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ABSTRACT 

Barnett S. Frank: The Influence Of Movement Profile On The Female Athlete’s Biomechanical 
Resilience & Training Load Response To Controlled Exercise Exposure 

(Under the Direction of Darin A. Padua) 
 

Background: “Stiff” landing biomechanics and excessive frontal plane knee motion, 

such as limited trunk, hip, and knee flexion and medial knee displacement have been identified 

as risk factors or movement patterns associated with lower extremity musculoskeletal injury and 

elevated joint loads. Additionally, high training load exposure has similarly be linked to 

musculoskeletal injury in the physically active population. There is a significant volume of 

evidence supporting high training loads and high-load biomechanics to independently influence 

injury risk. However there is a lack evidence describing the influence of an individual’s baseline 

movement quality profile on their systemic and musculoskeletal tissue stress experienced 

secondary to high training load exposure. An individual’s global resilience to high training loads 

may be influenced by the mechanical demands of their inherent movement profile during 

physical activity and sport participation. 

Aim: Investigate the influence of an individual’s inherent baseline movement profile on 

their biomechanical, systemic stress, and musculoskeletal system stress response to an acute bout 

of high training load exposure. 

Methods: 43 physically active, healthy, college-aged females were enrolled in this study 

and were assigned to a poor high-load or excellent low-load movement profile group 

operationally defined by the Landing Error Scoring System (LESS). Jump-landing 3D 



 

 iv 

biomechanics and blood samples were collected prior to and following a metabolically controlled 

acute high training load exercise protocol (HTL). Changes in biomechanics and circulating 

biomarkers of global systemic stress (cortisol), and musculoskeletal system tissue stress (sCOMP 

& CK-MM) were compared between poor and excellent movement profiles to better understand 

the influence of movement profile on the body’s response to the demands of HTL. 

Results: The poor group was observed to experience greater degradation of 

neuromuscular control strategies that effectively and efficiently dissipate mechanical stresses 

experienced during high-intensity exercise. Furthermore, we observed movement profile to 

influence systemic stress hormone levels (cortisol). A poor movement profile was associated 

with an elevated stress level in contrast to their excellent movement counter parts. Furthermore, 

it seems the excellent movement profile is linked to greater deployment of dynamic muscle tissue 

to efficiently dissipate the high mechanical stresses experienced during HTL activities, as the 

excellent movement profile was associated with greater circulation of CK-MM following acute 

HTL exposure. 

Conclusions: Movement quality profile influences the physically active, healthy, 

college-aged female’s biomechanical and global stress response to HTLs associated with sport 

participation. The excellent movement quality profile appears to be more biomechanically 

resilient to acute HTL exposure. Thus, promoting an excellent movement profile in individuals 

partaking in exercise activity with HTLs is encouraged the limit global stress levels, and promote 

safe neuromuscular control strategies limiting the mechanical load exposure to the system.



 

 vii 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................ vii	

LIST OF FIGURES ..................................................................................................................... viii	

LIST OF ABBREVIATIONS & SYMBOLS ................................................................................ ix	

CHAPTER 1 ................................................................................................................................... 1	

INTRODUCTION .......................................................................................................................1	

OPERATIONAL DEFINITIONS ............................................................................................... 8	

LIMITATIONS & ASSUMPTIONS ........................................................................................ 13	

DELIMITATIONS ................................................................................................................... 14	

INDEPENDENT VARIABLE ................................................................................................. 15	

DEPENDENT VARIABLES ................................................................................................... 15	

RESEARCH QUESTIONS ...................................................................................................... 16	

HYPOTHESES ......................................................................................................................... 18	

REFERENCES ......................................................................................................................... 20	

CHAPTER 2 ............................................................................................................................... ..26	

SECTION ONE: Epidemiology of Sport-Related Musculoskeletal Injury .............................. 27	

Lower Extremity Musculoskeletal Injury in Sport & Physical Activity ............................... 27	

Anterior Cruciate Ligament Injury is Responsible for High-Severity Knee Injury .............. 31	

The Landscape of ACL Injury in Sport ................................................................................ 33	

The Influence of Workload, Time-of-Season, Phase-of-Play, and Training &  
Competition Activity on Injury Incidence in Sport .............................................................. 40



 

 vii 

SECTION TWO: Biomechanical Mechanisms and Risk Factors for  
Sport-Related Noncontact ACL Injury ..................................................................................... 47	

Sagittal Plane Knee, Hip, and Trunk Biomechanics Associated  
with Noncontact ACL Injury .................................................................................................... 49	

Frontal Plane Knee, Hip, and Trunk Biomechanics Associated  
with Noncontact ACL Injury ................................................................................................ 64	

ACL Injury Biomechanics Summary and their Proposed Influence on 
Sport-Related Noncontact ACL Injury in a High-Risk Athlete Population ......................... 78	

SECTION THREE: The Proposed Interaction Between Movement Profile  
and Total-Body Physiological Response to High-Intensity Exercise-Induced Fatigue ............ 88	

Exercise-Induced Fatigue is an Interactive Process that Influences Muscle Function ......... 88	

The Influence of Exercise-Induced Fatigue on Neuromuscular  
Function and Control of Human Movement ......................................................................... 92	

Evidence of an Interaction Between Biomechanics and  
Exercise-Induced Physiological Demand on the Human Body .......................................... 101	

Biomarker Assessment for Training Stress & Fatigue Monitoring in Athletes .................. 112	

REFERENCES ....................................................................................................................... 134	

CHAPTER 3 ............................................................................................................................... 163	

RATIONALE .......................................................................................................................... 163	

POPULATION ....................................................................................................................... 165	

Subjects ............................................................................................................................... 165	

Power Analysis ................................................................................................................... 169	

Initial LESS Screening ........................................................................................................ 171	

LESS Instrumentation & Setup ........................................................................................... 171	

LESS Screening Procedure ................................................................................................. 172	

TESTING SESSION ............................................................................................................... 173	

DATA COLLECTION ........................................................................................................... 176	

Instrumentation ................................................................................................................... 176	



 

 viii 

Procedures ........................................................................................................................... 182	

DATA PROCESSING & REDUCTION ................................................................................ 187	

Blood Sample Processing & Long-Term Serum Sample Storage Preparation ................... 187	

Marker Identification & Processing .................................................................................... 188	

Kinetic Calculations ............................................................................................................ 189	

Data Reduction .................................................................................................................... 189	

DATA ANALYSIS ................................................................................................................. 191	

Biomarker Analysis ............................................................................................................ 191	

Biomechanical Analysis ...................................................................................................... 192	

REFERENCES ....................................................................................................................... 195	

CHAPTER 4 ............................................................................................................................... 201	

PARTICIPANT DEMOGRAPHICS ...................................................................................... 201	

Acute High Training Load Exposure Protocol ....................................................................... 202	

AIM #1 – Evaluate the effects of movement quality on MSK tissue  
stress biomarkers at rest and in response to an acute HTL. .................................................... 204	

AIM #2 – Investigate the influence of movement quality on systemic  
stress biomarkers at rest and in response to an HTL. ............................................................. 207	

AIM #3 – Determine if movement quality moderates  
biomechanical responses to an acute HTL. ............................................................................ 207	

REFERENCES ....................................................................................................................... 215	

CHAPTER 5: MANUSCRIPT #1 .............................................................................................. 216	

Overview ................................................................................................................................. 216	

INTRODUCTION .................................................................................................................. 218	

METHODS ............................................................................................................................. 220	

Participants .......................................................................................................................... 220	

Procedures ............................................................................................................................... 222	



 

 ix 

Participant Preparation ........................................................................................................ 222	

Three-Dimensional Motion Analysis .................................................................................. 223	

Pre-HTL Jump-Landing Assessment .................................................................................. 223	

Ventilatory Threshold Assessment ..................................................................................... 224	

Controlled High-Intensity Exercise Exposure (HTL) ......................................................... 225	

Post-HTL Jump-Landing Assessment ................................................................................ 226	

Data Reduction & Analysis ................................................................................................ 227	

RESULTS ............................................................................................................................... 230	

Participants Demographic ................................................................................................... 230	

Controlled High-Intensity Exercise Exposure Metabolics & Perceived Intensity .............. 230	

Biomechanics ...................................................................................................................... 230	

DISCUSSION ......................................................................................................................... 231	

NEW KEY FINDINGS .......................................................................................................... 239	

HOW MIGHT IT IMPACT CLINICAL PRACTICE IN THE FUTURE? ............................ 239	

REFERENCES ....................................................................................................................... 249	

CHAPTER 6: MANUSCRIPT #2 .............................................................................................. 258	

Overview ................................................................................................................................. 258	

INTRODUCTION .................................................................................................................. 260	

METHODS ............................................................................................................................. 262	

Participants .......................................................................................................................... 262	

Pretest Guidelines ............................................................................................................... 263	

Participant Preparation ........................................................................................................ 264	

Ventilatory Threshold Assessment ..................................................................................... 265	

Controlled Acute High Training Load Exposure Protocol ................................................. 266	

Blood Collection Procedures .............................................................................................. 267	



 

 x 

Biochemical Analysis ......................................................................................................... 268	

Statistical Analysis .............................................................................................................. 268	

RESULTS ............................................................................................................................... 270	

Circulating Systemic & Musculoskeletal Tissue Stress Biomarkers .................................. 270	

DISCUSSION ......................................................................................................................... 272	

Cortisol ................................................................................................................................ 273	

Creatine Kinase (CK-MM) ................................................................................................. 275	

Cartilage Oligomeric Matrix Protein (COMP) ................................................................... 279	

REFERENCES ....................................................................................................................... 288 

APPENDIX 1: 17-Item LESS Operational Definitions ...............................................................297 

APPENDIX 2: Pre-Test Guidelines .............................................................................................298 

APPENDIX 3: Modified “V-Slope” Method for Determining Ventilatory Threshold ...............299 

 



 

 vii 

LIST OF TABLES 

1. Table 3.1: Speed-Only Graded Submaximal Aerobic Power Assessment Protocol ........180 

2. Table 4.1: Group Demographic & Fitness Level  
Descriptive Statistics: Group Means & (SDs) .................................................................201 

3. Table 4.2: Controlled acute high training load  
exposure stage metabolic & intensity perception data .....................................................203 

4. Table 4.3: Group-by-time Raw (ng/ml), natural logarithm-transformed,  
& %∆ serum biomarker concentrations per and post-acute HTL ....................................206 

5. Table 4.4: Summary of pre, post and biomechanical variable change  
response relative to acute HTL exposure .........................................................................209 

6. Table 5.1: Group Demographic Descriptive Statistics ....................................................240 

7. Table 5.2: Controlled Acute High Training Load  
Exposure Stage Metabolic & Intensity Perception Measures ..........................................241 

 

 



 

 viii 

LIST OF FIGURES 

 

Figure 1.1: Conceptual Model of the Influence of Movement Profile on  
High Training Load Responses ...................................................................................................... 6 

Figure 1.2: Proposed Study Methodology ..................................................................................... 8 

Figure 2.1: Andriacchi et al’s. 2004 theoretical framework explaining the  
relationship between in vivo function, non-physiological joint biomechanics,  
joint loading, and articular cartilage mechanical and biological responses ............................... 103 

Figure 3.1: Movement Profile LESS Inclusion Criteria ............................................................ 167 

Figure 3.2: Study Overview Diagram ........................................................................................ 169 

Figure 3.3: Overhead view of the jump-landing LESS testing set-up ....................................... 172 

Figure 3.4: Detailed Testing Session Overview ........................................................................ 175 

Figure 3.5: High Training Load Exposure Exercise Protocol .................................................... 185 

Figure 4.1: Acute HLT protocol speed,  perceptual measures  
(RPE) and associated metabolic responses (Heart Rate, Oxygen Uptake, RER) ...................... 203 

Figure 4.2: Log [C] of values and acute HTL response behavior of  
CK-MM (a), COMP (b), and cortisol (c) ................................................................................... 206 

Figure 4.3: Sagittal plane trunk, hip, and knee motion group ensemble curves  
and associated 95% confidence interval waveforms over the stance phase of  
the jump-landing task ................................................................................................................. 210 

Figure 4.4: Frontal plane hip and knee motion group ensemble curves and associated 95% 
confidence interval waveforms over the stance phase of the jump-landing task ....................... 211 

Figure 4.5: Sagittal plane net internal hip and knee moment group  
ensemble curves and associated 95% confidence interval  
waveforms over the stance phase of the jump-landing task ...................................................... 212 

Figure 4.6: Frontal  plane net internal hip and knee moment group  
ensemble curves and associated 95% confidence interval  
waveforms over the stance phase of the jump-landing task ...................................................... 213 

Figure 4.7: Vertical ground reaction force (VGRF) and  
anterior tibial shear force (ATSF) group ensemble curves and associated  
95% confidence interval waveforms over the stance phase of the jump-landing task .............. 214 



 

 ix 

Figure 5.1: Study Overview & Biomechanical Adaptations to  
acute High Training Load Exposure .......................................................................................... 242 

Figure 5.2: Biomechanics Methodology Protocol ..................................................................... 243 

Figure 5.3: Pre-HTL, Post-HTL, & Change Responses for Sagittal  
Plane Trunk, Hip, & Knee Kinematics ...................................................................................... 244 

Figure 5.4: Pre-HTL, Post-HTL, & Change Responses for  
Frontal Plane Hip & Knee Kinematics ...................................................................................... 245 

Figure 5.5: Pre-HTL, Post-HTL, & Change Responses for  
Sagittal Plane Hip & Knee Moments ......................................................................................... 246 

Figure 5.6: Pre-HTL, Post-HTL, & Change Responses for  
Frontal Plane Hip & Knee Moments ......................................................................................... 247 

Figure 5.7: Pre-HTL, Post-HTL, & Change Responses for  
Vertical Ground Reaction and Anterior Tibial Shear Forces ..................................................... 248 

Figure 6.1: Group Demographic Descriptive Statistics ............................................................. 282 

Figure 6.2: Controlled Acute High Training Load Exercise Exposure Stage Metabolic & 
Intensity Perception Data ........................................................................................................... 283 

Figure 6.3: Group-by-time Raw (ng/ml), Natural Logarithm-transformed,  
& %∆  serum biomarker concentrations pre and post acute HTL ............................................. 284 

Figure 6.4: Raw (ng/ml), Natural Logarithm-Transformed,  
& %∆ for serum biomarker concentrations collapsed across groups pre and post acute HTL .. 285 

Figure 6.5: Landing Error Scoring System Group Assignment Criterion ................................. 286 

Figure 6.2: Biomarker Assessment Testing Session Overview ................................................. 287 

 



 

 ix 

LIST OF ABBREVIATIONS & SYMBOLS 

 

ACL: Anterior Cruciate Ligament 

C1,2C: Carboxy-Terminus of 3/4 Peptide From Cleavage of Type-I & Type-II Collagen 

C2C: Neoepitope From Cleavage Of Type-II Collagen 

CK: Creatine Kinase 

COMP: Cartilage Oligomeric Matrix Protein 

CPII: Type-II Procollagen Carboxy-Propeptide 

CTx-II: C-Telopeptide Of Type-II Collagen 

ELISA: Enzyme Linked Immuosorbent Assay 

HIE: High-Intensity Exercise 

HTL: High Training Load 

IL-6: Interleukin-6 

LESS: Landing Error Scoring System 

MKD: Medial Knee Displacement 

MSK: Musculoskeletal 

OA: Osteoarthritis 

RPE: Rating of Perceived Exertion 

sCOMP: Serum Cartilage Oligomeric Matrix Protein 

sCORT: Serum Cortisol 

SOVO2submax: Speed-Only Graded Submaximal Aerobic Capacity Assessment 

VeT: Ventilatory Threshold 

VO2max: Maximal Aerobic Capacity 



 

 1 

CHAPTER 1 

INTRODUCTION 

Musculoskeletal (MSK) injuries during sport and physical activity are common (Conn, 

Annest, and Gilchrist 2003), costly (Woolf and Pfleger 2003; Jacobs 2008), and have long-term 

health consequences (Lohmander et al. 2007; Maffulli et al. 2010), representing a substantial 

socioeconomic burden (Cumps et al. 2008; Shephard 2003). Injury severity is the primary 

determinant of an injury’s cost to society (van Mechelen 1997; van Mechelen, Hlobil, and 

Kemper 1992). Individuals who sustain a high-severity sport-related MSK injury such as an 

anterior cruciate ligament (ACL) rupture experience sizeable direct and indirect medical costs, 

acute and long-term decreases in productivity that result in a reduction in human capital, and 

decreases in quality of life (van Mechelen 1997; van Mechelen, Hlobil, and Kemper 1992; 

Cumps et al. 2008). Thus, there is a considerable need to understand underlying factors that may 

contribute to an increased risk of experiencing a high-severity MSK during sport and physical 

activity to reduce the socioeconomic burden of MSK injury while maximizing the health benefits 

of sport and physical activity participation. 

The current body of literature has identified lower extremity biomechanics to be both risk 

factors (2006; Dallinga, Benjaminse, and Lemmink 2012; Shultz et al. 2012) and mechanisms 

(Krosshaug et al. 2007; Shimokochi and Shultz 2008) for sport-related ACL injury. Thus 

biomechanics are associated with an individual’s prospective risk for sport-related ACL injury, 

and are readily identifiable during injury events. 
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Interestingly, over 50% to 70% of sport-related ACL injuries are reported to be the result 

of a noncontact mechanism of injury (Agel, Arendt, and Bershadsky 2005; Boden et al. 2000; 

Mihata, Beutler, and Boden 2006; Mountcastle et al. 2007). Noncontact mechanisms causing 

sport-related ACL rupture are described as “forces applied to the knee at the time of injury that 

result from an athlete’s own movement that did not involve contact with another athlete of 

object” (Marshall, Padua, and McGrath, n.d.). Thus, an athlete’s self-imposed motion is 

responsible for injury. 

Recent studies suggest that high training load (HTL) exposure similar to the physical 

demands of sport participation elicits changes in lower extremity biomechanics associated with 

noncontact ACL injury (Quammen et al. 2012; Santamaria and Webster 2010; Webster et al. 

2012; SCHMITZ et al. 2014). Current evidence links fatigue (Galambos et al. 2005) and high 

training loads (Gabbett 2004; Gabbett and Jenkins 2011) to increased injury rates. Furthermore, 

the physiological effects of sport participation can result in high levels of markers of total body / 

systemic stress (Rietjens et al. 2005; Thorpe and Sunderland 2012), muscle damage (Rietjens et 

al. 2005; Thorpe and Sunderland 2012), and joint loading (Andriacchi et al. 2004; Dominguese 

and Seegmiller 2012; Santamaria and Webster 2010) that may explain an individual’s 

predisposition to injury. 

Individuals with poor lower extremity biomechanics may experience an exacerbated 

adaptation in biomechanics linked to noncontact ACL injury after exposure to HTL demands 

experienced during sport. Specifically, individuals with poor biomechanics may exhibit greater 

non-sagittal plane loading at the knee and hip after HTL exposure, such as greater frontal and 

transverse plane energy absorption (Santamaria and Webster 2010), imparting high shearing 

stresses on lower extremity articular joint surfaces associated with articular cartilage degradation 
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(Andriacchi et al. 2004). Furthermore, when individuals adopt non-sagittal plane energy 

absorption strategies they may recruit frontal and transverse plane dynamic stabilizing 

musculature to maintain safe hip and knee joint control, reducing energy absorption efficiency, 

resulting in a potentially higher total body physiological demand. Therefore, the volume of total 

body stress, muscle damage, and joint stress experienced by those with poor biomechanics may 

be greater after HTL exposure. However, the influence of poor biomechanics on total body 

stress, muscle damage, and joint load during HTL exposure is currently unknown. Developing an 

understanding of the influence of poor lower extremity biomechanics on systemic stress and 

MSK system tissue damage is important, because poor biomechanics are modifiable, and can be 

improved during sport and physical activity participation (Distefano et al. 2010; Distefano et al. 

2011; Padua et al. 2011; Dempsey et al. 2009). Therefore, clinicians may be able to decrease 

systemic and MSK tissue stress during HTL scenarios by means of improving biomechanics 

through corrective exercise interventions, reducing an individual’s susceptibility to injury during 

sport or physical activity participation. 

Clinical movement screenings such as The Landing Error Scoring System (LESS) can 

validly and reliably discriminate between individuals with poor and excellent movement profiles 

(APPENDIX 1) (Padua et al. 2009). Biomechanics associated with a poor movement profile and 

the readily identifiable medial knee displacement (MKD) movement pattern are linked to 

numerous lower extremity injuries, including ACL injury (Shultz et al. 2010), patellofemoral 

pain syndrome (Mizuno et al. 2001; Elias et al. 2004), medial collateral ligament injury (Hull et 

al. 1996), lower-leg stress fracture (Cameron, Peck, and Owens 2014), as well as the progression 

of knee osteoarthritis (OA) (Sharma et al. 2001; Brouwer et al. 2007). Mounting evidence 

suggests that corrective exercise programming and lower extremity injury prevention programs 
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can significantly improve lower extremity biomechanics to limit MKD and other non-sagittal 

plane loading patterns that characterize a poor movement profile during functional tasks (Bell et 

al. 2013; Zebis et al. 2008; Barendrecht et al. 2011); improving lower extremity neuromuscular 

control and subsequent movement efficiency during athletic participation. Although corrective 

exercise and lower extremity injury prevention programs are consistently reported to effectively 

reduce knee injury incidence during sport participation (Sadoghi, Keudell, and Vavken 2012; 

Taylor et al. 2013), the underlying mechanisms responsible for injury risk reduction remain 

elusive. 

The influence of an individual’s movement profile on their mechanical tissue loading and 

physiological response to sport and physical activity participation is not currently described. 

Previous research has focused on the influence of lower extremity neuromuscular control on 

future risk of lower extremity injury. Abnormal knee and hip biomechanics such as increased 

knee abduction moment (Farrokhi et al. 2013; 2002; 2013) and hip internal rotation (2007) are 

associated with increased joint loading at the tibiofemoral and patellofemoral joint in 

pathological populations (Farrokhi et al. 2013). However, the combined influence of an 

individual’s pre-existing / baseline movement profile and HTL exposure on MSK tissue loading 

and systemic physiological stress has not been evaluated. 

An individual with pre-existing deficits in lower extremity neuromuscular control may 

experience higher mechanical tissue loading and greater subsequent physiological stress during 

athletic participation compared to an individual with an ideal movement profile (figure 1.1). 

Indirect evaluation of joint loading can be accessed via circulating biochemical markers of 

articular cartilage metabolism and evaluation of cartilage thickness via radiograph (Boocock et 

al. 2009; Niehoff et al. 2011) or ultrasonography (Naredo et al. 2009), while markers of the 
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systemic physiological response to exercise manifest in circulating markers of total body 

hormonal stress response, muscle tissue damage, and subjective perceived exertion (Knicker et 

al. 2011; Purvis, Gonsalves, and Deuster 2010; Thorpe and Sunderland 2012). Individuals with 

deficits in lower extremity neuromuscular control such as a poor movement profile and MKD 

may experience greater tissue loading and total body stress responses driving a potential 

increased risk for injury when exposed to a HTL. Furthermore, individuals with deficits in lower 

extremity neuromuscular control may present with elevated markers of tissue loading and total 

body physiological stress prior to HTL exposure due to chronic abnormal soft tissue demands 

and joint loading. Identifying a link between a movement profile representative of poor lower 

extremity neuromuscular control and joint and physiological stress may further explain an 

individual’s heightened risk of lower extremity injury during athletic participation. Combining 

the influence of biomechanical lower extremity risk factors for injury and physiological markers 

of systemic stress and exercise-induced MSK tissue damage may provide clinicians with an 

improved capacity to identify athletes at high risk for injury, and facilitate development of more 

effective intervention methods aimed at reducing an individual’s vulnerability for injury during 

sport participation. 
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Figure 1.1 - Conceptual model depicting the potential influence of and individual’s baseline 
movement profile on their systemic and musculoskeletal system tissue stress in response to high-
intensity exercise exposure. 

 

Currently, the strongest link between training stress and MSK injury is a subjective 

measure of training load; calculated by multiplying an athlete’s session rate of perceived exertion 

(RPE) by the duration of the activity (Gabbett and Jenkins 2011). Exposure to higher training 

loads has been linked to increases in the hormone cortisol, an endocrine system marker of 

systemic stress (Gomes et al. 2013). Similarly, elevated levels of creatine kinase (CK), a marker 

of skeletal muscle damage has been observed during periods of higher intensity training or 

competition in athletes (Coutts et al. 2007; Uchida et al. 2009). Evidence implicates subjective 

assessment of training load to be a sufficient measure of objectively assessed markers of 

systemic physiological and MSK system tissue stress imposed on the body during sport 

participation, as elevated levels of cortisol and CK are both linked to higher levels of training 

stress (Gomes et al. 2013; Thorpe and Sunderland 2012; Coutts et al. 2007). To date there is a 
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lack of information regarding the underlying physiological link between increased training load 

and injury risk. 

A majority of research has focused on the effects of lower extremity corrective exercise / 

injury prevention programs on biomechanics and injury rates in the active population, however 

there is a lack of understanding regarding how an individual’s movement profile affects the 

athlete’s systemic stress response, consequent changes in biomechanics associated with injury, 

and MSK system tissue damage. An investigation regarding the effects of aberrant lower 

extremity biomechanics on consequential physiological stress markers and biological markers of 

MSK system tissue damage and metabolism is warranted (figure 1.2). The overall aim of this 

study was to evaluate the effect of an individual’s baseline movement profile on MSK system 

tissue damage, systemic stress and biomechanical response to HTL exposure simulating the 

physical demands of field and court sport. A total of 43 female court and field and court sport 

athletes with poor (n= 21) and excellent (n= 22) movement profiles was recruited for 

participation in this study to better understand the impact of an individual’s movement profile on 

MSK system tissue damage and systemic stress response to HTL. 
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Figure 1.2 – Overview of the P study methodology to evaluate the effects of an individual’s 
baseline movement profile on their musculoskeletal tissue damage and systemic stress response 
to high-intensity exercise exposure. 
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Operational Definitions 

1. High Training Load (HTL) Protocol: An exercise protocol lasting approximately 28 

minutes comprised of 6 sets of a 5-minute interval of treadmill running at a speed 

coincident with 115 – 120% of a participant’s ventilatory threshold (VeT) and 10 

repetition jump-landing interval. This protocol has been identified to induce elevations in 

measures of systemic stress and global fatigue responses associated with the high 

physical demands of field and court sport participation. 

2. Poor Baseline Movement Profile: An “average” or “stiff” landing characterized as “very 

little, if any trunk, hip, and knee displacement.” with medial knee displacement 

(APPENDIX 1). 

3. Excellent Baseline Movement Profile: An “average” or “soft” landing characterized as 

“large displacement of the trunk, hips, and knees” with medial knee displacement 

(APPENDIX 1). 

4. Medial Knee Displacement (MKD): Visually observed frontal plane medial displacement 

of the center of the patella relative to the first ray during the loading phase of a jump-

landing. 

5. Submaximal Aerobic Capacity (VO2max): The maximal volume of oxygen (ml) consumed 

per unit (kg) body mass per unit time (minute) measured via ventilatory gas exchange 

during a speed only graded exercise test (ml•kg-1•min-1). 

6. Ventilatory Threshold (VeT): Quantified using the V-slope method (Albouaini et al. 

2007), an exercise intensity (treadmill speed) representative of the point at which 

pulmonary minute ventilation increases disproportionately to oxygen consumption during 

the speed only graded exercise test. 
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7. Serum Cartilage Oligomeric Matrix Protein (sCOMP) Concentration: Venous blood 

sample serum concentration (ng·dl-1) assessed using an enzyme-linked immunosorbent 

assay (ELISA) reflective of cartilage matrix disruption / degradation. 

8. Serum Cortisol Concentration: Venous blood sample serum concentration (ng·dl-1) 

assessed using an ELISA reflective of systemic stress level. 

9. Serum Creatine Kinase MM-Isoform (CK-MM) Concentration: Venous blood sample 

serum concentration (ng·dl-1) assessed using an ELISA representative of exercise-

induced muscle damage. 

10. Jump-Landing Task: A functional movement task imposing physical demands similar to 

landing from a jump during sport activity as in “rebounding” during basketball. 

Participants jump down from a 30 cm high “jump box” to a target line placed ½ the 

participant’s height anterior to the “jump box” and immediately jumping upward for 

maximal height. 

11. Sagittal Plane Knee Angle: Local coordinate system angulation of the shank segment 

rigid body relative to the thigh segment rigid body about the knee joint’s medio-lateral 

axis ((+) Flexion / (-) Extension). 

12. Frontal Plane Knee Angle: Global coordinate system angulation of the shank segment 

rigid body and the thigh segment rigid body axes ((+) Varus / (-) Valgus). 

13. Sagittal Plane Knee Moment: Net internal soft-tissue force acting about the knee joint’s 

medio-lateral axis formed by the moment arms of shank segment and thigh segment rigid 

bodies ((+) Flexion / (-) Extension). 
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14. Frontal Plane Knee Moment: Net internal soft-tissue force acting about the knee joint’s 

anterior-posterior axis formed by the moment arms of shank segment and thigh segment 

rigid bodies ((+) Varus / (-) Valgus). 

15. Proximal Anterior Tibial Shear Force: The net linear force applied in the anterior 

direction at the tibiofemoral joint causing anterior translation of the shank rigid body in 

the reference frame of the x-axis of the femur translated to the distal end of the femur 

rigid body. 

16. Sagittal Plane Hip Angle: Local coordinate system angulation of the thigh segment rigid 

body relative to the pelvis segment rigid body about the hip joint’s medio-lateral axis ((+) 

Flexion / (-) Extension). 

17. Frontal Plane Hip Angle: Local coordinate system angulation of the thigh segment rigid 

body relative to the pelvis segment rigid body about the hip joint’s antero-posterior axis 

((+) Adduction / (-) Abduction). 

18. Sagittal Plane Hip Moment: Net internal soft-tissue force acting about the hip joint’s 

medio-lateral axis formed by the moment arms of thigh segment and pelvis segment rigid 

bodies ((+) Flexion / (-) Extension). 

19. Frontal Plane Hip Moment: Net internal soft-tissue force acting about the hip joint’s 

antero-posterior axis formed by the moment arms of thigh segment and pelvis segment 

rigid bodies ((+) Adduction / (-) Abduction). 

20. Sagittal Plane Trunk Angle: Local coordinate system angulation of the thorax segment 

rigid body relative to the pelvis segment rigid body about the L5-S1 joint interspace’s 

medio-lateral axis ((+) Flexion / (-) Extension). 
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21. Frontal Plane Trunk Angle: Local coordinate system angulation of the thorax segment 

rigid body relative to the pelvis segment rigid body about the L5-S1 joint interspace’s 

anterior-posterior axis ((+) Rightward / (-) Leftward). 

22. Vertical Ground Reaction Force: The vertical components of the ground reaction force 

vectors of the right and left force platforms equal in magnitude and opposite in direction 

to the force imparted by participants when they are in contact with the ground atop the 

right and left force platforms normalized to the participant’s mass. 

23. Initial Ground Contact: The first time point during each jump-landing trial when the right 

or left force platform registers a vertical ground reaction force >10N. 

24. Toe-Off: The first time point during each jump-landing trial when the right or left force 

platform registers a vertical ground reaction force <10N after initial ground contact. 

25. Stance Phase: The period of time between initial ground contact and toe-off, representing 

the period of time in which the participant’s right or left foot is in contact with the right 

or left force platform during the jump-landing task. 

26. Biomechanical Response Change Score and Confidence Interval Waveforms: All 

biomechanical data will be analyzed as continuous normalized waveforms during the 

stance phase of the jump-landing (Kuenze et al. 2014). Interpolated kinematic and kinetic 

data will be normalized to 201 data points (knots) over the stance phases of the middle 3 

jump-landing task trials using a cubic spline function. Each knot will be calculated as the 

mean value of the respective derived knots from each of the 3 middle jump-landing tasks 

(eq. 1) (trial 2, trial 3, trial 4). 

!"#$%…'() =
!"#$%	,' +	!"#$%	,. +	!"#$%	,/

3  

(eq. 1) 
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To calculate changes in biomechanical variables from baseline to post-exercise, the 

difference between the respective individual baseline and post-HIE knot values (knotbi & 

knotfi) was calculated to form a 201 knot waveform reflecting the change in the 

biomechanical variable of interest (eq. 2). 

!"#$∆%…'() = 	!"#$2% − !"#$4% 

(eq. 2) 

Average change score ensemble means and 95% confidence interval waveforms will be 

calculated for sagittal and frontal plane trunk, hip, and knee joint angles. Change score 

waveforms will be calculated for sagittal and frontal plane internal net hip and knee joint 

moments. Furthermore, change score waveforms will also be calculated for proximal 

anterior tibial shear force and vertical ground reaction force variables. 

 

LIMITATIONS & ASSUMPTIONS 

1. Biomechanical calculations from the motion analysis system and biomechanical software 

are reliable and valid. 

2. The principal investigator is an “expert” LESS rater, and thus accurately and reliably is 

able to identify poor and excellent baseline movement profiles of study candidates. 

3. The HIE protocol represents a generalizable simulation of the physical demands of field 

and court sports. 

4. Participants honestly report their rate of perceived exertion during the VeT assessment 

and the HTL exercise exposure. 

5. Participants jump for maximal vertical height during the jump-landing tasks during the 

HIE protocol and biomechanical assessment. 
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6. The ELISA kits are reliable within <10% inter and intra-assay coefficients of variation. 

7. Circulating serum concentrations of sCOMP accurately and reliably reflect articular 

cartilage metabolism. 

8. Circulating serum concentration of cortisol accurately and reliably reflects systemic stress 

level. 

9. Circulating serum CK-MM accurately and reliably reflects levels of exercise-induced 

skeletal muscle damage. 

10. The MSK system tissue damage, systemic stress, and biomechanical responses of 

college-aged club field and court sport athletes to HTL is generalizable to the high-risk 

female athlete population at high-risk for sport-related noncontact ACL injury. 

 

DELIMITATIONS 

1.  43 female participants (21 poor & 22 excellent) will be recruited from the local 

university population. 

2. All participants were between the ages of 18 – 24 years of age. 

3. All participants were healthy with no history of upper or lower extremity joint surgery, 

spine surgery, or neurological or metabolic disorders. 

4. All participants were injury-free at the time of testing, and had no history of lower or 

upper extremity MSK injury that limited their participation from sport or exercise for 

more than 3 days. 

5. All participants had previous history of competitively participating in a field or court 

sport (soccer, lacrosse, basketball, rugby, team handball, field hockey, volleyball, tennis) 

for at least one year of varsity level participation during high-school. 
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6. All participants had an estimated maximal aerobic capacity between 

40 – 50 ml•kg-1•min1. 

7. Participants demonstrate MKD and an “average” or “stiff” landing OR participants 

demonstrate a “soft” or “average” landing without MKD. 

8. Segment kinematic data was collected from the trunk, thigh, shank, and foot using a 10-

camera optoelectric motion capture system. 

9. Bilateral ground reaction force data was collected using two conductive in-ground 

mounted force platforms. 

10. All serum biomarker concentrations were measured using ELISA and spectrophotometry. 

 

INDEPENDENT VARIABLE 

1. Baseline movement profile 

a. Excellent vs. Poor 

 

DEPENDENT VARIABLES 

1. Baseline and Post-HIE Exposure Serum Biomarker Concentrations: 

a. sCOMP 

b. Cortisol 

c. CK-MM 

2. Change Score and 95% Confidence Interval Ensemble Waveforms for the Following 

Biomechanical Variables Normalized to 202 Data Points Over The Stance Phase of the 

Jump-Landing Task: 

a. Sagittal plane knee joint angle 
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b. Frontal plane knee thigh-shank segment angle 

c. Sagittal plane hip joint angle 

d. Frontal plane hip joint angle 

e. Sagittal plane trunk angle 

f. Frontal plane trunk angle 

g. Net internal sagittal plane knee joint moment 

h. Net internal frontal plane knee joint moment 

i. Net internal sagittal plane hip joint moment 

j. Net internal frontal plane hip joint moment 

k. Proximal anterior tibial shear force 

l. Vertical ground reaction force 

 

RESEARCH QUESTIONS 

1. What are the effects of an individual’s baseline movement profile on changes in 

circulating biomarkers of MSK system tissue damage and mechanical stress in response 

to HTL? 

a. Compare the magnitude and direction of changes from pre to post-HTL in serum 

sCOMP concentration between participants with poor and excellent baseline 

movement profiles. 

b. Compare the magnitude and direction of changes from pre to post-HTL in serum 

CK-MM concentration between participants with poor and excellent baseline 

movement profiles. 
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2. What are the effects of an individual’s baseline movement profile on changes in 

circulating biomarkers of systemic stress and peripheral fatigue in response to HIE? 

a. Compare the magnitude and direction of changes from pre to post-HIE in serum 

cortisol concentration between participants with poor and excellent baseline 

movement profiles. 

3. What are the effects of an individual’s baseline movement profile on changes in 

biomechanics associated with sport-related noncontact ACL injury in response to HIE? 

a. Compare the ensemble change scores and associated 95% confidence interval 

waveforms for sagittal and frontal plane trunk, hip, and knee kinematics during 

the stance phase of the jump-landing task between individuals with poor and 

excellent baseline movement profiles. 

b. Compare the ensemble change scores and associated 95 confidence interval 

waveforms for sagittal and frontal plane hip and knee moments during the stance 

phase of the jump-landing task between individuals with poor and excellent 

baseline movement profiles. 

c. Compare the ensemble change score and associated 95confidence interval 

waveforms for proximal anterior tibial shear force during the stance phase of the 

jump-landing task between individuals with poor and excellent baseline 

movement profiles. 

d. Compare the ensemble change score and associated 95% confidence interval 

waveforms for the vertical ground reaction force during the stance phase of the 

jump-landing task between individuals with poor and excellent baseline 

movement profiles. 
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HYPOTHESES 

1. Individuals with poor and excellent baseline movement profiles will experience different 

magnitudes of MSK system tissue stress in response to HTL exposure such that: 

a. The poor group will experience greater elevations in markers of cartilage 

degradation, with the poor group experiencing greater elevations in sCOMP 

relative to baseline following HTL exposure compared to the excellent group.  

b. The poor group will exhibit greater elevations in exercise-induced muscle 

damage, with the poor group experiencing greater elevations in CK-MM relative 

to baseline following HTL exposure compared to the excellent group. 

2. Individuals with poor and excellent baseline movement profiles will experience greater 

magnitudes of systemic stress in response to HTL exposure characterized by: 

a. The poor group will experience greater elevations in serum cortisol compared to 

the excellent group. 

3. Individuals with poor baseline movement profiles will exhibit a greater tendency and 

magnitude in changes toward biomechanics associated with sport-related noncontact 

ACL injury in response to HTL exposure compared to individuals with excellent baseline 

movement profiles such that: 

a. The poor group will exhibit greater decreases in sagittal plane hip and knee 

motion with concomitant increases in frontal plane hip and knee motion toward 

hip adduction and knee valgus or varus motion over the stance phase of the jump-

landing task compared to the excellent group. Furthermore, the poor group will 



 

 19 

demonstrate greater changes toward forward and lateral trunk flexion motion 

compared to the excellent group during the stance phase of the jump-landing task. 

b. The poor group will exhibit greater decreases in sagittal plane hip extension 

moment with concomitant increases in sagittal plane knee extension moment 

compared to the excellent group. Additionally, the poor group will exhibit greater 

increases in internal hip adduction and knee varus moment during the stance 

phase of the jump-landing task compared to the excellent group. 

c. The poor group will experience greater increases in proximal anterior tibial shear 

force during the stance phase of the jump-landing compared to the excellent 

group. 

d. The poor group will experience greater increases in vertical ground reaction force 

during the stance phase of the jump-landing compared to the excellent group. 
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CHAPTER 2 

 

Physical Activity Participation Must be Promoted to Improve Population Health 

Non-communicable disease represents 65% of all-cause mortality and 44% of premature 

deaths per year (World Health Organization, 2010). Physical inactivity was responsible for 9% 

of the world’s premature mortality in 2008, and has been linked to the leading causes of death 

classified as non-communicable diseases (Lee et al. 2012). Physical inactivity is directly 

attributable to 6% of coronary heart disease, 7% of type II diabetes, and 10% of colon and breast 

cancer (Lee et al. 2012). Non-communicable disease represents a significant socioeconomic 

burden on the world’s population (Pratt et al. 2014), thus interventions and behaviors that limit 

the prevalence of non-communicable disease should be promoted (Hallal et al. 2012; Garber et 

al. 2011). Regular exercise participation significantly reduces an individual’s risk of non-

communicable disease (Garber et al. 2011; Lee et al. 2012). High-level evidence implicates 

exercise significantly reduces an individual’s risk of developing coronary heart disease, breast 

and colon cancer, and type II diabetes by 20-40% (United States Department of Health & Human 

Services, 2008, (Burns and Murray 2014). Physical activity participation is perhaps the single-

most effective health behavior to reduce non-communicable disease risk (Lee et al. 2012). Thus 

improving and maintaining physical activity participation in the population is a significant 

priority to improve world health. 

Although engagement in physical activity has been reported to promote health benefits, 

participation in sport and fitness activity is not without potential adverse consequence. Physical 
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activity participation has an overall unintentional injury incidence of 25.9 injuries per 1,000 

persons, with musculoskeletal injury amassing to over 50% of all injuries sustained (Conn, 

Annest, and Gilchrist 2003). Two hundred and seventeen million Americans engaged in regular 

physical activity in 2012, representing 76% of the United States population aged six years or 

greater (Council 2012). Considering the unintentional injury incidence associated with physical 

activity, the total number of musculoskeletal injuries associated with physical activity is large 

and may create a significant burden on the healthcare system. 

Musculoskeletal (MSK) injury represents an economic burden surmounting to 9% of The 

United States gross domestic product (Jacobs 2008). Thus, as a population we are presented with 

a dilemma; physical inactivity has adverse health consequences (Lee et al. 2012; Trost, Blair, 

and Khan 2014) but participation in sport increases one’s risk for sustaining MSK injury (Conn, 

Annest, and Gilchrist 2003). Understanding the epidemiology of sport and physical activity 

related injury helps to direct interventions aimed at reducing an active individual’s risk for 

sustaining MSK injury during sport and physical activity participation. Enabling safe sport and 

physical activity participation permits the population to participate in an effective protective 

health behavior while reducing the negative consequences of sustaining a MSK injury. 

 

SECTION ONE: Epidemiology of Sport-Related Musculoskeletal Injury 

Lower Extremity Musculoskeletal Injury in Sport & Physical Activity 

 MSK injury accounts for 53.5% (3.75 million injuries) of the population estimated 7 

million sport and physical activity related injuries that occur each year in the United States 

(Conn, Annest, and Gilchrist 2003). Sport-related MSK injury occur at an incidence of almost 26 

injuries per 1,000 population individuals (Conn, Annest, and Gilchrist 2003). Sprain and strain 
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injuries (31.5%) represent a majority of injury diagnoses compared to other MSK conditions, 

rivaled only by the frequency of fractures (22%) (Conn, Annest, and Gilchrist 2003). Extremity 

injuries account for over 70% of the sprains and strains sustained by athletes and the physically 

active population (Conn, Annest, and Gilchrist 2003). While upper extremity injuries are 

common in sport and physical activity participation, lower extremity MSK diagnoses 

consistently amount to a majority of reported sport-related injuries in multiple populations, 

ranging from the recreationally active (Conn, Annest, and Gilchrist 2003) through youth 

(Clausen et al. 2014; Conn, Annest, and Gilchrist 2003; Fernandez, Yard, and Comstock 2007; 

Ruedl et al. 2012), collegiate (Hootman, Dick, and Agel 2007), and professional athlete 

populations (Walden, Hagglund, and Ekstrand 2005; Hägglund et al. 2013). 

 Specifically, knee and lower-leg conditions represent a majority of the sport-related 

injuries across all levels of athletic participation (Fernandez, Yard, and Comstock 2007; 

Hootman, Dick, and Agel 2007; Cumps et al. 2008; Hägglund, Waldén, and Ekstrand 2005; 

Walden, Hagglund, and Ekstrand 2005). In a secondary analysis of the High School Sport-

Related Injury Surveillance System Study data, Fernandez et al. observed ankle (40.3%) and 

knee (25.3%) injuries to account for the majority of all sport-related injuries, of which 50% of 

injuries were diagnosed as ligamentous injury (Fernandez, Yard, and Comstock 2007). While it 

is clear ankle injuries occur with a higher frequency compared to knee injuries, the most 

common cause for surgery is knee injury for both male and female high school athletes 

(Fernandez, Yard, and Comstock 2007). Severe sport-related injuries resulting in surgery are 

associated with a significant unfavorable socioeconomic impact (Cumps et al. 2008; Gottlob et 

al. 1999; Gianotti, Hume, and Tunstall 2010; Marshall 2003). 



 

 29 

 Similar trends in MSK injuries requiring surgical intervention are observed at the extreme 

levels of sport participation. Amateur youth (Stracciolini et al. 2014; Gottschalk and Andrish 

2011; D. Caine, Purcell, and Maffulli 2014) and elite professional (Waldén et al. 2011; 

Hägglund, Waldén, and Ekstrand 2005; Walden, Hagglund, and Ekstrand 2005; Hawkins and 

Fuller 1999) athletes have high incidences of knee injury requiring surgery. Furthermore, lower 

extremity MSK injury is a significant burden within the military (Hauret et al. 2010), a 

population exposed to high-intensity physical training and combat activity comparable to the 

physical demands of sport (Teyhen et al. 2014). A study by Hauret et al. in 2010 concluded that 

lower extremity injury accounted for 39% of all MSK injuries in the military, with injuries to the 

knee and lower-leg representing 22.4% of all injuries; more than double all upper extremity 

injuries combined (14.1% of total injuries) (Hauret et al. 2010). It is clear lower extremity MSK 

injury, specifically injuries to the knee, lower leg, and ankle occur at substantially higher rates 

compared to MSK injuries at other body locations in the physically active population. While 

MSK injuries to the lower-leg and ankle commonly have a higher incidence than knee injury, 

knee injury is responsible for a majority of surgeries associated with sport-related injury, 

contributing to a significant socioeconomic cost that reflects the surging burden of severe MSK 

injury and disease in the current population (Jacobs 2008; van Mechelen 1997; Turkiewicz et al. 

2014). 

Sport-Related Knee Injury is a Severe Injury 

 When setting targets for interventions aimed at preventing sport-related injury van 

Mechelen recommends first identifying the extent of the problem as a measure of the cost of the 

injury to society which is directly proportional to the incidence and severity of the injury (van 

Mechelen 1997). Tolpin et al. describes three primary socioeconomic costs of sport-related 
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injury; Direct Costs, Indirect Costs, and Social Costs (van Mechelen 1997; H. G. Tolpin, Vinger, 

and Tolpin 1981). Direct Costs represent the costs of medical treatment such as diagnostic 

expenses, physician / clinician and admissions fees, pharmacological treatments, material 

products (i.e. orthopaedic braces, orthotics, home-care equipment, & assistive mobility devices), 

and assistive labor (H. G. Tolpin, Vinger, and Tolpin 1981; van Mechelen 1997). Indirect Costs 

are expenditures incurred due to elevated levels of morbidity that are linked to disability, 

preventing individuals from executing their professional or career objectives effectively and 

efficiently, thus decreasing an individual’s level of productivity, resulting in lost or decreased 

income and a depreciated human capital for society (Cumps et al. 2008; H. G. Tolpin, Vinger, 

and Tolpin 1981; van Mechelen 1997; Knowles et al. 2007). Social Costs are implicated to be 

less quantifiable compared to direct and indirect costs that are based on quantifiable monetary 

and time-loss measures. However, Social Costs represent the impact of injury on an individual’s 

quality of life, ranging from indices that aim to assess levels of physical function, pain, general 

physical health, and mental health (H. G. Tolpin, Vinger, and Tolpin 1981; van Mechelen 1997). 

Together, the above costs represent the socioeconomic burden of an injury that affects both the 

injury victim and society as a whole, driving a flux in resource demand from the healthcare 

system on the broader economy in order to effectively manage and treat a sport-related injury 

acutely and over time. 

 The overall cost of a injury is most influenced by injury severity, determined by the 

nature of the sport-related injury, duration and nature of treatment, sporting time lost, working 

time lost, and permanent damage due to injury (van Mechelen 1997; Finch 1997). The knee joint 

is the most common site of severe sport-related injury within the athletic population (Darrow et 

al. 2009; Stracciolini et al. 2014; Hootman, Dick, and Agel 2007; Walden, Hagglund, and 
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Ekstrand 2005). The knee has been observed to account for over 81% of complete ligament 

sprains in athletes (Darrow et al. 2009). Complete ligamentous ruptures commonly require high-

cost surgical intervention for treatment and long-duration rehabilitation (greater than 6 months), 

thus resulting in substantial time loss from sport and working time loss, further contributing to 

the higher severity of knee injury compared to other sport-related MSK conditions (D. Caine, 

Purcell, and Maffulli 2014; de Loës, Dahlstedt, and Thomée 2000; Cumps et al. 2008). 

 The direct link between high-severity sport-related knee injury and high-cost surgical 

intervention is evident. Knee injury represents 53.9% of all severe injuries requiring surgery in 

the high school athlete population, with 41.9% of all diagnoses requiring surgery involving 

ligament sprains (Darrow et al. 2009). Furthermore, in a study of Swiss youth athletes, severe 

knee injuries account for only 10% and 13% of all sport-related injuries in males and females. 

Yet, sport-related knee injury contributes to the highest cost-per-hour injury in sport 

participation, amounting to 27% and 33% of total sport-related injury expenditures (de Loës, 

Dahlstedt, and Thomée 2000). In a Flemish population-based study, non-specific knee injury 

(including meniscal and articular cartilage involvement) was second only to anterior cruciate 

ligament (ACL) injury direct costs (Cumps et al. 2008). ACL injury direct costs more than 

double the direct medical costs of any other costly sport-related injuries (Cumps et al. 2008). 

Anterior Cruciate Ligament Injury is Responsible for High-Severity Knee Injury 

 The body of sport injury epidemiology research recognizes the knee to be the most 

common body location to sustain a severe injury during sport participation spanning all levels of 

sport competition (Conn, Annest, and Gilchrist 2003; Darrow et al. 2009; Gottschalk and 

Andrish 2011; Walden, Hagglund, and Ekstrand 2005; Hootman, Dick, and Agel 2007). ACL 

injury represents a knee injury diagnosis with perhaps the highest-level of severity as defined by 
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van Mechelen and Tolpin et al. As a diagnosis involving rupture of one of the primary passive 

stabilizers of the knee joint, the nature of the injury implicates a relatively complex surgical 

repair with a high direct cost ($11,500 (Gottlob et al. 1999) – $12,713 (Mather et al. 2013) per 

reconstruction) in attempt to restore physiological function of the joint. 

 ACL injuries also carry a high indirect cost as a result of decreased human capital. A 

single anterior cruciate ligament reconstruction (ACLR) represents a $38,121 mean lifetime cost 

to society, while conservative management of a ACL rupture has been reported to surmount to 

$88,538 mean lifetime cost to society (Mather et al. 2013). A long-duration recovery to pre-

injury physical functioning following a ACL rupture results in longer sport time and work time 

lost compared to other MSK conditions such as less a severe ligamentous injury to the ankle 

(Hagglund, Walden, and Ekstrand 2006; Walden, Hagglund, and Ekstrand 2005; Conn, Annest, 

and Gilchrist 2003; Fernandez, Yard, and Comstock 2007). 

 Intra-articular knee joint injury such as ACL rupture and meniscal tears are linked to 

subsequent decreased physical function after injury (Lentz et al. 2012; Lohmander et al. 2004; 

Lohmander et al. 2007; Oiestad et al. 2010), increased risk of osteoarthritis (OA) (Lohmander et 

al. 2004; Lohmander et al. 2007; Oiestad et al. 2010; Friel and Chu 2013; Lentz et al. 2012), and 

increased knee pain (Lohmander et al. 2004; Lohmander et al. 2007; Oiestad et al. 2010; Lentz et 

al. 2012). There is a clear negative impact of ACL injury on quality of life, a measure of social 

cost. Additionally, quality of life may be diminished further, as the time from injury onset 

increases due to the increased risk for development of post-traumatic knee OA, suggesting ACL 

injury results in permanent damage. The high direct, indirect, and social costs of ACL injury in 

the athletic and physically active population identify ACL injury as a MSK condition responsible 

for a substantial negative socioeconomic impact. van Mechelen’s priority for identifying sport-
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related injuries implicates sport-related ACL injury should be a target for preventative 

interventions within the population (van Mechelen 1997). 

The Landscape of ACL Injury in Sport 

 In order to have the largest public health impact, an intervention must target both a 

population and context that contributes to the highest socioeconomic burden regarding a health 

condition, disease, or injury condition (Fixsen et al. 2005; Hanson et al. 2014). Identifying 

populations with high incidence of ACL injury will help aim interventions to promote a public 

health impact. ACL injury incidence has been studied on a basis of sport participation, sex, age, 

previous injury history, and level of participation. While sport-related ACL injury is not 100% 

avoidable, previous findings implicate more than 50% to 70% of ACL injuries are a result of a 

noncontact mechanism (Agel, Arendt, and Bershadsky 2005; Boden et al. 2000; Mihata, Beutler, 

and Boden 2006; Mountcastle et al. 2007). A noncontact mechanism is described as “forces 

applied to the knee at the time of injury that result from an athlete’s own movement that did not 

involve contact with another athlete of object.” (Marshall, Padua, and McGrath, n.d.) Thus, an 

athlete’s self-imposed motion is responsible for injury, suggesting improvement of an athlete’s 

control of his or her own motion can decrease likelihood of ACL injury. 

 Understanding factors that contribute to an increased risk of noncontact ACL injury is 

important. Clinicians can effectively prevent up to 85% of ACL injuries through training 

programs aimed to improve neuromuscular control during athletic activity (Sadoghi, Keudell, 

and Vavken 2012). While controlled neuromuscular training programs have proved efficacious, 

recent evidence suggests ACL injury rates are rising in the athlete population (Mall et al. 2014; 

Hootman, Dick, and Agel 2007). Understanding the combined influence of population and 

contextual factors that are associated with a high incidence of ACL injury is imperative in order 
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to more effectively decrease the burden of ACL injury on society. The remainder of this 

literature review aims to identify a target population at high risk for ACL injury that results in 

substantial socioeconomic impact. Furthermore, this review will identify a potential context for 

heightened ACL injury risk, proposing the interaction between the high-risk population and a 

high-load training environment that may further explain underlying mechanisms of ACL injury. 

The Influence of Sport Participation on ACL Injury Incidence – Targeting High-Risk Sports 

 Sport participation is associated with a majority of ACL injuries in the population 

(Gianotti, Hume, and Tunstall 2010; Mall et al. 2014). While sport participation alone is a 

significant predisposing factor for sustaining an ACL injury, injury incidence varies between 

different sports. Large epidemiological studies commonly report that all competition levels of 

soccer to carry a high ACL injury incidence, even when adjusting for the influence of sex and 

age (Agel, Arendt, and Bershadsky 2005; Hootman, Dick, and Agel 2007; Waldén et al. 2011; 

Dick et al. 2007; Joseph et al. 2013). Male high school soccer athletes have an ACL injury 

incidence of 4.8 per 100,000 practice or competition events, with females having an incidence of 

12.2 ACL injuries per 100,000 practice or competition events (Joseph et al. 2013). Collegiate-

level soccer injury rates range from 0.12 in males to 0.33 injuries per 1,000 athlete exposures 

(defined as one player participating in a practice or competition) in females (Agel, Arendt, and 

Bershadsky 2005). Professional male soccer athletes have an ACL injury incidence between 

0.035 – 0.039 per 1,000 player-hours, while female’s have an ACL injury incidence of 0.057 

(Waldén et al. 2011). Comparatively, sports such as high-school baseball and volleyball have 

relatively low ACL injury incidences at 0.7 and 2.4 injuries per 100,000 practice or competition 

events (Joseph et al. 2013). A significant limitation to the current body of sport-epidemiology 

research is the lack of consistency in incidence estimations, using various calculations of the 
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denominator of athlete exposure. Common practices are to report athlete exposures as athletes 

per unit time (i.e. player-hours) or per unit of training or competition session (i.e. team practice 

or match play). While there is considerable inconsistency in incidence calculations, it is clear that 

sports involving rapid changes in direction and landing from a jump exhibit the highest 

incidences of ACL injury (Boden et al. 2000; Myklebust et al. 1998; Myklebust, Skjølberg, and 

Bahr 2013; Olsen et al. 2004). 

 Epidemiological evidence of high rates of ACL injury in sports requiring rapid changes 

in direction and landing is further supported by comprehensive National Collegiate Athletic 

Association (NCAA) injury surveillance system (ISS) data which identifies women’s gymnastics 

(0.33 per 1,000 player-competitions or practices), soccer (0.32), basketball (0.29), and lacrosse 

(0.18), and men’s football (0.14) to carry the highest incidences of ACL injury compared to other 

NCAA sports (Arendt, Agel, and Dick 1999; Agel, Arendt, and Bershadsky 2005; Hootman, 

Dick, and Agel 2007). Two additional sports that carry a significant risk for ACL injury that 

involve similar rapid changes in direction are rugby (Prodromos et al. 2007; Mountcastle et al. 

2007) and team handball (Myklebust, Skjølberg, and Bahr 2013; Moses, Orchard, and Orchard 

2012). Female team handball presents with an incidence of 0.31 ACL injuries per 1,000 player-

hours (Myklebust et al. 1998) with an overall injury rate of 0.48 injuries per team per season 

collapsed across sex, suggesting almost 1 player per two handball teams will suffer an ACL 

injury over the course of a season (Myklebust, Skjølberg, and Bahr 2013). Rugby also presents 

with a significantly high incidence of injury with 0.25 and 1.31 per 10,000 athlete exposures in 

men and women (Peck et al. 2013). Furthermore, higher rates of ACL injury in rugby have been 

reported in pooled meta-analyses, with females demonstrating an overall incidence of 0.36 per 

1,000 competitions or practices and males having an incidence of 0.18 (Prodromos et al. 2007). 
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College-aged female soccer, basketball, team handball, rugby, and lacrosse athletes represent a 

population at high risk for sustaining a noncontact ACL injury. 

ACL Injury Incidence as a Function of Sex, Sport, and Level of Play or Age 

 The sex disparity in injury incidence is perhaps one of the most highlighted 

epidemiological features of sport-related ACL injury research (Prodromos et al. 2007). Initial 

reports and subsequent reviews implicated an overall higher incidence of ACL injury in the 

female athlete when compared to their male counterparts (Arendt and Dick 1995; Myklebust et 

al. 1997; Myklebust and Bahr 2005; Messina, Farney, and DeLee 1999; Shea et al. 2004). The 

notion that females were between 2 (Myklebust et al. 1997) and 4 times (Arendt and Dick 1995) 

greater risk for sustaining a ACL injury was generalized across sports and levels of play / age 

groups (Renstrom et al. 2008; Renström 2013). However, these initial epidemiological studies 

focused on a sex disparity in ACL injury incidence between three specific sports; soccer (Arendt 

and Dick 1995; Shea et al. 2004), basketball (Arendt and Dick 1995; Messina, Farney, and 

DeLee 1999), and team handball (Myklebust et al. 1997). 

 The rationale for comparing ACL injury incidence between males and females in these 

three sports was sound, as soccer, basketball, and team handball represent sports with high levels 

of participation and substantially higher ACL injury rates over other team sports (Agel, Arendt, 

and Bershadsky 2005; Hootman, Dick, and Agel 2007; Swenson et al. 2013; Joseph et al. 2013; 

Cumps et al. 2008). In collegiate-level soccer, females were identified to have over 3 times the 

risk of males for sustaining a noncontact ACL injury (Arendt and Dick 1995). A higher 

prevalence of ACL injury was also observed in insurance data from adolescent soccer athletes, 

with ACL injury representing 37% and 24% of all knee injuries for males and females (Shea et 

al. 2004). Similarly, competitive female team handball athletes were at an overall 2-fold 
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increased risk of ACL injury compared to males, with 90% of ACL injuries sustained by a 

noncontact mechanism (Myklebust et al. 1997). The greatest sex disparity in ACL injury 

incidence was initially observed in collegiate and high school basketball. Female college 

basketball athletes were observed to be at 4 times greater risk for sustaining an ACL injury 

compared to males (Arendt and Dick 1995). As in soccer, the trend toward higher injury rates in 

females was reflected in younger athletes; female high school basketball athletes exhibited 3.79 

times greater risk of sustaining a ACL injury compared to males (Messina, Farney, and DeLee 

1999). While these earlier sport-related ACL injury epidemiology studies provided significant 

insight to a sex disparity in ACL injury incidence within specific sports, these initial studies did 

not consider the broader context of sport participation, and did not include sports such as rugby, 

hockey, lacrosse, men’s football, volleyball, field hockey, wrestling, gymnastics, baseball, and 

softball. Thus the results from earlier sport-related injury epidemiology studies should not be 

interpreted such that all female athletes are at an overall higher risk for suffering an ACL injury 

across all sports and levels of participation. 

 More recently, high-quality, large-sample sport-related injury epidemiology studies and 

meta-analyses have been conducted across various levels of competition and have included a 

greater diversity of sports in order to provide a global perspective on ACL injury incidence. As 

these more recent studies have included more sports in their comprehensive analyses, the overall 

sport-related ACL injury incidence between males and females has been observed to be similar 

at both the youth (Stracciolini et al. 2014) and high school (Joseph et al. 2013; Swenson et al. 

2013) levels. ACL injury accounts for 10% of injury in male and 8.9% of injury in female youth 

athletes (Stracciolini et al. 2014). In high school athletes the overall rate ratio between male and 

female ACL injury incidence ranged from 1.01 (Swenson et al. 2013) to 1.16 (Joseph et al. 
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2013), suggesting little difference between high school male ACL injury rates inclusive of 20 

high school sports from 100 nationally representative schools in The United States.  

 While the overall ACL injury incidence between sexes is similar at the youth and high 

school athlete levels, a recent cohort study of college and high school-aged athletes by Beynnon 

et al. observed females to have a higher overall first-time noncontact ACL injury incidence 

compared to male athletes competing in the same sports at both the collegiate and high school 

levels (Beynnon et al. 2014). Beynnon et al’s. methodology was the first to simultaneously 

assess the effects of sex, sport, and level of play (high school & college) on first-time noncontact 

ACL injury incidence using a Poisson regression analysis. Interestingly, Beynnon et al. did not 

identify any significant interactions between the three demographic predictors for first-time 

noncontact ACL injury. Beynnon et al. observed their Poisson regression model to predict 

similar incidences of injury for male and female sports at both the college and high school level. 

The results of Beynnon et al’s. study implicate the observed overall adjusted 2.10-fold increased 

risk of first time noncontact ACL injury for females over their male counterparts is independent 

of sport and level of play (Beynnon et al. 2014). Additionally, Beynnon et al. observed a similar 

adjusted relative risk of 2.38 for first-time noncontact ACL injury in male and female college-

level athletes compared to high-school athletes participating in the same sport. Furthermore, the 

relative risk for first-time noncontact ACL injury in Beynnon et al’s cohort was higher for soccer 

(1.77) and rugby (2.23) athletes over lacrosse players independent of sex and level of play 

(Beynnon et al. 2014). The results of Beynnon et al’s study are important; implicating an 

athlete’s risk for sustaining a first-time noncontact ACL injury is independently influenced by 

their sex, level of sport participation, and type of sport. Thus, ACL injury risk estimates should 

not be overly generalized, and should not consider a single demographic predictor alone. 
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 College-aged females are at greater risk for sustaining ACL injury compared to high 

school-aged female athletes (Beynnon et al. 2014; Prodromos et al. 2007). Female college-aged 

athletes are at substantially higher risk of ACL injury compared to their male counterparts 

participating in the same sport (Beynnon et al. 2014; Prodromos et al. 2007). As previously 

discussed, sex and level of competition are not the only factors to consider when identifying a 

population at high risk for sustaining a noncontact ACL injury. Rugby, team handball, 

basketball, and soccer represent four sex-comparable team sports that require rapid changes in 

direction, cutting / pivoting, and landings with significant disparity in ACL injury rates between 

college-aged males and females. In descending order the female-to-male ratios of injury 

incidence are as follows: rugby (5.3 (Peck et al. 2013)), team handball (5.01 (Myklebust et al. 

1998)), basketball (3.63 (Agel, Arendt, and Bershadsky 2005; Mihata, Beutler, and Boden 

2006)), and soccer (2.67 (Agel, Arendt, and Bershadsky 2005; Mihata, Beutler, and Boden 

2006)). While rates of injury do not appear to significantly differ between college-aged male and 

female lacrosse athletes the ACL injury incidence in women’s collegiate lacrosse has been 

reported to range from 0.18 to 0.221 per 1,000 person-practices or competitions (Mihata, Beutler, 

and Boden 2006; Beynnon et al. 2014), and exhibit a relatively low incidence compared to 

college women’s soccer and basketball (Mihata, Beutler, and Boden 2006), women’s lacrosse 

represents a sport currently experiencing exponential growth (US Lacrosse, 2013). Increases in 

sport participation are associated with increased injury prevalence (Conn, Annest, and Gilchrist 

2003; Ferguson, Green, and Hansen 2013), thus as a sport that requires rapid changes in direction 

and fast-paced cutting / pivoting, motions associated with noncontact ACL injury mechanics 

(Shultz et al. 2012; Boden et al. 2000), female college-aged lacrosse athletes represent a 

population that has the potential to significantly contribute to the burden of ACL injury. 
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The Influence of Workload, Time-of-Season, Phase-of-Play, and Training & Competition 

Activity on Injury Incidence in Sport 

 Epidemiological evidence supports a link between higher magnitude cumulative and 

acute training loads and injury incidence in sport participation (Finch, Williamson, and O'Brien 

2011). However the underlying mechanisms that influence a higher incidence of injury 

secondary to high training load exposure are not well understood. Previous literature has 

described sport injury incidence in the context of workloads and rest breaks (training load), time-

of-season, phase-of-play, and activity session type (training versus competition) effects (Finch, 

Williamson, and O'Brien 2011). 

Higher Magnitude Training Loads Throughout a Sport Season are Associated with an Increased 

Injury Incidence 

 Elevations in training loads throughout a season represent periods of higher-intensity 

work and activity congestion in which physical activity demands are higher relative to athlete 

conditioning / fitness and recovery capacity such as pre-season training when conditioning and 

fitness development are commonly a training goal (Gabbett 2000; Gabbett and Jenkins 2011; 

Gabbett and Domrow 2007). Similarly, training loads may increase during post-season play 

when competition congestion can occur in combination with higher work intensities due to 

increased levels of play (Gabbett 2000; Gabbett and Jenkins 2011; Gabbett and Domrow 2007). 

During periods of high training load exposure, the acute and cumulative influence of fatigue is 

hypothesized to drive observed increases in athletic injury incidence  

(Gabbett 2000; Gabbett and Jenkins 2011; Gabbett and Domrow 2007; Colby et al. 2014; Finch, 

Williamson, and O'Brien 2011). The definition of exercise-induced fatigue is complex and 

incorporates multiple interacting central and peripheral physiological factors that influence an 
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individual’s exercise performance (Knicker et al. 2011). While exercise or sport performance is 

implicated to be decreased in a fatigued state, direct and objective quantification of exercise-

induced fatigue is difficult due to the multiple interacting factors that contribute to exercise-

induced fatigue (Knicker et al. 2011; J. M. Davis 1995). Although training load studies do not 

directly evaluate the influence of or quantify fatigue mechanisms regarding sport-related injury 

risk, training load measures represent indirect surrogate markers of fatigue during a single 

session of sport participation or cumulatively throughout a sport season  

(Gabbett 2000; Gabbett and Jenkins 2011; Gabbett and Domrow 2007; Colby et al. 2014; Finch, 

Williamson, and O'Brien 2011). To date, multiple studies have identified seasonal periods with 

higher training loads to be associated with a higher sport-related injury incidence  

(Gabbett 2000; Gabbett and Jenkins 2011; Gabbett and Domrow 2007; Colby et al. 2014; Finch, 

Williamson, and O'Brien 2011). Considering training load markers as indirect or surrogate 

markers of fatigue, it is hypothesized that high levels of exercise-induced fatigue are linked to an 

elevated injury risk, especially in high-risk athlete populations. 

 In 2001 Foster et al. described session rate of perceived exertion (RPE) multiplied by 

session duration (minutes) to be a valid estimate of training load during non-steady state exercise 

with periods of undulating intensities such as interval training, team sport competition, and 

practices (Foster et al. 2001). Foster et al’s. method of training load calculation has been 

identified to correlate with markers of total body physiological and mechanical system stress in 

response to exercise exposure, and has been adopted as a measure of internal training load 

(Foster et al. 2001; Wallace, Slattery, and Coutts 2014; Slattery et al. 2012). 

 While individual markers of total body physiological and mechanical system stress may 

explain underlying mechanisms responsible for injury during sport participation, Foster et al’s 
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internal training load metric is the only marker identified to consistently correlate with injury 

rates over the course of a sport season (Gabbett and Domrow 2007; Gabbett 2004b; Gabbett and 

Jenkins 2011). While internal training load has not been regularly measured in all sport-related 

injury epidemiology studies, internal training load and injury incidence exhibits a strong 

correlation in both competition and practice / training activity in sport. Gabbett et al. has 

observed a strong, positive (r= 0.86) correlation between internal training load and injury 

incidence throughout a sport season (Gabbett 2004b). Gabbett et al. noted a substantially higher 

weekly internal training load was associated with a higher incidence of injuries during the 

preseason period of a rugby season (Gabbett 2004b). In addition to the acute effects of a higher 

internal training load during the preseason period of a sports team’s season, Gabbett et al. also 

observed a potential cumulative effect of higher training loads toward the end of a rugby season, 

with the highest injury incidence of through the season of 195.5 per 1,000 athlete exposures 

(Gabbett 2000). 

 Similar cumulative effects have been observed in other sports such as soccer (Hägglund, 

Waldén, and Ekstrand 2005). Comparing a cohort of elite Swedish soccer athletes to a cohort of 

elite Danish athletes, Hägglund et al. observed a higher incidence of injury during the Swedish 

cohort’s preseason, which was characterized as a longer duration of higher-intensity training 

compared to the Danes’ (Hägglund, Waldén, and Ekstrand 2005). Furthermore, a significant 

effect of preseason training load on injury incidence is evident. Gabbett compared the injury 

incidence between three consecutive preseasons (2001, 2002, & 2003) in a rugby league. During 

each subsequent season the training load was decreased (2001-highest training load, 2003-lowest 

training load). Gabbett observed an effect of training load on injury incidence, with the highest 

training load season being associated with an incidence of 156.7 injuries per 1,000 training 
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hours, and the lowest training load preseason with an incidence of 78.4 injuries per 1,000 

training hours, effectively decreasing injury incidence by 50% (Gabbett 2004b). Furthermore, 

Gabbett observed no detrimental impact of training load reduction on athletic performance 

improvements over the course of the consecutive preseasons. Interestingly, Gabbett observed a 

potential performance-enhancing effect of the lowest training-load during the 2003 season. 

During the low-load 2003 preseason athletes exhibited a 76% probability of a physiologically 

significant improvement in power output and a 62-88% probability of a physiologically 

significant improvement in aerobic fitness over the high-load 2001 preseason increases in 

athletic performance variables (Gabbett 2004a). 

 A majority of training load literature has focused on the preseason period. The training 

stimulus during the preseason is unique in such that it must act as a stimulus to promote 

adaptation that results in physical fitness / performance enhancement while concomitantly be 

managed to consider the potential for deconditioning and a decreased recovery capacity of 

athletes coming into training from the off-season (Colby et al. 2014). If the training stimulus 

during the preseason is too low, athletes may not achieve physical fitness levels necessary to 

participate at a competitive level of play. Yet if the training stimulus is too high, athletes may be 

exposed to a training stimulus that they cannot manage, overstressing physiology and mechanical 

capacity of tissues (Teyhen et al. 2014; Wallace, Slattery, and Coutts 2014), resulting in a 

heightened risk of injury (Gabbett and Jenkins 2011; Johnston et al. 2013; Rogalski et al. 2013; 

Colby et al. 2014). Overall, training loads during the preseason are generally characterized to be 

high compared to the in-season and postseason training loads (Gabbett and Jenkins 2011; 

Gabbett 2008; Gabbett 2004b; Rogalski et al. 2013). 



 

 44 

 While multiple investigations have reported higher training loads during the preseason to 

be positively correlated with injury rates, epidemiological studies in multiple team sports also 

report higher incidences of injury across multiple sports during the preseason and a greater 

incidence in higher intensity competition play during the postseason compared to preseason and 

midseason competition (Hootman, Dick, and Agel 2007). College women soccer athletes have 

been observed to have the highest rate of injury compared to all NCAA sports during the 

preseason training period, with an incidence of 9.5 injuries per 1,000 athlete training sessions 

(Agel and Schisel 2013). Additionally college women’s soccer, basketball, and lacrosse have 

significantly greater injury rate ratios of 3.3, 2.4, and 1.7 respectively compared to in-season 

practice injury incidences (Agel and Schisel 2013). Interestingly, Hootman et al. observed injury 

rates during postseason competition compared to preseason competition, yet observed lower 

practice injury incidence during postseason training compared to preseason training sessions 

(Hootman, Dick, and Agel 2007). Hootman et al. suggested that a lower training load generally 

characterizes postseason training sessions, while postseason competition carries a higher 

intensity and resultant training load, whereas preseason training loads during practice sessions 

are higher, and competition intensity during the preseason is lower. This reciprocal relationship 

between competition and practice session training loads between the preseason and postseason 

may explain the trends in injury incidence during the pre- and postseason (Hootman, Dick, and 

Agel 2007). 

 Previous findings implicate lower training loads are associated with decreased injury 

incidence. Furthermore, moderately lower preseason training loads promote performance-

enhancing effects in team-sport athletes over higher preseason training loads. Thus, lower 

training load exposures appear dually beneficial for the team sport athlete, promoting 
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performance gains and reduced injury risk. The sum of epidemiological evidence suggests that 

training load is a strong determinant of injury and performance in sport. While lower training 

loads are linked to performance enhancement and decreased injury incidence, the underlying 

mechanisms responsible for such associations remain unknown. Training load measures are 

established surrogate markers of exercise-induced fatigue which are described to directly 

moderate muscle performance, motor skill, and ultimately competition or training performance 

in sport (Knicker et al. 2011). While previous studies have evaluated the association between 

training load and injury incidence, no studies have comprehensively evaluated the association 

between underlying physiological responses representative of exercise-induced fatigue and 

injury incidence or risk. We propose that individuals at high risk for injury may demonstrate 

different biomechanical and biochemical responses to exercise-induced fatigue exposure 

compared to individuals with a lower risk injury.  

Competition Play is Associated with Higher Injury Incidences Compared to Training Sessions 

 There is a significantly greater risk for sustaining an ACL injury during competition 

compared to practice activity (Hootman, Dick, and Agel 2007). While the primary cause for a 

higher injury incidence during competition has not been specifically identified, the theory that 

exposure to a higher acute training load or workload intensity during competition compared to 

practice sessions warrants support as a plausible explanation that deserves further investigation. 

Evidence suggests that competition loads are substantially higher compared to practice 

workloads  

(Dawson et al. 2004; Montgomery, Pyne, and Minahan 2010; Colby et al. 2014; Finch, 

Williamson, and O'Brien 2011). While a cause and effect relationship between high and low 

training loads and injury has not been established during competition as in practice sessions 
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(Gabbett 2004a), a strong positive association (r= 0.86) between training load and match injury 

has been identified (Gabbett 2004b). Furthermore, there is support that preseason competition 

training loads are lower compared to in-season and postseason training loads, with higher rates 

of in-season and postseason competition injuries compared to preseason competition-related 

injury rates (Gabbett and Domrow 2007; Colby et al. 2014; Rogalski et al. 2013). 

 The effects of a higher training load exposure on competition and practice injury rates in 

sport may be an underlying factor contributing to a greater injury incidence during high load 

competition and practice activities. Improving an athlete’s physiological and biomechanical 

response to high training load exposure or reducing their level of exercise-induced fatigue may 

be a viable avenue for intervention to promote a reduction in injury incidence during 

characteristically higher-intensity competition and practice periods in athletics. Future research is 

necessary to understand the interaction between higher intensity training load exposure and 

modifiable risk factors for ACL injury such as high-risk lower extremity biomechanics which 

can be modified to substantially decrease ACL injury risk in the active population (Sadoghi, 

Keudell, and Vavken 2012). 

 Exercise-induced fatigue appears to be an underlying factor influencing sport-related 

injury rates during single sport training or competition sessions as well as during extended 

periods of high physical demands that exceed the recovery capacity of the athlete. Female 

college-aged soccer, basketball, rugby, team-handball, and lacrosse athletes represent a 

population at elevated risk for sustaining noncontact ACL injury. To date, no research has 

evaluated the impact of fatigue on an individual’s physiological response and injury risk in a 

population already at high risk for sustaining a noncontact ACL injury. Future research 

evaluating how high-risk individuals respond to high-intensity exercise-induced fatigue exposure 
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may provide insight into currently unknown factors that contribute to an elevated risk for 

noncontact ACL injury. 

 

SECTION TWO: Biomechanical Mechanisms and Risk Factors for Sport-Related 

Noncontact ACL Injury 

 Biomechanics associated with sport-related noncontact ACL injury are the focus of the 

majority of the literature surrounding ACL injury. While there are other variables linked to 

noncontact ACL injury such as demographics, anatomical features, hormonal influences, and 

environmental considerations, biomechanical factors have been identified to be modifiable 

(Shultz et al. 2012), and thus represent a target for interventions aimed at reducing sport-related 

noncontact ACL injury. Previous literature has investigated noncontact ACL injury 

biomechanics with two primary analytical approaches, a mechanistic approach and a risk factor 

approach (Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 2009a). 

 The mechanistic approach is concerned with the investigation of biomechanics that are 

the consequence of self-imposed human motion that produces an excessive tension force across 

the ACL, leading to tissue failure, and ultimately rupture of the ligamentous tissue (Yu and 

Garrett 2007; Gianotti et al. 2009). The mechanistic approach leverages two primary avenues of 

study to investigate mechanisms associated with sport-related noncontact ACL injury, in-vitro / 

in-vivo loading studies and video analysis of injury episodes. Risk factor analysis methodology 

commonly takes the form of large-sample longitudinal prospective cohort studies, where 

participants’ biomechanics during functional movement or athletic tasks are evaluated prior to 

injury events (Padua 2010). ACL injuries are recorded while the cohort is followed for multiple 

years succeeding the initial biomechanical screening. As sufficient injury data is gathered over 
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the course of the study it is possible to determine if certain baseline biomechanical profiles are 

significant predictors of injury (Portney & Watkins, 2008). Numerous investigations have 

identified mechanisms (Kobayashi et al. 2010; Shimokochi and Shultz 2008; Dai et al. 2012) of 

injury as well as significant risk factors (Dai et al. 2012; Zebis et al. 2009; Hughes and Watkins 

2006; Zazulak et al. 2007; Shultz et al. 2012) predictive of injury in the female athlete 

population. 

 When evaluating sport-related noncontact ACL literature it is important to distinguish 

between a risk factor and a mechanism of injury. A mechanism of noncontact ACL injury is 

linked to the injury event and in-vitro / -vivo loading of the ACL, whereas a risk factor is 

predictive of injury (Portney & Watkins 2008)(Alentorn-Geli, Myer, Silvers, Samitier, Romero, 

Lázaro-Haro, and Cugat 2009a). While mechanisms of ACL injury are known to result in high 

tensile forces in the ligament and may lead to ultimate tissue failure during an injury event, 

mechanisms may not be significant predictors of injury, and therefore may not be risk factors for 

sustaining an ACL injury. Conversely, risk factors for noncontact ACL injury may not contribute 

to significant development of high-tension forces in the ligament or may not be observed at the 

time of an injury event, thus risk factors may not be classified as injury mechanisms. While some 

biomechanics associated with noncontact sport-related ACL injury are classified as both 

mechanisms and risk factors, one must interpret the literature with caution, as risk factors and 

mechanisms of injury are inherently different. The remainder of this review aims to highlight 

biomechanics that are associated with sport-related noncontact ACL injury as either risk factors 

or mechanisms for / of injury in athletes. Evaluation of biomechanical variables that are 

associated with noncontact ACL injury in a high-risk athlete population such as female college-

aged field and court sport athletes will provide insight into factors that explain female athletes 
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elevated risk of injury during sport participation. Furthermore, investigating how biomechanical 

variables linked to noncontact ACL injury respond to exercise-induced fatigue in female college-

aged field and court sport athletes may lend a better understanding of the underlying mechanisms 

responsible for an increased injury incidence in this population. 

Sagittal Plane Knee, Hip, and Trunk Biomechanics Associated with Noncontact ACL 

Injury 

The following section of this review will describe sagittal plane lower extremity 

biomechanics that have been identified as variables associated with sport-related noncontact 

ACL injury mechanisms and risk factors. This information provides insight into specific 

biomechanical variables to consider in a high-risk athlete within the context of exercise-induced 

fatigue exposure in order to evaluate variables that may have the strongest influence on injury-

risk. Sagittal plane joint motion and neuromuscular control represents the primary plane of 

energy absorption and force generation during sport participation (Norcross, Lewek, Padua, 

Shultz, Weinhold, and Blackburn 2013b). Developing an understanding regarding the influence 

of exercise-induced fatigue on sagittal plane biomechanics during athletic motions incorporating 

landings and rapid changes in direction will provide insights that may explain variation in sport-

related noncontact ACL injury mechanisms and risk factors during high-intensity sport activity 

participation. 

Sagittal Plane Knee Biomechanics 

 Anterior tibial shear force results in an anterior translation of the tibia relative to the 

femur and is consistently reported as the primary force to result in the greatest magnitude load 

aggregation in the ACL (Shimokochi and Shultz 2008; Dai et al. 2012; Markolf et al. 1995; Yu 

and Garrett 2007). While anterior tibial shear force results in the greatest direct ACL loading, 
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anterior tibial shear force is not a biomechanical load that is directly moderated by a single 

neuromuscular control strategy (Markolf et al. 1995; Yu and Garrett 2007). anterior tibial shear 

force is a resultant linear anterior shearing force that ensues across the knee articulation as a 

component of quadriceps force application through the patellar tendon (Herzog and Read 1993). 

Quadriceps force production generates internal knee extension moment about the knee joint in 

resistance to external vertical and posterior ground reaction forces that would otherwise induce 

knee flexion during accelerations associated with changing direction in sport activity, such as 

landing, jumping, or cutting (Herzog and Read 1993; Arms et al. 1984; Draganich and Vahey 

1990; Yu and Garrett 2007). 

 There is no neuromuscular control strategy that is directly responsible for inducing high 

levels of anterior tibial shear force across the knee joint, however, combinations of quadriceps 

force application, varying knee joint flexion angles and ground reaction forces appear to 

moderate anterior tibial shear force in-vivo and in-vitro (Markolf et al. 1995; Fleming et al. 

2001; Withrow, Huston, Wojtys, and Ashton-Miller 2006a; Yu and Garrett 2007). High-

magnitude quadriceps force application applied at shallow knee flexion angles has been reported 

to induce the largest resultant anterior tibial shear force at the knee joint, and subsequently the 

largest magnitude ACL loading (Markolf et al. 1995; Withrow, Huston, Wojtys, and Ashton-

Miller 2006a). Alternatively, quadriceps force application at deeper knee flexion angles greater 

than 30º - 40º has been implicated to mitigate resultant high anterior tibial shear force generation 

and subsequent ACL loading, due to the increased potential for a compressive and decreased 

anterior shearing component of the patellar tendon force across the tibiofemoral joint (Markolf et 

al. 1995; Withrow, Huston, Wojtys, and Ashton-Miller 2006a; Arms et al. 1984; Herzog and 

Read 1993; Dai et al. 2012; Yu and Garrett 2007). anterior tibial shear force may be further 
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reduced when the knee assumes flexion angles beyond 60º - 70º due to the ability of the 

hamstring musculature to induce a posterior shear force across the tibiofemoral joint at their 

distal attachments to the posterior tibia (Fujiya et al. 2011; Dürselen, Claes, and Kiefer 1995). 

While there is some debate surrounding the ability of the hamstrings to reactively respond to 

rapid anterior tibial shear force application in-vivo (Shimokochi and Shultz 2008; Yu and Garrett 

2007), increases in hamstring muscle stiffness at deeper knee flexion angles (Blackburn et al. 

2013) and decreases in hamstring length secondary to greater hip flexion postures (Withrow et 

al. 2008) have been implicated to reduce anterior tibial shear force. While anterior tibial shear 

force is not the only force that can induce ACL loading, it appears to induce the highest 

magnitude loading within the ACL tissue (Shimokochi and Shultz 2008; Yu and Garrett 2007; 

Dai et al. 2012). Furthermore, anterior tibial shear force resulting from aggressive quadriceps 

force application at a shallow knee flexion angle (<30º) is the only isolated internally generated 

(within physiological limits) resultant force implicated to induce loads high enough to result in 

ACL rupture (DeMorat 2004). Sagittal plane lower extremity biomechanics indirectly moderate 

anterior tibial shear force.  

 A shallow knee flexion angle (<30º) is consistently reported as one of the most prominent 

knee postures reported during injury events (Krosshaug, Nakamae, et al. 2007; COCHRANE et 

al. 2007; Koga et al. 2010) and significantly contributes to increases in anterior tibial shear force 

in-vivo (Beynnon et al. 1995)  and in-vitro (Markolf et al. 1995) with concurrent application of 

quadriceps force across the knee joint. While, shallow knee flexion angles appear to be linked to 

a noncontact injury mechanism, there is a lack of published prospective cohort study literature 

that directly implicates a shallow knee flexion angle at the initial stages of landing to be a 

significant predictor of primary ACL injury (Smith et al. 2012). While no prospective studies 
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have identified a shallow knee flexion angle (<30º) to be predictive of ACL injury, Hewett et al. 

observed 10º less peak knee flexion angle during the loading phase of a drop-jump task in 

injured (n=9) (71.9º) females compared to their uninjured (82.4º) counterparts in a cohort of 205 

female soccer, basketball, and volleyball athletes (Hewett et al. 2005). The results of Hewett al’s. 

2005 study are important, but should be interpreted with caution, as the results are based on a 

sample with a limited number of injuries, and peak knee flexion angle alone was not predictive 

of ACL injury in this cohort (Hewett et al. 2005). 

 Although a shallow knee flexion angle during the initial energy absorption phases of 

landing has not yet been identified as a prospective risk factor for noncontact sport-related ACL 

injury, many intervention studies that deploy neuromuscular training programming aimed at 

reducing knee injury emphasize landing and performing athletic tasks with knee flexion angles 

greater than 30º effectively reduce ACL injury incidence (Postma and West 2013; Noyes and 

Barber-Westin 2014; Benjaminse et al. 2014; Sadoghi, Keudell, and Vavken 2012). 

Neuromuscular training programs and feedback aimed at increasing sagittal plane knee angle 

during athletic participation effectively increase knee flexion angles during landing maneuvers 

(Postma and West 2013; Noyes and Barber-Westin 2014; Benjaminse et al. 2014). While there is 

no concurrent evidence that illustrates injury prevention programming increases knee flexion 

angle and reduces injury rates, indirect evidence from intervention studies suggests increases in 

knee flexion angle may decrease an individual’s risk of sustaining an ACL injury during sport 

participation. Future prospective intervention studies that evaluate the effects of interventions on 

biomechanics and injury rates in parallel are necessary to establish shallow knee flexion as a 

prospective risk factor linked to noncontact sport-related ACL injury. 
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 Quadriceps muscle force applied through the patellar tendon results in the effective 

internal knee extensor mechanism and produces an internal knee extension moment (Winter 

2009). Internal net knee extension moment is the primary muscle-generated torque that resists 

externally generated knee flexion moment as the ground reaction force vector acts across the 

knee joint (Winter 2009). The vertical and posterior components of the ground reaction force 

vector have the capacity to induce an external knee flexion moment about the knee articulation 

(Withrow, Huston, Wojtys, and Ashton-Miller 2006a; Winter 2009). In order to prevent the knee 

from collapsing into maximal flexion or to decelerate the knee moving toward flexion during 

landing or cutting during sport, the quadriceps musculature must generate an appropriate internal 

knee extensor moment about the knee joint via eccentric force production (Withrow, Huston, 

Wojtys, and Ashton-Miller 2006a). 

 The effective knee extensor mechanism’s moment arm is variable throughout the sagittal 

plane arc of motion, achieving it’s maximal length at approximately 45º of knee flexion, with 

moment arm length minimized below 30º of knee flexion, toward extension (Krevolin, Pandy, 

and Pearce 2004; Tsaopoulos, Baltzopoulos, and Maganaris 2006). In order to counter the 

external knee flexion moment induced by the ground reaction force vector, quadriceps muscle 

force production at shallow knee flexion angles must be greater than quadriceps force production 

at deeper knee flexion angles in order to compensate for the shorter moment arm of the knee 

extensor mechanism between 0º – 40º of knee flexion (Krevolin, Pandy, and Pearce 2004; 

Tsaopoulos, Baltzopoulos, and Maganaris 2006). Aggressive quadriceps force production at a 

shallow knee flexion angle that is generated in order to produce a substantial internal knee 

extension moment in resistance to external knee flexion moment can impart anterior tibial shear 

force that results in injurious loading of the ACL (DeMorat 2004) due to the larger anterior shear 
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component of the patellar tendon force vector at a shallow knee flexion angle less than 30º - 40º 

of knee flexion (Nunley et al. 2003; Shimokochi and Shultz 2008; Yu and Garrett 2007; 

DeMorat 2004). While internal knee extensor moment is not directly measurable at the time of 

injury through observational analyses, cadaveric studies implicate that large knee extensor 

moments generated at a shallow knee flexion angle can induce anterior tibial shear force that 

imparts injurious loads on the ACL (DeMorat 2004; Markolf et al. 1995; Withrow, Huston, 

Wojtys, and Ashton-Miller 2006a). Thus generation of similar knee extension moment through 

an increased moment arm is ideal to reduce anterior tibial shear force (Yu and Garrett 2007; 

Shimokochi and Shultz 2008), and can be achieved through a neuromuscular control strategy that 

promotes a deeper knee flexion angle during athletic participation. 

Sagittal Plane Lumbopelvic Hip Complex Biomechanics 

 The lumbopelvic hip complex is the segmental link between the lower extremity 

subsystem and the upper body (Patla, Ishac, and Winter 2002; Patla, Adkin, and Ballard 1999). 

The whole body center of mass is approximately located within the center of the trunk segment 

(Winter 2009). The lumbopelvic hip complex incorporates the lumbar spine - pelvis segmental 

link within the kinetic chain(Horak and Nashner 1986; Iqbal and Pai 2000). During locomotion, 

the center of mass position is influenced by trunk angular acceleration (Nott et al. 2010). Trunk 

angular accelerations are influenced by net joint moments acting on the kinetic chain to maintain 

static or dynamic posture during human motion (Iqbal and Pai 2000; Horak and Nashner 1986; 

Nott et al. 2010). High-magnitude accelerations of the center of mass result in rapid changes in 

direction of travel (Vallis, Patla, and Adkin 2001; Patla, Ishac, and Winter 2002; Patla, Adkin, 

and Ballard 1999; Patla et al. 1991) such as side-step cutting, pivoting, and landing from a jump, 

identified mechanisms of sport-related noncontact ACL injury (Shultz et al. 2012). 
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 Similar to the study of knee joint biomechanics associated with ACL injury, lumbopelvic 

hip complex biomechanics are evaluated using a mechanistic and risk factor approach. Current 

evidence has described sagittal plane lumbopelvic hip complex posturing during sport-related 

noncontact ACL injury events (Krosshaug, Nakamae, et al. 2007; Boden et al. 2000; Boden et al. 

2009; Hewett, Torg, and Boden 2009; Sheehan, Sipprell, and Boden 2012) and has described the 

influence of sagittal plane trunk kinematics on sagittal plane lower extremity biomechanics 

associated with ACL injury (Kulas et al. 2008; Kulas, Hortobágyi, and DeVita 2010; Kulas, 

Hortobágyi, and DeVita 2012; Blackburn and Padua 2008; Blackburn and Padua 2009; Jamison, 

Pan, and Chaudhari 2012; Frank et al. 2013). While cadaveric and injury event observation / 

analyses methods are commonly used to study the influence of knee joint biomechanics on ACL 

loading and injury mechanisms, lumbopelvic hip complex literature focuses on injury event data 

and in-vivo biomechanical modeling studies that provide insight regarding hip and trunk 

biomechanics that are indirectly linked to knee loading mechanisms that may directly load the 

ACL. In addition to a mechanistic approach, prospective cohort studies have included 

evaluations of lumbopelvic hip complex neuromuscular control as a risk factor for sport-related 

noncontact ACL injury. The following portion of this review will describe sagittal plane hip and 

trunk kinematics identified at the time of injury, and will discuss the influence of lumbopelvic 

hip complex neuromuscular control on sagittal plane knee biomechanics previously linked to 

ACL loading mechanisms and injury events. 

 Evaluation of video data has provided insight regarding sagittal plane trunk and hip 

kinematics during noncontact ACL injury events (Krosshaug, Slauterbeck, et al. 2007; 

Krosshaug, Nakamae, et al. 2007; Boden et al. 2009; Hewett, Torg, and Boden 2009; Sheehan, 

Sipprell, and Boden 2012; Boden et al. 2000). There is a general consensus that the trunk 
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assumes a relatively upright or extended position during injury events, however there is 

substantial variability in descriptions of sagittal plane hip kinematics at the time of injury 

(Krosshaug, Slauterbeck, et al. 2007; Krosshaug, Nakamae, et al. 2007; Boden et al. 2009; 

Hewett, Torg, and Boden 2009; Sheehan, Sipprell, and Boden 2012; Boden et al. 2000). While 

the sagittal plane hip position during injury events is generally described to be flexed, 

descriptions of the magnitude of hip flexion during injury episodes varies from as small as 

19º(Krosshaug, Slauterbeck, et al. 2007) to over 54º (Boden et al. 2009). The large range in 

observed hip flexion angles during injury is likely attributable to differences in methodology 

used for the hip angle calculation. In review of the current literature, three primary methods of 

measurement of sagittal plane hip kinematics have emerged. The most common methodology 

used to describe the hip position during injury is reporting the angle formed by the vertex of the 

thigh segment and trunk (Boden et al. 2009; Hewett, Torg, and Boden 2009; Krosshaug, 

Nakamae, et al. 2007). While the thigh-trunk segment angle provides some insight regarding the 

sagittal plane hip position during injury, it excludes the anatomical consideration of the pelvis, 

the lower extremity subsystem’s link to the upper body and the location true anatomical hip joint 

(Krosshaug, Slauterbeck, et al. 2007), the femoroacetabular joint. Thus, estimation of the hip - 

trunk segment angle may not adequately represent the sagittal plane position of the hip joint at 

the time of injury. Krosshaugh et al. and Koga et al. have employed a video-matching skeletal 

modeling technique to better estimate bony anatomy kinematics from video data (Koga et al. 

2011; Koga et al. 2010; Krosshaug, Slauterbeck, et al. 2007). The biomechanical modeling 

techniques establish the hip joint as the femur - pelvis segment link, which is more representative 

of lumbopelvic hip complex anatomy than the thigh - trunk angle alone (Krosshaug, Slauterbeck, 

et al. 2007). 



 

 57 

 While modeling and video analysis techniques offer valuable information regarding hip 

kinematics during injury events, Sheehan et al. offers a novel mechanistic approach in evaluating 

the influence of sagittal plane lumbopelvic hip complex kinematics during noncontact ACL 

injury (Sheehan, Sipprell, and Boden 2012). Sheehan et al. compared video data of sagittal plane 

trunk kinematics between individuals who suffered noncontact ACL injury and matched 

controls. Instead of measuring the thigh - trunk angle or apply a biomechanical model to the 

video data, Sheehan et al. evaluated trunk and hip biomechanics as segment angles relative to the 

gravitational vector (vertical) acting on the whole body center of mass, thus trunk and hip angles 

were evaluated independently. Sheehan et al. then estimated the distance between the center of 

mass and base of support normalized to femur length (Sheehan, Sipprell, and Boden 2012). 

Independent evaluation of the thigh and trunk kinematics offers insight regarding each segment’s 

contribution to the noncontact ACL injury mechanism. Sheehan et al’s. hypothesis incorporates 

the influence of the position of the center of mass relative to the base of support during rapid 

motion as in sport, when the center of mass can be accelerated to a position outside of the base of 

support, resulting in a scenario of dynamic instability that must be countered by the influence of 

internally generated joint moments across the kinetic chain to establish dynamic stability to 

prevent a fall (Sheehan, Sipprell, and Boden 2012; Iqbal and Pai 2000). When the distance 

between the base of support and center of mass increases, there is a greater influence of the 

gravity vector to promote instability on the kinetic chain which can result in falling (Horak and 

Nashner 1986; Iqbal and Pai 2000). In order to resist falling, the center of mass is accelerated 

toward the base of support, via joint moments throughout the kinetic chain (Nott et al. 2010). 

 The results of Sheehan et al’s. study indicated that individuals who sustained an injury 

exhibited a greater femur - gravity vector (equal and opposite force vector to vertical ground 
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reaction force vector) angle (48 ±12º) compared to matched controls (31 ±22º) with a mean 

difference of 16º greater angulation between the gravity vector and the femur/thigh angle. 

Additionally, uninjured matched controls had greater forward flexion; greater trunk - gravity 

vector angle (16 ±13º) compared to the individuals who suffered ACL injury (4 ±14º), with a 

mean difference of 12º less angulation between the gravity vector and trunk segment. Most 

notably Sheehan et al. observed an increased distance between the center of mass and Bos of 

almost one femur length (0.9 femur length) between the injured (1.5 ±0.5) and uninjured (0.7 

±0.7) individuals. Combined with biomechanical modeling studies that provide insight regarding 

the influence of sagittal plane trunk and hip biomechanics on knee loading, Sheehan et al’s. 

observations enhance understanding of the role of lumbopelvic hip complex kinematics during 

noncontact ACL injury. 

 Laboratory-based biomechanical analysis of sagittal plane lumbopelvic hip complex 

biomechanics during landing and squatting tasks support Sheehan et al’s. results interpretation, 

suggesting a greater center of mass – base of support distance influences knee loading during 

athletic activities (Blackburn and Padua 2008). Sheehan et al. concludes that a when the thigh 

segment - gravity vector angle approaches perpendicular (90º), the more posteriorly displaced the 

center of mass is relative to the base of support (Sheehan, Sipprell, and Boden 2012). 

Compounding the effect of a greater thigh segment - gravity vector angle, a trunk - gravity vector 

angle that is toward extension (-) versus forward flexed (+), further posteriorly positions the 

center of mass relative to the base of support (Sheehan, Sipprell, and Boden 2012) increasing 

moment demand across the lower-extremity sub-system in order to maintain dynamic stability 

(Kulas et al. 2008; Kulas, Hortobágyi, and DeVita 2010; Kulas, Hortobágyi, and DeVita 2012; 

Sheehan, Sipprell, and Boden 2012). 
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 In agreement with Sheehan et al’s. findings, numerous studies evaluating the influence of 

sagittal plane lumbopelvic hip complex biomechanics on knee loading implicate that a more 

posterior positioned center of mass relative to the base of support exacerbates knee biomechanics 

associated with ACL loading (Blackburn and Padua 2008; Blackburn and Padua 2009; Kulas, 

Hortobágyi, and DeVita 2012). Blackburn & Padua observed increasing forward trunk flexion 

versus a preferred sagittal plane trunk angle during double-leg drop landings concomitantly 

increases peak knee flexion (flexed: 96 ±21º vs. preferred: 48 ±21º) and hip - pelvis angles 

(flexed: 71 ±19º vs. preferred: 40 ±20º) during the loading phase of a jump landing (Blackburn 

and Padua 2008). Interestingly, Blackburn and Padua did not observe differences in knee flexion 

angle at initial ground contact between forward flexion and preferred conditions, however a 

greater hip flexion angle at initial ground contact was observed in the flexed position (20 ±12º) 

versus the preferred (14 ±12º). While a greater knee flexion angle and elevated hamstring force 

at initial ground contact or pre-ground contact may improve the capacity of the hamstring 

musculature to exert a posterior shearing force on the tibiofemoral joint (Zebis et al. 2009; Zebis 

et al. 2008; Walsh et al. 2012), a combined forward trunk flexion and hip flexion posture may 

pre-tension and improve activation of the hamstrings (Kulas, Hortobágyi, and DeVita 2010), 

affording the potential for resistance to anterior tibial shear force from effective knee extension 

forces applied at shallow knee flexion angles (Withrow et al. 2008; Fujiya et al. 2011). When 

quadriceps force is applied across the knee joint in a more flexed position, the anterior shearing 

component of the patellar tendon force is reduced, reducing anterior tibial shear force, thus 

mitigating the potential for injurious ACL loading (Markolf et al. 1995; Withrow, Huston, 

Wojtys, and Ashton-Miller 2006a; Dürselen, Claes, and Kiefer 1995; Draganich and Vahey 

1990). 
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 While Blackburn and Padua did not evaluate quadriceps or hamstring muscle activity in 

their 2008 study, they deployed a similar methodology to evaluate the effects of a flexed versus 

preferred trunk positioning on ground reaction forces and quadriceps muscle activation levels 

(surface electromyography) during single-leg drop landings (Blackburn and Padua 2009). 

Blackburn and Padua observed decreases in quadriceps muscle activity as well as vertical ground 

reaction force in the forward flexion condition position compared to the preferred condition 

(Blackburn and Padua 2009). Thus, it appears the results from Blackburn and Padua’s 

biomechanical and neuromuscular control drop landing studies support Sheehan et al’s. 

explanation of the influence of sagittal plane lumbopelvic hip complex kinematics on noncontact 

ACL injury mechanisms, suggesting a greater posterior positioning of the center of mass relative 

to the base of support increases presence of sagittal plane factors associated with ACL loading 

mechanisms such as high levels of quadriceps muscle activity applied at shallow knee flexion 

angles (Markolf et al. 1995; Withrow, Huston, Wojtys, and Ashton-Miller 2006a; Dürselen, 

Claes, and Kiefer 1995; Draganich and Vahey 1990). Interpretation of the results from 

Blackburn and Padua combined with Sheehan et al’s. implicate that a lumbopelvic hip complex 

posturing that minimizes the distance between base of support and the gravity vector acting 

through on center of mass results in a decrease of the vertical ground reaction force magnitude 

and it’s flexion moment arm length at the knee joint. Thus, there is a decrease in internal knee 

extension moment requirement and subsequent quadriceps force required to maintain dynamic 

equilibrium, or deceleration of the knee joint toward flexion during energy absorption. 

 These studies offer insight regarding the influence of sagittal plane lumbopelvic hip 

complex kinematics on lower extremity biomechanics and neuromuscular control; however, they 

did not report the influence of sagittal plane trunk motion on knee loads directly linked to ACL 
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loading such as knee extension moment or anterior tibial shear force. Work by Kulas et al. 

(Kulas et al. 2008; Kulas, Hortobágyi, and DeVita 2010; Kulas, Hortobágyi, and DeVita 2012) 

extends this research by examining the effects of sagittal plane trunk motion strategies when 

participants performed drop landings with an added 10% bodyweight force to their trunk. 

Participants either adopted a trunk forward flexion or trunk extension strategy versus their 

preferred trunk motion during the double-leg landings with added trunk loads (Kulas et al. 2008). 

While both the forward flexion and the extension groups experienced greater biomechanical 

demands at the knee and ankle during the added trunk load condition, the trunk extension 

strategy group experienced increases in knee extension and ankle plantarflexion angular 

impulses and energy absorption by 14-28%, whereas the trunk flexion group only experienced 4-

9% increases (Kulas et al. 2008). Furthermore, the forward flexion group increased hip extensor 

energy absorption and angular impulse by 14-19%, whereas the trunk extensor group reduced hip 

extension efforts by 11-18% (Kulas et al. 2008). 

 Kulas et al’s results suggest the trunk flexion group redistributed energy absorption to the 

hip joint, while the trunk extensor group re-distributed energy absorption to the knee, as their 

knee extension efforts increased relative to hip extension efforts (Kulas et al. 2008). Using a 

similar methodology, Kulas et al. compared estimates of anterior tibial shear force, quadriceps, 

hamstring, and gastrocnemius forces between trunk extensor and forward flexion adoption 

strategies. Individuals who adopted a trunk extension strategy increased peak anterior tibial shear 

force by 17% and average anterior tibial shear force by 35%, whereas the trunk flexion group did 

not experience increases in anterior tibial shear force during the drop-landing with the 10% 

bodyweight added trunk load (Kulas, Hortobágyi, and DeVita 2010). Both the flexion and 

extension strategy groups experienced increases in quadriceps and gastrocnemius forces, 
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however there was no difference in quadriceps or gastrocnemius forces between groups (Kulas, 

Hortobágyi, and DeVita 2010). One of the most insightful findings from Kulas et al’s 2010 study 

was the effect of sagittal plane trunk adaptation strategy on hamstring muscle force output. 

Individuals who adopted a trunk flexion strategy increased hamstring force output by 13%, 

whereas the trunk extensor group reduced hamstring force output by 16% compared to the 

preferred condition (Kulas, Hortobágyi, and DeVita 2010). The reduction of hamstring muscle 

force may explain the significant increases in anterior tibial shear force experienced in the trunk 

extension strategy group compared to the flexion strategy group, as there was an increase in 

quadriceps force without a concomitant increase in hamstring muscle force, a muscle force 

capable of resisting anterior tibial shear force versus the posterior shearing component of the 

hamstring muscle force at the tibiofemoral joint (Withrow et al. 2008). Collectively, the 

aforementioned findings suggest an extended trunk angle positioning the center of mass posterior 

the base of support and the lower extremity subsystem increases energy absorption requirements 

at the knee (Kulas, Hortobágyi, and DeVita 2010; Kulas et al. 2008), resulting in greater internal 

knee extension moment requirement, increasing quadriceps muscle force demand and resultant 

anterior tibial shear force with quadriceps muscle force applied at a shallower knee flexion angle, 

increasing ACL loading (DeMorat 2004; Dürselen, Claes, and Kiefer 1995). 

 A significant body of the literature has identified sagittal plane lumbopelvic hip complex 

biomechanics linked to ACL injury mechanisms (Shimokochi and Shultz 2008), however, there 

is no current evidence identifying a specific sagittal plane lumbopelvic hip complex 

biomechanical pattern or movement strategy as a prospective risk factor for noncontact ACL 

injury. While differences in sagittal plane lumbopelvic hip complex biomechanics have been 

identified between those who have previously suffered ACL injury and uninjured matched 
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controls (Orishimo et al. 2010; Noehren et al. 2014), it appears these biomechanical differences 

may emerge following ACL injury and surgical intervention (Goerger et al. 2014). 

Summary of Sagittal Plane Knee and Lumbopelvic Hip Complex Biomechanics Associated with 

Sport-Related Noncontact ACL Injury 

 A relatively extended sagittal plane posture at the knee and lumbopelvic hip complex has 

been identified during sport-related noncontact ACL injury events (Boden et al. 2010) and is 

theorized to be linked to greater sagittal plane energy absorption and loading at the knee joint 

(Sheehan, Sipprell, and Boden 2012). The current body of the evidence agrees that anterior tibial 

shear force is a primary in-vitro ACL loading mechanism (Shimokochi and Shultz 2008; Dai et 

al. 2012; Yu and Garrett 2007). Previous literature establishes aggressive quadriceps force 

application at knee flexion angles less than 30º - 40º is capable of inducing anterior tibial shear 

force and consequent ACL loading that results in ligamentous failure (DeMorat 2004). Knee 

flexion angle modifies the capacity of the effective knee extensor mechanism to generate a 

stabilizing / resistant internal extension moment about the knee articulation (Krevolin, Pandy, 

and Pearce 2004; Herzog and Read 1993) in response to high external knee flexion moment 

exposure from high-magnitude accelerations characteristic of sport participation (Shultz et al. 

2012). High-magnitude internal knee extension moment generation at a shallow knee flexion 

angle is associated with greater anterior tibial shear force and ACL loading, while knee extension 

moment application at knee flexion angles greater than 30º – 40º does not result in subsequent 

high-magnitude ACL loading (Shimokochi and Shultz 2008; Yu and Garrett 2007). High-

magnitude internal knee extension moments and anterior tibial shear force are observed during 

energy attenuation strategies that reduce hip extension energy absorption and the capacity of the 

hamstring musculature to induce posterior shearing forces at the tibiofemoral joint (Kulas, 
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Hortobágyi, and DeVita 2010). Landing in a more upright trunk posture is associated with 

shallow knee flexion angles and hip angles (Blackburn and Padua 2008), positioning the trunk 

and center of mass more posterior to the lower extremity subsystem (Sheehan, Sipprell, and 

Boden 2012). A posterior positioning of center of mass increases energy absorption demands at 

the knee relative to the hip (Kulas, Hortobágyi, and DeVita 2010; Kulas, Hortobágyi, and DeVita 

2012) driving increased quadriceps activity (Blackburn and Padua 2009) and force output 

(Kulas, Hortobágyi, and DeVita 2010) in resistance to knee flexion torques associated with 

greater landing forces (Blackburn and Padua 2009). It is thus evident that lumbopelvic hip 

complex and knee kinematics that place the center of mass more posterior to the lower extremity 

subsystem and base of support, such as trunk extension and shallow knee flexion are associated 

with sagittal plane knee and hip biomechanics that contribute to ACL loading patterns during 

injury. 

Frontal Plane Knee, Hip, and Trunk Biomechanics Associated with Noncontact ACL Injury 

Frontal Plane Knee Loads Linked to ACL Loading 

 In contrast to sagittal plane knee loading mechanisms that are known to directly influence 

ACL loading via anterior tibial shear force, frontal plane knee loading mechanisms are most 

notably identified to result in increased ACL loading when combined with sagittal and transverse 

plane loading patterns (Markolf et al. 1995; Oh, Ashton-Miller, and Wojtys 2011; Withrow, 

Huston, Wojtys, and Ashton-Miller 2006b; Markolf, Wascher, and Finerman 1993; SHIN, 

Chaudhari, and Andriacchi 2009; Shimokochi and Shultz 2008). While isolated frontal plane 

varus and valgus loading of the knee joint has been identified to increase ACL loads, the 

magnitude of ACL loading that results from isolated frontal plane knee loading is minimal 

compared to anterior tibial shear force that ensues from sagittal plane biomechanics discussed 
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above (Withrow, Huston, Wojtys, and Ashton-Miller 2006b; Shimokochi and Shultz 2008; Yu 

and Garrett 2007). While the magnitude of the frontal plane knee forces that contributes to ACL 

loading is substantially less compared to sagittal plane knee loads, characteristic frontal plane 

knee and lumbopelvic hip complex biomechanics have been identified during injury events 

(Shimokochi and Shultz 2008; Dai et al. 2012; Boden et al. 2010) Furthermore, frontal plane 

knee (Hewett et al. 2005) and lumbopelvic hip complex biomechanics and neuromuscular 

control (Zazulak et al. 2007) represent the only known prospective biomechanical risk factors for 

primary sport-related noncontact ACL injury. 

Frontal Plane Knee Biomechanics 

 Multiple video analysis and retrospective interview studies describe frontal plane knee 

varus and valgus motion in combination with shallow knee flexion and either internal or external 

rotation motion during noncontact ACL injury events (Shimokochi and Shultz 2008). It is clear 

that frontal plane knee varus and valgus motion is a commonly observed component of the 

noncontact ACL injury event (Shimokochi and Shultz 2008; Alentorn-Geli, Myer, Silvers, 

Samitier, Romero, Lázaro-Haro, and Cugat 2009a; Yu and Garrett 2007; Krosshaug, 

Slauterbeck, et al. 2007). However, the exact role frontal plane knee motion plays in ACL 

loading during injury events is not well understood from observational video or retrospective 

interview study methodology because it is difficult to determine if the non-physiological frontal 

plane varus / valgus motion occurring at the knee joint is inciting or consequential relative to 

ACL rupture (Shimokochi and Shultz 2008; Yu and Garrett 2007; Ali and Rouhi 2010). Frontal 

plane varus / valgus knee motion reported during noncontact ACL injury events is described as 

“non-physiological” due to the large estimated magnitudes of frontal knee plane motion falling 

outside described normal 10° varus / valgus motion allowed at the tibiofemoral articulation prior 
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to ligamentous strain of the medial collateral ligament (MCL) or the lateral collateral ligament 

(LCL) when the knee assumes “slight flexion” (McGinty, Irrgang, and Pezzullo 2000; 

Goodfellow and O'Connor 1978), which is of a magnitude no greater than 30º of flexion, a 

sagittal plane knee angulation commonly reported during ACL injury events (Shimokochi and 

Shultz 2008).  

 During ACL injury events a “valgus collapse” of the knee joint is commonly reported 

(Shimokochi and Shultz 2008). Valgus collapse events are associated with knee valgus 

angulations sometimes exceeding 40º during loading in landings that resulted in injury (Boden et 

al. 2009). Interestingly, varus / valgus angulation values at or temporally proximal to initial 

contact (4º - 8º) (Boden et al. 2009; Krosshaug, Nakamae, et al. 2007) are rarely reported to 

exceed the physiological frontal plane joint motion allowed in slight flexion prior to ligamentous 

stress. Furthermore, varus / valgus angulations within 30 – 50 msec of initial ground contact 

during injury events have not commonly been reported to exceeded 10º (Boden et al. 2009; 

Krosshaug, Nakamae, et al. 2007). ACL rupture is estimated to occur within a 30 – 50 msec 

window following ground contact (Shimokochi and Shultz 2008), thus high-magnitude frontal 

plane knee motion may occur following ligament failure. While it is difficult to determine if the 

varus / valgus knee motion observed during injury events directly contributes to ACL loading in-

vivo (Ali and Rouhi 2010), in-vitro evaluation of varus / valgus stress concomitantly applied 

with sagittal and transverse plane loads is reported to significantly contribute to dangerous ACL 

loading scenarios that may result in ligament failure (Markolf et al. 1995; Withrow, Huston, 

Wojtys, and Ashton-Miller 2006b; Markolf, Wascher, and Finerman 1993). Additionally, frontal 

plane knee kinematics and kinetics have been described to predict ACL injury risk in female 

adolescent athletes (Hewett et al. 2005). Thus frontal plane knee biomechanics are associated 
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with ACL injury events, loading mechanisms, and injury risk and warrant consideration for 

evaluation in studies aimed at understanding and preventing noncontact sport-related ACL 

injury. 

 The results of observational analysis of injury events implicate a multi-planar nature of 

the noncontact ACL injury mechanism, directing in-vitro and in-vivo study methodology to 

evaluate the effects of combined multi-planar knee loading on ACL loading (Shimokochi and 

Shultz 2008; Dai et al. 2012; Yu and Garrett 2007). As observational reports describe a knee 

extension or hyperextension mechanism to be associated with injury, inducing anterior tibial 

shear force at the knee joint, in-vitro and in-vivo evaluations commonly combine a anterior tibial 

shear force, quadriceps force, knee extension moment, or a weight-bearing load with a frontal 

plane torque at the knee to simulate estimated loading scenarios during injury events 

(Shimokochi and Shultz 2008; Dai et al. 2012; Yu and Garrett 2007). Interestingly, in contrast to 

injury events that are observed to incorporate weight bearing when the quadriceps musculature is 

active, a combined quadriceps and varus or valgus load applied to the knee at less than 40º of 

knee flexion resulted in decreased ACL strain (Arms et al. 1984). Furthermore, Fleming et al’s. 

2001 in-vivo report of combined weight-bearing and varus or valgus load application did no 

observe an increase in ACL loading when compared to weight-bearing in isolation (Fleming et 

al. 2001). It is possible frontal plane varus or valgus load during weight bearing and high-

magnitude quadriceps force production does not substantially influence ACL loading, and that 

sagittal plane factors such as anterior tibial shear force dominate ACL loading parameters during 

injury events (Shimokochi and Shultz 2008; Yu and Garrett 2007; Dai et al. 2012). 

 Alternatively, McLean et al. simulated the isolated effects of sagittal plane knee loads 

during a sidestep cutting task, and observed that anterior tibial shear force from sagittal plane 
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loading alone is not sufficient to produce ACL loading conditions that would result in ligament 

rupture during side-step cutting (S. G. McLean et al. 2004). McLean et al. concluded frontal 

plane factors should not be ignored and considered responsible for inducing dangerous loading 

conditions at the knee during sidestep cutting tasks, an identified mechanism of sport-related 

noncontact ACL injury (Shultz et al. 2012). Although McLean et al’s. results may have limited 

validity due to the inherent systematic error in modeling and simulation study methodology (Ali 

and Rouhi 2010), they should not be ignored. McLean et al’s methodology evaluated knee loads 

during an athletic task that may more accurately represent human motion and resultant joint 

loading during athletic activity compared to in-vitro cadaver study methods that evaluate ACL 

loading in relatively controlled environments and don’t account for in-vivo neuromuscular 

control across the knee joint (Shimokochi and Shultz 2008). Thus, further discussion of 

combined sagittal-frontal plane knee loading is warranted and has been supported by other in-

vitro cadaveric studies (Markolf et al. 1995; Withrow, Huston, Wojtys, and Ashton-Miller 

2006b; Markolf et al. 1990). 

 Markolf et al. evaluated the combined effects of anterior tibial shear force and varus or 

valgus loading of the knee joint from -10°(hyperextension) - 90° flexion (Markolf et al. 1995). 

From hyperextension to 20° of knee flexion Markolf et al. observed that the addition of either a 

varus or valgus torque increased ACL loading (Markolf et al. 1995). Beyond 30º of flexion the 

addition of a valgus torque resulted in continued elevations in ACL strain compared to isolated 

anterior tibial shear force (Markolf et al. 1995). Berns et al. observed similar results in which 

anterior tibial shear force and valgus torque applied in combination resulted in an additive ACL 

loading effect versus anterior tibial shear force alone, but did not observe an additive effect of 

varus torque (Berns, Hull, and Patterson 1992). Markolf et al. also applied an internal rotation 
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torque in addition to anterior tibial shear force and noted the greatest strain compared to 

combinations of multi-planar loading (Markolf et al. 1995). While Markolf et al’s finding 

regarding dangerous loading of the ACL when anterior tibial shear force is combined with 

internal rotation torque is important, numerous accounts report the tibia to externally rotate 

relative to the femur during noncontact ACL injury events (Ireland 1999; Shultz et al. 2012; 

Shimokochi and Shultz 2008). Furthermore, Markolf et al. observed tibial external rotation in 

addition to anterior tibial shear force to decrease ACL strain throughout the knee flexion range of 

motion (Markolf et al. 1995). While transverse plane knee biomechanics should not be ignored 

when evaluating ACL injury mechanics, transverse plane motion of the tibia relative to the femur 

is difficult to quantify from video analysis due to limited image resolution (Ali and Rouhi 2010) 

and biomechanical analysis due to the limited motion about the longitudinal axis and substantial 

motion artifact (Kristianslund, Krosshaug, and van den Bogert 2012; Ali and Rouhi 2010). In 

further support of the additive influence of a frontal plane loading, Withrow et al. simulated 

single-leg drop landings to evaluate the combined effects of impulsive compressive forces, 

external flexion moment, and external valgus moment applied in-vitro to a cadaveric knee joint 

initially positioned at 25º flexion (Withrow, Huston, Wojtys, and Ashton-Miller 2006b). Pre-

tensioned steel cables attached at the patellar tendon, medial and lateral hamstrings, and 

gastrocnemius insertions were used to simulate muscle forces action across the knee joint prior to 

impulsive force application. Withrow et al. observed that the addition of an impulsive external 

valgus moment induced a simulated ground reaction force vector applied 4 cm posterior to the 

knee joint axis of rotation (to produce external flexion moment) and 15º lateral to the knee’s 

sagittal plane increased ACL loading compared to when the ground reaction force vector was 

applied neutral to the knee’s sagittal plane (Withrow, Huston, Wojtys, and Ashton-Miller 
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2006b). Withrow et al’s. methodology represents an impulsive multi-planar loading scenario that 

is characteristic of injury events that includes the application of an off-plane and off-axis ground 

reaction force vector to the lower extremity sub-system with simulated muscle forces 

(Shimokochi and Shultz 2008; Krosshaug, Nakamae, et al. 2007; Koga et al. 2010). Withrow et 

al’s. results provide insight regarding frontal plane knee biomechanics that may be protective 

against ACL loading in-vivo during similar loading scenarios. neuromuscular control strategies 

that limit frontal plane knee loading may limit the potential for ACL rupture during exposure to 

impulsive landing activities with the off-sagittal plane ground reaction force exposure. 

Collectively, in-vivo and in-vitro loading studies suggest that single-plane loading scenarios limit 

ACL strain, while there is an additive effect of varus / valgus and internal rotation torques to 

simulated high-magnitude anterior tibial shear force that results from quadriceps force applied at 

shallow knee flexion angles and compressive loading that is associated with weight bearing 

activity (Shimokochi and Shultz 2008; Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-

Haro, and Cugat 2009a). Thus it can be elucidated that the injury mechanism is multi-planar in 

nature, and should not be isolated to a single plane in future analyses. 

 Neuromuscular control strategies implemented during athletic activities such as jump-

landings, stop-jumps, drop-landings, single-leg landings, cutting and hopping tasks have been 

targeted for prospective biomechanical evaluation and modeling studies in effort to identify 

noncontact ACL injury biomechanical risk factors present in individuals prior to an injury event 

during their athletic career and sport participation (Ali and Rouhi 2010). To date, a single 

prospective biomechanical risk factor study has identified frontal plane knee biomechanics to be 

predictive of injury in a sample (n= 205) of female adolescent soccer, basketball, and volleyball 

athletes (Hewett et al. 2005). During Hewett et al’s. prospective study, nine ACL injuries 
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occurred over the course of the three-season study period. Female athletes who went on to 

sustain ACL injury (n= 9) were identified to exhibit significantly greater peak knee valgus 

angulation and experience almost 2.5 times greater external knee valgus moment during the 

landing phase of a drop-jump landing compared to their uninjured counterparts (Hewett et al. 

2005). Injured athletes also exhibited less peak knee flexion angle and 20% greater vertical 

ground reaction forces compared to the uninjured cohort which may have increased frontal plane 

loading demands (Hewett et al. 2005). Although Hewett et al’s results implicate a multi-planar 

injury risk profile, the study results should be interpreted with caution, as the low number of 

injuries limits the generalizability of the study findings. Furthermore, the external knee valgus 

moment and ground reaction force data are not normalized to individual participants’ 

anthropometrics and may limit the predictive validity of the kinetic data from this study. While 

the study methodology and data present limitations, the results of Hewett et al’s. study suggest 

that greater maximal knee valgus motion and external moment are frontal plane knee 

biomechanics linked to ACL injury with a limited predictive capacity in adolescent female 

athletes. 

 Frontal plane knee biomechanics are associated with noncontact ACL injury events, 

mechanical loading patterns, and prospective injury risk. Specifically, medial knee collapse or 

valgus collapse is commonly observable during injury events (Shimokochi and Shultz 2008; Dai 

et al. 2012; Yu and Garrett 2007; Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, 

and Cugat 2009a), however the temporal relationship of the medial collapse pattern to timing of 

ligament rupture is not well understood. In addition to valgus collapse, there is some evidence 

that varus motion at the knee joint occurs prior to valgus collapse and may precede injury during 

some single-leg landing activities (Olsen et al. 2004). While the exact frontal plane knee 
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biomechanics of ACL injury mechanisms remain elusive at the time of writing, it is clear that 

both varus and valgus loading contribute to ACL strain when combined with anterior tibial shear 

forces and impulsive compressive loads at shallow knee flexion angles commonly observed 

during ACL injury events (Shimokochi and Shultz 2008; Dai et al. 2012; Yu and Garrett 2007; 

Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 2009a). Frontal plane 

biomechanics demonstrate some utility as identified prospective risk factors for ACL injury in 

adolescent female athletes, implicating greater knee valgus tendency (angle and external 

moment) may increase an individual’s risk for subsequent ACL injury (Hewett et al. 2005). 

Thus, future methodology should realize frontal plane knee angle and moment as important 

variables to consider in continued effort to understand and prevent sport-related noncontact ACL 

injury. 

Frontal Plane Lumbopelvic Hip Complex Biomechanics 

 The frontal plane lumbopelvic hip complex link between the lower extremity sub-system 

and whole body center of mass behaves similarly to the previously discussed sagittal plane lower 

extremity-lumbopelvic hip complex link (Powers 2010; Mendiguchia et al. 2011). Video 

analyses have described lumbopelvic hip complex biomechanics during ACL injury events, 

however a consistent biomechanical pattern similar to “greater hip flexion with an extended 

trunk” is not reported for frontal plane lumbopelvic hip complex (Krosshaug, Slauterbeck, et al. 

2007; Boden et al. 2009). The range of frontal plane hip motion during ACL injury events varies 

from 7º of adduction to 48º of hip abduction (Krosshaug, Nakamae, et al. 2007; Hewett, Torg, 

and Boden 2009; Boden et al. 2009). While a substantial amount of variability in frontal plane 

hip angle is reported during injury events Boden et al. 2009 observed a mean difference of 3.7 

±11.7º greater hip abduction in injured participants versus matched controls during video 
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analysis of injury events (Boden et al. 2009). Greater hip abduction may be characterized as a 

laterally “outstretched” hip during injury events (Boden et al. 2009; Hewett, Torg, and Boden 

2009). In contrast to the variability in frontal plane hip positioning observed during injury events, 

lateral trunk flexion atop the injured limb appears to be more consistently identified during 

noncontact ACL injury events, and is associated with an observed dynamic knee valgus motion, 

and eventual valgus collapse (Hewett, Torg, and Boden 2009). In a comparison of ACL injured 

male and female athletes matched to uninjured controls performing similar activities, Hewett et 

al. observed a trend in greater lateral trunk flexion between athletes who sustained ACL injury 

(11.1 ±1.2º) and uninjured controls (4.2 ±9.6º) female athletes (Hewett, Torg, and Boden 2009). 

While video analyses of frontal plane lumbopelvic hip complex do not consistently identify a 

frontal plane biomechanical pattern associated with noncontact ACL injury, there is some 

observational support that lateral trunk flexion on a laterally outstretch hip may be associated 

with an ACL injury mechanism (Hewett and Myer 2011; Hewett, Torg, and Boden 2009; Boden 

et al. 2009). 

 Although a consistent frontal plane lumbopelvic hip complex biomechanical profile is not 

readily identified during ACL injury events, frontal plane trunk neuromuscular control is a 

prospective risk factor for ACL injury in collegiate athletes (Zazulak et al. 2007). In 2007 

Zazulak et al. prospectively assessed trunk neuromuscular control as a measure of trunk 

displacement after sudden force release from an isometric resistance against 30% maximal 

isometric force exertion from the anterior, posterior, and lateral directions (Zazulak et al. 2007). 

Zazulak et al. quantified trunk angular displacement in the directions of forward flexion, 

extension, and lateral bending (lateral flexion). Lateral trunk flexion at 150 msec following 

sudden force release and maximal lateral trunk displacement were significantly greater in the AC 
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-injured cohort (n= 6) (Zazulak et al. 2007). The results of Zazulak et al’s. study were entered 

into a binary logistic regression model to predict knee injury risk. Lateral trunk flexion was the 

strongest predictor of ACL injury risk, with individuals who exhibited greater lateral trunk 

flexion having 2.32 the odds of sustaining ACL injury (Zazulak et al. 2007). While Zazulak et 

al’s. findings are novel and provide further understanding regarding the association between 

ACL injury risk and lumbopelvic hip complex neuromuscular control, they are not without 

limitations. One primary limitation of Zazulak et al’s. study is the small number of observed 

ACL injuries limiting the power of the regression model to predict ACL injury specifically, as 

the binary logistic regression model was powered to predict non-specific knee injury (based on 

21 knee injuries to achieve a power of 0.8) (Zazulak et al. 2007). Furthermore, there is no report 

of predictor variable coefficient estimates, thus it is difficult to estimate the increase in odds of 

ACL injury per unit increase in lateral trunk flexion displacement (Zazulak et al. 2007). 

Although, Zazulak et al’s results present with limitations, they identify lateral trunk 

neuromuscular control, specifically larger lateral trunk displacements as a prospective risk factor 

for ACL injury. 

 The results of Zazulak et al’s prospective risk factor study and reports of frontal plane 

lumbopelvic hip complex motion during sport-related noncontact ACL injury events has 

prompted evaluation of the influence of frontal plane lumbopelvic hip complex biomechanics on 

knee biomechanics associated with noncontact ACL injury (Ali and Rouhi 2010; Jamison, Pan, 

and Chaudhari 2012; Powers and Fisher 2010; Mendiguchia et al. 2011; Hewett and Myer 2011). 

Evidence suggests that frontal plane lumbopelvic hip complex biomechanics and neuromuscular 

control influence knee biomechanics (Hollman et al. 2014; Hollman et al. 2009; Willson 2007; 

Willson and Davis 2008). Furthermore, hip adduction is identified to be the primary contributor 
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to dynamic knee valgus motion or medial knee displacement, as a linear medial displacement of 

the distal femur occurs with hip adduction rotation (Hollman et al. 2009; Willson and Davis 

2008). A medial displacement of the femoral condyles secondary to frontal plane hip adduction, 

positions the proximal articular surface of the tibiofemoral joint medial to the foot, or the base of 

support during single-leg athletic activity (Hollman et al. 2009; Hollman et al. 2014; Hollman et 

al. 2012). 

 As described in the section above regarding the influence of the center of mass location 

relative to the base of support and knee joint on sagittal plane knee loading, a similar influence is 

present in the frontal plane. The ability of the ground reaction force vector to exert external 

moment about the knee joint in the frontal plane is dictated by the orientation of the ground 

reaction force vector within the frontal plane relative to the knee joint’s anterior-posterior axis of 

rotation, about which varus / valgus rotation occurs (Winter 2009; Powers 2010; Hewett et al. 

2005; Frank et al. 2013; Jamison, Pan, and Chaudhari 2012; Houck, Duncan, and De Haven 

2006). The frontal plane orientation of the ground reaction force vector is dictated by the position 

of the center of mass relative to the base of support of support or the center of pressure location 

from which the ground reaction force vector originates to act on or interface with the kinetic 

chain at the foot segment (Winter 2009). When the ground reaction force vector is oriented 

relatively in-line with the anterior-posterior axis of the knee joint, the ground reaction force 

vector has no relative varus / valgus moment influence about the knee. However, when the 

ground reaction force vector is oriented medially to the knee joint anterior-posterior axis the 

ground reaction force vector exerts an external varus toque about the knee (Winter 2009; Powers 

2010). Alternatively, lateral trunk lean orients the ground reaction force vector laterally to the 

knee joint’s anterior-posterior axis of rotation and exerts external valgus torque which promotes 
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knee valgus angulation if not met with appropriate internal knee varus moment resistance 

(Jamison, Pan, and Chaudhari 2012; Winter 2009; Houck, Duncan, and De Haven 2006; Powers 

and Fisher 2010; Hewett and Myer 2011). 

 The influence of lateral frontal plane trunk angulation on subsequent lateral center of 

mass deviation and resultant ground reaction force vector orientation relative to the knee joint is 

further supported by empirical biomechanical studies (Jamison, Pan, and Chaudhari 2012; 

Houck, Duncan, and De Haven 2006; Dempsey et al. 2009). Lateral trunk flexion has been 

consistently identified to be associated with greater external knee valgus (internal knee varus) 

loading of the knee joint during single-limb activities such as side-step cutting which requires a 

sagittal plane knee extension breaking force as well as a frontal plane acceleration of the center 

of mass in the new direction of travel (Jamison, Pan, and Chaudhari 2012; Houck, Duncan, and 

De Haven 2006; Frank et al. 2013; Dempsey et al. 2009). Thus it appears that lateral trunk lean 

during side-step cutting or single-leg acceleration-deceleration tasks has the potential to increase 

frontal plane knee loading during the application of a sagittal plane knee extension breaking 

force, representing a condition of combined sagittal-frontal plane loading that is reported to 

result in increased ACL loading in-vitro (Markolf et al. 1995; Withrow, Huston, Wojtys, and 

Ashton-Miller 2006b). 

 Aberrations in neuromuscular control of the lumbopelvic hip complex further contribute 

to frontal plane knee loading mechanics via an observed relationship between limited hip muscle 

abduction strength and a “compensatory Trendelenburg” movement pattern, in which an 

individual elevates their contralateral (non-support) pelvis and laterally flexes the trunk to 

effectively orient the ground reaction force vector in-line with the hip joint’s anterior-posterior 

axis of rotation, minimizing internal hip abduction moment demand (Neumann 2010; Lawrence 
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et al. 2008; Powers and Fisher 2010). Consequently the ground reaction force is oriented lateral 

to the knee joint frontal plane axis of rotation, increasing external valgus (internal varus) moment 

frontal plane loading at the knee joint (Neumann 2010; Lawrence et al. 2008; Powers and Fisher 

2010). 

Summary of Frontal Plane Knee and lumbopelvic hip complex Biomechanics Associated with 

Sport-Related Noncontact ACL Injury 

 The results of this review identify frontal plane knee, hip, and trunk biomechanics to be 

associated with sport-related noncontact ACL injury via either mechanistic or risk factor 

interpretations (Shimokochi and Shultz 2008; Dai et al. 2012; Alentorn-Geli, Myer, Silvers, 

Samitier, Romero, Lázaro-Haro, and Cugat 2009b; Hewett and Myer 2011; Boden et al. 2010). 

Video analysis data describe knee valgus and varus motion occurring during injury events, 

however the contribution of varus and valgus loading to ligament rupture in-vivo during injury 

events remains debated (Shimokochi and Shultz 2008; Dai et al. 2012; Yu and Garrett 2007). 

Regardless of the in-vivo loading contribution from frontal plane torques about the knee joint 

during injury events, in-vitro evidence suggests frontal plane moments alone are not sufficient to 

result in ACL injury (Shimokochi and Shultz 2008; Yu and Garrett 2007; Dai et al. 2012). 

However, when applied in combination with sagittal plane loads such as anterior tibial shear 

force at shallow knee flexion angles, frontal plane knee moments significantly elevate ACL loads 

in-vitro (Shimokochi and Shultz 2008; Yu and Garrett 2007; Dai et al. 2012). Additionally, there 

is low-level evidence peak knee valgus angle and moments are predictive of ACL injury risk in 

an adolescent female athlete population (Hewett et al. 2005). While frontal plane knee 

biomechanics represent noncontact ACL injury risk factors, mechanisms, and are observable 

during injury events that are fundamentally influenced by lumbopelvic hip complex 
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biomechanics (Powers 2010). Lateral deviation of the whole body center of mass relative to the 

knee joint during athletic motions appears to substantially contribute to prevalence of frontal 

plane knee valgus tendency secondary to compensatory patterns for limited hip abduction 

neuromuscular control (Hollman et al. 2014; Hollman et al. 2009; Willson 2007; Willson and 

Davis 2008). Thus, there is a considerable interaction between frontal plane lumbopelvic hip 

complex neuromuscular control and knee biomechanics associated with ACL injury. The results 

of this review implicate frontal plane knee and lumbopelvic hip complex biomechanics should be 

included in investigation of neuromuscular control patterns aimed at understanding and 

preventing sport-related noncontact ACL injury. 

ACL Injury Biomechanics Summary and their Proposed Influence on Sport-Related 

Noncontact ACL Injury in a High-Risk Athlete Population 

 While this review extensively described the association between sagittal and frontal plane 

knee and lumbopelvic hip complex biomechanics with sport-related noncontact ACL injury risk, 

loading mechanisms, and injury biomechanics, the discussion is not exhaustive. In addition to 

frontal and sagittal plane knee and lumbopelvic hip complex biomechanics, ankle and foot 

biomechanics have also been described to be associated with ACL injury (Shimokochi and 

Shultz 2008; Boden et al. 2010). Furthermore, transverse plane biomechanics at the hip and knee 

such as hip internal rotation and knee external rotation have been observed during injury events 

(Shimokochi and Shultz 2008; Dai et al. 2012). While a in-depth discussion of lower extremity 

transverse plane and ankle-biomechanics are not provided by this review, a focus on frontal and 

sagittal plane knee and lumbopelvic hip complex biomechanics is supported by recent 

evaluations of initial impact phase energy absorptions, frontal and sagittal plane knee and 

lumbopelvic hip complex biomechanics by Norcross et al. during double-leg jump landings 
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(Norcross, Lewek, Padua, Shultz, Weinhold, and Blackburn 2013b; Norcross, Lewek, Padua, 

Shultz, Weinhold, and Blackburn 2013a). Norcross et al. observed greater initial impact phase 

sagittal and frontal plane energy absorption to be associated with biomechanics associated with 

ACL injury such as greater anterior tibial shear force, internal knee extension and varus 

moments, vertical ground reaction forces, knee valgus, and hip adduction motion (Norcross, 

Lewek, Padua, Shultz, Weinhold, and Blackburn 2013b; Norcross, Lewek, Padua, Shultz, 

Weinhold, and Blackburn 2013a). High initial impact phase energy absorption is associated with 

rapid ACL loading during the initial phase of ground contact when ACL rupture is described to 

occur during injury mechanisms (Shimokochi and Shultz 2008; Dai et al. 2012; Yu and Garrett 

2007). 

 Collectively, review of the literature implicates that frontal and sagittal plane knee and 

lumbopelvic hip complex biomechanics represent factors that influence ACL loading, noncontact 

injury mechanisms, and prospective noncontact risk factors (Dai et al. 2012; Yu and Garrett 

2007; Shimokochi and Shultz 2008). Specifically, anterior tibial shear force appears to be a 

primary ACL loading mechanism, and likely represents a signifcant element of the injury 

mechanism. Consensus identifies a shallow (<30º - 40º) knee flexion angle to influence anterior 

tibial shear force, with an extended knee posture reported during injury events (Shimokochi and 

Shultz 2008; Dai et al. 2012; Yu and Garrett 2007). Epidemiological studies identify shallow 

knee flexion posture and reduced peak knee flexion angles during landings as prospective risk 

factors for ACL injury (Hewett et al. 2005). Furthermore, a high-magnitude quadriceps force 

applied at a shallow knee flexion angle is necessary to generate sufficient internal knee extension 

breaking moment. However, a high-magnitude quadriceps force applied at a shallow knee 

flexion angle contributes to high anterior tibial shear force values (Shimokochi and Shultz 2008; 



 

 80 

Dai et al. 2012; Yu and Garrett 2007). Elicitation of high-magnitude quadriceps force to generate 

internal knee extension moment during energy absorption is associated with sagittal plane 

lumbopelvic hip complex biomechanics that are observed during injury events (Sheehan, 

Sipprell, and Boden 2012; Blackburn and Padua 2009). 

 Sagittal plane lumbopelvic hip complex biomechanics that position the whole-body 

center of mass posterior to the knee joint or base of support increase landing forces, elevate 

quadriceps activity, decrease knee flexion angles, increase knee extension moments, magnifying 

anterior tibial shear force and the potential for ACL loading during athletic motion (Sheehan, 

Sipprell, and Boden 2012; Blackburn and Padua 2009; Kulas, Hortobágyi, and DeVita 2010; 

Kulas, Hortobágyi, and DeVita 2012). Trunk flexion combined with hip and knee flexion 

appears to be a movement strategy that may be associated with decreased noncontact ACL injury 

risk and loading mechanics, representing an optimal sagittal plane energy absorption strategy. 

Thus, lumbopelvic hip complex biomechanics that position the center of mass posterior to the 

knee joint with a concomitant shallow knee flexion angle represents a movement profile that is 

linked to sport-related noncontact ACL injury. 

 While sagittal plane biomechanics exhibit a direct link to noncontact ACL injury risk, 

loading, and injury events, frontal plane knee and lumbopelvic hip complex biomechanics 

advance the definition of a movement profile associated with sport-related noncontact ACL 

injury. Isolated frontal plane knee varus / valgus loads are not consistently described to induce 

ACL loading sufficient to result in ligament injury, however when varus or valgus loads are 

combined with anterior tibial shear force they can substantially increase ligament strain 

(Shimokochi and Shultz 2008; Dai et al. 2012; Yu and Garrett 2007). In addition, accessory 

frontal plane knee motions occurring in conjunction with sagittal plane biomechanics that 
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contribute to anterior tibial shear force are commonly reported during noncontact ACL injury 

events, suggesting frontal plane knee varus and valgus loads may contribute to ACL loading 

during injury events (Krosshaug, Nakamae, et al. 2007; Koga et al. 2010). Furthermore, 

prospective epidemiological evidence identifies greater initial contact and peak knee valgus 

angle to be predictive of ACL injury (Hewett et al. 2005). 

 Interestingly, both knee varus and valgus loads and angles are described to contribute to 

ACL loading and excessive frontal plane knee motions are observed during injury events, 

however the specific direction of frontal plane knee motion (varus or valgus) associated with 

noncontact ACL injury risk remains elusive (COCHRANE et al. 2007). Collectively, increased 

knee varus / valgus angles and moments represent variables that contribute to off-sagittal plane 

energy absorption (Norcross, Lewek, Padua, Shultz, Weinhold, and Blackburn 2013a). Thus, 

biomechanics promoting knee varus or valgus angles and moments are minimal in a safe and 

effective energy attenuation strategy, maximizing sagittal plane energy absorption (Norcross, 

Lewek, Padua, Shultz, Weinhold, and Blackburn 2013a; Yu and Garrett 2007). 

 Frontal plane lumbopelvic hip complex biomechanics are associated with frontal plane 

knee biomechanics. A lateral deviation of the whole-body center of mass relative to the knee 

joint achieved via lateral trunk flexion angle is associated with increased knee valgus 

biomechanics and mitigation of internal hip abduction moment generation, lending to a greater 

propensity toward hip adduction angulation (Jamison, Pan, and Chaudhari 2012; Houck, Duncan, 

and De Haven 2006; Dempsey et al. 2012). Decreases in hip abduction moment generation and 

increased hip adduction motion (Houck, Duncan, and De Haven 2006) likely contribute to 

increased frontal plane knee motion, and may represent key elements contributing to the “valgus 

collapse” described during injury events, with lateral trunk flexion commonly being observed 
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during injury events (Hewett, Torg, and Boden 2009). Mechanistically, a lateral displacement of 

the whole-body center of mass positions the ground reaction force vector laterally to the knee 

joint, increasing the ground reaction force’s influence on frontal plane knee moment, 

contributing to elevated multi-planar knee loading (Jamison, Pan, and Chaudhari 2012; Frank et 

al. 2013). Frontal plane lumbopelvic hip complex biomechanics appear to be associated with 

ACL loading mechanisms and injury events, but also represent prospective risk factors for 

injury. Excessive lateral trunk flexion displacements are predictive of ACL injury in collegiate 

athletes (Zazulak et al. 2007). Individuals with excessive frontal plane knee motion, tendency 

toward hip adduction, and excessive lateral trunk motion during athletic tasks may represent a 

population with a biomechanical profile associated with ACL injury. 

 Athletes with limited knee, trunk, and hip flexion, excessive lateral trunk motion, a 

disposition toward hip adduction, and increased frontal plane knee motion during athletic tasks 

represent a population with a movement profile linked to noncontact ACL injury. Individuals 

with a kinematic profile associated with noncontact ACL injury may exhibit neuromuscular 

control strategies that influence load attenuation or energy absorption that increases 

biomechanical demand on the body (Norcross, Lewek, Padua, Shultz, Weinhold, and Blackburn 

2013b; Norcross, Lewek, Padua, Shultz, Weinhold, and Blackburn 2013a). Persons exhibiting a 

movement profile associated with increased biomechanical demand may be exposed to greater 

physiological demand and tissue stress compared to individuals who do not exhibit a movement 

profile linked to noncontact ACL injury (Franklyn-Miller et al. 2014). Evaluating the impact of a 

movement profile associated with noncontact ACL injury on biomechanical and physiological 

demand in a population at high risk for injury may provide insight regarding factors that underlie 

sport-related ACL injury.  
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 Female college-aged field and court sport athletes represent a population at high risk for 

sustaining noncontact ACL injury (Hootman, Dick, and Agel 2007; Beynnon et al. 2014). While 

ACL injury incidence is relatively high in female college-aged soccer, basketball, lacrosse, rugby 

and team handball athletes compared to their male counterparts participating similar sports and 

female athletes participating in other sports, the incidence of injury of female college-aged 

athletes in the aforementioned sports is generally less than 1 injury per 1,000 player exposures 

(Hootman, Dick, and Agel 2007; Beynnon et al. 2014). Thus there is a substantial fraction of the 

female college-aged soccer, basketball, lacrosse, rugby and team handball athlete population who 

do not go on to suffer a noncontact ACL injury. These uninjured individuals may possess 

inherent biomechanical and physiological characteristics that limit their risk of noncontact ACL 

injury during sport participation. Investigating differences between individuals who exhibit a 

movement profile associated with ACL injury and those who do not in a high-risk female athlete 

population may explain underlying factors that that drive an increased susceptibility for 

noncontact ACL injury. 

 

Clinical Identification of a Movement Profile Associated with Sport-Related Noncontact ACL 

Injury 

 Identification of a movement profile associated with noncontact ACL injury inclusive of 

limited knee, trunk, and hip flexion, lateral trunk motion, a disposition toward hip adduction, and 

increased frontal plane knee motion during athletic tasks is possible through complex 3 – 

dimensional (3D) motion capture. However, 3D motion analysis techniques are time consuming, 

complex, costly, and unrealistic in many clinical settings. The literature describes a multitude of 

clinically oriented movement assessments that are used to evaluate an athlete’s musculoskeletal 
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injury risk (Dallinga, Benjaminse, and Lemmink 2012; Teyhen et al. 2014). The assessments 

commonly take the form of evaluating an individual’s performance during an functional 

movement, athletic, and/or balancing task (Dallinga, Benjaminse, and Lemmink 2012; Teyhen et 

al. 2014). Some evaluations evaluate continuous performance variables such as “reach distance” 

during the Y-Balance assessment, whereas other assessments instruct the clinician to identify 

movement “compensations” or “errors” during observation of the functional or athletic task as in 

the Functional Movement Screen or The Landing Error Scoring System to tally a total 

assessment score (Dallinga, Benjaminse, and Lemmink 2012; Teyhen et al. 2014).  

 To date, clinical movement assessments appear to demonstrate high variability in their 

validity, sensitivity, specificity, reliability, and predictive capacity to prospectively identify 

individuals who go on to suffer a musculoskeletal injury (Teyhen et al. 2014; Dallinga, 

Benjaminse, and Lemmink 2012). While some clinical assessments demonstrate moderate to 

excellent levels of sensitivity, specificity, and reliability regarding prediction of nonspecific 

musculoskeletal or a particular diagnosis, no clinical screening tool currently exists that 

repeatedly predicts sport-related noncontact ACL injury with high levels of specificity and 

sensitivity (Dallinga, Benjaminse, and Lemmink 2012; Teyhen et al. 2014). 

 No current clinical assessments demonstrate excellent predictive capacity for sport-

related noncontact ACL injury. However, The Landing Error Scoring System (LESS) is a valid 

global movement assessment tool that can easily be employed by clinicians to identify 

individuals whom exhibit biomechanics associated with sport-related noncontact ACL injury 

(Teyhen et al. 2014; Padua et al. 2009). The LESS exemplifies a clinical screening tool that 

requires minimal resources, thus can be economically deployed across a range of clinical 

settings. The LESS protocol is detailed by Padua et al. 2009. The LESS requires the use of two 
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“off-the-shelf” video recording devices and a stable platform 30 cm in height (figure 3.3). To 

establish the testing area format, a line or landing target zone is placed on the floor. The two 

video recording devices are positioned approximately 1.5 m anterior (1) and to the right (1) of 

the landing target line arranged with their optical axes forming a perpendicular converging at the 

landing target line. The 30 cm box is positioned posterior to the landing target line at a distance 

of 50% the test subject’s height. For the testing procedure, the subject is instructed to step up 

onto the box, face forward, and “jump down forward of the line, and rebound upward for a 

maximal vertical jump” (Padua et al. 2009). The test subject performs 3-5 jump trials which are 

recorded on video and then scored by the clinician following the jump-landing protocol (Padua et 

al. 2009). 

 The utility of the LESS in its capacity to identify individuals whom exhibit biomechanics 

associated with sport-related noncontact ACL injury was validated in a 2009 report by Padua et 

al. Padua et al. deployed the LESS in population of 2,691 subjects (males:1655, females: 1036) 

while simultaneously evaluating 3D kinematics and ground reaction forces at initial ground 

contact and during the stance phase of the jump-landing (Padua et al. 2009). Thus, Padua et al’s. 

methodology accomplished simultaneous LESS scoring and 3D biomechanical analysis of each 

study participant. A single rater scored a subsample of 25 male and 25 female participants video 

data on two separate occasions to establish intrarater reliability. A second rater who was blinded 

to the first rater’s scoring results, scored the subsample’s video data to establish interrater 

reliability. The LESS was reported to have good interrater (0.84) and excellent intrarater (0.91) 

reliability (Padua et al. 2009). Furthermore, the LESS exhibited standard errors <1 for both 

interrater and intrarater reliability, identifying the LESS to be a sensitive clinical assessment of 

jump-landing biomechanics (Padua et al. 2009). 
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 To further evaluate the validity of the LESS’s capacity to predict 3D biomechanics from 

the 17-item clinical scoring criteria, Padua et al. divided the sample based on LESS scores into 

quartiles, representing Excellent (≤4), Good (>4 to ≤5), Moderate (>5 to ≤6), Poor (>6) 

movement profiles (Padua et al. 2009). Multiple 3D biomechanical differences were observed 

between all groups (Padua et al. 2009). Most notably, a poor movement profile was associated 

with significantly limited knee and hip flexion motion, greater frontal plane knee valgus motion, 

higher internal knee extension and knee valgus moments, and higher vertical ground reaction and 

anterior tibial shear forces compared to 3D biomechanics observed in the excellent movement 

profile quartile (Padua et al. 2009). The results of Padua et al’s. study suggest that individuals 

who score poor on the LESS exhibit a biomechanical profile associated with ACL loading, 

noncontact ACL injury mechanisms and / or movement patterns observed during injury events, 

and prospective biomechanical risk factors for sport-related noncontact ACL injury (Dai et al. 

2012; Yu and Garrett 2007; Shimokochi and Shultz 2008). While the LESS may not demonstrate 

a consistent capacity to predict sport-related noncontact ACL injury, the LESS represents a valid 

and reliable clinical tool able to discriminate between individuals who demonstrate biomechanics 

associated with sport-related noncontact ACL injury (poor) and individuals who do not 

(excellent) exhibit a biomechanical profile associated with injury (Dai et al. 2012; Yu and Garrett 

2007; Shimokochi and Shultz 2008). 

 

Poor Movement as an Underlying Factor Associated with Noncontact ACL Injury During Sport 

Participation in a High-Risk Population The female college-aged field and court sport 

athlete who exhibits a poor movement profile represents a particular population hypothesized to 

be at substantially high risk for suffering a sport-related noncontact ACL injury. However, the 



 

 87 

underlying physiological mechanisms responsible for driving a high sport-related noncontact 

ACL injury risk remain elusive. Complex interacting physiological factors respond to high-

intensity exercise exposure during sport (Knicker et al. 2011). During exposures to high training 

loads athletes experience elevated levels of surrogate markers of peripheral and central fatigue 

(Foster et al. 2001; Foster 1998). Interestingly, there is substantial variability between 

individuals’ fatigue responses when exposed to a similar exercise stimulus (Foster et al. 2001; 

Wallace, Slattery, and Coutts 2014). 

 Poor biomechanics are associated with higher biomechanical demand, and may induce an 

exacerbated exercise-induced fatigue response during sport participation (Di Michele and Merni 

2014; McCann and Higginson 2008; Dicharry 2010). Exercise-induced fatigue exposure 

provokes biomechanics associated with noncontact ACL injury in healthy female athletes 

without regard to their movement profile (Santamaria and Webster 2010; S. G. McLean and 

Samorezov 2009; B. D. McLean, Petrucelli, and Coyle 2012; Benjaminse et al. 2008; S. G. 

McLean et al. 2007). To date, no study methodology has evaluated the impact of a poor 

movement profile associated with noncontact ACL injury on an individual’s biomechanical and 

physiological response to high-intensity exercise-induced fatigue in a demographic with a high 

sport-related noncontact ACL injury risk. We hypothesize that athletes with poor movement 

profiles experience significantly greater biomechanical and physiological demands when 

participating in field and court sports compared to athletes with excellent movement profiles. 

Differences between poor and excellent movement profiles within the high-risk female athlete 

population may influence disparity in biomechanical, biochemical, physical, and psychological 

responses to high-intensity exercise-induced fatigue; representing underlying factors contributing 

to an elevated risk for sustaining noncontact ACL injury during sport participation. 
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SECTION THREE: The Proposed Interaction Between Movement Profile and Total-Body 

Physiological Response to High-Intensity Exercise-Induced Fatigue 

 The aim of the following literature review is to describe the underlying mechanisms 

responsible for high-intensity exercise-induced fatigue to further the understanding of the 

influence of fatigue on biomechanics associated with sport-related noncontact ACL injury. While 

numerous studies have observed fatigue exposure to incite biomechanics associated with 

noncontact ACL injury, no study to date has evaluated the influence of an individual’s 

movement profile on their fatigue response to high-intensity exercise exposure. The following 

review will provide rationale to implicate movement as a modifier of an individual’s 

biomechanical, biochemical, and physical markers of fatigue in response to high-intensity 

exercise.  

Exercise-Induced Fatigue is an Interactive Process that Influences Muscle Function 

 A exercise-induced fatigue state ensues when physical activity demand exceeds the 

current physical capacity of the system (Knicker et al. 2011; J. M. Davis 1995; Robson-Ansley, 

Gleeson, and Ansley 2009). As physical capacity is exceeded, system efficiency is compromised, 

and commonly manifests as decreased performance (Knicker et al. 2011; Noakes 2000). During 

physical activity, system bioenergetic pathways operate to provide energy substrates to working 

muscle tissue to permit muscular contraction. Ultimately, two primary factors determine 

effective skeletal muscle force output and ultimately power (Knicker et al. 2011; J. M. Davis 

1995; Noakes 2000); neurological drive to the muscle and adenosine triphosphate (ATP) 

turnover (Robergs, Ghiasvand, and Parker 2004; Cairns et al. 2005; Knicker et al. 2011; J. M. 

Davis 1995). When there is a decrease in neurological drive or available ATP to the muscle a 
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decrease in muscular performance ensues. Thus, there are both peripheral (metabolic / energy 

substrate availability-related) and central (neurological drive-related) factors that mediate 

skeletal muscle performance during physical activity. 

 The effective action of skeletal muscle can be described at the muscle performance 

(contraction properties), skill/task/athletic performance (as in running), and competition or 

training performance (such as sport competition) levels (Knicker et al. 2011). Muscular 

performance is the most basic element of athletic performance, defined as the strength and 

velocity of muscular contraction defining muscular power (Knicker et al. 2011). Isolating fatigue 

effects to the muscular performance level reveals declines in contraction force and velocity that 

owe to technique deviation, such as recruitment of synergistic muscles in order to maintain 

motor skill performance and subsequent athletic performance to sustain high levels of 

competition or exercise performance (Gabbett and Jenkins 2011; Noakes 2000; Knicker et al. 

2011; Rahnama et al. 2003). Athletic/skill/task performance describes the resultant incorporation 

of muscular force output across a joint (or multiple joints) to achieve a certain posturing 

(dynamic) stability) or motion that contributes to a task or skill such as running, sprinting, 

jumping, or throwing (Knicker et al. 2011). In regards to competition or exercise performance in 

sport, the effects of fatigue are readily apparent, the individual experiencing fatigue begins to 

reveal observable decrements in effective decision-making, complex motor skill execution, and 

athletic performance variables such as speed, acceleration, and agility (Robson-Ansley, Gleeson, 

and Ansley 2009; Noakes 2000).  

 Although the effective action of skeletal muscle can be described as a simple contraction 

or relaxation, the primary goal of systemic physiology during physical activity is to optimize 

skeletal muscle function (brooks, fahey, and baldwin 2004). Ultimately, field and court-sport 
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participation demands the combination and integration of power and endurance activity, with 

workloads ranging from short bursts of high power output, as in sprinting, to periods of moderate 

speed, lower-intensity running or jogging (Knicker et al. 2011; Cairns et al. 2005). Although 

field and court-sport participation incorporates some periods of seemingly moderate to low 

workloads, the total physiological stress imposed on the system throughout a training or 

competition session is quite high with intermittent periods of high-intensity or high training loads 

(Halson 2014; Colby et al. 2014). When the capacity to replenish ATP and counter the effects of 

inhibitory metabolites is exceeded, muscle function decreases secondary to the interaction 

between peripheral and central fatigue mechanisms (Faude et al. 2006; Gabbett and Domrow 

2007; Noakes 2000; J. M. Davis 1995; Knicker et al. 2011; D. Caine, Caine, and Maffulli 2006). 

 Multiple physiological mechanisms contribute to exercise-induced fatigue (Knicker et al. 

2011; Cairns et al. 2005; J. M. Davis 1995). Central and peripheral factors interact during 

exercise, contributing to a global physiological state that results in a decreased ability in the 

system to meet the physical demands of sustained sport performance (Jürimäe et al. 2011; Anish 

2005; Finsterer 2012). Maintenance of athletic performance is ultimately dependent on muscle 

performance to produce the necessary force required to carry out a specific athletic task at the 

level required for optimum execution to be successful in sport (Gibson and Edwards 1985; 

Knicker et al. 2011). While muscle force production and integrated neuromuscular control of 

human movement is dependent on multiple factors, a single specific physiological mechanism 

that underlies the athlete’s inability to sustain adequate muscle force output and coordinate 

complex movement during sport is elusive (Knicker et al. 2011; Cairns and Lindinger 2008; 

Cairns et al. 2005). 
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 The central nervous system is responsible for signaling voluntary muscle contraction for 

the control of movement and maintenance of dynamic stability during sport participation (Anish 

2005; J. M. Davis 1995). However, factors peripheral to the central nervous system may regulate 

the maximal mechanical contractile capacity of skeletal muscle, limited by energy substrate 

availability and skeletal muscle structural integrity (Knicker et al. 2011; Finsterer 2012; Fischer 

2006). Yet, centrally originating decreases in central nervous system stimulation of skeletal 

muscle tissue results in decreased muscle performance. Thus, central and peripheral factors must 

be considered when explaining fatigue-related decreases in neuromuscular performance during 

high-level sport (Knicker et al. 2011; Cairns et al. 2005). 

 Central and peripheral fatigue factors are not independent (Anish 2005; Knicker et al. 

2011). Various metabolic processes occurring systemically provide multiple forms of feedback 

to the central nervous system via circulating metabolites that cross the blood brain barrier, 

afferent feedback from sensory stimuli locally at contracting muscle, and systematically via a 

diverse array of autonomic nervous system receptors throughout the body (Knicker et al. 2011; 

Cairns et al. 2005; J. M. Davis 1995). The peripheral control of homeostasis during exercise is 

primarily managed by the autonomic nervous system divisions, the sympathetic and 

parasympathetic subsystems (Knicker et al. 2011; Cairns et al. 2005). However, the central 

nervous system is ultimately capable of directly modifying efferent signaling to skeletal muscle 

tissue via upper motor neuron synapses on alpha-motor neurons within the ventral horn of the 

spinal cord (Knicker et al. 2011; Anish 2005). In order to comprehensively evaluate the influence 

of exercise-induced fatigue on neuromuscular performance and MSK injury during sport 

participation, research methodology must consider parallel assessment of measures of peripheral 

and central factors associated with the interactive fatigue process. 
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The Influence of Exercise-Induced Fatigue on Neuromuscular Function and Control of 

Human Movement 

 As previously described, there are multiple biomechanical profiles that may contribute to 

greater ACL loading and risk of injury during sport participation. As a result of exercise-induced 

fatigue, three primary factors present with the potential to influence anterior cruciate ligament 

(ACL) injury risk; reduction in muscular performance, modification in afferent feedback to the 

central nervous system, and depressed cognitive function. This section will review the current 

evidence investigating the effects of fatigue on biomechanical variables associated with ACL 

loading and injury risk. This review suggests there is an interactive ecological relationship 

between the muscle within the peripheral physiological environment and the central nervous 

system. Furthermore, ACL injury literature concludes that lower extremity neuromuscular 

control and biomechanics significantly differ between a non-fatigued and fatigued state and 

mirror biomechanics associated with sport-related noncontact ACL injury (S. G. McLean and 

Samorezov 2009; Borotikar et al. 2008; Webster et al. 2012; Hughes and Watkins 2006; 

Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 2009a; Chappell et al. 

2005; Cortes et al. 2012; Quammen et al. 2012). 

 The reduction of muscle performance as a function of force output and contraction 

velocity has the potential to explain some of the reported differences in neuromuscular control 

and biomechanics between fatigued and non-fatigued conditions. Furthermore, the potential for 

altered afferent feedback to the central nervous system from the periphery as well as a 

compromised status of the central nervous system may further support an influence of exercise-

induced fatigue on injury risk, as neuromuscular control becomes depressed (Knicker et al. 

2011). Additionally, there is evidence of structural compromise and subsequent decreased 
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function of the muscle tissue itself (Knicker et al. 2011; Brancaccio, Maffulli, and Limongelli 

2007; Kraemer et al. 2013). Thus, regardless of the presence of an intact central nervous system, 

the intended effective action from the muscle may not be elicited with a physiological neural 

drive. 

There is a Direct Influence of Exercise-Induced Fatigue on Neuromuscular Control and 

Biomechanics Associated with Sport-Related Noncontact ACL Injury 

A fatigued condition during functional fatigue protocols increases the potential for a 

reduction in hamstring muscle activation and subsequent muscle performance (Thomas, McLean, 

and Palmieri-Smith 2010; Padua et al. 2006), resulting in a reduced capacity of the hamstring 

muscle group to oppose anterior tibial shear force at the knee joint when it is flexed less than 30º, 

a position at which the quadriceps musculature induces a shearing force a the knee (Kulas, 

Hortobágyi, and DeVita 2012; Kulas, Hortobágyi, and DeVita 2010; Thomas, McLean, and 

Palmieri-Smith 2010; Withrow et al. 2008; Herzog and Read 1993). Furthermore, fatigue has 

been observed to increase quadriceps:hamstring co-activation ratios with concomitant decreases 

in knee flexion (Thomas, McLean, and Palmieri-Smith 2010; Padua et al. 2006). The combined 

potential for a reduction in hamstring muscular force production, elevated quadriceps activation, 

and a decreased knee flexion angle during energy absorption in sport participation are of 

significant concern in fatigued athletes. Hamstring force applied at deeper knee flexion angles is 

described to be the primary active dynamic restraint against anterior tibial shear force, the 

principal ACL loading mechanism (Shimokochi and Shultz 2008; Herzog and Read 1993). 

Furthermore, the current body of evidence suggests exercise-induced fatigue amplifies sagittal 

plane lumbopelvic hip complex biomechanics linked to sport-related noncontact ACL injury; 

including decreased peak hip flexion angles during loading and at initial contact during various 
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athletic tasks (Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 2009a; 

S. G. McLean and Samorezov 2009; Borotikar et al. 2008; Hughes and Watkins 2006; Chappell 

et al. 2005; Liederbach et al. 2014). Strikingly, fatigue exposure has been identified to increase 

both vertical ground reaction force and anterior tibial shear force during the early loading phase 

of athletic tasks, a period in which ACL loading is reported to be greatest, and when ligament 

failure is described to occur during injury events (Krosshaug, Nakamae, et al. 2007; Shimokochi 

and Shultz 2008; Yu and Garrett 2007; Chappell et al. 2005; SCHMITZ et al. 2014; Santamaria 

and Webster 2010). Collectively, the effects of exercise-induced fatigue on sagittal plane 

neuromuscular control and resultant biomechanics are worrisome in the context of sport-related 

noncontact ACL injury. Fatigue induces sagittal plane knee and hip biomechanics associated 

with ACL loading, motion observed during injury events, and elevated risk for injury. 

The influence of fatigue on frontal plane biomechanics associated with sport-related 

noncontact ACL injury demonstrate some variability between males and females and different 

sport populations (Alentorn-Geli, Myer, Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 

2009a; Santamaria and Webster 2010). Chappell et al. observed an increase in internal knee 

varus moment in males and an increase in knee valgus moment in females during a stop-jump 

task, implicating fatigue elevates frontal plane knee loading (Chappell et al. 2005). In contrast to 

Chappell et al’s. sex specific findings in the frontal plane, Benjaminse et al. 2008 observed a 

decrease in knee valgus angle during the stance phase of a landing task regardless of sex, which 

would agree with the kinetics observed by Chappell et al. 2005 for males, but contradict the 

results for females during the fatigued condition (Benjaminse et al. 2008). One potential 

explanation for the disparity in frontal plane knee biomechanics between Benjaminse et al’s. and 

Chappell et al’s. findings is that a running protocol for fatigue was used in Benjaminse et al’s. 
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methods, while a squatting task was implemented in Chappell’s. Additionally, Chappell et al. 

assessed biomechanics during a stop-jump, while Benjaminse et al. evaluated biomechanics 

during a drop-landing activity. 

In addition to the effects of fatigue on frontal plane biomechanics at the knee, fatigue also 

influences lumbopelvic hip complex biomechanics during athletic tasks. In 2009 McLean et al. 

observed fatigue to induce greater initial contact and peak hip adduction angles during the stance 

phase of a cutting task (S. G. McLean and Samorezov 2009). Furthermore, McLean et al. 

observed an amplification in hip adduction motion with the introduction of an unanticipated 

cutting condition, implicating the potential for an interaction between psychological / 

information processing factors and frontal plane lumbopelvic hip complex neuromuscular control 

factors (S. G. McLean and Samorezov 2009). In agreement with McLean et al’s. 2009 findings, a 

recent evaluation of the effects of fatigue on single-leg landing biomechanics in male and female 

athletes and dancers reported a increase in external hip adduction moment, which would 

influence a tendency toward hip adduction motion (Liederbach et al. 2014). Furthermore, male 

and female dancers and athletes both exhibited greater lateral trunk flexion and knee valgus 

moment after fatigue exposure (Liederbach et al. 2014). 

 McLean et al’s. fatigue protocol was novel, as it was designed to induce a centrally 

targeted fatiguing effect with participants performing the single-leg squat fatigue task on the 

limb contralateral to the test-limb. McLean et al’s. findings are a valuable addition to the 

literature, and provide insight regarding the influence of exercise-induced fatigue on central 

factors controlling movement. While it is difficult to establish cause and effect, McLean et al’s. 

findings suggest that not only does exercise-induced fatigue modify human motion as a function 

of peripheral factors at the muscle level as previous studies have concluded, but higher level 



 

 96 

central control of motion is susceptible to fatigue, influencing aberrations in biomechanics (S. G. 

McLean and Samorezov 2009). 

 Current literature suggests frontal plane knee and lumbopelvic hip complex biomechanics 

are influenced by fatigue-exposure. While the particular effect of fatigue on frontal plane knee 

biomechanics may be sex and task specific, there appears to be an effective increase in frontal 

plane knee valgus biomechanics in fatigued female athletes. Interestingly, fatigue appears to 

increase hip adduction biomechanics, a component of the “valgus collapse” motion observed 

during injury. Perhaps, the most interesting effect of fatigue on frontal plane biomechanics 

during athletic motion is that of an increased lateral trunk lean with concomitant knee valgus and 

hip adduction biomechanics, suggesting fatigue exacerbates a prospective risk factors associated 

with noncontact ACL injury. 

 The summary of the current body of evidence surrounding the influence of fatigue on 

biomechanics highlights the link between decreased muscle performance and an exacerbation of 

biomechanics associated with sport-related noncontact ACL injury. As a result of decreased 

muscular performance, the ability to effectively attenuate and transfer energy across the kinetic 

chain may be restricted in a fatigue condition. The diminished capacity to attenuate, absorb, and 

transmit forces safely across the kinetic chain may result in excessive forces being 

unintentionally transferred to musculoskeletal structures that are not well-equipped for repeated 

high magnitude force exposure (Sheen et al. 2013; Colby et al. 2014; Franklyn-Miller et al. 

2014). Deviations in force absorption, attenuation, and transfer techniques are hypothesized to 

contribute to biomechanical overload (Franklyn-Miller et al. 2014). Biomechanical overload 

promotes excessive tissue stress such as elevated joint loading (Niehoff et al. 2011; Niehoff et al. 

2010; Hamann et al. 2014; Hoch et al. 2012), higher systemic energy demands and resultant 
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decreases in athletic performance (Di Michele and Merni 2014; McCann and Higginson 2008; 

Dicharry 2010; Shimokochi et al. 2013), and an acceleration toward a exercise-induced fatigue 

state that may increase the probability of musculoskeletal injury secondary to manifestation of 

aberrant biomechanics linked to noncontact ACL injury (S. G. McLean and Samorezov 2009; 

Borotikar et al. 2008; Webster et al. 2012; Hughes and Watkins 2006; Alentorn-Geli, Myer, 

Silvers, Samitier, Romero, Lázaro-Haro, and Cugat 2009a; Chappell et al. 2005; Cortes et al. 

2012; Quammen et al. 2012). 

Baseline Movement Profiles Provide a Potential Explanation for Variability in Fatigue Response 

 Research implicates that fatigue influences biomechanical variables associated with ACL 

loading and injury risk. Interestingly, individuals with certain movement profiles also 

demonstrate biomechanical profiles linked to fatigue exposure. However, research has not yet 

investigated how an individual’s baseline movement profile may influence their biomechanical 

and systemic response to high-intensity physical activity similar to the demands of field or court 

sports. It is possible that fatigue may exacerbate existing differences in these biomechanical 

variables between those with different baseline movement profiles. Therefore, inherent variation 

in biomechanics between those with different baseline movement profiles may be amplified in a 

fatigued state after exposure to high-intensity physical activity. 

To date, no methodology has directly evaluated the influence of an individual’s pre-

fatigue movement profile on biomechanical and physiological responses to high-intensity 

exercise. However, two companion studies evaluated the influence of sex and activity 

participation-type on participants’ biomechanical responses to exercise-induced fatigue during 

single-leg drop-landings with consideration of baseline movement profile (Orishimo et al. 2014; 

Liederbach et al. 2014). Part I of the investigation compared baseline movement profiles during 
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single-leg drop landings between male and female dancers and athletes (Orishimo et al. 2014). 

Epidemiological evidence implicates a higher incidence of noncontact ACL injury in athletes 

versus dancers (Liederbach, Dilgen, and Rose 2008; Hootman, Dick, and Agel 2007). However, 

the college-aged athlete population exhibits a sex disparity in noncontact injury incidence 

(Hootman, Dick, and Agel 2007), whereas female and male dancers appear to have similar injury 

rates (Liederbach, Dilgen, and Rose 2008). 

 While the physical demands of dance and sport are not identical, jumping, landing, and 

rapid changes in direction are shared motor tasks between dancing and sport participation, thus 

require similar biomechanical demands for participation and training (Orishimo et al. 2014; 

Liederbach, Dilgen, and Rose 2008). Furthermore, both athletes and dancers are subject to 

repeated training bouts and competition or performance sessions, thus share similar exposure to 

training and competition / performance stimuli (Orishimo et al. 2014; Liederbach, Dilgen, and 

Rose 2008). While the biomechanical demands of sport and dance are similar, ACL injury 

incidence varies between the two activity types. Part I of the companion evaluation hypothesized 

that the disparity in injury incidence patterns between dancers and athletes may be explained by 

the evidence implicating female athletes to exhibit inherently different biomechanics compared 

to their male counterparts, as well as the potential for dancers and athletes to demonstrate 

different biomechanics between activity participation-type groups (Orishimo et al. 2014). 

 Part I of the investigation observed athletes to exhibit a baseline movement profile 

associated with noncontact ACL injury. Athletes exhibited more lateral and forward trunk 

flexion and experience greater external hip adduction moment exposure during single-leg 

landings at baseline compared to dancers (Orishimo et al. 2014). Additionally, the authors 

observed a sex by activity participation-type interaction, with female athletes experiencing 
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greater external knee valgus exposure compared to male athletes. Thus, the hypotheses of the 

initial study were confirmed, identifying a disparity in lumbopelvic hip complex landing 

biomechanics between dancers and athletes, and a sex by group interaction in frontal plane knee 

loading in within athletes. These results afford the evaluation of a potential interaction between 

baseline movement profile and exercise-induced fatigue (Orishimo et al. 2014; Liederbach et al. 

2014). 

 Part II of the investigation exposed the dancers and team sport athletes to fatiguing 

exercise in which participants were required to complete sets of 50 single-leg step-ups onto a 30 

cm box, followed by 15 maximal single-leg vertical jumps. At the end of each set the athletes’ 

and dancers’ maximal vertical jump heights were assessed in conjunction with their RPE (1-10). 

Fatigue criteria were met when participants experienced a reduction in vertical jump height by 

10% of their non-fatigued maximal jump height performance. Once fatigued, participants 

completed a posttest of 3 single-leg landings to assess the effects of activity participation type 

and sex on biomechanical responses to exercise-induced fatigue exposure. Interestingly, all 

participants experienced similar changes in biomechanics from pre to post-fatigue (Liederbach et 

al. 2014). Dancers and athletes similarly experienced increases in external hip adduction and 

valgus moments and increases in forward and lateral flexion when fatigued (Liederbach et al. 

2014). However, on average, dancers completed more than 40% more exertional bouts to fatigue 

with no differences in perceived exertion during the fatiguing exercise compared to team sport 

athletes (Liederbach et al. 2014). The results of this study suggest that while dancers were 

exposed to over 40% more work, they did not experience significantly different changes in 

biomechanics compared to athletes. 
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 The results from Part II of the study implicate that while dancers and team sport athletes 

demonstrate a similar biomechanical response to fatiguing exercise, the athlete’s baseline 

movement profile which was associated with ACL injury biomechanics may reduce the athlete’s 

fatigue resistance in comparison to dancers. While no direct measures of fitness or physiological 

markers of fatigue were compared between the groups, there were no significant differences 

between dancers and athletes in RPE throughout the fatigue bout. The athletes complete 40% 

less exertional bouts to fatigue compared to the dancers, thus the duration of the fatigue protocol 

was less for dancers (Liederbach et al. 2014). When considering the extended duration of the 

fatigue protocol in dancers without a significant difference in RPE between groups, it is evident 

the dancers were exposed to a significantly greater training load (RPE × Duration) compared to 

the team sport athletes (Foster et al. 2001). It thus appears dancers can be exposed to higher 

training loads stimuli without suffering greater compromise of single-leg landing biomechanics 

compared to team sport athletes. 

 Collectively, the results from parts I and II of the investigation provide potential support 

to the notion that different baseline movement profiles may influence one’s fatigue resistance. 

Taken together the companion studies’ results provide preliminary evidence baseline movement 

may influence training load, a measure strongly correlated with injury rates in sport (Gabbett 

2004b; Gabbett and Domrow 2007; Halson 2014). While the companion studies provide 

insightful information regarding the influence of baseline movement profile on biomechanical 

responses and fatigue resistance to high-intensity exercise exposure, the direct impact of an 

individual’s baseline movement profile on the biological mechanisms associated with an 

individual’s response to high-intensity exercise remain unknown. Additional research is 
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necessary to identify the effects of baseline movement profile on biomechanical, biochemical, 

physical, and psychological markers of exercise-induced fatigue. 

Evidence of an Interaction Between Biomechanics and Exercise-Induced Physiological 

Demand on the Human Body 

 In order to effectively evaluate the interaction between baseline movement profile and 

high-intensity exercise on a high-risk female athlete’s fatigue response during sport participation 

it is necessary to assess surrogate biological markers of fatigue. While no specific surrogate 

markers of fatigue comprehensively explain the underlying physiological mechanisms 

responsible for decreases in muscle performance that lead to the exacerbation of a biomechanical 

profile associated with sport-related noncontact ACL injury, multiple biochemical markers of 

central and peripheral fatigue mechanisms have been identified (Halson 2014; Finsterer 2012; 

Rietjens et al. 2005; Knicker et al. 2011). Furthermore, the influence of baseline movement 

profile on biomechanical loading contributing to musculoskeletal tissue stress is not thoroughly 

discussed in the literature. However, the current evidence base has described biological markers 

that are reflective of tissue stress secondary to exposure to the demands of activities of daily life 

and physical activity (Kraus et al. 2011; Finsterer 2012). The aim of the following literature 

review is to identify viable and insightful biological markers of fatigue and musculoskeletal 

system stress. Specifically, this review aims to provide empirical support for the assessment of 

biological markers that may be sensitive to the impact of a poor or excellent baseline movement 

profile on an individual’s physiological response to high-intensity exercise exposures. 

A majority of articular biomarker research has focused on identifying biochemical 

markers that are representative of joint cartilage metabolism, specifically seeking to identify 

biomarkers representative of cartilage catabolism and those of anabolism (Attur et al. 2013; 
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Kraus et al. 2011; Lafeber and van Spil 2013). Recently, research has placed substantial 

emphasis on identifying biomarkers that are prognostic of joint degeneration, specifically 

markers that are representative of the osteoarthritis (OA) process (Attur et al. 2013; Kraus et al. 

2011; Lafeber and van Spil 2013). While OA is not a primary concern for the healthy college-

aged female athlete population, prognostic biomarkers of OA are predictive of ACL injury in 

physically active college-aged individuals (Svoboda et al. 2013; svoboda et al. 2012). 

Furthermore, previous literature has identified mode of exercise (O'Kane et al. 2006), 

biomechanical loading parameters (Niehoff et al. 2010; Niehoff et al. 2011), and volume 

(Eckstein, Hudelmaier, and Putz 2006) of exercise stimulus exposure to influence levels of 

biomarkers of cartilage deformation, degradation, and regeneration in the physically active 

population. Thus, there is utility in investigating the influence of biomechanics on cartilage 

metabolism. 

 In 2004 Andriacchi et al. proposed a theoretical framework (figure 2.1) for the study of 

the pathomechanics of knee OA(Andriacchi et al. 2004). Andriacchi et al’s. integrative in vivo 

OA development framework identifies a initiation phase that implicates aberrant biomechanics 

leading to a shift in the load bearing joint surface areas that are normally infrequently loaded. 

Andriacchi et al. suggests the infrequently loaded joint surfaces cannot tolerate the elevated 

frequency and magnitude of loading owing to a progression phase of the disease, characterized 

by cartilage degeneration, and ultimately breakdown (Andriacchi et al. 2004). As loading 

increases, Andriacchi et al. suggests the rate of disease subsequently increases. Interestingly, 

Andriacchi et al. proposes the study of OA development using ACL injury as a pedagogical 

example. Implicating those who have suffered ACL injury to demonstrate changes in 

biomechanics that lead to inciting the initiation phase of OA, leading to the progression phase, 
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explaining their elevated incidence of OA compared to the population who has not suffered ACL 

injury (Andriacchi et al. 2004; Lohmander et al. 2004; Lohmander et al. 2007). 

 

 

Figure 2.1. – Andriacchi et al’s. 2004 theoretical framework explaining the relationship between 
in vivo function, non-physiological joint biomechanics, joint loading, and articular cartilage 
mechanical and biological responses. 
 

 It is possible that poor baseline biomechanics may exacerbate harmful joint loading and 

subsequent cartilage stress and degeneration when an athlete is exposed to high-intensity 

exercise. A recent large prospective case-control study (N= 90, ACL injured= 45, matched 

control= 45) conducted by Svoboda et al. observed elevated biomarkers of cartilage matrix 

destruction (Type-I & II collagen cleavage neoepitope (C1,2C) & Type-II collagen cleavage 
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product (C1,2C)) and cartilage matrix differentiation and production (Type-II collagen 

propeptides (CPII)) at baseline prior to ACL injury in a cohort of physically active military 

cadets (svoboda et al. 2012). Univariate analysis revealed a 1 ng/mL in serum C1,2C, C2C, and 

CPII concentrations were associated with a 9.1, 4.2, and 19.4 increase in odds of sustaining a 

ACL injury respectively (svoboda et al. 2012). Svoboda et al’s. results provide evidence that 

variability in cartilage metabolism predicts ACL injury in the physically active college-aged 

population (svoboda et al. 2012). However, the specific mechanisms responsible for elevating 

the baseline levels of biomarkers associated with cartilage turnover (C1,2C, C2C, & CPII) in 

individuals at high-risk for ACL injury remain unknown. It is plausible that differences in pre-

injury biomechanics between individuals with poor and excellent movement profiles may 

contribute to abnormal joint loading and subsequent elevations in loading of articular cartilage 

during activities of daily life and sport participation. Interestingly, no study has investigated the 

interactive effects between baseline biomechanics and exposure to high-intensity exercise on 

biomarkers of cartilage metabolism known to be predictive of ACL injury. 

 Exercise mode has been identified to influence the circulating levels of C-telopeptide of 

type-II collagen (CTx-II), a biomarker theorized to represent cartilage collagen breakdown 

(O'Kane et al. 2006; Kraus et al. 2011). Division I college endurance athletes participating in 

running, crew, and swimming exhibited different levels of CTx-II after athletes had been actively 

training for their respective sports (O'Kane et al. 2006). Swimmers exhibited the lowest levels of 

CTx-II when training, whereas runners had the highest levels of CTx-II. The authors concluded 

that while swimming and running are both metabolically demanding endurance sports with high 

training volumes, the biomechanical demands of swimming are inherently different than running, 

with running representing an exercise mode with substantially higher skeletal and articular joint 
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stress (O'Kane et al. 2006). Although CTx-II is representative of type-II collagen breakdown, 

recent reports suggest the utility of CTx-II as a viable biomarker of cartilage metabolism may be 

limited due to the high potential for CTx-II to represent type-II collagen breakdown from a bony 

tissue source versus articular cartilage (Lafeber and van Spil 2013; Lotz et al. 2013). While the 

CTx-II source may not be readily discernable, different biomechanical demands from various 

exercise modes influence type-II collagen breakdown, suggesting CTx-II is a nonspecific 

biommarker sensitive to variability in mechanical stress placed on the skeletal system. 

 Differences in mechanical loading demands have been observed to influence serum 

cartilage oligomeric matrix protein (sCOMP) concentrations (Niehoff et al. 2010). Within the 

literature sCOMP is perhaps the most commonly described biomarker of cartilage degredation, 

and has been accepted as a marker with substantial diagnostic, prognostic, and disease-

burden/progression assessment capacities (Kraus et al. 2011; Lafeber and van Spil 2013; Lotz et 

al. 2013). sCOMP concentration is theorized to reflect the fragmentation of non-collagenous 

protein elements secondary to the extrusion of COMP fragments from loaded articular cartilage, 

ultimately representative of articular cartilage matrix disruption (Lotz et al. 2013; Kraus et al. 

2011; Mündermann et al. 2005).The magnitude and duration of sCOMP concentration elevations 

are sensitive to the dose of mechanical loading (Niehoff et al. 2010; Mündermann et al. 2005). 

 In 2010 Niehoff et al. compared the effects of 30 min treadmill running, 30 min of slow 

deep knee bends (6 sets of 20 knee bends / squats to 120º over 2 min, with 3 min rest in between 

sets, for 120 total knee bends), and 30 min rest / lymphatic drainage laying supine on a table on 

circulating levels of sCOMP (Niehoff et al. 2010). Niehoff et al. observed treadmill running to 

elicit a signifcant elevation in sCOMP from baseline, whereas repeated slow deep knee bends 

and 30 min of supine lymphatic drainage did not result in any fluctuations in sCOMP (Niehoff et 
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al. 2010). The results of Niehoff et al’s. study suggest sCOMP levels are sensitive to different 

modes of mechanical load exposure during exercise, implicating variability in cartilage 

metabolism can be explained by mechanical loading parameters. Niehoff et al. concluded that 

high impact, high frequency loading in running elicits an acute elevation in sCOMP reflective of 

cartilage degeneration, while slower controlled low impact repetitive compressive loading does 

not significantly stimulate cartilage metabolism (Niehoff et al. 2010). 

 Niehoff et al’s. 2010 observations are supported by original research by Mündermann et 

al. who observed a biphasic increase in sCOMP immediately after a 30 min walking session in a 

healthy population (Mündermann et al. 2005). Mündermann et al. observed sCOMP to be 

significantly elevated immediately following 30 min of walking, then return to resting levels 

within 30 min, 1.5 hrs, and 3.5 hrs, and then significantly elevate again 5.5 hrs following 

cessation of walking exercise (Mündermann et al. 2005), whereas sCOMP levels decreased after 

30-min of supine rest in a control condition (Mündermann et al. 2005). Mündermann et al. 

concluded the biphasic sCOMP response to loading induced by walking exercise reflects initial 

COMP fragmentation representative of cartilage catabolism and then a potential reflection of 

cartilage turnover as damaged collagen fragments are removed from the tissue and enter 

circulation during the anabolic repair response following cyclical load exposure (Mündermann et 

al. 2005). Interestingly, the observed decrease in sCOMP over the 5.5 hour period following 30-

min of supine rest reflects the potential for sCOMP to be removed from circulation via lymphatic 

drainage, explaining the decreases in sCOMP 1.5 and 3.5 hrs post walking. Furthemore, 

Mündermann et al. concluded that even simple activities of daily life that may include impactful 

compressive loading such as walking activity prior to participation in the study protocol may 
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induce elevations in sCOMP, thus it is important to evaluate sCOMP after a resting baseline of at 

least 30 min (Mündermann et al. 2005). 

 While Müdermann et al. and Niehoff et al. 2010 didn’t evaluate sCOMP in conjunction 

with neuromuscular control, biomechanics, and knee articular surface cartilage thickness 

measures, Kersting et al. observed a direct relationship between elevations in sCOMP and 

decreases in total cartilage thickness following running exercise in healthy individuals(Kersting 

et al. 2005). Interestingly Kersting et al. did not observe any direct influence of lower extremity 

kinematics or joint torques on sCOMP or femoral cartilage thickness decreases. However, 

Kertsting et al. did observe a greater quadriceps and hamstring co-activation time during the 

stance phase of running gait to be associated with a greater total cartilage thickness decreases 

(Kersting et al. 2005). Longer quadriceps and hamstring co-activation times during the stance 

phase of gait are hypothesized to be associated with greater high-magnitude compressive loading 

of the knee joint (Kersting et al. 2005; Winter 2009). Elevated resting sCOMP, greater 

quadriceps and hamstring co-activation time during stance, and larger elevations in sCOMP post 

exercise explain total knee joint articular cartilage thickness decreases (Kersting et al. 2005). 

Kersting et al. did not observe an association between total knee joint cartilage thickness 

decreases and any kinematic or joint moment parameters. Interestingly, in agreement with 

Andriacchi et al’s proposed location loading shift theory (Andriacchi et al. 2004), a site-specific 

positive association between tibial and patellar cartilage thickness decreases and maximum 

mediolateral shear forces and knee flexion-extension torques were observed respectively 

(Kersting et al. 2005). Collectively, Kersting et al’s. results implicate neuromuscular control and 

biomechanical factors predict cartilage thickness changes in response to running exercise. 

Additionally, it is evident sCOMP is a viable biomarker reflective of total knee joint cartilage 
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thickness changes in response to neuromuscular control and biomechanical variability within the 

healthy population (Kersting et al. 2005). 

 In 2011, Niehoff et al. extended their original 2010 study to determine the effects 

different athletic tasks on knee cartilage response (Niehoff et al. 2011). Subsequently, Niehoff et 

al. compared the effects of 100 drop-landings from a 30 cm high box and 30 min of over-ground 

running on changes in sCOMP and knee cartilage deformation via MRI. Larger magnitude 

decreases in cartilage deformation were observed following the drop-landing activity compared 

to running, with drop-landings and running eliciting similar signifcant increases in sCOMP 

concentrations (Niehoff et al. 2011). While Niehoff et al. did not observe a significant effect for 

loading activity on sCOMP concentrations, a signifcant association was observed between 

sCOMP elevations and cartilage thickness decreases after the drop-landing activity only. Drop-

landing activities demand a higher magnitude energy absorption, requiring greater sagittal plane 

motions to attenuate landing forces from flight compared to running activity (Niehoff et al. 

2011). It is possible that higher impulse compressive and shearing forces are imparted on 

articular cartilage from drop-landings compared to running as evidence of greater cartilage 

deformation (Niehoff et al. 2011). Sport activity requires rapid changes in direction and landings 

that may impart similar (or greater) force on articular cartilage as drop-landings, thus sCOMP 

changes secondary to high-intensity exercise exposure comparable to the demands of sport 

activity may reflect articular cartilage deformation and matrix disruption. 

 While evidence in the healthy, athlete population does not directly link biomarkers of 

cartilage metabolism to lower extremity biomechanics, there is preliminary support for a positive 

association between external knee adduction moment impulse and CPII in the OA population 

(Hunt et al. 2013). Greater external knee adduction impulse is associated with greater CPII 
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concentrations (Hunt et al. 2013). High external knee adduction torques are consistently reported 

to be linked to OA progression and knee cartilage abnormalities in the pathological population 

(Andriacchi et al. 2004; Farrokhi et al. 2013; Kumar et al. 2014). Furthermore, pilot data 

implicates a lower extremity corrective exercise / strengthening program can reduce sCOMP 

values compared to baseline in the OA population (Hunt et al. 2013). Thus, there is preliminary 

evidence biomarkers of joint metabolism are sensitive to differences in biomechanics and 

neuromuscular control (Hunt et al. 2013). 

 Although it is not a direct measure of in-vivo joint biomechanics, greater body fat mass is 

associated with greater joint compressive force (Farrokhi et al. 2013; Runhaar et al. 2011), and 

has been linked to greater sCOMP values in the OA population (Bartels et al. 2014). Decreases 

in sCOMP have been observed with the implementation of a weight loss program inducing 

signifcant fat mass loss over 16 weeks (Bartels et al. 2014). Thus decreasing compressive joint 

loading secondary to weight loss is associated with decreases in circulating sCOMP (Bartels et 

al. 2014). Combined, the results from biomechanical, epidemiological, and intervention studies 

in the OA population suggest that sCOMP and CPII represent biomarkers sensitive to variability 

in compressive and rotational joint loads. Future study of the effects variation in biomechanics 

on sCOMP and CPII in the healthy athlete population may provide insight regarding the 

influence of a poor movement profile on cartilage stress. 

 The results of this review suggest that cartilage metabolism biomarkers that are 

associated with an elevated risk of ACL injury and increased cartilage deformation are sensitive 

to variability in biomechanics and joint loading. Specifically, it appears sCOMP is sensitive to 

volume of exercise exposure and can discriminate between modes of exercise and types of 

mechanical load exposure (Niehoff et al. 2011; Niehoff et al. 2010; O'Kane et al. 2006). 
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Furthermore, both CPII; a biomarker representative of cartilage repair, and C1,2C; a biomarker 

reflective of cartilage degradation predict ACL injury risk in the college-aged physically active 

population (svoboda et al. 2012). sCOMP provides insight regarding cartilage matrix status, 

whereas individual evaluation of CPII and C1,2C permit evaluation of type-II collagen synthesis 

and degradation (Lotz et al. 2013). Whereas a ratio of C1,2C to CPII may reflect overall type-II 

collagen turnover, indicative of cartilage metabolism (Svoboda et al. 2013; Lotz et al. 2013). 

Combined evaluation of sCOMP, CPII, and C1,2C affords insight regarding the influence of a 

poor baseline movement profile on articular cartilage status in response to high-intensity 

fatiguing exercise. 

Elevated Levels of Circulating Biological Markers of Central and Peripheral Fatigue and 

Exercise-Induced Muscle Damage are Associated with High Training Loads 

 High-intensity exercise-induced fatigue is a described as complex phenomena resulting 

from the interaction of peripheral and central physiological factors that result in a “failure to 

maintain the required or expected force (or power) output for given (sport) activity” during sport 

participation (Gibson and Edwards 1985; Knicker et al. 2011). To date, no specific objective 

measure has been identified to comprehensively describe an athlete’s level of fatigue or training 

stress experienced during sport participation (Halson 2014). The interacting multi-component 

nature of exercise-induced fatigue suggests it is unlikely any one marker will effectively quantify 

the phenomena across a broad athlete population (Knicker et al. 2011; Cairns et al. 2005; Cairns 

and Lindinger 2008). Currently, the most widely accepted evaluations of fatigue reflect measures 

of peripheral and central physiological processes that underlie an individual’s response to 

exercise (Halson 2014). 
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 External and internal training load measures are currently leveraged by sports scientists, 

coaches, athletes, and medical practitioners to estimate the imposed physical or mechanical 

demands experienced by an athlete and the athlete’s subsequent physiological response to sport 

activity (Halson 2014; Nunes et al. 2014; Casamichana et al. 2013; Buchheit et al. 2013). Best 

practices for internal and external load monitoring in athletes remains an area open for continued 

research, as load monitoring alone does not fully describe the mechanisms responsible for an 

athlete’s state of exercise-induced fatigue (Halson 2014). However, surrogate biochemical 

markers reflective of underlying physiological processes that contribute to exercise-induced 

fatigue have been described in the literature, and demonstrate significant levels of variability 

explained by internal and external training loads (Halson 2014; Coutts et al. 2007; Rietjens et al. 

2005; Gomes et al. 2013; Balsalobre-Fernández, Tejero-González, and del Campo-Vecino 2014; 

Brancaccio, Maffulli, and Limongelli 2007). 

 As previously described, internal (Gabbett 2004b; Gabbett 2004a) and external training 

loads (Colby et al. 2014; Gabbett and Ullah 2012) exhibit strong associations with injury 

incidence over the course of an athletic season in field and court sport athletes, thus it is possible 

biochemical markers of underlying exercise-induced fatigue mechanisms are similarly associated 

with, or explain variation in injury incidence in sport. Furthermore, a poor movement profile 

may be associated with an acceleration of fatigue physiology during sport participation. A poor 

movement profile has been implicated to provoke a higher metabolic cost relative to an excellent 

movement profile in the athlete’s effort to maintain an effective work or power output during 

high-performance field and court sport participation (Arellano and Kram 2014; Kram and Taylor 

1990; Knicker et al. 2011; Cairns et al. 2005). Therefore, the aim of the following discussion is 

to summarize the consensus of exercise-induced fatigue monitoring literature’s identification of 
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promising biomarkers of fatigue mechanisms and systemic stress exposure that may be sensitive 

to the impact of baseline movement profile on the field and court sport athlete’s mechanical load 

exposure and internal physiological responses to high-intensity exercise. We will describe three 

circulating biomarkers representative of: (1) exercise-induced skeletal muscle damage, (2) 

interactive peripheral and (3) central fatigue markers representative of global training stress; via 

serum creatine kinase (CK), serum interleukin-6 (IL-6), and serum cortisol (sCORT). 

Biomarker Assessment for Training Stress & Fatigue Monitoring in Athletes 

 During normal exercise, systemic physiology attempts to maintain tight control of the 

internal environment (Anish 2005; Dallman et al. 1994; Fragala et al. 2011). Exercise or sport 

activity exposure represents a unique physiological stress, as the body’s neuroendocrine, 

immune, and nervous systems function in synergy to accommodate increased physiological 

demands (Fragala et al. 2011; Knicker et al. 2011; Davies and Few 1973; Anish 2005). 

Underpinned by Hans Selye’s General Adaptation Syndrome (SELYE 1950), an athlete’s 

repeated exposure to the elevated demands of exercise stress will induce beneficial and 

predictable adaptations in the neuroendocrine, immune, and central nervous systems in order to 

more effectively and efficiently maintain an internal homeostatic environment at minimal 

catabolic cost to the athlete (Jürimäe et al. 2011; Kraemer and Ratamess 2005; Fragala et al. 

2011; Steinacker et al. 2004). Current biomarker assessment of fatigue and training stress in 

sport is founded on the body of overtraining syndrome research focused on identifying a harmful 

disturbance of the athlete’s stress-recovery state through evaluation of markers central and 

peripheral fatigue processes (Kellmann 2010; Nederhof et al. 2008; Kreher and Schwartz 2012). 

The exercise science field has been able to translate the findings of overtraining syndrome 

research into the development of biomarkers that are associated with various hormonal, 
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inflammatory, immunological, physiological (i.e. heart rate variability), and physical 

performance (i.e. rate of force development) markers of an athlete’s stress-recovery state in 

response to a sport activity exposure such as a competition or training session (Kellmann 2010; 

Nederhof et al. 2008; Lakier Smith 2003; Lehmann, Lormes, and Opitz-Gress 1997; Petibois et 

al. 2002).. 

 Biomarkers descriptive of exercise-induced muscle damage (McLellan, Lovell, and Gass 

2011b; McLellan, Lovell, and Gass 2010; McLellan, Lovell, and Gass 2011a), interactive 

peripheral and central exercise induced fatigue processes (Fischer 2006; Knicker et al. 2011; 

Anish 2005), and systematic stress (Steinacker et al. 2004; Dallman et al. 1994; VanBruggen et 

al. 2011) demonstrate acute and temporal responsive sensitivity to exercise intensity, mechanical 

or external training load exposure, and are associated with internal training load assessments, 

performance fluctuations, psychological affect, and competition performance in field and court 

sport athletes. It is possible hypothesized a greater mechanical and systemic stress induced by a 

poor baseline movement profile may influence serum creatine kinase (CK), serum interleukin-6 

(IL-6), serum cortisol (sCORT) responses to high-intensity exposure in college-aged female field 

and court sport athletes. 

Serum Creatine Kinase is Reflective of Exercise-Induced Skeletal Muscle Damage in Field Sport 

Athletes 

 Serum creatine kinase (CK) is circulating biomarker representative of structural muscle 

damage secondary to exposure to the biomechanical stress of muscular contraction and blunt 

trauma that occurs during sport participation (Brancaccio, Maffulli, and Limongelli 2007; 

McLellan, Lovell, and Gass 2011b). Numerous studies implicate a high-intensity training or 

sport competition session can substantially elevate CK levels relative to rest in elite and 
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recreational athletes (Brancaccio, Maffulli, and Limongelli 2007; McLellan, Lovell, and Gass 

2011a; McLellan, Lovell, and Gass 2010; Silva et al. 2013; Thorpe and Sunderland 2012). 

Furthermore, research suggests that serum CK levels elevate in proportion with exercise intensity 

and duration, suggesting serum CK is a viable marker reflective of training load (Brancaccio, 

Maffulli, and Limongelli 2007; McLellan, Lovell, and Gass 2011b; Johnston et al. 2013). 

 Serum CK levels are reflective of the release of CK into circulation from skeletal muscle 

that is (or was) active during athletic activity participation (Brancaccio, Maffulli, and Limongelli 

2007). Representative of structural damage to muscle, CK is released from muscle tissue as a 

result of repeated high-magnitude eccentric contractions that occur during the stretch-shortening 

cycle involved in various athletic tasks (Horita et al. 1999; Nicol, Avela, and Komi 2006). In a 

metabolically active muscle, CK acts as a buffer to maintain the ATP-to-ADP ratio within active 

muscle fibers (Brancaccio, Maffulli, and Limongelli 2007). CK is an enzyme that catalyzes the 

reversible high-energy phosphate bonds between ADP and phosphate to form ATP from a ADP 

molecule and free phosphate molecule, or cleavage of a phosphate from ATP to form ADP and a 

free phosphate resulting in the release of energy necessary for muscular contraction (Brancaccio, 

Maffulli, and Limongelli 2007). Thus CK functions to help maintain the energy reservoir within 

muscle tissue. 

 Representative of structural damage to skeletal muscle, CK levels are reflective of 

sarcolemmic disruption (Brancaccio, Maffulli, and Limongelli 2007). Histologically, a majority 

of CK release is believed to originate from the sarcomere M-line, as the M-line is the only site 

within the myofibril that connects the thick heavy-chain myosin filaments to each other, thus 

providing the sarcomere with stability during muscular contraction (Brancaccio, Maffulli, and 

Limongelli 2007). Furthermore, histological staining suggests the M-line is the site within the 
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sarcomere to contain the greatest local concentration of CK (Brancaccio, Maffulli, and 

Limongelli 2007). During sport participation, repeated SSCs involved in athletic motions such as 

running, jumping, landing, and change in direction require repeated high-magnitude eccentric 

muscle contractions (Nicol, Avela, and Komi 2006). High-magnitude SSC eccentric contractions 

induce a biomechanical tensile stress across muscle tissue of sufficient magnitude to disrupt the 

M-line of the sarcomere, and ultimately the ultra-structure of the sarcolemma, allowing seepage 

of CK into circulation during sport participation and recovery (Brancaccio, Maffulli, and 

Limongelli 2007). Furthermore, blunt trauma to muscle tissue such as a contusion sustained 

during a rugby competition is capable of resulting in mechanical stress that disrupts the 

sarcolemma resulting in CK leakage from a skeletal muscle (Brancaccio, Maffulli, and 

Limongelli 2007; McLellan, Lovell, and Gass 2011b). Evidence implicates the number of athlete 

impacts / collisions during sport participation are directly proportional to serum CK levels 

(McLellan, Lovell, and Gass 2011b). CK is a biomarker that responds to the biomechanical 

demands of sport. 

 In addition to muscle damage, some evidence suggests that CK assessment may also have 

utility in identification of metabolically exhausted muscle tissue following exercise (Brancaccio, 

Maffulli, and Limongelli 2007; Finsterer 2012). A metabolically exhausted muscle exhibits a 

decrease in membrane resistance / stability due to elevated potassium channel openings, thus 

permitting leakage of CK from the sarcoplasm into circulation (Fink and Lüttgau 1976; Fink et 

al. 1983). Therefore serum CK may also demonstrate some value in assessment of peripheral 

fatigue. However, serum CK assessment alone cannot discriminate between the contribution of 

leakage into circulation due to potassium channel opening versus sarcolemmic disruption 

(Brancaccio, Maffulli, and Limongelli 2007). Furthermore, potassium channel opening alone 
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unlikely contributes to a high-magnitude elevation in serum CK. Therefore, it is likely elevated 

CK levels following exercise are primarily representative of structural muscle damage, and is a 

standard biomarker representative of skeletal muscle damage secondary to high-intensity 

exercise exposure (Brancaccio, Maffulli, and Limongelli 2007). 

 It is important to recognize that all muscle tissue contains CK, implicating circulating CK 

may originate from smooth and cardiac sources in addition to skeletal muscle (Brancaccio, 

Maffulli, and Limongelli 2007). While CK is present in smooth and cardiac muscle tissue, 

multiple reports verify a that elevations in CK post exercise are driven by skeletal muscle 

sources (Brancaccio, Maffulli, and Limongelli 2007). Furthermore CK exists in 5 known 

isoforms, with 3 isoenzymes originating in the cytoplasm; CK-MM, CK-MB, and CK-BB), and 

2 isoenzymes originating in the mitochondria; sarcomeric and non-sarcomeric (Brancaccio, 

Maffulli, and Limongelli 2007). CK-MM is primarily dominant in the skeletal muscle tissue. 

Cardiac muscle represents the primary source of CK-MB, being released during cardiac 

infarction. CK-BB is responsible for catalyzing the high-energy phosphate bond between ADP 

and free phosphate in brain tissue. While serum CK can originate from multiple sources, current 

analysis principles permit isolation of the CK-MM isoenzyme (Brancaccio, Maffulli, and 

Limongelli 2007). 

 There is ample evidence reporting serum CK levels to elevate in response to the demands 

of field and court sport exposure in well-trained athletes (Silva et al. 2013; Thorpe and 

Sunderland 2012; McLellan, Lovell, and Gass 2011b; McLellan, Lovell, and Gass 2010; 

McLellan, Lovell, and Gass 2011a). Serum CK elevations are proportional to external 

mechanical training loads (Brancaccio, Maffulli, and Limongelli 2007; Thorpe and Sunderland 

2012). Interestingly, plasma CK has been observed to demonstrate a positive relationship with 
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the volume of sprinting activity in field and court sport athletes (Thorpe and Sunderland 2012). 

Specifically, percent increases in CK over pre competition levels exhibit strong associations with 

number of sprints (r=0.82), cumulative sprint distance (r=0.92), and cumulative high-speed 

running distance (r=0.93) during match play in elite soccer athletes (Thorpe and Sunderland 

2012). Furthermore, participation in contact sport constitutes a high external load exposure to an 

athlete, with tacking and scrum activities adding substantial mechanical loads over noncontact or 

minimal contact sports (Gabbett 2012; Thorpe and Sunderland 2012). Moderate correlations 

between CK levels and the number (0.62 – 0.63) and magnitude (r=0.61 – 0.63) of collisions 

have been observed in rugby athletes 30 min – 72 hrs post-match (McLellan, Lovell, and Gass 

2011b). Additionally, CK elevations are associated with lower perceived recovery status and 

greater muscle soreness up to 48 hrs following high-volume muscle damaging exercise (Sikorski 

et al. 2013) and field and court sport play (Fatouros et al. 2010). Furthermore, some evidence 

implicates that there is a direct association between circulating CK levels and post-match 

performance decrements such as vertical jump height (Johnston et al. 2013) and peak rate of 

force development (McLellan, Lovell, and Gass 2011a) in field and court sport athletes 

immediately following and up to 48 hours following competition. Collectively, the sum of CK 

research implicates serum CK demonstrates the capacity to explain variation in external load 

exposure and some measures of internal training load in response to sport activity. 

 Serum CK levels exhibit high variability within the population (Brancaccio, Maffulli, and 

Limongelli 2007). However, there is general agreement that athletes have higher resting serum 

CK levels compared to the non-athlete population (Brancaccio, Maffulli, and Limongelli 2007; 

Mougios 2007). Overall, resting serum CK levels of male (82 – 1083 U/L) and female (47 – 513 

U/L) athletes have upper reference limits two-times greater than moderately active non-athletes 
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of similar age (Mougios 2007). In general, athletes experience a lesser magnitude increase in 

serum CK levels compared to untrained individuals, suggestive of training adaptation and 

enhanced enzymatic clearance during the recovery period following exercise exposure 

(Brancaccio, Maffulli, and Limongelli 2007). 

 While athletes may experience a lesser magnitude increase in serum CK in response to 

exercise, the temporal recovery kinetics for CK are similar across the population (Brancaccio, 

Maffulli, and Limongelli 2007), with a moderate increase in serum CK immediately following 

exercise and a peak elevation 24 – 48 hours following exercise termination (Brancaccio, 

Maffulli, and Limongelli 2007; McLellan, Lovell, and Gass 2011a). Interestingly, there is a 

bimodal serum CK response following exercise exposure, with an initial significant increase in 

serum CK occurring 0 min to 2 hrs post exercise, then a secondary peak substantially greater (> 

2×) than the initial post-exercise increase occurring 24 – 48 hrs post exercise (Newham, Jones, 

and Clarkson 1987; Horita et al. 1999; Brancaccio, Maffulli, and Limongelli 2007). The bimodal 

behavior of CK during recovery may be explained by secondary muscle tissue injury due to 

phagocytic activity after the initial inflammatory response at the initial muscle damage site 

(Faulkner, Brooks, and Opiteck 1993; Newham, Jones, and Clarkson 1987; Horita et al. 1999). 

While serum CK levels don’t peak until 24 – 48 hrs following exercise termination, there is a 

direct association between the magnitude of the initial CK response and the latter secondary peak 

(Faulkner, Brooks, and Opiteck 1993; Newham, Jones, and Clarkson 1987; Horita et al. 1999; 

Brancaccio, Maffulli, and Limongelli 2007). Thus individuals with high initial serum CK levels 

immediately following exercise will demonstrate high secondary peaks 24 – 48 hrs post exercise. 

 While there is general agreement that there is an effect of age, sex, body mass, exercise 

mode, physical fitness level, and exercise environment (temperature) on resting and post exercise 
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CK values, CK responses to exercise in well-trained athletes demonstrate substantial variability 

(Brancaccio, Maffulli, and Limongelli 2007; Kraemer et al. 2013; Kraemer et al. 2009). 

Specifically, athletes with chronically low resting serum CK represent a population of “low 

responders,” while athletes with higher resting CK exhibit a larger magnitude post-exercise 

elevation in serum CK as “high responders” (Godwin, Takahara, and Agnew 2010; Brancaccio, 

Maffulli, and Limongelli 2007). Interestingly, females demonstrate a blunted elevation in CK 

post exercise compared to males, with males demonstrating a relatively greater magnitude 

increase relative to baseline after exercise exposure. The male athletes’ greater CK elevations 

post exercise are partially explained by relatively larger body masses being associated with 

higher resting CK levels compared to female athletes’ (Brancaccio, Maffulli, and Limongelli 

2007). Additionally, the blunted CK response in females is possibly explained by female 

secretion of oestrogen in response to exercise exposure (Tiidus 2000; Amelink et al. 1990). 

Oestrogen has been observed to sustain membrane stability post exercise, restricting CK seepage 

from damaged muscle tissue into circulation during recovery (Tiidus 2000; Amelink et al. 1990). 

Although there is a relatively consistent effect of sex on resting and post exercise CK values, the 

male and female athlete populations demonstrate substantial intra-sex variance in CK response to 

exercise with “high” and “low” responders. Some variability within the male and female athlete 

populations may be explained by other demographics described above. However, when 

controlling for other demographic factors, variation lingers within discrete athlete populations 

(Hartmann and Mester 2000), thus it is evident there are other underlying factors that may 

contribute to characteristic disparities between athletes with chronically low versus those with 

high resting CK. It is possible a well-trained athlete’s inherent movement profile may influence 
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their resting CK level and their subsequent proportional elevation in CK following high-intensity 

fatiguing exercise. 

 Serum CK presents as a practical biomarker representative or exercise-induced skeletal 

muscle damage in the athlete. The inherent variability in the magnitude of serum CK responses 

to exercise between individuals appears to be dependent on resting serum CK levels (Brancaccio, 

Maffulli, and Limongelli 2007). While resting serum CK levels may isolate “high responders” 

and “low responders,” the underlying mechanisms responsible for the variance between 

responders remains unknown when controlling for demographics (Brancaccio, Maffulli, and 

Limongelli 2007; Mougios 2007; Kraemer et al. 2013; Kraemer et al. 2009). Female athletes 

with poor movement profiles may recruit a greater muscle mass to carry out athletic tasks at the 

same level of performance when compared to individuals with excellent movement profiles. A 

greater volume of muscle mass utilized in high-intensity exercise may contribute to higher levels 

of serum CK both at baseline and post exercise. Furthermore, the metabolic inefficiency of a 

poor movement profile may accelerate skeletal muscle tissue exhaustion and damage, inducing a 

greater relative elevation in serum CK when exposed to high-intensity sport activity compared to 

an excellent movement profile. Comparison of baseline and post exercise serum CK levels 

between poor and excellent movement profiles in female athletes may provide insight regarding 

the influence of biomechanics on skeletal muscle function during high-intensity sport activity. 

Interleukin-6 as a Myokine is a Circulating Biomarker Representative of Interacting Peripheral 

and Central Fatigue Mechanisms 

The aim of the following discussion is to describe the practicality of monitoring a 

peripherally produced myokine, interleukin-6 (IL-6), and its inhibitory influence on the central 

nervous system, inducing signs and symptoms of fatigue in athletes during high-intensity sport 
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activity. IL-6 release from skeletal muscle serves as a biochemical link between the system’s 

peripheral physiological environment and the central nervous system during high-intensity 

exercise (Anish 2005; Finsterer 2012). Thus, the IL-6 myokine is a promising biomarker that can 

be leveraged to estimate the status of the interaction between central and peripheral mechanisms 

underlying exercise-induced fatigue in athletes (Anish 2005; Fischer 2006; Knicker et al. 2011). 

 Serum CK is not a marker reflective of the complex interplay between the periphery and 

the central nervous system responsible for exercise-induced fatigue observed during sport 

(Finsterer	2012). Parallel evaluation of biomarkers representative of skeletal muscle damage 

and fatigue provides a robust avenue to identify both local and central factors driving changes in 

athletic performance secondary to decreases in neuromuscular function (Knicker	et	al.	2011;	

Cairns	and	Lindinger	2008;	Finsterer	2012;	Anish	2005). IL-6 is widely accepted as cytokine 

that is responsible for the body’s regulation of the inflammatory response (Brandt	and	

Pedersen	2010). IL-6 acts both as a pro-inflammatory and anti-inflammatory cytokine 

identified to stimulate an immune response to tissue stress or damage (Finsterer	2012;	Fischer	

2006). IL-6 can be produced from virtually any somatic cell (Finsterer	2012). However, during 

exercise, skeletal muscle fibers are known to release IL-6 as a myokine (cytokine produced by a 

muscle fiber’s sarcoplasm) (Pedersen	and	Febbraio	2008;	Knicker	et	al.	2011;	Fischer	2006;	

Finsterer	2012). The primary function of the release of IL-6 from skeletal muscle tissue during 

exercise is to increase energy substrate availability in effort to sustain muscle performance 

(Pedersen	and	Febbraio	2008). Recently, Brandt & Pedersen outlined the “myokine concept,” 

describing skeletal muscle tissue to behave as an endocrine organ in response to exercise, as the 

release of IL-6 into circulation during and after exercise activity influences the function of distal 
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organ tissues to maintain systemic homeostasis (Brandt	and	Pedersen	2010;	Pedersen	and	

Febbraio	2008). 

Locally, the IL-6 myokine stimulates muscle fiber uptake of glucose and activates fat-

oxidation (beta-oxidation) pathways (Pedersen	and	Febbraio	2008;	Febbraio	et	al.	2003). 

Peripherally, circulating IL-6 acts in a hormone-like manner, increasing hepatic gluconeogenesis 

and mobilization of free fatty acids into circulation from adipose tissue via lipolysis stimulation 

(Jürimäe	et	al.	2011;	Pedersen	and	Febbraio	2008;	brooks,	fahey,	and	baldwin	2004). 

Collectively, the secretion of IL-6 as a myokine appears to influence both local and peripheral 

physiology in effort to maintain energy substrate availability for contracting muscle tissue, 

preserving muscle performance during field and court sport participation (Pedersen	and	

Febbraio	2008;	brooks,	fahey,	and	baldwin	2004;	J.	M.	Davis	1995). IL-6 release substantially 

increases the availability of energy substrate to contracting muscle tissue. However, the elevated 

physiological demands of prolonged high-intensity sport activity exposure eventually outpace the 

capacity of fat-oxidation, gluconeogenesis, and residual downstream carbohydrate bioenergetics 

to yield a sufficient energy (ATP) reservoir to maintain muscle force production (Knicker	et	al.	

2011;	Pedersen	and	Febbraio	2008;	Cairns	et	al.	2005).  

 Interestingly, athletes report mental fatigue sensations prior to energy substrate depletion 

during field and court sport participation (Anish	2005;	Knicker	et	al.	2011;	Meeusen	et	al.	

2007;	Rietjens	et	al.	2005). Similarly, power output and performance decrements have been 

observed without evidence of skeletal muscle damage or of energy substrate exhaustion 

(Knicker	et	al.	2011;	Twist	and	Highton	2013). Signs and symptoms of exercise-induced 

fatigue are consistently observed during acute exposures to the physiological demands of field 

and court sport without evidence of underlying energy substrate exhaustion or significant muscle 
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damage (Meckel,	Machnai,	and	Eliakim	2008;	Girard,	Mendez-Villanueva,	and	Bishop	2011;	

Knicker	et	al.	2011;	R.	B.	Davis	et	al.	1991;	Anish	2005). Reductions in athletic performance 

during field and court sport competition or training sessions observed prior to evidence of energy 

substrate depletion or significant muscle damage suggest factors of central origin may influence 

decreases in muscle performance prior to catabolic exhaustion and biomechanical overstress 

(Girard,	Mendez-Villanueva,	and	Bishop	2011;	Anish	2005). Central limitation of muscle 

performance during sport participation has been described as a protective mechanism to maintain 

system homeostasis and safeguard tissues from excessive or irreversible damage (Finsterer	

2012;	Fischer	2006;	Brandt	and	Pedersen	2010;	Anish	2005). Interestingly, elevations in the 

IL-6 myokine have been identified to induce symptoms of central fatigue during exercise 

(Robson-Ansley	et	al.	2004). Thus, exercise-induced elevations of IL-6 may influence central 

factors of fatigue (Robson-Ansley	et	al.	2004;	Robson-Ansley,	Blannin,	and	Gleeson	2007;	

Robson-Ansley,	Gleeson,	and	Ansley	2009). 

 Multiple hypotheses have been tested to evaluate the interplay between peripheral and 

central fatigue factors during exercise (Noakes	2000;	Knicker	et	al.	2011;	Cairns	et	al.	2005;	J.	

M.	Davis	1995). While it is likely more than one single factor accounts for the interaction 

between the periphery and the central nervous system in regards to fatigue experienced during 

exercise, IL-6 has been identified to have a direct effect on central fatigue symptoms and 

exercise performance in athletes (Anish	2005;	Finsterer	2012). Furthermore, IL-6 is capable of 

crossing the blood brain barrier (Anish	2005). Thus, once released into circulation, IL-6 may 

have immediate interface with central nervous system tissue, such as the hypothalamus, which 

may influence the activity of the hypothalamic-pituitary-adrenal axis known to exhibit tight 

control over the body’s stress response to exercise exposure and regulate post-exercise 
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metabolism (Wolfe	2001;	Davies	and	Few	1973;	Dallman	et	al.	1994). Regardless of the sight 

of its influence on the central nervous system, evidence suggests circulating IL-6 moderates 

central nervous system activity (Anish	2005). 

The most compelling evidence linking circulating IL-6 to central fatigue symptoms is 

described by methodology that introduces exogenous recombinant IL-6 into circulation. In an 

early study, Späth-Schwalbe et al. observed acute effects of low doses of injected IL-6 to induce 

psychological symptoms of fatigue, elevation in depressive symptoms, and difficulty 

concentrating (Späth-Schwalbe	et	al.	1998). Furthermore, Späth-Schwalbe et al. observed 

significant effects of IL-6 on brainwave activity during sleep, suggestive of direct interference 

from IL-6 injection on central nervous system activity. Interestingly, an acute elevated secretory 

activity of the hypothalamic-pituitary-adrenal axis was observed with IL-6 injection versus 

placebo. IL-6 injection increased adrenocorticotropic hormone and cortisol secretion with a 

concomitant decrease in thyroid stimulating hormone release. Späth-Schwalbe et al.’s findings 

are important, implicating IL-6 can substantially influence the body’s primary control of 

homeostasis and can induce a stress response characteristic of elevated catabolic activity (Späth-

Schwalbe	et	al.	1998). While Späth-Schwalbe et al’s. results were focused on the effects of IL-6 

on central nervous system and hypothalamic-pituitary-adrenal axis function during sleep in 

healthy men, the resulting evidence implicates IL-6 to have strong acute effects on the central 

nervous system and immunoendocrine function. 

 More recently, injection of recombinant IL-6 has been observed to impair running 

performance, invoke sensations of fatigue / tiredness, and induce mood disturbances in elite male 

runners compared to placebo (Robson-Ansley	et	al.	2004). Furthermore, IL-6 injection prior to 

running was observed to increase adrenocorticotropic hormone, cortisol, and prolactin (Robson-
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Ansley	et	al.	2004), suggesting IL-6 may influence an increase in exercise stress response, 

potentially promoting catabolism following exercise termination, limiting an athlete’s recovery 

capacity (Kreher	and	Schwartz	2012;	Rietjens	et	al.	2005;	Halson	2014). While exogenous 

introduction of IL-6 provides experimental control to establish cause-and-effect between 

circulating cytokines and central nervous system function, nutritional intervention during 

exercise lends further insight regarding the physiological behavior of contracting skeletal muscle 

tissue and IL-6 release during exercise without invasive manipulation of IL-6 via exogenous 

introduction (Febbraio	et	al.	2003). 

Febbraiio et al. evaluated the effect of continuous (every 15 min) glucose ingestion on 

arterial IL-6 levels, net leg IL-6 release, glucose uptake, and free fatty acid uptake during a 120 

min exercise bout of recumbent cycling conducted at ~50% VO2max. Comparing the glucose 

ingestion condition to a control condition, Febbraiio et al. observed significant decreases in net 

leg IL-6 release, arterial IL-6 levels, and free fatty acid uptake with a concomitant increase in 

glucose uptake. Febbraio et al’s. results suggest that elevated glucose availability during exercise 

blunted IL-6 release from active skeletal muscle. Febbraio et al’s. results are important, 

implicating energy substrate availability to influence IL-6 release from skeletal muscle. 

Furthermore Febbraio et al’s. findings illustrate that a contracting muscle releases IL-6 prior to 

exhaustion, as continuous exercise at 50% VO2max represents a moderate intensity that can be 

sustained for a relatively extended duration (Medicine	2009;	Garber	et	al.	2011;	brooks,	fahey,	

and	baldwin	2004). Interestingly, while there was a 20-fold increase in IL-6 mRNA 

transcription factors during both exercise conditions, Febbraio et al. did not observe an effect for 

glucose ingestion. The lack of effect of glucose ingestion on IL-6 mRNA expression is 

interesting considering numerous studies have observed IL-6 mRNA expression to be moderated 
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by pre-exercise muscle glycogen content (Fischer	2006). In general, IL-6 mRNA expression 

from contracting skeletal muscle has been observed to exhibit a negative association with pre-

exercise muscle glycogen stores (Fischer	2006). Febbraio et al. may not have observed an effect 

of glucose ingestion on IL-6 mRNA due to the moderate intensity exercise in their methodology. 

Exercise stress maintained within a steady state may not induce substantial relatively rapid 

increases in IL-6 that can be observed with fatiguing interval training or sport exposure (Slattery	

et	al.	2012;	Robson-Ansley,	Gleeson,	and	Ansley	2009;	Jürimäe	et	al.	2011) 

 IL-6 myokine elevations in response to exercise are regulated by the combined influence 

of exercise mode, intensity, and duration (Jürimäe	et	al.	2011;	Fischer	2006). Until recently it 

was assumed the IL-6 myokine response was associated with exercise-induced skeletal muscle 

damage (Fischer	2006). Currently it is accepted that IL-6 release from skeletal muscle can occur 

independent of exercise-induced muscle damage (Fischer	2006;	Finsterer	2012). Furthermore, 

the IL-6 myokine is reported to be one of the first cytokines to elevate during exercise exposure 

(Jürimäe	et	al.	2011;	Fischer	2006). Thus, IL-6 presents as a biomarker that is released into 

circulation prior to skeletal muscle damage, and may present as an early indicator of exercise-

induced fatigue with prolonged exercise exposure (Jürimäe	et	al.	2011;	Fischer	2006). 

Inactive skeletal muscle tissue does not significantly contribute to circulating IL-6 levels 

during exercise, thus sport activity that requires a larger volume of muscle mass activation 

generally results in higher-magnitude increases in circulating IL-6 (Jürimäe	et	al.	2011;	Fischer	

2006). When discriminating between poor and excellent movement profiles, it is hypothesized 

that individuals with poor baseline movement profiles exhibit metabolic inefficiency due to 

greater mechanical work requirements during exercise compared to individuals with excellent 

movement profiles (Martin	and	Morgan	1992). Individuals with poor movement profiles that 
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require greater muscle mass activation or recruitment of synergistic muscles to carryout an 

athletic task may experience larger elevations in IL-6 relative to individuals with excellent 

baseline movement profiles (Dicharry	2010). 

 Interestingly, IL-6 responses are dependent on both exercise intensity and duration, with 

duration being the primary factor explaining variability in the magnitude of IL-6 elevations 

(Jürimäe	et	al.	2011;	Fischer	2006). While the IL-6 response exhibits a positive association 

with both exercise intensity and duration, it must be considered that longer duration exercise 

exposure influences IL-6 variability to a greater extent than does exercise intensity (Jürimäe	et	

al.	2011;	Fischer	2006;	Finsterer	2012). Thus the prudent investigator should consider the 

limitations of using IL-6 as a responsive biomarker in methodology deploying high-intensity, 

short-duration (<5 min) exercise interventions (Fischer	2006). In order to determine the 

influence of an individual’s baseline movement profile on IL-6 response during exercise 

exposure, exercise intensity should be tightly controlled to isolate independent variables of 

interest. 

IL-6 has been observed to induce symptoms of central fatigue and decrease exercise 

performance (Noakes	2000;	Robson-Ansley	et	al.	2004). IL-6 responses peak at the 

termination of exercise (Fischer	2006;	Anish	2005). Criteria that quatify fatigue as a specific 

percentage decrease in maximal vertical jump height in response to an exercise intervention 

(Coutts	et	al.	2007;	Balsalobre-Fernández,	Tejero-González,	and	del	Campo-Vecino	2014) or 

use of objective criteria such as percentage of excess time required to complete a specific volume 

of mechanical work compared to an individual’s “best” recovered performance (i.e. lowest 40 

yard sprint time) are representative of muscular power reductions (Le	Rossignol	et	al.	2014;	

Bishop,	Girard,	and	Mendez-Villanueva	2011;	Girard,	Mendez-Villanueva,	and	Bishop	
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2011). Assessment of IL-6 following controlled termination of an exercise intervention defined 

by objective fatigue criteria (reflective of muscle power reduction) may permit evaluation of the 

effect of baseline movement profile on interactive central and peripheral fatigue mechanisms that 

contribute to decreased muscle performance during field and court sport participation. 

Comparison of serum IL-6 responses between individuals with poor and excellent baseline 

movement profiles may explain peripheral and central factors driving reductions in muscular 

power output and neuromuscular control during sport that can contribute to biomechanics 

associated with noncontact ACL injury. Specifically, a central decrease in neural drive to skeletal 

muscle tissue may precede significant observable performance declines. Performance deficits 

may be mitigated or delayed by a fatiguing athlete through their exploitation of compensatory 

movement patterns and recruitment of synergistic muscle mass to maintain effective power 

output, instigating technique deviation and modified task biomechanics (Teyhen	et	al.	2014). 

While performance is maintained, individuals whom employ compensatory movement strategies 

in effort to maintain high-level athletic function may adopt hazardous movement profiles linked 

to high biomechanical tissue stresses and injurious musculoskeletal loading (Franklyn-Miller	et	

al.	2014). 

Serum Cortisol Levels Reflect the Athlete’s Global Stress Response to Exercise Exposure 

 Cortisol is the predominant catabolic glucocorticoid secreted by the adrenal cortex in 

response to the human body’s exposure to physical and emotional stress (brooks, fahey, and 

baldwin 2004). Seminal reports by Bloom et al. & Davies et al. observed moderate intensity 

exercise at ~60% VO2max is sufficient to stimulate an increase in cortisol production from the 

adrenal glands (Bloom et al. 1976; Davies and Few 1973). During the acute phases of exercise 

the primary function of the cortisol response is to maintain blood glucose levels, contributing to 



 

 129 

metabolism regulation in response to the increased physiological demands of exercise. 

Circulating cortisol acts on skeletal muscle and adipose tissue, stimulating amino acid and fatty 

acid mobilization (Wolfe 2001; Galbo 2001; Stallknecht et al. 2001). Furthermore, cortisol 

stimulates the liver to produce enzymes necessary for gluconeogenic and glycogenic pathways. 

Mobilized amino acids and glycerol molecules (from free-fatty acid mobilization) enter the liver 

via circulation where they are converted into glucose and glycogen (brooks, fahey, and baldwin 

2004). The synthesized glucose and glycogen molecules can be released back into circulation for 

tissue uptake as available energy substrates or stored in the liver (Wolfe 2001; Galbo 2001; 

Stallknecht et al. 2001). 

 Following exercise or field and court sport activity exposure, the cortisol response may 

vary depending on a multitude of factors such as exercise intensity (M. Viru et al. 2008; Hill et 

al. 2008; VanBruggen et al. 2011), the athlete’s nutrition (Wolfe 2001), the athlete’s training 

status (Urhausen and Kindermann 2002), and the individual’s pre-exercise stress-recovery status 

(Kellmann 2010). Perhaps one of the most well-established trends regarding the exercise cortisol 

response following exercise exposure centers on the effect of exercise intensity. Higher intensity 

exercise appears to provoke a greater magnitude cortisol elevation post exercise termination 

compared to lower intensity exercise activities (VanBruggen et al. 2011; McGuigan, Egan, and 

Foster 2004; Hackney and Viru 1999; Kraemer and Ratamess 2005; M. Viru et al. 2008; Hill et 

al. 2008). 

 Furthermore, there is agreement higher intensity exercise induces rapid elevations in 

cortisol levels within the first 30 min post-exercise exposure, with peak elevations commonly 

occurring proximal to the termination of exercise or sport participation (Hackney and Viru 1999; 

VanBruggen et al. 2011; McGuigan, Egan, and Foster 2004; Gatti and De Palo 2010). 
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Conversely, moderate intensity exposures demonstrate lower magnitude increases in the cortisol 

response to exercise (Hackney and Viru 1999; M. Viru et al. 2008; Hill et al. 2008). Higher 

intensity exercise exposure also appears to increase the duration of serum cortisol elevations 

compared to moderate and lower intensity exercise stimuli (Hackney and Viru 1999; 

VanBruggen et al. 2011). Previously, it was assumed low intensity exercise exposure (<60% 

VO2max) did not significantly effect cortisol levels (Bloom et al. 1976; Davies and Few 1973; 

Hartley et al. 1972). However, recent evidence from Viru & Hackney et al. revealed an acute 

rapid elevation in serum cortisol (sCORT) with exposure to exercise intensities <50% VO2max 

during a staged exercise test (M. Viru et al. 2008). 

 Regulation of cortisol secretion during exercise is tightly managed by the neuroendocrine 

system via the hypothalamic-pituitary-adrenal axis (Hackney 2006; Dallman et al. 1994; 

Steinacker et al. 2004; Galbo 1986). Viru & Hackney et al’s findings demonstrate the tight 

control of systemic homeostasis (Dallman et al. 1994), suggesting blood glucose level regulation 

is a priority during exercise. The maintenance of blood glucose level during exercise is critical 

for the function and safety of the glucose-dependent brain (Steinacker et al. 2004), as skeletal 

muscle will readily exhaust available glucose with potentially fatal consequence if unregulated 

during prolonged high-intensity physical activity (Steinacker et al. 2004). The functioning of the 

hypothalamic-pituitary-adrenal axis represents integration of central and peripheral factors to 

maintain a homeostatic state during exercise exposure. Assessment of cortisol behavior is 

reflective of hypothalamic-pituitary-adrenal axis function during exercise. Thus assessment of 

sCORT levels lends insight regarding the global systemic response to the stress of exercise 

(Dallman et al. 1994; Hackney 2006; Galbo 1986; Steinacker et al. 2004). 
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 There is consistent evidence supporting the positive relationship between the cortisol 

response and an individual’s exercise intensity and training load exposure (Hackney and Viru 

1999; Moreira et al. 2012; Hoffman et al. 2002; Acevedo et al. 2007; Dellal et al. 2010). Current 

training load monitoring best-practices recommend parallel assessment of internal and external 

load parameters to sufficiently assess training stress imposed on an athlete (Halson 2014).While 

cortisol response is accepted to be a global marker of training stress, sCORT levels should be 

reflective of both the athlete’s mechanical load exposure representative of external load and the 

athlete’s internal loading response. Conveniently, sCORT response has been reported to vary in 

proportion with both internal and external load parameters following field and court sport 

exposure (Hoffman et al. 2002; Moreira et al. 2012; McLellan, Lovell, and Gass 2011b; 

McLellan, Lovell, and Gass 2010). Currently, the effect of an individual’s movement profile on 

internal and external load exposure is not thoroughly described. It is possible variability in 

movement parameters between individuals explains differences between athletes’ internal 

training load responses’ for activities of similar mode, intensity, and duration. Interestingly, a 

recent report by Dellal et al. compared the physiological impact of traditional straight-line high-

intensity interval running activity versus shuttle running activity with similar undulating high-

intensity straight-line running and subsequent recovery phases, but incorporated 180º directional 

changes between straight-line sprinting and recovery runs (Dellal et al. 2010). Dellall et al. 

designed both high-intensity interval running interventions to be of similar intensity and volume. 

Dellal et al. observed the intervention incorporating directional changes to induce a greater 

physiological response, eliciting a greater heart rate response, blood lactate elevation, and RPE. 

Dellal et al’s. results reveal motion may impact physiological responses to exercise when 

controlling for volume and intensity exposure. 
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 While Dellal et al’s. methodology modified biomechanical demands via task 

manipulation and did not evaluate the effects of an individual’s inherent movement profile on 

their physiological response to exercise, the results of the study suggest biomechanics can 

modify physiological response to a controlled (similar) training stimulus (Dellal et al. 2010; 

Buchheit et al. 2011). Multiple studies have controlled training load stimulus with different 

biomechanical task demands and have observed the differences in biomechanical task demands 

to elicit substantial variability in physiological responses (Buchheit et al. 2011; Buchheit, 

Haydar, and Ahmaidi 2012; Hader et al. 2014). In a similar methodology to Dellal et al., most 

recently Hader et al. evaluated the combined effects of fatigue after a high-intensity running 

protocol and additional change in direction (COD) during shuttle run activity (Hader et al. 2014). 

Hader et al. compared the physiological and performance effects of a straight line shuttle run 

versus a shuttle run with 90º changes in direction in team sport athletes. Interestingly, Hader et 

al. did not observe performance decrements as measured via countermovement vertical jump and 

jump-landing jump height assessment. Although no performance decrements were detected, 

increases in blood lactate and modification in lower extremity muscle activation following the 

COD compared to the straight-line shuttle running (Hader et al. 2014). Specifically, Hader et al. 

observed a decrease in semitendinosus and lateral gastrocnemius muscular activation, which may 

be associated with a decrease in dynamic knee stability. Hader et al’s. results are highlight an 

interaction between biomechanical demand and fatigue exposure. 

 Together, the results of controlled training load studies evaluating the effect of 

biomechanical demand on physiological stress and neuromuscular control during athletic activity 

illustrate biomechanical demands impact an individual’s systemic response to field and court 

sport activity. While no studies have directly evaluated the effect of biomechanical demand on 
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sCORT, variables such %VO2max and blood lactate concentration are known to influence the 

sCORT response to exercise exposure (Steinacker et al. 2004; Mastorakos et al. 2005). 

Interestingly there appears to be a consensus that while biomechanical demands may influence 

measures of physiological response to exercise as well as neuromuscular control factors, 

individuals demonstrate the ability to maintain high levels of athletic performance (Hader et al. 

2014; Buchheit, Haydar, and Ahmaidi 2012; Buchheit 2012). The maintenance of athletic 

performance with the concomitant elevations in internal training load responses suggests that 

although performance is maintained the stress on the system is elevated. Collectively, these 

findings implicate biomechanical demand to have a significant impact on the stress of exercise. 

 Thus, there is substantial support for future research efforts to evaluate the impact of poor 

movement profile on global stress response to high-intensity fatiguing exercise. The current 

literature supports the hypothesis that individuals with a poor movement profile are exposed to 

different biomechanical, and thus physiological training stresses compared to individuals with 

excellent biomechanics. sCORT is a viable biomarker reflective of the global stress induced by 

exercise exposure (Steinacker et al. 2004; Anish 2005; Mastorakos et al. 2005). Investigation of 

the effects of baseline movement profile on an individual’s global stress response to high-

intensity exercise exposure provides insight regarding the possible variation in stress response to 

field and court sport exposure between individuals with poor and excellent movement profiles.
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CHAPTER 3 

 

RATIONALE 

 The primary aim of this study is to investigate the influence of baseline movement profile 

on biomechanical and physiological responses to the high-intensity exercise demands of sport in 

female college-aged field and court sport athletes, a population at high risk for sustaining a sport-

related noncontact ACL injury. The LESS is a valid and reliable clinical screening tool that is 

capable of identifying individuals with biomechanics associated with sport related noncontact 

ACL injury (Padua et al. 2009; Teyhen et al. 2014). Additionally, the LESS is able to identify 

individuals who demonstrate high magnitude joint loading during landing (Padua et al. 2009) 

that may influence an individual’s physiological response to high-intensity physical activity 

(Hamann et al. 2014; Niehoff; Müller; Brüggemann; Savage; Zaucke; Eckstein; Müller-Lung; & 

Brüggemann 2011a; Niehoff et al. 2010). The LESS is a valid, reliable, and economical 

screening tool that requires minimal resources. Thus the LESS can be deployed across a range of 

clinical settings to identify individuals with Poor or Excellent baseline movement profiles (Padua 

et al. 2009). 

 Previous research suggests that manipulation of exercise mode, intensity, and duration 

modifies the physiological demands of physical activity and thus influences an individual’s 

physiological response to exercise exposure (Steinacker et al. 2004; Knicker et al. 2011; 

Hackney 2006).
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Surrogate biochemical responses to high-intensity sport participation represent underlying 

mechanisms driving exercise-induced fatigue responsible for a decline in muscular performance 

(Lambert et al. 2005; Knicker et al. 2011; Noakes 2000; Noakes 2012) that may prompt 

development of biomechanics linked to noncontact ACL injury during sport participation 

(Webster et al. 2012; McLean & Samorezov 2009; Borotikar et al. 2008; Liederbach et al. 2014). 

We aimed to expose a population of female athletes at high risk for sustaining a noncontact ACL 

injury to simulated physical demands of field and court sport participation. Following HTL 

exposure we evaluated changes in biochemical markers of fatigue processes, tissue damage, and 

biomechanics associated with noncontact ACL injury between individuals with Poor and 

Excellent baseline movement profiles. 

 Field and court sport participation has been identified to induce central and peripheral 

fatigue resulting in deterioration of effective muscular performance (Knicker et al. 2011; J. M. 

Davis 1995; Noakes 2011). HTL exposure has been identified to elevate biological markers of 

fatigue processes (Thorpe & Sunderland 2012; Finsterer 2012), cartilage metabolism (Niehoff; 

Müller; Brüggemann; Savage; Zaucke; Eckstein; Müller-Lung; & Brüggemann 2011a; Niehoff et 

al. 2010), and muscle tissue damage (Brancaccio et al. 2007). Pilot testing revealed that the HTL 

deployed in this study was capable of eliciting a high level systemic stress similar to that 

experienced by athletes participating in field and club sports. 

 The dependent variables selected for this study are reflective of underlying fatigue 

processes, tissue damage, and biomechanics associated with sport-related noncontact ACL 

injury. Biochemical markers of cartilage metabolism, fatigue processes, and muscle tissue 

damage are described to represent the body’s physiological response to HTL or sport activity 

exposure (Robson-Ansley et al. 2009; Robson-Ansley et al. 2007; Halson 2014; Brancaccio et al. 
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2007). Interestingly, elevations in biomarkers of cartilage damage have been observed prior to 

and are predictive of ACL injury in the physically active population (svoboda et al. 2012). 

Variation in cartilage biomarker levels prior to injury may implicate there are cumulative effects 

of Poor movement on cartilage metabolism (svoboda et al. 2012). Evaluation of the influence of 

baseline movement profile on changes in circulating markers of joint metabolism and exercise-

induced fatigue physiology is novel within the current body of ACL injury research. Integrated 

investigation of an individual’s physiological and biomechanical responses to simulated demands 

of field or court sport activity may offer insight regarding the influence of baseline movement 

profile on noncontact ACL injury risk in the female field and court sport athlete. 

 

POPULATION 

Subjects 

 A total of 43 physically active females with a history of or current field of court sport 

participation at The University of North Carolina at Chapel Hill were recruited for this study. 

Female court and field sport athletes exhibit relatively high levels of physical fitness (Theiss et 

al. 2014), and regularly compete in athletic activities that require rapid changes in direction such 

as cutting, jumping and landing. Thus female court and field sport athletes experience high-

frequency exposure to scenarios associated with sport related noncontact ACL injury events 

(Shimokochi & Shultz 2008; Shultz et al. 2010; Dai et al. 2012). College-aged female athletes 

that participate or participated in soccer, basketball, rugby, lacrosse, team handball, field hockey, 

tennis, or volleyball represent a population at high risk for sustaining a noncontact ACL injury 

during participation (Waldén et al. 2011; Mountcastle et al. 2007; Arendt et al. 1999; Peck et al. 

2013). Thus college-aged females with a history of at least high-school varsity participation in in 
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soccer, basketball, rugby, lacrosse, team handball, field hockey, tennis, or volleyball were 

eligible for participation in this study. Specifically, eligible participants were 18 – 25 years of 

age, actively participating in weekly training session, performing at least 30 minutes of moderate 

to high-intensity physical activity a minimum of 3 days per week with a maximal oxygen uptake 

(VO2max) ranging from 40 – 50 ml•kg-1•min-1. The 40 – 50 ml•kg-1•min-1 VO2max range is 

representative of the college female field and court sport athlete’s aerobic power (Enemark-

Miller et al. 2009), and is reflective of a “good to superior” aerobic fitness level within the 

population (Medicine 2009).Additionally, eligible participants demonstrated a LESS baseline 

movement profile of poor with medial knee displacement or excellent without medial knee 

displacement as operationally defined by the LESS (APPENDIX 1). 

 

LESS inclusion criteria included (Figure 3.1): 

• “Stiff” or “average” sagittal plane joint displacement with the presence of the medial 

knee displacement error during 2 of the 3 jump-landing screening trials 

• “Soft” or “average” sagittal plane joint displacement without the presence of the medial 

knee displacement error during 2 of the 3 jump-landing screening trials 
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Figure 3.1 – Movement Profile LESS Inclusion Criteria. 

The following exclusion criteria were applied to all participants: 

• No history of lower extremity surgery within the past year 

• No history of lower extremity joint surgery 

• No history of prior ACL or meniscal injury 

• No history of lower extremity injury in the past 6 months that prevented participation in 

club sport training or competition activities for more than 3 consecutive days 

Excellent (n=22)

Frontal
NOmedial	knee	displacement	– Center	of	
patella	 is	lateral to	great	 toe	at	maximum	
knee	 flexion.

Sagittal

“Average”	or	”soft”	landing

Participant	goes	through	some	or	large
displacement	of	the	trunk,	hips,	and	knees.	

Poor (n=23)

Frontal
MEDIAL	KNEE	DISPLACEMENT	– Center	of	
patella	 is	in-line	or	medial to	great	toe	at	
maximum	knee	 flexion.

Sagittal

“Average”	or	”Stiff”	landing	

Participant	goes	through	very little	or some	
displacement	of	the	trunk,	hips,	and	knees.	

1. Participants stand on a 30 cm box positioned ½ their body-height behind a target line on the floor.

2. Participants are instructed to: “face forward, and jump down forward of the target line, and rebound upward for a 
maximal vertical jump.”

3. The evaluator replays the front and side views of the jump, assessing the sagittal plane motion at the trunk, hips, 
and knees from initial contact to maximum knee flexion angle & at the point of maximal medial knee position, 
estimates lines straight down from the center of each patella relative to the great toe.
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• No history of neuroendocrine, neurological, or metabolic disease or condition 

• No history of dysmenorrhea or amenorrhea within the past 6 months 

• No history of cardiorespiratory conditions that would prevent participation in high-

intensity fatiguing exercise 

 Participants were recruited via e-mail correspondence and informational packet 

distribution to club team members and the student population by the principal investigator. The 

principal investigator also attended team meetings, training sessions or classroom lectures to 

recruit eligible participants. 

 Prior to study enrollment, eligible and willing participants meeting demographic 

inclusion criteria were contacted by the primary investigator via e-mail or phone correspondence 

for scheduling of an initial baseline movement and fitness screening. The principal investigator 

informed scheduled participants to report to The Sports Medicine Research Laboratory in 

adherence with pre-screening and testing session guidelines: 

• >4 hours post-prandial 

• Completely voided 

• Euhydrated 

• Wearing athletic apparel and running shoes 

• >12 hours post most recent exercise session 

• >48 hour abstinence from alcohol consumption 

• >12 hour abstinence from caffeine consumption 

• >7 days since administration of diuretic medication 

• Received at least 6 hours of sleep the night prior 
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The principal investigator provided screening candidates with a document outlining pre-test 

guidelines (APPENDIX 2) via e-mail to promote compliance with testing standards. Candidates 

completed a baseline movement screening where they performed a jump-landing LESS 

assessment to determine if they demonstrate a poor movement profile with MKD or excellent 

movement profile without MKD (Figure 3.1) If participants met baseline movement profile 

inclusion criteria they were scheduled for a 3.5-hour data collection session (Figure 3.4) within 2 

weeks of the initial screening session in The Sports Medicine Research Laboratory. 

 

 

Figure 3.2 – Study Overview Diagram 

 

Power Analysis 

 A priori power analysis of previously published data revealed that a total sample size of 

30 participants (Poor (n=15) & Excellent (n=15)) allowed the investigators to detect a minimum 
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20% change in biomechanical and biochemical dependent variables from pre-HTL exposure to 

post-HTL exposure, with a power of at least 0.80 and α= 0.05. Previous studies using repeated 

measures designs have observed HTL to have a moderate (Cohen’s d=0.55) to large (Cohen’s 

d=2.2) effect on sagittal and frontal plane LPHC and knee biomechanics linked to ACL injury 

(Chappell et al. 2005; McLean et al. 2007; Quammen et al. 2012; Liederbach et al. 2014; Cortes 

et al. 2012). Previous studies have reported female participants to demonstrate changes in 

biomechanics ranging from 21 to 96% pre to post-HTL exposure during jump-landings and side-

step cutting tasks (Chappell et al. 2005; McLean et al. 2007; Quammen et al. 2012; Liederbach et 

al. 2014). Furthermore, HTL and sport activity exposure has been reported to induce 39 – 300% 

elevations in biochemical markers of cartilage metabolism (Niehoff; Müller; Brüggemann; 

Savage; Zaucke; Eckstein; Müller-Lung; & Brüggemann 2011a; Niehoff et al. 2010), total body 

stress (McLellan et al. 2010; Hackney & Viru 1999), and muscle tissue damage (Thorpe & 

Sunderland 2012; McLellan et al. 2010) and fatigue (Cunniffe et al. 2010). 

 While there is a dearth of available data comparing changes in biomechanical and 

biochemical dependent variables after HTL between individuals with different baseline 

movement profiles, recent evidence implicates differences in movement strategies between 

college-aged female dancers and NCAA athletes significantly influences female HTL capacity 

and biomechanical response to HTL (Liederbach et al. 2014). Significant differences in exercise 

capacity and biomechanical changes in response to HTL ranged from 33% to 40% between 

college-aged female dancers and NCAA athletes (Liederbach et al. 2014). Additionally, a recent 

pilot evaluation revealed a therapeutic exercise intervention can concomitantly decrease the 

presence of joint loads and circulating biomarkers linked to knee OA (Hunt et al. 2013). Thus, 

differences in movement profiles may significantly explain some of the reported variability in 
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cartilage metabolism biomarkers between individuals at high and low risk for ACL injury 

(svoboda et al. 2012). Thus, a study sample with 15 participants per baseline movement profile 

group was determined to provide adequate power to detect clinically meaningful differences in 

biomechanical and biochemical changes from pre to post-HTL exposure between individuals 

with poor and excellent baseline movement profiles. 

 

Initial LESS Screening 

 Volunteers meeting demographic inclusion criteria reported to The Sports Medicine 

Research Laboratory for a single movement screening session. Participants were instructed to 

wear athletic shorts and shoes for visual observation of their lower extremity during the LESS 

assessment. Upon arrival to The Sports Medicine Research Laboratory, demographic inclusion 

criteria were verbally confirmed by the principal investigator. 

 

LESS Instrumentation & Setup 

 A 8×8 meter testing area was established in the laboratory. A landing target line 0.5 

meters in length was placed on the floor in the center of the testing area. Two digital video 

cameras (GoPro Hero 3+®, GoPro Inc., San Mateo, California, USA) recording at 120 frames per 

second was positioned 1.5 m anterior (1) and to the right (1) of the landing target line arranged 

with their optical axes forming a perpendicular converging at the landing target line. A 30 cm 

box was placed at a distance exactly 50% of the participant’s height posterior to the landing 

target line on the floor (Padua et al. 2009). The testing layout is presented in figure 3.3 below. 
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Figure 3.3 – Overhead view of the jump-landing LESS testing set-up. 

 

LESS Screening Procedure 

 The participant was instructed to step up onto the 30 cm box, face forward, and “jump 

down forward of the line, and rebound upward for a maximal vertical jump.” During the jump-

landing task instruction, emphasis on starting the jump in a neutral positioning with toes pointing 

forward, feet shoulder-width apart, and both feet leaving the box at the same time was 

communicated to the participant to promote a successful trial execution (Padua et al. 2009). The 

participant was permitted to practice the jump-landing task a maximum of three trials prior to the 

actual screening trials. No additional instruction was communicated to the participant during the 

30 cm 
Jump Box 

Target Line 

Side View ipad 

Front View iPad 

8 m 

8 m 

1.5 m 

1.5 m 

½ Participant  
Height 
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screening in order to minimize the influence of verbal or visual cuing / feedback on the 

individual’s inherent baseline movement profile (Padua et al. 2009). Following the practice 

trials, the participant performed 3 jump-landing trials that were recorded from a front and side 

view. Following the jump-landing assessment the video of the front and side views were 

downloaded from the cameras to a MacBook Pro Computer (Apple Inc, Cupertino, CA USA). 

The 3 jump-landing trials were reviewed by two independent raters proficient in LESS 

assessment / grading reviewed the jump-landing recordings on a MacBook Pro laptop computer 

(Apple Inc, Cupertino, CA USA) running apple Quicktime®(Apple Inc, Cupertino, CA USA). If 

the two raters disagreed on the scoring of the LESS assessment for a participant, then the 

principal investigator scored the assessment and a majority ruling decisions was used to 

determine if the participant met movement inclusion / exclusion criteria. 

 Participants meeting baseline movement profile inclusion criteria were scheduled for a 

full testing session within 2-weeks of the initial movement screening. Participants were provided 

with study documentation physical activity readiness questionnaire (PAR-Q), Marx activity 

scale, health history, menstrual cycle, and contraception usage questionnaires. 

 

TESTING SESSION 

 Participants meeting all demographic and movement profile inclusion criteria returned to 

the research laboratory for their testing session within two weeks of their LESS assessment. Prior 

to leaving the screening session, the principal investigator (BF) verbally explained all pretest 

guidelines and provided the participants with a documentation packet outlining the study 

protocol and the pre-test guidelines for their personal reference. Additionally the packet 

contained a physical activity readiness questionnaire (PAR-Q), Marx activity scale, health 
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history, menstrual cycle, and contraception usage questionnaires to be completed prior to their 

scheduled visit. Pretest guidelines required that all participants refrain from alcohol consumption 

at least 48 hours prior to the testing session, refrain from using diuretic medications or 

supplements 7 days prior to the testing session, avoid caffeine consumption at least 12 hours 

prior to their testing session, maintain their “habitual” diet at least 7 days prior to testing, 

maintain adequate hydration at least 24 hours prior to the testing session, and achieve at least 6 

hours of sleep the night before their scheduled testing appointment. The overview of the testing 

session is presented in figure 3.4. 
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Figure 3.4 – Detailed Testing Session Overview 

Baseline (PRE) Blood Sample Collection

Ventilatory Threshold Determination

1. Resting heart rate & blood pressure assessment
2. Participant breathing mask and task familiarization
3. 5 min jogging at 4.0 MPH with breathing mask for familiarization & warm-up
4. Self-directed stretching
5. Speed-only graded submaximal exercise assessment:

1-minute stages that begin at a speed of 5.0 mph. Each stage increased by 1.0 mph until a 
speed of 8.0 mph (3rd minute – Stage #4). After the treadmill speed increased to 8.0 mph, 
each successive 1-minute stage increased speed by 0.5 mph past the first minute there is 
an observed increase in ventilatory equivalent for oxygen without an accompanying 
increase in the ventilatory equivalent for carbon dioxide.(Davis et al. 1980)

Alternate Stop Criteria Prior To Ventilatory Equivalent Criteria  (any two occur):

• RER >1.10
• RPE >17
• Heart Rate above 95% of age predicted max  

Pre-Assessment Participant Preparation

1. Participant arrived to Sports Medicine Research Laboratory
2. Informed consent obtained
3. Hydration assessed
4. Height & mass assessed

Controlled Acute High Training Load Exposure Protocol

Sample Every Minute on the Treadmill
• Metabolic gas (adjustment*)

• Heart rate

• RPE (6-20)

Treadmill Running

• Treadmill speed coincident:
• 100-120% VeT

• ~75% VO2max

• Duration:
• 5 min

Jump Landing Repetitions

• 10 Repetitions

• Drop height = 30 cm

• Horizontal distance = 50% body 
height

• “Jump for maximum vertical 
height after landing”

Transfer to 
Jump-Landing

Transfer to 
Treadmill Running

5 Sets

Termination Criteria
• Voluntary 

• Heart rate ≥95% age-predicted max

• RPE >17

• Visual instability / unsafe conditions

Baseline 30 Minute Sitting Rest Period

POST-0 Blood Sample Collection

Post-HTL30 Minute Sitting Rest Period

POST-30 Blood Sample Collection

Study Protocol Complete

Pre-High Training Load Jump-Landing Biomechanics Assessment

1. Task instruction & re-familiarization and retroreflective marker placement
2. All participants completed 3 practice trials
3. All participants completed 3 viable assessment trials 
4. Participant’s retroreflective markers removed
5. Participant escorted to Exercise Physiology Laboratory

Post-High Training Load Jump-Landing Biomechanics Assessment

1. Participant escorted to The Sports Medicine Research Laboratory
2. Participant’s retroreflective markers secured
3. “Booster Exercise” - Participant completed 2 x 10 trials of jump-landings 

separated by 30 s rest interval
4. All participants completed 3 viable assessment trials 
5. Participant’s retroreflective markers removed
6. Study protocol completed
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DATA COLLECTION 

Instrumentation 

Serum Sample Collection, Storage Collection, & Processing 

 Following the standardized 30 minute rest period, all participants had their blood drawn 

from their antecubital vein using a 20 G 1½ BD PrecisionGlideTM vaccuatiner needle in a seated 

position. The blood sample was collected into a single 10 ml serum separator tube with clot 

activator gel (BD SST Vacutainer). The 10 ml blood sample was stored at 2 – 4ºC and allowed to 

clot overnight prior to processing and long-term storage. Blood was collected at three separate 

time points during the study protocol; PRE as described above, immediately following the HTL 

exercise bout (POST-0), and 30 minutes after the HTL bout (POST-30). After samples clotted 

overnight, they were transferred to a pre-cooled centrifuge (IECCentra-8R Refrigerated 

Centrifuge) and were spun at 3,000 RPM for 15 minutes at 4° C. Serum was collected from the 

tubes via a 2.0 ml transfer a pipette into four aliquots for each time point (12 aliquots) into sterile 

2.0 ml polypropylene long-term storage cryogenic vials (Nalgene Thermo Scientific). Vials were 

labeled, sealed, and stored at -80° C until thawing for serum biomarker analysis via ELISA 

procedures described below. 

 

Biomechanical Data Collection Instrumentation 

A ten-camera motion capture system (Vicon Bonita 10, Vicon Motion Systems, Los 

Angeles, CA, USA) interfaced with a force plate (Type 4060-10, Bertec Corporation, Columbus, 

OH, USA) centered within a 2×2×2 meter capture volume was used to sample three-dimensional 

(3D) marker trajectories (200 Hz) and ground reaction force (1,000 Hz) data using Vicon Nexus 

v1.7.1 motion capture software (Vicon Motion Systems, Los Angeles, CA, USA). World and 
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segment axis systems were established by a right hand three-dimensional Cartesian coordinate 

system. The positive x-axis was designated forward/anterior, the positive y-axis to the left, and 

the positive z-axis upward/superiorly relative to the participant (Frank; Bell; et al. 2013).  

 

Metabolic Gas Assessment 

 For estimation of VO2max and VeT, participants completed a speed-only graded 

submaximal aerobic capacity assessment (SOVO2submax) (Vanhoy 2012) on a motorized treadmill 

(GE T2100 Exercise Stress System, General Electric – Healthcare, Little Chalfont, UK) with 

measurement of respiratory gas exchange using a metabolic cart (TrueOne 2400 Metabolic 

Measurement System, Parvo Medics, Sandy, Utah, USA) and instantaneous monitoring of heart 

rate (A39 Exercise Monitor, Under Armour Inc., Baltimore, Maryland, USA). Prior to the 

submaximal aerobic capacity and ventilatory threshold assessment, the principal investigator 

completed standard calibration procedures of the flow, carbon dioxide, and oxygen sensors of the 

metabolic cart using a 3.0 L syringe of known gases. The principal investigator described the 

SOVO2submax assessment protocol to the participant before the initiation of the evaluation 

procedures. After the principal investigator delivered testing instructions and explained the 

assessment procedures, the participant’s resting heart rate (Under Armour A39, Under Armour 

Inc., Baltimore, Maryland, USA), blood pressure (ADC 700 Diagnostix® Series Pocket Aneroid 

Sphygmomanometer, American Diagnostics Corporation, Hauppage, New York, USA; 

3MTMLittmann® Stethoscope, 3M, St. Paul, Minnesota, USA), and blood lactate levels (Lactate 

Plus, Nova Biomedical, Waltham, Massachusetts. USA) were measured and recorded after lying 

supine for 5 minutes. The principal investigator reviewed the participant’s resting vital signs and 
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ensured there were no evidence of contraindications to participation in a submaximal intensive 

exercise assessment or abnormalities in resting blood lactate concentrations (Medicine 2009). 

 Once the principal investigator determined the participant was free of contraindications 

for exercise testing, the participant completed a 5-minute warm-up on the treadmill at 4.0 miles 

per hour (mph), after which they completed a light self-directed stretching protocol. Following 

the warm-up, a member of the research team instructed the participant to sit atop a chair placed 

on the treadmill belt. Once sitting in the chair, the participant was fitted for a closed-circuit 

mouthpiece interfaced to the metabolic cart for measurement of ventilatory gas exchange during 

the SOVO2submax testing protocol and HTL exercise exposure. The mouthpiece was secured 

comfortably around the participant’s head, covering the mouth and nose. The principal 

investigator ensured a patent seal between the ventilation mask and the participant’s face by 

having the participant forcefully exhale and inhale a minimum of 5 ventilations to minimize 

escape of ventilatory gases during the VO2max assessment. After a patent seal and adequate 

ventilatory flow was confirmed, the participant continued to sit on the chair atop the treadmill 

belt for at least 3 minutes to allow for participant familiarization with breathing through the 

ventilatory gas exchange apparatus. Once the participant was comfortable breathing through the 

ventilation monitoring apparatus, the principal investigator once more verbally explained the 

graded maximal exercise protocol and ensured the participant understood the testing procedures. 

 The SOVO2submax protocol consisted of 1-minute stages that begin at a speed of 5.0 mph 

(Table 3.1). Each stage increased by 1.0 mph until a speed of 8.0 mph (3rd minute – Stage #4). 

After the treadmill speed is increased to 8.0 mph, each successive 1-minute stage increases speed 

by 0.5 mph until the candidate Each stage increased by 1.0 mph until a speed of 8.0 mph (3rd 

minute – Stage #4). After the treadmill speed increased to 8.0 mph, each successive 1-minute 
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stage increased speed by 0.5 mph past the first minute until there was an observed increase in 

ventilatory equivalent for oxygen without an accompanying increase in the ventilatory equivalent 

for carbon dioxide or achieved an RPE of >17, RER 1.10, or 95% age-predicted maximal heart 

rate once any of the above criteria were met, the testing protocol was completed and terminated 

(Medicine 2009; Berry 2012; Vanhoy 2012; J. A. Davis et al. 1980). The participant’s oxygen 

uptake, RER heart rate, RPE (6 – 20) (Borg 1970), and respiratory exchange ratio were recorded 

at the end of each completed stage and at the instant of voluntary termination. The participant 

was informed they can voluntarily terminate the testing protocol at any time throughout the 

protocol with a “thumbs-down” signal to the research team. 
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Stage 

(1-min intervals) 

Speed 

(mph) 

 

1 5.0 

2 6.0 

3 7.0 

4 7.5 

5 8.0 

6 8.5 

7 9.0 

8 9.5 

9 10.0 

10 10.5 

11 11.0 

12 11.5 

13 12.0 

14 12.5 

Table 3.1 Speed-Only Graded Submaximal Aerobic Power Assessment Protocol 

 

 Upon meeting SOVO2submax protocol stop criteria, the treadmill was slowed to a full stop. 

A member of the research team placed a chair atop the treadmill belt, assisting the participant to 
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a sitting position. The research team then removed the ventilation mouthpiece and heart rate 

monitor. A research team member then assisted the candidate in stepping off the treadmill to a 

chair in the Integrated Exercise Oncology Laboratory, where they sat resting for 3-minutes at 

which point a post-SOVOsub2max blood lactate sample was collected, analyzed and recorded. 

 Following completion of the ventilatory threshold assessment via the SOVO2submax 

protocol, the participant’s ventilatory threshold was determined using a modified V-slope 

method (Sue et al. 1988) to identify when there was an observed increase in ventilatory 

equivalent for oxygen without an accompanying increase in the ventilatory equivalent for carbon 

dioxide (J. A. Davis et al. 1980) in the participant’s respiratory gas exchange data sampled 

during the assessment protocol. The VO2 and treadmill speed coincident with 100%, 110%, and 

120% were identified, and used to define the control of the treadmill running speed during the 

HTL protocol (figure 3.4) (Albouaini et al. 2007). Regardless of achieving a true maximal test, 

candidates who achieved an oxygen uptake within the predicted 40 – 50 ml•kg-1•min-1 VO2max 

range during the SOVO2submax protocol were included in the study sample unless prediction 

equations implicate a VO2max greater than 50 ml•kg-1•min-1 may have been achieved by the 

participant representing a “true max” test. 

 Participants achieving a projected 40 – 50 ml•kg-1•min-1 VO2max and demonstrating either 

a poor or excellent baseline movement profile continued to participate in the study procedures 

described below, and underwent exposure to the HTL exercise bout and post-HTL assessments 

for inclusion into the study sample representing an individual meeting demographic, movement 

profile, and fitness level inclusion criteria. 
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Procedures 

 A diagram outlining the data collection procedures and protocol sequence is provided in 

figure 3.4 above. 

All procedures were approved by the biomedical institutional review board (IRB) at The 

University of North Carolina at Chapel Hill. Enrolled participants reported to the laboratory for a 

single-testing session. To control for the diurnal variation of cortisol (Kirschbaum et al. 1999), 

all participants reported to the research laboratory between 14:00 and 16:00 for their testing 

sessions. Upon arrival to the research laboratory informed consent was obtained prior to 

initiation of the study protocol outlined in figure 3.4. After informed consent was obtained, the 

principal investigator verified the information in the pre-test questionnaires to confirm the 

participant had no contraindications for exercise and met inclusion criteria. 

Upon completion of informed consent and inclusion criteria verification procedures, 

participants provided a mid-stream urine sample for evaluation of their hydration level using the 

specific gravity technique via refractometry (TS Meter, American Optical Corp., Keene, New 

Hampshire, USA) to ensure adequate hydration (urine specific gravity ≤1.02) prior to exercise 

(Stuempfle & Drury 2003). Height (cm) and mass (kg) were measured and recorded using 

stadiometer and a digital scale (Detecto 2381, Detecto, Webb City, Missouri, USA). 

Prior to collection of the participant’s baseline blood sample collection, they sat atop a treatment 

table in the research laboratory for exactly 30 minutes of rest. Participants were instructed to not 

step down from the table to ensure standardization of baseline blood samples in efforts to limit 

the effects of previous daily activity on cartilage, muscle and stress biomarkers at baseline 

(Niehoff; Müller; Brüggemann; Savage; Zaucke; Eckstein; Müller-Lung; & Brüggemann 2011b). 
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Study Protocol 

 Blood Sample Collection: Following the standardized 30 minute rest period, all 

participants had their blood drawn from their antecubital vein using a 20 G 1½ BD 

PrecisionGlideTM vaccuatiner needle in a seated position. The blood sample was collected into a 

single 10 ml serum separator tube with clot activator gel (BD SST Vacutainer). The 10 ml blood 

sample was stored at 2 – 4ºC and allowed to clot overnight prior to processing and long-term 

storage. Blood was collected at three separate time points during the study protocol; PRE as 

described above, immediately following the HTL exercise bout (POST-0), and 30 minutes after 

the HTL bout (POST-30). After samples clotted overnight, they were transferred to a pre-cooled 

centrifuge (IECCentra-8R Refrigerated Centrifuge) and were spun at 3,000 RPM for 15 minutes 

at 4° C. Serum was collected from the tubes via a 2.0 ml transfer a pipette into four aliquots for 

each time point (12 aliquots) into sterile 2.0 ml polypropylene long-term storage cryogenic vials 

(Nalgene Thermo Scientific). Vials were labeled, sealed, and stored at -80° C until thawing for 

serum biomarker analysis via ELISA procedures described below. 

 Baseline Biomechanical Testing Battery Preparation: Participants donned non-reflective 

spandex shorts and a sports bra. The principal investigator secured rigid clusters of 

retroreflective markers on the participant’s dominant lower extremity (side subject identified 

they would use to kick a soccer ball for maximum distance) at the dorsal surface of the shod foot, 

midpoint of the anterolateral shank, midpoint of the anterolateral thigh, and sacrum using 

double-sided tape and athletic pre-wrap. After the rigid clusters were secured, the principal 

investigator attached individual retroreflective markers to the dominant limb’s medial and lateral 

ankle malleoli, femoral condyles, bilateral anterior superior iliac spines, and bilateral acromion 

processes. 
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 A static trial was collected with the participant facing the positive x-axis of the world 

coordinate system. Markers were removed from the medial and lateral epicondyles, ankle 

malleoli, and bilateral anterior superior iliac spines after the static trial. All kinematic and kinetic 

data were imported into The Motion Monitor v9.0 software system (Innovative Sports Training, 

Inc., Chicago, IL, USA) to calculate joint angles, internal joint moments, and ground reaction 

force vector components. Baseline biomechanics were evaluated during the jump-landing task 

using the calibrated 3-dimensional motion capture system. Prior to participant preparation for 

motion analysis, the principal investigator described the jump-landing task. The participant was 

permitted to complete 3 practice trials of the jump-landing task (Frank; Bell; et al. 2013). 

 Jump-Landing: The jump-landing trials were completed in the calibrated 2×2×2 meter 

laboratory capture volume. The jump-landing task protocol was synonymous with the jump-

landing protocol for the LESS but incorporated 3-dimensional motion capture during the study 

protocol described by Padua et al. 2009. A 30 cm box was placed at a distance 50% of the 

participant’s height from the leading edges of the right and left force platforms. The participants 

were instructed to step up onto the 30 cm box, face forward, and “jump down to the center of the 

force plates, and rebound upward for a maximal vertical jump.” During the jump-landing task 

instruction, emphasis on starting the jump in a neutral positioning with toes pointing forward, 

feet shoulder-width apart, and both feet leaving the box at the same time was communicated to 

the participant to promote a successful trial execution. Participants completed a total of 5 jump-

landing trials. Any trial where the participant did not leave the box with both feet 

simultaneously, failed to execute the jump-landing, did not land with their feet completely on a 

single force platform, exhibited an excessive vertical trajectory off the box prior to landing, or 

jumped forward off the ground was discarded and repeated (Padua et al. 2009). 
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 Ventilatory Threshold Assessment: A member of the research team will walk participants 

who meet baseline movement profile inclusion criteria to The Integrated Exercise Oncology 

Research Laboratory located within 100 feet of The Sports Medicine Research Laboratory for 

completion of a graded submaximal aerobic capacity fitness assessment (SOVO2submax 

assessment). Upon arrival to The Integrated Exercise Oncology Research Laboratory, a member 

of the research team measured and recorded the participant’s height and mass with a stadiometer 

and balance beam scale (Detecto 2381, Detecto, Webb City, Missouri, USA). The participant 

then completed the SOVO2submax protocol as described above. 

 High Training Load Exposure Protocol: After briefing, participants were asked if they 

have any questions prior to initiation of the HTL protocol. 

 

 

Figure 3.5 – High Training Load Exposure Exercise Protocol 

 

 A mouthpiece was fitted to the participant for monitoring of ventilatory gases during 

treadmill running during the HTL protocol. The individual began the HTL protocol running on a 

treadmill at a running speed (intensity) coincident with 115 - 120% VeT  (~75% of their VO2max) 

for 5 minutes. After the participant ran for 5 minutes, they then stepped off and straddled the 

Sample Every Minute on the Treadmill
• Metabolic gas (adjustment*)

• Heart rate

• RPE (6-20)
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• Treadmill speed coincident:
• 100-120% VeT

• ~75% VO2max
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• 5 min

Jump Landing Repetitions
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• Drop height = 30 cm

• Horizontal distance = 50% body 
height

• “Jump for maximum vertical 
height after landing”
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Jump-Landing

Transfer to 
Treadmill Running

5 Sets

Termination Criteria
• Voluntary 

• Heart rate ≥95% age-predicted max

• RPE >17

• Visual instability / unsafe conditions
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treadmill belt, a research team member the removed the ventilation mouthpiece and assisted the 

participant as they stepped down off the treadmill to the floor. Once off the treadmill, the 

participant initiated the jump-landing interval of the HTL protocol, stepping atop a 30 cm box 

placed at a distance 50% the participant’s body height posterior to a target line on the floor.  

 Similar to the jump-landing task during the LESS assessment, the participant was 

instructed to jump down forward of the target line on the floor, and then immediately jump 

upward for maximum height. The participant completed 10 repetitions of the jump-landing prior 

to stepping back onto the treadmill for initiation of the next 5-minute running interval. The 

combination of the 5-minute running and 10 jump-landings represents a single set the HTL 

protocol. Participants completed 5 sets of the HTL protocol for a total volume of 25 minutes of 

running at 100 – 120% VeT and 50 jump-landings. A member of the research team recorded 

RPE (6-20), heart rate, VO2, and RER data during each minute of the HTL protocol set. 

Members of the research team verbally encouraged participants throughout the HTL protocol 

with consistent motivational cuing between each participant. If at any point during the HTL 

protocol participants noted that they could not physically continue or experienced pain, the HTL 

protocol was terminated with participants giving a “thumbs-down” signal. 

 Post-Exercise Assessments: Immediately following the final (5th) set of the HTL protocol 

a blood lactate and immediately post (POST-0) blood sample was collected as described above. 

Following post-exercise venous blood sample collection, a member of the research team quickly 

escorted the participant back to The Sports Medicine Research Laboratory. Upon arrival, 

members of the research team rapidly re-applied and secured retroreflective markers and marker 

clusters with double-sided tape, pre-wrap, and white athletic tape as necessary and a static trial 

was collected as described previously. After a static trial was collected to establish a viable 3D 
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biomechanical model the participants completed two sets of ten “booster exercise” jump-

landings separated by 30 seconds of rest to offset recovery that may have occurred during marker 

attachment. Following the “booster exercise,” the participants completed three additional trials of 

the jump-landing task to evaluate post-HTL jump-landing 3D biomechanics. Following the last 

jump-landing assessment, retroreflective markers were removed and the participant laid supine 

on a treatment table in The Sports Medicine Research Laboratory. After 30 minutes of supine 

rest, a 20-minute post (POST-30) blood sample was obtained in the exercise oncology 

laboratory. Upon the collection of the POST-30 blood sample, the study protocol was completed 

and the participant was excused from the laboratory. 

 

DATA PROCESSING & REDUCTION 

 

Blood Sample Processing & Long-Term Serum Sample Storage Preparation 

 Once all biomechanical and blood sample collection processes are complete, the primary 

investigator transported the 10 ml baseline and post-HTL SSTs on ice to The University of North 

Carolina’s Applied Physiology Laboratory located within 100 feet of The Sports Medicine 

Research Laboratory. The samples were allowed to clot overnight at 2 – 8º C. After clot 

formation, samples were be centrifuged at 1000 g (3,000 RPM) for 15 minutes at 4° C. 

Centrifuged samples were evaluated for quality; specifically noting any hemolytic or turbid 

samples. Appropriate quality control measures were employed for compromised samples to 

determine if the sample was viable. Viable serum samples were evenly divided into four aliquots 

and pipetted into sterile 2.0 ml polypropylene long-term storage cryogenic vials. Vials were 

labeled, sealed, and stored at -80° C until thawing for serum biomarker analysis via ELISA. 
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Marker Identification & Processing 

 All kinematic and kinetic data were imported into The Motion Monitor v9.0 software 

system (Innovative Sports Training, Inc., Chicago, IL, USA) to calculate joint angles, internal 

joint moments, and ground reaction force vector components. Kinematic data were filtered using 

a 4th order low pass Butterworth filter at 20 Hz (Yu et al. 1999). Net internal joint moments were 

derived using an inverse dynamics procedure, representative of the combined influence of soft 

tissue forces acting about a joint (D. Gagnon & Gagnon 1992; Winter et al. 1974). Data were 

then exported and reduced using a customized software program to calculated the dependent 

variables of interest (Matlab v2016b, The Mathworks, Inc., Natick, MA, USA). Sagittal plane 

trunk motion was calculated as the trunk segment relative to the world axis system. Dominant 

limb hip joint motion was defined as motion of the thigh segment relative to the pelvis segment 

using a Cardan angle sequence of Y ((+) extension/(-) flexion), X’ ((+) adduction/(-) abduction). 

Dominant limb knee joint motion was defined as the motion of the shank segment relative to the 

thigh segment using a Cardan angle rotation sequence of Y ((+) flexion/(-) extension) (Wu et al. 

2005). Frontal plane knee motion was defined by as a combined segment angles of the thigh and 

the shank segments rotation relative to the world x-axis ((+) valgus (or tibial abduction)/(-) 

valgus (tibial adduction)) to avoid multi-planar cross talk that occurs with excessive medial knee 

displacement (Frank; Blackburn; et al. 2013). Medial knee motion (displacement) was calculated 

as the difference between the instantaneous value of the y-axis position of the center of the knee 

joint and the y-axis position of the knee joint center at initial contact with respect to the world 

axis system (Bell et al. 2013). 
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Kinetic Calculations 

 Ground reaction force and center of pressure data and interpolated segment kinematic 

data were used to derive net internal knee and hip joint moments using inverse dynamics 

procedures described by Gagnon & Gagnon et al. and Winter (D. Gagnon & Gagnon 1992; 

Winter 2009). Net internal sagittal plane knee moment represents the combined influence of soft 

tissue forces acting about the knee joint’s medial-lateral axis of rotation (y-axis). Net internal 

sagittal plane hip joint moment represents the combined influence of soft tissue forces acting 

about the hip joint’s medial-lateral axis of rotation (y-axis). Net internal frontal plane knee 

moment represents the combined influence of soft tissue forces acting about the knee joint’s 

anterior-posterior axis of rotation (x-axis). Net internal frontal plane hip joint moment represents 

the combined influence of soft tissue forces acting about the hip joint’s anterior-posterior axis of 

rotation (x-axis). Proximal ATSF was calculated as the net anteriorly directed shearing 

component of the force acting at the knee joint along the proximal tibia’s x-axis (Chappell 2005). 

Vertical ground reaction force was calculated as the pure vertical component of the ground 

reaction force vector coincident with the world z-axis. 

 

Data Reduction 

 Biomarker Data Reduction: The selected systemic stress, cartilage, and muscle tissue 

stress biomarkers were analyzed using commercially available ELISA kits (abcam cortisol, 

Abnova COMP, MyBioSource CK-MM). All biomarkers were assessed at PRE for a baseline 

value. The post HTL values for Cortisol and CK-MM were assessed at POST-30 (Hackney & 

Viru 1999; Brancaccio et al. 2007), while the post HTL values for COMP were assessed at 

POST-0 (Niehoff; Müller; Brüggemann; Savage; Zaucke; Eckstein; Müller-Lung; & 
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Brüggemann 2011b). The results of the biomarker assays were assessed in duplicate using a 96 

well, 8-channel microplate reader (ChroMate® 4300, Awareness Technology Inc., Hauppauge, 

New York, USA). Cortisol was read at 450 nm, COMP at 405 nm, and CK-MM at 450 nm per 

manufacture guidelines. All samples from an individual participant were analyzed on a single 

ELISA plate. The intra-assay coefficients of variation for cortisol, COMP, and CK-MM were 

1.57%, 5.88%, and 7.14% respectively. The inter-assay coefficients of variation for cortisol, 

COMP, and CK-MM were 4.48%, 3.20% and 11.1% respectively. 

 Biomechanical Data Reduction: All segment kinematic and kinetic data, and ground 

reaction force data were processed in the Motion Monitor software package. A Butterworth 4th-

order zero-phase lag digital filter was applied to all kinematic data using a 20 Hz cutoff 

frequency to optimize filter sharpness and roll-off efficiency, maximizing the signal-to-noise 

ratio of the kinematic data (Yu et al. 1999). Filtered segment kinematic and derived internal 

moment data were interpolated and aligned with the raw 1,000 Hz ground reaction force data. 

Thus, all continuous biomechanical data were interpolated exported from the Motion Monitor 

software at an effective 1,000 Hz sampling frequency. 

 Filtered segment biomechanical data and raw ground reaction force data were exported 

from the Motion Monitor software package for import into a custom MatLab software program 

(MatLab v2016a, Mathworks, Natick, Massachusetts, USA) for further data reduction. Following 

data import into the custom MatLab program, the stance phase for the jump-landing task was 

identified from ground reaction force data. All biomechanical data were calculated during the 

stance phase of the jump-landing task defined as the point of initial ground contact to toe-off. 

Initial ground contact was defined as the first time point the vertical ground reaction force 

exceeded 10N. Toe-off was defined as the first time point from initial ground contact that the 
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vertical ground reaction force was than 10N (Padua et al. 2009). All biomechanical variables 

from the jump-landing were calculated during the stance phase.  

 

DATA ANALYSIS 

 All results were analyzed using SPSS statistics (Version 21 IBM). Descriptive statistics 

for biomarker, participant anthropometric data, and metabolic data collected during the HTL 

were calculated. The level of significance for all hypothesis tests was set at α<0.05 a priori. 

Independent samples t-tests were carried out to determine if there was a difference in 

anthropometrics and fitness levels between movement profile groups. A 2×5 mixed model 

analysis of variance (ANOVA) was carried out to determine if there was an effect of movement 

profile on metabolic data across the stages of the HTL. 

 

Biomarker Analysis 

 Due to the inherent variability in raw biomarker data, all raw serum concentrations were 

natural log transformed to establish normality for statistical analyses using a 2×2 mixed model 

ANOVA to evaluate the effects of group and time on biomarker concentrations pre and post 

HTL. Post hoc analyses using group-by-time means and 95% confidence intervals were used to 

evaluate multiple comparisons. The lack of overlap between 95% confidence intervals around 

group-by-time means was used for criterion for statistical significance (Poole 2001; Dijkers 

2013). Additionally, independent samples t-tests were carried out to compare ∆% scores for raw 

biomarker data to further evaluate the presence of a significant difference in a biomarkers 

response to HLT between groups (Fitzmaurice 2001; Fitzmaurice et al. 2011). The log 
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concentrations of biomarkers were backwards log transformed for data presentation and 

interpretation within the context of previous literature. 

 Although systemic and tissue stress biomarker levels were assessed for all participants, in 

some samples, individuals presented with levels outside a physiological range, did not have 

viable pairs of pre and post HTL secondary to compromised sample integrity, or presented as 

statistical outliers >2 standard deviations outside the log-transformed group-by-time sample 

means. To control for missing data, a list-wise deletion was applied such that the final number of 

participants with valid pre and post HTL values for cortisol was (excellent (n=19), poor (n=21)), 

COMP was (excellent (n=21), poor (n=20)), CK-MM (excellent (n=21), poor (n=18)). Finally, 

chi-square analyses of association were carried out to determine if there was an relationship 

between movement profile group with “responders” who increased their levels of circulating 

biomarkers or “non-responders” who maintained or decreased their levels of circulating 

biomarkers of interest. 

 

Biomechanical Analysis 

 All biomechanical data were analyzed as continuous normalized waveforms during the 

stance phase of the jump-landing (Kuenze et al. 2014). Kinematic and kinetic data were 

normalized to 201 data points (knots) over the stance phases of the three jump-landing task trials 

using a cubic spline function. Previous studies have described the stance phase duration to range 

from 190 to 374 milliseconds during jump-landing tasks (Cowley et al. 2006; Strutzenberger et 

al. 2014). Thus, use of 201 knots derived from 1,000 Hz raw and interpolated kinetic and 

kinematic data points provided sufficient resolution of biomechanical variables of interest during 
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the jump-landing task. Each knot was calculated as the mean value of the respective derived 

knots from each of the three jump-landing tasks (eq. 1) (trial 1, trial 2, trial 3). 

!"#$%…'() =
!"#$%	,) +	!"#$%	,' +	!"#$%	,.

3  

(eq. 1) 

To calculate changes in biomechanical variables from baseline to post-exercise, the differences 

between the respective individual baseline and post-HTL knot values (knotbi & knotfi) was 

calculated to form a 201 knot waveform reflecting the change in the biomechanical variable of 

interest (eq. 2). 

!"#$∆%…'() = 	!"#$2% − !"#$4% 

(eq. 2) 

Change score waveforms were calculated for all biomechanical variables of interest, 

representative of the participant’s biomechanical response to HTL. 

 Pre-HTL, post-HTL, and change score frontal and sagittal plane kinematic and kinetic 

variable ensemble means and associated 95% confidence intervals (CI) were calculated for each 

0.5% of the stance phase of the jump-landing task for . Group ensemble mean and 95% CI values 

were plotted graphically using Microsoft Excel (Version 15; Microsoft Corporation, Redmond, 

WA). Statistical significance for a movement profile group main effect pre-HTL was defined as 

any portion of the stance phase when the 95% CI’s for the poor and excellent groups did not 

overlap (McKeon et al. 2009; Kuenze et al. 2014). A significant change pre- to post-HTL or time 

main effect was defined as any portion of the stance phase when the 95% change score CI did not 

envelope zero. A group-by-time change magnitude interaction effect was defined a as a period 

during the stance phase when one group’s change waveform 95% CI was above or below zero 

during the stance phase and the other group’s change waveform 95% CI enveloped zero 
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throughout 100% stance. A group-by-time change duration interaction effect was defined as a 

scenario in which both groups experienced a time main effect for the same biomechanical 

variable but there was at least a 5% difference in duration of the time main effect between 

groups. 
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CHAPTER 4 

 

PARTICIPANT DEMOGRAPHICS 

A total of 45 participants out of 157 demographically eligible participants screened into 

the study, meeting all movement and aerobic power inclusion criteria. However, two participants 

who screened into the poor group could not complete the controlled acute HTL protocol, thus a 

total of 43 participants (N=43; excellent (n=22), poor (n=21)) were included in the final study 

sample. Participant anthropometrics and fitness demographic data are presented in table 4.1 

below. Independent samples t-tests revealed there was no significant (P>0.05) differences 

between the poor and excellent movement groups for any demographic or fitness variable.  

 

 
  Excellent (n=22) Poor (n=21) 

Age (years) 20.5 (1.9) 20.4 (1.3) 
Height (m) 1.44 (0.44) 1.63 (0.23) 
Mass (kg) 64.5 (7.8) 60.9 (6.1) 
Resting Heart Rate (bpm) 65.0 (9.8) 71.5 (14.5) 
Resting Diastolic Blood Pressure (mmHg) 73.7 (9.6) 74.3 (14.2) 
Resting Systolic Blood Pressure (mmHg) 112.9 (6.4) 115.2 (7.4) 
100% Ventilatory Threshold (ml•kg-1•min-1) 33.2 (4.2) 34.0 (4.1) 
110% Ventilatory Threshold (ml•kg-1•min-1) 36.5 (4.6) 37.3 (4.5) 
120% Ventilatory Threshold (ml•kg-1•min-1) 39.8 (5.0) 40.7 (4.9) 

 

Table 4.1 - Group Demographic & Fitness Level Descriptive Statistics: Group Means & (SDs) 
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Acute High Training Load Exposure Protocol 

Movement profile group means, standard deviations, and 95% confidence intervals are 

reported in table 4.2 below. The results of the 2×5 mixed model ANOVA analyses revealed there 

was no significant (P>0.05) group-by-time (exercise stage) interaction or any group main effects. 

There was a significant main effect of exercise stage for RER, RPE, heart rate and VO2; with a 

significant increase between stage #1 and all other stages (figure 4.1) in both groups (P<0.05) 

primarily driven by the difference in initial metabolic activity in response to exercise onset 

(Brooks 1985) between stage #1 and the remaining stages 

Collectively our HTL metabolic and perception data suggest this novel acute HTL 

protocol acted as a significant mechanism of control within our study, effectively exposing 

participants to the same relative training load and associated metabolic demands. While this 

acute HTL protocol was developed specifically for this study, our results support its use in future 

research when the intent is to expose individuals to relatively identical training stimuli in order to 

isolate the effects of various independent variables that are hypothesized to moderate an 

individual’s response to a controlled training stress. 
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Figure 4.1 – Acute HLT protocol speed,  perceptual measures (RPE) and associated metabolic responses 
(Heart Rate, Oxygen Uptake, RER). 
 

 

 

Table 4.2 – Controlled acute high training load exposure stage metabolic & intensity perception data 

 

Table 4.2 Controlled Acute High Training Load Exposure Stage Metabolic & Intensity Perception Data

Excellent Poor Excellent Poor Excellent Poor Excellent Poor Excellent Poor

Treadmill Speed (km•h-1)
11.0 (1.1)

[10.6, 11.5]
11.4 (1.0)

[10.9, 11.9]
11.0 (1.2)

[10.5, 11.6]
11.3 (1.0)

[10.8, 11.8]
11.0 (1.2)

[10.5, 11.5]
11.3 (1.0)

[10.8, 11.7]
11.1 (1.2)

[10.6, 11.6]
11.3 (1.1)

[10.8, 11.8]
11.2 (1.1)

[10.7, 11.7]
11.3 (1.1)

[10.8, 11.8]

Rate of Perceived Exertion (Borg 6-20)
12.1 (0.6)

[11.5, 12.6]
11.7 (1.7)

[11.3, 12.5]
12.4 (1.0)

[11.8, 12.9]
12.8 (1.6)

[12.2, 13.4]
12.7 (0.9)

[12.1, 13.2]
13.2 (1.5)

[12.6, 13.7]
13.1 (1.1)

[12.5, 13.8]
13.8 (1.6)

[13.2, 14.2]
13.3 (1.2)

[12.7, 13.9]
13.9 (1.4)

[13.3, 14.5]

Heart Rate (bpm)
169.0 (12.9)

[161.9, 176.8]
170.2 (19.6)

[162.9, 177.4]
175.0 (15.1)

[169.1, 180.8]
180.8 (11.8)

[174.8, 186.8]
177.5 (14.0)

[172.3, 182.7]
182.9 (9.6)

[177.6, 188.2]
179.4 (14.6)

[174.2, 184.7]
183.4 (9.2)

[178.0, 188.8]
181.8 (11.7)

[176.2, 187.4]
180.8 (14.2)

[175.0, 186.5]

Oxygen Uptake (ml•kg-1•min-1)
35.9 (3.2)

[34.4, 37.5]
35.9 (3.9)

[34.4, 37.6]
36.4 (4.4)

[34.7, 38.3]
37.0 (4.1)

[35.1, 38.9]
37.1 (3.8)

[35.5, 38.6]
37.0 (3.4)

[35.4, 38.6]
37.7 (4.0)

[36.0, 39.5]
38.0 (3.9)

[36.2, 39.7]
38.1 (3.6)

[36.5, 39.6]
37.8 (3.6)

[36.2, 39.4]

Respiratory Exchange Ratio (RER)
0.83 (0.03)
[0.81, 0.84]

0.83 (0.04)
[0.82, 0.85]

0.88 (0.04)
[0.87, 0.90]

0.89 (0.03)
[0.87, 0.90]

0.88 (0.04)
[0.87, 0.89]

0.88 (0.03)
[0.87, 0.90]

0.87 (0.03)
[0.86, 0.90]

0.88 (0.03)
[0.86, 0.89]

0.88 (0.04)
[0.86, 0.89]

0.88 (0.03)
[0.87, 0.90]

Stage 3 Stage 4 Stage 5Mean (SD)
[95% CI]

Stage 1 Stage 2
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AIM #1 – Evaluate the effects of movement quality on MSK tissue stress biomarkers at rest 

and in response to an acute HTL. 

 We observed movement profile to have a strong influence on the response of CK-MM to 

an acute HTL exposure. Individuals with an excellent movement profile exhibit a greater release 

of CK-MM into circulation 30 minutes after acute HTL exposure compared to their counterparts 

with poor movement quality. Furthermore, our results do not support the role of movement 

profile to influence baseline or post-HTL cartilage stress responses in healthy, physically active 

college-aged females. However, our results suggest healthy physically active college-aged 

females experience similar increases in COMP levels compared to their male counterparts when 

isolating investigation to those who are responders, exhibiting ~37% increases in COMP after 

acute HTL exposure. 

Group mean-by-time %∆, baseline and post HTL raw unit (ng/ml) and natural log 

transformed concentration values of systemic and musculoskeletal tissue stress biomarkers for 

the poor and excellent groups are presented in table 4.3 along with the associated group-by-time 

standard deviations, 95% confidence intervals, and effect size calculations between movement 

profiles at each time point. Sample means and descriptive statistics collapsed across movement 

profile groups for the main effect of time are reported in table 4.3. Mixed-model ANOVA 

analyses did not identify a significant group-by-time interaction effect for any of the biomarkers 

(P>0.05). However, upon closer analysis of the group-by-time CK-MM means and their 

associated 95% confidence intervals, it appears there is substantial separation between the poor 

group’s upper, and the excellent group’s lower bounds for both the the log-transformed and raw 

post HTL concentration values, with a moderate-to-large effect size (table 4.3, figure 4.2 (a)). 

Furthermore, the excellent group exhibited a significantly greater %∆ for CK-MM (P<0.05) 
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compared to the poor group, thus implicating a greater average within-subject CK-MM elevation 

in response to the HTL in the excellent group, that may not be accounted for with the general 

linear model ANOVA (Dijkers 2013; Fitzmaurice, Laird, and Ware 2011). 

In addition to a greater CK-MM elevation in response to acute HTL, there was a 

significant main effect for group on CK-MM, with the excellent group having greater overall 

CK-MM relative to the poor group (P<0.05). 
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Figure 4.2 – Log [C] of values and acute HTL response behavior of CK-MM (a), COMP (b), and cortisol (c). 

 

Table 4.3 – Group-by-time Raw (ng/ml), natural logarithm-transformed, & %∆ serum biomarker concentrations per 
and post-acute HTL 

1.97
2.02

2.28

2.58

1.85
1.95
2.05
2.15
2.25
2.35
2.45
2.55
2.65

PRE POST

Log [C] Creatine Kinase - MM

poor excellent

6.05

6.17

6.08

6.17

6.03
6.05
6.07
6.09
6.11
6.13
6.15
6.17
6.19

PRE POST

Log [C] COMP

poor excellent

4.98

5.33

4.5

4.8

4.25

4.45

4.65

4.85

5.05

5.25

5.45

PRE POST

Log [C] Cortisol

poor excellent

n Mean (SD) 95% CI n Mean (SD) 95% CI Cohen's D

CORTISOLb,c

Pre Log [C] 19 4.5 (0.31) [4.37, 4.64] 21 4.98 (0.41) [4.8, 5.16] 1.32
Post Log [C]* 19 4.8 (0.72) [4.48, 5.12] 21 5.33 (0.72) [5.02, 5.64] 0.74
Pre Raw [C] (ng/ml) 19 96.62 (30.49) [82.91, 110.32] 21 157.64 (65.49) [129.63, 185.66] 1.19
Post Raw [C] (ng/ml)* 19 161.22 (144.55) [96.23, 226.22] 21 252.52 (140.26) [192.53, 312.51] 0.64
%∆ Raw [C] 19 59.99 (120.35) [5.87, 114.11] 21 68.4 (91.22) [29.39, 107.42] 0.08

CK-MM b,d

Pre Log [C] 21 2.28 (0.87) [1.91, 2.66] 18 1.97 (0.17) [1.89, 2.05] 0.50
Post Log [C]* 21 2.58 (0.9) [2.19, 2.96] 18 2.02 (0.24) [1.91, 2.13] 0.85
Pre Raw [C] (ng/ml) 21 14.88 (16.99) [7.62, 22.15] 18 7.26 (1.33) [6.64, 7.87] 0.63
Post Raw [C] (ng/ml)* 21 20.14 (23.26) [10.19, 30.09] 18 7.73 (2.01) [6.81, 8.66] 0.75
%∆ Raw [C] 21 68.62 (115.61) [19.18, 118.07] 18 7.12 (22.4) [-3.23, 17.47] 0.74

COMP c

Pre Log [C] 21 6.08 (0.26) [5.97, 6.19] 20 6.05 (0.4) [5.88, 6.23] 0.09
Post Log [C]** 21 6.17 (0.33) [6.03, 6.31] 20 6.17 (0.39) [5.99, 6.34] 0.01
Pre Raw [C] (ng/ml) 21 453.15 (121.01) [401.4, 504.91] 20 461.12 (195.11) [375.61, 546.63] 0.05
Post Raw [C] (ng/ml)** 21 502.5 (162.48) [433.01, 572] 20 512.03 (201.85) [423.57, 600.49] 0.05
%∆ Raw [C] 21 12.15 (27.83) [0.24, 24.05] 20 18.45 (44.73) [-1.15, 38.06] 0.17

asignificant for group × time interaction *POST-30 sample
bsignificant for group **POST-0 sample
c significant for time 
dsignificant change score difference

Excellent Poor
Table 4.3 - Group-by-time Raw (ng/ml), Natural Logarithm-transformed, & %∆  serum biomarker concentrations pre and post acute HTL.

(c) (b) (a) 
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AIM #2 – Investigate the influence of movement quality on systemic stress biomarkers at 

rest and in response to an HTL. 

There were significant main effects for group (P<0.05) and time (P<0.05) on cortisol 

(table 4.3, figure 4.2 (c)). Interestingly, while the poor and excellent group’s respective pre and 

post HTL cortisol values and associated 95% confidence intervals remained separated at each 

time point. There was substantial overlap in the poor group’s pre HTL and excellent group’s post 

HTL cortisol 95% confidence intervals. Within the context of the main effects for group and time 

on cortisol, these results recognize the poor group to have exhibited a resting cortisol level that is 

similar to the excellent group’s post HTL cortisol levels. Furthermore, there were no significant 

associations between movement quality profile and responder-type for any of the biomarkers 

(P>0.05). 

 

AIM #3 – Determine if movement quality moderates biomechanical responses to an acute 

HTL. 

All pre HTL, change, and post HTL waveform data are presented in figures 4.3-4.7. A 

significant change pre- to post-HTL or time main effect was defined as any portion of the stance 

phase when the 95% change score CI did not envelope zero. A group-by-time change magnitude 

interaction effect was defined a as a period during the stance phase when one group’s change 

waveform 95% CI was above or below zero during the stance phase and the other group’s 

change waveform 95% CI enveloped zero throughout 100% stance. A group-by-time change 

duration interaction effect was defined as a scenario in which both groups experienced a time 

main effect for the same biomechanical variable but there was at least a 5% difference in 

duration of the time main effect between groups. 
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Summarized time main effects, magnitude interactions, and duration interactions are described 

under each change waveform for ease of interpretation. Additionally, table 4.3 provides a 

summary of pre, post, and each group’s change responses relative to acute HTL exposure. 

In summary, the poor group experienced nine significant biomechanical adaptations in 

response to HTL, whereas the excellent group only experienced three significant changes in their 

movement profile from pre to post HTL. Specifically, the poor group went on to adopt a 

movement profile associated with higher mechanical loads after acute HTL exposure. The poor 

group experienced decreases in sagittal plane trunk and hip flexion motion, as well as a greater 

duration decrease in knee flexion motion compared to the excellent group. Furthermore, the poor 

group exhibited significant increases in internal knee extension, knee varus, and hip abduction 

braking moments during early stance. Collectively, the poor group’s biomechanical response to 

the acute HTL resulted in a greater overall force exposure, as they experienced greater duration 

elevations in VGRF>1 body weight as well prolonged increases in proximal ATSF compared to 

the excellent group. 
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Table 4.4 - Summary of pre, post and biomechanical variable change response relative to acute HTL exposure. 

finding temporal interval (stance) finding temporal interval (stance) finding temporal interval (stance)
Excellent ⬌ -

Poor ⬇ 0-40%
Excellent ⬌ -

Poor ⬌ -
Excellent ⬌ -

Poor ⬇ 0%-30%
Excellent ⬇ 0%-8%

Poor ⬌ -
Excellent ⬌ -

1) Poor ⬆
2) Poor ⬇

1) 7%-10%
2) 90%-98%

Excellent ⬌ -
Poor ⬌ -

Excellent ⬆ 4%-10%, 15%-22%, 65%-92%
1) Poor ⬇
2) Poor ⬆

1) 2%-4%
2) 12%-15%

Excellent ⬇ 0%-12%
Poor ⬇ 0%-48%

Excellent ⬆ 0%-5%, 90%-100%
Poor ⬌ -

Excellent ⬆ 0%-6%
Poor ⬌ -

Excellent ⬌ -
Poor ⬇ 5%-8%

Excellent ⬇ 0%-2%, 10%-15%
Poor ⬇ 5%-15%

Excellent ⬌ -
Poor ⬆ 3%-5%

Excellent ⬆ 6%-8%
Poor ⬆ 90%-95%

1) Excellent ⬆
2) Excellent ⬇

1) 75%-87%
2) 95%-985

1) Poor ⬇
2) Poor ⬆

1) 0%-2%, 5%-8%
2) 43%-87%

1) Excellent ⬇
2) Excellent ⬆

1) 6%-8%, 95%-98%
2) 78%-85%

1) Poor ⬇
2) Poor ⬆

1) 5%-8%, 90%-98%
2) 50%-76%

Anterior Tibial 
Shear Force

1) Poor > Excellent
2) Excellent > Poor

1) 12%-15%, 25%-32%, 52%-
75%

2) 85%-98%

1) Poor > Excellent
2) Excellent > Poor

1) 2%-3%, 11%-34%, 50%-
76%

2) 85%-98%

Vertical Ground 
Reaction Force

1) Poor > Excellent
2) Excellent > Poor

1) 6%-12%, 18%-81%
2) 95%-100%

1) Poor > Excellent
2) Excellent > Poor

1) 12%-38%, 50%-81%
2) 95%-100%

Knee Valgus Moment Excellent > Poor 22%-68% Excellent > Poor 25%-55%

Pre-High-Intensity Exercise Exposure Change Behavior Post-High-Intensity Exercise Exposure
VARIABLE

Excellent > Poor 40%-95%Thorax Flexion Angle 
(WLD) Excellent > Poor 41%-100%

Thorax Frontal Plane 
Euler Angle (WLD) Poor = Excellent - Poor = Excellent -

Hip Flexion Angle 
(EULER) Excellent > Poor 26%-87% Excellent > Poor 8%-90%

Hip Abduction Angle 
(EULER) Excellent > Poor 5%-84% Excellent > Poor 22%-52%

Hip Flexion Moment Excellent > Poor 70%-87% Poor = Excellent -

Hip Extension Moment

1) Poor > Excellent (Marginal 
Separation)

2) Excellent > Poor (Marginal 
Separation)

1) @~3%
2) 95%-100% Excellent > Poor 95%-100%

Hip Abduction Moment Poor > Excellent 20%-80% Poor > Excellent 30%-80%

Knee Flexion Angle 
(EULER) Excellent > Poor 5%-95% Excellent > Poor 5%-95%

Knee Valgus Angle 
(EULER) Poor > Excellent 2%-5%, 22%-32%, 38%-73% Poor > Excellent 25%-62%

Knee Valgus Angle 
(SEGMENT) Poor > Excellent 0%-98% Poor > Excellent 2%-80%

Table 4.4 - Summary of pre, post and biomechanical variable change response relative to acute HTL exposure.

Knee Varus Moment Poor > Excellent 22%-68% Poor > Excellent 25%-55%

Knee Extension Moment 1) Poor > Excellent
2) Excellent > Poor

1) 12% -15%, 55-75%
2) 90 -98%

1) Poor > Excellent
2) Excellent > Poor

1) 2%-4%, 18%-28%, 55%-
76%

2) 90%-98%

Medial Knee 
Displacement Poor > Excellent 10%-80% Poor > Excellent 10%-68%
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Figure 4.3 – Sagittal plane trunk, hip, and knee motion group ensemble curves and associated 
95% confidence interval waveforms over the stance phase of the jump-landing task. 
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1.Greater	trunk	 flexion	motion	 in	the	excellent
group	 from	42-97%	stance.	

1.Greater	hip	 flexion	motion	 in	 the	excellent
group	 from	26-87%	stance.	

(1) (1)

1.Greater	knee	 flexion	motion	 in	 the	excellent
group	 from	5-95%	stance.	

(1)

1.Magnitude	 Interaction	 Effect:	The	poor group	
decreased	 trunk	flexion	motion	 from	0-37%	
stance,	whereas	 the	excellent group	did	not	
change.

(1)

1.Magnitude	 Interaction	 Effect:	The poor group	
decreased	hip	 flexion	motion	 from	0-30%	
stance,	whereas	 the	excellent group	did	not	
change.

1.Time	Main	Effect:	Both	groups	decreased	knee	
flexion	motion	 from	0-15%	of	stance.

2.Duration	 Interaction	 Effect:	The	poor	group	
experienced	greater	duration	decreased	knee	
flexion	motion	 from	0-48%	stance.

(1) (1) (2)

1.Greater	trunk	 flexion	motion	 in	the	excellent
group	 from	41-100%	stance.	

1.Greater	hip	 flexion	motion	 in	 the	excellent
group	 from	8-90%	stance.	

1.Greater	knee	 flexion	motion	 in	 the	excellent
group	 from	5-95%	stance.	

(1) (1) (1)
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Figure 4.4 – Frontal plane hip and knee motion group ensemble curves and associated 95% 
confidence interval waveforms over the stance phase of the jump-landing task. 
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1.Greater	hip	abduction	motion	 in	 the	excellent
group	 from	5-84%	stance).	

1.Greater	knee	valgus		motion	 in	the	poor	group	
from	0-98%	stance.	

1.Greater	medial	knee	motion	 in	 the	poor	group	
from	10-80%	stance.	

1.Magnitude	 Interaction	 Effect:	The	excellent	
group	decreased	hip	adduction	motion	 from	0-

8%	stance,	whereas	 the	Poor	group	did	not	
change.

1.Time	Main	Effect:	Both	groups	 increased	 their	
knee	valgus	motion	 tendency	from	0-6%	stance.	

However,	 the	excellent group	did	not	achieve	a	
valgus	angulation	at	the	knee.

2.Magnitude	 Interaction	 Effect:	The	excellent	
group	 increased	knee	valgus	motion	 from	

95-100%	stance,	whereas the	excellent group	

did	not	change.

1.Magnitude	 Interaction	 Effect: The poor	group	
decreased	medial	knee	displacement	 from	

5-16%	&	45-100%	of	the	stance	phase,	whereas	

the	excellent	group	did	not	change.

(1) (1) (1)

(1) (1) (2) (1)

1.Greater	hip	abduction	motion	 in	 the	excellent
group	 from	22-52%	stance.	

1.Greater	knee	valgus		motion	 in	the	poor	group	
from	2-82%	stance.	

1.Greater	medial	knee	motion	 in	 the	poor	group	
from	10-68%	stance.	

(1)
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Figure 4.5 – Sagittal plane net internal hip and knee moment group ensemble curves and 
associated 95% confidence interval waveforms over the stance phase of the jump-landing task. 
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1.Greater	hip	extension	braking	moment	generation	 in	 the	excellent	
group	at	~3%	stance

2.Greater	hip	extension	propulsion	 moment	generation	 in	 the	excellent
group	 from	95-100%	stance.

1.Greater	knee	extension	braking	moment	generation	 in	 the	poor group	from	
12-15%	stance.

2.Greater	knee	extension	propulsion	 moment	generation	 in	 the	poor	group	
from	55-75%	stance.

3. Greater	knee	extension	propulsion	 moment	generation	 in	the	excellent
group	95-100%	stance.

(1) (2) (1) (2) (3)

(1) (2)

1.Magnitude	 Interaction	 Effect:	The	poor	group	decreased	their	hip	
extension	breaking	generation	7-9%	stance,	whereas	 the	excellent
group	did	not	change.

2.Magnitude	 Interaction	 Effect:	The	poor	group	 increased	 their	hip	
extension	propulsion	 moment	generation	92-96%	stance,	where	as	the	
excellent group	did	not	change.

1.Time	Main	Effect: Both	groups	experienced	similar	decreases	 in	knee	
extension	braking	moment;	poor from	0-2%	&	10-15%	stance,	
excellent from	6-15%	stance.

2.Magnitude	 Interaction	 Effect: The	poor	group	decreased	their	knee	
extension	propulsion	 moment	generation	 from	95-98%	stance,	
whereas	 the	excellent	group	did	not	change.

(1) (1) (2)

1.Greater	hip	 flexion	moment	generation	 in	 the	poor	group	95-98%	
stance.

(1)

1.Greater	knee	extension	moment	generation	 in	 the	poor group	 from	
3-5%	 (braking),	18-28%	(braking),	&	55-75%	(propulsion)	 stance.

2.Greater	knee	extension	propulsion	 moment	in	 the	excellent group	
90-98%	stance.

(1) (1) (1) (2)
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Figure 4.6 – Frontal  plane net internal hip and knee moment group ensemble curves and 
associated 95% confidence interval waveforms over the stance phase of the jump-landing task. 
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1.Greater	hip	abduction	braking	and	propulsion	 moment	in	 the	poor	
group	 from	19-85%	stance.

1.Greater	knee	varusbraking	and	propulsion	 moment	in	 the	excellent
group	 from	21-58%	stance.

(1) (1)

(1) (2) (2) (2) (2)

1.Magnitude	 Interaction	 Effect:	The	poor	group	decreased	their	hip	
abduction	breaking	generation	3-4%	stance,	whereas	 the	excellent
group	did	not	change.

2.Duration	 Interaction	 Effect:	The excellent	experienced	a	greater	
duration	 increase	 in	abduction	moment	generation	 from	15-22%	&	65-
95%,	whereas	 the	poor group	only	experienced	an	 increase	 in	
abduction	braking	moment	 from	12-15%	stance.

1.Magnitude	 Interaction	 Effect:	The		poor	group	increased	 their	knee	
varus breaking	generation	 from	3-4%	stance,	whereas	 the	excellent
group	 increased	 their	 internal	knee	valgus	braking	moment	generation	
during	5-9%	of	the	stance	phase.

2.Magnitude	 Interaction	 Effect:	The	poor	group	 increased	knee	valgus	
propulsion	 moment	generation	during	90-95%	stance.

1.Greater	hip	abduction	braking	and	propulsion	 moment	in	 the	poor	
group	 from	30-75%	stance.

1.Greater	knee	varusbraking	and	propulsion	 moment	in	 the	poor	group	
from	25-56%	stance.

(1) (2)

(1) (1)
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Figure 4.7 – Vertical ground reaction force (VGRF) and anterior tibial shear force (ATSF) group 
ensemble curves and associated 95% confidence interval waveforms over the stance phase of the 
jump-landing task. 
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1.Greater	vertical	ground	reaction	force	in	 the	poor	group	 from	5-11%	&	
19-81%	stance.

1.Greater	anterior	 tibial shear	 force	in	 the	poor group	 from	12-15%,	
23-36%,	&	52-76%	stance.

2.Greater	anterior	 tibial shear	 force	in	 the	excellent	group	 from	
88-98%	stance.

(1) (1) (1) (1) (1) (2)

1.Time	Main	Effect: The	poor &	excellent groups	both	experienced	
decreased	vertical	ground	reaction	force	during	periods	 of	early	
stance	0-9%	&	late	stance	95-98%.

2.Duration	 Interaction	 Effect: The	poor group	(43-87%	stance)	
experienced	a	 longer	duration	 increase	 in	vertical	ground	reaction	
force	compared	to	 the	excellent group	 (75-87%	stance).

(1)

1.Time	Main	Effect: The	poor &	excellent both	both	experienced	
decreased	anterior	 tibial shear	 force	during	periods	 of	early	 stance	
(5-7%)	&	 late	(90-98%)	stance.

2.Duration	 Interaction	 Effect: The	poor group	(50-76%	stance)	
experienced	a	 longer	duration	 increase	 in	vertical	ground	reaction	
force	compared	to	 the	excellent group	 (78-85%	stance).

1.Greater	vertical	ground	reaction	force	in	 the	poor	group	 from	10-85%	
stance.

1.Greater	anterior	 tibial shear	 force	in	 the	poor	group	 from	3-5%,	
11-35%,	&	50-78%	stance.

2.Greater	anterior	 tibial shear	 force	in	 the	excellent	group	 from	87-98%	
stance.

(1)(2) (1) (2) (2) (1)

(1) (1) (1) (1) (2)
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CHAPTER 5: MANUSCRIPT #1 

Movement Quality Impacts Biomechanical Resilience to Acute High Training Load 

Exposure in Physically Active Young-Adult Females 

Overview 

Background: “Stiff” landing biomechanics and excessive frontal plane knee motion, such as 

limited trunk, hip, and knee flexion and medial knee displacement have been identified as risk 

factors or movement patterns associated with lower extremity musculoskeletal injury and 

elevated joint loads. High-intensity work or high training loads have been observed to induce 

biomechanical changes associated with the above high-load movement profile. However, the 

influence of an individual’s baseline movement quality profile on their resilience to high training 

load-induced degradation in their biomechanics has not yet been explored. 

Aim: Investigate the influence of an individual’s inherent baseline movement profile on their 

biomechanical response to an acute bout of intensive training load exposure. 

Methods: 43 physically active, healthy, college-aged females were enrolled in this study and 

were assigned to a poor high-load or excellent low-load movement profile group operationally 

defined by the Landing Error Scoring System (LESS). Jump-landing 3D biomechanics were 

evaluated prior to and following a metabolically controlled acute high training load exercise 

protocol (HTL). Continuous change-score waveforms and their associated 95% confidence 

intervals were constructed for the poor and excellent movement profile groups. Portions of the 

change score waveforms not enveloping zero within the 95% confidence intervals were 
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identified as significant biomechanical responses to HTL. Significant biomechanical responses to 

HTLs were qualitatively compared between the poor and the excellent groups based on the 

magnitude, duration, and direction of the identified biomechanical change. 

Results: The poor group experienced nine significant biomechanical adaptations in response to 

HTL, whereas the excellent group only experienced three significant changes in their movement 

profile from pre to post HTL. Specifically, the poor group went on to adopt a movement profile 

associated with higher mechanical loads after acute HTL exposure. 

Conclusions: Movement quality profile influences the physically active, healthy, college-aged 

female’s biomechanical response to HTLs associated with sport participation. The excellent 

movement quality profile appears to be more biomechanically resilient to acute HTL. Thus, 

promoting an excellent movement profile in individuals partaking in exercise activity with HTLs 

may reduce their propensity to adopt movement strategies associated with high-mechanical 

loading and lower extremity musculoskeletal injury. 
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INTRODUCTION 

Musculoskeletal (MSK) injuries during sport and physical activity are common,(Conn, 

Annest, and Gilchrist 2003) costly,(Jacobs 2008; Woolf and Pfleger 2003) and have long-term 

health consequences,(Lohmander et al. 2007; Maffulli et al. 2010) representing a substantial 

socioeconomic burden.(Cumps et al. 2008) Injury severity is the primary determinant of an 

injury’s cost to society.(van Mechelen 1997) Individuals who sustain a high-severity sport-

related MSK injury such as an anterior cruciate ligament (ACL) rupture experience sizeable 

direct and indirect medical costs, acute and long-term decreases in productivity that result in a 

reduction in human capital, and decrease quality of life.(Cumps et al. 2008; van Mechelen 1997) 

Thus, there is a considerable need to understand underlying factors that may contribute to MSK 

injury during sport and physical activity to reduce the socioeconomic burden of MSK injury and 

maximize the health benefits of sport and physical activity participation. 

The current body of evidence has identified lower extremity biomechanics to be both risk 

factors(D. A. Padua et al. 2015; Cameron, Peck, and Owens 2014; Dai et al. 2012) and 

mechanisms(Krosshaug et al., 2007; Shimokochi & Shultz, 2008) for sport-related MSK injury, 

such as non-contact ACL rupture. Interestingly, 50% to 70% of sport-related ACL injuries are 

reported to be the result of a noncontact mechanism of injury(Agel, Arendt, and Bershadsky 

2005; B P Boden et al. 2000; Mihata, Beutler, and Boden 2006) Noncontact mechanisms causing 

sport-related ACL rupture are described as “forces applied to the knee at the time of injury that 

result from an athlete’s own movement that did not involve contact with another athlete of 

object”. (Marshall, Padua, & McGrath, n.d.) Thus, biomechanics are associated with an 

individual’s prospective risk for sport-related MSK injury, and are readily identifiable during 

injury events.  
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In addition to an individual’s biomechanical profile, current evidence also links 

fatigue(Galambos, Terry, Moyle, Locke, & Lane, 2005) and high training loads(Gabbett, 2004; 

Gabbett & Jenkins, 2011) to increased MSK injury rates. The influence of fatigue and high 

training loads on MSK injury may be linked to alterations in biomechanics as previous research 

indicates that fatigue leads to maladaptive changes in lower extremity biomechanics associated 

with noncontact ACL injury(Quammen et al., 2012; Santamaria & Webster, 2010; SCHMITZ et 

al., 2014; Webster, Santamaria, McClelland, & Feller, 2012)    

Clinical movement assessments such as The Landing Error Scoring System (LESS) can 

be used as a reliable and valid clinical tool to discriminate between individuals with excellent 

and poor movement quality profiles.(Padua et al., 2009) “Stiff” sagittal plane landing 

biomechanics and excessive medial knee displacement  movement patterns are commonly 

associated with poor movement quality, and are linked to numerous lower extremity injuries, 

including ACL rupture,(Walden et al. 2015) patellofemoral pain syndrome,(Elias et al., 2004; 

Mizuno et al., 2001) medial collateral ligament injury,(Hull, Berns, Varma, & Patterson, 1996) 

lower-leg stress fracture,(Cameron, Peck, & Owens, 2014) as well as the progression of knee 

osteoarthritis (OA).(Brouwer et al., 2007; Sharma et al., 2001)  It is possible that an interaction 

exists between an individual’s movement quality profile and their response to hard training 

loads.  Specifically, those with poor movement quality may experience greater overall loading 

during training, thus undergo a maladaptive biomechanical response.  To our knowledge, 

research has not examined the potential interaction between an individual’s movement quality 

profile and response to a fatiguing bout of acute HTL.   

The primary purpose of this study was to better understand the ramifications of an 

individual’s inherent baseline movement profile on their biomechanical response to an acute bout 
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of intensive training load in healthy, physically active college-aged females, a population at high 

risk of severe lower extremity MSK injury.(Hootman, Dick, and Agel 2007; Arendt, Agel, and 

Dick 1999) Previous studies have identified limited sagittal plane trunk, hip, and knee motion 

and excessive frontal plane knee and hip motion to be associated with non-contact severe injury 

mechanism, specifically ACL rupture.(Krosshaug et al. 2007; Sheehan, Sipprell, and Boden 

2012) We hypothesize that individuals with a low-load, sagittal plane dominant, excellent 

movement profile will exhibit greater resistance against the adoption of non-sagittal plane 

landing biomechanics and subsequent high-loads associated with lower extremity MSK injury 

after an acute ITL. Conversely, following an acute ITL, individuals with a high-load, “stiff” 

sagittal plane and uncontrolled frontal plane landing biomechanics will adopt movement 

strategies such as decreases in trunk, hip, and knee flexion motion associated with higher lower 

extremity loading and injury. 

 

METHODS 

Participants 

 This study employed a two-group, cross-sectional, repeated measures design to 

investigate the influence of poor and excellent movement profiles on biomechanical changes in 

response to HTL (Figure 5.1). Participants were recruited from the female student body at The 

University of North Carolina at Chapel Hill. Participants were demographically eligible if they 

had a history of participating in at least the high-school varsity-level of soccer, basketball, rugby, 

lacrosse, and team handball, tennis, track and field, volleyball, or field hockey. Specifically, 

eligible participants were 18 – 25 years of age, actively participating in at least 30 minutes of 

moderate to high-intensity physical activity a minimum of three days per week. Participants were 
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ineligible for participation if they had history of lower extremity surgery within the past year, 

lower extremity joint surgery, prior ACL or meniscal injury, lower extremity injury in the past 

six months that prevented participation in physical activities for more than 3 consecutive days, 

neuroendocrine, neurological, or metabolic disease or condition, or dysmenorrhea or amenorrhea 

within the past 6 months.  

Demographically eligible participants were enrolled in this study if they demonstrated a 

operationally defined poor or excellent baseline movement profile during a LESS assessment 

described by Padua et al.(D. A. Padua et al. 2009) Enrolled participants also needed to achieve 

an estimated maximal oxygen uptake ranging from 40 – 50 ml•kg-1•min-1 via submaximal 

aerobic power assessment described below. The selected aerobic power range is representative of 

a “good to superior” aerobic fitness level within the population (Medicine, 2009), and coincides 

with the representative of the college female field and court sport athlete’s aerobic power 

(Enemark-Miller, Seegmiller, and Rana 2009). A total of 45 participants out of 157 

demographically eligible participants screened into the study, meeting all movement and aerobic 

power inclusion criteria. However, two participants who screened into the poor group could not 

complete the controlled HTL protocol, thus a total of 43 participants (N=43; excellent (n=22), 

poor (n=21)) were included in the final study sample. A priori power analysis of previously 

published data revealed that a total sample size of 40 participants (poor (n=20) & excellent 

(n=20)) would allow the investigators to detect a minimum 20% change in biomechanical 

dependent variables from pre- to post-HTL, with a power of at least 0.80 and α= 0.05. Previous 

studies using repeated measures designs have observed HTL to have a moderate (Cohen’s 

d=0.55) to large (Cohen’s d=2.2) effect on sagittal and frontal plane LPHC and knee 
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biomechanics linked to ACL injury(Chappell et al., 2005; McLean et al., 2007; Cortes et al., 

2012; Quammen et al., 2012; Liederbach et al., 2014). 

 

Procedures 

All procedures were conducted after institutional review board (IRB) approval. Informed 

consent was obtained prior to initiation of the study protocol outlined in figure 5.2. Enrolled 

participants reported to the laboratory for a single-testing session. Prior to the 3D biomechanical 

assessment and HTL, participants provided a urine sample for evaluation of hydration level using 

the specific gravity technique via refractometry (TS Meter, American Optical Corp., Keene, New 

Hampshire, USA) to ensure adequate hydration (urine specific gravity ≤1.02) prior to 

exercise.(Stuempfle and Drury 2003) Height (cm) and mass (kg) were measured and recorded 

using stadiometer and a digital scale (Detecto 2381, Detecto, Webb City, Missouri, USA). 

Participant Preparation 

Participants donned non-reflective spandex shorts and a sports bra. The principal 

investigator (BF) secured rigid clusters of retroreflective markers on the participant’s dominant 

lower extremity (side subject identified they would use to kick a soccer ball for maximum 

distance) at the dorsal surface of the shod foot, midpoint of the anterolateral shank, midpoint of 

the anterolateral thigh, and sacrum using double-sided tape and athletic pre-wrap. After the rigid 

clusters were secured, the principal investigator attached individual retroreflective markers to the 

dominant limb’s medial and lateral ankle malleoli, femoral condyles, bilateral anterior superior 

iliac spines, and bilateral acromion processes. 
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Three-Dimensional Motion Analysis 

A ten-camera motion capture system (Vicon Bonita 10, Vicon Motion Systems, Los 

Angeles, CA, USA) interfaced with a force plate (Type 4060-10, Bertec Corporation, Columbus, 

OH, USA) centered within a 2×2×2 meter capture volume was used to sample three-dimensional 

(3D) marker trajectories (200 Hz) and ground reaction force (1,000 Hz) data using Vicon Nexus 

v1.7.1 motion capture software (Vicon Motion Systems, Los Angeles, CA, USA). World and 

segment axis systems were established by a right hand three-dimensional Cartesian coordinate 

system. The positive x-axis was designated forward/anterior, the positive y-axis to the left, and 

the positive z-axis upward/superiorly relative to the participant.(B. Frank et al. 2013) 

A static trial was collected with the participant facing the positive x-axis of the world 

coordinate system. Hip joint centers were estimated using the Bell method.(A. L. Bell, Pedersen, 

and Brand 1990) Knee and ankle joint centers were estimated as the midpoint between the 

medial and lateral femoral epicondyles and malleoli, respectively. The flexion/extension axis of 

the knee was defined using the transepicondylar axis established between the medial and lateral 

femoral epicondyle markers from the static calibration trial for each subject.(Wu et al. 2002) The 

trunk segment was modeled as a rigid body defined proximally by the bilateral acromion process 

markers and distally by the sacrum cluster flexing and extending about the world medial-lateral 

axis (y-axis).(B. Frank et al. 2013) Markers were removed from the medial and lateral 

epicondyles, ankle malleoli, and bilateral anterior superior iliac spines after the static trial. 

 

Pre-HTL Jump-Landing Assessment 

 Participants stood atop a 30 cm box placed 50% their body height from the leading edge 

of the two conductive force plates. Synonymous with the LESS protocol described by Padua et 
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al.,(D. A. Padua et al. 2009) the principal investigator instructed the participant to “face forward, 

and jump down to the center of the force plates, and rebound upward for a maximal vertical 

jump” with the right foot landing on the right force plate and the left foot atop the left force 

plate. During the jump-landing task instruction emphasis on starting the jump in a neutral 

positioning with toes pointing forward, feet shoulder-width apart, and both feet leaving the box 

at the same time was communicated to the participant to promote a successful trial execution. All 

participants completed three practice trials to re-familiarize themselves with the jump-landing 

task. Following the three practice trials, the participant completed three trials of the jump-landing 

task used for 3D motion analysis of the pre-HTL jump-landing task. 

 

Ventilatory Threshold Assessment 

 For determination of ventilatory threshold, participants completed a speed-only graded 

submaximal aerobic capacity assessment(Vanhoy 2012; Berry et al. 2016) on a motorized 

treadmill (GE T2100 Exercise Stress System, General Electric – Healthcare, Little Chalfont, UK) 

with measurement of respiratory gas exchange using a metabolic cart (TrueOne 2400 Metabolic 

Measurement System, Parvo Medics, Sandy, Utah, USA) and instantaneous monitoring of heart 

rate (A39 Exercise Monitor, Under Armour Inc., Baltimore, Maryland, USA). Prior to the 

ventilatory threshold assessment, the principal investigator completed standard calibration 

procedures of the flow, carbon dioxide, and oxygen sensors of the metabolic cart using a 3.0 L 

syringe of known gases. The principal investigator described the ventilatory threshold 

assessment protocol to the participant before the initiation of the evaluation procedures  

(Figure 5.2). 
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After the principal investigator delivered testing instructions and explained the 

assessment procedures, the participant’s resting heart rate (Under Armour A39, Under Armour 

Inc., Baltimore, Maryland, USA), blood pressure (ADC 700 Diagnostix® Series Pocket Aneroid 

Sphygmomanometer, American Diagnostics Corporation, Hauppage, New York, USA; 

3MTMLittmann® Stethoscope, 3M, St. Paul, Minnesota, USA), were measured and recorded 

after sitting for five minutes. The principal investigator then reviewed the participant’s resting 

vital signs to ensure there is no evidence of contraindications to participation in a submaximal 

exercise.(Medicine, 2009) 

After the principal investigator ensured there were no contraindications to exercise 

participation, the ventilatory threshold assessment protocol outlined in figure 5.2 was initiated. 

Following completion of the ventilatory threshold assessment, the participant’s ventilatory 

threshold was determined using a modified V-slope method(Sue et al. 1988) (APPENDIX 3) to 

identify when there was an observed increase in ventilatory equivalent for oxygen without an 

accompanying increase in the ventilatory equivalent for carbon dioxide(Davis, Whipp, and 

Wasserman 1980) in the participant’s respiratory gas exchange data sampled during the 

assessment protocol. The VO2 and treadmill speed coincident with 100%, 110%, and 120% were 

identified and used to define the control of the treadmill running speed during the HTL protocol 

(figure 5.2.) 

 

Controlled High-Intensity Exercise Exposure (HTL) 

 The controlled HTL protocol deployed in this study was novel (figure 5.2). Previously 

described HTL protocols lack rigorous control of intensity to compare dependent variables 

between movement profile groups. Thus the internal load(Foster et al. 2001) the study 
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participants experience may be variable based on fitness level and other confounding individual 

physiological variables.(Foster et al. 2001) The aim of this study’s HTL protocol was to expose 

participants to approximately identical internal training loads based on their individualized 

ventilatory threshold. Controlling the HTL intensity using this novel approach implied 

individuals used similar energy systems,(Hopker, Jobson, and Pandit 2011) and experienced the 

same relative exercise intensity based on their individual system physiology.(Davis, Whipp, and 

Wasserman 1980; Hopker, Jobson, and Pandit 2011) During the HTL, the treadmill speed was 

increased or decreased by 0.161 km•h-1 increments to maintain an individualized instantaneous 

VO2 coincident with 100 – 120% ventilatory threshold, RER between 0.85 – 0.95, and RPE 12 – 

15. At end of each minute of each stage (5 stages, 5 minutes) of the HTL protocol treadmill 

speed, RPE, VO2, and RER were recorded and entered into a Microsoft Excel spreadsheet 

(Version 15; Microsoft Corporation, Redmond, WA). The stringent control of relative exercise 

intensity across subjects and between groups permitted isolated identification of the effects of an 

individual’s movement profile on their biomechanical response to a uniform metabolic stress 

exposure.(Hopker, Jobson, and Pandit 2011) 

 

Post-HTL Jump-Landing Assessment 

Immediately following the HTL protocol the principal investigator expediently secured 

retroreflective markers as described previously. After a static trial was collected to establish a 

viable 3D biomechanical model the participants completed two sets of ten “booster exercise” 

jump-landings separated by 30 seconds of rest to offset recovery that may have occurred during 

marker attachment. Following the “booster exercise,” the participants completed three additional 

trials of the jump-landing task to evaluate post-HTL jump-landing 3D biomechanics. 
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Data Reduction & Analysis 

 All kinematic and kinetic data were imported into The Motion Monitor v9.0 software 

system (Innovative Sports Training, Inc., Chicago, IL, USA) to calculate joint angles, internal 

joint moments, and ground reaction force vector components. Kinematic data were filtered using 

a 4th order low pass Butterworth filter at 20 Hz.(Yu et al. 1999). Net internal joint moments were 

derived using an inverse dynamics procedure, representative of the combined influence of soft 

tissue forces acting about a joint.(Gagnon and Gagnon 1992; Winter 2009) Data were then 

exported and reduced using a customized software program to calculated the dependent variables 

of interest (Matlab v2016b, The Mathworks, Inc., Natick, MA, USA). Sagittal plane trunk 

motion was calculated as the trunk segment relative to the world axis system. Dominant limb hip 

joint motion was defined as motion of the thigh segment relative to the pelvis segment using a 

Cardan angle sequence of Y ((+) extension/(-) flexion), X’ ((+) adduction/(-) abduction). 

Dominant limb knee joint motion was defined as the motion of the shank segment relative to the 

thigh segment using a Cardan angle rotation sequence of Y ((+) flexion/(-) extension).(Wu et al. 

2002) Frontal plane knee motion was defined by as a combined segment angles of the thigh and 

the shank segments rotation relative to the world x-axis ((+) valgus (or tibial abduction)/(-) 

valgus (tibial adduction)) to avoid avoid multi-planar cross talk that occurs with excessive 

medial knee displacement.(B. Frank, Blackburn, and Padua 2013) Medial knee motion 

(displacement) was calculated as the difference between the instantaneous value of the y-axis 

position of the center of the knee joint and the y-axis position of the knee joint center at initial 

contact with respect to the world axis system.(D. R. Bell et al. 2013) Proximal ATSF was 

calculated as the net anteriorly directed shearing component of the force acting at the knee joint 

along the proximal tibia’s x-axis.(Chappell et al. 2005) Vertical ground reaction force was 
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calculated as the pure vertical component of the ground reaction force vector coincident with the 

world z-axis. 

 All biomechanical data were calculated during the stance phase of the jump-landing task 

defined as the point of initial ground contact to toe-off. Initial ground contact was defined as the 

first time point the vertical ground reaction force exceeded 10N. Toe-off was defined as the first 

time point from initial ground contact that the vertical ground reaction force was than 10N.(D. A. 

Padua et al. 2009) 

 All biomechanical data were analyzed as continuous normalized waveforms during the 

stance phase of the jump-landing.(Kuenze et al. 2014) Kinematic and kinetic data were 

normalized to 201 data points (knots) over the stance phases of the three jump-landing task trials 

using a cubic spline function. Previous studies have described the stance phase duration to range 

from 190 to 374 milliseconds during jump-landing tasks.(Cowley et al. 2006; Strutzenberger et 

al. 2014) Thus, use of 201 knots derived from 1,000 Hz raw and interpolated kinetic and 

kinematic data points provided sufficient resolution of biomechanical variables of interest during 

the jump-landing task. Each knot was calculated as the mean value of the respective derived 

knots from each of the three jump-landing tasks (eq. 1) (trial 1, trial 2, trial 3). 

!"#$%…'() =
!"#$%	,) +	!"#$%	,' +	!"#$%	,.

3  

(eq. 1) 

To calculate changes in biomechanical variables from baseline to post-exercise, the differences 

between the respective individual baseline and post-HIE knot values (knotbi & knotfi) was 

calculated to form a 201 knot waveform reflecting the change in the biomechanical variable of 

interest (eq. 2). 

!"#$∆%…'() = 	!"#$1% − !"#$3% 
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(eq. 2) 

Change score waveforms were calculated for all biomechanical variables of interest, 

representative of the participant’s biomechanical response to HTL. 

 

Statistical Analysis 

Demographic and ventilatory threshold data were compared between groups using 

independent samples t-tests. Separate repeated measures (2×5) ANOVAs were used to compare 

the average treadmill speed, RPE, VO2, and RER for each five-minute stage between groups 

during the controlled HTL protocol. 

Pre-HTL, post-HTL, and change score frontal and sagittal plane kinematic and kinetic 

variable ensemble means and associated 95% confidence intervals (CI) were calculated for each 

0.5% of the stance phase of the jump-landing task for . Group ensemble mean and 95% CI values 

were plotted graphically using Microsoft Excel (Version 15; Microsoft Corporation, Redmond, 

WA). Statistical significance for a movement profile group main effect pre-HTL was defined as 

any portion of the stance phase when the 95% CI’s for the poor and excellent groups did not 

overlap.(McKeon et al. 2009; Kuenze et al. 2014). A significant change pre- to post-HTL or time 

main effect was defined as any portion of the stance phase when the 95% change score CI did not 

envelope zero. A group-by-time change magnitude interaction effect was defined a as a period 

during the stance phase when one group’s change waveform 95% CI was above or below zero 

during the stance phase and the other group’s change waveform 95% CI enveloped zero 

throughout 100% stance. A group-by-time change duration interaction effect was defined as a 

scenario in which both groups experienced a time main effect for the same biomechanical 
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variable but there was at least a 5% difference in duration of the time main effect between 

groups. 

 

RESULTS 

Participants Demographic 

 Participant anthropometrics and fitness demographic data are presented in table 1.1 

Independent samples t-tests revealed there was no significant (P<0.05) differences between the 

movement groups for any demographic variable. 

 

Controlled High-Intensity Exercise Exposure Metabolics & Perceived Intensity 

 Movement profile group means, standard deviations, and 95% confidence intervals are 

reported in table 1.2. Repeated measures ANOVA analyses revealed there was no significant 

(P>0.05) group-by-exercise stage interaction or any group main effects. There was a significant 

time main effect for RER, RPE, heart rate and VO2; with a significant increase over time in both 

groups (P<0.05). 

 

Biomechanics 

 All pre HTL, change, and post HTL waveform data are presented in figures 5.3-5.7. 

Summarized time main effects, magnitude interactions, and duration interactions are described 

under each change waveform for ease of interpretation. The poor group experienced nine 

significant biomechanical adaptations in response to HTL, whereas the excellent group only 

experienced three significant changes in their movement profile from pre to post HTL 
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DISCUSSION 

The most important finding of this study is that an individual’s movement quality profile 

moderates their biomechanical response to an acute HTL. Participants with poor movement 

quality underwent decreased trunk and hip flexion motion, as well as increased internal knee 

varus braking moment during a jump-landing task after acute HTL exposure.  No such changes 

were observed in those with good movement quality.  Furthermore, following the acute HTL we 

observed the poor group to experience increased VGRF and ATSF with concomitant decreases 

in knee flexion angle and hip abduction braking moment over a greater duration of the stance 

phase.  In contrast, those with an excellent movement profile displayed greater resilience by 

displaying fewer biomechanical alterations after acute HTL exposure. The results of this study 

suggest that a poor baseline movement quality promotes biomechanical alterations associated 

with non-contact ACL injury and loading (Walden et al. 2015; T E Hewett, Torg, and Boden 

2009; Koga et al. 2010; Krosshaug et al. 2007) (Markolf et al. 1995; Withrow et al. 2006; 

Sheehan, Sipprell, and Boden 2012; Barry P Boden et al. 2010) in response to acute HTL; 

however, this is not the case in those with excellent movement quality. 

To our knowledge this is the first study to compare biomechanical responses following 

acute HTL between those with excellent and poor movement profiles.  Previous research has 

identified fatigue to induce biomechanical changes associated with lower extremity injury 

(Santamaria and Webster 2010; Cortes et al. 2012; Quammen et al. 2012; Schmitz et al. 2014; 

Borotikar et al. 2008); however, this work has focused on comparing the biomechanical response 

to fatiguing exercise in healthy(Cortes et al. 2012; Quammen et al. 2012; Chappell et al. 2005; B. 

S. Frank et al. 2014; Schmitz et al. 2014) or previously injured groups.(Webster et al. 2012; B. S. 

Frank et al. 2014)  Both groups experienced transient decreases in VGRF, knee extension 
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braking moment, and ATSF during early stance, and similar brief decreases in propulsive VGRF 

during late stance. The literature is conflicted regarding influence of fatigue exposure or acute 

HTL on VGRF. Interestingly, previous studies have observed increases(Chappell et al. 2005; 

Dominguese, Seegmiller, and Krause 2012), decreases(Santamaria and Webster 2010; Schmitz et 

al. 2014), and no significant change(Cortes et al. 2012; B. S. Frank et al. 2014) in peak VGRF 

during the early stance phase of landing tasks following fatigue or acute HTL protocols.  Thus, 

there is no consensus regarding early landing force changes in response to fatigue or acute HTL 

exposure. Interestingly, our findings of reduced VGRF, ATSF and internal knee extension 

moment following acute HTL in both groups are aligned with the results of studies deploying 

similar acute HTL protocols that incorporate periods of intermittent running and plyometric 

activities.(Quammen et al. 2012; Schmitz et al. 2014) These findings suggest that baseline 

movement profile does not moderate changes in these variables following acute HTL.  

While the changes VGRF, ATSF and knee extension moment magnitude following acute 

HTL were similar between groups this was not the case for internal knee varus moment or trunk 

and hip flexion motion magnitudes.  The poor movement quality group displayed increased 

internal knee varus moment combined with decreased trunk and hip flexion motion following 

acute HTL.  Internal knee varus moment is analogous to external knee valgus moment, which 

has been shown to increase ACL loading and is associated with the prospective risk of ACL 

injury.(Timothy E Hewett et al. 2005) Lack of trunk motion control(Zazulak et al. 2007) and a 

more erect and upright body posture(Sheehan, Sipprell, and Boden 2012; T E Hewett, Torg, and 

Boden 2009) are also associated with ACL injury.  Our findings indicate that poor movement 

quality subjects experienced significant changes in those variables that have been most strongly 

associated with ACL injury.  Interestingly, no such changes were observed in the excellent 
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movement quality group.  Thus, it appears that excellent movement quality subjects display 

greater resilience to change in those biomechanical variables associated with increased ACL 

injury risk following acute HTL, whereas the poor movement quality subjects experience a 

maladaptive change in these variables.  

Further evidence of a maladaptive response to acute HTL in the poor movement quality 

subjects is seen in hip moment alterations.  Specifically, the poor movement quality group 

demonstrated reduced internal hip extension and abduction moments during the early stance 

phase.  In contrast, the excellent movement quality subjects increased internal hip abduction 

moment during early stance and experienced no alterations to internal hip extension moment.  

Internal hip abduction and extension moment during the early stance phase represents the 

braking response to control and limit hip adduction and flexion motion, respectively during the 

impact loading phase of jump-landing.  Reduced internal hip abduction and extension moment 

following acute HTL suggests that those with poor movement quality may have less braking 

control of the corresponding motions during the impact loading phase of jump-landing.  Overall, 

this may reduce the ability for dynamic hip stability in poor movement quality subjects following 

acute HTL. 

Individuals in the excellent group exhibited greater “biomechanical resilience” following 

the acute HTL; with only small decreases in hip abduction and knee varus motion and a 

concurrent propensity to increase in internal hip abduction braking and propulsion moments post 

acute HTL (figure 5.1).  More importantly, the excellent group did not experience changes in 

those variables most associated with ACL injury (trunk kinematics, hip kinematics, and frontal 

plane knee moment).  Collectively, the results of this study indicate that an individual’s response 

to acute HTL is mediated by their baseline movement quality profile.  Specifically, those with 
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poor movement quality undergo greater loading and altered trunk and hip kinematics in response 

to acute HTL, which may increase their risk of injury.  In contrast, individuals with excellent 

movement quality exhibit greater biomechanical resilience to acute HTL, safeguarding athletes 

against the biomechanical maladaptation associated with higher inert tissue loading conditions 

(BEYNNON and FLEMING 1998) and potential lower extremity injury.(Dai et al. 2012) 

We believe that differences in the biomechanical response to acute HTL between groups 

are largely influenced by differences in movement quality at baseline.  Individuals in the poor 

group completed a jump-landing task with less trunk, hip, and knee flexion, hip abduction, and 

greater knee valgus and medial knee motion resulting in a “stiff” sagittal plane and elevated 

frontal plane lower extremity motion profile linked to knee injury.(Krosshaug et al. 2007; 

Walden et al. 2015; Sheehan, Sipprell, and Boden 2012) The poor group’s “stiffer” landing 

profile was observed to elicit significantly greater loading across the lower extremity. 

Specifically, at baseline the poor group experienced ~0.2 Nm•kg(BW)
-1•m(HT)

-1 greater internal 

knee extension and ~0.1 Nm•kg(BW)
-1•m(HT)

-1 internal knee varus moments with resultant 

elevations in VGRF and ATSF equal to 80% and 13% body mass respectively. Additionally it 

should be noted that during the baseline jump-landings, the poor group was exposed to VGRF 

loads >1 body weight for over 80% of the entire stance phase. Whereas, the excellent group was 

only exposed to a VGRF load >1 body weight less than 20% of the stance phase. These findings 

suggest the poor group is exposed VGRF loads >1 body weight four times longer than the 

excellent group during the jump-landing task. Thus, both the magnitude and duration of high-

load exposure is significantly greater in the poor group, resulting in greater repetitive MSK 

system load exposure in the poor group during the controlled HTL. 
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The current study design offers insight regarding the interaction between an individual’s 

movement quality profile and response to acute training loads similar to the physical demands of 

sport. The LESS criteria used in the current study to group individuals into poor and excellent 

movement groups effectively discriminated between individuals with biomechanical profiles 

associated with high or low mechanical load exposure during the stance phase of a jump-landing 

task (figure 5.1). 

The results of our study are in agreement with previous literature, suggesting that 

individuals with a poor movement profile exhibit biomechanics associated with inefficient load 

dissipation(M. F. Norcross et al. 2015; Powers 2010; Pollard, Sigward, and Powers 2010) and 

injury.(D. A. Padua et al. 2015; Cameron, Peck, and Owens 2014; Powers 2010) Biomechanical 

resilience observed in the excellent group may be explained by their persistent efficiency in load 

attenuation maintained primarily within the sagittal plane during HTL compared to the poor 

group.(Pollard, Sigward, and Powers 2010; Podraza and White 2010; Marc F. Norcross et al. 

2013a; Marc F. Norcross et al. 2013b) Therefore the poor group was likely forced to undergo a 

greater change in their movement strategy to meet the physically demanding requirements of the 

controlled HTL. 

Over time, the poor group may experience the cumulative detrimental effects of their 

inherently limited load attenuation efficiency,(Marc F. Norcross et al. 2013a; Pollard, Sigward, 

and Powers 2010) owing to the observed resultant maladaptive biomechanical response in the 

current study. Thus, it is possible the poor group experiences a greater mechanical load exposure 

to their MSK system during a similar HTL,(Tim J Gabbett and Ullah 2012; Franklyn-Miller et al. 

2012) contributing to a higher biomechanical injury risk compared to their excellent group 

counterparts.(D. A. Padua et al. 2015; Cameron, Peck, and Owens 2014) 
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The data from the ventilatory threshold assessment (table 1.) and controlled exercise 

protocol (table 2.) further implicate movement quality to be a primary factor driving the 

differences in biomechanical responses to an acute HTL. There was no significant group effect 

on ventilatory threshold, suggesting that both groups had similar fitness levels and metabolic 

profiles,(Sue et al. 1988; Davis, Whipp, and Wasserman 1980) eliminating any potential 

confounding effects of cardiovascular function and peripheral mechanisms of fatigue resistance 

to influence biomechanical responses to acute HTL exposure. Furthermore, there was no 

evidence of a group effect on any perceptual or metabolic measures during the HTL, thus the 

relative intensity of the exercise stress was similar in both groups. Moreover, the total work 

completed by both groups was similar, as there was no difference in treadmill speed between 

groups, suggesting both groups were exposed to the same external load(Halson 2014) during the 

HTL. Collectively, the homogeneity in fitness level, metabolic response, and imposed external 

load between groups further isolates the effects of baseline movement quality as a powerful 

modifier of the healthy female athlete’s biomechanical changes secondary to acute HTL 

exposure. 

The findings of this study support the clinical utility of the LESS as an economically 

effective movement assessment capable of describing both an individual’s musculoskeletal 

injury risk(D. A. Padua et al. 2015; Cameron, Peck, and Owens 2014) and their probable 

biomechanical adaptations in response to HTL. Epidemiological evidence suggests that a 

majority of severe musculoskeletal injuries occur during higher intensity periods of training and 

competition secondary to underlying neuromuscular fatigue such as pre-season conditioning 

periods and post-season play.(Tim J. Gabbett 2004; T J Gabbett 2004; Hootman, Dick, and Agel 

2007; Walden, Hagglund, and Ekstrand 2005) Therefore, clinicians should consider use of the 
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LESS to identify individuals who may be less biomechanically resilient during periods of high 

training intensity who may benefit from promotion of recovery management and behaviors. 

Furthermore, the results of this study support the systematic implementation of injury 

prevention programs capable of improving an individual’s movement profile.(DiStefano et al. 

2011; Zebis et al. 2015; Myklebust et al. 2003; D. a. Padua and DiStefano 2009) Clinicians 

should consider the importance of promoting biomechanical resilience through the effective 

development of an athlete’s excellent movement profile with injury prevention programming. 

This study is the first to suggest an athlete’s inherent movement profile directly moderates self-

imposed exposure to biomechanical loads associated with avoidable non-contact musculoskeletal 

injury during HTL. Thus, the results of this study provide foundational evidence that effective 

neuromuscular training programs aimed at developing an excellent movement profile(DiStefano 

et al. 2011; Zebis et al. 2015; Emery et al. 2015) may foster biomechanical resilience in athletes, 

reducing their susceptibility to adopt high-risk movement strategies during sport activity. 

 This study is not without limitations. The results of the current study lack generalization 

to other athlete demographics. Our results are limited to describing the biomechanical response 

profiles of healthy physically active college-aged females with a history of participation in field 

or court sports. While our results are not generalizable to the larger athlete and physically active 

population, college-aged female field and court sport athletes represent a population at highest 

risk of non-contact, severe lower extremity injury such as ACL rupture.(Hootman, Dick, and 

Agel 2007; Waldén et al. 2011; Peck et al. 2013) 

Furthermore, we only evaluated the influence of baseline movement profile and HTL on 

biomechanical changes during a single sagittal plane dominant task. Changes in the landing 

biomechanics observed during the jump-landing cannot be generalized to more complex athletic 
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motions with greater multi-planar demands and changes in direction such as a sidestep cutting 

task. Currently there is a gap in the evidence-base highlighting jump-landing biomechanical 

profile transfer across tasks. However, previous literature has observed injury prevention 

programs aimed at increasing sagittal plane motion at the trunk hip and knee to result in changes 

in side-step cutting tasks,(DiStefano et al. 2011) suggesting there is potential for biomechanical 

resilience transfer across tasks. 

Similarly, we did not evaluate biomechanical changes over the course of the HTL 

protocol and cannot implicate the same change trends in biomechanics were occurring during the 

HTL bout. However, the primary aim of this study was to determine the influence of movement 

profile on the biomechanical response to HTL in a jump-landing task directly predictive of injury 

risk. Differences in biomechanical changes during jogging gait have previously been reported 

between individuals with ACL reconstruction and healthy matched-controls.(Kuenze et al. 2014) 

Taken together with the results of our study it is recommended future investigations evaluate the 

effect of movement profile on real-time biomechanical adaptations during HTL to evaluate 

biomechanical resiliency during open tasks that may more closely resemble changes in sport 

activity outside of the laboratory environment. 

In conclusion, the results of this study suggest that healthy female college-aged athletes 

with excellent movement profiles demonstrate greater biomechanical resilience upon HTL 

compared to their poor movement profile counterparts. Promoting greater biomechanical 

resilience through an excellent movement profile may reduce an individual’s risk of injury when 

exposed to the high-intensity demands of sport and physical activity. Future research should 

investigate both the real-time influence of movement profile on biomechanical adaptations 
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during HTL, and the capacity of neuromuscular training programs to improve biomechanical 

resilience in individuals with pre-existing poor movement profiles. 

 

NEW KEY FINDINGS 

1. This study demonstrates for the first time that baseline movement profile influences 

biomechanical changes in response to HTL. 

2. The LESS can be used as a clinical tool to identify individuals who experience 

maladaptive biomechanics in response to HTL. 

3. Individuals with a poor / high-risk movement profile experience greater self-imposed 

mechanical load exposure secondary to their maladaptive biomechanical responses to 

HTL. 

 

HOW MIGHT IT IMPACT CLINICAL PRACTICE IN THE FUTURE? 

The proactive clinician should consider using the LESS to identify athletes with limited 

biomechanical resilience, targeting individuals with poor movement profiles as high-priority to 

receive corrective exercise / injury prevention programming to limit their mechanical load 

exposure and subsequent injury risk during sport participation. 
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Table 5.1 - Group Demographic Descriptive Statistics: Group Means & (SDs) 
  Excellent Poor 

Age (years) 20.5 (1.9) 20.4 (1.3) 
Height (m) 1.44 (0.44) 1.63 (0.23) 
Mass (kg) 64.5 (7.8) 60.9 (6.1) 
Resting Heart Rate (bpm) 65.0 (9.8) 71.5 (14.5) 
Resting Diastolic Blood Pressure (mmHg) 73.7 (9.6) 74.3 (14.2) 
Resting Systolic Blood Pressure (mmHg) 112.9 (6.4) 115.2 (7.4) 
100% Ventilatory Threshold (ml•kg-1•min-1) 33.2 (4.2) 34.0 (4.1) 
110% Ventilatory Threshold (ml•kg-1•min-1) 36.5 (4.6) 37.3 (4.5) 
120% Ventilatory Threshold (ml•kg-1•min-1) 39.8 (5.0) 40.7 (4.9) 

 

Table 5.1 - Group Demographic Descriptive Statistics 
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Table 5.2 - Controlled Acute High Training Load Exposure Stage Metabolic & Intensity Perception Measures 

Excellent Poor Excellent Poor Excellent Poor Excellent Poor Excellent Poor

Treadmill Speed (km•h-1)
11.0 (1.1)

[10.6, 11.5]
11.4 (1.0)

[10.9, 11.9]
11.0 (1.2)

[10.5, 11.6]
11.3 (1.0)

[10.8, 11.8]
11.0 (1.2)

[10.5, 11.5]
11.3 (1.0)

[10.8, 11.7]
11.1 (1.2)

[10.6, 11.6]
11.3 (1.1)

[10.8, 11.8]
11.2 (1.1)

[10.7, 11.7]
11.3 (1.1)

[10.8, 11.8]

Rate of Perceived Exertion (Borg 6-20)
12.1 (0.6)

[11.5, 12.6]
11.7 (1.7)

[11.3, 12.5]
12.4 (1.0)

[11.8, 12.9]
12.8 (1.6)

[12.2, 13.4]
12.7 (0.9)

[12.1, 13.2]
13.2 (1.5)

[12.6, 13.7]
13.1 (1.1)

[12.5, 13.8]
13.8 (1.6)

[13.2, 14.2]
13.3 (1.2)

[12.7, 13.9]
13.9 (1.4)

[13.3, 14.5]

Heart Rate (bpm)
169.0 (12.9)

[161.9, 176.8]
170.2 (19.6)

[162.9, 177.4]
175.0 (15.1)

[169.1, 180.8]
180.8 (11.8)

[174.8, 186.8]
177.5 (14.0)

[172.3, 182.7]
182.9 (9.6)

[177.6, 188.2]
179.4 (14.6)

[174.2, 184.7]
183.4 (9.2)

[178.0, 188.8]
181.8 (11.7)

[176.2, 187.4]
180.8 (14.2)

[175.0, 186.5]

Oxygen Uptake (ml•kg-1•min-1)
35.9 (3.2)

[34.4, 37.5]
35.9 (3.9)

[34.4, 37.6]
36.4 (4.4)

[34.7, 38.3]
37.0 (4.1)

[35.1, 38.9]
37.1 (3.8)

[35.5, 38.6]
37.0 (3.4)

[35.4, 38.6]
37.7 (4.0)

[36.0, 39.5]
38.0 (3.9)

[36.2, 39.7]
38.1 (3.6)

[36.5, 39.6]
37.8 (3.6)

[36.2, 39.4]

Respiratory Exchange Ratio (RER)
0.83 (0.03)
[0.81, 0.84]

0.83 (0.04)
[0.82, 0.85]

0.88 (0.04)
[0.87, 0.90]

0.89 (0.03)
[0.87, 0.90]

0.88 (0.04)
[0.87, 0.89]

0.88 (0.03)
[0.87, 0.90]

0.87 (0.03)
[0.86, 0.90]

0.88 (0.03)
[0.86, 0.89]

0.88 (0.04)
[0.86, 0.89]

0.88 (0.03)
[0.87, 0.90]

Stage 3 Stage 4 Stage 5
Table 5.2 Controlled Acute High Training Load Exposure Stage Metabolic & Intensity Perception DataTable 5.1.2 Controlled Acute High Training Load Exposure Stage Metabolic & Intensity Perception Data

Mean (SD)
[95% CI]

Stage 1 Stage 2
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Figure 5.1 – Study Overview & Biomechanical Adaptations to acute High Training Load 
Exposure 
  

Eligible	Demographic
(N=157)
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Frontal NO medial	knee	displacement
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Poor	(n=23)

Frontal Medial	knee	displacement

Sagittal “Average”	 or	”Stiff”	landing	
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Biomechanical Loading	Profile

Motion
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Figure 5.2 – Biomechanics Methodology Protocol  

Pre-High Training Load Jump-Landing Biomechanics Assessment

1. Task instruction & re-familiarization
2. All participants completed 3 practice trials
3. All participants completed 3 viable assessment trials 
4. Participant’s retroreflective markers removed
5. Participant escorted to Exercise Physiology Laboratory

Ventilatory Threshold Determination

1. Resting heart rate & blood pressure assessment
2. Participant breathing mask and task familiarization
3. 5 min jogging at 4.0 MPH with breathing mask for familiarization & warm-up
4. Self-directed stretching
5. Speed-only graded submaximal exercise assessment:

1-minute stages that begin at a speed of 5.0 mph. Each stage increased by 1.0 mph until a 
speed of 8.0 mph (3rd minute – Stage #4). After the treadmill speed increased to 8.0 mph, 
each successive 1-minute stage increased speed by 0.5 mph past the first minute there is 
an observed increase in ventilatory equivalent for oxygen without an accompanying 
increase in the ventilatory equivalent for carbon dioxide.(Davis et al. 1980)

Alternate Stop Criteria Prior To Ventilatory Equivalent Criteria  (any two occur):

• RER >1.10
• RPE >17
• Heart Rate above 95% of age predicted max  

Pre-Assessment Subject Preparation

1. Participant arrived to Sports Medicine Research Laboratory
2. Informed consent obtained
3. Hydration assessed
4. Height & mass assessed
5. Participant donned spandex & sports bra
6. Participant’s retroreflective markers secured

Controlled High Training Load Exposure Protocol

Post-High Training Load Jump-Landing Biomechanics Assessment

1. Participant escorted to The Sports Medicine Research Laboratory
2. Participant’s retroreflective markers secured
3. “Booster Exercise” - Participant completed 2 x 10 trials of jump-landings 

separated by 30 s rest interval
4. All participants completed 3 viable assessment trials 
5. Participant’s retroreflective markers removed
6. Study protocol completed

Sample Every Minute on the Treadmill
• Metabolic gas (adjustment*)

• Heart rate

• RPE (6-20)

Treadmill Running

• Treadmill speed coincident:
• 100-120% VeT

• ~75% VO2max

• Duration:
• 5 min

Jump Landing Repetitions

• 10 Repetitions

• Drop height = 30 cm

• Horizontal distance = 50% body 
height

• “Jump for maximum vertical 
height after landing”

Transfer to 
Jump-Landing

Transfer to 
Treadmill Running

5 Sets

Termination Criteria
• Voluntary 

• Heart rate ≥95% age-predicted max

• RPE >17

• Visual instability / unsafe conditions
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Figure 5.3 – Pre-HTL, Post-HTL, & Change Responses for Sagittal Plane Trunk, Hip, & Knee 
Kinematics  
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1.Greater	trunk	 flexion	motion	 in	the	excellent
group	 from	42-97%	stance.	

1.Greater	hip	 flexion	motion	 in	 the	excellent
group	 from	26-87%	stance.	

(1) (1)

1.Greater	knee	 flexion	motion	 in	 the	excellent
group	 from	5-95%	stance.	

(1)

1.Magnitude	 Interaction	 Effect:	The	poor group	
decreased	 trunk	flexion	motion	 from	0-37%	
stance,	whereas	 the	excellent group	did	not	
change.

(1)

1.Magnitude	 Interaction	 Effect:	The poor group	
decreased	hip	 flexion	motion	 from	0-30%	
stance,	whereas	 the	excellent group	did	not	
change.

1.Time	Main	Effect:	Both	groups	decreased	knee	
flexion	motion	 from	0-15%	of	stance.

2.Duration	 Interaction	 Effect:	The	poor	group	
experienced	greater	duration	decreased	knee	
flexion	motion	 from	0-48%	stance.

(1) (1) (2)

1.Greater	trunk	 flexion	motion	 in	the	excellent
group	 from	41-100%	stance.	

1.Greater	hip	 flexion	motion	 in	 the	excellent
group	 from	8-90%	stance.	

1.Greater	knee	 flexion	motion	 in	 the	excellent
group	 from	5-95%	stance.	

(1) (1) (1)
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Figure 5.4 – Pre-HTL, Post-HTL, & Change Responses for Frontal Plane Hip & Knee 
Kinematics  

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

0 10 20 30 40 50 60 70 80 90 100

(+
)	
A
D
D
	/
	(
-)
	A
B
D
	(
d
e
g
)	

%	Stance	Phase

PRE-HTL	 Frontal	 Plane	Hip	Angle

-14

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50 60 70 80 90 100

(+
)	
A
D
D
	/
	(
-)
	A
B
D
	(
d
e
g
)	

%	Stance	Phase

POST-HTL	 Frontal	 Plane	Hip	Angle

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

(+
)	
A
D
D
	/
	(
-)
	A
B
D
	(
d
e
g
)	

%	Stance	Phase

CHANGE	 in	Frontal	 Plane	Hip	Angle

-20

-15

-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 100

(+
)	
V
A
L
	/
	(
-)
	V
A
R
	(
d
e
g
)	

%	Stance	Phase

PRE-HTL	 Frontal	 Plane	Knee	Angle

-20

-15

-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 100

(+
)	
V
A
L
	/
	(
-)
	V
A
L
	(
d
e
g
)	

%	Stance	Phase

POST-HTL	 Frontal	 Plane	Knee	Angle

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

(+
)	
V
A
L
	/
	(
-)
	V
A
R
	(
d
e
g
)	

%	Stance	Phase

CHANGE	 in	Frontal	 Plane	Knee	Angle

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

(+
)	
M
e
d
ia
l	
/	
(-
)	
L
a
te
ra
l	(
c
m
)	

%	Stance	Phase

PRE-HTL	 Frontal	 Plane	Knee	Displacement

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

(+
)	
M
e
d
ia
l	
/	
(-
)	
L
a
te
ra
l	(
c
m
)	

%	Stance	Phase

POST-HTL	 Frontal	 Plane	Knee	Displacement

-2

-1.5

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

(+
)	
M
e
d
ia
l	
/	
(-
)	
L
a
te
ra
l	(
c
m
)	

%	Stance	Phase

CHANGE	 Frontal	 Plane	Knee	Displacement

P
R
E

P
O
S
T

C
H
A
N
G
E

1.Greater	hip	abduction	motion	 in	 the	excellent
group	 from	5-84%	stance).	

1.Greater	knee	valgus		motion	 in	the	poor	group	
from	0-98%	stance.	

1.Greater	medial	knee	motion	 in	 the	poor	group	
from	10-80%	stance.	

1.Magnitude	 Interaction	 Effect:	The	excellent	
group	decreased	hip	adduction	motion	 from	0-

8%	stance,	whereas	 the	Poor	group	did	not	
change.

1.Time	Main	Effect:	Both	groups	 increased	 their	
knee	valgus	motion	 tendency	from	0-6%	stance.	

However,	 the	excellent group	did	not	achieve	a	
valgus	angulation	at	the	knee.

2.Magnitude	 Interaction	 Effect:	The	excellent	
group	 increased	knee	valgus	motion	 from	

95-100%	stance,	whereas the	excellent group	

did	not	change.

1.Magnitude	 Interaction	 Effect: The poor	group	
decreased	medial	knee	displacement	 from	

5-16%	&	45-100%	of	the	stance	phase,	whereas	

the	excellent	group	did	not	change.

(1) (1) (1)

(1) (1) (2) (1)

1.Greater	hip	abduction	motion	 in	 the	excellent
group	 from	22-52%	stance.	

1.Greater	knee	valgus		motion	 in	the	poor	group	
from	2-82%	stance.	

1.Greater	medial	knee	motion	 in	 the	poor	group	
from	10-68%	stance.	

(1)
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Figure 5.5 – Pre-HTL, Post-HTL, & Change Responses for Sagittal Plane Hip & Knee Moments 
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1.Greater	hip	extension	braking	moment	generation	 in	 the	excellent	
group	at	~3%	stance

2.Greater	hip	extension	propulsion	 moment	generation	 in	 the	excellent
group	 from	95-100%	stance.

1.Greater	knee	extension	braking	moment	generation	 in	 the	poor group	from	
12-15%	stance.

2.Greater	knee	extension	propulsion	 moment	generation	 in	 the	poor	group	
from	55-75%	stance.

3. Greater	knee	extension	propulsion	 moment	generation	 in	the	excellent
group	95-100%	stance.

(1) (2) (1) (2) (3)

(1) (2)

1.Magnitude	 Interaction	 Effect:	The	poor	group	decreased	their	hip	
extension	breaking	generation	7-9%	stance,	whereas	 the	excellent
group	did	not	change.

2.Magnitude	 Interaction	 Effect:	The	poor	group	 increased	 their	hip	
extension	propulsion	 moment	generation	92-96%	stance,	where	as	the	
excellent group	did	not	change.

1.Time	Main	Effect: Both	groups	experienced	similar	decreases	 in	knee	
extension	braking	moment;	poor from	0-2%	&	10-15%	stance,	
excellent from	6-15%	stance.

2.Magnitude	 Interaction	 Effect: The	poor	group	decreased	their	knee	
extension	propulsion	 moment	generation	 from	95-98%	stance,	
whereas	 the	excellent	group	did	not	change.

(1) (1) (2)

1.Greater	hip	 flexion	moment	generation	 in	 the	poor	group	95-98%	
stance.

(1)

1.Greater	knee	extension	moment	generation	 in	 the	poor group	 from	
3-5%	 (braking),	18-28%	(braking),	&	55-75%	(propulsion)	 stance.

2.Greater	knee	extension	propulsion	 moment	in	 the	excellent group	
90-98%	stance.

(1) (1) (1) (2)
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Figure 5.6 - Pre-HTL, Post-HTL, & Change Responses for Frontal Plane Hip & Knee Moments 
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1.Greater	hip	abduction	braking	and	propulsion	 moment	in	 the	poor	
group	 from	19-85%	stance.

1.Greater	knee	varusbraking	and	propulsion	 moment	in	 the	excellent
group	 from	21-58%	stance.

(1) (1)

(1) (2) (2) (2) (2)

1.Magnitude	 Interaction	 Effect:	The	poor	group	decreased	their	hip	
abduction	breaking	generation	3-4%	stance,	whereas	 the	excellent
group	did	not	change.

2.Duration	 Interaction	 Effect:	The excellent	experienced	a	greater	
duration	 increase	 in	abduction	moment	generation	 from	15-22%	&	65-
95%,	whereas	 the	poor group	only	experienced	an	 increase	 in	
abduction	braking	moment	 from	12-15%	stance.

1.Magnitude	 Interaction	 Effect:	The		poor	group	increased	 their	knee	
varus breaking	generation	 from	3-4%	stance,	whereas	 the	excellent
group	 increased	 their	 internal	knee	valgus	braking	moment	generation	
during	5-9%	of	the	stance	phase.

2.Magnitude	 Interaction	 Effect:	The	poor	group	 increased	knee	valgus	
propulsion	 moment	generation	during	90-95%	stance.

1.Greater	hip	abduction	braking	and	propulsion	 moment	in	 the	poor	
group	 from	30-75%	stance.

1.Greater	knee	varusbraking	and	propulsion	 moment	in	 the	poor	group	
from	25-56%	stance.

(1) (2)

(1) (1)
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Figure 5.7 - Pre-HTL, Post-HTL, & Change Responses for Vertical Ground Reaction and 
Anterior Tibial Shear Forces.  
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1.Greater	vertical	ground	reaction	force	in	 the	poor	group	 from	5-11%	&	
19-81%	stance.

1.Greater	anterior	 tibial shear	 force	in	 the	poor group	 from	12-15%,	
23-36%,	&	52-76%	stance.

2.Greater	anterior	 tibial shear	 force	in	 the	excellent	group	 from	
88-98%	stance.

(1) (1) (1) (1) (1) (2)

1.Time	Main	Effect: The	poor &	excellent groups	both	experienced	
decreased	vertical	ground	reaction	force	during	periods	 of	early	
stance	0-9%	&	late	stance	95-98%.

2.Duration	 Interaction	 Effect: The	poor group	(43-87%	stance)	
experienced	a	 longer	duration	 increase	 in	vertical	ground	reaction	
force	compared	to	 the	excellent group	 (75-87%	stance).

(1)

1.Time	Main	Effect: The	poor &	excellent both	both	experienced	
decreased	anterior	 tibial shear	 force	during	periods	 of	early	 stance	
(5-7%)	&	 late	(90-98%)	stance.

2.Duration	 Interaction	 Effect: The	poor group	(50-76%	stance)	
experienced	a	 longer	duration	 increase	 in	vertical	ground	reaction	
force	compared	to	 the	excellent group	 (78-85%	stance).

1.Greater	vertical	ground	reaction	force	in	 the	poor	group	 from	10-85%	
stance.

1.Greater	anterior	 tibial shear	 force	in	 the	poor	group	 from	3-5%,	
11-35%,	&	50-78%	stance.

2.Greater	anterior	 tibial shear	 force	in	 the	excellent	group	 from	87-98%	
stance.

(1)(2) (1) (2) (2) (1)

(1) (1) (1) (1) (2)
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CHAPTER 6: MANUSCRIPT #2 

 

Movement Quality Influences Systemic Stress Hormones and Musculoskeletal Tissue 

Responses to Acute High Training Load Exposure 

Overview 

Background: Recent literature has described a strong relationship between high training loads 

(HTL) and lower extremity musculoskeletal (MSK) injury risk in the physically active 

population. While a correlation exists between HTLs and lower extremity MSK injury risk, the 

interaction between HTL and biomechanics associated with an elevated risk or are protective 

against injury has not yet been described. Understanding the influence a low and high risk injury 

movement profile has on systemic and MSK system stress may offer insight regarding the 

capacity of the MSK system to offset some of the consequences of excessive HTL exposure 

linked to injury. 

Aim: Explore the potential influence of movement profile on physiological markers of systemic 

and MSK tissue stress at rest and in response to an acute exposure to a controlled HTL in 

healthy, physically active college-aged females, a population at high risk of severe lower 

extremity MSK injury. 

Methods: 43 physically active, healthy, college-aged females were enrolled in this study and 

were assigned to a poor-high injury risk or excellent-low-injury risk movement profile group 

operationally defined by the Landing Error Scoring System (LESS). Circulating markers of 

systemic (Cortisol) and MSK tissue (Creatine Kinase – MM (CK-MM) & Cartilage Oligomeric 



 

 259 

Matrix Protein (COMP)) stress were sampled via venipuncture at rest, immediately after, and 30 

minutes post HTL exposure. Samples were processed and analyzed via commercially available 

ELISA kits. 

Results: There is a moderate to strong group effect for movement profile on resting (d=1.19) and 

post HTL (d=0.64) cortisol levels. Both poor and excellent groups exhibited similar relative 

HTL-induced response (%∆) in cortisol, however, individuals with a poor movement profile 

exhibited elevated cortisol at baseline and post HTL compared to the excellent group. An 

excellent movement profile appears to encourage greater CK-MM release into circulation 

following HTL. Finally, there was an isolated main effect for time on COMP, with both groups 

experiencing similar increases in circulating COMP post HTL exposure, with similar baseline 

and post HTL values. 

Conclusions: A poor movement profile is associated with elevated biomarkers of systemic stress 

and less release of CK-MM into circulation secondary to HTL exposure. Movement profile may 

moderate systemic stress levels via a high or low level of biomechanical efficiency and shielding 

against or amplifying mechanical loads experienced during physical activity such as those during 

HTL. Individuals with an excellent movement profile may employ a greater volume of muscle 

tissue to dynamically temper forces as they pass along the kinetic chain, potentially explaining 

the elevated levels of CK-MM observed in the more efficient excellent movement group.
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INTRODUCTION 

Recent research links high training loads to increased MSK injury rates.(Gabbett, 2004; 

Gabbett & Jenkins, 2011) Training load literature differentiates between internal and external 

loads.(Halson 2014b) External load measures objectively define the total mechanical work 

completed by (or imposed demand on) an athlete during a training or competition session, such 

as distance traveled on a playing field, total power output, as well as number of collisions in 

contact sports.(Halson 2014a; Gabbett and Ullah 2012; Colby et al. 2014) Whereas internal load 

is most succinctly described by Halson et al. as “the relative physiological and psychological 

stress” experienced by an athlete in response to an external training or competition 

activity.(Halson 2014b) Both external(Hulin et al. 2016; Gabbett 2015) and internal training 

loads(Gabbett and Jenkins 2011) are associated with MSK injury risk in the athletic population. 

It is important to understand those factors that influence the stress response to heavy training 

loads given the emerging importance of training load as a MSK injury risk factor. 

There are several biochemical markers used to quantify the stress response following 

acute heavy training load (HTL) exposure.(Rietjens et al. 2005; Petibois et al. 2002; A. J. Coutts, 

Wallace, and Slattery 2007) The literature consistently describes serum cortisol to be indicative 

of systemic stress,(Dallman et al. 1994; Mastorakos et al. 2005) creatine kinase (CK-MM) to be 

representative of skeletal muscle tissue stress(Baird et al. 2012) or damage(Brancaccio, Maffulli, 

and Limongelli 2007), and cartilage oligomeric matrix protein (COMP) to be associated with 

articular cartilage disruption(Mündermann, Dyrby, Andriacchi, and King 2005; Lotz et al. 2013) 

during intensive exercise exposure. Thus, understanding the response of these biochemical 

markers to acute HTL may provide insight into the underlying mechanisms through which heavy 

training loads may influence MSK injury. 
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Individuals with specific biomechanical profiles experience greater physical stress during 

functional tasks, such and landing from a jump. Clinical movement assessments such as The 

Landing Error Scoring System (figure 6.1) have been used as a reliable and valid clinical tool to 

discriminate between individuals with excellent and poor movement quality profiles.(Padua et 

al., 2009) “Stiff” sagittal plane landing biomechanics and excessive medial knee displacement 

movement patterns are commonly associated with poor movement quality, and are linked to 

numerous lower extremity injuries, including ACL rupture,(Walden et al. 2015) patellofemoral 

pain syndrome,(Elias et al., 2004; Mizuno et al., 2001) medial collateral ligament injury,(Hull, 

Berns, Varma, & Patterson, 1996) lower-leg stress fracture,(Cameron, Peck, & Owens, 2014) as 

well as the progression of knee osteoarthritis (OA).(Brouwer et al., 2007; Sharma et al., 2001) 

Furthermore, a clinically identified poor movement profile has been associated with higher 

loading biomechanics, such as elevated vertical ground reaction forces, anterior tibial shear 

forces at the knee , and greater frontal and sagittal plane torques about the knee and hip.(D. A. 

Padua et al. 2009) While various individual characteristics and the training environment combine 

to effectively determine an athlete’s internal training load,(Impellizzeri, Rampinini, and Marcora 

2005) it is possible that an interaction exists between an individual’s movement quality profile 

and their systemic and tissue specific response to high training loads.  

Therefore the purpose of this study was to better understand the influence of movement 

profile on physiological markers of systemic and MSK tissue stress at rest and in response to an 

acute exposure to a controlled high training load (HTL) in healthy, physically active college-

aged females, a population at high risk of severe lower extremity MSK injury.(Hootman, Dick, 

and Agel 2007; Arendt, Agel, and Dick 1999) Previous studies have identified limited sagittal 

plane trunk, hip, and knee motion and excessive frontal plane knee and hip motion to be 
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associated with a non-contact severe injury mechanism, specifically ACL rupture.(Krosshaug et 

al. 2007; Sheehan, Sipprell, and Boden 2012) We hypothesize individuals with inefficient poor 

high-load, “stiff” sagittal plane and uncontrolled frontal plane landing biomechanics associated 

with lower extremity injury (figure 6.1) will have greater resting serum COMP levels at baseline, 

and will experience greater elevations in cortisol and CK-MM in response to HTL. Conversely, 

we hypothesize that individuals with a low-load, sagittal plane dominant, excellent movement 

profile will exhibit less COMP in circulation at baseline, and experience a blunted COMP and 

CK-MM elevation in response to HTL. 

 

METHODS 

Participants 

This study employed a two-group, cross-sectional, repeated measures design to 

investigate the influence of poor and excellent movement profiles on physiological markers of 

systemic and MSK tissue stress at rest and in response to an acute exposure to a controlled HTL 

(Figure 6.2). 

Participants were recruited from the female student body at The University of North 

Carolina at Chapel Hill. A priori power analysis of previously published data revealed that a total 

sample size of 40 participants (poor (n=20) & excellent (n=20)) would allow the investigators to 

detect a minimum 20% change in biochemical markers of systemic,(A C Hackney and Viru 

1999) muscle tissue,(McLellan, Lovell, and Gass 2011) and cartilage stress(Hamann et al. 2014; 

Niehoff et al. 2010) variables from pre- to post-HTL with a power of at least 0.80 and α= 0.05. 

Participants were demographically eligible if they had a history of participating in at least the 

high-school varsity-level of soccer, basketball, rugby, lacrosse, and team handball, tennis, track 
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and field, volleyball, or field hockey. Specifically, eligible participants were 18 – 25 years of 

age, actively participating in at least 30 minutes of moderate to high-intensity physical activity a 

minimum of 3 days per week. Participants were ineligible for participation if they had no history 

of lower extremity surgery within the past year, lower extremity joint surgery, prior ACL or 

meniscal injury, lower extremity injury in the past six months that prevented participation in 

physical activities for more than three consecutive days, neuroendocrine, neurological, or 

metabolic disease or condition, or dysmenorrhea or amenorrhea within the past six months. 

Demographically eligible participants were enrolled in this study if they demonstrated a 

operationally defined poor or excellent baseline movement profile during a LESS assessment 

described by Padua et al (Figure 6.2.1.).(D. A. Padua et al. 2009) Enrolled participants also 

needed to achieve an estimated maximal oxygen uptake ranging from 40 – 50 ml•kg-1•min-1 via 

submaximal aerobic power assessment described below. The selected aerobic power range is 

representative of a “good to superior” aerobic fitness level within the population (Medicine, 

2009), and coincides with the representative of the college female field and court sport athlete’s 

aerobic power (Enemark-Miller, Seegmiller, and Rana 2009). A total of 45 participants out of 

157 demographically eligible participants screened into the study, meeting all movement and 

aerobic power inclusion criteria. However, two participants who screened into the poor group 

could not complete the controlled HTL protocol, thus a total of 43 participants (N=43; excellent 

(n=22), poor (n=21)) were included in the final study sample. Participant demographics are 

described below in table 5.2.1. 
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Pretest Guidelines  

Participants meeting all demographic and movement profile inclusion criteria returned to 

the research laboratory for their testing session within two weeks of their LESS assessment. Prior 

to leaving the screening session, the principal investigator (BF) verbally explained all pretest 

guidelines and provided the participants with a documentation packet outlining the study 

protocol and the pre-test guidelines for their personal reference. Additionally the packet 

contained a physical activity readiness questionnaire (PAR-Q), Marx activity scale, health 

history, menstrual cycle, and contraception usage questionnaires to be completed prior to their 

scheduled visit. Pretest guidelines required that all participants refrain from alcohol consumption 

at least 48 hours prior to the testing session, refrain from using diuretic medications or 

supplements 7 days prior to the testing session, avoid caffeine consumption at least 12 hours 

prior to their testing session, maintain their “habitual” diet at least 7 days prior to testing, 

maintain adequate hydration at least 24 hours prior to the testing session, and achieve at least 6 

hours of sleep the night before their scheduled testing appointment. 

 

Participant Preparation 

All procedures were approved by the biomedical institutional review board (IRB) at The 

University of North Carolina at Chapel Hill. Enrolled participants reported to the laboratory for a 

single-testing session. To control for the diurnal variation of cortisol, (Kirschbaum et al. 1999) 

all participants reported to the research laboratory between 14:00 and 16:00 for their testing 

sessions. Upon arrival to the research laboratory informed consent was obtained prior to 

initiation of the study protocol outlined in figure 6.2. After informed consent was obtained, the 
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principal investigator verified the information in the pretest questionnaires to confirm the 

participant had no contraindications for exercise and met inclusion criteria. 

Upon completion of informed consent and inclusion criteria verification procedures, 

participants provided a mid-stream urine sample for evaluation of their hydration level using the 

specific gravity technique via refractometry (TS Meter, American Optical Corp., Keene, New 

Hampshire, USA) to ensure adequate hydration (urine specific gravity ≤1.02) prior to 

exercise.(Stuempfle and Drury 2003) Height (cm) and mass (kg) were measured and recorded 

using stadiometer and a digital scale (Detecto 2381, Detecto, Webb City, Missouri, USA). 

Prior to collection of the participant’s baseline blood sample collection, they sat atop a 

treatment table in the research laboratory for exactly 30 minutes of rest. Participants were 

instructed to not step down from the table to ensure standardization of baseline blood samples in 

efforts to limit the effects of previous daily activity on cartilage, muscle and stress biomarkers at 

baseline.(Niehoff et al. 2011) 

 

Ventilatory Threshold Assessment 

 For determination of ventilatory threshold, participants completed a speed-only graded 

submaximal aerobic capacity assessment(Vanhoy 2012; Berry et al. 2016) on a motorized 

treadmill (GE T2100 Exercise Stress System General Electric) with measurement of respiratory 

gas exchange using a metabolic cart (TrueOne 2400 Metabolic Measurement System Parvo 

Medics) and instantaneous monitoring of heart rate (A39 Exercise Monitor Under Armour Inc.). 

Prior to the ventilatory threshold assessment, the principal investigator completed standard 

calibration procedures of the flow, carbon dioxide, and oxygen sensors of the metabolic cart 

using a 3.0 L syringe of known gases. The principal investigator described the ventilatory 
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threshold assessment protocol to the participant before the initiation of the evaluation procedures 

(figure 6.2). 

After the principal investigator delivered testing instructions and explained the 

assessment procedures, the participant’s resting heart rate, blood pressure (ADC 700 

Diagnostix® Series Pocket Aneroid Sphygmomanometer American Diagnostics Corporation; 

3MTMLittmann® Stethoscope 3M), were measured and recorded after sitting for five minutes. 

The principal investigator then reviewed the participant’s resting vital signs to ensure there was 

no evidence of contraindications to participation in submaximal exercise.(Medicine, 2009) 

After the principal investigator ensured there were no contraindications to exercise 

participation, the ventilatory threshold assessment protocol outlined in figure 6.2 was initiated. 

Following completion of the ventilatory threshold assessment, the participant’s ventilatory 

threshold was determined using a modified V-slope method (Sue et al. 1988) to identify when 

there was an observed increase in ventilatory equivalent for oxygen without an accompanying 

increase in the ventilatory equivalent for carbon dioxide(Davis, Whipp, and Wasserman 1980) in 

the participant’s respiratory gas exchange data sampled during the assessment protocol. The VO2 

and treadmill speed coincident with 100%, 110%, and 120% were identified, and used to define 

the control of the treadmill running speed during the HIEE protocol (figure 6.2) 

 

Controlled Acute High Training Load Exposure Protocol 

 The controlled HTL protocol deployed in this study was novel (figure 6.2). Previously 

described HTL protocols lack rigorous control of intensity to compare the dependent variables of 

interest in the current study between movement profile groups. Thus the internal load(Foster et 

al. 2001) the study participants experience may be variable based on fitness level and other 
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confounding individual physiological variables.(Foster et al. 2001) The stringent aim of this 

study’s HTL protocol was to expose participants to approximately identical internal training 

loads based on their individualized ventilatory threshold. 

Controlling the HTL intensity using this novel approach implied individuals should have 

used similar energy systems,(Hopker, Jobson, and Pandit 2011) and experienced the same 

relative exercise intensity based on their individual system physiology.(Davis, Whipp, and 

Wasserman 1980; Hopker, Jobson, and Pandit 2011) During the HTL, the treadmill speed was 

increased or decreased by 0.161 km•h-1 increments to maintain an individualized instantaneous 

VO2 coincident with 100 – 120% ventilatory threshold, RER between 0.85 – 0.95, and RPE 12 – 

15. At end of each minute of each stage (5 stages, 5 minutes) of the HTL protocol, treadmill 

speed, RPE, VO2, and RER were manually recorded and entered into a Microsoft Excel 

spreadsheet (Microsoft Excel Microsoft Corporation). The stringent control of relative exercise 

intensity across subjects and between groups permitted isolated identification of the effects of an 

individual’s movement profile on their physiological markers of systemic and MSK tissue stress 

in response to a nearly identical exercise intensity exposure.(Hopker, Jobson, and Pandit 2011) 

 

Blood Collection Procedures 

 Following the standardized 30 minute rest period, all participants had their blood drawn 

from their antecubital vein using a 20 G 1½ BD PrecisionGlideTM vaccuatiner needle in a seated 

position. The blood sample was collected into a single 10 ml serum separator tube with clot 

activator gel (BD SST Vacutainer). The 10 ml blood sample was stored at 2 – 4ºC and allowed to 

clot overnight prior to processing and long-term storage. Blood was collected at three separate 

time points during the study protocol; PRE as described above, immediately following the HTL 
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exercise bout (POST-0), and 30 minutes after the HTL bout (POST-30). After samples clotted 

overnight, they were transferred to a pre-cooled centrifuge (IECCentra-8R Refrigerated 

Centrifuge) and were spun at 3,000 RPM for 15 minutes at 4° C. Serum was collected from the 

tubes via a 2.0 ml transfer a pipette into four aliquots for each time point (12 aliquots) into sterile 

2.0 ml polypropylene long-term storage cryogenic vials (Nalgene Thermo Scientific). Vials were 

labeled, sealed, and stored at -80° C until thawing for serum biomarker analysis via ELISA 

procedures described below. 

 

Biochemical Analysis 

 The selected systemic stress, cartilage, and muscle tissue stress biomarkers were analyzed 

using commercially available ELISA kits (abcam cortisol, Abnova COMP, MyBioSource CK-

MM). All biomarkers were assessed at PRE for a baseline value. The post HTL values for 

Cortisol and CK-MM were assessed at POST-30,(A C Hackney and Viru 1999; Brancaccio, 

Maffulli, and Limongelli 2007) while the post HTL values for COMP were assessed at POST-

0.(Niehoff et al. 2010) The results of the biomarker assays were assessed in duplicate using a 96 

well, 8-channel microplate reader (ChroMate® 4300, Awareness Technology Inc., Hauppauge, 

New York, USA). Cortisol was read at 450 nm, COMP at 405 nm, and CK-MM at 450 nm per 

manufacture guidelines. All samples from an individual participant were analyzed on a single 

ELISA plate. The intra-assay coefficients of variation for cortisol, COMP, and CK-MM were 

1.57%, 5.88%, and 7.14% respectively. The inter-assay coefficients of variation for cortisol, 

COMP, and CK-MM were 4.48%, 3.20% and 11.1% respectively. 
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Statistical Analysis 

 All results were analyzed using SPSS statistics (Version 21 IBM). Descriptive statistics 

for biomarker, participant anthropometric data, and metabolic data collected during the HTL 

were calculated. The level of significance for all hypothesis tests was set at α<0.05 a priori. 

Independent samples t-tests were carried out to determine if there was a difference in 

anthropometrics and fitness levels between movement profile groups. A 2×5 mixed model 

analysis of variance (ANOVA) was carried out to determine if there was an effect of movement 

profile on metabolic data across the stages of the HTL. 

Due to the inherent variability in raw biomarker data, all raw serum concentrations were 

natural log transformed to establish normality for statistical analyses using a 2×2 mixed model 

ANOVA to evaluate the effects of group and time on biomarker concentrations pre and post 

HTL. Post hoc analyses using group-by-time means and 95% confidence intervals were used to 

evaluate multiple comparisons. The lack of overlap between 95% confidence intervals around 

group-by-time means was used for criterion for statistical significance.(Poole 2001; Dijkers 

2013) Additionally, independent samples t-tests were carried out to compare ∆% scores for raw 

biomarker data to further evaluate the presence of a significant difference in a biomarkers 

response to HLT between groups.(G. Fitzmaurice 2001; G. M. Fitzmaurice, Laird, and Ware 

2011) The log concentrations of biomarkers were backwards log transformed for data 

presentation and interpretation within the context of previous literature. 

Although systemic and tissue stress biomarker levels were assessed for all participants, in 

some samples, individuals presented with levels outside a physiological range, did not have 

viable pairs of pre and post HTL secondary to compromised sample integrity, or presented as 

statistical outliers >2 standard deviations outside the log-transformed group-by-time sample 
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means. To control for missing data, a list-wise deletion was applied such that the final number of 

participants with valid pre and post HTL values for cortisol was (excellent (n=19), poor (n=21)), 

COMP was (excellent (n=21), poor (n=20)), CK-MM (excellent (n=21), poor (n=18)). Finally, 

chi-square analyses of association were carried out to determine if there was an relationship 

between movement profile group with “responders” who increased their levels of circulating 

biomarkers or “non-responders” who maintained or decreased their levels of circulating 

biomarkers of interest. 

 

RESULTS 

Participants Demographics 

 Participant anthropometrics and fitness demographic data are presented in table 5.2.1. 

Independent samples t-tests revealed there was no significant (P>0.05) differences between the 

movement groups for any demographic or fitness variable. 

 

Controlled High-Intensity Exercise Exposure Metabolics & Perceived Intensity 

 Movement profile group means, standard deviations, and 95% confidence intervals are 

reported in table 5.2.2. The results of the 2×5 mixed model ANOVA analyses revealed there was 

no significant (P>0.05) group-by-time (exercise stage) interaction or any group main effects. 

There was a significant main effect of exercise stage for RER, RPE, heart rate and VO2; with a 

significant increase between stage #1 and all other stages in both groups (P<0.05) primarily 

driven by the difference in initial metabolic activity in response to exercise onset(Brooks 1985) 

between stage #1 and the remaining stages. 
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Circulating Systemic & Musculoskeletal Tissue Stress Biomarkers 

 Group mean %∆, baseline and post HTL raw unit (ng/ml) and natural log transformed 

concentration values of systemic and musculoskeletal tissue stress biomarkers for the poor and 

excellent groups are presented in table 5.2.3 along with the associated group-by-time standard 

deviations, 95% confidence intervals, and effect size calculations between movement profiles at 

each time point. Sample means and descriptive statistics collapsed across movement profile 

groups for the main effect of time are reported in table 5.2.4. Mixed-model ANOVA analyses did 

not identify a significant group-by-time interaction effect for any of the biomarkers (P>0.05). 

However, upon closer analysis of the group-by-time CK-MM means and their associated 95% 

confidence intervals, it appears there is substantial separation between the poor group’s upper, 

and the excellent group’s lower bounds for both the the log-transformed and raw post HTL 

concentration values, with a moderate-to-large effect size. Furthermore, the excellent group 

exhibited a significantly greater %∆ for CK-MM (P<0.05) compared to the poor group, thus 

implicating a greater average within-subject CK-MM elevation in response to the HTL in the 

excellent group, that may not be accounted for with the general linear model ANOVA.(Dijkers 

2013; G. M. Fitzmaurice, Laird, and Ware 2011) 

In addition to a greater CK-MM elevation in response to acute HTL, there was a 

significant main effect for group on CK-MM, with the excellent group having greater overall 

CK-MM relative to the poor group (P<0.05). There was a significant main effect for time on 

COMP resulting in higher levels post HTL (P<0.05). Additionally, there were significant main 

effects for group (P<0.05) and time (P<0.05) on cortisol. Interestingly, while the poor and 

excellent group’s respective pre and post HTL cortisol values and associated 95% confidence 

intervals remained separated at each time point. There was substantial overlap in the poor 
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group’s pre HTL and excellent group’s post HTL cortisol 95% confidence intervals. Within the 

context of the the main effects for group and time on cortisol, these results recognize the poor 

group to have exhibited a resting cortisol level that is similar to the excellent group’s post HTL 

cortisol levels. Furthermore, there were no significant associations between movement quality 

profile and responder-type for any of the biomarkers (P>0.05). 

 

DISCUSSION 

The most important findings of this study are that there is a large effect of an individual’s 

movement quality profile on circulating biochemical markers before and after an acute HTL. 

Specifically we observed a strong effect of movement quality profile on CK-MM response to an 

acute HTL, with greater CK-MM increase in the excellent movement profile group. Additionally, 

circulating systemic stress hormone levels (cortisol) at rest and following acute HTL were higher 

in the poor movement profile group. In summary our findings suggest that CK-MM is released in 

larger amounts following acute HTL in those with an excellent movement profile. Also, those 

with a poor movement profile are consistently exposed to greater levels of circulating cortisol 

compared to their excellent movement profile counterparts. These findings indicate that 

movement quality profile influences markers of systemic (cortisol) and muscle (CK-MM) stress.   

 To our knowledge this is the first study to investigate the effects of movement quality on 

training load biomarkers associated with a systemic (cortisol) and tissue (CK-MM & COMP) 

stress response to acute HTL. Our systemic stress and CK-MM findings are in agreement with 

previous studies that have reported acute HTL to induce similar increases in cortisol(Edwards 

and Kurlander 2010; Edwards and Casto 2013; Haneishi et al. 2007; Aizawa et al. 2006) and 

CK-MM(Souglis et al. 2015; Keane et al. 2015) in female field or court sport athletes. The 
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results of the current study implicate biomechanics have a strong effect on basal systemic stress 

levels and muscle tissue stress responses to acute HTL, but no apparent influence on cartilage 

stress as we observed no group differences in COMP measures before or after acute HTL. 

 

Cortisol 

Cortisol is a downstream indicator of hypothalamic-pituitary-adrenal axis activity to 

maintain homeostasis in response to stress (Selye 1952; Dallman et al. 1994) both at rest and 

during exercise.(Mastorakos et al. 2005; Anthony C Hackney 2006; Steinacker et al. 2004; 

Dallman et al. 1994) Thus, interpreting the current findings within the context of integrated 

systemic physiology,(Brooks 1985) it is evident poor movement quality results in elevated stress 

levels at rest and following exercise. It is without question that there are many possible 

explanations and theories that must be explored as a consequence of the current study’s results. 

However, within the framework of the current investigation two viable explanations underlying 

the observed findings arise; (1) Poor movement quality results in greater energy demand, thus 

greater need for substrate mobilization both at rest and during exercise. (2) Poor movement 

quality results in higher mechanical stress exposure, which results in an elevated systemic 

inflammatory response. 

 It is thus possible that exposure to the same internal and external load (Table 5.2.2.) 

resulted in a greater need for substrate mobilization in the poor group compared to that of the 

excellent group, suggestive of a “mechanochemically inefficient”(Ryschon et al. 1997; Baird et 

al. 2012) system. One of the global aims of the downstream release of cortisol subsequent to 

exercise-induced elevations in hypothalamic-pituitary-adrenal axis activity is to elicit the 

sympathetically driven “fight or flight” response with an effective capacity to rapidly mobilize 
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various energy stores in effort to provide energy substrates to active muscle tissue and maintain 

blood glucose levels and systemic homeostasis.(Dallman et al. 1994; Mastorakos et al. 2005). 

The poor movement quality profile is associated with inefficient energy absorption and 

production.(Norcross et al. 2013a; Norcross et al. 2013b; D. A. Padua et al. 2009; D. a. Padua 

and DiStefano 2009) Increased cortisol in the poor movement profile group at rest (d=1.19) and 

after exposure to acute HTL (d=0.64) implicates their movement profile may result in an 

elevated chronic need to mobilize of energy stores in effort to meet the metabolically inefficient 

demands of the their biomechanical profile. 

 While we did not measure biomarkers of systemic inflammation such as the 

inflammatory cytokines(Nielsen and Pedersen 2007; Steinacker et al. 2004) to lend support to 

our chronic inflammatory theory, it is well-established that cortisol is a potent endogenous anti-

inflammatory substance capable of combating the consequences of exposure to oxidative stress 

molecules that are a consequence of acute HTL and sport.(Mastorakos et al. 2005; Dallman et al. 

1994; Steinacker et al. 2004)(A. Coutts et al. 2007)(McLean et al. 2010) Secondary to HTL an 

elevation in cortisol is expected, and is considered a normal physiological response to exercise. 

However, elevations at rest are representative of potentially non-physiological system responses 

to a stressor.(Anthony C Hackney and Battaglini 2007; Meeusen et al. 2013) The higher cortisol 

values observed in the poor group relative to the excellent group are not within the pathological 

range of hypercorticolism or baselow’s type over-training / reaching syndromes.(Dallman et al. 

1994; Petibois et al. 2002; Carfagno and Hendrix 2014) However, the elevation in the poor 

group’s circulating cortisol at baseline may suggest a greater basal systemic stress level in the 

poor movement profile group. 
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The exact etiology of this elevated stress level cannot be determined from this study. 

However, over-training / over-reaching literature may offer an explanation. Over-training 

syndrome in its simplest form is described as a pathology resulting from cumulative imposed 

stress outside the recovery capacity of the athlete, eventually resulting in a set of symptoms and 

maladaptation associated with decreased performance that does not return within a few days of 

rest / recovery.(Anthony C. Hackney, Pearman, and Nowacki 1990; Anthony C Hackney and 

Battaglini 2007; Halson and Jeukendrup 2004) We do not propose the poor movement group 

participants to be suffering from over-training. Rather we are choosing to leverage a similar 

model of over-exposure to mechanical stresses associated with a poor movement profile to elicit 

greater induced basal hypothalamic-pituitary-adrenal axis activity in this subgroup of the 

population that requires further study. It is possible the poor group is consistently in a state of a 

sub-pathological inflammatory / recovery response secondary to exposure to an elevated 

mechanical load during their activities of daily life and athletic participation compared to the 

excellent group. Collectively, our findings suggest that physically active females with a poor 

movement profile are consistently exposed to greater amounts of circulating cortisol compared to 

their excellent movement profile counterparts. 

 

Creatine Kinase (CK-MM) 

 The excellent movement quality profile group exhibited a greater increase in CK-MM 

compared to the poor group following acute HTL. We believe that elevated CK-MM in the 

excellent movement profile group represents greater skeletal muscle tissue usage during the acute 

HTL protocol, which is an efficient and preferred mechanism rather than relying on passive soft 

tissue structures. Based on our inclusion criteria for the excellent movement profile group, these 



 

 276 

individuals displayed greater sagittal plane displacement of the hip and knee during the landing 

tasks.(D. A. Padua et al. 2009; D. a. Padua and DiStefano 2009) Increased hip and knee flexion 

displacement suggest greater eccentric lengthening of the large hip extensor (gluteus maximus 

and hamstrings) and knee extensor (quadriceps) musculature during landing in the excellent 

movement profile group. 

There is a large body of evidence identifying eccentric muscle contraction to result in the 

greatest release of CK-MM into circulation.(Clarkson and Hubal 2002; Ryschon et al. 1997; 

Saka et al. 2009; Chen and Hsieh 2001) Thus it is likely the excellent group’s movement strategy 

(greater hip and knee sagittal plane displacement) during the HTL resulted in a greater volume of 

eccentric lengthening of the hip and knee extensor musculature, prolonging the dissipation of 

force over a greater period of time, and thus permitting attenuation of ground forces within a 

greater volume of muscle tissue which has been observed to increase circulating CK-

MM.(Barroso et al. 2010; Baird et al. 2012) The excellent group’s landing strategy may result in 

a more “mechanochemically efficient” strategy to conserve energy by leveraging the efficiency 

of the eccentric contractile properties of muscle over the stretch-shortening cycle.(Comyns, 

Harrison, and Hennessy 2011; Horita et al. 1999; Ryschon et al. 1997)  

Originally, the creatine kinase enzyme was associated with muscle tissue damage 

secondary to myocardial infarction, implicating an elevation in serum creatine to be suggestive 

of a purely catabolic and potentially pathological state.(Baird et al. 2012) However, previous 

literature that has evaluated the integrated physiological role and implications of the CK-MM 

creatine kinase isoenzyme during exercise lends support to our findings.(Baird et al. 2012; Saks 

2008) Recent theory and understanding of the CK-MM isoenzyme, which was specifically 

analyzed in this study, posits an emerging theory.(Lo et al. 2010; Baird et al. 2012) Specifically, 
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elevated CK-MM serum concentration secondary to acute HTL suggests an elevation in serum 

CK-MM to represent normal muscle activity during exercise, and is a healthy physiological 

response.(Baird et al. 2012; Ryschon et al. 1997; Saks 2008) Contemporary investigations 

support the theory that elevated serum CK-MM may be a marker of greater utilization of skeletal 

muscle to eccentrically control motion in the excellent movement quality profile group, 

representative of a physiological response to exercise within this population.(Baird et al. 2012; 

Saks 2008) 

 The “mechanochemical inefficiency” of the poor movement profile is further supported 

by our CK-MM findings, suggesting the excellent movement profile group may have leveraged a 

more efficient strategy to absorb and generate force during the HTL. Interestingly, high-velocity 

eccentric and concentric muscle contractions over a restricted range of motion have been 

observed to result in greater energy demand(Baird et al. 2012; Newham, Jones, and Clarkson 

1987; Clarkson and Hubal 2002) yet lower CK-MM release into circulation.(Barroso et al. 2010) 

The poor group used a “stiff” landing strategy, requiring a high-force, high-velocity eccentric 

contraction over a shorter joint range of motion at the knee, hip, and trunk. Suggesting that the 

poor movement group may use a movement strategy that is both metabolically inefficient at the 

muscle tissue level and releases less CK-MM into circulation under exercise conditions 

secondary to a “stiff” movement profile limiting eccentric muscle activity. 

The last explanation of elevated CK-MM in the excellent group is afforded by the  

widely accepted role of adenosine monophosphate-activated protein kinase (AMPK) as an 

“energy sensing enzyme”(Baird et al. 2012; Brooks 1985) that may play a role in the offloading 

of CK-MM from the eccentrically active muscle tissue in the excellent group. The primary 

bioenergetic roll of creatine kinase is to maintain phosphocreatine levels in the cell to be readily 
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available for immediate energy release.(Brooks 1985) However, during sustained exercise, as in 

our HTL protocol CK-MM’s roll is superfluous, and AMPK’s actions to turn off non-essential 

ATP consumption may act in attempt to override the utilization of CK-MM to resynthesize 

creatine-phostphate, by expelling CK-MM from the cytosol to make energy substrates readily 

available for more efficient oxidative pathways instead.(Saks 2008) Furthermore, offloaded CK-

MM reduces the availability of energy substrate for rapid muscular contraction post-exercise 

often reported as a decrease in muscle power output with higher levels of CK-MM in 

circulation.(McLellan, Lovell, and Gass 2011; A. Coutts et al. 2007; Magal et al. 2010) The lack 

of CK-MM within the cytoplasm may act as a protective mechanism permitting appropriate 

recovery of muscle for subsequent bouts of physical activity, protecting itself from high-power 

force output contractions.(Baird et al. 2012) 

 When interpreting our CK-MM and cortisol results together, our findings are in 

agreement with the position of Baird et al. 2012 that higher levels of circulating CK-MM may 

not be directly indicative of dangerous skeletal muscle damage alone. The excellent movement 

profile group did not exhibit a cortisol response associated with pathology which would be 

expected in parallel with a higher level of potentially injurious muscle tissue disruption. On the 

contrary, we observed less serum cortisol in the excellent group post HTL compared to the poor 

group in support of both our (1) metabolic and (2) mechanical stress theories. The current study’s 

findings offer support for the theory that the elevated serum cortisol in the poor group may be a 

response to elevated biomechanically self-induced systemic stress exposure not attenuated by 

muscle tissue during physical activity.  
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Cartilage Oligomeric Matrix Protein (COMP) 

In contrast to our original hypothesis, COMP measures did not significantly differ 

between groups, nor was there a difference in COMP changes following acute HTL between 

groups. However, we did observe a significant change in COMP following acute HTL exposure 

in both groups. Specifically, there was an increase in COMP (∆=15.22% [3.64,26.82]) following 

acute HTL, which did not differ between the excellent and poor movement profile groups. 

Previous studies have focused on primarily adult or elderly male populations. Thus, our study is 

the first to report the effect of a controlled acute HTL on circulating COMP in a large sample 

from the physically active college-aged female population. The results of this study suggest that 

physically active college-aged females exhibit a highly variable, yet similar COMP increase 

compared to previous reports in males following acute HTL.(Niehoff et al. 2010; Hamann et al. 

2014; Kersting et al. 2005; Mündermann, Dyrby, Andriacchi, King, et al. 2005)  

We observed a substantially greater amount of variability in resting, post HTL, and 

overall COMP response in the poor group. Suggesting, there may be a need for more advanced 

statistical procedures in evaluating COMP responses in the physically active healthy population, 

such hierarchical linear models using random intercepts and slopes.(Dijkers 2013) Closer 

inspection of the COMP response to acute HTL revealed there was a subset of individuals who 

were “non-responders” and decreased their COMP levels post-exercise. When including these 

individuals into the study sample’s mean %∆ for COMP (15.22 [3.64,26.81]%), our %∆ results 

are a ½ to 1/3rd less than that of previous reports with ranges from 25 – 40%+ increases 

overall.(Niehoff et al. 2010; Mündermann, Dyrby, Andriacchi, King, et al. 2005; Hamann et al. 

2014) However, when isolating our analyses to “responders” (those who experienced some 

increase in COMP after acute HTL), the average response of a ~37% increase is aligned with the 
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previous literature. Overall, our findings extend the current body of training load literature by 

indicating that movement quality does not appear to influence the immediate COMP response to 

acute HTL in physically active college-aged females. However, it should be noted that COMP 

responses to acute HTL were highly variable, which suggests this future investigation of this 

measure may require a more advanced investigation. In addition, the magnitude of COMP 

increase following acute HTL appears similar to previous reports in males, thus there does not 

appear to be a sex difference in COMP response to acute HTL. 

 Our study is not without limitations. Lacking a measure of inflammation and blood 

glucose or other circulating energy substrates such as lipoproteins limits our understanding of the 

poor group’s baseline elevation in cortisol. However the high-level of control of our exercise 

protocol (table – 5.2.2) is supported by a similar cortisol response (%∆) between groups, lending 

to the notion that while movement profile does not directly affect the stress response to HTL, it 

may influence the resting activity of the hypothalamic-adrenal-pituitary-axis. Future 

investigations should implement intervention designs aimed at improving movement quality in 

individuals with poor movement profiles to determine if there is a cause-and-effect relationship 

between movement quality and resting cortisol levels. 

The results of the current study lack generalization to other demographics within the 

physically active population. Our results are limited to describing the training load response 

profiles of healthy physically active college-aged females with a history of participation in field 

or court sports. While our results are not generalizable to the larger athlete and physically active 

population, college-aged female field and court sport athletes represent a population at high risk 

of non-contact, severe lower extremity injury such as ACL rupture.(Hootman, Dick, and Agel 

2007; Waldén et al. 2011; Peck et al. 2013) Additionally, evaluation of COMP in this population 
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is novel, and offers greater insight to an expanded population’s potential articular cartilage stress 

response to HTL previously unknown in the literature. Our observation of a high level of 

variability in COMP levels in this population suggests additional research of COMP responses to 

exercise is warranted. 

In conclusion, the results of the current study suggest clinicians should consider 

promoting an excellent movement profile to limit potentially maladaptive elevations in cortisol in 

physically active female athletes. Promotion of an excellent movement profile may result in 

increased systemic efficiency during acute HTL exposures. The collective results of this study 

also implicate that the prudent clinician should take caution when independently interpreting 

CK-MM as a marker of tissue damage, as it may not be a fundamental marker of injurious 

skeletal muscle damage, and may more accurately reflect a mechanochemically efficient loading 

strategy. Greater movement quality appears to be associated with greater loading of dynamic 

muscle tissue during sport participation, which may result in less overall systemic stress 

exposure, promoting faster recovery from and resilience to HTL exposure.
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Table 6.1 - Group Demographic & Fitness Level Descriptive Statistics; Group Means (SDs) 

  Excellent (n=22) Poor (n=21) 

Age (years) 20.5 (1.9) 20.4 (1.3) 

Height (m) 1.44 (0.44) 1.63 (0.23) 

Mass (kg) 64.5 (7.8) 60.9 (6.1) 

Resting Heart Rate (bpm) 65.0 (9.8) 71.5 (14.5) 

Resting Diastolic Blood Pressure (mmHg) 73.7 (9.6) 74.3 (14.2) 

Resting Systolic Blood Pressure (mmHg) 112.9 (6.4) 115.2 (7.4) 

100% Ventilatory Threshold (ml•kg-1•min-1) 33.2 (4.2) 34.0 (4.1) 

110% Ventilatory Threshold (ml•kg-1•min-1) 36.5 (4.6) 37.3 (4.5) 

120% Ventilatory Threshold (ml•kg-1•min-1) 39.8 (5.0) 40.7 (4.9) 

 

Table 6.1 – Group Demographic Descriptive Statistics
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Table 6.2 – Controlled Acute High Training Load Exercise Exposure Stage Metabolic & Intensity Perception Data 

Excellent Poor Excellent Poor Excellent Poor Excellent Poor Excellent Poor

Treadmill Speed (km•h-1)
11.0 (1.1)

[10.6, 11.5]
11.4 (1.0)

[10.9, 11.9]
11.0 (1.2)

[10.5, 11.6]
11.3 (1.0)

[10.8, 11.8]
11.0 (1.2)

[10.5, 11.5]
11.3 (1.0)

[10.8, 11.7]
11.1 (1.2)

[10.6, 11.6]
11.3 (1.1)

[10.8, 11.8]
11.2 (1.1)

[10.7, 11.7]
11.3 (1.1)

[10.8, 11.8]

Rate of Perceived Exertion (Borg 6-20)
12.1 (0.6)

[11.5, 12.6]
11.7 (1.7)

[11.3, 12.5]
12.4 (1.0)

[11.8, 12.9]
12.8 (1.6)

[12.2, 13.4]
12.7 (0.9)

[12.1, 13.2]
13.2 (1.5)

[12.6, 13.7]
13.1 (1.1)

[12.5, 13.8]
13.8 (1.6)

[13.2, 14.2]
13.3 (1.2)

[12.7, 13.9]
13.9 (1.4)

[13.3, 14.5]

Heart Rate (bpm)
169.0 (12.9)

[161.9, 176.8]
170.2 (19.6)

[162.9, 177.4]
175.0 (15.1)

[169.1, 180.8]
180.8 (11.8)

[174.8, 186.8]
177.5 (14.0)

[172.3, 182.7]
182.9 (9.6)

[177.6, 188.2]
179.4 (14.6)

[174.2, 184.7]
183.4 (9.2)

[178.0, 188.8]
181.8 (11.7)

[176.2, 187.4]
180.8 (14.2)

[175.0, 186.5]

Oxygen Uptake (ml•kg-1•min-1)
35.9 (3.2)

[34.4, 37.5]
35.9 (3.9)

[34.4, 37.6]
36.4 (4.4)

[34.7, 38.3]
37.0 (4.1)

[35.1, 38.9]
37.1 (3.8)

[35.5, 38.6]
37.0 (3.4)

[35.4, 38.6]
37.7 (4.0)

[36.0, 39.5]
38.0 (3.9)

[36.2, 39.7]
38.1 (3.6)

[36.5, 39.6]
37.8 (3.6)

[36.2, 39.4]

Respiratory Exchange Ratio (RER)
0.83 (0.03)
[0.81, 0.84]

0.83 (0.04)
[0.82, 0.85]

0.88 (0.04)
[0.87, 0.90]

0.89 (0.03)
[0.87, 0.90]

0.88 (0.04)
[0.87, 0.89]

0.88 (0.03)
[0.87, 0.90]

0.87 (0.03)
[0.86, 0.90]

0.88 (0.03)
[0.86, 0.89]

0.88 (0.04)
[0.86, 0.89]

0.88 (0.03)
[0.87, 0.90]

Stage 3 Stage 4 Stage 5
Table 6.2 Controlled Acute High Training Load Exercise Exposure Stage Metabolic & Intensity Perception Data

Mean (SD)
[95% CI]

Stage 1 Stage 2
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Table 6.3 - Group-by-time Raw (ng/ml), Natural Logarithm-transformed, & %∆  serum biomarker concentrations pre and  
post-acute HTL

n Mean (SD) 95% CI n Mean (SD) 95% CI Cohen's D

CORTISOLb,c

Pre Log [C] 19 4.5 (0.31) [4.37, 4.64] 21 4.98 (0.41) [4.8, 5.16] 1.32
Post Log [C]* 19 4.8 (0.72) [4.48, 5.12] 21 5.33 (0.72) [5.02, 5.64] 0.74
Pre Raw [C] (ng/ml) 19 96.62 (30.49) [82.91, 110.32] 21 157.64 (65.49) [129.63, 185.66] 1.19
Post Raw [C] (ng/ml)* 19 161.22 (144.55) [96.23, 226.22] 21 252.52 (140.26) [192.53, 312.51] 0.64
%∆ Raw [C] 19 59.99 (120.35) [5.87, 114.11] 21 68.4 (91.22) [29.39, 107.42] 0.08

CK-MM b,d

Pre Log [C] 21 2.28 (0.87) [1.91, 2.66] 18 1.97 (0.17) [1.89, 2.05] 0.50
Post Log [C]* 21 2.58 (0.9) [2.19, 2.96] 18 2.02 (0.24) [1.91, 2.13] 0.85
Pre Raw [C] (ng/ml) 21 14.88 (16.99) [7.62, 22.15] 18 7.26 (1.33) [6.64, 7.87] 0.63
Post Raw [C] (ng/ml)* 21 20.14 (23.26) [10.19, 30.09] 18 7.73 (2.01) [6.81, 8.66] 0.75
%∆ Raw [C] 21 68.62 (115.61) [19.18, 118.07] 18 7.12 (22.4) [-3.23, 17.47] 0.74

COMP c

Pre Log [C] 21 6.08 (0.26) [5.97, 6.19] 20 6.05 (0.4) [5.88, 6.23] 0.09
Post Log [C]** 21 6.17 (0.33) [6.03, 6.31] 20 6.17 (0.39) [5.99, 6.34] 0.01
Pre Raw [C] (ng/ml) 21 453.15 (121.01) [401.4, 504.91] 20 461.12 (195.11) [375.61, 546.63] 0.05
Post Raw [C] (ng/ml)** 21 502.5 (162.48) [433.01, 572] 20 512.03 (201.85) [423.57, 600.49] 0.05
%∆ Raw [C] 21 12.15 (27.83) [0.24, 24.05] 20 18.45 (44.73) [-1.15, 38.06] 0.17

asignificant for group × time interaction
bsignificant for group 
c significant for time 
dsignificant change score difference

*POST-30 sample

**POST-0 sample

Excellent Poor
Table 6.3 - Group-by-time Raw (ng/ml), Natural Logarithm-transformed, & %∆  serum biomarker concentrations pre and post acute HTL.
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Table 6.4 - Raw (ng/ml), Natural Logarithm-Transformed, & %∆ for serum biomarker concentrations collapsed across groups pre and 
post-acute HTL.

n Mean (SD) 95% CI n Mean (SD) 95% CI Cohen's D %∆Raw [C] mean (SD) 
CORTISOLa

Log [C] 40 4.77 (0.42) [4.63, 4.9] 40 5.08 (0.76)* [4.84, 5.32] 0.51
Raw [C] (ng/ml) 40 128.66 (59.84) [110.11, 147.2] 40 209.15 (147.87)* [163.33, 254.98] 0.71

CK-MMa

Log [C] 39 2.14 (0.66) [1.93, 2.35] 39 2.32 (0.73)* [2.09, 2.55] 0.26
Raw [C] (ng/ml) 39 11.36 (12.94) [7.3, 15.43] 39 14.42 (18.05)* [8.75, 20.08] 0.19

COMPa

Log [C] 41 6.07 (0.33) [5.97, 6.17] 41 6.17 (0.36)** [6.06, 6.28] 0.28
Raw [C] (ng/ml) 41 457.04 (159.44) [408.23, 505.84] 41 507.15 (180.49)** [451.9, 562.4] 0.29

a significant for time 
*POST-30 sample
**POST-0 sample

15.22 (36.72)
[3.64, 26.8]

Table 6.4 - Raw (ng/ml), Natural Logarithm-Transformed, & %∆ for serum biomarker concentrations collapsed across groups pre and post acute HTL.
Pre Post

64.41 (104.74)
[30.91, 97.91]

40.24 (90.69)
[10.84, 69.63]
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Figure 6.1 – Landing Error Scoring System Group Assignment Criterion. 

Excellent (n=22)

Frontal
NOmedial	knee	displacement	– Center	of	
patella	 is	lateral to	great	 toe	at	maximum	
knee	 flexion.

Sagittal

“Average”	or	”soft”	landing

Participant	goes	through	some	or	large
displacement	of	the	trunk,	hips,	and	knees.	

Poor (n=23)

Frontal
MEDIAL	KNEE	DISPLACEMENT	– Center	of	
patella	 is	in-line	or	medial to	great	toe	at	
maximum	knee	 flexion.

Sagittal

“Average”	or	”Stiff”	landing	

Participant	goes	through	very little	or some	
displacement	of	the	trunk,	hips,	and	knees.	

1. Participants stand on a 30 cm box positioned ½ their body-height behind a target line on the floor.

2. Participants are instructed to: “face forward, and jump down forward of the target line, and rebound upward for a 
maximal vertical jump.”

3. The evaluator replays the front and side views of the jump, assessing the sagittal plane motion at the trunk, hips, 
and knees from initial contact to maximum knee flexion angle & at the point of maximal medial knee position, 
estimates lines straight down from the center of each patella relative to the great toe.



 

 287 

 

Figure 6.2 – Biomarker Assessment Testing Session Overview. 

Baseline (PRE) Blood Sample Collection

Ventilatory Threshold Determination

1. Resting heart rate & blood pressure assessment
2. Participant breathing mask and task familiarization
3. 5 min jogging at 4.0 MPH with breathing mask for familiarization & warm-up
4. Self-directed stretching
5. Speed-only graded submaximal exercise assessment:

1-minute stages that begin at a speed of 5.0 mph. Each stage increased by 1.0 mph until a 
speed of 8.0 mph (3rd minute – Stage #4). After the treadmill speed increased to 8.0 mph, 
each successive 1-minute stage increased speed by 0.5 mph past the first minute there is 
an observed increase in ventilatory equivalent for oxygen without an accompanying 
increase in the ventilatory equivalent for carbon dioxide.(Davis et al. 1980)

Alternate Stop Criteria Prior To Ventilatory Equivalent Criteria  (any two occur):

• RER >1.10
• RPE >17
• Heart Rate above 95% of age predicted max  

Pre-Assessment Participant Preparation

1. Participant arrived to Sports Medicine Research Laboratory
2. Informed consent obtained
3. Hydration assessed
4. Height & mass assessed

Controlled Acute High Training Load Exposure Protocol

Sample Every Minute on the Treadmill
• Metabolic gas (adjustment*)

• Heart rate

• RPE (6-20)

Treadmill Running

• Treadmill speed coincident:
• 100-120% VeT

• ~75% VO2max

• Duration:
• 5 min

Jump Landing Repetitions

• 10 Repetitions

• Drop height = 30 cm

• Horizontal distance = 50% body 
height

• “Jump for maximum vertical 
height after landing”

Transfer to 
Jump-Landing

Transfer to 
Treadmill Running

5 Sets

Termination Criteria
• Voluntary 

• Heart rate ≥95% age-predicted max

• RPE >17

• Visual instability / unsafe conditions

Baseline 30 Minute Sitting Rest Period

POST-0 Blood Sample Collection

Post-HTL 30 Minute Sitting Rest Period

POST-30 Blood Sample Collection

Study Protocol Complete
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APPENDIX 1. 17-Item LESS Operational Definitions 
 

 

LESS$Item Operational$Definition Camera$View Error$Condition Score

Stance$width$–$
Narrow

Once#the#entire#foot#is#in#contact#with#the#ground,#draw#a#line#down#from#
the#tip#of#the#shoulders.#If#the#line#on#the#side#of#the#test#leg#is#outside#of#
the#foot#then#score#less#than#shoulder#width#(narrow),#score#YES.#If#the#
test#foot#is#internally#or#externally#rotated,#grade#the#stance#width#based#
on#heel#placement.

Front Yes
Y=1
N=0

Foot$position$5$
Toe$In

If#the#foot#of#the#test#leg#is#internally#more#than#30#degrees#between#the#
time#period#of#initial#contact#and#max#knee#flexion,#then#score#YES.#If#the#
foot#is#not#internally#rotated#more#than#30#degrees#between#the#time#
period#of#initial#contact#to#max#knee#flexion,#score#NO.

Front Yes Y=1
N=0

Foot$position$5$
Toe$Out

If#the#foot#of#the#test#leg#is#externally#rotated#more#than#30#degrees#
between#the#time#period#of#initial#contact#and#max#knee#flexion,#then#
score#YES.#If#the#foot#is#not#externally#rotated#more#than#30#degrees#
between#the#time#period#of#initial#contact#to#max#knee#flexion,#score#NO.

Front Yes
Y=1
N=0

Symmetric$
initial$foot$
contact

If#one#foot#lands#before#the#other#or#if#one#foot#lands#heel#to#toe#and#the#
other#lands#toe#to#heel,#score#NO.#If#the#feet#land#symmetrically,#score#
YES.

Side No
Y=0
N=1

Knee$flexion$
displacement

If#the#knee#of#the#test#leg#flexes#more#than#45#degrees#from#initial#
contact#to#max#knee#flexion,#score#YES.#If#the#knee#of#the#test#leg#does#
not#flex#more#than#45#degrees,#score#NO.

Side No
Y=0
N=1

Hip$flexion$at$
max$knee$
flexion

If#the#thigh#of#the#test#leg#flexes#more#on#the#trunk#from#initial#contact#to#
max#knee#flexion#angle,#score#YES. Side No

Y=0
N=1

Trunk$flexion$at$
max$knee$
flexion

If#the#trunk#flexes#more#from#the#point#of#initial#contact#to#max#knee#
flexion,#score#YES.#If#the#trunk#does#not#flex#more,#score#NO. Side No

Y=0
N=1
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APPENDIX 1. 17-Item LESS Operational Definitions 

LESS$Item Operational$Definition Camera$View Error$Condition Score

Knee$valgus$
displacement

At#the#point#of#max#knee#valgus#on#the#test#leg,#draw#a#line#straight#down#
from#the#center#of#the#patella.#If#the#line#runs#through#the#great#toe#or#is#
medial#to#the#great#toe,#score#YES.#If#the#line#is#lateral#to#the#great#toe,#
score#NO.

Front Yes Y=1
N=0

Joint$
displacement

Watch#the#sagittal#plane#motion#at#the#hips#and#knees#from#initial#
contact#to#max#knee#flexion#angle.#If#the#subject#goes#through#large#
displacement#of#the#trunk,#hips,#and#knees#then#score#SOFT.#If#the#subject#
goes#through#some#trunk,#hip,#and#knee#displacement#but#not#a#large#
amount,#then#AVERAGE.#If#the#subject#goes#through#very#little,#if#any#
trunk,#hip,#and#knee#displacement,#then#STIFF.

Side
Average#or#Stiff#
(double#penalty#
for#Stiff)

Soft=0
Average=1
Stiff=2

Overall$
impression

Score#EXCELLENT#if#the#subject#displays#a#soft#landing#and#no#frontal#
plane#motion#at#the#knee,#Score#POOR#if#the#subject#displays#a#stiff#
landing#and#large#frontal#plane#motion#at#the#knee.#All#other#landings,#
score#AVERAGE.

Side,#Front

Average#or#
Poor#(double#
penalty#for#
Poor)

Excellent=0
Average=1
Poor=2
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APPENDIX 2. Pre-Assessment Participant Guidelines 
 
 
 
 

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL 
 

Barnett Frank MA, ATC/LAT 
 

Department of Exercise and Sport Science 
 

209 Fetzer Hall, CB # 8700 
 

(203) 512-4235 / bsfrank@email.unc.edu 
 
 

Pre-Test Guidelines 
 

1. No eating 4 hours prior to testing. 

2. Void completely before testing. 

3. Maintain proper hydration prior to testing. 

4. Please wear appropriate clothing/shoes for testing (running shorts/shirt/shoes) 

5. No exercise 12 hours prior to testing. 

6. No alcohol consumption 48 hours prior to testing. 

7. No diuretic medications 7 days prior to testing. 

8. No caffeine consumption 12 hours prior to testing. 

9. Sleep at least 6 hours the night prior to testing. 

Source: Advanced Fitness Assessment and Exercise Prescription – Third Edition – Vivian H. Heyward 
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APPENDIX 3. Modified “V”-Slope Method for Determination of Ventilatory Threshold 
 

1. Carbon Dioxide output (VCO2) is plotted against oxygen consumption (VO2) as 
measured per minute during exercise. 

2. A line with a slope of 1 is drawn through the points on the graph during the early 
phase of exercise. 

3. The point on the line where VCO2 departs drastically from VO2 (break-away 
point) will be marked as the ventilatory threshold. The VO2 value at this point will 
be recorded and reported as a percentage of VO2max. 
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