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ABSTRACT

SEAN HUNT: Helium Burning of 22Ne: Targets, Detectors, and Initial Measurements.
(Under the direction of Christian Iliadis)

The goal of the work in this dissertation is to advance the understanding of nuclear

astrophysics by remeasuring a reaction vital to the stellar synthesis of heavy elements.

The 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg reactions are of great importance to the s-process

which takes place in asymptotic giant branch and massive stars, and produces half of

all elements heavier than iron. The low energy resonances in these reactions have the

greatest impact on the s-process, but have poorly understood resonance strengths.

The α-particle beam necessary to measure the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reac-

tions are very damaging to solid targets. In this study, three types of targets made of glass,

sintered metal, and evaporated metal were designed and fabricated. All three targets are

capable of withstanding the effects of α-particle bombardment.

Previous measurements of the 22Ne(α,n)25Mg reaction saw significant contamination

from the 13C(α,n)16O reaction. A significant effort was made in this dissertation to de-

velop new capture-gated detector technologies to differentiate between low energy neu-

trons of interest and high energy contaminant neutrons. Structures in the signal pulses

were identified, correcting a misunderstanding in the literature, and never-before-made

measurements of detector resolution and efficiency were performed.

Finally, a measurement of the resonance strength of the 828 keV resonance in the

22Ne(α,γ)26Mg reaction was made using one of the new target designs. This measurement

represents the first of this reaction using a coincidence detector system, the first time this

reaction has been measured using a fraction fitting analysis technique, and the first time a

nuclear reaction has been measured using blister-resistant solid targets. The value of the

resonance strength for the 828 keV resonance determined in this work is 0.047(12) meV.
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Chapter 1

Introduction

1.1 Astrophysical Motivation

Stellar nucleosynthesis is responsible for the production of most elements heavier than

helium and virtually all elements heavier than beryllium. Iron, nickel and lower mass el-

ements are produced in energy favorable reactions (i.e. reactions where the resultant nu-

clei have less rest mass than the reacting nuclei), whereas elements heavier than iron and

nickel are produced in energy unfavorable reactions (i.e. reactions where the resultant

nuclei have more rest mass than the reacting nuclei). Figure 1.1 illustrates this effect with

a graph of the binding energy per nucleon versus atomic mass. It can be seen from this

chart that energy must be released while fusing elements with a lower mass than iron,

and energy is required to fuse elements heavier than iron.

1



Figure 1.1: Binding energy per nucleon versus atomic mass. There is an increase in bind-
ing energy (and therefore an increase in energy released during fusion) for elements lead-
ing up to the iron/nickel peak, followed be decreasing binding energy per nucleon at
higher atomic mass numbers. Figure is adapted from [Iliadis, 2015]. Data are taken from
[Audi et al., 2003].

It has been known since 1957 [Burbidge et al., 1957] that stellar fusion of the elements

heavier than iron primarily occurs through neutron capture. Significant neutron capture

requires sufficiently high free neutron densities, which only occurs at the highest stellar

temperatures. There are two astrophysical processes capable of producing these neutron

density conditions: The r-process, or rapid neutron capture process, which occurs during

the core-collapse of supernovae or merger of neutron stars, and the s-process, or slow

neutron capture process, which occurs during the late burning stages of asymptotic giant

branch stars (AGB) and in massive (M > 10M�) stars. Figure 1.1a shows the elemental

abundances of the solar system, and identifies the stellar processes primarily responsible

for the production of those elements. Figure 1.1b shows the heavy elements produced

2



by the s-process and r-process, and illustrates the comparable quantities of elemental

production each process is responsible for. The s-process is the focus of this study.

3



Figure 1.2: (a) Solar system elemental abundances. Values are relative to silicon which
is arbitrarily normalized to 106. Diagonal lines indicate the processes responsible for the
production of elements within an elemental mass region. Figure is taken from [Cameron,
1982]. (b) A comparison of heavy solar system (SS) elemental abundances normalized to
silicon 106 (given as log ε). Nuclei formed from the r-process are given in red, and nuclear
from the s-process are given in blue. Figure is taken from [Sneden and Cowan, 2003].
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1.2 The s-Process

The s-process is a neutron induced nucleosynthesis process that takes place at moder-

ately low (compared to the r-process) neutron density and moderately high temperature

conditions in stars. The phenomenological picture of the s-process was first developed by

the seminal papers [Burbidge et al., 1957, Cameron, 1957]. Additional details were discov-

ered in the following decades in a number of influential papers [Clayton and Rassbach,

1967, Clayton and Ward, 1974, Clayton et al., 1961, Seeger et al., 1965].

In low neutron density environments, the time scale for neutron capture is typically

slower than the β-decay time scale for elements near the β-decay stable isobars in the

chart of isotopes. In these environments, stable isotopes capture neutrons over long pe-

riods of time, and eventually decay to form new elements. This process is in contrast to

the r-process, wherein neutrons are captured faster than the average β-decay time, result-

ing in a number of neutron-rich elements far from the β-decay stable isobars rapidly beta

decaying to stability (for more information on the r-process, see [Burbidge et al., 1957,

Seeger et al., 1965, Thielemann et al., 2011]). Figure 1.3 illustrate the paths that the s-

and r-processes take through the chart of isotopes to develop the heavier stable nuclei. It

should be noted that there is an additional minor contribution to the nucleosynthesis of

the heavy elements known as the p-process which involves proton capture and photofis-

sion that is not shown in the figure (for more information on the p-process, see [Arnould

and Goriely, 2003, Burbidge et al., 1957, Cameron, 1957, Rayet et al., 1995]).
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Figure 1.3: Illustration of the neutron-capture processes responsible for synthesis of the
heavy elements. The s- and r-reaction paths are shown, though the p-process reaction
paths are not. Image taken from [Käppeler et al., 2011].

There are two distinct components of the s-process that occur in different stellar envi-

ronments. The weak s-process, and the main s-process.

1.2.1 The Weak s-Process in High Mass Stars

The weak s-process occurs in massive (M > 8M�) stars [Arnett and Thielemann, 1985],

such as the historically important star Betelgeuse (Shown in Fig. 1.4), and is responsible

for the majority of the production of the s-process isotopes within the atomic mass range

of 70 < A < 90 [Kappeler et al., 1989, Raiteri et al., 1991] (though [Travaglio et al., 2004]

has shown that there must be an additional process responsible for some fraction of the

70 < A < 90 nuclei). A massive star burns through its hydrogen core in a matter of mil-

lions of years, and once the star begins to burn helium in the core, the temperature is hot

enough to fuse 14N (usually remnants from previous deceased stars) into 22Ne through

the following sequence of α captures and β+ decays:
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14N(α, γ)18F(e+, ν)18O(α, γ)22Ne (1.1)

Toward the end of helium core burning, temperatures rise above 2.5× 108K, which is

high enough for 22Ne to undergo 22Ne(α,n)25Mg burning, producing neutrons that fuel

the weak s-process [Couch et al., 1974, Lamb et al., 1977, Peters, 1968, Prantzos et al.,

1990, Raiteri et al., 1991]. Some 22Ne survives the helium burning in the core, and when

the massive star forms a carbon burning shell, the 22Ne reacts with α particles produced

by the 12C(12C, α)20Ne reaction to reactivate the 22Ne(α,n)25Mg reaction and continue s-

process nucleosynthesis [Arnett and Truran, 1969, Prantzos et al., 1990]. Carbon core

burning does not contribute significantly to the s-process, primarily because material pro-

cessed during carbon core burning rarely escapes the death of the star.
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Figure 1.4: Betelgeuse is a massive star, estimated as much as 30 times more massive than
our sun, residing≈ 640 light years away [Harper et al., 2008]. Betelgeuse was the first star
other than our sun to be directly imaged [Buscher et al., 1990]. The s-process is currently
synthesizing heavy elements in the core of Betelgeuse. Image taken from [Haubois et al.,
2009].

1.3 The Main s-Process in AGB Stars

The main s-process occurs in main sequence asymptotic giant branch (AGB) stars

[Seeger et al., 1965] with a mass of 0.6M� < M < 8M�, such as the historically important

star Mira (shown in Fig. 1.5), and is responsible for the majority of the production of the

s-process isotopes with atomic mass range of A > 90. The main s-process is more compli-

cated than the weak s-process, and requires an understanding of late stage stars to fully

describe it.
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Figure 1.5: Mira (also known as Omicron Ceti) is a binary star system, consisting of Mira
A, a thermally pulsing asymptotic giant branch star with a mass of ≈ 1.17M� [Wyatt
and Cahn, 1983], and Mira B, a smaller low-mass white dwarf [Sokoloski and Bildsten,
2010]. The system resides ≈ 300 light years from the sun, and Mira A was the first non-
supernova variable brightness star discovered [Hoffleit, 1997]. It is also currently synthe-
sizing heavy elements through the main s-process. Image taken from [Karovska et al.,
1997].

The name ”asymptotic giant branch” is derived from the location of a star in a color-

magnitude diagram known as a Hertzsprung-Russell (HR) diagram. An HR diagram

is made by plotting the measured luminosity of a star against its surface temperature.

Figure 1.6 is an example HR diagram for the stars in the globular cluster M15. For the

first stage of a star’s life, it exists in the main sequence (MS) portion of the HR diagram.

During this stage, hydrogen is fused into helium in the core of the star through a series of

reactions that eventually produce:

4H→4 He + 2e+ + 2ν + 26.7MeV (1.2)
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Figure 1.6: Color-magnitude diagram of stars in the globular cluster M15. The photom-
etry was taken using the WFPC2 camera on the Hubble Space Telescope [van der Marel
et al., 2002]. The x-axis is a B-V color index, and the y-axis is the absolute magnitude.
The asymptotic giant branch (AGB) is labeled in red, and the horizontal branch (HB), red
giant branch (RGB), and main sequence (MS) are labeled in blue.

Stars with a mass of 0.6M� < M < 8M� will remain on the main sequence for hun-

dreds of millions or billions of years. Eventually, the star will exhaust the hydrogen in

its core, and will undergo envelope expansion, core contraction, and ascension into the

red giant branch (RGB) section of the HR diagram. At this point, the core of the star is

burning helium through the reaction:

4He +4 He→8 Be− 91.8 keV (1.3)

Beryllium-8 is very unstable, and has a half life of only≈ 6.5× 10−17s [Lin et al., 1974].

As the helium core contracts, the temperature rises to around 3×108K, at which point 8Be

is produced at a faster rate than it decays. At this time, fusion into the stable isotope 12C
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occurs through the reaction:

8Be +4 He→12 C + 7.4 MeV (1.4)

While the core is fusing helium, a hydrogen shell outside the core continues to burn.

Eventually, the core of the star exhausts its supply of helium, and consists primarily of

carbon and oxygen. During this phase, known as the early asymptotic giant branch phase

(E-AGB), the star derives its energy from helium fusion in a shell surrounding the core.

As the helium shell is exhausted, the star enters the thermally pulsing asymptotic giant

branch phase (TP-AGB), and primarily burns hydrogen in a thin shell surrounding the

nearly exhausted helium shell.

After burning for between 104 and 105 years, enough helium is created in the hydrogen

burning shell to reignite the helium burning shell underneath in an explosive process

known as a helium shell flash. These flashes dredge up material from the core of the star

into the helium burning layer. For more detail on the helium flashes, see [Busso et al.,

1999, Herwig, 2004, Iben Jr and Renzini, 1983, Sneden et al., 2008, Straniero et al., 2006].

In between thermal pulses, the s-process can synthesis heavy elements in a region of the

star known as a ”carbon pocket” using the following reaction as a neutron source:

13C +4 He→ n+16 O + 2.215 MeV (1.5)

However, during the thermal pulses, 22Ne in the core, either present from an earlier

population star or synthesized from 14N as described in Section 1.2.1, is dredged up into

the helium burning shell. During these thermal pulses, neutrons for the s-process are

provided by the reaction:

22Ne +4 He→ n+25 Mg− 0.48MeV (1.6)

For stars with a mass M > 4M�, temperatures are expected to be high enough that
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22Ne(α,n)25Mg is the primary source of neutrons for the main s-process. Figure 1.7, taken

from [Reifarth et al., 2014], illustrates a thermal pulse within an AGB star.

Figure 1.7: An example AGB star undergoing thermal pulse. The y-axis is a relative mass
coordinate spanning the thickness of the helium burning shell, and the x-axis is time given
in annus (years). Thermal pulses are associated with a disruption of the H burning layer,
expansion of the C-O core, and heavy element synthesis using the 22Ne(α,n)25Mg reaction
as a neutron source. Figure taken from [Reifarth et al., 2014].

1.4 The Importance of 22Ne(α,n)25Mg

The 22Ne(α,n)25Mg reaction is the primary neutron source the s-process in massive

(M > 8M�) stars, the dominant neutron source for the s-process in large (M > 4M�)

TP-AGB stars, and an additional neutron source for smaller (M < 4M�) TP-AGB stars.

The 22Ne(α,γ)26Mg reaction is equally important, as it competes with the 22Ne(α,n)25Mg

reaction for available α particles. Both of these reactions are poorly measured, and have
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a significant effect on our understanding of heavy element nucleosynthesis. [Longland

et al., 2012] compiled and analyzed current data for the 22Ne(α,n)25Mg, and the competing

22Ne(α,γ)26Mg reactions, and showed that the uncertainties in the measurements have a

significant effect on the abundance of elements up to mass number 100.

The importance of these two reactions extends beyond the understanding of the origin

of the heavy elements. The 22Ne(α,n)25Mg reaction could also explain unusual elemen-

tal enhancements in metal-poor AGB stars, such as rubidium [Garcı́a-Hernández et al.,

2006, 2009, Karakas et al., 2012, Lugaro and van Raai, 2007, Pignatari et al., 2005], and af-

fects elemental abundances frequently used to date galactic nucleosynthesis [Browne and

Berman, 1981, Cowan et al., 1991, Hainebach and Schramm, 1976, Woosley and Fowler,

1979]. Additionally the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions have a significant

effect on the expected abundances of 24Mg, 25Mg, and 26Mg. This is important because

magnesium ratios can be precisely measured in presolar dust grains, and magnesium is

one of the few elements that can have isotopic ratios derived from stellar spectra (such as

26Mg/24Mg and 25Mg/24Mg) [Yong et al., 2003a,b]. Using estimated reaction rate uncer-

tainties for 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg, [Karakas et al., 2006] showed that relative

abundances of 25Mg and 26Mg predicted by stellar models can vary by up to 60%, impact-

ing the magnesium ratio measurements in presolar grains.

Supernovae are also affected by the 22Ne+α rates. Massive stars produce the iron iso-

tope 60Fe during the convective carbon-shell burning stage through the s-process [Chieffi

and Limongi, 2002, Pignatari et al., 2010]. During type II supernova, 60Fe and 26Al are

ejected, and are both γ-ray emitting radionuclides. The abundance ratio of these two iso-

topes provides stellar models a very sensitive constraint [Woosley and Heger, 2007]. It

has also been shown that in type Ia supernovae, 22Ne(α,n)25Mg influences the electron

mole fraction, affecting the nature of the explosion [Timmes et al., 2003]. Additionally, ≈

1000 years prior to the explosion, neutrons produced by 22Ne(α,n)25Mg could affect the

carbon abundance, which would alter the 56Ni production, and therefore affect the peak
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luminosity of the explosion [Piro and Bildsten, 2008].

1.5 This Study

The β-decay rates relevant to the s-process are well measured, but many of the neu-

tron cross sections and reaction rates for neutron production are not well understood. The

focus of this study is to improve the measurement of the 22Ne(α,γ)26Mg reaction, and de-

velop technologies needed to improve the understanding of the 22Ne(α,n)25Mg reaction.

Chapter 2 discusses the nuclear physics behind reaction rates and nuclear capture.

Chapter 3 details the accelerators used and the modifications needed to produce the α-

particle beam used.

Chapter 4 details the design and fabrication of targets capable of withstanding the

significant damage caused by α-particles. Three targets were designed, fabricated, and

tested, and one was chosen for the 22Ne(α,γ)26Mg measurement. This represents the first

successful design of a blister-resistant nuclear target, and a paper on the targets has been

accepted for publication [Hunt et al., 2018].

Chapter 5 describes the detectors used in the measurement of the 22Ne(α,γ)26Mg re-

action, and additional detectors that were characterized for the eventual measurement of

the 22Ne(α,n)25Mg reaction. A significant effort was made in this dissertation to develop

new capture-gated detector technologies to differentiate between low energy neutrons of

interest and high energy contaminant neutrons. Additionally, never-before-made mea-

surements of detector resolution and efficiency were performed. This work has been

published in [Hunt et al., 2016].

Chapter 6 discusses the measurement of the 831 keV resonance in 22Ne(α,γ)26Mg re-

action, and details the methods and values used in the calculations of the resonance

strength. The results of Chapter 6 are currently being written to submit for publication.

Chapter 7 provides a summary of the findings of this dissertation.

14



Chapter 2

Nuclear Reactions

The electromagnetic force is well understood, and the Coulomb interaction between

charged particles is precisely known. The strong nuclear force however, is much more

complex, and the reactions are much more difficult to predict. The calculations for nu-

clear interactions involving more than a few nucleons are computationally impractical,

and useful information can only be obtained using experimentally measured approxi-

mations of the effective potentials. These approximations are customized to a specific

energy of a specific reaction (with some exceptions). The next few sections outline some

of the fundamentals of nuclear reactions, their measurements, and how these models

apply to the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions. It should be noted that many

of the equations and information in this chapter are taken from [Iliadis, 2015] and refer-

ences therein. Resonance energies discusses in this chapter are given in the center-of-mass

frame, though in all other chapters the resonance energies will be given in the laboratory

frame, unless stated otherwise.

2.1 Thermonuclear Reaction Rates

Thermonuclear reaction rates are a quantitative way of representing the probability of

a nuclear reaction occurring within a stellar environment. The physical quantity known

as the cross section, σ, is the probability that a particular nuclear interaction occurs be-

tween two nuclei (a target nucleous and incident nucleous), and is defined as:

σ ≡ Nr/t

Ni/(tA)×Nt

(2.1)

15



where Nr/t is the number of interactions per unit time, Ni/(tA) is the number of inci-

dent particles per unit area per unit time, and Nt is the number of target nucleous within

the target area. The cross section has dimensions of area, and larger cross sections cor-

respond to larger probabilities that the correlated reaction will occur. Cross section is

usually expressed in barns, defined as:

1 b ≡ 10−24 cm2 (2.2)

It is important to remember that in stellar environments, nuclei are not monoenergetic.

The nuclei have a spread of energies that can usually be expressed using a Maxwell-

Boltzmann distribution:

φ(v) = 4πv2 (
µ

2πkT
)
3
2 e

−µv2
(2kT ) (2.3)

where v is velocity, T is stellar temperature, k is Boltzmann’s constant, and µ is the

reduced mass, given by:

µ =
MiMt

Mi +Mt

(2.4)

whereMi andMt are the incident and target nuclei masses, respectively. The cross sec-

tion and velocity distribution functions can be combined to form a reaction rate, defined

as:

〈σv〉 =

∫ ∞
0

φ(v)vσ(v)dv (2.5)

Nuclei in a stellar plasma are nonrelativistic and nondegenerate, excluding special

cases (see, for example, [Wolf, 1965]). This allows the velocity to be replaced by the kinetic

energy using the relationship:
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v =

√
2E

µ
(2.6)

It is possible to rewrite this equation substituting energy for velocity, which gives:

NA〈σv〉 = NA (
8

πµ
)
1
2

1

(kT )
3
2

∫ ∞
0

σ(E)Ee−
E
kT dE (2.7)

where NA is Avogadro’s number. This equation is known as the reaction rate, and

can be solved if the cross section (σ(E)) can be experimentally determined. This chapter

will focus on capture of a particle by a nucleus, followed by emission of electromagnetic

radiation in the form of a γ-ray, or emission of a neutron.

2.2 Resonant Contributions

Radiative-capture cross sections generally display two distinct characteristics at low

energies: an overall energy dependence showing smooth, exponential increase with beam

energy known as the non-resonant contribution, and sharp spikes superimposed over the

smooth curve known as the resonant contribution, which is illustrated in Figure 2.1.
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Figure 2.1: Illustration of resonant and non-resonant contributions to a cross section. Red
peaks represent resonances, and the smooth blue line represents the non-resonant contri-
butions.

Resonant captures, represented by the red peaks in Figure 2.1, do not vary smoothly,

and have highly energy-dependent cross sections; the cross section of resonance domi-

nated reactions can vary by orders of magnitudes over very narrow energy ranges. Reso-

nances occur when the wavefunction of an incoming particle matches the internal wave-

function at the boundary where the Coulomb and strong forces are approximately equal

in strength. Since the entrance channel energy is the combination of the Q-value for the

reaction and the resonance energy, the equation describing the energy of the resulting

state of the excited nuclei is:
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Ex = Q+
mT

mT +mα

Eα
2

1 +
√

1 + 2EαmT/(mT +mα)2c2
(2.8)

where Ex is the excitation energy, Eα is the bombarding particle energy, Q is the Q

value for the reaction, and mT and mα are the masses of the target and bombarding parti-

cle, respectively.

2.2.1 Narrow Resonances

The total width of a resonance is defined as the sum of all the partial widths of allowed

decays, and is usually expressed as:

Γ =
∑
i

Γi (2.9)

where Γ is the total width, and Γi are the partial widths of all decay channels (partial

widths are a way to describe a probability, but in units of energy. See [Iliadis, 2015] for

more information on partial widths). If a resonance is narrow enough (< 3 keV), the cross

section can be represented by the Breit-Wigner equation:

σBW (E) =
λ2ω

4π

ΓenΓex
(E − ER)2 + (Γ/2)2

(2.10)

where Γen and Γex are the partial widths for the entrance and exit channels respec-

tively, λ is the de Broglie wavelength, defined as:

λ =
2π~√
2µE

(2.11)

and

ω =
(2J + 1)(1 + δ01)

(2Ji + 1)(2Jt + 1)
(2.12)

where J is the spin of the resonance state, Ji is the spin of the incident particle, Jt
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is the spin of the target, and δ01 is the Kronecker delta needed to create an extra fac-

tor of 2 for the case of identical target and projectile nuclei. For narrow resonances, the

Maxwell-Boltzmann distribution can be assumed to be constant, allowing Equation 2.7 to

be written as:

NA〈σv〉 = NA (
8

πµ
)
1
2

1

(kT )
3
2

e−
E
kT

∫ ∞
0

E dE (2.13)

Substituting the Breit-Wigner formula (Equation 2.10 into Equation 2.13, and assum-

ing that the partial widths are constant, the reaction rate becomes:

NA〈σv〉 = NA
2ω
√

2π~2ΓenΓex

(µkT )
3
2 Γ

e−
E
kT

∫ ∞
0

Γ/2

(ER − E)2 + Γ2/4
dE (2.14)

This is solvable, because:

∫ ∞
−∞

a

(b− x)2 + a2
dx = π (2.15)

The narrow resonance reaction rate can now be written as:

NA〈σv〉 = NA (

√
2π

µkT
)
3
2~2e−E/kTω

ΓenΓex
Γ

(2.16)

It is often convenient to define the following relationship:

ω
ΓenΓex

Γ
= ωγ (2.17)

where ωγ is the resonance strength.

The assumptions of an energy independent Maxwell-Boltzmann distribution and par-

tial widths allowed the reaction rate for narrow resonances to be reduced to Equation

2.16. It can be seen from this formalism that an experimental measurement of the reso-

nance strength is sufficient to obtain an accurate approximation of the reaction rate for a

narrow-resonance-dominated stellar reaction, such as the 22Ne(α,γ)26Mg reaction.

20



2.2.2 Resonances in 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg

Several direct measurements of the 22Ne(α,n)25Mg reaction have been performed since

the early 1980s [Drotleff et al., 1993, Giesen et al., 1993, Harms et al., 1991, Jaeger et al.,

2001, Wolke et al., 1989], and only a single direct measurement of the 22Ne(α,γ)26Mg reac-

tion has been published [Wolke et al., 1989]. With the exception of [Giesen et al., 1993], all

of these measurements were performed at Institut für Strahlenphysik in Stuttgart, Ger-

many, using gas targets. Figure 2.2 shows the excitation function of the 22Ne(α,n)25Mg

reaction measurement made by [Jaeger et al., 2001] on the left, and the measured cross

section of the 22Ne(α,γ)26Mg reaction made by [Wolke et al., 1989] on right. It can be seen

from the graphs that both reactions are dominated by narrow resonances.

Figure 2.2: (Left) The excitation function for the 22Ne(α,n)25Mg reaction taken from [Jaeger
et al., 2001]. This measurement was made with 3He proportional counters, and an ex-
tended gas cell target. The additional image in the upper left is an enhanced view of
the 831 keV resonance. (Right) The measured cross section of the 22Ne(α,γ)26Mg reaction
by [Wolke et al., 1989]. This measurement was made by detecting the 1809 keV γ-ray
emitted from the deexcitation of the first excited state of the resulting 26Mg nucleus, and
also used a gas cell target. The top graph of the 22Ne(α,γ)26Mg measurement represents
a measurement with a 4.0 Torr target gas pressure, and the bottom graph represents a 1.0
Torr gas pressure. Both measurements were performed at the Institut für Strahlenphysik
in Stuttgart, Germany.
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Most of the s-process interactions utilizing the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reac-

tions takes place in stellar environments with a temperature of ≈ 300 MK (see Chapter 1

for more information on the s-process astrophysical sites). The center-of-mass energy re-

gion corresponding to this temperature amounts toEcm = 600±300 keV. To determine the

contribution individual resonances (and direct capture) have to the total reaction rates, a

Monte Carlo method embedded in the code RATESMC was used to analyze resonant reac-

tion contributions.

For every individual parameter contributing to a reaction rate (see Equation 2.16),

there is an associated probability distribution representing the uncertainty of that param-

eter. For example, resonance strengths are represented with log-normal distributions,

resonance energies are Gaussian, and upper limits on partial widths use Porter-Thomas

distributions. For a given temperature, RATESMC randomly samples each parameter, and

calculates the total reaction rate. This is repeated 10,000 times per temperature, resulting

in a total recommended reaction rate based on the 0.50 quantile of the reaction rate distri-

bution. For a more detailed explanation of this method, see [Iliadis et al., 2010, Longland

et al., 2010b]

For the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions, relevant parameters were taken

from STARLIB [Sallaska et al., 2013] and used as input to RATESMC. Contribution plots

were produced, indicating the importance of each resonance to the total reaction rate at a

given temperature, shown in Figure 2.3. The y-axis represents the fractional contribution

of each process or resonance to the total reaction rate (for example, at a temperature of

0.02 GK in 22Ne(α,γ)26Mg, the 76 keV resonance dominates the total reaction rate), and the

thickness of each individual ”band” represents the uncertainty in that fractional contribu-

tion. The dotted line encompasses all resonances and processes (including direct capture)

that account for < 0.1 fraction of the reaction rate. All resonance energies shown are in

the center-of-mass frame.
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Figure 2.3: Resonance contribution plots for the 22Ne(α,n)25Mg reaction (top) and the
22Ne(α,γ)26Mg reaction (bottom) in the center-of-mass frame. The y-axis represent the
fractional contribution to the total reaction rate for each individual process, the thickness
of each resonance’s ”band” represent the uncertainty in that contribution, and the dotted
line represents all contributions with < 0.1 fractional contribution. The 703 keV (831 keV
lab frame) resonance dominates both reaction rates for the 300 MK temperature regime
most important for the s-process.
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At 300 MK, both reaction rates are dominated by the 831 keV (703 keV center-of-mass

frame) resonance. This resonance has long been identified as one of the most important

resonances to the s-process, and has been measured several times, with the measurement

results summarized in Table 2.1. The table shows that the measured resonance strengths

of the 831 keV resonance in 22Ne(α,n)25Mg disagree by a factor of up to 3 (and a detailed

reading of the references listed reveals that the resonance strengths of the higher energy

resonances disagree by up to a factor of 5), which is well outside the quoted uncertainties.

Reference Resonance Energy (keV) ωγ (eV) Resonance Width Γ (keV)
[Harms et al., 1991] 830 ± 3 (8.3 ± 2.4) × 10−5 ≤ 3
[Giesen et al., 1993] 828 (2.34 ± 0.77) × 10−4 ...
[Drotleff et al., 1993] 831 ± 3 (1.8 ± 0.3) × 10−4 ≤ 3
[Jaeger et al., 2001] 832 ± 2 (1.18 ± 0.11) × 10−4 0.25 ± 17

Table 2.1: Past measurements of the 22Ne(α,n)25Mg 831 keV resonance.

Sources of systematic error potentially responsible for the disagreement in measured

resonance strength discussed in the literature include uncertain densities of the gas tar-

gets used, and neutron contamination from the 13C(α,n)16 reaction. The only measure-

ment made of low energy resonances in the 22Ne(α,γ)26Mg reaction (by [Wolke et al.,

1989]) was not hindered by the neutron contamination, but still used the same gas cell

target, which could have the same unknown systematic uncertainties. A large focus of

this dissertation is the development and characterization of technologies and techniques

to reduce or eliminate these systematic uncertainties.

It should be noted that an argument has been made that the 831 keV resonances in

22Ne(α,n)25Mg and 22Ne(α,γ)26Mg cannot both correspond to the same excited state in

26Mg. This argument was put forward by [Koehler, 2002] who showed that the implied

γ-ray partial width measured by [Wolke et al., 1989] (Γγ = 76± 56eV) was far larger than

the average γ-ray partial width in this range (Γγ = 3eV). However, [Longland et al., 2012]

argues that the large uncertainty for the partial widths in [Wolke et al., 1989] makes it

very possible that both resonances excite the same state. It should also be noted that the
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high level density of 26Mg around the excitation energy for this resonance adds signifi-

cant ambiguity to the question of distinct resonances. The exact resonance energy of 831

keV resonance in 22Ne(α,γ)26Mg was not measured in this study, so it is assumed in this

dissertation that the 22Ne(α,γ)26Mg resonance of interest is located at 831 keV, and not the

828 keV originally reported by [Wolke et al., 1989].

2.3 Non-Resonant Contributions

While the focus of this study was the measurement of the 22Ne(α,γ)26Mg resonance-

dominated reaction, a detector was studied to aid in the eventual measurement of the

22Ne(α,n)25Mg reaction (see Chapter 5). This detector could differentiate between the low

energy (≈ 300 keV) neutrons from the reaction of interest and high energy (≈ 3 MeV)

neutrons from the primary contaminating reaction, 13C(α,n)16, which is a non-resonant

reaction at these energies.

A non-resonant reaction, known as a direct capture reaction, occurs when a target

nucleus captures an incident particle and emits a particle (such as a γ-ray), forming a

bound state of a final nucleus in a single step. The interaction is actually between the

incident particle and the electromagnetic field of the target nucleus, as depicted in Figure

2.4. The target nucleus can be approximated as an inert core, and the cross section for

direct capture interactions vary smoothly with energy (because of the dependence on the

electromagnetic interactions). Because of the simplicity of direct capture, the energy of

the emitted γ-ray can be approximated by the equation:

Eγ = Qiγ + Ei − Ex (2.18)

where Eγ is the energy of a single direct capture primary, Ei is the center-of-mass

energy of the incident nucleus, Ex is the bound state energy, and Qiγ is the separation

energy of the target nucleus. For the full relativistic expression, see Equation C.14 in
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[Iliadis, 2015].

Figure 2.4: Illustration direct capture. a) A particle incident on a target nucleus interacts
with the electromagnetic field and transitions directly into a bound state (figure adapted
from [Rolfs and Rodney, 1988]). b) An energy level diagram of (a). A represents the initial
target nucleus, p is an incident proton, Ep is the energy of the incident proton, and B is
the final nucleus.

The 22Ne + α reactions proceed through the compound nucleus 26Mg, which has a

relatively high energy of excitation (Qαγ = 10614.74(4) keV [Wang et al., 2017]), and are

dominated by resonant capture. Because of this, the direct capture contributions to the

cross sections of the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions are negligible at stellar

temperatures (see [Longland et al., 2010b] for details).

The overview of non-resonant interactions has been intentionally kept brief for this

dissertation, and is primarily mentioned to give a general understanding of the 13C(α,n)16,

which is of importance to Chapters 4 and 5. For a more detailed explanation of non-

resonant capture, see [Iliadis, 2015].
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Chapter 3

Accelerators

Three accelerators were utilized in the present measurements. The measurements

themselves were performed at the Laboratory for Experimental Nuclear Astrophysics

(LENA) at the Triangle Universities Nuclear Laboratory (TUNL) in Durham, North Car-

olina (a schematic of LENA is shown in Figure 3.1 with all major beamline components

and accelerators labeled). LENA is equipped with a JN Van de Graaff accelerator that

was modified in the present work to produce α particles, and an Electron Cyclotron Res-

onance (ECR) source used to produce a number of the targets used in this study. An Eaton

NV-3206 ion implanter located at the University of North Carolina at Chapel Hill was also

used to produce a number of the targets used in this study.

Figure 3.1: Schematic for the LENA experimental area. Major beamline components,
steering elements, vacuum systems and target chamber components are clearly labeled.
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3.1 JN Van de Graaff Accelerator

The JN Van de Graaff accelerator (hereafter referred to as the JN) is a High Voltage

model JN-type accelerator at LENA that has been modified to accommodate a radio-

frequency ion source and associated high-output beam. A plasma is formed by an RF

oscillator capacitively coupled to a quartz ion plasma source bottle, and is intensified by

an external magnetic field produced by permanent magnets. Gas is fed into the bottle

via a controlled gas leak, and the RF electric field excites electrons, causing collisions be-

tween the electrons and neutral gas particles. Once the electrons acquire enough kinetic

energy, these collisions ionize the gas, striking a plasma. The plasma is confined by the

axial magnetic field, and can be positioned along the source bottle through adjustment of

metal clips on the quartz bottle responsible for producing the RF electric field. The plasma

is then extracted using a variable electric potential of 0-3 kV applied to a metal probe at

the end of the ion source. During standard operation at the energies of interest to this

study, the JN ion source is held under ≈ 170 psi of a nitrogen, carbon dioxide, and sulfur

hexafluoride gas mixture to electrically insulate the terminal and acceleration column.

Once a sustain plasma is generated, the extraction and focusing component inject the

charged particles into an acceleration column capable of accelerating voltages up to 1

MV. The charged particles are then focused and steered through a set of narrow slits

before passing through the analyzing magnet. The magnet selects the energy of the beam

via a feedback circuit that balances beam current on the horizontal slits at the exit of

the magnet. A Terminal Potential Stabilizer (TPS) then adjusts the terminal voltage as

necessary to guarantee the correct beam energy is obtained. Calibration of the analyzing

magnet is achieved through several measurements of well-known resonance reactions,

which are shown in Table 3.1. For a desired beam energy of E, the magnetic field of the

analyzing magnet, B, is determined by:
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B =
k

q
(2mc2E + E2)1/2 (3.1)

where q and m are the charge and mass of the ions being accelerated, and k is the cal-

ibration constant [Rolfs and Rodney, 1988]. After passing through the analyzing magnet

the beam encounters another set of magnetic steerers and quadrupole shaping magnets,

followed by a rastering system that scans the beam across the target face in a grid pattern

at a frequency of ≈ 2 Hz to guarantee uniform charged particle deposition on the target.

The beam then passes through a scanner that allows for determination of the size and

shape of the beam spot before finally reaching the target.

Reaction Γ (eV) Elab
r (keV)

18O(p,γ)19F 150.82(9) 130(10)
26Mg(p,γ)27Al 292.06(9) < 37

338.4(1) < 40
453.8(1) < 81

27Al(p,γ)28Si 202.8(9)
326.97(5) < 38

405.44(10) < 42

Table 3.1: Tabulation of resonances used for the LENA analyzing magnet calibrations
[Iliadis, 2007].

Targets were held at the end of the LENA beamline in a target chamber, illustrated in

Figure 3.2. The charged particle beam first travels through a liquid nitrogen cooled copper

shroud which reduces contaminant buildup on the target. The beam then travels through

a 1.27 cm diameter collimator placed before the target to ensure that the beam spot does

not extend beyond the implanted region of the target. A secondary electron suppression

ring right before the target is biased to -300 V and prevents emission of secondary elec-

trons from the target, improving the accuracy of the measurement of the integrated beam

current. The vacuum in the target chamber is maintained at 5×10−7 Torr by a turbo pump

and oil-less scroll pump.
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Figure 3.2: Schematic drawing of the LENA target chamber. The beam passes through a
liquid nitrogen cooled copper shroud (to reduce buildup of contaminants on the target),
a collimator, a secondary electron suppression ring (-300 V bias) and finally strikes the
target in a water-cooled holder. The target holder is electrically isolated to allow the
measurement of the accumulated charge of the incident charged particle beam.

3.1.1 JN Test Stand

The JN at LENA typically produces and accelerates protons, and modifications were

needed for the ion source to produce the helium plasma needed to create the α particles

necessary to measure the 22Ne(α,γ)26Mg reactions. The JN accelerator sees heavy use in

LENA, so modifications needed to be thoroughly planned and tested to avoid unneces-

sary accelerator downtime. To accomplish this, the JN ion source was duplicated onto

a test bench (hereafter referred to as the test stand) and modifications were tested before

being replicated on the JN. Figure 3.3 shows the test stand used for these modifications.

A hydrogen plasma was first created to serve as a benchmark for testing of the helium

plasma, and a current of ≈ 0.5 mA was measured at the focus electrode. It was discov-

ered that changing the hydrogen gas to helium, and altering the gas pressure and certain
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RF tuning parameters was required to produce the maximum current from ionized he-

lium at the focus electrode. This helium plasma had a current of ≈ 0.4 mA at the focus

electrode.

Figure 3.3: The duplicate JN ion source (test stand). The plasma bottle is mounted on a
short acceleration column in the background, and the electronics responsible for produc-
ing and extracting the plasma are on a vertical aluminum sheet for easy access. Current
and voltage monitors are in the foreground, and the hydrogen and helium gas sources
are behind the vertical aluminum sheet.

3.1.2 JN Modifications

After identifying needed modifications on the test stand, The JN bell tank was de-

pressurized and opened to allow the modifications to be made to the ion source. To test

and modify the JN ion source, an ammeter was attached to the focus electrode, and the

three electrodes after the focus electrode were held at the extraction potential. This forced

plasma acceleration by the extraction electrode to deposit its charge on the focus elec-

trode, allowing the beam current to be read by the ammeter. Table 3.2 provides typical

operating parameters for maximum beam at the focus electrode.
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Parameter Hydrogen Helium
Grid current 3 mA 3 mA
Plate current 350 mA 450 mA
Extraction voltage 1.7 kV 2.0 kV
Gas pressure 1.6 ×10−6 Torr 2.4 ×10−6 Torr
Twin-lead length 3 inch 3 inch
Current at focus electrode 0.3 mA 0.25 mA

Table 3.2: Typical tuning parameters for maximum beam current at the focus electrode.
The JN was open and exposed to atmosphere for these tests, and specific values (such as
gas pressure and extraction voltage) will be changed slightly when accelerating beam the
to the target.

Because the JN had never produced α particles before, the accelerator needed addi-

tional calibration for precise beam energies. First, the calibration for protons was used

and the mass of an α particle was substituted into Equation 3.1 in place of the proton

mass. Because of the accuracy of measured atomic masses, this is thought to produce an

accurate calibration.

To confirm this, a direct calibration using the 400 keV and 814 keV resonances in

7Li(α,γ)11B reaction [Green et al., 1962, Hardie et al., 1984] was performed. a 7Li target

was produced by evaporating thin layer of LiF on a tantalum backing. The resonances

were measured using the bending magnet calibrations described above were used and

the yields were determined from the primary γ-ray from the R → 4445 keV transition in

the 814 keV resonance, and the primary γ-ray from the R → 0 keV transition in the 400

keV resonance. The front edges of the calibration are shown in Figure 3.4. It was con-

firmed that the beam was properly calibrated using the initial method, and no additional

adjustments to the calibration were necessary. A value of 2 keV is used for the energy

resolution of the JN, as that is the quoted energy resolution of the bending magnet.
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Figure 3.4: Yield curves of the 400 (left) and 814 (right) resonances in the 7Li(α,γ)11B re-
action. The γ-rays observed were from the R → 4445 keV transition in the 814 keV reso-
nance, and the R→ 0 keV transition in the 400 keV resonance.

3.2 Eaton Ion Implanter

3.3 temp1

The tantalum and fused silica targets for this study were implanted (see Chapter 4 for

details on tantalum targets, fused silica targets, and target implantation) with 22Ne using

an Eaton NV-3206 ion implanter with a modified end station at the University of North

Carolina at Chapel Hill. Shown in Figure 3.5, the implanter is capable of producing ion

beams using a variety of gas sources with an energy range of 20-200 keV. For these tar-

gets, neon ions were produced by using a low-pressure gas discharge within the Freeman

ion source. The gas was ionized with electrons emitted by a tungsten filament, and the

ionized gas was extracted with a 20 kV power supply. The ions were then passed through

a 90 degree analyzing magnet, allowing the 22Ne ions to be selected with a slit located at

twice the radius from the end of the magnet (similar to the analyzing magnet used with

the JN). The magnet was adjusted to select for 22Ne+, which corresponded to a magnetic

field of 0.503 T. The mass resolution of the analyzing magnet in the Eaton NV-3206 ion

implanter is listed at 1% with a mass range of up to 125 amu. This guarantees that only
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22Ne+ is accelerated through the magnet to the target backing.

Figure 3.5: The Eaton NV-3206 ion implanter at UNC-CH. This accelerator was decom-
missioned in the summer of 2018.

Figure 3.6 shows the major components of the implanter. Ions are produced in the

source using a resistively heated tungsten filament. These ions are mass separated in

the analyzing magnet before being accelerated down the column. The ions pass through

quadrupole shaping magnets and steering magnets which focus the beam and steer it to

the target. A beam rastering system and beam collimator guarantee the beam is evenly

spread across the target in a 2.54 cm diameter circle, and a liquid-nitrogen-cooled copper

shroud prevents contaminants from plating onto the target surface. The target holder was

water cooled to dissipate excess heat from the implantation and was electrically isolated

to allow the incident 22Ne+ dose to be measured. The geometry of the implanter target

chamber was modeled after the chamber used in LENA and is held below 5 × 10−7 Torr
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by a turbo vacuum pump. The Eaton ion implanter was capable of producing ≈ 200µA

of 20Ne+ on the target, and ≈ 15 µA of 22Ne+ on the target using natural neon gas in the

plasma chamber.

Figure 3.6: Schematic of the Eaton NV-3206 implanter at UNC-CH. 22Ne+ ions are pro-
duced in the source, mass separated in the analyzing magnet, and accelerated through
the column and cold trap before implanting into the target backing.

3.4 Electron Cyclotron Resonance (ECR) Source

A number of hardware problems with the Eaton ion implanter led to its decommission

before all the targets needed for this study were implanted. To finish implantation, the

Electron Cyclotron Resonance (ECR) source at LENA was modified to produce a 22Ne+

beam. The ECR generates a plasma by injecting microwaves into a chamber at with a

frequency corresponding to the electron cyclotron resonance frequency (as defined by a

uniform magnetic field within the plasma chamber). If alternating electric field of the
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microwaves is synchronous with the cyclic period of the free electrons, a resonance is

obtained, greatly increasing the kinetic energy of the free electrons. Collisions between

the free electrons and gas particles within the chamber result in ionization of the gas and

formation of a plasma.

The acceleration column (shown in Figure 3.7 for the ECR was specially designed

to extract, focus, and accelerate very high current beams (> 10 mA of proton beam).

Modifications to the gas injection system and microwave tuning parameters allowed the

ionization of neon.

Figure 3.7: Cut-away view showing the ECR ion source and acceleration column with all
major components labeled. Image taken from [Cooper et al., 2018].

A temporary implantation line was constructed on the spare 30◦ left port on the an-

alyzing magnet, providing the ability to differentiate between isotopes of neon. The im-

plantation line was equipped with electrostatic focusing, magnetic steering, and magnetic

rastering elements to ensure the maximum uniform particle deposition on the target. A
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target chamber similar to that shown in Figure 3.2 was installed on the end of the im-

plantation line, and the pressure in the beamline was held below 3× 10−7 Torr by a turbo

vacuum pump. The modified ECR source and new implantation line provided ≈ 1mA

of 20Ne+ on the target, and ≈ 75 µA of 22Ne+ on the target using natural neon gas in

the plasma chamber. This accelerator was used to implant the sintered metal and porous

evaporated metal targets designed and tested in this study (see Chapter 4 for details on

these targets).
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Chapter 4

Targets

Problems with previous measurements of the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg re-

actions were mentioned in Chapter 2, one of which was an issue of understanding the

density of gas targets used. Instead of a gas target, implanted targets were chosen for

this study primarily for their uniform thickness and stability under high intensity ion

bombardment. The aim of this chapter is to summarize the target backing preparation,

implantation, contaminant reduction techniques, and new target designs developed to

prevent beam induced damage.

The targets used for preliminary testing in the 22Ne(α,γ)26Mg reaction measurement

and contaminant studies were fabricated using tantalum target backings. The tantalum

(99.95% metals basis purity, excluding niobium) was purchased in 0.5 mm thick, 20 cm ×

20 cm sheets from Alfa Aesar. The sheets were cut at the UNC machine shop, producing

25 target backings per sheet. Each backing measured 38 mm × 38 mm with a 3 mm

diameter hole cut in one corner (see Fig. 4.1).
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Figure 4.1: A schematic drawing of the target backings used for some of the of the exper-
iments described in this dissertation.

4.1 Preparation of Target Backings

Metal target backings typically have impurities that can cause beam induced back-

ground under particle bombardment. To reduce the background from impurities, care

was given to the handling, storage, and preparation of the target backings, ensuring clean-

liness and reducing impurities. The target backings and implanted targets were stored in

a polycarbonate vacuum box, shown in Fig. 4.2. The target box was constructed by the

UNC machine shop. The vacuum was generated using an oil-free dry piston pump at-

tached to one of the ports on the top of the box. This method of storage prevents dust

buildup on the target face, and minimizes oxidization and gettering of the target face.
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Figure 4.2: The polycarbonate target box used to store backings and implanted targets
under vacuum.

4.1.1 Wet Etching

The first process in the preparation of tantalum target backings is known as wet etch-

ing. Wet etching removes oxide layers, machining oil, fingerprints, and any other sur-

face contaminants acquired during production of the tantalum backing material through

chemical dissolution in acid. The acid solution used consisted of five parts 95% sulfuric

acid (H2SO4), two parts 70% nitric acid (HNO3), and two parts 50% hydrofluoric acid (HF)

mixed together in that order [Vermilyea, 1953]. The HF acid is highly corrosive, and reacts

strongly with both glass and metal, so the mixture was contained within a teflon beaker,

and handled under a fume hood with extensive personal protective equipment. A pair

of Tefzel ethylene tetrafluoroethylene (ETFE) tongs with a small hook on the end were

fastened to the punched hole in the corner of the backing, and the targets were dipped

into the acid mixture, as illustrated in Figure 4.3. The reaction between the tantalum and
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the acid mixture is highly exothermic, so the teflon beaker containing the acid was stored

in an ice bath. Each target was submerged for a total of 60 seconds in 20 second intervals,

allowing for the target to cool off in deionized water when not in the acid mixture. The

etching process reduces the thickness of the backing from 0.5 mm to 0.35± 0.05 mm thick,

removing surface impurities and machining blemishes. Each batch of acid was capable of

etching three tantalum backings, after which the acid needs to be replaced. Finally, each

etched backing was washed with 200 proof ethanol and left to dry.

Figure 4.3: Illustration of the etching procedure.
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4.1.2 Resistive Heating

Even after wet etching removes surface impurities, additional contaminants remain

within the backings, usually from the metallurgical processing responsible for purifying

the metal. To remove these, the high vacuum oil-free evaporator system at LENA (shown

in Fig. 4.4) was used to resistively heat the backings to drive out remaining contaminants.

A single tantalum backing was held between two copper electrodes with internal water

cooling. The tantalum was held under a high vacuum (10−7 Torr) created by a cryogenic

cooling pump. Approximately 300 A of current was passed through the backings, heat-

ing them and causing them to glow a bright, uniform orange. Gas pressure within the

evaporator would rise to approximately 10−6 Torr while outgassing, and would return

to normal operating pressures of 10−7 Torr after approximately 15 minutes of operation,

indicating that the contaminates had been purged. The current would then be slowly

turned down, and after the target cooled off (approximately an hour) it was returned to

the target vacuum box shown in Fig. 4.2.
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Figure 4.4: The high vacuum oil-free evaporator system at LENA. Target backings are
held between the copper electrodes inside the bell jar and subjected to high current for
resistive heating.

4.1.3 Dose Calculations

The cleaned tantalum backings were implanted with 22Ne using an Eaton NV-3206

ion implanter described in Chapter 3. To maximize the number of implanted 22Ne ions,
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the target was implanted until saturation of the neon was reached. The stoichiometry is

defined as the ratio of active target nuclei to the number of nuclei that do not participate

in the reaction of interest, and previous work in the LENA lab involving implantation of

22Ne in tantalum showed a saturation stoichiometry of ≈ 3:1 Ta:Ne. The charge accumu-

lation necessary to reach 22Ne saturation of the target backings is given by:

Q =
Nn

ε
(1.602× 10−19C) (4.1)

Where Nn is the number of neon atoms striking the target backing, and ε is the im-

plantation to sputtering efficiency (estimated in this work to be a conservative 0.25). The

value of Nn is determined by

Nt =
a

b

ρtV NA

An
(4.2)

Where a
b

is the expected stoichiometry (3 in this case), ρt is the mass density of the

target backing, Na is Avogadro’s number, An is the atomic mass of the backing atoms,

and V is the volume, defined as:

V = πr2d (4.3)

where r is the radius of the implantation region (in this case, r is set by the collimator

to be 1.27 cm), and d is the penetration depth of the implanted ions. In this case, d was

calculated using the SRIM-2008.04 computer application [Ziegler and Biersack, 2008].

For the 30 keV targets used in this study, the necessary dose to achieve saturation was

calculated to be ≈ 0.2 C of charge.
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4.2 22Ne Implantation

Implantation for the initial tantalum targets was performed using the Eaton ion im-

planter (see Chapter 3) with an average beam current to target of ≈ 20 µA. At this beam

intensity, it took ≈ 5 hours to implant each target to ≈ 0.35 C, which is above the satura-

tion point to account for uncertainty in calculated dosage required. A total of four targets

were produced to explore the possibility of reducing carbon contamination that interfered

with previous measurements of the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions. Table 4.1

shows the settings for the implantation of 22Ne+ into the solid backings used for the four

targets. (as mentioned in Chapter 3, the Eaton implanter has been decommissioned. The

parameters here are only to allow comparison between these settings used for the targets

in this study, and the settings listed in prior dissertations that used the Eaton implanter).

Parameter Value
Implantation energy 25.0 keV
Chamber vacuum 4× 10−7 Torr
Beamline vacuum 5× 10−7 Torr
Scan amplitude X 8 o’clock
Scan amplitude Y 8 o’clock
Beam centering X 2 o’clock
Beam centering Y 9 o’clock
Focus X 2 o’clock
Focus Y 2 o’clock
Filament current 6.00 rotations
Magnet current 1.78 rotations
Discharge current 4.5 A
Extraction current 5.0 mA
Collimator current 15 µA
Average beam current 25 µA
Accumulated charge 0.35 C

Table 4.1: Typical tuning parameter settings for implantation of 22Ne+ into tantalum with
the UNC ion implanter. Settings using ”o’clock” reference the position of the dial rela-
tive to a clock face. It should be noted that filament current begins at 6.00 rotations, but
steadily decreases over the course of the run as the filament deteriorates.
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4.3 Carbon Contamination

Past solid target measurements of the 22Ne(α,n)25Mg reaction discovered large neu-

tron backgrounds originating from the 13C(α,n)16O reaction [Giesen et al., 1993]. Carbon

is typically deposited on the targets during implantation, and can be produced from sev-

eral sources. Carbon buildup has been observed on targets implanted at UNC, and is

hypothesized to originate from the glue within the acceleration column, outgased from

rubber O-rings, and especially from the oil diffusion pump, which has been identified as

a major source of carbon contamination in other implanters [Tsai et al., 1979]. Figure 4.5

shows an implanted target and non-implanted backing. The red arrow points to the re-

gion of implantation demarcated by the slightly discolored circle is thought to be caused

by contaminants not captured by the liquid nitrogen cold trap that coalesce on the target

backing. The implantation beam heats the target, baking the carbon on the surface and

driving some of it into the tantalum target backing. In an attempt to reduce neutron back-

ground caused by the 13C(α,n)16O reaction, three different cleaning methods were tested

to eliminate surface carbon: piranha solution, pentane, and O2 plasma cleaning.

Figure 4.5: A contrast adjusted image of an implanted target (on the left) and a non-
implanted backing (on the right). The red arrow indicates the region of implantation,
visible as a slightly darker ring in the center of the target backing.
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4.3.1 Piranha Solution Cleaning

The first cleaning method used was a piranha solution, which is highly acidic, and

a powerful oxidizer. It is traditionally a 3:1 mixture of sulfuric acid (H2SO4) and 30%

hydrogen peroxide (H2O2). The piranha solution undergoes an energetically favorable

dehydration of hydrogen peroxide to form hydronium ions, bisulfate ions, and atomic

oxygen via:

H2SO4 +H2O2 → H3O
+ +HSO−4 +O (4.4)

The free radical oxygen species in this reaction is extremely reactive, and allows the

solution to dissolve elemental carbon, which is normally difficult to remove from delicate

surfaces (like an implanted target) because of the high chemical stability and typically

graphite-like hybridized bonds of carbon allotropes. The most likely way the free radical

oxygen can attack the carbon is by disrupting the stable carbon-to-carbon surface bonds,

allowing the oxygen and carbon to form a carbonyl group, as in the process:

C

C

C

C + O C

C

C

O + C

C

C

In this situation, an electron bonding pair from the central carbon is essentially ”stolen”

by the oxygen. This allows further reactions to convert the carbonyl groups to carbon

dioxide, such as through the process:

C

C

C

O + C + 2O C

O

O

+ 2C + C

which operates on the order of minutes.

A piranha solution was mixed according to the above description in a teflon container

placed in an ice bath. The mixture was kept under a fume hood to minimize exposure to
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hazardous fumes. One of the four tantalum targets mentioned in Section 4.2 was placed

in the piranha solution and left ≈ 30 minutes to ensure all carbon contaminants fully

dissolved.

4.3.2 Pentane Cleaning

The second method for carbon cleaning used the organic solvent pentane. Pentane is a

colorless alkane with a low odor, high volatility, rapid evaporation rate, and the chemical

formula C5H12 [Barton, 1991]. Pentane has entirely non-polar bonds (C-C and C-H only),

making it a good solvent for non-polar contaminants, such as carbon.

A target was placed with the implanted face up on a clean work surface. Pentane

was applied to a Kimwipe which was slowly dragged across the surface of the implanted

region of the target. This process was repeated while constantly changing wipes and

reapplying pentane. After≈ 10 minutes of cleaning, blackish streaks of (what is presumed

to be) carbon became visible (see Fig. 4.6). This process was continued until no more

streaks were observed (≈ 40 minutes).
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Figure 4.6: An implanted target in the process of pentane cleaning. The black streaks are
assumed to be carbon or carbon composite buildup.

4.3.3 O2 Plasma Cleaning

A final method of carbon cleaning was the use of an oxygen plasma, which cleans

surface contaminants through two processes. The plasma’s activated species produce

photons in the short wave ultraviolet range, which is very effective at breaking apart

organic bonds (C-H, C-C, C=C, C-O, etc.), allowing the plasma (O, O+, O−, O+
2 , O+

2 −, O3,

O+
3 , O−3 , metastable excited states, and free electrons [Pizzi and Mittal, 2003]) to form H2O,

CO, CO2, and light hydrocarbons. These new compounds have relatively high vapor

pressures, and quickly evaporate into the vacuum-like pressures of the plasma chamber.
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Figure 4.7: The Grow Research AutoGlow plasma cleaner used to eliminate carbon.

One of the implanted tantalum targets was taken to Chapel Hill Analytical and Nanofab-

rication Laboratory (CHANL). The target was placed in CHANL’s Grow Research Auto-

Glow O2 plasma cleaner (shown in Figure 4.7), and left inside for≈ 15 minutes. No visible

changes to the surface of the target were detected.

4.3.4 Carbon Comparison

The JN accelerator (see Chapter 3 for more information on the JN) was not operational

during the beginning of this experiment, preventing a measurement of the carbon on

the targets or the quantity of implanted neon before cleaning. The consistency of charge

accumulated across targets allows the assumption of equal carbon deposition/implan-

tation for each. Additionally, past use of 22Ne implanted tantalum targets [Kelly, 2016]

fabricated in the same manner as this study allows for the assumption of constant 22Ne

yields for each target. Because of the lack of initial measurements and the above assump-

tions, the targets can only be compared to each other to look for large deviations in carbon
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content and implanted 22Ne.

Yield curves of the implanted 22Ne targets were made using the 22Ne(p,γ)23Na re-

action. The 479.3(8) keV resonance [Kelly, 2016] was used to measure the yield curves

shown in Fig. 4.8. The 6270 keV γ-ray from the 9252→ 2982 keV [Longland et al., 2010a]

primary transition in 23Na was monitored to determine the yield.

A Markov Chain Monte Carlo (MCMC) code developed in R by Richard Longland

called YCurve.R was used to fit and analyze the yield curve for each target (shown in

Fig. 4.8). This code uses an iterative minimization function to calculate parameters such

as resonance energy, beam width, target thickness, straggling constant, and integrated

yield. The results of the yield curves indicate there is no significant degradation of 22Ne

in the targets as a result of the various cleaning methods.
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Figure 4.8: 22Ne(p,γ)23Na Yield curves for targets cleaned through various methods. Black
data points were measured using the JN Van de Graaff accelerator at LENA, and the red
fit was generated using an MCMC fitter. The fitter uses arbitrary units for yield, which
were counts/µC in this case. The γ-ray monitored for these measurements was the 6270
keV γ-ray from the 9252→ 2982 keV primary transition in 23Na. (Top left) yield curve for
target cleaned using pentane (see Section 4.3.2). (Top right) yield curve for target cleaned
using piranha solution (see Section 4.3.1). (Bottom left) yield curve for target cleaned
using oxygen plasma (see Section 4.3.3).(Bottom right) yield curve for uncleaned target.
In the upper right of each plot there is listed in order: resonance energy, beam energy
width, maximum yield, target width, straggling, and integrated yield. There appears to
be no significant negative effect on the 22Ne yield using the various cleaning methods.
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To measure the carbon contamination on each target, the target chamber (see Chapter

3) was removed and cleaned with Bear-Tex, ethanol, and acetone to remove any carbon

deposited near the target (the components cleaned are shown in Fig. 4.9). After cleaning

the collimator, carbon was measured using the 12C(p,γ)13N direct capture reaction at 435

keV beam energy. This energy was chosen to avoid resonances in both 22Ne and 12C. The

direct capture of 12C(p,γ)13N was measured using an emitted 2339 γ-ray.

Figure 4.9: The dissembled target chamber at LENA. The copper shroud, electron sup-
pressor, and collimator are all shown here. All three components were cleaned with Bear-
Tex, ethanol, and acetone to remove carbon.

Figure 4.10 shows the results from the carbon test. Targets cleaned with pentane, O2

plasma, and piranha solution were compared to targets without any cleaning. No signif-

icant reduction in carbon content was detected between the cleaned targets, and the un-

cleaned target. An argument could be made that the cleaning process actually increased

carbon contamination, but some of the cleaning methods (such as the plasma cleaning)

does not have a known mechanism by which carbon could be deposited. It is possible

that initial carbon contents before cleaning varied slightly, and cleaning either resulted
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in small or no reduction of the carbon. This indicates the presence of significant sub-

surface carbon beyond the influence of conventional cleaning methods. The carbon was

most likely deposited onto the target during implantation, and then driven into the target

backing by the 22Ne beam.

Figure 4.10: Relative comparison of measured carbon on 4 targets with different clean-
ing methods. Carbon was monitored using the 2339 keV γ-ray from direct capture of
12C(p,γ)13N reaction at 425 keV beam energy. Carbon was not significantly lower in the
cleaned targets, indicating that carbon contamination is not limited to the surface.

It was determined that no significant carbon reduction could be achieved through

surface treatment of the targets. This inability to eliminate the carbon contamination mo-

tivated the development of the fast neutron spectrometer detailed in Chapter 5.

4.4 Target Blistering

It was discovered during initial attempts to measure the 22Ne(α,γ)26Mg reaction that

standard tantalum backings experienced greater-than-expected degradation after 0.1 C
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of accumulated charge under ≈ 850 keV α-particle bombardment. The phenomenon re-

sponsible for this is known as blistering, and occurs when small bubbles of helium form in

the target [Marochov and Goodhew, 1988, Van Veen et al., 1983]. Blistering has also been

shown by others to cause significant target degradation [Erents and McCracken, 1973,

Evans, 1977, 1978, Johnson et al., 1999, Kaminsky and Das, 1974].

Estimates for the amount of deposited charge needed to measure the 22Ne(α,γ)26Mg

reaction with the detector setup used for this experiment made the use of these tanta-

lum targets highly impractical. Other backing materials were explored in an attempt

to identify a backing material capable of withstanding α-particle bombardment without

blistering. A significant effort was made to develop a blister resistant target for this and

future α-particle measurements. The research for the the blister-resistant targets has been

published in [Hunt et al., 2018].

Figure 4.11 illustrates the effect and the resulting destruction of surface target material.

High pressure helium bubbles from α-particle bombardment form within the metallic lat-

tice, as depicted in part (a). Once enough pressure has built, the bubbles burst through the

face of the target, destroying the surface of the target backing and resulting in a significant

loss of implanted or evaporated target material, as illustrated in part (b).

Blistering is distinct from damage caused by excessive power deposition from intense

particle bombardment on the target. Damage from excessive power deposition, referred

to in this dissertation as heat damage, can occur with an incident beam of any particle type.

Blistering only occurs when certain gases are implanted into metals, and usually results

in burn marks on the target and a steady decrease of target material with continued ion

bombardment.
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Figure 4.11: Illustration of blistering in a metal target of crystal structure. (Gray) Metal
backing atoms; (Red) Implanted target atoms; (Green) Helium atoms. (a) Bubble forma-
tion during α-particle bombardment, but before blistering occurs. (b) Destruction of the
surface of the implanted target once the helium bubbles grow large enough to rupture
through the surface.
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When helium is implanted into a metal, it migrates through the atomic lattice until

it encounters a structural imperfection, called a loop dislocation. At a certain dose of

implanted ions, the pressure inside the dislocation is sufficient to “punch” out of the loop

dislocation (loop punching) to form a bubble. This limiting pressure is given by [Trinkaus,

1983]

P =
2γ + µb

R
(4.5)

where γ is the surface free energy, b is the Burgers vector (representing the magnitude and

direction of a lattice distortion resulting from a dislocation), µ is the sheer modulus, and

R is the bubble radius. Typical pressures for bubble formation using this model range

from 9 GPa in aluminum to 40 GPa in molybdenum.

If helium is implanted continuously after the formation of a bubble, the bubble will

continue to grow. It has been shown [Mansur and Coghlan, 1983] that the modified van

der Waals equation of state, given by

P ′ =
nkT

V − nB
(4.6)

accurately approximates the behavior of helium inside the bubble. Here, P ′ is the pres-

sure inside the bubble, T is the temperature, B is the van der Waals volume correction

coefficient, k is the Boltzmann constant, and n is the particle number in moles.

At bombarding energies in the million electron volt range, small bubbles (R < 2 nm)

form close to the metal backing surface (within≈ 5 µm). Continuous α-particle bombard-

ment will cause the bubbles to grow, according to Equation (4.6) with internal pressures

limited by Equation (4.5). With enough bombardment, the bubbles rupture through the

surface of the target, resulting in a significant loss of evaporated or implanted target ma-

terial.

Figure 4.12 depicts the progression of blistering in a titanium backing implanted with

22Ne ions during bombardment with 900 keV α-particles. Panels (a), (b), (c), and (d) show
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the same target after an accumulated ion beam charge of 0.2 C, 0.4 C, 0.6 C, and 0.8 C,

respectively. The images demonstrate the visible changes to the surface of the target, but

it should be noted that significant degradation of implanted target material (22Ne; see

below) can be observed with as little as 0.1 C of accumulated charge.

c)

a) b)

d)

Figure 4.12: Example of the progression of blistering in a titanium backing implanted
with 22Ne ions caused by the bombardment with α-particles of 900 keV energy. The α-
particle intensity was kept low, near 30 µA, to prevent heat-related damage to the target.
Panels (a), (b), (c), and (d) correspond to accumulated charges of 0.2 C, 0.4 C, 0.6 C, and
0.8 C, respectively. The effects of blistering in the center region become more apparent
with increasing charge accumulation. After an accumulated charge of 0.8 C, the target is
heavily damaged.

The targets in this portion of the dissertation were fabricated by implanting 22Ne ions

into backings using both the Eaton NV-3206 and the ECR source discussed in Chapter 3.

All targets in this study were implanted at an energy of 75 keV using the maximum beam

intensity available at each accelerator. Targets were tested and characterized using the JN
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Van de Graaff accelerator also discussed in Chapter 3. Like the yield curves produced in

Section 4.3.4, the targets in this section were monitored using the the 479.3(8) keV (labo-

ratory frame) resonance in the 22Ne(p,γ)23Na reaction. The γ-ray monitored for the yield

curve had an energy of 6270 keV, corresponding to the 9252 → 2982 keV primary tran-

sition in 23Na [Longland et al., 2010a]. The γ-rays were measured using LENA’s coaxial

high purity germanium (HPGe) detector discussed in Chapter 5.

4.5 Blister-Resistant Targets

To illustrate the loss of target atoms caused by blistering in a typical nuclear reac-

tion experiment, a target was made by implanting 22Ne ions into one of the tantalum

backing (described earlier in this chapter) with an incident dose of ≈ 0.45 C. The yield

curve (i.e., the 22Ne concentration profile), measured using the the 479 keV resonance in

22Ne(p,γ)23Na, is shown in Figure 4.13a. The 22Ne has a thickness of ≈ 10 keV, and a stoi-

chiometry of≈ 22Ne1Ta3. After this measurement, the target was exposed to an α-particle

beam of 900 keV energy and 30 µA intensity, resulting in a total accumulated charge of

0.5 C. Another attempt to measure a 22Ne(p,γ)23Na yield curve was made, but only upper

limits for the intensity of the 6270 keV γ-ray could be determined (blue data points in

Figure 4.13a). In other words, blistering during α-particle bombardment had removed all

implanted 22Ne atoms.
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Figure 4.13: Yield curves for the 479 keV (laboratory frame) resonance in 22Ne(p,γ)23Na,
measured by using the observed intensity of the 6270 keV γ-ray from the decay of 23Na.
The red and blue data points correspond to the yield before and after α-particle bom-
bardment. (a) Tantalum sheet implanted with 22Ne ions. Notice that only upper limits for
the yield could be obtained after α-particle bombardment with an accumulated charge of
0.5 C (blue data points), demonstrating the severe loss of 22Ne concentration caused by
blistering. (b) Fused silica target implanted with 22Ne ions. The maximum yield declines
by ≈ 20% after α-particle bombardment with an accumulated charge of 0.65 C.
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The following subsections describe the fabrication and testing of three types of blister-

resistant targets, the final of which was ultimately used to measure the 22Ne(α,γ)26Mg

reaction in this dissertation.

4.5.1 Fused Silica Targets

Fused silica, sometimes referred to as fused quartz, is a glass (amorphous silicon diox-

ide) that is formed by melting a silicon-rich chemical precursor in combination with flame

oxidation at temperatures around 1700 K [Voorhees et al., 1974]. The lack of additives typ-

ically used in glass-making to lower the melting point (such as borontrioxide, metaphos-

phates, or sodium compounds) results in a clear glass that is low in contaminants and

has a very high gas diffusion coefficient [Lee et al., 1962, Masaryk and Fulrath, 1973,

Swets et al., 1961]. The high diffusion coefficient (the exact value for the helium diffusion

coefficient is dependent on temperature, with ranges of ≈ 0.25 - 600 × 10−7 cm2/s for

temperatures between 25 - 1000 C [Swets et al., 1961]) allows the implanted, electrically-

neutralized α-particles to disperse throughout the backing and into the water cooling sys-

tem on the back face of the target, preventing bubble formation and associated blistering.

The situation is shown schematically in Figure 4.14.
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Figure 4.14: Structure of a fused silica target. (Light blue) Fused silica backing atoms
forming an amorphous matrix; (Gray) Evaporated Ti atoms; (Red) Implanted 22Ne atoms;
(Green) Helium atoms. The incident helium atoms diffuse quickly through the fused silica
matrix, which prevents high-pressure bubbles from forming. Compare this situation with
the one depicted in Figure 4.11.

Fused silica has long been studied as a material to contain high level nuclear waste,

in part because the high helium diffusion coefficient reduces the damage from blister-

ing [Matzke and Vernaz, 1993]. In addition to high gas diffusion rates, fused silica can

be made chemically pure, thereby reducing the ion-beam-induced background in a nu-

clear reaction measurement. For more details on the types of fused silica glass and their

associated impurities, see [Ferreira Nascimento and Zanotto, 2007].

The fused silica backings used in our experiment were discs with a diameter of 3.81
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cm, and a thickness of 1.59 mm, made of polished GE 124 glass1 purchased from Technical

Glass Products®. An image is shown on the right side in panel (a) of Figure 4.15. A

thin surface metal layer must be evaporated onto the fused silica backing to hold the

implanted 22Ne atoms, since noble gases implanted directly into the fused silica would

diffuse through the matrix. This layer must be thin enough to allow the α-particles to

pass through before coming to a stop within the fused silica backing, and also be thick

enough to hold the desired layer of implanted target material (Figure 4.11). Titanium was

chosen for this study because it has a lower effective stopping power than most metals,

resulting in a higher nuclear reaction yield [Iliadis, 2015].

The projected range of 900 keV α particles in titanium metal is ≈ 2 µm, according to

the SRIM package [Ziegler et al., 2013]), while the projected range of 22Ne ions implanted

at 100 keV is≈ 30 nm. This lead to a 200 nm thick layer of titanium to be chosen for evap-

oration onto the fused silica backing. This layer also allowed for integrating the current

deposited by the ion beam, despite the fact that fused silica is an electrical insulator, by

providing the charge deposited by the incident α particles a short path to ground (≈ 3 µm,

the penetration depth of the α particles in fused silica after losing energy in the titanium

layer).

The smooth surface of the fused silica has a tendency to cause the evaporated titanium

layer to peel away. For this reason, the fused silica backing was “frosted” using a 20 psi

glass bead blaster before evaporation. This process creates a pitted glass surface to which

the titanium can better affix. An image of a frosted backing is shown on the left side in

panel (a) of Figure 4.15. It should be noted that excessive frosting of the glass can weaken

the backing. If high pressure (> 40 psi) water is used for target cooling, frosting should be

kept to a minimum to prevent the backing from fracturing under the differential pressure

of the vacuum on one face and water cooling on the opposite face.

1The manufacturer provided the following tracer element concentrations (in parts-per-million): OH−

(33); Al (20.3); Ca (1.8); Fe (1.9); Li (1.0); Mg (0.5); Na (1.3); Ti (1.4).
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After a thin titanium layer was evaporated onto the frosted glass surface, it was im-

planted with 22Ne ions using a dose of ≈ 1 C using the Eaton ion implanter (see Chapter

3). Images of the evaporated and implanted surfaces are shown in panels (b) and (c) of

Figure 4.15.

c)b)

a)

Figure 4.15: Preparation of a fused silica target. (a) Fused silica backings before (right)
and after (left) being frosted using a glass bead blaster. (b) Frosted fused silica backing
after evaporation of a thin titanium layer. (c) Target after implantation of 22Ne into the
thin titanium surface layer.

Yield curves of the 22Ne(p,γ)23Na reaction are displayed in Figure 4.13b. The red points

show the the yield before any α-particle bombardment. This target is thicker compared

to the implanted tantalum target (Figure 4.13a) because of the larger range of 22Ne ions

in titanium compared to tantalum. However, the heights of the yield curves (red points

in Figure 4.13) are comparable. For the fused silica target, the measured maximum yield
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corresponds to a stoichiometry of ≈ 22Ne1Ti5.

The fused silica target was then exposed to a 900-keV energy α-particle beam with

an intensity of 30 µA. The total accumulated charge was 0.65 C. No visible marks of

blistering, such as those shown in Figure 4.12, were observed on the target surface after

α-particle bombardment. A second yield curve was measured after α-particle bombard-

ment, which is displayed as the blue data points in Figure 4.13b. It can be seen that the

maximum yield degraded by≈ 20% after α-particle bombardment. This result represents

a significant improvement over the implanted tantalum target, which showed a complete

loss of the implanted 22Ne concentration after a similar accumulated α-particle charge.

Signs of heat damage (Section 4.4) in the form of minor burn marks on the surface

and an odor of burnt metal were noticed when the target was removed from the vacuum

chamber after α-particle bombardment. Fused silica has a relatively low coefficient of

thermal conductivity (≈ 2.7 × 10−3 cal cm−1sec−1K−1 [Wray and Connolly, 1959]), which

prevents these targets from withstanding high ion beam powers. Further tests indicated

that heat damage starts to become noticeable at beam powers > 25 W cm−2, correspond-

ing to an α-particle beam of ≈ 30 µA intensity at 900 keV energy.

Fused silica targets exhibit significant blister resistance, and have low contaminant

concentrations [Ferreira Nascimento and Zanotto, 2007]. Therefore, they will likely be

advantageous in many nuclear physics experiments that utilize moderate beam intensi-

ties. However, these targets will be subject to heat damage at high beam powers in excess

of 25 Wcm−2, making them sub-optimal for measuring reactions requiring intense beam,

such as the 22Ne(α,γ)26Mg.

4.5.2 Sintered Metal Targets

Sintered metal is produced by compacting and molding a mass of small metal grains,

typically with pressure or heat, without reaching the melting point. The result is a porous

matrix, and a target can be produced by implanting ions into the surface layer of such
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a backing. The situation is illustrated in Figure 4.16, showing a titanium sintered back-

ing (gray) with a 22Ne-implanted surface region (red), which is exposed to a helium ion

beam (green). The beam traverses the target region and comes to a stop deeper inside the

sintered backing. High-pressure helium bubbles may form inside the grains. When the

bubbles explode, they will burst into the inter-grain pore space, without damaging the

implanted target surface. The size of the grains is important in this regard. If the grain

size is smaller than the size of the bursting helium bubbles (< 100 nm; see Section 4.4),

loop punching may not occur as helium atoms diffuse through the sintered matrix rather

than congregate at lattice impurities (Section 4.4).
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Figure 4.16: Structure of a sintered titanium target. (Gray) Titanium atoms, forming
grains of a crystal structure, separated by cavities (pores); (Red) Implanted 22Ne atoms;
(Green) Helium atoms. Helium bubbles form in the titanium grains and burst into the
inter-grain volume, preventing damage to the implanted target material near the surface.

Sintered metals are typically sold based on pore size (usually between 3 nm and

200 µm). We purchased sintered titanium metal discs with a diameter of 3.81 cm and a

thickness of 1.59 mm from Porvair Filtration Group®. The average pore size was 100 nm.

Because of the porous nature of sintered metal, it is not possible to directly water cool

the back of the target and maintain vacuum. Therefore, we sealed the back of the target by
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affixing a 0.5 mm thick nickel sheet with Armstrong A-12 Epoxy® to the sintered titanium

backing. The nickel sheet was then exposed to direct water cooling during our measure-

ments. Figure 4.17 shows the round sintered titanium disk mounted atop a square nickel

sheet.

Figure 4.17: Sintered titanium target. The round disk is the sintered titanium backing,
and the irregular dark spot on the surface is the region with implanted 22Ne atoms. The
brown square around the disc is epoxy affixing it to the square nickel sheet. The target
holder is seen behind the target.

The sintered titanium backing was implanted with singly-charged 22Ne ions using a

dose of ≈ 1 C using the ECR source modified to produce a neon beam (see Chapter 3).

Yield curves of the 479 keV resonance in 22Ne(p,γ)23Na are displayed in Figure 4.18a. The

red data points show the reaction yield before any α-particle bombardment. The target

was then exposed to an α-particle beam of 400 keV energy and 50 µA intensity for a total
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accumulated charge of 0.5 C.2

A second 22Ne(p,γ)23Na yield curve was then measured, which is shown as the blue

data points in Figure 4.18a. It can be seen that the maximum yield decreased by ≈ 20%.

The magnitude of the degradation is similar to the result for the fused silica target (Sec-

tion 4.5.1 and Figure 4.13b), but nevertheless represents a significant improvement over

the performance of an implanted tantalum sheet (Figure 4.13a) that exhibited a complete

loss of implanted 22Ne atoms after a similar incident α-particle dose.

2Problems with the accelerator prevented us from using an α-particle beam of 900 keV for this mea-
surement. However, it has been shown that helium bubble formation in metals occurs at all bombarding
energies [Marochov and Goodhew, 1988]. Furthermore, we have observed blistering with a 400-keV α-
particle beam incident on an implanted tantalum target.
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Figure 4.18: Yield curves for the 479 keV (laboratory frame) resonance in 22Ne(p,γ)23Na,
measured by using the observed intensity of the 6270 keV γ-ray from the decay of 23Na.
The red and blue data points correspond to the yield before and after α-particle bom-
bardment. (a) Sintered titanium backing implanted with 22Ne ions. The maximum yield
declines by≈ 20% after α-particle bombardment with an accumulated charge of 0.5 C. (b)
Porous titanium target implanted with 22Ne ions. Notice that the maximum yield height
does not change after α-particle bombardment with an accumulated charge of 1.5 C.
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No visible effects of blistering, such as those shown in Figure 4.12, were observed on

the target surface after α-particle bombardment. However, as was the case for the fused

silica target (Section 4.5.1), we observed minor burn marks and an odor of burnt metal

after the target was removed from the vacuum chamber. Further tests showed that an

α-particle beam power exceeding 20 W cm−2 will result in heat damage to the sintered

titanium target. This effect, rather than blistering, is the suspected cause of the decline in

the maximum yield shown in Figure 4.18a.

Sintered metals have been shown to have a lower thermal conductivity than solid met-

als. The thermal conductivity is inversely proportional to the porosity (up to a reduction

factor of 3 at 45% porosity; see Figure 3 of [Kononenko et al., 1968]). This is partly because

of the lower density, and partly because of insulating gases present within the intergrain

space [Januszewski et al., 1977, Kononenko et al., 1968]. Insulating gases are absent in

the environment of the vacuum chamber. Although the thermal conductivity of sintered

metals in a vacuum is not well measured, it is likely that the lower density will contribute

to a lower overall thermal conductivity when compared to a solid metal backing. The ob-

served heat damage could potentially be mitigated by either utilizing a sintered metal of

higher thermal conductivity (e.g., nickel or tantalum), or by using thinner sintered metal

discs.

In addition, the epoxy affixing the sintered titanium backing to the water-cooled tita-

nium sheet (Figure 4.17) will contribute to a decrease in the thermal conductivity of the

target. A better method of sealing the back surface of the backing will likely improve the

thermal conductivity.

4.5.3 Porous Metal Targets

When a metal layer is evaporated at a slow rate (several nanometers per minute) onto a

heated metal surface, it can form a porous structure of interlocking metal crystals [Bauer,
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1958], also called porous metal. If the evaporated layer extends beyond the range of inci-

dent α particles, they come to rest within the interlocking crystal matrix. Helium bubbles

will likely not form in such a medium during α-particle bombardment if the crystals are

smaller than the typical diameter of helium bubbles in solid metals (Section 4.4). If, on the

other hand, the crystals are larger than the helium bubbles, the latter will burst into the

inter-crystal volume, thereby preventing blister damage to the implanted or evaporated

material at the target surface.

A target with a porous titanium surface layer was fabricated as follows. A thick (> 3

µm) layer of titanium was first evaporated onto a 0.5 mm thick titanium backing at a rate

of ≈ 7 nm per minute. Subsequently, 22Ne ions were implanted with the ECR neon beam

into the porous surface with an incident dose of ≈ 1 C. The morphology of the target

surface will be discussed in Section 4.5.4.

Yield curves of the 479 keV resonance in 22Ne(p,γ)23Na are displayed in Figure 4.18b.

The red data points show the reaction yield before any α-particle bombardment. The

target was then exposed to an α-particle beam of 900 keV energy and 50 µA intensity

for a total accumulated charge of 1.5 C. A second 22Ne(p,γ)23Na yield curve was then

measured, which is shown as the blue data points in Figure 4.18b. It can be seen that the

maximum yield did not change as a result of helium beam exposure.

We did not observe any visible signs of blistering on the target surface. Neither did

we notice any signs of heat damage in the form of burn marks on the target surface or

an odor of burnt metal after removing the target from the vacuum chamber. The porous

titanium target could withstand an α-particle beam power of 40 W cm−2, corresponding

to a bombarding energy of 900 keV and an intensity of ≈ 50 µA. Further tests showed

that higher α-particle beam intensities resulted in signs of heat damage in the form of

burn marks on the target surface. It appears likely that the heat damage could be reduced

by increasing the thermal conductivity, either by using an improved target cooling design

or by preparing porous backings of metals with a higher thermal conductivity.
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Table 4.2: Summary of present results. All targets were implanted with 22Ne ions of
75 keV energy and incident dose of between 0.5 and 1 C.

Target/ Charge/energya Beam powerb Target lossc

backing (C)/(keV) (Wcm−2) (%)
Ta 0.50/900 40 ≈ 100
fused silica 0.65/900 25 18±5
sintered Ti 0.50/400 20 22±7
porous Ti 1.5/900 40 ≈ 0
a Accumulated charge and energy of incident He+ ions on

target.
b Helium beam power deposited on target.
c Reduction in 22Ne concentration as measured by the

maximum yield before and after α-particle bombard-
ment.

It should be noted that resistive evaporation is not the only method of fabricating a

porous crystalline metallic structure, although it is convenient for metals with relatively

low melting points. Electron beam evaporation or chemically induced crystal growth

methods, such as de-alloying of NiM thin films [Sun et al., 2004, Wang and Balk, 2014]

allow for greater control over deposition rate and crystal growth, and would produce

targets with a higher thermal conductivity.

4.5.4 Atomic Force Microscopy

The porous titanium target showed the highest blister resistance, and, in addition,

the lowest heat damage, of all targets investigated in this work. The porous targets were

imaged to confirm the presence of surface structures which would also imply the presence

of subsurface porosity.

Surface morphology of evaporated metal films is highly dependent on evaporation

rate, with slower deposition rates typically resulting in films with a smaller grain size

and decreased surface roughness [Cai et al., 2005]. This can be attributed to a number

of factors, including the evaporation rate-dependence of trace gas inclusion within the

film (particularly oxygen) during vacuum vapor deposition, and the adatom (an atom
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on the surface of a crystal) diffusion rate relative to the evaporation rate [Cai et al., 2005,

Hofmann et al., 2003]. Assuming Stranski-Krastanov (also known as “layer-plus-island”)

type growth [Stranski and Krastanow, 1937], it is reasonable to assume that the subsurface

porosity is correlated with the surface grain size.

To confirm the presence of Stranski-Krastanov structures, topographical data were

collected with atomic force microscopy (AFM, MFP-3D Asylum Research, Santa Bar-

bara, CA) in ambient laboratory conditions using oscillatory mode (AC, or tapping mode)

imaging with silicon Olympus AC160 cantilevers, using a nominal resonance frequency

≈ 300 kHz, spring constant of ≈ 26 Nm−1, and tip radius of ≈ 10 nm. In typical imag-

ing, the free oscillation amplitude was ≈ 100 nm and imaging was performed between

70 nm and 80 nm (70-80% of the free oscillation amplitude). Images were taken at a fast

scan axis frequency of 1 Hz. Just prior to collection of the data presented here, a calibra-

tion standard was imaged to verify accuracy of the data along the x, y, and z axes. The

topographical data are accurate to <2%.

The AFM employed in this study used an optical lever method for monitoring cali-

brated cantilever motion (resolution < 1 nm) on a quadrant photo diode (QPD) sensor.

The cantilever is driven just below resonance (at 95% of peak amplitude) and the sharp

tip at the end of the cantilever is brought into intermittent contact with the surface, while

the QPD monitors cantilever motion. A proportional-integral-derivative feedback loop

controls a piezo translation stage that maintains an operator selected damping of the am-

plitude of the cantilever motion. As the sample is scanned beneath the tip, the feedback

loop maintains a set point cantilever amplitude by modulating the height of the can-

tilever mount position with a calibrated (< 0.1 nm) piezo translation stage. The feedback

driven movement of this piezo is what is collected as the topographical height data, and

is combined with the (x, y) position of the sample to build a map of the sample surface

topography.

Figure 4.19 shows the images obtained by the atomic force microscopy measurements

74



on four different samples. Panel (a) shows a blank titanium backing, revealing surface

features typical of machine-cut stock sheet metal. Panel (b) depicts a layer of evaporated

titanium. It appears to be composed of multiple interlocking titanium crystals, with an

average size of≈ 300 nm. Therefore, the image confirms the presence of a porous titanium

layer. Panel (c) represents a porous titanium layer that was implanted with 22Ne ions.

Panel (d) shows an image after the target was bombardment with 0.5 C of α particles. It

can be seen that the 22Ne implantation appears to have sputtered away the surface layer,

and the α-particle bombardment further modified the surface of the implanted region.

(b)	

(c)	 (d)	

(a)	

Figure 4.19: Atomic Force Microscopy (AFM) images. (a) Blank titanium backing; (b)
Evaporated titanium layer. Note the interlocking crystalline structure, indicating a porous
material; (c) Evaporated titanium layer after implantation with 22Ne ions. The surface
layer has been sputtered away; (d) Evaporated layer that has been implanted with 22Ne
and then exposed to a 30 µA α-particle beam of 900 keV energy for a total accumulated
charge of 0.5 C.
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4.6 Target for 22Ne(α,γ)26Mg Measurement

After it was determined that the porous titanium targets were blister-resistant, and

withstood the greatest amount of heat damage, fabrication of targets for the measure-

ment detail in Chapter 6 began. Unfortunately, only two targets could be implanted be-

fore technical issues ended the use of the ECR as an implanter. One of these two targets

was destroyed by a faulty rastering system when using the high intensity α-particle beam

with the JN, leaving only one target for use in the measurement of the 831 keV resonance

in 22Ne(α,γ)26Mg. This will be discussed further in Chapter 6. The one porous titanium

target used eventually saw a total of 4.4C accumulated charge using α-particle beam with-

out showing any signs of blistering. The limit (or lack thereof) to the amount of α-particle

bombardment the porous titanium targets can accumulate before blistering is not yet de-

termined, but is at least 44 times greater than the accumulated charge needed to cause

blistering in standard tantalum targets.
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Chapter 5

Detectors

The 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg experiments described in this dissertation pro-

duce different types of radiation and require two different types of detectors. LENA’s

High Purity Germanium Detector (HPGe) and sodium iodide (NaI) annulus were used

to measure γ-rays from the 22Ne(α,γ)26Mg reaction, and are described in Section 5.1. The

22Ne(α,n)25Mg reaction was not measured in this research, but efforts were made to de-

velop a detector system capable of measuring the neutrons from this reaction for a future

experiment, and are detailed in Sections 5.4 and 5.5.

5.1 γ-ray Detector System

LENA’s HPGe detector array consists of one 135% coaxial high purity germanium de-

tector, sixteen thallium activated sodium iodide (NaI(Tl)) scintillators, five plastic scintil-

lator paddles, and 10 mm thick lead shielding [Longland et al., 2006]. The HPGe detector

is orientated at 0◦ with respect to the beam direction, and is placed flush with the end cap

of the target chamber. The sixteen NaI(Tl) detectors are distributed in two annular eight-

detector halves encircling the target chamber and HPGe detector. An aluminum frame

surrounds the detector array and supports the 10 mm thick lead shielding to passively

reduce the environmental background radiation. The five scintillator paddles, each 50

mm thick, are mounted on the lead walls to actively veto muons created by cosmic-ray

interactions through a software anticoincidence condition.
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Dimensions for the LENA HPGe detector were measured using a computed tomog-

raphy (CT) scanner, and the dimensions for the annulus were provided by the manufac-

turer. Table 5.1 shows the dimensions, taken from Refs. [Carson et al., 2010] and [Howard

et al., 2013].

HPGe parameters Dimensions (mm)
End cap outer diameter 107.95 ± 0.02
Distance end cap-crystal 6.2 ± 0.5
Crystal length 91.6 ± 1.0
Crystal diameter 89.0 ± 0.5
Bulletizing radius 7.1 ± 0.5
Central hole diameter 8.5 ± 1.0
Central hole length 79.1
Central hole bottom radius 4.7
Vertical crystal displacement -1.5 ± 0.5
Contact pin diameter 6.9 ± 0.5
Contact layer thickness 1.2

NaI(Tl) annulus parameters Dimension
Inner radius 118.0 ± 0.5 mm
Outer radius 357.0 ± 0.5 mm
Crystal length 330.0 ± 0.5 mm
Segment spanning angle 43.0 ± 0.5◦

Table 5.1: Dimensions of the HPGe detector and NaI(Tl) annulus. The HPGe dimen-
sions were taken from [Carson et al., 2010] and the NaI(Tl) dimensions were taken from
[Howard et al., 2013]

The detector array, pictured in Figure 5.1, uses a sophisticated γγ-coincidence system

to reduce background [Rowland et al., 2002]. The energy resolution of the HPGe detec-

tor is shown in Figure 5.4 and the energy resolution of the NaI(Tl) is ≈ 85 keV at 1.27

MeV γ-ray energy. Though the energy resolution of the HPGe detector is superior to the

NaI(Tl) detectors, it has worse absolute efficiency, so the HPGe is used to measure γ-rays

of interest, and the NaI(Tl) detectors are used as coincidence counters. Events within an

adjustable software gate were recorded in a coincidence spectrum if events triggering the

annulus detectors coincided in time and energy with events triggering the HPGe detector.

Gates on the timing between HPGe and NaI(Tl) events and the energy of the events can be
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chosen such that a γ-cascade produced by a beam-induced nuclear reaction is selectively

preferred to events from environmental background.

Figure 5.1: Cross sectional image of the LENA detector array, taken from [Howard et al.,
2013]. The HPGe is shown in yellow, the NaI(Tl) is shown in green, the lead shielding is
shown in red, and the plastic scintillator is shown in black. The beam travels down the
beampipe on the left side of the image, and interacts with the target, producing a γ-ray
cascade to be detected by the HPGe and NaI(Tl).

5.2 Coincidence Electronics

There are a total of 22 timing and energy signals that must be processed for the γγ-

coincidence system (the HPGe detector, 16 NaI(Tl) detectors, and 5 plastic scintillator

paddles). The signals are processed using a mixture of Versa Module Eurocard bus (VME-

bus) modules and Nuclear Instrument Modules (NIM). First, a signal from the HPGe de-

tector is boosted with an on-board preamplifier, and the amplified signal is sent into a
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spectroscopy amplifier to obtain energy information, and a timing filter amplifier (TFA)

for timing information. The signal from the spectroscopy amplifier is set directly into an

analog-to-digital converter (ADC). The TFA signal is sent into a constant fraction discrim-

inator (CFD), which produces a logic signal that triggers a gate-delay generator down-

stream. This produces the master timing gate used to start a time-to-digital converter

(TDC). A pulser is used to inject a signal into the HPGe’s preamplifer to monitor dead-

time.

Signals from the NaI(Tl) annulus are also sent into a spectroscopy amplifier and a fast

filter amplifier (FFA). The signal from the spectroscopy amplifier is sent to the ADC and

provides the energy of the NaI(Tl) events. The signal from the FFA is sent into a CFD, a

500 ns delay, and finally the TDC. The master timing gate caused by the HPGe detector

starts the TDC, and the delayed timing signal from the annulus stops the TDC (the 500 ns

delay is used because of the different response times between the HPGe detector and the

NaI(Tl) detectors). Signals from the scintillator paddles are sent into a spectroscopy am-

plifier and TFA. The energy signal from the spectroscopy amplifier is sent into the ADC,

and the timing signals from the TFA are sent into a leading-edge discriminator (LED). An

anticoincidence condition between the scintillator paddles and the HPGe detector is set

up using another TAC such that the HPGe signal is the start signal and the scintillator

paddles is a stop signal, preventing data from being collected during cosmic ray induced

muon events if the appropriate software gate is set. Figure 5.2 shows a detailed electronic

schematic for the LENA detector coincidence system.
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Figure 5.2: Schematic for the γγ-coincidence detector setup at LENA. Image is taken from
[Buckner, 2014]. See text for details.

A data acquisition system named JAM (a java-based system for nuclear physics) [Swartz

et al., 2001] was used to process signals from the detector electronics and store data in an

event-by-event structure. Logic determining the conditions for coincidence and anticoin-

cidence are set in JAM using a Java sorting routing.
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5.3 HPGe Efficiency and Resolution

Accurate nuclear measurements require the detector efficiency to be precisely under-

stood. The measurement of the 22Ne(α,γ)26Mg relied heavily on the coincidence efficiency

described in Section 6.5, but the majority of the measurements made in Chapter 4 did not

require coincidence, and used only the HPGe portion of the γ-ray detector system. The

efficiency and energy resolution of the detector system at LENA was measured precisely

during the work detailed in [Kelly, 2016], and efficiency and energy resolution values

from there were adopted with permission for this dissertation. The efficiency of the HPGe

detector is shown in Figure 5.3.

Figure 5.3: Peak efficiency plot for the HPGe detector. The dotted line is the normalized
simulated efficiency, and the data points are measured data from 60Co and 56Co sources
and the 14N(p,γ)15O and 22Ne(p,γ)23Na reactions. This plot and the efficiency values used
for the measurements in Chapter 4 are courtesy of Keegan Kelly [Kelly, 2016]

.

The energy resolution (FWHM of detected γ-ray peaks) of the HPGe detector has been

measured before using the 259 keV resonance in the 14N(p,γ)15O reaction, and is plotted

82



in Figure 5.4.

Figure 5.4: A trend of experimental peak Gaussian FWHM versus energy for the HPGe
detector at LENA. Data points were obtained from the 259 keV resonance in 14N(p,γ)15O
reaction. Image is courtesy of Keegan Kelly [Kelly, 2016]

.

The table shown for efficiency of the HPGe detector is without coincidence gating.

The measurement of the resonance strength in Chapter. 6 used the full coincidence anti-

coincidence setup described in Sections 5.1 and 5.2. The efficiency of the full coincidence

setup is dependent upon the structure of the decay chain of the reaction of interest, which

was simulated with Geant4 and was analyzed using Fraction Fitting. These topics are

discussed in depth in Chapter 6, and the details of the coincidence efficiency for the

22Ne(α,γ)26Mg measurement will be explained in that section.

5.4 BC-523A Detector

Previous direct measurements of the 22Ne(α,n)25Mg reaction saw significant contami-

nation by high energy (≈ 3MeV) neutrons produced by the 13C(α,n)16O reaction [Giesen
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et al., 1993]. In an attempt to eliminate this beam-induced background contaminate, the

viability of a boron-loaded capture-gated scintillator with fast neutron energy resolution,

as shown in Figure 5.5, was explored. The work from this section has been published in

[Hunt et al., 2016].

Figure 5.5: BC-523A boron-doped liquid scintillator. Blue tape was used to electrically
insulate segments, and aluminum foil was used to electrically ground segments.

While standard liquid scintillators have long been used as fast neutron detectors [Post,

1950] because of their pulse shape discrimination (PSD) and timing abilities, they rarely

provide reliable neutron energies [Bird and Burch, 1958]. This is primarily because of

their nonlinear light output and their inability to differentiate between fully and partially

moderated neutrons. A technique known as capture-gating, which uses standard organic

liquid scintillator fluid and dopes it with high thermal neutron absorption cross section

materials, such as 10B, 6Li, or natGd [Frehaut, 1976, Greenwood and Chellew, 1979, Green-

wood et al., 1979] can allow for the differentiation between fully and partially moderated

neutrons.

When a fast neutron strikes the capture-gated scintillator, the neutron will lose energy,

producing a standard scintillation signal. If the neutron fully thermalizes and deposits
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all of its energy into the detector, it has a chance to then capture onto the doping agent

(in the case of the BC-523A detector, that doping agent is 10B). The reaction products (α

+ 7Li in the case of 10B doping) will lose their energy in the active volume, producing a

secondary scintillation pulse. This series of interactions produces a characteristic double-

peaked signal when a neutron fully moderates in the detector. If only the characteristic

double pulse signal is counted, all neutrons detected will be full energy deposition events,

allowing the capture-gated scintillator to be used as full-energy neutron spectrometers

[Post, 1950].

Figure 5.6: Illustration of neutron-induced events in a 10B-doped liquid scintillator. (a)
Full energy deposition and subsequent capture of a fast neutron, giving rise to the char-
acteristic double pulse signal, illustrated in Figure 5.7a. (b) Partial energy deposition of
fast neutron energy, giving rise to a single pulse signal, illustrated in Figure 5.7b.

Boron-doped scintillators have had extensive research performed on them [Jastaniah

and Sellin, 2004, Pawełczak et al., 2011, Swiderski et al., 2008, Szczesniak et al., 2010,

Williams et al., 2004], and the physics behind the scattering and capture interactions are

well understood [Jastaniah and Sellin, 2004]. Figure 5.6 shows the sequence of events
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when an incident neutron (shown in red) strikes the detector. The neutron first interacts

with the hydrogen (shown as blue circles) in the scintillator fluid, causing those protons

to recoil and produce a peak in the waveform of the signal. If the neutron loses most of

its energy, it has a high likelihood of capturing onto the dopant via 10B(n,α)7Li because

of the large thermal neutron cross section of 10B. This interaction is fairly long-lived by

scintillator standards, and takes place on average about 500 ns after the neutron mod-

erates [Jastaniah and Sellin, 2004]. The energy released (Q-value) in the reaction is 2.31

MeV (94% probability) when the 7Li is left in the first excited state, giving rise to the ad-

ditional emission of a 478-keV photon, or 2.79 MeV (6% probability) when the 7Li is left

in the ground state (breakup products are shown in green). Moderation of the breakup

products (mainly of the α-particle) in the scintillator fluid causes a second peak (capture

peak) in the waveform of the signal. This process is illustrated as (a) in Figure 5.6, and in

Figure 5.7a.

If an incident neutron interacts with the hydrogen in the scintillator fluid, but scatters

out of the detector without capturing onto 10B, only a single moderation peak is pro-

duced. This process is illustrated as (b) in Figure 5.6, and in Figure 5.7b. In practice, the

signals can be more complicated, as noise on the tail of a moderation peak (see Figure

5.7c) may mimic a double-peak waveform and be mistaken for a capture event. If the

double-peak signature of full neutron energy deposition can be differentiated from both

a partial energy deposition event and from noise, the incident energy of the fast neutron

can be estimated from the pulse height of the first (moderation) peak in the waveform.
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Figure 5.7: Illustrative waveforms of a 10B-doped liquid scintillator. (a) From full energy
deposition of an incident fast neutron. The first peak is caused by the recoil of protons
in the scintillator fluid from the fast neutron, and the pulse height of this peak carries the
information about the incident energy, while the second peak is caused by the moderated
neutron undergoing a 10B(n,α)7Li reaction. The moderation pulse and capture pulse have
an average time difference of 500 ns. (b) From an incident γ-ray or partial energy deposi-
tion of an incident fast neutron, with no 10B(n,α)7Li reaction occurring. Pulse height is not
as indicative of incident particle energy because of the unknown fraction of energy de-
posited. (c) From noise on the tail. This signal can be mistaken for a double-peaked event
if timing, pulse shape discrimination, and pulse height are not taken into consideration
(see text for details).

5.4.1 Experimental Setup

The BC-523A detector has a scintillator cell with a diameter of 8.89 cm, and a length of

10.76 cm. The detector was manufactured by Saint-Gobain Crystals, and was fitted with

a Hamamatsu R1307 head-on photomultiplier tube. Data were collected with a 12-bit 250

MHz (4 ns sampling step) digitizer collecting waveforms containing 520 samples each for

a total digitization time of 1.04 µs for each waveform.

To use the BC-523A detector, the capture event needs to be properly identified and
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reliably gated, the efficiency needs to be measured, and the energy resolution must be

determined. To achieve this, two experiments with the BC-523A detector were conducted.

The first experiment used a 19.7 µCi Americium-Beryllium (AmBe) source placed ≈

0.3 m from the detector. Approximately 1× 106 events were recorded using a threshold on

the internal constant fraction discriminator (CFD) set slightly above the noise level. These

data were used to determine the pulse-shape discrimination capabilities of the detector,

and to identify and gate on the capture signal. No radiation shielding was used in this

experiment.

The second experiment was used to investigate the detector’s intrinsic neutron detec-

tion efficiency and energy resolution for fast incident monoenergetic neutrons using the

time-of-flight method. A weak (0.185 µCi), but well calibrated, 252Cf source inside an ar-

gon gas scintillator was placed 1 m away from the BC-523A detector. The experimental

area was a small room located in the back of LENA. Because of the small size of the room

and the possibility for neutrons scattering off the walls and ceiling giving a false time of

flight, the detector and source were both placed on small platforms elevated≈ 1.5 m from

the floor, and centered equidistant from the walls of the room.

When a 252Cf fission event occurred, it created a signal in the argon gas scintillator

that was used to trigger a constant fraction discriminator (CFD), which started a time-to-

amplitude converter (TAC). A neutron from that 252Cf fission event striking the BC-523A

detector produced a pulse that triggered a CFD which acted as a stop signal for the TAC.

This setup is illustrated in Figure 5.8. The nearly instantaneous travel-time of γ-rays

produced from 252Cf α decay was used to calibrate the TAC. The time-of-flight method

was then used to measure the energy of each detected neutron. The 250 MHz digitizer

was used to collect waveforms with 520 samples. During the run, ≈ 3 × 105 neutrons

were detected.

88



Figure 5.8: Illustration of the experimental setup for the second experiment. A 252Cf
neutron source inside a scintillator provided the start signal for the time-to-amplitude
converter (TAC) through the constant fraction discriminator (CFD). The signal from the
BC-523A detector was split, with one signal used to stop the TAC, and the other one sent
to the digitizer. Waveforms of ≈ 3 × 105 events were recorded with the digitizer.

5.4.2 PSD and the Capture Event

Organic liquid scintillators typically display good pulse shape discrimination (PSD)

of the moderation pulses for α-particles, neutrons, and γ-rays [Comrie et al., 2015]. How-

ever, in capture-gated scintillators, there is additional light quenching caused by the 10B

doping agent [Jastaniah and Sellin, 2004]. This light quenching inhibits the pulse shape

discrimination at lower energies, making the capture event harder to distinguish from

incident particles. Previous work on 10B-doped capture-gated scintillators showed con-

flicting results for pulse shape discrimination of the capture event [Flaska and Pozzi, 2009,

Pino et al., 2014], so attempts were made to provide a detailed analysis of the capture peak

and the often misinterpreted noise.
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Figure 5.9: Illustration of the pulse shape discrimination (PSD) method used. (a) Typical
scintillator (moderation) pulse. The total integrated charge, represented by the gray areas,
is 104 ns in length and yields the total energy of a pulse. The tail integrated charge,
represented by the dark gray area alone, is 32 ns in length and provides the PSD value
used to differentiate between incident radiation types (neutrons, α-particles, γ-rays). (b)
Example of PSD applied to a typical scintillator pulse with noise on the tail. If noise is not
properly identified, it will be treated as a separate event, and yield erroneous values for
energy and PSD.

The PSD method chosen for this study was the tail-to-total charge ratio [Flaska and

Pozzi, 2007]. It has the advantage of good discriminatory properties between γ-rays and

neutrons, because the charge integrated over the tail of a pulse differs for these two inci-

dent particles. This method was also used by the two groups with conflicting identifica-

tion of the capture event [Flaska and Pozzi, 2009, Pino et al., 2014], making for convenient

comparison. The tail integration started at 40 ns after the peak of a pulse, and ended 72

ns after the peak, as depicted by the dark gray area in Figure 5.9a. The total integration

90



started 32 ns before the peak, ended 72 ns after the peak, and is represented in Figure 5.9a

by the light and dark gray areas. This interval was chosen to maximize neutron and γ-ray

discrimination at all energies. It should be noted that this method has poor noise perfor-

mance, as illustrated in Figure 5.9b. That figure shows a noise peak following the main

moderation peak. If PSD is performed on the noise peak, both the tail charge and the total

charge will be affected by the preceding moderation pulse. As a result, such noise events

can be easily misidentified as other events, including capture pulses.

Data taken with the AmBe source in the first experiment described in Section 5.4.1

were analyzed in an attempt to identify the capture peak using pulse shape discrimina-

tion. Pulse shape discrimination was performed on each peak that triggered the internal

constant fraction discriminator of the digitizer described in Section 5.4.1. The results are

shown in Figure 5.10a, which display the signal tail integral versus the total integral (see

Figure 5.9a) of every peak detected be the scintillator. The figure shows good discrimi-

nation between fast neutrons and γ-rays at all but the lowest energies, and also shows a

separate structure, which will be referred to here as the third branch. Figure 5.10b shows

only those events obtained when a moderation pulse (the first peak in Figure 5.7a) trig-

gered the digitizer, but with PSD only applied to a peak that arrived more than 150 ns

after the triggering pulse (long after the moderation pulse has decayed). The structures

seen in Figure 5.10b do not match the third branch identified in Figure 5.10a. In Figure

5.10b, there can be seen an oval shaped region in the lower left, and a branch off the oval

region. The events in these two regions will be collectively referred to as the afterpulse

region events.
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Figure 5.10: Pulse shape discrimination (PSD) histograms of tail integrated charge over
total integrated charge (see Figure 5.9a) of each peak detected, obtained using an AmBe
neutron source. (a) For all pulses triggering the digitizer; regions occupied by neutrons
and γ-rays are labeled. The third branch has been identified as the capture peak in Ref.
[Flaska and Pozzi, 2009]. (b) For events obtained when the moderation pulse triggered
the digitizer, but with PSD only applied to the part of the signal arriving 150 ns after the
triggering pulse. The oval shaped region is occupied by capture pulses with no energy
deposition of the 478-keV photon produced in the 10B(n,α)7Li reaction (see Figure 5.6).
The branch off the oval shaped region is caused by capture pulses with partial energy
deposition by the 478-keV photon.
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Conflicting results have been reported in the literature in connection with PSD for the

capture pulse. Some research groups have identified the third branch in Figure 5.10a as

the capture peak [Flaska and Pozzi, 2009, Peerani et al., 2012], while other groups have

identified the afterpulse region in Figure 5.10b as the capture peak [Pino et al., 2014]. Two

separate tests were performed on these regions to identify the capture events: a timing

and a gating test.

5.4.3 Timing and Gating Tests

Neutron capture onto 10B in the BC-523A detector has been well modeled [Jastaniah

and Sellin, 2004], with the probability of a neutron capture as a function of time expressed

as:

P (t) =
1

τ
e−

t
τ (5.1)

where the parameter τ is the average capture lifetime, which depends only on the

concentration of the doping agent (10B) in the scintillator. Jastaniah also measured the

average capture time after moderation to be ≈ 500 ns.

The time difference between a triggering event (usually a scattering neutron) and a

pulse falling within the third branch of Figure 5.10a was measured to compare with the

results of [Jastaniah and Sellin, 2004]. The histogram of the time difference between these

two events is shown in Figure 5.11 and reveals a mean time difference of 136(±10) ns,

which disagrees with the value of ≈ 500 ns found by [Jastaniah and Sellin, 2004]. There-

fore, it is unlikely that third branch events represent neutrons that are being captured

after moderation.

It should be noted that the peak sensing algorithm is responsible for the sharp cutoff

of the histogram around 130 ns. Altering the parameters of the algorithm can affect the

mean capture by 10s of ns, which is insufficient to bring the average capture time of the
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third branch events in line with the known value of ≈ 500 ns.

An identical timing test was performed on a triggering event and a pulse falling within

the afterpulse region (the oval and branch shown in Figure 5.10b) and a histogram of the

time difference between these two pulses is shown in Figure 5.11b. The average time dif-

ference is 501(±30) ns, in agreement with the average capture time measured by [Jastaniah

and Sellin, 2004] for the capture of neutrons after moderation. The timing tests indicate

the third branch events previously thought to be the capture events are something else,

and the afterpulse region contains the true capture event.
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Figure 5.11: (a) Time difference between a pulse triggering the digitizer (usually caused
by the moderation peak from a scattering neutron) and a later pulse that populates the
third branch region in Figure 5.10a. The mean time difference is 136 (±10) ns, inconsistent
with a predicted average value of 500 ns [Jastaniah and Sellin, 2004] for the time differ-
ence between a fast neutron moderation peak and the subsequent capture peak. (b) Time
difference between a pulse triggering the digitizer and an event that populates the after-
pulse region (the oval shaped region and the branch) in Figure 5.10b. The average capture
time is 501 (±30) ns, consistent with the predicted value of 500 ns [Jastaniah and Sellin,
2004]. The data were obtained using the first experimental setup described in Section
5.4.1.
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Figure 5.12: PSD histograms of tail integrated charge over total integrated charge (see Fig-
ure 5.9a), obtained using an AmBe neutron source. (a) Pulses that trigger the digitizer and
are followed by a pulse falling into the third branch region of Figure 5.10a. The increasing
number of events for increasing energy indicates that they are not associated with cap-
ture events (see text for details). (b) Pulses that trigger the digitizer and are followed by
a pulse falling into the afterpulse region of Figure 5.10b. The increased number of events
at decreasing energy indicates that they are associated with capture events. The majority
of events in both of these plots fall within the scattering neutron region of Figure 5.10a.
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To identify the origin of the third branch in Figure 5.10, the AmBe source described in

the first experimental setup in Section 5.4.1 was used to analyze the triggering pulse for

any waveform containing a third branch event in Figure 5.10a. Pulse shape discrimination

was performed on only the triggering pulse and the results are shown in Figure 5.12a. The

events have a large total integrated charge and a large tail integrated charge relative to

the total charge. This indicates that the triggering pulses are primarily caused by high-

energy incident neutrons. The increased number of events in Figure 5.12a with increasing

energy also shows that there is a direct relationship between neutron energy and the

likelihood to create a third branch event. Low-energy neutrons have a greater chance of

thermalization and capture on 10B than high-energy neutrons [Jastaniah and Sellin, 2004],

indicating that the third branch events are caused by the neutrons least likely to produce

a capture pulse. Furthermore, the neutron energy spectrum produced by an AmBe source

favors the production of lower energy neutrons [Lebreton et al., 2007], indicating that the

third branch events are very unlikely to be associated with capture events.

The triggering pulse for any waveform that has an event in the afterpulse region in

Figure 5.10b was also analyzed. The PSD plot is displayed in Figure 5.12b, and shows

that the majority of pulses have a small total integrated charge, but a large tail integrated

charge relative to the total charge. These events are most likely caused by incident neu-

trons. The number of such events increases with decreasing energy, consistent with both

the energy spectrum of the neutron source [Lebreton et al., 2007] and the higher chance

for low-energy neutrons to moderate and capture on 10B in the BC-523A scintillator [Jas-

taniah and Sellin, 2004].

The timing and gating tests show that the events in Figure 5.10b are caused by pre-

dominantly low-energy neutrons that produce a moderation peak and a subsequent cap-

ture peak, according to Figure 5.7a. When no 478-keV photon is produced in the 10B(n,α)7Li

reaction, or if it is produced but leaves the detector without scattering (Figure 5.6), the

event appears in the oval region in Figure 5.10b. If the 478-keV photon deposits part or
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all of its energy in the detector, the events appear in the branch off the oval region. Gating

on these events in Figure 5.10b will be referred to as capture-gating.

In contrast, the events located on the third branch in Figure 5.10a are most likely

caused by high-energy neutrons that leave a fraction of their energy in the detector and

that are accompanied by a noise peak on the tail of the preceding (moderation) peak, ac-

cording to Figs. 5.7c and 5.9b. These results disagree with recent claims by other groups

[Flaska and Pozzi, 2009, Peerani et al., 2012] that the third branch is caused by capture

events. These conclusions are supported by [Pino et al., 2014], who showed that the third

branch disappears when pile-up suppression software filters are turned on.

5.4.4 Energy Resolution Measurements

The measured energy resolution for the BC-523A detector using capture-gating is

rarely reported in the literature. Data recorded with the 252Cf neutron source (see Section

5.4.1) were analyzed to obtain the detector energy resolution for fast incident monoener-

getic neutrons. If the capture peak is properly identified, the preceding moderation peak

contains the information about the incident neutron energy. Recall that a moderation peak

without a subsequent capture peak is most likely caused by a neutron that deposits only

part of its energy in the detector. For this reason, neutron spectroscopy measurements, es-

pecially for higher incident neutron energies, are most meaningful after capture-gating is

applied (i.e., gating on the oval and branch in Figure 5.10b; see Section 5.4.2), as it allows

us to ignore partial energy deposition. The energy resolution is defined as:

R =
FWHM

ϑ
× 100% (5.2)

where FWHM and ϑ are the full width at half maximum and the centroid, respectively,

in the pulse height spectrum for the moderation peak.
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Figure 5.13: Measured pulse height spectra for 1 MeV and 3 MeV incident neutrons, ob-
tained using a 252Cf source inside a scintillator and the time-of-flight method. The low
energy cutoff was set to slightly above zero (the use of the time-of-flight method prevents
most noise events from being counted). (a) With no capture-gating applied (the trigger-
ing pulse for every waveform was recorded). The 1 MeV neutrons fill the histogram in a
Gaussian shape, while the 3 MeV neutrons do not. It is not possible to fully discriminate
between 1 MeV and 3 MeV incident neutrons. (b) With capture-gating applied (only a
triggering pulse followed by a capture pulse was recorded). Only fully moderated neu-
trons are counted (full energy deposition), resulting in Gaussian distributions at each
energy. Capture-gating decreases the number of neutrons detected significantly.
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Figure 5.13a shows a pulse height histogram for 1 MeV (shown in blue) and 3 MeV

(shown in red) incident mono-energetic neutrons before capture-gating was applied. The

combination of capture-gating and the time-of-flight method guarantees that only neu-

trons were counted, and the energy for these neutrons was measured using the time-of-

flight method (see Section 5.4.1). The low energy noise cutoff in pulse height is close to

zero, so it does not significantly affect the distributions shown in Figure 5.13. Each cho-

sen energy (1 MeV and 3 MeV) has an energy spread of ±3%. The 1 MeV neutrons fill the

histogram in a Gaussian shape, while the 3 MeV neutrons are much more spread out, and

less Gaussian. This is because 1 MeV neutrons are more likely to deposit most of their

energy compared to the 3 MeV neutrons. Prior to applying the capture gate, significant

overlap between the 1 MeV and 3MeV pulse height spectra is observed. This is caused by

partial energy deposition from the 3 MeV neutrons filling lower pulse height bins. Figure

5.13b displays the same data set after capture-gating is applied (see also Figure 5.10b).

After capture-gating, the pulse height spectra for the 1 MeV and 3 MeV incident neutrons

both take on Gaussian shapes and can now be separated.
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Figure 5.14: Energy resolution of the BC-523A detector as a function of incident neutron
energy, measured by the time-of-flight method. Each point represents the energy resolu-
tion for all neutrons of a given energy interval (±3% of the total energy). The uncertainty
in the x-axis accounts for the ±3% energy spread and systematic errors primarily caused
by the low count rate from the source (see Section 5.4.1) and uncertainty in the TAC.
The y-axis uncertainty is almost entirely caused by the low count rate of the source. The
overall trend indicates a linear improvement in energy resolution as the incident neutron
energy increases.

Figure 5.14 shows the detector energy resolution for fast incident monoenergetic neu-

trons as a function of neutron energy. Capture-gating is applied to these data, and the

uncertainties are primarily determined by the low event rate of the neutron source.

5.4.5 Efficiency

Experimentally measured detector efficiency for the BC-523A detector is likewise rarely

reported in the literature using capture-gating. The efficiency was measured in this study

using a 252Cf source (see Section 5.4.1). Efficiencies were determined at several neutron
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energies, both with and without capture-gating. The time-of-flight method discussed in

Section 5.4.4 was again utilized to measure the energy of each neutron striking the detec-

tor, and the intrinsic efficiency was calculated according to:

ε =
Nd

Ni

× 100% (5.3)

where Nd is the total number of neutrons detected, and Ni is the number of neutrons

incident on the detector; Ni was calculated from the known intensity of the 252Cf source,

the known neutron energy distribution of the source [Miller, 2012], and the geometry of

the setup.

Figure 5.15a shows the measured intrinsic efficiency, as defined in Equation 5.3, for

fast incident neutrons with energies between 1 MeV and 4 MeV before capture-gating is

applied (black data points). The intrinsic efficiency is approximately 30% and decreases

slightly with increasing neutron energy, which is typical for a liquid scintillator of this

size [Banerjee et al., 2009].

Figure 5.15b displays the measured intrinsic efficiency for fast neutrons with energies

between 1 MeV and 4 MeV after capture-gating is applied (black data points). The re-

sulting efficiency amounts to around 1%. The efficiency also decreases with increasing

neutron energy, because lower energy neutrons have a greater chance to lose all their en-

ergy while moderating within the detector, thereby increasing the probability of a capture

event.

Monte Carlo simulations were also performed using the Geant4 toolkit [Agostinelli

et al., 2003] to gain a better understanding of the capture-gated fast neutron detection

efficiency at energies below the measured data points. The BC-523A detector was sim-

ulated by using a standard liquid scintillator that was loaded with 5% of 10B by weight.

A monoenergetic neutron beam was simulated incident on the detector, and energy de-

position and particles created were recorded for a total of 1 × 106 incident neutrons per

energy of interest. The neutron detection efficiency was extracted based on the number of
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neutrons, resulting in energy deposition above a threshold level (set to 100 keV). Neutron

capture is included in the simulations using the G4NeutronHP model, and a simulated

capture event is identified by the simultaneous creation of 7Li and an α-particle in the de-

tector. Fast neutron detection efficiencies were then extracted according to Equation 5.3

from the simulations, both with and without capture-gating. All efficiency simulations

were adjusted by a common scaling factor to account for the uncertain light collection in

the scintillator, so that the simulations are matched closely to the measured values at the

higher neutron energies.

Figure 5.15a compares the simulated and measured fast neutron detection efficiencies

without capture-gating applied. The black points show the measured data, and the red

points are the simulated values from Geant4. The measured and simulated efficiencies

agree at higher energies. For neutrons with energies less that 1 MeV, the simulations

predict intrinsic efficiencies of around 35%. Figure 5.15b shows the neutron detection

efficiencies with capture-gating applied. Again, the simulated and measured efficiencies

agree at higher neutron energies. For neutrons with energies near 250 keV (the lowest

energy simulated), the predicted intrinsic efficiency is ≈ 3%.
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Figure 5.15: Simulated (red; using Geant4) and measured (black; using the time-of-flight
method) intrinsic neutron detection efficiencies of the BC-523A detector versus incident
neutron energy. (top) No capture-gating applied. (bottom) With capture-gating applied.

Though the BC-523A detector was shown to have sufficient energy resolution to elim-

inate the carbon contaminant background, it was ultimately decided that the efficiency

was too low for the 22Ne(α,n)25Mg measurement. Another detector was chosen with a

higher efficiency, while still retaining some amount of energy veto to account for fast

neutrons produced by the 13C contaminant.
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5.5 INVS Detector

The model IV inventory sample counter (INVS) (shown in Figure 5.16) is a detec-

tor array developed at Los Alamos National Laboratory, and was designed to allow for

quick, non-destructive assay of radioactive material, but was adapted for in-beam mea-

surements at TUNL. The INVS detector, shown in 5.16 and illustrated schematically in

5.17, is a multi-segmented 3He proportional counter. The counters are placed in two con-

centric rings embedded in a polyethylene neutron moderator. Dimensions for the detector

are taken from [Arnold et al., 2011], and are given in Table 5.2.

Figure 5.16: Photograph of the INVS detector. The 3He cells and axial beamline cavity are
clearly visible.

The detector encompassed the beamline and target chamber where the 22Ne(α,n)25Mg

reaction can take place. Neutrons produced from the reaction thermalize in the polyethy-

lene body of the detector, and can capture in the embedded proportional counters via the

3He(n,p)3H reaction. The 763.7 keV of energy released is shared between the outgoing

triton and proton from this reaction, and these reaction products ionize the ambient 3He,
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resulting in a detectable electrical pulse on the central electrode of the tube, which is bi-

ased to +1780 V. Electronic noise and γ-rays are present as low-pulse-height signals, and

are eliminated with a fixed threshold discriminator.

Figure 5.17: Schematic for model IV inventory sample counter (INVS), adapted from
[Arnold et al., 2011]. 3He proportional counters are embedded in polyethylene neutron
moderator in two concentric rings.

INVS parameters Dimensions
Inner ring radius 7.24 cm
Outer ring radius 10.60 cm
Polyethylene body length 46.2 cm
Polyethylene body diameter 30.5 cm
3He pressure 6 atm
3He cell active length 39.4 cm
Axial beamline cavity diameter 8.9 cm

Table 5.2: Dimensions of the INVS detector, taken from [Arnold et al., 2011].
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5.5.1 INVS Energy Resolution

An important capability of the INVS detector is limited incident neutron energy reso-

lution. On-board signal processing electronics within the detector output TTL logic sig-

nals for events occurring in the inner ring (I) or the outer ring (O). [Arnold et al., 2011]

has shown that for neutron energies less than about 2 MeV, the mean energy of detected

neutrons can be determined by the function:

I

O
∝ E

− 1
5

n (5.4)

Where I and O represent hits in the inner and outer detector rings respectively, and

En is the mean energy of the neutrons detected. It should be noted that this is only valid

for neutrons originating from the center of the detector. This ratio of inner to outer ring

events theoretically allow for limited neutron spectroscopy. A plot of the energy resolu-

tion of the INVS detector is shown is Figure 5.18. The measurement of the 22Ne(α,n)25Mg

reaction has three potential neutron sources: ≈ 300 keV neutrons from the reaction of in-

terest, ≈ 3 MeV neutrons from the 13C(α,n)16O reaction, and thermal neutrons from room

background. The latter preferentially trigger the outer most ring of the 3He counters, re-

sulting in a value of I/O < 1 [Jack Silano, private communication]. The exact value is

dependent on the location of all objects surrounding the detector, and can only be mea-

sured with the full experimental setup in place.

Using the known energies of the reaction of interest, contaminant reaction, the data

from Figure 5.18, and the I/O value of the room backgrounds, it is theoretically possible to

account for contaminant reactions by fitting room background measurements, measured

off-resonance measurements, and simulated on-resonance events to the measured total

spectrum (following a similar procedure to the fraction fitting described in Chapter 6).
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Figure 5.18: Ratio of neutron counts from the inner (I) and outer (O) rings of the INVS
detector as a function of mean neutron energy, taken from [Arnold et al., 2011]. The I/O
ratio can be used for neutron energies below 2 MeV, with the greatest resolution at the
lowest energies.

5.5.2 INVS Simulated and Previously Measured Efficiency

Before the INVS can be used, the efficiency of the detector much be known. The effi-

ciency for the INVS detector is defined as:

ε ≡ Nd

Ne

(5.5)

where Nd is the number of neutrons detected, and Ne is the number of neutrons emit-

ted by a source. The efficiency of the INVS detector was carefully measured [Arnold,

2011], using four distinct neutrons sources (252Cf, 2H(d,n)3He, 7Li(p,n)7Be, and 2H(γ,n)H).

It should be noted that [Arnold, 2011] measured efficiency using a carbon plug inserted

into the axial cavity to improve efficiency. The carbon plug will not be used in the even-

tual measurement of the 22Ne(α,n)25Mg reaction, but Jack Silano has shown that this only

accounts for a small change in efficiency. Figure 5.19 shows simulated and measured effi-

ciencies from [Arnold, 2011] and [Jack Silano, private communication]. The simulations in
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Figure 5.19: Neutron efficiency as a function of angle and energy. (a) and (b) are taken
from [Arnold, 2011], and use data from a 7Li(p,n)7Be and 2H(γ,n)H measurements, re-
spectively. For the graphs, θ represents angle of neutron emittance from the source in the
lab frame, with 180◦ being directly through the axial cavity in the center of the detector
array. Graphs (a) and (b) were produced using the MCNPX Monte Carlo code [Pellowitz,
2007], using standard neutron libraries [Chadwick et al., 2006]. The white dots corre-
spond to efficiencies sampled by combining kinematics and angular distribution data
from the 7Li(p,n)7Be and 2H(γ,n)H measurements (see [Arnold, 2011] for details). (c) was
produced by Jack Silano using GEANT4, and does not use the carbon plug or electronic
thresholds. These account for a difference in efficiency of around 3% [Jack Silano, private
communication].

Figure 5.19a and Figure 5.19b were produced using the Monte Carlo N-Particle eXtended

nuclear process toolkit (MCNPX) [Waters et al., 2007]. The white dots represent efficiencies

sampled by combining kinematics and angular distribution data from the 7Li(p,n)7Be and

2H(γ,n)H measurements (see [Arnold, 2011] for details). Figure 5.19c shows simulated

efficiencies without the carbon plug using GEANT4 [Agostinelli et al., 2003, Allison et al.,

2006].
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5.5.3 INVS Electronics

Figure 5.20: Preamplifier array constructed by Jack Silano for the INVS detector. Two
boxes with 10 preamplifiers each were used for the 18 channels of the INVS.

The INVS detector has a total of 18 channels producing energy signals that must be

processed. The original electronics used for [Arnold et al., 2011] combined the signals

from all inner detectors together, and all the signals from the outer detectors together.

This complicates the identification of problems with individual detector channels. A new

set of electronics was designed for the proposed 22Ne(α,n)25Mg reaction measurement.

A VME-bus modules, NIM modules, and custom electronics were used to process

these signals. Each channel was biased to +1780 V, using a multi-channel high voltage

power supply. Signals from γ-ray and neutron events were amplified using a custom ar-

ray of preamplifiers constructed by Jack Silano (see Figure 5.20). A spectroscopic ampli-

fier received the preamplifed signals from the detector and generated an amplified energy

signal and a fast output. The amplified signal was sent into an analog-to-digital converter

(ADC). The fast output for all 18 channels was combined with linear fan-in modules and

discriminated with a constant fraction discriminator (CFD). The discriminated signal was

fed into a gate-delay generator, which triggered the ADC with a master gate. See Figure

5.21 for a schematic of this system.
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Figure 5.21: Electronics setup for 2 channels of the INVS detector. All 18 channels were
configured in this manner, allowing an event in any channel to trigger the ADC and begin
data collection. All events were stored, and software gates were used to discriminate
between neutron and γ-ray events.

This produces a spectrum (shown in Figure 5.22) with clearly defined γ-ray and neu-

tron peaks, allowing for excellent particle discrimination. The spectra from each individ-

ual channel are also summed into inner spectra (a summation of the data from the inner

detector ring), outer spectra (a summation of the data from the outer detector ring), and

total (a summation of all data from all channels).
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Figure 5.22: Example spectrum from a single channel of the INVS detector, shown in
the data acquisition program JAM. The γ-ray peak is clearly identified on the left of the
spectrum, and the large broad structure on the right is the signal from neutrons.

While the 22Ne(α,n)25Mg reaction was not measured in this study, the INVS as charac-

terized here represent the best current candidate for the measurement, having high effi-

ciency, some background discriminative abilities, and fully assembled and characterized

electronics.
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Chapter 6

Measurement of the 828 keV Resonance in the 22Ne(α,γ)26Mg Reaction

6.1 Preface

The astrophysical motivation for remeasuring the 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg

reactions is laid out in Chapter 1, but a summary of the experimental motivation for the

remeasurement of the 22Ne(α,γ)26Mg reaction will be presented here. All energies are

given in laboratory frame unless otherwise stated.

The 828 keV resonance in the 22Ne(α,γ)26Mg reaction has been directly measured only

twice, once in [Wolke et al., 1989], and once in a PhD dissertation by M Jaeger (the results

from the latter were never published outside the dissertation). Wolke’s measurement

used a high purity germanium detector, similar to the one described for this study in

Chapter 5, and an extended gas cell target. As discussed in Chapter 2, multiple mea-

surements of the 22Ne(α,n)25Mg reaction using the same gas cell target vary widely in the

reported resonance strength, despite several having similar detector systems, and some

of the measurements using the same accelerator and target. It is hypothesized here that

the difficulty of maintaining and fully characterizing the pressures within a windowless

gas cell target is one of the leading possible causes of potential systematic errors, and that

error is perhaps present in the only direct measurement of the 22Ne(α,γ)26Mg reaction.

Limitations in the number of targets available for the experiment in this dissertation

(see Chapter 4) led to the decision to focus on the measurement of the 828 keV resonance

in the 22Ne(α,γ)26Mg reaction using the newly developed blister-resistant solid targets

developed in Chapter 4. The 22Ne(α,n)25Mg reaction is predicted to require significantly

more accumulated beam charge to measure and will be revisited when a new equipment
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Energy (keV) Reference
11301(9) [Talwar et al., 2016]
11311(5) [Endt, 1998]
11317(17) [Talwar et al., 2016]
11319(2) [Jaeger et al., 2001]
11321(1) [Adsley et al., 2018]
11328(1) [Massimi et al., 2017]
11329(1) [Adsley et al., 2018]

Table 6.1: The density of energy levels near the excitation energy.

for implantation is procured.

It should be noted that there is significant disagreement in the literature about whether

the 828(5) keV resonance in the 22Ne(α,γ)26Mg reaction measured by [Wolke et al., 1989]

and the 831 keV resonance in the 22Ne(α,n)25Mg reaction are the same resonance (see

[Adsley et al., 2018, Longland et al., 2012] for discussions on this). It has been assumed

in this dissertation that they are the same resonance for simplicity of discussion, but the

high density of energy levels near the excitation energy (see Table 6.1) adds to confusion

as to what energy level should be used for simulations. Because [Wolke et al., 1989] is the

only direct measurement of the 22Ne(α,γ)26Mg reaction, the value obtained from those

data (11313(4) keV) is adopted for simulations in this dissertation.

The measurement of the strength of the 828 keV resonance in the 22Ne(α,γ)26Mg re-

action used the 479 keV resonance in the 22Ne(p,γ)23Na reaction as a standard resonance

[Kelly, 2016, Longland et al., 2010a]. Decay schemes used for both of the reactions are

shown in Figure 6.1 and 6.2, and the branching ratios for the 479 keV resonance are given

in Table 7.2 in Appendix C. The energy levels for the 828 keV resonance decay are taken

from [Endt, 1998], except for the 11313 keV state in 26Mg, which was obtained from [Wolke

et al., 1989]. Branching ratios for the primary transitions are also taken from [Wolke et al.,

1989], and secondary branching ratios are adopted from [Endt, 1998]. Energy levels for

the 479 keV resonance decay and branching ratios are adopted from [Kelly, 2016].
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Figure 6.1: Decay scheme for the 828 keV resonance in 22Ne(α,γ)26Mg. The energy of
the excitation state is taken [Wolke et al., 1989] (see Appendix B). The spin parity of the
excited state (denoted by *) was adapted from [Giesen et al., 1993]. The other energy levels
are adopted from [Endt, 1998], the primary branching ratios can be found in [Wolke et al.,
1989], and the secondary branching ratios are taken from [Endt, 1998].
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Figure 6.2: Decay scheme for the 479 keV resonance in the 22Ne(p,γ)23Na reaction. The
energy levels and branching ratios are adopted from [Kelly, 2016], and can be found in
Appendix C

6.2 Experimental Procedure

Data for this measurement were taken with the 1 MV JN Van de Graaff accelerator

described in Chapter 3 modified for α-particle production and the γγ-coincidence HPGe

setup detailed in Chapter 5. The detector was placed flush with the target chamber (the
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target itself was 1.1 cm from the HPGe detector face). The targets were the evaporated

porous titanium targets described in Chapter 4. Two targets were fabricated for this ex-

periment, one of which was used to obtain off-resonance data before being damaged by a

faulty rastering system, and one of which was used to collect the on-resonance data. The

targets were implanted at a 75 keV implantation energy for the on-resoance target, and 45

keV for the off resonance target, and during implantation accumulated 1 C of charge each

to ensure saturation of the implanted material was reached. The beam energy chosen for

the 828 keV resonance was 904 keV. This value was chosen by modeling the energy loss of

an α particle within a target backing. A 904 keV α particle loses energy within the target

backing, and has a kinetic energy of 828 keV at a depth of 0.17 µm. A 493 keV proton

traversing the same target has a kinetic energy of 479 keV at 0.17 µm into the target. This

shows that the chosen bombarding energy falls in the higher energy quarter of the plateau

of the yield curves (Figure 6.5. It should be noted that the first YC shown in the figure has

slightly shifted energy values due to accelerator instability during the production of that

YC). Off-resonance data were collected at α-particle energies of 815 keV.

The α-particle beam currents on target were maintained at 50 µA throughout data

collection and deadtime averaged 1.58% across all collected on-resonance data. The total

accumulated charge on target was ≈ 4.4 C, though only 3.436480 C of that represented

usable data. Approximately 1.4 C of usable off-resonance data were collected before the

second target was damaged by the accelerator. The 479 keV resonance in 22Ne(p,γ)23Na

was used as a standard resonance in this study, and the 22Ne(α,γ)26Mg measurement is

dependent upon the accuracy of that standard resonance, as measured by [Kelly, 2016]

and [Longland et al., 2010a].

6.3 Fraction Fitting

Fraction fitting is a method of full spectral decomposition developed by previous

graduate students at LENA [Buckner, 2014, Daigle et al., 2016, Dermigny et al., 2016]. This
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was used to measure the standard resonance in 22Ne(p,γ)23Na and analyze data from the

22Ne(α,γ)26Mg. This method develops templates for each possible contribution to a total

spectra (every primary decay of interest, beam induced background, room background,

etc.), which are then varied to reconstruct the measured data (this process is illustrated

in Figure 6.3). The templates are fed into an extended binned likelihood function [Bar-

low, 1990] which represents the probability of obtaining data (D) given the m template

fractions (F), and is given in [Barlow and Beeston, 1993] as:

P (D|F) =
[ n∑
i=1

Dilnfi − fi]
]

+
[ n∑
i=1

m∑
j=1

ajilnAji − Aji
]

(6.1)

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

Primary decays

Beam-induced 
background

Room background

Full spectra

Figure 6.3: Illustration of the process of fraction fitting. Templates representing various
components of the measured data are varied to reproduce the actual data.

where n represents the total number of bins, i is a given bin, fi is the total number of

events (contributed by all templates), Aji is the predicted mean in template j, and aji is

the observed number of events in template j. The term Aji accounts for the the statistical

fluctuations in aji, which are sampled from finite Monte Carlo calculations.

The fji term is possibly the most important component of the likelihood function, and

is defined as:
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fi =
m∑
j=1

Adata

Asimj
FjAji (6.2)

where Adata is the total area of the data within the measured spectrum, and Asimj is

the total area of a simulated template j within the measured spectrum. The fractions Fj

for the majority of this study are found using the Minuit library [James, 1975]. Details

of this method can be found in [Buckner, 2014]. The low statistic data in Section 6.6

used both the Minuit method and a Bayesian method to determine the fractions. The

reader is referred to [Dermigny, 2018] for a detailed explanation of the Bayesian method.

The fraction fitting work in this dissertation was performed with a python-based GUI

developed by Jack Dermigny [Dermigny et al., 2016].

6.4 Targets and Target Degradation

Only two targets were used in this study, so it was critical to characterize the im-

planted 22Ne content and properly model the target degradation. The first target was

used to measure the standard resonance in the 22Ne(p,γ)23Na reaction and to collect off-

resonance data and will be referred to in this section as Target 1. The second target was

used to collect all on-resonance data, and will be referred to as Target 2. Both targets had

their 22Ne content carefully measured, and Target 2 was carefully monitored throughout

data collection.

The yield curve of the 479 keV resonance in the 22Ne(p,γ)23Na reaction with the high-

est statistics was measured using Target 1. All data points on the plateau of the target

were summed to produce a single spectrum, and then the spectrum was trimmed until

only a single representative peak from each template used remained in the spectra. The

peaks chosen were primaries, escape peaks, or secondaries that were unique to a partic-

ular decay branch in the excited state of 23Na and a unique peak for each background

template used. Figure 6.4 shows the fraction fit spectra and identifies the reaction peaks
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and contaminant peaks. The black line is the measured data, the red line is the sum of all

the templates used, and the various other lines are individual templates for the reaction of

interest and contaminants. The black arrows originating at the top of the image identify

the peaks from the reaction of interest and the brown arrows originating at the bottom of

the image identify the contaminant peak. Table 6.2 gives the information on the peaks of

interest in Figure 6.4.

500

1000

1500

2000

C
o

u
n

ts

Channel
20 40 60 80 100 120

22Ne(p,γ)23Na

Room background
Beam-induced background

Singles

Figure 6.4: Output of the fraction fitting GUI used to analyze the 479 keV resonance in
the 22Ne(p,γ)23Na reaction. This spectrum is a patchwork of distinct regions from the
entire measured spectrum. Each region contains a peak of interest (usually a primary
peak). The black line is the measured data, the red line is the sum of all the templates
used, and the various other lines are individual templates for the reaction of interest and
contaminants. The black arrows originating at the top of the image identify the peaks
from the reaction of interest, and the brown arrows originating at the bottom of the image
identify the contaminant peak. Table 6.2 gives the information on the peaks of interest.
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Reaction Transition (keV) γ-ray measured (keV)
22Ne(p,γ)23Na 9252.1→ 7082.0 2170.1 (primary)
22Ne(p,γ)23Na 9252.1→ 6920.6 2331.4 (primary)
Room background N/A 2614.5 (208Tl)
22Ne(p,γ)23Na 9252.1→ 5766.0 3486.1 (primary)
22Ne(p,γ)23Na 9252.1→ 4429.6 4822.5 (primary)
22Ne(p,γ)23Na 9252.1→ 3914.2 5337.9 (primary)
22Ne(p,γ)23Na 9252.1→ 3677.6 3246.0 (secondary)
19F(p,αγ)16O 6126.9→ 0.0 6126.9 (primary)
22Ne(p,γ)23Na 9252.1→ 2982.1 6270.0 (primary)
22Ne(p,γ)23Na 9252.1→ 2639.9 2642.0 (secondary)
22Ne(p,γ)23Na 9252.1→ 2390.7 6861.4 (primary)
22Ne(p,γ)23Na 9252.1→ 0.0 8741.1 (escape peak)

Table 6.2: Table of γ-rays representing individual fraction fitting templates displayed in
Figure 6.4. In cases when the primary γ-ray had significant contamination in the spec-
tra, a secondary γ-ray was chosen that was unique to that decay branch. The ground
state transition was measured using an escape peak so that a simple comparison to the
coincidence spectra (which excluded the primary peak) could be made (see Section 6.5)

The fitter outputs the fraction of each template needed to produce the best fit, which

can be converted into branching ratios and reaction numbers. The branching ratios re-

produced in this dissertation match those found in [Kelly, 2016], as shown in Table 6.6 in

Section 6.5, indicating a sufficiently accurate fit to use for target characterization.

Yield curve measurements of this same resonance in Target 2 did not have high enough

statistics to fraction fit accurately. The 6270 keV γ-ray from the 9252.1 keV → 2982.1

keV transition in 22Ne(p,γ)23Na reaction was measured instead and compared the same

measured γ-ray in Target 1. The resonances measured in this section are narrow, allowing

the use of the equation

Y∆E→∞ =
λ2
r

2

ωγ

εeff
(6.3)

where ωγ is the resonance strength (for the 479 keV resonance in the 22Ne(p,γ)23Na

reaction, this value is 0.583(43) eV, taken from [Kelly, 2016]), εeff is the effective stop-

ping power at the resonance energy, and λr is the de Broglie wavelength. The effective
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Total Reactions (from Fraction Fitter) 2376075(19345)
Accumulated charge 5059(152)µC
Yield (reactions/particle) 7.76(0.24)× 10−11

εeff 7.4(0.4)× 10−14 (eV/cm2)
Stoichiometry (Ti:Ne) 3.8(0.4) : 1
Counts in 6270 keV peak per µC 1.46(0.06)

Table 6.3: Parameters extracted from the 22(p,γ)23Na reference resonance using the fraction
fitting and equations described in this Chapter. The counts in the 6270 keV peak were
obtained from the yield curve fitting program described in this Chapter.

stopping power is given by

εeff = εX +
nY
nX

εY (6.4)

where nY is the number of inactive nuclei per square centimeter, nX is the number of

active nuclei per square centimeter, εY is the stopping power of the inactive nuclei in the

center-of-mass frame, and εX is the stopping power of the active nuclei in the center-of-

mass frame.

The stoichiometry, effective stopping power, and parameters used to calculate those

values for the reference resonance are shown are shown in Table 6.4.

The effective stopping power for Target 1 was compared to the observed 6270 keV

counts and used to monitor the 22Ne content in Target 2. When comparing two targets

using the same resonance, for any individual peak, the following expression can be used

Y1ε
eff
1 = Y2ε

eff
2 (6.5)

where Y is the measured yield from a particular peak, and εeff is the effective stop-

ping power. To determine the maximum yield of each target, a yield curve program de-

veloped by Jack Dermigny was employed. The program is based on YCurve.R which is
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described in Chapter 4, but uses Bayesian posterior probability distributions for the max-

imum yield, the beam-width, the beam straggling, and the thickness of the implanted

region. For details regarding the program and parameters, please see Appendix A.1 of

[Dermigny, 2018]. Figure 6.5 shows the first 4 yield curve plots obtained by the code. The

blue line represents the fit to the data, and the width of the line represents the correspond-

ing uncertainty.

Figure 6.5: 22Ne(p,γ)23Na Yield curves for target 2. (Upper left) 0 C accumulated. (Upper
right) 1.5 C accumulated. (Lower left) 2.5 C accumulated. (Lower right) 3.5 C accumu-
lated.

Figure 6.6 shows some of the measured yields from the yield curve program of the

6270 keV γ-ray of Target 2 throughout data collection. Table 6.4 shows the measured 6270

keV γ-rays, the effective stopping power, and the stoichiometries of the target.
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Charge 6270 keV Counts εeff (10−14eV/cm2) (CoM frame) Ti:Ne
0.0 1.44 ± 0.09 7.5 ± 0.8 3.9 ± 0.5
1.5 1.43 ± 0.06 7.6 ± 0.7 3.9 ± 0.4
2.5 1.34 ± 0.05 8.1 ± 0.8 4.2 ± 0.5
3.5 1.04 ± 0.04 1.04 ± 1.0 5.6 ± 0.6
4.4 0.91 ± 0.04 1.18 ± 1.2 6.4 ± 0.7

Table 6.4: Parameters from the 22(p,γ)23Na yield curves measured between α-beam data
collection periods. Effective stopping power was obtained by comparing the yield of
the 6270 keV peak with the yield from the reference resonance, and using the linear re-
lationship between the effective stopping power and measured yield (see Equation 6.5.
Stoichiometries are obtained from equation 6.4.

Figure 6.6: Yield of the 6270 keV γ-ray from the 22Ne(p,γ)23Na reaction in Target 2 as a
function of charge accumulated.

The data shown in Table 6.4 were used in Equation 6.3 to calculate the effective stop-

ping power of the target at each yield curve using the effective stopping powers from

SRIM for α particles at 830 keV in Ti and Ne. From this, an average stopping power was

calculated for each data collection period and is shown in Table 6.5. It should be noted
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Charge accumulation period (C) εavgeff (10−13eV/cm2)
0.0 - 0.5 C 3.19 ± 0.34
1.5 - 2.5 C 3.32 ± 0.33
2.5 - 3.5 C 3.92 ± 0.37
3.5 - 4.4 C 4.70 ± 0.45

Table 6.5: Average effective stopping power for each data collection period.

that temporary technical issues measuring current of the target collimator (see Chapter 3)

because of a disconnected ground wire led to unusually high background events for 1 C

of collected data and only the first 0.5 C of the first 1.5 C of collected data could be used.

To account for this increase in effective stopping power (and corresponding decrease

in signal of interest), a Beam Current Integrated (BCI) weighted average was used to

develop an average effective stopping power for the entire data set via the relation

εBCIeff =

∑
i ε
avg
eff,iNα,i∑
j Nα,j

(6.6)

where indices i and j refer to each data acquisition period and Nα,i is the number

of α particles accumulated during the data acquisition period i or j. Rather than add

uncertainties in quadrature for this average, which would produce artificially low values,

a weighted average of the uncertainties listed in Table 6.5 was also taken using the same

formalism. The final value of the BCI-weighted average effective stopping power for all

data collected on Target 2 was

εBCIeff = (3.84 ± 0.38)× 10−13eV/cm2 (6.7)

6.5 Coincidence Efficiency

The signals from the 828 keV resonance in the 22Ne(α,γ)26Mg reaction are very weak,

and cannot be differentiated from room background without use of both the γγ-coincidence

and γµ-anticoincidence systems detailed in Chapter 5. Figure 6.7 illustrates this, with
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the top panel representing a portion of the HPGe spectra with no gating, the center

panel showing the same spectra with γγ-coincidence gating, and the bottom panel shows

the spectra with γµ-anticoincidence applied. The red area indicates the location of the

strongest secondary γ-ray peak in the spectra.

Figure 6.7: Spectra illustrating the γγ-coincidence and γµ-anticoincidence applied to the
828 keV resonance. (Top) Singles spectra from the HPGe detector zoomed in to a region
of interest. (Center) The same spectra with γγ-coincidence applied. (Bottom) The γγ-
coincidence spectra when γµ-anticoincidence is used. The red area indicates the location
of the strongest secondary γ-ray peak in the spectra

To set up the coincidence described in Chapter 5, a two dimensional energy gate must
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be set between the HPGe and NaI detectors. This is a software gate generated in JAM

(Chapter 5) and is chosen to maximize the signals seen from the decay of interest (see

Figure 6.1). The gate chosen for this experiment included events whose total energy de-

position in all detectors measured 7000 − 11500 keV and excluded all other total energy

deposition values. This gate was chosen through trial and error to minimize background

while maximizing the signal of the 1809 keV secondary γ-ray. Figure 6.8 shows a two-

dimensional plot of measured energies in the HPGe (x-axis) and the sum of all the NaI

detectors (y-axis). The red trapezoid is the gated region of accepted events.

Figure 6.8: Two-dimensional plot of measured energies in the HPGe (x-axis) and the sum
of all the NaI detectors (y-axis). The red trapezoid is the gated region of accepted events.
The small dense triangular region in the lower left is composed of signals originating
almost entirely from room background.

The efficiency measurement of the HPGe detector is detailed in Chapter 5, but coinci-

dence efficiency is handled differently because the efficiency is unique to each coincidence

energy gate. Others have shown that our simulations accurately represent the detector

[Dermigny et al., 2016, Howard et al., 2013], but an additional check was performed for

the specific energy gate chosen for this experiment.
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Transition FF BR (singles) FF BR (coincidence) BR (singles) [Kelly, 2016] BR (coincidence) [Kelly, 2016]
R→ 0 39.97(68) 38.54(108) 41.77(67) 41.23(71)
R→ 2391 4.89(21) 3.65(21) 4.05(12) 4.05(13)
R→ 2640 8.24(19) 9.57(28) 8.27(18) 8.29(20)
R→ 2982 32.19(56) 33.83(71) 31.73(52) 32.79(58)
R→ 3678 4.65(17) 4.65(32) 4.85(16) 4.77(16)
R→ 3914 1.23(16)* 0.37(17)* 0.37(9) 0.05(24)
R→ 4430 1.73(15) 2.13(20) 1.69(9) 1.61(15)
R→ 5766 2.53(11) 2.30(14) 2.78(9) 2.70(13)
R→ 6921 2.71(12) 2.85(17) 2.43(9) 2.49(11)
R→ 7082 2.04(10) 2.10(15) 2.06(9) 2.03(11)

Table 6.6: Comparison of branching ratios of the 479 keV resonance in 22Ne(p,γ)23Na. The
values labeled FF BR are the branching ratios determined from the fraction fitting in this
study. These are compared to the most recent measured values [Kelly, 2016]. Upper limits
are denoted by *.

The coincidence gate used for the 22Ne(α,γ)26Mg measurement was applied to the

479 keV resonance data in 22Ne(p,γ)23Na used to characterize the target in Section 6.4.

Branching ratios were compared between the singles spectra, coincidence spectra, and

literature values. Table 6.6 shows the results of this comparison. Although less charge was

accumulated in the present work compared to [Kelly, 2016], values for branching ratios

match each other in singles and coincidence for the data from the 479 keV 22Ne(p,γ)23Na

measurement. Additionally, the values for the branching ratios in singles and coincidence

are reasonably close to the values obtained by [Kelly, 2016], which was a higher-statistics

study of this resonance. This confirms the accuracy of the simulations with the particular

coincidence gate chosen for this study.

The coincidence gate was applied to the 828 keV resonance whose decay scheme is

shown in Figure 6.1. The branching ratios for the primary transition are taken from

[Wolke et al., 1989], and secondary branching ratios are taken from [Endt, 1998]. These

values were used to run a full coincidence simulation of the 828 keV resonance in 22Ne(α,γ)26Mg

in Geant4, and the number of background-reduced events in the 1809 keV secondary γ-

ray was measured and compared to the number of simulated events. It was determined

that the coincidence efficiency at 1809 keV with the 7000− 11500 keV 2D energy gate was

0.0095 for this particular γ-ray.
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6.6 Analysis

Because of the low statistics of the signals from the 828 keV resonance, multiple meth-

ods of analysis were performed to corroborate the results. While primary γ-rays from the

828 keV resonance were detected, the number of counts for each primary were very low.

The 1809 keV secondary γ-ray is the strongest signal from the resonance detected and the

first method of analysis used only this secondary to obtain a resonance strength.

Initial data analysis utilized the data acquisition system JAM (Chapter 5) for peak anal-

ysis. The secondary peak of interest was identified, and the net area was measured using

JAM Net Area tool, which uses background markers to identify regions-of-interest for

background reduction and measures the background-reduced net area of a peak.

The full simulated decay of the 828 keV resonance in 22Ne(α,γ)26Mg described in Sec-

tion 6.5 shows that with the current detector setup the coincidence efficiency for the

1809 → 0 keV decay (assuming literature branching ratios) is 0.0095. The total counts

and coincidence efficiency were used to obtain the total number of reactions, shown in

Section 6.7. That number was used to calculate the resonance strength with Equation 6.3.

The second method of analysis used the Fraction Fitting described in Section 6.3. Tem-

plates for the 11313 → 7062 and 11313 → 1809 primary transitions were generated, as

these were the only primary transitions identified by [Wolke et al., 1989], and no addi-

tional primary peaks could be identified in the data taken for this dissertation. Efforts

were made to properly account for Doppler shifting and Doppler broadening, which are

detailed in Appendix A, and were applied to the primary templates.

After applying the γγ-coincidence and γµ-anticoincidence gates, both beam-induced

and room background data were too noisy to obtain a proper fit. It was estimated that

approximately 2 full weeks of 24 hour runtime would be needed to obtain the statis-

tics needed to produce reasonable background templates. The beam-induced and room

background templates did reveal that the background local to the peaks of interest was

relatively flat, leading to the use of manually generated flat background templates for all
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regions.

Fraction fitting was performed with both the binned likelihood method [Dermigny

et al., 2016] and Bayesian method [Dermigny, 2018]. An example fit (in this case, the

likelihood fit) is shown in Figure 6.9. The top panel shows the various fit regions, with

the left most region being the 1809 keV secondary, while the center and right regions are

the primaries detected. Black arrows indicate the primary peaks. The bottom panel shows

the fit from the binned likelihood method. Black denotes the measured data, red is the

sum of the templates, and the various other colored lines are the primary and background

templates.

Figure 6.9: (Top) The various fit regions, each labeled with the γ-ray being fit within
the panel. Black arrows indicate the primary peaks. (Bottom) The fit from the binned
likelihood method. Black is the measured data, red is the sum of the templates, and the
various other colored lines are the primary and background templates.

130



Parameter Value
Total accumulated charge 3.436480 C
εaveeff (3.84 ± 0.38)× 10−13eV/cm2

Counts (1809 keV γ-ray) 43.18 ± 10.43
Average detector dead time 1.58%
Coincidence efficiency (1809 keV γ-ray) 0.0095

Table 6.7: Parameters used to calculate the resonance strength in 22Ne(α,γ)26Mg. Counts
is the background subtract net area of the peak, εaveeff is the BCI-weighted average effective
stopping power in the CoM frame, and coincidence efficiency is the number of events
detected per decay using the coincidence gate given in Section 6.5.

The resulting total number of reactions measured, branching ratios derived, and re-

sulting measured resonance strength are given in Section 6.7. Values for excitation energy

are given in Section 6.8.

6.7 Resonance Strength Results

The results from the analysis of the strongest secondary γ-ray, assuming branching

ratios from [Wolke et al., 1989], and the binned likelihood and Bayesian analysis meth-

ods are shown in Table 6.8. Because the 828 keV resonance in 22Ne(α,γ)26Mg reaction is

narrow, Equation 6.3 can be used to determine the resonance strength. The total reaction

numbers found in Section 6.6 and the effective average stopping power found in Section

6.4 were used. For convience, all parameters needed to calculate the resonance strength

for the tranditional analysis method are given in Table 6.7.

Table 6.8 shows the resulting total reaction number, assumed or derived branching

ratios, and calculated resonance strength.

It should be noted that the fraction fitting methods produce a significantly lower value

for the resonance strength, as compared to a traditional analysis of the 1809 keV sec-

ondary γ-ray. The fraction fitter seems to underestimate the strength of the 1809 keV

γ-ray (see Figure 6.9), indicating the presence of one or more additional unidentified pri-

mary branches. The presence of undetected additional primary branches will also have
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Method Reaction number Primary BR(R→7062) Primary BRR→1809) ωγ (meV)
Secondary peak analysis 4476(1081) 53(4)* 47(4)* 0.047(12)
Binned likelihood fraction fitting 3588(775) 50(19) 50(23) 0.038(9)
Bayesian fraction fitting 3523(845) 49(12) 51(12) 0.037(10)

Table 6.8: Total reaction numbers, branching ratios, and resonance strength derived from
the three methods of analysis. Branching ratios denoted by * are taken from [Wolke et al.,
1989].

an effect on the traditional analysis, because the coincidence efficiency is constructed us-

ing the known primary branching ratios. However, [Wolke et al., 1989] showed that the

1809 keV secondary γ-ray is produced for 84 to 98% of decays in higher energy resonances

in 22Ne(α,γ)26Mg. It is therefore reasonable to assume that the additions of unknown pri-

mary branches will not alter the traditional analysis significantly, but does appear to have

a significant effect on the fraction fitting. The value officially reported in this dissertation

is therefore

ωγ = 0.047± 0.012 meV (6.8)

The uncertainty of this measurement is a direct consequence of the low statistics of

the data set. An extensive study of effects of these results on the cross section of the

22Ne(α,γ)26Mg, the subsequent effect on the 22Ne(α,n)25Mg reaction in stellar environ-

ments, and the effect on the weak and strong s-process are not explored in this disserta-

tion.

6.8 Excitation Energy

An effort was also made to extract the excitation energy of the 828 keV resonance from

the identified primary γ-rays. To do this with the data presented in Chapter 6, Equation

C.11 from [Iliadis, 2015] was modified and used. The modified equation is:

Eγ = Ex initial − Ex final + ∆EDopp −∆Erec (6.9)
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Parameter Value9532(2) (keV) Value4269(2) (keV)
Eγ 9532(2) 4269(2)
Ex final 1809 7062
∆EDopp 24 11
∆ERec 2 0

Table 6.9: Parameters for calculating excitation energy using equation 6.9. The parameter
Eγ was measured from the data spectrum, Ex final was taken from [Endt, 1998], ∆EDopp is
calculated in appendix A, and ∆ERec is calculated from equation 6.10.

where Eγ is the observed γ-ray energy, Ex initial and Ex final are the initial and final en-

ergy states respectively, and ∆EDopp and ∆Erec are the Doppler shift and recoil energies

respectively. The Doppler shift is calculated in Appendix A and shown in Table 6.9. The

recoil energy (from Equation C.13 in [Iliadis, 2015] is given by

∆Erec = 5.36772×
E2
γ

M
(6.10)

where Eγ is the energy of a primary in MeV, and M is the mass of the recoiling nucleus.

Table 6.9 contains the parameters used in Equation 6.9 to calculate the excitation energy.

Using these values, and equation 6.9, the excitation energy value predicted for each of

the primary γ-rays measured is:

Ex,9532 = 11319(2)keV (6.11)

Ex,4269 = 11320(2)keV (6.12)

These values are consistent with states identified in Table 6.1
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Chapter 7

Conclusions

The goal of this dissertation has been to improve the technologies needed to remeasure

the low energy resonances in the 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg reactions and to at-

tempt to remeasure the resonance strength of the 831 keV resonance in the 22Ne(α,n)25Mg

reaction.

Efforts to characterize a new fast neutron spectrometer capable of differentiating be-

tween the low energy (≈ 300 keV) neutrons from the 22Ne(α,n)25Mg reaction and the

higher energy (≈ 3 MeV) neutrons from the contaminant 13C(α,n)16O reaction were mostly

successful. Analysis of the signals from the BC523A detector using pulse shape discrimi-

nation showed that the literature understanding of the detector was incorrect, the capture

event signal was properly identified, and confirmed using gating and timing tests. The

energy resolution of the detector was measured for the first time, using the neutron time-

of-flight method, and showed that the detector would have good discrimination between

signal and contaminant neutrons from the 22Ne(α,n)25Mg and 13C(α,n)16O reactions. In-

trinsic efficiency as a function of energy was also measured for the first time, though the

results of that measurement showed that the detector most likely had insufficient effi-

ciency for use in this dissertation.

Targets were also designed that are capable of withstanding the intense damage of an

α-particle beam. Three targets were explored, the first of which was made of a highly pure

glass called fused silica. This target was blister-resistant, but did not have the mechanical

strength desired for most nuclear targets, and had insufficient thermal conduction for

proper cooling. The second target designed used sintered metal for the backing. This

target was also blister resistant, but proved very difficult to water cool due to its porous

134



nature. The final target used evaporated titanium to develop a porous Stranski-Krastanov

structure which proved blister resistant (possibly blister-proof) while still retaining the

cooling properties associated with standard implanted solid targets. This dissertation

represents the first ever measurement with such a target.

The loss of the implantation system needed to make additional targets (see Chapter

3) prevented all the data collection planned for this experiment, which resulted in poor

statistics for the measurement of the resonance strength in 22Ne(α,γ)26Mg. Despite the

poor statistics, a resonance strength measurement was still made, and the strength found

disagrees with the only directly measured literature value.

Despite these low statistics, the preliminary results shown here may indicate that

the strength of the 828 keV resonance in 22Ne(α,γ)26Mg is higher than the only other

previous measurement of 0.036(4) meV by Wolke et al. [1989]. It is hypothesized here

that the wide range of values for the resonance strength measured for the various reso-

nances in 22Ne(α,n)25Mg (including the 831 keV resonance) by various groups (see Chap-

ter 1) using the same extended gas cell target lend credibility to the target being one of

the primary causes of potential systematic errors. The only direct measurement of the

22Ne(α,γ)26Mg reaction used the same gas cell target, leading to the hypothesis that the

resonance strength measured by [Wolke et al., 1989] contains additional unaccounted for

uncertainty. This work in this dissertation leads us to recommend additional data be col-

lected for the 831 keV resonance using the evaporated porous targets detailed in Chapter

4 once a new implantation system for LENA is secured.

It should also be noted that LENA has procured funding for a new accelerator to re-

place the JN, which will be capable of providing a pulsed-mode α-particle beam to target

with an effective current of 20 mA (≈ 400 times greater than what was used for this study).

The pulse capabilities of the new accelerator would prevent heat damage to the targets

and only collecting data when the beam is on target will reduce background by a factor

of ≈ 400. This would all but entirely eliminate background near the primary peaks of
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interest and would vastly improve the uncertainty on the secondary peak.

Once an updated measurement of the resonance strength of the 828 keV resonance in

the 22Ne(α,γ)26Mg reaction is performed, a thorough investigation of the effect of the new

resonance strength on the s-process in the stellar environments of AGB and massive stars

can be performed.
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APPENDIX A: DOPPLER EFFECTS

The purpose of this appendix is to outline the efforts made to properly account for the

Doppler shift and Doppler broadening of the primary peaks in the measurement made is

Chapter 6. Much of the work shown here uses equations and formalisms from [Iliadis,

2015] and references within.

Doppler shift is a fairly straightforward calculation. From [Daigle et al., 2016], the

Doppler shift can be represented by the equation:

Eobs
γ = E0

γ

√
1− β(t)2

1− β(t)Q1cos(θ
(7.1)

where Eobs
γ is the observed γ-ray energy, E0

γ is the unshifted energy, β(t) is the recoil

velocity (in units of c), and Q1 is an angular attenuation coefficient, which corrects for the

angular acceptance of the detector.

The value used for Q1 is 0.85 for the lower energy primary, and 0.86 for the higher en-

ergy primary (taken from [Dermigny, 2018]). The recoil velocity is found via the equation

vB = va
ma

mB

(7.2)

where v and m are velocity and mass respectively, and the subscripts refer to nuclei,

best illustrated with Figure 7.1. For the 828 keV resonance, this becomes vB ≈ 9×105m/s.

This gives a value of β(t) ≈ 0.003. Using this, Equation 7.1 becomes:

Eobs
γ = E0

γ × 1.00255 (7.3)

The values observed for the two primary γ-rays from the 828 keV resonance are 4269(2)

keV and 9532(2) keV. This gives actual emitted γ-ray values of 4258(2) keV and 9508(2)

keV. These Doppler shifts were applied to the templates used in the fraction fitting anal-

ysis method.
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Figure 7.1: kinematic properties of a reaction A(a, b)B in the laboratory frame (a), and the
center-of-mass frame (b). Figure taken from [Iliadis, 2015].

Doppler broadening of the peaks is caused by the fact that γ-rays with different values

of θ have a different energies, which will increase the FHWM of peaks within a measured

spectra. To determine the Doppler broadening of the peaks in the 22Ne(α,γ)26Mg, we will

compare to the broadening in the 22Ne(p,γ)23Na reaction.

First, it is necessary to attempt to approximate the Doppler broadening of peak within

the 22Ne(p,γ)23Na spectra. The 9252 keV γ-ray was chosen for this, FWHM of the γ-ray

was measured using JAM to be 14.49 keV. The energy resolution of the HPGe detector at

these energies is ≈ 13 keV. The Doppler shift and energy resolution of the detector are

added in quadrature to obtain the observed FWHM

FWHMtotal =
√

(FWHMReso)2 + (FWHMDopp)2 (7.4)

Using the measured values, a Doppler broadening of ≈ 6 keV is obtained.

The maximum angle of acceptance into the detector of 1.22 radians (taken from Geant4

simulations). An estimate of the maximum possible Doppler broadening is made by com-

paring the difference between the Doppler shifts at 1.22 and 0 radians. Using Equation
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7.1, the values for maximum broadening value for the 9252 keV γ-ray from 22Ne(p,γ)23Na

reaction of ≈ 8 keV. Repeating for the 22Ne(α,γ)26Mg reaction yields a maximum broad-

ening value of ≈ 19 keV.

The approximation for Doppler broadening requires a link between the measured

broadening for the 22Ne(p,γ)23Na reaction, and the expected Doppler broadening for the

22Ne(α,γ)26Mg reaction. The link chosen for this approximation is the ratio of observed

broadening to the maximum possible broadening. For the 9252 keV γ-ray from 22Ne(p,γ)23N

reaction, this ratio is ≈ 3/4. Applying this to the 19 keV maximum possible broadening

for the 9504 keV γ-ray from 22Ne(α,γ) reaction results in a Doppler broadening value of

≈ 14 keV.

Multiplying this ratio to the 8 keV maximum possible broadening for the 4252 keV

γ-ray from 22Ne(α,γ) reaction results in a Doppler broadening value:

∆broadening,4252 ≈ 6 keV (7.5)

The energy resolution for the HPGe detector at this energy is ≈ 8 keV (see Figure 5.4).

To include Doppler broadening in the Geant4 simulations used in fraction fitting, the

Doppler broadening and energy resolution were added in quadrature, and normalized to

the existing energy resolution in Geant, yielding a correction of

σnew,4252 = 1.25σold (7.6)

Applying this to the 19 keV maximum possible broadening for the 9504 keV γ-ray

from the 22Ne(α,γ)26Mg reaction results in a Doppler broadening value:

∆broadening,9504 ≈ 14 keV (7.7)

The energy resolution for the HPGe detector at this energy is ≈ 13 keV (see Chapter

5). To include Doppler broadening in the Geant4 simulations used in fraction fitting, the
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Doppler and energy resolution were added in quadrature, and normalized to the existing

energy resolution in Geant, yielding a correction of

σnew,9504 = 1.37σold (7.8)
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APPENDIX B: EXCITATION ENERGIES

The excitation energy quoted in this dissertation comes from the only direct measure-

ment of the 22Ne(α,γ)26Mg reaction [Wolke et al., 1989]. The excitation energy is not ex-

plicitly stated in Wolke’s work, so it was extracted from his measured resonance energy

via the equation given in [Kikstra et al., 1990]

Ex = Q+
mT

mT +mα

Eα
2

1 +
√

1 + 2EαmT/(mT +mα)2c2
(7.9)

where Ex is the excitation energy, Eα is the bombarding particle energy, Q is the Q

value for the reaction, and mT and mα are the masses of the target and bombarding parti-

cle respectively. These values are given in Table 7.1

These values result in an excitation energy of: 11313(4) keV

Parameter Value
Eα 828(5) keV
Q 10612.88(3) keV
mt 21.9914
mα 4.0026

Table 7.1: Parameters for calculating excitation energy from [Wolke et al., 1989]. The Q is
calculated from atomic mass differences, accounting for the difference in electron binding
energy. All masses are taken from [Wang et al., 2017].
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APPENDIX C: BRANCHING RATIOS

Table of branching ratios adopted from [Kelly, 2016].

142



Initial state (MeV) Final state (MeV) Branching ratio Branch uncertainty
0.44 0.00 1.000 0.000
2.08 0.44 0.918 0.046
2.08 0.00 0.082 0.004
2.39 0.44 0.343 0.017
2.39 0.00 0.657 0.033
2.64 0.00 1.000 0.000
2.98 2.39 0.003 0.0001
2.98 0.44 0.411 0.021
2.98 0.00 0.586 0.029
3.68 2.89 0.005 0.001
3.68 2.64 0.195 0.010
3.68 2.39 0.013 0.0001
3.68 0.44 0.787 0.039
3.85 2.98 0.020 0.001
3.85 2.64 0.045 0.002
3.85 2.08 0.611 0.031
3.85 0.44 0.095 0.005
3.85 0.00 0.229 0.011
3.91 2.98 0.023 0.001
3.91 2.39 0.011 0.001
3.91 2.08 0.090 0.004
3.91 0.44 0.081 0.004
3.91 0.00 0.795 0.040
4.43 2.39 0.083 0.004
4.43 0.00 0.917 0.046
5.77 3.85 0.015 0.001
5.77 2.64 0.045 0.002
5.77 0.44 0.421 0.021
5.77 0.00 0.520 0.026
6.92 0.44 0.301 0.015
6.92 0.00 0.699 0.035
7.08 0.00 0.550 0.020
7.08 0.44 0.250 0.030
7.08 2.64 0.200 0.020
9.25 7.08 0.021 0.001
9.25 6.92 0.024 0.001
9.25 5.77 0.028 0.001
9.25 4.43 0.017 0.001
9.25 3.91 0.004 0.001
9.25 3.68 0.049 0.002
9.25 2.98 0.317 0.005
9.25 2.64 0.083 0.002
9.25 2.39 0.041 0.001
9.25 0.00 0.418 0.007

Table 7.2: Branching ratios of the 479 keV resonance in 22Ne(p,γ)23Na. Values are taken
from [Kelly, 2016] and references within.
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Marcel Arnould and Stéphane Goriely. The p-process of stellar nucleosynthesis: astro-
physics and nuclear physics status. Physics Reports, 384(1):1–84, 2003.

G Audi, AH Wapstra, and C Thibault. The ame2003 atomic mass evaluation:(ii). tables,
graphs and references. Nuclear Physics A, 729(1):337–676, 2003.

K Banerjee, TK Ghosh, S Kundu, TK Rana, C Bhattacharya, JK Meena, G Mukherjee,
P Mali, Dhruba Gupta, S Mukhopadhyay, et al. Variation of neutron detection charac-
teristics with dimension of bc501a neutron detector. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
608(3):440–446, 2009.

Roger Barlow. Extended maximum likelihood. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(3):
496–506, 1990.

Roger Barlow and Christine Beeston. Fitting using finite monte carlo samples. Computer
Physics Communications, 77(2):219–228, 1993.

144



Allan FM Barton. CRC handbook of solubility parameters and other cohesion parameters. CRC
press, 1991.

Ernst Bauer. Phänomenologische theorie der kristallabscheidung an oberflächen. ii.
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Franz Käppeler, Roberto Gallino, Sara Bisterzo, and Wako Aoki. The s process: Nuclear
physics, stellar models, and observations. Reviews of Modern Physics, 83(1):157, 2011.

AI Karakas, Maria A Lugaro, Michael Wiescher, J Görres, and Claudio Ugalde. The uncer-
tainties in the 22ne+ α-capture reaction rates and the production of the heavy magne-
sium isotopes in asymptotic giant branch stars of intermediate mass. The Astrophysical
Journal, 643(1):471, 2006.

Amanda I Karakas, DA Garcı́a-Hernández, and Maria Lugaro. Heavy element nucleosyn-
thesis in the brightest galactic asymptotic giant branch stars. The Astrophysical Journal,
751(1):8, 2012.

Margarita Karovska, Warren Hack, John Raymond, and Edward Guinan. First hubble
space telescope observations of mira ab wind-accreting binary system. The Astrophysical
Journal Letters, 482(2):L175, 1997.

Keegan John Kelly. Nuclear reaction rate uncertainties and the 22 Ne (p, γ) 23 Na reaction:
Classical novae and globular clusters. PhD thesis, The University of North Carolina at
Chapel Hill, 2016.

SW Kikstra, C Van Der Leun, PM Endt, JGL Booten, AGM Van Hees, and AA Wolters.
The 40ca level scheme investigated with the 39k (p, γ) 40ca reaction. Nuclear Physics A,
512(3):425–465, 1990.

PE Koehler. Constraints on the 22 ne (α, n) 25 mg s-process neutron source from analysis
of nat mg+ n total and 25 mg (n, γ) cross sections. Physical Review C, 66(5):055805, 2002.

VI Kononenko, VM Baranovskii, and VP Dushchenko. Thermal conductivity of porous
sintered iron. Powder Metallurgy and Metal Ceramics, 7(3):175–177, 1968.

149



SA Lamb, WM Howard, JW Truran, and I Iben Jr. Neutron-capture nucleosynthesis in the
helium-burning cores of massive stars. The Astrophysical Journal, 217:213–221, 1977.

L Lebreton, A Zimbal, and D Thomas. Experimental comparison of 241am–be neutron
fluence energy distributions. Radiation Protection Dosimetry, 2007.

RW Lee, RC Frank, and DE Swets. Diffusion of hydrogen and deuterium in fused quartz.
The Journal of Chemical Physics, 36(4):1062–1071, 1962.

Lu Lin, RM Dreizler, and H Galbraith. Spontaneous-fission half-life of 8 be. Lettere Al
Nuovo Cimento (1971–1985), 11(14):627–630, 1974.

R Longland, C Iliadis, AE Champagne, C Fox, and JR Newton. Nuclear astrophysics stud-
ies at the lena facility: The γ-ray detection system. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
566(2):452–464, 2006.

R Longland, C Iliadis, JM Cesaratto, AE Champagne, S Daigle, Joseph R Newton, and
R Fitzgerald. Resonance strength in ne 22 (p, γ) na 23 from depth profiling in aluminum.
Physical Review C, 81(5):055804, 2010a.

Richard Longland, Christian Iliadis, AE Champagne, JR Newton, Claudio Ugalde, Alain
Coc, and Ryan Fitzgerald. Charged-particle thermonuclear reaction rates: I. monte
carlo method and statistical distributions. Nuclear Physics A, 841(1):1–30, 2010b.

Richard Longland, Christian Iliadis, and Amanda I Karakas. Reaction rates for the s-
process neutron source 22 ne+ α. Physical Review C, 85(6):065809, 2012.

M Lugaro and M van Raai. New discoveries and challenges for the s process in agb stars.
Journal of Physics G: Nuclear and Particle Physics, 35(1):014007, 2007.

LK Mansur and WA Coghlan. Mechanisms of helium interactions with radiation effects
in metals and alloys: A review. Journal of Nuclear Materials, 119(1):1–25, 1983.

N Marochov and PJ Goodhew. A comparison of the growth of helium and neon bubbles
in nickel. Journal of Nuclear Materials, 158:81–86, 1988.

Joseph S Masaryk and Richard M Fulrath. Diffusivity of helium in fused silica. The Journal
of Chemical Physics, 59(3):1198–1202, 1973.
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