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ABSTRACT 

 

RYAN DOUGLAS MILLS: Scale of pluton/wall rock interaction near May 

Lake, Yosemite National Park, California, USA 

(Under the direction of Dr. Allen F. Glazner and Dr. Drew S. Coleman) 

 

The western outer granodiorite of the Tuolumne Intrusive Suite intruded a variety 

of metasedimentary wall rocks at 93.1 ± 0.1 Ma. The May Lake metamorphic screen 

(4500 x 550 m) is a remnant of the chemically diverse metasedimentary host rocks. Their 

chemical contrast with the invading pluton provides an excellent location to study 

pluton/wall rock interactions. 

Outside the screen, visible wall-rock xenoliths (mostly pelitic quartzite) are 

predominantly located in an elongate horizon surrounded by a hybridized fine-grained 

granodiorite. Initial Sr and Nd isotopic ratios of the hybridized granodiorite indicate 

incorporation of crustal material. Major- and trace-element geochemical data indicate 

contamination of the granodiorite with pelitic metasedimentary rocks occurred in two 

modes, selective assimilation of 1) a high-K partial-melt derived from pelitic quartzite, 

and 2) a low-K partial-melt derived from pelitic quartzite. However, there is little 

evidence for contamination of granodiorite beyond the immediate vicinity of wall rock 

inclusions. 
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Introduction 

Assimilation of wall rock material is commonly invoked as a cause of large-scale 

chemical heterogeneity in igneous rocks (McBirney et al. 1987; Clarke et al. 1998; 

Barnes et al. 2005; Dungan 2005) and as a space-creating mechanism for plutons in the 

upper crust via stoping and disaggregation (Paterson et al. 1996). Assimilation is an 

umbrella term that encapsulates both bulk incorporation of wall rock (bulk assimilation) 

and incorporation of partial melts of wall rocks, leaving behind a restitic residue 

(selective assimilation). These end-member mechanisms of assimilation produce different 

trends of chemical hybridization in plutons. Studies have defined hybridized aureoles or 

zones in plutons (Barnes et al. 2004; Saito et al. 2007), but few detailed, meter-scale 

geochemical studies have identified the assimilated material and quantified the spatial 

extent of contamination. 

Wall rock xenoliths are rare in most plutons (typically <<1% of overall volume; 

Glazner and Bartley 2006); thus for incorporation of wall rocks to be a significant mass-

transfer process, assimilation of crustal material must be pervasive. Because bulk 

assimilation of wall rocks is a thermodynamically unrealistic mechanism for pluton 

emplacement (Bowen 1928; Glazner 2007), Beard et al. (2005) suggested that plutons 

may dissolve and disperse up to 50% of their total mass during ascent and emplacement 

via a process known as reactive bulk assimilation, but they did not address the exact 

thermal budget involved in such a process. However, the chemical results of such a 

process would be identical to bulk assimilation. 
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Assimilation is detectable because it drives the composition of the magma toward 

the contaminant. If the contaminant is similar in composition to the magma, then little 

change results. If it is another igneous rock, then the contaminated magma will have an 

igneous composition as well. But if the contaminant is a non-igneous rock, then the 

contaminated magma will likely lie off of the well-defined igneous trend in 

compositional space (Fig. 1). In addition, whole-rock radiogenic isotopic analysis can 

detect assimilation if the contaminant is isotopically distinct. 

This study examines chemical and physical interactions between a pluton and its 

wall rocks in order to place realistic limits on assimilation processes. We focus on the 

contact between granodiorite and metamorphic wall rocks at May Lake in Yosemite 

National Park, California (Figs. 2 and 3), where there are abundant glaciated outcrops, 

great lithologic diversity of metasedimentary rocks in the wall rock screen, and 

significant chemical and isotopic contrasts between the pluton and the metasedimentary 

rocks. 
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Fig.1. Selected major-element variation diagrams of plutonic rocks (Bateman et al. 1988, 

Gray 2003) and a variety of metasedimentary rocks (Clarke 1908, this study). The basalt 

and rhyolite fields show the end-member compositions of igneous rocks. Straight lines 

indicate mixing paths of the basalt with quartzite or marble. 
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Fig. 2. Geologic map of the Tuolumne Intrusive Suite (after Huber et al 1989).
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Fig. 3. Geologic map of the May Lake Metamorphic Screen (after Taylor 2003). 

 

 

 

 

 

 



Geologic Background 

The Tuolumne Intrusive Suite (Fig. 2) is a concentrically zoned set of plutons 

located in the Sierra Nevada batholith of California. The suite, which grades from a 

granodiorite/ tonalite at the margin to granodiorite in intermediate zones and granite 

porphyry at the core, was emplaced between 93.5 - 85.4 m.y. ago (Coleman et al. 2004). 

From margin to core 
87

Sr/
86

Sr(i) values rise from 0.7058 to 0.7066 and εNd(t) values vary 

from -3 to -6, with the most significant isotopic changes occurring near the margins of the 

suite (Kistler et al. 1986; Gray 2003). 

The May Lake metamorphic screen consists of metasedimentary rocks in contact 

with the western border phases of the Tuolumne Intrusive Suite (here referred to as 

granodiorite of Glen Aulin, Kga) for approximately 4 km (Figs. 2 and 3). The screen, 

mapped in detail by Rose (1957) and Taylor (2003), consists of quartzite, pelitic 

quartzite, marble, and calc-silicate rocks that are correlated with late Proterozoic units of 

the Mojave Desert region (Schweickert and Lahren 1991). Lahren et al. (1990) proposed 

that this assemblage of rocks originated far to the south and was transported ~400 km 

north along the proposed Mojave-Snow Lake fault. 

Light gray to white quartzite makes up a majority of exposed metamorphic rocks 

in the screen and is primarily recrystallized quartz (85 – 95%; Rose 1957) with minor 

biotite and potassium feldspar. Pelitic quartzite is a foliated rock with layers of relatively 

pure quartzite and pelitic hornfels; layer thickness typically ranges from millimeters to 

meters. Biotite and muscovite define a foliation in the pelitic layers and plagioclase and 
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potassium feldspar are the other main components. Minor phases in the pelitic quartzite 

include andalusite, sillimanite, and orthopyroxene (Taylor 2003). In addition, several 

accessory minerals are present including apatite, zircon, monazite, and opaque minerals 

(Rose 1957). 

The two other main metasedimentary rock types in the screen are calcareous and 

are present as boudins inside the quartzites. The calc-silicate rock unit is an equigranular 

mixture of diopside, actinolite, calcite and quartz (Taylor 2003). The marble unit is 

coarse-grained calcite with minor diopside and actinolite (Taylor 2003). All 

metasedimentary rock units show evidence for pre- and syn-emplacement deformation 

including several episodes of folding and boudinage (Taylor 2003; Coleman et al. 2005). 

The outer unit of the Tuolumne Intrusive Suite is referred to collectively as the 

granodiorite of Kuna Crest (Kk), but along the western edge of the suite near May Lake, 

the unit is specifically referred to as the tonalite of Glen Aulin (Kga). Because these rocks 

plot predominantly in the granodiorite field on a QAP ternary diagram (Fig. 3) the 

terminology used here will be granodiorite of Glen Aulin (Kga). The granodiorite is 

equigranular with equant biotite defining a subtle planar fabric. Hornblende and opaque 

minerals are the other major mafic phases and minor sericitation of potassium feldspar is 

present.  Plagioclase and potassium feldspar (An35-45 and Or90; Gray 2003), along with 

quartz, are the main felsic constituents. 
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Fig. 4. Modal Quartz-Plagioclase-Potassium Feldspar compositions of plutonic rock, 

partial melt (Holtz and Johannes 1991; Patiño-Douce  and Johnston 1991; Montel and 

Vielzeuf 1997; Patiño-Douce  and Harris 1998) and leucosome geochemistry (Bea et al. 

1994; Whitney and Irving 1994; Carrington and Watt 1995; Symmes and Ferry 1995; 

Zeng et al. 2005a) determined using CIPW norm algorithm. Albite compositions only 

contribute to the plagioclase component. Rock type classifications are after La Maitre 

(2002). 



Methods 

Sampling strategy 

Sampling was focused largely within 10 meters of the contact between the May 

Lake screen and the granodiorite of Glen Aulin in order to understand the scale of 

pluton/wall rock interactions. Previously analyzed samples of the granodiorite away from 

the contact were also used to define the background chemistry of the unit. Samples of 

each wall rock unit were collected for analysis as potential pluton contaminants. A 

variety of granodiorite samples was collected from within 10 meters of the contact, and 2 

line traverses extending perpendicular from the contact were sampled to establish the 

length scale of contamination. 

 

Xenolith mapping 

Two representative areas (Fig. 2) were established for detailed mapping of 

xenoliths in the granodiorite: one inside a particularly xenolith-rich horizon, and the other 

in an area with a typically low density of xenoliths. A Nikon total station was used to 

map the location of all visible xenoliths in the areas larger than 1 cm in longest 

dimension. The long and short axis dimensions and rock type were noted for each 

xenolith within the areas. 
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Geochemistry  

Samples were ground to a powder using a steel jaw crusher and a ceramic 

shatterbox. Powders were then shipped to Activation Labratories (Ontario, Canada), for 

major- and trace-element analyses. Samples were dissolved by lithium 

metaborate/tetraborate fusion. Major-elements and Sc, Be, V, Sr, Zr, and Ba were 

analyzed by ICP-OES and all other trace-elements were analyzed by ICP-MS. 

 

Isotope geochemistry 

Whole-rock powder was dissolved and cations were separated for isotopic 

analysis following methods outlined by Miller et al. (1995). Strontium and Nd isotopic 

abundances were obtained on a VG Sector 54 thermal ionization mass spectrometer at the 

University of North Carolina at Chapel Hill. Strontium isotopic ratios were normalized to 

86
Sr/

88
Sr = 0.1194 and referenced to 

87
Sr/

86
Sr = 0.710269 (NBS 987, n = 4); Nd isotopic 

ratios were normalized to 
146

Nd/
144

Nd = 0.7219 and referenced to 
143

Nd/
144

Nd = 0.512117 

(JNdi-metal, n = 4). Isotope dilution using spikes was not performed because Rb, Sr, Sm 

and Nd concentrations were obtained via ICP-MS. 
87

Sr/
86

Sr(i) and εNd(t) indicate values 

corrected to 93.1 Ma, the crystallization age of the granodiorite (Coleman et al. 2004). 

Epsilon values for Nd were calculated using 
143

Nd/
144

Nd(CHUR, 0 Ma) = 0.512638 and 

147
Sm/

144
Nd(CHUR, 0 Ma) =0.1967. 

 

Heavy mineral separates 

100 g blocks of 3 samples (ML051.02, ML051.03, & ML061.63) were reduced to 

sand size using a Bico disc mill. Highly magnetic minerals were removed from the 
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samples with a hand magnet. Remaining minerals were passed through methelyne iodide 

with a density of 3.32 g/cm
3
 to segregate dense minerals. Heavy mineral separates were 

mounted in epoxy, polished, and identified using energy-dispersive x-ray analysis on a 

Leica SEM with special attention to rare earth element- (REE) and Th-bearing phases. 

 

 

 



Results 

Field relationships 

The May Lake screen is approximately 4500 meters in length and 550 meters in 

width. Each of the four major metasedimentary rock units is locally in contact with the 

granodiorite but only pelitic quartzite, the only foliated metasedimentary unit, displays 

evidence of concordant dike injections resulting in isolation of metasedimentary blocks 

(Fig. 4a). 

Xenoliths in the granodiorite around May Lake occur predominantly in a tabular 

zone. The zone is approximately 1100 meters long and 200 meters wide and strikes 

subparallel to the contact of the screen and granodiorite. Xenoliths in the zone range in 

size from a few square centimeters to a single, large block, 140 meters by 240 meters, 

near the contact (Taylor 2003). Hybridized, fine-grained granodiorite surrounds most 

xenoliths in the tabular xenolith zone (Fig. 4b) and the hybridized granodiorite has a 

lower abundance of mafic minerals than the typical granodiorite. Xenoliths found in the 

hybridized zone are chiefly pelitic quartzite and show more ductile deformation than 

xenoliths outside of the zone. Granodiorite immediately surrounding the xenolith zone 

has modally layered bands defined by mafic minerals parallel to the edge of the zone 

(Fig. 4c). In contrast, xenolith-free zones of the granodiorite have little to no modal 

layering. 

Mapping of xenoliths in the xenolith horizon illustrates the contrast between the 

horizon and surrounding granodiorite. Mapping area #1 (Fig. 3, Fig. 5) consisted of a 40 
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Fig. 5. Field photographs of interactions between plutonic rocks and metamorphic wall 

rocks. Photograph A shows a concordant intrusion of hybridized granodiorite in the 

pelitic quartzite. Photograph B shows a pelitic quartzite xenolith surrounded by a 

leucocratic rind. Photograph C shows a contact between granodiorite and a large block of 

mixed metasedimentary rock type. Modal layering in the granodiorite is prominent 

parallel to the block contact. Photograph D shows a concordant intrusion of granodiorite 

in foliated metavolcanic rocks on the eastern side of the suite. 
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Fig. 6. Representation of xenoliths mapped in zone 1. Circles are proportional to xenolith 

area, elliptical area calculated from long and short axis field measurements. 
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meter x 20 meter area of excellent exposure chosen to encompass the xenolith-rich 

horizon. The xenolith-rich horizon is approximately 10-15 m thick and is surrounded by 

typical xenolith-poor granodiorite. Although xenoliths account for ~2.5% of the 800 m
2
 

area surveyed, within the xenolith-rich horizon in this mapping area, xenoliths make up 

10.5% by area, illustrating the subjectivity of quantifying xenolith abundances. In the 

second mapping area (Fig. 3), adjacent to the contact with calc-silicate rocks, xenoliths 

make up 0.005% of the 1050 m
2
 area, with all xenoliths occurring within 10 m of the 

contact. 

 

Major- and trace-element geochemistry 

Major and trace-element data are presented in Table 1. Plutonic rock samples with 

Sr and Nd isotopic ratios within the range of values from previously reported standard 

Kga samples (Kistler 1986; Gray 2003) are denoted “granodiorite.” Plutonic rock 

samples with 
87

Sr/
86

Sr(i) values higher than standard Kga and εNd(t) values more negative 

than standard Kga are denoted “hybridized granodiorite.” 

Among granodiorite samples all major-element concentrations (Fig. 7) negatively 

correlate with SiO2 (55–68 wt. %) except K2O, which correlates positively, and Na2O, 

which shows no correlation. Rubidium, Ba, and Zr correlate positively with SiO2, 

whereas Sr, Zn, V, and Sc negatively correlate. Rare-earth element concentrations for 

granodiorite normalized to chondrite show slight light rare earth element (LREE) 

enrichment with values averaging ~100 times chondrite for La (Fig. 8). A few samples 

show minor positive and negative Eu anomalies, but as a whole, the granodiorite has only 

minor Eu anomalies. 
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Fig. 7.  Selected major- and trace-element variation diagrams of: 1) plutonic and 

metamorphic rocks near May Lake, 2) experimental partial melting data (Holtz and 

Johannes 1991; Patiño-Douce and Johnston 1991; Montel and Vielzeuf 1997; Patiño-

Douce  and Harris 1998), 3) leucosome geochemistry (Bea et al. 1994; Whitney and 

Irving 1994; Carrington and Watt 1995; Symmes and Ferry 1995; Zeng et al. 2005a), and 

4) plutonic rock geochemistry of Tuolumne Intrusive Suite (Bateman et al. 1988, Gray 

2003). 
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Fig. 8. Rare-earth element geochemistry of plutonic rocks plotted relative to chondrite 

(Sun and McDonough 1989). Plot A displays the high-K hybridized samples and plot B 

displays the low-K hybridized samples. Shaded area in the background represents Kga 

samples (Gray, 2003; this study). 
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Most hybridized granodiorite samples have higher concentrations of SiO2 (62–78 

wt. %) than granodiorite samples and diverge into two groups when correlated with K2O. 

Group A (hereafter referred to as high-K) has a positive correlation between SiO2 and 

K2O, following the trend of the entire Tuolumne Intrusive Suite. Group B (hereafter 

referred to as low-K) has a negative correlation between SiO2 and K2O, and K2O 

concentrations are predominantly <2 wt. % for rocks in this group. Barium concentrations 

(Fig. 7e) differ between groups, with high-K samples having high Ba concentrations 

(~1000 ppm) and low-K samples having lower Ba concentrations (<400 ppm). Low-K 

samples can have higher LREE concentrations (Figs.8, 9) than high-K and granodiorite 

samples. Several of the hybridized samples have large Eu anomalies, some positive and 

some negative, but there is no correlation between the groups defined by K2O 

concentrations and the sign or intensity of Eu anomalies. 

Metasedimentary rocks found in the screen span a large range of major-element 

compositions. The quartzite has measured SiO2 values between 88–95 wt. % with 

variable amounts of Al2O3 and K2O making up most of the remainder. Outcrops of the 

quartzite are massive with weak foliation, in contrast to the well-foliated pelitic quartzite. 

The composition of the pelitic quartzite varies depending on the relative abundance of silt 

to sand layers in the protolith, with SiO2 ranging from 67–81 wt. %. The calc-silicate 

rock unit has SiO2 concentrations around 50 wt. % and 6–9 wt. % MgO. The marble 

varies in purity, but both analyzed samples have ~48 wt. % unnormalized CaO. 
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Fig. 9. Trace-element variation diagram displaying averages of the low-K2O hybrids and 

high-K2O hybrids normalized relative to the average of the normal granodiorite. The two 

groups of hybrids exhibit major differences for trace-elements such as Ba, Th, and all 

REE. Concentrations of hybridized trace-elements approach the normal granodiorite with 

decreasing levels of contamination. 
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Sr and Nd isotope geochemistry 

Whole-rock Nd and Sr isotope ratios are presented in Table 2. 
87

Sr/
86

Sr(i) and 

εNd(t) are corrected to the crystallization age of the granodiorite of Glen Aulin (93.1 Ma). 

Granodiorite away from the screen exhibits a range of εNd(t) from -3.43 to -3.78 and 

87
Sr/

86
Sr(i) from 0.705795 to 0.705935 (Kistler 1986; Gray 2003; this study). Hybridized 

granodiorite ranges in εNd(t) from -3.54 to -10.46 and 
87

Sr/
86

Sr(i) from 0.706105 to 

0.714147, and εNd(t) and 
87

Sr/
86

Sr(i) correlate throughout the hybridized granodiorite 

samples (Fig. 10). All granodiorite samples with hybridized compositions were collected 

within 2 meters of wall rock material and all samples farther from the wall rocks show no 

isotopic variation from the granodiorite. Plots of distance from wall rock vs. isotopic 

ratios (Fig. 11) show the dramatic decrease in isotopic heterogeneity as distance from 

wall rock increases. A plot of εNd(t) versus K2O (Fig. 12) clearly differentiates the two 

contamination trends in the hybridized granodiorite samples, with one contaminant 

having high K2O (~5 wt. %) and the other contaminant having low K2O (<1 wt. %). 

The potential contaminants all have more radiogenic Sr isotopic ratios and less 

radiogenic Nd isotopic ratios than the granodiorite, with εNd(t) ranging from -7.92 to 

-23.65 for both types of quartzites, and approximately equal to -18 for calc-silicate rocks, 

and -16 for marbles. The variability in isotopic ratios and daughter isotope whole-rock 

concentrations produces a great variety of potential mixing trends between the 

granodiorite and varied metasedimentary wall rocks. 

 

 

 



 21 

 

Fig. 10. Plot of εNd(t) against 
87

Sr/
86

Sr(i), both corrected to 93.1 Ma. Wall rocks span a 

large isotopic range whereas granodiorite samples define a small range. The hybridized 

samples spread from the granodiorite toward the wall rocks. 
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Fig. 11. Plot A and B show the isotopic variability of Sr and Nd in the plutonic rocks 

relative to distance from wall rock material. Selected inner unit samples with the May 

Lake metamorphic screen as their closest wall rock are also plotted. 
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Fig. 12. Plot of εNd(t) corrected to 93.1 Ma versus K2O (wt %) illustrating two trends in 

contamination of Kga.  One trend has increased K2O as εNd(t) gets more negative and the 

other has decreased K2O as εNd(t) gets more negative. Partial melting can produce two 

distinct chemical compositions while εNd(t) stays relatively constant, because these 

melting reactions do not significantly fractionate Sm from Nd. 
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Trace mineralogy 

Semi-quantitative observations of heavy mineral separates are summarized in 

Table 3. Monazite is the only observed phase in the pelitic quartzite sample (ML051.03) 

with stoichiometric concentrations of LREE and Th. Allanite is the only observed phase 

with stoichiometric concentrations of LREE in the plutonic rock samples and 

uranothorite is the only observed phase with stoichiometric concentrations of Th in the 

plutonic rock samples. However, the relative abundances of allanite and thorite are higher 

in the hybridized sample (ML051.02) than they are in the granodiorite sample 

(ML061.63). Although monazite, allanite, and uranothorite have the highest 

concentrations of LREE and Th, the remaining minerals of the rock house the majority of 

these elements. 

 

Mixing percentages 

Weighted least-squares analysis of major-element concentrations was performed 

to estimate percentages of the granodiorite component and the contaminant component in 

the hybridized samples. Average major-element concentrations of Kga were used as one 

end-member of mixing and averages of partial melting experimental data and leucosome 

analyses (divided into low-K and high-K groups) were used as the other end-members of 

mixing. The low-K2O contaminant was used for hybridized samples that have lower K2O 

weight percents than the granodiorite and the high-K2O contaminant was used for 

hybridized samples that have higher K2O weight percents than the granodiorite. 

Calculations for individual hybridized samples produced mixing percentages ranging 
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from 15% wall rock contaminated to ~100% wall rock contaminated (Fig. 13), with 

highly contaminated samples occurring within 10 centimeters of the wall rock. 
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Fig. 13. 
87

Sr/
86

Sri values for average Kga and hybridized granodiorite samples plotted 

against results from weighted least-squares mixing analysis of major-element chemistry. 

Mixing hyperbolas for several wall rock partial melt scenarios are shown to illustrate: 1) 

the variability in isotopic ratio of the quartzites in the screen (shown are 3 examples: 

0.730, 0.715, and 0.765), and 2) the variability in mixing paths dependent on Sr 

concentrations in the partial melts. Tick marks on the mixing paths represent 25%, 50%, 

and 75%.   

 

 

 



Discussion 

Xenoliths 

Xenoliths observed in the granodiorite are overwhelmingly pelitic quartzite 

(~90%, determined from xenolith mapping) and metamorphic residue interpreted as 

restite from pelitic quartzite based on major- and trace-element geochemistry. However, 

the metasedimentary screen contains only ~5 area % pelitic quartzite, the remaining ~95 

area % consisting of massive wall rock units (quartzite, marble, calc-silicate rocks; Fig. 

3) as estimated from Taylor’s (2003) map of the area. Thus, observed xenolith 

abundances do not conform to wall rock abundances in the May Lake screen. Physical 

properties of the wall rock such as foliation, and chemical properties such as mineral 

fertility for partial melting, play an important role in determining what rock types the 

magma body incorporated as xenoliths. 

Incorporation of the pelitic quartzite into the magma occurred via brittle fracture 

along foliated layers, by dehydration melting reactions in muscovite and biotite-rich 

layers of the pelitic quartzite, or by a combination of the two processes. The pelitic 

quartzite is the only foliated unit in the May Lake screen, but foliated metavolcanic rocks 

in contact with the eastern margin of the Tuolumne Intrusive Suite experienced similar 

separation and incorporation along metamorphic foliation (Fig. 5d). 

Wall rock xenoliths are concentrated in a planar horizon (Fig. 3) oriented 

subparallel to the contact between the screen and the pluton. Surrounding most xenoliths 

in the horizon is a fine-grained, leucocratic, hybridized granodiorite that appears to be a 
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mixture of granodiorite and felsic material from the xenoliths (Fig. 5b). The hybridized 

granodiorite is restricted to within a few meters of visible pelitic material. The horizon 

suggests syn-emplacement disaggregation, dispersal, and partial melting of wall rock 

blocks by pulses of magma that later hybridized. 

Although the pelitic quartzites are chemically diverse, the sample taken from a 

xenolith in the horizon (ML051.09) shows some evidence of being restitic material. Silica 

content in the xenolith is significantly lower (59 wt. %) than the measured values from 

the pelitic quartzite in the screen (67 and 81 wt. %). The Rb/Sr ratio is anomalously low 

(0.09 vs. 0.56 and 4.1 in the screen), consistent with removal of incompatible elements 

during partial melting. These observations are consistent with findings by Verplanck et 

al. (1999) for restitic xenoliths of Precambrian granite wall rocks in the Organ Needle 

Pluton, New Mexico, and by Preston et al. (1999) and their modeled chemical 

composition for pelite restite after extraction of a rhyolitic partial melt. 

 

Determining contaminants 

The variability found in the hybridized granodiorite geochemical data, and 

specifically the bimodal K2O trends (Figs. 7 and 12), suggest incorporation of a minimum 

of two different contaminants. One contamination trend produced hybrid samples that 

have a positive correlation between K2O and SiO2. Bulk assimilation of the observed wall 

rocks in the screen (marble, calc-silicate rocks, quartzite, and pelitic quartzite) cannot 

produce the major-element variability seen in these high-K hybrids. All geochemical data 

for these rocks suggest contamination by a rhyolitic partial melt derived from the wall 

rocks. The second contamination trend has a negative correlation between K2O and SiO2. 
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Major-element data for this trend fit either bulk assimilation of pure quartzite, or selective 

assimilation of a low-K2O partial melt derived from the wall rocks. 

The low-K hybridized granodiorites have significant trace-element variability, 

including large variations in Th and LREE. Two samples (ML051.02 and ML061.36) 

have concentrations of Th and REE that are significantly higher than any granodiorite or 

quartzite sample. For these samples, hybridization was not a result of bulk assimilation of 

pure quartzite. The remaining low-K hybrids do not show this dramatic spike in Th or 

LREE and thus bulk assimilation of pure quartzite is plausible according to chemical 

analyses. However, if the low-K trend is produced from one distinct contamination 

process, then the low-K hybrids with the largest chemical variability highlight the 

assimilation process and the low-K hybrids with mild chemical variability exemplify the 

same process cryptically. Overall, evidence for bulk assimilation of quartz is plausible in 

a few mildly hybridized samples. 

Because selective assimilation of partial melts derived from wall rocks is the 

likely contaminant for both K2O trends of hybridization (high-K and low-K), it is 

important to determine the parental wall rock for the melts. Partial melting generally 

results in a liquid with different chemistry than the original solid. Because the pure 

quartzite and marble units are essentially monomineralic rocks, they are extremely 

limited in their ability to melt incongruently, and would only produce minimal volumes 

of partial melt. This restricts potential fertile source rocks from the screen that could 

produce partial melts to the pelitic quartzite and the calc-silicate rocks. 

Experimental partial melting studies (e.g., Holtz and Johannes 1991; Patiño-

Douce  and Johnston 1991; Montel and Vielzeuf 1997; Patiño-Douce  and Harris 1998) 
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of melt generation in pelitic rocks combined with geochemical studies of migmatized 

aureoles surrounding plutons (e.g., Bea et al. 1994; Whitney and Irving 1994; Carrington 

and Watt 1995; Symmes and Ferry 1995; Zeng et al. 2005a) provide detailed information 

on melting reactions that are likely to occur during contact metamorphism of pelitic 

material, and the range of compositions that will be produced from these partial melting 

reactions (Figs. 4 and 7). Experimental studies and leucosome analysis define a high-K2O 

initial partial melt that is indistinguishable from peraluminous leucogranite compositions 

(Montel and Vielzeuf 1997). In addition to the common high-K2O partial melt, melting 

experiments frequently produce low-K2O glass compositions and migmatite studies in 

contact aureoles have identified low-K2O leucosomes. 

Variability in potassium relates to the activity of H2O. As the activity of H2O 

increases, the melting temperature decreases and plagioclase and quartz are consumed in 

greater proportion than muscovite because mica stability extends to lower temperatures 

(Patiño-Douce  and Harris 1998; Zeng et al. 2005a). Patiño-Douce  and Harris (1998) 

conducted fluid-present and fluid-absent melting experiments on pelitic material at 0.6, 

0.8, and 1.0 GPa with temperatures between 700 to 800 °C. Their results define two 

different melting reactions referred to below as MR-1 and MR-2. Stoichiometry in mass 

units was determined by the change in phase abundances at conditions that just exceed 

the muscovite-out boundary and the initial pelitic material. 

 

22Ms + 7Pl +8Qtz → 25Melt +5Kfs +5Sil +2Bt    (MR-1) 

9Ms + 15Pl + 7Qtz +xH2O → 31Melt    (MR-2) 

(Ms- muscovite, Pl- plagioclase, Qtz- quartz, Kfs- alkali feldspar, Sil- sillimanite, Bt- biotite) 
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The fluid absent melting reaction (MR-1) produces a melt that has greater 

concentrations of K2O than the fluid-fluxed melting reaction (MR-2). Leucosomes of 

both varieties (high-K and low-K) occur within the same migmatite complexes (Zeng et 

al. 2005a), suggesting that the activity of H2O can vary within short distances in contact 

aureoles. This could be related to variability in H2O concentration, or to change in the 

CO2 proportion in the fluid. As the CO2 component of a H2O-CO2 fluid increases, the 

effectiveness of that fluid to suppress melting temperature is decreased (Ernst 1976). Free 

CO2 would be available due to degassing of CaCO3 found in the marble and calc-silicate 

rocks of the metamorphic screen. 

Kga intruded at ~0.2 GPa and 720°C (Gray 2003), which is similar in temperature 

but significantly different in pressure conditions than the experimental results. However, 

these melting reactions are less sensitive to pressure changes than they are to temperature 

changes, and minerals and melts in the experimental results show no direct chemical 

correlation with pressure variations. In addition, leucosomes formed at pressures of 0.3 – 

0.5 GPa and temperatures ~700°C in the southern Sierra Nevada (Zeng et al. 2005a) are 

consistent with the chemical reactions above. Thus, melting reactions MR-1 and MR-2 

are probable simplifications of the melting dynamics of the pelitic material in the May 

Lake screen during emplacement of Kga. 

The high concentrations of Th and LREE in some of the low-K hybrids could be 

related to the high dissolution rate of monazite in MR-2 (Zeng et al. 2005b). Analysis of 

heavy mineral separates (Table 3) suggests that monazite is the mineral with the largest 

concentrations of Th and LREE in the pelitic quartzite. However, the granodiorite 

mineral separates showed uranothorite and allanite with the largest concentrations of Th 
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and LREE, with the hybrid sample from within 10 cm of the pelitic quartzite containing 

more uranothorite and allanite than the uncontaminated granodiorite sample. It is 

probable that the preferential incorporation of monazite into the low-K partial melt 

increased the overall concentrations of LREE and Th in the adjacent hybridized magma, 

resulting in greater abundances of uranothorite and allanite. 

Chemical data suggest that both partial melts originated from the pelitic quartzite 

unit in the May Lake screen. However, we have not ruled out the contribution of a calc-

silicate rock partial melt. Detailed chemical studies of mafic magmas in contact with 

calcareous wall rocks show that basaltic magmas can initiate partial melting of the wall 

rocks and selectively assimilate a calcium-rich liquid (Joesten 1977; Wenzel et al. 2002), 

but, similar to our findings, the magma contamination is limited in extent (< 3 m; Joesten 

1977), and restitic xenoliths are common (Preston et al. 1999). No calc-silicate rock 

xenoliths had rinds indicative of partial melting like the pelitic quartzite xenoliths. And 

although many of the hybridized samples are enriched in K2O and/or Na2O, none of the 

hybridized samples are enriched in CaO relative to the granodiorite. 

Bulk or selective assimilation of marble and calc-silicate rocks was not observed 

in the plutons near May Lake and thus all incorporated calcareous material is visible as 

xenoliths. However, because marble and calc-silicate rocks make up a small percentage 

of the observed xenoliths near May Lake (<5%) and no large blocks of marble or calc-

silicate rocks are observed, it is likely that little calcareous wall rock material entered the 

magma in any form. Because these calcareous rock types are common in the upper crust, 

their lack of incorporation into magma bodies inhibits the process of large-scale 

assimilation of metasedimentary sequences that contain marble or calc-silicate rock units.  
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Reconciling chemical mixing percentages 

Calculated mixing percentages, from selected major-elements, of the hybridized 

samples cover a broad range of mixing between wall rock partial melt and magmatic 

(Kga) melt (Fig. 13). Major-element concentrations for Kga and the two distinct partial 

melts from pelitic quartzite have restricted variability and provide quantifiable mixing 

proportions (Table 4). However, the calculated mixing percentages for the hybrid 

samples have no single correlation with 
87

Sr/
86

Sr(i) (Fig. 13) or εNd(t). The low correlation 

between calculated mixing percentages and 
87

Sr/
86

Sr(i) and εNd(t) relates to: 1) the high 

isotopic variability of the quartzite samples (
87

Sr/
86

Sr(i) = 0.7062 to 0.7741 and εNd(t) =    

-5.1 to -23.7), 2) isotopic disequilibrium (Knesel and Davidson 1996; Zeng et al. 2005a)  

during partial melting of the pelitic material and 3) modal segregation seen in the outer 

portion of the pluton, which can disguise the original contamination by segregating 

minerals, some with drastically different distribution coefficients for Sr and Nd, with Nd 

especially affected by segregation of trace phases (Gromet and Silver 1983). 

Mixing hyperbolas (Fig. 13) between Kga and different quartzite samples, with 

reasonable Sr concentrations for the partial melts (Bea et al. 1994), illustrate the high 

variability of 
87

Sr/
86

Sr(i) that should be expected during such partial melting/ mixing 

processes. However, the mixing hyperbolas shown are non-quantifiable paths of mixing 

because multiple mixing path solutions for each hybrid sample exist. Thus the major-

element mixing percentages give the more interpretable results of mixing. 

 

 

 



 34 

Limits of contamination in the Tuolumne Intrusive Suite 

The length scale of contamination along the side of the suite near May Lake is 

restricted to within 2 meters of wall rock material (Fig. 11). This thin rind of 

contamination in the outer portion of the suite can be interpreted in two ways: 1) 

contamination is localized at contacts between fertile wall rock and magma, and similar 

roof contacts in the central portions of the suite are no longer preserved owing to erosion; 

or 2) the identifiable chemical hybridization is only preserved at the outer contacts when 

and where the magma system was thermally immature, and the inner units, over time, 

homogenized their assimilated material such that remnants of that process are only 

preserved in the overall isotopic gradation from margin to core in the Tuolumne Intrusive 

Suite (Fig. 11). 

If selective assimilation of wall rock only occurred as a rind surrounding the suite, 

establishing an upper limit on volume transferred from wall rock to pluton is possible. 

We calculated the upper limit volume percent of both Kga and the entire suite that is wall 

rock material by placing a 2 meter wide rind of 100% wall rock partial melt along the 

outer contacts with wall rock. The ~60 km
2 

Kga (western, outer unit only) would thus 

have 0.2 area % wall rock contamination. Assuming a rectangular intrusion with roof and 

floor contacts contributing the same 2 m rind of contamination, and a minimum pluton 

thickness of 1 km (based on present relief of plutonic suite), selective assimilation could 

contribute 0.6 volume % of Kga.  For the entire Tuolumne Intrusive Suite, selective 

assimilation could contribute 0.44 volume % of a 1 km thick suite. Thickening the suite 

decreases the percentage with a 2 km thick suite having 0.24 volume % wall rock partial 

melt, and a 5 km thick suite having 0.12 volume % wall rock partial melt.   
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If selective assimilation of wall rock was pervasive during emplacement of the 

Tuolumne Intrusive Suite and the increasingly crustal isotopic ratios of inner units relate 

to wall rock contamination, a much larger volume % wall rock partial melt is necessary in 

the suite. Because the major-element variability of inner units is only consistent with Kga 

and the high-K partial melts, there is no chemical evidence of assimilation of a low-K 

partial melt in the interior of the suite. Because the high-K partial melt is chemically 

indistinquishable from a rhyolitic melt, it is difficult to determine the origin of such a 

felsic contribution to the suite. However, if in situ selective assimilation is the cause, one 

would expect greater Sr and Nd isotopic variability in the interior of the suite due to: 1) 

the wall rock dependence of partial melting, and 2) the high variability in Sr and Nd 

isotopic ratios in the partial melts.  

The systematic change in isotopic data across the entire suite (Gray 2003) 

suggests the Sr and Nd isotopic variability is related to an earlier stage in magma 

generation. A migration of the source magmatism under the Sierra Nevada batholith 

during the emplacement of the inner units of the suite (Gray et al. 2008), which mimics 

other concentrically zoned suites (e.g. Whitney Intrusive Suite; Coleman and Glazner 

1997) seems a probable explanation. 



Conclusions 

1) The predominant observable contaminant in the outer portion of the granodiorite of 

Glen Aulin is pelitic quartzite, which is the only foliated metasedimentary rock unit in the 

adjacent May Lake metamorphic screen. This rock type makes up approximately 90% of 

observed xenoliths. 

2) Xenoliths are exceedingly rare in the Tuolumne Intrusive Suite (<0.0001% by area; 

Glazner and Bartley 2008 in press), but are found in some abundance (locally up to 10% 

of selected 10x10 m area) in a xenolith-rich horizon subparallel to the contact. However, 

outside of this horizon, xenoliths make up <<1% of the exposed area, even adjacent to the 

contact with the metamorphic screen. 

3) Major-element, trace-element, and radiogenic isotopic data suggest localized 

contamination of the pluton within 2 m of the contact with wall rock material. 

4) No significant bulk or selective assimilation of marble or calc-silicate rocks occurred 

during emplacement of the granodiorite of Glen Aulin and such rocks make up only a 

small fraction (<10%) of observed xenoliths. 

5) The contamination path is bimodal, with some of the hybridized samples trending 

toward high SiO2 (~75 wt. %) and high K2O (~5 wt. %) and the rest trending toward high 

SiO2 (~75 wt. %) and low K2O (< 1 wt. %). 

6) Major-element and trace-element data suggest that bulk assimilation of wall rock was 

insignificant during emplacement of the Tuolumne Intrusive Suite and the localized 
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contaminants are partial melts selectively assimilated from the pelitic quartzite (one with 

high-K2O and the other with low-K2O). 

7) Geochemical trends of contamination in the hybridized samples are consistent with 

data from leucosomes in migmatites which suggests that at least two main melting 

reactions produce two chemically distinct partial melts, one high-K2O and one low-K2O. 

8) Assimilation of wall rock is not a significant space conserving mechanism for the 

emplacement of the Tuolumne Intrusive Suite because of the spatially restricted 

contamination of the plutonic rocks. 
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