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ABSTRACT 

 

John Bonney: Influence of Core Neuromuscular Control on Pelvic Position during Overhead 

Squat 

(Under the direction of Darin Padua) 

 

 Anterior Pelvic Tilt (APT) is theorized to be an intrinsic risk factor for anterior 

cruciate ligament (ACL) injury. There is little research to substantiate this claim, and no 

reliable, valid, easy, and clinically relevant test to assess it. The purpose of this study is to 

determine what correlations exist between APT, and various bony and neuromuscular 

characteristics. To accomplish this, differences in Lumbo-Pelvic Hip Complex (LPHC) 

electromyography (EMG), kinematics, Range of Motion (ROM), boney alignment, and the 

Double Leg Lowering Test (DLLT) will be compared among physically active participants.  
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CHAPTER 1 

INTRODUCTION 

Between 1999 and 2008 over 6 million knee injuries were treated in emergency 

rooms, with 49% related to sport or recreation, and 15-24 year olds showing the highest 

injury rate (Gage, McIlvain, Collins, Fields, & Comstock, 2012). Knee injuries make up a 

significant percentage of injuries suffered by college athletes, and of those injuries, anterior 

cruciate ligament (ACL) injury is one of the most devastating an athlete can suffer. ACL 

injury rates are estimated at 80,000 to 250,000 a year, with 50% of these injuries occurring in 

young athletes ages 15-25(Griffin et al., 2006).   

Multiple neuromuscular risk factors have been proposed for ACL injury, including 

greater knee valgus angle and knee valgus moment (Hewett et al., 2005), greater hip internal 

rotation (Besier, Lloyd, Cochrane, & Ackland, 2001), less knee flexion angle (Walsh, Boling, 

McGrath, Blackburn, & Padua, 2012), smaller hip flexion angle (Blackburn & Padua, 2009), 

greater proximal tibia anterior shear force (Chappell, Yu, Kirkendall, & Garrett, 2002), lower 

gluteus maximus activation (Bohdanna T. Zazulak et al., 2005), and greater quadriceps-to-

hamstring activation ratio (Chappell, Creighton, Giuliani, Yu, & Garrett, 2007). Each of 

these proposed neuromuscular risk factors may directly or indirectly increase strain in ACL 

and predispose one to an ACL injury (Dai, Herman, Liu, Garrett, & Yu, 2012; Hashemi et 

al., 2011). Thus, understanding factors associated with these proposed neuromuscular risk 

factors for ACL injury may improve our understanding of ACL injury risk management and 

prevention strategies.  
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Lumbo-pelvic hip complex (LPHC) neuromuscular control has gained increased 

attention as an important factor associated with those proposed neuromuscular risk factors for 

ACL injury (Bell, Padua, & Clark, 2008; Ingram, Fields, Yard, & Comstock, 2008; Leetun, 

Ireland, Willson, Ballantyne, & Davis, 2004; Noehren, Hamill, & Davis, 2012; Padua, Bell, 

& Clark, 2012; B. T. Zazulak, Hewett, Reeves, Goldberg, & Cholewicki, 2007). The LPHC 

is defined anatomically as the abdominals, paraspinals and gluteals, pelvic floor musculature, 

hip flexors, abductors, and rotators, diaphragm, and hamstrings. Numerous research studies 

have demonstrated that movement of the LPHC can alter knee kinematics and kinetics, 

indicating that deficits in LPHC neuromuscular control could increase the risk of knee injury 

(Jamison, Pan, & Chaudhari, 2012; Popovich & Kulig, 2012; Shirey et al., 2012). For 

example, Blackburn et al. (2008) demonstrated  that an increased trunk flexion angle during a 

drop landing task was associated with increased hip and knee flexion angles which decreased 

the forces contributing to ACL loading. Kulas et al. (2012) also demonstrated that increased 

forward trunk lean during a single leg squat decreased ACL loading. In a separate study by 

Kulas et al. (2010), increasing trunk load by 10% of body mass resulted in an increase in 

anterior tibial shear forces and hamstring force dependent on landing posture. In general, 

these studies demonstrated those who landed in a more erect or extended posture experienced 

greater forces during functional landing tasks. 

Trunk positioning in the frontal and transverse planes has also been shown as a risk 

factor, with Dempsey et al. (2012) finding that torso lateral flexion and torso rotation in the 

direction of the catch were significantly correlated with peak knee valgus moment during an 

overhead catch and landing task. Jamison et al. (2012) conducted a correlational study in 

which participants performed cutting maneuvers that suggested lateral torso lean may 
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increase ACL load and risk of injury. Frank et al. (2013) conducted a study looking at the 

LPHC influence on triplanar knee moments.  They found that a greater internal knee varus 

moment was associated with a greater internal hip adduction moment and trunk rotation 

displacement away from the stance leg during a side step cutting task. Shirey et al. (2012) 

found that increased activation of the abdominal musculature during a single leg squat 

decreased lateral hip displacement. Zazulak et al. (2007) found that increased trunk 

displacement during a sudden force release task predicted knee injury risk as well, 

specifically in females. Specifically, those who showed an increased lateral displacement 

following the release of a counterweighted isometric hold were more likely to suffer a knee 

injury. 

With so much research demonstrating the impact the LPHC has on knee kinematics 

and kinetics, it has become increasingly clear that there is a detrimental impact on knee 

motion in individuals with poor LPHC neuromuscular strength and control. One component 

in particular that has not been studied in depth is the effect anterior pelvic tilt (APT) has on 

the knee. 

Increased APT is frequently theorized to be an underlying factor associated with 

altered LPHC neuromuscular control and thus may be a risk factor for ACL injury. This 

concept is based on the fact that as the pelvis is tilted anteriorly, it forces the femoral head 

posteriorly, which causes internal rotation and adduction (Duval, Lam, & Sanderson, 2010; 

Hruska, 1998; Ireland, 2002). These two motions are key contributors to the “position of no 

return” (Ireland, 2002)  which has been shown to be a severely detrimental position for the 

ACL. However, we are unaware of any research that has specifically examined the 
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relationship between increased APT and lower extremity biomechanics, such as hip internal 

rotation and adduction. 

Several underlying muscle imbalances are proposed to explain the presence of 

increased APT.  Specifically, range of motion deficits in the musculature could contribute to 

the aforementioned risk factors of excessive APT and femoral internal rotation and 

adduction. A tight iliopsoas pulling the lumbar spine anteriorly, coupled with a tight erector 

spinae group bowing the lumbar spine anteriorly could increase lumbar lordosis (LL), while a 

tight rectus femoris could tilt the pelvis anteriorly, causing femoral internal rotation and knee 

valgus (Neumann, 2010). The lattisimus dorsi originates from the thoracolumbar fascia, and 

when tight, can contribute to lumbar lordosis when the arms are forward flexed such as in an 

overhead squat assessment (OSA) (Neumann, 2010) or when jumping for a rebound in 

basketball or a block in volleyball. This occurs because the vector of force created by the lats 

is superior and anterior to the lumbar spine, causing the spine to be pulled in that direction. If 

these muscles are not lengthened to a functional point, then in theory dynamic motion, such 

as increased APT, may be altered. 

Excessive anterior pelvic tilt could be influenced by the interaction between the 

muscle activity of agonists and antagonists. Increased activation of the erector spinae and/or 

hip flexors (rectus femoris and/or iliopsoas) combined with decreased activation of the 

abdominal and/or hip extensors (gluteus maximus and/or hamstrings) muscles is believed to 

lead to increased APT (Tateuchi, Taniguchi, Mori, & Ichihashi, 2012). Tateuchi et al. 

demonstrated that increased activity of the tensor fasciae latae relative to the gluteus 

maximus and semitendinosus muscles was significantly associated with APT. In addition, 

decreased gluteus maximus activity in relation to the semitendinosus was indicative of 
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increased activity of the ipsilateral erector spinae, which again, could contribute to APT. The 

combination of these muscle imbalances could lead to altered force couples acting on the 

pelvis in the sagittal plane, thus facilitating increased APT and subsequently altering lower 

extremity biomechanics associated with ACL injury (Mayer, Verna, Manini, Mooney, & 

Graves, 2002).  

Assessing the LPHC to determine which, if any, of the aforementioned variables are 

present is an important task that the clinician faces. Several different means have been used 

to quantify core stability, such as McGill’s endurance protocols, the prone plank, the Davies 

or closed kinetic chain upper extremity stability test, the functional movement screen, sudden 

force release apparatuses, and video analysis. Among all assessment tools, the double leg 

lowering test (DLLT) has been shown to be a very reliable predictor of lumbo-pelvic motor 

control (Krause, Youdas, Hollman, & Smith, 2005). The time required to administer this test 

is not excessive, but the patient must be trained to posteriorly tilt the pelvis while lowering 

the legs, and requires two clinicians if a sphygmomanometer is not used. If the 

sphygmomanometer is used, the clinician must be adept at its utilization while also 

monitoring the participant’s leg angle. Although this test challenges the abdominals 

effectively (Shields & Heiss, 1997), the body should be positioned in supine, therefore it is 

not very functional and may not be as applicable to the athletic population. However, because 

of its reliability, it will be the assessment tool of choice for LPHC neuromuscular control in 

this study. 

The OSA has been used to assess  and identify trunk and lower extremity faulty 

movement patterns in the sagittal and frontal planes (Bell et al., 2008; Butler, Plisky, 

Southers, Scoma, & Kiesel, 2010; Macrum, Bell, Boling, Lewek, & Padua, 2012; Padua et 
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al., 2012). It is functional in nature, requires very little equipment or set up, takes very little 

time, and can be used to assess multiple factors related to dynamic movement based on the 

relationship between tight/overactive and weak/underactive muscles (Neumann, 2010). 

However, there has been little research on the validity of the OSA in relation to the LPHC 

and its strength and neuromuscular control capabilities. To validate the OSA, muscle activity, 

ROM, and neuromuscular control and strength need to be compared between individuals 

with excessive APT and those without to determine if there are significant differences 

between the two. 

If the OSA was found to be a valid assessor of LPHC neuromuscular control and 

strength, it would give further credence to its use as an assessment technique, and provide the 

clinician with a quick and easy tool to utilize when attempting to assess the LPHC in the 

sagittal plane for ACL risk factors.  

In summation, the purpose of this study is to validate the OSA as a tool to measure 

APT. Differences between groups of individuals with and without significant APT will be 

quantified by observing LPHC motion during an OSA (lumbar lordosis), LPHC 

neuromuscular control during a DLLT, flexibility, EMG activity of trunk and hip flexors and 

extensors, and trunk and lower extremity kinematics. To date, there is little research looking 

at the relationship between anterior pelvic tilt and lower extremity kinematics. However, 

based on what research there is, screening for sagittal plane LPHC neuromuscular control is 

warranted in ACL injury prevention, and a quick, easy, reliable, and valid tool is needed. 

 

1.1 Variables 

 Anterior Pelvic Tilt (in degrees) 
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 LPHC neuromuscular control score 

o DLLT (in degrees)  

 Joint Ranges of Motions 

o Hip Flexors 

o Knee Extensors 

o Knee Flexors 

o Lattisimus Dorsi 

o Triceps Surae 

 Kinematics 

o Anterior Pelvic Tilt (Peak) 

o Hip Internal Rotation (Peak and displacement) 

o Hip Adduction(Peak and displacement) 

 EMG  

o Erector Spinae 

 Iliocostalis, longissimus 

o Gluteus Maximus 

o Hamstrings 

 Semitendinosus 

 Biceps Femoris 

o Rectus Femoris 

 

 

1.2 Hypotheses 
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RQ1: Were there differences in neuromuscular control characteristics in participants with 

varying levels of APT during an overhead squat? 

o HA1: Sagittal plane APT angle would be positively correlated with hip adduction and hip 

internal rotation angle. 

o HO1: Sagittal plane APT angle will not be positively correlated with hip adduction and 

hip internal rotation angle. 

o HA2: Sagittal plane APT angle will be positively correlated with rectus femoris and 

erector spinae activity, and negatively correlated with gluteus maximus and medial and 

lateral hamstrings. 

o HO2: Sagittal plane APT angle will not be positively correlated with rectus 

femoris and erector spinae activity, and will not be negatively correlated with gluteus 

maximus, medial and lateral hamstrings activity. 

o HA3: Sagittal plane APT angle will be negatively correlated with rectus femoris, 

iliopsoas, triceps surae and lattisimus dorsi ROM, and positively correlated with 

hamstring ROM. 

o HO3: Sagittal plane APT angle will not be negatively correlated with rectus femoris, 

iliopsoas, triceps surae and lattisimus dorsi ROM, and will not be positively correlated 

with hamstring ROM. 

o HA4: Sagittal plane pelvic angle during the OSA will be positively correlated with DLLT. 

o HO4: Sagittal plane pelvic angle during the OSA will be positively correlated with DLLT. 

 

1.3 Operational Definitions 
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LPHC – the definition provided by previous study (Bliss & Teeple, 2005) will be used to 

build a case for the Lumbo-Pelvic Hip Complex (LPHC) as the preferred term. The definition 

is as follows: 

“Anatomically, the core is the musculature that surrounds the 

lumbopelvic region and includes the abdominals anteriorly, the paraspinals 

and gluteals posteriorly, the pelvic floor musculature inferiorly, the hip 

abductors and rotators laterally, and diaphragm superiorly.” 

In addition, the hip flexors and extensors should be added to this definition, as they 

play a significant role in pelvic position. 

Poor Lumbar Lordosis - Defined relative to parallel longitudinal lines through the trunk 

and shank in reference to a grid. A distinct curvature of the lumbar spine in reference to a 

line drawn from C7 to S1 will be denoted as poor. 

Good Lumbar Lordosis - Defined relative to parallel longitudinal lines through the trunk 

and shank in reference to a grid. Little to no curvature of the lumbar spine in reference to a 

line drawn from C7 to S1 will be denoted as good. 

Good Pelvic Control – The pelvis maintains a neutral position with little to no anterior tilt 

visually determined in reference to the lumbar spine and kinematically determined via the 

electromagnetic motion capture system. 

Poor Pelvic Control – The pelvis tilts anteriorly and is visually determined in reference to 

the lumbar spine and kinematically determined via the electromagnetic motion capture 

system. 

Assessment Technique – A test designed to assess the degree of core stability present in an 

individual. The DLLT will be used. 

Flexibility – Flexibility will be measured via goniometry using the Thomas test for the hip 

flexors and rectus femoris, the 90/90 straight leg raise test for the hamstrings, the lat length 
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test for the latissimus dorsi, and weight bearing, straight, and bent knee measurements of 

ankle dorsiflexion from 90 degrees. 

Muscle Activation – EMG activity of the, erector spinae, gluteus maximus, rectus femoris, 

rectus abdominis, and medial and lateral hamstrings, which is normalized to EMG activity of 

maximal voluntary isometric contraction of the designated muscle group. 

Physically Active – Participating in physical activity for at least 30 minutes a day 3 times a 

week. 

1.4 Assumptions 

o The instruments used to collect kinematic and EMG data are reliable. 

o The core stability test is a reliable and valid measure of LPHC stability and 

neuromuscular control. 

 

1.5 Delimitations 

o 18 males and 20 females will be selected from a physically active population. 

o Individuals recruited for the study are Division I athletes or physically active students. 

o No history of injury in the last 6 months or current pain in the shoulder, low back, or 

lower extremity. 

o No history of shoulder, back, abdominal, hip, or knee surgery. 

o All participants will be between the ages of 18 and 25. 

 

1.6 Limitations 

o Unable to control current training status 

o Will not take into account the lateral musculature of the LPHC 
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o The result of this study will not apply to individuals with LPHC or lower extremity 

pathologies. 

o Excessive foot pronation can affect anterior pelvic tilt. 

o Excessive femoral anteversion can affect anterior pelvic tilt. 
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CHAPTER II 

LITERATURE REVIEW 

 Introduction 

The purpose of this literature review is to gain an understanding of the Lumbo-Pelvic 

Hip Complex (LPHC), specifically current definitions, relation to Anterior Cruciate 

Ligament (ACL) injury, and assessment techniques. The information gathered will be used to 

make a case for the need of a simple, timely, reliable, and valid assessment tool that 

clinicians may use when screening athletes for ACL injury risk. The Overhead Squat 

Assessment (OSA) has become a valid and reliable tool in assessing faulty movement 

patterns in participant’s trunk and lower extremities (Bell et al., 2008; Butler et al., 2010; 

Macrum et al., 2012; Padua et al., 2012). However, there has been little, if any, research on 

the validity of the OSA in relation to the LPHC and its strength and neuromuscular control 

capabilities in the sagittal plane, specifically in regards to Anterior Pelvic Tilt (APT). If the 

OSA was found to be a valid assessor of LPHC neuromuscular control and strength, it would 

give further credence to its use as an assessment technique, and provide the clinician with a 

quick and easy tool to utilize when screening for ACL injury risk.  

 

Epidemiology 

Between 1999 and 2008 over 6 million knee injuries were treated in emergency 

rooms, with 49% related to sport or recreation, and 15-24 year olds showing the highest 

injury rate (Gage et al., 2012). Knee injuries make up a significant percentage of injuries 
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suffered by college athletes, and of these injuries, ACL injury is one of the most devastating 

an athlete can suffer. ACL injury rates are estimated at 80,000 to 250,000 a year, with 50% 

of these injuries occurring in young athletes ages 15-25(Griffin et al., 2006). Females suffer 

ACL injury at a rate two to eight times higher than males (Toth & Cordasco, 2001). Over a 

13 year period, Agel et al. (2005) tracked ACL injury rates in males and females in NCAA 

basketball and soccer and found that females had a higher injury rate than males in these two 

sports. Hootman et al. (2007) found that over a 16 year period, out of 5000 ACL injuries 

suffered by collegiate athletes, female gymnastics had the highest rate of ACL injury, and 

along with female soccer and basketball, comprised the top four sports for ACL injury 

including football. Other data has shown that males have a higher overall injury rate, 

accounting for 57-69% of ACL injuries, but this is for a more diverse population and is based 

off of surgical databases and insurance records (Csintalan, Inacio, & Funahashi, 2008; 

Gianotti, Marshall, Hume, & Bunt, 2009; Granan, Bahr, Steindal, Furnes, & Engebretsen, 

2008). In addition to the increased rate of ACL injury among females, the re-injury rate is 

also high. Using the Swedish National ACL Register, Ahlden et al. (2012) found that, out of 

all female soccer players 15-18 years old who underwent ACL reconstruction, 22% suffered 

another ACL injury. 

Regardless of the injury rates between sexes, ACL injury has been shown to increase 

the risk for osteoarthritis and thus decrease the quality of life in those with the condition. 

Thelin et al. (2006) conducted a survey of 825 participants with x-ray verified osteoarthritis 

using matched controls for age, sex, and residential area. Of those 1650 contacted, 1437 

responded. After analyzing the data and accounting for confounding variables, it became 

apparent that knee injuries, such as a fracture, ligament, or meniscus tear diagnosed by a 
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physician, were significantly related to the prevalence of osteoarthritis, especially as a result 

of injuries suffered playing soccer and ice hockey (Thelin et al., 2006).  

In addition to the physical harm, ACL injury causes emotional disturbances as well. 

The immobilization, extensive rehabilitation, and removal from sport and the accustomed 

lifestyle an athlete is familiar with all contribute to depressive manifestations. In a 

comparison of emotional responses to concussion and ACL injury, Mainwaring et al. (2010) 

found that ACL injured patients suffered significantly longer from depression. Whereas the 

concussed patients showed similar depressive states to the ACL patients close the to the 

injury, as time progressed depression levels remained higher for ACL injured patients, while 

depression levels decreased for the concussed, and even ceased, long before the ACL 

patients. 

Another major consideration with respect to ACL injury is the financial impact. The 

cost of an ACL reconstruction can be upwards of approximately $9,000 for the surgery alone, 

to say nothing of the rehabilitation and future health care costs. Even when treated 

conservatively, the cost is still well over $2000 per incident (Farshad et al., 2011). At an 

estimated rate of 200,000 injuries in the U.S. alone each year, the cost of this injury is 

substantial to say the least (Brophy, Wright, & Matava, 2009). 

With the multitude of factors contributing to the impact that ACL injury has on 

patients, preventative measures should be pursued to reduce the frequency of these in both 

sexes, minimize the impact on quality of life, decrease the emotional impact, and curtail costs 

associated with the injury. A thorough understanding of the risk factors involved with ACL 

injury and how they can be modified is an important component to this task. Specifically for 
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this literature review, neuromuscular risk factors will be addressed, as this is related to the 

direct purpose of the study, and are perhaps the easiest to modify. 

 

Potential Neuromuscular Risk Factors for ACL Injury 

Multiple kinematic risk factors have been proposed for ACL injury, particularly in 

females, including greater knee valgus (Ford, Myer, & Hewett, 2003; Malinzak, Colby, 

Kirkendall, Yu, & Garrett, 2001; McLean, Huang, Su, & Van Den Bogert, 2004); lesser knee 

and hip flexion angle (Blackburn & Padua, 2008, 2009; Chappell et al., 2007; McLean, 

Lipfert, & van den Bogert, 2004; Walsh et al., 2012); greater hip adduction(Frank et al., 

2013; Padua et al., 2012)  greater hip internal rotation (Ireland, 2002; Pollard, Sigward, & 

Powers, 2007); greater proximal tibia anterior shear force (Chappell et al., 2002), and 

delayed co-contraction of the hamstrings and quadriceps (Chappell et al., 2007).  

One of the most researched kinematic risk factors is knee valgus (Besier et al., 2001; 

Brazen, Todd, Ambegaonkar, Wunderlich, & Peterson, 2010; Cashman, 2012; Chappell et 

al., 2007; Chappell et al., 2002; Dempsey et al., 2012; Ford et al., 2003; McLean, Huang, & 

van den Bogert, 2005; McLean, Lipfert, et al., 2004; Padua et al., 2012; Pantano, White, 

Gilchrist, & Leddy, 2005; Pollard et al., 2007) Knee valgus loads the ACL beyond capacity 

primarily while the knee is in a partially or fully extended position, and with the additional 

component of knee rotation, can apply enough load beyond the normal capabilities of the 

ACL to cause a rupture (Besier et al., 2001). Several studies have shown that in vivo, the 

ACL is tightest at full extension (Iwahashi et al., 2008; Jordan et al., 2007; Yoo et al., 

2010)which ties in with evidence of lesser knee and hip flexion angles during a jump landing 

being a concern (Blackburn & Padua, 2008, 2009). The screw home mechanism in relation to 
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ACL tension must also be considered. The tibia externally rotates in relation to the femur as 

full knee extension is reached in an open kinetic chain, providing an added stress to the ACL. 

In a closed kinetic chain, increased femoral internal rotation accomplishes the same thing 

(Neumann, 2010). Because of the orientation and attachment of the ACL, anterior tibial 

translation puts a direct load on the ACL. This may be caused by planting and cutting, 

anterior force produced by the quadriceps as extension is neared, and/or delayed co-

contraction of the hamstrings and quadriceps. Although computer simulations suggest that 

anterior tibial shear force alone will not rupture an ACL (McLean, Huang, et al., 2004), in 

conjunction with knee valgus, hip internal rotation, and a latency in hamstring activation, the 

ACL can easily reach a failing point.  

 

LPHC Contribution to Lower Extremity Neuromuscular Deficits 

The core has been described a multitude of ways in the literature. For the purpose of 

this literature review, the definition provided by Bliss and Teeple (Bliss & Teeple, 2005) will 

be used to build a case for the Lumbo-Pelvic Hip Complex (LPHC) as the preferred term. 

The definition is as follows: 

“Anatomically, the core is the musculature that surrounds the 

lumbopelvic region and includes the abdominals anteriorly, the paraspinals 

and gluteals posteriorly, the pelvic floor musculature inferiorly, the hip 

abductors and rotators laterally, and diaphragm superiorly.” 

In addition to the above, the hamstrings, hip flexors, adductors, and obliques should 

be included as they play an important role in stabilizing the LPHC. This definition takes into 

account the fact that the core itself is not solely composed of muscles in the trunk, but 

muscles of the hip and pelvis as well. This is an important distinction as the muscles of the 

trunk never act alone, but rather in concert with those of the hip and pelvis to provide both 
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static and dynamic stability. All these muscles must work together as functional agonists and 

antagonists to maintain proper musculoskeletal alignment and force couples during 

movement (Patla, 2003). The term core can lead to vague and imprecise notions when 

describing this area of the body, and invariably narrows the scope of the discussion. It is with 

this purpose that LPHC will be used throughout the remainder of this literature review. 

Trunk Motion 

Lumbo-pelvic hip complex (LPHC) neuromuscular control has been shown to have a 

significant effect on hip and knee kinematics and kinetics, which may be associated with 

knee injury if it is not functionally sound (Blackburn & Padua, 2008; Kulas et al., 2012). If 

the trunk is not held in an advantageous position during dynamic activity, the forces acting 

on the lower extremities can increase beyond the limits of ACL tissue resilience. An ever 

expanding amount of research has shown a relationship between the LPHC neuromuscular 

control hip and knee kinematics and injury risk. The majority of this research has focused on 

frontal plane risk factors, including knee valgus and hip adduction, but less so on sagittal 

plane risk factors. Numerous studies are outlined in the following paragraphs to give a more 

comprehensive picture of this area of study, and are organized by kinematic motions that 

were of primary interest of this research study. 

Sagittal Plane Trunk Motion 

Blackburn et al. (2008) showed that an increased trunk flexion angle during a drop 

landing task was associated with a decreased ACL injury risk. By allowing the trunk to flex 

more and at the same time the knees, the amount of time the ACL would be subjected to a 

load would increase, and therefore decrease the amount of force it would have to withstand. 

This would also help to avoid the high load position of full knee extension discussed earlier.  
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Kulas et al. (2012) also showed that forward trunk lean during a single leg squat 

decreased ACL load. In another study, Kulas et al. (2010) concluded that trunk loads 

increased knee anterior sheer and muscle forces, specifically when the trunk extensors were 

dominant and the trunk flexors less so. This could theoretically cause a more erect landing 

posture. The hamstrings also showed greater activation with a flexion dominant strategy, 

which would help to stabilize the knee and prevent further anterior shear force.  

Shirey et al. found that core activation during a single leg squat decreased hip frontal 

plane motion. After assessing the core neuromuscular control of 14 participants, each subject 

completed a single leg squat with and without the core engaged. Performance on the single 

leg squat as measured by medial hip displacement and knee flexion increased significantly, 

lending credence to the idea that the core does indeed play a significant role in lower 

extremity kinematics. (Shirey et al., 2012).  

Frontal Plane Trunk Motion 

Trunk positioning in frontal plane has also been shown as a risk factor for injury, with 

Dempsey et al. (2012) finding that torso lateral flexion and torso rotation were significantly 

correlated with peak knee valgus moment. As the trunk is moved away from the body’s 

center of mass, the lower extremities are put into compromising situations which are difficult 

to recover from. If the athlete does not have the capabilities to correct this position before 

landing the risk of injury is increased.  

Popovich et al. (2012) compared single leg landing kinematics in two groups, one 

with normal gluteus medius and maximus strength and one with poor strength. They found 

significant differences between the two groups in peak frontal plane angular displacement, 
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and total angular excursion in all planes of motion. In other words, weak gluteus medius and 

maximus muscles allowed for greater trunk motion and affected knee kinematics adversely. 

Jamison et al. (2012) conducted research that suggested torso lean may increase ACL 

load and risk of injury. Specifically, as trunk lateral flexion occurs, the hip is adducted and 

the foot abducted without proper hip abductor activation, contributing to the aforementioned 

position of no return. 

Leetun et al. (2004) looked at LPHC factors contributing to injury and found that 

male and female athletes who suffered injury had significantly less hip external rotation and 

hip abduction strength than the uninjured athletes. Additionally, females displayed decreased 

side bridge endurance. 

Zazulak et al. (2007) found that deficits in trunk neuromuscular control predicted 

injury risk as well, particularly in females. By utilizing a sudden force release apparatus to 

measure the core musculatures ability to activate quickly and control trunk displacement, 277 

collegiate athletes were assessed. 25 injuries were recorded over a 3 year period, with those 

who had poor trunk activation suffering more knee, ligament, and ACL injuries than 

uninjured athletes.  

Frontal and Transverse Plane Knee and Hip Motion 

Padua et al. (2012) looked at muscle activation patterns for healthy participants 

during a double leg squat task and found that the hip adductors, gastrocnemius, and tibialis 

anterior had increased activation levels in those displaying medial knee displacement. The 

tight adductors could in theory lead to inhibited hip abductors, and thus compound the issue.  

With this growing body of evidence pointing to a relationship between trunk position 

and ACL loading during dynamic activity, further research to aid in assessing this risk factor 
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must be undertaken. A relationship between anterior pelvic tilt and femoral internal rotation 

has been suggested (Duval et al., 2010; Hruska, 1998; Ireland, 2002), and a study by 

McKeon et al. (2009) showed significantly more anterior pelvic tilt in women compared to 

men, which could be a contributing factor to the increased ACL injury rates in women. 

Anterior pelvic tilt is associated with increased lumbar lordosis, femoral internal rotation, 

tibial external rotation, and foot pronation (Duval et al., 2010; Hruska, 1998; Ireland, 2002; 

Joseph et al., 2008; Khamis & Yizhar, 2007; Pinto et al., 2008). These all contribute to the 

“position of no return” in which video analysis has shown to be the most common position 

for non-contact ACL injury. In short, anterior pelvic tilt may cause a host of lower extremity 

kinematic changes.  

 Range of Motion 

Range of motion deficits in the musculature of the LPHC can contribute to 

many of the aforementioned risk factors. Overactive hip flexors, knee extensors, or 

trunk extensors can increase anterior pelvic tilt and lumbar lordosis (Neumann, 2010; 

Tateuchi et al., 2012). A tight iliopsoas pulling the lumbar spine anteriorly, coupled 

with a tight erector spinae group bowing the lumbar spine anteriorly could increase 

APT, while a tight rectus femoris could tilt the pelvis anteriorly as well as causing 

femoral internal rotation and knee valgus (Neumann, 2010). The lattisimus dorsi 

originates from the thoracolumbar fascia, and when tight, could contribute to lumbar 

lordosis when the arms are forward flexed such as in an overhead squat assessment 

(OSA) (Neumann, 2010) or when jumping for a rebound in basketball or a block in 

volleyball. Tight or overactive triceps surae can contribute to knee valgus during 

double leg squat tasks as well, further enhancing the negative impact tight 
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musculature has on kinematics (Bell et al., 2008; Macrum et al., 2012; Padua et al., 

2012). If these muscles are not lengthened to a functional point, dynamic motion will 

be altered to a potentially injurious point. 

Electromyography 

Assessing the level of activation for the erector spinae, gluteus maximus, rectus 

femoris, and medial and lateral hamstrings through electromyography (EMG) will allow for 

possible differentiation between contributing factors to anterior pelvic tilt. If the longissimus 

and rectus femoris muscles become tight they can lead to inhibited antagonists, specifically 

the gluteus maximus, hamstrings, and rectus abdominus, which further contribute to anterior 

pelvic tilt (Neumann, 2010; Workman, Docherty, Parfrey, & Behm, 2008) 

 If the erector spinae and rectus femoris muscles are found to be overactive 

and the gluteus maximus, rectus abdominis, and hamstring muscles are found to be 

underactive in participants with an increased anterior pelvic tilt, the connection could 

be made that a weak LPHC (specifically in the sagittal plane) is a risk factor for ACL 

injury. Mayer et al. (Mayer et al., 2002) looked at EMG activity for the erector 

spinae, gluteus maximus, and hamstrings during a Roman chair back extension 

exercise. It was found that femoral internal rotation caused an increase in trunk 

extensor activity, theoretically because the gluteus maximus was put at a 

biomechanical disadvantage as an extensor. It could then be theorized that an athlete 

with a weak gluteus maximus would tend to display an increased anterior pelvic tilt. 

This could in turn contribute to femoral internal rotation and the rest of the 

precipitating factors associated with the position of no return. 
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EMG analysis during the OSA itself would shed further light on the activation levels 

of the hip and spinal flexors and extensors during dynamic motion. Clark et al. (Clark, 

Manini, Mayer, Ploutz-Snyder, & Graves, 2002) looked at activation patterns during a trunk 

extension exercise regimen that was based on different percentages of maximum voluntary 

isometric contraction. It was discovered that at varying intensities the spinal extensors and 

hip extensors had varying degrees of activation. Although this can be used to make a general 

statement about the role the muscles play, it cannot be extrapolated to functional movement. 

In order to accomplish this, valid and reliable assessment techniques for the LPHC must be 

utilized. The Overhead Squat Assessment (OSA) has become a reliable tool in assessing 

faulty lower extremity movement patterns in participants (Bell et al., 2008; Butler et al., 

2010; Macrum et al., 2012; Padua et al., 2012). It is functional in nature, requires very little 

equipment or set up, takes very little time, and can be used to assess multiple factors related 

to dynamic movement based on the relationship between tight/overactive and 

weak/underactive muscles. However there has been little, if any, research on the validity of 

the OSA in relation to the LPHC and its strength and neuromuscular control capabilities. If 

the OSA was found to be a valid assessor of LPHC neuromuscular control and strength, it 

would give further credence to its use as an assessment technique, and provide the clinician 

with a quick and easy tool to utilize.  

While there are clearly multiple factors to take into account, anterior pelvic tilt is one 

that has garnered little, if any, interest. The ability to quickly and accurately assess this with a 

simple clinical tool could help identify those individuals at risk and allow appropriate 

interventions to be applied. With this in mind, this study will look at how anterior pelvic tilt 
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is affected by LPHC neuromuscular control, and flexibility, and whether an overhead squat 

assessment (OSA) can be a valid tool to assess this potential risk factor. 

 LPHC Assessment Techniques 

Assessing the level of activation for the erector spinae, gluteus maximus, and 

medial and lateral hamstrings through electromyography (EMG) will allow for 

possible differentiation between contributing factors to APT. If the erector spinae 

muscles are found to be overactive and the gluteus and hamstring muscles are found 

to be underactive in participants with an increased APT, the connection could be 

made that a weak LPHC (specifically in the sagittal plane) is a risk factor for ACL 

injury. Mayer et al. (Mayer et al., 2002) looked at EMG activity for the erector 

spinae, gluteus maximus, and hamstrings during a Roman chair back extension 

exercise. It was found that femoral internal rotation caused an increase in trunk 

extensor activity, theoretically because the gluteus maximus was put at a 

biomechanical disadvantage as an extensor. It could then be theorized that an athlete 

with a weak gluteus maximus would tend to display an increased APT. This could in 

turn lead to an increased APT, which would then contribute to femoral internal 

rotation and the rest of the precipitating factors associated with the position of no 

return. 

APT has been shown to increase femoral internal rotation which has been shown as a 

risk factor for knee injury (Hruska, 1998; Ireland, 2002; Walker, Rothstein, Finucane, & 

Lamb, 1987). EMG analysis during the OSA itself would shed further light on the activation 

levels of the hip and spinal extensors during dynamic motion. Clark et al. (Clark et al., 2002) 

looked at activation patterns during a trunk extension exercise regimen that was based on 



24 
 

different percentages of maximum voluntary isometric contraction. It was discovered that at 

varying intensities the spinal extensors and hip extensors had varying degrees of activation. 

Although this can be used to make a general statement about the role the muscles play, it 

cannot be extrapolated to functional movement. In order to accomplish this, valid and 

reliable assessment techniques for the LPHC must be utilized. The Overhead Squat 

Assessment (OSA) has become a reliable tool in assessing faulty lower extremity movement 

patterns in participants (Bell et al., 2008; Butler et al., 2010; Macrum et al., 2012; Padua et 

al., 2012). It is functional in nature, requires very little equipment or set up, takes very little 

time, and can be used to assess multiple factors related to dynamic movement based on the 

relationship between tight/overactive and weak/underactive muscles. However there has been 

little, if any, research on the validity of the OSA in relation to the LPHC and its strength and 

neuromuscular control capabilities. If the OSA was found to be a valid assessor of LPHC 

neuromuscular control and strength, it would give further credence to its use as an 

assessment technique, and provide the clinician with a quick and easy tool to utilize.  

While there are clearly multiple factors to take into account, anterior pelvic tilt is one 

that has garnered little, if any, interest. The ability to quickly and accurately assess this with a 

simple clinical tool could help identify those individuals at risk and allow appropriate 

interventions to be applied. With this in mind, this study will look at how anterior pelvic tilt 

is affected by LPHC neuromuscular control, and flexibility, and whether a dynamic overhead 

squat assessment (OSA) can be a valid tool to assess this potential risk factor. 

The current favored LPHC assessment tools are the double leg lowering test, 

McGill’s endurance protocols, variations of the prone plank, the Davies test, video analysis, 

certain aspects of the functional movement screen (FMS), and sudden force release 
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apparatuses. There are reasons for and against the use of each, which are briefly discussed 

below. 

Double Leg Lowering Test (DLLT) 

The DLLT has been shown to be a very reliable predictor of lumbo-pelvic motor 

control(Krause et al., 2005). It is similar in execution to the Sahrmann core stability test 

(Aggarwal, Kumar, Madan, & Kumar, 2011), but is simpler and requires fewer steps. Krause 

et al (2005) found an intratester reliability of 98% with the DLLT. The drawbacks with this 

test are the time, tools, and precision involved with its execution. In order to accurately use 

the test, one must have a method for measuring the angle of the legs. Multiple options have 

been employed, including digital goniometers, handheld goniometers, and angle charts set up 

on the opposite side of the participant from the clinician. The question of how to determine 

the level of LL which is cause for cancelation of the test is an issue as well. Some research 

has suggested that pelvic tilt occurs immediately upon lowering of the legs, and therefore 

needs to be assessed with more than just palpation of the lumbar spine by the 

clinician(Zannotti, Bohannon, Tiberio, Dewberry, & Murray, 2002). To accomplish this, a 

pressure cuff must be used, adding yet another confounding element to the testing procedure.  

In addition, if a participant has inflexible hamstrings the starting position of the legs will be 

less than 90
o
 and variable between patients. 

McGill’s Endurance Protocols 

McGill’s endurance protocols are used to test for gross endurance of the LPHC (S. M. 

McGill, Childs, & Liebenson, 1999). The flexion, extension, and lateral flexion tests have all 

been found to be very reliable predictors of LPHC endurance. The drawback to these tests is 

the amount of time and set up required to carry them out, and does not necessarily show the 
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level of LPH neuromuscular control a participant may have in the same manner the DLLT 

does. Although the side bridge is quickly administered, the flexion and extension tests 

require more setup and planning, and all the tests are isometric contractions timed to fatigue 

and therefore non-functional. 

Prone Plank 

One of the most common tests of LPHC endurance is the prone plank. Despite its 

popularity as an assessment tool, very little research has been done on its reliability. There 

are multiple start positions and multiple deviations from that position that can confound the 

results. In order to control these problems, an objective measure of termination such as the 

one used by Cowley et al. (2009) must be employed. Again, this is time consuming and 

requires extra equipment and training in its use.  

Davies Test 

The Davies Test, or closed kinetic chain upper extremity stability test (Goldbeck & 

Davies, 2000) looks at a more dynamic assessment of the LPHC, and incorporates the 

shoulders. Although primarily a test for upper body functional stability, the test has been 

used to assess the LPHC because of the high stabilization demand on the LPHC during its 

execution as a result of only having three points of contact with the ground in a non-linear 

relationship. 

Video Analysis 

Video analysis tools have been used to assess LPHC endurance as well. In one study 

(McDonald et al., 2011), gymnasts were recorded performing isometric endurance exercises 

and then analyzed with a software program that measured the participants deviation from the 
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start point to objectively give an end time for the test. It was shown to be very reliable, but 

clearly was much more involved than the tests mentioned previously. 

Functional Movement Screen 

The Functional Movement Screen has been used to assess LPHC stability(Butler et 

al., 2010; Minick et al., 2010; Onate et al., 2012; Smith, Chimera, Wright, & Warren, 2012; 

Teyhen et al., 2012) via the rotary stability test and the trunk stability pushup. While these 

assessments are purported to provide information on functional asymmetries that may lead to 

injury, they have not been validated as tests for LPHC stability in any research to this point. 

Further research is needed before the FMS can be validated as a tool to assess LPHC 

stability. 

Sudden Force Release Apparatuses 

Sudden force release apparatuses have been used to assess neuromuscular control in 

the trunk specifically (B. T. Zazulak et al., 2007). Participants that demonstrated delayed 

firing patterns in their trunk were found to be at higher risk for knee injury. Although this 

assessment technique shows promise, it is a sophisticated laboratory tool, and does not allow 

the hip musculature to play any part in the assessment. 

Overhead Squat Assessment 

The overhead squat assessment has become a valuable tool in the clinician’s arsenal 

for determining faulty movement patterns so that a proper intervention may be prescribed. 

Although there have been studies showing its efficacy for the assessment of lower extremity 

dysfunction (Bell et al., 2008; Macrum et al., 2012; Padua et al., 2012; B. T. Zazulak et al., 
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2007), no studies were found validating its use to assess the sagittal plane motor control of 

the LPHC.  

In theory, excessive APT would be associated with weak glutes, hamstrings, rectus 

abdominis, and the deeper muscles of the LPHC as discussed earlier. Possible overactive 

muscles would include the hip flexors, erector spinae, and latissimus dorsi. Therefore it 

would seem plausible to say that a participant with a weak LPHC would display APT. This 

basic theoretical model would allow the OSA to be used as an assessment tool. 

A drawback to using this technique would be the lack of assessment for the lateral 

musculature of the trunk, particularly the internal and external obliques, and quadratus 

lumborum (QL). The QL has been shown to play an important role in spinal stability, 

primarily in the frontal plane (S. McGill, Juker, & Kropf, 1996; S. M. McGill et al., 1999), 

but is out of the scope of this study. 

Proposed Assessment Techniques 

There are numerous assessment techniques available for evaluation of the LPHC, and 

there is minimal literature to link the different tests together in terms of their validity 

(Aggarwal et al., 2011). In addition, many of these tests require more time and effort than 

many clinicians have to devote to the assessment, and therefore are less likely to be used. By 

assessing APT during an OSA, and comparing the results with those of a battery of tests 

designed to encompass multiple aspects in the sagittal plane musculature (McGill’s 

endurance protocols, DLLT), a relationship may be found which would enable the clinician 

to make a direct connection to lumbo-pelvic motion and LPHC neuromuscular control in the 

sagittal plane. 
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In summation, the purpose of this study is to validate the OSA as a tool to measure 

APT. Differences between groups of individuals with and without significant APT will be 

quantified by observing LPHC motion during a OSA, LPHC neuromuscular control and 

endurance, flexibility, EMG activity of trunk and hip extensors, and trunk and lower 

extremity kinematics. To date, there is little research looking at the relationship between APT 

and lower extremity kinematics. However, based on what research there is, screening for 

sagittal plane LPHC neuromuscular control is warranted, and a quick, easy, simple, and valid 

tool is needed. 
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CHAPTER III 

METHODS 

Experimental Design 

 A correlational study design was used to investigate relationships between LPHC 

neuromuscular control and boney characteristics in individuals with varying degrees of APT. 

During the testing session, each participant underwent a series of tests, including a navicular 

drop assessment, femoral anteversion assessment, ROM assessment of the lower extremity 

and lattisimus dorsi, three-dimensional motion analysis of APT, and EMG assessment of the 

erector spinae, gluteus maximus, rectus femoris, rectus abdominis, and medial and lateral 

hamstrings during an OSA, and the DLLT test. 

Participants 

 To achieve a power of 0.80 for the study, a sample of 40 participants were chosen 

based on research by, Ford et al. (2003), McLean et al. (2005), and Pantano et al. (2005) and 

the study conducted in our laboratory. 18 male and 20 female participants with varying 

degrees of APT were selected for the study. Participants were selected from a convenience 

sample of Division I athletes taken from all available sports and the physically active (3 

times a week for at least 30 minutes) student population.  

Inclusion and Exclusion Criteria 

 Participants were included in the study if they meet the following criteria: 

o Ages between 18 and 25. 
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o Athletes who played sports at the Division I level or physically active 

individuals who were active at least 3 times a week for 30 minutes. 

 Participants were excluded if they meet at least one of the following: 

o History of low back, abdominal, hip, knee, ankle or shoulder injuries 

(ligament sprains, muscle strains, and any chronic pain) within 6 months prior 

to the testing session. 

o  

Instrumentation 

 Electromagnetic motion capture system (MotionStar, Ascension Technology 

Corporation, Burlington, VT. ) integrated with extended range transmitter (Ascension 

Technology Corporation, Burlington, VT) and 5 Ascension Flock of Birds electrical 

magnetic trackers will be used to sample Lumbar, hip, and knee kinematics during the 

task at a sampling frequency of 100 Hz (Blackburn & Padua, 2009). 

 Surface electromyography (Delsys, Inc., Boston, MA; amplification factor = 1,000 

(20 – 450 Hz); CMRR @ 60 Hz > 80 dB; input impedance > 10
15

//0.2 //pF) will be 

used to record muscle activity of the rectus femoris, gluteus maximus, medial and 

lateral hamstrings, and erector spinae at 1000 Hz (Blackburn & Padua, 2009; Padua et 

al., 2012)  

 A nonconductive force plate (4060-08, Bertec Corporation, Columbus, Ohio, USA) 

will be used to sample ground reaction forces using a sampling frequency of 1000 Hz 

(Blackburn & Padua, 2009; Kulas et al., 2010). 

 A digital inclinometer (12-1057, Baseline Evaluation Instruments) was used to hip 

flexor/rectus femoris, hamstring, triceps surae, and latissimus dorsi range of motion. 
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 Participants performed the DLLT on a 1.5cm thick dense foam exercise pad. 

Procedures 

The participants reported for one testing session. The primary investigator provided an 

overview of the study, had participants complete a consent form, and provided an 

opportunity for participants to ask questions. Once consenting to participate in the study, 

participants were asked to remove their shoes and fitted with compression shorts and a sports 

bra for females, and compression shorts for males. Each participant’s height and weight was 

recorded.  The participant completed a five minute stationary cycle warmup before being 

taught how to perform an overhead squat. While in front of a black background, the 

participant stood with feet shoulder width apart, toes pointed straight ahead, and arms fully 

flexed overhead. The participant was instructed to squat as if they were sitting down in a 

chair and was encouraged to reach 90
o
 of knee flexion by lightly touching a box with their 

buttocks. Each participant performed 5 overhead squats to the beat of a metronome set at 

approximately 25 squat cycles/minute (scm) or 80 bpm to control the velocity of 

performance across the participants (Boling, Padua, Blackburn, Petschauer, & Hirth, 2006).  

Boney Alignment Assessment 

The navicular drop test was used to classify participants as having normal or 

clinically relevant pronation. The clinician palpated the most medial aspect of the navicular 

tuberosity while the participant was non-weight bearing and in subtalar joint neutral.  This 

spot was marked and the distance from the floor recorded on an index card.  The participant 

then stood in full equal bilateral weight bearing on the foot being measured and the distance 

from the marked spot to the ground was recorded again (Gross, 1995).  
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 The femoral anteversion test, or Craig’s test, was used to assess the degree of femoral 

anteversion in each participant.  The participant lay prone with the knee flexed to 90
o
. The 

clinician then palpated the greater trochanter while rotating the femur internally and 

externally. When the trochanter was at its most lateral aspect the angle of the tibia from 

vertical was measured using a digital inclinometer zeroed at vertical and aligned with the 

shank (Gross, 1995).  

Range of Motion Assessment 

 Each participant was assessed for hip flexor, rectus femoris, hamstring, triceps surae, 

and latissimus dorsi ROM. An average of three trials wasrecorded as the passive range of 

motion in degrees. 

The hip flexor and rectus femoris were assessed using the Thomas test. Each 

participant stood with his/her gluteal crease on the edge of a table, pulled one knee as close to 

their chest as possible, and lay back supine allowing one leg to slowly extend as the clinician 

palpated the anterior superior iliac spine to ensure lumbar lordosis remained minimal 

(Harvey, 1998). A digital inclinometer wwas zeroed along the horizontal world axis and 

aligned with the femur at the midpoint between the ASIS and the patella, and the angle 

recorded. The inclinometer was thenplaced on the anterior edge of the mid-tibia and the 

angle recorded (Ferber, Kendall, & McElroy, 2010). (Figure 1) 

Hamstring range of motion for each participant was measured using a passive 90/90 

hamstring assessment. The participant lay supine on a table, and a digital inclinometer with a 

straight edge attached to it was used to ensure the femur a\was at 90
o
. The research assistant 

then passively extended the knee until reaching the end range of motion, at which point the 
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primary investigator placed the digital inclinometer on the anterior edge of the mid-tibia and 

record the angle as measured from 0
o
 at vertical (Fasen et al., 2009). (Figure 2) 

To assess range of motion for the triceps surae, each participant wasinstructed to lay 

supine with the heels off the edge of the table. A goniometer aligned with the fibula and 

centered at the distal malleolus was set parallel to the 5
th

 metatarsal and all measurements 

taken from 90 
o
 as the participant was passively dorsiflexed (Figure 3). The participant lay 

prone with the knee bent to 90
o
 as determined by the goniometer, with the fixed arm parallel 

to the femur and the movement arm parallel with the fibula, and the same measurement was 

taken as with the supine assessment (Figure 4). The weight bearing dorsiflexion range of 

motion assessment required the participants to stand with their second toe on a line bisecting 

their heel, and attempt to touch the knee to another vertical line on the wall in front of them.  

They gradually slid their foot away from the wall until they could barely touch the wall with 

their knee. At that point the digital inclinometer was placed at approximately the midway 

point of the anterior tibia and the result recorded (Rabin & Kozol, 2012). (Figure 5) 

For latissimus dorsi range of motion, each of the participants was instructed to stand 

with their feet far enough from a wall so that the lower back could be flattened against it. The 

participant was instructed to actively forward flex the shoulders so that the thumbs were in 

the sagittal plane and to attempt to touch the wall behind them. The clinician palpated the 

lumbar spine and asked the participant to stop in the position at which he/she could no longer 

maintain wall contact so that the angle could be recorded. A digital inclinometer zeroed at 

vertical and attached to a straight edge was aligned with the participant’s humerus. (Borstad 

& Briggs, 2010; Rose, 2006) . (Figure 6) 

Electromyography (EMG) 
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Electrode placement sites for GMAX, medial and lateral hamstrings, rectus femoris, and 

erector spinae were shaved if needed, abraded with a coarse sponge, and cleaned with 

isopropyl alcohol and allowed to dry before electrode placement. Electrodes were placed 

parallel with the muscle fibers, with the reference electrodes on the bilateral acromion 

processes. The electrodes were fixated to each muscle using a double-sided adhesive skin 

interface (Delsys, Inc., Boston, MA) and secured using surgical tape and non-woven 

retention tape (Hartmann USA, Inc., Rock Hill, SC). An active contraction through the 

muscles full ROM was used to confirm EMG placement for all muscles tested. Activity of 

each muscle was recorded during maximal voluntary isometric contraction (MVIC) and 

OHA described below. 

MVIC was collected post-assessment using the techniques described by Bolgla et al. 

(Bolgla & Uhl, 2007). Participants generated maximum force over a two second period and 

held it for five seconds while the clinician provided strong verbal encouragement. 

For the rectus femoris, the participant was positioned supine with the knee in slight 

flexion.  The electrodes were positioned half way between the anterior superior iliac spine 

and the superior pole of the patella.  The participant extended the knee against manual 

resistance to confirm electrode placement and then MVIC was collected at the end of the 

session.  

Erector spinae electrode placement was broken into the illiocostalis and longissimus 

muscles. For the illiocostalis, the participant lay prone in a slightly flexed position and the 

electrodes were placed approximately one finger width medial from the line between the 

posterior superior iliac spines to the lowest point of the lower rib at the L2 level. The 

participant then lifted the trunk off the table to confirm EMG placement and then MVIC was 
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collected at the end of the session. For the longissimus, electrodes were placed 2 finger 

widths lateral from the spinous process of L1. The participant again lifted the trunk to 

confirm EMG placemen and then MVIC was be collected at the end of the session.  

For GMAX, electrodes were placed halfway on the line between the sacral vertebrae and 

the greater trochanter. From a prone position, the participant lifted the leg with the knee 

flexed to 90
o 
against manual resistance to confirm EMG placement and then MVIC was 

collected at the end of the session. 

Hamstring electrode placement was broken into the biceps femoris and semitendinosus 

muscles. For the biceps femoris, electrodes were placed halfway between the ischial 

tuberosity and the lateral epicondyle of the tibia. From a prone position, the participant 

attempted to flex the knee at 90 degrees against manual resistance to confirm EMG 

placement. For the semitendinosus, electrodes were placed halfway between the ischial 

tuberosity and the medial epicondyle of the tibia. From a prone position, the participant 

attempted to flex the knee at 90 degrees against manual resistance to confirm EMG 

placement and then MVIC was collected at the end of the testing session. All electrode 

placements were determined through guidelines set forth by the Surface ElectroMyoGraphy 

for the Non-Invasive Assessment of Muscles organized by the Biomedical Health and 

Research Program (BIOMED II) of the European Union(Freriks).. 

 Wires and sensors were secured to the skin with non-woven retention tape and 

surgical tape to prevent motion artifact.  All wires were held together by Velcro ties to 

prevent excess noise in the EMG signal. 

Kinematics Assessment 
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All kinematic sensors were applied using double sided tape, non-woven retention tape, 

prewrap, and athletic tape to achieve secure fixation. A segment linkage model was used, 

with the spinal sensors placed on the T2 and T10 spinous process, and spinal column 

landmarks digitized at T12-L1 and C7-T1. The sacral sensor was placed directly over the S1 

spinous process and both ASIS were digitized. The femoral sensor was placed at 

approximately the midpoint of the right shank, at the space between the vastus lateralus and 

biceps femoris on the midpoint of the right lateral thigh.  The shank sensor was placed on the 

midpoint of the medial tibia and the foot sensor was placed on the dorsum of the foot over 

the navicular. A right hand coordinate system was used to establish a world and segment axis 

system in which the positive direction for the x-axis was anterior, the y-axis was medial, and 

the z-axis was superior (Blackburn & Padua, 2008, 2009; Padua et al., 2012). 

Each participant performed 5 overhead squats to the beat of a metronome set at 

approximately 25 scm. The participants stood with feet shoulder width apart, toes pointed 

straight ahead, and arms fully flexed overhead. The participants were instructed to squat as if 

they were sitting down in a chair and were encouraged to reach 90
o
 of knee flexion as 

determined by a box placed behind the participant which they touched lightly each time. 

Joint angle displacement wasmeasured starting at the first movement of the participant’s knee 

to the peak flexion angle during the decent phase. 

DLLT 

 Each selected participant underwent a DLLT. The average of 2 trials was taken with a 

1 minute rest between each trial. The participant lay in the hook lying position and transverse 

abdominis activation was taught through demonstration by the investigators, verbal cueing 

including “pull your belly button to your spine,” “make yourself as skinny as possible,” and 
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“swallow your stomach,” and tactile cueing through palpation of the lower abdominals just 

medial to the anterior superior iliac spines. Patients were then instructed on how to 

posteriorly tilt the pelvis and flatten the lumbar spine against the table through demonstration 

and verbal cueing including “tuck your tailbone,” and “roll your hips back.” Next, the 

primary investigator placed one hand under the lumbar spine and palpated the spinous 

processes.  The participants legs were passively raised as close to 90
o
 as possible, and then 

actively lowered during a 10 second countdown.  As soon as the lumbar spine came off the 

primary investigators finger tips, the research assistant held the legs, and the angle was 

measured using a digital inclinometer zeroed at horizontal taped to a straight edge and 

aligned with the femur (Krause et al., 2005; Stanton, Reaburn, & Humphries, 2004). (Figure 

7) 

Data Processing and Reduction 

 Data was synchronized using the Motion Monitor software for kinematics, and EMG. 

Kinematic data was low pass filtered at 10 Hz with a 4
th

 order, zero phase lag Butterworth 

filter (Blackburn & Padua, 2009).  

A right hand coordinate system was used to establish a real world axis system in 

which the positive direction for the x-axis is anterior, the y-axis is medial, and the z-axis is 

superior. A segment linkage model was used. Pelvic tilt angle was determined using the 

pelvic segment relative to the world. The joint center for the hip was estimated by using  the 

Bell method Joint displacement was determined by subtracting minimal joint angle at the 

first movement of the participant during the decent phase of the overhead squat task from the 

peak knee flexion angle (Joint displacement = Max joint angle during descending phase – 

initial joint angle).  
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EMG was bandpass filtered (20-350Hz) and notch filtered (59.5-60.5Hz) using a 4
th

 

order Butterworth filter. EMG was smoothed using a 25ms root mean square sliding window 

function. Mean EMG amplitude of each muscle during the OSA was normalized to mean 

amplitude of each muscle during MVIC (% MVIC). Range of motion assessments were 

averaged over 3 trials, and DLLT scores were in displacement in degrees from horizontal. 

Statistical Analysis 

Our primary aim was addressed by calculating Pearson product moment correlation 

coefficients between sagittal plane pelvic angle during the descending phase of an overhead 

squat with lower extremity kinematics, range of motion, and muscle activation measures. Our 

secondary aim was addressed by calculating Pearson product moment correlation coefficients 

between sagittal plane pelvic angle and the double leg lowering test measure. For both our 

primary and secondary aims, we hypothesized that correlation coefficients would range from 

r = 0.50 to r = 0.75 (moderate to strong relationships) for each of the different dependent 

variables. Based on a sample size of 38 participants and a probability of Type 1 error (a) rate 

of 0.05, our Correlation (ρ) are all greater than 0.95P.  
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CHAPTER 4 

RESULTS 

APT has been proposed as a possible risk factor for ACL injury, although there is little 

research to support this .  The purpose of this study was to determine what neuromuscular and bony 

characteristics are associated with APT and if APT could be determined via lumbar lordosis during an 

overhead squat.  Subject’s flexibility, bony characteristics, muscle activity, and trunk and lower 

extremity kinematics were used to look for correlations with APT. 

Twenty females (age=20.35 yrs ± 0.88, height=166.96 ± 6.88, weight=62.51 ± 9.91) and 18 

males (age=21.00 yrs ± 1.37, height=177.54 ± 7.23, weight=75.29 ± 8.66) participated in the study 

(Table 1).  EMG data were eliminated once for the rectus femoris, erector spinae, illiocostalis, and 

medial hamstrings, and 3 times for the biceps femoris because of values outside the normal range. 

We observed significant correlations between anterior pelvic tilt and EMG of the gluteus 

maximus (r(38)=0.40, p=0.01)(Figure 8) and the longissimus (r(37)=0.33, p=0.05)(Figure 9).  We did 

not observe any significant correlations between anterior pelvic tilt and any of the other EMG values, 

range of motion, boney alignment, kinematics, or double leg lowering test.   

Table 1 – Age, height, weight, sex, navicular drop, Craig’s test, and amount of peak APT during 

descending phase. 

Variable Mean SD 

Age (years) 20.66 1.17 

Height (cm) 171.97 8.77 

Weight (kg) 68.56 11.25 

R Navicular Drop (mm) 7.29 2.63 

L Navicular Drop (mm) 6.50 2.60 

R Craig’s Test (Deg) 9.53 3.70 

L Craig’s Test (Deg) 7.32 3.12 

Peak APT During Descending 32.16 7.19 
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Phase (Deg) 

 

Table 2 – ROM, DLLT 

Range of Motion/DLLT (Degrees) Mean SD 

R Hip Flexor 0.54 7.79 

L Hip Flexor 1.54 8.59 

R Rectus Femoris 63.04 10.40 

L Rectus Femoris 63.79 9.07 

R Hamstring 13.35 9.25 

L Hamstring 11.29 8.34 

R Gastrocnemius 15.44 5.54 

L Gastrocnemius 11.95 6.20 

R Soleus 27.83 7.31 

L Soleus 26.75 8.09 

R Weight Bearing Dorsiflexion 44.50 5.92 

L Weight Bearing Dorsiflexion 44.71 6.66 

R Latissimus Dorsi 19.52 9.07 

L Latissimus Dorsi 18.51 9.00 

Double Leg Lowering Test 30.49 14.75 

 

Table 3 – EMG during descending phase of OSA 

EMG Mean SD 

Rectus Femoris 44.32 24.60 

Lateral Hamstring 9.88 5.03 

Medial Hamstring 8.43 6.04 

Gluteus Maximus 9.49 8.55 

Illiocostalis 30.57 20.67 

Longissimus 35.01 12.78 

 

 

 

 

Table 4 – Joint angles during descending phase of OSA 

 Descending Phase Peak Value Descending Phase Displacement 

 Mean SD Mean SD 

Hip Adduction -0.35 4.85 1.12 3.00  

Hip Abduction -9.47 7.04 -8.00 4.95 

Hip Internal Rotation 17.45 15.98 11.36 9.53 

 

Table 5 – Correlations between APT and  Boney Characteristics 
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Variable  R-Value P-Value 

R Navicular Drop (mm) -.11 .51 

L Navicular Drop (mm) -.07 .68 

R Craig’s Test (Deg) .20 .23 

L Craig’s Test (Deg) .21 .21 

 

Table 6 – Correlations between Peak APT  and . ROM 

 R-Value P-Value 

R Hip Flexor .13 .43 

L Hip Flexor .09 .58 

R Rectus Femoris .20 .23 

L Rectus Femoris .15 .36 

R Hamstring -.25 .13 

L Hamstring -.23 .17 

R Gastrocnemius .07 .70 

L Gastrocnemius .07 .68 

R Soleus .05 .79 

L Soleus .19 .27 

R Weight Bearing 

Dorsiflexion 
-.06 .72 

L Weight Bearing 

Dorsiflexion 
-.03 .87 

R Latissimus Dorsi -.10 .54 

L Latissimus Dorsi -.16 .35 

Double Leg Lowering 

Test 
-.21 .21 

 

Table 7 – Correlations between APT and. EMG 

EMG R-Value P-Value 

Rectus Femoris .15 .36 

Lateral Hamstring .03 .86 

Medial Hamstring .16 .34 

Gluteus Maximus .40 .01* 

Illiocostalis .21 .22 

Longissimus .33 .05* 

 

Table 8 – Correlations between APT and hip kinematics 

                    Peak              Displacement 

 R-value P-Value R-Value P-Value 

Hip Front 

Descending 

-.07 .69 -.05 .76 

Hip Trans 

Descending 

.28 0.09 .20 .23 

Hip Trans 

Ascending 

0.33 0.04* 0.29 .07 
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Table 9 – Correlations between APT and. Rectus Femoris ROM in Females 

 Peak Descending Phase Peak Ascending Phase 

 R-Value P-Value R-Value P-Value 

R Rectus Femoris .39 .09 .470 0.04* 

L Rectus Femoris .56 .01* .64 .002* 
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CHAPTER 5 

DISCUSSION 

Our research showed a significant positive correlation between increased activity in the 

gluteus maximus and longissimus muscles and anterior pelvic tilt.  This is contrary to our original 

prediction for the gluteus maximus but consistent with that for the longissimus.  It does not appear as 

though bony characteristics, range of motion, the double leg lowering test, kinematics, or other 

muscle activity are associated with anterior pelvic tilt during the descending phase of an OSA in this 

particular group of individuals.  Because increased gluteus maximus and erector spinae activity are 

not considered risk factors for ACL injury, anterior pelvic tilt during the OSA does not appear to be a 

relevant risk factor to screen for.  Although our results showed only two significant associations 

between these factors during the descending phase of the squat, we did notice a trend toward 

significance in the correlation between anterior pelvic tilt and peak hip internal and external motion.  

Based on this information we decided to look at the correlations during the ascending phase of the 

overhead squat assessment, and this time the correlations became significant. (Table 8) 

Integrate 

These findings moderately support the previous findings and theories of authors who reported 

associations between anterior pelvic tilt and femoral internal rotation (Duval et al., 2010; Hruska, 

1998; Ireland, 2002).  These authors also suggested that anterior pelvic tilt could be caused by 

pronation or femoral anteversion but our results did not support those theories. 

Previous literature has suggested and our hypothesis predicted, increased activity of the rectus 

femoris and erector spinae paired with decreased gluteus maximus and hamstring activity could 

contribute to anterior pelvic tilt (Mayer et al., 2002; Neumann, 2010),.  Our  results agree with Mayer 
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et al. (2002) in regards to increased erector spinae activity being associated with femoral internal 

rotation.  In Mayer’s study, internally rotating the participant’s legs during a back extension exercise 

increase lumbar extensor activity by 18% compared to external rotation. Ours results showed a 

correlation between longissimus activity and hip internal rotation (r(38)=0.33, p=0.04), although only 

during the ascending phase of the overhead squat assessment, which was not part of our hypotheses.  

In addition, what is presented as common knowledge in Neumann (2010) with regards to 

agonist/antagonist interactions and muscular inhibitions, did not play out in exactly the same fashion 

in our study, with the increased longissimus activation being the only expected significant 

relationship found with anterior pelvic tilt. 

Range of motion showed no significant associations with anterior pelvic tilt in the group as a 

whole, but when the males and females were separated, there was a significant positive correlation 

between increased anterior pelvic tilt and increased rectus femoris range of motion, which is opposite 

of what we expected to find. (Table 9)  In theory as the rectus femoris is shortened, it should draw the 

pelvis into a more anteriorly rotated position, but in our study increased anterior pelvic tilt was 

associated with those females who had a greater range of motion, suggesting that potentially different 

neuromuscular factors could contribute to increase APT in males and females.  

It does not appear as though anterior pelvic tilt is associated with tight triceps surae either.  

Bell et al. (2008) and Macrum et al. (2012) found correlations between decreased ankle dorsiflexion 

and medial knee displacement, which in theory could increase anterior pelvic tilt, but our results 

showed no such association.  Padua et al. (2012) found increased activity of the gastrocnemius and 

tibialis anterior in participants displaying medial knee displacement during an overhead squat, 

suggesting that this would be associated with decreased ankle range of motion, but once again there 

was no apparent consequence up the kinetic chain to the pelvis in our results as we had theorized 

would occur.   
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The latissimus dorsi does not appear to play any role in influencing anterior pelvic tilt, as 

none of our results showed any significance.  This again goes against our theory that decreased range 

of motion in the latissimus dorsi could lead to an increased lordotic curve and therefor increased 

anterior pelvic tilt. 

The double leg lowering test showed no significant correlations with anterior pelvic tilt 

despite the theory that weak abdominals would allow for a greater degree of anterior pelvic tilt along 

with increased activity in the erector spinae.   

The lack of significance between the navicular drop test and anterior pelvic tilt could 

potentially be the result of the fact that our sample on average did not have a clinically relevant drop.  

Without excessive navicular drop to cause changes up the kinetic chain it would stand to reason that 

nothing out of the ordinary would be observed.  Similarly, in regards to femoral anteversion, our 

sample did not have one participant who displayed excessive anteversion.  On the contrary, the 

average for our sample was retroverted.  

Interpret 

The two significant findings in this study both related to EMG activity, specifically the 

gluteus maximus and longissimus muscles.  It is important to keep in mind that increased activity 

does not necessarily mean that the muscle is also creating more force.  As stated before, the increased 

longissimus activity was predicted by our hypothesis, but the gluteus maximus activity was opposite 

of what we had anticipated.  This could potentially be due to the fact that as the pelvis tilts anteriorly, 

the gluteus maximus is lengthened eccentrically, thereby eliciting the stretch reflex, which leads to 

increase GMAX activity.  It could also mean that the gluteus maximus was weak in our participants 

and therefore must work harder during the overhead squat assessment.  Because of the increased 

activity of the gluteus maximus, the hamstrings may not need to do as much work, and most likely 

functions more as a stabilizer at the knee, having no real effect on pelvic tilt.  The lack of correlation 

between the illiocostalis and anterior pelvic tilt could be attributed to the fact that the muscle lies most 
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laterally of the three erector spinae muscles and therefore would contribute least to an increase in the 

lordotic curve.  Finally, the lack of correlation between rectus femoris activation level and anterior 

pelvic tilt could be attributed to the fact that because the gluteus maximus was so active it reciprocally 

inhibited the rectus femoris.   

The lack of correlations between anterior pelvic tilt and range of motion could be explained 

by several instances.  On average our participants had tight iliopsoas’ and tight rectus femoris (except 

when compared to values given by Harvey (1998)), which in theory should increase anterior pelvic 

tilt.    However, if there is a certain point in passive hip range of motion where inflexibility no longer 

has an effect on anterior pelvic tilt, or there is a point beyond the average range of motion into flexion 

than what our participants displayed, this could potentially explain the lack of correlations.  The fact 

that our subjects operated primarily in the midrange of motion at minimal load during the overhead 

squat assessment could also provide an explanation.  If the muscles aren’t being used to achieve end 

range of motion at any given joint and there is not sufficient load to cause a challenge, any deviations 

from the norm would be unlikely to show up.  All other range of motion values were, on average, 

within normal limits, so again, the lack of correlations could be the result of a lack of non-normative 

participants. 

The double leg lowering test did not show any significant correlations for perhaps two 

reasons.  In order to achieve the posterior rotation of the pelvis during an overhead squat assessment, 

the rectus abdominis would have to overcome the reciprocal inhibition caused by the increased 

activation of the erector spinae.  Because none of the subjects were consciously recruiting the 

abdominals during the overhead squat assessment and there was minimal load, it wouldn’t necessarily 

matter how well they performed in the much more difficult double leg lowering test, as the difficulty 

of the two tasks are disparate.  On the other hand, it could be that since our participants were all 

physically active individuals, they may have been quite adept at controlling their pelvic tilt.  In a 

study by Zannotti et al. (2002) kinematic analysis of the DLLT showed that anterior pelvic tilt 
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occurred almost immediately upon lowering of the legs and continued to increase as the legs were 

lowered.  Although we did not assess joint kinematics during DLLT, many of the participants were 

able to maintain consistent pressure on the clinician’s hand until reaching the failing point.  In 

addition, Zannotti had participants hold onto the table above their heads in a shoulder flexed position, 

potentially contributing to increased lumbar lordosis and pelvic tilt, while our participants kept their 

arms at their sides. 

Implications 

Based on our results, several things are worth noting.  First of all, it does not appear as though 

the LPHC muscles function together as is commonly thought.  The increase in gluteus maximus 

activity in those with increased anterior pelvic tilt raises the question of just how much reciprocal 

inhibition and agonist antagonist interactions come in to play at lower levels of physical activity.  

While we tend to view these relationships as all-encompassing scenarios, perhaps they only take 

effect when a certain stress threshold is reached, for example during actual sport participation or 

weightlifting.   

Second, if increased activity in a muscle is taken to mean that muscle is also in a shortened 

position, the erector spinae should be stretched to minimize its effect on anterior pelvic tilt, as this 

could theoretically decrease ACL injury risk.  This seems counter-intuitive to the gluteus maximus 

though, as it is not a commonly thought of as being inflexible, therefore the potential that the muscle 

is weak and operating at near maximal capacity must be acknowledged.   

Thirdly, in order for many risk factors to become apparent, fatigue or increased load may 

need to be introduced to any assessment technique.  Faulty movement patterns may not be apparent 

during an overhead squat assessment, but may become blatantly obvious if weight is added or a 

jumping task is used.  The fitness level of our participants may have been a large part of the reason 

we did not see the correlations we expected, as they were simply not challenged enough. 
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Fourthly, anterior pelvic tilt during an overhead squat assessment does not necessarily 

translate to faulty thigh or knee motion.  Although we did see a correlation between peak transverse 

plane hip motion and anterior pelvic tilt during the ascending phase, this is likely not enough to make 

a solid connection between the two. 

The most significant limitations of our study are the age and physical activity level of our 

population, and the controlled and relatively easy task of performing an overhead squat assessment.  

Future research should look to establish correlations across different groups, especially those 

displaying more abnormal characteristics in range of motion and boney alignment, and those who are 

more or less physically active than our group was.  Adding a dynamometry variable to the study 

would also help to clarify the relationship between activation levels and force generated.  The 

intensity and type of the assessment tool should be experimented with to truly amplify any 

correlations, and differences between sexes should also be researched.  Activation of the rectus 

abdominis using fine wire EMG would help to establish its contribution to pelvic tilt during dynamic 

activity, and using a broader range of participants to observe double leg lowering test performance 

would help shed light on its contributions as well.  Interventional research involving corrective 

techniques for faulty movement patterns and proper LPHC activation should be undertaken to 

determine what truly has an effect on pelvic tilt. 

Overall more questions were raised than answered in this study.  The only significant 

correlation observed that we predicted was the positive association between anterior pelvic tilt and 

longissimus activity, which makes sense and helps to support previously accepted theories.  

Clinicians should consider keeping the erector muscles properly stretched to avoid contributing to 

excessive anterior pelvic tilt.  However, the positive association between gluteus maximus activity 

and anterior pelvic tilt warrants further investigation, as this is counterintuitive to previously accepted 

theories.  The lack of abnormal bony and neuromuscular characteristics in conjunction with the 

relative ease of our assessment tool may not have been enough to give a true representation of just 
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how much these factors can contribute to pelvic tilt.  Continued research in this area is necessary to 

shed further light on the workings of the lumbopelvic hip complex area and its role in upper and 

lower extremity function. 
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FIGURES 

 

1: Thomas Test Hip Flexor and Rectus Femoris ROM Assessment 

 

2:  90/90 Hamstring ROM Assessment 
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3:  Prone Gastrocnemius ROM Assessment 

 

4:  Prone Soleus ROM Assessment 
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5:  Weight Bearing Soleus ROM Assessment 
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6:  Lat Length Test ROM Assessment 
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7:  DLLT Assessment 

 

8:  APT vs Gluteus Maximus 
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8:  APT vs Longissimus 
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