

In our analyses we used the independent as the “best guess” for the working 

correlation matrix; the independent working correlation matrix assumes there is no 

correlation within a subject when calculating the point estimate.150, 151 We also used 

robust standard errors which provided unbiased estimates even if the working 

correlation matrix was inaccurate. We used the generalized Wald Test to build the 

final multivariable model as a quasi-likelihood analysis does not generate the 

Likelihood Ratio test commonly used for model comparisons.150 

An important assumptions when using GEE is that data are missing 

completely at random; missingness of data is independent of observed and 

unobserved data.150 We had missing observations in the two subsequent follow-up 

surveys. Upon examination of the pattern of missing observations, we concluded 

missingness was related to age therefore our data were not missing completely at 

random. We weighted the final model using inverse probability weights. A summary 

of this approach is provided in Appendix B.    

 

Descriptive Analysis: Frequencies and proportions were calculated for all 

measurements and summarized in tables or figures.  Continuous outcomes were not 

normally distributed therefore data were described using medians and non-

parametric testing was used to identify any differences between levels of a variable. 
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Bivariable Analysis:   The crude relationship between the exposure-outcome was 

explored using the log-binomial regression with GEE.  Covariate-outcome 

relationships were also explored. Findings from the analyses were summarized in 

tables and figures.  

 

Assessment of Effect Measure Modification: Covariates were initially examined as 

potential effect measure modifiers (EMM) of the exposure-outcome relationship. One 

at a time, the covariate (main effect) and an exposure-covariate interaction term 

were added to the crude model (interaction model). The generalized Wald test was 

used to compare the crude and interaction models to test the significance of the 

interaction term.  Any covariates significant at an alpha-level of 0.20 or less were 

classified as EMM and included in the final model. All models were stratified by 

district of residence. 

 

Assessment of Confounding: Covariates not identified as EMM were assessed as 

potential confounders. Causal diagrams for the relationship between Pf-malaria 

exposure (district) and repeated infection (individual) are presented in Figure 4.1. 

District level –No additional covariates were included in the model. Individual level – 

Age has continuously been reported as a confounder of the exposure-outcome 

relationship therefore it was adjusted for in multivariate models. Sex and survey 

period were assessed as potential confounders; they did not lead to a >10% change 

in the unadjusted PR but were included in the final model.149  
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Multivariable Analysis: We began our analysis with a fully adjusted weighted log-

binomial model including the exposure, EMMs, and confounders. We used the 

independent working correlation matrix with robust variance estimators. All 

measured covariates were included in the model as EMM or confounder therefore 

we did not our fully adjusted model was or finalized model. 

 

Power 

Our study population was fixed; we simulated data to calculate power estimates 

using the GEE approach with three repeated measures examining the effect of Pf-

malaria exposure (district) at a 0.05 two-sided significance level. The power 

estimates for recurrent Pf-malaria exposure (district) for both lytic and latent pools of 

EBV-specific CD8+ T-cell IFN-γ response are summarized in Figure 4.2.  We had 

80% power to detect a PR of 1.93 in EBV-specific CD8+ T-cell IFN-γ response (lytic) 

as a result of Pf-malaria exposure.  We had over 80% power to detect a PR of 1.96 

in specific CD8+ T-cell IFN-γ response (latent) as a result of Pf-malaria exposure. 

 

Limitations 

There were several potential limitations of Specific Aim 1.   

- Interpreting findings from models using a district-level definition of recurrent 

Pf-malaria exposure are subject to the ecological fallacy whereby population-

based estimates are attributed to the individual. We took caution when 

making interpretations of our results, highlighting this potential limitation. 
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- The individual-level definition of recurrent Pf-malaria infection may not 

accurately reflect the true experience of participants. Between baseline and 

subsequent follow-up surveys, participants may have had Pf-malaria 

infections which were not captured by this study design, especially in the 18 

month gap between the last two follow-up surveys.   

- Testing to confirm HIV status was not conducted; children were deemed 

healthy by clinician judgment. Although HIV is a potential confounder in the 

association of Pf-malaria infection and EBV, it does not appear HIV infection 

was present in this cohort at the time of the study. At the time of the study, 

HIV treatment was not readily available in Kenya and as a result, HIV infected 

individuals often died within two years of HIV-related symptom onset. 

Subsequent follow up of these children, as recent as 2009, found no deaths 

among the children.  

- Although Schistosomiasis infection was not conducted, an examination of the 

causal diagram between the exposure-outcome identified age and sex as 

measured antecedents of schistosomiasis infection (schistosomiasis was 

identified as a collider); adjusting for a collider may bias our estimate. Hence 

the lack of schistosomiasis testing for children is unlikely to bias our results.   

- Nutritional status was not measured; children enrolled in the study were 

deemed healthy by clinician judgment with no obvious signs of 

malnourishment. Hence, nutritional status was unlikely to be a potential 

confounder at the time of the study.  
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- SES was an unmeasured potential confounder. Families living in villages at 

both districts were likely to be classified as low SES as the main occupation 

was fishing (Kisumu) and farming (Nandi), with homes constructed of locally 

available materials. Given the SES composition of the villages, it appears 

SES was not a potential confounder at the time of the study. 

 

Specific Aim 2 

a. To describe malaria antibody responses among children in malaria holoendemic 

and hypoendemic areas, contrasting any differences between the areas.  

 

b. To describe the relative change in malaria antibodies over time in malaria 

holoendemic and hypoendemic areas, highlighting any differences between the 

areas. 

 

 

Study Design Overview  

We used data collected in July-August 2002 (baseline) and February-March 2003 

(six-month follow) from the Kisumu/Nandi Cohort to describe Pf-malaria antibody 

responses. This cohort was amenable for our objective because data were available 

from two districts characterized by different malaria transmission intensities. In 

addition, Pf-malaria-specific antibody test result were available. 

 

Selection Criteria  
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Inclusion criteria: All cohort members.  

Exclusion criteria: Children with uninterruptable antibody results.  

 

Measurements and Analysis Plan – Specific Aim 2a 

Outcome: Dichotomous IgG responses to AMA-1 3D7, AMA-1 FVO, MSP-142 3D7, 

MSP-142 FVO, and LSA-1 where 1=positive, 0=negative. Originally measured in 

mean fluorescence intensity (MFI), we standardized results into arbitrary units (AU) 

to account for plate-to-plate variability. Standardization was done by dividing the 

each participant’s MFI antibody response by the negative controls’ mean + three 

standard deviations. AU>1 were classified as a positive IgG response.  

 

Exposure: Our analysis was descriptive therefore age, parasitemia status, and sex 

were treated as exposures.   

- Age was a categorical variable: 0-4 years, 5-9 years, >10 years. Age was 

defined as the child’s age at the time of the survey.  

- Parasitemia status was a dichotomous variable (1=parasitemic, 0=not 

parasitemic).  

- Sex was a dichotomous variable (1=Male, 0=Female). 

 

Descriptive Analysis: Frequencies and proportions were calculated and summarized 

in tables and figures. Median AU values were calculated for each IgG response and 

summarized in a table. Medians were used because the distribution of the 
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continuous outcome was not normally distributed. Data were stratified by district of 

residence. 

 

Bivariable Analysis:   All analyses were stratified by district of residence. The Chi-

square test and Cochran Armitage trend test were used to assess any significant 

differences among the levels of each exposure as well as to compare responses 

between the two districts. Spearman’s rank correlation coefficients were used to 

examine any correlation between outcomes.  

 

Measurements and Data Analysis Plan – Specific Aim 2b 

Outcome: Continuous AU values of AMA-1 3D7, AMA-1 FVO, MSP-142 3D7, MSP-

142 FVO, and LSA-1 antibodies measured as relative change over six-months.  

 

Relative change was calculated using the following formula: 

= (IgG response at six-month follow-up – IgG response at baseline) 

                                  IgG response at baseline. 

 

Exposure: Our analysis was descriptive therefore age group, parasitemia status, and 

sex were treated as exposures.   

- Age was a categorical variable: 0-4 years, 5-9 years, >10 years. Age was 

defined as the child’s age at the baseline survey.  

- Parasitemia status was a categorical variable: 

o Parasitemia at both times 
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o Parasitemia at baseline survey only 

o Parasitemia at six-month follow-up survey only 

o Aparasitemic at both surveys. 

- Sex was a dichotomous variable (1=Male, 0=Female). 

 

Descriptive Analysis: The distribution of the continuous outcome was examined and 

was not normally distributed. Therefore we used medians to describe the data. Data 

were stratified by district of residence and summarized using boxplots and tables. 

 

Bivariable Analysis:   All analyses were stratified by district of residence. Non-

parametric tests were used to identify significant differences between levels of each 

exposure as well as to compare responses between the two districts. Exact tests 

were used for small samples sizes. An extension of the Wilcoxon rank-sum test was 

used to assess for trends of ordinal exposures. Spearman’s rank correlation 

coefficients were used to assess any correlation in the relative change of antibody 

responses between outcomes.  

 

Missing observations: Surveys were conducted on 210 of the original 236 children at 

six-month follow up. This represented an 11% loss to follow-up. We did not identify 

any significant differences by age group or sex between children who did and did not 

participate in the six-month follow-up survey. 

 

Limitations – Specific Aim 2 



   

 58

There were several potential limitations of Specific Aim 2.   

- Cross-sectional studies measure exposure and outcome at one point in time. 

It was possible that children with elevated antibody responses cleared their 

parasitemia just before the survey. Therefore we may not have captured 

accurately the relationship between parasitemia status and antibody 

response. However, this would have predominantly been an issue in Kisumu 

where children experienced Pf-malaria infection more often than Nandi 

children. Given the large proportion of children who had parasitemia detected 

in Kisumu (>76%) at both surveys, this issue was likely to be minimal.  

- The use of AU permitted standardization of antibody responses to account for 

plate-to-plate variability. However there is no intrinsic meaning of AU values. 

In addition, cutoffs for AU values differ across studies therefore and they 

cannot be directly compared across studies although directionality of 

responses are comparable. 

- Caution must be taken when interpreting the relative change in antibody 

responses. A 200% increase in antibody response in a child originally 

classified as a negative responder does not imply the child has become a 

positive responder. 

- We cannot say if observed differences in antibody responses reflect 

functional differences. 

- Due to limited power, we were unable to detect small yet meaningful 

differences. For example, we had few children in Kisumu (n=6) who were 

aparasitemic at both surveys and few children in Nandi (n=5) who were 
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parasitemic at both surveys. Hence we were unable to detect differences in 

the median relative change in IgG response by parasitemia status for most 

antibodies. 
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CHAPTER FIVE: Recurrent Plasmodium falciparum Malaria Infections in 

Kenyan Children Diminish T-cell Immunity to Epstein Barr Virus Lytic but not 
Latent Antigens 

  
ABSTRACT  

Background.  Plasmodium falciparum malaria (Pf-malaria) and Epstein Barr Virus 

(EBV) infections coexist in children at risk for endemic Burkitt’s lymphoma (eBL); yet 

studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific 

immunity. 

Methods.  Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-γ 

ELISPOT responses were surveyed three times among children (10 months to 15 

years) in Kenya from 2002-2004.  Prevalence ratios (PR) and 95% confidence 

intervals (CI) were estimated in association with Pf-malaria exposure, defined at the 

district-level (Kisumu: holoendemic; Nandi: hypoendemic) and the individual-level. 

Results.  We observed a 46% decrease in positive EBV lytic antigen IFN-γ 

responses among 5-9 year olds residing in Kisumu compared to Nandi (PR: 0.54; 

95% CI: 0.30-0.99).  Individual-level analysis in Kisumu revealed further impairment 

of EBV lytic antigen responses among 5-9 year olds consistently infected with Pf-

malaria compared to those never infected.  There were no observed district- or 

individual-level differences between Pf-malaria exposure and EBV latent antigen 

IFN-γ response. 
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Conclusions.  The gradual decrease of EBV lytic antigen but not latent antigen IFN-

γ responses after primary infection, suggests a specific loss in immunological control 

over the lytic cycle in children residing in malaria holoendemic areas; further refining 

our understanding of eBL etiology. 

 

INTRODUCTION 

Plasmodium falciparum (Pf) malaria and Epstein Barr Virus (EBV) have been 

identified as co-factors in the pathogenesis of endemic Burkitt’s lymphoma (eBL) 2 

which is estimated to account for 70% of cancers among children in equatorial Africa 

3, 4.  In areas with intense perennial malaria transmission (holoendemic), the highest 

incidence of eBL is in children aged 4-8 years 17, 22, 25, 27, 29, 74, in contrast to areas 

with low malaria transmission (hypoendemic) where eBL is rarely reported 7, 25, 30. 

 It has been hypothesized that Pf-malaria infections promote eBL in two 

mutually-compatible ways.  In developing countries, most children experience 

primary EBV infection by 3 years of age, followed by life-long infection in memory B-

lymphocytes 5, 19.  P. falciparum induces polyclonal B-cell expansion and lytic EBV 

reactivation 61, thus increasing the number of latently-infected B-cells.  In otherwise 

healthy individuals, interferon-gamma (IFN-γ) secreting cytotoxic CD8+ T-cells 

mediate immunosurveillance of EBV 19, 22, 35, 50, 52, 152.  Repeated Pf-malaria 

infections could hence lead to exhaustion or hypo-responsiveness of EBV latent or 

lytic antigen CD8+ T-cells, thus increasing the chance for this EBV-associated 

malignancy to arise. 
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 Limited evidence supports an impaired EBV-specific T-cell response in 

association with Pf-malaria.  Using an in vitro regression assay as a measure of 

cytotoxicity, children with acute Pf-malaria demonstrated a transient loss of control 

over B-cell outgrowth 76-78.  Furthermore, case-control studies comparing acutely Pf-

malaria infected individuals with healthy adults came to the same conclusion 69, 79.  

However, the cumulative effect of repeated often asymptomatic Pf-malaria infections 

on EBV persistence has not been thoroughly studied. 2, 29, 31, 32  Two ecological 

studies provide the minimum understanding we have on the relationship.  A study 

among adults found a loss of EBV-specific T-cell control among those exposed to 

holoendemic compared to hypoendemic malaria 80.  A second study only found 

significantly lower EBV latent and lytic antigen IFN-γ responses in children 5-9 years 

old residing in the holoendemic area compared to other age groups and children 

from a hypoendemic area 35. 

 The objective of this study was to examine the influence of cumulative Pf-

malaria on EBV latent and lytic antigen CD8+ T-cell IFN-γ ELISPOT responses in 

children over a two-year period. 

 

METHODS 

The Kisumu/Nandi cohort has been previously described 59.  In brief, the cohort 

consists of 236 children, randomly selected and between 10 months and 15 years at 

enrollment, from two districts in western Kenya with disparate Pf-malaria 

transmission intensities: Kisumu is characterized as holoendemic and Nandi as 

hypoendemic.  Due to the age-related incidence of eBL, an equal distribution of 
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children by age and sex were enrolled from each area: children 0-4 years have an 

elevated risk of eBL whereas 5-9 year olds are at highest risk and >10 years old 

have the lowest risk.  Data were collected from 2002-2004 using a standardized 

survey.  Three face-to-face interviews were conducted at baseline (July-August 

2002), six month follow-up (February-March 2003), and two-year follow-up (July-

August 2004). Blood was also collected for malaria and EBV testing. 

 Pf-malaria infection was confirmed on thick and thin blood smears by 

microscopy.  Testing of EBV-specific T-cell response by IFN-γ ELISPOT has been 

previously described 35.  Lytic (BRLF1, BZLF1, and BMLF1) and latent (Epstein-Barr 

nuclear antigen [EBNA] 3A, EBNA 3B, and EBNA3C) antigens were selected and 

pooled for testing.  One positive control (mitogen phytohemmagglutinin [PHA]) was 

used to stimulate wells and a negative control (phosphate buffer saline [PBS]) was 

used to measure background IFN-γ response in unstimulated wells.  Assays were 

condensed into a three-week period using the same reagents and personnel to 

minimize inter-assay variability.  Cytotoxic T-lymphocyte (CTL) ImmunoSpot 

scanning and imaging software (version 4; Cellular Technology Ltd, Shaker Heights, 

OH) was used to count the number of spot-forming units (SFU) per well; results were 

expressed as SFU per million peripheral blood mononuclear cells (PBMC).  Using a 

two-sided Fisher’s exact test (P < .05), EBV lytic and latent epitope-peptide CD8+ T-

cell IFN-γ responses were categorized as positive or negative.  A positive response 

was recorded if the proportion of SFUs in the stimulated well was significantly 

different from the proportion of SFU in the unstimulated well.  The magnitude of 

response was calculated by subtracting the SFU in PBS wells (negative control) 
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from the SFU in the stimulated wells.  The median value for the negative control 

wells was 4 SFU per million PBMCs (range 0 to 772 SFU/million PBMC).  Median 

values were calculated among positive responders only. 

 Analyses were restricted to EBV seropositive children at baseline 59.  We 

used two definitions of cumulative Pf-malaria.  First, Pf-malaria exposure was 

defined according to the malaria transmission intensity of the district (district-level 

definition):  Kisumu (holoendemic) or Nandi (hypoendemic).  Next, Pf-malaria 

infection was defined as the cumulative average of P. falciparum infection 

(parasitemia) in a participant over the three survey periods (individual-level 

definition).  The value ranged from 0 (never infected) to 1 (always infected); results 

and discussion focus on children who were always infected (referred to as recurrent) 

and never infected.  With the individual-level definition, we also included the 

covariates age group, district, sex, and when the survey was conducted (referred to 

as survey period) in the analysis.  We first examined covariates as potential effect 

measure modifiers using an a priori cutoff of P = .20.  In the absence of evidence of 

effect measure modification, we included covariates in the model as potential 

confounders. 

 For descriptive analyses, we used the χ2 statistic to measure associations 

between categorical exposures and outcomes.  We used the two-sided Wilcoxon 

rank sum (Mann-Whitney U)/Kruskal Wallis test for continuous outcomes.  For 

multivariable analyses, we used weighted log-binomial regression with robust 

variances to estimate the prevalence ratios (PR) and corresponding 95% confidence 

intervals (CI).  We used generalized estimating equations (GEE) with robust 
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variance estimators to account for correlation due to repeated measurements.  A 

weighted model with inverse probability weights was used to address missing 

observations due to children not participating in all surveys.  An explanation of our 

approach can be found in Appendix B.  We also conducted complete case analyses 

and found no differences in the PR or 95% CI; therefore we report results from the 

weighted analyses.  Data were analyzed in SAS 9.1.3 (Cary, NC). 

 Written informed consent was obtained from a parent or guardian of the 

participant.  This study was approved by the Institutional Review Boards at the 

University Hospitals of Cleveland, Case Western Reserve University where Dr. 

Moormann was affiliated at the time this study was done and also obtained from the 

Ethical Review Committee for the Kenya Medical Research Institute.  It was deemed 

exempt by the Institutional Review Board at the University of North Carolina at 

Chapel Hill. 

 

RESULTS 

Participant Summary 

Of the 236 children enrolled, 230 (97.5%) were seropositive for EBV 59.  Our 

weighted analysis included 149 children who participated in all surveys and had 

interpretable EBV-specific T-cell responses (Table 5.1).  The age and sex 

distribution between the districts were not significantly different (P = .11 and P = .30, 

respectively).  Children in Kisumu experienced more Pf-malaria infections than 

children in Nandi (P < .001); only 3% of Kisumu children were never infected 
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compared to 78% in Nandi.  This was despite a classically defined malaria outbreak 

in Nandi during the survey periods (Figure 5.1). 

 

The Magnitude of EBV-specific IFN-γ Responses Did Not Differ Significantly by 

Malaria Endemicity 

The proportion of positive IFN-γ responses to PHA (positive control) demonstrates 

that children from both districts were equally able to elicit an IFN-γ response 

indicating no global signs of immune dysfunction (Table 5.2).  There were no 

significant differences in median values of EBV lytic or latent CD8+ T-cell IFN-γ 

responses between children of similar age groups across districts.  Therefore, Pf-

malaria exposure does not appear to influence the magnitude of EBV-specific IFN-γ 

responses. 

 

Pf-malaria Exposure (District-level) and EBV-specific T-cell IFN-γ Responses 

EBV lytic antigen CD8+ T-cell IFN-γ responses.  We observed a few intriguing 

patterns in the prevalence of positive EBV lytic antigen CD8+ T-cell IFN-γ response 

when children were stratified into age groups by their baseline age (age group 

cohorts) (Figures 5.2A and 5.2C).  In Kisumu, the prevalence of positive responses 

in the 0-4 year and 5-9 year cohorts decreased from baseline to first follow-up, but 

remained unchanged in the  >10 year cohort.  By the second follow-up, responses 

increased among the 0-4 and 5-9 year cohorts while responses decreased in >10 

year cohort.  However, children in the 5-9 year cohort had the lowest prevalence at 

each survey period.  In Nandi, responses declined in all age group cohorts from 
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baseline to first follow-up and remained almost unchanged in the 5-9 year and >10 

year cohorts by the second follow-up.  In the 0-4 year cohort, however, responses 

increased.  The patterns and prevalence of responses among the age group cohorts 

were similar at all survey periods, varying <10%. 

 Using the district-level definition of Pf-malaria and the weighted model 

described earlier, we estimated the prevalence of positive responses in Kisumu was 

0.70 (95% CI: 0.45-1.08) times the prevalence in Nandi although this 30% difference 

was not significant.  In Kisumu, there were no significant differences in positive 

responses in children 0-4 years (PR: 1.39, 95% CI: 0.60-3.20) and 5-9 years (PR: 

0.74, 95% CI: 0.37-1.48) when compared to children >10 years (Figure 5.3A).  

Likewise in Nandi, the prevalence of positive responses in children 0-4 years (PR: 

1.10, 95% CI: 0.60-2.02) and 5-9 years (PR: 1.04, 95% CI: 0.61-1.76) did not differ 

significantly from children >10 years.  When similar age groups were compared 

between districts, we detected a significant difference in children 5-9 years where 

the prevalence of positive responses in Kisumu was 0.54 (95% CI: 0.30-0.99) that of 

children in Nandi (Figure 3A).  No other differences by age group were found. 

EBV latent antigen CD8+ T-cell IFN-γ responses.  Examining the patterns in the 

prevalence of positive EBV latent antigen CD8+ T-cell IFN-γ response by age group 

cohorts, there was variation within and between districts (Figures 5.2B and 5.2D).  In 

Kisumu, the prevalence at baseline was highest among the 0-4 year cohort but then 

decreased to nearly the same prevalence as the other age group cohorts.  In Nandi, 

there was a decreasing trend from baseline to second follow-up for the 0-4 year and 

5-9 year cohorts.  However, the >10 years cohort had the highest prevalence of 
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response at baseline that decreased by the first follow-up but rebounded by the 

second follow-up. 

 From our weighted model, we observed the prevalence of positive responses 

in Kisumu was 0.80 (95% CI: 0.51-1.25) times the prevalence in Nandi, although not 

significant.  In Kisumu, the prevalence of positive responses in children 0-4 years 

(PR: 1.93, 95% CI: 0.91-4.13) and 5-9 years (PR: 1.22, 95% CI: 0.61-2.45) was not 

significantly different from children >10 years, although there was a decrease in 

prevalence with increasing age group (Figure 5.3B).  Similarly in Nandi, responses 

among children 0-4 years (PR: 0.72, 95% CI: 0.35-1.48) and 5-9 years (PR: 0.84, 

95% CI: 0.47-1.49) did not differ significantly from children >10 years old, although 

there was a slight increase in response with increasing age.  Despite these 

interesting trends, there were no significant differences in the prevalence of positive 

responses when similar age groups were compared between districts. 

 

Pf-malaria Infection (Individual-level) and EBV-specific T-cell IFN-γ Responses 

EBV lytic antigen CD8+ T-cell IFN-γ responses.  Using the individual-level definition 

of Pf-malaria and weighted model described earlier, we found the association 

between recurrent Pf-malaria infections and EBV lytic antigen CD8+ T-cell IFN-γ 

response varied by age group and survey period.  We therefore used two models.  

In the first model, we stratified results by age group, while adjusting for sex and 

survey period.  Similarly in the second model, we stratified by survey period while 

adjusting for sex and age group. 
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 We noted three observations from our analysis.  First, the PR of recurrent Pf-

malaria infections and positive IFN-γ responses among Kisumu children were 

consistently lower than Nandi children for all age groups and survey periods (Table 

5.3).  In general, there is a two-fold difference in the PR between Kisumu and Nandi 

although not significant (P = .32).  Secondly, the association between recurrent Pf-

malaria infections and IFN-γ responses varied by age group.  In both Kisumu and 

Nandi, the prevalence of positive responses among children 0-4 years with recurrent 

Pf-malaria infections was higher than that of similarly aged children never infected.  

In Nandi, the difference was statistically significant.  Finally, the PR of recurrent Pf-

malaria infections and IFN-γ responses to EBV lytic antigens varied by survey period 

in both districts.  At baseline, for both districts, the PR of positive responses among 

children with recurrent Pf-malaria infections was greater compared to children never 

infected; this result was statistically significant in Nandi, but not Kisumu.  However, 

the PR decreased at subsequent study periods; the prevalence of positive 

responses among children with recurrent Pf-malaria infection diminished over time 

compared to children never infected.  This could reflect functional diminishment of 

responsive EBV lytic antigen T-cells under continuous pressure from Pf-malaria. 

EBV latent antigen CD8+ T-cell IFN-γ responses.  Using our weighted model, we did 

not observe any variation by age group (Table 5.4) or survey period (data not 

shown).  In Kisumu, for all age groups, the adjusted prevalence of positive EBV 

latent antigen CD8+ T-cell IFN-γ response was higher among children with recurrent 

Pf-malaria infections compared to those never infected (Table 5.4).  There was a 

two-fold difference in the PR for children 0-4 years and >10 years with recurrent Pf-
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malaria infections than children 5-9 years.  In Nandi, children 0-4 years with 

recurrent Pf-malaria infections had fewer positive responses than children never 

infected, and a PR that was three-fold lower than older children.  However, children 

in older age groups with recurrent Pf-malaria infections had higher positive 

responses than similarly aged children never infected.  Despite estimates for Kisumu 

and Nandi being imprecise and not statistically significant, the observations suggest 

that children 5-9 years in Kisumu are unable to mount the type of T-cell response as 

younger and older children.  Meanwhile, in Nandi, the increasing PR with age may 

reflect how a maturing immune system, not continuously exposed to Pf-malaria, is 

able to induce a T-cell response to latent antigens even when co-infected with Pf-

malaria. 

 

DISCUSSION 

Our study demonstrates that the prevalence of positive EBV lytic- but not latent-

antigen CD8+ T-cell IFN-γ responses decreases in a malaria holoendemic area and 

not a hypoendemic area.  This suggests that children repeatedly infected with Pf-

malaria eventually lose functional IFN-γ producing CD8+ T-cells in response to EBV 

lytic antigens. In an effort to control viral replication induced by recurrent Pf-malaria 

infections 61, we hypothesize that EBV lytic antigen CD8+ T-cells have become 

exhausted and unable to produce IFN-γ or alternatively these cells were culled 

through apoptosis.  As a result of the loss of responsive EBV lytic antigen CD8+ T-

cells, more B-lymphocytes could become latently infected by EBV, and thus 

gradually increasing the risk of eBL.  These findings are consistent with previous 
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studies of this cohort, which detected significantly higher median EBV viral load and 

EBV-specific IgG antibodies to EBV lytic and latent antigens in the holoendemic 

compared to hypoendemic area 59, 153. 

 Furthermore, the association between Pf-malaria infections and positive EBV 

lytic antigen CD8+ T-cell IFN-γ responses varied by age group.  The EBV lytic 

antigen deficiency was most pronounced among children 5-9 years old in the 

malaria holoendemic area and was further potentiated in those recurrently infected 

with Pf-malaria.  In our individual-level analysis, these children had the lowest PR of 

positive responses while this same age group in the hypoendemic area appeared to 

be affected little.  Additionally, the patterns observed in the age group cohorts clearly 

showed that the 5-9 year cohort in Kisumu had the lowest prevalence of positive 

responses among all age group cohorts, in both districts, at each survey period.  The 

sustained inability to produce an effective EBV lytic antigen CD8+ T-cell IFN-γ 

response among 5-9 year olds may be an etiologically relevant event in eBL 

development because eBL is most often diagnosed in this age group.  Finally, the 

inconsistency of patterns between age group cohorts within a district suggests there 

is an age-dependent interaction between Pf-malaria and EBV-specific T-cell 

response.  Studies of immune mechanisms that induce exhaustion or deletion are 

needed to understand maintenance of EBV-specific T-cell immunity in children. 

 This study is an important early step to understanding the cumulative effect of 

Pf-malaria infections on EBV-specific T-cell immunity over time.  Availability of data 

over two-years permitted identification of potentially important biological and 

environmental mechanisms that only become apparent over time.  For example, the 
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association between Pf-malaria infection and positive EBV lytic antigen CD8+ T-cell 

IFN-γ responses varied by age group and survey period.  The variation noted with 

age group is expected because there is an age-dependent increase in T-cell 

immunity as children develop protection against Pf-malaria after repeated infections 

154.  Children in malaria holoendemic areas acquire immunity to Pf-malaria and EBV 

during the first years of life, and ongoing studies will compare the development of Pf-

malaria to EBV-specific T-cell memory. 

 Using data, collected during a two-year period, also allowed us to use an 

individual-level definition for Pf-malaria infections.  Unlike other studies, our 

definition accounted for the cumulative effect of Pf-malaria infection which has been 

hypothesized to be critical in the pathogenesis of eBL, rather than the transient 

effect typically observed with acute Pf-malaria infection 2.  However, our definition 

was vulnerable to misclassification because Pf-malaria infection was assessed only 

twice during the two-year follow-up.  Therefore, we may not have captured 

participants’ malaria histories accurately.  This misclassification was likely to be 

differential because children in the holoendemic area were exposed to Pf-malaria 

parasites at a higher frequency, averaging two malaria infections per year, than 

children in the hypoendemic area 122.  Therefore, we may have underestimated or 

overestimated the PR for Pf-malaria and EBV-specific T-cell responses in the 

holoendemic area. 

 A strength of our study was the use of two definitions for Pf-malaria:  1) 

district-level according to malaria transmission intensity, and 2) individual-level 

based on measured Pf-malaria infection.  Although our findings of EBV lytic antigen 
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CD8+ T-cell IFN-γ responses were consistent with both definitions, our findings of 

EBV latent antigen CD8+ T-cell IFN-γ responses were inconsistent.  This may have 

been due to the limited power or an underestimation of the influence of Pf-malaria 

infections in hypoendemic areas.  However, it also highlights the potential pitfall in 

attributing district-level results to the individual, also known as the ecological fallacy.  

The inconsistency may have been due to other factors that differed between the 

districts and unrelated to malaria transmission intensities.  Therefore, we conclude 

that the use of malaria transmission intensity as a surrogate for malaria infection has 

been informative yet future studies should endeavor to prospectively collect Pf-

malaria and EBV co-infections information from individuals to more accurately 

describe this complex relationship. 

 There were several potential confounders that were not captured in our study, 

specifically HIV status, nutritional status, schistosomiasis infection, and 

socioeconomic status.  However, we do not believe the absence of these 

confounders materially affected our findings.  When data were collected in western 

Kenya from 2002-2004, HIV testing in infants was conducted only when medically 

warranted.  All children were examined by a clinician and had no obvious signs of 

illness or malnourishment, and no deaths have been reported as of 2009.  

Schistosomiasis infection was unmeasured yet an examination of the Pf-malaria and 

EBV response relationship indicated adjusting for schistosomiasis infection would 

have biased our analysis.  If measured, participants and their families would likely 

have been classified as low socioeconomic status because the main occupation was 
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fishing (Kisumu) and farming (Nandi) in both rural study areas with homes 

constructed of locally available materials. 

 Our findings on EBV lytic antigen CD8+ T-cell IFN-γ responses were 

consistent with the studies that have used residence area (malaria transmission 

intensity) to explore the cumulative effect of Pf-malaria infections on EBV-specific T-

cell response.  We observed fewer positive EBV lytic antigen CD8+ T-cell IFN-γ 

responses among 5-9 year old than older children 35.  We also identified a reduction 

in EBV-specific T-cell response among children living in a holoendemic compared a 

hypoendemic area 80.  The consistency of our findings with previous studies is 

important given our limited sample size and precision.  Meanwhile, our analysis of 

EBV lytic antigen CD8+ T-cell IFN-γ response at the individual-level supports 

findings from previous studies that used residence area as a surrogate for malaria 

infection. 

 However, we did not detect the same statistically significant district-level 

difference in positive EBV latent antigen CD8+ T-cell IFN-γ responses among 5-9 

year olds as a previous study 35.  This discrepancy may be due to the limited power 

of our study.  Furthermore, the difference between our individual-level analysis and 

the previous study may also be due to the use of a surrogate definition of Pf-malaria. 

 This study design marks a step toward examining the individual-level 

association of Pf-malaria infections and EBV-specific T-cell IFN-γ responses and 

identifies a potential difference between children recurrently infected with Pf-malaria 

compared to children never infected.  To adequately quantify this effect, a 

longitudinal study should be considered which could accurately measure Pf-malaria 
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infection and changes in Pf-malaria and EBV-specific T-cell immunity over time.  The 

temporal aspects of future studies will be vital to elucidating the precise mechanism 

by which repeated Pf-malaria infections affect EBV persistence and immunity. 
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FIGURE 5.2.  Change in the prevalence of positive EBV lytic (A and C) and latent (B and D) antigen CD8+ T-cell IFN-γ 

response by age group at baseline, Kenya 2002-2004. Age group at each survey period is based on age at baseline. In 

Kisumu: 16 (0-4 years), 33 (5-9 years) and 17 (>10 years). In Nandi: 30 (0-4 years), 35 (5-9 years) and 18 (>10 years).  
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TABLE 5.1.  Summary of participants in the Kisumu/Nandi Cohort, Kenya 2002-

2004a 

 

NOTE.  n, number; %, percentage.  

a Data in the table are weighted according to the 149 children who participated in all 

surveys and had interpretable Epstein-Barr virus (EBV) specific CD8+ T-cell IFN-γ 

response. 

 Site Total 

 Kisumu (holoendemic) Nandi (hypoendemic)  

 n % n % n 
Sex      

Male 39 59.1 38 45.8 77 
Female 27 40.9 45 54.2 72 

Age (in years)      
0-4 16 24.2 30 36.1 46 
5-9 33 50.0 35 42.2 68 
>10 17 25.8 18 21.7 35 

Malaria infections      
All surveys 38 57.6 0 0 38 

Two surveys 20 30.3 4 4.8 24 
One survey 6 9.1 14 16.9 20 

Never 2 3.0 65 78.3 67 
      
Total 66  83  149 
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TABLE 5.2.  Prevalence and magnitude of EBV-specific CD8+ T-cell IFN-γ response 

by site of residence and age group,  Kenya 2002-2004a 

 

 EBV lytic antigens EBV latent antigens PHAb 

 n % Medianc 
(range) n % Medianc 

(range) n % 

 

Baseline (July-August 2002) 
Kisumu         

0-4 years 7/16 43.8 96 (14-166) 8/16 50.0 43 (20-98) 13/16 81.3 
5-9 years 8/33 24.2 67 (18-170) 6/33 18.2 47 (16-448) 31/33 93.9 

>10 years 5/17 29.4 150 (20-
350) 5/17 29.4 46 (16-404) 15/17 88.2 

Nandi         
0-4 years 12/30 34.3 98 (28-836) 8/30 26.7 70 (18-146) 28/30 93.3 
5-9 years 15/35 42.9 50 (22-792) 11/35 31.4 84 (42-668) 33/35 94.3 

>10 years 8/18 22.9 53 (36-304) 8/18 44.4 88 (26-
1322) 18/18 100 

 
First follow-up (February-March 2003) 

Kisumu         
0-4 years 4/16 25.0 46 (40-128) 2/16 12.5 55 (32-78) 16/16 100 
5-9 years 1/33 3.0 20 (20) 6/33 18.2 15 (14-132) 31/33 93.9 
>10 years 5/17 29.4 30 (18-162) 2/17 11.8 23 (18-28) 16/17 94.1 

Nandi         
0-4 years 6/30 20.0 98 (24-744) 4/30 13.3 77 (32-128) 26/30 86.7 

5-9 years 8/35 22.9 82 (16-
1742) 8/35 22.9 58 (20-248) 34/35 97.1 

>10 years 5/18 27.8 54 (32-382) 3/18 16.7 54 (14-354) 18/18 100 
 

Second follow-up (July-August 2004) 
Kisumu         

0-4 years 5/16 31.3 76 (30-84) 2/16 12.5 106 (64-
148) 15/16 93.8 

5-9 years 3/33 9.1 60 (56-150) 3/33 9.1 42 (24-74) 33/33 100 

>10 years 3/17 17.7 250 (40-
288) 1/17 5.9 16 (16) 17/17 100 

Nandi         
0-4 years 8/30 26.7 50 (14-384) 2/30 6.7 69 (58-80) 25/30 83.3 
5-9 years 7/35 20.0 76 (14-278) 6/35 17.1 59 (14-214) 31/35 88.6 
>10 years 5/18 27.8 26 (14-130) 5/18 27.8 56 (22-122) 18/18 100 



   

 84

NOTE.  n, number; %, percentage; EBV, Epstein-Barr Virus; PHA, 

Phytohemagglutinin. 

a Data in the table are weighted according to the 149 children who participated in all 

surveys and had interpretable Epstein-Barr Virus (EBV) specific CD8+ T-cell IFN-γ 

response. 

b Phytohemagglutinin (PHA) was used as a positive control. 

c Median EBV-specific CD8+ T-cell IFN-γ responses were calculated among children 

with positive responses and is expressed as spot forming units (SFU) per 1 x 106 

peripheral blood mononuclear cells (PBMC). 
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TABLE 5.3.  Unadjusted and adjusted prevalence ratio (PR) and 95% confidence 

interval (CI) for Pf-malaria infection and positive EBV lytic antigen CD8+ T-cell IFN-γ 

response by age group and survey period, Kenya 2002-2004 

 

 

 

 

 

 

 

 

NOTE.  Pf-malaria, Plasmodium falciparum malaria; EBV, Epstein-Barr virus; PR, 

prevalence ratio; CI, confidence interval; Ref, referent group. 

a Adjusted for sex and survey period.  Unstratified estimate for constant Pf-malaria 

compared to never infected in Kisumu (P = 0.72) and Nandi (P = 0.97) were not 

significant. Specific details on the number and prevalence of positive responses for 

each age group are included in Table 2.  

b Adjusted for sex and age group.  Unstratified estimate for constant Pf-malaria 

compared to never infected was not significant infected in Kisumu (P = 0.65) but 

significant in Nandi (P = 0.03). The number of children in Kisumu for each survey 

period was 66 and the number of children in Nandi was 83.

 Kisumu Nandi 

 
Constant Pf-malaria 
infection versus no 

infection 

Constant Pf-malaria 
infection versus no 

infection 
 PR 95% CI PR 95% CI 
Unadjusted 0.64 0.23-1.77 1.43 0.73-2.81 
Age groups a     

0-4 years 1.31 0.28-6.18 3.00 1.72-5.23 
5-9 years 0.53 0.15-1.88 1.16 0.39-3.45 
>10 years 0.78 0.16-3.53 0.98 0.33-2.95 

Survey periods b     
Baseline 1.24 0.49-3.11 1.76 1.07-2.91 

Six months 0.29 0.05-1.62 0.73 0.17-3.22 
Two years 0.21 0.05-0.92 0.22 0.02-3.23 
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TABLE 5.4.  Unadjusted and adjusted prevalence ratio (PR) and 95% confidence 

interval (CI) for Pf-malaria infection and positive EBV latent antigen CD8+ T-cell IFN-

γ response, Kenya 2002-2004 

 

 

 

 

 

 

NOTE.  Pf-malaria, Plasmodium falciparum malaria; EBV, Epstein - Barr virus; PR, 

prevalence ratio; CI, confidence interval. 

a Adjusted for sex and survey period. Unstratified estimate for constant Pf-malaria 

compared to never infected in Kisumu (P = 0.32) and Nandi (P = 0.13) were not 

significant.  Specific details on the number and prevalence of positive responses for 

each age group are included in Table 2.  

 

 

 

 

 Kisumu Nandi 

 
Constant Pf-malaria 
infection versus no 

infection 

Constant Pf-malaria 
infection versus no 

infection 
 PR 95% CI PR 95% CI 
Unadjusted 1.60 0.37-6.92 1.54 0.71-3.35 
Age groups a     

0-4 years 2.10 0.22-19.65 0.51 0.08-3.37 
5-9 years 1.14 0.26-4.99 1.47 0.58-3.63 
>10 years 2.68 0.38-18.73 1.82 0.83-3.99 



   

 

 
CHAPTER SIX: Children’s Antibody Responses to Select Malaria Antigens 

Differentially Develop and Wane by Malaria Transmission Intensity in Kenya  
  

ABSTRACT 

Background. The development of malarial antibodies that mediate protective 

immunity to Plasmodium falciparum (Pf) infection depend on malaria transmission 

intensity. However, more information is needed on the heterogeneity and kinetics of 

this multi-antigen response, particularly in areas of low malaria transmission. 

 

Methods. A cohort of 236 children aged 10 months to 15 years, living in areas of 

holoendemic (Kisumu) and hypoendemic (Nandi) Pf-malaria transmission in Kenya, 

were surveyed at baseline and six-months.  Determinants of IgG responses to five 

P. falciparum antigens (AMA-1 3D7, AMA-1 FVO, MSP-142 3D7, MSP-142 FVO, and 

LSA-1) were contrasted between the two areas. We also examined the relative 

change of antibody responses between the two surveys (six-months). 

 

Results. The proportion of positive IgG responses for all age groups was higher in 

Kisumu than Nandi; these were significant (P < .05) for AMA-1 3D7, AMA-1 FVO, 

and LSA-1 for both surveys. Antibody responses increased with age in Nandi but not 

in Kisumu. The magnitude of the decrease in the relative change in IgG responses 

to AMA-1 3D7, AMA-1 FVO and MSP-142 3D7 over a six-month period was two-fold
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greater (P < .05) among children 0-4 years old in Nandi compared to similarly aged 

children in Kisumu. Antibody responses to AMA-1 3D7, AMA-1 FVO, MSP142-3D7, 

and LSA-1 among aparasitemic children were higher (P < .05) in Kisumu than Nandi. 

There were differences (P < .05) in antibody responses by parasitemia status in 

Nandi but few in Kisumu. Males in Kisumu had higher (P < .05) antibody responses 

to AMA-1 3D7, AMA-1 FVO, MSP142-3D7, and LSA-1 than those in Nandi. All 

measured antibodies correlated strongly with one another in Nandi (P < .001) but 

few correlated in Kisumu. In general, antibodies waned over the six-month period by 

age, parasitemia status, and sex in both districts. The magnitude of the relative 

change in antibody responses was often more pronounced in Nandi than Kisumu. 

The correlation in the median relative change in antibodies responses bore similar 

patterns to those observed in other cross-sectional studies.   

 

Conclusion. Important differences in the pattern of naturally acquired immunity to P. 

falciparum exist by age, parasitemia status, and sex between areas of holoendemic 

and hypoendemic malaria transmission. These findings highlight the need to 

consider these factors when considering which antigens to target for vaccine 

development.  

 

INTRODUCTION 

Across the globe, an estimated 225 million individuals experienced malaria 

infections in 2009, resulting in an estimated 780,000 deaths 1. Efforts have been 

underway to create an effective vaccine that can further reduce the global burden of 
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malaria-related morbidity and mortality, which are greatest on the African continent 

where 78% of infections and 91% of deaths occurred, the majority in children <5 

years 1.   

Almost 50 years ago, studies of passive transfer of serum gamma-globulin 

from Plasmodium falciparum (Pf-) malaria immune adults to symptomatic children 

demonstrated that antibodies played a key role in controlling Pf-malaria infection 88-

90, 155. Yet the identification of an effective vaccine has been hindered by our limited 

understanding of how immunologic memory to Pf-malaria is developed and 

sustained in humans as well as the selection of immunogenic malaria antigens as 

vaccine candidates 82. Naturally acquired immunity to Pf-malaria does not lead to 

sterile immunity; adults residing in Pf-malaria endemic areas develop partial 

immunity that leads to asymptomatic infection in the presence of parasites. Rather, 

the critical role for antibodies appears to be their ability to establish protective 

immunity to clinical Pf-malaria infections by reducing the density of blood-stage 

parasitemia 122 after repeated exposures to Pf-malaria, thereby preventing severe 

manifestations of Pf-malaria infection (reviewed in 93). Antibodies to blood-stage 

antigens have been shown to prevent merozoites from attaching and invading red-

blood cells (reviewed in 91, 93). However, it is unclear which antibody, or combination 

of antibodies, confer protection from clinical Pf-malaria infections.  

A recent meta-analysis of population-based cohort studies found that 

individuals with IgG responses to the merozoite surface protein (MSP)-119 were at 

less risk for clinical Pf-malaria infection compared to those without IgG responses 91. 

A similar conclusion was made for the 3D7 variant of the apical membrane antigen 
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(AMA)-1 but for AMA-1 FVO, findings were inconsistent 91. However, most studies 

included in the meta-analysis were conducted in areas of stable perennial and 

seasonal malaria transmission. Malaria endemicity influences the development of 

protective immunity 11, 124 and studies examining IgG responses in hypoendemic 

(low and unstable) malaria areas are limited. One potential explanation for this 

differential pattern may be the reportedly short half-life of IgG1 responses. IgG1 

responses were reported to have a half-life of 21 days 108 but another more recent 

study of a combination of blood-stage antigens (including MSP-1 and AMA-1) 

reported IgG1 responses had a half-life of 10 days 107.  The implications would be 

that individuals infrequently exposed to Pf-malaria would not be able to sustain 

necessary antibody levels for protection from clinical Pf-malaria infection.  

To gain further insight into the transmission-intensity dependent heterogeneity 

of malaria antibody responses, we described IgG responses of children residing a 

Pf-malaria holoendemic area and contrasted them to a hypoendemic area for the 

blood-stage antigens AMA-1 3D7, AMA-1 FVO, MSP-142 3D7, and MSP-142 FVO. 

We also included the pre-erythrocytic liver stage antigen (LSA)-1.  Moreover, we 

calculated the relative change in IgG responses over a six-month period to examine 

and contrast the pattern of change between the two districts. 

 

METHODS 

Data from the Kisumu/Nandi cohort was used and has been previously described 59.  

The cohort consists of 236 children aged 10 months to 15 years from Kisumu and 

Nandi districts in western Kenya. Pf-malaria transmission in Kisumu is described as 
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holoendemic (perennial and stable) while in Nandi transmission is hypoendemic (low 

and unstable). Data were collected in July-August 2002 (baseline survey) and 

February-March 2003 (six-month follow up survey).  

Although Pf-malaria is holoendemic in Kisumu, there are relative peaks in 

transmission intensity after the long rains (March-May) and short rains (October-

December) 156. Therefore the baseline survey was conducted after the long rains 

and the six-month follow-up survey was conducted before the long rains in following 

year. Nandi experienced a classically defined malaria outbreak during the baseline 

survey and a peak in transmission six months later with an intervening period of low 

malaria incidence (C John, unpublished data).  

Equal distributions of children were enrolled by age and sex.  During the two 

face-to-face interviews, standardized forms were used to collect data and blood was 

collected for Pf-malaria parasitemia and antibody testing. Parents or guardians of 

participants provided written informed consent.  The Institutional Review Board at 

the University Hospitals of Cleveland, Case Western Reserve University (AM’s 

affiliation at the time of the study) and the Ethical Review Committee for the Kenya 

Medical Research Institute approved the original study.  The study was exempted by 

the Institutional Review Board at the University of North Carolina at Chapel Hill. 

Confirmation of Pf-malaria infection was done by microscopy of thick and thin 

blood smears. Testing for Pf-malaria antibody used the same approach as 

previously described 153. Immunoglobulin G (IgG) specific for the AMA-1 3D7, AMA-

1 FVO, MSP-142 3D7, MSP-142 FVO, and LSA-1 were detected using a bioplex 

bead-based assay. One-thousand beads of each malaria antigen were placed in 
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wells with plasma from participants and diluted to 1:5000. Included on each plate 

were negative controls (US residents with no history of malaria) and positive controls 

(pooled samples from Kisumu residents). Preparation of beads and testing were 

conducted on all samples at the same time on the same machine to reduce potential 

variation due to differences in bead preparation and assay. Although antibody 

results were calculated as mean fluorescence intensity (MFI), slight plate-to-plate 

variation led to a need to standardize results. Therefore results are expressed in 

arbitrary units (AU). For each plate, the participant’s AU values were calculated by 

dividing each participant’s MFI antibody response by the negative controls’ mean 

MFI plus three standard deviations. AU values greater than 1.0 indicated a positive 

IgG response.  

We analyzed cross-sectional data collected at baseline and six-month follow-

up stratified by district. Outcomes were dichotomous positive/negative IgG 

responses to all five Pf-malaria antigens. Exposures of interest were age group (0-4 

years, 5-9 years, and >10 years), parasitemia status (positive/negative), and sex. 

The Chi-square test and Cochran Armitage trend test were used to assess any 

significant differences among the levels of each exposure as well as to compare 

responses between the two districts. Spearman’s rank correlation coefficient was 

used to assess correlation among the different Pf-malaria malaria antibodies 

measured as continuous AU values.  

To describe the changes in Pf-malaria antibody response over time, we 

assessed the relative change in IgG response to the five Pf-malaria antigens over 

the six-month period between the two survey periods, stratified by district. However, 
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the number of children who participated in the latter survey decreased from 236 to 

210 children, representing an 11% loss to follow-up.  We did not identify any 

significant differences between the population of children who participated in the six-

month follow-up survey and those who did not. Continuous AU values were used to 

calculate the relative change in IgG response with the formula [(IgG response at 

baseline – IgG response at six-month follow-up)/IgG response at baseline]. 

Exposures included age group at baseline, parasitemia status (parasitemia at both 

survey periods, parasitemia at first survey period only, parasitemia at second survey 

period only, and never parasitemic), and sex. Levels of our exposure parasitemia 

were created based on previous findings that the presence of parasitemia was 

associated with higher levels of blood-stage antibodies 115, 116. IgG responses to the 

five Pf-malaria antigens were not normally distributed therefore we used the 

nonparametric two-sided Wilcoxon rank sum (Mann-Whitney U)/Kruskal Wallis test 

to examine any differences among the exposure levels and between districts.  The 

Exact Wilcoxon/Kruskal-Wallis test was used for small sample sizes. An extension of 

the Wilcoxon rank-sum test was used to test the trend of ordinal variables. 

Spearman’s rank correlation coefficients were calculated to assess correlation in the 

relative change between the different malaria antibodies.  All analyses were 

conducted in SAS 9.2 (Cary, NC). 

 

RESULTS 

Study participants. Of the 236 children in the cohort, interpretable results were 

available for 229 (97%) children at baseline and 207 (88%) children at six-month 
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follow-up (Table 6.1). There were no differences by age group and sex between the 

districts. A significant difference by parasitemia status was observed between 

Kisumu and Nandi children (P < .001) at both survey periods; an estimated >76% of 

children in Kisumu were parasitemic at both survey periods compared to <16% in 

Nandi. The median antibody response to all antigens except MSP-142 FVO was 

significantly higher in Kisumu compared to Nandi (Table 6.2).  

 The proportion of positive IgG responses at baseline and six-month follow-up 

was higher in Kisumu than Nandi. In general, the proportion of positive IgG 

responses was higher in Kisumu than Nandi by age group, parasitemia status, and 

sex; many of these differences reached statistical significance.   

When antibody responses were examined by age group, we found that in 

Kisumu (Figure 6.1A) there were a high proportion (>80%) of positive IgG responses 

to all Pf-malaria antigens among all age groups at baseline except MSP-142 FVO; 

yet there was an increasing trend in positive IgG response to MSP-142 FVO with 

increasing age from 60-83% (P = .045).  There remained a high proportion of 

positive IgG responses to the Pf-malaria antigens at the six-month follow-up (Figure 

6.1B) with the exception of MSP-142 FVO; responses increased from 48%-68% with 

age but this was not significant (P = .15). In contrast, the proportion of positive IgG 

responses to Pf-malaria antigens was relatively low in Nandi (<77%) compared to 

Kisumu at both survey periods. At baseline, this difference in positive responses was 

significant for all age groups for all Pf-malaria antigens except MSP-142 FVO where 

the proportion of positive responders was similar between the districts (Figures 6.1A 

and 6.1C). At six-month follow-up, significant differences by age groups between the 
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districts remained for AMA-1 3D7, AMA-1 FVO, MSP-142 3D7, and LSA-1 for all age 

groups except among the >10 year old responders to MSP-142 3D7 where 

responses were similar between districts (Figures 6.1B and 6.1D). Furthermore in 

Nandi, a trend in increasing positive IgG responses with age group was observed for 

all Pf-malaria antigens; however, this was not statistically significant (Figure 6.1C). 

At six-month follow-up this increase in IgG response with age group was statistically 

significant for all Pf-malaria antigens except LSA-1 (Figure 6.1D). Taken together, 

these results indicate the proportion of positive IgG responses among all age groups 

is higher in Kisumu relative to Nandi for all antigens except MSP-142 FVO; however, 

age trends with IgG responses were primarily detected in Nandi and not Kisumu.  

 In our assessment of parasitemia status and antibody response, we found 

that IgG responses to AMA-1 3D7, AMA-1 FVO, and MSP-142 FVO did not differ by 

parasitemia status at baseline or six-month follow-up in Kisumu; however, significant 

differences were noted for LSA-1 at both survey periods and MSP-142 3D7 at six-

month follow-up (Figures 6.2A and 6.2B).  In Nandi, however, significant differences 

in IgG responses to all Pf-malaria antigens by parasitemia status were observed at 

baseline. Differences in Nandi were also observed at six-month follow-up for AMA-1 

3D7, AMA-1 FVO, and LSA-1. When the districts were contrasted, we observed 

similar proportions of positive IgG responses among parasitemic children at baseline 

and six-month follow-up (except for AMA-1 3D7 and AMA-1 FVO during the latter 

survey). However, aparasitemic children in Kisumu had elevated proportions of 

positive IgG responses than aparasitemic children in Nandi at both survey periods 

for all antigens except MSP142-FVO (Figures 6.2A and 6.2B). This would suggest 
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that aparasitemic children in Kisumu were able to maintain antibodies to pre-

erythrocytic and blood-stage antigens in the absence of stimulation from parasites. 

Meanwhile, children who were parasitemic were able to elicit an immune response 

regardless of their residence.        

 There were no differences in IgG responses between males and females in 

either district, during either survey (data not shown). Yet at baseline, males and 

females in Kisumu had a significantly higher proportion (P < .05) of positive 

responses when compared to their counterparts in Nandi to AMA-1 3D7 (>97% vs 

<64%), AMA-1 FVO (>95% vs <68%), MSP-142 3D7 (>95% vs <66%), and LSA-1 

(>90% vs <56%). This significant difference was also present at six-month follow-up, 

where higher IgG responses to MSP-142 FVO was found among females in Kisumu 

compared to Nandi (71% vs 46%). Adjusting for parasitemia status accounted for 

differences between females but significant differences remained among males.  

Correlations between antibodies differed by malaria endemicity. Examination of 

the correlation between antibodies highlighted a few interesting observations (Tables 

6.3A-6.3D). In Kisumu, correlations between allelic variants of the same antigen 

(AMA-1 3D7 and AMA-1 FVO; MSP-142 3D7 and MSP-142 FVO) were high 

(Spearman’s rho range: 0.755-0.953) at both survey periods (Tables 6.3A and 6.3B). 

Furthermore, there were relatively strong correlations (Spearman’s rho range: 0.490 

- 0.575) between LSA-1 and MSP-142 antigens at both survey periods. At six-month 

follow-up, antibodies to LSA-1 were also slightly correlated to the AMA-1 antigens 

(Spearman’s rho range: 0.268 - 0.284) but not at baseline. There was slight 

correlation between AMA-1 FVO and MSP-142 3D7 (Spearman’s rho: 0.226) at 
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baseline but this was not observed at six-month follow-up. However, in Nandi, there 

were significantly strong correlations between all the antibodies (Spearman’s rho 

range: 0.563-0.967) (Tables 6.3C and 6.3D). The pattern of correlation among 

antibodies suggest that in holoendemic areas such as Kisumu, specific antibodies 

are produced in response to Pf-malaria infection while in hypoendemic area such as 

Nandi, a broad array of antibodies are produced.   

The relative change in antibody responses to malaria antigens suggests 

waning of antibodies over time. Overall, the median relative change in antibody 

response for all antigens decreased over the six-month period in Kisumu and Nandi 

by age group, parasitemia status, and sex (Tables 6.4 and 6.5). This suggests that 

antibody responses wane over time and therefore a proportion of antibodies are 

inferred to be short-lived, even in holoendemic areas. 

In Kisumu, there were no significant differences in the median relative change 

by age group for any of the Pf-malaria antigens (Table 6.4). In addition, there was no 

observed trend in the relative change of antibody responses with age group. In 

Nandi, there were no differences among the age groups; however, there was a 

pattern observed for all antigens (except MSP-142 3D7) in which the magnitude of 

the relative change became smaller with increasing age (Table 6.5). Hence the 

children in the youngest age groups experienced the largest decline in antibody 

responses compared to children in older age groups. When the median relative 

change in antibody responses was compared between the districts, the magnitude of 

the decrease in antibody response was larger in Nandi (40-52%) compared to 

Kisumu (12-22%). These 2-3 fold differences were significant for AMA-1 3D7, AMA-
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1 FVO, and MSP-142 3D7 among children 0-4 years of age and AMA-1 FVO, and 

MSP-142 FVO among children 5-9 years old (Tables 6.4 and 6.5).  

 We observed a number of intriguing patterns in the relative change of 

antibody responses in relation to parasitemia status. There was a significant 

difference in the median relative change in antibody responses to MSP-142 3D7 by 

parasitemia status in Kisumu (Table 6.4); however, there were no significant findings 

in Nandi (Table 6.5). As previously noted, the median relative change in antibody 

responses over the six-month period decreased regardless of parasitemia status; 

however, the degree of the median relative change in antibody response varied by 

parasitemia status and district (Tables 6.4 and 6.5). In Kisumu, the largest median 

relative change was among children who were aparasitemic at both survey periods, 

ranging from 38% (MSP-142 3D7) to 69% (LSA-1). This indicates that in holoendemic 

areas, the lack of immune stimulation from infection results in a substantial loss of 

antibodies compared to those infected at least once during the surveys. In Nandi, 

the pattern is not as clear. The greatest decrease in the median relative change in 

antibody responses to MSP-142 3D7 (60%), MSP-142 FVO (48%), and LSA-1 (59%) 

were among children who were parasitemic at baseline only. These results are 

plausible because we would expect children with limited exposure to Pf-malaria 

infection to have a sudden increase in antibody responses while parasitemic, 

resulting in a sizable decrease once parasitemia was cleared. However, for AMA-1 

3D7, the largest change (40%) was among children who were parasitemic at six-

month follow-up only while for AMA-1 FVO (42%) it was among children who were 

aparasitemic at both survey periods. The finding for AMA-1 3D7 is counterintuitive 
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because we would expect the largest increase in the median relative change to be 

among those who later became parasitemic, not the largest decrease. Meanwhile, 

the finding for AMA-1 FVO is less puzzling but still unexpected. We did not expect 

children in Nandi who were aparasitemic at both survey periods to have elevated 

antibody levels. However, a closer examination of aparasitemic children showed that 

the median relative change in antibody responses to all antigens ranged from a 33-

45% decrease, once again suggesting that antibodies wane without parasite 

stimulation. As for the smallest amount of median relative change in antibody 

responses, patterns were similar in Kisumu and Nandi. Children parasitemic at both 

survey periods had the smallest median relative change for AMA-1 3D7 and AMA-1 

FVO whereas the smallest median relative change for MSP-142 3D7, MSP-142 FVO 

and LSA-1 were among children who were parasitemic only at six-month follow-up. 

Both of these findings are feasible because we would expect few changes in 

antibody responses in children who were parasitemic at both survey periods, or 

whose antibody responses would have increased as a result of parasitemia during 

the latter survey.  

 We also noted interesting patterns in parasitemia status when we drew 

comparisons between Kisumu and Nandi (Tables 6.4 and 6.5). First, among children 

who were parasitemic at both survey periods, the magnitude of the median relative 

change was greater in Kisumu than Nandi for all antigens except MSP-142 FVO. This 

pattern of a greater magnitude in median relative change in Kisumu compared to 

Nandi was also observed among children who were aparasitemic at both survey 

periods. Both observations suggest that antibody responses wane more so in 
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Kisumu than Nandi and are inconsistent with the idea that children in holoendemic 

areas should have less of a decline in antibody responses over time than those in 

hypoendemic areas. However, upon further examination, there were few children 

(n=5) in Nandi who were parasitemic and few children (n=6) in Kisumu who were 

aparasitemic at both survey periods.  Data from these limited observations could 

explain the inconsistency between our expectations and our results. Second, the 

magnitude in the median relative change was greater in Nandi than Kisumu among 

children who were parasitemic only at baseline. This is in accordance with our 

expectation that children repeatedly infected with Pf-malaria would be able to 

maintain antibodies better than children with limited exposure. Finally, among 

children who were parasitemic only at six-month follow-up, the magnitude of the 

median relative change was once again greater in Nandi than Kisumu. Likewise this 

observation is plausible because children repeatedly infected with Pf-malaria should 

theoretically have antibody levels greater than children rarely infected.  

 In general, the median relative change in antibody response was greater in 

females than males in Kisumu but these were not significant (Table 6.4). Males in 

Nandi had higher median relative change in antibody responses than females but 

this also did not reach statistical significance (Table 6.5). Significant differences in 

the median relative change were identified between males in Kisumu and Nandi for 

AMA-1 3D7, AMA-1 FVO, and MSP-142 FVO whereas only a significant difference 

among females between the two districts was noted for AMA-1 FVO.  Once again, 

these differences are linked to heterogeneity of malaria transmission intensities at 

the districts.  
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Antibodies do not decrease independently of one another over time. We 

detected significant correlations in the relative change in antibody responses to all 

antigens in Kisumu and Nandi (Table 6.6) and these correlations mimicked patterns 

previously observed in the cross-sectional analyses. In Kisumu, the strongest 

correlations were between genotypes of the same antigen (Spearman’s rho range: 

0.816-0.914) while moderately strong correlations were observed between LSA-1 

and the MSP-142 genotypes (Spearman’s rho range: 0.623-0.682). The correlations 

between the AMA-1 genotypes to MSP-142 genotypes and LSA-1 genotypes were 

modestly correlated (Spearman’s rho range: 0.374-0.387) whereas in the cross-

sectional analyses, these were not correlated. Once again in Nandi, all relative 

changes in antibody responses were strongly correlated to one another (Spearman’s 

rho range: 0.504-0.927) whereas the correlation between MSP-142 3D7 and LSA-1 

(Spearman’s rho: 0.289) was modestly correlated, but still significant. These findings 

suggest that antibody responses do not decrease independently of one another but 

rather, there is a general waning of antibody responses over time, the pattern of 

which varies with the transmission intensity of the location. 

 

DISCUSSION 

As expected, we observed a higher proportion of positive IgG responses to select 

Pf-malaria antigens by age, parasitemia status, and sex in a Pf-malaria holoendemic 

area compared to a hypoendemic area. We also detected significant differences in 

the median relative change in antibody responses over a six-month period by age 

group and sex between the districts; intriguing patterns were observed between 
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districts in the relative change in antibody responses by parasitemia status. Within 

each district, however, there were few differences by age and parasitemia status in 

Kisumu whereas a number of important differences were detected in Nandi; there 

were no observed differences by sex in either district. We also did not observe any 

differences in the median relative change in antibody responses over six-months 

within each district by age, parasitemia status, or sex.  

Our findings of positive IgG response in relation to age group between the 

districts highlight the disparate immunological experiences of children living in Pf-

malaria holoendemic areas compared to hypoendemic areas. Children in areas like 

Kisumu experience repeated Pf-malaria infections shortly after birth, building a 

repertoire of antibodies that help them develop immunity to clinical malaria infection 

by 2-3 years and decreased parasite density between ages 10-14 122. However, the 

development of antibody responses is delayed in areas such as Nandi where 

children and adults of all ages are still susceptible to clinical malaria infection 10, 124, 

157. Hence it is not surprising that we detected significant differences in the 

proportion of positive IgG responses to the blood-stage antigens between the two 

districts. We only detected a few patterns of increasing antibody response (MSP-142 

FVO and LSA-1) with age in Kisumu, although not always significant. The lack of an 

age trend among AMA-1 responders is not unexpected as AMA-1 (3D7 and FVO) is 

highly immunogenic 94, as evidenced by the near saturation of responses among all 

age groups at both time points. Furthermore, young children often have the highest 

levels of parasites, which are associated with elevated antibody responses. Yet what 

is of interest is the apparent age trend observed in Nandi, which we would have 
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expected in Kisumu. Of interest is that Nandi experienced a classically defined 

malaria outbreak during the first survey and a peak in transmission during the 

second survey. Thus the pattern we observed in Nandi likely exemplifies the age 

trend often used to characterize the development of immunity in stable areas of 

malaria transmission. Furthermore, the magnitude of the median relative change 

differed between the two districts by age groups. Although antibodies appeared to 

wane over time in both districts, the magnitude of the median relative change in IgG 

response to AMA-1 3D7, AMA-1 FVO, and MSP-142 3D7 among Nandi children 

aged 0-4 years was a 2-3 fold difference compared to similarly aged children in 

Kisumu (P < .05). Furthermore, there was a general pattern in Nandi in which the 

magnitude of the relative change decreased from the youngest age group to the 

oldest age group. Once again, this reinforces the theory that young children in 

hypoendemic malaria transmission areas have lower antibody levels than children in 

holoendemic areas. Our findings of a lack of trend in Kisumu between age group 

and antibody response reiterates Drakeley’s caution that using age-specific 

seroprevalence data to estimate malaria transmission intensities are highly 

dependent on the immunogenicity of antigens that are used as well as the 

geographic variability of the parasitic strain 94.  

 There was a striking difference in IgG responses for AMA-1 3D7, AMA-1 

FVO, MSP-142 3D7, and LSA-1 between the districts among aparasitemic children.  

Antibodies to MSP-1 and AMA-1 are reportedly short-lived 107, therefore we would 

not expect to see high levels of positive IgG responses in aparasitemic individuals. 

However, immunity in those repeatedly infected with Pf-malaria reflects past and 
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present infections. Therefore we would hypothesize that antibodies to Pf-malaria 

infection would be produced from a combination of short-lived plasma cells (SLPC) 

and long-lived plasma cells (LLPC), of which LLPCs would accumulate over time in 

individuals repeatedly infected with Pf-malaria 111. This is further supported by our 

observation of the magnitude of the relative change in antibody response by 

parasitemia status. Although there was a general waning of antibody responses over 

time suggesting that SLPCs comprise a substantial proportion of antibodies, the 

magnitude of the median relative change in antibody responses was smaller in 

Kisumu compared to Nandi among children parasitemic only at baseline or six-

month follow-up. This suggests that LLPCs persist in Kisumu children whereas the 

increase in antibodies in Nandi children was due to SLPCs. However, we are 

cautious in our interpretations because parasitemia status and antibody responses 

were measured at the same time. Antibodies can persist after parasite clearance 

hence children who were aparasitemic but had elevated antibody responses may 

have cleared parasites shortly before the surveys, particularly in children living in 

Kisumu. Future studies that are able to accurately assess the temporal relationship 

between parasitemia and antibody response should be conducted to corroborate our 

findings. 

 The differences in positive IgG responses detected by sex between Kisumu 

and Nandi were unexpected. Heterogeneity in bednet usage could not explain this 

phenomenon because only 4% of participants in Kisumu and <1% in Nandi reported 

using bednets at the time the surveys were conducted0. After adjusting for 

parasitemia status, there was still a significant difference among males between the 
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districts. We can only conclude that there must be other factors unmeasured in our 

study that differed between the two groups. 

 Our observed patterns of correlation in antibody responses in the districts 

were consistent with another study in this area 101. In Nandi there was strong 

correlation between all the antibodies suggesting that children periodically infected 

with malaria can elicit an immune response to a repertoire of antibodies. However in 

Kisumu, strong correlation in responses was only observed between the different 

AMA-1 genotypes, MSP-1 genotypes, and MSP-1 genotypes to LSA-1. The lack of 

evidence for correlation among the other antibodies (for example, AMA-1 3D7 and 

MSP-1 3D7) may be due to the high proportion of positive antibody responses, 

which provides limited statistical ability to detect significant correlations. This 

observation should serve as a cautionary note to researchers trying to identify 

immunological determinants of protection. Strong correlation among antibodies in 

hypoendemic Pf-malaria areas does not equate to protective immunity nor does 

limited correlation among antibody responses indicate the absence of protective 

immunity in holoendemic Pf-malaria areas. Future studies should examine 

correlations among additional pre-erythrocytic and blood stage-antigens as well as 

study areas with varying Pf-malaria transmission intensities to further explore this 

intriguing paradox.   

There are limitations with our study. Like other studies of malaria antibody 

response, we are unable to address whether differences in IgG responses between 

the districts, or relative changes in antibody levels within an individual, reflect 

functional modifications in immune response. We may have also encountered 
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situations in which children were no longer parasitemic at the time of the survey but 

their antibody responses were still elevated. This was likely to occur predominantly 

in Kisumu where children experience numerous infections. However, we were able 

to detect parasitemia in >76% of Kisumu children at both surveys. Therefore this 

issue was likely to be minimal and did not affect our findings. Furthermore, although 

the use of AUs provides a means to standardize results within a study, AU values 

are not directly comparable across different studies. Hence we could only draw 

comparisons about directionality of findings. Another limitation is the nature of the 

relative change calculation and interpretation. A 200% increase may indicate change 

in IgG response from 0.2 AU to 0.6 AU yet this child remains a negative IgG 

responder. Finally, due to the limited power of our study, we were unable to examine 

more complex relationships in our analyses. For example, our analysis of 

parasitemia and relative change in antibodies levels over time was limited by the 

number of children who were aparasitemic at both survey periods in Kisumu (n=6) 

and parasitemic at both survey periods in Nandi (n=5). As a result, we did not have 

power to detect small yet important differences by parasitemia status. 

Our study findings are generally consistent with previous studies of IgG 

responses in relation to malaria transmission intensity. We found a higher proportion 

of antibody responders with increasing malaria transmission intensity 94, 95, 101. We 

detected significant differences in IgG responses by age group between the two 

districts and similar age trends within the districts 95, 101. We also noted the saturation 

of AMA-1 (3D7, FVO) IgG responses across all age groups in Kisumu but not Nandi 

94.  The increase in the proportion of antibody responses with age in Nandi may have 
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been due to the Pf-malaria infections from an on-ongoing outbreak yet our findings 

are similar to other studies in low malaria transmission areas where an age trend for 

AMA-1 and MSP-1 antigens was observed 94, 95, 101. Patterns of correlation between 

antibody responses were consistent with a previous study by Noland and 

colleagues, including MSP-1 antibody patterns despite the use of different target 

antigens (MSP-142 in this study, MSP-119 in the other study) 101.  However, 

correlations differed from another study by Chelimo and colleagues that found a 

strong correlation between AMA-1 and MSP-1 antibodies, as well as a weak but 

significant correlation between LSA-1 and AMA-1 antibodies 119. However the study 

led by Chelimo was conducted among infants and young children who have 

immunological capacities different from older children. We detected a difference in 

LSA-1 responses by parasitemia status in the malaria holoendemic area unlike 

Noland’s study, despite both studies having been conducted in the same study area 

though during different time periods 101. Differences may be attributed to assay and 

the use of AUs which varied between the studies. Our detection in an area of low 

malaria transmission of differences in IgG responses to AMA-1 and LSA-1 by 

parasite status was consistent with a study by Bull and colleagues that found similar 

differences during a low malaria-transmission season 115.  However, John and 

colleagues did not detect differences in LSA-1 antibody responses by parasitemia 

status 118. Finally, our findings that antibodies wane over time regardless of malaria 

transmission intensity are also consistent with previous studies 100, 107. 

Our findings reveal important differences in antibody responses between areas of 

high and low malaria transmission that could be used to inform future research on 
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immunological markers of Pf-malaria protective immunity and vaccine development. 

First, we did not observe an age-trend in antibody responses in Kisumu because the 

proportion of positive responders in all groups was >83%, except to MSP-142 FVO. 

This suggests that children <5 years of age are able to mount an immune response 

similar to older children. Could these two antigens induce an immune response that 

protects from clinical Pf-malaria infections? Studies of clinical Pf-malaria infections 

have often examined antigens independently. However it is likely that a multivalent 

vaccine will be necessary therefore longitudinal studies that examine multiple 

antibody responses in unison are needed.  Furthermore, we identified that antibody 

responses waned over time, regardless of the malaria transmission intensity. 

However, the magnitude of change varied by antigens and was more pronounced 

among young children in the hypoendemic area. Many questions remain about B-

cell memory to the array of Pf-malaria antigens. Are SLPCs the predominant source 

of antibodies in children infrequently infected with Pf-malaria, or only in young 

children? Does the loss in response represent a functional loss in immune 

response? Are the half-lives of IgG1 antibodies the same for all Pf-malaria antigens? 

There is a clear need for further research into the heterogeneity in function and 

longevity of Pf-malaria specific antibodies. Finally, as we pointed out earlier, patterns 

of antibody correlations differed between areas of holoendemic and hypoendemic 

malaria transmission. Caution should be taken when making interpretations because 

strong correlations among antibodies do not necessarily indicate protective 

immunity. Likewise, limited correlation among antibodies does not suggest the 

absence of protective immunity. 
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CONCLUSION 

This study identified disparities in the proportion of positive IgG responses to 

select Pf-malaria antigens between a holoendemic and hypoendemic area of Pf-

malaria transmission by age, parasitemia status, and sex. An overall waning of 

antibody responses was observed over six-months by age and parasitemia status; 

however, differences between the study populations in the magnitude of median 

relative change in antibody response by age was detected.  These findings highlight 

the important differences in naturally acquired immunity between areas of disparate 

malaria transmission intensities and have important implications when assessing the 

effectiveness of vaccines across populations.    
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FIGURE 6.1. Proportion of IgG positive malaria antibody responses ( >1  arbitrary units) by age group at baseline and six-

month follow-up in Kisumu (A and B) and Nandi (C and D) in Kenya, 2002-2003. P-values in the graph represent the 

Cochran-Armitage Trend Test for differences in the proportion of positive antibody responses among age groups within a 

district. Asterisks represent statistically significant differences (P < .01) in the proportion of positive antibody responses 

between districts within the same age group. Bar represent error bars. At baseline, the number of children who were 0-4 

years, 5-9 years, and >10 years in Kisumu was 35, 39, and 30, respectively while in Nandi, it was 42, 45, and 38, 

respectively. At the six-month follow-up, the number of children who were 0-4 years, 5-9 years, and >10 years in Kisumu 

was 21, 36, and 34, respectively and in Nandi, it was 29, 47, and 40, respectively. 
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TABLE 6.1. Summary of participants in the Kisumu/Nandi Cohort, Kenya 2002-2003 

 Baseline Six-month Follow-up 
 District District 
 Kisumu 

(holoendemic)
Nandi 

(hypoendemic)
Kisumu 

(holoendemic) 
Nandi 

(hypoendemic)
 n % n % n % n % 
Sex         

Male 61 58.7 61 48.8 53 58.2 59 50.9 
Female 43 41.3 64 51.2 38 41.8 57 49.1 

Age group (in years)        
0-4 35 33.7 43 33.6 21 23.1 29 25.0 
5-9 39 37.5 45 36.0 36 39.6 47 40.5 
>10 30 28.9 38 30.4 34 37.4 40 34.5 

Parasitemia 
status 

        

Parasitemic 80 76.9 20 16.0 72 79.1 14 12.1 
Aparasitemic 24 23.1 105 84.0 19 20.9 102 87.9 

Total 104  125  91  116  
 
NOTE.  n, number; %, percentage 

 

  



   

 114

TABLE 6.2. Median antibody responses for select malaria antigens at baseline by 

district, Kenya 2002  

 Kisumu Nandi  

 Median Range Median Range P-value*

AMA-1 3D7 4.53 0.17-7.24 2.04 0.05-7.68 <.001

AMA-1 FVO 4.57 0.16-6.77 2.18 0.04-10.83 <.001

MSP-1 3D7 5.19 0.22-12.66 3.14 0.05-15.37 .008

MSP-1 FVO 2.33 0.11-6.96 2.12 0.03-12.37 .63

LSA-1 3.71 0.39-10.88 0.99 0.18-9.17 <.001

 
*P-values in table represent the Wilcoxon-Mann-Whitney U Test for differences in 

median antibody responses between Kisumu and Nandi. The number of participants 

in Kisumu and Nandi was 104 and 125, respectively. Antibody responses are 

measured in arbitrary units. See methods for explanation of arbitrary units 

calculation.  
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CHAPTER SEVEN: DISCUSSION 

 

It has been over 50 years since Burkitt first published his description of eBL20 and 

Cohen and McGregor demonstrated the protective effect of gamma-globulins.88, 90 In 

the years since these important milestones in the history of Pf-malaria infection, 

advances have been made in our understanding the pathogenesis but there is still 

more work to be done to further reduce the global burden of diseases that are 

directly, and in-directly, attributable to Pf-malaria infection.  

  

Summary of Findings 

We have described a number of important findings in this dissertation that should 

guide future research on cumulative effect of Pf-malaria infections on EBV 

persistence and potential immunological markers of Pf-malaria immunity to 

symptomatic illness. In our first specific aim, we found that repeated Pf-malaria 

infections were associated with a loss in CD8+ T-cell production of IFN-γ against 

EBV lytic antigens but not latent antigens. This loss in CD8+ T-cell functionality was 

most pronounced among the age group in which eBL has been commonly reported. 

The loss of immunological control over EBV lytic replication may lead to more EBV 

latently infected B-lymphocytes thereby increasing the risk for developing eBL. 

 In our second specific aim, we found that antibody responses, and the 

proportion of positive responders, were higher in a malaria holoendemic areas when



   

 120

compared to a hypoendemic area. Although antibody responses have been reported 

to increase with age in holoendemic areas, we observed a high proportion of positive 

responders across all age groups because even the youngest children had already 

experienced repeated Pf-malaria infections to have accumulated antibody 

responses. Interestingly, we did observe an age trend in the hypoendemic area, 

where they were experiencing an outbreak. We also found that antibody responses 

waned over time regardless of the malaria transmission intensities.  However, the 

greatest magnitude of change was among children <5 years old in the hypoendemic 

area whereas it varied in the holoendemic area. These findings support the 

differential acquisition of antibodies to Pf-malaria infections by malaria transmission 

intensity and age.      

 

Public Health Significance and Future Directions 

Specific Aim 1: Findings suggest that children repeatedly exposed to Pf-malaria 

infections lose immunological control over latent EBV infection. Specifically, the 

ability of their CD8+ T-cell to produce IFN-γ to lytic antigens has diminished leading 

to reactivation of lytic replication.  Longitudinal studies that can accurately measure 

EBV CD8+ T-cells IFN-γ  and Pf-malaria infections are needed to corroborate our 

findings.  

What is interesting about the finding of reduced EBV lytic antigen CD8+ T-

cells response is that it coincides with the time frame in which children are beginning 

to develop protection from symptomatic illnesses to Pf-malaria infections and are 

able to better control parasite density. Therefore as immunity to Pf-malaria develops, 
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so does the risk for eBL. Though this is circumstantial evidence, it points to a critical 

time frame that should be further investigated as these two events are unlikely to be 

occurring independently of one another. Immune responses are a combination of 

innate, cellular, and humoral responses that work in unison to control infection, 

including multiple infections. Hence a more comprehensive approach should be 

considered when researching the interaction between Pf-malaria and EBV co-

infection. It is understandable to reduce complex systems into simplified 

relationships and important information can be gleaned from studies like ours where 

we investigated one aspect of the immunologic response. Yet research should strive 

to build upon these simplified relationships to obtain a more accurate understanding 

of how the immune system orchestrates responses to Pf-malaria and EBV during co-

infection. Furthermore, future research should be conducted to ascertain whether 

our observed decrease in CD8+ lytic antigen T-cell IFN-γ response among 5-9 year 

olds in a holoendemic malaria area contributes to the development eBL. Due to the 

difficulties in conducting a cohort study with eBL as an outcome, novel approaches 

will need to be considered.  

Finally, our analysis examined the cumulative effect of Pf-malaria infections 

on latent EBV infection at the individual-level. The use of a surrogate for Pf-malaria 

infection at the district-level has been informative but does not, and cannot, take into 

account differences in individual-level risks for the if we are to This is a crucial step if 

we are to decipher the immunological relationship between Pf-malaria and EBV co-

infections. Efforts should be made to build upon our attempt, using data from a 



   

 122

longitudinal study with shorter follow-up intervals so an accurate measure of 

cumulative Pf-malaria can be made.  

 

Specific Aim 2: Our results highlight important differences in antibody responses to 

Pf-malaria antigens among children living in areas with different malaria 

transmission intensities. The lack of an age trend in the high malaria transmission 

area to select blood-stage antigens was due to a high proportion of positive 

responders in each age group. This suggests that the immune system of young 

children can mount an immune response similar to older children. More importantly, 

the lack of an age-trend for a number of antigens emphasizes that antibodies work in 

unison to eliminate an infection. Studies have typically examined antibodies 

independently of one another but it is unlikely a vaccine will target one antigen for a 

complex organism such as Plasmodium falciparum. To facilitate the development of 

a multivalent vaccine, it is important for research to begin focusing on how multiple 

antibody responses work together to overcome infection and illness.    

Furthermore, we detected a decline in antibody responses over time, 

regardless of the malaria transmission intensity. But the magnitude of change was 

not the same for all antigens and was more pronounced for the youngest age group 

in the malaria low transmission area. This observation raises numerous questions. 

Are SLPCs responsible for fighting infection in children infrequently infected with Pf-

malaria? Does the loss of antibody response represent a functional loss in 

immunity? Are the half-lives of IgG1 antibodies the same for all Pf-malaria antigens? 
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There is a clear need for further research into the function and longevity of 

antibodies to Pf-malaria.  

 

Conclusion 

The quest for an effective vaccine against Pf-malaria infections offers great 

hope for the future but we are still years, even decades away from developing a 

vaccine for use. Furthermore it is likely that the first generation of vaccine will be 

designed to protect from symptomatic and severe illness rather than infection. 

Although protection from symptomatic illness is vital, it may still leave children 

vulnerable to eBL. Therefore, we must continue in our pursuits to understand the 

multi-faceted pathogen that is Pf-malaria to gain knowledge on its natural history and 

interaction with other pathogens to aid in identifying novel approaches and strategies 

to reduce its impact on the lives of infants, children, and adults around the world.  
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APPENDIX A: CWRU/KEMRI Blood Sample Collection and Questionnaire Form 
1 
 

Study Title: Immunologic Studies of Endemic Burkitt’s Lymphoma 
Sample collection form 1: Blood sample collection for investigational studies 
 
 
Patient study number (STID)  __ - __ - __ __ __ __ - __ __ - BL - __   
                                      (site) (village)   (household)    (individual)          (round) 
 
Date of sample collection __ __/ __ __ / __ __ (dd/mm/yy) 
 
First name __________________________________________ 
 
Middle name ________________________________________ 
 
Last name ___________________________________________ 
 
Date of birth __ __/ __ __ / __ __ (dd/mm/yy) 
 
Sex        male (1)       female (2) 
 
Has this child taken any anti-malarial medication for malaria within the past 2 weeks?
                          

                    Yes (1)       No (2) 
 
If yes, which medication _______________________________________________ 
 
Has the child taken any traditional medicines? 
         

                    Yes (1)       No (2) 
 
If yes, which one(s) ____________________________________________________ 
 
Does this child sleep under a bed net?          Yes (1)  No (2) 
 
If yes, is this net treated?                 
             Yes (1)  No (2) 
Has the house this child sleeps in been sprayed with insecticide by the Ministry of 
Health? 

                    
       Yes (1)        No (2) 

 
Ethnic group _____________________________    code 
 
List Samples collected: 

 Blood smear  ____________________(yes or no) 
 Hemoglobin  ____________________(gm/dl) 
 Purple top (~ 500 μl)  _____________(yes or no) 
 Green top (2-5 ml) _______________(indicate amount taken) 
 Other ___________________________(specify type of specimen) 
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APPENDIX B: Calculation of Inverse Probability Weights 
 

An assumption when using generalized estimating equations (GEE) is that missing 

data, or observations, are missing completely at random); missingness of data is 

independent of observed and unobserved data 158. When data do not appear to 

satisfy this assumption, a less restrictive assumption on the missingness of data is 

needed. 

 Inverse probability weights (IPWs) are one method that can be used to 

address missing data, or observations, and is less restrictive about the missingness 

of data than GEE.  When using IPW, observations are assumed to be missing at 

random; missing data are dependent on observed data but independent of 

unobserved data. 158  To calculate IPWs, the probability of participation is modeled 

using available predictor variables.  The inverse of the predicted probabilities are 

calculated and assigned to each individual with complete data.  Individuals with 

complete data are weighted to represent individuals with similar characteristics who 

have missing data. 

 To calculate the predicted probabilities for our study, we used logistic 

regression with first order interaction terms using the following equation: 

Log[pi/1-pi]= b0, + b1(sex) + b2(age group 0-4 years) + b3(age group 5-9 

years) + b4(site of residence) + b5(sex*age group 0-4 years) + b6(sex*age 

group 5-9 years) + b7(sex*site of residence) + b8(age group 0-4 years*site of 

residence) + b9(age group 5-9 years*site of residence). 

  



   

 126

Where pi is the probability of child i (i =1,2,3…n) participating in all surveys.  Taking 

the inverse of the predicted probabilities, the mean IPW was 1.44 and ranged from 

1.14-1.92.  Children who participated in all three surveys were assigned the mean 

IPW value whereas children with missing observations were assigned an IPW of 0. 
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