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ABSTRACT 

Rebecca Mae Pollet: Structure and Function Studies of Microbial Conjugative DNA 
Transfer & GI Drug Reactivation Processes 
(Under the direction of Matthew R Redinbo) 

 

Antimicrobial resistance in Staphylococcus aureus presents an increasing threat 

to human health. This resistance is often encoded on mobile plasmids, such as pSK41; 

however, the transfer mechanism of these plasmids is not well understood. In this study, 

we examine key protein features of the relaxase enzyme, NES, which initiates and 

terminates the transfer of the multidrug resistance plasmid pSK41. This work 

establishes that both a novel C-terminal domain and two loops of the NES protein, 

hairpin loops 1 and 2, are essential for proper DNA cleavage and religation by the full 

665-residue NES protein in vitro. Second, we show that NES is able to bind, cleave, and 

religate the oriT sequences of non-conjugative plasmids pSK156 and pCA347. These 

data indicate that the conjugative relaxase in trans mechanism recently described for 

the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further 

heightening the potential significance of this mechanism in the horizontal transfer of 

staphylococcal plasmids. Finally, we use the knowledge of important NES features to 

design polyamide inhibitors that disrupt key protein-DNA interactions and chelator 

fragments that target a required coordinated metal ion. The efficacy of these inhibitors 
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suggests that disrupting NES function may be a viable option for disrupting conjugative 

plasmid transfer. 

β-glucuronidase (GUS) enzymes are responsible for the severe drug toxicity 

associated with the chemotherapy drug irinotecan. Previous characterization of E. coli 

GUS identified inhibitors whose efficacy is dependent on interaction with an active site 

loop termed Loop 1. Analysis of the Human Microbiome Project sequencing data 

establishes a catalog of GUS sequences present in the human gastrointestinal tract. 

Sequences in this catalog are classified according to the presence and size of an active 

site loop and we identify at least one sequence from each class for further 

characterization. Characterization confirms the β-glucuronidase activity of seven new 

enzymes and establishes the ability of six GUS enzymes to process SN-38G. We also 

confirm the importance of pH for optimal enzyme function. This data expands current 

understanding of the β-glucuronidase enzyme family and provides additional GUS 

enzymes against which to optimize inhibitors to prevent SN-38G toxicity. 
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TBE   tris, borate, EDTA  

TbR   tobramycin resistance 

TCEP   tris(2-carboxyethyl)phosphine� 

TEMED  tetramethylethylenediamine 

TherTn  Thermatogae Thermotoga naphthophila β-glucuronidase 

Tm   melting temperature  

tra   conjugative transfer gene 

Tris   tris(hydroxymethyl)aminomethane  

Udh   uronate dehydrogenase enzyme 
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UDP   uridine 5'-diphosphate 

UGT   UDP-glucuronosyltransferase 

UNC   University of North Carolina at Chapel Hill  

UNC-CH  University of North Carolina at Chapel Hill  

UV   ultraviolet 

vol/vol, v/v  volume per volume 

VRSA   vancomycin resistant S. aureus 

vs   versus 

W   tryptophan 

WT   wild type 

x   total protein concentration 

Y, Tyr   tyrosine 

α   alpha 

β   beta 

Δ    deletion 

ΔL1    Hairpin Loop 1 deletion 

ΔL1ΔL2   Hairpin Loop 1 Loop 2 deletion 

ΔL2    Hairpin Loop 2 deletion 

λ   wavelength 

μg   microgram 

μL   microliter 

μM   micromolar 

μm   micrometer
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CHAPTER 1: INTRODUCTION TO CONJUGATIVE PLASMID TRANSFER OF 

pSKS41 IN STAPHYLOCOCCUS AUREUS 

 

Staphylococcus aureus and Antibiotic Resistance 

Staphylococcus aureus is a gram-positive bacterium that is found as a 

commensal in the nose, respiratory tract, gastrointestinal tract, and on the skin of 

humans (1). Despite this potentially beneficial role in the human microbiota, S. 

aureus is best known as a pathogen that causes skin and respiratory infections. 

While these infections are normally treatable, infections resistant to antibiotic 

treatment can enter the bloodstream and cause sepsis and death. Since the 

introduction of penicillin and other antibiotic compounds, resistant strains of S. 

aureus have been appearing in human infections. It took just two years after the 

introduction of methicillin in the clinic for methicillin-resistant Staphylococcus to 

begin to present a barrier to treatment (2). In 2011, methicillin-resistant S. aureus 

(MRSA) caused an estimated 80,461 infections in the United States leading to 

11,285 deaths (2). Staphylococcal bacteria are a leading cause of healthcare-

associated infections leading the Center for Disease Control (CDC) to classify 

MRSA as a serious threat (2).  

In addition to methicillin, S. aureus has been found to be resistant to a wide 

variety of compounds including antiseptics, antibiotics, and disinfectants. Antibiotic 
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resistances found in S. aureus can include oxacillin, erythromycin, levofloxacin, 

clindamycin, mupirocin, doxycycline, gentamicin, trimethoprim-sulfamethoxazole, 

and tetracycline, which when found in the same strain can leave only harsh 

compounds available for treatment (3). It has also been shown that MRSA can 

obtain resistance to vancomycin, the current front-line treatment, leading to 

infections that are resistant to almost all approved antibiotics (4-7). Despite the rise 

of antibiotic resistance in S. aureus and other bacteria, the number of new antibiotics 

approved by the FDA has consistently decreased over the past two decades.  

Even as new antibiotics are introduced, it is expected that resistance will arise 

quickly as seen in the past. Most antibiotics to date have been discovered as or 

derived from small molecules produced by bacteria or plants. In these natural 

environments, these small molecules function as bacteriostatic or bacteriotoxic 

agents in order to regulate the surrounding bacterial community, much like how they 

function as antibiotics relevant to human health. This means the bacteria producing 

the compound or any bacteria that persist in this natural environment must maintain 

a resistance element to avoid toxicity from the compound. In fact, environmental 

bacteria including those preserved for hundreds of years in permafrost, isolated 

caves, and ancient human specimens contain resistance genes (8).  Because 

resistance to a compound similar to any new antibiotics almost certainly already 

exists in nature, it is likely only a matter of time until that resistance element moves 

into pathogenic bacteria.   

Due to both the currently existing antibiotic resistance and the high potential 

for the rise of future resistances, this work set out to better understand the 
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mechanisms by which antibiotic resistance is spread between bacteria. We hope 

that characterization of these processes will lead to drugs that specifically target 

antibiotic resistant bacterial communities or prevent the spread of antibiotic 

resistance within bacterial communities. 

 

Conjugative Plasmid Transfer 

Bacteria become resistant to the effects of antibiotics and other small 

molecules by obtaining genetic elements that encode for proteins that allow the 

bacteria to breakdown or transport the lethal substance out of their cell or encode 

modified targets with reduced antibiotic drug-reactivity. These resistance genetic 

elements can be incorporated into the chromosome of a bacterium or may reside on 

extra-chromosomal elements such as gene cassettes, transposons, bacteriophages, 

and single- or double-stranded DNA plasmids. Bacteria can transfer their genetic 

material, including these resistance elements, through two routes: vertical or 

horizontal gene transfer. Vertical gene transfer takes place between a mother and 

her daughter cells via duplication of the chromosomal and extra-chromosomal 

genetic material and distribution of a complete copy to each daughter cell. Horizontal 

gene transfer (HGT) is the transmission between mature, parent bacteria and 

involves only extra-chromosomal elements. HGT takes many forms including 

scavenging of DNA by naturally competent bacterial cells, bacteriophage facilitated 

transfer, and regulated transfer for single- and double-stranded plasmids. 

Most of the resistance genetic elements in S. aureus are found on double-

stranded DNA (dsDNA) plasmids or are incorporated into the chromosome after 
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movement through a dsDNA plasmid; therefore, this work will focus on the transfer 

mechanism of these plasmids between bacterium. Double-stranded DNA plasmids 

can be beneficial to the larger bacterial community as many of these plasmids are 

readily involved in HGT, allowing an entire population of bacteria to quickly acquire 

antibiotic resistance (9). HGT of dsDNA plasmids is called conjugative plasmid 

transfer (CPT). During CPT, a donor bacterium transfers one strand of a double-

stranded DNA plasmid to a recipient bacterium (Figure 1.1).  

There are several sets of machinery required for this process that may be 

expressed on the plasmid being transferred or on a co-resident plasmid in the donor 

bacterium. This machinery includes the mobility (MOB) set of enzymes that is 

responsible for the replication of the plasmid as well as genes for a type 4 secretion 

system (T4SS) and type 4 coupling protein (T4CP) that facilitate transfer of the 

plasmid (10). The MOB set of proteins forms a large complex called the relaxosome. 

The relaxosome complex includes the highly conserved relaxase (NES in Figure 1.1) 

as well as the replication machinery of the plasmid. The T4SS and T4CP form a 

secretion system through which DNA travels to the recipient cell (blue shaded box in 

Figure 1.1).  

 After relaxosome formation, the relaxase initiates CPT by binding to the origin 

of transfer (oriT) of the plasmid and creating a single-stranded break at the nic site in 

the strand to be transferred (T-strand, red in Figure 1.1) (9, 11). A DNA helicase in 

the relaxosome then separates the T-strand from the parent strand, beginning at the 

nic site. The free T-strand then begins to travel into the recipient cell through the 

T4CP/T4SS complex. The exact mechanisms involved in this process are unclear; 
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some data indicate that the covalently bound relaxase also travels into the recipient 

bacterium where the relaxase can then ligate the T-strand back together (12). A 

DNA polymerase within the donor bacterium replaces the T-strand as it is 

transferred and a DNA polymerase within the recipient bacterium synthesizes a copy 

of the T-strand so that the process culminates with two bacteria each containing a 

full, double-stranded plasmid that can confer antibiotic resistance. 

 

Types of Plasmids 

Plasmids that undergo CPT are divided into three classes based on the 

presence or absence of the MOB, T4CP, and T4SS gene clusters (Figure 1.2). The 

best studied type of plasmid is the conjugative plasmid which encodes all of the 

machinery needed to replicate and transmit itself including the MOB, T4CP, and 

T4SS clusters (Figure 1.2, 10). Mobilizable plasmids do not encode all of the 

machinery needed for their transmission; they express only the MOB proteins 

required for replication but do not encode their own T4SS and therefore must use 

the conjugation machinery expressed by a conjugative plasmid co-resident in the 

same bacterium (10). A small number of mobilizable plasmids encode their own 

T4CP but most utilize the T4CP from the co-resident plasmid expressing the T4SS.  

There is also a third type of plasmid that does not encode its own replication 

or conjugative machinery. Until recently it was assumed these plasmids were 

transferred via mechanisms besides conjugative plasmid transfer such as 

bacteriophage. However, O’Brien et al. showed that these plasmids can partake in 

CPT via a relaxase-in trans conjugative transfer mechanism in which they take 
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advantage of both the replication (MOB) and conjugation (T4CP/T4SS) machinery of 

a co-resident plasmid (Figure 1.2,13, 14). For this relaxase-in trans transfer, it is 

important that the MOB proteins of a conjugative or mobilizable plasmid co-resident 

in the bacterium match an oriT found on the in trans plasmid. Therefore, 

understanding of MOB proteins is important for characterization of CPT of all three 

plasmid classes.  

The relaxase is the only highly conserved member of the MOB family of 

proteins and is used to identify and classify conjugative and mobilizable plasmids 

(Figure 1.2). A relaxase enzyme is defined by the presence of two motifs (15). The 

first motif is the Y motif which consists of one or more tyrosines that are responsible 

for plasmid nicking and ligation. This conserved tyrosine (Y25 in Figure 1.3) initiates 

a nucleophilic substitution-type (SN2) attack on the scissile phosphate linking two 

nucleotides at the nic site (16). This generates a free 3’ hydroxyl and a 5’ covalent 

phosphotyrosine bond. The reaction is reversible with the 3’ hydroxyl acting as a 

nucleophile to ligate the strand together in the recipient cell. 

The second motif, the HUH motif, consists of a histidine residue, hydrophobic 

residue, and histidine residue and is the mostly highly conserved relaxase motif. 

Often a third histidine is found slightly upstream from the HUH motif and forms a 

triad responsible for coordinating a metal cation in the relaxase active site (H123, 

H131, and H133 in Figure 1.3). This divalent metal ion is required for DNA cleavage, 

and several metals including nickel, manganese, zinc, and copper are sufficient for 

proper function (16-18). As shown in Figure 1.3, the metal coordinates one oxygen 

of the scissile phosphate at which the DNA cleavage will occur (16, 19). 
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 Based on the sequence of their respective relaxase and in particular, the 

sequence in and around the Y and HUH motifs, conjugative and mobilizable 

plasmids have been classified into six families. These families are MOBF, MOBH, 

MOBC, MOBQ, MOBP, and MOBV (Figure 1.2, 20, 21). The relaxases of the MOBH 

and MOBC families have a different architecture and may not contain regions that 

resemble the Y and HUH motifs (15, 22). The MOBF family is the best characterized 

of the six families and contains relaxases with two to three tyrosines in the Y motif 

(15). The MOBQ, MOBP, and MOBV plasmid families encode relaxases containing 

only one tyrosine in the Y motif (15). Because the relaxase is responsible for the 

initiation and termination of CPT, understanding of these proteins could lead to 

development of novel antibiotics targeting resistance-spreading bacterial infections. 

Indeed, it has already been shown that inhibiting the relaxase can disrupt 

propagation of the host plasmid (23).  

 

Introduction to S. aureus plasmid pSK41 

 pSK41 is a 46,445 nucleotide, conjugative, multiresistance plasmid from S. 

aureus (24). Related plasmids were first detected in the mid-1970s; the transfer 

region of pSK41 was analyzed by Firth and colleagues in 1993 and the complete 

sequence of pSK41 was published in 1998 (24, 25). pSK41 is now considered the 

prototype plasmid for this family.    

pSK41 family plasmids have been found to harbor resistance determinants for 

antiseptics, disinfectants, and many antibiotics including tetracycline, gentamicin, 

tobramycin, kanamycin, neomycin, paromomycin, quaternary ammonium 
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compounds, trimethoprim, mupirocin, macrolides, lincosamides, streptogramins, 

bleomycin, and β-lactams (3, 24-26). Of special note is the incorporation of 

vancomycin resistance into pSK41 to form the new plasmid pLW1043 (4). pSK41 

has also been shown to contribute to the spread of antibiotic resistance through 

facilitating the transfer of mobilizable plasmids such as pC221 and pSK639 (27, 28). 

Because pSK41 and related plasmids confer such a wide range of resistances, it is 

an important target for understanding and modulating the spread of antibiotic 

resistance in S. aureus.  

 

Introduction to Nicking Enzyme of Staphylococcus (NES) 

 The relaxase of pSK41 is named nicking enzyme of staphylococci (NES). 

This gene and its oriT target were first identified on the pGO1 plasmid by Climo et al. 

in 1996 (29). The nes gene was confirmed in pSK41 by Berg and colleagues (24). 

NES is a single-tyrosine relaxase in the MOBQ family and is considered the 

prototype relaxase for this family. 

Further characterization of the NES protein was carried out by the Redinbo 

lab in order to characterize the catalytically active tyrosine (residue 25) and nic site 

of the oriT (Figure 1.3,17). Edwards et al. also solved the crystal structure of the N-

terminal relaxase domain of NES bound to its oriT DNA (17). This was the first 

structure of a single tyrosine relaxase bound to its cognate DNA. Previously solved 

crystal structures of relaxases in complex with their oriT DNA showed that the DNA 

bound in a cleft next to a “thumb” motif of the protein that then closed over the DNA 

to hold the DNA in place (30). NES, however, does not contain a thumb motif and 



	 9	

instead has two unique features to properly position the oriT DNA (17). The first 

feature is two protein loops (loop 1 and loop 2 in Figure 1.4A) that extend into the 

major and minor groove of the DNA hairpin formed by the oriT DNA. The second 

feature is nucleotide guanine-26 (magenta in Figure 1.4A) of the oriT that is flipped 

in the opposite direction from the surrounding nucleotides and makes significant 

contacts with amino acid side chains of NES.  

Relaxases from the MOBQ, MOBP, and MOBV families including NES are two 

domain proteins with the N-terminal domain containing the relaxase motif. The C-

terminal domain is variable and often functions as a helicase, primase, or DNA-

binding domain that contributes to the DNA replication process (15). Interestingly, 

the NES C-terminal domain shows no similarity to previously characterized C-

terminal domains of relaxases or other relaxosome proteins. The C-terminal domain 

of NES was also crystallized and its structure solved; however, both this C-terminal 

domain structure and the SAXS envelope of the full-length protein did not give any 

suggestion of the potential function of this domain (Figure 1.4B,17).   

Biochemical assays for DNA binding and cleavage conducted with the 

relaxase domain established that the protein loops 1 and 2 are important for proper 

activity and explored the importance of variation and length of the oriT (17). In 

addition, S. aureus conjugation assays showed that both the C-terminal domain and 

loop 1 and loop 2 of the relaxase are essential for proper conjugation of pSK41 (17). 

Therefore, this work characterizes at what point in CPT these protein features play 

an important role in NES function.  
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Figure 1.1. Mechanism of Conjugative Plasmid Transfer 
Conjugative Plasmid Transfer (CPT) is initiated when the relaxase (NES) in the 
relaxosome complex binds to the oriT (blue) on the transfer strand (red, T-strand) in 
order to cleave the plasmids at the nic site (blue dot). The donor cell (blue) and 
recipient cell (red) are then connected via the type 4 secretion system (T4SS) and 
Type 4 coupling protein (T4CP) to allow the relaxase (NES) and T-strand to move 
into the recipient cell. Each of the original strands of the resistance plasmid is 
replicated such that both the donor and recipient cell end with a complete double 
stranded plasmid. 
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Figure 1.2. Classification of Plasmids and MOB Genes 
Bacterial plasmids are classified according to the genes encoded on the plasmid. 
Conjugative plasmids encode resistance elements, mobilization (MOB) genes, a 
type 4 coupling protein (T4CP), and a type 4 secretion system (T4SS). Mobilizable 
plasmids encode only resistance elements and MOB genes while in trans plasmids 
encode on resistance elements. The MOB genes on conjugative and mobilizable 
plasmids are in turn classified as MOBF, MOBH, MOBC, MOBQ, MOBP, AND MOBV 
according to the motifs found in their relaxase gene. 
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Figure 1.3. Proposed Mechanism of DNA Cleavage by NES 
The tyrosine residue of the relaxase (Y25 in NES) initiates a nucleophilic 
substitution-type attack on the scissile phosphate of the nic site of the transfer strand 
of the plasmid to be transferred. In pSK41 this is between a guanine and cytosine 
(nucleotides 28 and 29 in the oligonucleotides used throughout this work). This 
attack creates a free 3’ hydroxyl and the 5’ phosphate becomes covalently attached 
to the tyrosine of the relaxase. The metal coordinated by the HUH motif (H123, 
H131, H133) is shown as Ni2+ here, as has been shown in purified NES; however, 
other divalent metals are likely the predominant cofactor in vivo for NES and other 
relaxases. 
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Figure 1.4. NES Structure from S. aureus pSK41 
A. 2.9 Å crystal structure of the NES relaxase domain (residues 1-195) in complex 
with a 30-nucleotide DNA sequence. PDB ID: 4HT4 
B.  3.0 Å crystal structure of the NES C-terminal domain (residues 254-593). PDB 
ID: 4HTE 
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Figure 1.5. Effect of NES Mutants on Conjugation in S aureus 
Conjugation of pSK41 in S. aureus and the effect of nes deletion (KO) or 
complementation with WT and designed NES loop 1, loop 2, and C-terminal deletion 
(∆C-term) mutants. Originally published in Edwards et al. 2013 (17).	
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CHAPTER 2: PROCESSING OF NONCONJUGATIVE RESISTANCE PLASMIDS 

BY CONJUGATIVE NICKING ENZYME OF STAPHYLOCOCCI1 

 

Introduction 

Antimicrobial resistant strains of Staphylococcus aureus are a growing 

concern for hospital- and community-acquired infections. Most S. aureus bacteria 

examined clinically harbor at least one plasmid that encodes for antimicrobial 

resistance, and many plasmids carry multiple antimicrobial resistance determinants. 

The pSK41 family of plasmids is made up of large, low-copy-number, conjugative 

plasmids for which pSK41 is used as a prototype for characterization (1-4). These 

plasmids carry a variety of antimicrobial resistance determinants, including those 

against aminoglycosides, penicillins, tetracycline, bleomycin, trimethoprim, 

macrolides, lincosamides, mupirocin, antiseptics, and disinfectants (2, 4-9). This 

family of plasmids also played a key role in the rise of vancomycin resistant S. 

aureus (VRSA) (7, 8, 10). In addition to the antimicrobial resistance, they also carry 

transfer (tra) genes encoding the proteins necessary to conduct conjugative plasmid 

transfer that spread these plasmids among S. aureus and other gram-positive 

bacteria (6, 7, 10, 11). 

																																																								
1 This chapter adapted from the previously published work Pollet RM, Ingle JD, Hymes JP, Eakes TC, 
Yui Eto K, Kwong SM, Ramsay JP, Firth N, Redinbo MR. 2016. Processing of Nonconjugative 
Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci. Journal of Bacteriology 
198:888-897. 
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One of the proteins essential for conjugative plasmid transfer is the relaxase 

enzyme. A relaxase is responsible for initiation and completion of the transfer 

process as it cleaves one strand of the double-stranded plasmid to begin transfer, 

and then ligates that strand back together to complete transfer (8, 12-15). There are 

two classes of relaxases: multi-tyrosine relaxases that use a “thumb” motif to 

position the plasmid DNA for processing, and single-tyrosine relaxases which lack 

this thumb motif (9, 16). The relaxase of pSK41 is termed NES, nicking enzyme in S. 

aureus, and is a single-tyrosine relaxase (1-6, 8, 9).  NES contains a relaxase N-

terminal 220 residues and a C-terminal 350 residues necessary for in vivo function 

but via an uncertain mechanism (5, 7, 8, 10). Here we determine in which steps of 

conjugation the C-terminal domain plays an important role. 

The crystal structure of the relaxase domain of NES was the first of a single-

tyrosine relaxase bound to its target DNA, allowing for more detailed 

characterization of the protein-DNA interactions than previously possible (6-8, 11). 

This structure revealed two sets of important protein-DNA interactions. The first is 

that the “thumb” used by multi-tyrosine relaxases to position the DNA appears to be 

replaced by 12 protein-DNA contacts including a buried nucleotide 3 bases 

upstream of the nic site that places the DNA in the correct position to be nicked by 

the single, catalytically active tyrosine. The second set of protein-DNA interactions 

unique to the NES-DNA complex is composed of two protein loops, termed Hairpin 

Loop 1 and 2, that surround the DNA hairpin formed upstream of the nic site (Figure 

2.1A and B). NES Hairpin Loop 1, shown in yellow in Figure 2.1A and B, forms two 

base specific contacts with the minor groove of the oriT DNA and one contact to the 
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phosphate backbone. NES Hairpin Loop 2, green in Figure 2.1A and B, contacts the 

DNA more extensively, with six base specific interactions and four phosphate 

contacts in the major groove of the DNA hairpin. Edwards et al. previously showed in 

vitro that these loops disrupt DNA cleavage by the relaxase domain alone and in 

vivo that full-length NES protein lacking these loops was not able to facilitate plasmid 

transfer (7, 8, 10, 14). However, this important protein-DNA interaction had not been 

characterized in vitro in the context of the full-length 665-residue NES protein and 

we set out to determine in which steps of conjugation this interaction plays a role. 

pSK41-like conjugative plasmids have been shown to mobilize several 

smaller co-resident plasmids such as pC221 and pSK639, which encode their own 

mob genes (9, 12, 13, 15, 16). Recently, O’Brien et al. showed that another 

staphylococcal conjugative plasmid pWBG749, which is unrelated to pSK41, can 

facilitate the mobilization of other plasmids that lack mob genes (17). They 

demonstrated that this transfer is facilitated by origin-of-transfer sequences on the 

non-conjugative plasmids that mimic the pWBG749 origin-of-transfer sequence, 

suggesting a conjugative relaxase-in trans mechanism (18). We have identified 

sequences similar to the pSK41 origin of transfer on numerous non-conjugative 

staphylococcal resistance plasmids (Appendices 1 and 2), raising the possibility that 

pSK41 family plasmids might likewise facilitate mobilization of other plasmids by an 

analogous relaxase-in trans mechanism mediated by NES. To investigate this 

possibility, we have characterized the pSK41 oriT mimic sequences from two 

divergent non-conjugative plasmids. The first plasmid, pSK156, was isolated from a 

clinical strain in 1951 and is the earliest known multidrug efflux-encoding plasmid 
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(19). The second plasmid, pCA347, was first sequenced in 2013 after isolation from 

a USA600 methicillin-resistant strain of S. aureus and encodes resistance to 

penicillin and heavy metals (20). Importantly, the variation in the origin-of-transfer 

sequence of pSK41 and the mimics of pSK156 and pCA347 is in the hairpin region 

of the DNA (Figure 2.4A). Based on these observations we sought to explore the 

ability of NES to bind to and process putative oriT regions from pSK156 and pCA347 

and the ability of pSK41 to facilitate transfer of plasmids containing these putative 

oriT regions in order to examine the potential for mobilization of plasmids containing 

pSK41 oriT mimics in staphylococci. 

 

Materials and Methods 

Cloning, Expression and Purification of the Relaxase Domain of NES 

The relaxase domain of NES was previously cloned into the cysteine 

protease domain (CPD) fusion protein expression system developed by Shen et al. 

and optimized by this lab (7, 21). Sequence confirmed constructs were transformed 

into Escherichia coli BL21 (DE3) AI cells and grown in 1.5 L of lysogeny broth (LB), 

in the presence of ampicillin, at 37 °C, with shaking, to an optical density of 0.6–0.8. 

An L-Arabinose solution was added to the growth at a final concentration of 0.2% 

(vol/vol), and the temperature was reduced to 18 °C for 30 min. Protein expression 

was induced with 100 μM isopropyl-β-D-thiogalactopyranoside (IPTG) and cells 

were allowed to grow for 16 h. The resulting growths were spun at 4,500 × g for 30 

min at 4 °C and pellets were stored at −80 °C. Individual pellets were resuspended 

in Buffer A [500 mM NaCl, 25 mM imidazole, 20 mM potassium phosphate buffer, 
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pH 7.4, and 0.02% (vol/vol) sodium azide] along with protease inhibitor tablets 

(Roche), DNase, and lysozyme. The slurry was lysed using a Fisher Scientific Sonic 

Dismembrator. The lysed cells were then spun at 18,500 × g for 1 h. The 

supernatant was filtered and flowed over a 5 mL HisTrap column (GE Healthcare). 

The column and bound protein was then washed with Buffer A followed by 

incubation with 1 CV of 2 mM inositol hexakisphosphate (InsP6) for 3 hours at 4 °C. 

The cleaved protein was washed off the column with Buffer A and flowed directly 

onto a Superdex 200 column (GE Healthcare) preequilibrated in sizing buffer [300 

mM NaCl, 50 mM Tris buffer, pH 7.4, and 0.02% (vol/vol) sodium azide]. Fractions 

containing protein as assessed by UV absorbance were analyzed via SDS-PAGE 

and fractions containing >95% pure protein were combined and stored at -80 °C. 

Cloning, Expression and Purification of Full-Length NES  

Wild-type full-length NES was previously cloned into the cysteine protease 

domain (CPD) fusion protein expression system developed by Shen et al. and 

optimized by this lab (7, 21). Loop deletion mutants were made through site directed 

mutagenesis to remove Hairpin Loop 1 (residues 77 to 82) and Hairpin Loop 2 

(residues 150 to 157) and replace each with a linker composed of one glycine and 

one serine. Cleavage inactive mutants used in binding studies were made by 

replacing the tyrosine at amino acid position 25 with a phenylalanine. The resulting 

plasmids were transformed into Escherichia coli BL21 (DE3) AI cells and grown in 

1.5 L of lysogeny broth (LB) in the presence of 0.1 mg/ml ampicillin at 37°C with 

shaking. At an optical density of 0.6-0.8, an L-Arabinose solution was added at a 

final concentration of 0.2% (vol/vol) and the temperature reduced to 18°C. After 30 
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minutes, protein expression was induced with 100 μM isopropyl-β-D-

thiogalactopyranoside (IPTG) and cells were allowed to grow for 16 hours. The cells 

were pelleted and stored at -80°C. Individual cell pellets were resuspended in Buffer 

A [500 mM NaCl, 20 mM KH2PO4 pH 7.4, 25 mM Imidazole, 0.02% (v/v) sodium 

azide] along with protease inhibitor tablets (Roche), DNase, and lysozyme. The 

mixture was sonicated and then clarified via centrifugation. The supernatant was 

filtered and loaded onto a 5 mL HisTrap column (GE Healthcare). The CPD 

expression system contains a His6 tag in addition to the CPD tag, which has self-

cleavage abilities in the presence of inositol hexakisphosphate (InsP6). Therefore, 

after the His-CPD-NES fusion protein was bound to the column via the His6 tag, the 

column was washed with 2 column volumes (CV) Buffer A and then incubated with 2 

mM InsP6 for 3 hours at 4°C. The NES protein was then eluted off the column in 

Buffer A while the His6 and CPD tags remained bound to the column. The NES 

protein was then passed over a Superdex 200 column (GE Healthcare) pre-

equilibrated in sizing buffer [25 mM HEPES pH 7.4, 300 mM NaCl, 0.02% (v/v) 

sodium azide].  Purity of each fraction was assessed by SDS-PAGE gel and 

fractions containing >95% pure protein were combined and concentrated to 

approximately 1.2 mg/ml. 

DNA Binding Studies  

5’-end 6-FAM labeled DNA oligos were ordered from Integrated DNA 

Technologies, resuspended in annealing buffer (10 mM Tris pH 7.5, 50 mM NaCl, 

0.05 mM EDTA), and hairpin was formed by heating the oligo to 98°C for one minute 

and then cooling the solution by 3°C per second. The dissociation constant of 
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binding was calculated using fluorescence anisotropy as described in Edwards et al. 

(7). Briefly, protein was serially diluted into a buffer of 100 mM NaCl, 0.1 mg/ml BSA, 

5 mM Magnesium Acetate, 25 mM Tris Acetate, pH 7.5 to give 40 μL at final protein 

concentrations ranging from 0 to 0.5 μM.  Assays were conducted in a 384-well 

black assay plate (Costar) allowing for 16 concentrations of protein. 10 μL of the 

DNA probe was added to the 40 μL protein solution resulting in a final concentration 

of DNA of 50 nM in a total volume of 50 μL in each well. Fluorescence anisotropy of 

the fluorescein-labeled DNA was observed via excitation at 485 nm and emission at 

520 nm using a PHERAstar plate reader (BMG Labtech). Measurements were made 

in triplicate and reported values are the average of three separate triplicate runs. 

Data were plotted as average fluorescence anisotropy as a function of protein 

concentration using Graphpad PRISM v6.05 (Graphpad, 2014). The following 

equation was employed to fit the data and to calculate the KD for the substrate: 

 

where is average fluorescence anisotropy signal; T, total DNA concentration (set to 

50 nM); x, total protein concentration; K, KD; min, average fluorescence anisotropy 

signal of no protein control; and max, average fluorescence anisotropy signal of 

sample at saturating concentration of protein. A single binding site was assumed 

and standard error is reported for each measurement. The reported values are an 

average of at least 5 independent experiments. 
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DNA Cleavage Assays  

The same 5’-end 6-FAM labeled DNA oligos used for the DNA binding studies 

were used to measure equilibrium DNA cleavage via polyacrylamide gel 

electrophoresis (PAGE) gels. Each 10 μL reaction contained 1.52 μM NES protein 

(relaxase or full-length constructs), 1 μM DNA substrate, and EMSA buffer (50 mM 

NaCl, 20 mM Tris, pH 7.4, 0.02% (vol/vol) sodium azide). The reaction was 

incubated at 37°C for 1 hour and quenched by the addition of 2X running buffer 

(0.01% xylene cyanol, 0.01% Bromophenol Blue, 85% formamide, 20 mM EDTA, 2X 

TAE, 0.2% SDS). The resulting 20 μL reactions were run through a denaturing 16% 

polyacrylamide gel [35 mL 16% acrylamide gel stock (8 M urea, 16% 

polyacrylamide/bisacrylamide, 1X TBE), 300 μL 10% ammonium persulfate (APS), 

33 μL tetramethylethylenediamine (TEMED)] in 1X TBE running buffer to separate 

cleaved product DNA from the substrate. Using the fluorescein tag, oligos were 

visualized using a VersaDoc Imaging System, 4400 MP (BioRad) and the 

QuantityOne software (BioRad). ImageJ 1.45s software was used to quantify band 

intensities and the percent cleavage product formation was calculated as a 

percentage of the product band intensity divided by the product plus the substrate 

band intensities. The average of at least six individual cleavage experiments are 

presented. 

DNA Strand Transfer Assays 

DNA strand transfer assays were performed similarly to DNA cleavage 

assays except two pieces of DNA were used. The first piece of DNA was an 

unlabeled substrate of the same sequence and length as the oligos used in the DNA 
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binding and cleavage studies (red DNA in Figure 2.3B). The second piece of DNA 

was a 5’-end 6-FAM labeled DNA oligo of the same sequence as the unlabeled 

substrate, but ending at the NES cleavage site (black DNA in Figure 2.3B). Each 10 

μL reaction contained 1.52 μM NES protein (relaxase or full-length constructs), 1 μM 

unlabeled DNA substrate, 1 μM labeled DNA substrate, and EMSA buffer. The 

reaction was incubated, run, and analyzed as in the DNA cleavage assays. Percent 

strand transfer was calculated as a percentage of the product band intensity divided 

by the product plus the labeled substrate band intensities. The unlabeled DNA 

substrate was not visualized or quantified. The average of at least six individual 

cleavage experiments are presented. 

Structure Modeling  

The NES relaxase domain-DNA complex structure reported previously 

(Edwards et al.; RCSB accession code 4HT4) was employed for Figures 2.1A-B and 

2.4B-C. (7). For Figures 2.4D and E in which pSK156 and pCA347 were modeled in 

place of the original pSK41 DNA, Coot was used to mutate each DNA residue, and 

the final figures were rendered in PyMol (22, 23).  

Plasmid Sequence Analysis  

The plasmid database compiled and analyzed for pWBG749 family oriT 

sequences by O’Brien et al. was analyzed for oriT sequences similar to that of 

pSK41 (18). The online interface of BLASTN was used to search these plasmids for 

the sequence ATAAGTGCGCCCTTACGGGATTTAAC from the pSK41 oriT and 

each sequence with a match was manually inspected for an adjacent DNA hairpin 

sequence (24). Plasmids were then grouped according to varying sequences found 
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in the DNA hairpin. Plasmids determined to carry potential pSK41 oriT-mimics were 

then searched for the NES relaxase gene (Accession Code: NC_005024.1, 

nucleotides 8115 to 10112) to determine if the plasmid is a conjugative plasmid. 

Bacterial Strains, Plasmids, Growth and Assay Conditions  

Strains and plasmids used are listed in Table 2.1. E. coli and S. aureus were 

cultured at 37°C on LB agar or in liquid LB medium with aeration (200 rpm). When 

required, growth medium was supplemented with antibiotics at the following 

concentrations: ampicillin (Ap) 100 μg/mL; chloramphenicol (Cm) 10 μg/mL; 

gentamicin (Gm) 20 μg/mL; novobiocin (Nb) 5 μg/mL; streptomycin (Sm) 50 μg/mL.  

DNA fragments encompassing oriT regions were synthesised as GeneArt 

Strings (Figure 2.6; Life Technologies) and cloned into HindIII and/or BamHI sites of 

the pSK1-based S. aureus/E. coli shuttle vector pSK5632. The insert integrity was 

verified by sequencing. pSK5632 constructs were introduced into the restriction-

deficient S. aureus strain RN4220 by electroporation. pSK41 was introduced into 

each resulting strain by conjugation with strain SK5428 and resulting CmR/GmR-

transconjugants were used as donors in mobilization experiments. Mobilization 

assays were conducted in BHI liquid medium (Sigma Aldrich) containing 40% (final) 

polyethylene glycol (PEG) as described previously (O’Brien et al., 2015). The 

WBG4515 strain was used as a recipient and Sm/Nb was used to select against 

donors. Transconjugants were isolated on media additionally carrying either Gm (for 

pSK41) or Cm (for pSK5632).  
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Results 

Role of the C-terminal Domain of NES 

 As discussed in Chapter 1, the C-terminal domain of NES is essential for 

function in vivo; Edwards et al. showed that a NES mutant lacking its C-terminal 

domain was not able to successfully facilitate conjugation of pSK41 (25). We set out 

to characterize the role of the C-terminal domain in vitro to determine in which step 

of conjugation it plays a significant role. To do so we compared the activity of the 

relaxase domain (1-220) of NES and the full-length (1-665) NES in both cleavage 

and strand transfer assays. In each case we also tested a range of oligonucleotide 

lengths as this has been previously shown to effect NES activity but it is unclear 

which lengths are biologically relevant (25). The oligonucleotides used are shown in 

Figure 2.1C. 

 In the cleavage assay, NES 1-220 and NES 1-665 showed differential activity 

(p<0.005) against OriTHP30 and OriTHP35 (Figure 2.2A). NES 1-665 was able to 

process OriTHP30 at a higher rate than NES 1-200; however, NES 1-220 was able 

to process OriTHP35 at a higher rate. In contrast, NES 1-220 and NES 1-665 did not 

show differential activity against OriTHP40 and OriTHP45 leading us to conclude 

that the C-terminal domain does not play a major role in the cleavage activity of 

NES. 

 As shown in Figure 2.2B, NES 1-220 and NES 1-665 did not show differential 

strand transfer activity against OriTHP30, OriTHP35, or OriTHP40. Interestingly, 

NES 1-220 showed significantly higher activity against OriTHP45 than NES 1-665. 
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We conclude that the C-terminal domain is important for proper regulation of the 

strand transfer activity of NES.  

Characterization of NES Hairpin Loop 1 and 2 

The crystal structure of the relaxase domain of NES in complex with pSK41 

oriT DNA hairpin, reported previously by Edwards et al., revealed two features 

unique to this class of relaxase: two protein loops, termed Hairpin Loop 1 and 2 

(Figure 2.1A and B), that clamp around the hairpin duplex of the oriT DNA (7). These 

contacts are unique to this class of relaxase compared to those observed with the 

longer, multi-tyrosine relaxases like F TraI, and they have yet to be characterized in 

the context of the full-length protein. Hence, we sought to determine the impact 

deleting these unique loops would have on NES functions in vitro. Hairpin Loop 1 

deletion (ΔL1), Hairpin Loop 2 deletion (ΔL2), or double-deletion (ΔL1ΔL2) forms of 

full-length NES protein were created using site-directed mutagenesis in which the 

loops were replaced with Gly-Ser linkers. The proteins were expressed 

recombinantly in E. coli and purified to homogeneity. DNA binding, cleavage, and 

strand transfer assays were conducted using DNA oligonucleotides similar to that 

employed in the complex presented in the crystal structure and possessing the same 

sequence as the origin of transfer (oriT) of NES conjugated plasmid pSK41 (Figure 

2.1C).  

For DNA binding studies, these variant proteins contained an active site Tyr-

25-Phe mutation. Previous evidence suggested NES relaxase activity is dependent 

on oligonucleotide length (Figure 2.2, 7) so varying lengths of the oriT were used to 

verify this trend and named as in Figure 2.1C. Longer oligonucleotides should better 
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mimic in vivo plasmid transfer. As shown in Figure 2.3A, the ΔL1 form of full-length 

NES exhibited increased DNA binding (p<0.005) compared to wild-type NES on the 

OriTHP35 and OriTHP40 oligonucleotides. ΔL2 NES did not demonstrate 

significantly different DNA binding on any oligo.  In contrast, ΔL1ΔL2 NES showed 

significantly increased DNA binding (p=0.0002) on the shortest oligo tested, 

OriTHP30, but decreased binding (p<0.005) on OriTHP35. For the longest 

oligonucleotide tested, OriTHP45, no difference in binding was observed for any 

variant proteins compared to wild-type NES.  Thus, we conclude that eliminating 

Hairpin Loops 1 or 2 from full-length NES can alter DNA binding in vitro in an 

oligonucleotide length-dependent manner.  

DNA cleavage and strand transfer assays were conducted as described in 

Figure 2.3B. The cleavage assay mimics the cleavage of the plasmid oriT to produce 

the single strand transferred during conjugation. On OriTHP30, only ΔL1 NES 

exhibited a significant (p<0.0001) difference in DNA cleavage, in this case a 

reduction, relative to wild-type NES (Figure 2.3C). On the longer OriTHP35, 

OriTHP40 and OriTHP45 oligos, all three variant proteins (ΔL1, ΔL2, ΔL1ΔL2) 

demonstrated statistically significant (p<0.0001) increases in levels of DNA cleavage 

relative to wild-type NES.  For these longer oligos, wild-type cleavage was observed 

at ~4%, while the variant proteins exhibited 2- to 7-fold increases in cleavage.  We 

conclude that eliminating the DNA hairpin-associating loops from NES increases 

DNA cleavage by the enzyme.  

A more dramatic effect was observed in examining DNA strand transfer by 

the variant full-length forms of NES.  The strand transfer assay measured the 
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ligation of a portion of DNA covalently linked to NES following cleavage to a new 

piece of DNA containing the hairpin characteristic of the oriT (Figure 2.3B). This 

mimics the ligation step of conjugation that ends plasmid transfer. For OriTHP30, all 

NES variants (ΔL1, ΔL2, and ΔL1ΔL2) showed 5- to 15-fold increases in DNA strand 

transfer relative to wild-type NES (Figure 2.3D).  For OriTHPs 35, 40 and 45, the 

increases were even larger – 25% to nearly 50% of the substrate oligos provided to 

the NES variants were processed to strand transfer, while ~5% of the oligos formed 

strand transfer products with wild-type NES.  Thus, eliminating the DNA hairpin 

contacting loops of NES produces significant and dramatic increases in the level of 

DNA strand transfer in vitro compared to wild-type NES. It can be concluded that the 

Hairpin Loop 1 and Loop 2 regions of NES play an important role, particularly on 

longer DNA substrates more relevant to transfer in vivo, in limiting the level of DNA 

religation during conjugation. 

Modeling of NES Bound to pSK156 and pCA347 

We next sought to determine if related DNA sequences from other plasmids 

might serve as substrates for pSK41 NES.  We examined the S. aureus plasmids of 

known sequence and selected two with sequences identical to the pSK41 oriT 

cleavage site. These two plasmids, pSK156 and pCA347, exhibited the same 

sequence as pSK41 in the 20 nucleotide region from the predicted hairpin through 

the nic site, but deviated somewhat from the DNA hairpin region of the pSK41 oriT 

(Figure 2.4A).  We predicted based on modeling that pSK156 and pCA347 might 

each form 8 base pair DNA hairpins with a one-nucleotide bulge; by contrast, pSK41 

is known from crystal structure to form a 7 base pair DNA hairpin with no bulge 
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(Figure 2.4A and B).  Interestingly, within the predicted DNA hairpins of pSK156 and 

pCA347, nucleotides at the base of the DNA hairpin (G3, C17 and G18) are conserved 

with the sequence of pSK41 (Figure 2.4A, C, D and E).   Furthermore, we noted that 

the 8 base pair hairpins predicted for pSK156 and pCA347 are nearly identical in 

sequence to each other (Figure 2.4A, D and E). 

We next modeled the pSK156 and pCA347 DNA sequences into the pSK41 

NES relaxase domain-DNA hairpin complex crystal structure. For reference, Figure 

2.4B shows the NES relaxase domain in complex with the pSK41 DNA hairpin, 

highlighting the interactions between the protein and DNA; the boxed region 

contains all the protein contacts with the DNA hairpin and will remain the focus of the 

pSK156 and pCA347 models. As shown in Figure 2.4C, NES makes base specific 

contacts with the pSK41 DNA hairpin at C4 via N154, T16 via R78, C17 via G153 and 

N154, G18 via R151, and C19 via Y156.  All but one contact to pSK156 and two 

contacts to pCA347, along with six phosphate contacts, are maintained in the 

models despite the changes in the DNA sequences between these plasmids and 

pSK41 (Figures 2.4D and E). Because C17 and G18 are conserved in both pSK156 

and pCA347, the contacts via G153, N154, and R151 are maintained. The cytosine 

at position 19 in pSK41 is replaced by a thymine in pSK156 and pCA347; however, 

the para-oxygen of thymine appears capable of receiving a hydrogen bond from 

Y156 of NES.  Position 16 of pSK156 and pCA347 contains an adenine rather than 

the thymine found in pSK41. The ring nitrogen of adenine appears capable in our 

models of receiving the same hydrogen bond from R78 as the oxygen of thymine; 

however, while the thymine oxygen can form two hydrogen bonds, the adenine 
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nitrogen can form only one. Thus, in spite of sequence differences between pSK41 

and these other two S. aureus plasmids, contacts between NES and the predicted 

oriTs of all three plasmids are largely maintained.  

  An additional contact is predicted to be lost between NES and pCA347. While 

a cytosine is conserved in the same positions in pSK41 (position -4) and pSK156 

(position -2), it is a thymine in pCA347 (T2; Figure 2.4E). In pSK41 and pSK156 the 

amine group of C4 donates a hydrogen bond to the oxygen of N154; however, the 

para-oxygen of thymine cannot form the same interaction. It is possible that the 

asparagine side chain could rotate to allow the thymine oxygen to receive a 

hydrogen bond from the N154 side chain amine.  In doing so, though, this side chain 

would lose an interaction with C17.  Despite this potential change, five base-specific 

contacts and six phosphate contacts are maintained in our models between NES 

and the sequences of plasmids pSK156 and pCA347 in this region.  Thus, we 

hypothesize that NES is capable of binding to and utilizing these potential oriT 

regions of pSK156 and pCA347 as substrates.   

Characterization of NES Processing of pSK156 and pCA347 

We next analyzed the ability of pSK41 NES to process the potential oriT 

regions of pSK156 and pCA347 by measuring the protein’s ability to employ these 

DNAs for binding, cleavage and strand transfer. For DNA binding studies, wild-type 

full-length NES with an active site Y25F mutation was employed along with 

OriTHP40-like forms of the pSK41, pSK156, and pCA347 (Figure 2.4A). The 

OriTHP40-like form alone was analyzed as longer oligonucleotides have been 

shown to be important for the regulatory function of the C-terminal domain (Figure 
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2.2, 7) but significant differences between OriTHP40 and 45 were not seen in 

assays with the NES loop deletion protein mutants. NES bound the oriT mimic 

regions of pSK156 and pCA347 but less well compared to its binding of the pSK41 

oriT (Figure 2.5A). The KD of NES binding to pSK41 is 19.3 ± 3 nM; in contrast, NES 

binds to pSK156 and pCA347 3- and 9-fold weaker, with KDs of 55.8 ± 9 nM and 175 

± 30 nM, respectively. While the loss of one or two hydrogen bonds is not sufficient 

to explain this decrease in binding affinity, it is interesting that the changes in binding 

affinity reflect the degree of change in sequence and interactions seen in our 

models.  

DNA cleavage and strand transfer assays with full-length wild-type pSK41 

NES and the OriTHP40-like regions of pSK156 and pCA347 were conducted as 

described in Figure 2.3B.  For DNA cleavage, pSK156 exhibited the same level of 

activity as pSK41, while pCA347 showed significantly decreased cleavage by NES 

(p<0.0001, Figure 2.5B).  However, as the cleavage process is dependent on NES 

first binding the DNA, this reduction in cleavage may result from the decrease in 

binding seen in Figure 2.5A for pCA347. For DNA strand transfer, both pSK156 and 

pCA347 showed significantly increased DNA strand transfer, with 3- and 7-fold 

increases in strand transfer for pSK156 and pCA347, respectively, relative to pSK41 

(Figure 2.5C). Taken together, these DNA binding, cleavage, and strand transfer 

data reveal that NES is capable of processing pSK156 and pCA347 oriT-like sites 

but does so at lower efficiency than at its cognate site. 
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Relaxase-in trans Mobilization by pSK41 In Vivo 

To investigate the ability of pSK41 to facilitate relaxase-in trans mobilization, 

the oriT-like sites corresponding to pSK156 and pCA347, and the pSK41 oriT 

sequence itself were synthesized and cloned into the non-mobilizable shuttle vector 

pSK5632 (26) to generate the plasmids pSK6881, pSK6879 and pSK6877, 

respectively; the DNA fragments cloned are shown in Figure 2.6. These new plasmid 

constructs and pSK5632 were electroporated into S. aureus strain RN4220 and 

pSK41 was subsequently introduced via conjugation. These strains were then used 

as donors in mobilization assays with the recipient strain S. aureus WBG4515. As 

shown in Table 2.2, pSK41 was found to mobilize pSK6877, containing its own 

cognate oriT sequence, at a frequency of 2.9 x 10-5, approximately five-fold lower 

than pSK41 itself transferred in the same assay (1.4 x 10-4). However, despite 

repeated efforts, mobilization of the plasmids containing the pSK156 or pCA347 oriT 

mimics was never detected. These results demonstrate that pSK41-encoded NES 

can mediate in trans mobilization of a plasmid containing a copy of its own oriT site, 

but suggest its activity on the variant oriT-like sites from pSK156 and pCA347 is 

inadequate to facilitate plasmid transfer in vivo.  As discussed below, an accessory 

protein may be required to complete relaxase-in trans transfer in vivo. 

 

Discussion 

Transfer of conjugative and mobilizable plasmids is a major route by which 

antimicrobial resistance propagates, but the lack of details about the mechanism of 

this process impedes efforts to slow or prevent the spread of such resistance. We 
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focus on the mechanism of action of the NES relaxase enzyme encoded by pSK41 

and related plasmids from staphylococci. NES is a two domain protein where the C-

terminal domain is distinct from that which is normally paired with a relaxase domain. 

Rather than possessing a function important to the conjugation process such as a 

helicase, NES does not seem to possess any catalytic activity but was previously 

shown to be essential for successful conjugation (25). Here we show that the C-

terminal domain is important for the strand-transfer (ligation) function but not 

cleavage activity of NES (Figure 2.2). It is likely that the increase in DNA strand 

transfer causes DNA to be ligated before transfer is complete. It has been suggested 

that the ligation action of single-tyrosine relaxases such as NES requires homo-

dimerization, which could be mediated by the C-terminal domain. Alternatively, 

although we have not measured the DNA binding ability of the C-terminal domain, it 

could play a role in DNA sequence discrimination to ensure ligation only occurs to 

the 3’ end of the T-strand rather than any DNA blunt end it encounters. 

Formation of a DNA hairpin in the pSK41 oriT and the importance of the 

associated NES Hairpin Loop 1 and 2 had been suggested previously (7). We 

demonstrate here that NES Hairpin Loops 1 and 2 are important for proper DNA 

cleavage and strand transfer (Figure 2.3C and D) but not for DNA binding (Figure 

2.3A). The large increase in DNA strand transfer causing DNA to be ligated before 

transfer is complete is likely the biggest contributor to the large reduction of plasmid 

transfer seen when either Hairpin Loop 1 or Loop 2 are eliminated from the encoded 

NES enzyme (7). It is also likely that accessory proteins in the pSK41 relaxosome 
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complex with NES through interactions with the NES Hairpin Loop 1 and 2, 

amplifying the effect of loss of these protein features. 

Because relaxases are essential for transfer, share many common features, 

and are unique to the conjugative plasmid system, they represent a novel 

therapeutic target for decreasing the spread of antimicrobial resistance to allow 

current antimicrobial compounds to maintain efficacy. As explored previously and 

continued in Chapter 3, there are two potential sites of disruption common to 

relaxases: the metal binding site and specific protein-DNA interactions (7, 27). 

These results validate the NES Hairpin Loop 1 and 2 DNA interactions as a target 

site for such therapeutics. By disrupting the specific protein-DNA interactions in the 

NES Hairpin Loops, a molecule such as a sequence-specific polyamide could 

specifically disrupt cleavage and religation during pSK41 conjugation (7). As there 

seems to be some sequence conservation at the base of the DNA hairpin, this 

inhibitor molecule could target mobilizable plasmids in addition to the conjugative 

plasmid. Interestingly, there is a biological example of relaxase interference from 

Staphylococcus epidermidis strains carrying a CRISPR spacer that matches the nes 

gene of pSK41 and limits conjugative transfer (28). Targeted disruption of 

conjugation after initiation of the process and formation of the mating pore could 

cause cell death specifically in conjugative plasmid containing bacteria. This 

targeted approach to bactericidal compounds is desirable as we learn more about 

the importance of the human skin microbiome (29). 

Despite the importance of the protein-DNA interactions at the DNA hairpin, 

we show that there is some flexibility in the DNA hairpin sequence allowing 
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sequences from pSK156 and pCA347 to be processed by NES. The origin-of-

transfer-mimic sequences of pSK156 and pCA347 maintain all but one or two 

protein-DNA contacts, respectively, and are able to be bound, cleaved, and ligated 

by NES, although with altered efficiency. We were therefore somewhat surprised to 

find that plasmid constructs containing pCA347 or pSK156 oriT mimics could not be 

mobilized from cells harboring pSK41 co-resident, in contrast to a pSK41 oriT 

construct. However, the analogous relaxase-in trans mobilization phenomena 

recently described for the distinct pWBG749-like conjugative plasmids provide a 

precedent that likely explains this apparent paradox. Namely, pWBG749 oriT-like 

sequences exist as sub-types differentiated by sequence divergence in an inverted 

repeat (IR2) located adjacent to the nic site-containing core sequence (18). This 

results in specificity between various mobilizable plasmids and particular pWBG749-

like conjugative plasmids. Thus, pWBG749 can mobilize plasmids with a pWBG749-

like oriT of sub-type OT49 but not those carrying an OT45 sub-type, which instead 

can be mobilized by pWBG749-like conjugative plasmids that possess a cognate 

OT45 sub-type oriT (18). Despite this, pWBG749 was able to stimulate 

recombination between OT49- and OT45-type oriT sequences carried on the same 

mobilizable plasmid, indicating that the pWBG749 relaxosome could recognize the 

OT45-type oriT even though it can’t mediate transfer of that sub-type (18). By 

analogy, it would seem plausible that the pSK156 and pCA347 oriT-mimics 

examined here represent sub-types of pSK41-like oriTs that can be recognized by 

NES but cannot be mobilized by the pSK41 relaxosome. In the case of the 

pWBG749 system, it has been shown that specificity for IR2 sub-types is dictated by 
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a small putative DNA-binding accessory protein, SmpO, encoded adjacent to the 

oriT on pWBG749, rather than the relaxase SmpP (18), The involvement of 

accessory proteins in the pSK41 relaxosome is yet to be established. 

Importantly, the scenario proposed above implies the existence of pSK41-like 

conjugative plasmids with variant oriT sequences that would be capable of 

mobilizing plasmids such as pSK156, pCA347 and other plasmids listed in Appendix 

2. Although no such variant pSK41-like plasmids have been detected to date, the 

presence of variant pSK41-like oriT mimic sequences on one fifth of all sequenced 

staphylococcal plasmids (not including pSK41-like plasmids themselves) makes the 

whereabouts of such a reservoir an important question, since it is clearly influencing 

the evolution of plasmids in clinical staphylococci.  

Interestingly, the origin-of-transfer-mimic sequence found in pCA347 is 

identical to a sequence found in pWBG757, a plasmid that could not be mobilized 

with pWB749 in the studies by O’Brien and colleagues (17). Comparative data such 

as this may allow us to classify mobilizable plasmids into families related to 

relaxase(s) used for trans-mobilization. The origin-of-transfer-mimic sequence of 

pSK156 is also found in plasmid pWB747, which could be mobilized by pWBG749, 

suggesting pWBG747 harbors two distinct origin-of-transfer sequences to maximize 

its ability to be transferred (17, 18).  

 We searched the sequenced staphylococcal plasmids for other pSK41 oriT-like 

sequences and found 85 sequences from 83 different plasmids, including 14 pSK41-

family conjugative plasmids (Appendix 1). This represents 23.6% of Staphylococcus 

plasmids which is significantly lower than the 53% of plasmids O’Brien et al. 
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identified as harboring the pWBG749 oriT-like sequence (18). However, the set 

identified here includes 26 plasmids that do not have a pWBG749 oriT sequence, 

suggesting NES is an important factor in the relaxase-in trans conjugation 

mechanism.  

 Analysis of all 85 sequences shows that oriT sequences identical to that of 

pSK41 are only evident on plasmids which encode their own NES protein. On other 

plasmids, the pCA347 and pSK156 hairpin sequences with their one-nucleotide 

difference are by far the most common oriT mimic, representing 73% of the 

sequences (Appendix 2). The other two major pSK41 oriT-mimic types are 

significantly different in sequence but are still predicted to form a DNA hairpin which 

will allow for most of the NES protein-DNA interactions seen with the pSK41 oriT to 

be maintained, again suggesting that these specific protein-DNA interactions may be 

a potential therapeutic target. It is likely that that NES proteins are capable of acting 

on a wide range of non-conjugative staphylococcal plasmids that contain an oriT 

mimic sequence, ranging from the oldest known multidrug resistance plasmid 

pSK156 to prevalent contemporary plasmids such as pMW2 and pUSA300HOUMR. 

The results described here imply that the recently described relaxase in-trans 

mechanism of mobilization extends beyond pWBG749-like conjugative plasmids to 

the clinically more prevalent pSK41-like plasmids, thereby further increasing the 

proportion of staphylococcal plasmids that are potentially mobilizable. These 

observations lend further weight to the recent proposal that relaxase-in trans 

mobilization represents a significant driver of horizontal transfer in Staphylococci 

(18).  
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Figure 2.1. Structure of NES Relaxase Domain and pSK41 oriT 
A. Structure of the NES relaxase domain in complex with DNA from the pSK41 
origin of transfer (4HT4, 13). The NES Hairpin Loop 1 is shown in yellow and NES 
Hairpin Loop 2 in green. 
B. Hairpin Loop 1 (yellow) of NES binds in the minor groove of the DNA hairpin 
formed by the pSK41 origin of transfer while Hairpin Loop 2 (green) binds to the 
major groove. 
C. Schematic of the pSK41 oriT and the oligonucleotides used in these studies. 
When only black portion is used, the oligo is referred to as OriTHP30. When the 
sequence is extended to include the orange portion it is referred to as OriTHP35, the 
teal as OriTHP40, and the purple as OriTHP45. 
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Figure 2.2. Cleavage and Strand Transfer by Relaxase Domain and Full-length 
NES. 

A. Effect of oligonucleotide length on cleavage by NES 1-220 (relaxase domain) 
and NES 1-665 (full-length) protein.  

B. Effect of oligonucleotide length on strand transfer by NES 1-220 (relaxase 
domain) and NES 1-665 (full-length) protein.  
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Figure 2.3. Functional Analysis of NES Loop Deletion Mutants 
A. KD ± standard deviation of DNA binding measured by fluorescence anisotropy for 
the indicated pSK41 oligonucleotides and NES mutants. 
B. Schematic of the DNA cleavage and strand transfer assays. DNA cleavage 
assays involve only the red DNA substrate labeled with a 5’ 6-FAM. DNA strand 
transfer assays involved both the red and black DNA substrate with the red 
substrate being unlabeled and the black substrate being 5’ 6-FAM labeled. 
C.  Functional analysis of cleavage activity of NES mutants on varying pSK41 
oligonucleotides. Wild-type data is the same as that presented in Figure 2.2A. 
D. Functional analysis of strand transfer activity of NES mutants on varying pSK41 
oligonucleotides to mimic religation during conjugative plasmid transfer. Wild-type 
data is the same as that presented in Figure 2.2B. 
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Figure 2.4. Modeled Structure of the pSK41, pSK156, and pCA347 oriTs 

A. Schematic of the pSK41, pSK156, and pCA347 oligonucleotides used in these 
studies. Colored nucleotides indicate a difference in sequences from the pSK41 oriT. 
B. The relaxase domain of NES in complex with the pSK41 oriT. The box shows the 
region focused on for Figure 2.4C, D and E. 
C. Contacts between the NES relaxase domain Hairpin Loop 1 and 2 amino acids 
and the pSK41 oriT nucleotide. 
D. Contacts between the NES relaxase domain Hairpin Loop 1 and 2 amino acids 
and the modeled pSK156 oriT nucleotide. Green nucleotides differ from the pSK41 
oriT.  
E. Contacts between the NES relaxase domain Hairpin Loop 1 and 2 amino acids 
and the modeled pCA347 oriT nucleotide. Gold nucleotides differ from the pSK41 
oriT.  
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Figure 2.5. NES Processing of pSK41, pSK156, and pCA347 oriT 
Oligonucleotides 

A. KD ± standard deviation of DNA binding measured by fluorescence anisotropy for 
the pSK41, pSK156, and pCA347 oriTs. The pSK41 data is the WT NES data as 
presented in Figure 2.3A.  
B. Cleavage activity of the pSK41-encoded NES protein on the pSK41, pSK156, and 
pCA347 oriTs.  
C. Strand transfer activity of the pSK41-encoded NES protein on the pSK41, 
pSK156, and pCA347 oriTs.  
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pSK41	oriT-string	
	
cccaagcttAGCACGCGAACGGAACGTTCGCATAAGTGCGCCCTTACGGGATTTAACTAGAT
TATAACGGTAAAACTTGAATCTGTCAAACGAAggatccgc 
 
pSK156	oriT-string	
	
gatcggatccTTTTTCTTTCGACGCCGTATCGTCGATGTAATTCAAAAAAGTTATGGGCTAT
AAATCTACATCACTTTTTCAAGAATGTAGTAGCAATATTCAACGCAAATTAATTTTTATAAC
TGCTCGGAATATCTCAAGCCGTTTCTTTAATTTTGAAATAAAAAAAATCGACGAAGGTCGAT
TACGTTTTTGTACACGTCGATTTATCCGACGTATAAGTGCGCCCTTACGGGATTTAACTAGA
TTATAACGACGAATTTTAGACCTGTAAAGCAATggtaccaagcttggatccgatc 
	
pCA347	oriT-string	
	
gatcggatccTTTTTCTTTCGACGCCGTATCGTCGATGTAATTCAAAAAAGTTATGGGCTAT
AAATCTACATCACTTTTTCAAGAATGTAGTAGCAATATTCAACGCAAATTAATTTTTATAAC
TGCTCGGAATATCTCAAGCCGTTTCTTTAATTTTGAAATAAAAAAATCGACGAAGGTCGATT
ACGTTTTTGCACATGTCGATTTATCCGACGTATAAGTGCGCCCTTACGGGATTTAACTAGAT
TATAACGACGAATTTTAGACCTGTAAAGCAATggtaccaagcttggatccgatc 
	
	
Figure 2.6. Nucleotide Sequences for in vivo Transfer Assays  

Nucleotide sequences of the GeneArt Strings (Invitrogen) encompassing the oriT 
regions of plasmids pSK41 (GenBank Acc. AF051917, nt 10189-10273), pSK156 
(GenBank Acc. GQ900448, nt 13396-13126) and pCA347 (GenBank Acc. 
CP006045, nt 3825-4094). Sequences in lower case were added to the DNA 
fragments to facilitate cloning and the BamHI and HindIII restriction sites used are 
underlined. Sequence in bold correlates to the oligonucleotide oriTs shown in Fig. 
2.4A.	
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Table 2.1. Bacterial Strains and Plasmids Used in This Study 

 

Strain or 

plasmid 

Description
a
 Reference or 

source 
   
Escherichia coli  
DH5a F- endA hsdR17 supE44 thi-1 l- recA1 gyrA96 relA1 f80 

dlacZDM15 
Bethesda Research 
Laboratories 

BL21(DE3) F- ompT hsdSB (rB
- mB

-) dcm gal l(DE3) Novagen 
   
Staphylococcus aureus  
RN4220 Restriction-deficient derivative of NCTC8325-4 Kreiswirth et al., 1983 
SK5428 SK982 harboring pSK41 Lyon et al., 1984 
WBG541 SmR/NbR derivative of NCTC8325-4 Townsend et al., 1983 
WBG4515 FsR/RfR derivative of NCTC8325-4 Townsend et al., 1983 
   
Plasmids   
pSK41 GmR, TbR, KmR, NmR, tra+, conjugative multiresistance 

plasmid 
Berg et al., 1998 

pSK5632 pSK1-based S. aureus (CmR)/E. coli (ApR) shuttle vector Grkovic et al., 2003 
pSK6877 pSK41 oriT-string cloned into HindIII and BamHI of 

pSK5632 
This study 

pSK6879 pCA347 oriT-string cloned into BamHI of pSK5632 This study 
pSK6881 pSK156 oriT-string cloned into BamHI of pSK5632 This study 

 
a SmR, streptomycin resistance; NbR, novobiocin resistance; FsR, fusidic acid resistance; RfR, rifampin 
resistance; GmR, gentamycin resistance; TbR, tobramycin resistance; KmR, kanamycin resistance; 
NmR, neomycin resistance; CmR, chloramphenicol resistance; ApR, ampicillin resistance; tra+ 
conjugative transfer genes. 
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Table 2.2. Relaxase-in trans Mobilization of Plasmids Containing oriT Sites 

	

	 	 Transfer	frequency*	

Plasmid	 oriT	site	 pSK41	 	 pSK5632	derivative	
pSK5632	 none	 9.9	x	10-5	 	 Not	detected	
pSK6877	 pSK41	 1.4	x	10-4	 	 2.9	x	10-5	

pSK6879	 pCA347	 6.6	x	10-5	 	 Not	detected	
pSK6881	 pSK156	 8.7	x	10-5	 	 Not	detected	

*	Transfer	frequencies	are	presented	as	per-donor	frequencies	and	are	the	average	of	three	experiments.	
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CHAPTER 3: INHIBITION OF NICKING ENZYME IN STAPHYLOCOCCI (NES) 

 

Introduction 

	 Conjugative plasmid transfer (CPT) is the predominant mechanism through 

which antibiotic resistance spreads in human pathogens (1). There is a great need to 

understand the mechanism of CPT in different bacterial and plasmid systems and 

use that knowledge to design ways to specifically target resistant bacteria or prevent 

the future spread of that resistance. As the initiator of CPT and a highly conserved 

element, the relaxase is an attractive target for such work (1). Indeed, inhibitors for 

relaxase proteins have been previously characterized, although they have not shown 

the desired efficacy in vivo (2).  

The enzyme of interest is NES, the relaxase on the plasmid pSK41. We hope 

that by targeting the relaxase, we might design inhibitors that have one of two 

effects. First, by inhibiting the relaxase and disrupting CPT, the inhibitor might have 

a specific antibiotic effect against bacteria containing the relaxase-encoding plasmid. 

CPT is a tightly regulated process that involves opening a pore (the type 4 secretion 

system discussed in Chapter 1) between two bacterial cells as well as modulating 

the form of resistance-encoding DNA (double-stranded plasmid to single-stranded T-

strand back to a double-stranded plasmid as described in Chapter 1). Thus, 

disruption of this process and specifically, DNA processing is likely to trigger key 
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regulatory mechanisms such as those responding to increased amounts of free DNA 

ends and may lead to cell death. Second, if the inhibitor does not have an antibiotic 

effect, by disrupting CPT, we might eliminate plasmid-encoded resistances from that 

bacterial population. Since many humans are permanently colonized with S. aureus, 

eliminating resistances from their infections and/or colonizing microbes would 

decrease the likelihood of future resistant infections and transfer of resistance to 

other colonizers (3). The benefit to this mechanism is that bacteria are unlikely to 

develop resistance to such treatments quickly.  

NES is a single-tyrosine relaxase that uses several key features to bind and 

cleave the DNA found in the origin-of-transfer (oriT) of pSK41. The first feature is 

two protein loops, Hairpin Loop 1 and 2, that form contacts with the DNA hairpin 

formed upstream of the nic site in the oriT. The role of these protein loops in NES 

function is analyzed in Chapter 2 and they are shown to be essential for proper 

cleavage and ligation of DNA. Therefore, we set out to characterize pyrrole-

imidazole (Py-Im) polyamides inhibitors which can be designed to bind GC-rich 

sequences with high affinity in order to disrupt protein-DNA interactions in this region 

(4, 5). 

Another important region for NES function is the HUH-motif that binds a 

divalent metal ion and is important for coordination of the phosphate backbone of the 

oriT DNA prior to cleavage (Chapter 1). Edwards et al. showed that without a metal 

bound in this position, NES is unable to cleave DNA, suggesting that a small 

molecule that could specifically disrupt this metal coordination would inhibit NES 

function and CPT (6). The Cohen laboratory at University of California, San Diego, 
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has compiled a chelator fragment library (CFL) based on a variety of metal binding 

groups in order to facilitate fragment-based drug design (FBDD) against 

metalloenzymes such as NES (7). This approach is ideal for this system as we have 

not been able to develop a high-throughput screening (HTS) assay for relaxase 

activity and FBDD is a more efficient exploration of chemically diverse space that 

can lead to higher ligand efficiencies than traditional HTS methods (7). The refined 

library CFL-1.1 contains 96 metal chelators with two to four donor atoms for metal 

binding including picolinic acids, hydroxyquinolones, pyrimidines, hydroxypyrones, 

hydroxypyridinones, salicylic acids, hydroxamic acids, and sulfonamides (Figure 3.3, 

7, 8). We set out to characterize these compounds and their derivatives for the 

ability to disrupt the metal coordination of the HUH-motif of NES in order to disrupt 

NES function and therefore conjugative plasmid transfer.  

 

Materials and Methods
2
 

Polyamide Synthesis 

Polyamides were synthesized using microwave-assisted solid-phase 

synthesis on oxime resin as reported previously (9). Following cleavage from oxime 

resin, compounds were purified by preparative HPLC. The identity and purity of each 

polyamide were confirmed by MALDI-TOF and analytical HPLC analysis. Match 

Polyamide 1 ImβImPy-(R)α-NH2γ-PyβImPy-(+): MS (MALDI-TOF) calculated for 

																																																								
2 The Polyamide Synthesis, DNA Duplex Melting Temperature Analysis, and Polyamide Inhibition 
sections were previously published as a portion of the manuscript Edwards JS, Betts L, Frazier ML, 
Pollet RM, Kwong SM, Walton WG, Ballentine WK, Huang JJ, Habibi S, Del Campo M, Meier JL, 
Dervan PB, Firth N, Redinbo MR. 2013. Molecular basis of antibiotic multiresistance transfer in 
Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of 
America 110:2804–2809. 
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C50H70N21O19 [M+H]+ 1108.6, found 1108.9. Mismatch Polyamide 2 ImImImPy-

(R)α-NH2γ-PyPyPyPy-(+): MS (MALDI-TOF) calculated for C56H72N23O9 [M+H]+ 

1210.6, found 1209.9. Polyamides were suspended in 100% DMSO at 10 mM and 

stored at -80°C. 

DNA Duplex Melting Temperature Analysis  

Melting temperature analysis was performed on a Varian Cary 100 

spectrophotometer equipped with a thermo-controlled cell holder possessing a cell 

path length of 1 cm. An aqueous solution of 10 mM sodium cacodylate, 10 mM KCl, 

10 mM MgCl2, and 5 mM CaCl2 at pH 7.0 was used as an analysis buffer. 

Oligonucleotides (0.1-mM stock solutions dissolved in 10 mM Tris·Cl, 0.1 mM EDTA, 

pH 8.0) were purchased from Integrated DNA Technologies. DNA duplexes and 

hairpin polyamides (1 or 2) were mixed to a final concentration of 1 μM and 1.2 μM, 

respectively, for each experiment. Before analysis, samples were heated to 90 °C 

and cooled to a starting temperature of 25 °C with a heating rate of 5 °C/min for 

each ramp. Denaturation profiles were recorded at λ = 260 nm from 25 °C to 90 °C 

with a heating rate of 0.5 °C/min. The reported melting temperatures were defined 

as the maximum of the first derivative of the denaturation profile and represent the 

average of two independent measurements. All melting temperature shifts (ΔTm) are 

calculated relative to a standardized naked control oligonucleotide. 

Polyamide Inhibition  

DNA cleavage assays were conducted in vitro with either the relaxase domain 

of NES (1–220) or the full-length (1-665) enzyme as described in Chapter 2. For 

polyamide inhibition, 2.5 μL of 20 μM OriTHP37 DNA substrate was incubated with 
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2.5 μL of polyamide at 20x the reaction concentration or 100% DMSO for 15 min. 

Each reaction contained 1 μL of the incubated DNA mixture in place of the 1 μL of 

DNA alone previously used. 

Chelator Fragment Library Synthesis  

 Most of the fragments in the CFL-1.1 were obtained from commercial sources 

(Sigma Aldrich, Acros). The remaining compounds (B10, D1, D2, D3, D5, D8, D9, 

D10, D11, D12, E3, E4, E5, E7, E8, E9, E10, E11, E12, and G6) were prepared as 

described in Agrawal et al. and Jacobsen et al. (7, 8). The 4HPT1 derivative library 

was synthesized as described in Agrawal et al. and Garner et al. using a microwave-

assisted synthetic procedure (7, 10). Each compound was suspended in 100% 

DMSO to a concentration of 50 mM (5mM for C10 and H1) and stored at 4°C. 

Chelator Fragment Library Inhibition  

DNA cleavage assays were conducted with full-length NES similarly as 

described in Chapter 2. Briefly, 1 μL 15.2 μM NES protein and 1 μL chelator at 10x 

the final chelator concentration or 100% DMSO were incubated in 7 μL EMSA buffer 

at room temperature for 15 minutes. 1 μL of 10 μM 5’-FAM labeled DNA substrate 

(OriTHP37- 5’-ACGCGAACGGAACGTTCGCATAAGTGCGCCCTTACGG-3’) was 

then added and the resulting reaction incubated at 37°C for 1 hour and quenched by 

the addition of 2X running buffer (0.01% xylene cyanol, 0.01% Bromophenol Blue, 

85% formamide, 20 mM EDTA, 2X TAE, 0.2% SDS). The resulting 20 μL reactions 

were run through a denaturing 16% polyacrylamide gel. 
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Results 

Polyamide Inhibition
3
 

The dependence of conjugative plasmid transfer of pSK41 on intact protein 

Loops 1 and 2 suggests the potential for inhibiting relaxase function and limiting the 

spread of antibiotic resistance genes through disruption of those NES-DNA 

interactions. This led us to investigate inhibition of NES by Py-Im polyamides, a 

class of sequence-specific minor-groove-binding compounds that can be 

programmed to bind GC-rich sequences with high affinity (Figure 3.1A, 11). Match 

polyamide 1 was designed to bind selectively to the 5’- GCGAA-3’ sequence 

contacted by the essential Loop 1 of NES (see Chapter 2, Figure 3.1A). As a control 

the activity of this compound was compared to a mismatch polyamide 2, which 

shows lower affinity for the 5’-GCGAA-3’ sequence (Figure 3.1A and B). The DNA 

cleavage activity of the relaxase 1-220 region of NES was eliminated by match 

polyamide 1 at 50 μM (Figure 3.2A). Interestingly, 2.5 to 50 μM concentrations of the 

mismatch control polyamide 2 caused a significant increase in product formation by 

the relaxase (Figure 3.2A). This result is similar to those obtained when the Loop 1 

and 2 regions of the relaxase were deleted (6). Taken together, these data indicate 

that, for the isolated relaxase domain, disrupting the protein-DNA interactions 

around the DNA hairpin can significantly shift the enzyme’s cleavage-religation 

equilibrium. This effect, however, is not seen when intact, 1-665 NES is used. 

																																																								
3 The Polyamide Inhibition section was previously published as a portion of the manuscript Edwards 
JS, Betts L, Frazier ML, Pollet RM, Kwong SM, Walton WG, Ballentine WK, Huang JJ, Habibi S, Del 
Campo M, Meier JL, Dervan PB, Firth N, Redinbo MR. 2013. Molecular basis of antibiotic 
multiresistance transfer in Staphylococcus aureus. Proceedings of the National Academy of Sciences 
of the United States of America 110:2804–2809. 
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With full-length 1-665 NES, mismatch polyamide 2 showed no significant 

effect, while the match polyamide 1 significantly reduced DNA cleavage activity at 25 

μM and eliminated activity at 50 μM (Figure 3.2B). The difference between the 

relaxase and full-length results is likely a result of the C-terminal domain regulation 

as explored in Chapter 2. A closer examination of NES inhibition by concentrations 

of match polyamide 1 between 5 and 50 μM produced inhibition curves and IC50 

values of 18 and 21 μM for the full-length and relaxase regions of NES, respectively 

(Figure 3.2C). Thus, full-length NES is inhibited by a polyamide targeted to the 

hairpin minor groove DNA sequence and is resistant to the effects of the non-

specific polyamide. Taken together, these results confirm that full-length NES acts in 

a manner distinct from the isolated relaxase with respect to catalytic activity, as well 

as confirming the importance of the DNA hairpin-NES Loop 1 interaction explored in 

Chapter 2. The data also suggest that with further development, small molecules 

capable of inhibiting NES-DNA interactions could disrupt NES function to prevent 

antibiotic resistance transfer.  

Fragment-Based Chelator Inhibition 

Chelator Fragment Library-1.1 

Previous data both with NES and other relaxases have shown that the metal 

coordinated by the HUH motif is essential for relaxase nicking (6, 12, 13). Therefore, 

we set out to identify chelator based inhibitors of NES from the Chelator Fragment 

Library-1.1 (CFL-1.1) introduced in Agrawal et al. and refined in Jacobsen et al (7, 

8). The Cohen lab provided CFL-1.1, a 96 compound library that was screened at 

100 μM for effects on NES cleavage to identify the most promising candidates 
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(Figure 3.3, 3.4). Previous screens with this library have been conducted at 1 mM 

but even with the more stringent requirement of 60% inhibition at 100 μM, we 

identified 17 hits for a 17.7% hit rate. 

Compounds in this library are arranged into lettered sets which share the 

same core structure, usually an aromatic ring component (Figure 3.3). At 100 μM, 

the A compounds, picolinic acids, showed varying efficacy ranging from no 

significant effect (A2, A3, A4, A6, A7, A9, A11, A12) to 100% inhibition (A8, Figure 

3.4A). Compounds A1 (71% inhibition), A5 (61% inhibition), A8 (100% inhibition), 

and A10 (62% inhibition) were chosen for further characterization. The B 

compounds, quinolones, also showed varying efficacy ranging from no significant 

effect (B5, B8, B9, B11) to a 75% reduction in activity (B12, Figure 3.4B). 

Compounds B2 (73% inhibition), B10 (66% inhibition), and B12 (75% inhibition) were 

chosen for further characterization. While two C compounds, pyrimidines, showed 

statistically significant decreases in NES activity, only one compound showed 

efficacy above the 60% inhibition threshold for future analysis (Figure 3.4C). Inhibitor 

C5 showed a 79% reduction in enzyme activity and moved forward for further 

characterization. None of the D compounds, hydroxypyrones, exhibited efficacy 

above the 60% inhibition threshold; the most potent compound, D2, showed on a 

52% reduction in enzyme activity (Figure 3.4D). The E compounds, 

hydroxypyridinones, showed varying efficacy ranging from no effect (E1, E3, E4, E5, 

E6, E8, E9, E10) to an 87% reduction in activity (E7, Figure 3.4E). Compounds E2 

(85% inhibition), E7 (87% inhibition), E11 (60% inhibition), and E12 (82% inhibition) 

were selected for further characterization. The F compounds, salicylic acids, showed 
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very poor efficacy with only F9 showing a decrease in activity greater than the 

DMSO control (p=0.0061) and none showing a reduction in activity of 60% or greater 

(Figure 3.4F). The G compounds, miscellaneous structures, were the most effective 

class with G3 showing 100% inhibition, G6 and G7 showing 93% and 91% inhibition 

respectively, and G10 showing a 65% reduction in activity (Figure 3.4G). Finally, the 

H compounds, also miscellaneous, showed poor activity with only H1 (62% 

inhibition) showing statistically significant reduction in NES activity beyond the 

effects of DMSO (p=0.0095, Figure 3.4H).  

The compounds chosen for future study were screened at 0.1, 1, 10 and 100 

μM. Compounds A1, A5, A8, and A10 are shown in Figure 3.5A. Only Inhibitor A8 

showed efficacy at 10 μM with a 48% reduction in activity that was not statistically 

significant compared to DMSO treatment. Compounds B2, B10, B12, and C5 did not 

show efficacy at 10 μM or lower concentrations (Figure 3.5B). B10 did show a slight 

decrease in activity but did not reach significance. Inhibitor E2 exhibited a 77% 

reduction in activity at 10 μM as well as small but significant effects at 1 and 0.1 μM 

(Figure 3.5C). This prompted further characterization of this backbone via 

derivatization. Despite E7’s 87% reduction in NES activity at 100 μM, it showed only 

a 57% reduction at 10 μM and no significant effect at 0.1 and 1 μM (Figure 3.5C). 

However, because of its backbone similarity to E2 and efficacy at 10 μM, we chose 

to move forward with derivatization of this compound as well. E11 and E12 did not 

show efficacy in reducing enzyme activity at 10 μM and therefore were not 

considered for further characterization (Figure 3.5C). Compounds G3, G6, and G7 

were the most promising compounds screened; they showed a 93%, 79% and 80% 
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reduction in activity, respectively (Figure 3.5D). G3 and G6 showed modest but 

significant effects at 1 μM and only G7 exhibited an effect, although not significant, 

at 0.1 μM. Despite these results, G3, G6, and G7 were not considered for further 

derivatization as previous work has shown them to be a general chelator of metals 

from all protein. Therefore, without attaching an additional fragment to target the 

molecule to NES, treatment with these compounds would cause major side effects 

both for the S. aureus being treated as well as the infected host. Compounds G10 

and H1 did not exhibit significant inhibitory effects at 10 μM and therefore were not 

considered for further characterization.  

HPT1 Library 

Derivatives of E7 make up the HPT1 library shown in Figure 3.6. To test for 

increased efficacy, these 7 compounds were screened in NES cleavage assays at 

0.1, 1, 10, and 100 μM. The 4HPT1.C7 compound showed increased efficacy at 100 

μM where it eliminated NES cleavage activity (Figure 3.6B). However, while NES 

cleavage activity was significantly reduced at 0.1, 1, and 10 μM, it did not show a 

dose dependent reduction suggesting 4HPT1.C7 is not an effective inhibitor. 

4HPT1.F11 was more effective in decreasing NES cleavage activity at 100 μM than 

the parent E7 compound; however, it did not show any effect on activity at 10 μM 

and caused an increase in activity at 0.1 and 1 μM. Larger derivatives 4HPT1.C10, 

4HPT1.E6, 4HPT1.F1, 4HPT1.F3, and 4HPT1.F9 showed decreased efficacy at 100 

μM as compared to E7, with 4HPT1.F1 having no effect on NES cleavage (Figure 

3.6B and C). We conclude that derivatization of E7 will not increase the efficacy of 

inhibitors against NES activity. 
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DMD Library 

The DMD library is composed of derivatives of the E2 compound with the 

structures and names as shown in Figure 3.7A. We screened these 5 derivatives at 

0.1, 1, 10, 50, and 100 μM for increased efficacy as compared to the parent E2 

compound. All compounds in the DMD library eliminated NES activity at 100 μM and 

were moderately more effective at 50 μM, although the reduction in activity beyond 

that of E2 did not reach significance (Figure 3.7B). All of the DMD compounds 

maintained efficacy at 10 μM but only DMD-11 was more effective than E2, although 

again not reaching significance (Figure 3.7B). At 0.1 and 1 μM, none of the DMD 

library compounds showed a significant reduction in activity. However, the modest 

reduction in activity caused by DMD-14 was significant when compared to E2 and 

DMD-13 showed a significant increase in activity. The efficacy of these CFL 

compounds, especially DMD-11, supports previous data about the importance of the 

bound metal to relaxase function and is proof of principle that a chelating inhibitor is 

an effective modulator of relaxase activity. With further development such chelator 

fragments paired with other inhibitory or targeting fragments could be capable of 

selectivity inhibiting NES function to prevent antibiotic resistance transfer.  

 

Discussion 

Antibiotic resistance is largely spread among bacterial populations by 

conjugative plasmid transfer (14, 15). This transfer is facilitated by the relaxase 

enzyme which is often, but not always, encoded on the plasmid to be transferred. 

We focused on the NES relaxase enzyme encoded on the plasmid pSK41. Previous 
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characterization of this enzyme identified several regions essential for proper 

function of NES (Chapter 2, 6).  

One essential region is two protein loops (Loop 1 and Loop 2) that bind to the 

minor and major groove, respectively, of the hairpin formed by the pSK41 oriT DNA. 

We establish that disruption of the minor groove contacts with a polyamide inhibits 

NES activity in vitro (Figure 3.2). Minor-groove-targeted Py-Im match polyamide 1, 

designed to bind to the GC-rich DNA minor groove of the NES substrate hairpin, 

demonstrated IC50 values of 18 and 21 μM against the full-length and relaxase 

domain of NES, respectively, with respect to DNA cleavage. While it is possible that 

optimization of polyamide architecture and functionalization will yield organism-

specific uptake in S. aureus, these compounds may be able to bind similar DNA 

sites throughout the genome resulting in off-target effects. Indeed, we found that the 

minimum inhibitory concentration (MIC) of match polyamide 1 is 16 μM for cultured 

S. aureus.   

A second region essential for NES function is the HUH-motif and the bound 

divalent metal. We show that small molecule chelators successfully inhibit NES 

cleavage activity in vitro (Figure 3.4-3.7). Using CFL-1.1 we found 17 small 

molecules that show a 60% or greater reduction in NES activity at 100 μM (Figure 

3.4). Of these 17 hits, six compounds (A8, E2, E7, G3, G6, G7) also showed 

significant effects at 10 μM and were considered for further optimization. Due to their 

similarity, E2 and E7 were derivatized and screened for increased efficacy. E7 

derivatives did not show increased, dose-dependent efficacy. In addition, E7 and 

related compounds have been found to be potent inhibitors of other 
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metalloenzymes, suggesting it would have many off target effects in vivo (7, 8, 10). 

The best E2 derivative compound, DMD-11, has an estimated IC50 of 10 μM with 

respect to DNA cleavage. Further derivatization and screens for selectivity are 

needed to improve and verify the efficacy of this compound class. Despite concerns 

with other compounds tested against NES, compounds from CFL-1.1 have been 

shown to have high selectivity for their target proteins suggesting it is possible to 

develop E2 into a NES selective molecule (16).  

One path for optimization via fragment based drug design is to join a chelator 

fragment with an additional inhibitory element. Another essential region for DNA 

binding by NES is the guanine-26 nucleotide base that is buried in a cavity where it 

makes two hydrogen-bonding contacts with NES residues. This cavity is 

approximately 10 Å from the metal bound at the HUH-motif; thus, we hypothesize 

that a purine nucleotide or mimic linked to an optimized chelator fragment would 

yield a selective and efficient inhibitor of NES activity. A co-crystal structure or 

docking model of NES bound to E2 or DMD-11 would assist both with optimization of 

the metal binding group as well as designing the linker to a purine mimic. Thus far, 

crystal trials of the relaxase domain in complex with a shorter oriT DNA 

oligonucleotide and chelator fragment hits have yielded crystals with poor diffraction, 

the best diffraction being to 8 Å.  

Taken together, the data presented in this chapter confirm that inhibition of 

NES activity is possible via several different protein sites. Indeed, targeting NES 

activity as a means to limit DNA transfer has been seen in Staphylococcus 

epidermis strain RP62a which contains a functional CRISPR spacer targeting the 
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nes gene (17). This, in combination with the in vivo conjugative transfer data with 

mutant forms of NES presented in Chapter 1 and Edwards et al., suggests that both 

the polyamide and chelator inhibitors would serve as inhibitors of DNA transfer via 

their impact on NES function.  
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Match	Polyamide	1	

	
	
	
	
	
	
	
	

	
Mismatch	Polyamide	2	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Figure 3.1. Polyamide Structure 

A. Structures of the Match Polyamide 1 and Mismatch Polyamide 2 
B. DNA thermal melting with polyamides. Shown is melting temperature (Tm) of the 
DNA duplex alone and with the Match and Mismatch Polyamides (1 and 2, 
respectively). The change in Tm is also indicated. One strand of the duplex oligo is 
shown, with the target sequence depicted in blue. 
This data was originally published in Edwards et al. (6)  
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Figure 3.2 Polyamide Impact on NES Activity  

A. Inhibition of NES relaxase in vitro with Match Polyamide 1 (black) and Mismatch 
Polyamide 2 (grey). Polyamides were dissolved in 5% DMSO. 
B. Inhibition of Full-length NES in vitro with Match Polyamide 1 (black) and Mismatch 
Polyamide 2 (grey). Polyamides were dissolved in 5% DMSO. 
C. Eighteen- and 21-μM IC50 values of the Match Polyamide 1 for the full-length and 
relaxase forms of NES, respectively. 
This data was originally published in Edwards et al. (6)
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Figure 3.3. Chelator Fragment Library- 1.1 (CFL-1.1) 
Structures of all fragments in CFL-1.1. Each row corresponds to a metal binding group class: picolinic acids (A), 
quinolones (B), pyrimidines (C), hydroxypyrones (D), hydroxypyridinones (E), and salicylic acids (F). Compounds in 
row G and H are miscellaneous.  
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Figure 3.4. 100µM Screen of CFL-1.1 
A. Effect of compounds A1-A12 on NES cleavage product formation. 
B. Effect of compounds B1-B12 on NES cleavage product formation. 
C. Effect of compounds C1-C12 on NES cleavage product formation. 
D. Effect of compounds D1-D12 on NES cleavage product formation. 
E. Effect of compounds E1-E12 on NES cleavage product formation. 
F. Effect of compounds F1-F12 on NES cleavage product formation. 
G. Effect of compounds G1-G12 on NES cleavage product formation. 
H. Effect of compounds H1-H12 on NES cleavage product formation. 
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Figure 3.5. Chelator Impact on NES Cleavage Product Formation 
A. Effect of compounds A1, A5, A8, and A10 at 0.1, 1, 10, and 100 µM on NES 
cleavage product formation. 0 µM data is DMSO control and p-values are calculated 
against this control. 
B. Effect of compounds B2, B10, B12, and C5 at 0.1, 1, 10, and 100 µM on NES 
cleavage product formation. 0 µM data is DMSO control and p-values are calculated 
against this control. 
C. Effect of compounds E2, E7, E11, and E12 at 0.1, 1, 10, and 100 µM on NES 
cleavage product formation. 0 µM data is DMSO control and p-values are calculated 
against this control. 
D. Effect of compounds G3, G6, G7, G10, and H1 at 0.1, 1, 10, and 100 µM on NES 
cleavage product formation. 0 µM data is DMSO control and p-values are calculated 
against this control. 
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Figure 3.6. HPT1 E7 Derivative Library 
A. Structures of E7 derivatives for the HPT1 Library 
B. Effect of compounds 4HPT1.C7, 4HPT1.C10, and 4HPT1.E6 at 0.1, 1, 10, and 
100 µM on NES cleavage product formation. Indicated p-values are calculated with 
reference to the E7 reaction. 
C. Effect of compounds 4HPT1.F1, 4HPT1.F3, 4HPT1.F9, 4HPT1.F11 at 0.1, 1, 10, 
and 100 µM on NES cleavage product formation. Indicated p-values are calculated 
with reference to the E7 reaction. 
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Figure 3.7. HPT1 E2 Derivative Library 
A. Structures of E2 derivatives for the DMD Library 
B. Effect of compounds DMD-10, DMD-11, DMD-13, DMD-14, and DMD-15 at 0.1, 
1, 10, and 100 µM on NES cleavage product formation. Indicated p-values are 
calculated with reference to the E2 reaction. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS FOR 

CHARACTERIZATION OF pSK41 AND ITS RELAXASE, NES 

 

Conclusions 

 The Redinbo lab has had a long-lasting interest in conjugative plasmid 

transfer (CPT) and the previous three chapters present work characterizing the 

plasmid pSK41 and its relaxase, NES. Specifically, initial characterization conducted 

with the relaxase domain of NES by Jon Edwards has been extended to 

characterization of the full-length protein. As discussed in Chapter 2, the C-terminal 

domain of NES functions as a regulator of the relaxase domain as opposed to the 

independent function of most relaxase-associated C-terminal domains.  In addition, 

NES protein Hairpin Loops 1 and 2 are established as important features for proper 

DNA cleavage and religation, but not DNA binding. Having confirmed the importance 

of this protein-DNA interaction, the importance of the DNA sequence that these 

protein loops contact was then analyzed and it was noted that NES is able to 

process variant hairpins found in the oriTs of the plasmids pSK156 and pCA347 in 

vitro. While this relaxase-in trans mechanism had previously been shown for the 

pWBG749 family of plasmids in S. aureus, this work suggests that other plasmid 

families including pSK41 likely utilize the same system to facilitate conjugation of 

plasmids that were previously considered non-conjugative. Chapter 3 takes 
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advantage of protein regions that were noted as important in Chapter 1 and 2 in 

order to design inhibitors of NES activity. We hope this work will lead to drugs that 

will decrease the spread of antibiotic resistance in S. aureus communities. These 

experiments have also spurred several additional questions about how NES 

facilitates conjugative plasmid transfer not only of pSK41, but also of pSK156 and 

pCA347. These additional hypotheses are explored below. 

Future Directions 

Formation of the DNA Hairpin 

 Chapter 2 establishes that the protein-DNA contacts formed to the DNA 

hairpin just upstream of the nic site of the oriT are important for proper DNA 

cleavage and religation (strand transfer) by NES (Figure 2.3). However, it has not 

been established when during CPT the inverted repeats of the oriT form this DNA 

hairpin in vivo. While this is difficult to directly measure in vivo, NES activity in vitro 

on DNA with and without the hairpin would further establish when the hairpin is 

essential and therefore, when it is likely to form. An ideal experiment would be to 

compare binding, cleavage, and strand transfer rates between identical linear and 

annealed, hairpin forms of the oriT sequence. Because hairpin formation is favorable 

when the DNA is not in its double-stranded form, it may be difficult to obtain a clean 

linear portion so an alternative approach is to test oligonucleotides with a disrupted 

DNA hairpin (altered bases in the inverted repeats), no hairpin (a short 

oligonucleotide that starts directly after the hairpin), and with only the second 

inverted repeat closest to the nic site (Table 4.1). Edwards et al. showed that 

oligonucleotides with shortened or eliminated first inverted repeats (the inverted 
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repeat furthest from the nic site) were not able to out-compete binding of the full oriT 

sequence to the relaxase domain of NES (1). However, an oligonucleotide with a 

scrambled first inverted repeat was able to bind to the relaxase domain, even in the 

presence of the wild-type oriT oligonucleotides. If a similar trend holds true in direct 

binding experiments with the full-length NES protein, it would suggest that hairpin 

formation is not required for binding of NES and initiation of CPT but that it is 

important that the full length of both inverted repeats be exposed in a single-

stranded form.  

Similar cleavage and strand transfer experiments will characterize the 

importance of hairpin formation in those steps of CPT as well. Preliminary cleavage 

studies of oligonucleotides with a disrupted DNA hairpin (altered bases in the 

inverted repeats), no hairpin (a short oligonucleotide that starts directly after the 

hairpin), and with only the second inverted repeat (half hairpin) suggest that NES is 

able to cleave these oligonucleotides but with increased rates as seen in the loop-

deletion mutations of the NES enzyme (Figure 4.1). However, cleavage rates are 

necessarily dependent on binding so it is also important to know binding affinities for 

each oligonucleotide before drawing conclusions. A full analysis of binding, 

cleavage, and strand transfer will help form a model for hairpin formation upon which 

further experiments can build. As we learn more about pSK41 and CPT, it will also 

be important to consider how other MOB proteins might influence hairpin formation. 

Characterization of the pSK41 Relaxosome 

 Chapter 2 demonstrates that in vitro NES is able to bind, cleave, and ligate 

oriT DNA from plasmids pSK156 and pCA347 (Figure 2.5). However, in in vivo 
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conjugation assays, NES and the other MOB genes encoded on pSK41 were not 

able to facilitate transfer of plasmids containing the pSK156 or pCA347 oriT 

(Chapter 2 Table 2.2). We hypothesize that this is because an accessory protein is 

required that differentiates between different sub-types in the pSK41 family and this 

accessory protein encoded on pSK41 is incongruent with the pSK156 and pCA347 

oriTs. This relaxase-in trans conjugation system was first shown for the plasmid 

pWBG749 and O’Brien et al. showed that a small putative DNA-binding accessory 

protein, SmpO, is responsible for differentiating sub-types of plasmids containing 

pWBG749-like oriT sequences (2, 3). NES is the only protein in the pSK41 

relaxosome that has been characterized so it is difficult to hypothesize what this 

accessory protein might be for the pSK41 system. Homolog models and preliminary 

work by the Redinbo lab have identified pSK41 proteins Orf86 and Orf90 as putative 

DNA binding proteins so they are candidates for this accessory protein but there are 

likely other candidates in the Orf and Tra regions of pSK41. Systematic 

characterization of the MOB genes of pSK41 will not only aid in identifying this 

accessory protein, but will also reveal additional information about the conjugation 

process.  

Optimization of Chelator Fragment Inhibitors 

 Data presented in Chapter 3 characterizes preliminary NES inhibitors from a 

chelator fragment library and proposed optimization of these inhibitors via 

attachment of a guanine-mimic to block binding of the uniquely positioned nucleotide 

Gua-26 in the pSK41 oriT. Edwards et al. showed that oriT DNA with an abasic site 

at position 26 was cleaved at an increased rate by the NES relaxase domain and the 
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structure revealed the pocket in which this nucleotide specifically binds (Figure 4.2, 

1). Further basic characterization of this DNA-protein interaction in the context of the 

full-length protein will provide insight on how to optimize a small molecule to bind in 

this pocket. Binding, cleavage, and strand transfer assays with DNA containing an 

abasic site in place of Gua-26 with the full-length NES protein will serve as a proof of 

principle that disruption of this interaction will have a significant effect on NES 

function. If we are able to identify a small molecule that targets this position, the 

effects will likely mimic the NES activity seen with the abasic site DNA. The chelating 

inhibitors could even be tested in this system to further explore the combination 

approach before synthesis of new small molecules. 

 There are also several mutations that would produce clashes between the 

newly introduced side chain and the guanine nucleotide. M3W, G90L, and N93M 

mutations will introduce larger side chains that will likely disrupt the binding pocket 

into which the guanine nucleotide normally sites. The clashed formed by M3W is 

shown in Figure 4.3. This will again serve as a proof of principle that disruption of 

proper guanine binding will have a significant effect on NES function. In addition, it 

will provide information on the flexibility of this binding site and parts of the binding 

pocket that it will be beneficial to disrupt.  

 An effective inhibitor of the Gua-26 binding pocket will need to have a high 

binding affinity in order to bind prior to DNA binding or outcompete the Gua-26 

nucleotide. As shown in Figure 4.2, there are several contacts formed between NES 

and the Gua-26 nucleotide. While most of the contacts are to backbone oxygens, the 

impact of the hydrogen bond to N129 could be explored by mutation to leucine or 
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alanine. Unfortunately, most of the other surrounding amino acid side chains are not 

amendable to forming hydrogen bonds so most optimization will depend on 

optimizing backbone contacts.   

 An additional consideration for the chelator fragment library is specificity of 

the chelators for different metals. While we have confirmed the metal bound in our 

purified NES enzyme is nickel, it is unclear if this is physiologically relevant or a 

consequence of purification on a nickel column (1). Therefore, chelators that are 

effective against a nickel-bound NES in vitro may show differential effectiveness in 

vivo.  It is possible to chelate out the nickel bound to NES with EDTA; therefore, it 

should be possible to replace this nickel with other metals that facilitate NES activity 

such as manganese and copper in order to analyze the effect of the chelators 

against varying metal cofactors (1).  

Variation in NES Genes 

 Although pSK41 is the prototype plasmids for the MOBQ class and NES is the 

best characterized single-tyrosine relaxase, there are several other plasmids that 

contain an NES gene and some variation is seen in this gene across plasmids. For 

example, the conjugative transfer regions of the pGO1 and pSK41 plasmids are 

considered to be essentially identical; however, there is a 24-nucleotide segment in 

the nes gene that differs between the two plasmids (4). This results in an 8 amino 

acid sequence that is different between the NES enzymes expressed by each 

plasmid and could have significant implications on the function of the enzyme. It has 

been suggested that the nic site of pGO1 and pSK41 differs by one nucleotide 

position despite the oriT being the same sequence. Perhaps this 8 amino acid 
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difference between the NES enzymes could explain this difference and 

characterization of that change would further understanding of NES DNA binding 

function. 

 Additionally, several plasmids that contain a nes gene have frame-shift 

mutations in the gene that result in a truncated enzyme. Truncations have been 

seen that result in 303, 482, or 555 amino acid proteins rather than the 665 residue 

full-length enzyme characterized here. It is unclear if these truncated enzymes are 

functional and able to facilitate CPT. Notably, the frame shift mutation resulting in a 

303-residue enzyme is found on the pUSA03 plasmid in the MRSA-USA300 strain. 

This is the C-terminal mutant that was not able to facilitate transfer of pSK41 in vivo 

in Edwards et al. but it is possible that other changes in the pUSA03 plasmid allow 

the shorter enzyme to be sufficient for transfer (Chapter 1 Figure 1.5) (1). 

 Conjugative plasmids that encode nes genes or plasmids that move via a 

relaxase in-trans mechanism represent a large reservoir of antibiotic resistance 

genes. Understanding of this highly conserved enzyme that is responsible for 

initiation via DNA cleavage and termination via DNA ligation is key to understanding 

the mechanism of conjugative plasmid transfer and developing therapeutics to limit 

spread of genes encoding for antibiotic resistance. While work in this thesis has 

expanded understanding of the function and potential for inhibition of NES, there are 

also many questions left to answer about this enzyme across plasmids and many 

ways to optimize inhibition.  
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Table 4.1. Altered Hairpin Oligonucleotides 
	
Oligo Name Sequence (Hairpin Underlined) 
OriTHP40  ACGCGAACGGAACGTTCGCATAAGTGCGCCCTTACGGGAT 
Disrupted Hairpin ACATAGGTAAAAATGGATAATAAGTGCGCCCTTACGGGAT 

No Hairpin                    ATAAGTGCGCCCTTACGGGAT 
Half Hairpin           AACGTTCGCATAAGTGCGCCCTTACGGGAT 
	
	
	
	
	

	
Figure 4.1. NES Cleavage of Altered Hairpin Oligonucleotides 
NES cleavage activity on oligonucleotides containing the wild-type sequence 
(OriTHP40), a disrupted hairpin, beginning after the hairpin (no hairpin), or half of the 
hairpin sequence from the oriT of pSK41. 
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Figure 4.2. Gua-26 Binding Pocket 
Guanine-26 (magenta) in the pSK41 oriT is coordinated by the NES protein 
backbone and the asparagine-129 side chain (green). PDB ID: 4HT4 
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Figure 4.3. M3W Mutation Effects 
Guanine-26 (magenta) in the pSK41 oriT clashes (red) with the M3W mutation 
(white) of the NES relaxase domain (cyan). PDB ID: 4HT4 
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CHAPTER 5: INTRODUCTION TO β-GLUCURONIDASE- MICROBIAL ENZYME 

RESPONSIBLE FOR GI DRUG REACTIVATION 

 

Microbiome 

 It has long been appreciated that many bacteria make the human body their 

home. Recent technological advances have greatly expanded our appreciation of 

the vast number and types of bacteria that are found on and in the human body and 

given rise to the human microbiome field of study. The term microbiota refers to the 

symbiotic bacteria that live in and on the human bodies. A recent estimate calculated 

that each of person maintains approximately equal numbers of human and bacterial 

cells with the bacterial cells concentrated largely on the skin and on the mucus 

membranes of the mouth and gastrointestinal tract (GI) (1). The microbiome is the 

collection of genomes associated with the microbiota. Because of the large 

variability between bacterial genomes and quick reproduction time of bacteria, the 

microbiome contains many more unique genes and evolves much more quickly than 

the human genome.  While bacteria have been studied for hundreds of years, only 

recently has it become feasible to sequence and compile large numbers of bacterial 

genomes in order to explore the variations between strains and genes that are non-

essential or do not impart a strong phenotype.  
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To better understand this vast bacterial population, the National Institutes of 

Health (NIH) began the Human Microbiome Project (HMP) to establish resources 

that would enable research to characterize the human microbiome and its role in 

human health and disease (2). This included collecting and sequencing microbial 

samples from healthy individuals across several different body sites including nasal 

passages, oral cavity, skin, gastrointestinal tract, and urogenital tract (2). In addition 

to the whole-genome sequencing metagenomics studies conducted with these 

microbial samples, the HMP is also working to culture bacteria from these samples 

in order to establish 3,000 reference strains with complete genome sequences.   

Completion of the HMP and the on-going efforts of other microbiome 

sequencing initiatives such as the American Gut Project have highlighted the 

complexity and diversity of the human microbiota. Samples vary widely between 

individuals, likely reflecting the highly variable environments in which we live, genetic 

differences, and various foods and drugs that we consume (2). Samples also show 

significant diversity when the same individual is sampled over time (3). Only healthy 

individuals were sampled for the HMP in hopes of establishing a common, healthy 

baseline to which the microbiota associated with disease could be compared. 

Subsequent comparisons have suggested links between microbiota dysbiosis and 

autism spectrum disorders, metabolic disorders, irritable bowel syndrome, diabetes, 

and cardiovascular disease (4-6). These associations emphasize the importance of 

maintaining a healthy microbiota and limiting the use of broad-spectrum antibiotics, 

especially in early childhood, as this significantly alters the diversity of the GI 

microbiota (7, 8). More recent studies have focused on determining the mechanism 
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by which changes in the microbiota lead to disease, examining both which individual 

bacteria are responsible for the effect as well as characterizing molecular processes 

those bacteria facilitate by narrowing in on a particular gene or gene cluster. This 

has allowed for an increased appreciation of the interactions between mammalian 

tissues and the microbiota (9).  

 

Glycoside Hydrolases 

 One microbial enzyme class that is of particular interest is glycoside 

hydrolases. Glycoside hydrolases are expressed by both prokaryotic and eukaryotic 

cells and are responsible for hydrolyzing the glycosidic bond between carbohydrate 

sugars or between a sugar and a non-carbohydrate moiety.  

The average human diet contains a vast array of both simple and complex 

carbohydrates that include glycosidic sugars. Glycosidic sugars come in a variety of 

discrete but related structures and can also be derivatized with the attachment of a 

functional group such as sulfate. These varying sugars can be arranged through a 

variety of different bonds in an almost endless library of carbohydrate molecules that 

must be broken down in order to be used for both human and bacterial energy 

production. The 135 families of glycoside hydrolases are the primary enzymes 

responsible for degradation of these large carbohydrate molecules. Many of these 

enzymes have strict specificity for one glycosidic sugar (e.g. glucuronate vs 

galactose) as well as the bond linking the sugar to the next molecule (e.g. alpha- vs 

beta-linkage); therefore, it is not surprising that both mammals and bacteria express 

a wide range of glycoside hydrolase enzymes (10, 11). 
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β-Glucuronidase4 

β-Glucuronidase, or GUS, enzymes are members of the glycoside hydrolase 

family 2 (GH2). These enzymes are found in plants, animals, and bacteria in order to 

cleave a beta-linked glucuronide moiety from a larger compound. As with other 

glycoside hydrolase enzymes, the hydrolysis of the glycosidic bond by GUS 

enzymes is catalyzed by two amino acid residues, usually glutamic acids. The 

proposed mechanism for the E. coli GUS is shown in Figure 5.1. This proposed 

mechanism is based on similarity to the lysozyme and β-galactosidase mechanisms 

that have been more extensively studied (12). 

The human GUS enzyme is found in lysosomes where it hydrolyzes 

glucuronic acid from the non-reducing end of glycosaminoglycans such as 

chondroitin sulfate and hyaluronic acid (13). The structure of human GUS was 

reported in 1996 and characterized at high resolution in 2013 (13, 14). This is an 

essential enzyme in humans and deficiencies resulting from a mutation in the gene 

lead to a build-up of non-hydrolyzed glycosaminoglycans referred to as Sly 

syndrome (15).  

Microbial GUS enzymes allow the encoding microbes to scavenge for a 

carbon-based energy source. There are a wide variety of compounds containing 

glucuronide moieties that enter the GI including glycosaminoglycans and small 

molecules that are conjugated to a single glucuronide sugar through phase II drug 

																																																								
4 This section adapted from the previously published work Wallace BD, Roberts AB, Pollet RM, Ingle 
JD, Biernat KA, Pellock SJ, Kumar Benkatesh M, Guthrie L, O’Neal SK, Robinson SJ, Dollinger M, 
Figueroa E, McShane SR, Cohen RD, Jin J, Frye SV, Zamboni WC, Pepe-Ranney C, Mani S, Kelly L, 
Redinbo MR. 2015. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the 
Alleviation of Cancer Drug Toxicity. Chemistry & Biology 22(9):1238-1249. 
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metabolism in the liver; however, it is still unclear what the native substrate is for 

these enzymes. Microbial GUS activity was first characterized in E. coli and E. coli 

GUS (EcGUS) is often used as a reporter gene to monitor gene expression in plant, 

mammalian, and even bacterial cells via a robust, colorimetric assay (16, 17).  

EcGUS is only essential for E. coli bacteria when glucuronic acid is the only 

available carbon source (17). The structure of EcGUS was determined in 2010 by 

the Redinbo lab and showed a functional tetramer that has been confirmed by gel 

filtration chromatography and multi-angle light scattering (Figure 5.2) (18, 19). In 

order to expand the understanding of microbial enzymes, the GUS enzymes from 

Streptococcus agalactiae (SaGUS) and Clostridium perfringens (CpGUS) have also 

been characterized (19). Structures of SaGUS and CpGUS exhibit overall structures 

similar to the EcGUS and human GUS structures reported previously (Figure 5.2) 

(13, 14, 18).  

Using the EcGUS, SaGUS, and CpGUS crystal structures as a guide, we 

were able to define functionally relevant sequence motifs. GUS enzymes align ether-

linked glucuronides for hydrolysis using hydrophobic, hydrogen bonding, and 

electrostatic interactions with the glucuronic acid sugar moiety. The asparagine and 

lysine residues that contact the carboxylic acid group unique to glucuronic acid 

relative to galactose are particularly critical and we have denoted this as the N-K 

motif (N566/567/563, K568/569/565 in Figure 5.3A). This motif is completely 

conserved even in more distantly related GUS enzymes from Archaeal and 

Thermotoga sources, as well as Bacteroides species and a gene obtained from an 

uncultured sample whose gene product, H11G11, was demonstrated to have GUS 
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activity (Figure 5.3B) (20). This motif was previously noted when Matsumura and 

Ellington evolved glucuronidase activity from galactosidase enzymes (21). In 

addition to the N-K motif, a tyrosine residue located ~4 Å from the glucuronic acid 

binding site appears to ensure by steric occlusion that only beta-linked substrates 

are processed by the two catalytic glutamic acid residues of GUS enzymes; an 

alpha-linkage would clash with the aromatic ring at this position (Y468 in Figure 

5.3A).  

Using the N-K motif as a marker for GUS enzymes within the GH2 family, we 

were able to identify a previously solved structure of a Bacteroides fragilis enzyme 

(RCSB: 3CMG) as a GUS enzyme rather than its originally annotated beta-

galactosidase label (Figure 5.2). As shown in Figure 5.3B, this B. fragilis GUS 

(BfGUS) maintains the N-K motif. Indeed, EcGUS, SaGUS, CpGUS, and BfGUS 

were shown to have activity against the glucuronidated substrate p-nitrophenyl 

glucuronide (PNPG) (Table 5.1). Thus, we propose that the N-K and Y motifs should 

join the catalytic glutamic acid residues as structural features considered essential 

for GUS activity and defining GUS sequences.  

The EcGUS, SaGUS, and CpGUS enzymes have a unique motif relative to 

the human GUS structure: they contain a “bacterial loop” that folds over the active 

site (Figure 5.4A). By contrast, human GUS lacks this loop. The bacterial loops are 

highly divergent in sequence, sharing only 11-36% identity between EcGUS, 

CpGUS, and SaGUS (Figure 5.4B). In human GUS, this region is replaced by a 

single residue, P415. Sequence analysis of bacterial loops in a set of microbial GUS 

enzymes from the NCBI database reveals that some of the enzymes contain the 
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loop and some do not (Figure 5.4B). BfGUS seems to be an intermediate between a 

full bacteria loop like that seen in EcGUS, SaGUS, and CpGUS and no loop as in 

human GUS. 

These observations support the conclusion that the GI microbiome maintains 

an array of enzyme orthologs capable of scavenging glucuronic acid from a range of 

chemically distinct substrates. Diverse endobiotic, food, and xenobiotic glucuronides 

are expected to be regularly delivered to the GI tract, and thus the microbial species 

therein are poised to utilize these diverse sources of carbon. The addition of BfGUS 

to the array of characterized GUS enzymes has emphasized the limited scope of the 

current understanding of the sequence and structure of GUS enzymes. The 

following chapters begin to expand current understanding of the GUS enzyme family 

by defining a catalog of GUS sequences found in the human microbiome and 

characterizing some of those unique enzymes. 

 

Irinotecan5 

 Irinotecan (CPT-11) is a potent anticancer drug used to treat solid tumors and 

other malignancies (22-24). It is an essential component of FOLFIRI (where IRI 

indicates irinotecan), which is widely used for late-stage colorectal cancer (25, 26), 

and FOLFIRINOX, which was recently recommended as the first-line regimen for 

pancreatic cancer (27). According to the Food and Drug Administration package 

																																																								
5 This section adapted from the previously published work Wallace BD, Roberts AB, Pollet RM, Ingle 
JD, Biernat KA, Pellock SJ, Kumar Benkatesh M, Guthrie L, O’Neal SK, Robinson SJ, Dollinger M, 
Figueroa E, McShane SR, Cohen RD, Jin J, Frye SV, Zamboni WC, Pepe-Ranney C, Mani S, Kelly L, 
Redinbo MR. 2015. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the 
Alleviation of Cancer Drug Toxicity. Chemistry & Biology 22(9):1238-1249. 
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insert for irinotecan, up to 88% of patients experience diarrhea and 31% show grade 

3-4 diarrhea, which requires significant medical intervention including dose 

reductions or treatment termination (28-30). 

 As shown in Figure 5.5, irinotecan is a prodrug that is activated by human 

carboxylestrases in the liver during phase I drug metabolism (30, 31). This active 

metabolite, SN-38, is a topoisomerase I poison and leads to irreversible double-

strand breaks in the DNA of targeted cells (32). SN-38 is further processed by UDP-

glucuronosyltransferases (UGT), in particular UGT1A1, to become the inactivated 

glucuronide conjugate SN-38G, which is sent to the GI tract for elimination (28-30). 

In the GI tract, bacterial GUS enzymes remove the glucuronic acid and thus 

reactivate the topoisomerase I poison SN-38, which causes GI damage and the 

diarrhea that is dose-limiting for irinotecan (33-36).  

 Several strategies have been tested to decrease the toxicity caused by 

irinotecan. Reduction in irinotecan dosing and administration of anti-motility 

medication such as loperamide are the most basic approaches for patients 

experiencing severe diarrhea (37). Antibiotics to target the host microbiota have 

been administered prior to irinotecan treatment; however, as discussed above, the 

microbiota plays an important role in many biological functions and disruption of 

those functions has significant effects, including increasing the risk of pathogenic 

infection in these cancer patients who are often already immune-compromised (31).  

Attempts to produce SN-38 analogues that cannot be glucuronidated have been 

pursued, but results in the clinic have been slow to materialize. Low-potency GUS 

inhibitors have also been explored and one tested in rats in 2004 showed limited 



	

	 102	

efficacy in reducing the GI toxicity associated with irinotecan.	Therefore, the Redinbo 

lab set out to design high-potency inhibitors targeted to bacteria GUS enzymes in 

order to alleviate this irinotecan-induced diarrhea. 	

 

GUS Inhibitors 

 In 2010, Wallace et al. presented four potent and novel inhibitors of bacterial 

GUS enzymes identified by a 10,000-compound high-throughput screen using 

EcGUS and showed that they significantly reduced the GI damage caused by 

irinotecan in mice (Inhibitors 1-4 in Table 5.2) (38, 39). An additional four novel 

inhibitors were explored by Roberts et al. in 2013 (Inhibitors 5-8 in Table 5.2). These 

inhibitors are non-toxic to both bacterial and mammalian cells and are selective for 

bacterial GUS enzymes containing the bacterial loop by more than 1,000-fold over 

the human enzyme orthologue (18, 40). We pinpointed the basis for the selectivity to 

a loop present in bacterial GUS enzymes that is missing from the human enzyme 

ortholog; the inhibitors bind to this loop, making them ineffective against mammalian 

GUS enzymes (18). In an attempt to optimize the efficacy of Inhibitor 1, compounds 

R1 and R3 were designed using knowledge gained through EcGUS-inhibitor 

structures.    

These compounds were also tested against SaGUS, CpGUS, and BfGUS. All 

characterized compounds inhibit EcGUS with Ki values below 2 µM. However, the 

compounds exhibit markedly different effects toward CpGUS and SaGUS with some 

compounds showing efficacy against both enzymes in addition to EcGUS and other 

compounds showing much weaker or no efficacy against the new enzymes despite 



	

	 103	

the presence of the bacterial loop (Table 5.2). The smaller bacterial loop of BfGUS is 

not sufficient for the activity of these compounds and BfGUS is not subject to 

inhibition at up to 100 µM inhibitor concentrations (Table 5.2). This result is 

reminiscent of the no loop, mammalian GUS enzyme from Bos taurus (bovine, 

BtGUS), which was also not subject to inhibition (Table 5.2). These results confirm, 

as seen in crystal structures, that a full bacterial loop is essential for efficacy of these 

inhibitors in addition for their selectivity relative to the mammalian enzymes. Despite 

the ineffectiveness against a subset of bacterial enzymes such as BfGUS, Inhibitors 

1, 5, and R1 have been shown to be effective in reducing CPT-11 induced diarrhea 

in mice; the decrease in diarrhea in mice following Inhibitor 1 treatment is shown in 

Figure 5.6A. 

There were concerns that these inhibitors of microbial GUS activity would 

affect irinotecan pharmacokinetics and therefore decrease efficacy in patients. To 

address this, the Redinbo lab measured circulating plasma levels of CPT-11 

(irinotecan) with and without Inhibitor 1 treatment. As shown in Figure 5.6B, Inhibitor 

1 was effective at reducing the percentage of mice with CPT-11 induced diarrhea, 

but the circulating levels of CPT-11, SN-38, and SN-38G were not affected by 

Inhibitor 1 treatment. This suggests that SN-38 formed from SN-38G cleavage by 

bacterial GUS enzymes is not reabsorbed into the plasma and therefore, inhibitor 

treatment does not significantly disrupt the circulating plasma levels of this drug and 

should not impact tumor response to CPT-11.  

  With these very promising results, the Redinbo lab plans to continue to 

optimize these inhibitors. However, to ensure we are targeting the GUS enzymes 
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primarily responsible for SN-38G processing and optimizing the inhibitors against 

those enzymes, we need to understand what GUS enzymes are present in the GI 

and which interact with SN-38G. The following chapters contain the initial steps to 

catalog and characterize GUS enzymes from the human microbiome. These results 

will be coupled with microbiome sequencing studies in mice to inform future work to 

optimize GUS inhibitors. 
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Table 5.1. Catalytic Activity of GUS 
Data are presented as the average over >3 experiments ± SEM for Escherichia coli 
(EcGUS), Clostridium perfringens (CpGUS), Streptococcus agalactiae (SaGUS), 
and Bacteroides fragilis (BfGUS) β-Glucuronidases. kcat, catalytic rate; KM, Michaelis 
constant;  kcat/KM, catalytic efficiency. Originally published in Wallace et al. (2015) 
(19) 
 

Enzyme kcat (s-1) KM (mM) kcat/KM (s-1mM-1) 

EcGUS 120 ± 12 0.13 ± 0.01 920 ± 160 

SaGUS 80 ± 2 0.36 ± 0.03 222 ± 24 

CpGUS 2.6 ± 0.6 1.1 ± 0.2 2.4 ± 1 

BfGUS 18 ± 1 1.9 ± 0.3 9.5 ± 2 

 
Table 5.2. In vitro GUS Inhibition, Ki (μM) 
Enzyme inhibition properties of small molecule inhibitors against representative GUS 
enzymes. Grey data from Roberts et al. (2013), Wallace et al. (2010) (18, 40). Black 
data from Wallace et al. (2015) (19) ni: no inhibition. Data are presented as the 
average over >3 experiments ± SEM for Escherichia coli (EcGUS), Clostridium 
perfringens (CpGUS), Streptococcus agalactiae (SaGUS), Bacteroides fragilis 
(BfGUS), and Bos taurus (bovine, BtGUS) β-Glucuronidases.  
 

Inhibitor CpGUS SaGUS EcGUS BfGUS BtGUS 
(mammalian) 

1 0.97 ± 
0.1 1.4 ± 0.4 0.16 ± 0.01 ni ni 

R1 ni ni 1.9 ± 0.5 ni  
R3 ni ni 0.61 ± 0.2 ni  
2 1.1 ± 0.5 3.0 ± 1 0.21 ± 0.03 ni ni 
3 7.8 ± 0.9 11 ± 3 0.68 ± 0.08 ni ni 
4 24 ± 3 36 ± 5 1.4 ± 0.2 ni ni 

5 0.54 ± 
0.2 0.81 ± 0.2 0.22 ± 0.04 ni ni 

6 6.1 ± 2 2.8 ± 0.3 0.67 ± 0.03 ni ni 
7 ni ni 1.9 ± 0.02 ni ni 
8 ni ni 0.96 ± 0.03 ni ni 
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Figure 5.1. Enzymatic Mechanism of E. coli GUS 
Glutamic acid residues 413 and 504 are hypothesized to serve as the key catalytic 
residues in order to process a generic glucuronide-linked substrate. 
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Figure 5.2. Structure of Microbial GUS Enzymes 
Crystal structures of bacterial GUS enzymes from Clostridium perfringens (yellow, 
CpGUS, PDB ID:4JKM), Streptococcus agalactiae (magenta, SaGUS, PDB ID:4JKL), 
Escherichia coli (purple, EcGUS, PDB ID:3K46), and Bacteroides fragilis (green, 
BfGUS, RCSB:3CMG). 
 
 
 

C.	perfringens S.	agalactiae 

E.	coli B.	fragilis 
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Figure 5.3. N-K and Y Motif 
A. Superposition of the active sites of CpGUS (yellow), SaGUS (magenta), and EcGUS 
green) in complex with the glucuronic acid mimic glucaro-∂-lactam, showing the binding 
of the ligand’s carboxylate moiety (left) and indicating that the proximity of the 
conserved tyrosine indicated (YI468/464) favors the alignment of a β linkage (right) for 
catalysis. The labels for the two catalytic glutamic acid residues of each enzyme are 
boxed. 
B. The Asn (N) and Lys (K) residues create the N-K loop conserved in β-glucuronidases 
(GUS). GUS enzymes listed those characterized by the Redinbo lab (CpGUS, SaGUS, 
EcGUS, and BfGUS) as well as those from mammalian (Homo sapiens, HsGUS), 
Archaeal (ArchIa), Thermatogae (ThermTn), and other sources. The enzymes for which 
a crystal structure is available are underlined. ArchIa, Archaea Ignisphaera aggregans, 
WP_013302863; TherTn, Thermotogae Thermotoga naphthophila, ADA67771; BactNk, 
Bacteroidetes Niastella koreensis, AEV98753; H11G11, 745-residue protein from 
uncultured bacterium.  
Originally published in Wallace et al. (2015) (19) 
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CpGUS     PAVGLHLNFMATGFG-------GDAPKRDTWK----EIGTKE 
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EcGUS     AAVGFNLSLGIG-------FE-AGNKPKELYSEEAVNGETQQ 
PROT      AAVGLWDMMISGGGIAGAGAGAGGAEKLKFFDNEDVKNATQQ 
ACTIN     PAVGLNWSMAGG-------IL--DSDGGETFEDGHVDASTQA 
FUNGI     PAVGLAYSIGAG-------V-SSE-DSPQTFTPEGINNNTRE 
HsGUS     PGVGIALPQF-------------------------FNNVSLQ 
ArchIa    PICLSG---MPS--------------N-DDARKWCSNPIIIE 
TherTn    PHVGITRYH--------------------------YNPETQK 
DICTY     PAVGLNLWNRD----------------EKVFTKGRVDEKTLE 
BactNk    PIYQHI---------------------------QFADSAVRA 
ACIDO     PLWQRI---------------------------SFDKSDVYD 
BfGUS     PFVGPGGYADKG---------------------FVDQASFRE 
H11G11    PYISRHM------------------------------PGGRE 
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Figure 5.4. Presence of the Bacterial Loop in Representative GUS Enzymes 
A. The representative bacterial loop containing GUS enzyme EcGUS (red) and smaller 
bacterial loop containing GUS enzymes BfGUS (yellow) superimposed on the structure 
of human GUS (purple) reveals the lack of a bacterial loop in the mammalian enzyme 
and the size difference between loops of EcGUS and BfGUS. 
B. The bacterial loop, boxed, is maintained in several GUS enzymes including those 
from several fungi, but is missing from other enzymes including some from bacterial 
sources such as H11G11. Enzymes such as BfGUS and DICTY have a smaller 
bacterial loop than that of SaGUS, CpGUS, and EcGUS. The enzymes for which a 
crystal structure is available are underlined. PROT, Proteobacteria Vibrio harveyi, 
WP_005434141; ACTIN, Actinobacteria Corynebacterium massiliense, 
WP_022863751; FUNGI, Eukaryota Aspergillus niger, CAK36851; ArchIa, Archaea 
Ignisphaera aggregans, WP_013302863; TherTn, Thermotogae Thermotoga 
naphthophila, ADA67771; DICTY, Dictyoglomi Dictyoglomus turgidum, ACK42813; 
BactNk, Bacteroidetes Niastella koreensis, AEV98753; ACIDO, Acidobacteriua 
Terriglobus roseus, WP_01478374;H11G11, 745-residue protein from uncultured 
Adapted from figure originally published in Wallace et al. (2015) (19) 
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Figure 5.5. Metabolic Pathway of CPT-11 
Irinotecan (CPT-11) is administered via I.V. injection to patients and then goes 
through the following metabolic pathways to reach the tumor and eventually be 
eliminated from the body. However, GI microbial GUS enzymes interfere with this 
elimination process causing GI damage and severe diarrhea in patients. The 
Redinbo lab works to discover potent inhibitors to these GUS enzymes in order to 
eliminate the GI damage and diarrhea caused by reactivated SN-38. 
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Figure 5.6. Microbial GUS Inhibitors in Mice Treated with CPT-11 
A. CPT-11 (irinotecan) produced delayed diarrhea in 25%, 60%, and 100% of mice 
in 8, 9, and 10 days, respectively. Oral delivery of Inhibitor 1 eliminates the 
appearance of diarrhea on day 8 and reduces the number of mice that experience 
diarrhea on days 9 and 10. 
B. The circulating plasma levels of CPT-11 (irinotecan), its active metabolite SN-38, 
or its inactive glucuronide conjugate SN-38-G are unaffected by the oral delivery of 
the microbial GUS Inhibitor 1 (Inh1). 
Adapted from figure originally published in Wallace et al. (2015) (19) 
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CHAPTER 6: DEFINING THE β-GLUCURONIDASE ENZYME FAMILY IN THE 

HUMAN GASTROINTESTINAL TRACT 

 
 

Introduction 

 The human gastrointestinal (GI) microbiota is a vast ecosystem of bacteria 

that are constantly interacting with each other, the human body, and many of the 

substances that enter the human body. The GI microbiota has been shown to 

interact with a wide range of small molecules, both produced by the human body 

and from outside the body. For instance, conjugated bile acids that are produced in 

the human liver can be de-conjugated by the GI microbiota which can lead to 

bacterial overgrowth and inflammation (1). In addition, a large part of food digestion 

and absorption takes place in the GI and the microbiota play a key role in breaking 

down the polysaccharides that humans lack the enzymes to process (2). The 

microbiota can also activate pro-drugs as seen with sulfasalazine, inactivate drug 

molecules such as in the processing of digoxin by E. lenta, or bind drugs, preventing 

the drug from reaching its intended target as seen in L-DOPA treatment (3). We are 

interested in such microbiota-drug interactions, especially microbiota processing of 

drugs that have been inactivated in the liver and are then excreted via the intestine.   

The chemotherapy drug irinotecan (CPT-11) is a prodrug that is activated 

through phase I drug metabolism to the compound SN-38 (4, 5). SN-38 inhibits 
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topoisomerase I and is used as a treatment of solid tumors including colorectal and 

pancreatic cancer (6). SN-38 then returns to the liver where a glucuronide sugar is 

attached by the UGT enzymes of phase II drug metabolism (4, 7, 8). The SN-38-

glucuronide (SN-38G) compound is more soluble and enters the intestines in order 

to be excreted from the body. β-glucuronidase (GUS) enzymes expressed by the GI 

microbiota can cleave the glucuronide sugar off SN-38G resulting in active SN-38. 

SN-38 causes cell death of the intestinal epithelium leading to delayed-onset 

diarrhea that often leads to patients receiving lower doses of irinotecan or being 

taken off this effective chemotherapy completely (9-12). In 2010 the Redinbo lab 

showed that inhibitors designed against the purified E. coli GUS reduce the number 

of bloody diarrheal events in mice co-treated with irinotecan and inhibitor (13).  

Since 2010 the Redinbo lab has characterized the GUS enzyme from E. coli 

(EcGUS), Streptococcus agalactiae (SaGUS), Clostridium perfringens (CpGUS), 

and Bacteroides fragilis (BfGUS) and eight small molecule inhibitors (14, 15). This 

initial characterization included solving the structures of EcGUS, SaGUS, and 

CpGUS and characterization of a previously solved structure (PDB ID: 3CMG) as a 

β-glucuronidase (BfGUS) (14). This allowed us to identify key conserved residues in 

the active site including two catalytic glutamic acids, an NxKG motif that interacts 

with the carboxylic acid group of glucuronic acid, an asparagine residue next to the 

first catalytic glutamic acid, and a tyrosine defined as part of the Y loop in Wallace et 

al. (14). Despite previous characterization of these enzymes, little evidence exists 

about the abundance of these enzymes or even the associated bacteria in the 

human GI. In order to understand which bacteria in the human GI express GUS and 



	

	 124	

the relative abundances of GUS genes, we set out to analyze the Human 

Microbiome Project (HMP) sequencing repository for GUS genes. 

The HMP sequencing repository is part of the NIH-funded Human Microbiome 

Project Consortium that set out to develop resources and methods to manage high-

throughput metagenomics data in order to characterize the microbial communities 

obtained from sampling a large number of healthy individuals across a wide range of 

body sites (16). There are over 11,000 samples from 300 healthy adults across 18 

specific body sites (16). We chose to analyze sequences obtained from stool 

samples for which 139 individuals were sampled. To facilitate analysis, the 

metagenomics sequencing data from these samples has undergone gene prediction 

and annotation. Therefore, we were able to use the HMGI- Gene Indices and 

HMGC- Clustered Gene Indices catalogs to search for GUS genes. As shown in 

Figure 6.1, we screened genes from stool samples in these catalogs for the key 

active site residues we had previously characterized in order to identify genes 

encoding for GUS enzymes. We then classified those identified GUS sequences 

according to a highly variable loop region just outside of the active site. The Redinbo 

lab previously identified the bacterial loop found in EcGUS, SaGUS, and CpGUS as 

a novel feature that allowed for the discovery of small molecule inhibitors that are 

selective for these bacterial GUS enzymes over the human ortholog (13, 14). We 

have re-named the bacterial loop Loop 1 as we identified a second loop, Loop 2, that 

is predicted to occupy a similar position at the entrance of the active site of these 

enzymes. We classified each of the identified GUS sequences based on the size 

and type of active site loop they contain. There are six loop classes: no loop, Loop 1, 
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Mini Loop 1, Loop 2, Mini Loop 2, and Mini Loop 1 Mini Loop 2. Previously 

characterized enzymes EcGUS, SaGUS, and CpGUS fall into the Loop 1 class while 

BfGUS is a Mini Loop 1 enzyme. This analysis showed that the human GI microbiota 

expresses many GUS enzymes with a much wider sequence diversity that has 

previously been explored.  

 

Materials and Methods 

Human Microbiome Project (HMP) data 

Protein sequences for stool samples from the HMP Clustered genes- HMGC 

(http://hmpdacc.org/HMGC) and Gene Indices – HMGI (http://hmpdacc.org/HMGI/) 

were downloaded as FASTA files and used as a database for subsequent NCBI 

BLASTp searches. Microbial assemblies, annotations and reads for stool samples 

were obtained from http://hmpdacc.org/HMASM/ and used for abundance 

calculations. 

HMP β-glucuronidase Identification 

In order to identify β-glucuronidases (GUS) in the HMP stool proteins, we 

used Escherichia coli β-glucuronidase (NCBI Accession: NP_416134.1), Clostridium 

perfringens β-glucuronidase (NCBI Accession: WP_003467686.1), Streptococcus 

agalactiae β-glucuronidase (NCBI Accession: WP_000966715.1) and Bacteroides 

fragilis (NCBI Accession: 3CMG) in a pair-wise alignment approach. Briefly, each 

HMP stool protein was aligned to the above proteins using NCBI BLASTp. We 

considered alignments with an E-value < 0.05 and percent identity ≥25 to be valid 

hits. Only those valid hits were then checked for the presence of NxKG motif, 
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catalytic E residues and N and Y motifs corresponding to GUS positions shown in 

Table 6.1. We classified HMP proteins that satisfied all the above conditions as β-

glucuronidase. 

HMP β-glucuronidase Loop Classification 

HMP GUS proteins identified above were subjected to a multiple sequence 

alignment (MSA) using Clustal Omega along with selected model GUS sequences 

(E. coli (NCBI Accession: NP_416134.1), Streptococcus agalactiae (NCBI 

Accession: WP_000966715.1), Clostridium perfringens (NCBI Accession: 

WP_003467686.1), Homo sapiens (NCBI Accession: NP_000172.2), H11G11-BG 

from uncultured bacterium (NCBI Accession: CBJ55484.1) and Bacteroides fragilis 

(NCBI Accession: 3CMG)).  

The MSA alignment was examined for the presence of two loop regions. The 

first (loop 1) corresponds to E. coli GUS positions 356 to 380 and the second (loop 

2) corresponds to E. coli GUS positions 416 to 419. HMP GUS proteins were then 

categorized into six categories based on the number of residues present in those 

two regions after excluding gap characters as shown in Table 6.2. 

Gene Abundance Calculations 

The trimmed and duplicate-marked reads for each stool sample were aligned 

to its own assembly using bowtie2 (v.2.2.5) (17). Alignments were stored in bam files 

and gene specific counts were obtained by running the program featurecount from 

the subread package (v.1.4.6-p2-Linux-x86_64) on each bam file (18). To account 

for differences in read numbers between samples, we normalized and log 

transformed the counts as shown below: 
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where RC is the read count for a gene in a particular sample, n is the total number of 

reads in that sample, the sum of x is the total number of reads in all samples and N 

is the total number of samples. 

 

Results 

HMGC- Clustered Gene Indices GUS Enzymes 

 The HMGC- Clustered Gene Indices is a non-redundant catalog of bacterial 

genes found during the Human Microbiome Project sequencing initiative grouped by 

body site. Genes from the HMP gene indices (HMGI discussed below) were 

compared at a 95% identity cut-off and redundant sequences were removed. The 

translated protein sequences from this database were compared to previously 

characterized GUS proteins to identify sequences possessing the conserved NxKG 

motif, catalytic E residues and N and Y motifs discussed in Chapter 5 and shown in 

Table 6.1. This analysis identified 293 unique GUS sequences, most of which have 

never been characterized as GUS enzymes (Figure 6.2A).  

This non-redundant set of sequences gave us a manageable dataset in order 

to characterize important features of this enzyme class. One feature this dataset 

uncovered is a wide range in protein sequence length. As shown in Figure 6.2B, 

about one third of these GUS sequences are longer than the four previously 

characterized GUS enzymes. This is interesting as we previously established that 

both EcGUS and BfGUS form tetramers in solution but models of the structures of 
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these longer sequences suggest that this extra length may interfere with that 

tetramer formation (14). We are currently working to determine which bacterial 

species each of these GUS sequences was sequenced from in order to establish a 

database that will allow for easy prediction of the GUS composition of a bacterial 

community characterized only by 16S rRNA sequencing.   

HMGI- Gene Indices GUS Enzymes 

 Stool samples were taken from 139 individuals and the genes found via whole 

genome sequencing of bacteria in those samples are found in the HMGI- Gene 

Indices database of the Human Microbiome Project (HMP). Each protein in these 

sequences was aligned to the previously characterized GUS proteins (EcGUS, 

SaGUS, CpGUS, and BfGUS) and analyzed for the presence of NxKG motif, 

catalytic E residues and N and Y motifs as shown in Table 6.1. This resulted in the 

identification of 3,013 GUS proteins as shown in Figure 6.3A. This dataset 

represents the first compilation of the GUS proteins found in the human 

gastrointestinal microbiome from sequencing data.  

 This dataset allowed us to analyze details about the number and type of GUS 

proteins each individual possessed. As shown in Figure 6.3B, there is a wide range 

of the number of GUS enzymes found in the stool samples of each individual with 

the minimum number being 4 and the maximum number being 40. This mimics the 

high diversity seen in other characterizations of the human GI microbiome.  

Establishment of GUS Loop Characterizations 

   As described in Chapter 5, we have previously established that a flexible loop 

outside of the GUS active site is important for selective inhibition of these enzymes; 
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this loop was previously termed the bacterial loop but will now be referred to as Loop 

1. Using alignments of the 293 GUS sequences identified from the HMGC database 

we were able to identify 3 distinct categories of enzymes with respect to Loop 1. The 

first category is made up of GUS enzymes that contain no loop in this region and 

resemble the tight turn seen in the Homo sapiens GUS enzyme (H_sapiens, 

P_merdae, H11G11-BG, B_uniformis, and B_dorei sequences in Figure 6.4A). The 

second category is made up of enzymes that contain a full loop of 15 or more 

residues in this region that resembles that previously characterized in EcGUS, 

CpGUS, and SaGUS (Loop 1 or L1 category, red sequences in Figure 6.4A). The 

third category is made up of enzymes that fall in between the first two categories and 

have a smaller loop between 10 and 15 residues (B_fragilis, green in Figure 6.4A). 

We have termed this Mini Loop 1 (mL1) due to its smaller size. This characterization 

left 75.8% of the sequences in the no loop category, prompting us to look more 

closely at the active site of this category. Approximately 35 residues downstream 

from Loop 1, we identified an additional loop region that is predicted to also extend 

over the active site in a similar manner to Loop 1. We termed this additional loop 

region Loop 2. Just as in the Loop 1 region, we found enzymes with a full loop of 12 

residues or more (Loop 2 or L2 category, B_uniformis in Figure 6.4A) as well as 

enzymes with a shorter loop of 9 to 11 residues (mini Loop 2 or mL2 category, 

P_merdae in Figure 6.4A).  Interestingly, enzymes that contain a mini Loop 1 may 

also contain a mini Loop 2 (mini Loop 1 mini Loop 2 or mL1mL2 category, B_ovatus 

in Figure 6.4A) but the full Loop 1 or Loop 2 were not seen in combination together 

or with a mini loop in the opposing position. We hypothesize that a large flexible 
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region in both the Loop 1 and Loop 2 positions is not favorable due to the many 

clashes that would occur as the two loops moved. The two loops in combination 

might also hinder function of the enzyme by blocking access of a substrate trying to 

enter the active site or preventing the products from diffusing out of the active site. 

There were also enzymes that did not contain a loop in either of these positions (no 

Loop or nL category, B_dorei in Figure 6.4A) which results in bacterial enzymes that 

are similar to the Homo sapiens and other mammalian GUS enzymes that have 

been characterized. The full alignment of these enzymes is shown in Appendix 3.   

 Using the criteria set out above and in Table 6.2, the HMGC (293 sequences) 

and HMGI (3013 sequences) datasets were classified into these six loop 

classifications (Figure 6.4 B and C). The distribution across loop classes was similar 

for each dataset. Because the HMGI dataset includes information on GUS content in 

each individual, we moved forward with analysis of the HMGI GUS dataset. Of the 

3013 sequences identified as GUS sequences, 144 did not have sufficient coverage 

in the area of the loops in order to determine their loop classification. Forty-eight 

percent of individuals in the database possessed at least one of these sequences 

(Figure 6.5A). The 144 unclassified sequences represent 3.8% of all identified GUS 

sequences. Previously characterized EcGUS, CpGUS, and SaGUS fall into the L1 

class. 67% of individuals sampled possessed at least one L1 GUS sequence with an 

average 1.8 ± 1 L1 GUS sequences per individual (Figure 6.5B). The L1 class 

contains 165 sequences which is 5.5% of all identified GUS sequences. The 

previously characterized BfGUS is a mL1 enzyme. 98% of individuals possessed at 

least one mL1 GUS sequence with an average 4.5 ± 2.2 GUS sequences per 
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individual (Figure 6.5C). The 615 mL1 GUS sequences represent 20.4% of all 

identified GUS sequences. Three hundred and fifty-one identified sequences were 

classified as L2 GUS sequences which is 11.6% of all identified sequences. 91% of 

individuals had at least one L2 GUS sequence with an average 2.7 ± 1.5 GUS 

sequences per individual (Figure 6.5D). The mL2 class represents 6.9% of all 

identified GUS sequences with 208 sequences identified from the HMGI database. 

80% of all individuals possessed at least one mL2 GUS sequences with an average 

1.9 ± 0.8 mL2 GUS sequences per individual (Figure 6.5E). The mL1mL2 class is 

the least well represented in this sample with just 28% of individuals having at least 

one mL1mL2 GUS sequence and an average of 1.1 ± 0.2 mL1mL2 GUS sequences 

per individual (Figure 6.5F). From the HMGI database, we identified only 36 

mL1mL2 GUS sequences which represents just 1.2% of all identified GUS 

sequences. Finally, the no loop class represents the largest percentage (49.6%) of 

the identified GUS sequences with 1494 GUS sequences. All individuals possessed 

a nL GUS sequence. There was an average of 11 ± 5 nL GUS sequences per 

individual (Figure 6.5G).  

GUS-Containing Bacteria 

 As mentioned above, we are interested in establishing which bacteria are 

likely to possess each identified GUS sequence. For each of the 139 individuals 

sampled, we identified the most abundant sequence (via read counts) in each loop 

class and matched the sequence to a deposited reference genome in NCBI. This 

allowed us to identify the organism from which the sequence likely originated and 

therefore the phyla distribution of GUS sequence containing bacteria for each loop 
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class. Because the 3013 GUS sequences is a redundant set of sequences found 

across the 139 individuals, several of the most abundant sequences in each loop 

class were the same across individuals. For each loop class we present the top 5 

most common abundant sequences with the number of individuals for which each 

was the most abundant sequence of that loop class in the count column. The 

majority of L1 GUS sequences could not be matched to a deposited reference 

genome. Of the sequences that were identified, 42 matched to bacteria from the 

Firmicutes phylum and one was from the Proteobacteria phylum. The most common 

sequences in the L1 class were from Faecalibacterium prausnitzii and Eubacterium 

eligens. These GUS sequences were chosen to be expressed, purified, and 

characterized in the lab as described in Chapter 7. The mL1 class of sequences was 

found predominately in bacteria from the Bacterodetes phylum with a small number 

from the Firmicutes phyla. Although Bacteroides fragilis was not an abundant 

sequence seen in this analysis, we chose to move forward with characterization with 

BfGUS that has already expressed in the Redinbo lab. All identified L2 GUS 

sequences are from the Bacteroidetes phyla. The most common sequences were 

associated with multiple species (MSP) of Bacteroidetes and Bacteroides uniformis. 

The sequence associated with Bacteroides uniformis was chosen for 

characterization in the lab. The mL2 GUS sequences were also predominately found 

in bacteria from the Bacteroidetes phylum. Uniquely, there were also sequences 

found in bacteria of the Verrucomicrobia phylum. The most common sequence was 

from Parabacteroides merdae and was chosen for further characterization. The 

sequences in the mL1mL2 class that were able to be matched to reference genomes 
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were found exclusively in bacteria from the Bacteroidetes phyla. Two different 

sequences, each seen in 12 individuals, were associated with Bacteroides ovatus 

and one of these sequences was chosen for further characterization. Finally, 65.7% 

of matched sequences from the nL class were found in bacteria from the 

Bacteroidetes phylum. The remaining 34.3% of matched sequences were from the 

Firmicutes phylum. The most common sequences were found in Bacteroides 

uniformis and Bacteroides dorei. The sequence from Bacteroides dorei was chosen 

for further characterization in the Redinbo lab. This analysis of the Human 

Microbiome Project stool sample sequencing database provides the first in-depth 

look at the GUS sequences contained in the human microbiome. This dataset gives 

us a better appreciation of the variation in GUS sequence and has allowed us to 

choose representative proteins to further characterize the function of this enzyme 

class as discussed in Chapter 7. 

 

Discussion 

 Bacterial GUS enzymes have been established as the cause of drug toxicity 

of glucuronidated compounds such as irinotecan and NSAIDs. However, previous 

efforts to compile a catalog of GUS sequences found in the human GI microbiota 

have depended on the automated annotation of genes which we have previously 

shown is imprecise and often confuses β-glucuronidase and β-galactosidase 

enzymes (14). Instead we chose to classify genes as a GUS based on the presence 

of key, conserved active site residues in a one-to-one sequence alignment with the 

previously discussed, well-characterized bacterial GUS enzymes. This resulted in a 
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much more complete catalog of 293 non-redundant GUS sequences identified from 

the HMP Clustered Gene Indices Database. Identifying GUS sequences from the 

HMP Gene Indices Database also allowed us to examine the variability in GUS 

sequences across 139 individuals. Although the vast variability of the microbiota 

from person to person has been shown in analyses of other microbiome 

characteristics, this is the first evidence to suggest that the number and type of GUS 

enzymes expressed by each individual is highly variable. This may contribute to the 

varying severity of drug toxicity seen with drugs such as irinotecan.  

 This new dataset of GUS sequences allowed us to identify features of this 

enzyme class that have not previously been explored. For instance, almost one third 

of these GUS sequences are longer than previously characterized bacterial 

enzymes. The extra length forms an uncharacterized C-terminal domain that likely 

disrupts tetramer formation and may alter the function of these enzymes. In addition, 

we were able to expand understanding of the previously identified bacterial loop at 

the entrance of the active site. In addition to this bacterial loop, now termed Loop 1, 

we identified a second loop region (Loop 2) that is predicted to extend over the 

entrance of the active site similar to Loop 1. By analyzing the absence or length of 

the loop in both the Loop 1 and Loop 2 regions, we were able to break the larger 

GUS sequence datasets into six categories for further characterization. The loop 

classes are Loop 1 (L1), Mini Loop 1 (mL1), Loop 2 (L2), Mini Loop 2 (mL2), Mini 

Loop 1 Mini Loop 2 (mL1mL2), and no Loop (nL) with loop lengths as defined in 

Table 6.2. Because these loops sit at the entrance of the active site, we hypothesize 

that the presence and size of the loop may impact the size of substrate the enzyme 
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is able to process. We have also previously shown that Loop 1 is important for the 

selectivity of GUS inhibitors over H. sapiens GUS while Mini Loop 1 is not sufficient 

to facilitate efficacy of the inhibitors (13, 14). Therefore, we are interested in the type 

of GUS sequences found in each individual. Indeed, we found variability in the 

presence of some loop classes as well as the number of sequences in each class 

that individuals have. Most individuals possessed a few different sequences in the 

L1, mL1 L2, and mL2 classes suggesting that these enzymes are a regular member 

of the GI community; however, the activity of various sequences within each class 

may be redundant such that each individual needs only one sequence of each type. 

All individuals possessed at least one nL GUS and the average nL GUS sequence 

content was 11 ± 5 nL GUS sequences. This suggests that each nL GUS enzyme 

may be selective for a specific substrate so that each individual maintains several nL 

GUS enzymes in order to process varying but related substrates. Alternatively, only 

28% of individuals contained a mL1mL2 GUS sequence and most of those 

individuals contained only one mL1mL2 sequence. While all individuals sampled 

were considered healthy, we do not have details about significant variations in their 

diet or genetics that might cause significant changes in the glucuronidated 

compounds present in their GI that are degraded by mL1mL2 GUS enzymes. 

Despite this interesting distribution of total number of GUS sequences and number 

of sequences in each loop class, this data does not take into account the abundance 

or expression of these sequences. It is well known that some bacteria are much 

more abundant in the microbiota and it is also possible that some bacteria contain 

more than one GUS sequence, either of different sequence, different class, or 
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duplication of a gene. Future analysis will account for abundance of each gene by 

using normalized read counts.     

  We are also interested in which bacteria express each of the identified GUS 

sequences. We were able to match the most abundant sequence of each loop class 

from each of the 139 individuals to deposited reference genomes in order to assign 

the taxonomy of the expressing bacteria. Looking at the phyla level yielded 

interesting trends in distribution of GUS sequences of each loop class. All loop 

classes except for L1 were dominated by bacteria of the Bacteroidetes phylum. It 

seems likely that the L2 and mL1mL2 GUS sequences are found exclusively in the 

Bacteroidetes phylum. The mL2 class contained the only identified GUS sequences 

from the Verrucomicrobia phylum. The mL1 and nL classes include sequences from 

the Firmicutes phylum in addition to Bacteroidetes but sequences from Firmicutes 

seem to be less common.  The L1 class presented a unique taxonomic distribution; 

although over half of the sequences could not be matched to a deposited reference 

genome, the remaining sequences were exclusively from the Firmicutes and 

Proteobacteria phyla. This is the only class that included a sequence from the 

Proteobacteria phylum. While previous characterization has focused on L1 class 

enzymes from the Firmicutes (SaGUS, CpGUS) and Proteobacteria (EcGUS) phyla, 

this new dataset shows that there is a wide range of GUS sequence as well as 

bacterial diversity that remains to be characterized in order to better understand the 

GUS family of enzymes. Indeed, we have chosen sequences from each of the loop 

classes in order to characterize the structure and function of these novel GUS 
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enzymes. An exploration of the function of these enzymes is presented in Chapter 7 

of this thesis.  

This exploration of the HMP sequence repository establishes the first catalog 

of GUS sequences based on homology to characterized bacterial enzymes. This 

new information about the diversity of sequences included in this enzyme class will 

lead to better understanding of the function of these enzymes in the human GI 

microbiota and their impact on human health. 
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Bacterium NxKG motif  
positions 

Catalytic E 
residues 
positions 

N and Y motifs 
positions 

Escherichia coli 566, 568, 569 413, 504 412, 468 
Clostridium 
perfringens 

567, 569, 570 412, 505 411, 468 

Streptococcus 
agalactiae 

563, 565, 566 408, 501 407, 464 

Bacteroides fragilis 547, 549, 550 395, 476 394, 445 
	
Table 6.1. Key active site residues used for β-glucuronidase Identification. 
 
 
 
 
 
 
 
 
 

Category Residues in Loop 1 
region- EcGUS 356-380 

Residues in Loop 2 
region- EcGUS 416-419 

No Loop (nL) < 10 < 9 
Loop 1 (L1) > 15 < 9 
Mini Loop 1 (mL1) ≤ 15 and ≥ 10 < 9 
Loop 2 (L2) < 10 ≥ 12 
Mini Loop 2 (mL2) < 10 ≥ 9 and < 12 
MiniLoop 1 + 
MiniLoop 2 (mL1mL2) 

≤ 15 and ≥ 10 ≥ 9 and < 12 

 
Table 6.2. Criteria used for β-glucuronidase Loop Classification 
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Figure 6.1. Workflow for Identification and Classification of Novel GUS 
Sequences 
Protein sequences for stool samples from the HMP Clustered Genes (HMGC) or the 
HMP Gene Indices (HMGI) were aligned to previously characterized GUS 
sequences in order to identify sequences containing the key active site residues. 
These novel GUS sequences were then classified according to the loop features 
they contain.  
 
 

	

Novel 
GUS Sequences 

NxKG	motif	
	

N	and	Y	Motifs 

Catalytic	E	
Residues 

No Loop  Loop 1  Loop 2  Mini Loop 1 Mini Loop 2 Mini Loop 1  
Mini Loop 2 
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Figure 6.2. Identification of Novel GUS Sequences from HMGC- HMP Clustered 
Gene Indices Database  
A. 293 Non-Redundant Novel GUS Sequences were identified from the HMGC 
database.  
B. Distribution of protein sequence length of the 293 Novel GUS Sequences. 
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Figure 6.3. Identification of Novel GUS Sequences from HMGI- HMP Gene 
Indices Database  
A. 3013 GUS Sequences were identified from the HMGI database. N is the total 
number of GUS sequences in each individual. 139 individuals were sampled. 
B. Number of GUS Sequences found in each individual in the HMGI database.  
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H_sapiens          RYGIVVIDECPGVGLALPQF---------------F-----NNVSLHHHMQVMEEV 411 
F_prausnitzii      EEGFLIIDEVPAVGFMQSTANFLAANQGNGRQQGFFEK-ETTPALLKNHKAALTDM 400 
E_coli             EHGIVVIDETAAVGFNLSLGIGF--EAGN-KPKELYSEEAVNGETQQAHLQAIKEL 395 
S_agalactiae       RMGVLVIDEVPAVGLFQNFNASL--DLSP----KDNGT-WNLMQTKAAHEQAIQEL 390 
C_perfringens      REGIVVIDETPAVGLHLNFMAT---GFGG-DAP-KRDT-WKEIGTKEAHERILREL 394 
E_eligens          EEGIVVIDETTAVGVNLQFGGGA--NFGG-ERIGTFDK-EHGVQTQEHHKDVIRDL 407 
P_merdae           ELGILVWEEIPWCRGG-----------------------LGGDVYKKQARRMLANM 394 
H11G11-BG          ECGMAVWAEIPYISRH-------------------------MPGGRENTVSQMKEL 358 
B_fragilis         KHGIVTWAEIPFVGPGGYADKGF----------------VDQASFRENGKQQLIEL 377 
B_ovatus           ENGIILWTEIPMCGPGGQAFTGF----------------VDTEGYKDNARLAVKEL 379 
B_uniformis        KLGMLAWEEIPIIDIV-----------------------PNTPGYGDNCERNLREM 383 
B_dorei            ELGLIVWSEICVVNEV-----------------------RKNTAFAHNCKEMLKEM 385 

 
 
 
 

H_sapiens          VRRDKNHPAVVMWSVANEPASHLE--------------SAGYYLKMVIAHTKSLDP 452 
F_prausnitzii      IDRDKNHPSVIAWSLLNEPQCTSA--------------GTEEYFKPLFELARRLDP 442 
E_coli             IARDKNHPSVVMWSIANEPDTRPQ--------------GAREYFAPLAEATRKLDP 436 
S_agalactiae       VKRDKNHPSVVMWVVANEPASHEA--------------GAHDYFEPLVKLYKDLDP 434 
C_perfringens      VSRDKNHPCVVMWSVANEPDSDSE--------------GAKEYFEPLIKLTKELDP 436 
E_eligens          ISRDKNHACVVMWSIANEPDSAAE--------------GAYDYFKPLYDLARELDP 449 
P_merdae           IVQHHNHPAVIIWGLGNENDWPNDFNTFDKS-------AIRAFMKELHDMAHRLDD 442 
H11G11-BG          IYQNINHPSIIVWGLSNEITMNGASD----S-------SLIENHRMLNDLVHKIDP 402 
B_fragilis         IRQHYNHPSICFWGLFNELKEV-------GD-------NPVEYVKELNALAKQEDP 418 
B_ovatus           VYQKFNHPSICFWGICNEILVSDGKRFVEYD-------NPIPFIKELNGIYKSIDS 427 
B_uniformis        IRQHYNHPSIITWGYMNEILLVTQRKYKTEAELKPVLERTLALANRLERVLKEEDS 438 
B_dorei            ILQNYNHPSVVLWGAMNELWDYHKQ--------------AIALARELEALKKELDP 426 

A. 

	

Loop	1	Region	

Loop	2	Region	
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Figure 6.4. Classification of Novel GUS Sequences by Loop 
A. Example of multiple sequence alignment used to assign loop category according 
to the specifications set out in Table 6.2. The bacterium from which each sequence 
was taken is color-coded for the assigned loop class. Purple- no loop, red-Loop 1, 
royal blue- Loop 2, green- Mini Loop 1, light blue- Mini Loop 2, magenta- Mini Loop 1 
Mini Loop 2.  
B. Distribution of sequences in each loop class of the 293 Non-redundant Novel 
GUS Sequences found in the HMGC database. 
C.  Distribution of sequences in each loop class of the 3013 GUS Sequences found 
in the HMGI database. 
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Figure 6.5. Number of GUS Sequences of Each Loop Class Found per 
Individual 
A. Number of no coverage (nc) GUS Genes per individual. 
B. Number of Loop 1 (L1) GUS Genes per individual. 
C.  Number of Mini Loop 1 (mL1) GUS Genes per individual. 
D. Number of Loop 2 (L2) GUS Genes per individual. 
E. Number of Mini Loop 2 (mL2) GUS Genes per individual. 
F. Number of Mini Loop 1 Mini Loop 2 (mL1mL2) GUS Genes per individual. 
G. Number of No Loop (nL) GUS Genes per individual.  
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Name Phylum Count 

Faecalibacterium prausnitzii Firmicutes 13 
Eubacterium eligens CAG:72 Firmicutes 11 

Eubacterium sp. CAG:76 Firmicutes 7 
Eubacterium sp. CAG:38 Firmicutes 5 

Eubacterium eligens Firmicutes 4 
Uncultured bacterium (fragment) Unknown 4 

 

 
Name Phylum Count 

Bacteroides vulgatus Bacteroidetes 11 
Bacteroides vulgatus Bacteroidetes 11 

Parabacteroides merdae Bacteroidetes 9 
Bacteroides sp. CAG:98 Bacteroidetes 8 

Bacteroides dorei Bacteroidetes 7 
 
 
 

42

1

47

L1	GUS	Sequences

Fimicutes Proteobacteria Unknown

102

16
15

mL1	GUS	Sequences

Bacteroidetes Firmicutes Unknown

B. 

A. 
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Name Phylum Count 

Bacteroides MSP Bacteroidetes 15 
Bacteroides uniformis 

CAG:3 
Bacteroidetes 11 

Bacteroides vulgatus Bacteroidetes 9 
Bacteroides sp. 3_1_23 Bacteroidetes 9 
Bacteroides uniformis Bacteroidetes 8 

 

 
Name Phylum Count 

Parabacteroides merdae Bacteroidetes 38 
Bacteroides MSP Bacteroidetes 33 

Akkermansia sp. CAG:344 Verrucomicrobia 10 
Bacteroides cellulosilyticus 

CAG:158 
Bacteroidetes 10 

Bacteroides cellulosilyticus Bacteroidetes 6 
 
 
 
 

115

11

L2	GUS	Sequences

Bacteroidetes Unknown

37

11
1

mL2	GUS	Sequences

Bacteroidetes Verrucomicrobia Unknown

C. 

D. 
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Name Phylum Count 

Bacteroides ovatus Bacteroidetes 12 
Bacteroides ovatus Bacteroidetes 12 

Bacteroides 754 Bacteroidetes 4 
Bacteroides MSP Bacteroidetes 2 

 

 
Name Phylum Count 

Bacteroides uniformis Bacteroidetes 24 
Bacteroides dorei Bacteroidetes 19 

Bacteroides vulgatus Bacteroidetes 9 
Parabacteroides 

merdae 
Bacteroidetes 8 

Bacteroides 
massiliensis 

Bacteroidetes 7 
 

 
Figure 6.6. Predicted Bacteria Containing GUS Sequence of Each Loop Class  
For each of individual, the most abundant GUS sequence in each loop class was 
matched to a deposited reference genome using BLASTp. The matched organism, 
phylum of that organism, and number of individuals for which each sequence was 
the most abundant sequence of that loop class (count) is presented for the top five 
most common sequences for the Loop 1 (A), mini Loop 1 (B), Loop 2 (C), mini Loop 
2 (D), mini Loop 1 mini Loop 2 (E), and no loop (F) classes. Bolded sequences were 
chosen for further characterization.  

30
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CHAPTER 7: FUNCTIONAL CHARACTERIZATION OF β-GLUCURONIDASE 

ENZYMES IDENTIFIED IN THE HUMAN GASTROINTESTINAL TRACT 

 

Introduction 

 Changes in the human gut microbiota have been linked to many disorders 

including obesity, inflammatory bowel disease, and intensity of Clostridium difficile 

infection (1, 2). The activity of specific microbes in the gut has also been linked to 

the development of heart disease and varied response to drug therapy (3, 4). One 

drug that has varying effects because of the microbes in the intestine is the 

chemotherapy irinotecan (CPT-11). The active form of irinotecan, SN-38, is 

inactivated in the liver during Phase II drug metabolism by the addition of a 

glucuronide sugar to form SN-38-glucuronide (SN-38G) (5-7). SN-38G is then 

excreted from the body through the intestines. However, the β-glucuronidase (GUS) 

enzymes expressed by many microbes in the intestine can cleave the glucuronide 

sugar off SN-38G, resulting in active SN-38 that kills the intestinal epithelium and 

leads to dose-limiting diarrhea (8-11).  

 To better understand the activity of the GUS enzymes responsible for this 

drug toxicity, the Redinbo lab characterized the GUS enzyme from E. coli (EcGUS) 

and identified small molecule inhibitors that have been shown to be effective in 

decreasing the side effects of irinotecan in mice (12, 13). Acknowledging that the 
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microbiota is made up of a wide range of bacteria, we also characterized the GUS 

enzymes from Streptococcus agalactiae (SaGUS), Clostridium perfringens 

(CpGUS), and Bacteroides fragilis (BfGUS) (14). Characterization of these enzymes 

with inhibitors revealed a flexible loop outside the active site referred to as Loop 1 

(L1) that is essential for the efficacy of selective GUS inhibitors. The structures of 

these four enzymes revealed key features of GUS enzymes including conserved 

residues in the active site (14).  

 These key GUS features were used to compile a catalog of all GUS 

sequences found in the Human Microbiome Project (HMP) sequencing repository as 

described in Chapter 6. We identified 3,013 GUS sequences from the stool samples 

of 139 individuals which we were then able to break down into classes according to 

the presence, size, and location of a flexible loop outside the active site. As 

mentioned above, such a loop (L1) had previously been characterized but analysis 

of this GUS sequence catalog revealed a second loop (Loop 2, L2) found just 

downstream in the GUS sequence and predicted to occupy a similar position to L1. 

These loops can be completely absent or can be smaller in size (mini) than the 

previously characterized L1 found in EcGUS, SaGUS, and CpGUS. This gave us six 

loop classes: Loop 1 (L1), mini Loop 1 (mL1), Loop 2 (L2), mini Loop 2 (mL2), mini 

Loop1 mini Loop 2 (mL1mL2), and no loop (nL). We chose sequences from each 

class to express, purify, and characterize in order to further expand understanding of 

GUS enzyme function. These include the GUS enzymes from Eubacterium eligens 

(EeGUS, L1), Faecalibacterium prausnitizii (FpGUS, L1), Bacteroides uniformis 

(BuGUS, L2), Parabacteroides merdae (PmGUS, mL2), Bacteroides ovatus 
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(BoGUS, mL1mL2), and Bacteroides dorei (BdGUS, nL). The full sequence for each 

of these enzymes is presented in Appendix 3 in the alignment used to define their 

loop class.  

The following data confirm each of these GUS sequences as an active GUS 

enzyme and show initial characterization of the parameters under which the 

enzymes show optimal function. Because interest in this enzyme class originally 

stemmed from the ability to process SN-38G in the human intestine, we present the 

first evidence that a wide range of GUS enzymes are able to process the compound 

SN-38G. Finally, initial characterization of the GUS enzyme from Lactobacillus 

rhamnosus (LrGUS) is presented. This enzyme was not identified through analysis 

of the HMP, but rather by culturing bacteria found in a colon polyp biopsy sample. 

While this work is still ongoing, it greatly expands the current understanding of 

bacteria GUS enzymes and gives a better picture of the vast amount of chemistry 

these enzymes are responsible for in the human intestine.   

 

Materials and Methods 

Cloning of GUS Enzymes 

Clostridium perfringens GUS 

The C. perfringens β-glucuronidase (CpGUS) gene was amplified from the 

pLIC-MBP expression vector used in Wallace et al. and inserted into the pLIC-His 

vector using the primers: Forward, 5’-TACTCCAATCCAATGCGATGTTATATCCAA 

TAATTACAGAATCAAGACAATTAATAGAC-3’; Reverse, 5’-TTATCCACTTCCAATG 

CGCTATTTTTTGTATCCAAATTCCGGTATATTTGTCCATCTTTC-3’ (12).  
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Eubacterium eligens GUS 

The codon-optimized E. eligens β-glucuronidase (EeGUS) gene was 

purchases from Biobasic in the pUC57 vector. The gene was amplified and inserted 

into the pLIC-His vector using the primers: Forward, 5’-TACTTCCAATCCAATGCGA 

TGCTGTACCCTGTCCTGACTCAGTCTCG-3’; Reverse, 5’-TTATCCACTTCCAATG 

CGCTATTTGGTTTTGTAGCCAAATTCCGGAATGGTGGACCAG-3’.  

Faecalibacterium prausnitizii GUS 

The F. prausnitizii β-glucuronidase (FpGUS) gene was purchased from 

Biobasic in the pUC57 vector. The gene was amplified and inserted into the pLIC-

His vector using the primers: Forward, 5’-TACTTCCAATCCAATGCGATGAACCGTA 

GCCTGCTGTACCCTCGTG-3’; Reverse, 5’- TATCCACTTCCAATGCGCTTTTTTT 

GCGTTTTTTGAAGTCAACCG-3’.  

Bacteroides uniformis GUS 

The full-length B. uniformis β-glucuronidase (BuGUS) gene was purchased 

from Biobasic in the pUC57 vector. The gene was amplified and inserted into the 

pLIC-His vector using the primers: Forward, 5’- TACTTCCAATCCAATGCGATGG 

AGCGTGAGAAGAACACCCTGCCTCAAAAG-3’; Reverse, 5’-TTATCCACTTCCAAT 

GCGCTAATAAATGTTGCGCAGTTTAATGCCATTCAGGAAACACG-3’. The mature 

gene lacking the signal peptide was also cloned into the pLIC-His vector using the 

same reverse primer and the forward primer 5’- TACTTCCAATCCAATGCGCAACG 

TCAAACTCAAACCATCAACGACTCCTGGAAG-3’. 
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Parabacteroides merdae GUS 

The full-length P. merdae β-glucuronidase (PmGUS) gene was purchased 

from Biobasic in the pUC57 vector. The gene was amplified and inserted into the 

pLIC-His vector using the primers: Forward, 5’-TACTTCCAATCCAATGCGATGAAA 

TACCTGTTCGTCGCTTGCCTGCTGTG-3’; Reverse, 5’-TTATCCACTTCCAATGCG 

CTATTTCGGGCTTTTCAGTTCCAGAAACGCGGTC-3’. 

Bacteroides ovatus GUS 

The full-length B. ovatus β-glucuronidase (BoGUS) gene was purchased from 

Biobasic in the pUC57 vector. The gene was amplified and inserted into the pLIC-

His vector using the primers: Forward, 5’- TACTTCCAATCCAATGCGATGAAGAA 

CCGCATCATTATTCTGTGCCTGGTATGCCTGTG-3’; Reverse, 5’- TTATCCACTTC 

CAATGCGCTATTTAATGCAGTACCATTCGCAGGTGTCGG-3’. The mature gene 

lacking the signal peptide was also cloned into the pLIC-His vector using the 

primers: Forward, 5’- TACTTCCAATCCAATGCGCAGGAAACTTCTCCGCGTA 

CTATCTTCTCTCTGAAC-3’; Reverse, 5’-TTATCCACTTCCAATGCGCTATTTA 

ATGCAGTACCATTCGCAGGTGTCGGACAG-3’. 

Bacteroides dorei GUS 

The full-length B. dorei β-glucuronidase (BdGUS) gene was purchased from 

Biobasic in the pUC57 vector. The gene was amplified and inserted into the pLIC-

His vector using the primers: Forward, 5’-TACTTCCAATCCAATGCGATGAAGCGTT 

TCGCAGGTTGGCTGCTGTTCTTC-3’; Reverse, 5’-TTATCCACTTCCAATGCGCT 
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AGCGAATTTTTTTAACTTTCAGGCCGCTAATTACGCCCTG-3’. The mature gene 

lacking the signal peptide was also cloned into the pLIC-His vector using the same 

reverse primer and the forward primer 5’-TACTTCCAATCCAATGCGAGCGAGAT 

CAGCATCACTGACTCTTGGAAGTATAAG-3’. 

Lactobacillus rhamnosus GUS 

Lactobacillus rhamnosus was isolated from colon polyp biopsies and cultured 

by the Keku lab at the University of North Carolina at Chapel Hill (UNC-CH). The 

bacteria were cultured in clostridial media (Becton & Dickinson) for 48 hours in an 

anaerobic chamber at 37°C. 1 ml of bacterial culture was pelleted and the resulting 

cell pellet used for genomic DNA isolation. Genomic DNA was isolated using the 

GeneJet Genomic DNA Purification Kit (Thermo Scientific). 

The β-glucuronidase gene from L. rhamnosus (LrGUS) was amplified via 

PCR using the primers: Forward, 5’-TACTTCCAATCCAATGCGATGGAGACATC 

GTTGTTATACCCAGTGAC-3’; Reverse, 5’-TTATCCACTTCCAATGCGCTCTTT 

GCTTTATAATCCAGCGGCAGCTTATTC-3’. The gene was then inserted into the 

pLIC-His vector using ligation-independent cloning (Sondek Lab, UNC-CH). 

Expression and Purification of GUS Enzymes 

E. coli GUS 

 E. coli β-glucuronidase (EcGUS) was expressed and purified as previously 

described (12). 

Streptococcus agalactiae GUS 

 S. agalactiae β-glucuronidase (SaGUS) was expressed and purified as 

previously described (14).    
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CpGUS 

The newly cloned His-tagged protein was expressed and purified as 

described for the MBP-tagged CpGUS in Wallace et al. (14). 

BfGUS 

 The BfGUS gene in the pSGX3 plasmid was transformed into BL21 DE3 Gold 

cells for enzyme expression. Cells were grown in the presence of kanamycin in LB 

medium with vigorous shaking at 37ºC to an OD600  of 0.5, at which point the 

temperature was reduced to 18ºC. At OD600=0.8, protein expression was induced by 

the addition of 0.1 mM isopropyl-1-thio-D-galactopyranoside (IPTG) and incubation 

continued overnight. Cells were collected by centrifugation at 4500xg for 20 min at 

4ºC in a Sorvall (model RC-3B) swinging bucket centrifuge. Cell pellets were 

resuspended in 50 mL Buffer A (50 mM Tris HCl pH 7.8, 50 mM Imidazole, 10 mM 

methionine, 500 mM NaCl, 1 mM DTT, 5% glycerol), DNase, lysozyme, and a Roche 

complete-EDTA free protease inhibitor tablet. Resuspended cells were sonicated 

and clarified via centrifugation at 14,500xg for 60 min in a Sorvall (model RC-5B). 

The lysate was flowed over a Ni-NTA HP column (GE Healthcare) loaded onto the 

Aktaxpress FPLC system (Amersham Bioscience) and washed with Buffer A. Protein 

was eluted with Buffer B (50 mM Tris HCl pH 7.8, 500 mM Imidazole, 10 mM 

methionine, 500 mM NaCl, 1 mM DTT, 5% glycerol). Fractions containing the protein 

of interest were combined and passed over a HiLoad™ 16/60 Superdex™ 200 gel 

filtration column. Protein was eluted in S200 Buffer (10 mM HEPES pH 7.5, 150 mM 

NaCl, 10 mM methionine, 1mM DTT, 5% glycerol). Fractions were analyzed by SDS-
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PAGE and those with >95% purity were combined and concentrated for long-term 

storage at -80ºC.   

EeGUS, FpGUS, BuGUS, PmGUS, BoGUS, and BdGUS  

 The corresponding plasmids described above were each transformed into 

BL21-DE3 AI competent cells (Invitrogen) for enzyme expression. Cells were grown 

in LB medium to an OD600 of 0.8 in the presence of ampicillin with vigorous shaking 

at 37ºC. Transcription of the T7 RNA polymerase was induced by addition of 

arabinose to a final concentration of 0.2% (v/v) and the temperature was reduced to 

18ºC. Thirty minutes later protein expression was induced by the addition of 100 µM 

IPTG and further incubation overnight. Cells were collected, lysed, and purified as 

described above for BfGUS with the following buffers: Buffer A- 25 mM HEPES pH 

7.4, 50 mM Imidazole, 500 mM NaCl, 5% glycerol, 0.5 mM TCEP; Buffer B- 25 mM 

HEPES pH 7.4, 250 mM Imidazole, 500 mM NaCl, 5% glycerol, 0.5 mM TCEP; S200 

Buffer- 20 mM HEPES pH 7.4, 100 mM NaCl, 5% glycerol, 0.5 mM TCEP. Protein 

with >95% purity was stored at -80ºC for use in assays.   

PNPG Assay 

 Para-nitrophenyl glucuronide (PNPG) was purchased as a solid and 

suspended in water to a concentration of 50 mM. Reactions were conducted in 96-

well, black, clear-bottom assay plates (Costar, Tewksbury MA) at 37ºC with 50 µL in 

total volume. The reaction consisted of 10 µL assay buffer (100 mM HEPES, 250 

mM NaCl, pH 7.4), 10 µL enzyme, and 30 µL of substrate. The product formation 

was measured via absorbance at 405 nm using a PHERAstar Plus microplate reader 

(BMG Labtech, Ortenberg, Germany). To determine kinetic values, initial velocities 
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were determined for multiple substrate concentrations and Michaelis-Menten kinetics 

use to calculate KM, kcat, and catalytic efficiency. For pH screening, reactions were 

conducted using assay buffer at pH 4, 4.5, 5, 5.5, 6, 6.5, 7, and 7.4. At each time 

point, the reaction was quenched with 100 µL of 0.2 M sodium carbonate. When all 

reactions were quenched, product formation was measured. 

SN-38G HPLC 

Each reaction consisted of 500 nM bacterial GUS enzyme or 2 µM 

BovineGUS enzyme and 10 µM SN-38G substrate in a total volume of 250 µL. 

Reactions were incubated at room temperature and a 20 µL sample taken at each 

time point and loaded directly on to the HPLC column.  

GUS enzyme processing of SN-38G was analyzed by separation of SN-38 

and SN-38G via HPLC. Buffer was flowed at 0.5 ml/min over a Phenomenex Luna 5 

µm C18(2) reverse phase column. Buffer A consisted of 20 mM ammonium acetate 

pH 3.5 and Buffer B was 100% acetonitrile. SN38 and SN38G was visualized using 

UV detection with excitation at 368 nm and emission at 515 nm. Buffers were mixed 

as follows: 

Time	 %	B	
1	min	 10%	
3	min	 30%	
12	min	 34%	
14	min	 34	%	
15	min	 35%	
19	min	 100%		
22	min	 10%	
22.5	min	 STOP	

 

SN-38G eluted at approximately 8 minutes while SN-38 eluted at 13.3 minutes. The 

area under the curve was calculated for each peak and a rate used to calculate the 
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percent signal in the SN-38G peak. The percent SN-38G is reported for each time 

point. 

SN-38G Assay 

SN-38-glucuronide (SN-38G) was purchased as a solid from Toronto 

Research Chemicals-Canada and suspended in 100% DMSO to a concentration of 

5 mM. Reactions were conducted in 96-well, half-area, black, clear-bottom assay 

plates (Costar, Tewksbury MA) at 37°C with 50 µL in total volume. The reaction 

consisted of 10 µL assay buffer (100 mM HEPES, 250 mM NaCl, pH 7.4), 10 µL 

enzyme, and 30 µL of substrate. The disappearance of substrate as it is processed 

by GUS was measured via Ex 375 nm Em 415 nm fluorescence. Initial velocities 

(Fu/sec) were determined for multiple substrate concentrations.  

 

Results 

GUS Activity 

 Analysis of the Human Microbiome Project (HMP) sequencing repository as 

described in Chapter 6 allowed for the identification of novel GUS sequences from 

which we chose six representative proteins to characterize in addition to the four 

previously characterized enzymes. These new proteins will also allow us to explore 

the activity of each of the newly defined loop classes. The Loop 1 (L1) class is 

represented by the GUS enzymes from E. coli (EcGUS), S. agalactiae (SaGUS), C. 

perfringens (CpGUS), E. eligens (EeGUS), and F. prausnitizii (FpGUS, L1). The mini 

Loop 1 (mL1) class is represented by the previously characterized B. fragilis 

(BfGUS). The Loop 2 (L2) class is represented by B. uniformis (BuGUS) and the 
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mini Loop 2 (mL2) class by P. merdae (PmGUS). B. ovatus (BoGUS) serves as the 

representative mini Loop 1 mini Loop 2 (mL1mL2) enzyme and B. dorei (BdGUS) is 

the no loop (nL) enzyme. We first set out to confirm activity of each purified enzyme 

using the substrate p-nitrophenyl glucuronide (PNPG). PNPG is a synthetic 

substrate with no physiological relevance but provides a quick and robust assay for 

visualizing GUS activity. As the four previously characterized enzymes had 

substantial activity at pH 7.4, this reaction condition was used initial characterization 

of the new enzymes as it is unclear where in the intestines these bacteria and their 

GUS may exist and therefore what the physiologically relevant pH may be. 

 The Redinbo lab has previously characterized Loop 1 (L1) enzymes EcGUS, 

SaGUS, and the MBP-tagged version of CpGUS and the kinetic parameters of these 

enzymes is presented for comparison (12, 14). From the novel GUS sequences 

identified from the HMP sequencing repository, we identified EeGUS and FpGUS as 

sequences that are often the most abundant L1 GUS in individuals. We were able to 

confirm that these enzymes are able to process PNPG. EeGUS showed moderate 

but still substantial activity as compared to the efficient EcGUS and SaGUS 

enzymes with a kcat of 41 ± 3 s-1, KM of 0.49 ± 0.09 mM, and a catalytic efficiency of 

83.7 s-1mM-1 (Table 7.1). FpGUS showed poor activity; while an increase in PNP 

could be seen, the production was too slow to be quantified in this assay. BfGUS 

has been previously characterized and is considered the representative mL1 

enzyme (14). Representative L2 enzyme BuGUS showed a catalytic efficiency 

similar to that of BfGUS (9 s-1mM-1 and 9.5 s-1mM-1 respectably); however, this is a 

result of varying kcat and KM values. BfGUS displays a kcat of 18 ± 1 s-1 and a KM of 
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1.9 ± 0.3 mM as compared to a kcat of 4.5 ± 0.007 s-1 and a KM of 0.5 ± 0.03 mM for 

BuGUS (Table 7.1). Both mL2 enzyme PmGUS and mL1mL2 enzyme BoGUS 

showed activity that was too slow to quantify in this assay. However, we did see 

significant activity over no protein controls that indicates that these enzymes do 

function as GUS enzymes. Finally, no loop (nL) enzyme BdGUS exhibited poor but 

quantifiable activity with a kcat of 21 ± 2 s-1, KM of 2.7 ± 0.5 mM, and a catalytic 

efficiency of 7.7 s-1mM-1 (Table 7.1). This data confirms that each of these newly 

expressed GUS enzymes is able to process a glucuronidated substrate and 

validates the selection criteria used to identify GUS sequences in Chapter 6. 

However, the poor activity seen with many of these enzymes suggests that 

additional optimization of purification procedures or assay conditions may be 

beneficial.     

SN-38G Processing 

 Much of the interest in GUS enzymes has been driven by the discovery that 

they are responsible for cleaving the glucuronide sugar off inactivate SN-38G that 

excreted through the intestines. This cleavage results in active SN-38 in the 

intestines that leads to epithelial cell death and significant drug toxicity for many 

patients. With this as the focus, we set out to characterize the ability of each of the 

GUS enzymes to process SN-38G.  

 Previous quantification of SN-38G to SN-38 ratios and, indeed, the work that 

established GUS enzymes as the driver of this drug toxicity has been carried out 

using HPLC quantification of SN-38G and SN-38 presence in samples. We set out to 

use this technique to establish whether these GUS enzymes of interest are able to 



	

	 166	

process SN-38G. For each reaction the GUS enzyme was incubated with SN-38G 

and samples were analyzed for the SN-38G:SN-38 ratio at various time points. The 

GUS from Bos taurus (BovineGUS) was used as a negative control as it has 

previously been shown that mammalian GUS enzymes have poor activity against 

SN-38G. Indeed, we found that over 67.5 minutes, BovineGUS was able to process 

only 20% of the SN-38G into SN-38 (Figure 7.1). Alternatively, EcGUS, SaGUS, and 

BfGUS were all able to process SN-38G very efficiently with only trace amounts 

remaining after 22.5 minutes (Figure 7.1). While it had been previously established 

that EcGUS can process SN-38G, this is the first evidence that SaGUS and BfGUS 

can also process this substrate. 

 Because HPLC is a time and labor-intensive assay, we developed a 

fluorescence-based assay to more quickly quantify GUS activity against SN-38G. As 

shown in Figure 7.2A, SN-38G and SN-38 exhibit different emission spectra when 

excited at 375 nm. This allows for selective visualization of just one compound at the 

peak of their emission profile. Because SN-38 has poor solubility in the aqueous 

solutions needed to maintain enzyme activity, we chose to measure the loss of SN-

38G signal at Ex 375 nm Em 415 nm. The activity of each of the GUS enzymes was 

measured against varying concentrations of SN-38G and the rates of SN-38G 

cleavage are shown in Figure 7.2B. Here higher rates of SN-38G cleavage mean 

more efficient processing of SN-38G. With more replicates and controls, this data 

will lead to kinetic values like those established in the PNPG assay. These 

preliminary data mimic what was seen in the HPLC analysis of SN-38G: EcGUS, 

SaGUS, and BfGUS are able to efficiently process SN-38G. Because this assay 
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allows for visualization of SN-38G cleavage at much shorter time points (seconds 

versus minutes) and at varying SN-38G concentrations, we are able to tease out the 

relative activities of these enzymes. EcGUS is the most efficient at processing SN-

38G of previously characterized enzymes while SaGUS and BfGUS show similar, 

less efficient processing. Interestingly, L1 GUS EeGUS showed much more efficient 

SN-38G processing than EcGUS. This solidified the L1 class as the dominant 

processors of SN-38G. No loop GUS BdGUS showed an ability to process SN-38G 

similar to BfGUS. BoGUS, a mL1mL2 enzyme, was also able to process SN-38G but 

with low efficiency. Alternatively, no cleavage of SN-38G was seen with L2 enzyme 

BuGUS and mL2 enzyme PmGUS. While future characterization will give a much 

more complete picture of cleavage SN-38G by GUS enzymes, this analysis is the 

first evidence that enzymes within the GUS family may have substrate specificity. 

GUS Activity at Varying pH 

 The initial characterization of the GUS enzymes presented above lead us to 

realize there is much about this enzyme family that has not been previously 

explored. Upon closer analysis we saw that the attachment of an MBP-tag to the 

GUS enzyme as in the CpGUS construct impedes the activity of this enzyme even 

though the MBP tag was required for crystallization. We cloned CpGUS into the 

pLIC-His vector to eliminate the MBP-tag and moved forward with characterization of 

this construct. In addition, we found that BuGUS, PmGUS, BoGUS, and BdGUS 

each contain an approximately 20 amino acid signal sequence at the N-terminal of 

each protein sequence that is predicted to be cleaved before the protein is 

transported to the periplasmic space of these gram-negative bacteria. In order to 
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produce the form of the enzyme that is most likely to interact with substrates, we 

cloned these genes without the signal sequence portion. Finally, as mentioned 

above, it is unclear where the bacteria expressing these GUS enzymes may be 

found in the intestine and therefore what pH the enzymes are likely to function in. 

GUS enzymes purified from other environments have previously been shown to 

have optimal activity at pH values much lower than 7.4 (15, 16). Therefore, we set 

out to test the activity of these optimized enzyme constructs against PNPG at a 

range of pH values.       

 EcGUS and SaGUS show similar activity at pH values ranging from 5 to 7.4 

(Figure 7.3A, B). While both enzymes show almost no activity at pH 4, EcGUS 

exhibits moderate activity at pH 4.5 while SaGUS has poor activity at the same pH. 

The His-tagged construct of CpGUS shows high activity at pH values from 5.5 to 7.4 

and only slightly lower activity at pH 5 (Figure 7.3C). Similar to SaGUS, CpGUS has 

almost no activity at pH 4 and very poor activity at pH 4.5. EeGUS exhibits activity at 

all pH values tested but has optimal function from pH 4.5 to 6.5 (Figure 7.3D). 

Significant but lower activity is seen at pH 4, 7, and 7.4. Future characterization of 

EeGUS will be conducted at pH 6.5. FpGUS exhibits optimal activity from pH 4.5 to 

5.5 (Figure 7.3E). A moderate decrease in activity is seen at pH 4, 6, 6.5, and 7. At 

pH 7.4, activity is greatly attenuated as seen in initial kinetic activity assays. Future 

characterization of FpGUS activity will be conducted at pH 5. BuGUS shows optimal 

function at pH values 4.5 to 7 (Figure 7.3F). Activity is still strong but slightly less 

robust at pH 7.4 while activity is very poor at pH 4. A pH of 6.5 will be used for future 

BuGUS assays. These results highlight the differences between each of these GUS 
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enzymes and suggest that they may function in varying environments within the 

intestine. We predict that removal of the signal peptide and optimization of the assay 

pH will allow us to quantify activity for the PmGUS and BoGUS in addition to 

providing important information about how each of these enzymes functions.  

Lactobacillus rhamnosus GUS 

 While characterization of GUS enzymes has focused primarily on those 

identified in the HMP sequencing analysis described in Chapter 7, the GUS enzyme 

from Lactobacillus rhamnosus (LrGUS) has also been identified as an enzyme of 

interest. This enzyme was identified as an interesting target after L. rhamnosus was 

isolated from colon polyp biopsies and cultured by the Keku lab at UNC-CH. After 

observing very poor activity against PNPG and no activity against SN-38G (data not 

shown), a pH screen was conducted to find the optimal pH for activity assays. As 

shown in Figure 7.4, LrGUS is indeed inactive at pH 7.4 but shows increasing 

activity as the assay conditions become more acidic. The optimal activity of LrGUS 

is seen from pH 4.5 to 5.5 in this assay. This is congruent with a previous analysis of 

function of partially purified LrGUS that found optimal activity at pH 4.5 with similar 

activity at pH 3.5 and 5 (17). Further characterization of LrGUS will be conducted at 

pH 4.5. Characterization of LrGUS extends this catalog of GUS enzymes from 

enzymes identified from healthy individuals to enzymes from a dysbiotic 

environment.   
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Discussion 

The role of human GI microbiota-associated GUS enzymes in the drug 

toxicity of irinotecan and other drugs is well established. However, only a small 

number of these enzymes have been characterized. The data presented here shows 

the wide variety of GUS sequences identified from the HMP in Chapter 6 are 

functional GUS enzymes that are able to process the glucuronidated substrate 

PNPG with varying affinities (Table 1). While this initial activity validates the rubric 

for identifying GUS sequences, further characterization shows that we still have 

much to learn about the activity of these enzymes. Figure 7.4 shows that despite 

many similarities in sequence, especially in the active site, these enzymes have 

optimal function at varying pH ranges. L1 enzymes EcGUS, SaGUS, CpGUS, 

EeGUS, and FpGUS are expected to be cytosolic. Alternatively, BuGUS and the 

enzymes characterized from the mL1, L2, mL2, mL1mL2, and nL classes have a N-

terminal signal sequence that we predict sends these enzymes to the periplasmic 

space of gram-negative bacteria. The cytosol is expected to be buffered; however, 

the pH of the surrounding environment has been shown to have a large effect on the 

internal pH of bacteria and some bacteria such as Lactobacillus are known to 

maintain a slightly more acidic cytosol. In contrast, the pH of the periplasmic space 

is likely highly dependent on the pH of the surrounding environment. Little work has 

been done to date to characterize the distribution of various bacterial species along 

the intestine, but we hypothesize that the optimal pH range of the function of a 

bacteria’s GUS enzyme will match the pH of the locations in which that bacteria is 

found within the intestine. For instance, enzymes such as EcGUS and SaGUS have 
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optimal function at a wide range of pH values and would therefore function 

regardless of where their host bacterium was in the intestine. Alternatively, FpGUS 

has a limited range of pH values at which it shows optimal function. We know the 

host bacteria F. prausnitzii can make its way to the end of the GI as this sequence 

was identified in stool samples, but we hypothesize that the bacteria are dominate 

higher in the GI where the pH is more acidic. Further characterization of the optimal 

function of these enzymes and their host bacteria will allow us to further refine this 

hypothesis and understand the diverse ecosystems of the human GI.  

Other members of the Redinbo lab are focused on optimizing the previously 

discovered GUS inhibitors in order to eliminate GUS-mediated irinotecan drug 

toxicity. Therefore, it is important for us to understand which GUS enzymes are 

responsible for the reactivation of SN-38 in the GI. Figure 7.2 and 7.3 present the 

first in-depth analysis of this reaction with purified GUS enzymes. It had been 

previously established that purified EcGUS is able to efficiently process SN-38G, but 

this data shows that the reaction proceeds much more quickly than the 1-hour time 

point previously analyzed (12). Because of the similarity between the L1 enzymes, it 

was not surprising that SaGUS and EeGUS are also able to process SN-38G well. 

Previous characterization of the active site loop L1 had established its role in the 

efficacy of the GUS inhibitors, but it was still unclear if L1 or any variation of this 

active site loop played a role in substrate specificity. We hypothesized that L1, and 

perhaps L2, would act as a gate over the active site in order to hold in small 

substrates such as PNPG and SN-38G. Therefore, the activity of BfGUS seen in the 

HPLC analysis and refined in the fluorescence assay was a surprise that does not 
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support this hypothesis. The relatively high activity of both BfGUS and BdGUS 

against SN-38G have lead us to explore other features in the active site that may 

play an important role in substrate specificity.      

Finally, initial characterization of the LrGUS enzyme is presented. All 

sequences identified in the HMP were from the stool samples of healthy donors, 

which represents a limited snapshot of the human microbiota. We identified the 

LrGUS enzyme from cultured bacteria from a colon polyp biopsy. While stool 

samples contain primarily mobile bacteria that reside in the lumen of the intestine, 

bacteria cultured from this biopsy are more likely to be adherent to the mucus layer 

of the intestine. In addition, there is evidence that dysbiosis of the microbiota can 

lead to colon cancer, so bacteria cultured from potentially cancerous polyps may 

play a role in carcinogenesis. As we expand the current understanding of GUS 

enzymes, we would also like to expand the sources from which characterized 

sequences come and this is the first effort in this direction.  

This chapter presents the first in-depth analysis of the function of a broad 

range of GUS enzymes. While bacterial GUS enzymes including EcGUS, SaGUS, 

CpGUS, and BfGUS have been characterized previously, this focus on GUS 

sequences derived from human stool or colon biopsy samples allows closer 

characterization of the chemistry catalyzed by these enzymes in the human GI. This 

initial analysis has shown that while previously characterized enzymes are highly 

active against glucuronidated substrates including PNPG and SN-38G, there is a 

wide range of GUS enzymes that are also active against those substrates and likely 

play a significant role in the human GI.      
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Enzyme	 Loop	Class	 kcat	(s-1)	 KM	(mM)	 kcat/KM	(s-1mM-1)	

EcGUS	 L1	 120	±	12		 0.13	±	0.01	 920	±	160	

SaGUS	 L1	 80	±	2		 0.36	±	0.03	 222	±	24		

MBP-CpGUS	 L1	 2.6	±	0.6	 1.1	±	0.2	 2.4	±	1		

EeGUS	 L1	 41	±	3	 0.49	±	0.09	 83.7	±	21	

FpGUS	 L1	 unquantifiable	 	 	

BfGUS	 mL1	 18	±	1	 1.9	±	0.3	 9.5	±	2		

BuGUS	 L2	 4.5	±	0.07		 0.50	±	0.03	 9	±	0.7		

PmGUS	 mL2	 unquantifiable	 	 	

BoGUS	 mL1mL2	 unquantifiable	 	 	

BdGUS	 nL	 21	±	2	 2.7	±	0.5	 7.7	±	2	

	
Table 7.1. Catalytic Activity of β-glucuronidase Enzymes at pH 7.4 
Data are presented as the average over 3 experiments ±	SEM.	kcat,	catalytic	rate;	KM,	
Michaelis	constant;	kcat/KM,	catalytic	efficiency.	 
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Figure 7.1. Analysis of β-glucuronidase Activity Against SN-38G via HPLC  
HPLC was used to quantify the amount of SN-38G remaining after incubation with 
the β-glucuronidase from Bos taurus (BovineGUS), S. agalactiae (SaGUS), C. 
perfringens (CpGUS), and B. fragilis (BfGUS) over time.  
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Figure 7.2. β-glucuronidase Activity Against SN-38G via Fluorescence  
A. Emission wavelength scan of SN-38G and SN-38 after excitation at 375 nm.   
B. Rate of SN-38G cleavage as measured by fluorescence at varying SN-38G 
concentrations by β-glucuronidases identified from the Human Microbiome Project.  
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Figure 7.3. Catalytic Activity of β-glucuronidase Enzymes at Varying pH  
Activity of EcGUS (A), SaGUS (B), CpGUS (His-tagged construct, C), EeGUS (D), 
FpGUS (E), and BuGUS (F) against a single PNPG concentration over time at pH 
values 4, 4.5, 5, 5.5, 6, 6.5, 7, and 7.4. 	
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Figure 7.4. Catalytic Activity of L. rhamnosus β-glucuronidase at Varying pH 
L. rhamnosus GUS (LrGUS) shows varying function against the substrate PNPG at 
pH values ranging from 4.5 to 7.4.  
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS FOR 

CHARACTERIZATION OF β-GLUCURONIDASE AND GI DRUG REACTIVATION 

 

Conclusions 

 β-glucuronidase (GUS) enzymes encoded by the human GI microbiota are 

responsible for the severe drug toxicity associated with the chemotherapy drug 

irinotecan (CPT-11). Initial work on this process by the Redinbo lab greatly 

expanded understanding of the E. coli-type GUS proteins and characterized 

inhibitors that are effective against mice models of irinotecan-induced drug toxicity. 

The work presented here compiles a catalog of GUS sequences mined from the 

Human Microbiome Project (HMP) sequencing repository. This catalog gives a new 

appreciation of the breadth of GUS sequences found within the human microbiome 

and suggests that this enzyme class may play a larger role in the intestinal 

ecosystem than previously explored. Previous efforts to catalog GUS proteins have 

depended on gene annotations, which we have shown are often incorrect due to the 

high sequence similarity, especially in the active site, between various glycoside 

hydrolases such as β-glucuronidases and β-galactosidases (1). This approach using 

one-to-one sequence alignments to identify the presence or absence of key 

conserved residues in all identified genes in the HMP sequences repository is a 
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much more robust approach that can be used to catalog any well characterized gene 

of interest.  

 This large catalog of GUS proteins is broken into smaller classes of 

sequences based on the presence or absence and size of two similar active site 

loops. Representative enzymes from each loop class were chosen and 

characterized as presented in Chapter 7. The seven new GUS enzymes presented 

here more than double the size of the catalog of microbial GUS proteins and allows 

us to explore the diverse function of this enzyme family. While this work has given us 

unique insight into GUS enzymes, it has also opened many new avenues for further 

research, some of which are explored below.  

 

Future Directions 

Further Characterization of the HMP GUS Sequence Catalogues 

 As described in Chapter 6, the analysis of the HMP sequencing repository 

provided two datasets of GUS sequences. The first dataset from the HMGC- 

Clustered Gene Indices database is a non-redundant catalog of GUS genes. While 

initial analysis of this dataset has shown an interesting distribution of sequence 

lengths (Figure 6.2 of Chapter 6), there is still much analysis to be done with these 

sequences. The first goal is to match each sequence in this dataset to one of the 

reference genomes of bacteria cultured as part of the HMP or deposited in the NCBI 

Reference Sequence Database. This will allow us to associate each GUS sequence 

with a bacteria or closely related set of bacteria that the sequence was likely isolated 

from in the HMP fecal samples and compile a list of GUS-containing bacteria. This 
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smaller, non-redundant set also allows for better understanding of which enzymes 

contain features such as the extended C-terminal domain and signal peptide and if 

these features cluster with the active site loops.  

 The second dataset from the HMGI- Gene Indices is a redundant set of GUS 

sequences that can be grouped by which of the 139 individuals they were obtained 

from. Thus far we have analyzed the total number of GUS sequences each 

individual possessed and which loop class those sequences fell into. However, we 

have not taken into account the abundance of a sequence in each individual. It is 

likely that some bacteria and therefore their associated GUS are more abundant in 

the gut and therefore contribute more significantly to the intestinal environment. 

These abundant GUS sequences may be similar across individuals or may vary 

widely.  

Structure and Function of New GUS Enzymes 

 While we have identified the active site loops as an interesting variable region 

of this enzyme, continued functional and structural characterization of these 

enzymes will likely lead to several additional regions of interest. A quick glance at 

the sequence alignment of these enzymes presented in Appendix 3 already reveals 

small insertions and deletions; additional characterization may match those 

sequence changes to interesting functional changes. It is also likely that we will be 

able to link the variability in optimal pH conditions shown in Chapter 7 to changes in 

just a few amino acids within the active site of these enzymes.  
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SN-38G Processing 

 Chapter 7 includes the first evidence that GUS enzymes in addition to EcGUS 

can process SN-38G, including enzymes that cannot be inhibited by the well-

characterized inhibitors produced by the Redinbo lab. Despite not inhibiting GUS 

enzymes that process SN-38G, these inhibitors are effective in reducing the 

irinotecan-induced diarrhea in mice. This suggests we still have much to learn about 

GUS activity in vivo and which enzymes encounter SN-38G. Continued 

characterization of the bacteria that encode GUS sequences from the HMP analysis, 

will lead to better understanding of the regulatory mechanisms that may impact GUS 

expression and transport of glucuronidated compounds. The Redinbo lab is currently 

characterizing the GUS gene repressor (GusR) found in E. coli and a small number 

of related bacteria that allows for increased GUS expression when glucuronidated 

compounds bind GusR. There is also a known glucuronide transporter in the same 

operon in E. coli, but this transporter as well as the transporters that are likely 

present in other bacteria have not been characterized. It is possible that these 

transporters show substrate selectivity such that many of these GUS enzymes rarely 

come in contact with SN-38G. In addition to these molecular-level details, members 

of the Redinbo lab are also conducting mice experiments to measure the effect of 

irinotecan and inhibitor treatment on the microbiota. A better understanding of the 

complex environment in which GUS enzymes interact with SN-38G will allow for 

further optimization of previously characterized inhibitors and improve the efficacy 

against drug toxicity.  
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 A related area of exploration is characterization of why some patients 

experience severe diarrhea after irinotecan treatment while other patients have 

minimal side effects. We hypothesize that patients that experience severe diarrhea 

possess significantly more of the bacteria and GUS enzymes that are able to 

process SN-38G. We are interested in comparing microbiome samples from patients 

treated with irinotecan but with varying degrees of drug toxicity severity in order to 

correlate variation in the microbiota with severity of drug toxicity. If high-processing 

SN-38G bacteria are identified through molecular approaches, mouse studies, or 

patient data, it may be possible to design a screening tool to determine which 

patients are likely to react poorly to irinotecan treatment and would be ideal 

candidates for GUS inhibitor treatment.  

Other Glucuronidated Compounds 

 Both drugs and endogenous compounds are glucuronidated by UGT 

enzymes in liver. Although this work focuses on SN-38G, many other glucuronidated 

compounds are also processed by GUS enzymes in the GI. In fact, the Redinbo lab 

and collaborators have shown that GUS inhibitors are effective in reducing the size 

and number of small intestinal ulcers caused by non-steroidal anti-inflammatory 

drugs (NSAIDs) (2, 3). Many NSAIDs including ketoprofen, indomethacin, and 

diclofenac are inactivated and eliminated through glucuronidation as described for 

SN-38G in Chapter 5 (4). Two thirds of patients show drug-induced small intestine 

lesions after both chronic (>3 months) and short-term (<1 week) NSAID use (4). 

While the mechanism of small intestinal damage is unclear, the efficacy of GUS 

inhibitors confirms that the damage is GUS mediated (2, 3). Because of the success 
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of these inhibitors in these mouse studies, we are interested in characterizing 

NSAID-glucuronide processing with purified GUS enzymes. While characterization 

can and has been conducted using HPLC, that is a time- and effort-intensive 

approach that could be replaced by an absorbance or fluorescence based assay that 

could be conducted quickly in a plate reader. While some compounds can be 

analyzed directly as described for SN-38G in Chapter 7, not all compounds will show 

varying absorbance for fluorescence profiles with and without the glucuronide sugar. 

Therefore, an additional requirement for this assay is that it will function with a 

variety of glucuronidated compounds.  

In order to satisfy these two requirements, we have designed a coupled assay 

during which the free glucuronide sugar generated by the GUS enzyme is utilized in 

a second reaction that generates a convenient read-out. Uronate dehydrogenase 

(Udh) is an enzyme that processes glucuronic acid using NAD+ as a cofactor that 

can be used as a read-out. The basic assay scheme is shown in Figure 8.1. 

Because Udh uses NAD+ as a cofactor and produces one molecule of NADH for 

each molecule of glucuronic acid, an observed increase in NADH signal via 

absorption at 340 nm correlates to the increase in glucuronic acid produced by the 

GUS enzyme included in the assay. As long as the catalytic activity and 

concentration of Udh in the assay is sufficiently high, the glucuronic acid produced 

by GUS enzyme(s) should be the limiting reagent. Therefore, the Udh kinetics 

observed via NADH production should mimic the kinetics of glucuronic acid 

production by the GUS enzyme. Initial work in the Redinbo lab has shown this assay 

scheme to be an effective way to measure glucuronic acid production using both 
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purified Agrobacterium tumefaciens Udh and the D-Glucuronic/D-Galacturonic Acid 

Assay Kit from Megazyme. This assay will allow us to explore a much wider variety 

of glucuronidated compounds ranging from drugs such as NSAIDs to endogenous 

compounds such as steroid hormones. Further understanding of GUS function will 

allow us to identify the native substrates of this enzyme family as well as explore the 

ways in which bacteria have adapted to the environment of the human gut. We also 

hope that we will be able to optimize the initial GUS inhibitors to be effective against 

a wide range of GUS mediated intestinal damage. 
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Figure 8.1 Uronate dehydrogenase Coupled Assay Scheme 
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APPENDIX 1: pWBG749 OR pSK41 ORIGIN-OF-TRANSFER MIMC 

SEQUENCE CONTENT 

	
pWBG749	or	pSK41	origin-of-transfer	mimc	sequence	content	of	Staphylococcal	plasmids	as	

determined	by	BLASTN.	Adapted	from	O'Brien	et	al	2015	(Nucleic	Acids	Research	43:7971-

7983).	

Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pSA1308	 NC_007928.1	 TRUE	 TRUE	

aureus	 pWBG1773	 NC_010616.1	 TRUE	 FALSE	

aureus	 pKH3	 NC_005020.1	 TRUE	 FALSE	

aureus	 pLGA251	 NC_017348.1	 TRUE	 FALSE	

aureus	 pKH12	 NC_010687.1	 TRUE	 FALSE	

aureus	 pTW20_2	 FN433598.1	 TRUE	 FALSE	

aureus	 SAP070A	 GQ900423.1	 TRUE	 FALSE	

aureus	 SAP104A	 GQ900450.2	 TRUE	 FALSE	

aureus	 pKH14	 NC_010428.1	 TRUE	 FALSE	

aureus	 p18807-P01	 CP002136.1	 TRUE	 FALSE	

aureus	 p18808-P01	 CP002138.1	 TRUE	 FALSE	

aureus	 p18811-P01	 CP002144.1	 TRUE	 FALSE	

aureus	 pUSA01	 NC_007790.1	 TRUE	 FALSE	

aureus	 SAP046B	 GQ900404.1	 TRUE	 FALSE	

aureus	 SAP049B	 GQ900408.1	 TRUE	 FALSE	

aureus	 SAP051B	 GQ900411.1	 TRUE	 FALSE	

aureus	 pKH18	 NC_010231.1	 TRUE	 TRUE	

aureus	 pC55s	 AY048756.1	 TRUE	 TRUE	

aureus	 pNewBould305	 NZ_AKYW01000028.1	 TRUE	 TRUE	

aureus	 pWBG760	 GQ900473.1	 TRUE	 FALSE	

aureus	 USA300_TCH959	 NZ_AASB02000125.1	 TRUE	 TRUE	

aureus	 ATCC	51811	 NZ_ADVP01000034.1	 TRUE	 TRUE	

aureus	 SAP105B	 NC_013378.1	 TRUE	 FALSE	

aureus	 pBORa53	 NC_013550.1	 TRUE	 TRUE	



	

	 190	

Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 A8796	 NZ_ADJJ01000025.1	 TRUE	 TRUE	

aureus	 TCH70_2	 NZ_ACHH02000018.1	 TRUE	 FALSE	

aureus	 pSA268	 NC_023278.1	 TRUE	 TRUE	

aureus	 pUSA300HOUMS	 NC_010066.1	 TRUE	 FALSE	

aureus	 55/2053	 NC_022126.1	 TRUE	 FALSE	

aureus	 SAP055A	 GQ900414.1	 TRUE	 FALSE	

aureus	 pSAS	 BX571858.1	 TRUE	 TRUE	

aureus	 pWBG750	 GQ900392.1	 TRUE	 TRUE	

aureus	 SAP072A	 GQ900424.1	 TRUE	 TRUE	

aureus	 pMW2	 NC_005011.1	 TRUE	 TRUE	

aureus	 SAP053A	 GQ900413.1	 TRUE	 TRUE	

aureus	 p21	 NC_002517.1	 TRUE	 TRUE	

aureus	 SAP073A	 GQ900425.1	 TRUE	 TRUE	

aureus	 pSaa6159	 CP002115.1	 TRUE	 TRUE	

aureus	 pWBG757	 GQ900397.1	 TRUE	 TRUE	

aureus	 pWBG763	 GQ900467.1	 TRUE	 TRUE	

aureus	 65-1322	 NZ_GG700565.1	 TRUE	 FALSE	

aureus	 SAP058A	 GQ900479.1	 TRUE	 FALSE	

aureus	 pSK62	 GQ900446.1	 TRUE	 FALSE	

aureus	 pSA1379	 NC_007931.1	 TRUE	 TRUE	

aureus	 SAP060A	 GQ900416.1	 TRUE	 FALSE	

aureus	 A8115_con_1.21	 NZ_ACKG01000021.1	 TRUE	 FALSE	

aureus	 SAP051A	 GQ900410.1	 TRUE	 TRUE	

aureus	 M876	 NZ_GG700623.1	 TRUE	 FALSE	

aureus	 E1410	 NZ_GG700609.1	 TRUE	 FALSE	

aureus	 A8117	 NZ_ACYO01000019.1	 TRUE	 FALSE	

aureus	 M1015	 NZ_GG749015.1	 TRUE	 FALSE	

aureus	 M809	 NZ_GG749324.1	 TRUE	 FALSE	

aureus	 pSK76	 GQ900444.1	 TRUE	 FALSE	

aureus	 C101_1.21	 NZ_GG730140.1	 TRUE	 FALSE	

aureus	 WBG10049	 NZ_GG730219.1	 TRUE	 FALSE	

aureus	 pWBG756	 GQ900472.1	 TRUE	 FALSE	

aureus	 TCH60_unnamed	 NC_017345.1	 TRUE	 FALSE	

aureus	 58-424_3	 NZ_GG749073.1	 TRUE	 FALSE	

aureus	 A9635	 NZ_ACKI01000002.1	 TRUE	 TRUE	

aureus	 pCA347	 NC_021552.1	 TRUE	 TRUE	

aureus	 pN315	 NC_003140.1	 TRUE	 TRUE	

aureus	 pWBG752	 GQ900394.1	 TRUE	 TRUE	

aureus	 pST75	 NC_016942.1	 TRUE	 FALSE	

aureus	 SAP049A	 GQ900407.1	 TRUE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pWBG755	 GQ900471.1	 TRUE	 FALSE	

aureus	 pPM1	 NC_019148.1	 TRUE	 TRUE	

aureus	 SAP063A	 GQ900418.1	 TRUE	 FALSE	

aureus	 SAP059A	 GQ900480.1	 TRUE	 FALSE	

aureus	 SAP065B	 GQ900481.1	 TRUE	 FALSE	

aureus	 pWBG761	 GQ900474.1	 TRUE	 FALSE	

aureus	 SAP071A	 GQ900485.1	 TRUE	 FALSE	

aureus	 p18807-P03	 CP002135.1	 TRUE	 TRUE	

aureus	 pUSA300HOUMR	 NC_010063.1	 TRUE	 TRUE	

aureus	 p18808-P03	 CP002137.1	 TRUE	 TRUE	

aureus	 p18810-P03	 NC_018963.1	 TRUE	 TRUE	

aureus	 SAP050A	 GQ900409.1	 TRUE	 TRUE	

aureus	 p18806-P03	 CP002134.1	 TRUE	 TRUE	

aureus	 pLAC-P03	 CP002149.1	 TRUE	 TRUE	

aureus	 SAP015A	 GQ900380.1	 TRUE	 TRUE	

aureus	 SAP046A	 GQ900403.1	 TRUE	 TRUE	

aureus	 p18805-03	 CP002132.1	 TRUE	 TRUE	

aureus	 p18811-03	 CP002143.1	 TRUE	 TRUE	

aureus	 SAP056A	 GQ900478.1	 TRUE	 TRUE	

aureus	 M0408_conjugative	 AIWO01000029	 TRUE	 FALSE	

aureus	 SAP012A	 GQ900377.1	 TRUE	 FALSE	

aureus	 A9781	 NZ_ACKL01000034.1	 TRUE	 FALSE	

aureus	 pWBG744	 GQ900398.1	 TRUE	 FALSE	

aureus	 SAP048A	 GQ900406.1	 TRUE	 FALSE	

aureus	 SAP074A	 GQ900426.1	 TRUE	 FALSE	

aureus	 pLUH02	 FR714929.1	 TRUE	 FALSE	

aureus	 pZ172_1	 NC_022610.1	 TRUE	 FALSE	

aureus	 p19231-P03	 CP002147.1	 TRUE	 FALSE	

aureus	 SAP019A	 GQ900385.1	 TRUE	 FALSE	

aureus	 pSK67	 NC_019010.1	 TRUE	 FALSE	

aureus	 A8819	 NZ_ADJK01000020.1	 TRUE	 FALSE	

aureus	 pWBG759	 GQ900401.1	 TRUE	 TRUE	

aureus	 p18809-P04	 CP002146.1	 TRUE	 TRUE	

aureus	 SAP047A	 NC_013331.1	 TRUE	 TRUE	

aureus	 pI258	 GQ900378.1	 TRUE	 FALSE	

aureus	 SAP104C	 GQ900498.1	 TRUE	 FALSE	

aureus	 SAP070B	 GQ900484.1	 TRUE	 FALSE	

aureus	 pSK59	 GQ900488.1	 TRUE	 FALSE	

aureus	 pTW20_1	 FN433597.1	 TRUE	 FALSE	

aureus	 SAP027A	 GQ900388.1	 TRUE	 TRUE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pSJH101	 NC_009619.1	 TRUE	 TRUE	

aureus	 pSJH901	 NC_009477.1	 TRUE	 TRUE	

aureus	 SAP064A	 GQ900419.1	 TRUE	 FALSE	

aureus	 pSK57	 GQ900493.1	 TRUE	 FALSE	

aureus	 pSK80	 GQ900492.1	 TRUE	 FALSE	

aureus	 SAP066A	 GQ900482.1	 TRUE	 FALSE	

aureus	 SAP101A	 GQ900495.1	 TRUE	 FALSE	

aureus	 pI3T3	 NC_020565.1	 TRUE	 FALSE	

aureus	 SAP052A	 GQ900412.1	 TRUE	 TRUE	

aureus	 SAP017A	 GQ900382.1	 TRUE	 TRUE	

aureus	 pI6T6	 NC_020567.1	 TRUE	 FALSE	

aureus	 pCM05	 GQ900387.1	 TRUE	 FALSE	

aureus	 pWBG747	 GQ900399.1	 TRUE	 TRUE	

aureus	 pWBG746	 GQ900390.1	 TRUE	 TRUE	

aureus	 D139	 GG730186.1	 TRUE	 FALSE	

aureus	 pSK64	 GQ915268.1	 TRUE	 FALSE	

aureus	 pEDINA	 NC_010077.1	 TRUE	 TRUE	

aureus	 SAP076A	 GQ900427.1	 TRUE	 FALSE	

aureus	 pSK60	 GQ915267.1	 TRUE	 FALSE	

aureus	 pSK74	 GQ915266.1	 TRUE	 FALSE	

aureus	 pTZ2162	 NC_010419.1	 TRUE	 TRUE	

aureus	 SAP078A	 GQ900430.1	 TRUE	 FALSE	

aureus	 SAP077A	 GQ900428.1	 TRUE	 FALSE	

aureus	 pSK79	 GQ900489.1	 TRUE	 FALSE	

aureus	 SAP102A	 GQ900496.1	 TRUE	 FALSE	

aureus	 pSK21	 GQ900490.1	 TRUE	 FALSE	

aureus	 SAP075A	 GQ900486.1	 TRUE	 FALSE	

aureus	 SAP067A	 GQ900483.1	 TRUE	 FALSE	

aureus	 SAP054A	 GQ900477.1	 TRUE	 FALSE	

aureus	 pWBG749	 GQ900391.1	 TRUE	 FALSE	

aureus	 pWBG745	 NC_013325.1	 TRUE	 FALSE	

aureus	 pETB	 NC_003265.1	 TRUE	 FALSE	

aureus	 pSK53	 GQ915270.1	 TRUE	 FALSE	

aureus	 pV030-8	 NC_010279.1	 TRUE	 TRUE	

aureus	 SAP057A	 GQ900415.1	 TRUE	 FALSE	

aureus	 pSK23	 GQ900491.1	 TRUE	 FALSE	

aureus	 SAP082A	 GQ900434.1	 TRUE	 TRUE	

aureus	 pWBG748	 GQ915265.1	 TRUE	 FALSE	

aureus	 pSK156	 GQ900448.1	 TRUE	 TRUE	

aureus	 SAP079A	 GQ900432.1	 TRUE	 TRUE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pGO1	 NC_012547.1	 TRUE	 TRUE	

aureus	 pWBG762	 GQ900475.1	 TRUE	 TRUE	

aureus	 pLW043	 NC_005054.1	 TRUE	 TRUE	

epidermis	 SAP045A	 NC_013374.1	 TRUE	 FALSE	

epidermis	 SAP106A	 NC_013379.2	 TRUE	 FALSE	

epidermis	 SAP016A	 NC_013372.1	 TRUE	 FALSE	

epidermis	 Epidermis_conjugative	 AHLC01000011.1	 TRUE	 FALSE	

simulans	 pACK5	 NC_015176.1	 TRUE	 FALSE	

simulans	 pACK2	 NC_015173.2	 TRUE	 FALSE	

warneri	 pPI-2	 NC_005208.1	 TRUE	 FALSE	

arlettae	 pSS-03	 NC_016054.1	 FALSE	 FALSE	

aureus	 pSN2	 NC_005565.1	 FALSE	 FALSE	

aureus	 SAP093B	 NC_013310.1	 FALSE	 FALSE	

aureus	 pDLK3	 NC_013969.1	 FALSE	 FALSE	

aureus	 pAVY	 NC_013451.1	 FALSE	 FALSE	

aureus	 pSK6	 NC_001995.1	 FALSE	 FALSE	

aureus	 SAP104B	 GQ900451.2	 FALSE	 FALSE	

aureus	 pSK3	 NC_001994.1	 FALSE	 FALSE	

aureus	 pNVH99	 AJ296103.1	 FALSE	 FALSE	

aureus	 pLUH01	 NC_017346.1	 FALSE	 FALSE	

aureus	 pWBG754	 GQ900396.1	 FALSE	 FALSE	

aureus	 TCH70_1	 NZ_ACHH02000015.1	 FALSE	 FALSE	

aureus	 pS1e	 NZ_AUPS01000034.1	 FALSE	 FALSE	

aureus	 A6300	 NZ_ACKF01000018.1	 FALSE	 FALSE	

aureus	 p9b	 NC_019143.1	 FALSE	 FALSE	

aureus	 SAP087A	 GQ900439.1	 FALSE	 FALSE	

aureus	 pWBG764	 GQ900468.1	 FALSE	 FALSE	

aureus	 A9765	 NZ_ACSN01000068.1	 FALSE	 FALSE	

aureus	 A9719	 NZ_ACKJ01000014.1	 FALSE	 FALSE	

aureus	 pDLK1	 NC_019139.1	 FALSE	 FALSE	

aureus	 pKH20	 NC_010686.1	 FALSE	 FALSE	

aureus	 SAP078B	 GQ900431.1	 FALSE	 FALSE	

aureus	 pKH8	 U50077.1	 FALSE	 FALSE	

aureus	 Cn1	 NC_022228.1	 FALSE	 FALSE	

aureus	 CF-Marseille	 NZ_CABA01000093.1	 FALSE	 FALSE	

aureus	 p19321-P01	 NC_018969.1	 FALSE	 FALSE	

aureus	 pE5	 M17990.1	 FALSE	 FALSE	

aureus	 pKH19	 NC_010685.1	 FALSE	 FALSE	

aureus	 pWBG738	 NC_007209.1	 FALSE	 FALSE	

aureus	 pWBG751	 GQ900393.1	 FALSE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pT48	 NC_001395.1	 FALSE	 FALSE	

aureus	 TCH130	 NZ_ACHD01000266.1	 FALSE	 FALSE	

aureus	 TCH959	 NZ_AASB02000192.1	 FALSE	 FALSE	

aureus	 pKH4	 U81980.1	 FALSE	 FALSE	

aureus	 pKH21	 NC_010684.1	 FALSE	 TRUE	

aureus	 A5948_3	 NZ_ACKD01000027.1	 FALSE	 FALSE	

aureus	 pS1d	 NZ_AUPS01000033.1	 FALSE	 TRUE	

aureus	 pNVH01	 NC_004562.1	 FALSE	 TRUE	

aureus	 pUR5425	 NC_019146.1	 FALSE	 TRUE	

aureus	 pBMSa1	 AY541446.1	 FALSE	 TRUE	

aureus	 pKH15	 NC_010427.1	 FALSE	 FALSE	

aureus	 pBMb9393	 NC_021657.1	 FALSE	 FALSE	

aureus	 pDLK2	 GU562625.1	 FALSE	 FALSE	

aureus	 SAP065A	 GQ900420.1	 FALSE	 FALSE	

aureus	 pKH13	 NC_010426.1	 FALSE	 FALSE	

aureus	 pC194	 NC_002013.1	 FALSE	 FALSE	

aureus	 pS0385-3	 AM990995.1	 FALSE	 TRUE	

aureus	 pE194	 NC_005908.1	 FALSE	 FALSE	

aureus	 pSBK203	 U35036.1	 FALSE	 FALSE	

aureus	 pNS1	 M16217.1	 FALSE	 FALSE	

aureus	 pS1c	 NZ_AUPS01000031.1	 FALSE	 FALSE	

aureus	 SAP085B	 GQ900438.1	 FALSE	 FALSE	

aureus	 pKH7	 NC_002096.1	 FALSE	 FALSE	

aureus	 C101_1.1	 NZ_GG730120.1	 FALSE	 FALSE	

aureus	 M899	 NZ_GG730190.1	 FALSE	 FALSE	

aureus	 pS0385-2	 AM990994.1	 FALSE	 FALSE	

aureus	 pS123b	 NZ_AUPU01000024.1	 FALSE	 FALSE	

aureus	 pS194	 NC_005564.1	 FALSE	 FALSE	

aureus	 pKH6	 U38428.1	 FALSE	 FALSE	

aureus	 pUSA02	 NC_007791.1	 FALSE	 FALSE	

aureus	 SAP085A	 GQ900437.1	 FALSE	 FALSE	

aureus	 SAP093A	 GQ900441.1	 FALSE	 FALSE	

aureus	 SAP094A	 GQ900443.1	 FALSE	 FALSE	

aureus	 SAP095A	 GQ900445.1	 FALSE	 FALSE	

aureus	 pT181	 NC_006629.2	 FALSE	 FALSE	

aureus	 pKH17	 NC_010284.1	 FALSE	 FALSE	

aureus	 pKH16	 NC_010262.1	 FALSE	 FALSE	

aureus	 ATCC	BAA-39	 NZ_AEEK01000040.1	 FALSE	 FALSE	

aureus	 A8115_con_1.2	 NZ_ACKG01000002.1	 FALSE	 FALSE	

aureus	 SAP060B	 GQ900417.1	 FALSE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 MR1_139	 NZ_ACZQ01000139.1	 FALSE	 FALSE	

aureus	 JKD6009	 NZ_ABSA01000025.1	 FALSE	 FALSE	

aureus	 pUB110	 NC_001384.1	 FALSE	 FALSE	

aureus	 A10102	 NZ_ACSO01000036.1	 FALSE	 FALSE	

aureus	 A6300_2	 NZ_ACKF01000048.1	 FALSE	 FALSE	

aureus	 A6244	 NZ_ACKE01000028.1	 FALSE	 FALSE	

aureus	 A9763	 NZ_ACKK01000035.1	 FALSE	 FALSE	

aureus	 pC221	 NC_006977.1	 FALSE	 FALSE	

aureus	 pTZ4	 NC_010111.1	 FALSE	 FALSE	

aureus	 A5937	 NZ_ACKC01000002.1	 FALSE	 FALSE	

aureus	 CF-Marseille_2	 NZ_CABA01000045.1	 FALSE	 FALSE	

aureus	 SAP084A	 GQ900436.1	 FALSE	 FALSE	

aureus	 SAP089A	 NC_013308.1	 FALSE	 FALSE	

aureus	 MR1_138	 NZ_ACZQ01000138.1	 FALSE	 FALSE	

aureus	 pC223	 AY355285.1	 FALSE	 FALSE	

aureus	 pKKS49	 NC_019149.1	 FALSE	 FALSE	

aureus	 pS1b	 NZ_AUPS01000028.1	 FALSE	 FALSE	

aureus	 A9754	 NZ_ADJI01000035.1	 FALSE	 FALSE	

aureus	 58-424_1	 NZ_GG749054.1	 FALSE	 FALSE	

aureus	 pS0385-1	 AM990993.1	 FALSE	 FALSE	

aureus	 pCPS49	 NC_019142.1	 FALSE	 FALSE	

aureus	 pS1a	 NZ_AUPS01000027.1	 FALSE	 FALSE	

aureus	 pS94a	 NZ_AUPW01000021.1	 FALSE	 FALSE	

aureus	 pVGA	 NC_011605.1	 FALSE	 FALSE	

aureus	 pCPS32	 NC_019141.1	 FALSE	 FALSE	

aureus	 pJ3358	 NC_001763.1	 FALSE	 FALSE	

aureus	 pUR3912	 NC_020183.2	 FALSE	 FALSE	

aureus	 pKKS627	 NC_014156.1	 FALSE	 FALSE	

aureus	 pSA8589	 NC_021230.1	 FALSE	 FALSE	

aureus	 pMSA16	 NC_019144.1	 FALSE	 FALSE	

aureus	 pUR4128	 NC_019147.1	 FALSE	 FALSE	

aureus	 pUR2355	 NC_019145.1	 FALSE	 FALSE	

aureus	 pRJ6	 NC_011522.1	 FALSE	 FALSE	

aureus	 pS130a	 NZ_AUPT01000023.1	 FALSE	 FALSE	

aureus	 pSK17	 GQ900513.1	 FALSE	 FALSE	

aureus	 pRJ9	 AF447813.1	 FALSE	 FALSE	

aureus	 SAP077B	 NC_013341.1	 FALSE	 FALSE	

aureus	 pKKS832	 FN377602.2	 FALSE	 FALSE	

aureus	 pS123a	 NZ_AUPU01000021.1	 FALSE	 FALSE	

aureus	 SAP099B	 GQ900449.1	 FALSE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

aureus	 pAVX	 NC_013453.1	 FALSE	 FALSE	

aureus	 pCH91	 NC_020227.1	 FALSE	 FALSE	

aureus	 pUB101	 NC_005127.1	 FALSE	 FALSE	

aureus	 SAP015B	 GQ900500.1	 FALSE	 FALSE	

aureus	 p11819-97	 NC_017350.1	 FALSE	 FALSE	

aureus	 VRSAp	 NC_002774.1	 FALSE	 FALSE	

aureus	 SAP105A	 NC_013377.1	 FALSE	 TRUE	

aureus	 68-397	 NZ_GG700590.1	 FALSE	 FALSE	

aureus	 pSK77	 GQ900494.1	 FALSE	 FALSE	

aureus	 pSK1	 NC_014369.1	 FALSE	 FALSE	

aureus	 SAP103A	 GQ900497.1	 FALSE	 FALSE	

aureus	 pWBG753	 GQ900395.1	 FALSE	 FALSE	

aureus	 p18813-P03	 NC_018967.1	 FALSE	 TRUE	

aureus	 pUSA03	 NC_007792.1	 FALSE	 TRUE	

aureus	 pI5S5	 NC_020535.1	 FALSE	 TRUE	

aureus	 pWBG758	 NC_013329.1	 FALSE	 FALSE	

aureus	 pSA737	 NC_021076.1	 FALSE	 FALSE	

aureus	 pPR9	 NC_013653.1	 FALSE	 TRUE	

aureus	 SAP069A	 GQ900422.1	 FALSE	 TRUE	

aureus	 SAP080A	 GQ900433.1	 FALSE	 TRUE	

aureus	 pSK41	 AF051917.1	 FALSE	 TRUE	

aureus	 SAP014A	 GQ900379.1	 FALSE	 TRUE	

aureus	 SAP068A	 GQ900421.1	 FALSE	 TRUE	

aureus	 pETB	 NC_022598.1	 FALSE	 TRUE	

chromogenes	 pLNU8	 NC_008352.1	 FALSE	 FALSE	

chromogenes	 pLNU4	 NC_007771.1	 FALSE	 TRUE	

chromogenes	 pLNU9	 NC_008354.1	 FALSE	 FALSE	

epidermis	 pBE131	 NC_001390.1	 FALSE	 FALSE	

epidermis	 pSepCH	 NC_003969.1	 FALSE	 FALSE	

epidermis	 pSK108	 NC_013395.1	 FALSE	 FALSE	

epidermis	 SAP108D	 NC_013392.2	 FALSE	 FALSE	

epidermis	 pLNU6	 NC_008356.1	 FALSE	 TRUE	

epidermis	 pSE-12228-01	 NC_005008.1	 FALSE	 FALSE	

epidermis	 SAP108C	 NC_013391.1	 FALSE	 FALSE	

epidermis	 pSK103	 NC_013394.1	 FALSE	 FALSE	

epidermis	 pSE-12228-02	 NC_005007.1	 FALSE	 FALSE	

epidermis	 SAP108B	 NC_013390.1	 FALSE	 FALSE	

epidermis	 pSE-12228-06	 NC_005003.1	 FALSE	 FALSE	

epidermis	 SAP110B	 NC_013384.1	 FALSE	 FALSE	

epidermis	 pUR3937	 NC_019304.1	 FALSE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

epidermis	 pUR3036	 NC_019303.1	 FALSE	 FALSE	

epidermis	 pSE-12228-03	 NC_005006.1	 FALSE	 FALSE	

epidermis	 pSK639	 NC_005566.1	 FALSE	 FALSE	

epidermis	 SAP106B	 NC_013380.1	 FALSE	 FALSE	

epidermis	 SAP107B	 NC_013382.1	 FALSE	 FALSE	

epidermis	 pSE-12228-04	 NC_005005.1	 FALSE	 FALSE	

epidermis	 pSK105	 NC_013393.1	 FALSE	 FALSE	

epidermis	 pSE-12228-05	 NC_005004.1	 FALSE	 FALSE	

epidermis	 SAP108A	 NC_013389.1	 FALSE	 TRUE	

epidermis	 SAP110A	 NC_013383.1	 FALSE	 FALSE	

epidermis	 pSERP	 NC_006663.1	 FALSE	 FALSE	

epidermis	 pSWS47	 NC_022618.1	 FALSE	 FALSE	

epidermis	 SAP107A	 NC_013381.1	 FALSE	 FALSE	

equorum	 pSEQU3	 NZ_AVBD01000026.1	 FALSE	 FALSE	

equorum	 pSEQU2	 NZ_AVBD01000024.1	 FALSE	 FALSE	

equorum	 pSEQU1	 NZ_AVBD01000023.1	 FALSE	 FALSE	

haemolyticus	 pSHaeA	 NC_007169.1	 FALSE	 FALSE	

haemolyticus	 pSHaeB	 NC_007170.1	 FALSE	 FALSE	

haemolyticus	 pLNU3	 NC_007770.1	 FALSE	 TRUE	

haemolyticus	 pLNU7	 NC_008353.1	 FALSE	 TRUE	

haemolyticus	 pSHaeC	 NC_007171.1	 FALSE	 FALSE	

hyicus	 hyicus_unnamed	 NC_016137.1	 FALSE	 FALSE	

hyicus	 p7313178-1	 NC_016140.1	 FALSE	 FALSE	

hyicus	 p9811071-1	 NC_016139.1	 FALSE	 FALSE	

hyicus	 pKKS966	 NC_015171.1	 FALSE	 FALSE	

hyicus	 pSTE1	 NC_020237.1	 FALSE	 FALSE	

lentus	 pSTE2	 NC_006871.1	 FALSE	 FALSE	

lugdunensis	 pLUG10	 NC_002093.1	 FALSE	 FALSE	

pasteuri	 pSP187	 NC_007167.1	 FALSE	 FALSE	

saprophyticus	 pSES22	 NC_007621.1	 FALSE	 FALSE	

saprophyticus	 pSSP2	 NC_007352.1	 FALSE	 TRUE	

saprophyticus	 pSSAP2	 NC_016643.1	 FALSE	 FALSE	

saprophyticus	 pSSP1	 NC_007351.1	 FALSE	 TRUE	

saprophyticus	 pSSAP1	 NC_015432.1	 FALSE	 FALSE	

sciuri	 pC194-like	 NC_010626.1	 FALSE	 FALSE	

sciuri	 pACK6	 NC_006974.1	 FALSE	 FALSE	

sciuri	 pSCFS1	 NC_005076.1	 FALSE	 FALSE	

simulans	 pLNU5	 NC_008351.1	 FALSE	 TRUE	

simulans	 pLNU2	 NC_007769.1	 FALSE	 TRUE	

simulans	 pACK4	 NC_013033.1	 FALSE	 FALSE	
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Species	 Plasmid	name	 Accession	
pWBG749	
OriT?	

pSK41	
OriT?	

simulans	 pACK3	 NC_013945.1	 FALSE	 FALSE	

simulans	 pACK1	 NC_013944.1	 FALSE	 FALSE	

sp.	693-2	 SAP008A	 NC_013371.1	 FALSE	 FALSE	

sp.	693-2	 pLEW6932	 NC_009130.1	 FALSE	 FALSE	

sp.	CDC25	 SAP018B	 NC_013388.1	 FALSE	 FALSE	

sp.	CDC25	 SAP018A	 NC_013387.1	 FALSE	 FALSE	

sp.	CDC3	 SAP020A	 NC_013373.1	 FALSE	 FALSE	

warneri	 pvSw7	 NC_020269.1	 FALSE	 FALSE	

warneri	 pvSw3	 NC_020265.1	 FALSE	 FALSE	

warneri	 pSZ4	 NC_020165.1	 FALSE	 FALSE	

warneri	 pvSw6	 NC_020268.1	 FALSE	 FALSE	

warneri	 pvSw2	 NC_020264.1	 FALSE	 FALSE	

warneri	 pvSw1	 NC_020274.1	 FALSE	 FALSE	

warneri	 pvSw5	 NC_020267.1	 FALSE	 FALSE	

warneri	 pvSw4	 NC_020266.1	 FALSE	 FALSE	

warneri	 pPI-1	 NC_005207.3	 FALSE	 FALSE	
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APPENDIX 2: PLASMIDS CONTAINING pSK41 ORIGIN-OF-TRANSFER 

MIMIC SEQUENCES 

	
Details	on	plasmids	containing	pSK41	origin-of-transfer	mimic	sequences	as	noted	in	

Appendix	1.	
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus NC_007928.1  pSA1308 pSA1308 A  TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NC_010231.1 EU333812.1 pKH18 pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus AY048756.1  pC55s pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NZ_AKYW01000028.1 
pNewBould
305 pSA1308 A Genome FALSE FALSE MINUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NC_013550.1  pBORa53 pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NC_013331.1  SAP047A pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NC_019146.1  pUR5425 pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

haemo-
lyticus NC_007770.1  pLNU3 pSA1308 A TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

sapro-
phyticus NC_007351.1  pSSP1 pSA1308 A TRUE FALSE FALSE MINUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus GQ900412.1  SAP052A pSA1308 B TRUE FALSE TRUE MINUS 

GCGTTCTTTTTAGAACGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus AM990995.1  pS0385-3 pSA1308 B TRUE FALSE FALSE MINUS 

GCGTTCTTTTTAGAACGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

epi-
dermis NC_013389.1  SAP108A pSA1308 B TRUE FALSE FALSE MINUS 

GCGTTCTTTTTAGAACGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

haemo-
lyticus NC_008353.1 pLNU7 pSA1308 B TRUE FALSE FALSE PLUS 

GCGTTCTTTTTAGAACGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus AY541446.1  pBMSa1 pSA1308 C TRUE FALSE FALSE PLUS 

GCGTTCTTTTTAGAACGTA
TAAGTGCGCCCTTACGGG
ATTTAAC 

chromo-
genes NC_007771.1  pLNU4 pSA1308 D TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGCAT
AAGTGCGCCCTTACGGGA
ATTAAC 

simulans NC_007769.1  pLNU2 pSA1308 CD TRUE FALSE FALSE PLUS 

GCGTTCTTTTAGAACGTAT
AAGTGCGCCCTTACGGGA
ATTAAC 

aureus 
NZ_AASB0200
0125.1 Unknown 

USA300_ 
TCH959 

pCA347/
pSK156 A Genome FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus 
NZ_ADVP0100
0034.1 Unknown 

ATCC 
51811 

pCA347/
pSK156 A Genome FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NZ_ADJJ01000025.1 A8796 
pCA347/
pSK156 A Genome FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus BX571858.1  pSAS 
pCA347/
pSK156 A Genome FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900392.1  pWBG750 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900424.1  SAP072A 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_005011.1  pMW2 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900413.1  SAP053A 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_002517.1  p21 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900425.1  SAP073A 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002115.1  pSaa6159 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus GQ900397.1  pWBG757 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900467.1  pWBG763 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_007931.1  pSA1379 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900410.1  SAP051A 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NZ_ACKI01000002.1 A9635 
pCA347/
pSK156 A Genome FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_021552.1  pCA347 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_003140.1  pN315 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900394.1  pWBG752 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002135.1  
p18807-
P03 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_010063.1  
pUSA300 
HOUMR 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002137.1  
p18808-
P03 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_018963.1  
p18810-
P03 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900409.1  SAP050A 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002134.1  
p18806-
P03 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus CP002149.1  pLAC-P03 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900380.1  SAP015A 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900403.1  SAP046A 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002132.1  p18805-03 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002143.1  p18811-03 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus CP002146.1  
p18809-
P04 

pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900388.1  SAP027A 
pCA347/
pSK156 A TRUE FALSE FALSE PLUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_009619.1  pSJH101 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_009477.1  pSJH901 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900412.1  SAP052A 
pCA347/
pSK156 A TRUE FALSE TRUE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_010419.1  pTZ2162 
pCA347/
pSK156 A TRUE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900475.1  pWBG762 
pCA347/
pSK156 A FALSE FALSE FALSE MINUS 

ATGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_023278.1  pSA268 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_019148.1  pPM1 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus GQ900478.1  SAP056A 
pCA347/
pSK156 B FALSE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900401.1  pWBG759 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900382.1  SAP017A 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900399.1  pWBG747 
pCA347/
pSK156 B TRUE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900390.1  pWBG746 
pCA347/
pSK156 B TRUE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_010077.1  pEDINA 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus GQ900448.1  pSK156 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_010684.1  pKH21 
pCA347/
pSK156 B TRUE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NC_013377.1  SAP105A 
pCA347/
pSK156 B TRUE FALSE FALSE MINUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

epi-
dermis NC_008356.1  pLNU6 

pCA347/
pSK156 B TRUE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

pLNU5 NC_008351.1  pLNU5 
pCA347/
pSK156 B TRUE FALSE FALSE PLUS 

ACGTCGATTTATCCGACGT
ATAAGTGCGCCCTTACGG
GATTTAAC 

aureus NZ_AUPS01000033.1 pS1d 
pCA347/
pSK156 C Genome FALSE FALSE MINUS 

CACGTCGATTTATCCGACG
TGTAAGTGCGCCCTTACG
GGATTTAAC 

aureus NC_004562.1  pNVH01 
pCA347/
pSK156 C TRUE FALSE FALSE MINUS 

CACGTCGATTTATCCGACG
TGTAAGTGCGCCCTTACG
GGATTTAAC 

aureus NC_022598.1  pETB pETB A TRUE FALSE TRUE MINUS 

ACCGTTTGGAACAAACGTA
TAAGTGCGCCCTTACGGG
ATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus NC_022598.1  pETB pETB B TRUE FALSE TRUE PLUS 

AGCGTTTGGAACAAACGTA
TAAGTGCGCCCTTACGGG
AGTTAA 

sapro-
phyticus NC_007352.1  pSSP2 pETB C TRUE FALSE FALSE PLUS 

CGTTTGGAGCAAACGTGTA
AGTGCGCCCTTACGGGAT
TTAAC 

aureus NC_010279.1  pV030-8 pV030-8 A TRUE TRUE FALSE PLUS 

TACGTTTGGAACAAACGTG
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus NC_018967.1  
p18813-
P03 pV030-8 A TRUE TRUE FALSE PLUS 

TACGTTTGGAACAAACGTG
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus GQ900434.1  SAP082A pSK41 A TRUE TRUE FALSE MINUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus GQ900432.1  SAP079A pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus NC_012547.1  pGO1 pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus NC_005054.1  pLW043 pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus NC_007792.1  pUSA03 pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus NC_020535.1  pI5S5 pSK41 B TRUE TRUE FALSE PLUS 

GCGAACGTAACGTTCGCAT
AAGTGCGCCCTTACGGGA
TTTAAC 

aureus NC_013653.1  pPR9 pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus GQ900422.1  SAP069A pSK41 A TRUE TRUE FALSE MINUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus GQ900433.1  SAP080A pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus AF051917.1  pSK41 pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 
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Species Ref Updated Ref 
Plasmid_ 

name 
OriT_ 
type 

Sequence
_variant 

Complete 
Seq? 

NES-
type 

gene? 

Multiple 
41 

OriTs? Strand Sequence 

aureus GQ900379.1  SAP014A pSK41 A TRUE TRUE FALSE PLUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 

aureus GQ900421.1  SAP068A pSK41 A TRUE TRUE FALSE MINUS 

GCGAACGGAACGTTCGCA
TAAGTGCGCCCTTACGGG
ATTTAAC 
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APPENDIX 3: MULTIPLE-SEQUENCE ALIGNMENT OF β-GLUCURONIDASE 

SEQUENCES OF INTEREST 

 The following multiple sequence alignment was used to define the loop 

class of each GUS sequence according to the location and length parameters 

described in Table 6.2. 
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CLUSTAL O(1.2.1) multiple sequence alignment 
 
H_sapiens          MARGS---AVAWAALGPLLWGCALGLQGGMLYPQESPSRECKELDGLWSFRADFSDNRRR 
F_prausnitzii      -------------------------MNRSLLYPRATTTRRLIGLDGMWRFSFD---PESK 
E_coli             -----------------------------MLRPVETPTREIKKLDGLWAFSLD---RENC 
S_agalactiae       -----------------------------MLYPLLTKTRNTYDLGGIWNFKLG---EH-N 
C_perfringens      -----------------------------MLYPIITESRQLIDLSGIWKFKLN---EG-N 
E_eligens          -----------------------------MLYPVLTQSRLLSDLSGVWDFKLD---NG-K 
P_merdae           ---------MKYLFVACLL--CLSV---LSAVAKV-PAMNKIRLTNNWEYLKG---DLGG 
H11G11-BG          -------------------------------------MREVININKNWLFSKK---EQPV 
B_Fragilis         -----------------------------------MSLRQDILLNNNWNFRFS---HQVQ 
B_ovatus           --------MKNRIIILCLVCLCLVN---IGLFAQETSPRTIFSLNEGWECRPI---TTVN 
B_uniformis        MEREKNTLPQKACHWMAAVIISLFV------LPPVHAQRQTQTINDSWKFLKG---ECTA 
B_dorei            --------MKRFAGWLLFFWGC-----------ICCICASEISITDSWKYKAE---NDER 
 
H_sapiens          GFEEQWYRRP-------LWESGPTVDMPVPSSFNDI-SQDWRLRHFVGWVWYEREVILPE 
F_prausnitzii      GVEAGWA-LD-------LPS---SLSMPVPASFCDL-FTDKASREYCGDFWYETSFFVPA 
E_coli             GIDQRWWESA-------LQE---SRAIAVPGSFNDQ-FADADIRNYAGNVWYQREVFIPK 
S_agalactiae       PN------EL-------LPS---DEVMVIPTSFNDL-MVSKEKRDYIGDFWYEKVIEVPK 
C_perfringens      GLTEELSKAP-------LED---TIEMAVPSSYNDL-VESQEVRDHVGWVWYERNFTIPK 
E_eligens          GFEEKWYEKP-------LKD---ADTMPVPASYNDL-KEGTDFRDHYGWVFYQRNISVPE 
P_merdae           -----IWEAVRPAAPGSSEAVPIWQPVTLPHCFNAEDAVDPDVNYYEGPGWYKTLLAIDN 
H11G11-BG          -------------P---KTLPEDWESVNLPHTWNGTDGQDGGNDYYRGKCCYVKLLKKAD 
B_Fragilis         ---------------------GDTRRVDLPHTWNAQDALAGKIDYKRGIGNYEKALYIRP 
B_ovatus           -------------------RKAPFTPVTIPHTWNTS-YIEGTTLYERKMMVYQRPLVVTK 
B_uniformis        -------------AADSAFDDSKWTSIHLPHTWNTDAYT--EKDYYRGTGWYRRQLTLPQ 
B_dorei            -------------FSSMDWNDSDWVTVDLPHTWNAGDVIDEQRGYRRGISWYRKKLFIPS 
 
H_sapiens          RWTQDLRTRVVLRIGSAHSYAIVWVNGVDTLEHEGGYLPFEADISNLVQV---------- 
F_prausnitzii      EWSG---WDIVLRFGSVTHRARVFVNGVEVAQHEGGFLPFDATVTNIVRY---------- 
E_coli             GWAG---QRIVLRFDAVTHYGKVWVNNQEVMEHQGGYTPFEADVTPYVIA---------- 
S_agalactiae       VSED---EEMVLRFGSVTHQAKIYVDGVLVGEHKGGFTPFEVLVPECKYN---------- 
C_perfringens      TLLN---ERIVLRFGSATHEAKVYLNGELLVEHKGGFTPFEAEINDLLVS---------- 
E_eligens          YVKS---QRIVLRCAAVTHYAMIYLNGKLICEHKGGFLPFEVELNDDLQD---------- 
P_merdae           PYRN---GRIVLDFDGAGQKTDVYVYTTHVGSHVGGYDSWNVDITDAVKAFLGSKDAERF 
H11G11-BG          LGEK---PVHYIQFDGVNSSAEVWWNGEKIGSHDGGYSAFRVRIPEISD----------- 
B_Fragilis         EWKG---KRLFLRFDGVNSIADVFINRKHIGEHRGGYGAFIFEITDLVKY---------- 
B_ovatus           AMKN---KRLFLYFEGVNSAAQVFMNRRTVGEHLGGYTAFCIEITDEVKE---------- 
B_uniformis        GWKE---KQIILRLDAAGKSATIYINGKNVGEHAGGYTACSFNITPFLSF---------- 
B_dorei            EARD---KKITLRFDGVASKADVYLNGKLLKTHLGAYTAFGVDITDICEV---------- 
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H_sapiens          GPLPSRLRITIAINNTLTP-TTLPPGTIQYLTDT-----SKYPKGYFVQNTYFDFFNYAG 
F_prausnitzii      NQ---FNKLSVLANNELSE-TMLPAGTTCTLA-----------DGRKIAAPYFDFYNYAG 
E_coli             GK---SVRITVCVNNELNW-QTIPPGMVIT-----------DENGKKKQSYFHDFFNYAG 
S_agalactiae       NE---KIKVSICANNVLDY-TTLPVGNYSEII-------QEDGSIKKKVRENFDFFNYAG 
C_perfringens      G----DNRLTVAVNNIIDE-TTLPVGLVKEV--------EVDGKKVIKNSVNFDFFNYAG 
E_eligens          G----DNLLTIAVNNVIDY-TTLPVGGKANMMSGMMGGMGAGASDKPQNNPNFDFFNYCG 
P_merdae           KG---KVPLSIRCDNSRDL-EMIPS-------------------------DLADFNIYGG 
H11G11-BG          -----ENILTVYADNSPN--DTVYP-------------------------QVADFTFYGG 
B_Fragilis         GE---KNSVLVRANNGEQ--LDIMP-------------------------LVGDFNFYGG 
B_ovatus           GE---NL-LEVWASNAYR--TDILP-------------------------VSGDFNVNGG 
B_uniformis        DT---PNTLAVCVDNAR---QDIAP-------------------------ISGDFTFFGG 
B_dorei            GK---ENLLAVKVDNSSSLGEILPP-------------------------VSGDFSIFGG 
 
H_sapiens          LQRSVLLYTTPTTYIDDITVTTSVEQ----DS----GLVNYQIS--VKGSN--LFKLEVR 
F_prausnitzii      IHRPVWLMALPKERVLDYSTRYRLTE----TG----AEIDYTVS--TNGP----HPVTVE 
E_coli             IHRSVMLYTTPNTWVDDITVVTHVAQDCN--H----ASVDWQVV--ANG------DVSVE 
S_agalactiae       VHRPLKLMIRPKNHIFDITITSRLSDDLQ--S----ADLHFLVE--TNQK---VDEVRIS 
C_perfringens      IHRPVKIYTTPKSYIEDITIVTDFKE----NN----GYVNYEVQ--AVGK----CNIKVT 
E_eligens          ITRPVKIYTTPETYINDITVTADIDFTKEEPS----AVLNYNVE--IKGKDYNNITCKVE 
P_merdae           LYRYLNLVYLPEVSFEQIHLESSLSSNL------KEGILKVKTSFYNP-EDIRKADVTVS 
H11G11-BG          IYRDVTVIGVDESHFDLEFYGSSGIMITPKVSG-----LSAAVNITARVTNPQDCSVRFV 
B_Fragilis         IYRDVHLLITDETCISPLDYASPGVYLVQEVVSPQEAKVCAKVNLSNRA-ADGTAELQVL 
B_ovatus           IHRPCHLIVTGQDCISPLFYASPGVFIHQENISKTVADVNVETHLSLKN-KKQGLRLKTT 
B_uniformis        IYRDVWLTAVPNQHFNLTNHGSDGLFISTPQVSEEQATLSIRGEVKNDAPEKATLELTHT 
B_dorei            IYRRVFLQWTEKVHFVTEPYAAVPVRIQTPEVSVSEASMQIVAFLKNDFTDTKHVHVNVF 
 
H_sapiens          LLDAENKVVANGT-------G-----TQGQLKVPGVSLWWPYLMHERPAYLYSLEVQLTA 
F_prausnitzii      LYDGT-TRVAESS-------G-----TTGTLVVKNARLWNVH-----AAYLYDLVIRIHE 
E_coli             LRDADQQVVATGQ-------G-----TSGTLQVVNPHLWQPG-----EGYLYELCVTAKS 
S_agalactiae       VFDEDNKLVGE---------T-----KDSRLFLSDVHLWEVL-----NAYLYTARVEIFV 
C_perfringens      IIDEENNIVAEGE-------G-----KEGKLTINNVHLWEPM-----NAYLYKLKVELLD 
E_eligens          LFDEEGTKLSETE-------G-----SEGTFEISNVRLWQPL-----NAYLYKIKVTAGQ 
P_merdae           VYDVDRKPVFSKTLEGILPLG-DQ--LLAKMKIKNPVLWDV-----DVPQLYTCELTVKT 
H11G11-BG          VTDADKKPVGEK-------NV-DASDGKTVIEIENAHLWNGT----QDPYLYSLTAELL- 
B_Fragilis         VTDGTKVICKESRNVS-LKQG-ADILEQLPLLIQKPRLWNGC----EDPFMYQVSISLH- 
B_ovatus           VADADNKTV----ASN-EVEV-SDVIVKQPMKIHRPILWDGK----KNPYLYTVTVELY- 
B_uniformis        IYRPDGTLLQTLKKNIQLKAGETYAFSNEATPVLKPELWTP-----ETPRLYRVETTLRN 
B_dorei            LCDEMNRIVKEKQLKLKLIPGRKYPISTSVGRIENPHLWSP-----ELPYLYTVKVQVCD 
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H_sapiens          QTSLGPVSDFYTLPVGIRTVAVT-KSQFLINGKPFYFHGVNKHEDADIRGKGFDWPLLVK 
F_prausnitzii      GS---AVVDEYLDRIGIRTFEIR-HGRFLLNGSPVYLRGFGRHEDADIRGRGLDLPTVKR 
E_coli             QT----ECDIYPLRVGIRSVAVK-GEQFLINHKPFYFTGFGRHEDADLRGKGFDNVLMVH 
S_agalactiae       DN---QLQDVYEENFGLREIEVT-NGQFLLNRKPIYFKGFGKHEDTFINGRGLNEAANLM 
C_perfringens      DE---EIIDTYFEEFGVRTVEVK-DGKFLINNKPFYFKGFGKHEDSYVNGRGINEAINIK 
E_eligens          --------DVYTLPYGVRSVRVD-GTKFLINEKPFYFKGYGKHEDTFPNGRGINLPMNTK 
P_merdae           ----PDQTFTTEERFGFRHTEFKDKGPFFLNGKRLLLRGTHRHEDHAGVAQAMTEDMMRR 
H11G11-BG          -K-DGEKTDEISVRFGCRSFSIDPQKGFILNGKPCPLRGVSRHQDRPGIGNALTEKEHRE 
B_Fragilis         -K-DGKQIDSVTQPLGLRYYHTDPDKGFFLNGKHLPLHGVCRHQDRAEVGNALRPQHHEE 
B_ovatus           -D-GNLLKDRMVQRTGFRYFSVDHEKGFFLNGEYLNLYGFCRHEDAVGRASALLPEDYRM 
B_uniformis        RK-TKTLLDQSNHYTAFRWFRFDGDEGFFLNGKPYKLRGICRHQDQKPIGPALTDEMHRR 
B_dorei            AK-NGEMYQEVISPVGFRWFSVD-KTGFYLNGKYLKLRGAARHQDYAGLGTAIPVEMNRR 
 
H_sapiens          DFNLLRWLGANAFRTSHYPYAEEVMQMCDRYGIVVIDECPGVGLALPQF----------- 
F_prausnitzii      DFELMKWIGANCFRTSHYPYAEEIYQMADEEGFLIIDEVPAVGFMQSTANFLAANQGNGR 
E_coli             DHALMDWIGANSYRTSHYPYAEEMLDWADEHGIVVIDETAAVGFNLSLGIGF--EAGN-K 
S_agalactiae       DLNLLKDMGANSFRTSHYPYSEEMMRLADRMGVLVIDEVPAVGLFQNFNASL--DLSP-- 
C_perfringens      DFNLMKWIGANSFRTSHYPYSEEIMRLADREGIVVIDETPAVGLHLNFMAT---GFGG-D 
E_eligens          DISIMKWQHANSFRTSHYPYSEEMMRLCDEEGIVVIDETTAVGVNLQFGGGA--NFGG-E 
P_merdae           EMRMMKDMGVNFIRLGHYQQSEIILDLCDELGILVWEEIPWCRGG--------------- 
H11G11-BG          DMDLICELGANTIRLAHYQHSRVFYDLCDECGMAVWAEIPYISRH--------------- 
B_Fragilis         DVALMREMGVNAIRLAHYPQATYMYDLMDKHGIVTWAEIPFVGPGGYADKGF-------- 
B_ovatus           DMELIKESGATAMRLAHYPHAEPMYDLSDENGIILWTEIPMCGPGGQAFTGF-------- 
B_uniformis        DFLLMKEMGANFIRISHYPQDDALLEMCDKLGMLAWEEIPIIDIV--------------- 
B_dorei            DMRLLKEMGANFVRISHYPQDPEIYRACDELGLIVWSEICVVNEV--------------- 
 
H_sapiens          ----F-----NNVSLHHHMQVMEEVVRRDKNHPAVVMWSVANEPASHLE----------- 
F_prausnitzii      QQGFFEK-ETTPALLKNHKAALTDMIDRDKNHPSVIAWSLLNEPQCTSA----------- 
E_coli             PKELYSEEAVNGETQQAHLQAIKELIARDKNHPSVVMWSIANEPDTRPQ----------- 
S_agalactiae       --KDNGT-WNLMQTKAAHEQAIQELVKRDKNHPSVVMWVVANEPASHEA----------- 
C_perfringens      AP-KRDT-WKEIGTKEAHERILRELVSRDKNHPCVVMWSVANEPDSDSE----------- 
E_eligens          RIGTFDK-EHGVQTQEHHKDVIRDLISRDKNHACVVMWSIANEPDSAAE----------- 
P_merdae           --------LGGDVYKKQARRMLANMIVQHHNHPAVIIWGLGNENDWPNDFNTFDKS---- 
H11G11-BG          ----------MPGGRENTVSQMKELIYQNINHPSIIVWGLSNEITMNGASD----S---- 
B_Fragilis         --------VDQASFRENGKQQLIELIRQHYNHPSICFWGLFNELKEV-------GD---- 
B_ovatus           --------VDTEGYKDNARLAVKELVYQKFNHPSICFWGICNEILVSDGKRFVEYD---- 
B_uniformis        --------PNTPGYGDNCERNLREMIRQHYNHPSIITWGYMNEILLVTQRKYKTEAELKP 
B_dorei            --------RKNTAFAHNCKEMLKEMILQNYNHPSVVLWGAMNELWDYHKQ---------- 
 
 
 



	

	

211	

H_sapiens          ---SAGYYLKMVIAHTKSLDPS-RPVTFVSNS-------NYAADKGAPYVDVICLNSYYS 
F_prausnitzii      ---GTEEYFKPLFELARRLDPQKRPRTYTVLMTS-----LPDTSKGQRFADFVSLNRYYG 
E_coli             ---GAREYFAPLAEATRKLDPT-RPITCVNVMFC-----DAHTDTISDLFDVLCLNRYYG 
S_agalactiae       ---GAHDYFEPLVKLYKDLDPQKRPVTLVNILMA-----TPDRDQVMDLVDVVCLNRYYG 
C_perfringens      ---GAKEYFEPLIKLTKELDPQKRPVTVVTYLMS-----TPDRCKVGDIVDVLCLNRYYG 
E_eligens          ---GAYDYFKPLYDLARELDPQKRPCTLVSVQGT-----TADTDCSSQLSDVICLNRYYG 
P_merdae           ---AIRAFMKELHDMAHRLDDT-RMTAIRRCEFC------------NDIVDVYSPSIWAG 
H11G11-BG          ---SLIENHRMLNDLVHKIDPT-RPTTIAVLSMC------DPGEEYVRIPDVLSYNHYFG 
B_Fragilis         ---NPVEYVKELNALAKQEDPT-RPTTS---ASN------QDGNL-NFITENIAWNRYDG 
B_ovatus           ---NPIPFIKELNGIYKSIDSS-RLTAL---ATC------VDQSYYLGCSDLIAWNKYFG 
B_uniformis        VLERTLALANRLERVLKEEDST-RISTMAFHGSN-----SYNETGLSKITDIVGWNLYQG 
B_dorei            ----AIALARELEALKKELDPY-RLSCVAFHAFTWEKPYTQSSKEMFSISDVNGVNVYES 
 
H_sapiens          WYHDYG-HLELIQLQLATQFENWYKKY-QKPIIQSEYGAETIAGFHQDPPL--------- 
F_prausnitzii      WYVLGGAGLADAEAAFHHEMDGWAKVLHGRPLIFTEYGTDNLSGAHKLPSV--------- 
E_coli             WYVQSG-DLETAEKVLEKELLAWQEKL-HQPIIITEYGVDTLAGLHSMYTD--------- 
S_agalactiae       WYVDHG-DLTNAEVGIRKELLEWQDKFPDKPIIITEYGADTLPGLHSTWNI--------- 
C_perfringens      WYVAGG-DLEEAKRMLEDELKGWEERCPKTPIMFTEYGADTVAGLHDTVPV--------- 
E_eligens          WYFGGP-DLEVSEIGLRKELSDWGKL--GKPVMFTEYGADTVSGLHDTTSV--------- 
P_merdae           WYRGVFT-------DYKSISEQEMQKV--KHFLHVEWGGDSHARRHSEDAFYNLKNIEAG 
H11G11-BG          WYGGKTD-------MYGPWFDKFHKKYPDRAVGMSEYGCEALNWHTS-DPQ--------- 
B_Fragilis         WYGSTPK-------TLATFLDRTHKKHPELRIGISEYGAGASIYHQQ-DSL--------- 
B_ovatus           WYKDAAP-------SASKFFDDCRDSSKGIPVGVSEYGGGASINHHQ-WPL--------- 
B_uniformis        WYGGDLT-------GFEKFLAQQHQNHPTHPMIVSEYGAGSDKRLHSLHPR--------- 
B_dorei            WYQGDSA-------TIAPMFDKFCSYSTAKPRFLSEFGAGSDERIHSYTPR--------- 
 
H_sapiens          ------------------------MFTEEYQKSLLEQYHLGLDQKRRKYVVGELIWNFAD 
F_prausnitzii      ------------------------MWSAEYQNEYLEMTHAVFDH--YDFVQGELVWNFAD 
E_coli             ------------------------MWSEEYQCAWLDMYHRVFDR--VSAVVGEQVWNFAD 
S_agalactiae       ------------------------PYTEEFQCDFYEMSHRVFDG--IPNLVGEQVWNFAD 
C_perfringens      ------------------------MFTEEYQVEYYKANHEVMDK--CKNFVGEQVWNFAD 
E_eligens          ------------------------MYTEEYQVEYYEMNNKVFDE--FDFVVGEQAWNFAD 
P_merdae           KGGDERAGDASLYGGVPRASRDGD-WSESYVVRLIDWHLKEQET--MPWLTGTAYWPFKD 
H11G11-BG          ------QGD----------------YTEEYQAKYHEDVIRQIAV--RPWLWSTHVWNMFD 
B_Fragilis         ------KQP----------SASGWWHPENWQTYYHMENWKIIAE--RPFVWGTFVWNMFD 
B_ovatus           ------AME---------DRSDSHFHPEEAQTFCHEGNWESFAK--RPYLWAKFIWVFAD 
B_uniformis        ------AFD----------------FSIEYQQKYLEHYLPVLED--TPYICGGTHWNFID 
B_dorei            ------TFD----------------FTPEFQLDFNRRYINEMEK--RPDYIGYSIWNLVD 
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H_sapiens          FMTEQSPT--RVLGNKKGIFTRQRQ-PKSAAFLLRERYWK-IANETRYPHSVAKS----- 
F_prausnitzii      FQTTEGIL--RVDGNKKGIFTRQRQ-PKDAAYLFRKRWTT-LPVDFKKRKK--------- 
E_coli             FATSQGIL--RVGGNKKGIFTRDRK-PKSAAFLLQKRWTG-MN-FGEKPQQGGKQ----- 
S_agalactiae       FETNLMIL--RVQGNHKGLFSRNRQ-PKQVVKEFKKRWMT-IPHYHNKKNSVK------- 
C_perfringens      FATSQGII--RVQGNKKGIFTRERK-PKMIAHSLRERWTN-IPEFGYKK----------- 
E_eligens          FATSQSLL--RVQGNKKGLFTRDRK-PKMVAHYFRNRWST-IPEFGYKTK---------- 
P_merdae           FSTPVRPDNPVPYVNQKGVVERDFT-PKESYYVFQSYWT-EKPMIHIYGHTWPVRWGGKD 
H11G11-BG          FAADARSEGGENGMNHKGLVTFDRKYKKDSFYAYKA-WLSDEPFVHICGKRYIDRPESM- 
B_Fragilis         FGAAHRTEGDRPGINDKGLVTFDRKVRKDAFYFYKANWNKQEPMIYLAEKRCRLRYQPE- 
B_ovatus           FPSYMRQEGEKDGYNDKGLVTHDRKTKKDAFYFYKANWNP-EPMIYITSRRFTKRDNPK- 
B_uniformis        FSSALRDES-MPRINNKGLVYADRT-PKDVYHYYQAAWRKDIPVLHIASRDWTDRAGVQQ 
B_dorei            FQVDGRGDS-KPNLNQKGMLTEDRR-KKEIYYYCQARWS-DIPMIHIAGADWTKRVEICD 
 
H_sapiens          -------------QCLENSLFT-------------------------------------- 
F_prausnitzii      ------------------------------------------------------------ 
E_coli             ------------------------------------------------------------ 
S_agalactiae       ------------------------------------------------------------ 
C_perfringens      ------------------------------------------------------------ 
E_eligens          ------------------------------------------------------------ 
P_merdae           DR----KEILVYSNCDEVELFVNGVSQGVKRRNSQDYPAAGLRWNCV-YQEGMNEIRAVG 
H11G11-BG          ------TSVTVYTNEPSVELFANGKSLGVQKRGEFPF----FYFSVP--NEGETVLTAKA 
B_Fragilis         ------QTFMAFTTAPEAELFVNGVSCGKQKADTYST----VVWKNVKLTSGENIIRVT- 
B_ovatus           ------TDIKVFTNLKEATLYINNRKIGTMKPDEMNR----VIWKDIRLNDGRNIICVE- 
B_uniformis        GNAPVYLPVKIYTNLSEVELFIDGISLGKQKTENYTA----TF-EVP-FSNRNPFLFAQG 
B_dorei            DSINV-RKISVFSNQKTVELIHNGKSLGVREVVNGEA----VF-AVP-FINGENLLDARS 
 
H_sapiens          ------------------------------------------------------------ 
F_prausnitzii      ------------------------------------------------------------ 
E_coli             ------------------------------------------------------------ 
S_agalactiae       ------------------------------------------------------------ 
C_perfringens      ------------------------------------------------------------ 
E_eligens          ------------------------------------------------------------ 
P_merdae           VKKKEKKEVSDVIRQE-------------------------------------------- 
H11G11-BG          GDC------TDESRIRKVDKANPDY----------VLQEEG-AVI--------------- 
B_Fragilis         -------------------TPGKKP----------LT---D-EVT--------------- 
B_ovatus           -------------------GKNGKG----------LL---S-DTC--------------- 
B_uniformis        NYQ--GKTVQDGLRINF--TPIPACLDANNLKGLELAVNVG-SQCFFTSDESQLTWLPDQ 
B_dorei            GA------LSDRLKIQM--KLLSSRLTDSDVLLDGLCINLGQEHCYFIDPQLQEIWIPDK 
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H_sapiens          ------------------------------------------------------------ 
F_prausnitzii      ------------------------------------------------------------ 
E_coli             ------------------------------------------------------------ 
S_agalactiae       ------------------------------------------------------------ 
C_perfringens      ------------------------------------------------------------ 
E_eligens          ------------------------------------------------------------ 
P_merdae           -YQTAKWDKEAACQVSL-------------LSE---EGDTALVQVQLIDKNGIRCLSSKK 
H11G11-BG          -----NWFEIETPPGYMS---VND-----TIGDILATAKGKLLALKI---LKMVRANMKK 
B_Fragilis         -----VEYKEDREGHHHH---HH------------------------------------- 
B_ovatus           -----EWYCIK------------------------------------------------- 
B_uniformis        PYAAGSWGYIGGKEGT-------------AQTEIQNTADGPLFQTLR---NEIEGY---- 
B_dorei            PYTKGSWGYMDGKPFNSWPGSSHDGVRYGVGADIKNTFLEPLFQTFL---IGTTCY---- 
 
H_sapiens          ------------------------------------------------------------ 
F_prausnitzii      ------------------------------------------------------------ 
E_coli             ------------------------------------------------------------ 
S_agalactiae       ------------------------------------------------------------ 
C_perfringens      ------------------------------------------------------------ 
E_eligens          ------------------------------------------------------------ 
P_merdae           QITFEIAGDG---------SLICNLGTSTGSRKVQAYNGRALI-------RIKR----NE 
H11G11-BG          NKGKSTGGMADMAKGMKINKSIIEMGKGFSVKRVCMMAGGLFTKEQILEINA-------- 
B_Fragilis         ------------------------------------------------------------ 
B_ovatus           ------------------------------------------------------------ 
B_uniformis        --------RFDAP------QGVYEIE---------LLFTDIFRRNAGIAYQLDRNGQQEN 
B_dorei            --------RLDVP------DGVYEIG---------FYFTEPFSKDERK--NIVRTGVSAE 
 
H_sapiens          ------------------------------------------------------------ 
F_prausnitzii      ------------------------------------------------------------ 
E_coli             ------------------------------------------------------------ 
S_agalactiae       ------------------------------------------------------------ 
C_perfringens      ------------------------------------------------------------ 
E_eligens          ------------------------------------------------------------ 
P_merdae           GNSVVA--------------VKSEGLPTAFLELKS--------------PK--------- 
H11G11-BG          ----------------SLNKIKKK------------------------------------ 
B_Fragilis         ------------------------------------------------------------ 
B_ovatus           ------------------------------------------------------------ 
B_uniformis        RESTFGISINGEVVEESLSPCKESGYFRALRKKYYI-TNDKEYIDIRFHSTSGTCFLNGI 
B_dorei            GQRVFDVSVNGEKLIDSLNLADSYGEQTAVVKTLVVNVRNHEGLEILLSPQKGQGVISGL 
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H_sapiens          ------ 
F_prausnitzii      ------ 
E_coli             ------ 
S_agalactiae       ------ 
C_perfringens      ------ 
E_eligens          ------ 
P_merdae           ------ 
H11G11-BG          ---QK- 
B_Fragilis         ------ 
B_ovatus           ------ 
B_uniformis        KLRNIY 
B_dorei            KVKKIR 
 


