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ABSTRACT 

SAMANTHA M. FIX: Applying a molecular pharmaceutics framework to the study of ultrasound 
contrast agents. 

(Under the direction of Paul A. Dayton) 
 

Several decades ago, stabilized microbubbles (MBs) were developed as vascular contrast 

agents for ultrasound imaging, and since then, the physics of MB oscillation and the unique acoustic 

signatures that MBs create have been relatively well characterized. Less well understood are 

considerations regarding how MBs interact with biological systems and how they can be exploited for 

therapeutic purposes. As the diagnostic and therapeutic applications of contrast agents continue to 

become more sophisticated, these considerations are ever more important. Thus, the purpose of this 

thesis is to study contrast agents from a new perspective, applying concepts from molecular 

pharmaceutics to enhance our understanding of contrast agent behavior and therapeutic potential.  

First, we characterize changes in MB clearance that occur over the course of longitudinal 

studies that involve repeated MB administrations over several weeks. We show that MB clearance 

becomes dramatically faster over time, which is associated with an immune response against 

polyethylene glycol (PEG), a common component of clinical and pre-clinical MB formulations. The 

effect we demonstrate has important implications for quantitative contrast-enhanced ultrasound 

imaging studies as well as therapeutic ultrasound applications that require consistent intravascular 

concentrations of MBs over the course of repeated administrations.  

Next, we explore the potential of MBs being repurposed for the controlled delivery of 

therapeutic gases. We thoroughly review the literature surrounding this topic and subsequently show 

that administering oxygen-filled MBs to rat fibrosarcoma tumors temporarily relieves tumor hypoxia 

and increases the efficacy of subsequent radiotherapy.  

Finally, we explore how ultrasound-stimulated contrast agents can be used to enhance drug 

delivery. Various biological barriers hamper efficient drug accumulation in tissues or cells of interest, 

presenting a major challenge in pharmaceutics research. Through the final portion of this thesis, we 
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use a new class of contrast agents – phase change contrast agents (PCCAs) – in conjunction with 

ultrasound to physically manipulate these biological barriers. In vitro, we show that ultrasound 

stimulated PCCAs can transiently disrupt cell membranes and epithelial monolayers for improved 

intracellular and transepithelial drug delivery, respectively. We envision in vivo applications of this 

work focused on enhancing drug delivery to solid tumors and improving gastrointestinal delivery of 

biologics.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 MEDICAL ULTRASOUND IMAGING AND THERAPEUTIC ULTRASOUND 

 
Ultrasound is a widely used diagnostic imaging modality, most well-known for its applications 

in obstetrics (fetal imaging) [1] and cardiology (echocardiography) [2]. To build ultrasound images, 

high frequency (>20 kHz) sound waves are transmitted into the body using a piezoelectric transducer. 

When the pressure wave encounters a tissue boundary, a portion of the signal is reflected due to 

differences in the density of and speed of sound through various tissues. These echoes are received 

by the transducer and processed to build the familiar brightness-mode (B-mode) images common in 

fetal imaging, where pixel brightness reflects the magnitude of the received echo. Standard B-mode 

imaging is a portable and inexpensive method to create anatomical images in real time without 

exposing patients to ionizing radiation, and as such, ultrasound is a staple bedside diagnostic imaging 

modality.  

Beyond imaging, ultrasound can be used to elicit a wide range of biological effects depending 

on the intensity of the applied beam (collectively referred to here as therapeutic ultrasound). At the 

high end of the intensity spectrum, ultrasound can be used thermally ablate diseased tissue 

noninvasively and with high spatial precision. Internal tissue is heated only where the acoustic waves 

are focused, thus sparing surrounding tissues in the beam path [3]. The clinical impact of high 

intensity focused ultrasound (HIFU) technology can be seen in the treatment of uterine fibroids [4], 

where HIFU is used to noninvasively destroy the fibroids while causing minimal discomfort for the 

patient. Indeed, patients can be awake during the treatment and are typically able to return to work 

and an active lifestyle 1-3 days later [4, 5]. This is in contrast to the approximate 6-week recovery 

time reported for women undergoing standard hysterectomy treatment for their uterine fibroids [4, 5].  
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With reduced acoustic intensity, therapeutic ultrasound can be used to non-destructively heat 

tissue by a modest 2-5°C [3]. This mode of therapeutic ultrasound has been used for decades in the 

field of physical therapy with the goal of eliciting biological effects ranging from decreased joint 

stiffness to increased blood flow, albeit with modest or uncertain benefit to the patient [6, 7]. 

Ultrasound hyperthermia has also been proposed as an adjuvant treatment in oncology in 

combination with radiation or chemotherapy [8]. More recently, this technology has been used to 

trigger the release of drugs from temperature sensitive liposomes and control therapeutic gene 

expression via heat-sensitive promoters [3].  

Finally, low intensity ultrasound can be used to transiently disrupt biological barriers. Unlike 

the previously described examples which rely on heating, barrier disruption is largely driven by 

mechanical forces. When fluid or tissue is exposed to ultrasound of sufficient amplitude, vapor 

cavities will be created through a process called cavitation. These gas pockets will then stably 

oscillate with the acoustic wave (stable cavitation) or, at sufficient acoustic amplitudes, they will 

violently collapse upon themselves (inertial cavitation) [9]. These physical phenomena apply 

mechanical stress on nearby biological structures, transiently influencing their integrity. This mode of 

therapeutic ultrasound is most often used to enhance drug delivery through challenging biological 

barriers, such as the stratum corneum (skin) [10, 11], gastrointestinal epithelium [12, 13], or blood 

brain barrier [14]. Exogenous cavitation nuclei (ultrasound contrast agents) are often used in this 

technique to reduce the acoustic energy required for inducing cavitation-mediated bioeffects.  

 
1.2 ULTRASOUND CONTRAST AGENTS 

 
1.2.1 MICROBUBBLES 

 
The signal-enhancing capability of bubbles was discovered by chance when a cardiologist 

noticed transient increases in ultrasound signal while injecting indocyanine green dye into the left 

ventricle during an echocardiography [15, 16]. The signal enhancement was later attributed to the 

formation of bubbles on the catheter tip, which sparked interest in developing microbubbles as 

intravenous ultrasound contrast agents. This lead to the discovery that blood components could 

stabilize air bubbles, ultimately leading to the commercial development of Albunex, an albumin-
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shelled air-filled microbubble formulation [15, 17].  Since these initial discoveries, decades of 

research have resulted in the development of sophisticated ultrasound contrast agents and contrast-

specific imaging methods.  

Modern microbubbles comprise two key components: a gas core and a stabilizing shell. All 

commercially-available microbubble formulations contain either sulfur hexafluoride or a 

perfluorocarbon gas [17]. These high molecular weight gases are poorly soluble in the blood stream, 

which limits microbubble dissolution and enhances their persistence. Protein, polymers, or lipids are 

often used for the stabilizing shell, which protects the microbubble from dissolution and dictates how 

the microbubble will respond to ultrasound [17]. Finally, a stealth polymer called polyethylene glycol is 

often included in the shell forming material to impart the microbubbles with a steric shield, limiting 

microbubble coalescence and clearance by scavenging immune cells [18].  

Microbubbles respond to ultrasound in a unique manner. Their gas cores are highly 

compressible, and they expand and contract with passing acoustic waves [19]. At very low 

amplitudes, these oscillations are primarily linear, with symmetric oscillations around a stable resting 

diameter. As amplitude is increased, microbubble oscillations become asymmetric with unequal 

expansion and contraction phases [20]. As amplitude is further increased, microbubble fragmentation 

and destruction occur. These unique behaviors create echoes with a wide range of frequency content 

that is unique from the ultrasound transmission frequency and the response of tissue [19, 21]. As a 

result, it is possible to isolate microbubble signals from that of tissue/fluid, which has given rise to 

contrast specific imaging techniques.   

Due to their micron-range size distributions (1-10 m), microbubbles are confined to the 

vascular space after intravenous administration [20]. This, combined with the ability to perform 

contrast-specific imaging, makes microbubbles ideal blood pool markers, and has given rise to a 

number of ultrasound imaging techniques centered on evaluating vascular structure, blood flow, and 

tissue perfusion [20, 21]. These techniques are especially powerful in the context of cancer, where 

chaotic angiogenesis is a hallmark feature and common treatment target. Indeed, a technique called 

acoustic angiography has been used to map tumor associated vasculature and quantify its distinct 
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morphology [22]. Furthermore, this technique shows promise as a novel method to provide early 

detection of tumor response to radiation therapy [23].    

More recently, microbubbles have been adopted by the therapeutic ultrasound field where 

they are used to enhance biological effects. Microbubble oscillation and collapse can cause flow 

disturbances in surrounding fluid, create shock waves, and even produce microjets of fluid toward 

nearby boundaries, which all exert physical stress on surrounding biological structures [19, 24]. There 

is particular interest in combining microbubbles with low intensity therapeutic ultrasound to open the 

blood brain barrier or tumor-associated vasculature to enhance the accumulation and efficacy of 

various drugs [25-27].  

 
1.2.2 PHASE-CHANGE ULTRASOUND CONTRAST AGENTS 

 
Phase-change ultrasound contrast agents (PCCAs) are liquid perfluorocarbon nanoemulsions 

that are stabilized by shells similar in composition to those of microbubbles. In the liquid state, PCCAs 

do not provide ultrasound contrast, but they can be vaporized into acoustically active microbubbles 

with ultrasound stimulation of sufficient amplitude [28]. Once vaporized, the resultant microbubbles 

can provide contrast for imaging purposes or be exploited for therapeutic purposes much like the 

conventional microbubbles described in the previous section.  

Early PCCAs were formulated with perfluorocarbons that had bulk boiling points near body 

temperature (e.g., dodecafluoropentane, DDFP, bulk b.p. = 29°C). These agents are stable in the 

liquid state at room temperature, but even at 37C, nanoscale DDFP PCCAs require high acoustic 

pressures for vaporization (3-6 MPa [29, 30]). This raises concerns of undesirable biological effects 

being induced by the high-pressure activation pulse for diagnostic imaging or low intensity therapeutic 

ultrasound applications.  

Sheeran et al. invented low boiling point PCCAs filled with decafluorobutane (DFB, bulk 

b.p. = -2°C) [31] or octofluoropropane (OFP, bulk b.p. = -36.7°C) liquid [32]. These PCCAs are 

fabricated through microbubble condensation, where precursor microbubbles are exposed to low 

temperatures and high pressures until their gaseous DFB or OFP cores condense into a liquid. They 

remain metastable in the liquid state at room and body temperature, and importantly, they can be 
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vaporized into microbubbles with acoustic parameters in line with what is used for clinical diagnostic 

imaging and with existing clinical hardware. This provides a substantial advantage over higher boiling 

point formulations.  

Motivation to use PCCAs rather than microbubbles is driven largely by their reduced size 

distribution. With sizes ranging from 100-300 nm, it has been postulated that PCCAs may be able to 

extravasate from leaky tumor-associated vasculature via the enhanced permeability and retention 

effect [33]. This, in theory, may allow extravascular imaging capabilities and expanded utility for 

therapeutic ultrasound applications compared to microbubbles that are confined to the vascular 

space.  

 
1.3 DISSERTATION SCOPE AND OBJECTIVES 

 
Historically, microbubbles have been characterized from a contrast imaging perspective, with 

emphasis placed on elucidating microbubble physics, their unique acoustic signatures, and optimal 

contrast-specific imaging techniques. Less well understood are details regarding (1) how biological 

systems respond to these chemical entities and (2) how microbubbles/PCCAs can be used to 

therapeutically manipulate biological features. Through this thesis, we study microbubbles and 

PCCAs from a molecular pharmaceutics perspective, gaining a better understanding of contrast agent 

behavior and therapeutic potential.  

Similar to drugs and drug delivery vehicles, microbubbles are chemical entities that will 

interact with biological milieu and the immune system when administered systemically. Chapter 2 

explores how these interactions may influence microbubble pharmacokinetics, particularly when 

microbubbles are administered repeatedly to the same animal over a one-month period. 

Understanding how microbubble pharmacokinetics may change as a result of anti-microbubble 

immune responses is important for many emerging applications of contrast-enhanced ultrasound 

imaging and therapeutic ultrasound that involve repeated administration of microbubbles to the same 

patient.  

A major theme of pharmaceutics research is that clever formulations can be designed to 

deliver therapeutic payloads that are otherwise limited by poor aqueous solubility or instability in 
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biological environments. In chapters 3 and 4, we apply this concept to microbubbles, exploring their 

potential as therapeutic gas delivery vehicles. Specifically, in chapter 4, we study the use of 

microbubbles to deliver molecular oxygen to hypoxic tumors to overcome hypoxia-induced resistance 

to radiation therapy.  

Efficient and specific drug delivery to the desired site of action is often hampered by nuanced 

biological barriers. Through the final chapters of this work (chapters 5-8), we explore how ultrasound-

stimulated PCCAs can be used to overcome some of these biological barriers through in vitro 

experimentation. Chapter 5 provides an introduction to mechanisms and applications of ultrasound-

mediated drug delivery. Through chapter 6, we demonstrate the ability of low boiling point PCCAs to 

be used to permeabilize individual cell membranes, which we apply to the delivery of bleomycin into 

chemo-resistant cancer cells in chapter 7. Finally, in chapter 8, we explore to potential of PCCAs to 

disrupt epithelial barriers towards applications in gastrointestinal drug delivery.   
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CHAPTER 21 

ACCELERATED BLOOD CLEARANCE OF PEGYLATED MICROBUBBLES 

 

 

2.1 MOTIVATION AND OVERVIEW 

 
Many emerging applications of microbubbles in ultrasound imaging and therapy involve 

repeated interrogation over several weeks. For example, quantitative contrast-enhanced imaging has 

been proposed as a method to provide early detection of tumor response to therapy [1, 2]. Here, 

microbubbles are used as blood pool markers, and quantification of microbubble flow or overall 

microbubble signal density can be related to tumor perfusion or degree of vascularity. Thus, changes 

in these imaging metrics over the course of treatment are assumed to reflect changes in tumor 

vascular physiology (e.g., decreased vascularization) and are used to predict treatment efficacy. 

In terms of therapeutic ultrasound, microbubbles are often combined with low intensity 

ultrasound to enhance drug delivery to a target region. When used to enhance chemotherapeutic 

accumulation in solid tumors, this ultrasound-enhanced treatment is repeated over the course of 

several weeks in accordance with standard chemotherapy dosing timelines [3]. Treatment efficacy is 

sensitive to microbubble concentration, and it is essential for microbubbles be present during the 

entire ultrasound exposure (e.g., after a bolus dose). 

In each of these examples, the concentration of microbubbles in circulation is critical, and a 

fundamental assumption is that microbubble persistence (pharmacokinetics) remains constant from 

day to day. However, we and others have noticed that the clearance of microbubbles becomes faster 
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during the course of longitudinal studies. We hypothesized that this phenomenon may be related to 

the development of an immune response against polyethylene glycol (PEG), a common component of 

many lipid-shelled microbubble formulations.  

The purpose of this chapter is to evaluate the generation of an anti-PEG immune response 

following a single dose or multiple doses of homemade PEGylated microbubbles over a one-month 

period and to characterize associated changes in microbubble pharmacokinetics. A secondary aim of 

this study was to characterize anti-PEG immunity and accelerated clearance following multiple doses 

of two clinically-approved microbubble formulations: PEGylated Definity® and non-PEGylated 

OptisonÔ. 

 
2.2 BACKGROUND     

 
PEG is used ubiquitously in biomedical research to enhance the in vivo stability and 

circulatory persistence of various particles. The high conformational flexibility and hydrophilicity of 

PEG makes interactions with blood proteins energetically unfavorable [4]. Therefore, PEGylation 

creates a steric shield surrounding the particle, reducing opsonization and subsequent clearance by 

the reticuloendothelial system [5]. This approach has been used to endow therapeutic proteins [6-8], 

drug-carrying nanoparticles [4, 9, 10], and imaging contrast agents [11-14] with improved 

pharmacokinetics, and several of these agents have been translated to clinical use [15, 16].   

Many microbubbles are formulated with PEG to stabilize their phospholipid shell [17, 18]. 

PEG-mediated stabilization is typically achieved through the use of PEGylated surfactants (e.g., 

polyethylene glycol stearate) or PEGylated phospholipids [18-20]. In both cases, the PEGylated 

molecules incorporate into the microbubble monolayer shell and stabilize the particles against 

coalescence with other microbubbles and interaction with blood plasma proteins [18, 19]. Inclusion of 

these PEGylated molecules has been shown to drastically enhance microbubble stability in vitro, 

prolonging formulation lifetime from approximately 13 min (without PEGylated lipids) to 60 min (with 

5% PEGylated lipids) [18]. Two of the three FDA approved microbubble formulations contain PEG. 

Lumason®/SonoVue® contains PEG-4000 as a stabilizer in the suspending medium [21] and 



 

11 

Definity® contains PEGylated phospholipid as a shell component [22]. The third FDA-approved 

formulation, Optison™, is stabilized by a human albumin-based shell and does not contain PEG [23].  

Paradoxically, the immune system is able to generate specific antibodies that bind to PEG, 

the molecule originally exploited for its resistance to protein absorption and immunological shielding 

[24, 25]. In rodents, anti-PEG immunity is characterized by robust but transient production of anti-

PEG IgM, which peaks in concentration approximately one-week following the initial dose of 

PEGylated agents [25]. Conversely, in humans, anti-PEG IgG antibodies are more prevalent, 

suggesting evidence for a potential anti-PEG memory response [26]. Furthermore, recent evidence 

suggests up to 72% of the general population (not previously exposed to PEGylated therapeutics) 

possess detectable pre-existing anti-PEG antibodies [26], possibly due to repeated low-level 

exposure to PEG-containing household goods such as foods, toothpastes, and skin care products. 

The pharmacokinetics of PEGylated particles are altered in the presence of anti-PEG 

antibodies. This so-called ‘accelerated blood clearance (ABC) phenomenon’ has been associated 

with >10-fold reductions in particle half-lives in preclinical species [27-29]. The ABC phenomenon has 

been observed in a variety of animals and for PEGylated agents ranging from proteins to liposomes 

[30-32]. Additionally, the presence of anti-PEG antibodies in humans has been correlated with 

increased incidence of adverse events and reductions in the therapeutic efficacy of PEGylated 

proteins in clinical trials, including pegloticase (indicated for severe treatment-refractory gout) and 

pegaspargase (part of multidrug therapy used to treat acute lymphoblastic leukemia) [33-35].   

We and other researchers have observed accelerated microbubble clearance in the later 

stages of studies that involve repeat contrast imaging over several days [36], and the role of anti-PEG 

immunity in this observation will be explored through this chapter.   

 
2.3 MATERIALS AND METHODS 

 
2.3.1 HOMEMADE MICROBUBBLE FABRICATION AND CHARACTERIZATION 

 
To form lipid-shelled microbubbles (referred to as house-MBs), 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

methoxy(polyethylene-glycol)-2000 (mPEG-DSPE) (Avanti Polar Lipids, Alabaster, AL, USA) were 
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combined in a 9:1 molar ratio and dissolved in a phosphate-buffered saline (PBS)-based solution 

containing 15% (v/v) propylene glycol and 5% (v/v) glycerol for a final lipid concentration of 1.0 

mg/mL. Lipid solubilization was achieved using a previously described method [37]. One and one half 

milliliter aliquots of the lipid solution were then dispensed into 3.0 mL glass vials. The vial headspace 

air was replaced with decafluorobutane gas (Fluoromed, Round Rock, TX, USA), and microbubbles 

were generated by vigorous shaking of the vial using a VialMix (Bristol-Myers-Squibb, New York, NY, 

USA). House-MB size distributions and concentrations were characterized via single particle optical 

sizing (Accusizer 780AD, Particle Sizing Systems, Port Richey, FL, USA).  House-MBs were 

characterized by a polydisperse size distribution. The average concentration and number-weighted 

mean diameter of these microbubbles were found to be (1.0 ± 0.3) ´ 1010 microbubbles/mL and 1.00 

± 0.02 µm, respectively (N=3 vials). 

 
2.3.2 COMMERCIALLY AVAILABLE MICROBUBBLES 

 
Definity (Lantheus Medical Imaging, Billerica, MA, USA) and Optison (GE Healthcare, 

Princeton, NJ, USA) used throughout this study were purchased from the Hospital Pharmacy at the 

University of North Carolina at Chapel Hill.  

 
2.3.3 ANIMAL PREPARATION 

 
All animal experiments were approved and performed in accordance with the University of 

North Carolina at Chapel Hill Institutional Animal Care and Use Committee. First, female Fischer 344 

rats were anesthetized via inhaled isoflurane (induced at 5% and maintained at 2% isoflurane in 

oxygen). A 24 G catheter was inserted into the tail vein and used to collect blood samples for PEG-

specific antibody detection. The catheter was then flushed with a small volume of heparinized saline 

to prevent clot formation and catheter blockage.  Next, the animals’ abdominal regions were shaved 

with an electric clipper and a disposable razor, and ultrasound gel was used to couple the imaging 

transducer to the animals’ skin. 
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2.3.4 ULTRASOUND IMAGE ACQUISITION  

 
An Acuson Sequoia 512 clinical imaging system equipped with a 14 MHz linear array 

transducer was used throughout this study (15-L8, Siemens, Mountain View, CA, USA). Anesthetized 

animals were positioned on their left sides and secured to a heated platform using surgical tape to 

minimize movement during imaging. The kidney was chosen as our imaging target due to its high 

vascularity, its proximity to the skin’s surface, and because it is not a suspected clearance organ for 

intact microbubbles [38, 39]. The largest transverse plane of right kidney was located via B-mode 

imaging at 14 MHz and 0.61 mechanical index with an imaging frame rate of 17 Hz. Contrast specific 

imaging in Cadence™ Contrast Pulse Sequencing (CPS) mode was then initiated with a frequency of 

7.0 MHz, mechanical index of 0.18, CPS gain of -10 dB, imaging frame rate of 20 Hz, and dynamic 

range of 80 dB. Twenty-minute CPS-mode clips were recorded using a capture frame rate of 1.0 Hz. 

Ten seconds into CPS clip storage, a bolus dose of microbubbles providing approximately 6.7´108 

microbubbles/kg body weight (see experimental protocols below for more detail) was rapidly 

administered through the tail vein catheter followed immediately by a 200 µL flush of sterile saline. 

Image data were exported from the ultrasound machine in DICOM format and analyzed offline using 

MATLAB (Mathworks Inc., Natick, MA, USA) and ImageJ software (NIH, Bethesda, MD, USA).  

 
2.3.5 EXPERIMENT 1 – CHANGE IN CIRCULATORY PERSISTENCE OF PEGYLATED HOUSE-

MBS OVER 28 DAYS 

 
A total of 11 female Fischer 344 rats (average weight 150.5 g) were divided into the 

experimental groups outlined below and underwent ultrasound imaging (or sham treatment) on days 

0, 1, 2, 3, 7, 14, and 28 of this study. For each contrast imaging session, approximately 1´108 house-

MBs were administered in 90 µL sterile saline followed by a saline flush. 

1. Sham (n=2): These animals underwent ultrasound imaging without contrast administration at 

each time point. Instead of house-MBs, these animals received a bolus dose of sterile saline. 

Serum collected from these animals served as a control for anti-PEG antibody expression at each 

time point.  
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2. Single contrast dose (n=4): This group was used to study the generation of anti-PEG antibodies 

following a single dose of PEGylated contrast. These animals were imaged with contrast on day 

0. At each subsequent time point, they underwent sham treatment involving catheter insertion, 

administration of sterile saline, and imaging in the absence of contrast agents. After the final 

blood collection on day 28, these animals received follow-up contrast imaging to evaluate the 

effect of a single dose of contrast on the clearance of house-MBs administered 28 days later.  

3. Multiple contrast doses (n=5): These animals received contrast imaging at each time point 

(days 0, 1, 2, 3, 7, 14, and 28) to study the generation of an anti-PEG antibody response and 

altered house-MB clearance kinetics during repeat imaging schedules. One animal from this 

group died on day 14, and data collected up until that point was included in this study. We believe 

this animal’s death was unrelated to the experiment and was likely due to isoflurane sensitivity. 

 
2.3.6 Experiment 2 – Free PEG competition to recover circulatory persistence of house-MBs 

 
 We performed a free PEG competition experiment to explore the causal relationship between 

anti-PEG antibodies and accelerated clearance of house-MBs. A total of 7 female Fischer 344 rats 

(average weight 93.7 g) were divided into Control and Free PEG Competition groups. These animals 

were smaller than those used for experiment 1, and the contrast dose was proportionally reduced to 

approximately 6.2´107 house-MBs administered in 90 µL of sterile saline. All animals received a dose 

of house-MBs on day 0 and underwent contrast imaging to capture initial microbubble circulation 

kinetics. On days 1, 2, and 3, all animals received an additional dose of house-MBs to stimulate the 

accelerated blood clearance effect. On days 7 and 24, Control or Free PEG Competition protocols 

were performed as detailed below. On day 22, all animals underwent contrast imaging to ensure that 

the free PEG dose on day 7 did not stimulate further acceleration in MB clearance for animals in the 

competition group. The timeline of this study is depicted in Figure 2.1. 

1. Control (n=3): On day 7, control animals received an injection of sterile saline equal in volume to 

that of the free PEG dose administered for the competition group. Approximately 3 hours later, 

house-MBs were administered and circulation kinetics were captured by contrast ultrasound 

imaging. This sequence of saline injection followed by contrast imaging was repeated on day 24. 
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Serum was collected on day 0, day 7 (before and ~3hr after saline injection), and day 24 (before 

and ~3hr after saline injection) to characterize anti-PEG antibody levels.  

2. Free PEG Competition (n=4): On day 7, animals in the competition group received a 550 mg per 

kg body weight (mpk) dose of sterile free PEG in PBS (20 kDa molecular weight, PEG20 kDa) 

(Sigma-Aldrich, St. Louis, MO, USA). Approximately 3 hours later, house-MBs were administered 

and contrast ultrasound imaging was performed. This free PEG competition sequence was 

repeated on day 24 with an increased dose of PEG20 kDa (2,200 mpk). Serum collected on day 0, 

day 7 (before and ~3hr after PEG injection), and day 24 (before and ~3hr after PEG injection) was 

used to characterize anti-PEG antibody levels. Serum was collected before and after PEG 

injection to determine if the free PEG was able to bind a substantial portion of circulating anti-PEG 

antibodies and therefore decrease detectable antibody concentrations. 

 
Figure 2.1: Timeline detailing experiment two. Free PEG competition to recover circulatory 
persistence of house-MBs. On days 0, 7, 22, and 24, animals underwent contrast ultrasound imaging 
to quantify microbubble circulatory persistence. On days 1, 2, and 3, animals received a dose of 
house-MBs without imaging to induce the ABC effect. On days 7 and 24, free PEG (or saline) was 
administered prior to the house-MB dose and contrast imaging. 
 

 
2.3.7 EXPERIMENT 3 – CHANGE IN CIRCULATORY PERSISTENCE OF DEFINITY AND 

OPTISON WITH MULTIPLE DOSING OVER 30 DAYS 

  
The purpose of this experiment was to study changes in the circulatory persistence of two 

clinically-approved microbubble formulations - Definity and Optison - when administered multiple 

times over a 30-day period. Definity is a lipid-based microbubble formulation, which contains 

mPEG5000-DPPE as a shell component. Conversely, Optison microbubbles are stabilized by a 

human albumin shell, and the formulation does not contain PEG.  
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A total of 15 Fischer 344 rats (average weight 146.8 g) were divided into Sham (n=4), 

Optison (n=6), and Definity (n=5) groups and underwent contrast imaging (or sham treatment) on 

days 0, 1, 2, 3, 7, 14, and 30 as described for experiment 1 (see procedures for ‘Sham’ and ‘Multiple 

contrast doses’). Approximately 1´108 microbubbles were administered at each time point, according 

to the stock concentrations reported on the Definity and Optison package inserts [22, 23]. Serum was 

collected from all animals at each time point and tested for anti-PEG antibodies.  

 
2.3.8 QUANTIFICATION OF MICROBUBBLE PERSISTENCE 

 
B-mode images and CPS videos were imported into MATLAB and converted from DICOM to 

TIFF and AVI formats, respectively. Each converted file was then opened in ImageJ where a 

relatively small region of interest (ROI, 60´30 pixel oval) was drawn in the upper half of the kidney. A 

small ROI was chosen to minimize artifacts due to shadowing in the lower regions of the kidney [40]. 

Mean pixel intensity within the ROI was plotted over time, providing contrast time intensity curves 

(TICs) for further analysis. After microbubble administration, contrast intensity peaked rapidly and 

was followed by plateau and washout phases. 

From the TICs, three metrics were calculated to quantify the circulatory kinetics of the 

microbubbles: area under the curve (AUC), elimination rate (ke), and half-life (t1/2). First, baseline 

intensity (average of the first 5 frames) was subtracted from the TIC and AUC were calculated in 

GraphPad Prism 6.0h (GraphPad Software, Inc., La Jolla, CA, USA). Additionally, a one-phase 

exponential decay equation was fit to the TIC washout phase, which was used to calculate the 

exponential decay constant referred to here as elimination rate (ke, min-1) and microbubble half-live 

(t1/2, min) using GraphPad. All curve fits were associated with R2 values between 0.90-0.99. AUC, ke, 

and t1/2 values were averaged among animals at each time point and are reported here as mean ± 

standard deviation. 

For experiment 2, image collection on day 24 was erroneously terminated before the 20-min 

end point. Therefore, AUC values calculated from 0 – 7 min (AUC0-7min) were compared among 

groups for this experiment. One-phase exponential decays were fit to the shortened curves on day 24 

with strong R2 values >0.96 and used to calculate t1/2 and ke values.  
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2.3.9 DETECTION OF PEG-SPECIFIC ANTIBODIES  

 
For all experiments, blood was collected as described in the ‘Animal Preparation’ section and 

allowed to clot at room temperature for 15-60 min. Serum was then isolated by centrifugation at 2,000 

g for 10 min and stored at −60°C for future use. 

 Serum concentrations of anti-PEG IgM or anti-PEG IgG antibodies were analyzed separately 

using their respective enzyme-linked immunosorbent assay (ELISA) kits (Life Diagnostics, Inc., West 

Chester, PA, USA) performed according to the manufacturer’s protocol. For all experiments, serum 

samples were diluted 100´ for the anti-PEG IgG assay. For experiment 1, serum samples were 

diluted 1000´ for the anti-PEG IgM assay. Serum dilution was reduced to 250´ for the anti-PEG IgM 

assay for experiments 2 and 3. Upon completion of the assay, optical density at 450 nm was read 

using an HTS 7000 Bioassay Plate Reader (PerkinElmer, Waltham, MA, USA) and the absorbance of 

a blank well was subtracted from all experimental values. All serum samples were tested in duplicate, 

and standard curves generated in duplicate on each ELISA plate were used to calculate the relative 

concentration of anti-PEG IgM or anti-PEG IgG in the samples in arbitrary units per milliliter. Please 

note that since the concentration of IgM and IgG standards were provided in arbitrary units, relative 

quantities of experimental anti-PEG antibody can only be compared within each isotype. 

 For experiment 1, samples from the time points showing maximal antibody concentration 

(day 7 for IgM and day 14 for IgG) were used in competitive ELISAs to confirm antibody specificity for 

the PEG component of house-MBs. Anti-PEG IgM and anti-PEG IgG ELISA kits were used as 

described above except serum samples were diluted with a solution containing the PEGylated lipid 

component of our microbubbles (DSPE-mPEG2000, 0.9-0.99 mg/mL). The relative quantity of anti-

PEG IgM and anti-PEG IgG detected through the competition assay was compared with that 

observed in the standard ELISA.   

 
2.3.10 STATISTICAL ANALYSES 

 
 All statistical analyses were performed in GraphPad. For each experiment, metrics describing 

microbubble circulatory kinetics (AUC, ke, t1/2) were compared using one-way ANOVA followed by 

Sidak’s multiple comparison testing on significant results. AUC, ke, and t1/2 values describing later 
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time points were compared to the respective initial values calculated on day 0. For experiment 1, 

kinetic parameters calculated on day 28 were also compared between those animals that had 

received multiple contrast doses throughout the study and those that had received a single contrast 

dose on day 0 and follow-up contrast imaging on day 28.  

 For experiments 1 and 3, mean anti-PEG IgM and anti-PEG IgG levels for each experimental 

group (i.e., multiple and single dosing for experiment 1, and Definity and Optison for experiment 3) 

were compared to the respective control mean at each time point using two-way ANOVA with respect 

to time. Dunnet’s multiple comparison testing was then performed on significant results. For 

experiment 1, the concentrations of IgM and IgG antibodies detected in the competitive ELISA assay 

were compared to the respective concentrations detected in the non-competitive ELISA using a 

paired student’s t-test. Throughout this study, p-values < 0.05 were considered statistically significant.  

 For experiment 3, remarkably high anti-PEG IgG values of 3,380 and 5,320 U/mL were 

detected in one of four control animals on days 14 and 30, respectively. This is in comparison to the 

400 ± 200 and 400 ± 300 U/mL IgG detected in the remaining control animals on days 14 and 30, 

respectively. Therefore, Grubbs’ tests were performed, and it was determined that both IgG 

measurement values from this animal were significant outliers. As such, these data points were 

excluded from the analysis. Note: this outlying control animal did not demonstrate unusually high anti-

PEG IgM concentrations at any time point. 

 
2.4 RESULTS AND DISCUSSION 

 
2.4.1 EXPERIMENT 1 – CHANGE IN CIRCULATORY PERSISTENCE OF HOUSE-MBS OVER 

28 DAYS 

 
Microbubbles are unable to escape the vascular space due to their relatively large size. By 

avoiding the measurement of signal in organs that are involved in active microbubble uptake and 

elimination (liver and spleen), we assumed that any signal observed in contrast-specific imaging was 

the result of microbubbles in circulation. Thus, microbubble blood clearance following an intravenous 

bolus dose was measured via quantification of contrast intensity over time. 
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Here, we imaged circulating microbubbles for 20 min following bolus administration using the 

kidney as an imaging target. The microbubbles were found to wash into the kidney vasculature within 

5 s of the injection (Figure 2.2 B, 2.2 G, 2.2 L), and the high concentration of microbubbles caused 

shadowing in some cases (white arrow heads in Figure 2.2 C and 2.2 H).  

 
Figure 2.2: Representative B-mode and contrast images of rat kidneys from experiment one. Kidneys 
are outlined in white. As shown in the day 0 panel, contrast washes out uniformly from all visible 
tissues in naïve rats, and some signal from the house-MBs is still observable at the 10-min time point. 
The ABC effect becomes apparent on day 3 and persists throughout the study. At these later time 
points we see rapid washout of contrast from the kidney, and redistribution into the liver (white 
arrows). Shadowing was observed post-contrast injection and is noted with white arrowheads. 
Bar = 5 mm. 
 

When microbubbles were administered to naïve animals on day 0, contrast was observable 

for greater than 10 min post-injection (Figure 2.2 A-E). Additionally, contrast intensity faded uniformly 

throughout the images. Accelerated blood clearance (ABC) of the microbubbles became apparent on 

day 2, and by day 3, the kidney appeared devoid of contrast signal by 5-min post-injection (Figure 

2.2 F-J). The ABC effect continued throughout the remainder of the study (through day 28). 

Interestingly, we observe that strong signal intensity in the liver persisted well beyond microbubble 

signal detected in the kidney and surrounding tissue, as designated by white arrows in Figure 2.2 I 
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and 2.2 N. Such an effect was never observed for the first contrast dose in naïve animals, and this 

qualitative observation suggests that ABC could be associated with more active liver uptake and 

clearance of the microbubbles. If the ABC is indeed due to the binding of multiple antibodies per 

microbubble, we suspect that clearance might be mediated by FcγRIIb receptors on liver sinusoidal 

endothelial cells and by Kupffer cells, as has been reported for other immune complexes [41-43] and 

microbubbles [44, 45]. Clearance to the liver and spleen may also be guided by erythrocytes following 

binding of opsonized microbubbles by complement receptor one [46].  

Contrast intensity was quantified in ImageJ and used to generate the time-intensity curves 

(TICs) presented in Figure 2.3. Corresponding with our qualitative observations, a leftward shift in the 

TICs was first observed 2 days after the initial microbubble dose (Figure 2.3 A). This effect continued 

to become more dramatic throughout the study, reaching a maximum on day 14 that was matched at 

day 28. This observation is reflected quantitatively in terms of elimination rate (ke), half-life (t1/2) and 

area under curve (AUC) (Table 1 and Figure 2.4). ke rates calculated on days 14 and 28 were 

approximately 4-times faster than that of the initial dose. Similarly, t1/2 and AUC decreased throughout 

the study, reaching a minimum on day 14, which was approximately matched on day 28. Half-lives 

and AUCs at these time points were approximately 4- and 6.5-times less than those of the initial 

dose, respectively. 

 
Figure 2.3: Average time intensity curves from experiment one. (A) Time intensity curves obtained 
from animals receiving repeat doses of polyethylene glycol (PEG)-containing house-MBs over 28 
days. Curve labels (D0-D28) indicate time in days since the initial dose. (B) Comparison of the initial 
contrast time intensity curve to those obtained 28 days later in animals that received multiple doses of 
contrast (purple) and those that received a single prior dose (blue).  
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Figure 2.4: Changes in house-MB pharmacokinetic parameters over 30 days of repeat dosing. 
A) Elimination rate (ke); B) Half-life (t1/2); C) Area under the curve (AUC). Symbol key: ** p ≤ 0.01; 
*** p ≤ 0.001; **** p ≤ 0.0001 
 

ABC was also observed on day 28 for animals that had received a single prior dose of 

microbubbles. However, the effect was not as dramatic as that seen on the 28th day in animals that 

had received multiple microbubble doses over 28 days (Figure 2.3 B). In the single dose group, ke 

was found to increase by 2.3-times, while t1/2 and AUC were both found to decrease by approximately 

2-times compared to the initial dose. However, ke was found to be significantly lower and AUC 

significantly higher in the single dose animals compared to the animals that received multiple dosing 

throughout the study (p ≤ 0.01 for both). These data indicate that cumulative microbubble exposure 

as well as dosing interval may be important in determining the magnitude of the ABC effect for 

PEGylated microbubbles.  

Table 2.1: Summary of key parameters describing the persistence of house-MBs in circulation from 
experiment one. Multiple = animals that received a house-MB dose at each time point, Single = 
animals that received house-MB dosing only on days 0 and 28 of the study, ke = elimination rate, t1/2 = 
half-life, AUC = area under the curve, House-MB = homemade polyethylene glycol-containing 
microbubbles, SD = standard deviation. Not significant (ns) p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; 
*** p ≤ 0.001; **** p ≤ 0.0001 

 ke (min
-1

) t
1/2

 (min) AUC (I × min) 

Treatment day Avg. ± SD 
Different from 

initial? Avg. ± SD 
Different from 

initial? Avg. ± SD 
Different from 

initial? 

Day 0 0.18 ± 0.02 -- 3.8 ± 0.3 -- 320 ± 30 -- 

Day 1 0.17 ± 0.03 No - ns 4.2 ± 0.8 No - ns 370 ± 60 No - ns 

Day 2 0.24 ± 0.02 No - ns 3.0 ± 0.3 Yes ** 230 ± 30 Yes *** 

Day 3 0.32 ± 0.06 No - ns 2.2 ± 0.4 Yes **** 160 ± 40 Yes **** 

Day 7 0.4 ± 0.1 Yes ** 1.8 ± 0.5 Yes **** 90 ± 30 Yes **** 

Day 14 0.8 ± 0.3 Yes **** 0.9 ± 0.2 Yes **** 50 ± 20 Yes **** 

Day 28 - Multiple 0.7 ± 0.2 Yes **** 1.0 ± 0.3 Yes **** 50 ± 20 Yes **** 

Day 28 - Single 0.42 ± 0.04 Yes * 1.7 ± 0.1 Yes **** 150 ± 20 Yes **** 
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2.4.2 EXPERIMENT 1 – GENERATION OF A PEG SPECIFIC IMMUNE RESPONSE IN 

RESPOSE TO HOUSE-MB DOSING 

 
 Commercially available ELISA kits were used to compare serum anti-PEG IgM and anti-PEG 

IgG levels between sham-treated control animals and animals that received either multiple house-MB 

dosing over 28 d or a single house-MB dose on day 0. As expected, we did not see any changes in 

anti-PEG IgM levels in sham-treated control animals throughout the study. However, we did see a 

slight increase in anti-PEG IgG on day 3 in sham control animals (Figure 2.5 A). Since such an 

elevation in anti-PEG IgG levels was not found in sham control animals at any subsequent time point, 

we consider the increase on day 3 to be insignificant to the interpretation of this study.  

Figure 2.5: Quantification of serum anti-PEG antibody levels and results of a competitive ELISA using 
free mPEG-DSPE (experiment one). (A) Serum anti-PEG IgG is shown to peak 7-14 days after the 
initial dose of house-MBs and decrease by the 28-day time point. (B) Serum anti-PEG IgM is shown 
to peak on day 7 for multiple and single dose groups. Anti-PEG IgM was found to decrease at 
subsequent time points. C and D) For those samples showing high anti-PEG IgM or anti-PEG IgG 
antibody expression, a competitive ELISA assay was performed to confirm PEG specificity. IgM and 
IgG binding to the PEG-coated ELISA plate was shown to decrease substantially when serum was 
incubated in the presence of free mPEG-DSPE (0.9-0.99 mg/ml). * p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 
0.0001. ELISA = enzyme-linked immunosorbent assay, Ig = immunoglobulin, mPEG-DSPE = 1,2,-
distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000.  
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Statistically significant elevations in anti-PEG IgG concentrations were detected on days 7 

and 14 in animals that had received multiple microbubble doses (Figure 2.5 A). Anti-PEG IgG peaked 

in these animals on day 14, and decreased considerably by day 28. As expected, the levels of anti-

PEG IgG were lower in the animals that had received a single microbubble dose compared to those 

that received multiple microbubble doses. Although anti-PEG IgG concentration did not reach 

statistical significance for animals in the single dose group compared to that of the sham controls, we 

do note that quantifiable levels of antibody were observed on day 7 (Figure 2.5 A).  

Serum anti-PEG IgM concentrations peaked 7 days after the initial microbubble dose for both 

groups of animals that received microbubbles. In animals that received multiple doses, anti-PEG IgM 

concentrations were also detected on day 14 but diminished substantially by day 28 (Figure 2.5 B). 

The elevation in anti-PEG IgM concentration on days 7 and 14 in the multiple dosing group showed 

statistical significance when compared to the IgM concentration of sham controls at the same time 

point. Elevation in anti-PEG IgM concentrations did not reach statistical significance at any time point 

for animals that had received a single microbubble dose; however, detectable levels of antibody were 

observed on day 7.  

 To confirm that the detected antibodies were specific for the PEG component of our 

microbubbles, a competitive ELISA was performed where free mPEG-DSPE was added to compete 

for antibody binding. Competition was performed on serum samples that showed high antibody 

expression (i.e., day 7 for anti-PEG IgM and day 14 for anti-PEG IgG). Free mPEG-DSPE 

competition reduced the detected anti-PEG IgM concentration by 97.4% and 98.7% in the multiple 

and single dose groups, respectively (Figure 2.5 E-F). Similarly, a 95.3% decrease in apparent anti-

PEG IgG concentration was found in the multiple dosing group following free mPEG-DSPE 

competition (Figure 2.5 C). A lower (64.8%), yet statistically significant, reduction in anti-PEG IgG 

antibody concentration was found for the single dose group due to the already low antibody levels 

present without competition (Figure 2.5 D). These data indicate mPEG-DSPE-specificity of the 

detected IgM and IgG antibodies. Furthermore, we performed additional ELISA assays using plates 

coated with our microbubble components (DSPC and mPEG-DSPE) instead of the PEG-BSA coated 

plates provided in the ELISA kit. We observed similar trends in serum IgM and IgG levels using the 
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plates coated with microbubble components compared to the kit-provided plates. This confirmed the 

presence of microbubble-specific antibodies in our serum samples (Appendix A.1, Figure A.1). 

The time course of initial anti-PEG antibody production coincides with the observed changes 

in house-MB clearance, both peaking 7-14 days after the initial dose. Furthermore, animals that had 

received multiple microbubble doses demonstrated a more robust anti-PEG immune response 

compared to animals receiving a single dose. This corresponds with the more dramatic increase in 

microbubble clearance for the multiple versus single dose group.  

However, we do not see a strong correlation between detected anti-PEG antibody 

concentration and the rate of microbubble clearance. For example, kinetic parameters describing 

house-MB clearance are nearly identical on days 14 and 28. Conversely, anti-PEG IgM and anti-PEG 

IgG levels are considerably greater on day 14 than day 28. We hypothesize that antibody-

microbubble binding is not a rate-limiting step in the microbubble clearance pathway and that even on 

day 28 (when antibody concentrations had declined below the limit of quantification for our ELISA) we 

have a sufficient molar excess of antibodies to drive maximally accelerated clearance.  

Here, we have administered microbubble doses containing approximately 1.0´108 house-

MBs resulting in a rat blood concentration of ~1.66´10-14 M. Unfortunately, the lower limits of 

detection of the commercial anti-PEG IgM and anti-PEG IgG ELISA kits used in this study are 

unknown. However, we note that ELISA assays for anti-PEG antibodies can have lower limits of 

detection in the range of 2 – 15 ng/mL [26]. This implies that serum antibody concentrations near the 

detection limits of our assays may correspond to an antibody molar excess of >800 antibodies per 

microbubble. Thus, antibody concentrations well below our ELISA’s probable lower limit of detection 

would likely be sufficient to induce the accelerated clearance of this dose of microbubbles as immune 

complexes.  

 
2.4.3 EXPERIMENT 2 – FREE PEG COMPETITION TO RECOVER CIRCULATORY 

PERSISTENCE OF HOUSE-MBS 

 
 A competition experiment was performed to explore the mechanistic connection between 

anti-PEG antibody generation and accelerated clearance of PEGylated house-MBs. We dosed rats 



 

25 

with house-MBs on days 0, 1, 2, and 3 to induce anti-PEG antibody production and accelerated 

microbubble clearance. On day 7, we administered free PEG20 kDa at a dose of 550 mpk in hopes of 

occupying the circulating anti-PEG antibodies. We subsequently administered house-MBs and 

characterized their circulatory persistence. This competition protocol did not provide recovery of 

house-MB dwell time compared to control animals that had received a saline injection prior to the 

house-MB dose. The initial t1/2 on day 0 was found to be 8 ± 3 min, whereas Control and Competition 

groups on day 7 where characterized by t1/2 values of 2.5 ± 0.5 min and 2 ± 0.7 min, respectively. 

ELISA analysis demonstrated high anti-PEG IgM and anti-PEG IgG concentrations before the PEG20 

kDa dose (similar to that found on day 7 in experiment 1 (Figure 2.5)), which did not decrease after 

the PEG20kDa injection (Appendix A.2, Figure A.2). This indicates that a PEG20 kDa dose of 550 

mpk was not sufficient to bind a substantial fraction of the high anti-PEG antibody concentration 

present on day 7, explaining why free PEG competition did not result in prolonged microbubble dwell 

time. A competitive ELISA experiment confirmed that free PEG20 kDa is able to compete for 

antibody-plate binding at a concentration of 0.9 mg/ml for both anti-PEG IgG and anti-PEG IgM 

(Appendix A.2, Figure A.2). This in vitro concentration of free PEG would be approximately equal to 

an in vivo free PEG dose of 6,000-15,000 mpk (taking into consideration the 100-250´ serum dilution 

used in the ELISAs and assuming a blood volume of 6.5 ml for a 100 g rat). Therefore, PEG20 kDa 

would theoretically have been a successful competition agent in vivo if administered in at a high 

enough dose. 

 From experiment 1, we know that anti-PEG antibody concentrations decrease between days 

14 – 28 in our model. Therefore, we repeated the competition experiment using a higher dose of free 

PEG20 kDa (2,200 mpk) at a later time point (day 24) when the serum anti-PEG antibody 

concentrations were lower. With the revised competition protocol, we did observe a significant 

prolongation of house-MB dwell time in animals that received free PEG20 kDa compared to control 

animals that received a saline injection (Figure 2.6 A). Microbubble elimination kinetics (ke and t1/2) 

after competition matched that of the initial contrast dose. However, the peak intensity of the 

competition TIC remained slightly lower than that of the initial TIC (day 0). These observations are 

displayed quantitatively in terms of ke, t1/2, and AUC in Figure 2.6 B-D.  
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Without competition, ke was 3.6´ faster on day 24 than on day 0. With free-PEG competition, 

elimination rate was reduced to a value that was statistically insignificantly different than that seen on 

day 0. Similarly, half-life recovered to a value that was insignificantly different from the initial value 

after free PEG competition. AUC did not reach that of the initial TIC, due to the lower initial peak 

intensity found for the competition curve. However, competition significantly increased AUC 

compared to that of the control TIC on day 24. Collectively, these data support our hypothesis that 

anti-PEG antibodies are mechanistically involved in the accelerated clearance of our PEGylated 

house-MBs.  

Figure 2.6: Competition with 2,200 mpk free PEG20 kDa prolongs house-MB circulation in animals 
exhibiting the ABC effect. (A) Initial time intensity curve of house-MBs (red) shows slow clearance 
compared to that of control animals on day 24 (grey). When animals were pre-dosed with 2,200 mpk 
free PEG, the microbubble time intensity curve (black) showed a long circulation profile similar to that 
seen on day 0, indicating successful competition of binding between anti-PEG antibodies and 
microbubbles. (B-D) After competition on day 24, ke and t1/2 values were not statistically different from 
their respective initial values. After competition on day 24, AUC was still significantly lower than the 
initial value, however, competition did significantly increase AUC compared to control animals that 
received saline injections on day 24. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001 
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Our data is consistent with the current literature describing the mechanism of the ABC 

phenomenon for PEGylated liposomes [25, 47-49]. The binding of IgM or IgG to PEGylated particles 

is thought to activate the complement system through the classical, antibody-mediated pathway. 

Such activation leads to particle opsonization by complement proteins, followed by binding/trafficking 

by erythrocytes (mediated by complement receptor one [46]) or direct accumulation in liver-resident 

scavenger cells such as liver sinusoidal endothelial cells and Kupffer cells [25]. This mechanism is in 

line with the data presented throughout this manuscript showing (1) anti-PEG antibody detection 

coinciding with accelerated microbubble clearance, (2) competition with free PEG resulting in 

recovered microbubble circulation kinetics, and (3) our observation suggesting the possibility of 

enhanced microbubble accumulation in the liver following clearance from the blood stream 

(experiment 1). 

 
2.4.4 EXPERIMENT 3 – CHANGE IN CIRCULATORY PERSISTENCE OF DEFINITY AND 

OPTISON WITH MULTIPLE DOSING OVER 30 DAYS 

 
FDA-approved Definity microbubbles are stabilized by a PEGylated lipid shell. These 

microbubbles are similar in composition to our house-MBs, and therefore, we hypothesized that 

repeat administration of Definity over several weeks would result in anti-PEG antibody production and 

accelerated clearance. Indeed, we observe a leftward shift in Definity TICs over 30 days (Figure 2.7 

A), which corresponded to significant decreases in AUC and t1/2 and a significant increase in ke 

(Figure 2.8 A-C). A maximum change of 2.1´ was found on day 7 for both ke and t1/2. The maximum 

change in AUC was found on day 14 were AUC was 2.6´ lower than the initial value.  

The 2.1-2.6´ changes in AUC, t1/2, and ke found for Definity are modest compared to the 4-

6.5´ changes found for our house-MBs when administered with the same dosing schedule. We 

believe that this discrepancy is due to the relatively faster clearance of Definity at baseline compared 

to our house-MBs. The half-lives of Definity and house-MBs on day 0 were 2.0 ± 0.3 and 

3.8 ± 0.3 min, respectively, but both formulations were characterized by the same minimum half-life of 

0.9 min when maximally accelerated clearance was exhibited. 
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Figure 2.7: Average time intensity curves of commercial microbubbles. (A) Average time intensity 
curves obtained from animals receiving multiple injections of Definity over 30 days. Curve labels (D0-
D30) indicate time in days since the initial dose. (B) Average time intensity curves from animals 
receiving multiple injections of Optison over 30 days. 
 

Accelerated Definity clearance was associated with the generation of anti-PEG IgM and to a 

lesser extent anti-PEG IgG (Figure 2.9). Antibody production followed a similar trend to that observed 

with house-MB dosing. Highest antibody concentrations were observed on day 7, and antibody levels 

decreased substantially by the study endpoint.  

Optison microbubbles are stabilized by a shell of human albumin and do not contain PEG. 

Therefore, we were hypothesized that this formulation would not undergo PEG-associated 

accelerated clearance when administered repeatedly over 30 days. Indeed, Optison administration 

did not result in the generation of anti-PEG antibodies (Figure 2.9). However, we did observe a slight 

shift in TICs towards the end of the 30-day period (Figure 2.7 B). Optison microbubbles were rapidly 

cleared at baseline (initial t1/2 of 0.5 ± 0.3 min), and t1/2 decreased by a modest 1.75´ on day 30 

(Figure 2.8 E). Similarly, a 1.59´ increase in ke was found on day 30 (Figure 2.8 F). While statistically 

significant, the experimental relevance of the small changes in Optison t1/2 and ke values warrants 

further investigation (i.e., Will a decrease in t1/2 from 0.5 ± 0.3 min to 0.3 ± 0.1 min change the 

interpretation of longitudinal contrast enhanced ultrasound studies?). The shift in Optison TICs did not 

result in a significant change in AUC at any time point (Figure 2.8 D).  
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Figure 2.8: Changes in commercial microbubble pharmacokinetic parameters over 30 days of repeat 
dosing. Change in areas under the curves (A), half-lives (B), elimination rates (C) through time for 
Definity when administered repeatedly over a 30-day period. Change in areas under the curves (D), 
half-lives (E), elimination rates (F) through time for Optison when administered repeatedly over a 30-
day period. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001 
 

The shift in Optison TICs suggests that physical or immunological effects beyond anti-PEG 

immunity may be involved in the accelerated clearance of microbubbles, especially those that are 

non-PEGylated. Human serum albumin (the shell material of Optison) is immunogenic in rodents [50, 

51], and liposomes decorated with foreign albumin molecules (bovine serum albumin or ovalbumin) 

have been shown to induce anti-albumin antibody generation and accelerated liposome clearance in 

rodents [52-54]. We hypothesize that the observed shift in Optison TICs during our study is related to 

an immune response to human albumin in rats or the generation of other opsonizing serum factors in 

response to the initial microbubble doses. Others have reported that high doses of conventional 
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liposomes (i.e., liposomes not containing PEG or foreign albumin) induce accelerated clearance of 

subsequently administered PEGylated liposomes [55]. This indicates that serum factors generated in 

response to an initial dose of particles may opsonize subsequent particles and trigger accelerated 

clearance by Kuppfer cells in the liver [55]. The exact mechanism of accelerated clearance in the 

case of Optison warrants further investigation. However, these results do suggest that the 

accelerated blood clearance effect is an important consideration for all microbubble formulations, not 

only those containing PEG. 

 

 
Figure 2.9: Enzyme-linked immunosorbent assay detection of serum anti-PEG antibodies for animals 
that had received commercial microbubbles. Anti-PEG IgM (A) and anti-PEG IgG (B) antibody levels 
for animals repeatedly dosed with Definity or Optison over 30 days. PEG = polyethylene glycol; Ig = 
immunoglobulin 
 
 
2.4.5 IMPACT FOR CONTRAST-ENHANCED IMAGING 

 
 Any ultrasound imaging study that involves the repeated administration of PEGylated 

microbubbles over multiple days is likely to induce the production of anti-PEG antibodies and result in 

accelerated microbubble clearance. Furthermore, non-PEGylated microbubbles may induce 

accelerated clearance through other immunological mechanisms. Acceleration of microbubble 

clearance may become an important consideration for the interpretation of ultrasound imaging studies 
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that involve multiple imaging sessions. For example, several reports have demonstrated the potential 

of ultrasound time intensity curve (TIC) analysis for monitoring tumor response to chemotherapy in 

human patients [1, 56, 57]. In such studies, TICs (similar to those in Figure 2.3) are generated from 

images of a tumor region periodically throughout the course of treatment. Changes in TIC features 

are then correlated with therapeutic outcome. In this example, it is critical that changes in the TICs 

are due to changes in tumor physiology (e.g., decreased vascularization) and not due to fundamental 

antibody-mediated alterations in the microbubble clearance.  

 The field of ultrasound molecular imaging (UMI) may also be affected if accelerated 

clearance is realized for targeted microbubbles. UMI can be used to interrogate disease- or tissue-

specific targets and has applications in diagnosis [58-61], evaluation of tumor biomarker expression 

[62-65], and monitoring treatment response [66, 67]. Regardless of application, molecular imaging is 

often repeated on multiple days and changes in microbubble binding are assumed to reflect 

physiological changes in target/receptor expression rather than altered pharmacokinetics of the 

microbubbles themselves. Accelerated microbubble clearance will likely be correlated with reduced 

microbubble binding, which should be considered when interpreting the results of UMI studies. 

Indeed, there is one report of accelerated microbubble clearance being associated with reduced 

target binding in UMI [36]. 

 It is also important to consider the presence of pre-existing anti-PEG antibodies in human 

patients. A recent study has found low levels of pre-existing anti-PEG antibodies in over 70% of the 

general human population (i.e., individuals not previously exposed to PEGylated therapeutics) [26]. 

While reported mean anti-PEG IgG and anti-PEG IgM concentrations were only 52 ng/mL and 22 

ng/mL, respectively, these antibody concentrations may be sufficient to influence the circulation 

kinetics of PEGylated microbubbles. For example, the recommended dose of Definity provides an 

approximate blood concentration of ~2.6´10-15 M particles to an 80 kg patient. In the same example 

patient, the reported average anti-PEG IgM and anti-PEG IgG concentrations would equate to 

approximate molar excesses of 5,000´ and 74,000´, respectively (assuming a plasma volume of 3.4 

L, IgM molecular weight of 950 kDa, and IgG molecular weight of 150 kDa). The concentration of anti-

PEG antibodies required for inducing clinically significant changes in the pharmacokinetics of 
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PEGylated agents remains undetermined. However, the potential influence of low-level, pre-existing 

anti-PEG antibodies on contrast-enhanced ultrasound imaging studies warrants consideration and 

further exploration.  

 Finally, the safety implications of anti-PEG antibodies (pre-existing or generated in response 

to an initial microbubble dose) are important to consider with the clinical use of PEGylated ultrasound 

contrast agents. Previous research regarding PEGylated protein therapies demonstrates that 

circulating anti-PEG antibodies increase the risk of injection reactions in human patients [34, 35].  

Although the reported incidence of adverse effects following administration of microbubble contrast 

agents is minute and is often reported as less than other contrast agent types [68, 69], clinicians 

should be aware of this risk when administering PEGylated microbubbles to patients who have 

suspected hypersensitivity to PEGylated microbubbles or therapeutics. This will require increased 

awareness of anti-PEG antibodies among relevant physician subsets. A recent study of physicians 

who prescribe PEGylated therapeutics found that only one quarter of prescribers were aware of anti-

PEG antibodies [70]. 

 
2.5 CONCLUSIONS 

 
 We have demonstrated that the circulatory kinetics of homemade PEGylated microbubbles 

change dramatically when administered repeatedly over a one-month period in otherwise untreated 

animals. PEGylated microbubbles appear to be subject to the same ‘accelerated blood clearance 

(ABC) phenomenon’ observed following the repeated administration of PEGylated proteins and 

liposomes. Here we show that the magnitude of accelerated microbubble clearance is related to 

cumulative microbubble exposure. Microbubble clearance at the study endpoint was faster for those 

animals that had received 6 prior doses of house-MBs compared to those animals that had only 

received one prior dose. Furthermore, we detected both anti-PEG IgM and anti-PEG IgG antibodies 

in all animals that received house-MBs. Once the ABC response had been mounted, dosing animals 

with free-PEG as a competition agent prior to house-MB administration resulted in recovery of 

microbubble intravascular dwell time. Therefore, we conclude that the accelerated clearance of 

PEGylated microbubbles is significantly related to an anti-PEG immune response. Similar trends in 



 

33 

accelerated clearance and generation of anti-PEG antibodies were also observed with commercial 

Definity microbubbles. Interestingly, studies repeated with Optison also illustrated as slight change in 

clearance rate, which was necessarily independent from PEG-related immunity. We hypothesize that 

clearance changes in repeatedly administered Optison may have been associated with 

immunogenicity of the human albumin shell in rats.   

In conclusion, it is important to understand the immunogenicity of microbubble shell materials 

and how this may impact microbubble circulation kinetics during contrast-enhanced ultrasound 

imaging studies that involve multiple microbubble doses over several days to weeks. Any changes in 

microbubble circulation driven by anti-PEG or other immune responses should be considered when 

interpreting the results of longitudinal contrast-enhanced imaging results.    
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CHAPTER 31 

THERAPEUTIC GAS DELIVERY VIA MICROBUBBLES AND LIPOSOMES 

 

 

3.1 MOTIVATION AND OVERVIEW 

 
In general, therapeutic gases have physiochemical characteristics drastically different from 

those of classic small molecule drugs, offering unique therapeutic advantages and challenges. For 

instance, these gases are far smaller than classic drugs and are able to easily diffuse across 

membranes and through the blood brain barrier. Gases are rapidly excreted via expiration, which 

reduces toxicity and bioaccumulation concerns compared to classic drugs. A major hurdle, however, 

is the controlled and site-specific delivery of gases. This chapter provides a comprehensive overview 

of how ultrasound contrast agents (microbubbles and echogenic liposomes) can be adapted to 

address this unique delivery challenge. In particular, the delivery of oxygen (O2), nitric oxide (NO), 

and xenon (Xe) will be reviewed.  

 
3.2 BACKGROUND 

 
3.2.1 OXYGEN: THERAPEUTIC POTENTIAL IN THE REVERSAL OF OXYGEN DEPLETION 

 
It is estimated that at least 50-60% of advanced solid tumors contain hypoxic or anoxic 

tissue, typically due to irregularities in the tumor microcirculation [1]. Tumor hypoxia is associated with 

a number of adverse effects, including resistance to chemotherapy and radiation treatment and an 

increased risk of metastasis. Correspondingly, tumor hypoxia leads to poor prognosis in cancer 
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patients. For example, pancreatic cancer, which is characterized by poorly vascularized tumors, is 

one of the deadliest human cancers, with a five-year survival rate of less than 6% [2]. 

Several approaches have been tested in effort to exploit reoxygenation for radiosensitizing 

hypoxic tumors. Early work involved combining hyperbaric oxygenation with radiation. This approach 

improved five-year survival rates, but also produced toxicity in healthy tissue [3]. Additional studies 

have investigated increasing red blood cell count to increase O2 carrying capacity of blood and therefore 

increase pO2 levels in tumors. This approach provided no benefit to head and neck cancer patients [4]. 

To date, there are no clinically approved methods for increasing tumor oxygen levels for 

radiosensitzation.  

Hypoxemia often presents in cases of severe lung injury, airway obstruction, and acute 

respiratory distress syndrome, and is associated with increased mortality rates in these patients [5]. 

Severe hypoxemia is often treated with inspired oxygen, intubation, and mechanical ventilation, 

however if adequate re-oxygenation is not rapidly achieved, cardiac arrest, organ damage, and death 

may ensue [6]. In cases of acute blood loss, there is a drastic decrease in systemic oxygen supply 

and there is a need to restore oxygen delivery to tissues. For this purpose, significant efforts have 

been made towards developing artificial blood substitutes. These are typically perfluorocarbon 

emulsions or hemoglobin-based oxygen carriers [7, 8]. These systems are designed to scavenge 

oxygen in the high O2 environment of the lungs and release O2 content in hypoxic regions, repeating 

this process as they persist in circulation. A disadvantage of these oxygen delivery platforms is that 

they require an intact pulmonary function and may not be useful in cases of severe lung injury or 

airway obstruction.  

 
3.2.2 NITRIC OXIDE: EXPLOITATION OF SECOND MESSENGER EFFECTS FOR 

THERAPEUTIC PURPOSES  

 
In 1980, it was discovered that relaxation of vascular smooth muscle cells in response to 

acetylcholine is dependent on an intact endothelium. Furchgott and Zawadzki defined the molecule 

responsible ‘endothelium-derived relaxing factor’ (EDRF) [9]. Several years later, in the late ‘80s, it 

was shown that EDRF is nitric oxide (NO) [10, 11]. This discovery sparked intensive research 
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regarding the biological roles of this molecule. It is now known that NO is synthesized endogenously 

from L-arginine by NO synthases (NOS) of which there are three isoforms: inducible NOS (iNOS), 

endothelial NOS (eNOS), and neuronal NOS (nNOS) [12].  

NO mediates pleiotropic physiological processes through complex and coordinated 

interactions with multiple cellular targets. NO plays a critical role in the vascular physiology and the 

cardiovascular system, acting as a vasodilator and inhibiting platelet aggregation [13, 14]. NO 

mediates vascular remodeling, and deficits in NOS/NO pathways may be involved the development of 

hypertension and atherosclerosis [15].  

NO signaling plays an important role in the central nervous system. It mediates cerebral 

blood flow, provides neuroprotection, and influences pathophysiological processes post-brain injury 

[16]. Cerebral NO synthesized in various concentrations and locations elicit diverse and sometimes 

opposing effects. For example, eNOS-derived NO provides neuroprotection following injury. 

Whereas, NO derived from iNOS has been shown to exacerbate neuronal injury [16].  

The role of NO in cancer biology exemplifies another dichotomy in NO signaling. At low 

concentrations NO may promote tumor cell growth by stimulating angiogenesis while at high 

concentrations, NO is cytotoxic and may be a useful chemotherapeutic agent [17].  

NO holds therapeutic potential for many conditions including atherosclerosis, hypertension, 

stroke and cancer. However, the concentration and tissue dependence of response is a challenge 

and presents risk of side effects. Current approaches to deliver NO include inhalation, intravenous or 

oral delivery of prodrugs, and the administration of spontaneously releasing chemical donors, among 

others [18]. There is an extensive body of research surrounding the therapeutic exploitation of 

endogenous gases; for a comprehensive review of clinical and preclinical investigations readers are 

referred to Szabo and Abraham [18].  

 
3.2.3 XENON: THERAPEUTIC BIOLOGICAL EFFECTS DESPITE CHEMICAL INERTNESS  

 
Xenon, among other noble gases, elicits significant biological effects. Xenon induces 

anesthesia through inhibition of N-methyl-D-aspartate (NMDA) receptor signaling and is thought to 

exert analgesic effects through the same mechanism. Following traumatic brain injury or stroke, over-
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activation of NMDA receptors triggers biochemical cascades resulting in neuronal death and 

sustained injury [19]. By inhibiting the NMDA pathway, xenon also provides neuroprotection [20]. 

Xenon shows promise as a medical gas with potential applications in neuroprotection against stroke 

or traumatic brain injury and cardioprotection for patients with myocardial infarction. However, 

adequate delivery is a major hurdle for its clinical translation. The main route of administration 

currently employed for in vivo studies is via inhalation. For noticeable neuroprotective effects, Xe 

must be inhaled at concentrations of 50-70%, which would critically limit the fraction of inspired 

oxygen and lead to hypoxic tissue damage [21]. 

 
3.3 MICROBUBBLES AND LIPOSOMES FOR THERAPEUTIC GAS DELIVERY  

 
3.3.1 PROTECTION FROM ENDOGENOUS SCAVENGERS 

 
The bubble or liposomal shell protects the contained gas from endogenous scavengers. This 

feature is particularly attractive for the delivery of NO, which rapidly reacts with hemoglobin (reaction 

rate of 3-5107 M-1s-1) and consequently has a short half-life in circulation [22]. The particle shell 

protects NO from scavenging until NO is released (passively or actively via ultrasound stimulation). 

However, once NO is released it must travel to the target site (i.e., endothelium) prior to being 

consumed by red blood cells (RBCs). There is a RBC-free zone near the endothelium within vessels 

where NO is able to persist without being consumed by RBCs [22]. According to calculations by 

Postema et al., targeting NO release in the RBC-free layer may enhance the effectiveness of NO 

therapy [23]. This may be accomplished by targeting the NO-containing particle to the endothelium 

using ligands or antibodies or by exploiting acoustic radiation force to push the particles into the RBC-

free zone. This will be discussed in more detail later in this chapter.  

 
3.3.2 DIFFERENCES BETWEEN MICROBUBBLES AND ECHOGENIC LIPOSOMES  

 
 An important difference between microbubbles and liposomes is their gas loading capacity. 

Microbubbles comprise a solid gas core and offer a high loading capacity. Conversely, liposomes can 

only carry approximately 10% gas by volume [24]. This low loading capacity is sufficient when 
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delivering potent bioactive gases, such as NO and Xe. However, liposomes are not suitable for the 

delivery of O2, which is typically required in high concentrations for a therapeutic effect.  

The second important difference between MBs and ELIPs is their size and their potential to 

extravasate. In healthy blood vessels, inter-endothelial pores are approximately 6.5-7.5 nm [25]. 

Tumor vasculature is typically characterized by large pore sizes with upper limits between 380-

780 nm. This allows for enhanced permeability and retention of large molecules within tumors [26]. 

Therapeutic microbubbles are typically 1-4 μm in diameter and are therefore unable to extravasate 

from either healthy or leaky tumor vasculature. This would be a limitation when using microbubbles in 

situations where tissue penetration is required for a therapeutic effect. In general, liposomes can be 

fabricated on the nanoscale and have been shown to preferentially extravasate into tumor tissue [26, 

27]. However, loading gas into liposomes increases their size. The ELIPs presented here have 

average sizes ranging from 800 nm to several microns. These particles are on average smaller than 

microbubbles but still may be too large to extravasate from tumor vasculature. However, it may be 

possible to reduce the size these liposomes; liposomes loaded with non-therapeutic gases have been 

fabricated with particle sizes between 400-600 nm [28, 29]. 

 
3.3.3 AN OPPORTUNITY FOR TARGETED DELIVERY  

 
 The microbubble shell provides mechanical stability for the particle and enables persistence 

of the bubble in circulation. Lipids, which form a monolayer around the gas core, are a popular choice 

of shell material, Figure 3.1 A. The internal structure of ELIPs is not well established. One hypothesis 

is that lipid-monolayer stabilized pockets of gas are contained within the liposome core [30, 31]. 

Alternatively, gas may form pockets within the lipid bilayer, as in Figure 3.1 B [30, 31]. Bubbles and 

liposomes are commonly stabilized by the addition of a hydrophilic polymer brush layer (i.e., PEG). 

PEG stabilizes micro- and nanoparticles by introducing steric repulsion between individual particles 

(reducing coalescence) and between particles and cells (reducing particle uptake by macrophages). 

 The shells of both MBs and ELIPs may be functionalized with targeting moieties including 

peptides, carbohydrates, vitamins, or antibodies. For details regarding various covalent and non-

covalent coupling chemistries, readers are referred to a review by Sunil Unnikrishnan et al. [32]. 
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Targeting molecules may be conjugated to the particle shell before or after particle formation. When 

attaching targeting moieties prior to particle formation, the targeting molecule is synthetically attached 

to a subset of the shell forming subunits and the bubbles or liposomes are then prepared as usual. 

The targeting molecule can either be conjugated directly to the surface of the bubble or liposome [33, 

34], or to a PEG spacer (Figure 3.2 A) [35, 36]. The presence of a stabilizing PEG brush layer 

reduces the efficiency by which ligands attached directly to the particle surface are able to bind their 

target [37]. For successful adhesion, it is important for the ligand to be attached to a PEG spacer 

longer than the equilibrium height of the stabilizing polymer layer [38, 39].   

Figure 3.1: Therapeutic gas-filled microbubbles and liposomes. A) Cartoon of a microbubble 
stabilized by of lipid monolayer and a polymer brush layer. B) Hypothesized structures ELIPs are  
presented. Pockets of lipid monolayer-stabilized therapeutic gas may be encapsulated in the 
liposome core. Alternatively, gas pockets may form within the lipid bilayer.  
 

Antibodies (Ab) and proteins may be sensitive to harsh particle fabrication conditions 

including exposure to organic solvents, vigorous mixing, elevated temperatures and shear stress. 

Proteins can denature when in close proximity to gases [40], which poses an additional challenge for 

MB and ELIP targeting. In these situations, the targeting moiety can be linked to the particle surface 

post-formation using a number of techniques. Demos et al. describes a method to covalently link 

echogenic liposomes and antibodies via thioester bonds [41, 42]. Biotin-avidin linkages are also 

commonly used; biotinylated bubbles or liposomes may be linked to a biotinylated antibody though an 

avidin bridge, as in Figure 3.2 B [43]. Alternatively, Klegerman et al. demonstrated that biotin/avidin 

technology can be used to form aggregates of therapeutic ELIPs and targeted liposomes. The 

authors found that the echogenicity of their NO-loaded particles and the targeting capabilities of the 
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Ab-conjugated particles were conserved upon aggregation [44]. While using biotin-avidin linkages is a 

powerful technique for pre-clinical studies, immunogenicity prevents its translation to humans.  

 
Figure 3.2: Targeting methods. A) Microbubble or liposome targeted to the receptor surface with a 
ligand covalently attached to a PEG spacer. B) Microbubble or liposome targeted to the receptor 
surface with an antibody conjugated through a biotin-avidin bridge. C) Depiction of acoustic radiation 
force pushing microbubbles or liposomes to the vessel wall. Ultrasound may be used to fragment the 
particles, releasing the therapeutic gas (yellow) in the RBC-free zone near the vessel wall.  
 

Ultrasound may be used to target the release of a therapeutic gas in a specific area via MB or 

ELIP destruction at high mechanical index. Acoustic radiation force may be used to push intravenous 

MBs or ELIPs toward the endothelial surface. This may be used to enhance receptor-target binding 

efficiency [45-47] or to concentrate US-stimulated gas release near the endothelial wall, Figure 3.2 C. 

Considerations regarding the use of ultrasound for therapeutic gas delivery will be discussed in more 

detail in the following section.  

 
3.3.4 GAS-FILLED PARTICLES RESPOND TO ULTRASOUND  

 
In ultrasound imaging, sound waves are transmitted into the body; when these waves reach a 

tissue boundary, a portion of the signal is reflected and processed to form an image. The extent to 

which sound waves are reflected depends on the magnitude of the difference in acoustic impedance 

across a boundary. Acoustic impedance is defined as the product of medium density and the speed 

of sound in the medium. In general, soft tissues, blood, and water have similar acoustic impedances, 

and interfaces between these materials provide small echos. The acoustic impedance of gas however 
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is much lower than soft tissues, and a gas-tissue or gas-blood interface provides a large echo. 

Intravascular MBs and ELIPs therefore offer a high impedance mismatch and are useful as 

ultrasound contrast agents [48-51].  Furthermore, oscillating gas cavities such as microbubbles 

excited by ultrasound produce echoes with broadband frequency content not typical of tissue [52-54]. 

Both this characteristic, and the nonlinear response of microbubbles to acoustic pulses of varying 

amplitude or phase, provide methods for ultrasonic detection of microbubbles and separation of their 

signals from tissue background. The result is the presence of gas containing vehicles that can be 

detected in vivo with high sensitivity.  

The ability to image gas-filled particles with ultrasound provides an opportunity for guidance 

and monitoring of therapeutic gas administration in real time. Ultrasound may be used to determine 

when microbubbles or ELIPs in circulation have reached the therapeutic target. Ultrasound may then 

be used to stimulate the release of gas contents in the region of interest via acoustic cavitation. Many 

researchers classify cavitation into one of two types: stable and inertial. Stable cavitation refers to 

persistent bubble oscillation in response to acoustic pressure and can enhance gas diffusion out of 

the bubble and convection into the surrounding microenvironment [55]. Inertial cavitation is defined as 

the rapid collapse and subsequent fragmentation of a bubble when subjected to high pressure 

ultrasound [56]. This can be used to rapidly release the entire contents of a bubble in a specific region 

subjected to ultrasound of sufficient pressure, Figure 3.3. Inducing cavitation of bubbles encapsulated 

within ELIPs allows for controlled rupture of the liposome and subsequent release of the liposome’s 

therapeutic payload.  

Primary acoustic radiation force propels particles in a sound field along the beam access [57, 

58]. This may be used to steer MBs and ELIPs in circulation toward the endothelial wall to enhance 

ligand-receptor targeting or to localize gas release near the endothelial wall [45-47], as illustrated in 

Figure 3.2 C. Vibrating microbubbles generate a secondary radiation force that may contribute to 

microbubble aggregation or repulsion depending on bubble size, acoustic pressure and driving 

frequency [59, 60]. Bubble aggregation due to secondary radiation forces may inhibit ligand-receptor 

targeting, or alternatively cause increased accumulation to already adherent microbubbles. 

Experimental parameters may be optimized to avoid or enhance this effect. 
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Figure 3.3: Response of bubbles to acoustic pressure.   A) Stable cavitation- when subjected to low-
intensity ultrasound, bubbles repeatedly oscillate around the resonant diameter. B) Inertial cavitation- 
when subjected to ultrasound of sufficient amplitude, bubbles rapidly grow and violently collapse.  
 
3.3.5 ABILITY TO CO-DELIVER DRUGS FOR A SYNERGISTIC EFFECT  

 
 MBs and ELIPs may be used to co-deliver drugs for enhanced treatment effects. For 

example, Britton et al. suggested the co-encapsulation of tissue plasminogen activator in Xe-ELIPs to 

provide both clot lysis and neuroprotection for the treatment of ischemic stroke [21]. In general, the 

gas core and thin shell of microbubbles are not ideal for sufficient loading of organic compounds [61]. 

There are several techniques to circumvent this issue. For example, charged therapeutics including 

RNA and DNA may be coupled to the bubble shell through electrostatic interactions with charged 

shell molecules [62]. Alternatively, drug-containing nanoparticles may be conjugated to the bubble 

surface [45]. Readers are referred to a review by Steliyan Tinknov [63] for further information 

regarding microbubble-based drug delivery techniques.  

 As for microbubbles, charged molecules may be electrostatically coupled to charged ELIP 

surfaces [64]. Hydrophilic therapeutics may be solubilized with high loading capacity directly in the 

liposome core [65-68]. Hydrophobic drugs may be incorporated within the lipid bilayer, however the 

loading capacity and ultrasound stimulated release profiles of such drugs may be inferior to those of 

hydrophilic drugs [69]. The ability to simply encapsulate drugs in liposomes provides an advantage 

over microbubbles.  
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3.4 MICROBUBBLE DELIVERY OF OXYGEN AND NITRIC OXIDE  

 
3.4.1 MICROBUBBLE PHYSICOCHEMICAL PROPERTIES 

 
Microbubbles comprise a lipid [70-77], surfactant [78], protein [79], dextran [80], chitosan [81, 

82], or polymer [83] shell surrounding a gaseous core. The bubble shell has a number of important 

functions. First, it provides mechanical stability for the bubble, supporting a negative pressure and 

allowing the gas inside the bubble to be in diffusion equilibrium with gas outside the bubble [84]. 

Second, the shell protects the bubble from destructive forces such as coalescence, Laplace pressure-

driven dissolution and Ostwald ripening, and it therefore allows the gas bubble to persist in circulation 

[70, 84]. Simulations of oxygen microbubbles suggest that since the shell is gas permeable, the 

volume of transported oxygen may change in response to dissolved gas levels in surrounding blood 

[85]. For instance, bubbles can pick up oxygen in the high pO2 environment of the lungs and release 

O2 in tissues [86]. Finally, the shell may enhance the safety of bioactive gas delivery by reducing 

direct contact between the gas and surrounding blood and tissue. This may reduce the risk of oxygen 

toxicity or the potential of nitric oxide eliciting undesirable off-target effects. 

Lipids are the most popular microbubble shell material. Common lipid excipients are 

commercially available, providing ease of microbubble formulation. Definity®, a lipid-based 

microbubble formulation, has proven to be safe for human use and is FDA approved as an ultrasound 

contrast agent for echocardiography. By altering lipid acyl chain lengths, one can optimize lipidic 

microbubble properties. Borden et al. modeled the dissolution behavior of lipid-stabilized oxygen 

microbubbles (OMBs) and found that microbubble stability is primarily controlled by the shell’s 

resistance to gas permeation [70]. Lipid shell resistance is a function of acyl chain length; increasing 

hydrophobic chain length increases the attractive forces between adjacent lipids, thereby increasing 

the cohesion of the shell and decreasing the shell permeability to gases [70, 73]. The oxygen 

permeability of the lipid monolayer shell was measured to range from 10-4 to 10-3 cm/s [87, 88]. 

Therefore, using longer acyl chain lipids can enhance bubble stability and improve oxygen content 

half-life in vivo. 
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Polymer shells are ridged in comparison to the flexibility of lipid shells. This provides 

enhanced stability, but diminished echogenicity since the ridged bubbles resist oscillation until the 

shell is cracked by sufficient expansion [83]. Similarly, protein shells are relatively ridged and difficult 

to deform [89]. Human albumin-coated microbubbles (Optison™) are FDA approved contrast agents. 

However, immunogenicity is a concern when using non-human derived proteins.  

Dextran is an alternative shell excipient. In a study by Cavalli et al., it was demonstrated that 

dextran-coated bubbles are effective oxygen carriers and can be stabilized by the co-encapsulation of 

a perfluorocarbon (PFC) and the addition of polyvinylpyrrolidone (PVP) in the shell [80]. An attractive 

feature of dextran microbubbles is their small particle size (400-550 nm). This may allow for 

extravasation of the dextran microbubbles from leaky tumor vasculature and enhanced depth of 

tumor oxygenation. Regarding therapeutic gas delivery, the best shell composition for a given 

application will depend on the desired in vivo stability, gas release profile, and acoustic properties of 

the microbubbles.   

Microbubble properties are also dependent on their gas contents. Kwan et al. demonstrated 

that the stability of lipid-stabilized OMBs can be enhanced by doping the gaseous core with a poorly 

diffusing gas, such as a PFC. Adding just 5% decafluorobutane (DFB) to their lipidic OMBs increased 

stability 11-fold compared to 100% O2 bubbles. The addition of a PFC enhances bubble stability by 

balancing the partial pressures between the bubble and surroundings, thus removing the chemical 

potential gradient for diffusion. By optimizing the relative volume of doping gas and the shell 

resistance, bubble stability and gas release profiles can be tuned for specific applications. 

Tight control over microbubble size distribution is important for safety, shelf stability, and 

therefore clinical translation. Larger bubbles (>10 m) can potentially obstruct microvasculature, and 

suspensions of larger lipidic OMBs are correlated with greater product loss (shorter shelf life) than 

those of smaller OMBs [74]. Swanson et al. demonstrated that 1,2-distearoyl-sn-glycero-3- 

phosphocholine (DSPC)-based OMBs are more stable than 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC)-based OMBs [75]. DSPC-based OMBs showed a small increase in mean 

diameter (2 to 3 μm) and less than 20% change in volume over 3 weeks.  Additionally, in vitro 
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experiments showed rapid oxygen delivery from DSPC-based OMBs to deoxygenated saline.  

Polizzotti et al. later demonstrated that addition of corn syrup can also aid stabilization of lipidic 

OMBs, following work by Dressaire et al. on sucrose-stearate stabilized microbubbles [74, 90]. 

 
3.4.2 OXYGEN MICROBUBBLES: APPLICATIONS AND RECENT STUDIES 

 
As discussed above, the main therapeutic potential of oxygen delivery is in the reversal of 

oxygen depletion. This typically requires the administration of high oxygen concentrations. Oxygen 

content of OMBs is not continuously recycled upon passage though the high pO2 environment of the 

lungs. This differentiates OMBs from classic fluorocarbon- and hemoglobin-based oxygen carriers 

and prevents their use as sustained oxygen delivery platforms. Continuous oxygen delivery from 

OMBs requires continuous infusion and may result in dose-limiting increases in serum viscosity and 

toxic levels of excipients. Therefore, oxygen microbubbles are limited to relatively short-term delivery. 

Recent studies investigating the use of OMBs for radio- and chemosensitization of hypoxic tumors 

and reversal of hypoxemia are summarized in Table 3.1. 

 
Table 3.1: Summary of microbubble formulations and their proposed applications. 

 
 
 
 
 

Shell excipients  Gas(es) Particle sizes Results and models used US-stimulated release Refs. 

DSPC, DSPE-
PEG2000 

95% O2 
5% 
DFB 

~ 4 m Simulations and in vitro 
oxygen release.  

1 MHz 
1200 kPa  
60-240 s exposure 

[73] 

DSPC, PEG-40S O2 Polydisperse, 
mean particle 

diameter 3 m 

First demonstration of 
OMB stabilization by lipidic 
shells.  In vitro studies 
showed rapid oxygen 
delivery to saline. 

NA [75] 

DSPC, BRIJ 100 O2 Polydisperse, 
mean particle 

diameter 3 m 

Oxygen transfer kinetics 
characterized ex vivo in 
human blood.  In vivo 
studies show reversal of 
hypoxemia in rabbit 
models.  

NA [72] 

Bovine serum 
albumin 

O2 Multimodal 
size 
distribution.  
99% of 

bubbles<3 m 

In vitro studies 
demonstrate that OMBs 
rapidly release their 
oxygen content to oxygen-
depleted saline upon 
injection.  

NA [79]  
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Table 3.1 cont’d 
Shell excipients  

 
Gas(es) 

 
Particle sizes 

 
Results and models used 

 
US-stimulated release 

 
Refs. 

Span 60 and 
TPGS 

O2 Polydisperse, 

3.10.1 m 

In vitro: bubbles are 
effective contrast agents 
and increase oxygenation 
of degassed saline.  
In vivo: bubbles elevate 
tumor oxygen levels in 
mice with breast tumor 
xenografts.  

In vitro studies:  
~3.6 MPa, 4 MHz in 
power Doppler mode 
In vivo studies: 
18 MHz nonlinear 
imaging (5s destructive 
pulses intermittent with 
12s nondestructive) 

[78] 

Span 60 and 
TPGS 

O2 Not specified, 
but same 
methodology 
as in ref. [78] 

In vivo: these bubbles 
elevate tumor oxygen 
levels in mice with breast 
tumor xenografts and 
enhance the efficacy of 5 
Gy radiotherapy applied 75 
s post-microbubble 
administration. 

Microbubble 
destruction at 4.2 MHz 
and 2.5 MPa derated 
peak negative pressure 
in flash destruction-
replenishment mode 
with intermittent low 
and high intensity 
pulses. Total exposure 
time = 75 s 

[91] 

Chitosan, 
palmitic acid and 

-glycerol 
phosphate 

O2  
with 
and 
without 
DDFP 

708±51.3 nm 
(O2 only) [82]  
1236.5±17.5 
nm (O2/DDFP) 
[82]  
 
2603.2±304.4 
nm (O2/DDFP) 
[81]  

In vitro studies show the 
ability of these bubbles to 

reduce HIF-1 expression 
of cells grown under 
hypoxic conditions 

45 kHz, 260 W peak 
power [82] 

[81, 82]  
 

Dextran, palmitic 
acid, +/- PVP (a 
stabilizing agent) 

O2 

DDFP 
550±30 nm  
(-PVP) 
 
410±5 nm 
(+PVP) 

In vitro studies 
demonstrate that these 
bubbles can effectively 
increase pO2 of hypoxic 
media and respond to US 
stimulation.  

2.5±0.1 MHz 
2.4±0.2MPa 

[80] 

DSPC and PEG-
40S 

O2 3.4±1.9 m Reversal of hypoxemia 
observed in vivo using a 
right pneumothorax lung 
injury model in rats. 

NA [71]  

DSPC and PEG-
40S 

O2 Not specified Bolus injection of OMBs 
into the peritoneal cavity 
doubled survival time of 
rabbits experiencing 
complete tracheal 
occlusion.  

NA [92]  

Phospholipid  O2 Not specified In vitro and in vivo studies 
indicate that oxygen-filled 
microbubbles conjugated 
with a sonosensitizer 
enhance sonodynamic 
therapy efficacy by 
increasing local oxygen 
concentration.  

In vitro: 30 s exposure, 
3.0 Wcm-2, 1 MHz 
center frequency, 100 
Hz pulse repetition, 
50% duty cycle 
In vivo: 3.5 min, 3.5 
Wcm-2, 1 MHz center 
frequency, 100 Hz 
pulse repetition 
frequency, 30% duty 
cycle 

[93, 94] 

DBPC, DSPE-
PEG2000, and 
DSPE-
PEG2000-biotin 
for conjugation 

O2 1-2 m 
average 
diameter 

In vitro and in vivo studies 
indicate that combination 
therapy with oxygen-filled 
microbubbles conjugated 
with a sonosensitizer and 
separately 5-fluorouracil 
enhance treatment efficacy 
compared to 
monotherapies or 
treatments without oxygen 
delivery.  

In vitro (cells): 30 s 
exposure, 3.0 Wcm-2, 1 
MHz, 100 Hz pulse 
repetition, 50% duty 
cycle 
In vivo: 3.5 min, 3.5 
Wcm-2, 1 MHz, 100 Hz 
pulse repetition, 30% 
duty cycle 

[95] 
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Abbreviations, Table 3.1 
BRIJ 100- polyoxyethylene (100) stearyl ether 
CH- cholesterol  
DBPC- dibehenoylphosphatidylcholine  
DPPC- 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine  
DPPE-PEG2000- 1, 2–dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 
DSPC- 1,2-distearoyl-sn-glycero-3- phosphocholine 
DSPE- 1,2-distearoyl-sn- glycero-3-phosphoethanolamine 
DSPE-PEG2000-1,2-distearoyl-sn- glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000]  
DSPE-PEG-Folate- 1,2-distearoyl-sn- glycero-3-phosphoethanolamine-N-[folate(polyethyleneglycol)-2000] 
DVT- deep vein thrombosis  

HIF-1- hypoxia inducible factor-1 
MSC- mesenchymal stem cell  
OMB- oxygen microbubble  
PC- phosphatidylcholine 
PEG-40S- polyoxyethylene-40 stearate  
DFB- decafluorobutane 
DDFP- dodecafluorpentane  
OFP- octofluoropropane 
PTX- paclitaxel  
PVP- polyvinylpyrrolidone  
TPGS- alpha tocopheryl polyethylene glycol succinate 
US- ultrasound

Table 3.1 cont’d 
Shell excipients  

 
Gas(es) 

 
Particle sizes 

 
Results and models used 

 
US-stimulated release 

 
Refs. 

DPPE-
PEG2000, PC, 
CH 

NO Average 
diameter 3.85 

m 

In vivo studies suggest that 
NO microbubbles promote 
DVT resolution in a rat 
model. 

NA [77] 

DPPE-PEG2000 
and PC 

NO Average 
diameter 3.85 

m 

NO microbubbles coupled 
with US stimulation may 
enhance MSC homing to 
the myocardial infarct area 
and promote angiogenesis.  

In vitro and in vivo: 1 
MHz, 1 Wcm-2  

[76] 

DSPC and PEG-
40S 

O2 Median 
diameter ~4 

m 

Intratumoral injection of 
OMBs significantly 
increases tumor oxygen 
saturation in a rat model of 
fibrosarcoma, improving 
tumor control when 
combined with 15 Gy 
radiotherapy.  

NA [96] 

DPPC and 
DSPE 

O2 and 
OFP 
 
[O2] = 
35 mg/L 

1.7±0.1 m In vitro studies 
demonstrate selective, US-
stimulated oxygen release 
from microbubble 
formulation. PTX loading in 
the oxygen microbubbles, 
combined with US-
stimulated release, 
provides superior ovarian 
cancer cell killing. 

300 kHz, 0.5 W/cm2, 15 
second exposure, 
continuous wave 

[97] 

DPPC and 
DSPE 

O2 and 
OFP 
 
[O2] = 
35 mg/L 

1.7±0.1 m In an in vivo model of 
ovarian cancer, PTX-
loaded oxygen 
microbubbles are shown to 
significantly enhance 
therapeutic outcome when 
ultrasound is used for local 
delivery within the tumor.   

300 kHz, 1.0 W/cm2, 
50% duty cycle for 6 
minutes 

[98] 

DPPC and 
DSPE-PEG-
Folate or DSPE-
PEG2000 

O2 and 
OFP 
 
[O2] = 
35 mg/L 

1.81±0.04 m 
for folate 
targeted 
 

1.78±0.05 m 
for untargeted 

Adding a folate targeting 
ligand to PTX and oxygen 
loaded microbubbles 
enhances therapeutic 
efficacy in intraperitoneal 
model of ovarian cancer. 

300 kHz, 1.0 W/cm2, 
10s on 10s off for 3 min 

[99] 
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3.4.2.1 REVERSAL OF TUMOR HYPOXIA 

 
OMBs are uniquely suited for re-oxygenation of localized tissue hypoxia; ultrasound targeted 

O2 release can provide significant increases in pO2 of a target tissue (e.g., tumor) while limiting 

systemic exposure to high oxygen concentrations and therefore reducing the risk of off-target 

oxidative stress. For this application, relatively stable microbubbles are desired that persist in 

circulation until fragmented by ultrasound. Kwan, et al. produced lipid-stabilized oxygen microbubbles 

doped with 5% PFC [73]. Through in vitro experimentation authors were able to increase the percent 

oxygen saturation of deionized water up to 15% after ultrasound-stimulated oxygen release from the 

bubbles.  

OMBs have been prepared with a chitosan shell [81, 82]. Oxygen loading of these bubbles 

was again enhanced by PFC doping [82]. Administration of these chitosan OMBs to JEG-3 human 

carcinoma cells cultured under hypoxic conditions resulted in a 50% lower expression of hypoxia 

inducible factor-1 (HIF-1) compared to untreated control cells [81, 82].  

 Eisenbrey et al., has demonstrated the potential of using microbubbles with a pure oxygen 

core for the radiosensitization of hypoxic tumors [78, 91]. They prepared bubbles stabilized by a 

surfactant shell composed of Span60 and water-soluble vitamin E. These bubbles were relatively 

stable in vitro, with a half-life of up to 15 minutes. They also proved to be effective ultrasound contrast 

agents and to significantly increase pO2 of degassed saline upon ultrasound-stimulated O2 release. 

Preliminary in vivo studies demonstrate the ability of these OMBs to elevate oxygen partial pressures 

in a murine model of breast cancer [78], and subsequent work has shown that this improves tumor 

control and increases median survival when combined with radiation therapy (compared to control 

tumors that received nitrogen-filled microbubbles) [91]. We have demonstrated similar results in our 

group, showing that intratumoral administration of lipid-shelled OMBs increases tumoral oxygenation 

and increases the tumor control offered by subsequent radiotherapy in a rat model of fibrosarcoma 

(see chapter 4) [96].  

 Sonodynamic therapy (SDT) is a method of cancer treatment that involves the use of 

ultrasound to activate certain chemical compounds or ‘sonosensitizers’ to generate reactive oxygen 
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species (ROS) that in turn damage DNA and promote apoptosis within the tumor [100]. This 

treatment is dependent on the presence of oxygen, and tumor hypoxia limits efficacy. McEwan et al. 

developed oxygen-filled microbubbles tethered to Rose Bengal (RB), a sonosensitizer, to enhance 

SDT treatment of hypoxic tumors [93, 94]. The investigators observed that oxygen-loaded 

microbubbles were able to generate significantly more singlet oxygen in a free cell system than 

bubbles loaded with sulfur hexafluoride, and that the oxygen loaded microbubbles also induced a 

greater cytotoxic effect than the sulfur hexafluoride control. In vivo, mice bearing human xenograft 

pancreatic BxPc-3 tumors treated with the oxygen-Rose Bengal conjugate and ultrasound showed a 

significant 45% reduction in tumor volume five days after treatment while the volume of tumors in 

mice treated with the conjugate only increased by 180% over the same time period, a result directly 

attributed to the oxygen contribution from the microbubbles. Subsequent work by the same group 

demonstrated that efficacy can be further enhanced by combining this oxygen-enhanced SDT with 

oxygen-enhanced chemotherapy (oxygen microbubbles conjugated to 5-fluorocuracil with ultrasound 

stimulated release) in the same in vivo tumor model [95].  

 Finally, tumor hypoxia promotes chemoresistance through a number of mechanisms. To 

combat this, Sun, Luo, Liu, and colleagues developed a paclitaxel-loaded oxygen microbubble 

formulation for the treatment of ovarian cancer [97-99]. In vitro testing demonstrated selective oxygen 

release upon ultrasound-mediated microbubble destruction. Ultrasound-mediated delivery of oxygen 

and paclitaxel from these microbubbles provided superior killing of ovarian cancer cells and led to 

reduced expression of HIF-1 compared to all control groups [97].  Translating this work in vivo, Liu 

et al. demonstrated that ultrasound-mediated destruction of oxygen and paclitaxel loaded 

microbubbles resulted in significantly greater tumor control compared to all control groups in a 

subcutaneous model of ovarian cancer [98]. More recently, the same group went on to show that 

therapeutic efficacy can be further enhanced by adding a folate targeting moiety to the microbubbles, 

which enhances uptake by ovarian cancer cells and tumor-associated macrophages [99].  
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3.4.2.2 REVERSAL OF HYPOXEMIA  

 
Oxygen microbubbles may be used to increase the oxygen content of blood and extend the 

timeframe for effective, permanent treatment in cases of severe hypoxemia. Oxygen microbubbles 

offer the additional advantage of not requiring oxygen loading at the lungs and can be used in cases 

of respiratory injury/failure. For this application, relatively unstable OMBs that quickly transfer their O2 

contents to deoxyhemoglobin without ultrasound stimulation are desirable, Figure 3.4. 

 

 

Figure 3.4: Oxygen microbubbles for the reversal of hypoxemia. Lipidic oxygen microbubbles are 
stabilized by a lipid monolayer approximately 3 nm thick. Oxygen can diffuse out of the microbubbles 
and react with deoxyhemoglobin. To accommodate the shrinking gas core, lipid is shed from the 
shell.    

 
Kheir and colleagues investigated the use of pure oxygen microbubbles for intravenous 

delivery of oxygen in rabbit models of severe hypoxemia. Hypoxemia was induced by hypoxic 

ventilation of 11% oxygen, and intravenous delivery of DSPC-OMBs rapidly increased pulse oximetry 

(O2 saturation) and oxyhemoglobin concentrations. Also, in a rabbit model of asphyxia, it was 

demonstrated that these OMBs could reduce the incidence of cardiac arrest and organ injury [72]. 

Authors envision similarly formulated lipid-stabilized oxygen microbubbles for rapid emergency gas 

delivery in critically hypoxemic patients, extending the window for safe definitive intervention (i.e., 

tracheal tube, intubation, etc.) before the onset of organ damage and cardiac arrest.  
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Feshitan et al. showed that intraperitoneal (IP) injection of OMBs can reverse hypoxemia in 

vivo. The peritoneal cavity has a large surface area and provides for efficient gas exchange. 

Following right pneumothorax lung injury in rats, phospholipid-stabilized O2 microbubbles were 

injected into the peritoneal cavity. All rats treated with IP oxygen microbubbles survived to the 

predetermined 2-hour time point whereas control rats survived on average 18.5 minutes. IP delivery 

of O2-microbubbles may provide an alternative for mechanical ventilation in severely hypoxemic 

patients.  The same group showed that IP injection of OMBs significantly prolongs survival in rabbits 

experiencing complete tracheal occlusion [92].  

 
3.4.3 NITRIC OXIDE MICROBUBBLES: APPLICATIONS AND RECENT STUDIES 

 
NO elicits a wide range of biological effects, and its delivery via microbubbles may prove 

useful for a number of applications. To date, only two studies have been conducted investigating NO 

delivery via microbubbles, Table 3.1.  

Stem cell-based therapies are an exciting approach for the treatment of myocardial infarction 

and offer the unique potential of regenerating myocardium and promoting neovascularization [101]. 

However, the success of this approach is limited by poor transplantation efficiency. Tong et al. 

recently demonstrated that intravenous delivery of NO microbubbles and mesenchymal stem cells 

(MSCs) coupled with ultrasound stimulation enhances MSC homing to the myocardial infarct area 

and promotes angiogenesis in a rat model of myocardial infarction. Ultrasound exposure may have 

enhanced transplantation efficiency by increasing myocardial permeability and by releasing NO, an 

important signaling molecule in the cardiovascular system [76]. 

Wang et al. proposed the use of NO microbubbles for the treatment of deep vein thrombosis 

(DVT) [77]. Lipid-stabilized NO microbubbles were periodically administered to rats following inferior 

vena cava and left common iliac vein ligation. Thrombus size of NO treated animals was 

approximately 40% smaller than that of control animals. Furthermore, platelet and inflammatory cell 

aggregation was inhibited following NO microbubble administration. Therefore, Wang et al. concluded 

that intravenous NO delivery via microbubbles was a promising method to stimulate DVT 

resolution [77].  
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3.5 LIPOSOMAL DELIVERY OF NITRIC OXIDE AND XENON  

 
3.5.1 ECHOGENIC LIPOSOME PHYSICOCHEMICAL PROPERTIES  

 
In the mid-1990s it was discovered that certain liposomes can be created with an inherent 

echogenicity and can be used as ultrasound contrast agents [49]. Their echogenicity was later 

attributed to air trapped in the liposomes during the fabrication process [50]. Since then, efforts have 

been made to optimize liposomes for this purpose. It has been shown that the stability of echogenic 

liposomes (ELIPs) can be controlled by the degree of saturation of component lipids. The inclusion of 

highly saturated lipids increases bilayer rigidity, decreases permeability to gases and therefore 

provides a stable liposome with prolonged echogenicity in circulation sufficient for use as US contrast 

agents [102]. 

Recently, echogenic liposomes have been modified for delivery of the therapeutic gasses, 

nitric oxide and xenon. There are two published methods to load therapeutic gases in liposomes. 

Huang and colleagues developed the pressurized-freeze method [24, 103]. This process involves 

conventional liposomal fabrication via lipid film hydration followed by the pressurized addition of the 

gas of interest. Suspensions are then frozen for approximately 30 minutes followed by pressure 

release and thawing. Resultant liposomes are approximately 800 nm in size, which is sufficiently 

small for safe intravascular delivery [104]. This method yields around 10% gas entrapment by volume 

and has proven effective for the encapsulation of NO and Xe [24]. The concentration and release 

profile of the therapeutic gas can be modulated by the co-encapsulation of a second, inert gas (i.e. 

argon) as demonstrated by Huang et al. [103].  

 Sutton et al. demonstrated an alternative method to encapsulate NO in liposomes [105]. 

They made liposome suspensions as described by Endo-Takahashi et al. [64] and replaced 

headspace air with a mixture of NO and octofluoropropane (OFP). The gases were then incorporated 

into the liposomes by vigorous shaking. A disadvantage to this method is that it yields liposomes with 

a bimodal size distribution with peaks at 2.5 m and 11 m. If used in vivo, the larger liposomes may 

become lodged in capillaries, posing safety concerns. 
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3.5.2 NITRIC OXIDE LIPOSOMES: APPLICATIONS AND RECENT STUDIES  

 
The use of liposomes offers an alternative to microbubbles for the intravenous delivery of NO, 

and a summary of recent studies is presented in Table 3.2. Intimal hyperplasia is characterized by the 

thickening of the innermost layer of a blood vessel in response to vessel injury, and is a major cause 

of complications following angioplasty, bypass operations and stenting [106]. Huang et al. suggested 

the use of NO-ELIPs to inhibit intimal hyperplasia and showed that locally injected ELIPs containing 

90% Ar and 10% NO effectively reduced neointimal hyperplasia in a balloon-injured arterial model in 

hyperlipidemic rabbits and reduced arterial wall thickening by approximately 40% compared to injured 

control animals [103]. This group also demonstrated that the liposomes effectively protect NO from 

hemoglobin scavenging in vitro compared to free NO in solution.  

The use of NO-ELIPs has been proposed for vasodilatation [104, 105]. NO-ELIPs effectively 

induced arterial dilation in ex vivo models using rabbit and porcine carotid arteries. In both studies, 

this effect was enhanced by ultrasound-stimulated NO release. Kim et al. found that ultrasound 

stimulation induced greater NO penetration into the intima, media and adventitia, which may be due 

to the radiation force effects of ultrasound. When erythrocytes were included in the flow-through 

media, vasodilation was reduced and only observed in the presence of ultrasound. This indicates that 

liposomes incompletely protect NO from erythrocyte scavenging. If NO is released too far from the 

arterial wall, it may bind erythrocytes/hemoglobin before reaching its target.  

Kim et al. also investigated cerebral vasodilitive effects of NO-ELIPs in vivo in rats following 

subarachnoid hemorrhage. NO-ELIPs effectively inhibited vasospasm and resulted in improved 

neurologic function in treated rats. NO-ELIP treatment coupled with ultrasound activation over the 

carotid artery showed further improvements in neurological function in these animals.  

The cytotoxic effect of NO at high concentrations has been suggested for the treatment of 

breast cancer [107]. The role of NO in cancer is complex and concentration-dependent; at low 

concentrations NO promotes cancer cell proliferation by stimulating angiogenesis and at high 

concentrations NO is cytotoxic [17]. At high concentrations, NO reacts with oxygen to form the pro-

apoptotic intermediate peroxynitrate, which is known to inhibit DNA repair enzymes [108]. Lee et al. 



 

 
59 

demonstrated that NO-ELIP induced breast cancer cell death in vitro with IC50 values of 0.42 mg/ml 

and 0.56 mg/ml for MDA-MB-468 and MDA-MB-231 cell lines, respectively [107]. Due to the diverse 

effects of NO in cancerous and normal cells, it is important to rigorously control the concentration and 

location of NO delivery to limit off-target consequences.  

 
3.5.3 XENON LIPOSOMES: APPLICATIONS AND RECENT STUDIES 

 
 The use of echogenic liposomes has also been investigated for the intravenous delivery of 

Xe, Table 3.2. Britton et al. demonstrated the effectiveness of Xe-ELIPs in in vitro and in vivo models. 

In vitro, Xe-ELIPs were shown to protect PC12 cells from oxygen-glucose deprivation and 

subsequent hypoxic cell death. In a rat model of cerebral ischemia-reperfusion injury, intravenously 

delivered Xe-ELIPs resulted in 48% reduction in infarction size. Using ultrasound to stimulate Xe 

release enhanced the infarct reduction to 75% and restored sensorimotor function in the animals [21]. 

 Building upon this initial success, Peng et al. investigated the effective time-window and 

mechanism of action for Xe-induced neuroprotection using Xe-ELIPs [109]. Using a rat model of 

cerebral ischemia-reperfusion injury, it was shown that Xe-ELIP administration 2, 3, and 5 hours post-

stroke onset effectively reduced infarct area with greater reductions observed with earlier treatment. 

Significant improvements in behavioral task performance were observed with the 2- and 3-hour 

treatments. Peng et al. also demonstrated that Xe provides neuroprotection through NMDA 

antagonism and synergistic mechanisms; namely, activation of brain-derived neurotrophic factor 

(BDNF), protein kinase B (Akt), and mitogen-activated protein kinases (MAPK).  

 
Table 3.2: Summary of echogenic liposome formulations and their proposed applications.  
 

Shell excipients Gas(es) Particle sizes Results and models used US-stimulated release Refs. 

EDPPC, DOPC, 
CH 

1:9 
NO:Ar  
 

not specified NO-ELIP delivery inhibited 
intimal hyperplasia 
development in vivo 
following balloon injury in 
rabbit carotid arteries.  

NA [103] 

For in vitro/ex 
vivo: 
EDPPC, DOPC, 
CH 
For in vivo: 
EDPPC, DOPC, 
CH, PEG2000-
DPPE 

1:9 
NO:Ar 

800 nm on 
average 

The vasodilitive effects of 
NO-ELIPs were 
demonstrated ex vivo in 
rabbit carotid arteries and 
in vivo in a rat 
subarachnoid hemorrhage 
model. 

In vitro/ ex vivo: 
5.7 MHz color Doppler 
US, MI 0.15, pulse 
repetition frequency 8 
kHz 
In vivo: 
1 MHz, 0.3 MPa, 
continuous wave US 

[104] 
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Table 3.2 cont’d 
Shell excipients  

 
Gas(es) 

 
Particle sizes 

 
Results and models used 

 
US-stimulated release 

 
Refs. 

DPPC, DOTAP, 
PEG-2000, 
PEG-750 

1:1 
NO:OFP 

Bimodal with 
peaks at 2.5 

m and 11 m 

NO-ELIPs effectively 
induced arterial dilation ex 
vivo in porcine carotid 
arteries. 

1 MHz, 0.34 MPa 
peak-to-peak pressure, 
30 cycles 

[105] 

EPC, DPPC, 
DPPE, DPPG, 
DC-CH·HCl 

100% 
NO 

not specified NO-ELIP induced breast 
cancer cell death in vitro. 

NA [107] 

DPPC, DOPC, 
CH 

7:3 Xe:Ar not specified Xe-ELIPs administration 
reduced infarct size in a rat 
model of cerebral 
ischemia-reperfusion 
injury, which was 
enhanced when US was 
used to stimulate Xe 
release.  

1 MHz, 0.18 MPa 
peak-to-peak pressure, 
continuous wave US 

[21] 

DPPC, Egg-PC, 
PEG2000-PE, 
DPPG, CH 

7:3 Xe:Ar not specified Xe-ELIPs reduced infarct 
size when administered 
within 5 hours of stroke 
onset in a rat model.  

1 MHz, 0.18 MPa 
peak-to-peak pressure, 
continuous wave US 

[109] 

Abbreviations, Table 3.2 
Akt- protein kinase B 
Ar- argon 
BDNF- brain-derived neurotrophic factor 
BF- bifunctionally targeted  
CH- cholesterol  
DOPC- 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DC-CH·HCl- 3-[N-(N’,N’-dimethylaminoehane)-carbamoyl] cholesterol hydrochloride 
DOTAP- N-[1-(2,3-dioleoyloxy) propyl]-N,N,N-trimethylammonium 
DPPC- 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
DPPE- 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 
DPPG-1,2-dipalmitoyl-sn-glycero-3- [phosphor-rac-1-glycerol] 
EDPPC- 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine 
Egg-PC- egg phosphocholine  
ELIP- echogenic liposome  
EPC- L-α-phosphatidylcholine 
IVUS- intravascular ultrasound  
MAPK- mitogen-activated protein kinase 
MI- mechanical index 
NO- nitric oxide 
OFP- octafluoropropane 
PEG- polyethylene glycol  
PEG2000-DPPE- carbonyl-methoxypolyethyleneglycol- 2000-2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 
PEG 2000-PE- 1,2- dipalmitoyl- sn- glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 
VSMC- vascular smooth muscle cells 
Xe- Xenon 

 
 
3.6 CONCLUSIONS 

 
Microbubbles and liposomes offer unique advantages as therapeutic gas delivery vehicles. 

These particles are inherently echogenic, and therefore ultrasound can be used to image them and 

release their gas contents in a targeted region via acoustic cavitation. Targeting of these particles 

may also be achieved by conjugating their surfaces with ligands or antibodies. The ability to target 

gas release in specific regions limits the risk of off-target side effects and provides an advantage over 

alternative gas delivery techniques (i.e., inhalation). Future studies may exploit the potential to 
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coencapsulate drugs in therapeutic gas microbubbles and liposomes for enhanced treatment efficacy. 

The most significant difference between microbubbles and liposomes is their respective loading 

capacities; microbubbles are preferable when large concentrations of a gas need to be delivered and 

liposomes provide sufficient loading for potent bioactive gases. To date, this approach of gas delivery 

has only been explored for oxygen, nitric oxide and xenon. Future studies in this field may investigate 

delivery of other bioactive gases including carbon dioxide and hydrogen sulfide.   

Microbubble and liposomal delivery of therapeutic gases must be proven to be safe prior to 

clinical translation. Long-term toxicity studies of shell excipients should be conducted and the 

concentration at which these excipients are tolerated should be established. Size distributions of 

therapeutic gas-filled particles are important for safety and should be characterized. Particles greater 

than about 10 µm can potentially occlude the microvasculature, posing a serious safety concern. In 

general, the concentration of therapeutic gas delivered with different microbubble and liposome 

formulations is not well established. Accurate dosing will be an important consideration if these 

particles are to be translated into humans. 
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CHAPTER 41 

IMPROVING THE EFFICACY OF RADIATION THERAPY WITH OXYGEN MICROBUBBLES 

 

 

4.1 MOTIVATION AND OVERVIEW 

 
Solid tumor microenvironments are characterized by a disorganized, leaky vasculature that 

promotes regions of low oxygenation (hypoxia). Hypoxia leads to resistance in all major treatment 

modalities, including radiation therapy, and methods of reoxygenation have long been of interest. 

Despite decades of research and a diversity of approaches, no methods of solid tumor reoxygenation 

have entered clinical practice, and controlled delivery of oxygen remains a challenge. Here, we apply 

the concepts explored in chapter 3 to investigate the potential of lipid-stabilized oxygen microbubbles 

to reoxygenate solid tumors and therefore improve the therapeutic ratio of radiation therapy.  

 
4.2 BACKGROUND 

 
Cancer affects 39.6% of Americans at some point during their lifetime [1]. Solid tumors are 

characterized by the presence of disorganized, tortuous, leaky vessels that promote regions of 

hypoxia, Figure 4.1. Even small tumors (<2-3mm3) comprise 10-30% of hypoxic regions in the form of 

chronic and/or transient hypoxia fluctuating over the course of seconds to days [2, 3]. In fact, it has 

been shown repeatedly that hypoxia is a key factor in treatment failure and recurrence after 

treatments with radiotherapy (RT), chemotherapy and surgery [4-6]. Chronic exposure to this hypoxic 

environment selects for the most aggressive and resistant tumor cells and triggers the angiogenic 
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signaling that contributes to the overall growth of the tumor as it develops its own blood supply 

network. It is therefore recognized as a hallmark of metastatic potential [7-11]. 

Figure 4.1: Images of tumor-associated vasculature. Example of acoustic angiography maximum 
intensity projections around tumors (tumor size denoted with dashed yellow lines) in a rat 
fibrosarcoma allograft, with tortuous angiogenesis extending beyond the tumor margins (red arrows). 
The small tumor (A) is also shown to be more enhanced, denoting its higher perfusion compared to 
the larger tumor (B). 

 

Radiotherapy is one of the key primary treatment options for a variety of cancers and is used 

in over one million cancer patients yearly in the United States [12-14]. It is well-established that tumor 

hypoxia negatively impacts treatment outcome for RT [15]. In particular, the RT dose needed to 

achieve the same tumor control probability in hypoxic tissue as in normoxic tissue can be up to 3 

times higher [4]. Hypoxia promotes radioresistance directly through the reduction of oxygen-

dependent free radical damage and indirectly through biological HIF-1 complex signaling. The tumor 

re-oxygenation which occurs normally after RT also increases oxidative stress, leading to endothelial 

sensitization at the tumor level [16-18].  

It is believed that transiently relieving tumor hypoxia during radiotherapy (RT) could 

significantly improve treatment outcome [19]. Previous in vitro studies have shown that increased 

oxygen presence even just a few milliseconds before or after RT significantly increases radiation-

induced cancer cell damage [20]. There have been numerous previous attempts to re-oxygenate 

tumors to this effect, including hyperbaric oxygenation, inhaled carbogen, nitroimidazoles and other 

radiosensitizers. However, practical administration difficulties, vasoconstriction and normal tissue 

toxicity have severely limited clinical translation [21-23]. 
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Recently, the technology of oxygen microbubbles (OMB) has made several substantial 

advances, with the development of high-payload OMBs similarly formulated to micrometer-sized 

ultrasound vascular contrast agents but comprising an oxygen gas core [24]. As such, OMBs have 

shown promise experimentally as an adjuvant cancer therapy in vivo to enhance the efficacy of 

oxygen-dependent therapies. In radiotherapy, they would offer the ability for localized oxygen delivery 

without the use of expensive dedicated equipment incompatible with radiation therapy rooms. The 

robust oxygen-delivery potential of OMBs is demonstrated by their ability to sustain animals with 

otherwise fatal pneumothorax for over two hours [25], and double the survival time of asphyxiated 

animals [26] when delivered intra-peritoneally. In a mouse model of pancreatic cancer, OMBs 

delivered by direct injection in the tumor have also been shown to improve the efficacy of 

sonodynamic therapy [27, 28]. In chemotherapy, oxygen and paclitaxel loaded microbubbles 

administered intravenously have shown promise as a combination therapy in an ovarian mouse 

xenograft model [29]. 

We hypothesize that these oxygen microbubbles could also be used to transiently relieve 

tumor hypoxia and thereby improve RT outcome if administered prior to treatment so that additional 

oxygen is present during radiation treatment. As a first proof of principle demonstration, in this work, 

we assess the potential of oxygen microbubbles to increase dissolved oxygen saturation in hypoxic 

solutions in vitro, increase tumor oxygenation in a rat fibrosarcoma in vivo after direct injections, and 

improve tumor control after RT. 

 
4.3 MATERIALS AND METHODS 

 
4.3.1 MICROBUBBLE MANUFACTURING AND CHARACTERIZATION 

 
All glassware was cleaned with an Alconox detergent purchased from Sigma-Aldrich (St. 

Louis, MO, USA) and rinsed with 18 MΩ-cm deionized water (Direct-Q, Millipore; Billerica, MA, USA). 

A concentrated (10) phosphate-buffered saline (PBS) solution from Sigma-Aldrich (St. Louis, MO, 

USA) was diluted to normal concentration with deionized water and vacuum filtered through a 0.2 µm 

nylon membrane filter (Whatman, Kent, United Kingdom). Phospholipid 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) was purchased from NOF (Tokyo, Japan), and polyoxyethylene-40 stearate 
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(PEG-40S) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Oxygen and nitrogen gas were 

purchased from Airgas (Airgas, Radnor, PA, USA).  

DSPC and PEG-40S were weighed in dry form, mixed in a 9:1 molar ratio, and added to the 

filtered PBS solution to achieve a final lipid concentration of 12 mg/mL. A technique used by Feshitan 

et al. [25] was implemented to dissolve the DSPC and PEG-40S into the PBS solution and create a 

homogenous lipid solution. After adding the DSPC and PEG-40S, the mixture was heated to 65°C 

and homogenized using a Branson 450 sonifier (Danbury, CT, USA) with an output power of 25% 

total capability. The solution was sonicated until it appeared translucent and then stored in the 

refrigerator at 4°C. Oxygen microfoam was created from a process design developed by Swanson et 

al. [30] to produce large volumes of oxygen microbubbles. The process developed was used to create 

oxygen microbubbles specifically, but the methodology is the same to produce nitrogen microbubbles 

with the exchange of oxygen for nitrogen gas. The process comprised an ultrasonic horn reactor 

enclosed in a water-cooled, continuous-flow chamber (Branson, Danbury, CT, USA). The lipid 

solution was kept cool with ice packs and combined with room temperature oxygen in the reactor. 

The lipid solution flow rate was nearly double the flow rate of oxygen. Full sonication power was used 

in the reactor to emulsify the oxygen gas and the sonicated solution was collected in a cooling column 

to separate the oxygen microbubbles (bottom) from the macrofoam (top). The column was extracted 

into 60-mL syringes and centrifuged to further concentrate the oxygen microbubbles. The 60-mL 

syringes were placed in an Eppendorf 5804 centrifuge (Hauppauge, NY, USA) and centrifuged at 150 

relative centrifugal force (RCF) for 4 min to yield a final concentration of ~70 vol%. The concentrated 

oxygen microbubble foam was transferred into 20-mL glass serum vials (Wheaton, Millville, NJ, USA), 

sealed with an oxygen headspace, and stored at 5°C. The remaining centrifuged lipid solution was 

recycled and the process was repeated until the desired volume of 70 vol% oxygen microbubbles was 

produced. The concentration and size distribution of the oxygen microbubbles (OMBs) (n=3 

independent samples) were measured using the Coulter Counter method (Coulter Multisizer III, 

Beckman Coulter, Indianapolis, IN, USA). The same methodology described above was used to 

make concentrated nitrogen microbubbles (NMBs) by just replacing the oxygen gas with room 

temperature nitrogen gas. 
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To extract microbubbles from a vial to be used in experiments, microbubbles were slowly 

pulled into a syringe through a 20-gauge needle, while a bag filled with 100% oxygen was connected 

to another needle in the vial top (to avoid creating a vacuum in the vial that could compromise the 

bubbles’ integrity, as well as minimize the introduction of room air into the vial).  

 
4.3.2 IN VITRO OXYGEN RELEASE 

 
A fiber-optic oxygen sensor (Oxymicro, WPI, Sarasota, FL, USA) was used to measure the 

dissolved oxygen content in deionized water before and after microbubble injection. Prior to use, the 

device was calibrated according to manufacturer’s instructions for a standard two-point calibration in 

oxygen-free water and water vapor saturated air. Calibration for automatic temperature compensation 

was not performed since all experiments were performed in quick succession at room temperature 

(centrally maintained at 22°C). 

For the measurement, a beaker with 70 mL of partially degassed deionized water containing 

a magnetic stirrer was placed on a stir plate for continuous mixing, and the fiber-optic measurement 

device recorded continuously before, during, and after OMB and NMB injections. Injections consisted 

of 300 μL undiluted OMBs or NMBs. Experiments were repeated thrice with independent vials of 

OMBs or NMBs and measurements were recorded continuously before and for at least 5 min post 

microbubble injection. The maximum change in dissolved oxygen saturation over the 5 min post-

injection was compared between OMB and NMB groups. 

 
4.3.3 ANIMAL MODEL FOR ALL IN VIVO STUDIES 

 
All animal procedures were approved by the Institutional Animal Care and Use Committee of 

the University of North Carolina at Chapel Hill and performed in accordance with the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health. Female Fischer 344 rats with 

subcutaneous fibrosarcoma (FSA) tumor allografts were used in all in vivo experiments. This model 

was chosen as the development of hypoxia in these FSA tumors has been extensively characterized 

[31-34]. These previous studies demonstrate hypoxia through EF5 and pimonidazole immunostaining, 

in addition to direct detection of pO2 in the tumor tissue with microelectrodes. Results demonstrate 
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moderate hypoxia throughout much of the tumor and more severe hypoxia towards the tumor center. 

Briefly, tumor allografts grew after subcutaneous implantation on the right flank of 1 mm3 

fibrosarcoma (FSA) tissue freshly resected from donor tumor-bearing rats. Animals were used for 

experiments 2-3 weeks after implantation, when tumors were around 1 cm in diameter. The following 

standardized anesthesia protocol was followed for all tumor hypoxia measurements and for 

radiotherapy treatment studies.  Anesthesia was induced by placing the animals in an induction box 

for 3 min to breathe 5% vaporized isoflurane with pure oxygen as the carrier gas. Anesthesia was 

maintained by having the animals breathe 2.0-2.5% isoflurane with medical air as the carrier gas for 

the remainder of the experiment. The timing of this anesthesia protocol and the use of medical air for 

the primary carrier gas allowed for consistent tumor hypoxia measurements and minimized changes 

in blood oxygenation due to pure oxygen breathing rather than microbubble intervention. The animals’ 

temperatures were maintained throughout the experiments using a heated platform. When ultrasound 

imaging was used to evaluate tumor volume (unrelated to measuring tumor hypoxia), animals were 

anesthetized using vaporized isoflurane (initially 5% for induction, then 2.0-2.5%) with oxygen carrier 

gas. 

Figure 4.2: Experimental procedures. A) Schematic of the experimental setup used for in vivo hypoxia 
modulation measurements using the Zenascope system. B) Schematic of tumor volume assessment 
via B-mode ultrasound imaging. Two cross-sectional images were acquired, and lengths a, b and c 
were used to calculate tumor volume. C) Radiotherapy pre- and post-imaging experimental protocol. 
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4.3.4 IN VIVO OXYGEN RELEASE 

 
Fischer rats with FSA tumors were anesthetized as described above, and the tumor area was 

shaved. Tumor oxygenation was measured continuously in real-time using a validated optical 

spectroscopy technique based on the absorbance of oxyhemoglobin and deoxyhemoglobin 

(Zenascope, Zenalux Biomedical, Durham, NC, USA). Figure 4.2 shows a schematic of the 

experimental setup for these measurements. Each experiment was capped at one hour from the start 

of anesthesia. Prior to any intervention, a stable baseline was ensured by waiting 25 min from the 

start of anesthesia. An oxygen challenge, defined as changing the isoflurane carrier gas from medical 

air to pure oxygen for 3 min, served as a positive control to ensure that an increase in blood 

oxygenation could be measured reliably in the tumor. Tumor hypoxia level was measured 

continuously before and after the following interventions. 

1) OMB administration: 500 μL undiluted OMB injected intra-tumorally slowly over 30 s (n=4) 

2) Nitrogen microbubble (NMB) administration (negative control): 500 μL undiluted NMB injected 

intra-tumorally slowly over 30 s (n=4) 

The primary objective of this experiment was to characterize the ability of intratumoral OMB 

administration to reoxygenate FSA tumors, and a secondary objective was to confirm baseline 

hypoxia in this tumor model. 

 
4.3.5 RADIOTHERAPY EXPERIMENTS 

 
Animals were anesthetized with isoflurane and oxygen carrier gas and positioned on a 

heated pad, similar to Figure 4.2. Two-dimensional B-mode ultrasound imaging was used to calculate 

tumor volume (Acuson Sequoia 512, Mountain View, CA, USA). The largest tumor cross-sections in 

the sagittal and transverse planes were selected and saved after moving the transducer along these 

directions on a 3D motion stage. Tumor volumes were then calculated using the ellipsoid volume 

formula, 𝑉 =
4

3
 𝜋 𝑎 𝑏 𝑐, where V is the calculated tumor volume, a is half the measured tumor width on 

the sagittal plane, b is half the measured tumor width on the transverse plane, and c is half the 

measured tumor depth (taking the average between the sagittal and transverse planes), Figure 4.2. 
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For a fixed dose of RT, it is well established that tumor control is strongly correlated to the 

initial tumor volume on the day of treatment [35-41]. Since this study aims to evaluate the feasibility of 

using OMBs to improve radiotherapy outcome (tumor control), a matched study design with respect to 

initial tumor volume on the day of radiotherapy was chosen to limit the animal numbers needed. Since 

both the effect size of OMB and OMB dosing per tumor size are unknown prior to the study, this 

strategy allows us to see how the results scale with respect to tumor volume and can then serve as a 

basis for a larger study (see Discussion for a full explanation).  

For this reason, care was taken to match initial tumor sizes on the RT day between treatment 

groups. Tumor volume matching was achieved by implanting a few extra animals to allow selecting 

the closest tumor volumes possible and ordering animals into similarly sized groups after imaging, 

then randomizing treatment group assignment within these ordered categories. To minimize other 

biological variability within each experimental round, all animals were ordered on the same day (of 

similar age), had the same time to acclimatize to the vivarium before tumor implantation, were 

implanted on the same day from the same donor tumor, and were treated on the same day. Hydration 

and wet food packs were given to all animals irrespective of treatment (or no treatment) group. The 

experimental rounds resulting from this matching protocol are summarized in Table 4.1 and described 

hereafter. 

Table 4.1: Experimental rounds for the radiotherapy experiments. Animals were matched according to 
initial tumor volume on the day of radiotherapy, and experiments were repeated in two separate 
rounds: round 1 consisted of n=2 animals per group and round 2 of n=4 animals per group (where the 
experimental group conditions of ‘OMB alone’ and ‘No treatment’ were also added). Within each 
experimental round, the animals were the same age, had the same amount of time to acclimatize to 
the vivarium before tumor implantation, were implanted on the same day from the same donor tumor, 
and were treated on the same day. 

 RT RT + OMB RT + NMB OMB alone No treatment 

ROUND 1 n=2 n=2 n=2   

ROUND 2 n=4 n=4 n=4 n=4 n=4 

 

A total of 18 animals were matched between radiotherapy treatment groups, 1) RT alone, 2) 

RT+OMB and 3) RT+NMB as described above, in two rounds of experiments (n=2 per group in the 

first round, then n=4 per group in the second round, total of n=6 per group). Radiotherapy consisted 

of a single 15 Gy dose of 6 MV photons (2 cm  2 cm field size) delivered using a clinical linear 
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accelerator (Siemens Healthcare, Malvern, PA, USA), following a previously described protocol from 

our group [42]. Animals were anesthetized as described above (standardized protocol with medical 

air as the carrier gas) and positioned on a heating pad on top of the clinical accelerator table. The 

skin around the tumor was gently extended and taped so that the tumor was positioned outward from 

the body to avoid irradiating vital organs, and a 1 cm thick tissue-mimicking bolus was placed on top 

of the tumor to correct for normal tissue attenuation of the radiation field meant for deeper tumors. 

The patient table height was adjusted using light field crosshair projected on paper prior to the start of 

radiation therapy. Animals in the groups receiving microbubbles were injected with 1 mL undiluted 

OMBs or NMBs intra-tumorally immediately prior to the start of RT (since we are using a clinical linear 

accelerator for treatment, in practice it takes 1 min to leave the treatment room and start the 

treatment protocol). Following RT, tumor volume was measured using B-mode ultrasound as 

previously described every 3 days for 31 days, as shown in Figure 4.2, or until the tumor reached 

2.5 cm in the largest dimension, at which point animals were humanely sacrificed. Animals were 

sacrificed via isoflurane overdose followed by thoracotomy as a secondary means of euthanasia.  

 
4.3.6 EFFECT OF OMB ADMINISTRATION IN THE ABSENCE OF RADIOTHERAPY 

 
During the second round of radiotherapy experiments, an additional two conditions were 

tested: no treatment (n=4) and OMB alone without RT (n=4) and all animals in this round were also 

matched for initial tumor volume as previously described. 

 
4.3.7 DATA ANALYSIS AND STATISTICAL METHODS 

 
All data are presented as mean ± standard deviation unless otherwise stated. Statistical 

significance was set a priori at p<0.05 (*). For in vitro and in vivo oxygen release measurements, the 

maximum difference in dissolved oxygen content after microbubble injection was compared between 

the nitrogen and oxygen groups using a Student’s t-test. For radiotherapy experiments, matched 

statistical comparison tests on the RT ‘tumor control time,’ defined as the time (in days) to reach 

maximum tumor burden, between the treatment groups were performed. Either repeated measures 

ANOVA with Newman-Keuls multiple comparison post-test was performed after confirming normality, 
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or Friedman test with Tukey’s post-test was performed after negative normality test. Animals below 

the maximum tumor burden at day 31 were included as day 32 in these tests.  

 
4.4 RESULTS 

 
4.4.1 MICROBUBBLE CHARACTERIZATION AND IN VITRO OXYGEN RELEASE 

 

Microbubble concentration was measured as 1.3 (±0.4) × 10
9
 mL-1, and median bubble size 

was around 4 μm, as shown in Figure 4.3 A. In vitro dissolved oxygen saturation measurements were 

significantly increased with the addition of 300 μL OMBs into 70 mL water by 14.2 ± 7.2% compared 

to adding NMBs (p=0.04, n=3 independent samples). 

Figure 4.3: In vitro oxygen microbubble characterization. A) Measured oxygen microbubble size 
distribution, displayed with a diameter bin size of 0.032 μm, as mean ± standard deviation (gray area) 
from 3 independent samples; A) Measured change in oxygen % saturation in vitro after 300 μL OMB 
(n=3) or NMB (n=3) injection into 70 mL partially degassed water (p<0.05). 
 

4.4.2 IN VIVO OXYGEN RELEASE RESULTS 

 
Consistent real-time oxygenation dynamics were recorded using a non-invasive 

spectroscopic measurement system by assuring prior to any intervention that sufficient time was 

given to achieve a stable baseline during anesthesia. OMBs were shown to increase tumor 

oxygenation, whereas NMBs lowered tumor oxygenation (Figure 4.4). Tumors used for this study 
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ranged in diameter from 5 mm – 17 mm, approximately matching the range of tumor sizes used for 

subsequent radiotherapy experiments.  

The average baseline percent hemoglobin saturation across all 8 tumors used for this 

experiment was 55 ± 30% (range from 0 – 83% hemoglobin saturation). These data demonstrate that 

the FSA model used here is indeed hypoxic. It is important to mention, however, a limitation of the 

Zenalux measurement system. This system measures hemoglobin saturation via optical 

spectroscopy. Therefore, it cannot accurately measure hypoxia deep within tissue due to the limited 

penetration depth of light. And thus, for large tumors we are likely measuring hemoglobin saturation 

only at the outer edge of the tumor rather than the center, biasing our values to be higher than what 

would be observed at the tumor’s center. We believe that the percent hemoglobin saturation reported 

here is conservative, and the tumors’ centers were likely more hypoxic than what we report.  

Figure 4.4: Change in tumoral oxygenation with intra-tumoral injection of OMB or NMB. The time to 
peak was found to be 97 s after injection on average, and the OMB-induced increase in tumoral 
oxygenation lasted for over 18 min on average (our protocol’s maximum 1 h experiment time meant 
that we could not wait for a complete return to baseline in some cases). A) Average peak change in 
tumoral hemoglobin saturation after OMB or NMB administration (n=4/group). B) Individual data 
points showing pre- and post-injection values. This demonstrates baseline hypoxia in all tumors (0-
83% hemoglobin saturation across all 8 tumors). 
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4.4.3 RADIOTHERAPY RESULTS  

 

Table 4.2 details all results from the radiotherapy experiments, for both rounds and including 

all controls. In Round 2, we included two additional control groups (No treatment and OMB alone, 

n=4/group) to ensure that the OMB administration did not influence tumor growth in the absence of 

RT. Indeed, no significant difference was shown in tumor control between the animals receiving no 

treatment and those having received a single OMB administration in the absence of any radiation 

treatment, as shown in Figure 4.5. Note: these controls were not included in Round 1 of this study. 

Therefore, the number of animals and range of tumor sizes tested for these control groups did not 

match the entire range of tumor sizes used for the radiation treatment groups (RT, RT+NMB, and 

RT+OMB). As such, we have not drawn direct comparisons between tumor control time of the No 

treatment and OMB only groups (Figure 4.5) with those of the three radiation treatment groups 

(Figure 4.6). 

Table 4.2: Individual data points for radiotherapy tumor control times (in days). Data is stratified by 
matched initial tumor size for each group, showing RT effect size depends on initial tumor volume.  

 Matched 
initial 
tumor 

volume 
(cm3) 

Tumor control (in days) for the 
different treatment groups 

Increase in tumor control between RT 
and RT+OMB 

 No treat-
ment 
(n=4) 

OMB 
alone 
(n=4) 

RT + 
NMB 
(n=6) 

RT 
(n=6) 

RT + 
OMB 
(n=6) 

In days:  
(RT+OMB) - 

RT 

As percentage (%): 
(RT+OMB) / RT * 100 -

100 

ROUND 2 0.1 ± 0.0 32 32 32 32 32 0 0 

0.3 ± 0.1 25 19 32 32 32 0 0 

0.6 ± 0.1 10 19 22 22a 31 9 41 

0.8 ± 0.1 10 10 22 22 28 6 27 

ROUND 1 1.7 ± 0.2   10 16 22 6 38 

2.8 ± 0.3   7 7 10 3 43 
aAnimal died prior to experimentation end, value replaced from the NMB group since no overall difference was found between 
these two groups. 

Figure 4.5: A single oxygen microbubble administration alone does not influence tumor control. No 
significant difference was found between the no treatment and oxygen microbubble group in the 
absence of any radiotherapy (n=4 per group). Box-and-whisker plots represent all data from the No 
treatment and OMB alone controls. 
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From the animals receiving RT, 17/18 successfully completed the study (one of the rats in the 

RT alone group died during anesthesia prior to the completion of the RT treatment protocol and was 

therefore excluded from the analysis). Initial RT results show that intra-tumoral OMBs improve tumor 

control after radiotherapy (p<0.05, n=6 per group), Figure 4.6, and initial tumor size significantly 

affects RT outcome, Table 4.2. 

Figure 4.6: Tumor control time comparison between RT groups. OMBs significantly improve RT 
outcome, whereas NMBs as control do not (n=6 per group). Box-and-whisker plots show all data from 
the three radiotherapy treatment groups.  
 

4.5 DISCUSSION  

 
4.5.1 OMBs MODULATE TUMOR HYPOXIA 

 
In this study, we demonstrate the oxygen payload of OMBs in vitro and in vivo, before 

showing that they can be used to significantly improve radiotherapy tumor control in a fibrosarcoma 

model in vivo. In vitro, the addition of OMBs to hypoxic solution increases the amount of dissolved 

oxygen, as expected, and has significantly higher effect than that of the NMB control. The very slight 

increase shown with NMBs is due to the fact that these measurements were collected over a 5 min 

period, so the liquid uptakes oxygen molecules through its surface area in contact with ambient air 

over this time (gas exchange towards equilibrium). In vivo, direct OMB injections into fibrosarcoma 

tumors are shown to significantly increase tumoral oxygenation, whereas the NMB injection control 

had the opposite effect. This increase is very fast (peaks around 90 s post injection) and remains 
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elevated for over 15 min, which is consistent with the improved tumor control observed when 

combining RT with OMB administration in vivo. 

 
4.5.2 RADIOTHERAPY IMPROVEMENT DEPENDENCY ON INITIAL TUMOR VOLUME 

 
The results show that for a fixed RT dose and fixed OMB dose, the gain in tumor control time 

depends on initial tumor volume, Table 4.2. As expected, we found that OMB administration offered 

the greatest benefit for intermediately sized tumors (initial volume 0.6-1.7 cm3). Over this size range, 

we observed survival benefits of 6-9 days (OMB+RT vs. RT alone), Table 4.2 and Figure 4.7. 

Conversely, for very small tumors (<0.5 cm3 initial volume), the tumors likely have not yet developed 

extensive hypoxia, and the radiotherapy dose is already very efficient for tumor control. Thus, OMBs 

do not significantly improve the RT efficacy for small tumors (Figure 4.7). This observation is also 

biased by the fact that our observation time was capped at 31 days, resulting in right censoring of all 

tumors that were still controlled by that time. For very large tumors (>2 cm3 initial volume), the 

absolute gain in tumor control (in days) drops (Figure 4.7). Since these are likely to be very hypoxic, 

and we are always injecting the same OMB dose, this is probably not enough to reoxygenate these 

large tumors efficiently, thus limiting therapeutic gain. Interestingly, when comparing the increase in 

tumor control offered by OMB administration as a percentage of that offered by RT alone, we find 

fairly consistent improvement of ~35% for all tumors larger than a threshold initial volume of 0.5 cm3 

(Table 4.2, rightmost column). 

Figure 4.7: Tumor control time vs. initial tumor volume. An on/off effect (threshold) is observed around 
0.5 cm3 initial tumor volume. Below this size, tumors are controlled for 31 days with RT alone. Above 
this size, tumors are large enough that RT alone cannot control them for 31 days, and, therefore, 
OMB administration can provide a substantial improvement in tumor control time. Additionally, the 
benefit offered by OMB administration diminishes as initial tumor volume exceeds ~2 cm3.  
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With further optimization, we do believe that OMB administration holds the potential to offer 

meaningful improvements in RT-mediated tumor control over a wide range of tumor volumes. Here, 

OMB did not improve RT outcomes for those rats with small tumors simply because the RT dose 

administered was already sufficient to provide a near complete response. We hypothesize that if the 

RT dose was reduced for this cohort of animals, we would still be able to achieve complete tumor 

regression through the administration of OMBs. This is attractive, since lowering the RT dose would 

reduce exposure of healthy tissue to radiation and limit associated side effects. Similarly, we believe 

that we could achieve more substantial control of large tumors by either increasing the OMB dose, RT 

dose, or both. 

 
4.5.3 LIMITATIONS AND FUTURE WORK 

 
 A limitation of this study is the relatively small sample size used in the assessment of OMB 

administration for improved RT. Nevertheless, our results are consistent between two completely 

independent rounds of experiments, and the benefit offered by OMB administration is large enough to 

be statistically significant despite the relatively small sample size. It is reasonable to assume that 

optimization of the dosages and administration can result in even greater improvement in tumor 

control. Now that a first demonstration has been established including a comparison to NMB 

administration, a future study could concentrate on establishing the radiotherapy dose-modifying 

factor (DMF) resulting from OMBs (i.e., the reduction in RT dose required to achieve the same tumor 

control probability when OMBs are administered as an adjunct therapy).  To do so, animals are 

randomized between the RT alone and RT+OMB groups, and the RT dose necessary to control 50% 

of tumors is calculated from logistical regression for each group; DMF is then calculated as the ratio 

between these RT doses. Nevertheless, we estimate that a comprehensive assessment like the one 

described above requires n=100 animals from the preliminary data presented here and thus is not 

warranted until further OMB administration optimization is undertaken (see next Discussion section 

Potential for clinical translation). 

 Throughout this study, we used a rat FSA tumor model previously characterized to develop 

hypoxic tumors. We confirmed baseline hypoxia via spectroscopic measurement of hemoglobin 
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saturation. However, a limitation is that we did not confirm tumor hypoxia with a second method (e.g., 

immunostaining of key hypoxia markers). In future work, we plan to characterize tumor-size-

dependent hypoxia and the effect of OMB administration on hypoxia in more detail using histology. 

We are also interested in studying in more detail the effect of tumor volume on the efficiency of OMB-

mediated reoxygenation. 

 
4.5.4 POTENTIAL FOR CLINICAL TRANSLATION 

 
Despite considerable progress in early detection and treatment options in multiple cancers 

over the last decade, cancer remains difficult to treat in advanced disease stages and radioresistance 

and recurrence at the primary tumor site are significant clinical challenges. 

 
4.5.4.1 DIRECT TUMORAL INJECTIONS 

 
A number of solid tumors are accessible for direct injections clinically. In particular, head and 

neck cancer treated with external beam radiation therapy are particularly hypoxic [43, 44] yet shallow 

enough for direct injections. Furthermore, more deeply seated tumors such as those of the pancreas, 

liver, or colon can be accessed for intratumoral injection with ultrasound, endoscopic ultrasound or 

computed tomography image guidance [45]. Additionally, a direct access for OMB with RT can be 

found in brachytherapy (clinically approved) which uses guiding tubes to feed radiation sources inside 

solid tumors where they irradiate for a few seconds before being retracted or are left implanted for 

lower irradiation over time [46]. Therefore, this direct tumoral injection of OMBs could potentially be 

clinically translatable in the long term through brachytherapy co-administration (through one of the 

guiding tubes) or some needle-accessible solid tumors with external beam radiation. 

 In human clinical studies, intratumoral injections of 20-40% of the total tumor volume have 

been reported [45, 47]. Here, we provided a consistent intratumoral OMB dose of 0.5 mL, regardless 

of tumor volume. It is promising that we found substantial survival benefit for intermediately sized 

tumors (e.g., 1.7 cm3), where the OMB injection volume corresponded to 28% of the tumor volume 

and was therefore within the clinically achievable range. Future efforts will be aimed at optimizing 

OMB dose with respect to baseline tumor hypoxia and tumor volume, after which we anticipate being 
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able to achieve substantial reoxygenation with relevant OMB dose volumes across a wide range of 

tumor sizes.  

 
4.5.4.2 INTRAVENOUS ADMINISTRATION 

 
Clinically, fractionated dose RT treatment plans, where smaller doses of radiation are 

administered repeatedly, typically five days a week over the course of several weeks or months, were 

developed to spare healthy tissue toxicity, taking advantage of the better repair capability of healthy 

tissue compared to tumor cells. Oxygen microbubbles are similarly formulated to microbubble 

ultrasound contrast agents used for imaging but comprise an oxygen gas core instead of heavy 

molecular weight gases. Due to their micrometer size scale, similar to that of a red blood cell, 

microbubble contrast agents are confined to the vascular space after being intravenously 

administrated and serve as an ultrasound blood pool marker. Depending on the pressure of the 

incident ultrasound wave, microbubbles will respond by either stably oscillating or by bursting.   

Therefore, local release of oxygen from OMBs following intravenous administration could be 

achieved using focused ultrasound in the tumor region. This would be minimally invasive and greatly 

advantageous in the context of fractionated dose RT. Such local reoxygenation may allow for similar 

tumor control with even smaller radiation doses or fewer total treatments. We have previously 

demonstrated in vitro that ultrasound application significantly enhances oxygen delivery from OMB 

[48].  

In addition to the potential use of ultrasound for image-guided locally triggered oxygen 

release in the tumor, its ability to make microbubbles oscillate also offers a useful therapeutic target in 

relation to RT. Indeed, it has been shown that inducing stable oscillation of non-oxygen microbubbles 

in the vasculature of the tumor with ultrasound prior to RT increases radiation damage to these tumor 

vessels in a mouse model of prostate cancer treated with radiotherapy [49]. In addition to inducing 

tumor cell death, RT also damages the endothelium of tumor vasculature, leading to additional tumor 

damage as it loses its blood supply network post-treatment [50, 51]. As such, endothelial sensitization 

using acoustically active agents such as microbubbles could offer an additional therapeutic target, as 

they mechanically oscillate near vessel boundaries under appropriate ultrasound conditions. 
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Importantly, this promising result was achieved with non-oxygen microbubbles, so we anticipate that 

the additional target of hypoxia modulation would further improve these results as they target a 

complementary radiosensitizing pathway. 

Nevertheless, intravenous administration requires OMBs that are stable enough to reach the 

tumor and retain their oxygen gas before being disrupted by ultrasound locally. In principle, the 

oxygen payload of OMBs would be retained for a longer duration in circulation if the carrier gas is 

pure oxygen rather than air.  Additionally, the OMB formulation used in this work was designed to 

achieve rapid oxygen release for peritoneal microbubble oxygenation [25, 26].  The OMBs could be 

reformulated to increase circulation persistence and oxygen payload delivery to the tumor vasculature 

following intravenous administration. 

 
4.5.4.3 PARTICULAR IMPACT IN RT 

 
Finally, two specific radiotherapy targets merit further mention with respect to OMB hypoxia 

modulation. First, stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) involve 

delivery of one or a few large dose fractions (e.g., 8-20 Gy) to the tumor volume. This approach has 

shown particularly promising results for inoperable early stage tumors (e.g., lung and prostate 

cancers) that are small, while sparing surrounding normal tissue from irradiation. However, many 

tumors are hypoxic and thus radioresistant. The SRS/SBRT procedures use only a few fractions and 

cannot take advantage of radiotherapy-induced tumoral re-oxygenation as the conventionally 

fractionated RT can (with 30 daily fractions). For fractionated RT, the surviving hypoxic cancer cells 

after one irradiation dose are re-oxygenated and so less hypoxic at the time of the next dose [52]. 

Since this is not the case for SRS and SBRT, hypoxia is deemed an even more important adjuvant 

therapeutic target for these treatments [53]. 

 Secondly, 40% of patients are anemic prior to receiving RT, and RT also often induces 

anemia [54-56]. This has important implications for tumoral hypoxia, since the decreased ability of 

blood to carry oxygen will also make the tumor resistant to radiation damages. It has been 

demonstrated that anemia is associated with lower RT local tumor control in head and neck cancers 
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[57]. As such, an oxygen delivery system that does not rely on red blood cells such as oxygen 

microbubbles could significantly benefit this patient subpopulation in particular [58, 59]. 

 
4.6 CONCLUSIONS  

 
In conclusion, our data show that oxygen microbubbles administered by direct intra-tumoral 

injection in fibrosarcoma allografts in vivo are capable of increasing tumoral oxygenation significantly 

for tens of minutes, whereas control nitrogen microbubble injection reduces tumoral oxygenation. 

Furthermore, a preliminary study with a fixed microbubble dose and radiotherapy protocol shows that 

oxygen microbubbles significantly improve radiotherapy tumor control. This constitutes the first 

demonstration that OMBs can improve RT outcome. The tumor control time improvement is heavily 

dependent on the initial tumor volume as expected for any fixed dose RT study. Smaller tumors are 

expected to be less hypoxic and easier to control to the end of our predetermined study observation 

period with radiotherapy alone, whereas large tumors are likely more hypoxic.  

The ability to measure the real-time dynamics of OMB-induced tumor hypoxia modulation 

could also be used to inform other tumor re-oxygenation adjuvant therapies, as well as optimize the 

dose and timings for RT. As such, future studies will concentrate on investigating administration 

routes and dosages. In particular, the ability to administer OMB intravenously remains most attractive 

due to being minimally invasive and potentially allowing for an image-guided, ultrasound-triggered 

release mechanism locally. This in turn offers the largest clinical translation applicability with repeated 

fractionated dose radiotherapy protocols and could harness endothelial sensitization as an additional 

therapeutic-enhancing mechanism. 
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CHAPTER 51 

OVERCOMING BIOLOGICAL BARRIERS TO DRUG DELIVERY WITH ULTRASOUND-

STIMULATED CONTRAST AGENTS 

 

 

5.1 MOTIVATION AND OVERVIEW 

 
In general, the goal drug delivery research is to maximize efficacy while minimizing systemic 

toxicity, thereby widening the therapeutic window of a drug (Figure 5.1). This is often attempted 

through targeting, which refers to any method that enriches drug accumulation specifically at the 

disease site while sparing other tissues. Targeting can be accomplished through a number of 

mechanisms including (1) covalent attachment of ligands or antibodies that bind to disease-site-

specific receptors, (2) formulation of the pharmaceutical in nano- or microparticles that are 

preferentially taken up by the tissue or cells of interest, and (3) physical methods where biological 

barriers are disrupted through the application of external stimuli [1, 2].  This chapter introduces the 

use of ultrasound-stimulated contrast agents as a physical drug targeting method. 

This approach offers a number of unique advantages compared to other drug delivery 

methods. First, it is widely applicable across disease states and for a diverse range of 

pharmaceuticals. This method can be used to deliver small molecule drugs [3, 4], proteins [5], 

nanoparticles [6], and genetic material [7] in diseases ranging from cancer [3] to Alzheimer’s disease 
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[5]. The versatility of this platform is afforded by the fact that ultrasound is used to locally disrupt a 

specific biological barrier that would otherwise impede drug delivery. Acoustic parameters can be 

tailored with respect to the physicochemical properties of the cargo being delivered and physiologic 

features of the target tissue.  

Figure 5.1: Therapeutic window. The therapeutic window is defined as range of drug concentrations 
that fall between the minimum required dose for efficacy and maximum concentration before which 
toxicity is observed. 
 

A second key advantage is the opportunity for image guidance. Standard B-mode ultrasound 

imaging can be used to locate and align an anatomical feature before applying the therapeutic 

ultrasound pulses [8]. This allows for precise treatment planning in real-time, increasing accuracy and 

ultimately reducing the risk of off-target damage and toxicity. In some cases, ultrasound image 

guidance and therapy can be achieved with the same transducer, while other applications require 

alignment of two separate transducers for imaging and drug delivery.  

The purpose of this chapter is to introduce key biological barriers to drug delivery and provide 

an overview of the mechanisms by which ultrasound-stimulated contrast agents can be used to 

overcome them. We conclude by considering advantages of using novel phase change contrast 

agents (PCCAs) in this context and the expanded drug delivery applications that they may provide.  

 
5.2 BIOLOGICAL BARRIERS TO DRUG DELIVERY 

 
5.2.1 GASTROINTESTINAL TRACT 

 
The gastrointestinal (GI) tract has evolved to efficiently breakdown food products, allow 

nutrient uptake, and simultaneously provide a robust defense against ingested toxins and 
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pathogens [9, 10]. This presents a complex barrier for both local and systemic drug delivery through 

the GI tract, particularly for biologics [11]. The first hurdle is maintaining drug stability in the 

degradative environment. This often requires specialized formulations to protect the active 

pharmaceutical ingredient from (1) the harsh and fluctuating acidic pH and (2) an array of degradative 

species and enzymes [12]. If drug integrity is maintained, the second hurdle is permeability. The GI 

tract is blanketed with mucus that traps and protects the underlying epithelium from foreign particles 

[13]. Furthermore, GI epithelial cells are linked by tight junctions that restrict paracellular transport of 

large molecules (> 200 Da), and the hydrophilic nature of most biologic drugs limits passive 

transcellular diffusion [11]. In general, these challenges limit GI drug delivery to small molecules.  

 While a few reports exist, therapeutic ultrasound has yet to be extensively explored as a 

method for improving GI drug delivery [14-16]. This application would involve drug administration to 

the GI tract via oral or enema routes, followed by local ultrasound stimulation with an endoscopic 

probe. This technology has the potential improve treatment options for a number of GI diseases 

including ulcerative colitis, cancers of the GI tract, infection, and Crohn’s disease, and offers the 

following unique benefits [9, 14, 15]. First, rapid delivery would limit concerns of drug degradation by 

intestinal enzymes, eliminating the need for complex protective formulations. Second, this technique 

may allow for local GI delivery of biologic drugs previously restricted to intravenous administration 

(including peptides, proteins, monoclonal antibodies, RNA, and DNA), which would expand 

therapeutic options for GI diseases. Third, concentrated local delivery has the potential to enhance 

drug efficacy and reduce systemic toxicities.  Finally, this technique is theoretically drug-independent 

and may be applicable for a wide range of molecules, independent of molecular weight and 

physicochemical properties. 

 
5.2.2 VASCULATURE 

 
For systemic drugs (e.g., following intravenous (IV) administration or absorption through the 

GI barrier), the vasculature presents key barrier to efficient delivery. The vasculature is lined with a 

continuous layer of endothelial cells [17] that are linked by protein complexes, and the ability of 

molecules to transverse this barrier and enter the surrounding tissue varies with respect to the 
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molecule’s physicochemical properties/formulation and the local vascular physiology [18]. The barrier 

function of vasculature varies substantially from tissue to tissue and can be affected by local disease 

[18, 19]. Extreme examples include the tightly regulated blood brain barrier, and the leaky, 

disorganized vasculature characteristic of solid tumors.  

The brain requires a stable chemical composition for proper neuronal function, and as such, 

its vasculature is highly specialized to shield the brain from circulating blood components. This so-

called ‘blood brain barrier (BBB)’ is comprised of specialized endothelial cells, astrocytes and 

pericytes, which work together to prevent extravasation of foreign molecules and selectively promote 

up take of essential nutrients [20]. This vascular network is substantially more restrictive than 

vasculature in peripheral tissue, with the tight junctions between endothelial cells being 50-100´ 

tighter in in the BBB [21]. This presents a major challenge with respect to local drug delivery to the 

brain, and it is estimated that 98% of small molecule drugs and 100% of macromolecular therapeutics 

are unable to penetrate [22]. Methods to circumvent the BBB include direct trans-cranial drug 

delivery, administration via the nasal pathway, and physical/chemical disruption of BBB function [22]. 

Ultrasound-stimulated contrast agents present an opportunity to transiently open the BBB non-

invasively and with tight spatial control, and this technology is currently being explored as an option to 

improve the treatment of brain cancers and neurodegenerative diseases such as Parkinson’s and 

Alzheimer’s [23].  

The vascular physiology of solid tumors represents the other end of the spectrum in terms of 

leakiness, which comes with its own unique delivery challenges. Angiogenesis is a hallmark feature of 

cancer, as a functional nutrient and oxygen supply is necessary to support continued tumor growth 

[24]. To keep up with the rapid growth, tumor-associated angiogenesis is often chaotic leading to 

disorganized and poorly formed vessels [24]. These vessels often have large fenestrations between 

individual endothelial cells, which makes them particularly leaky. This, combined with the 

characteristically poor lymphatic drainage of solid tumors, results in to the so-called ‘enhanced 

permeability and retention (EPR) effect’, which describes the phenomenon of enhanced accumulation 

of macromolecules and nanoparticles within solid tumors [25]. It is important to note that the degree 

to which a tumor will demonstrate EPR is heterogeneous among different cancer types and even 
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between individuals with the same disease. Thus, EPR alone may be insufficient for effective tumoral 

drug delivery [25, 26].   

While the leakiness of solid tumor vasculature can aid in drug delivery for certain tumor types 

and cargos, it also presents paradoxical challenges. First, the EPR effect leads to fluid build-up and 

therefore excessive interstitial fluid pressure within solid tumors [26, 27]. This can in turn lead to 

vascular collapse, poor perfusion, and hampered penetration of drugs from the vasculature into 

surrounding tissue, all contributing to poor drug delivery efficiency. Growth of dense stroma within the 

tumor microenvironment can exacerbate these issues, limiting drug permeation through tumor tissue 

and preventing drugs from accessing deeply situated tumor cells [26, 27]. Finally, the same 

challenges that hinder drug delivery also limit tumor oxygenation, and solid tumors often exhibit 

marked hypoxia [28]. This presents additional challenges associated with hypoxia-induced 

chemoresistance and the increased risk of metastasis.  

In the context of solid tumors, ultrasound stimulated contrast agents can be used to enhance 

the permeability of existing vasculature [29], which may be valuable especially in cases of poor EPR 

or where large drugs/particles are being delivered. It has also been postulated that acoustic radiation 

force and streaming can enhance local drug diffusion and promote deep drug penetration 

independent of permeability concerns [29, 30]. This may be particularly useful in cases where 

elevated interstitial fluid pressure and stromal bulk prevent thorough drug distribution within a tumor. 

 
5.2.3 CELL MEMBRANE 

 
After entering the interstitial space of a tissue, most drugs must pass the cell membrane to 

exert their pharmacologic activity within the cytosol or nucleus. This is a notoriously difficult barrier for 

therapeutic proteins and genetic material, due to their typically large size, high surface charge, and 

sensitivity to degradation in biological environments [31, 32]. Extensive research effort has been 

devoted to devising methods for efficient intracellular delivery of these molecules, each offering 

advantages and limitations. For example, biologics can be formulated in nanoparticles, which protects 

them from degradation in circulation. Here, targeting ligands can be used to promote site-specific 

delivery and intracellular accumulation via receptor-mediated endocytosis. However, to finally enter 
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the cytosol, the therapeutic molecule must be able to escape both the nanoparticle and endosome 

before being degraded in the lysosome, which can be a major hurdle [33]. For gene delivery, viral 

vectors offer an alternative approach [34]. Viral vectors offer inherent mechanisms for passing the cell 

membrane, escaping the endosome, and entering the nucleus [35]. However, the use of viral vectors 

poses safety concerns regarding vector immunogenicity and delivery specificity.  

Ultrasound-stimulated contrast agents can be used to physically disrupt cell membranes and 

enhance intracellular delivery of wide variety of therapeutic molecules, including biologics [36]. 

Furthermore, drugs and genes can be loaded onto the contrast agents, offering protection from 

enzymatic degradation and enhancing site specific delivery [37]. Importantly, cell membrane 

perforation by ultrasound is a transient process, and the cell can rapidly repair and reseal itself.  

While this technique has shown great promise in the in vitro setting, in vivo translation is 

complicated by the fact that traditional ultrasound contrast agents (microbubbles) are too large to 

extravasate from the vasculature following intravenous administration. This limits the utility of cellular 

perforation to drug delivery into vascular endothelial cells, unless microbubbles are invasively injected 

into the disease site (e.g., solid tumor), which presents addition risks and limitations.  

 
5.3 SONOPORATION: PROPOSED MECHANISMS AND OVERVIEW OF ACOUSTIC 

PARAMETERS 

 
5.3.1 PROPOSED MECHANISMS OF SONOPORATION 

 
Sonoporation is a term used to describe the process of using ultrasound-stimulated contrast 

agents to permeabilize biological barriers, typically for drug or gene delivery purposes [36]. The bulk 

of literature surrounding this topic describes either cell membrane perforation in vitro [36, 38] or 

permeabilization of vascular barriers in vivo [23, 29], however, the same principals can be applied to 

other biological barriers such as the GI epithelium. Despite decades of research, a consensus has yet 

to be reached regarding the precise mechanisms involved in sonoporation. This is partly due to the 

wide range of acoustic parameters and experimental designs used within the literature, which makes 

it difficult to draw generalizable mechanistic conclusions. Nevertheless, the primary mechanisms 

driving sonoporation are thought to all stem from physical or chemical effects of cavitation. In this 
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section, we provide a brief overview of phenomena surrounding acoustic cavitation and a sampling of 

biological responses that these phenomena may induce.   

Traditional ultrasound contrast agents are micron-range gas filled bubbles (microbubbles), 

which typically comprise a gas core and a stabilizing shell of lipids, protein, or polymers [37]. When 

interrogated with relatively low amplitude ultrasound, microbubbles will oscillate with the expansion 

and contraction phases of the passing acoustic wave. This is referred to as stable cavitation [39]. As 

amplitude is increased, the inertia of the surrounding fluid compressing the microbubble during the 

contraction phase becomes so great that the microbubble will violently collapse upon itself, in a 

process called inertial cavitation.  

Under the stable cavitation regime, a number of physical phenomena occur. First, 

microbubble oscillations cause microstreaming or flow in the surrounding fluid [36, 38]. This exerts 

shear stress on surrounding biological structures, which may ultimately disrupt their integrity and may 

result in the formation of small membrane pores. Furthermore, when a microbubble oscillates while in 

direct contact with a cell or microvessel, the push and pull from the expansion and contraction phases 

will directly deform the cell or vessel, contributing to cell membrane or vascular permeabilization [36, 

38].  

In addition to these mechanical stresses, stable cavitation can induce sonoporation through 

chemical means. The shear stress of microstreaming is thought to generate reactive oxygen species 

(ROS) [36, 40], which can (1) modulate the function of ion channels with downstream signaling 

effects or (2) directly induce cellular injury by lipid peroxidation [36]. Cell membrane perforation also 

leads to an influx of Ca+2 into the cell [41], which may enhance intracellular drug accumulation via the 

induction of endocytosis [42].  

Inertial cavitation is associated with more intense physical forces, including the generation of 

shock waves and the production of micro fluid jets towards nearby surfaces [43]. These strong 

physical forces can mechanically disrupt cell membranes and vascular barriers, creating membrane 

pores that are in general larger than then pores created through stable cavitation. Both in vitro and in 

vivo studies have demonstrated an increased risk of cell death / tissue damage with increasing 

inertial cavitation energy [44-47].  
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Complimentary to permeabilizing drug delivery barriers, acoustic phenomena can 

independently enhance the drug transport and distribution in tissue. Particles can be pushed in the 

direction of the acoustic beam via acoustic radiation force [29, 30, 48]. One report shows that this 

may be responsible for the greater permeation of liposomal doxorubicin through tumor tissue when 

ultrasound stimulation is applied in the absence of microbubbles [30]. Additionally, the 

microstreaming around oscillating microbubbles can greatly enhance the transport of drugs in the 

surrounding fluid [48, 49]. Finally, microbubbles oscillating within the brain vasculature can enhance 

the perivascular pump effect, promoting thorough distribution of extravascular drugs through brain 

tissue [50].  

 
5.3.2 ACOUSTIC PARAMETERS FOR SONOPORATION 

 
It is difficult to describe a single set of “best” acoustic parameters for sonoporation, as 

optimization will depend on a number of non-acoustic experimental criteria including (1) 

physicochemical properties of the drug / particle being delivered, (2) biology of the barrier being 

disrupted (e.g., tumor vasculature vs. BBB vs. cell membrane), and (3) the concentration and 

properties of the microbubbles being used as cavitation nuclei. Furthermore, the interplay between 

acoustic parameters is important, and it is likely that several parameter combinations could result in 

similar levels of drug delivery enhancement for a given application. These considerations make 

acoustic parameter optimization both difficult to perform and not necessarily generalizable among 

diverse applications. As a result, a wide range of successful acoustic parameters have been reported 

in the literature, with little consensus in the field regarding best practices. Below we have summarized 

general considerations for key acoustic parameters, including a range of reported values. 

 
Frequency (0.3 ~ 2.5 MHz): The likelihood of inducing cavitation is inversely related to 

frequency [51], and as such, relatively low frequencies tend to be best for sonoporation. Another 

important consideration is the resonant frequency of the microbubbles being used, which varies as a 

function of microbubble size [52]. Exiting microbubbles near resonance will lead to more pronounced 

oscillatory behavior, and therefore enhanced biological effects [53].  
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Pressure (0.1 ~ 2.5 MPa): Pressure has been considered one of the most important acoustic 

variables dictating sonoporation outcome. Cavitation activity is directly proportional to rarefactional 

pressure [51]. At low pressure, stable cavitation is dominant. As pressure is increased, so is the 

likelihood of microbubble destruction via inertial cavitation. In general, the severity of biological effects 

will increase with increasing pressure, initially enhancing drug delivery but eventually leading to 

undesired tissue damage [54]. Furthermore, rapid microbubble destruction may negatively impact 

cavitation persistence during treatment (see section Importance of Cavitation Persistence below). 

For these reasons, intermediate pressures (on the order of a few hundred kilopascals) may be best.  

 
Pulse length (4 ~ 50,000 cycles): Sonoporation protocols vary substantially with respect to pulse 

length. As with increasing pressure, drug delivery has been shown to increase with increasing pulse 

length, eventually at the price of increased cell death/damage [55]. Furthermore, the effects of 

acoustic radiation force increase with increasing pulse length [56], which may be an important 

consideration for some applications.  

 
Duty cycle (1 ~ 100%): Duty cycle is defined as the percent “on” time of the ultrasound pulse (pulse 

length divided by time interval between pulses). This parameter varies substantially among literature 

reports. Combining high duty cycles with high intensity ultrasound can lead to tissue heating. To 

emphasize the mechanical effects of cavitation and minimize heating, it has been suggested that duty 

cycle is kept low when high ultrasound intensities are used and may be increased when low 

intensities are employed [29].  

 
Exposure time (10 s ~ 30 min): Exposure time is kept short for in vitro studies, typically 1 min or 

less. For in vivo studies, exposure time typically ranges from 1.0 – 10 minutes. In vivo, it is important 

to consider the pharmacokinetics of the drug and microbubbles when choosing an exposure time [8]. 

Microbubbles must be present for the duration of the treatment, which may require continuous IV 

infusion or repeat bolus dosing since microbubbles have short half-lives in circulation. 

 
Importance of cavitation persistence: Recent reports regarding vascular permeabilization with 

microbubbles emphasize the importance of achieving persistent cavitation activity. If microbubble-
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destructive ultrasound pulses are used, it is important to allow microbubbles to re-enter the focal zone 

via blood flow, such that sonoporation effects are produced for the duration of the treatment. 

Reperfusion into the focal zone can be achieved by alternating sonication with rest time [6, 57] or 

theoretically by using short pulses and long pulse repetition periods [58]. To this end, Pouliopoulos 

and colleagues have demonstrated the value of using low pressures and short pulses to provide 

sustained, controllable, and safe cavitation activity for vascular permeabilization [59, 60].   

 
5.4 MOTIVATION FOR USING LOW BOILING POINT PCCAs FOR SONOPORATION  

 
While microbubbles have seen success as sonoporation initiators for cellular perforation in 

vitro and vascular disruption in vivo, their large size prevents expanded in vivo applications. 

Microbubbles are relatively large (1-10 μm) and therefore cannot escape the vasculature following 

intravenous administration [61]. Therefore, extravascular cell membrane perforation for the purpose 

of improved drug or gene delivery within a target tissue is not feasible. Furthermore, GI drug delivery 

applications would be challenging with microbubbles, as they would not be able to efficiently 

permeate the GI mucus mesh to interrogate the underlying epithelium.  

PCCAs are nanometer scale, liquid-filled droplets that can be vaporized into microbubbles 

when subjected to ultrasound of sufficient amplitude through a process termed acoustic droplet 

vaporization (ADV). Their nanometer-scale size distributions may allow for (1) passive accumulation 

in leaky tumors via the EPR effect [62, 63] and (2) permeation through GI mucus for sonoporation of 

the GI epithelial barrier. Furthermore, since PCCAs are nearly invisible to ultrasound in their liquid 

state, high concentrations can be used without the shielding effects characteristic of high microbubble 

concentrations. PCCA-derived microbubbles destroyed in one acoustic pulse may be replenished 

through subsequent vaporization events, thereby allowing sustained generation of cavitation energy 

and enhanced sonoporation [64]. PCCAs therefore offer a solution to the major limitations previously 

given for microbubble-mediated sonoporation and hold the potential for extravascular and GI 

sonoporation in vivo.  

PCCA formulations are commonly filled with perfluorocarbons with boiling points near body 

temperature, such as dodecafluoropentane (DDFP, b.p. = 29°C), and a few laboratories have 
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demonstrated the sonoporation potential of such agents in vitro [57, 64-66]. While these initial studies 

show promise, the high negative pressures required to vaporize nano-scale DDFP-filled PCCAs (3-

6 MPa [63, 64]) may cause unwanted bioeffects such as heating or cell lysis in an in vivo setting. Our 

laboratory has developed a class of low-boiling point PCCAs filled with octofluoropropane (OFP, 

b.p. = -36.7°C), which are characterized by far lower pressure requirements for vaporization when 

compared to DDFP-filled PCCAs (~20´ lower). Therefore, we hypothesize that our formulation will 

offer greater control over the bioeffects caused by ADV and subsequent microbubble cavitation. 

 
5.5 CONCLUSIONS  

 
Sonoporation is a promising physical drug targeting method that has the potential to enhance 

the therapeutic efficacy of a diverse range of pharmaceuticals in a number of disease states. Current 

approaches use microbubbles as cavitation nuclei, and applications are for the most part restricted to 

cell membrane perforation in vitro and vascular disruption in vivo. We believe low boiling point PCCAs 

offer a solution to the limitations associated with conventional microbubbles and their use as 

sonoporation initiators may allow expanded in vivo applications.  

The following chapters explore the sonoporation potential of low boiling point PCCAs in vitro. 

First, PCCAs are used to permeabilize pancreatic cancer cell membranes, representing a first step 

towards the goal of extravascular cell membrane disruption in solid tumors (chapter 6). We next 

demonstrate the ability to overcome chemoresistance in a colon cancer cell line using PCCA-

mediated sonoporation (chapter 7). Finally, through chapter 8, we explore the ability of PCCAs to 

enhance drug delivery through Caco-2 epithelial monolayers, as a proof-of-principal demonstration 

supporting the eventual the goal of GI drug delivery with PCCAs.  
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CHAPTER 61 

AN EVALUATION OF THE SONOPORATION POTENTIAL OF LOW-BOILING POINT 

PHASE-CHANGE CONTRAST AGENTS IN VITRO 

 

 

6.1 MOTIVATION AND OVERVIEW 

 
The primary objective of this chapter is to characterize the potential of low-boiling point 

phase-change contrast agents (PCCAs) to induce transient cell membrane perforation in vitro. The 

precise mechanisms involved in PCCA-mediated sonoporation remain unknown, and likely depend 

on a number of factors including the contrast agent formulation, specific acoustic parameters 

(frequency, peak negative pressure [1], duty cycle, etc.), and non-acoustic parameters (microbubble 

size and bubble-to-cell distance [2], cell culture conditions, size of sonoporation indicator [1], etc.). It 

is conceivable that PCCA-induced sonoporation is driven by the same mechanisms that mediate 

microbubble sonoporation, with membrane permeabilization being a product of microbubble cavitation 

following acoustic droplet vaporization. However, the rapid expansion of an individual droplet as it 

phase-converts into a microbubble may itself influence cell permeability. A secondary objective of this 

study is to determine if the vaporization event of low-boiling point PCCAs contributes to sonoporation 

and/or effects cell viability. 

 

 

 



 

108 

6.2 MATERIALS AND METHODS 

 
6.2.1 FABRICATION AND CHARACTERIZATION OF PHASE-CHANGE ULTRASOUND 

CONTRAST AGENTS 

 
Low boiling point PCCAs containing liquid octafluoropropane (OFP, b.p. = -36.7°C) were 

generated as described elsewhere [3]. First, lipid-shelled, OFP-filled microbubbles were prepared. 

Briefly, 90 mol% 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 10 mol% 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (mPEG-DSPE) (Avanti Polar 

Lipids, Alabaster, AL, USA) were combined and dissolved in a phosphate-buffered saline (PBS)-

based solution containing 15% propylene glycol (v/v) and 5% glycerol (v/v) for a final lipid 

concentration of 1.0 mg/mL. This lipid solution (1.5 mL) was aliquoted into 3.0 mL glass vials and the 

headspace air was exchanged with OFP gas (Fluoromed, Round Rock, TX, USA). Finally, 

microbubbles were generated by vigorous shaking of the lipid vials using a VialMix (Bristol-Myers-

Squibb, New York, NY, USA).  

The OFP microbubbles were condensed into liquid-filled nanodroplets (i.e., PCCAs) [3]. 

Microbubble vials were cooled in an isopropanol/CO2 bath maintained between -10 and -13°C. 

Simultaneously, the headspace pressure of the vials was gradually increased through the addition of 

excess OFP gas until microbubble condensation was observed. Phase transition is visually apparent, 

as the initially opaque microbubble solution turns translucent when condensed into liquid-filled 

particles.  

The size distribution and concentration of the PCCAs were characterized using a NanoSight 

NS500 (Malvern Instruments, Westborough, MA, USA) capable of detecting nanoparticles between 

50-2000nm. PCCAs were diluted 3000-fold in HPLC-grade, 20 nm filtered water. Four, 30 second 

recordings were captured per sample to calculate an average size distribution and concentration for 

each sample. This procedure was repeated in triplicate for three separate vials of PCCAs and 

averaged to get a representative size distribution and concentration. The particles were characterized 

by a polydisperse size distribution, as in Figure 6.1, with a mean size of 143±13 nm and 

concentration of 1.7 (±0.1) × 1012 particles/ml (see Appendix B for error estimation).  
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Figure 6.1: Nanosight results for OFP-filled PCCAs (N=3 vials). The mean particle size (±SD) was 
found to be 140 ± 10 nm and the average concentration (±SD) was 1.7 (± 0.1) × 1012 particles/mL.  
 
 
6.2.2 VISUALIZATION OF PCCA VAPORIZATION AND SECONDARY MICROBUBBLE 

AFFECTS USING OPTICAL MICROSCOPY AND HIGH-SPEED PHOTOGRAPHY 

 
High-speed optical microscopy was used to detect PCCA vaporization following ultrasound 

stimulation using a previously described experimental setup [4, 5]. Briefly, an inverted microscope 

with a 100 water immersion objective (Olympus IX71, Center Valley, PA, USA) was interfaced with a 

high-speed camera (FastCam SA1.1, Photron USA, Inc., San Diego, CA, USA). The objective was 

submerged in a temperature-controlled water bath fixed on top of the microscope.  The water bath 

was filled with degassed water and held at 37°C. A solution of PCCAs diluted in PBS (6.7% v/v) was 

injected into a microcellulose tube (200 μm inner diameter) (Spectrum Labs, Inc., Rancho 

Dominguez, CA, USA) positioned over the optical focus. This injection was followed by a brief waiting 

period to allow the flowing particles to become nearly stationary. This enabled clear visualization of 

vaporization events as images become blurred when particles are flowing.  

A 1.0 MHz spherically focused piston transducer (diameter = 19 mm, focal distance = 38 mm, 

IL0106HP, Valpey Fisher Corp., Hopkinton, MA, USA) was submerged in the water bath and 

positioned such that the acoustic focus was aligned with the microcellulose tube at the optical focus 

as described previously [5]. Briefly, a calibrated needle hydrophone (HNA-0400, Onda Corp., 

Sunnyvale, CA, USA) was aligned with the microscope focus and used to subsequently align the 

focus of the transducer to that location. The hydrophone was then used to calibrate the pressure 
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output of the transducer at various excitation voltages.  The transducer was excited with sinusoidal 

pulses generated with an arbitrary waveform generator (AFG3021C, Tektronix, Inc., Beaverton, OR, 

USA) and amplified approximately 60 dB with a power amplifier (A500, ENI, Rochester, NY, USA). 

Following calibration, the hydrophone was replaced with a microcellulose tube, which was aligned 

with the microscope focus. In this way, we ensured that the plane of the tube visible in the optical 

focus was subjected to the calibrated acoustic pressures aligned to that location. 

PCCAs flowing through the microcellulose tube were exposed to acoustic pulses with lengths 

of 5, 10, 20, and 50 cycles and peak negative pressures of 125, 300, 600, 1000, and 2000 kPa to 

observe the effect of pulse length and pressure on PCCA vaporization. In subsequent experiments, 

pre-vaporized PCCAs were stimulated with a second identical acoustic pulse to observe how 

ultrasound affected the generated microbubbles.  

A synchronization pulse from the waveform generator was used to trigger the high-speed 

camera. Video recordings were set to begin just before the manually triggered ultrasound pulse such 

that vaporization or microbubble manipulations would be recorded in their entirety. A frame rate of 

500 frames per second was employed. Images and videos were stored on a computer using 

proprietary camera software (PFV; Photron USA, Inc., San Diego, CA, USA) and analyzed using 

ImageJ (NIH, Bethesda, MD, USA).  

 
6.2.3 DETECTION OF CAVITATION SIGNALS FOLLOWING PCCA VAPORIZATION 

 
Similar to the high-speed microscopy experiments, PCCAs solutions were perfused through a 

microcellulose tube (200 μl/min) aligned with the focus of a 1.0 MHz, piston transducer. The 

transducer was calibrated at the focus using a needle hydrophone, and PCCAs were activated with 

sinusoidal ultrasound pulses using a pulse repetition frequency (PRF) of 5.0 Hz, peak negative 

pressures ranging from 125-2000 kPa, and pulse lengths between 5-50 cycles. Three concentrations 

of PCCAs were tested: 0.067%, 0.67%, and 6.7% (v/v) in PBS. All conditions and concentrations 

were tested in triplicate using three independent vials of PCCAs. Control trials with a water-filled tube 

were used as a reference to estimate stable and inertial cavitation generated by the vaporized 

PCCAs.  
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To detect cavitation signals, a separate, spherically focused receive transducer (7.5 MHz 

center frequency, diameter = 19 mm, focal distance = 50 mm) (V321, Panametrics, Inc., Waltham, 

MA, USA) was positioned perpendicular to the transmit transducer such that the microcellulose tube 

was aligned with both transducer foci. Signals from the receive transducer were acquired using a 14-

bit analog to digital conversion card with a sampling frequency of 100 MHz (PDA14, Signatec, 

Corona, CA, USA) installed in a computer (Dell, Round Rock, TX, USA) running a custom acquisition 

program (LabVIEW, National Instruments Corp., Austin, TX, USA). A total of 50 individual signals 

were captured for each combination of pressure, pulse length, and PCCA concentration. These 

signals were saved and post-processed using MATLAB (Mathworks Inc., Natick, MA, USA). 

A custom MATLAB script was developed to quantify the energy of stable and inertial 

cavitation generated for each condition. First, a window from 50-110 μs referenced to the beginning of 

the acoustic pulse was applied to select the signal emitted by the PCCAs. The 50 individual RF 

signals from each exposure condition were converted into the frequency domain. Detection of the 

second harmonic component was used to estimate the stable cavitation level by filtering the data from 

1.8 MHz to 2.2 MHz (Butterworth filter, order 3). The broadband signal resulting from inertial 

cavitation was detected by filtering the signals from 5.25 MHz to 7.75 MHz (Butterworth filter, order 3) 

and by simultaneously excluding the harmonic components at 6 MHz and 7 MHz. Finally, energies of 

these stable and inertial cavitation signals were calculated, averaged among the 50 individual signals 

for each condition, and normalized by the energy calculated for a water-filled tube exposed to the 

same acoustic conditions. This procedure was repeated for three independent vials of PCCAs. The 

average, normalized cavitation energies are reported with the inter-vial standard deviation.  

 
6.2.4 CELL CULTURE 

 
Human pancreatic adenocarcinoma cells (PANC-1) were purchased from American Type 

Culture Collection (ATCC, VA, USA) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Sigma-Aldrich Co., 

MO, USA) at 37°C and 5% CO2 atmosphere. For all experiments, cells between passages 5-24 were 
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used. Cells were harvested using trypsin-EDTA (Sigma-Aldrich Co., MO, USA) and counted using a 

hemocytometer for use in sonoporation and viability experiments.  

 
6.2.5 SONOPORATION OF CELLS IN SUSPENSION 

 
PANC-1 cells (1.0×106 cells) were suspended in serum-free DMEM containing PCCAs 

(8.5×108 particles) and propidium iodide (PI, 30 μM) (Sigma-Aldrich Co., MO, USA) for a final volume 

of 1.5 mL. PI was used as a sonoporation indicator as it is impermeable to intact cell membranes. 

The cell suspension was added to a custom plastic cuvette with nearly acoustically transparent 

windows made of 20 m thick polyolefin film (Rajashrink, Roissy, France) as previously described by 

Escoffre et al. [6]. The cuvette was then held in a 37°C degassed water bath with constant magnetic 

stirring and positioned 5 cm in front of the transducer for sonoporation treatment, as shown in 

Figure 6.2.  

 Figure 6.2: Setup designed for the sonoporation of cells in suspension with PCCAs. 

 
To generate ultrasound pulses, a 1.0 MHz unfocused piston transducer (diameter = 1.0 in, 

IL0108HP, Valpey Fisher Corp., Hopkinton, MA, USA) was excited by a sinusoidal arbitrary function 

generator signal (AFG3021C, Tektronix, Inc., Beaverton, OR, USA) amplified approximately 55 dB by 

an RF power amplifier (3100LA, ENI, Rochester, NY, USA). The pressure output of the transducer at 

various excitation voltages was characterized using a calibrated needle hydrophone placed 5 cm in 
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front of the transducer, matching the distance of the cuvette in sonoporation experiments. The cell 

suspensions were insonified for 30 seconds with peak negative pressures of 125, 300, or 600 kPa, 

pulse lengths of 5, 10, 20 or 50 cycles, and a constant PRF of 5.0 kHz, as summarized in Table 6.1. 

As controls, cells underwent (1) sham treatment (without PCCAs or ultrasound exposure) and (2) 

ultrasound only treatment (without PCCAs) using the highest energy condition – 600 kPa and 50 

cycles.  

Post-treatment, cells were transferred to plastic tubes and incubated at 37°C for at least 15 

minutes to ensure membrane resealing processes were completed prior to further manipulation of the 

cells [7]. Subsequently, the viability stain calcein-AM (0.8 μM) (Thermo Fisher Scientific Inc., MA, 

USA) was added and the cells were allowed to incubate for at least an additional 30 min at 37°C. 

Cells were filtered through 44 μm nylon mesh (Component Supply Co., FL, USA) before being 

analyzed by flow cytometry. Cells showing both PI uptake and calcein-AM cleavage by flow cytometry 

were considered to be successfully sonoporated. These experiments were repeated in triplicate on 

independent days. All sonoporation conditions were also performed in triplicate without the addition of 

dye to monitor changes in autofluorescence due to treatment. 

 
Table 6.1: Experimental and control conditions for sonoportion. 

Conditions PCCAs (Y/N) Cycles (#) PRF (kHz) Pressure (kPa) 

1-4 Y 5, 10, 20, 50 5 125 

5-8 Y 5, 10, 20, 50 5 300 

9-12 Y 5, 10, 20, 50 5 600 

US only control N 50 5 600 

Sham control N NA NA NA 

 

6.2.6 ASSESSMENT OF SONOPORATION EFFICIENCY BY FLOW CYTOMETRY 

 
Flow cytometry was used to quantify the number of sonoporated cells for each treatment 

group, i.e., those cells displaying both PI uptake (permeabilization) and calcein-AM cleavage 

(viability). An LSRFortessa cytometer equipped with 561 nm and 488 nm excitation lasers (Becton 

Dickinson, Franklin Lakes, NJ, USA) was used for acquisition, and 30,000 events were recorded for 
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each sonoporation treatment. For further details regarding acquisition settings, please see 

Appendix B, Table B.2.  

The gating strategy employed to isolate sonoporated cells is described in full in the 

Appendix B and displayed in Figure B.1. Briefly, singlet cells were isolated from debris and doublet 

cells through initial gating steps. The viability of the chosen cell population was then confirmed by 

calcein fluorescence. Curly quadrant gates were applied to the calcein vs. PI fluorescence dot plots, 

with thresholds determined such that unstained control cells would be classified as both calcein and 

PI negative. The percent of cells in quadrant two (calcein and PI positive) was taken to be the 

sonoporation efficiency (i.e., percent of viable cells that were sonoporated). All data analysis was 

performed using FlowJo Data Analysis Software (FlowJo, LLC., Ashland, OR, USA).  

 
6.2.7 ASSESSING VIABILITY POST-SONOPORATION TREATMENT  

 
Through our flow cytometry experiments, we found that dead cells and cellular debris were 

characterized by elevated autofluorescence in the calcein (viability) channel (data not shown). 

Therefore, we were unable to accurately quantify cell viability based on the flow cytometry results 

alone. As such, we performed an additional cell viability assay. Cells suspended in serum-

supplemented DMEM were subjected to the sonoporation protocol as described above without the 

addition of PI or calcein-AM. Following treatment, 1.0×105 cells per treatment group were transferred 

to 24-well plates and allowed to incubate for 24 hours at 37°C and 5% CO2 atmosphere. 

Subsequently, cell viability was assessed using a resazurin-based toxicology assay according to the 

manufacturer’s protocol (Sigma-Aldrich Co., MO, USA).  

Briefly, a volume of resazurin dye equal to 10% of the culture media was added to the cells 

and allowed to incubate for 3 hours. A 200 μL sample from each culture well was then transferred to a 

96-well plate for analysis. The fluorescence increase at 590 nm (F590) due to reduction of the 

resazurin dye by viable cells was detected using a plate reader (Synergy 2, BioTek Instrument, Inc., 

Winooski, VT, USA) with excitation and emission filters of 530/25nm and 590/35nm, respectively. The 

fluorescence intensity of a blank sample containing complete media but no cells was subtracted from 
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that of each sample. Cell viability was then calculated as the percent resazurin reduction of the sham 

control. Viability experiments were repeated in triplicate on independent days. 

 
6.2.8 STATISTICAL ANALYSES  

 
All statistical analyses were performed in GraphPad Prism 7 (GraphPad Software, Inc., La 

Jolla, CA, USA), and data are presented as average ± standard deviation throughout this work. 

Sonoporation efficiencies and cell viabilities were compared among treatment groups using one-way 

ANOVA followed by Dunnett’s multiple comparison testing on significant results. Each treatment 

group was compared to the sham control, and p-values of < 0.05 were considered statistically 

significant. Pearson correlation coefficients (r) were computed in GraphPad Prism 7 to analyze the 

correlation between (1) sonoporation efficiency and stable cavitation and (2) sonoporation efficiency 

and inertial cavitation.  Correlations were considered statistically significant if the two-tailed p-values 

were < 0.05.  

 
6.3 RESULTS 

 
6.3.1 DETECTION OF PCCA VAPORIZATION AND SUBSEQUENT CAVITATION SIGNALS 

 
Through optical high-speed microscopy and the detection of cavitation signals, we 

investigated the effect of acoustic pulse length and peak negative pressure on PCCA vaporization 

(a.k.a. acoustic droplet vaporization – ADV) and the behavior of resultant microbubbles. At a 

frequency of 1.0 MHz, we found that our PCCAs undergo ADV at and above peak negative pressures 

of 300 kPa but never at or below 125 kPa, regardless of pulse length. This is consistent with previous 

reports demonstrating that ADV is a pressure-dependent, threshold phenomenon that is independent 

of pulse length when short, microsecond pulses are used [8, 9]. Representative photos showing 

PCCAs before and after ultrasound stimulation above and below the activation threshold are 

displayed in Figure 6.3 A. Note: 300 kPa does not represent an absolute pressure threshold for 

vaporization; rather, we conclude that the vaporization threshold is between 125 kPa and 300 kPa 

under the conditions studied.  
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Figure 6.3: Observation of PCCA vaporization and secondary microbubble effects using high speed 
photography. Representative photos are displayed of PCCAs or resultant microbubbles before and 
after ultrasound stimulation (1.0 MHz center frequency). A) The nanoscale, liquid-filled PCCAs are 
difficult to observe before vaporization. A peak negative pressure of 125 kPa is not sufficient to 
vaporize the PCCAs (top). With a peak negative pressure of 300 kPa, efficient vaporization of the 
PCCAs into microbubbles is observed (bottom). B) Secondary effects are observed when generated 
microbubbles are subjected to a second acoustic pulse. At 300 kPa and 5 cycles, the second acoustic 
pulse appears to have no effect on the generated microbubbles (top). With high acoustic energies, 
complete microbubble destruction is observed (bottom). Scale bar = 10 μm.  
 

While pulse length did not affect whether or not vaporization would occur, it did influence the 

behavior of resultant microbubbles. When generated microbubbles were stimulated with a second 

ultrasound pulse, microbubble destruction occurred on a continuum. No destruction was observed 

with low-pressure pulses (300 kPa) and complete destruction of all microbubbles in the field of view 

occurred with long pulses (20 and 50 cycles) at high pressure (1000 and 2000 kPa) (Figure 6.3 B).  

Microbubble sizes were estimated from the captured images. Microbubbles generated from 

ADV at 300 kPa were polydisperse and ranged in size between 2-10 μm. When the peak negative 

pressure was increased to 600 kPa and above, generated microbubbles were observed in the 1-10 

μm range; however, we note an increase in the number small (~1 μm) microbubbles present. This is 

consistent with previous reports from our laboratory detailing the dependence of generated 

microbubble size on various acoustic parameters, including peak negative pressure [10]. The shift 
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towards smaller resultant microbubbles with increased pressure is due inverse relationship between 

vaporization threshold and PCCA size [10, 11]. When generated microbubbles were allowed to rest 

before being subjected to a second acoustic pulse (Figure 6.3 B), we noticed microbubble sizes shift 

to be larger (approximately 3-20 μm).  This is likely due to coalescence of the generated 

microbubbles.  

The generation of stable and inertial cavitation signals depended on peak negative pressure 

and pulse length. Very little stable and no inertial cavitation was observed at pressures of 125 kPa 

regardless of pulse length; the slight stable cavitation may be due to oscillations of microbubbles that 

arose from spontaneous vaporization. Cavitation energy was observed from 300-2000 kPa, with very 

little cavitation achieved with peak negative pressures of 300 kPa and short (5 and 10 cycle) pulse 

lengths (Figure 6.4). The amount of stable cavitation produced reached a plateau between 24-29 dB 

for 50 cycle pulses with pressures between 300-2000 kPa. Alternatively, inertial cavitation continued 

to increase with increasing pressure. Interestingly, the concentration of PCCAs did not significantly 

influence the amount of stable or inertial cavitation detected (data not shown) and obtained graphs for 

all tested concentrations were nearly identical to the one presented in Figure 6.4 for 0.67% (v/v) 

PCCAs in PBS.   

Figure 6.4: Stable and inertial cavitation. Quantification of the (A) stable and (B) inertial cavitation 
energy generated by PCCAs subjected to ultrasound of various peak negative pressures and pulse 
lengths. Note: while error bars (SD) are plotted, they are not visible on all data points due to their 
small size.  
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6.3.2 SONOPORATION EFFICIENCY  

 
Flow cytometry was used to analyze the effect of acoustic pressure and pulse length on 

PCCA-facilitated PI uptake through sonoporation. Dead cells were discarded from the analysis 

through an initial gating step to remove cellular debris (Appendix B, Figure B.1). The viability of 

remaining cells was confirmed using calcein-AM staining. While the viability of gated cells was near 

100% for all conditions, the percentage of cellular debris was observed to increase with increasing 

acoustic energy, implying elevated cell death.   

Sonoporation efficiency, the percent of viable cells displaying PI fluorescence, was quantified 

as the percent of cells in quadrant 2, as shown in Figure 6.5. A small percentage of cells (2 – 4.5%) 

appeared in quadrant two for the sham control, likely due to the prolonged exposure of cells to PI. 

This was defined as the false positive rate and was subtracted from the sonoporation efficiency of all 

other treatment groups. The autofluorescence analysis demonstrated slight spreading of unstained 

cell populations along the PI axis due to ultrasound treatment with PCCAs (Appendix B, Figure B.2). 

The average percent of cells classified as PI positive due to autofluorescence never exceeded 2%, 

but these values were subtracted from the final sonoporation efficiencies of all groups.  

Statistically significant elevation in PI uptake was observed at 300 kPa with pulse lengths of 

20 and 50 cycles and at 600 kPa with 5-50 cycle pulse lengths compared to the sham control. 

Sonoporation efficiency increased with peak negative pressure and pulse length, reaching a 

maximum of 36±4% at 600 kPa and 50 cycles (Figure 6.6). As expected, we did not observe 

sonoporation below the vaporization threshold of the PCCAs (at 125 kPa) or when cells were 

insonified in the absence of PCCAs. 
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Figure 6.5: Representative flow cytometry dot plots used to quantify sonoporation efficiency. Cells 
were classified as sonoporated if they showed calcein fluorescence (viability) and uptake propidium 
iodide (membrane permeability). These cells appear in quadrant 2 (Q2) in the above dot plots. A) The 
small percentage of cells that appear in Q2 for the sham treatment group was defined as the false 
positive rate and was subtracted from the percent of cells in Q2 for all treatment groups. B) 
Ultrasound exposure below the PCCA activation threshold did not result in sonoporation. C-D) 
Sonoporation is observed above the PCCA activation threshold and increases with increasing 
pressure.  
 

Figure 6.6: Sonoporation efficiency of PANC-1 cells at various acoustic pressures and pulse lengths. 
As expected, we do not observe sonoporation below the vaporization threshold of the PCCA (at 125 
kPa) or when cells are insonified in the absence of PCCA (US alone). One-way ANOVA was used 
followed by Dunnett’s multiple comparisons test compare each treatment to the sham control. 
* p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001   
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6.3.3 CELL VIABILITY 24 HOURS POST-TREATMENT 

 
To test the effect of sonoporation treatment on cell viability, cells were treated using a 

protocol identical to that employed for sonoporation but without the addition of PI or calcein-AM. 

Twenty-four hours post-treatment, viability was assessed using a resazurin-based metabolic assay. 

Ultrasound exposure in the absence of PCCA did not affect cell viability. Furthermore, the PCCAs 

themselves did not have a toxic effect on cells as evidenced by the high viability in treatment groups 

below the PCCA activation threshold (125 kPa treatment groups). We did observe decreasing cell 

viability with increasing cycle number and pressure above the activation threshold. In general, fairly 

high viability was recorded for those cells treated with 300 kPa ultrasound of various pulse lengths 

(84±7% – 94±7% viability) and cells treated with 600 kPa ultrasound with pulse lengths between 5-20 

cycles (85±12% – 93±6%) (Figure 6.7). A statistically significant drop in viability (70±5%) was 

observed in cells treated with 600 kPa and 50 cycles compared to sham treated cells.  

 

Figure 6.7: Cell viability 24 hours post-sonoporation treatment. Here we observe decreasing cell 
viability with increasing pulse length and pressure. As expected, ultrasound exposure in the absence 
of PCCAs does not affect cell viability. Furthermore, the PCCAs themselves to not have a toxic effect 
on cells as evidenced by the high viability in treatment groups below the PCCA activation threshold 
(125 kPa groups). One-way ANOVA was used followed by Dunnett’s multiple comparisons test to 
compare each treatment to the sham control. ***p≤0.001 
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6.4 DISCUSSION  

 
6.4.1 ACOUSTIC OR TEMPERATURE-INDUCED DROPLET VAPORIZATION CAN BE 

ACHIEVED WITHOUT MEMBRANE PERFORATION OR IMPAIRED CELL VIABILITY 

 
Our PCCAs are comprised of a very low boiling point PFC and undergo some spontaneous 

vaporization when incubated at 37°C. Therefore, cells incubated with PCCAs and exposed to 

ultrasound below the activation threshold (at 125 kPa) felt the effects of temperature-induced 

vaporization alone. The membrane permeability and viability of cells treated in this way was 

unaltered. Additionally, cells treated with PCCAs at 300 kPa with pulse lengths of 5 or 10 cycles 

demonstrated insignificant sonoporation efficiencies and no change in cell viability. These cells were 

exposed to acoustic droplet vaporization but minimal cavitation of the resultant microbubbles. These 

data indicate that vaporization events do not affect cellular membrane permeability or cause any 

detrimental cellular bioeffects.  

This is in contrast to the bioeffects observed following the vaporization of micron-sized, 

DDFP-filled PCCAs used for vascular occlusion. Seda, et al. have demonstrated that vaporization of 

DDFP-filled droplets results in extensive cell death even when using acoustic parameters designed to 

minimize secondary mechanical effects from the resultant bubbles [12]. Differences in experimental 

setups (cells treated in adherent culture vs. in suspension) and size distributions of PCCAs 

(1.6±0.5 μm vs. 143±13 nm mean size) make it difficult to directly compare these results. However, 

the difference in severity of bioeffects observed is likely due to the difference in pressure required to 

vaporize the PCCAs. Rarefactional pressures of at least 6 MPa were required for vaporization of 

DDFP-filled PCCAs, while 300 kPa was sufficient for vaporization of our PCCAs. By using a highly 

volatile formulation with lower pressure requirements for ADV, we can safely induce vaporization 

without immediately and irreparably damaging surrounding cells.  
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6.4.2 PCCA-INDUCED SONOPORATION IS CORRELATED WITH STABLE AND INERTIAL 

CAVITATION 

 
Sonoporation efficiency was found to be significantly and positively correlated with both 

stable (r = 0.9352, p < 0.0001) and inertial (r = 0.9456, p<0.0001) cavitation (Figure 6.8). While it is 

difficult to ascertain a cavitation threshold for sonoporation from these data, we note that all 

statistically significant sonoporation treatments were associated with stable cavitation energies 

greater than 7.9 dB and inertial cavitation energies greater than 5.2 dB. This study was not designed 

to elucidate the mechanisms driving PCCA-mediated sonoporation, but our data suggest that the 

mechanical effects due to microbubble-ultrasound interactions are necessary for significant 

sonoporation. Therefore, it is likely that the same mechanisms that drive conventional microbubble-

mediated sonoporation also drive PCCA-mediated sonoporation.  

 
Figure 6.8: Correlations between sonoporation efficiency and stable or inertial cavitation. We observe 
a strong, positive correlation between sonoporation efficiency and (A) stable cavitation and (B) inertial 
cavitation. The Pearson correlation coefficients for sonoporation efficiency vs. stable and inertial 
cavitation are 0.9352 and 0.9456, respectively, and both correlations are statistically significant with 
p-values < 0.0001. Data points corresponding to statistically significant sonoporation efficiencies 
(compared to sham control) are shown in red circles, while data points corresponding to statistically 
insignificant sonoporation efficiencies are shown in blue squares.  
 

The peak sonoporation efficiency we achieved (36%) is similar to what has previously been 

reported for microbubble sonoporation (28-39% efficiency) [13-15], albeit with lower cell viability (70% 
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viability for PCCA sonoporation vs. 90-96% viability for MB sonoporation [13-15]). However, these 

microbubble sonoporation studies employ unique strategies to increase sonoporation efficiency and 

minimize cell death, making it difficult to make direct comparisons. For example, McLaughlan et al. 

achieved their highest viable sonoporation using a combination of (1) targeted microbubbles that 

increase cell-microbubble interactions and (2) chirp frequency excitation to maximize the response of 

their polydisperse microbubbles [14]. Song et al. found that using monodisperse 2.0 μm microbubbles 

resulted in the highest sonoporation and viability after a single ultrasound treatment [15]. We believe 

that with further optimization of our PCCA-mediated sonoporation methods, we will be able to match 

the sonoporation efficiencies and viabilities achieved with microbubbles. Future studies will be 

designed to apply the aforementioned techniques developed by the microbubble sonoporation 

community to PCCA-mediated sonoporation.  

 
6.5 CONCLUSIONS  

 
In conclusion, our data show that low-boiling point PCCAs are capable of inducing 

sonoporation without causing detrimental cellular bioeffects in vitro. Furthermore, the low pressure 

required to activate such PCCAs allows us to fine-tune the severity of cellular bioeffects simply by 

modifying pulse length. This provides flexibility in future applications imaginable and allows for 

acoustic droplet vaporization to be achieved safely and with existing diagnostic imaging hardware. 

Here we demonstrate the ability to cause (1) vaporization with no cellular damage – ideal for 

diagnostic imaging applications, (2) reversible sonoporation – desirable for therapeutic applications 

such as drug or gene delivery where cell death is to be avoided, or (3) irreversible sonoporation – 

useful in augmenting tumor killing through high intensity focused ultrasound treatment. 

A limitation of this study is that we did not control for differences in PCCA vaporization 

efficiency at each acoustic condition. In other words, more bubbles were likely generated using the 

highest energy conditions compared to the lowest energy conditions as a constant PCCA 

concentration was used throughout. This makes it difficult to draw conclusions about sonoporation 

mechanism and parameter optimization. The increases in sonoporation efficiency with increasing 

pressure and pulse length may have been due to (1) increased cavitation and associated mechanical 
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effects, (2) increased concentration of generated microbubbles, or (3) a combination thereof. Future 

studies will be designed to quantify the vaporization efficiency of PCCAs at each acoustic condition to 

allow for concentration matching of generated microbubbles. Other important parameters to consider 

are contrast agent size distribution, ultrasound exposure duration, and center frequency. Future 

studies will be designed to optimize these parameters and provide a thorough comparison between 

the sonoporation potential of microbubbles, low-boiling point PCCAs, and high-boiling point PCCAs. 

One of the main advantages of using PCCAs for reversible sonoporation compared to 

microbubbles is the potential for their extravasation from a tumor’s leaky vasculature. While we note 

that the mean size of our PCCAs is smaller than the pore sizes in many permeable tumor lines 

(200 nm – 1.2 μm) [16], the extravasation and accumulation of our particles in tumors has yet to be 

confirmed. Studies are currently ongoing towards this end. Nevertheless, our data warrant further 

investigation into the use of PCCAs to induce extravascular sonoporation in vivo for the purpose of 

enhancing local drug or gene delivery, particularly within solid tumors.  

 
  



 

125 

REFERENCES 

1. De Cock, I., et al., Ultrasound and microbubble mediated drug delivery: acoustic pressure as 
determinant for uptake via membrane pores or endocytosis. J Control Release, 2015. 197: p. 
20-8. 

2. Qin, P., et al., Effect of non-acoustic parameters on heterogeneous sonoporation mediated 
by single-pulse ultrasound and microbubbles. Ultrason Sonochem, 2016. 31: p. 107-15. 

3. Sheeran, P.S., et al., Design of ultrasonically-activatable nanoparticles using low boiling point 
perfluorocarbons. Biomaterials, 2012. 33(11): p. 3262-9. 

4. Sheeran, P.S., et al., Formulation and acoustic studies of a new phase-shift agent for 
diagnostic and therapeutic ultrasound. Langmuir, 2011. 27(17): p. 10412-20. 

5. Sheeran, P.S., et al., Decafluorobutane as a phase-change contrast agent for low-energy 
extravascular ultrasonic imaging. Ultrasound Med Biol, 2011. 37(9): p. 1518-30. 

6. Escoffre, J.M., et al., Focused ultrasound mediated drug delivery from temperature-sensitive 
liposomes: in-vitro characterization and validation. Phys Med Biol, 2013. 58(22): p. 8135-51. 

7. Hu, Y., J.M. Wan, and A.C. Yu, Membrane perforation and recovery dynamics in 
microbubble-mediated sonoporation. Ultrasound Med Biol, 2013. 39(12): p. 2393-405. 

8. Fabiilli, M.L., et al., The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans 
Ultrason Ferroelectr Freq Control, 2009. 56(5): p. 1006-17. 

9. Lo, A.H., et al., Acoustic droplet vaporization threshold: effects of pulse duration and contrast 
agent. IEEE Trans Ultrason Ferroelectr Freq Control, 2007. 54(5): p. 933-46. 

10. Sheeran, P.S., T.O. Matsunaga, and P.A. Dayton, Phase-transition thresholds and 
vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-
speed optical microscopy. Phys Med Biol, 2013. 58(13): p. 4513-34. 

11. Sheeran, P.S. and P.A. Dayton, Phase-Change Contrast Agents for Imaging and Therapy. 
Curr Pharm Des, 2012. 18(15): p. 2152-65. 

12. Seda, R., et al., Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet 
Vaporization. Ultrasound Med Biol, 2015. 41(12): p. 3241-52. 

13. Karshafian, R., et al., Sonoporation by ultrasound-activated microbubble contrast agents: 
effect of acoustic exposure parameters on cell membrane permeability and cell viability. 
Ultrasound Med Biol, 2009. 35(5): p. 847-60. 

14. McLaughlan, J., et al., Increasing the sonoporation efficiency of targeted polydisperse 
microbubble populations using chirp excitation. IEEE Trans Ultrason Ferroelectr Freq Control, 
2013. 60(12): p. 2511-20. 

15. Song, K.H., et al., High Efficiency Molecular Delivery with Sequential Low-Energy 
Sonoporation Bursts. Theranostics, 2015. 5(12): p. 1419-27. 

16. Hobbs, S.K., et al., Regulation of transport pathways in tumor vessels: role of tumor type and 
microenvironment. Proc Natl Acad Sci U S A, 1998. 95(8): p. 4607-12. 
 



    

 

126 

 
 

1© 2017, IEEE. Reprinted with permission from Fix, S.M., Novell, A., Escoffre, J.M., Tsuruta, J.K., Dayton, P.A., Bouakaz, A. 
“In-vitro delivery of BLM into resistant cancer cell line using sonoporation with low-boiling point phase change ultrasound 
contrast agents.” Sept., 2017 
 

CHAPTER 71 

IN VITRO DELIVERY OF BLEOMYCIN INTO RESISTANT CANCER CELL LINE USING 

SONOPORATION WITH LOW BOILING POINT PCCAs 

 

 

7.1 MOTIVATION AND OVERVIEW 

 
Bleomycin (BLM) is a potently cytotoxic glycopeptide used to treat several cancer types 

including ovarian, cervical, and testicular cancers, non-Hodgkin’s lymphoma, and head and neck 

carcinoma [1, 2]. When BLM chelates metal ions, the activated complex reacts with molecular oxygen 

to create free radicals that cleave DNA and damage other cellular components, resulting in cell 

death [2]. Given this mechanism of action, BLM must be sufficiently internalized by target cells for it to 

have the desired effect. BLM is cell membrane impermeable and therefore relies on receptor-

mediated endocytosis for internalization. Cancer types with poor expression of the BLM-binding 

receptor are resistant to this treatment [1, 3].  

Technologies that permeabilize cell membranes for localized drug delivery present a 

promising method to broaden the utility of BLM to resistant cancer types. This may be achievable with 

ultrasound-stimulated microbubbles through sonoporation. As described in the previous two chapters, 

PCCAs provide considerable advantages over microbubbles for in vivo sonoporation applications that 

require extravascular cell membrane perforation, as would be the case for sonoporation-enhanced 

BLM therapy. Thus, the objective of this work is to demonstrate the ability to improve intracellular 

accumulation and efficacy of BLM in a resistant colon cancer cell line in vitro through sonoporation 

with PCCAs. A secondary objective is to compare the sonoporation efficiency of PCCAs to that of 
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standard lipid-shelled microbubbles. This work represents a first step towards extravascular 

sonoporation-mediated BLM delivery with PCCAs in vivo. 

 
7.2 MATERIALS AND METHODS 

 
7.2.1 FABRICATION OF LIPID-SHELLED MICROBUBBLES AND PHASE-CHANGE 

CONTRAST AGENTS 

 
Lipid-shelled microbubbles and PCCAs were generated in-house as described in chapter 6 

and pervious work [4]. This process yielded microbubbles with a mean diameter of 1.01 ± 0.02 μm 

and concentration of 1.11 (±0.08) × 1010 microbubbles/mL, as characterized by single particle optical 

sizing (Accusizer 780AD, Particle Sizing Systems, Port Richey, FL, USA). PCCAs were generated via 

condensation of these microbubbles and were characterized by dynamic light scattering (DLS) 

(Zetasizer Nano ZS, Malvern, Worcestershire, UK). The PCCAs were found to have an average size 

of 179 ± 13 nm and a single-peak size distribution, as displayed in Figure 7.1. The DLS was unable to 

provide particle concentration data. Therefore, throughout this work, we assumed that the 

microbubble condensation efficiency was 100%, and we considered the concentration of droplets to 

be equal to that of their precursor microbubbles (i.e., 1.11x1010 particles/mL). 

Figure 7.1: PCCA size distribution as assessed using dynamic light scattering. The average diameter 
of these particles was found to be 179 ± 13 nm. 
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7.2.2 CELL CULTURE 

 
Human colon adenocarcinoma cells (HT-29, European Collection of Cell Cultures, Salisbury, 

UK) were cultured in McCoy’s 5A medium (with sodium bicarbonate and L-glutamine) (Sigma-Aldrich, 

Saint-Louis, MO, USA) supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (Fisher Scientific, Illkirch, France). Cells between passage numbers 20 – 22 

were used for all experiments. Cells were harvested using trypsin and suspended in OptiMEM High 

W/GlutaMax-I medium (Fisher Scientific, Illkirch, France) supplemented with 1% FBS for 

sonoporation treatments. 

 
7.2.3 DRUG DELIVERY AND VIABILITY ASSESSMENT 

 
Sonoporation was performed according to the previously published protocol described in 

chapter 6 [5]. Briefly, HT-29 cells (500,000 cells) were suspended in 1.5 mL OptiMEM High 

W/GlutaMax-I supplemented with 1% FBS, transferred to a plastic cuvette, and positioned 3 cm in 

front of the face of a 1.0 MHz unfocused piston transducer (IM 013, Imasonic, Besançon, France) in a 

37°C water bath (Grant Instruments Ltd. Cambridge, UK). The cells were held in suspension by 

constant magnetic stirring throughout the sonoporation procedure. Microbubbles or PCCAs were 

added to the cell suspension at an agent to cell ratio of 5.6 agents: 1.0 cell. Bleomycin (0.01-10 μM) 

was added to assess the potential of microbubbles and PCCAs to improve drug delivery. Cells were 

insonified for 30 seconds with a peak negative pressure of 400 kPa and duty cycle of 40%, which is 

sufficient acoustic energy to vaporize our PCCAs into microbubbles.  

Post-sonoporation treatment, cells suspensions (0.5 mL) were transferred to 24 well plates 

and incubated at 37 °C for 4 hours at which point the cell media was supplemented to contain a final 

concentration of 10% FBS and 1% P/S. Cell viability was evaluated 48 hours post-sonoporation.  

Cell viability was assessed using an MTT viability assay (Invitrogen, Carlsbad, CA, USA). 

Culture media was replaced with OptiMEM containing MTT (0.5 mg/ml) and FBS (10% v/v). Cells 

were allowed to incubate at 37°C for 1 hour at which point the MTT-containing media was replaced 

with DMSO (Sigma-Aldrich, Saint-Louis, MO, USA). To release reduced MTT dye, the plates were 

protected from light and shaken at 20 rpm for 10 minutes. Reduced MTT was measured via 
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absorbance at 570 nm using a Nanodrop Spectrophotometer (NanoDrop 2000, Thermo Fisher 

Scientific, Waltham, MA, USA), and percent viability was calculated in reference to cells treated with 

ultrasound alone (without contrast agents or BLM) unless otherwise specified. 

 
7.2.4 STATISTICAL ANALYSES 

 
Data throughout this work are presented as the average ± standard deviation of three 

replicates. The toxicities of 0 – 10 µM BLM in the absence of ultrasound exposure were compared 

using one-way ANOVA followed by Dunnett’s multiple comparison test comparing the viability data for 

each BLM concentration to that of control cells exposed to 0.0 µM BLM. Similarly, the viability of cells 

exposed to sonoporation conditions in the absence of BLM were compared using one-way ANOVA 

followed by Dunnett’s multiple comparison test to compare results to that of the ultrasound only 

control (i.e., sonoporation without contrast agents). Cell viability after sonoporation with MBs or 

PCCAs at a range of BLM concentrations were compared using two-way ANOVA followed Dunnett’s 

multiple comparison testing (comparing cell viability of MB-sonoporation and PCCA-sonoporation to 

that of ultrasound alone at each BLM concentration). 

 
7.3 RESULTS AND DISCUSSION 

 
First, we confirmed that the HT-29 cell line is resistant to BLM over the tested concentration 

range. As shown in Figure 7.2, incubating these cells with 0.01 – 10 μM BLM for 48 hours has no 

effect on viability compared to untreated cells (Figure 7.2) (data normalized to untreated control cells).  

Next, we characterized the effect of our sonoporation protocol on cell viability in the absence of BLM. 

Here we observe that ultrasound exposure alone (without contrast agents) has a stimulatory effect on 

cell proliferation (ultrasound exposed vs. sham treated cells, normalized to viability of ultrasound 

treated cells). Neither sonoporation with MBs nor with PCCAs reduced cell viability 48 hours post-

treatment compared to the ultrasound only control (Figure 7.3). These results confirmed that our 

sonoporation protocol was reversible and not harmful to the cells.   
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Figure 7.2: Exposing HT-29 cells to a range of BLM concentrations for 48 hours has no effect on 
viability. Data normalized to viability of control cells not exposed to BLM. One-way ANOVA followed 
by Dunnett’s multiple comparison testing shows no statistical difference between BLM exposure 
groups and the untreated control (all p-values > 0.05).   
 

Figure 7.3: Exposing cells to ultrasound (US alone, i.e. sonoporation without contrast agents) 
stimulated growth compared to the sham treated control. The sonoporation procedure with PCCAs or 
MBs did not result in significant cell death compared to the US only control, indicating that 
sonoporation was reversible and not harmful to the cells. All groups normalized to the viability of the 
US only control. ** p ≤ 0.01, ns p > 0.05 
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 We were able to achieve significantly improved toxicity over the entire BLM concentration 

range through sonoporation with microbubbles and PCCAs (agents:cell ratio: 5.6:1.0) (Figure 7.4). 

We achieved the greatest cell death at the highest BLM concentration (53 ± 4% and 54 ± 13% 

viability for MB- and PCCA-mediated sonoporation, respectively). MBs and PCCAs performed 

similarly, resulting in comparable cell death over a range of BLM concentrations. Since the 

sonoporation protocol alone does not negatively impact cell viability, we conclude that sonoporation 

results in improved intracellular accumulation of BLM allowing efficacy in resistant HT-29 cells. 

Figure 7.4: Sonoporation with PCCAs or microbubbles (MBs) resulted in enhanced cytotoxicity of 
BLM at all tested concentrations compared to the respective ultrasound (US) alone control. All groups 
normalized to the viability of cells exposed to US alone in the absence of BLM. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001, **** p ≤ 0.0001  
 
 
7.4 CONCLUSIONS 

 
Here we have demonstrated the ability to improve the toxicity of BLM in a resistant cancer 

cell line through sonoporation-mediated intracellular drug delivery. Furthermore, we were able to 

achieve comparable results with PCCAs and conventional lipid-shelled microbubbles. Future studies 

will be aimed at translating this technique in vivo. Contrary to regular microbubbles, we anticipate that 

PCCAs will be able to extravasate into solid tumors via the enhanced permeability and retention 
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(EPR) effect, and therefore may be used to sonoporate extravascular tumor tissue. This would be an 

attractive method to non-invasively enhance BLM efficacy in resistant cancer types and improve 

tumor regression.  
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CHAPTER 81 

ULTRASOUND-STIMULATED PCCAs FOR EPITHELIAL PERMEABILIZATION TOWARDS 

ULTRASOUND-MEDIATED GASTROINTESTINAL DRUG DELIVERY 

 

 

8.1 MOTIVATION AND OVERVIEW 

 
 Therapeutic ultrasound without contrast agents has recently been proposed as a universal 

method to physically enhance GI permeability to macromolecular drugs [1-5]. This technique involves 

colonic insertion of an ultrasound probe with co-administration of a medicated enema [5]. Low-

frequency (≤ 100 kHz) ultrasound exposure for one minute or less has been shown to significantly 

enhance macromolecule delivery into surrounding GI tissue preclinically [1, 3], and this technology 

has the potential to transform the treatment landscape for several GI diseases. 

 In the absence of contrast agents, ultrasound-mediated drug delivery relies on bioeffects 

produced by cavitation much like the sonoporation mechanisms described in chapter 5 [5, 6]. First, 

however, in situ generation of vapor cavities is required. When a fluid is subjected to ultrasound of 

sufficient energy, small gas pockets are created. These bubbles subsequently oscillate (stable 

cavitation) or violently implode (inertial cavitation) in subsequent acoustic cycles much like injected 

contrast agents. These phenomena enhance the permeability of nearby boundaries.  

 The likelihood of ultrasound to induce cavitation is related to the wave’s mechanical index 

(MI) which is defined as the peak rarefactional pressure (in MPa) divided by the square root of the 

center frequency (in MHz) [7]. To achieve ultrasound-mediated drug delivery in the absence of 

contrast agents, low frequencies (≤ 100 kHz) and consequently high MIs (>2) are often 
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needed [1, 3, 4]. However, introducing exogenous cavitation nuclei (e.g., microbubble contrast 

agents) into the acoustic field substantially lowers the energy required to induce cavitation-mediated 

bioeffects as initial bubble formation is no longer required [7].  

 The use of ultrasound-stimulated microbubbles for drug delivery has been studied extensively 

for the disruption of vascular barriers [8]. For applications such as opening the blood brain barrier [9-

11] or enhancing vascular permeability within solid tumors [12, 13], microbubbles are administered 

intravenously and are stimulated with an external ultrasound source. We envision an adaptation of 

this technology for GI drug delivery, which would involve co-administration of contrast agents with a 

medicated enema in the colon followed by ultrasound stimulation using an endoscopic probe. With 

the use of contrast agents, we believe that higher frequencies and lower pressures may be used 

compared to the previously described, contrast-free methods of ultrasound-mediated GI drug 

delivery. This approach may theoretically localize bioeffects more precisely, as permeabilization 

would only occur where contrast agents are present (e.g., at the GI wall). This would reduce concerns 

of unsuppressed cavitation activity outside the desired treatment area (e.g., surrounding tissues).  

As a first step towards this goal, we studied the dynamics of epithelial monolayer disruption 

and recovery in vitro using low boiling point phase-change ultrasound contrast agents (PCCAs) 

stimulated with 1.0 MHz ultrasound pulses. PCCAs are liquid perfluorocarbon-filled particles that can 

be vaporized into acoustically active microbubbles with the application of an ultrasound pulse of 

sufficient amplitude. In the liquid state, PCCAs are characterized by nanometer-range size 

distributions (100-300 nm) that may allow more thorough permeation through the GI mucus mesh 

compared to microbubbles (0.5-10 μm [14]). Once vaporized, PCCAs form microbubbles several 

microns in diameter that can be utilized to enhance drug delivery.  

  The primary objective of this study is to demonstrate the potential of using ultrasound-

stimulated PCCAs to cause transient disruption of confluent colorectal adenocarcinoma (Caco-2) 

epithelial monolayers and enhance the permeation of a model macromolecular drug. This represents 

a first step towards the goal of in vivo GI drug delivery applications. 

 

 



 

136 

8.2 MATERIALS AND METHODS 

 
8.2.1 PHASE-CHANGE ULTRASOUND CONTRAST AGENT (PCCA) FABRICATION AND 

CHARACTERIZATION 

 
PCCAs were generated via microbubble condensation as described in chapter 6 and 

previous publications [15, 16]. The size distribution of resultant PCCAs was characterized using a 

NanoSight NS500 (Malvern Instruments, Westborough, MA, USA) (detection capability 50-2000 nm) 

(n=3 representative vials).  

 
8.2.2 PCCA VAPORIZATION CAPTURED VIA HIGH-SPEED OPTICAL MICROSCOPY 

 
PCCA vaporization events were captured at a range of acoustic settings using high-speed 

optical microscopy, as described in chapter 6 and prior work [17]. Briefly, a temperature-controlled 

water bath (37°C) was mounted on an inverted microscope with a 100× water immersion objective 

(Olympus IX71, Center Valley, PA, USA), and the microscope was interfaced with a high-speed 

camera to capture vaporization events (FastCam SA1.1, Photron USA, Inc., San Diego CA, USA). 

PCCAs were diluted 1:4 in PBS and perfused through a 200-m inner-diameter 

microcellulose tube (Spectrum Labs, Inc., Rancho Dominguez, CA, USA) positioned at the optical 

focus of the microscope and within the calibrated pressure field of an unfocused 1.0 MHz transducer 

(IP0102HP, Valpey Fisher Corp., Hopkinton, MA, USA). Injection of the PCCAs was followed by a 

brief waiting period to allow particles in the field of view to become nearly stationary, which minimized 

blurring in the captured images. Previous work has shown that PCCA vaporization is a pressure-

threshold dependent phenomenon, independent of pulse length when sub-millisecond pulses are 

used [18, 19]. Therefore, to determine an approximate pressure threshold for vaporization, PCCAs 

were exposed to single 20-cycle acoustic pulses with PNPs of 100, 200, 300, 400, 500, or 600 kPa.  

A synchronization pulse from the function generator was used to trigger the high-speed 

camera and initiate video recording at 500 frames per second. Videos were set to begin recording just 

before the triggered ultrasound pulse, which allowed complete PCCA vaporization events within the 
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optical field of view to be captured. Images were analyzed offline using ImageJ (National Institutes of 

Health, Bethesda, MD, USA).  

 
8.2.3 CELL CULTURE  

 
Colorectal adenocarcinoma (Caco-2) cells were chosen as an in vitro model of intestinal 

absorption. When Caco-2 monolayers are grown to confluence, they differentiate, developing polarity 

and tight junctions between cells. This accurately mimics the human intestinal epithelial barrier, 

making Caco-2 permeability testing a reliable tool for predicting in vivo intestinal absorption of various 

compounds [20]. Note that while these cells were derived from cancerous tissue, they are used to 

model normal intestinal barrier function.  

Caco-2 cells were purchased from the American Type Culture Collection (ATCC) and 

cultured using minimum essential medium without L-glutamine (Corning Inc., Corning, NY, USA) 

supplemented with 100 U/mL penicillin/streptomycin, 1 NEAA, 1 sodium pyruvate, 1 L-glutamate, 

and 20% heat-inactivated FBS (VWR, Radnor, PA, USA) in a humidified, 37C incubator with 5% CO2 

atmosphere. Low passage number (passage 15) Caco-2 cells were seeded at 150,000 cells per well 

onto Transwell supports with 0.4 m pores (12-well plate, 12 mm membrane diameter, 1.12 cm2 cell 

growth area, Corning Inc., Corning, NY, USA) and allowed to grow for approximately 10 days to form 

confluent monolayers. Monolayer integrity was regularly monitored via the measurement of 

transepithelial electrical resistance (TEER) (World Precision Instruments, Sarasota, FL, USA). 

Monolayers were used for permeability experiments after TEER values had reached at least 500 

Ohm (560 Ohm·cm2), which is similar to TEER values reported in the literature for this model [21, 22]. 

Furthermore, above this threshold, macromolecular tracers (e.g., the 70 kDa dextran used here) are 

unable to permeate through the Caco-2 monolayers.   

 
8.2.4 ULTRASOUND ALIGNMENT STRATEGY 

 
Caco-2 monolayers were sonicated from the apical side using a 1.0 MHz unfocused piston 

transducer (diameter = 8 mm, -6 dB ‘focal spot’ = ~6 mm diameter, IP0102HP, Valpey Fisher Corp., 

Hopkinton, MA, USA). A custom water bath was designed to (1) facilitate consistent alignment of the 
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transducer above the center of each well and (2) reduce acoustic reflections from the base of the well 

plate (Figure 8.1). The 14 cm×10 cm×8.5 cm (L×W×H) water bath was created using 3.2 mm acrylic 

sheets. For each experiment, a 12-well culture plate was placed on an internal ledge within the bath, 

providing coupling between the bottom of the well plate and the pre-heated 37°C water below. Such 

coupling was designed to minimize acoustic reflections that would have otherwise occurred at the air-

plastic interface. A lid for the water bath was created with 1.0 cm-diameter circular holes centered 

above each well. This served as a method to hold the ultrasound transducer centered within each 

well at a consistent height above the cells (6 mm).  

Figure 8.1: Sonication strategy. Colorectal adenocarcinoma (Caco-2) cells were cultured on 
permeable Transwell supports. Phase-change contrast agents (PCCAs) and dextran were added to 
the donor chamber before sonication and samples were collected from the receiving compartment 
over the following 72 hours post-ultrasound treatment. The twelve-well culture plates were positioned 
in a custom water bath and coupled to the 37°C water below before treatment. A lid with circular 
holes was used to align the ultrasound transducer in the center of each well at a consistent height 
above the cells.  
 

 
8.2.5 ULTRASOUND-MEDIATED FITC-DEXTRAN DELIVERY THROUGH EPITHELIAL 

MONOLAYERS 

 
Twelve-well plates containing confluent Caco-2 monolayers on Transwell® supports were 

positioned in the custom water bath as described above. Cell media (400 µl) containing PCCAs 

(0.5 μl; 1.75109 particles/ml) and 70 kDa FITC-dextran (50 µg; 0.125 mg/ml) was added to the donor 

chamber (apical side) of a well to simulate absorption from the intestinal lumen. The 70 kDa dextran 



 

139 

was chosen to model macromolecular drugs (e.g., moderately-sized proteins) typically unable to pass 

the GI epithelial barrier. Subsequently, the 1.0 MHz transducer was placed in center of the well and 

excited with amplified sinusoidal signals from an arbitrary function generator (AFG3021C, Tektronics, 

Inc., Beaverton, OR, USA and 3100LA Power Amplifier, ENI, Rochester, NY, USA) (Figure 8.1). A 

pulse repetition frequency of 5000 Hz and exposure time of 30 seconds was used for all conditions. 

Pulse lengths of 20 cycles (10% duty cycle) or 40 cycles (20% duty cycle) were employed, and peak 

negative pressures were varied from 300 to 600 kPa. Control samples were exposed to (1) sham 

treatment (without PCCAs or ultrasound), (2) PCCAs only, and (3) ultrasound only (using the highest 

energy condition of 600 kPa and 40 cycle pulse length). A summary of the conditions tested can be 

found in Table 8.1, including experimental replicates for each group.  

Table 8.1: Summary of conditions tested. Summary of the acoustic conditions tested for ultrasound-
mediated Caco-2 permeabilization with PCCAs, including the number of experimental replicates 
performed. Abbreviations: PCCA – phase change contrast agent; kPa – kilopascal; kDa – kilodalton; 
US – ultrasound; Y – yes; N – no; NA – not applicable 
 

Condition  PCCA (Y/N) Pressure (kPa) Cycles (#) Dextran size (kDa) Experimental replicates 

1 

Y 

300 

20 70 

3 

2 400 3 

3 500 3 

4 600 3 

5 

Y 

300 

40 70 

6 

6 400 3 

7 500 3 

8 600 3 

9 - sham N NA NA 70 3 

10 - US only N 600 40 70 3 

11 - PCCA only Y NA NA 70 3 

 

Samples (100 µl) were collected from the receiving chamber (basolateral side) at the 

following time points after treatment and replaced with cell media: ~5 min, 3 hr, 8 hr, 24 hr, 48 hr, and 

72 hr. Dextran concentration was determined via fluorescence intensity (excitation: 485 nm, emission: 

528 nm) using a Cytation 5 Plate Reader (BioTek, Winooski, VT, USA). Percent dextran delivery was 

calculated based on the mass initially added to the donor compartment, correcting for the mass 
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removed through sampling at each time point and considering 100% to be the receiving well 

concentration if equilibrium had been established between both compartments. 

TEER values were recorded at the same time points and used to monitor monolayer 

disruption and recovery dynamics. For all experiments, monolayers with a TEER value of at least 560 

Ohmscm2 were considered intact, and monolayers below this threshold were considered disrupted. 

“Time to monolayer recovery” was calculated as a summary metric to quantify the degree of 

monolayer disruption caused by sonication. For monolayers that recovered by the last measurement 

time point (72 hours), time to recovery was calculated as the time that TEER values remained below 

560 Ohmscm2, using a linear interpolation between measured time points. Monolayers that never 

dropped below 560 Ohmscm2 therefore had a time to monolayer recovery of 0 hours. 

 
8.2.6 DETECTION OF CAVITATION SIGNALS AND THEIR PERSISTENCE DURING 30 

SECOND ULTRASOUND EXPOSURES 

 
Cavitation is thought to be the main mechanical driver of biological barrier permeabilization 

with ultrasound. As such, we were interested in characterizing the generation and persistence of 

stable and inertial cavitation energy generated by ultrasound-stimulated PCCAs during 30 second 

exposures.  

We detected cavitation signals using a method adapted from our previous work described in 

chapter 6 [23].  PCCAs (1.75109 particles/ml) were suspended in 800 µl of 37°C PBS in a 

disposable plastic cuvette (FisherBrand, Thermo Fisher Scientific, Waltham, MA, USA). The 

unfocused 1.0 MHz transducer was shallowly submerged in the PCCA suspension and set to transmit 

the same ultrasound pulses that were used for monolayer permeabilization (Table 8.1) with the only 

difference being that the pulse repetition frequency was reduced to 2000 Hz. Unfortunately, hardware 

limitations prevented us from saving data with a pulse repetition frequency of 5000 Hz to match the 

cell experiments. We do not believe that this discrepancy significantly alters the interpretation of our 

results, as discussed in subsequent sections. 

A separate, single element, spherically focused transducer (7.5 MHz nominal frequency, 

measured center frequency = 8.740 MHz, diameter = 19 mm, focal distance = 50 mm, -6 dB 
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bandwidth = 1.270 MHz) (IL0706HP, Valpey Fisher Corp., Hopkinton, MA, USA) was arranged 

perpendicular to the transmit transducer with its focus positioned within the PCCA solution. Acoustic 

signals received by this transducer were passed through a receive amplifier (BR-640A, RITEC, Inc., 

Warwick, RI, USA) with 27 dB gain and a 500 kHz high pass filter. Signals were subsequently 

digitized using a 12-bit analog-to-digital conversion card with a sampling rate of 200 MHz (GaGe 

model #CSE1222, DynamicSignals LLC, Lockport, IL, USA) installed in a computer (Dell, Round 

Rock, TX, USA) running a custom acquisition program (LabVIEW, National Instruments Corp., Austin, 

TX, USA).   

We saved signals over a total of 30 seconds to monitor the dynamics of cavitation energy 

generated from the acoustically-stimulated PCCAs. Ultrasound was transmitted continuously 

throughout the 30-second period; however, signals were saved intermittently to reduce data to a 

manageable size. Each second, 20 individual signals (i.e., 10 ms of data) were saved followed by a 

990 ms saving delay. This was repeated every second for a total of 30 seconds.  

All saved data was post-processed using an adaptation of the MATLAB (MathWorks Inc., 

Natick, MA, USA) post-processing analysis script described in chapter 6 to quantify stable and inertial 

cavitation doses [23]. Briefly, for each individual radiofrequency line, the PCCA signal was selected 

by applying a 30 μs window from the point corresponding to the beginning of the acoustic pulse. Fast 

Fourier transform was used to convert individual time-domain signals to the frequency domain in 

order to estimate the level of stable and inertial cavitation. For stable cavitation, the area under curve 

(AUC) of the second harmonic component was calculated considering a spectral window from 1.9 to 

2.1 MHz. For inertial cavitation, the broadband emission was quantified by calculating the AUC of 

frequency content ranging from 5.25 to 7.75 MHz (while excluding the 6 and 7 MHz harmonic 

components). Stable and inertial cavitation doses were then calculated by normalizing AUC values 

obtained for PCCAs with those calculated for a PBS-filled cuvette (without PCCAs) exposed to the 

same acoustic parameters. This was repeated for three independent vials of PCCAs; average 

cavitation doses (relative AUC) with inter-vial standard deviation are reported. Finally, average of 

relative AUC for stable and inertial cavitation are plotted over the 30 second period, and total 

cavitation dose for each was calculated by taking the area under these curves. 
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8.2.7 STATISTICAL ANALYSES  

 
All statistical analyses were performed in GraphPad Prism 6 (GraphPad Software, Inc., La 

Jolla, CA, USA). P-values of <0.05 were considered statistically significant, and data are presented as 

average ± standard deviation throughout this work. 

To evaluate which ultrasound parameters resulted in statistically significant dextran delivery, 

we performed a two-way repeated-measures ANOVA with respect to time and acoustic treatment. At 

each timepoint, the mean of each treatment group was compared to the mean of the sham control at 

the same time point via Dunnett’s multiple comparisons testing. The same statistical procedure was 

applied to analyze changes in TEER values over time in various ultrasound treatment groups vs. time 

point-respective sham controls.  

Cumulative dextran delivery achieved at 72 hours was analyzed via an additional two-way 

ANOVA with respect to acoustic pressure and pulse length. The purpose of this test was to evaluate 

the extent to which dextran delivery is affected by these factors (i.e., the percent of variability in 

dextran delivery that can be attributed to pressure vs. number of cycles). Following this two-way 

ANOVA, two multiple comparisons tests were performed. First, a Sidak multiple comparison test was 

used to compare mean delivery efficiency between 20 and 40 cycle cases at each pressure. Second, 

a Tukey multiple comparison test was used to compare mean delivery efficiency between all 

rarefactional pressures separately for the 20 and 40 cycle cases.    

The relationship between monolayer disruption and percent dextran delivery was assessed 

by calculating the correlation between time to monolayer recovery and cumulative percent dextran 

delivery at the 72-hour time point. Spearman correlation coefficients (r) and p-values are reported. 

Linear regressions were performed to assess the relationships between pressure and (1) 

total stable cavitation dose, (2) total inertial cavitation dose, and (3) the sum of total stable and inertial 

cavitation. This was done separately for 20-cycle and 40-cycle conditions. Again, goodness-of-fit (r2) 

and p-values are reported.  
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8.3 RESULTS AND DISCUSSION 

 
8.3.1 PCCA CHARACTERIZATION 

 
 The PCCA formulation was characterized by a polydisperse size distribution with an average 

concentration of 1.4 (±0.2) × 1012 particles/ml and mean particle size of 170±20 nm (n=3 independent 

vials) (Figure 8.2 A). Figure 8.2 B shows representative optical microscopy images captured before 

(t = -2 ms) and after (t = 8 ms) a single 20-cycle ultrasound pulse at t = 0 ms. We found that PCCAs 

consistently vaporized into microbubbles at and above a peak negative pressure of 300 kPa, but 

showed little to no activation at lower pressures (at 1.0 MHz), which is consistent with our previous 

findings [23]. Qualitatively, we observed an increase in the number of bubbles generated with a single 

ultrasound pulse as pressure was increased from 300 kPa to 600 kPa (Figure 8.2 A). From these 

experiments, we concluded that the pressure threshold for PCCA vaporization is between 100 –

300 kPa at 1.0 MHz, and therefore pressures at or above 300 kPa were used for all subsequent 

experiments. 

Figure 8.2: Characterization of PCCA size distribution and vaporization. (A) The size distribution and 
concentration of PCCAs were characterized using a Nanosight. The PCCA formulation was 
characterized by a polydisperse size distribution with an average concentration of 1.4 (±0.2) × 1012 
particles/ml and mean particle size of 170±20 nm (n=3 independent vials). (B) Acoustic PCCA 
vaporization. Representative high speed optical microscopy images showing PCCA vaporization as a 
function of rarefactional pressure. Considerable PCCA vaporization is observed at and above 300 
kPa, with the number of generated microbubbles increasing with increasing pressure. Scale 

bar = 10 m.  
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8.3.2 ULTRASOUND-MEDIATED FITC-DEXTRAN DELIVERY THROUGH EPITHELIAL 

MONOLAYERS 

 
 As expected, 70 kDa dextran was not able to penetrate sham-treated Caco-2 monolayers 

over the 72 hr incubation period, confirming that effective barrier function had been established in our 

model (Figure 8.3 A). Similarly, we did not observe appreciable delivery through control monolayers 

treated with (1) PCCAs only (no ultrasound) or (2) ultrasound only (no PCCAs, ultrasound stimulation 

at the highest setting of 600 kPa and 40 cycles) (Figure 8.3 A). This indicated that neither our agents 

nor ultrasound alone altered monolayer integrity with the parameters used in our study. 

Correspondingly, TEER values for all control groups remained well above the previously chosen 

threshold for an intact monolayer (560 Ohm·cm2) throughout the 72-hour observation period, further 

demonstrating that control treatments did not significantly alter membrane integrity (Figure 8.4 A). 

Neither PCCAs alone nor ultrasound alone resulted in statistically significant changes in TEER values 

at any time point compared to the time-point respective sham controls (Table 8.2).  

Figure 8.3: Dextran delivery through Caco-2 monolayers. Dextran delivery is presented as a 
percentage of the maximum dextran mass that would have been found in the receiving compartment 
if equilibrium had been achieved between the donor and receiver Transwell compartments (i.e., if 
there was no barrier between chambers). (A) Negligible amounts of the 70 kDa dextran permeated 
through control treated monolayers over the 72-hour incubation period. When monolayers were 
sonicated in the presence of PCCAs, significant delivery was achieved with select acoustic 
parameters (B and C). Stars indicate the results of Dunnett’s multiple comparison testing at each 
timepoint comparing mean percent dextran delivery of each group to that of the sham control for that 
timepoint after two-way ANOVA.  
Key: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001; **** p ≤ 0.0001  
 

When ultrasound was combined with PCCAs we were able to achieve significant delivery (vs. 

time-point respective sham controls) of 70 kDa dextran with select parameter combinations (Figure 
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8.3 B and 8.3 C). When substantial delivery was achieved, it most often reached statistically 

significant levels between 8-24 hours post-treatment with cumulative percent delivery increasing 

slightly thereafter. These results correspond with TEER values indicating significant monolayer 

disruption (Figure 8.4 and Table 8.2). For all ultrasound-stimulated PCCA treatments, we observed 

an immediate and statistically significant reduction in TEER, with all groups characterized by average 

TEER values in the range of 200-280 Ohmcm2 approximately 5 minutes post-treatment (Figure 8.4 

and Table 8.2). TEER values tended to recover within 24-48 hours post-treatment, regaining values 

≥560 Ohm·cm2. The 300-kPa treatment groups were the only conditions that did not show 100% 

recovery of all monolayers by the 72-hour time point. For the 300 kPa treatment groups, we achieved 

33% and 50% recovery for the 20 and 40 cycle cases, respectively. 

 
 
Figure 8.4: Transepithelial resistance (TEER) values before and after monolayer sonication. Control 
treated cells did not show any significant change in TEER values after manipulation, and TEER 
values remained above 560 Ohm⋅cm2 (green dashed line) throughout the 72-hour observation period, 

indicating maintained monolayer integrity (A). For all monolayers treated with ultrasound and PCCAs, 
a significant decrease in TEER values was recorded immediately (~5 min) after treatment (B and C). 
Most of these monolayers recovered (regained TEER values ≥ 560 Ohm⋅cm2 within 24-48 hours, with 

the exception of some monolayers treated with 300 kPa and either 20 or 40 cycle pulse lengths.  
 

Treatment groups diverged with respect to monolayer recovery time. To investigate this 

further, we interpolated “time to monolayer recovery” for each treatment (i.e., time for a monolayer to 

regain a TEER value ≥560 Ohm·cm2). This summary value, which captures the monolayer recovery 

dynamics, correlated well with the cumulative percent dextran delivered (r = 0.8475, p < 0.0001) 
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(Figure 8.5). Biologically, the main factor dictating dextran delivery efficiency appears to be how long 

the monolayers remain leaky.   

In terms of acoustic parameters, rarefactional pressure has a greater influence on dextran 

delivery outcome than pulse length. To test this observation statistically, we performed a two-way 

ANOVA to quantify the relative contributions of acoustic pressure and pulse length to overall variation 

in cumulative dextran delivery (72 hr time point). We found that pressure (p = 0.0002) but not pulse 

length (p = 0.1476) was a significant source of variability in percent dextran delivery, with pressure 

accounting for 53.5% of the total variation compared to 3.5% attributed to pulse length. This can be 

assessed visually in Figure 8.6 A, where the cumulative percent delivery varies substantially with 

respect to pressure but remains fairly consistent between pulse lengths. Indeed, multiple comparison 

testing showed that differences in cumulative dextran delivery between 20 and 40 cycle conditions 

were statistically insignificant at each rarefactional pressure.   

Table 8.2: Statistics describing transepithelial resistance (TEER) values before and after monolayer 
sonication. Stars indicate the results of Dunnett’s multiple comparison testing at each timepoint 
comparing mean TEER value of each group to that of the sham control for that timepoint after two-way 
ANOVA.  
Key: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001; **** p ≤ 0.0001  
Abbreviations: PCCA – phase change contrast agent; kPa – kilopascal; US – ultrasound; cyc – cycles. 
 

 Significantly different than respective sham control? 
 Time point (hours) 

Group pre 0 3 8 24 48 72 

US only ns ns ns ns ns ns ns 

PCCA only ns ns ns ns ns ns ns 

600 kPa - 20 cyc ns **** **** **** *** ns ns 

500 kPa - 20 cyc ns **** **** **** **** ** ns 

400 kPa - 20 cyc ns **** **** **** **** **** ns 

300 kPa - 20 cyc ns **** **** **** **** **** **** 

600 kPa - 40 cyc ns **** **** **** **** * ns 

500 kPa - 40 cyc ns **** **** **** **** *** ns 

400 kPa - 40 cyc ns **** **** **** ** ns ns 

300 kPa - 40 cyc ns **** **** **** **** **** **** 
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Figure 8.5: Correlation between cumulative dextran delivery and time to monolayer recovery. A 
significant correlation was found between percent dextran delivery at 72 hours and interpolated time 
to monolayer recovery.  

 

The most interesting and unexpected finding was that the 300 kPa exposure conditions 

consistently provided significantly greater dextran delivery compared to higher-pressure groups, while 

the higher-pressure conditions (400, 500, and 600 kPa) provided similar results (statistically 

insignificantly different) (Figure 8.6 B and 8.6 C). These findings are counter to our initial hypothesis 

that as acoustic energy was increased, a greater proportion of PCCAs would vaporize into 

microbubbles and cavitation dose would be more pronounced, together leading to more dramatic 

biological effects and ultimately greater dextran delivery efficiency. We hypothesize that these 

unexpected findings may be explained by differences in cavitation persistence between ultrasound 

exposure conditions, as is explored in the subsequent section. 

 
 
Figure 8.6: Influence of pulse length and rarefactional pressure on overall dextran delivery outcome. 
Dextran delivery efficiency was comparable for 20 cycle and 40 cycle groups at each rarefactional 
pressure, as depicted in (A). The 300 kPa conditions consistently provided the greatest dextran 
delivery outcomes compared to all higher-pressure conditions (B and C). Higher pressure conditions 
(400 – 600 kPa) provided similar delivery outcomes to each other. 
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8.3.3 PERSISTENCE OF CAVITATION OVER 30 SECOND EXPOSURES  

 
 In our experiments, as would be the case for GI drug delivery applications, the same sample 

of PCCAs were stimulated for the duration of the ultrasound exposure time (30 seconds in this study). 

Therefore, at high pressure, PCCAs may be rapidly converted to microbubbles but also subsequently 

destroyed via inertial cavitation. This would limit the effective cavitation duration to a fraction of the 

ultrasound on time (30 s). Conversely, if PCCAs were being vaporized more slowly and were able to 

persist for longer at lower pressures, the effects of microbubble cavitation would have been felt by the 

cells for a longer period of time, enhancing the biological effect.  

 To test this hypothesis, we quantified stable and inertial cavitation dose generated from 

acoustically-stimulated PCCAs in vitro over the course of 30 seconds. All parameters matched those 

of our dextran delivery experiments except for pulse repetition frequency, which was reduced to 

2000 Hz.  

 For all acoustic exposure conditions (300-600 kPa with 20 and 40 cycle pulse lengths), we 

observed substantial stable and inertial cavitation immediately after the ultrasound transmission was 

initiated (Figure 8.7 A-D). For 20 cycle pulse lengths, there is a clear separation in cavitation 

dynamics with respect to rarefactional pressures, with lower pressures resulting in more sustained 

stable and inertial cavitation compared to the higher pressures. The lower pressures (especially 

300 kPa) provide sustained stable and inertial cavitation activity over the entire 30 second exposure, 

while cavitation dose decreases dramatically within the first 15 s for the higher pressures (especially 

600 kPa) (Figure 8.7 A & 8.7 C). This trend is also observed for stable cavitation dose with respect to 

pressure at 40 cycles (Figure 8.7 B). This is less pronounced for inertial cavitation dose at 40 cycles, 

as cavitation dose decreases more rapidly for all pressures (Figure 8.7 D). In general, these data 

demonstrate that both peak rarefactional pressure and pulse length influence cavitation persistence 

for PCCAs, as has previously been reported for microbubbles [24]. The lower pulse repetition 

frequency used for these experiments compared to the dextran delivery experiments may have 

biased results slightly. At a higher pulse repetition frequency, cavitation dose would be expected to 

decrease more rapidly for all conditions, thus this effect is likely more pronounced in our cell 

experiments at higher pulse repetition frequency. 
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In general, we hypothesize that two main factors contribute to the inverse trend between total 

cavitation dose and pressure. First, we qualitatively observed that PCCA vaporization efficiency 

increases with increasing pressure. This can be observed in the representative images shown in 

Figure 8.2, where more bubbles are generated after a single ultrasound pulse at 600 kPa vs. 

300 kPa. This qualitative finding is supported by previous work showing that relative PCCA 

vaporization efficiency increases with increasing pressure [25, 26]. As a result, it will take longer to 

vaporize all PCCAs in the sample with lower pressures, contributing to sustained cavitation activity 

over the 30-second exposure time. Secondly, as pressure increases, we believe that generated 

microbubbles will be destroyed more rapidly, ultimately limiting microbubble lifetime and cavitation 

persistence. A similar inverse trend between generated microbubble stability/survival and pressure 

has previously been described by Reznik et al.  [26].  

To quantitatively analyze the trends in acoustic cavitation with respect to pressure, we first 

calculated the cumulative stable cavitation dose (SCD) and cumulative inertial cavitation dose (ICD) 

by calculating the area under each of the cavitation curves over the 30 s ultrasound exposure. This 

provided single values summarizing the total SCD and ICD generated by each condition. We also 

summed these cumulative SCD and ICD values to provide an estimate of the overall cavitation dose 

generated per condition (SCD+ICD). Linear regressions were performed between each of these 

summary values and acoustic pressure (Figure 8.7 E-F). For the 20 cycle cases, we find statistically 

significant inverse trends between pressure and total SCD+ICD and total SCD (p = 0.0007 – 0.0100).  

For the 40 cycle cases, all three summary cavitation metrics were found to significantly and inversely 

trend with pressure (p = 0.0049 – 0.0100). For both pulse lengths, 300 kPa qualitatively provided the 

greatest cumulative SCD, ICD and SCD+ICD compared to all higher-pressure groups, which 

corresponds with our finding that 300 kPa results in the greatest dextran delivery efficiency. 
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Figure 8.7: Generation of stable and inertial cavitation and trends with rarefactional pressure. (A-D) 
Acoustic stimulation of PCCAs resulted in the generation of substantial stable cavitation (SCD) and 
inertial cavitation (ICD) for all acoustic conditions tested. The persistence of this cavitation over 30 
seconds varied between conditions. In general, SCD and ICD was most persistent at the low-
pressure conditions (300 or 400 kPa) with short pulse length (20 cycles). Total SCD and ICD dose 
was calculated as the area under the cavitation curves over 30 seconds. (E) For the 20 cycle 
conditions, we found significant inverse trend between rarefactional pressure and total SCD+ICD 
dose and SCD dose. (F) This trend held true for SCD+ICD, SCD and ICD doses for the 40 cycle 
conditions.  
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8.3.4 LIMITATIONS  

 
Total cavitation dose alone cannot predict dextran delivery efficiency as evidenced by the 

discrepancy we find between 20 and 40 cycle conditions: dextran delivery outcomes are comparable 

across pulse lengths, while total cavitation doses were in general lower for 40 cycle conditions 

compared to respective 20 cycle conditions. For the 20 cycle conditions, we find a significant 

correlation between cumulative dextran delivery and (1) total SCD (Pearson r = 0.9624, p = 0.0376) 

and (2) total SCD+ICD (Pearson r = 0.9638, p = 0.0362). However, for the 40 cycle cases we do not 

find significant correlations between dextran delivery and any of the total cavitation metrics. This 

discrepancy may be due to various confounding variables that were not captured by the total 

cavitation dose metric. For instance, we hypothesize that peak cavitation dose and the balance 

between stable and inertial cavitation may be important variables contributing to biological outcome.   

An additional confounding variable may be acoustic radiation force and its influence on microbubble-

to-cell distance. The magnitude of biological effects is expected to increase with decreasing distance 

between cavitating microbubbles and underlying cells, as observed in the literature surrounding 

ultrasound-mediated drug delivery into cells [27, 28]. Despite their buoyancy, we expect that 

microbubbles were pushed towards the cell boundary in our set up via primary radiation force [29, 

30]. Therefore, any differences in radiation force between groups (e.g., due to pulse length or 

pressure) may have influenced microbubble-to-cell distance and therefore dextran delivery efficiency.   

Furthermore, acoustic pressure and pulse length are known to influence the stability and size 

distribution of microbubbles generated by PCCA vaporization [17, 26], and differences in microbubble 

populations may have influenced dextran delivery efficiency. The proportion of small microbubbles 

generated by PCCA vaporization has previously been show to increase with increasing acoustic 

pressure [17, 23], which is attributed to the inverse relationship between vaporization pressure 

threshold and PCCA size [17, 31]. Additionally, the likelihood of microbubble fusion (i.e., generation of 

larger microbubbles) increases with increasing pulse length [17]. These expected differences in 

microbubble size distribution as a function of acoustic excitation parameters may influence monolayer 

disruption efficiency.  
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After ultrasound-mediated monolayer disruption, TEER value analysis indicated that it 

typically took 24-48 hours for the epithelial cells to regain their integrity. While recovery mechanism 

was not explicitly studied in this work, this rather long recovery time may indicate that recovery is due 

to cell repopulation and growth rather than resealing of transiently opened tight junctions between 

cells. A limitation of this study is that we did not quantify cell death after treatment. Furthermore, not 

all monolayers treated with the 300 kPa conditions recovered within the 72-hour observation window. 

We do not claim that we have found optimal acoustic parameters for in vitro intestinal 

permeabilization. Rather, this study provides an encouraging proof of principle demonstration that 

epithelial monolayer disruption is feasible with ultrasound stimulated PCCAs and supports further 

optimization of acoustic parameters to maximize transient disruption while minimizing recovery time 

and cell death.  

It is important to note that cell-based assays of intestinal permeabilization are known to 

overestimate damage compared to what would be observed in viable intestinal tissue (in the context 

of chemically induced permeability enhancement) [32, 33]. This is attributed to the lack of complete 

intestinal repair mechanisms and protective mucus in simple cell culture assays. As a result, any 

future optimization of acoustic parameters should be carefully validated (e.g., through the in situ 

intestinal perfusion [34]) to ensure that the chosen parameters are effective and safe when working 

with viable intestinal tissue. One of the greatest safety concerns for intestinal barrier disruption in vivo 

is the risk of facilitating absorption of harmful bystanders such as bacteria, viruses, and toxins [32]. 

This risk should be carefully evaluated and minimized upon in vivo translation.  

 
8.3.5 FUTURE DIRECTIONS: POTENTIAL FOR ULTRASOUND-MEDIATED GI DRUG 

DELIVERY WITH PCCAs 

 
The data presented herein represent a first step towards the ultimate goal of ultrasound-

mediated GI drug delivery with PCCAs, and the finding that lower pressure results in greater delivery 

efficiency is important for successful in vivo translation.  In the in vivo setting, we envision co-

administering a medicated enema with a solution of PCCAs. Subsequently, an endoscopic ultrasound 

probe would be inserted and used to stimulate PCCAs for GI permeabilization. Without natural 
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replenishment of the PCCAs (e.g., through blood flow), achieving persistent cavitation by limiting the 

destruction of generated microbubbles will be of utmost importance.  

This is in contrast to an analogous application where ultrasound-stimulated contrast agents 

are used to enhance drug delivery through vascular barriers. For vascular disruption, microbubbles 

are administered intravenously, and blood flow provides continuous replenishment of intact 

microbubbles. Indeed, delivery efficiency has been shown to increase with increasing pressure for 

this application [35-37], and microbubble reperfusion into the focal zone can be achieved by 

alternating sonication with rest time [36, 38] or theoretically by using short pulses and long pulse 

repetition periods [39]. However, using high pressures for vascular permeabilization is associated 

with an increased risk of undesirable bioeffects [40], pointing to another motivation for using reduced 

pressures for any drug delivery application. To this end, Pouliopoulos and colleagues have 

demonstrated the value of redefining the acoustic pulses typically used for vascular permeabilization 

to provide sustained, controllable, and safe cavitation activity with low pressures and short pulse 

lengths [24, 41].   

The likelihood that ultrasound will induce cavitation is related to the mechanical index (MI = 

peak rarefactional pressure divided by center frequency) of the transmitted pulse. The United States 

Food and Drug Administration stipulates that MI cannot exceed 1.9 for clinical diagnostic ultrasound, 

which is intended to prevent cavitation-mediated biological effects in the absence of exogenous 

contrast agents. Therefore, when ultrasound-mediated GI permeabilization is performed in the 

absence of contrast agents, MIs above this threshold (MI~2.2 – 3.3) are often employed to generate 

the cavitation activity necessary for permeabilization [1, 3, 4]. (Note: these MIs were estimated based 

on the reported acoustic intensities for ex vivo experiments, assuming plane wave transmission, an 

acoustic impedance of water of 1.48106 kgm-2s-1, negligible tissue attenuation, and that the 

reported intensity represented instantaneous acoustic intensity.) While these protocols have generally 

been described as safe in preclinical studies [3, 4], cavitation-mediated biological effects could be 

induced in tissues beyond the GI epithelium. Conversely, we were able to achieve efficient drug 

delivery at a mechanical index of 0.3 (300 kPa at 1.0 MHz), which is well below the FDA limit of MI = 

1.9, indicating that biological effects will likely only be induced in areas with direct contact to the 
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contrast agents. This claim is supported by the absence of monolayer disruption (as evidenced by 

stably high TEER values and impermeability to dextran) when cells were stimulated with ultrasound 

alone in our experiments. This offers an opportunity for improved treatment localization and the 

potential for enhanced safety compared to ultrasound-mediated GI drug delivery in the absence of 

contrast agents.  

In the GI space, we believe low boiling point PCCAs will provide greater success than 

standard microbubbles. Unlike microbubble contrast agents, the small size of PCCAs may allow 

permeation through the GI mucus mesh and permeabilization of the underlying GI epithelium. In 

future studies, we will test the penetration of PCCAs through mucus and optimize acoustic 

parameters for GI drug delivery in a model that more accurately captures the in vivo setting (e.g., in 

situ intestinal perfusion).  

The use of ultrasound for drug delivery offers an opportunity for simultaneous image 

guidance. This will be particularly important for GI drug delivery applications where site-specific (e.g., 

immunotherapy delivery to a colon tumor) rather than global GI drug delivery is desired. Ultrasound 

image guidance could be achieved in one of two ways. First, it may be possible to achieve low-

resolution ultrasound imaging and subsequent drug delivery with clinically available endoscopic 

ultrasound probes (e.g., with 5 MHz center frequency). A similar approach has been published for 

externally applied ultrasound for drug delivery to pancreatic tumors with a clinically available 

machine [42, 43]. Perhaps more exciting is the prospect of developing dual frequency endoscopic 

ultrasound probes that incorporate aligned low frequency elements for optimal drug delivery and high 

frequency elements for high-resolution ultrasound imaging. Dual frequency transducers are currently 

under development for contrast-enhanced intravascular and intracavity imaging [44-46], which could 

be modified for image-guided therapy purposes. A dual frequency approach can also be employed to 

initiate PCCA phase change at high frequency and detect the unique acoustic signature of PCCA 

vaporization at low frequency [47]. This would offer a method to image the efficiency and duration of 

PCCA vaporization events during the treatment. 
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8.4 CONCLUSIONS 

 
 We have demonstrated efficient delivery of a macromolecular drug mimic (70 kDa FITC-

dextran) through otherwise impermeable Caco-2 epithelial monolayers using ultrasound-stimulated 

PCCAs. We found that the lowest pressure conditions (300 kPa) consistently provided the greatest 

dextran delivery efficiency (vs. 400-600 kPa), which is explained in part by the observation that 

cavitation is more persistent during ultrasound exposure at lower pressures. While we believe that 

persistent cavitation activity is important for achieving efficient epithelial disruption, we have not fully 

explored other acoustic metrics that may also play a role, such as acoustic radiation force, peak 

cavitation dose, and variable size distributions of acoustically generated microbubbles. Further 

experimentation should be conducted to evaluate the relative importance of these variables and their 

contribution to dextran delivery outcome. Insight gleaned from these experiments will allow for 

rational and thorough optimization of acoustic parameters for in vivo drug delivery through the GI 

epithelial barrier.  
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CHAPTER 9 

SUMMARY 

 

 Throughout this thesis, we applied concepts from molecular pharmaceutics to the study of 

ultrasound contrast agents, and in the process, we have strengthened our understanding of how 

contrast agents interact with biological environments and how they can be used for therapeutic 

purposes.  

In chapter 2, we explored dynamic changes in microbubble pharmacokinetics when these 

agents were administered repeatedly over several weeks. This challenges the long-standing 

assumption that microbubbles behave as static sources of contrast in ultrasound imaging and 

highlights the importance of pharmacokinetic characterization in quantitative contrast-enhanced 

imaging studies as well as therapeutic ultrasound applications where stable microbubble 

concentrations are important.   

We went on to characterize the potential of microbubbles to be adapted as carriers for 

therapeutic gasses in chapters 3 and 4. Chapter 3 provided a thorough review of the literature 

surrounding this topic. In chapter 4, we demonstrated that oxygen-filled microbubbles can be used to 

reoxygenate hypoxic tumors using a rat model of fibrosarcoma and that this reoxygenation improves 

the efficacy of subsequent radiotherapy. Ongoing work on this project is aimed at translating this 

technology to improve radiotherapy outcomes for patient dogs with sarcomas.  

The final chapters of this thesis demonstrated ways in which a new class of contrast agents – 

phase-change contrast agents (PCCAs) – can be used to overcome biological barriers to drug 

delivery. Chapter 5 provided an introduction to ultrasound-mediated drug delivery in general and 

described the motivation for using PCCAs for this application. We went on to show that ultrasound-

stimulated PCCAs can be used to transiently permeabilize cell membranes, increasing the 

intracellular accumulation of model drugs (chapter 6). In chapter 7, we applied this technique to 



 

160 

deliver bleomycin into otherwise resistant colon cancer cells, providing significant improvements in 

chemotherapeutic efficacy. Ongoing work related to this project is focused on in vivo translation to 

improve the delivery of cytotoxic drugs and immunotherapy in difficult-to-treat tumor models. Finally, 

in chapter 8, we demonstrated that ultrasound-stimulated PCCAs can be used to improve drug 

delivery through epithelial monolayers. These results represent a first step towards improved 

gastrointestinal delivery of macromolecular drugs in vivo, which would substantially improve treatment 

options for a number of gastrointestinal diseases.  
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1This chapter previously appeared as supplementary material for an article in Ultrasound in Medicine and Biology. The original 
citation is as follows: Fix, S. M., Nyankima, A.G., McSweeney, M.D., Tsuruta, J.K., Lai, S.K., Dayton, P.A. (2018). "Accelerated 
Clearance of Ultrasound Contrast Agents Containing Polyethylene Glycol is Associated with the Generation of Anti-
Polyethylene Glycol Antibodies." Ultrasound in Medicine & Biology 44(6): 1266-1280. 
 

 

APPENDIX A1 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

 

A.1 ELISA WITH PLATES COATED WITH MICROBUBBLE COMPONENTS 

 
Enzyme-linked immunosorbant assays (ELISAs) were repeated as described in the body of 

chapter 2 (experiment 1) using plates coated with our microbubble components. Briefly, 96-well, half-

area plates were coated via incubation overnight at 4°C with a PBS based solution containing 50:50 

molar ratio of DSPC:mPEG-DSPE (final mPEG-DSPE concentration of 100 g/ml). Secondary 

antibodies (anti-rat IgM-HRP and anti-rat IgG-HRP) provided with the Life Diagnostics anti-PEG IgM 

and anti-PEG IgG ELISA kits were used to detect anti-microbubble IgM and IgG, respectively. 

 
 

Figure A.1: Anti-microbubble antibody detection. Levels of anti-microbubble IgG and anti-microbubble 
IgM follow similar trends to anti-PEG IgG and anti-PEG IgM reported in the body of the text. Both 
isotypes are found to peak between 7-14 d after the initial microbubble dose and decrease 
considerably by day 28.  
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A.2 ANTI-PEG ANTIBODY DETECTION VIA KIT ELISA AFTER IN VIVO COMPETITION 

 
 We immunized rats by dosing them with PEGylated microbubbles on days 0, 1, 2, and 3. On 

day 7 (when antibody concentrations were likely near their peak) we attempted free PEG competition 

with a 550 mg/kg dose of PEG20 kDa. This did not result in prolonged microbubble dwell time. 

However, ELISA analysis of serum collected before and 3hrs after the PEG dose showed no 

decrease in detected anti-PEG IgM and IgG antibodies (Figure A.2 A and A.2 B). Conversely, running 

a competitive ELISA assay with 0.9mg/ml PEG20 kDa reduced detected anti-PEG IgG and IgM 

antibodies (i.e. generated anti-PEG antibodies bind to free PEG20 kDa) (Figure A.2 C and A.2 D). 

Therefore, we concluded that the free PEG dose provided in vivo was simply not enough to occupy a 

large fraction of the circulating anti-PEG antibodies and recover microbubble dwell time.  

 
Figure A.2: Anti-PEG antibody detection after in vivo competition. Anti-PEG IgG (A) and anti-PEG IgM 
(B) concentrations detected on day 0, day 7, and day 24. On day 7, significant anti-PEG antibody 
concentrations are detected, but no change is observed after the administration of saline or free PEG 
for either IgM or IgG. A competitive ELISA showed that incubating serum with free PEG does result in 
decreased antibody signal for both IgG (C) and IgM (D). 
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We repeated the free PEG competition experiment using a higher dose of free PEG (2200 

mg/kg) on Day 24 when the antibody concentrations were significantly lower (Figure A.2 A and 

A.2 B). Here we did see nearly complete recovery of microbubble dwell time. The ELISA data for 

serum collected before and after PEG administration showed that antibody concentrations at this time 

point were below the limit of detection (LOD) of the assay. Limit of detection was defined as the IgG 

or IgM concentration calculated based on the average absorbance at 450 nm of blank samples plus 

three times the standard deviation of the blank samples. LODs were found to be 663 U/ml and 2014 

U/ml for anti-PEG IgG and IgM, respectively.  Therefore, we were unable to see a drop in detectable 

antibodies in response to the PEG competition.  
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1This appendix previously appeared as supplementary material for an article in the Journal of Therapeutic Ultrasound 
distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0/). The original 
citation is as follows: Fix, S.M., Novell, A., Yun, Y., Dayton, P.A., Arena, C.B. (2017). "An evaluation of the sonoporation 
potential of low-boiling point phase-change ultrasound contrast agents in vitro." J Ther Ultrasound 5: 7. Only minor changes 
were made in reformatting this material into the chapter presented here.  
 

APPENDIX B1 

SUPPLEMENTARY MATERIAL FOR CHAPTER 6 

 

 

B.1 ERROR ESTIMATION FOR PCCA SIZE AND CONCENTRATION  

 
Each individual PCCA sample was measured four times to give a representative size 

distribution and concentration, each with an associated standard deviation (intra-sample SD). This 

was repeated for three independent vials of PCCAs giving an overall average size and concentration 

with an associated standard deviation (inter-vial SD). The intra-sample SD for both size and 

concentration was found to be greater than the corresponding inter-vial SDs (Table B.1). As such, 

slight variations between vials were negligible given the uncertainty associated with measurement, 

and vials used throughout the experiments were assumed to be identical and to be characterized by 

the size distribution and concentration presented. In the body of this text, average size and 

concentration was reported with their associated intra-sample SDs. 

 
Table B.1: Error estimation for PCCA size and concentration. 

Characteristic Intra-sample SD Inter-vial SD 

Size (nm) ± 13 ± 3.5 
Concentration (#/mL) ± 1.2×1011 ± 0.67×1011 

 
 
B.2 DETAILS REGARDING FLOW CYTOMETRY ANALYSIS  

  
 All flow cytometry experiments were run using an LSRFortessa cytometer equipped with 488 

nm and 561 nm excitation lasers to detect calcein and propidium iodide (PI) fluorescence, 

respectively (Becton Dickinson, Franklin Lakes, NJ, USA). Detector voltages (gains) were kept 

consistent throughout the experiments and are presented in Table B.2.  
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Table B.2: Detector voltages used for all flow cytometry acquisitions 

Detector Voltage (V) 

Front scatter (FSC) 162 

Side scatter (SSC) 164 

Calcein 130 

Propidium Iodide 242 

 

There is very little spectral overlap between calcein and PI; nevertheless, compensation 

matrices were calculated for each experiment. The following were used as compensation controls: (1) 

untreated, unstained cells, (2) untreated cells stained only with calcein-AM, and (3) ethanol-killed 

cells stained only with PI. Ten thousand events were recorded for each. Compensation matrices were 

calculated using FlowJo Data Analysis Software (Ashland, OR, USA) and were used to compensate 

all sonoporation data. 

To quantify the number of viable sonoporated cells the following gating strategy was 

employed. First, cells were isolated from debris using front scatter area (FSC-A) vs. side scatter area 

(SSC-A) characteristics. Second, singlet cells were isolated using FSC-A vs. front scatter height 

(FSC-H). Third, viability of the isolated cell population was confirmed by calcein fluorescence. Finally, 

a curly quadrant gate was drawn on the calcein vs. PI dot plot to quantify the percent of sonoporated 

cells as those displaying both calcein-AM cleavage (viable) and PI uptake (permeabilized) (quadrant 

two (Q2)). Curly quadrant gates (those with curved arms) were employed in effort to minimize error 

associated with spread of intensely fluorescent populations (due to proton counting error). See Figure 

B.1 for gating hierarchy.  

A nearly identical gating strategy was employed to detect changes in autofluorescence 

following treatment, with the only exception being that viable cells were not gated based on calcein 

fluorescence (as these cells were un-dyed) (Figure B.2 A). Cells that were untreated and undyed 

(sham control) showed no autofluorescence in the calcein or the PI channels. However, slight 

spreading along the PI axis was observed in cells treated with ultrasound and PCCAs. The 

percentage of cells in Q3 was subtracted from final sonoporation efficiencies for each condition.  
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Figure B.1. Gating hierarchy used for sonoporation detection.  

 

 

Figure B.2: Detecting autofluorescence in sonoporation-treated cells. A) Gating hierarchy for 
detecting autofluorescence in treated cells. First, cells were isolated from debris using FSC-A vs. 
SSC-A. Second, singlet cells were isolated using FSC-A vs. FSC-H. Third, quadrant gates were 
drawn identical to those used for quantifying sonoporation. B) Representative dot plots demonstrating 
slight spreading (autofluorescence) of cells treated with ultrasound and PCCAs.  
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