
Snx14 Regulates Neuronal Excitability, Promotes
Synaptic Transmission, and Is Imprinted in the Brain of
Mice
Hsien-Sung Huang1¤, Bong-June Yoon2, Sherian Brooks1, Robert Bakal1, Janet Berrios3, Rylan S. Larsen1,

Michael L. Wallace3, Ji Eun Han1, Eui Hwan Chung4, Mark J. Zylka1,3,5,6, Benjamin D. Philpot1,3,5,6*

Abstract

Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific
manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations.
A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has
proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here
we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a
neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal
development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and
inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal
excitability and synaptic transmission.
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Introduction

Both maternal and paternal autosomal chromosomes are

required for embryogenesis because offspring can have imbal-

anced parent-of-origin-specific gene expression [1,2]. Parent-of-

origin-specific gene expression, termed genomic imprinting, results

in gene products that are predominately expressed from either the

maternal or paternal allele. The monoallelic expression of

imprinted genes renders them particularly vulnerable to severe

consequences from genetic insults. Approximately 2.5% of the

genes in mice [3] and 1% of the genes in humans [4] are thought

to be imprinted. A large proportion of these imprinted genes are

expressed in the central nervous system where they influence brain

development and function [5]. Consequently, it is not surprising

that a variety of neurological disorders, including autism spectrum

disorders, have been linked to misexpression of imprinted genes

[6].

Despite the importance of genomic imprinting in brain

function, the exact number and identity of imprinted genes

continues to be debated [7]. RNA-sequencing techniques from F1

hybrid mice have identified many putative imprinted genes in the

mouse brain [8,9], but few of these candidates have been verified.

Indeed, such verification is difficult because imprinted genes can

be regulated in specific cell types and developmental stages [5]. To

overcome this limitation, we modified previously employed

approaches to identify neuron-specific imprinted genes [10,11].

Using this method in mice, we identified a novel neuronally

imprinted gene, sorting nexin protein 14 (Snx14). Sorting nexin

family proteins are poorly characterized in brain. We found that

SNX14 protein is increasingly expressed with brain maturation

and plays a critical role in regulating neuronal excitability and

synaptic transmission.

Materials And Methods

Mice
CAST/EiJ and BALB/c mice were purchased from the Jackson

Laboratory and tissues were collected from F1 generation offspring

between postnatal day (P) 13 to P25. Brain tissue was also collected

from embryonic day (E) E15.5, young, and adult mice on a

C57BL/6 strain (Charles River Laboratories). All research

procedures using mice were approved by the Institutional Animal
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Care and Use Committee at the University of North Carolina,

Chapel Hill and conformed to NIH guidelines.

Fluorescence activated cell sorting
Neurons were separated by FACS as described [12] with minor

modifications. Briefly, P13-P25 mouse brains were quickly

removed and visual cortices were dissected. Visual cortices were

minced on an ice-cold glass plate with scalpel blades and added to

a microfuge tube with 1 ml Hibernate A medium (Hibernate-low

fluorescence, Brain Bits). The medium was replaced with 1 ml of

Accutase (SCR005, Millipore). Tubes were rotated for 40 min at

4uC. Tissues were pelleted by centrifugation at 4506g for 2 min

and resuspended in 1 ml of Hibernate A. Cells were dissociated by

multiple trituration with fire-polished glass pipettes and filtered

serially through 100 mm, and then 40 mm cell strainers (BD

biosciences). Filtrate was further purified by density centrifugation.

The filtrate was added to the top of two layers of Percoll solutions

(1.5 ml each solution) (Bottom solution: 3.600 ml Hibernate A+
650.5 ml Percoll +76.5 ml 1 M NaCl, Top solution: 3.770 ml

Hibernate A+480.3 ml Percoll +59.5 ml 1 M NaCl) in a 15 ml

Falcon tube and centrifuged at 4306g for 3 min. The cloudy

supernatant that contained mostly debris was carefully removed

and the remaining solution was centrifuged at 5506g for 5 min.

Cell pellets were resuspended in 0.5 ml of Hibernate A and fixed

with an equal volume of ice-cold absolute ethanol on ice for

15 min. Cells were centrifuged down at 4506g for 2 min and

resuspended in phosphate-buffered saline (PBS). Fixed cells were

immunolabeled with anti-NeuN antibody (1:1000, MAB377,

Millipore) and subsequently with allophycocyanin-conjugated,

goat anti-mouse IgG antibody (1:1000, A-865, Invitrogen) before

they were sorted using FACS Calibur (BD Biosciences) at the flow

cytometry core facility, University of North Carolina.

Real-time qPCR analysis
First-strand cDNA samples were quantified with a Nanodrop

spectrophotometer (Thermo Scientific; Hudson, NH). cDNA was

amplified in triplicate by quantitative PCR using SYBR Green

(Sigma Aldrich; St. Louis, MO) and the ViiA 7 (Applied

Biosystems; Grand Island, NY). The relative expression values

were determined using Gapdh as a reference by the comparative Ct

method (2-DDCt) according to manufacturer’s protocol (Applied

Biosystems; Grand Island, NY).

Imprinting analysis using restriction fragment length
polymorphism (RFLP)

FACS sorted NeuN-positive and NeuN-negative cells were

centrifuged at 20,0006g for 5 min at 4uC. Total RNA was

extracted from cell pellets using the RNeasy Micro kit (74004,

Qiagen) and reverse-transcribed into cDNA using High-Capacity

cDNA Reverse Transcription kit (4368814, Applied Biosystems). A

fragment of Snx14 that contains a Cla I RFLP was amplified using

polymerase chain reaction (PCR). The PCR product was digested

with Cla I and resolved on 2% agarose gel. The gel was stained

with ethidium bromide and the image was analyzed with imageJ.

Fluorescence-based laser capture microdissection and
sequencing

P21 mouse brains were immersed in O.C.T. compound and

frozen (Tissue-Tek, SAKURA). Brains were then coronally sliced

at 7 mm thickness and collected on slides (MembraneSlide 1.0

PEN Zeiss). Sections were then fixed with 100% ice-cold acetone

at -20uC for two minutes and air-dried. Sections were then rinsed

with DEPC and RNase inhibitor (0.5 U/ml, BioLabs, M0314S)-

treated PBS, incubated with NeuN (1:10, Millipore, MAB377) for

1 min at room temperature (RT), and washed with DEPC- and

RNase inhibitor-treated PBS two times. We then incubated the

sections with Alexa Fluor 546 goat anti-mouse IgG1(c1) (1:10,

Invitrogen, A21123) in DEPC- and RNase inhibitor-treated PBS

and washed two times with DEPC- and RNase inhibitor-treated

PBS. Finally, sections were dehydrated by 75, 95, 100% ethanol

and 100% Xylene and then air-dried. NeuN-positive neurons in

the primary visual cortex were captured using a laser capture

microscope (Zeiss PALM) and collected into AdhesiveCap 500

tubes (Zeiss). RNA was extracted by PicoPure RNA Isolation Kit

(Arcturus) and amplified by RiboAmp HS Amplification Kit

(MDS, Analytical Technologies). Commd1 and Snx14 primers used

for PCR and sequencing were: Commd1 F (59-AAAAAG-

CAAGGTGGCATCAC-39), Commd1 R (59-CAGTGGGCAAA-

CAGGACTTT-39), Snx14 F (59-CTAATTACGGG

GTGGCTGAA-39), Snx14 R (59-TGATCCTTTTGGATG-

GAAGC-39).

Primary cortical neuron cultures
E15.5 mouse cortices were dissected and seeded into poly-D-

lysine (0.1 mg ml21) 24-well (36105 cells/well for electrophysiol-

ogy, or 16105 cells/well for staining) and 6-well (1.86106 cells/

well for western blot) plates as previously reported [13].

Western blot
Cultured neurons or brain tissues were first homogenized in lysis

buffer (1% Triton X-100, 5 mM EDTA, pH 8, 0.15 M NaCl,

10 mM Tris-HCl, pH 7.5, phosphatase inhibitor cocktail 1, and

protease inhibitor cocktail). To assess SNX14 protein levels, 25 mg

of the total protein lysate was separated by 8% SDS-polyacryl-

amide gel electrophoresis. Proteins were then transferred onto

nitrocellulose membranes, and immunoblotting was performed

using a rabbit anti-SNX14 antibody (1:500, Sigma, HPA017639)

and Alexa Fluor 680 goat anti-rabbit IgG (Invitrogen, 1:5,000).

SNX14 protein bands were visualized using an Odyssey system

(LI-COR Biosciences). We often observed two protein bands for

SNX14 by Western blot, but we focused our analysis on the top

band for two reasons. First, the molecular weight of the top protein

band is near the predicted molecular weight (110 kDa) for SNX14.

Second, samples from mouse dissociated cortical neurons consis-

tently exhibited the top SNX14 protein band, and its levels were

reduced by shRNA-mediated knockdown of Snx14. To control for

protein loading, protein expression was expressed as a ratio of

UBE3A band intensity to that of b-ACTIN (1:5,000, Sigma,

A1978), and this ratio was normalized to the group samples having

the highest average intensity for that particular data set (see

Figure 2A–D).

Immunofluorescence staining
Dissociated cortical neurons were fixed with 4% paraformalde-

hyde in PBS for 35 min at RT, permeabilized with 0.1% Triton

X-100 in PBS on ice for 20 min, and blocked with 5% goat serum

with 0.1% Triton X-100 in PBS for 1 hr at RT. Neurons were

then incubated with primary antibodies (SNX14, 1:20, Sigma,

HPA017639; MAP2, 1:10,000, Abcam, ab5392) in blocking

solution at 4uC for three days and then secondary antibodies

(Alexa Fluor 488 Goat Anti-Rabbit H+L, 1:250, Invitrogen, A-

11008; Alexa Fluor 568 Goat Anti-Chicken, 1:250, Invitrogen, A-

11041) in blocking solution with DAPI (1:10,000, Invitrogen, D-

1306) and DRAQ5 (1:10,000, Axxora, BOS-889-001) for 30 min

at RT.

For post hoc staining, neurons were fixed with 4% paraformal-

dehyde in PBS for 35 min at RT, permeabilized with 0.3% Triton

Snx14 Regulates Excitability and Neurotransmission

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e98383



X-100 in PBS on ice for 30 min, and then incubated with

Streptavidin-Alexa Fluor 568 (1:2000, Invitrogen, S-11226) in PBS

and 0.1% Triton X-100 for 30 min at RT. Neurons were then

blocked in 5% goat serum and incubated with mouse anti-GAD67

(1:500, Millipore, MAB5406) for 30 min at RT followed by Alexa

Fluor 488 Donkey Anti-Mouse IgG (H+L) (1:250, Invitrogen,

A21202), DAPI (1:10,000, Invitrogen, D-1306), and the nuclear

counterstain DRAQ5 (1:10,000, Axxora, BOS-889-001). Neurons

were then washed with 0.1% Triton X-100 in PBS and mounted

with Fluoro-Gel (Electron Microscopy Sciences, 17985-10).

Images were acquired using a Zeiss LSM 510 confocal

microscope.

Snx14 shRNA knockdown
Mouse lentiviral Snx14 (Mission lentiviral transduction particle,

TRCN0000316685) and non-targeted scrambled shRNAs (Mis-

sion TRC2 Control Transduction Particle puro Non-Target

shRNA #1, shRNA#1) were purchased from Sigma. The MOI

of Snx14 and non-targeted scrambled shRNA are 0.75 for neurons

in 6-well plates and 2.8 for neurons in 24-well plates. Mouse

cortical neurons were infected with lentiviral particles at day in vitro

(DIV) 4 in 250 ml (24-well plate) or 1 ml (6-well plate) of

conditioned medium. Medium containing lentiviral particles was

removed and replaced with conditioned medium containing 1 mg/

ml puromycin at DIV5. Fresh medium containing 1 mg/ml

puromycin was added at DIV8 and used until further analysis at

DIV11.

Cell density quantification
Cortical neurons were immunostained with DRAQ5 and

imaged using a Zeiss LSM 510 confocal microscope. Cells were

counted automatically from images using ImageJ software.

Voltage-clamp recordings
For miniature excitatory postsynaptic current (mEPSC) record-

ings, dissociated cortical neurons were placed in a submersion

chamber, maintained at 30uC, and perfused at 2 ml min21 with

oxygenated artificial cerebrospinal fluid (ACSF) containing, in

mM, 124 NaCl, 3 KCl, 1.25 NaH2PO4?H2O, 26 NaHCO3, 20

Glucose, 2 CaCl2, 1 MgCl2, and was supplemented with 200 nM

tetrodotoxin (TTX, Abcam, 120055) and 50 mM picrotoxin

(Sigma, P1675-5G). Neurons were visualized with an Axio

Examiner (Carl Zeiss) equipped with infrared differential interfer-

ence contrast optics and voltage-clamped at 270 mV. Patch

pipettes were pulled from thick-walled borosilicate glass (Sutter

Instrument, BF150-86-10). Open tip resistances were 2–5 MV
when pipettes were filled with an internal solution (in mM): 100

CsCH3SO3 (Sigma, C1426), 15 CsCl (Sigma, 3309), 2.5 MgCl2
(Sigma, M9272), 10 HEPES (Sigma, H7523), 5 QX-314?Cl

(Sigma, L1663), BAPTA-TetraCs (Invitrogen, B1212), ATP-Mg

(Sigma, A9187), GTP-Na (Sigma, G8877), and 0.025 Alexa Fluor

594 (Molecular Probes, A10438). Internal solutions contained

0.05% Neurobiotin Tracer (Vector Laboratories, SP-1120) with

pH adjusted to 7.25 with 1 M CsOH and osmolarity adjusted to

,295 mOsm by addition of sucrose. Voltage-clamp recordings

were performed in the whole-cell configuration using patch-clamp

amplifier (Molecular Devices, MultiClamp 700B), and data were

acquired and analyzed using pClamp 10.2 software (Molecular

Devices). Input and series resistances were determined throughout

the experiment by measuring the response to intermittent test

pulses. Neurons were discarded if the series resistance was larger

than 25 MV. Analysis was restricted to neurons that were

anatomically verified by intracellular fills and biochemically

confirmed to be pyramidal by post hoc negative staining for

GAD67.

For miniature inhibitory postsynaptic currents (mIPSCs)

recording, ACSF (as described above) was supplemented with

20 mM 6,7-dinitroquinoxaline-2,3-dione (DNQX) (Sigma,

D0540), 100 mM D,L-2-amino-5-phosphonopentanoic acid

(APV) (Abcam, 120004), and 200 nM TTX (Abcam, 120055).

The same internal solution (as described above) was used and

neurons were voltage-clamped at 0 mV.

Both mIPSC and mEPSC data were analyzed by an individual

blinded to the experimental condition.

Current-clamp recordings
For action potential recordings, the membrane potential was

held at 270 mV and ACSF was supplemented with 20 mM

DNQX, 100 mM APV, and 50 mM picrotoxin. The internal

solution contained (in mM): 100 K-gluconate (Sigma, G4500), 20

KCl (Sigma, P3911), 0.2 EGTA (Fluka, 03778), 10 HEPES, Na-

phosphocreatine (Sigma, P7936), 4 Mg-ATP, 0.3 Na-GTP, and

0.025 Alexa Fluor 594. Internal solutions also contained 0.05%

Neurobiotin Tracer, pH was adjusted to 7.22 with 1 M KOH, and

osmolarity adjusted ,292 mOsM by addition of sucrose. Current

was injected with 10 pA steps and average action potential (AP)

frequency was calculated for each current injection. The spike

adaptation ratio was calculated by dividing the average of the last

two inter-event intervals by the first inter-event interval in the

spike train. Spike trains from 10–15 Hz were averaged to calculate

the spike adaptation. The voltage of spike threshold for AP

generation was determined when dVm/dt reached close to 10 V/

s. Resting membrane potential (Vm) was determined before

holding current was injected.

Transfection of plasmids on dissociated cortical neurons
DIV4 dissociated cortical neurons were used for transfection.

pZsGreen1-C1-Snx14 was made by subcloning full length Snx14

(Open Biosystems, Clone ID: 4948538) into pZsGreen1-C1

backbone vector (Clontech, 632447). 2 ml of lipofectamine 2000

(Invitrogen, 11668-027) was added into 48 ml of Neurobasal

medium (GIBCO, 12348-017) and was incubated at RT for

5 min. pZsGreen1-C1-Snx14 plasmid (1.6 mg) was mixed with

50 ml of neurobasal medium and incubated at RT for 5 min. The

diluted plasmid was combined with the diluted lipofectamine 2000

and incubated for 15 min at RT. Pre-warmed neurobasal medium

(2 ml) with GlutaMax-1 (GIBCO, 35050-061) was added into the

wells containing neurons. The plasmid-lipofectamine complex

(500 ml) was added into the wells and incubated for 40 min. After

incubation, media was removed and replaced with conditioned

media. Transfected neurons were cultured for three days and then

were used for further analysis.

Statistics
Data are expressed as the mean 6 s.e.m., with the sample sizes

(n) shown in figures or stated in the text. Statistical analyses were

performed using SigmaPlot 11 (Systat Software). Normality tests

(Shapiro-Wilk) and equal variance tests were run and passed (P.

0.05) before parametric statistical analyses were run as indicated.

Otherwise, non-parametric statistical analyses were used.

Results

Snx14 is a neuronally imprinted gene
We used a candidate gene approach to examine genes that were

predicted to be imprinted in mice [3], and we chose to examine

the imprinting status of Snx14 because we speculated it might
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regulate important synaptic functions. We first examined the

pattern of parent-of-origin allelic expression of Snx14 using a

polymorphic restriction site that is present in an exon of the gene.

F1 hybrid mice from reciprocal crosses between C57BL/6 and

CAST/EiJ were initially used to take advantage of the single

nucleotide polymorphism between both strains; CAST/EiJ strain

mice are wild-derived and have important genetic distinctions

from C57BL/6 mice. To examine putative neuron-specific

imprinting, we first separated cerebral cortical neurons from F1

hybrid mice using FACS sorting based on expression of the

neuronal marker NeuN. We used quantitative PCR to demon-

strate that NeuN-positive cells had little expression of the glial

markers Gfap and Mal compared to NeuN-negative cells (data not

shown), confirming that the FACS sorting could enrich for a

largely neuronal population. We then took advantage of restriction

fragment length polymorphism to show that NeuN-positive cells

qualitatively exhibit a biased expression of Snx14 from the paternal

allele, and this allelic bias was not observed in NeuN-negative cells

(data not shown). While this allelic bias was consistently detected

over multiple trials, we failed to observe exclusive parent-of-origin-

specific pattern of expression, likely due to contamination of non-

neuronal cells in our PCR reaction.

To test for neuronal-specific imprinting of Snx14, it was first

necessary to better isolate neurons from a heterogeneous cell

population. We used immunofluorescence (I.F.)-based laser

capture microdissection (LCM) to select cells labeled with the

neuronal marker NeuN from the visual cortex of CAST/EiJ and

BALB/c F1 hybrid mice. Then, mRNA was extracted from

captured NeuN-positive cells (neurons) and converted into cDNA.

We then used custom-made primers to amplify and sequence

DNA fragments containing single nucleotide polymorphisms

(SNPs) within exonic regions of target genes between these two

mice strains (Fig. 1A). To validate this approach, we first

confirmed that neurons exhibit maternal, but not paternal, allele

expression of Commd1 (Fig. 1B), a known neuron-specific

imprinted gene. CAST and BALB/c mice carry a SNP in the

exonic region of Commd1, such that CAST mice carry a ‘‘C’’

nucleotide in the region where BALB/c mice carry a ‘‘T’’

nucleotide. This SNP can be exploited to test whether there is

parent-of-origin-specific expression of Commd1 indicative of

genomic imprinting. The maternal, but not paternal, allele

expression of the SNP validated the imprinting status of Commd1

in isolated neuron populations, but this parent-of-origin-specific

expression of Commd1 was less evident in a heterogeneous

population of cells collected from the visual cortex (Fig. 1B).

Using this approach, we observed an apparent parent-of-origin-

specific expression of Snx14 exclusively in neurons (Fig. 1C). Like

many other imprinted genes [14,15], Snx14 is located near a

cluster of imprinted genes of chromosome 9 (Fig. 1D). However,

the relationship, if any, between Snx14 and these other nearby

imprinted genes such as Rasgrf1 is currently unclear [16].

Moreover, any possible relationship between Snx14 and Rasgrf1

imprinting might be mouse-specific, as these genes are on different

chromosomes in humans.

SNX14 is predominantly expressed during brain
development and maturation

SNX14 protein is expressed at high levels in the brain, testes,

and lung (Fig. 2A), and is present in diverse brain regions

(Fig. 2B). SNX14 levels increase significantly during neuron

development and maturation in vitro (Fig. 2C) and in vivo (Fig. 2D).

The specificity of SNX14 antibody was confirmed by co-

localization of SNX14 and its tag fusion protein, ZsGreen1

(Fig. 2E). In dissociated cortical neurons, immunocytochemical

identification of SNX14 shows that it concentrates in the somatic

cytoplasm and dendrites of dissociated cortical neurons (Fig. 2F).

This localization and expression pattern suggests that SNX14

could play a role in brain development and maturation.

SNX14 regulates neuronal intrinsic excitability and
neurotransmission

Little is known about the neuronal function of sorting nexin

family proteins. To determine the neuronal function of SNX14,

we first verified efficient knockdown with lentiviral Snx14 shRNAs

(Fig. 3A, B). To limit analyses to lentiviral-infected neurons, we

used Snx14 shRNA (or scrambled control) constructs containing a

puromycin resistance cassette to enable positive selection with

puromycin treatment (Fig. 3A). We restricted our attention to

pyramidal neurons, which we distinguished by their gross

morphology, dendritic spines, and lack of post hoc staining for

GAD67, a marker for inhibitory interneurons (Fig. 3C). Because

SNX27 regulates neuronal excitability [17] and synaptic trans-

mission [18], we speculated that SNX14 might similarly regulate

neural functions. We found that Snx14 knockdown reduced

intrinsic excitability of pyramidal neurons (Fig. 3D) and this

effect correlated with significantly decreased input resistance and

increased rheobase (Fig. 3E). To determine if SNX14 influenced

synaptic transmission, we measured miniature excitatory and

inhibitory postsynaptic currents (mEPSCs and mIPSCs, respec-

tively) from pyramidal neurons following Snx14 knockdown. We

observed a dramatic reduction in mEPSC and mIPSC frequency,

but not amplitude, with Snx14 knockdown (Fig. 4). These data

demonstrate a significant contribution of SNX14 to intrinsic

neuronal excitability and synaptic function.

Discussion

Here we employed a screening platform to identify neuron-

specific imprinted genes, and we used this technique to show for

the first time the neuronal imprinting of Snx14 in postnatal mouse

visual cortical neurons. Our technique, which has been modified

from previous approaches [10,11], provides a generalizable

strategy for identifying cell class-specific imprinted genes. Such

studies can help bring resolution to the important debate about the

number and identity of imprinted genes in the brain [7–9].

SNX14 belongs to the sorting nexin (SNX) protein family that

includes proteins containing a phox-homology (PX) domain,

which regulates adhesion to organelle membranes of the secretory

and endocytic system [19]. At least 49 proteins possess a PX

domain, most of them SNX protein family members, and these

proteins play important roles in membrane trafficking, membrane

remodeling, organelle motility, cell signaling, and protein sorting

[19,20]. Currently the contribution of SNX family members to

neuronal functions or disease states is poorly understood, although

there are indications that SNX family members are disrupted in

patients with microcephaly [21], intellectual disability [21], and

Down syndrome [18]. Misexpression of SNX14 has itself been

tentatively linked to disease. For example, dysregulation of SNX14

has been suggested to occur in bipolar disorder [22] and 6q14

microdeletion syndrome [23]. It is interesting to speculate that the

neurodevelopmental delay and intellectual disability observed in

patients with a hemizygous deletion of 6q14 [23] might be caused

by haploinsufficiency of SNX14, as there is currently no evidence

that SNX14 is imprinted in humans and we found that ,60%

knockdown of Snx14 in mouse neurons produced dramatic

phenotypic changes in neuronal intrinsic excitability and neuro-

transmission. While the possible linkage of SNX proteins to disease
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is tantalizing, there is a clear need to further elucidate the roles of

SNX proteins in neurological functions and disorders.

Our developmental and spatial profiling confirmed that SNX14

is predominantly expressed in the brain, and we found that its level

increased after birth and plateaued in adulthood. Given the large

size of the SNX protein family, and thus the possibility for

redundant functions, we were surprised that acute knockdown of

Snx14 dramatically reduced neuronal excitability and synaptic

transmission. This suggests that SNX14 might have a unique and

important neuronal function. Indeed, partial Snx14 knockdown

was sufficient to roughly halve the frequency of spontaneous

excitatory and inhibitory synaptic events. While our findings

demonstrate an important neuronal role for SNX14, future

investigations are needed to distinguish the primary consequences

of SNX14 loss from secondary, perhaps homeostatic, consequenc-

es. Such insights can be gained by identifying SNX14 interacting

proteins, revealing the proteins trafficked by SNX14, and by

understanding the temporal order of excitability and transmission

deficits (e.g. does SNX14 loss first alter intrinsic excitability or

synaptic transmission?). While further mechanistic insights are

needed, SNX14 clearly has an important role in regulating

neuronal excitability. This role for SNX14 is consistent both with

its neuronal-specific imprinting and with several studies implicat-

ing other SNX proteins in regulating diverse neuronal functions

such as intrinsic excitability [24] and synaptic function [17,18,25].

SNX might be expected to have diverse interactions, consistent

with the diverse interactions of other SNX proteins such as

SNX27, which regulates neuronal function through interactions

with N-Methyl-d-aspartate (NMDA) receptor 2C [25] and G

protein-gated inwardly rectifying potassium channels [17].

Figure 1. Snx14 is imprinted in neurons. A) Method for identifying imprinted genes in neurons. Neurons were isolated from brain sections of
CAST x BALB/c F1 offspring by immunofluorescence (I.F.)-based laser capture microdissection (LCM). Primers were designed to amplify and sequence
DNA fragments containing single nucleotide polymorphisms (SNPs) within exonic regions of target genes. B) Commd1, a known neuron-specific
imprinted gene, was used as a positive control to demonstrate that our method could detect imprinting in isolated neuron samples, but not from
whole cerebral cortex homogenates containing both neurons and glia. C) SNP analyses demonstrate neuronal imprinting of Snx14, which is
expressed from the paternal, but not maternal, allele in neurons (n = 2 mice/cross). D) Snx14 is located within a cluster of known imprinted genes
(blue). The NCBI reference sequence for Snx14 is NM_172926.3. The NCBI reference sequence for genomic loci where Snx14 is located is NT_039476.7.
doi:10.1371/journal.pone.0098383.g001
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Figure 2. SNX14 protein levels increase during mouse brain development, and SNX14 localizes to the cytoplasm and dendrites of
dissociated mouse cortical neurons. A) SNX14 protein levels were quantified by Western blotting from different mouse tissues. b-ACTIN was
used as a loading control. n = 3 per group. B) SNX14 protein levels were quantified from different mouse brain regions. b-ACTIN was used as a loading
control. n = 3 per brain region. Ctx. = cortex. Bas. Gang. = basal ganglia. Cing. Ctx. = cingulate cortex. C) SNX14 protein levels were measured in
dissociated mouse cortical neurons from Days in vitro (DIV) 1 to 14. b-ACTIN was used as a loading control. *P,0.05, one-way ANOVA with Fisher LSD
post hoc, n = 4 per age group. D) Levels of SNX14 protein were quantified in brain from embryonic to adult ages. b-ACTIN was used as a loading
control. n = 6 per group. *P,0.05, one-way ANOVA with Fisher LSD post hoc. E) To demonstrate specificity of SNX14 antibody in cultured neurons,
dissociated mouse cortical neurons were transfected with pZsGreen1-Snx14 plasmid and subsequently immunostained with mouse anti-SNX14
antibody (red). Scale bar = 5 mm. F) Dissociated mouse cortical neurons at DIV 11 were immunostained with anti-SNX14 (green), anti-MAP2 antibody
(red), and counter-stained with DRAQ5 (blue). Inset on the top-right panel indicates that SNX14 is predominantly expressed in somatic cytoplasm,
and the inset on the bottom-left panel shows that SNX14 is also localized to dendrites. Scale bar = 20 mm. All bars represent mean 6 s.e.m.
doi:10.1371/journal.pone.0098383.g002
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Figure 3. SNX14 influences intrinsic excitability of neurons. A) Dissociated mouse cortical neurons were transduced with lentiviral shRNA
(scramble or Snx14) at DIV 4 and analyzed at DIV 11 by Western blot analysis. *P,0.05, one-way ANOVA with Holm-Sidak post hoc, n = 4–6 per
treatment. Dissociated cortical neurons were infected with lentiviral shRNA (scramble or Snx14) and infected neurons were selected with puromycin.
No puromcyin was added into vehicle-treated dissociated cortical neurons. DRAQ5-positive cells were counted after staining. N = 20 to 25 per group.
B) Dissociated mouse cortical neurons were infected with lentiviral shRNA (scramble or Snx14) at DIV 4. One week later, infected and uninfected
neurons were immunostained with an anti-SNX14 antibody. Scale bar = 20 mm. C) Dissociated mouse cortical neurons were patched with an internal
solution containing Alexa Fluor 594 and biotin, and their morphology and spine structure were assessed. Post hoc staining for biotin and GAD67
further distinguished whether the patched cells were pyramidal neurons or interneurons. Scale bar = 20 mm. D) Responses to current injections (left
panel), and average spike frequency-current curves (right panel) from cultured pyramidal neurons treated with vehicle (n = 21), sh-Scramble (n = 20),
or sh-SNX14 (n = 27) lentivirus (cells were held at 270 mV; Scale bar: 20 mv, 50 ms). *P,0.05, two-way repeated measures ANOVA with Holm-Sidak
post hoc. E) Average input resistance, rheobase, resting membrane potential, and action potential (AP) threshold. *P,0.05, **P,0.001 one-way
ANOVA with Fisher LSD post hoc or Kruskal-Wallis one-way ANOVA on ranks with Dunn’s post hoc. All bars represent the mean 6 s.e.m.
doi:10.1371/journal.pone.0098383.g003
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In summary, our findings suggest that Snx14 is neuronally

imprinted and critically important for normal neuronal function in

mice, providing insights into neurological disorders putatively

linked to dysregulation of Snx14. In addition, the technique

employed here to identify cell type-specific imprinted genes

provides a method for identifying and confirming the identity of

neuronal imprinted genes.
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