Table S1 Estimated marginal means and standard errors from SPSS, corresponding to tests (separate-sex analyses) presented in Table 1. Means represent the effects of maternal exercise condition (none, post-weaning only, post-weaning and gestational) on offspring $\left(\mathrm{G}_{2}\right)$ exercise traits, body weight, body composition, and change in body weight and composition as a result of exercise.

Trait ${ }^{\text {a }}$	None				Post-weaning				Post-weaning \& gestational			
	Male		Female		Male		Female		Male		Female	
	Mean	SE										
Revolutions/day	5925.998	571.705	3.940	0.030	6977.516	569.119	3.913	0.290	7547.943	596.828	3.917	0.030
1-minute intervals/day	368.515	28.676	531.786	27.203	438.001	28.546	535.876	26.201	433.162	29.936	515.668	27.052
Average speed (rpm)	1.196	0.015	1.219	0.022	1.200	0.015	1.189	0.021	1.233	0.016	1.214	0.022
Maximum speed (rpm)	1.466	0.014	1.466	0.018	1.443	0.013	1.443	0.018	1.472	0.014	1.471	0.018

${ }^{\text {a }}$ Revolutions/day (distance), 1-minute intervals/day (time, cumulative 1-minute intervals in which at least one revolution was recorded), average running speed (total revolutions/time spent running), and maximum running speed (highest number of revolutions in any 1-min interval within a 24 h period).

Table S2 Pearson partial correlations for maternal $\left(\mathrm{G}_{1}\right)$ and offspring $\left(\mathrm{G}_{2}\right)$ mean voluntary running traits. Correlations were generated with individuals $\left(\mathrm{G}_{1}\right.$ and G_{2}) representing two of three maternal exercise conditions (post-weaning only, post-weaning and gestational).

Trait	G_{2} Time	G_{2} Average Speed	G_{2} Maximum Speed	G_{1} Distance	G_{1} Time	G_{1} Average Speed	G_{1} Maximum Speed
G_{2} Distance	$0.654^{* *}$	$0.646^{* *}$	$0.525^{* *}$	0.282^{*}	0.269^{*}	0.227	0.233
G_{2} Time		-0.144	-0.224	0.227	0.371^{*}	0.068	0.011
G_{2} Average Speed			$0.914^{* *}$	0.105	-0.032	0.186	0.237
G_{2} Maximum Speed				0.060	-0.102	0.178	0.252
G_{1} Distance					$0.727^{* *}$	$0.837^{* *}$	$0.762^{* *}$
G_{1} Time					0.246	0.190	
G_{1} Average Speed						$0.918^{* *}$	

Pearson partial correlations (r; controlling for sex) are shown for revolutions/day (distance), 1-minute intervals/day (time, cumulative 1-minute intervals in which at least one revolution was recorded), average running speed (total revolutions/time spent running), and maximum running speed (highest number of revolutions in any 1-min interval within a 24 h period). G_{1} values are the averages of days 33 and 34 of wheel access. The G_{1} running trait values are approximately age matched to the values of the offspring $\left(\mathrm{G}_{2}\right)$. Running wheel circumference was $1.1 \mathrm{~m} .{ }^{*} p<0.05 .{ }^{* *} p<0.001$.

Table S3 Pearson partial correlations for maternal-gestational $\left(\mathrm{G}_{1}\right)$ and offspring $\left(\mathrm{G}_{2}\right)$ mean voluntary running traits. Correlations were generated with individuals $\left(\mathrm{G}_{1}\right.$ and $\left.\mathrm{G}_{2}\right)$ representing one of three maternal exercise conditions (post-weaning and gestational).

Trait	G_{2} Time	G_{2} Average Speed	G_{2} Maximum Speed	G_{1} Distance	G_{1} Time	G_{1} Average Speed	G_{1} Maximum Speed
G_{2} Distance	$0.573^{* *}$	$0.694^{* *}$	$0.719^{* *}$	$0.600^{* *}$	0.321	0.357	0.395^{*}
G_{2} Time		-0.181	-0.104	0.409^{*}	0.349	0.143	-0.081
G_{2} Average Speed			$0.965^{* *}$	0.372	0.077	0.301	0.501^{*}
G_{2} Maximum Speed				0.379	0.065	0.292	0.482^{*}
G_{1} Distance					0.272	0.622^{*}	0.458^{*}
G_{1} Time					-0.515^{*}	-0.089	
G_{1} Average Speed						0.594^{*}	

Pearson partial correlations (r; controlling for sex) are shown for revolutions/day (distance), 1-minute intervals/day (time, cumulative 1-minute intervals in which at least one revolution was recorded), average running speed (total revolutions/time spent running), and maximum running speed (highest number of revolutions in any 1-min interval within a 24 h period). G_{1} running trait values are the means of days $48-54$ of wheel access. Days $48-54$ occurred after a confirmed pregnancy (presence of vaginal plugs) and removal of the male, but prior to giving birth. Running wheel circumference was $1.1 \mathrm{~m} .{ }^{*} p<0.05 .{ }^{* *} p$ <0.001.

Table S4 Separate-sex analyses of offspring $\left(\mathrm{G}_{2}\right)$ body composition traits at different ages and in response to 6 days of voluntary wheel running.

Trait	Trans ${ }^{\text {c }}$	n	Group	Age
~ 3 weeks of age				
Body mass, g	none	45	$\begin{gathered} F_{2,42}=2.409 \\ p=0.102 \end{gathered}$	
	none	45	$\begin{gathered} F_{2,42}=3.089 \\ p=0.056 \end{gathered}$	
\% Fat	$\log 10$	45	$\begin{gathered} F_{2,42}=0.301 \\ p=0.742 \end{gathered}$	
	${ }^{\wedge} 2.5$	45	$\begin{gathered} F_{2,42}=2.289 \\ p=0.114 \end{gathered}$	
\% Lean	none	45	$\begin{gathered} F_{2,42}=0.022 \\ p=0.979 \end{gathered}$	
	$\log _{10}$	45	$\begin{gathered} F_{2,42}=3.356 \\ p=\mathbf{0 . 0 4 4} \end{gathered}$	

~ 4 weeks of age

Body mass, g
|| none

$$
\begin{array}{cc}
F_{2,40}=1.468 & F_{1,40}=17.317 \\
p=0.243 & p<\mathbf{0 . 0 0 1} \\
F_{2,40}=3.184 & F_{1,40}=17.761 \\
p=0.052 & p<\mathbf{0 . 0 0 1} \\
F_{2,40}=0.042 & F_{1,40}=2.410 \\
p=0.959 & p=0.128 \\
F_{2,40}=0.810 & F_{1,40}=0.651 \\
p=0.452 & p=0.425 \\
F_{2,40}=0.158 & F_{1,40}=2.405 \\
p=0.855 & p=0.129 \\
F_{2,40}=0.325 & F_{1,40}=0.210 \\
p=0.724 & p=0.649
\end{array}
$$

~ 5 weeks of age

Body mass, g
|| $\quad \log 10$
$F_{2,39}=0.228 \quad F_{1,39}=4.070$
$p=0.797 \quad p=0.051$
$\begin{array}{cc}F_{2,39}=0.786 & F_{1,39}=11.282 \\ p=0.463 & p=\mathbf{0 . 0 0 2}\end{array}$

$$
p=0.463 \quad p=\mathbf{0 . 0 0 2}
$$

|| $\quad \log 10$
$43^{\text {b }}$
\% Fat
\% Lean
|| none

$F_{2,39}=1.739$	$F_{1,39}=0.046$
$p=0.189$	$p=0.831$

$F_{2,39}=0.092 \quad F_{1,39}=1.239$

$$
p=0.912 \quad p=0.272
$$

$F_{2,39}=2.387 \quad F_{1,39}=0.629$

$$
p=0.105 \quad p=0.433
$$

| none $\quad 43^{\mathrm{b}} \quad \begin{gathered}F_{2,39}=1.338 \\ p=0.274\end{gathered} F_{1,39}=4.230$
~ 6 weeks of age

Body mass, g
|| none 44

$$
\begin{array}{cc}
F_{2,40}=0.046 & F_{1,40}=4.006 \\
p=0.955 & p=0.052 \\
F_{2,40}=0.046 & F_{1,40}=1.767 \\
p=0.955 & p=0.191
\end{array}
$$

$$
\text { \% Fat } \quad \| \quad \log 10 \quad 44 \quad F_{2,40}=1.515 \quad F_{1,40}=0.420
$$

				$p=0.232$	$p=0.521$	
	\|	none	44	$\begin{gathered} F_{2,40}=0.198 \\ p=0.821 \end{gathered}$	$\begin{gathered} F_{1,40}=0.006 \\ p=0.938 \end{gathered}$	
\% Lean	\|		$\wedge 6.0$	44	$\begin{gathered} F_{2,40}=1.218 \\ p=0.306 \end{gathered}$	$\begin{gathered} F_{1,40}=1.003 \\ p=0.322 \end{gathered}$
		none	44	$\begin{gathered} F_{2,40}=0.355 \\ p=0.703 \end{gathered}$	$\begin{gathered} F_{1,40}=0.039 \\ p=0.844 \end{gathered}$	
~ 7 weeks of age						
Body mass, g	\|		$\log 10$	44	$\begin{gathered} F_{2,40}=0.214 \\ p=0.808 \end{gathered}$	$\begin{gathered} F_{1,40}=4.700 \\ p=\mathbf{0 . 0 3 6} \end{gathered}$
		$\log 10$	44	$\begin{gathered} F_{2,40}=0.050 \\ p=0.951 \end{gathered}$	$\begin{gathered} F_{1,40}=6.546 \\ p=\mathbf{0 . 0 1 4} \end{gathered}$	
$\sim 8-9$ weeks of age ${ }^{\text {c }}$						
Body mass, g	\|		none	44	$\begin{gathered} F_{2,40}=0.191 \\ p=0.827 \end{gathered}$	$\begin{gathered} F_{1,40}=1.035 \\ p=0.315 \end{gathered}$
		$\log 10$	44	$\begin{gathered} F_{2,40}=0.209 \\ p=0.812 \end{gathered}$	$\begin{gathered} F_{1,40}=1.866 \\ p=0.180 \end{gathered}$	
\% Fat	\|		$\log 10$	44	$\begin{gathered} F_{2,40}=1.763 \\ p=0.185 \end{gathered}$	$\begin{gathered} F_{1,40}=1.600 \\ p=0.213 \end{gathered}$
		none	44	$\begin{gathered} F_{2,40}=0.615 \\ p=0.546 \end{gathered}$	$\begin{gathered} F_{1,40}=0.029 \\ p=0.867 \end{gathered}$	
\% Lean	\|		$\wedge 5.0$	44	$\begin{gathered} F_{2,40}=1.649 \\ p=0.205 \end{gathered}$	$\begin{gathered} F_{1,40}=2.143 \\ p=0.151 \end{gathered}$
		none	44	$\begin{gathered} F_{2,40}=0.299 \\ p=0.743 \end{gathered}$	$\begin{gathered} F_{1,40}=0.179 \\ p=0.674 \end{gathered}$	
Post exercise						
Body Mass, g	\|		$\wedge 2.5$	44	$\begin{gathered} F_{2,40}=0.840 \\ p=0.439 \end{gathered}$	$\begin{gathered} F_{1,40}=0.005 \\ p=0.944 \end{gathered}$
		$\log 10$	44	$\begin{gathered} F_{2,40}=0.367 \\ p=0.695 \end{gathered}$	$\begin{gathered} F_{1,40}=1.227 \\ p=0.275 \end{gathered}$	
\% Fat	\|		$\log 10$	44	$\begin{gathered} F_{2,40}=1.625 \\ p=0.210 \end{gathered}$	$\begin{gathered} F_{1,40}=2.240 \\ p=0.142 \end{gathered}$
		${ }^{\wedge} 0.5$	44	$\begin{gathered} F_{2,40}=0.136 \\ p=0.873 \end{gathered}$	$\begin{gathered} F_{1,40}=0.001 \\ p=0.971 \end{gathered}$	
\% Lean	\|		$\wedge 5.0$	44	$\begin{gathered} F_{2,40}=2.178 \\ p=0.126 \end{gathered}$	$\begin{gathered} F_{1,40}=5.503 \\ p=\mathbf{0 . 0 2 4} \end{gathered}$
		none	44	$\begin{gathered} F_{2,40}=0.139 \\ p=0.871 \end{gathered}$	$\begin{gathered} F_{1,40}=0.198 \\ p=0.659 \end{gathered}$	
\% Change in mass		none	$43^{\text {b }}$	$\begin{gathered} F_{2,39}=2.308 \\ p=0.113 \end{gathered}$	$\begin{gathered} F_{1,39}=1.907 \\ p=0.175 \end{gathered}$	
		none	44	$\begin{gathered} F_{2,40}=0.032 \\ p=0.969 \end{gathered}$	$\begin{gathered} F_{1,40}=0.880 \\ p=0.354 \end{gathered}$	
\% Change in \% fat		none	$43^{\text {b }}$	$\begin{gathered} F_{2,39}=0.537 \\ p=0.589 \end{gathered}$	$\begin{gathered} F_{1,39}=0.604 \\ p=0.442 \end{gathered}$	
		none	44	$\begin{gathered} F_{2,40}=0.972 \\ p=0.387 \end{gathered}$	$\begin{gathered} F_{1,40}<0.001 \\ p=0.998 \end{gathered}$	
\% Change in \% lean	\|		none	$43^{\text {b }}$	$\begin{gathered} F_{2,39}=3.228 \\ p=0.050 \end{gathered}$	$\begin{gathered} F_{1,39}=0.402 \\ p=0.718 \end{gathered}$
	\|	none	44	$\begin{gathered} F_{2,40}=0.009 \\ p=0.992 \end{gathered}$	$\begin{gathered} F_{1,40}=2.245 \\ p=0.142 \\ \hline \end{gathered}$	

Data were from general linear models [Univariate GLM ANOVA (SPSS, Chicago, IL)] and transformed ${ }^{\mathrm{a}}$ as necessary to improve normality of residuals. Significance levels (P-values: bold indicates $p<0.05$) for the effect of maternal $\left(\mathrm{G}_{1}\right)$ exercise group (none, post-weaning only, post-weaning and gestational). Age, days since birth at the time of phenotypic measurement was included as a covariate where appropriate. ${ }^{\text {b }}$ Removal of one or more outliers based on formal statistical test $[37,38] .{ }^{c} A t \sim 8$ weeks of age body composition measures were taken immediately prior to (in) and following (out) 6 days of wheel access. Percent body fat (and lean) was calculated as (fat mass/body mass)*100. Percent change variables were calculated as [(out - in)/in]*100.

Table S5 Estimated marginal means and standard errors from SPSS, corresponding to tests (separate-sex analyses) presented in Supplementary Table 4.
Note that data transformation is not uniform for males and females for a given trait. Means represent the effects of maternal exercise condition (none, postweaning only, post-weaning and gestational) on offspring $\left(\mathrm{G}_{2}\right)$ body weight, body composition, and change in body weight and composition as a result of exercise.

Trait	None				Post-weaning				Post-weaning \& gestational			
	Male		Female		Male		Female		Male		Female	
	Mean	SE										
~ 3 weeks of age												
Body Mass, g	16.307	0.519	15.367	0.421	15.607	0.519	15.493	0.421	14.700	0.519	14.153	0.421
\% Fat	1.112	0.021	732.147	55.320	1.094	0.021	564.832	55.320	1.092	0.021	653.133	55.320
\% Lean	85.367	0.684	1.920	0.003	84.652	0.637	1.930	0.003	84.954	0.598	1.926	0.003
~4 weeks of age												
Body Mass, g	25.717	0.539	1.314	0.010	25.570	0.537	1.318	0.010	24.493	0.557	1.284	0.011
\% Fat	3.303	0.075	13.660	0.589	3.300	0.075	12.605	0.589	3.329	0.078	13.229	0.610
\% Lean	86.988	0.538	82.747	0.597	86.637	0.536	83.419	0.598	86.596	0.557	82.982	0.619
~ 5 weeks of age												
Body Mass, g	1.480	0.009	1.391	0.010	1.485	0.009	1.401	0.011	1.489	0.009	1.382	0.011
\% Fat	1.089	0.021	16.533	0.820	1.130	0.020	16.245	0.850	1.079	0.021	16.029	0.850
\% Lean	83.752	0.556	79.359	0.793	82.681	0.537	78.499	0.822	84.342	0.556	80.399	0.821
~ 6 weeks of age												
Body Mass, g	33.082	0.599	1.413	0.014	33.313	0.597	1.416	0.014	33.299	0.620	1.410	0.014
\% Fat	1.106	0.023	17.001	0.877	1.133	0.023	16.276	0.877	1.075	0.024	16.896	0.908
\% Lean	$3.4 * 10^{11}$	$1.6 * 10^{10}$	78.949	0.809	$3.2 * 10^{11}$	$1.6 * 10^{10}$	79.909	0.810	$3.6 * 10^{11}$	$1.6 * 10^{10}$	79.347	0.838
~7 weeks of age												
Body Mass, g $\sim 8-9$ weeks of age ${ }^{\mathrm{a}}$	1.544	0.008	1.427	0.013	1.549	0.008	1.423	0.013	1.541	0.009	1.421	0.014
Body Mass, g	38.802	0.697	1.436	0.014	38.194	0.695	1.446	0.014	38.461	0.721	1.434	0.014
\% Fat	1.119	0.034	15.811	1.152	1.153	0.034	14.938	1.153	1.063	0.035	16.780	1.193
\% Lean	$3.4 * 10^{9}$	$1.9 * 10^{8}$	78.520	1.012	$3.2 * 10^{9}$	$1.9 * 10^{8}$	79.469	1.012	$3.7 * 10^{9}$	$2.0 * 10^{8}$	78.489	1.048
Post exercise												
Body Mass, g	$8.3 * 10^{3}$	372.5	1.424	0.012	$8.4 * 10^{3}$	371.3	1.435	0.012	$8.0 * 10^{3}$	385.4	1.421	0.013
\% Fat	0.948	0.043	3.272	0.118	1.010	0.043	3.185	0.118	0.900	0.044	3.232	0.122
\% Lean	$4.4 * 10^{9}$	$2.2 * 10^{8}$	81.935	0.816	$4.1 * 10^{9}$	$2.2 * 10^{8}$	82.523	0.817	$4.7 * 10^{9}$	$2.3 * 10^{8}$	82.093	0.845
\% change in mass	-4.576	1.193	-2.594	1.300	-2.877	1.151	-2.340	1.301	-6.441	1.193	-2.811	1.346
\% change in \% fat	-33.236	5.269	-32.140	5.137	-26.939	5.086	-27.199	5.139	-33.688	5.272	-37.515	5.320
\% change in \% lean	0.507	0.908	1.566	0.901	1.495	0.876	1.458	0.902	-1.656	0.908	1.624	0.933

