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ABSTRACT 

ZAOZAO CHEN: Inhibition of Abl family kinases produces a profound change in cell 
shape and migration. 

 (Under the direction of Ken Jacobson) 
 

 

Cell migration is fundamental to establishing and maintaining the proper organization 

of multi-cellular organisms. In this dissertation we reviewed and discussed the biological 

process of single cell migration in two-dimensional and three-dimensional environments. We 

reported that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change 

in the shape and migration of rat bladder tumor cells (NBT-II) plated on collagen-coated 

substrates. Cells treated with Gleevec adopt a highly spread D-shape (similar to fish 

keratocytes) and migrate more rapidly with greater persistence. Our finding indicate integrin 

mediated adhesion changes happened with the inhibition of Abl-family kinases, while RhoA 

activity increased in this cases, which via myosin activation, led to an increase in the 

magnitude of total traction force applied to the substrate.  We also discovered a special band 

of small punctate, rapidly turning over adhesions near the leading margin of spread D-shape 

NBT-II cells. Our results taken as a whole indicate Abl family kinases play an important role 

in the regulation of cell adhesion and migration in that their inhibition produces a profound 

change in cell adhesions, morphology and migration. In this dissertation, we also elucidated 



 

 
 

iv 

the mechanism of protein inactivation mediated by fluorescent protein chromophore-assisted 

light inactivation (FP-CALI). Our finding indicates the involvement of a reactive oxygen 

species (ROS) in the CALI effect. The progress towards a Bio-Field Effect Transistor (FET)-

based detector of local cell adhesion in single cell was also included. Lastly, how the NBT-II 

cell may become a model for rapidly migrating cells and how the tools we developed may 

advance our current understanding of cell adhesion and migration is discussed.   
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CHAPTER 1 

Introduction 

 
 This first chapter contains an overview of the doctoral work described in the 

six chapters of this dissertation. The work presented in this dissertation focuses on cell 

adhesion and cell migration research. The dissertation starts with a review of single cell 

migration, and then presents a detailed study of the migration of a particular rat bladder 

carcinoma cell that is regulated by Abl family kinases. Two techniques for the study of 

cell adhesion and cell migration have been developed by our group and my contribution 

to these efforts are described. Finally, a conclusion is presented.  

 

 The biological process of single cell migration in two-dimensional and three-

dimensional environments is discussed in Chapter 2. Several representative examples of 

migrating cells are discussed: the migration of fibroblasts, the unusual movement of fish 

or amphibian keratocytes, and the amoeboid locomotion of leukocytes. Adhesions types, 

function, and their regulation are also reviewed. In addition, measurements of tractions in 

single migrating cells are reviewed. The work in Chapter 2 is reproduced/adapted with 

permission from an article in publication that was a part of the Comprehensive 

Physiology (Xavier Trepat, Zaozao Chen, and Ken Jacobson.  Cell Migration. 

Comprehensive Physiology. 2012) 

 



 
 

2 

 In Chapter 3, we report that Gleevec (Imatinib), an Abl family kinase 

inhibitor, produces a profound change in the shape and migration of rat bladder tumor 

cells (NBT-II) plated on collagen-coated substrates.  Cells treated with Gleevec adopt a 

highly spread D-shape and migrate more rapidly with greater persistence. We found this 

more spread state is integrin mediated and is coupled with increases in the size and 

number of discrete adhesions. To be noted is a band of small punctate, rapidly turning 

over adhesions near the leading margin of the cell. Overall, inhibition of Abl-family 

kinases led to an increase in global cell-substrate adhesion. Gleevec-treated cells have 

greater RhoA activity which, via myosin activation, led to an increase in the magnitude of 

total traction force applied to the substrate. Our results taken as a whole indicate Abl 

family kinases play an important role in the regulation of cell adhesion and migration in 

that their inhibition produces a profound change in cell adhesions, morphology and 

migration. The work in Chapter 3 is under revision by PLoS ONE  (Zaozao Chen et al.  

PLoS ONE, in revision. 2012) 

 

The work presented in Chapter 4 elucidates the mechanism of protein inactivation 

mediated by fluorescent protein CALI (FP-CALI). Our finding indicates the involvement 

of a reactive oxygen species (ROS) in the CALI effect. The GST enzyme activity of 

purified Glutathione-S-transferase-FP (GST-EXFP) fusions was measured vitro before 

and after laser irradiation.  We found different FP mutants fused to GST vary in their 

CALI efficiency in the order EGFP>EYFP>ECFP, while a GST construct that binds 

FlAsH results in significantly higher CALI efficiency than any of the XFPs tested.  The 

work in this chapter is reproduced/adapted with permission from a paper published in the 
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Analytical Chemistry (Mark A. McLean, Zenon Rajfur, Zaozao Chen, David Humphrey, 

Bing Yang,  Stephen G. Sligar, and Ken Jacobson. 2009.  Mechanism of chromophore 

assisted laser inactivation employing fluorescent proteins. Anal Chem. 2009 Mar 

1;81(5):1755-61. PMID: 19199572). 

  

 Progress towards a Field Effect Transistor (FET)-based detector of local cell 

adhesion in signal cells is presented in Chapter 5.  This work was conducted in 

collaboration with Dr. Veena Misra’s laboratory in the Department of Electrical & 

Computer Engineering at North Carolina State University.  The devices were fabricated 

in the clean room of Nano-fabrication Center of NCSU. Cell experiments and device 

measurements were done either at UNC or NCSU. The final FET devices had a minimum 

dimension 2 microns. With these devices, we demonstrated the potential feasibility of this 

approach to resolve the adhesions of single cells to substrates but extensive further 

development work is required. Several abstracts were generated describing this work. 

 

  The last Chapter presents the conclusions from my work, providing an outlook 

of how the NBT-II cell may become a model for rapidly migrating cells and how the 

tools we developed may advance our current understanding of cell adhesion and 

migration.   



CHAPTER 2 

The review of single cell migration1 

 
 

2.1 SUMMARY 
 

Cell migration is fundamental to establishing and maintaining the proper 

organization of multi-cellular organisms. Morphogenesis can be viewed as a 

consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets 

during gastrulation, to the movement of individual cells during development of the 

nervous system. In an adult organism, cell migration is essential for proper immune 

response, wound repair, and tissue homeostasis, while aberrant cell migration is found in 

various pathologies.  Indeed, as our knowledge of migration increases, we can look 

forward to, for example, abating the spread of highly malignant cancer cells, retarding the 

invasion of white cells in the inflammatory process, or enhancing the healing of wounds. 

This chapter is devoted to the single cell migrating in isolation such as occurs when 

leukocytes migrate during the immune response or when fibroblasts squeeze through 

connective tissue. Our research on NBT-II cell migration (in Chapter 3) is closely related 

to the topics reviewed here. 

                                                
1 Reproduced/apdapted with permission from: 
Xavier Trepat, Zaozao Chen, and Ken Jacobson.  Cell Migration. Comprehensive 
Physiology. 2012, in press. 
 
Zaozao Chen primarily contributed to writing the “Single Cell Migration” portion of this 
manuscript and also contributed to the overall organization, writing, and editing of this 
manuscript, including figure preparation. 
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2.2 INTRODUCTIONS AND CONTEXT 

 

In this section, some representative migrating cells will be introduced citing 

appropriate reviews, as there is by now a vast literature on cell migration.  As examples, 

we will focus on fibroblast migration, the unusual movement of fish or amphibian 

keratocytes, and amoeboid locomotion as exemplified by leukocytes. Generally, in cell 

migration, cells must first adhere at some point. In this review, we will focus on various 

types of cell adhesions, highlighting some of the structural and signaling proteins 

involved.  It is through adhesions that the tractions required for movement are applied to 

the substrate and we will outline the measurement of tractions in single, migrating cells. 

While, we focus on migration principles for cells moving on two-dimensional substrates, 

there is now a great deal of interest in single cell movement in three dimensional tissue 

environments (1, 2).   However, detailed mechanisms are more difficult to dissect in these 

environments as the imaging tools available provide lower resolution at this juncture.  

 

 

2.3 TYPES OF SINGLE CELL MIGRATION AND RELATED PHENOMENA 

 
2.3.1. FIBROBLASTS 

In vivo, fibroblasts are typically found in connective tissue where they synthesize 

collagens, glycosaminoglycans, and other important glycoproteins of the extracellular 

matrix (ECM) including fibronectin, for example.  In vitro, these cells have been objects 

of extensive study because of the ease of culturing them (Figure 2.1A).  Fibroblasts 

cultured on glass have a spread or spindle-shaped morphology, often characterized by 
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several extending processes (3, 4). In cell culture, fibroblasts move slowly with an 

average speed less than 1µm/min and often change direction.  It is from fibroblast cell 

migration that the textbook paradigm for the classic steps of locomotion is derived.  The 

locomotory cycle (e.g. Alberts et al, pp 965-1051. Molecular Biology of the Cell 5th 

Edition) consists of cells protruding and subsequently adhering at the leading margin, 

developing contractile forces between the front and trailing margins, and finally releasing 

trailing adhesions due to the applied tension and/or enzymatic action.  Retraction 

generates excess dorsal surface to sustain the protrusion in a process termed retraction 

induced spreading (5, 6).  Over the past several decades considerable work has been 

devoted to understanding the mechanistic steps of cell migration as exemplified by 

fibroblasts (7, 8). 

 

        Fibroblasts play a critical role in wound healing. In vivo (9), and in vitro (10), 

fibroblasts migrate into wounds, in the process cell acquiring cues that enable them to 

secrete ECM proteins and proliferate. However, they migrate in vitro with different 

speeds and morphology when compared to single fibroblasts in cell culture. Fibroblasts 

migrating into a wound tend to have a large lamellipod extending into the wound with 

few stress fibers in the cell; by contrast, stationary fibroblasts have smaller lamellipodia, 

and are characterized by multiple stress fibers. A typical wound healing assay is shown in 

figure 2.1B. It is known that many of the growth factors presented at a wound site act 

either as mitogens or as chemotactic factors for fibroblasts (11); these include, for 

example, epidermal growth factor (EGF) (12) and platelet derived growth factor (PDGF) 
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(13). Stimulation by growth factors can increase single fibroblast migration speed up to 

3-fold, at the same time increasing changes in cell migration direction (12). 

 

Figure 2.1.  Different types of cell migration. (A) A stationary, spread C3H10T1/2 fibroblast 
triple stained with DAPI (Blue) for DNA, MitoTracker (Red) for mitochondria, and Alexa Fluor 
phalloidin (Green) for F-actin.  (B) Fibroblasts migrating into wound. Top: initially, a wound was 
made in a confluent monolayer of MDA-MB-231cells by scratching using a pipette tip. Bottom: 
after 15 hours, migrating cells began to fill in the wound (14).  (C) Migrating zebrafish 
keratocytes with large fan-like lamellipodia.  (D) An HL-60 cell (Human promyelocytic leukemia 
cell) migrating on a glass substrate after differentiation with DMSO to exhibit leukocyte-like 
behavior on glass substrate. (Image in 1A and 1D are courtesy of Bing Yang and Zenon Rajfur, 
respectively.)  Scale bars in A,C,D are 10µm, in B is 100um. 
 

2.3.2 KERATOCYTES 

At the other end of the spectrum of cell locomotion, fish or amphibian keratocytes 

migrate in rapid, highly persistent mode in which protrusion, contraction and retraction 

D)	  
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are smoothly coordinated so that the cell maintains a nearly constant shape. Keratocytes 

are terminally differentiated epithelial cells in fish and amphibians that make good 

models for several aspects of migrating cells.  In primary cultures of scales, keratocytes 

from goldfish (15, 16) were found to move away from the scale with high velocities 

(typically 10-15 µm/min but occasionally up to 60 µm/min). The highly directional 

movement of isolated keratocytes may originate from their ability to move as sheets to 

close wounds at the surface of the scale. Indeed they are robust migration machines, 

migrating for days under proper culture conditions.  Even keratocytes lacking the nucleus 

and microtubules  can migrate following a stimulus (17).  

 

2.3.2.1 Lamellipodium structure:  

Keratocytes have a large fan-like lamellipodium (figure 2.1C). The cell body at 

the base of lamellipodium is pulled (laterally) into to an elongated shape by actin 

bundles; in keratocytes microtubules and intermediate filaments do not penetrate the thin, 

actin-rich lamellipodium but are confined to the perinuclear region.  Light, fluorescence 

and electron microscope images of f-actin in the lamellipodium can be reconciled and all 

show an oriented f-actin network (18); this presumably reflects the underlying branched 

actin network as described by the Dendritic Nucleation Model (7).  The issue of the 

predominant f-actin structure is not completely settled, however, and an alternate view is 

offered by Urban et al (19). 
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2.3.2.2 Cytoskeletal dynamics and migration:  

Considerable work has been devoted to the cytoskeletal mechanisms involved in 

keratocyte migration (20-22). Actin polymerization, treadmilling, retrograde actin 

network flow and myosin II-based contractility all play major roles in migrating 

keratocytes (21, 22).  Indeed, the force required to stall a protruding keratocyte is 

consistent with an actin polymerization ratchet model (23); however, the shape of the 

force-velocity curve is not--indicating additional factors come into play when the elastic 

ratchet model (24, 25) is placed in a cellular context.  Careful examination of actin flows 

using fluorescence speckle microscopy (FSM) reveals retrograde actin flow, smaller at 

the leading edge and larger at the wings (sides) of the keratocyte (26).  The difference 

between protrusion and retrograde actin flow rates represents the net actin polymerization 

rate which is highest at center of the leading margin and falls off towards the wings.  

These flows are related to tractions exerted on the substratum (see below). 

 

        Interestingly, the myosin II network moves relative to the actin network (27).   Since 

the myosin II inhibitor, blebistatin, reduces keratocyte locomotion, cell body 

translocation involves both actomyosin contraction as well as actin assembly. In fact, 

Theriot and coworkers (28) demonstrated a novel role for myosin II in addition to its 

well-known role powering contraction: by accelerating network disassembly, myosin II 

activity leads to network shrinkage via tension induced actin filament breakage.  This 

action will not only directly lead to retraction but it also  recycles monomeric actin for 

new polymerization at the front. 
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        One effect of myosin II based contraction is to drive a forward flow of cytoplasm in 

migrating keratocytes (29).  By measuring the front to rear gradient (higher in the front) 

in the concentration of quantum dots that had been introduced into the cytoplasm and 

fitting this data to a simple model for flow driven accumulation at the front, anterograde 

flow velocities in the cell frame of reference that were about 1/3 that of the keratocyte 

velocity (~0.1 µm/s vs ~0.3 µm/s) were obtained.  Such flows could augment migration 

by feeding more actin monomer to the growing network at the leading edge and perhaps 

even providing pressure on the cell surface at the leading margin making network growth 

via actin polymerization more facile. 

 

2.3.2.2 Shape and migration:  

Recently, the shape and movement of keratocytes has been described in detail 

following an initial description by Lee et al (30) termed the Graded Radial Extension 

Model. Based on a shape and speed analysis of hundreds of cells, Theriot and coworkers 

proposed a model for observed keratocyte morphology and crawling behavior (29).  Their 

model is based on the notion that actin polymerization and treadmilling drives migration 

but is it is resisted by the constant tension of an inextensible membrane surrounding cells 

of constant area.  Spatial differences in the density of growing actin filament network, 

namely that the density of filaments is graded with highest values at the center of the 

leading edge, give rise to characteristic shape of the dominant modes of keratocyte 

locomotion.  Thus, cells with higher actin density at the center than at the sides will have 

a larger aspect ratio defined as the ratio of the long axis (width) to short axis (length) of 

the keratocyte.  In this model, global integration of spatially varying actin polymerization 
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powered protrusion is provided by membrane tension to specify cell shape. In addition, 

the model predicts that cell speed will be positively related to the aspect ratio of the cells; 

thus, canoe-shaped keratocytes, with a larger aspect ratio, move faster than D-shaped 

cells, with a smaller aspect ratio. 

 

        Mogilner and colleagues (31) have constructed in silico models of keratocyte 

locomotion in which several qualitative notions are incorporated mathematically. At the 

front of the cell, the dendritic nucleation model (7) is responsible for protrusion while at 

the rear, the dynamic network contraction model (21) is responsible for  retraction.  

Recently, a model of a visco-elastic lamellipod was generated using a realistic geometry 

that correctly predicts measured centripetal flow of the actin network and the positive 

gradient of myosin II going from front to rear (32). 

 

2.3.3 LEUKOCYTES 

Leukocytes, or white blood cells (WBCs), are cells of the immune system 

defending the body against infecting organisms and foreign materials. They are highly 

motile cells found throughout the body, including tissues, blood and the lymphatic 

system. The recruitment of leukocytes to the site of bacterial and viral infection involves 

initial attachment to vascular endothelium, rolling, weak and firm adhesion, 

transendothelial migration and chemotaxis (33). Leukocyte chemotaxis in vivo and vitro 

occurs at speeds around 4 µm/min (34).  Leukocytes migrate on different substrates 

through adhesions that involve the integrins β2, and α4β1 (35). However, recently it has 

been reported that leukocytes can adhere and migrate in an integrin independent manner 
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(34), indicating that leukocytes employ additional mechanisms for adhesion and 

migration.  A view of differentiated migrating HL-60 leukemia-like cell is shown in 

figure 2.1D.  

 

2.3.4. SINGLE CELL MIGRATION IN THREE DIMENSIONS 

Although cell migration has been studied extensively in essentially two-

dimensional (2D) cell culture conditions where cells grow on a substrate, increasing 

attention has been  paid to the movement of cells in 3D environments.   The 3D matrix 

acts as a scaffold that produces physical support for cells which can affect cell 

morphology and induce cell growth or migration (36, 37). In addition, the matrix can 

induce variation in signaling cascades in cells via adhesions and tensile forces (see for 

example, (38)). 

 

2.3.4.1. Cell morphology and migration in 3D environments:  

Most migration modes previously observed in 2D environments also occur in 3D 

tissue environments. However, because the distribution of ligands in 2D is generally 

much more uniform than in 3D matrix models where, for example, clustered ligands may 

exist on fibrils, cell morphology is quite different in the two environments (36). In 2D 

cell culture, fibroblasts have large lamellipodia and filopodia.  By contrast, fibroblasts in 

3D collagen gels exhibit both smaller and fewer lamellipodia and filopodia (39). Due to 

extensive adhesion to a flat substratum, cells in 2D show very broad, flat and thin 

lamellipodia whereas cells in 3D show a less exaggerated appearance.   Three motile 

morphologies can be delineated in a 3D matrix (37): amoeboid blebby (macrophages, 
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some stem cells on soft/loose connective tissue); amoeboid pseudopodal (leukocytes, 

dictyostelium on loose connective tissue); and, mesenchymal (fibroblasts, and some 

cancer cells on loose or dense connective tissue).  

 

2.3.4.2. Regulation of cell migration in 3D matrices:  

Three important factors regulate 3D cell migration: cell-matrix adhesions, the Rho 

family of small GTPases, and proteases.  In 2D culture, integrins are primarily 

responsible for cell adhesions to ECM in the form of focal adhesions, focal contacts, 

podosomes, etc. However, in 3D cell culture, a reduction in the number of focal 

adhesions and their component integrins occurs. Thus, for example, αVβ3 integrin, which 

is highly expressed in 2D cell culture, was not detected in the 3D-matrix adhesions of 

fibroblasts, and the level of FAK phosphorylation was reduced (40). Changes in the 

nature and strength of adhesions in 3D and 2D environments will result in differences in 

cell tension, morphology, and migration type (41).   

 

The Rho family of small GTPases play a prominent role in regulating cell 

migration in 3D. Leukocytes employ amoeboid migration that is based on the Rho/ROCK 

pathway maintaining contractility at the posterior end and Rac1 mediating protrusion at 

the leading margin (42).  However, other reports indicate that Rac1 activity is  suppressed 

in fibroblasts and neurons in 3D culture, thus decreasing leading edge ruffling and axonal 

branching, respectively (43, 44). 

The role of proteolysis in 3D migration in tissue has been actively investigated.  

Multiple proteases have collagenolytic activity but the emphasis has been on matrix-
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metallo proteases  (MMP) and these have been reported to affect both normal and cancer 

cell migration in vitro (see also collective cell migration below). However, clinical trials 

of MMP inhibitors did not impair metastasis suggesting that metastatic cells may switch 

from mesenchymal to ameboid locomotion (45-47). 

 

2.4 ADHESIONS IN MIGRATING CELLS 

 

Cells adhere to ECM or other cells by both non-specific electrostatic interactions 

and specific binding of cell adhesion molecules such as selectins, integrins, and cadherins 

to extracellular matrix ligands and to cadherins on other cells. We will focus on cell-

ECM adhesions, and divide such adhesions into focal adhesions, podosomes, focal 

complexes, and close contacts.  

 

2.4.1. Focal adhesions: composition and structure 

Focal adhesions were first identified in chicken heart fibroblasts by electron 

microscopy, as dense plaques between the cell’s ventral surface and the substrate (4). 

Focal adhesions are usually found at the ends of stress fibers; they have a dimension on 

the order of a micron, and a lifetime ranging between minutes and hours. They have been 

visualized by epifluorescence microscopy (Figure 2.2A), by total internal fluorescence 

microscopy (TIRFM), or by interference reflection contrast microscopy (IRM) (Figure 

2.2B).  In the past, terms such as adhesion plaques (4), or focal contacts (48) were 

employed, but now the field appears to have settled on the term focal adhesion (FA) (49).  

Focal adhesion components can be divided into four general categories: (1) ECM 

components, of which fibronectin, laminin, vitronectin, and the collagens are important 
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examples; (2) transmembrane proteins, of which integrins are the most prominent class; 

(3) structural proteins that both stabilize the FA and provide scaffolding functions; and 

(4) signaling proteins (50, 51). The number of proteins found in focal adhesions is now 

exceeds160, and the possible interactions between these components is described in what 

is colloquially called the “Geiger diagram” (49) which evolves as new components are 

identified (51, 52).   

 

Integrins are the transmembrane proteins that recognize ECM proteins containing 

short amino acid sequences, such as the Arginine-Glycine-Aspartic acid (RGD), Asp-

Gly-Glu-Ala (DGEA) and Glycine-Phenylalanine-Hydroxyproline-Glycine-Glutamate-

Arginine (GFOGER) motifs (53, 54). Functional integrins are heterodimers containing 

two distinct (α and β) subunits. Currently, there are more than 24 types of α and β 

integrin subunits characterized in mammals (55, 56).  Each type of integrin heterodimer 

binds distinct ligands, e.g. α5β1 integrin binds fibronectin, and α3β1 bind to laminin (57). 

Focal adhesions in different fibroblasts and epithelial cells that are adherent to distinct 

ECM materials contain integrins with various combinations of α and β subunits (58). 

One function of  cytoskeletal proteins, including talin (59), α-actinin (60), filamin (61) 

and tensin (62), is  to link integrins to the actin cytoskeleton. Other adaptor proteins 

directly or indirectly interact with integrin cytoplasmic tails and form protein complexes; 

examples include FAK (63, 64)], vinculin (65), paxillin (66, 67), dynamin (68), and 

Ena/VASP (69).  As an example, an epi-fluorescence image of antibody labeled paxillin 

is given in Figure 2.2A and shows the extensive array of FAs in murine fibroblasts 

adherent to a serum coated glass substrate. 
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Signaling proteins are recruited to FA and regulate their assembly and 

disassembly; examples  include the Src family of non-receptor tyrosine kinases (NRPTK) 

(70), the Abl family NRPTK (71) and the Rho family of small GTPases (72), and p21-

activated kinase (73) (74). In addition, phosphorylation of paxillin by c-Jun amino-

terminal kinase (JNK) or cdk 5 has been found essential for maintaining the labile 

adhesions required for rapid migration in both fibroblasts and neurons (14, 75).  Some 

proteins and signaling pathways involved in FA structure and regulation and their 

relationship to cell adhesion and migration are diagrammed schematically in Figure 2.2C. 

FA appear to be an amorphous collection of interacting proteins making 3D structure 

determinations difficult be either light or electron microscopy.  However, recently 

progress has been made employing photoactivation localization microscopy (PALM) in 

2D (76, 77) and by iPALM, in 3D (78).  Such studies are revealing the 3D organization 

of individual FA proteins (79). 
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Figure 2.2.  Adhesion structure and function in cells  
(A) An immunofluorescence image of focal adhesions in an NIH 3T3 cell stained with anti-
paxillin; (B) an interference reflection microscopy (IRM) image of focal focal adhesions in a 
similar NIH 3T3 fibroblast on a FN coated substrate; the very dark regions (arrows) are focal 
adhesions; (C) Schematic figure for the relationship between cell adhesion, cell migration, and 
some of the corresponding adaptor and signal proteins. Cell matrix adhesion complexes are 
depicted a key component in single cell adhesion and migration.  After activation, integrins bind 
ECM and provide a link to the actin cytoskeleton.  Cytoplasmic adaptor proteins bind integrin 
cytoplasmic domains, stabilize FA, and provide scaffolding functions. Integrin activation also 
initiates downstream signaling. Such signaling may regulate cell adhesion turnover, internal force 
development, and cytoskeletal rearrangements including formation of stress fibers, lamellipodia, 
filopodia and podosomes. Cell migration also involves both ECM degradation and proteolysis 
and adhesion complex internalization (see section on focal adhesion dynamics). Scale bars in A & 
B are 10µm. 
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2.4.2. Focal adhesion dynamics 

FAs are dynamic structures that undergo cycles of assembly and disassembly; 

indeed, regulated FA turnover is integral to cell migration. Thus, here we will review 

some the key aspects of FA dynamics.  

 

Focal adhesion assembly: The role of integrin activation in FA assembly and in 

initiating downstream signaling has been extensively investigated.  With stimulation, for 

example, by growth factors, integrin β subunit cytoplasmic domains bind the talin 

phosphotyrosine-binding (PTB) domain causing integrin activation (80, 81). Activated 

integrins then bind ECM components and the cytoplasmic domain recruits signaling 

proteins; this process initiates downstream signaling, including FAK phosphorylation, 

MAP kinase activation, paxillin binding, and the formation of a complex containing 

vinculin, FAK, α-actinin, WASP, tensin, Src and zyxin (51, 82, 83).  Knockouts of key 

recruited signaling components have demonstrable effects on cell adhesion and 

migration.  Thus, for example, FAK null fibroblasts exhibit increased numbers of 

adhesions and consequent reduced cell motility (84). In addition, kinase dead Src mutants 

promoted both the number and size of cell adhesions, reducing the speed of cell 

migration.  Webb et al found that Src, paxillin and FAK formed complexes in vitro and 

vivo; in this study, FAK and Src were speculated to regulate cell adhesion disassembly 

via paxillin and the downstream ERK and MLCK pathways (85). Abl knockdown cells 

also exhibited an increase in cell adhesion size and stability, and rescue of Abl kinase 

activity restored the cell adhesion disassembly rate (86). Rho family GTPases have also 
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been reported as key regulators of focal adhesion dynamics, e.g. active RhoA changed 

small peripheral adhesions (focal complexes) into elongated focal adhesions (87). 

External stretch induced nascent adhesions to mature into focal adhesions via a RhoA-

ROCK pathway (87). 

 

Focal adhesion disassembly:  Compared with extensive studies on FA formation, 

the disassembly process is not as clear.  Several related pathways may contribute to focal 

adhesion disassembly:  i) adhesion release produced by ECM degradation; ii) adhesion 

turnover mediated by the cytoskeleton and internalization; and iii) disassembly mediated 

by kinases and proteases (88, 89).  It has been reported that ECM degradation is, in part, 

responsible for cell adhesion disassembly, cell migration, and invasion (90); thus, for 

example, ECM degradation by matrix metalloproteinases (MMPs) could induce the 

release of cell adhesions resulting in an increase cell motility and invasion (91, 92). 

Cytoskeletal components are an important regulatory factor in adhesion disassembly.  

Microtubules (MTs) have been observed to target focal adhesions promoting their 

disassembly (93, 94). Moreover, MTs have been speculated to induce cell adhesion 

disassembly via dynamin and clathrin dependent integrin endocytosis (95, 96).  Caveolin-

1 was also reported to regulate FA turnover and cell migration directionality possibly via 

internalization (97, 98). In addition, cellular contractile machinery may also induce focal 

adhesion disassembly; for example, RhoA, and myosin II were found to positively 

regulate adhesion disassembly and cause cell rear detachment (99, 100). 
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Proteases and kinases have also been reported to regulate cell adhesion. Calpain, a 

calcium-dependent protease cleaves talin, FAK, and paxillin in FA(91).  Cleavage of 

these proteins leads to disassembly of the FA and the detachment of the tail of the cell 

(101, 102).   Moreover, recent studies have demonstrated that, Smurf1, an E3 ubiquitin 

ligase, degrades the talin head and controls cell adhesion stability (103). Other ubiquitin 

ligases, including Cbl, Smurf2, HDM2, BCA2, also play an important role in regulating 

cell adhesion and migration through ubiquitination of their specific substrates (89).  

 

Methods have been developed to study the dynamics of focal adhesions.  Studies 

using FRAP and GFP-fusion proteins or labeled microinjected proteins have shown that 

protein components of focal adhesions including α-actinin, vinculin and FAK slowly 

exchange between the cytosol and the adhesion with half-times for recovery on the order 

of minutes.  More recently, Horwitz and co-workers measured adhesion disassembly 

rates of fluorescent protein (FP) conjugated -paxillin, -FAK and -zyxin; these studies 

indicated that the FAK-Src complex could interrupt focal adhesion maturation by 

promoting disassembly through the downstream ERK and MLCK pathways (85).  Using 

the techniques of image correlation microscopy, Gratton, Wiseman, Horwitz and their co-

workers measured FAK, Vinculin (Vn) and Paxillin (Pax) diffusion and binding to 

adhesions in mouse embryonic fibroblasts. No FAK, Vn and Pax complexes were 

preassembled in cytoplasm, but when the adhesions disassembled, these proteins 

disassociated in complexes  (104, 105).  Waterman  and colleagues studied FA dynamics 

using speckle microscopy and advanced image analysis; they found that the retrograde F-

actin network velocity is a fundamental regulator of traction force at FAs via the Rho and 
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myosin II pathways (106).  These investigators also demonstrated that the interplay 

between actomyosin and FA dynamics results in a balance between adhesion and 

contraction in order to induce maximal migration velocity.  Such studies indicated a 

relationship between force and FA assembly and disassembly and predicted how under 

certain circumstances the FA slide (83, 107). 

 

2.4.3. Podosomes 

Podosomes are specialized integrin-mediated adhesions often found in highly 

migratory monocytic cells that mediate the inflammatory response (92, 108).  They also 

have the capacity for matrix degradation.  Linking the ECM to the actin cytoskeleton, 

podosomes have a fairly uniform dimension of around 0.5um, a half-life of 2 to 20 min 

and are abundant (20-100 per cell) (92, 109).  An image of podosomes is shown in figure 

2.3B. 

 

Podosomes have a dense actin core surrounded by a rosette-like structure 

containing integrins, such as αvβ3, FA proteins including talin and vinculin that play a 

major structural role, other actin-associated proteins (gelsolin, alpha-actinin and actin-

related protein 2/3 (Arp2/3)), tyrosine kinases (Src, Pyk2) and phosphoinositide-3 kinase 

(PI3K)) and also the Rho-family GTPases (108). The podosome core also contains 

proteins involved in regulating actin polymerization including WASP (Wiskott-Aldrich 

Syndrome Protein) (92, 108). A larger, more stable but related structure, the invadopodia, 

plays an important role in invasive cancer cells and has been thoroughly reviewed (110-

112). 
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2.4.4. Focal complexes 

The term, “focal complex”, describes small adhesions that form at the leading 

margin of migrating cells, typically fibroblasts. Focal complexes are significantly smaller 

in area (<0.25µm²), and are shorter lived (often <5min but some have even shorter 

lifetimes) than focal adhesions (113). Focal complexes contain integrins, talin and 

paxillin, but fewer actin filaments are associated with them (49, 101).  Migrating cells 

often have a large number of focal complexes at the protruding edge. Most of these focal 

complexes never mature, and are likely disassembled when the lamellipodium retracts. 

Some investigators have suggested that focal complexes might be precursors of FA 

because applied contractile forces can convert focal complexes into larger oval shape 

adhesions (114-117).  

 

2.4.5. Close contacts in migrating cells 

Close contacts appear as broad grey areas in interference reflection microscopy 

(IRM) (Figure 2.3A). The original definition of close contacts was based on IRM images 

and indicated that the separation between the ventral surface of the cell and the 

substratum was about 20 to 50 nm (48). By contrast, the ventral surface and substratum is 

separated by 10–15 nm or less in FA.  Compared to FA, little is known about these 

adhesions. They predominate in fast moving cells such as keratocytes (118, 119) although 

regions of close contact also exist in fibroblasts and epithelial cells in culture. (120).   

 

The composition of close contacts was investigated by immunofluorescence 

staining of fish keratocytes using antibodies against known FA components. The close 



 
 

23 

contact areas at the rim of leading edge were found enriched in β1-integrin and talin, with 

little paxillin and FAK (118). In general, close contacts appear to be mediated by 

integrins.  Forward movement of the Xenopus keratocyte lamella could be halted by 

adding RGD peptide or an anti-integrin mAb while the rear of cell continued to retract 

(121).   

 

Anderson and Cross (119) performed a detailed study of more mature vinculin-

containing adhesions using microinjected fluorescent vinculin and combined confocal 

and IRM imaging. They found that these contacts formed behind the leading edge and 

matured beneath the lamellipodium and remained stationary while the cell passed over 

them. By contrast, vinculin-containing contacts in the wings of the cell grew larger before 

sliding inward. These large contacts are presumably transmitting the large lateral traction 

in keratocytes that are used for retraction of the wings. The actual mechanism for 

disassembly of released contacts remains an open question. 

 

There are really no structural models for close contacts.  A possible model would 

consist of finger-like projections of a small diameter that contact the surface using the 

usual repertoire of focal adhesions molecules (Figure 2.3C). In this respect, these 

projections would be a cross between podosomes and filopodia.  The net result would be 

to draw the surface closer to the substratum such that the region appears grey in IRM yet 

the adhesion itself could be readily remodeled to accommodate rapid cell migration. 
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Figure 2.3. Different type of cell adhesions 
(A) IRM image of close adhesion in migrating fish keratocytes, the adhesion pattern consists of 
an outer rim (r) of very close contact skirting a crescent-shaped band of alternating very close (v) 
and distant contacts (d). B) Epi-fluorescent image of podosomes in a human dendritic cell with F-
actin labeling. C) A hypothetical view of close contacts in which small diameter projections 
attach to the substrate and serve to draw the ventral surface closer to the substrate such that it 
appears grey in IRM.  Integrin, talin, F-actin have been reported to be in close adhesions (in this 
schematic, the actin network is depicted like that in a microvillus with parallel actin bundles but it 
could also be in the form of a dendritic actin network (not shown)); however, paxillin and FAK 
are not found in initial close contacts. Scale bars are 10µm. Image in panel A is from Lee and 
Jacobson 1997; image in panel B is courtesy of Aaron Neumann. 
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2.4.6. Outlook 

In addition to the extensive cataloging of adhesion components, there are recent 

developments in super-resolution microscopy (79) and several live cell fluorescence 

microscopy methods that promise to enhance our understanding of structure-function 

relationships in the adhesive structures that enable the cell to exert traction on its 

environment (106, 122, 123).  Also, recent developments in Rho family biosensors and 

detailed analysis of such data, promise to provide detailed mapping of the localization 

and activation pattern of these GTPases in relation to the regulation of dynamic adhesive 

behavior, tractions and cell migration (124-126).  Overall, it appears that the next decade 

will produce important advances in our understanding of cell-substratum adhesions. 

 

2.5 MEASUREMENTS OF TRACTIONS IN SINGLE MIGRATING CELLS 

 

2.5.1. Elastic substrate traction measurements 

The effects of tractions exerted by migrating chick heart fibroblasts plated on a 

deformable silicone substrate (a thin film of silicone cross-linked by means of glow-

discharge) were visualized as visible wrinkles in the film under the cell body and 

perpendicular to the direction of cell movement (73).  Such compression wrinkles 

qualitatively reflect the strong contractile forces exerted by fibroblasts on their 

environment but do not give the actual distribution of traction stresses under the cell.  

 

Spatially resolved information on the distribution of tractions has been obtained in 

the past 15 years by following the displacements of fiduciary markers embedded in 
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deformable substrata (Figure 2.4) or the response of individual force sensing elements. 

This approach was first applied to fish scale keratocytes migrating on silicone rubber 

substrata in which small polystyrene latex beads had been embedded (120).  When the 

tractions were calculated from the bead displacements (127), it was found, surprisingly, 

that the major propulsive tractions were applied in the wings of the keratocyte (128). 

 

 

Figure 2.4. Use of elastic substrates to map tractions in migrating cells 
A. Phase image showing a fish keratocytes crawling on an elastic polyacrylamide substrate. B. 
Tractions mapped on the same cell shown in A. The Dembo Boundary element method algorithm 
(127) was used to calculation of cell traction force from beads displacement; the units in the map 
are in Dynes/ cm2  (1 dyne=10-5N). 4C. The Fourier-transform traction cytometry (FTTC) 
algorithm (129) was used to calculate tractions for another keratocyte; the right scale of color bar 
represents  stress in units of Pa (1Pa=1N/m2). Scale bar is 10µm.  Images are courtesy of Zenon 
Rajfur.  
 

However, with silicone rubber films, matching the compliance to the tractions 

exerted by the cells and providing a defined surface coating on the film for optimal 

adhesion is not always easy.  These difficulties were circumvented by developing 

polyacrylamide gel substrates with variable degrees of cross-linking onto which 

extracellular matrix proteins could be conjugated (130-135).  An example of the use of 
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polyacrylamide substrates for examining the tractions exerted by locomoting keratocytes 

in seen in Figure 2.4. Moreover, these films are optically tractable so that when 

fluorescent beads are used as the fiduciary markers in the gel, dual channel fluorescence 

microscopy permits the correlation of tractions in relation to the spatial localization of 

fluorescently-labeled focal adhesion proteins (115).  

 

Another approach employs special microfabricated substrates that contain an 

array of force sensing elements. These are flexible cantilevers of known bending stiffness 

so that the forces exerted by moving cells on these pads can be computed directly from 

the deflection of the cantilever beams (136-138). An alternate approach employs an 

elastomeric substrate (silicone film) that is micropatterned to give rise to a regular array 

of either surface indentations or projections of sub-micron dimensions (117, 139).  An 

algorithm allows the surface distortion of the micropattern caused by cells to be directly 

translated to the cellular forces. Thus, a number of methods now exist that are similar in 

overall concept and permit calculation of traction stresses and the correlation of those 

stresses with the molecular constituents of the force-transmitting adhesive structures. 

 

2.5.2. Force, cell adhesions, and cell migration 

There is a clear interplay between contractile force generated by the cell, adhesion 

to the substrate and the traction applied to the substrate that is beginning to be 

investigated in detail.  As stated above, force can induce focal complexes to mature into 

large focal adhesions near the leading edge of migrating cells; at the trailing edge, 

contractile forces regulate adhesion disassembly and cell detachment. Also, MT induced 



 
 

28 

adhesion disassembly has been observed as mentioned previously and it was speculated 

that the growth of stiff microtubule growth into adhesions can release the force originally 

exerted by the actomyosin cytoskeleton, thus promoting adhesion disassembly (87, 94).  

 

The relationship between adhesion, traction applied to the substrate, and cell 

migration is under active investigation.  At the outset, it is important to note that the net 

traction to move the cell through a low viscosity buffer is effectively zero.  This leads to 

the conclusion that the typical tractions measured, which are much larger than what are 

required to move the cell, must be used to break adhesions in spatiotemporal patterns that 

dictate both the speed and direction of the cell. 

 

Using keratocytes as a model, Lee and her colleagues reported that slowly 

migrating keratocytes are more fibroblast-like in their migration and characterized by 

slipping of adhesions that are coupled with retrograde actin flow; in fast moving 

keratocytes, adhesions have more gripping character to sustain the rapid protrusion 

powered by the fast-paced polymerizing actin network; these cells exhibit a much smaller 

rearward actin flow (140). Recently, maps of actin–substrate coupling were used to 

quantify differences in force transmission efficiency between different cell regions (20). 

Thus, a more detailed scenario about the substrate adhesion-traction-migration 

relationship could be proposed: At the leading edge, traction was transmitted in a manner 

partially independent of actin velocity (gripping) but at the cell flanks, the force 

transmission was mediated by the high friction between the actin network and the 

substrate; at the cell body, little traction was transmitted, because of low friction.  
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Undoubtedly, this relationship will be further investigated both experimentally and 

theoretically (32) as it is key to achieving a global understanding of how cells move. 
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CHAPTER 3 

A profound change in cell shape and migration induced by Abl family kinases 
inhibitor1 

 
 

3.1 SUMMARY 

            The issue of how contractility and adhesion are related to cell shape and migration 

pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an 

Abl family kinase inhibitor, produces a profound change in the shape and migration of rat 

bladder tumor cells (NBTII) plated on collagen-coated substrates.  Cells treated with 

Gleevec adopt a highly spread D-shape and migrate more rapidly with greater 

persistence. Accompanying this more spread state is an increase in integrin-mediated 

adhesion coupled with increases in the size and number of discrete adhesions. In addition, 

both total internal reflection fluorescence microscopy (TIRFM) and interference 

reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid 

turnover near the cell leading margin. These changes led to an increase in global cell-

substrate adhesion, as assessed by laminar flow experiments. Gleevec-treated cells have 
                                                
1 Reproduced/adapted with permission from: 
Zaozao Chen, Elizabeth Lessey, et al. Gleevec, an Abl family inhibitor, produces a 
profound change in cell shape and migration. PLoS ONE, in revision. 2012 
 
Zaozao primarily contributed to all of the Figures in the manuscript, and was also the 
primary contributor to the overall organization, writing and editing of this manuscript. 
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greater RhoA activity which, via myosin activation, led to an increase in the magnitude of 

total traction force applied to the substrate. These chemical and physical alterations upon 

Gleevec-treatment produce the dramatic change in morphology and migration that is 

observed. 
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3.2 INTRODUCTION 

 

The study of cell migration is essential for understanding a variety of processes 

including wound repair, immune response and tissue homeostasis, and, importantly, 

aberrant cell migration can result in various pathologies (1-3). However, the relationship 

between cytoskeletal dynamics, including actin network growth, contractility, and 

adhesion to cell shape and migration remains incompletely understood. 

 

Abl family tyrosine kinases are ubiquitous non-receptor tyrosine kinases 

(NRTKs) involved in signal transduction (4-6). They can interact with other cellular 

components through multiple functional domains for F and G actin binding, as well as 

through binding phosphorylated tyrosine’s (SH2), polyproline rich regions (SH3), DNA 

(Abl), and microtubules (Abl Related Gene (Arg)) (7, 8). Abl family tyrosine kinases 

have also been found to regulate cell migration (8, 9). In some cases, Abl family kinases 

have been reported to promote actin polymerization and migration (10) as well as 

filopodia formation during cell spreading (11, 12). By contrast, in other studies Abl was 

found to restrain lamellipodia extension (13, 14) or inhibit initial cell attachment to the 

substrate (15). Abl family kinases have been suggested to regulate cell adhesion size and 

stress fiber formation (16); Li and Pendergast recently reported that the Abl family 

member Arg , could disrupt CrkII-C3G complex formation to reduce β1-integrin related 

adhesion formation (17). Thus, a complete understanding of how Abl family kinases 

regulate cell migration is lacking (8, 9).  
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            In this study, we report that Gleevec (also called Imatinib/STI571), an Abl family 

kinase inhibitor that is used as a chemo-therapeutic agent for leukemia, produces a 

profound change in the shape and migration of the rat Nara bladder tumor (NBT-II) cells 

plated on collagen-coated substrates. Within 20min of Gleevec treatment the majority of 

NBT-II cells develop a new D-shaped morphology and start migrating more rapidly and 

with greater persistence.  The new morphology is characterized by stronger cell-substrate 

adhesion and an increase in the size and number of discrete adhesions which at the 

leading margin turnover more rapidly. RhoA activity in Gleevec-treated cells was 

increased which, via myosin activation, led to an increase in the magnitude of total 

traction forces applied to the substrate.  Upon Gleevec treatment, these chemical and 

physical alterations combined to produce the dramatic change in morphology and 

migration. 

 

3.3 MATERIALS AND METHODS 

 
3.3.1 Antibodies and Immunofluorescence 

Antibodies: Integrin β-1 (CD29) blocking antibody anti-Mouse/Rat CD29 

(HMβ1-1  BD. Biosciences Pharmingen, San Diego, CA), anti-α-Tubulin Antibody 

(#2144; Cell Signaling Technology, Beverly, MA), anti-phospho-myosin Light Chain II 

antibody (against Ser19, #3671, Cell Signaling Technology, Beverly, MA), anti-Rac1 

antibody (#2465; Cell Signaling Technology, Beverly, MA), anti-Cdc42 antibody 

(#2462; Cell Signaling Technology, Beverly, MA), anti-RhoA antibody(sc-418; Santa 

Cruz Biotechnology, Santa Cruz, MA). 
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For immuno-staining, NBTII cells were fixed by using paraformaldehyde solution [4 % 

(w/v) in PBS, pH 7.4] for 20 minutes at 25°C. Cells were then permeabilized with PBS 

containing 0.05 % Triton-X-100 for 5 minutes at 25°C. Fluorescence labeling was carried 

out by treating with primary antibodies, washing with medium and then treating with 

fluorescent secondary antibodies followed by washing.  Imaging was done as described 

below. 

 

3.3.2 Cell culture and transfection 

NBT-II cells were acquired from the ATCC (Manassas, VA) and maintained in 

DMEM/F-12 medium (Gibco, Grand Island, NY) containing 10% FBS, 100 units/ml 

penicillin and 100 µg/ml streptomycin. The EGFP-Paxillin-β and EGFP-Vinculin 

construct were generated by subcloning DNA fragments expressing wild-type paxillin 

and wild type vinculin into a pEGFP-C vector (Clontech, Mountain View, CA). NBT-II 

cells were transfected using the Lipofectamine Plus transfection reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s protocol. Cells stably expressing either 

EGFP-Paxillin-β or EGFP-Vinculin were obtained by sorting for EGFP positive cells 

after G418 selection in the UNC Flow Cytometry Facility.  

 

3.3.3 Cell migration, surface coating and drug treatment 
 

For the experiments imaging the migration of NBT-II cells, glass bottom Petri 

dishes (35 mm) (MatTek) were coated by incubating with 10µg/ml type I collagen (BD 

Biosciences, Bedford, MA) overnight at 4°C. NBT-II cells were treated with trypsin and 

resuspended in DMEM/F12 medium (GIBCO) containing 10% fetal bovine serum, plated 
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at low density on the dishes, and cultured for 4-12 h in a CO2 incubator. Cells were 

incubated with either no inhibitor, or various concentrations of the 20µM Abl family 

inhibitor Gleevec® (Novartis, Basel, Switzerland) by adding the inhibitor to culture 

media which was mixed by gently pipetting up and down.  The cells were incubated for 

30 minutes prior to imaging and imaging was performed in the continued presence of the 

inhibitor.  

5µM ROCK inhibitor(Y-27632, Sigma, MO) or 2µg/ml of Rho inhibitor, C3 

transferase (Cytoskeleton Inc., Denver, CO), was used to inhibit ROCK or Rho activity in 

Gleevec pre-treated NBTII cells for 30 minutes.  100µg/ml RGD-containing peptide 

(Gly-Arg-Gly-Asp-Thr-Pro) (G5646, SIGMA), or 1µg/ml anti-Mouse/Rat CD29 

(Biosciences Pharmingen, CA) was used to block integrin related cell adhesion. Cell 

migration status was studied after one hour of incubation with these inhibitors.   

 

3.3.4 Assay for active RhoA GTPases 
 

Active RhoA pulldown experiments were done as described previously (18). For 

active RhoA pulldown cells were lysted in 300 µl 50 mM Tris, pH 7.4, 10 mM MgCl2, 

500 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deozycholate, 1 mM PMSF, and 10 

µg/ml each of aprotinin and leupeptin. Lysates were cleared by centrifugation at 14,000 g 

for 5 min. Supernatants were rotated for 20 minutes with 30-50 µg GST-RBD conjugated 

to glutathione–Sepharose beads (GE Healthcare). Beads were washed with in µl 50 mM 

Tris, pH 7.4, 10 mM MgCl2, 150 mM NaCl, 1% Triton X-100, 1 mM PMSF, and 10 

µg/ml each of aprotinin and leupeptin. Active RhoA and total RhoA levels were analyzed 

by SDS-PAGE. Gel intensity results were quantified by analyzing inverted images using 
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ImageJ. The signal from protein bands was measured after background subtraction and 

the intensity of each image was then normalized according to the average signal of 

loading control band.  

 
3.3.5 Cell imaging 

 
Differential Interference Contrast (19)Total Internal Reflection (TIRF) and epi-

fluoresence imaging was carried out on a dual-channel Olympus IX81 inverted 

microscope equipped with a 60×, oil immersion, 1.45 NA objective. Interference 

Reflection Microscopy imaging was performed using a 100×, oil immersion, 1.65 NA 

objective. Objective (x60) style TIRFM was performed on the Olympus IX81 with the 

Olympus TIR option.  Images were captured using an air-cooled SensiCam QE CCD 

camera (Cooke Corp., Romulus, MI) driven by Metamorph (Molecular Devices/Meta 

Imaging, Downingtown, PA). Confocal imaging was performed with an inverted 

Olympus FV1000 equipped with a live cell chamber and a 60× 1.42 N.A. oil immersion 

objective.  Migration of single cells was tracked for durations between 5 minutes to 2 

hours; time-lapse images were taken with the intervals of 1 second (for morphology 

changes), 5 seconds (for rapid adhesion turnover) or 60 seconds (for cell migration and 

long lifetime adhesion turnover), as indicated.  

 

3.3.6 Measurement of cell adhesion strength 
 

A flow system designed to produce laminar shear stress on attached NBTII cells 

consisted of a flow cell, a dual syringe pump (Harvard Apparatus, Holliston, MA), 5% 

CO2 percolated media reservoir, and a pulse dampener (Cole Parmer Instrument 

Company, Chicago, IL) as previously described in detail (20, 21). Briefly, a two-piece, 
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top and bottom plate, anodized aluminum flow cell (12 × 7.5 cm) was constructed with 

plastic inlet and outlet tubes. The Nunc SlideFlask (Thermo) on which NBT-II cells were 

plated was placed in the middle of the flow cell bottom plate with a 0.27-mm thick 

silicone gasket placed underneath it. This brought the coverslip to the same height as the 

top of the bottom plate. Shear stress was calculated using the following equation:  

𝜏𝑤 =
6𝜇𝑄
𝑤ℎ!

 

where µ is the viscosity of 0.0086 g.cm/s, Q is the flow rate in mL/s, w is the width of the 

flow channel (1.7 cm), and h is the height of the flow channel (0.027 cm). The applied 

shear stress ranged from 100 to 253 dynes/cm2.  

 

Cells were cultured for 4 hours on 10 µg/ml pre-coated collagen Nunc SlideFlask 

(Thermo) substrates; and labeled with 1:1000 Cell tracker orange (Invitrogen, Carlsbad, 

CA) for 10 minutes 30 minutes before flow experiments. All flow experiments were 

performed at 37 °C for 1 minute with PBS containing calcium and magnesium. In each 

experiment, multiple (10-20) images were taken showing cells in different regions of the 

flow chamber, before and after shear stress was applied. The cell attached to substrate 

before and after shear stress were counted, expressed as the percent of adherent cells 

remaining, and averaged over multiple experiments. Data were reported as mean ± SEM.  

 

3.3.7 Traction force microscopy 

Preparation of polyacrylamide substrates and experimental imaging has been 

described previously (22). Briefly, the fabrication of polyacrylamide substrate involves 

following three steps:  1) Silanization the glass substrate with 0.5% silane for 20 minutes, 
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2) Use 0.5% glutaraldehyde treat previous substrate for 40minutes, 3) polymerization 

with 6% polyacrylamide and 1% bis-acrylamide in 10 mM HEPES buffer with 

rhodamine-dextran beads and NHS-acrylate. Polymerization is initiated with the addition 

of 0.05g/ml APS. The elastic modulus of our substrate was measured to be approximately 

48kPa (22). Elastic substrates after polymerization were stored at 4oC in PBS. Tractions 

were calculated using the method of Butler et al (2002) in which particle imaging 

velocimetry is employed to measure the displacement of small windows that contain a 

number of beads.  

 

3.3.8 Data quantification and calculation 
 

 
The movement of individual cells was analyzed with Metamorph software and 

ImageJ.  

A. Speed and persistence of migration: Cell speed was measured with ImageJ 

using the Manual Tracking plug-in (http://rsbweb.nih.gov/ij/plugins/track/track.html). For 

cell migration persistence, we employed a conventional definition: the ratio of the net 

distanced traveled to the total distance traveled. The net distance traveled is the 

magnitude of the vector between the starting point and end point of the cell trajectory 

over an hour and the total distance traveled taken as the sum of net distances traveled 

over twelve 5 minutes intervals in that hour in order to capture the changes in direction 

that occur.  Thus, the highest persistence would have a value of one, representing 

unidirectional migration. 
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B. Segmentation of adhesions in TIRF images: To identify focal adhesions (or 

other small adhesions) in each image of a time-lapse series, a set of segmentation 

methods were used (23). Each movie was cropped to only include one cell. Starting with 

the raw images from the TIRF movies, we used a high-pass filter to minimize 

background noise and the overall distribution of pixel intensities after high-pass filtering 

was used to select a threshold for adhesion detection. For all image sets examined, we 

selected a threshold of the mean plus two standard deviations of the high-pass filtered 

pixel intensities. We then applied the threshold and connected components labeling to 

identify each adhesion and removed any pixel objects identified less than three pixels. 

After identifying the adhesions, they were tracked through time using a previously 

published method (23) and a range of properties were collected. Adhesion properties 

were only calculated for adhesions where both a birth and death event was detected. 

 

C. Lifetime of adhesions: ImageJ was used to measure changes in fluorescent 

intensity of individual adhesions over time in cells expressing fluorescent-tagged 

adhesion proteins.  A perimeter was drawn around the punctate or wing adhesions at the 

point where intensity was a maximum; average pixel intensity was calculated from the 

pixel intensities within that perimeter as function of time. Background and 

photobleaching corrections were applied to obtain true intensities of the adhesions. 

Assembly and disassembly rates were plotted and calculated using Microsoft Excel 

(Microsoft Corporation) or Origin 6.1(OriginLab) using a previously published method 

(Huang et al., 2009) (Choi et al., 2008(24).  
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D. Quantification of collective adhesion profile: Multiple lines (n=4 for each 

cell, 12 cells in each group) were drawn along the cell migration direction from outside to 

the interior of the cell (line length=200 pixels) with the center of the line is positioned 

manually at leading edge. The fluorescent signal along each line was measured using 

PlotProfile function in ImageJ. The EGFP-Paxillin fluorescence intensity in different 

cells was not uniform. In order to better compare the profile of collective adhesion 

intensities between control and Gleevec-treated cells, background (𝑆bgd ) was subtracted 

from the raw fluorescence intensity profile (for each pixel S(n) )and then these profiles 

were normalized.  We used following formulae to get the normalized relative signal 

intensity (Srsi-Line(n)) for the nth pixel (n=1 to 200) along the line:  

𝑆avg =
𝑆(𝑛)!""

𝑛!!

200 − 𝑆bgd 

𝑆rsi-Line(n) =
𝑆 𝑛 − 𝑆bgd

𝑆avg
 

,where 𝑆avg represents average pixel intensity averaged along the entire line. 
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3.4 RESULTS 

 

3.4.1 Treatment with Gleevec induces a D-shaped morphology in NBTII cells 

The morphology of a migrating cell is related to cell migration modes.  NBTII is a 

rat-derived carcinoma cell line (25).  A normal cultured NBTII cell shows typical 

epithelial morphology; however, when NBTII cells were cultured on type I collagen-

coated plastic cell culture dishes for 4–12 h, they acquired a polarized shape and migrate 

individually, exhibiting an epithelial to mesenchymal transition (EMT) (26-29)). During 

our experiments, we observed that NBTII cells on collagen had medium-sized lamellae, 

multiple filopodia dynamically formed at the leading edge of the cell, and multiple 

retraction fibers formed at the rear end of the cell. (Figure 3.1A, Supplemental Movie 

3.1).   A number of retraction fibers can be observed at the trailing edge of the cell.  

Figure 3.1B shows NBTII cells cultured on type I collagen for 8 h and then treated with 

20µM Gleevec, an inhibitor of the Abl family of NRTK  (Novartis, Stein, Switzerland) 

for 30 minutes (30, 31)).  Within 5 minutes of Gleevec addition, a profound change in 

cell morphology can be observed (Supplemental Movie 3.2).  Cells began to form 

lamellipodial protrusions, which usually merged into a single, intact lamellium facing the 

migration direction (Supplemental Movie 3.3). This cell morphology may persist for 

over 8 hours.  After Gleevec treatment, cells had markedly reduced numbers of both 

filopodia and retraction fibers.  The actin and microtubule cytoskeleton of NBTII cells or 

Gleevec-treated NBTII cells differed somewhat (Figure 3.1C and 3.1D); particularly 

noticeable were the number of f-actin rich retraction fibers in the control cells. Gleevec 

treated NBTII cells had about a 75% increase in migration speed compared with control 
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NBTII cells (Figure 3.1E) and maintained their direction significantly better than control 

NBTII cells (Figure 3.1F and Supplemental Movie 3.4).  

 

Figure 3.1. Transformation of NBT-II cells morphology and migratory phenotype after 
Gleevec treatment. A and B) Representative DIC images of NBT-II cells plated on 10 µg/ml 
collagen coated substrate. Control cell (A) and cell treated for 30 min with 20 µM Gleevec.  (B) 
Note that a lamellipodial protrusion and a D- (or fan) shaped morphology occurs within 10 
minutes of exposure to the Abl-family inhibitor. (C and D) Confocal fluorescent images of the f-
actin (Rhodamine-phalloidin, Red) and microtubules (alpha-tubulin antibody, Green) in the 
control (C) and Gleevec-treated cells (D). (E and F) Box and whisker plots of the average cell 
migration speed (E) and directional persistence (F) for the control group (N=60) and NBT-II cells 
treated with 20 µM Gleevec (N=60).  Standard deviations are indicated by the box sizes; 
maximum and minimum data values are indicated by the extent of the whiskers. The bar and the 
square inside the box are the median and mean value respectively. Gleevec-treated NBTII cells 
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migrate significantly faster and are more persistent in their directionality (* p<0.001, by students 
t-test). Scale bars are 20 µm. 
 

Gleevec treatment induced a pronounced change in cell morphology when 

compared to control cells (Figure 3.1 and Supplemental Movies 3.1, 3.2, 3.3). To better 

determine the changes in cell morphology, we used four parameters as defined in Figure 

3.2B: (1) Aspect ratio, the ratio of the widest dimension of the cell in the direction 

perpendicular to the direction of migration divided by the longest dimension of the cell in 

the direction of cell migration;  (2) Nuclear aspect ratio, the aspect ratio of the cell 

nuclear region ;  (3) Area ratio, the ratio of the total cell area to the nuclear area; and (4) 

Retraction fiber length,  the population average of the sum of the length of all retraction 

fibers in one individual cell divided by the same parameter calculated for the control 

cells.  This parameter is the product of the number of retraction fibers and their length 

and provides a quantitative measure over a population of cells.   The results of our 

analysis revealed that cells treated with Gleevec had significantly increased aspect ratio, 

nuclear ratio, and area ratio, while having a reduced retraction fiber length ratio (Figure 

3.2A). Interestingly, unlike most known mesenchymal migrating cells, which are 

typically elongated in the direction of migration, Gleevec treated cells were elongated in 

the direction perpendicular to their movement and showed visual similarity to fish or 

amphibian keratocytes (32-34) (Figure 3.1B and Supplemental Movies 3.3, 3.4).  
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Figure 3.2. Detailed analysis of cell morphology changes after Gleevec treatment. A) Cell 
morphology parameters (see text) were analyzed and compared between NBT-II cells from the 
control group and the group treated with 20 µM Gleevec. B) Schematic figures depicting the 
calculation of each cell morphology parameter.  The 1st and 4th cells from the left, shown in panel 
B, are samples of control NBT-II cells; while the 2nd and 3rd cells depict NBT-II cells that have 
been treated with Gleevec. Data are calculated from more than 50 cells for each group. Control 
and Gleecec treated cells are significantly different in all four parameters (* p<0.001, by student’s 
t-test).  
 
 
3.4.2 Both Gleevec concentration and substrate adhesiveness affect NBTII cell 

migration 

 

To investigate the NBTII cell dose response for Gleevec concentration we 

determined migration speed and persistence for NBTII cells treated with different 

concentrations of Gleevec. Cells were plated on substrates coated with 10µg/ml collagen. 
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The concentration of Gleevec employed to inhibit Abl family kinase activity was in the 

range of 0.25µM to 50µM. The average cell migration speed reached a maximum (~2 

µm/min), when a 20µM concentration of Gleevec was used.  For lower Gleevec 

concentrations (0.25 µM, 1 µM), cells did not show a significant speed increase. The 

highest concentration of Gleevec  (50µM) actually caused cell migration speed to 

decrease (Figure 3.3A). The ability of NBTII cells to migrate persistently in one 

direction was also highest after treatment with 20µM of Gleevec (Figure 3.3B).  

 

To investigate how the substrate adhesiveness influences NBTII cell migration, 

we tested different concentrations of collagen for substrate coating. Substrate 

adhesiveness increases with collagen coating concentration. For these experiments we 

used control NBTII cells and cells treated with a 20µM concentration of Gleevec. For 

control NBTII cells, when the collagen coating concentration was increased from 1µg/ml 

to 100µg/ml, both the migration speed (Figure 3.3C) and persistence (Figure 3.3D) 

increased. For the Gleevec-treated NBTII cells, the speed of migration was greatest on 

the substrates with medium and higher adhesivity (10 and 100µg/ml collagen). The 

largest difference in speed and persistence between control and Gleevec treated NBTII 

cells occurred at a 20µM of Gleevec concentration on 10µg/ml of collagen coated 

substrates.  
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Figure 3.3. NBTII cell migration behavior depends on substrate adhesiveness and Gleevec 
concentration. A) and B) Graphs depicting the average cell migration speed (A) and persistence 
(B) of NBT-II cells from the control group (no inhibitor)  and NBT-II cells treated with different 
concentrations of Abl family kinase inhibitor (Gleevec). Cells were cultured on 10 µg/ml collagen 
coated substrates. Cells treated with 20 µM Abl kinase inhibitor migrated faster and persistently. 
C) and D) Graphs depicting the average cell migration speed (C) and persistence (D) of NBT-II 
cells on substrates coated with 1 µg/ml, 10 µg/ml, and 100 µg/ml collagen. The average migration 
speed and persistence of control and Gleevec cells are presented with gray and black bars, 
respectively. Results are calculated from more than 30 cells in each group. The error bars indicate 
standard deviations. (* p<0.001, by students t-test; # p<0.01 by students t-test). 
 
 
 
3.4.3 Gleevec treated NBTII cells are more adherent to their substrate than control 

cells 

 
The highly spread lamella of Gleevec treated NBT II cells suggested that they had 

become more adhesive. Therefore, we investigated cell adhesion strength using a laminar 

flow system reported previously (20, 21). Basically, by varying the flow rate, the system 

generates various shear stresses on cells attached in the flow channel. When applied shear 
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stress overcomes the global cell adhesion strength, cells will detach from the channel and 

be removed by flow (Figure 3.4A). Images showing the cells attached before and after 

flow application were recorded and cell numbers were counted (Materials and Methods, 

Supplemental Figure 3.1). For our experiments, we tested 100 dynes/cm2, 200 

dynes/cm2 and 253 dynes/cm2 values of shear stress (Supplemental Figure 3.1). We 

found that a shear stress of 200 dynes/cm2 is the most appropriate for estimation of the 

relative NBTII cell adhesion strength. A shear stress of the 100 dynes/cm2 was too weak 

to affect cell attachment and a shear stress of 253 dynes/cm2 quickly removed most of the 

attached cells. We applied 200 dynes/cm2 shear stress for 1 min to the control and 

Gleevec-treated NBTII cells which were plated on 10µg/ml collagen for 4 hours. The 

fraction of the remaining adherent cells was significantly larger for the cells treated with 

Gleevec (Figure 3.4A). This result indicates that the global adhesion strength between 

cells and collagen substrates was increased after inhibition of Abl family kinases.  

 

            We further transfected NBTII cells with GFP-Paxillin to indicate adhesions and 

employed total internal reflection fluorescence microscopy (TIRFM) to monitor GFP-

Paxillin localization on the ventral surface of the cell. Adhesions were automatically 

tracked and measured by an algorithm developed in a previous report (Materials and 

Methods) (35). Compared to control NBTII cells (Figure 3.4B), Gleevec treated cells 

(Figure 3.4C) had an increased number of adhesions at their leading edge and wings; in 

addition, the total adhesion number increased by ~25%(Figure 3.4D) and the total 

adhesion area increased by ~70% (Figure 3.4E). Gleevec treated cells had their average 

adhesion size increased by more than 20% (data not shown). 
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Figure 3.4. Gleevec treated cells are more adhesive than control cells. A) A schematic figure 
(top panel) showing the measurement of cell adhesion strength using a laminar flow system. As 
the laminar flow rate is increased, more cells detach. Cells were cultured for 4 hours on 10 µg/ml 
pre-coated collagen Nunc SlideFlask (Thermo) substrates. The  fraction of adherent cells retained 
after exposure to  shear stress of 200 dynes/cm2 for 1 min (N = 5; n = 11–20 images per N) is 
shown in the horizontal bar graph. The group of cells treated with 20 µM of Gleevec has 
significantly higher number of remaining cells after laminar flow exposure (p<0.01). B) and C) 
are GFP-Paxillin TIRFM images for control NBT-II cells and Gleevec-treated NBT-II cells, 
respectively. Scale bars are 20 µm. D) and E) are the graphs depicting the average number of 
adhesions and average total area covered by adhesions in control and Gleevec-treated cells, 
respectively. Cells that have been treated with Gleevec have significantly larger total adhesion 
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area (p < 0.01, N>15 cells in each group) and average number of adhesions (p < 0.01, N>15 cells 
in each group).   
 

3.4.4 Punctate adhesions are present at the leading edge of Gleevec treated D-shape 

NBT-II cells.  

TIRFM and Interference Reflection Microscopy were combined to capture time-

lapse images of adhesions in migrating NBTII cells. The darker regions in IRM image are 

usually considered regions which are closer to the substrate (36). In Supplemental 

Figure 3.2A and 3.2B, the dark regions in IRM image are generally co-localized with the 

GFP-Paxillin regions in the TIRFM image, indicating that those dark regions and dots are 

actually cell adhesions. The images of the leading edge of control and Gleevec treated 

NBTII cells are shown in Figures 3.5A to 3.5D and 3.5E to 3.5H, respectively. In IRM 

images, the small punctate adhesions were only observed in the leading edge of Gleevec-

treated cells (Figure 3.5E and 3.5F) (Supplemental Movie 3.6), but not in control cells 

(Figure 3.5A and 3.5B) (Supplemental Movie 3.5).  As shown in the TIRFM images, 

compared with control cells (Figure 3.5C and 3.5D)(Supplemental Movie 3.7), D- 

shaped NBTII cells had a larger amount of dotted GFP-Paxillin at their leading edge 

(Figure 3.5G and 3.5H) (Supplemental Movie 3.8). We measured the intensity of GFP-

Paxillin along the sample lines indicated in Figure 3.5C and 3.5G. For each cell, lines 

crossing the leading edge were summed together and normalized (Materials and 

Methods). We found that D-shaped NBTII cells had significantly increased intensity of 

GFP-paxillin fluorescence signal in the vicinity of the leading edge (Figure 3.5I). 

Adhesion turnover in the leading edge of a Gleevec treated cell was imaged and shown in 

Supplemental Figure 3.2C or Supplemental Movie 3.8. Supplemental Figures 3.2D-
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3.2G are TIRFM images of EGFP-Paxillin in Gleevec-treated cells, showing a rim of 

punctate adhesions at the leading margin as a common feature. The size distribution of 

punctate adhesions in Gleevec-treated NBTII cells had a peak at ~350nm in diameter, and 

the average area of punctate was 0.1µm2.  Many punctate adhesions are close to the 

diffraction limit so some may be even smaller in dimension. Observation of the TIRFM 

movies suggested that these punctate adhesions near the leading edge turned over very 

rapidly; indeed, intensity analysis (24) indicated an average lifetime of ~70s; by contrast, 

adhesions at the cell wings are much more stable with lifetimes in excess of 5 minutes 

(Supplemental Figure 3.2H-3.2I).  
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Figure 3.5. Punctuate adhesions are present at the leading edge of Gleevec treated NBT-II 
cells. Panel A) and E) are representative IRM images of a migrating control (A) and a Gleevec-
treated (E) NBT-II cell, respectively. Dense, dynamic, punctuate adhesions are only observed at 
the leading edge of the Gleevec-treated cells. Red rectangles on (A) and (E) show the position 
where thee times magnified images (B) and (F) were taken.  Panel C) and G) are representative 
TIRFM (Total Internal Reflection Fluorescence Microscopy) images of GFP-Paxillin expressed 
in control and Gleevec treated NBT-II cells, respectively. D) and H) Images resulting from 
amplifying the areas indicated by the red boxes in C) and G) by three times, respectively. 
Gleevec-treated cells form a band of GFP-Paxillin at the leading edge of the cell. The GFP-
Paxillin fluorescent intensity is measured along yellow dotted lines (shown in Figure 5C and 5G) 
across the leading edge of the cell (4 lines for each cell). I) Multiple cells were used to calculate 
the distribution of normalized GFP-Paxillin intensity at the leading edge: control NBT-II cells 
(Black line, n=12), and D-shaped Gleevec treated NBT-II cells (red line, n=12), with the standard 
deviation shown as gray (for control cells) or pink bars (for Gleevec treated cells) (detailed 
calculations are described in Materials and Methods). Gleevec-treated cells NBT-II cells have 



 
 

63 

peak of GFP-Paxillin signal near the leading edge, while control NBT-II cells do not. Scale bars 
in panels A, C, E and G are 20 µm, and in B, D, F, H are 5 µm. 
 
 
 
3.4.5 β1 integrin-containing cell adhesions are important for maintaining D-shape 

morphology and migration status 

Next, we asked whether integrins were important for the Gleevec induced-

phenotype. To competitively disrupt Integrin-collagen binding we employed two 

different agents: an RGD-containing peptide (Gly-Arg-Gly-Asp-Thr-Pro) (37) and direct 

β1 integrin blocking antibodies, because β1 integrin is known to bind type I collagen 

(38)((39, 40). We found that either 1µg/ml of β1 integrin blocking antibody or 100µg/ml 

RGD-containing peptide (G5646, SIGMA) quickly decreased cell migration speed 

(Figure 3.6A) and reverted the Gleevec-treated cell morphology approximately back to 

control NBTII cells (Figure 3.6B-3.6D).  

 

 

Figure 3.6. Blocking of integrin related adhesion dramatically inhibits the migration speed 
of Gleevec-treated NBT-II cells. A) Migration speed of Gleevec-treated cells incubated with 
either beta1-Integrin blocking antibody (1 µg/ml) or an RGD-containing peptide (100 µg/ml).  
Migration speed was measured 30 minutes after addition of beta1-Integrin blocking antibody or 
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RGD containing peptide (n>10 for each group). Panels B-D) are DIC images of an NBT-II cell 
treated with Gleevec (20 µM) migrating on a 10 µg/ml collagen-coated substrate, and then treated 
with 1 µg/ml RGD containing peptide. Images before addition of RGD containing, 2 minutes 
after and 5 minutes after addition of the RGD peptide are shown. Scale bars is 20 µm. 
 

3.4.6. Gleevec induces changes in actin cytoskeleton, p-MLC localization and 

traction  

The filamentous actin and active myosin were detected by fluorescent phalloidin 

and phosphorylated myosin light chain antibodies, respectively. The distribution of active 

myosin in control and Gleevec-treated NBTII cells differ markedly. In the case of the 

control cells, active myosin is localized around the cell nucleus, with little near the 

leading edge (Figure 3.7A-C). By contrast, active myosin predominantly localized near 

the trailing margin of the Gleevec-treated cells. Since the active myosin status is 

associated with cell contractility, we compared the traction distribution between the two 

groups utilizing an elastic substrate methodology (22, 41-45). Figure 3.7G-H show the 

color-coded magnitudes of the bead displacements mapping for control and Gleevec-

treated cells, respectively. The white line drawn indicates the outline of the cell. The 

insets are the phase image of a control (3.7G) or a Gleevec-treated cell (3.7H). Figure 

3.7I-J shows the calculated constrained traction map for control and Gleevec-treated cells 

with the insets showing magnified traction maps at the cell wing regions. Tractions are 

much higher in the wings of the Gleevec treated cells than control cells (Figure 3.7J) 

where immunofluorescence labeling by anti-p-MLC antibody indicates a concentrated 

region of active myosin proximate to the high traction regions (Figure 3.7F).   The 

Gleevec-treated cells generated a remarkable almost four-fold greater total traction force 

than control NBTII cells (Figure 3.7K).  



 
 

65 

 
Figure 3.7. Changes in distribution of active myosin and traction forces after Gleevec 
treatment. Control NBT-II cells (A-C) or Gleevec-treated cells (D-F) that have been fixed, 
permeabilized and stained for phosphorylated myosin II light chain (p-MLC) to visualize active 
myosin localization (A and D) and Rhodamine-phalloidin to visualize the actin cytoskeleton (B 
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and E). (C and F) Overlay images indicate the colocalization of actin bundles and p-MLC (red). 
The nucleus of the cell is stained with DAPI (blue). Bar= 20 µm. (G to J) Elastic substrate 
traction mapping of a control NBT-II cell (G and I) and Gleevec-treated NBT-II cell (H-J). (G 
and H) are the bead displacement maps and (I and J) are the traction maps where color bars 
indicate relative values (see Methods). The inset images in G and H are the phase image of the 
control cell and the Gleevec-treated cell. The white lines in G and H are outline of each cell. The 
inset images of figure I and J are the tractions magnified from indicated cell wings.  Panel K is a 
calculation of the total cell traction force generated by cells (Materials and Methods). The value is 
normalized to total traction forces from control cells. The bar graph indicates NBTII cells treated 
with Gleevec generate considerably more total traction force than control NBTII cells. Error bars 
are standard deviation. Bar= 20 µm. 8 cells were examined for each case.  
 
 
3.4.7. Effects of RhoA family GTPases on D-shaped NBTII cell migration 

The rapid response of NBTII cells to Gleevec suggests that the inhibition of the 

Abl-family kinases is altering active signaling pathways (8, 46) as opposed to affecting 

transcriptional regulation. Because of the importance of RhoA GTPase in cell shape and 

migration (47-49), we measured its activity before and after Gleevec treatment.  Using a 

RhoA activity pull down assay, we found that RhoA activity significantly increased when 

Abl-family kinases were inhibited (Figure 3.8A). Cells treated with Gleevec for one hour 

have nearly doubled RhoA activity (Figure 3.8B).  
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Figure 3.8. Abl-family kinase inhibition increases RhoA activity. A) A RhoGTPase pull-down 
assay before and after Gleevec treatment (20 µM). NBT-II cells were cultured on a 10 µg/ml 
collagen-coated substrate. B) A bar graph quantifying the results from the pull-down assay. (n=4 
experiments). 
 

Because of the significant increase in active RhoA in Gleevec-treated cells, we 

asked whether RhoA and its downstream effector ROCK were important in the Gleevec-

induced phenotype by introducing the RhoA inhibitor (C3) and the Rho kinase inhibitor 

(Y27632) to NBTII cells previously treated with Gleevec (Figure 3.9A-C, respectively). 

We found that adding either C3 (Figure 3.9B) or Y27632 (Figure 3.9C) to Gleevec-

treated cells resulted in  significantly increased numbers of retraction fibers and more 

rounded nuclei compared to cells treated with Gleevec only (Figure 3.9A). In addition, 

both of these reagents reduced migration speed (Figure 3.9D) and persistence (Figure 

3.9E). The nuclear aspect ratio and total retraction fiber length were calculated and 
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compared to cells treated with Gleevec only or control cells (Figure 3.9F-G). C3 or 

Y27632 treated cells in the presence of Gleevec exhibit similar nuclear aspect ratios and 

retraction fiber parameters as the control group. In addition, the whole cell aspect and 

area ratios for the Gleevec + C3 treatment group or for the Gleevec + Y27632 group are 

comparable to the Gleevec only group (Supplemental Figure 3.3A-B). We also 

observed that while Gleevec + C3 or Gleevec + Y27632 treated cells produce extended 

lamellae, these lamellae often fragmented during migration.  Because C3 and Y27632 in 

effect rescue the control phenotype, these results indicate that RhoA and its downstream 

effector ROCK are required for the Gleevec- induced NBTII cell phenotype.  
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Figure 3.9. RhoA/ROCK activity is important for the Gleevec phenotype. A), B) and C) are 
DIC images of NBT-II cell migration status in the presence of 20uM Gleevec only, both 20uM 
Gleevec and ROCK inhibitor(5uM Y-27632), or both 20uM Gleevec and RhoA inhibitor (C3, 
1ug/ml), respectively.  These panels show that RhoA inhibition after Gleevec treatment increases 
the number of retraction fibers and produces more rounded nuclei. Scale bars are 20 µm. Panels 
D) to G) are cell migration speed, cell migration persistence, nuclear aspect ratio and cell 
retraction fiber ratio, respectively. In each figure,  the four bars represent the  control group,  the 
20uM Gleevec treated group,  the 5uM Y-27632 + 20uM Gleevec treated group, and the  1ug/ml 
C3 + 20uM Gleevec treated group, respectively. Error bars indicate standard deviations.  At least 
15 cells were measured for each group. 
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3.5 DISCUSSION 

  

Here, we show that inhibition of Abl family kinase activity with Gleevec 

produced a rapid and remarkable change in cell morphology and migration in which cells 

spread out a thin, extended lamella and migrated faster and with more persistence with 

some similarities to keratocyte migration (32, 34).  In addition, this rapidly spreading, 

very thin lamella is similar to the rapid and extensive, “pancake” spreading of fibroblasts 

derived from Abl null mice (15).  Associated with the Gleevec phenotype was an increase 

in RhoA activity, increased global cell adhesion strength, a pronounced change in 

adhesion patterns and an increase in total traction applied to the substrate.  

 

3.5.1 Mechanism of the Gleevec-induced change in morphology and migration 

Abl family kinases inhibit cell adhesion formation: Abl family kinases have been 

reported to be located at cell adhesions (7, 50). They are correctly positioned to regulate 

the reorganization of the cytoskeleton at sites of membrane protrusion and at focal 

adhesions where integrins are engaged.  In 10T1/2 fibroblasts, during the initial 20-30 

minutes of fibronectin stimulation, when c-Abl activity is the highest, the nuclear pool of 

c-Abl re-localizes transiently to focal adhesions (7, 50). This transient re-localization also 

occurs in NIH3T3 cells, where a fraction of the cellular Abl associates with the focal 

adhesion proteins, paxillin and Grb2 (51, 52). Abl family kinases have also been reported 

to reduce initial cell attachment to the substrate. On fibronectin, fibroblasts derived from 

Abl-null mouse embryos spread faster than their wild-type counterparts, while restoration 

of Abl expression in the Abl-null fibroblasts reduced the rate of spreading (15). Kain and 
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Klemke provided evidence that Abl family kinases negatively regulate cell migration by 

uncoupling CAS-Crk complexes (13). Li and Pendergast recently reported that Arg could 

disrupt CrkII-C3G complex formation to reduce β1-integrin related adhesion formation 

(17). These reports indicate that Abl family kinases negatively regulate cell adhesion, 

thus supporting our observations that Abl family kinase inhibition results in a more 

adhesive and motile phenotype. 

RhoA involvement in the Gleevec-induced phenotype: Concomitant with the 

adhesion increase induced by Gleevec treatment, there is an increase RhoA activity. 

Since Bradley and Koleske reported that Abl family kinases could function through the 

activation of p190RhoGAP to reduce RhoA activity (53), it is possible that the Gleevec 

action occurs by inhibition of the Abl-mediated activation of this RhoGAP.  In any event, 

the increase in RhoA activity correlates with the increase in total traction force applied to 

the substrate; the spatial disposition of active myosin II indicates contractile activity 

parallel to the long axis of the cell and enhanced traction in the wings of the treated cell.  

Moreover, ROCK inhibition abrogates the Gleevec phenotype suggesting the pathway 

Abl inhibitionincrease in RhoA activityincrease in ROCK activityincrease in 

pMLCincrease in contractility and traction.  

	  

3.5.2 Changes in the adhesive behavior of the Gleevec treated NBTII cells 

The D-shaped NBTII cells have a band of punctate dot-like adhesions in the 

vicinity of their leading edge that appear different from known adhesions in 

mesenchymal-type migrating cells. The area of these adhesions is quite small (~0.10 

µm2) compared to normal focal adhesions (~ 1µm2), and their turnover as estimated from 
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observation of TIRFM movies is ~ 1 min, compared to >5 min for focal adhesions. These 

punctate adhesions are similar in size to nascent focal adhesions (54-56); but they rarely 

(<1%) matured to larger adhesions as many nascent adhesions do (56).  

 

Our results taken as a whole indicate Abl family kinases play an important role in 

the regulation of cell adhesion and migration in that their inhibition produces a profound 

change in adhesions, morphology and cell migration.  A fully integrated, quantitative 

view of inhibition of how these ubiquitous kinases produce these changes remains a 

challenge for the future. 
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3.6 SUPPLEMENTAL MATERIALS 

 

 
 
Supplemental Figure 3.1. Optimizing the laminar shear stress flow system for cell adhesion 
strength measurements. 
Panel A to F shows the adherent NBTII cells under laminar shear stress flow system with a 253 
dynes/cm2 laminar force applied for 30 seconds. Cells are labeled with Cell Tracker Orange 
(Invitrogen). Images are same cells at different time points (before, 2s, 5s, 10s, 20s, 30s) which 
are indicated at bottom right of each images. Arrows in each image point out the cells detached 
by the shear stress as a function of time of shear stress application. G) Bar graph showing fraction 
of adherent cells retained after exposure to different laminar shear stresses for 1 min (N = 5 
experiments; n = 11–20 images per N for 200 dynes/cm2; N=1 experiment, n=3 images per N for 
100 dynes/cm2 and 253 dynes/cm2 groups). 
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Supplemental Figure 3.2. Cell adhesions in Gleevec-treated NBTII cells 
Panel A) and B) are IRM images and TIRFM images for the same region in a fixed NBT-II cells. 
The dark dots (marked by arrows) and dark regions (marked by circles) in the IRM image were 
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usually colocalized with the bright EGFP-Paxillin signal in TRIFM image, indicating these were 
cell-substrate adhesions. Panel C are the time-lapse images showing adhesion turnover at the 
leading edge of a Gleevec treated NBTII cells. To better illustrate adhesion turnover, punctate 
adhesions at cell leading edge (at time 0) were marked with black line and then labeled with 
colored dots correspondingly. Adhesions at time 0, and after 30, 60, 90, 120, 150 and 180 seconds 
were shown. Colored dots indicate the previous adhesion is still remaining at this time. Most of 
the adhesions disassembled after 120 seconds. Panel D to G are representative TIRFM images of 
EGFP-paxillin in Gleevec- treated NBTII cells, showing a rim of dense, punctate adhesions 
(adhesions in-between dotted lines) at the leading edge of the cells. Panel H is a temporal 
fluorescence intensity profile (see Materials and Methods) of EGFP-paxillin in a representative 
punctate adhesion at cell leading edge (a) or an adhesion at the side wings (b). Dotted lines I, II, 
III indicate the whole image fluorescent background, the cell leading edge fluorescent 
background, and the cell body fluorescent background respectively. The initial peak in the 
fluorescence intensity profile (marked by arrow) results from the formation of punctate 
adhesions. The lifetime is taken as time between liftoff from leading edge background (II) to 
when the intensity drops back to the cell body background (III).  For the punctate adhesions at the 
leading edge the assembly and disassembly occurs quickly, with an average lifetime of ~70s 
(Panel I). By contrast, adhesions at the wings often gradually mature into strong and more stable 
adhesions with an average lifetime above 5mins (Panel I). Scale bars in panels B and C are 5 µm, 
and in D, E, F, G are 20 µm. Data are mean ± standard deviations measured from 6-10 individual 
adhesions in 5-7 cells from independent experiments. 
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Supplemental Figure 3.3. RhoA/ROCK activity afffect cell morphology 
Panel A) and B) are whole cell aspect ratio and cell area ratio. In each figure, four groups are 
control group, 20uM Gleevec treated group, 5uM Y-27632 + 20uM Gleevec treated group, and  
1ug/ml C3 + 20uM Gleevec treated group, respectively. Error bars indicate standard deviations. 
At least 15 cells were measured for each group. 
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CHAPTER 4 

Mechanism of Chromophore Assisted Laser Inactivation Employing Fluorescent 
Proteins 1 

 
4.1 SUMMARY 

 

 Chromophore Assisted Laser Inactivation (CALI) is a technique that uses 

irradiation of chromophores proximate to a target protein to inactivate function. 

Previously, EGFP mediated CALI has been used to inactivate EGFP-fusion proteins in a 

spatio-temporally defined manner within cells but the mechanism of inactivation is 

unknown (1, 2).  To help elucidate the mechanism of protein inactivation mediated by 

fluorescent protein CALI ([FP]-CALI), the activities of purified Glutathione-S-

transferase-FP (GST-EXFP) fusions were measured after laser irradiation in vitro.  

Singlet oxygen and free radical quenchers as well as the removal of oxygen inhibited 

CALI, indicating the involvement of a reactive oxygen species (ROS). At higher 

concentrations of protein, turbidity after CALI increased significantly indicating cross-

linking of proximate fusion proteins suggesting that damage of residues on the surface 

                                                
1 Reproduced/adapted with permission from: 
Mark A. McLean, Zenon Rajfur, Zaozao Chen, David Humphrey, Bing Yang,  Stephen 
G. Sligar, and Ken Jacobson. 2009.  Mechanism of chromophore assisted laser 
inactivation employing fluorescent proteins. Anal Chem. 2009 Mar 1; 81(5):1755-61. 
PMID: 19199572 
 
Zaozao Chen contributed to providing data for Figures 4.1 to 4.3 in the manuscript, 
Supplemental Figure S4.1 to S4.6, and was also contributed to the writing and editing of 
this manuscript.  
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the protein, distant from the active site, results in inactivation. Control experiments 

removed sample heating as a possible cause of these effects.  Different FP mutants fused 

to GST vary in their CALI efficiency in the order EGFP>EYFP>ECFP, while a GST 

construct that binds FlAsH results in significantly higher CALI efficiency than any of the 

XFPs tested.  It is likely that the hierarchy of XFP effectiveness reflects the balance 

between ROS that are trapped within the XFP structure and cause fluorophore and 

chromophore bleaching and those that escape to effect CALI of proximate proteins. 
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4.2 INTRODUCTION 
 

 CALI (Chromophore Assisted Laser Inactivation) is a technique that uses 

irradiation of chromophores proximate to a target molecule to inactivate functions of that 

molecule.  Since the inactivating light can be limited to small regions within a single cell 

and the inactivation can be accomplished in less than 1 s, the technique offers an 

important spatially and temporally controlled loss-of-function tool in cell and 

developmental biology that complements genetic and other loss-of-function methods (3). 

CALI was introduced for cell biological purposes using the dye malachite green as a 

chromophore by Jay and co-workers (4-6).  More recently, the technique has been 

extended to fluorophores including EGFP (enhanced green fluorescent protein) 1, FlAsH 

(Fluorescein-based Arsenical Hairpin binder) (7), ReAsH (Resorufin-based Arsenical 

Hairpin binder) (8), and SLF’ (synthetic ligand for mutant FKBP12 that is conjugated to 

fluorescein) (9), all of which produced successful loss of function of the labeled targets.  

Work employing EGFP as a CALI reagent was based on earlier work (10) which showed, 

in vitro, that GFP could be used as a CALI fluorophore.  GFP is not nearly as effective as 

fluorescein or malachite green (10) in producing damaging radicals but, if the fluorescent 

fusion protein faithfully represents the native protein, then the localization of the CALI 

effect is ensured.  The fact that interesting phenotypes have been obtained by CALI raises 

the issue of photochemical mechanism. 

 

In this study, we investigated the mechanism of EGFP-CALI, how the proximity 

of the fluorophore to the target affected CALI, how different, commonly used XFPs 

compared in CALI efficiency, and how these XFPs compared in effectiveness to CALI 
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employing FlAsH. Our studies were done in vitro using various GST-XFP fusion 

proteins. 

 

 

4.3 MATERIALS & METHODS 

 

4.3.1 Creation of Proteins 

4.3.1.1 Creation of GST-EXFP fusion proteins 

The expression plasmids for the GST fusion proteins were derived from the parent 

vector pGEX4T3 (GE Healthcare).  pGEX-4T3 and pEXFP vectors were digested with 

the restriction enzymes Xho I and Not I (New England Biolabs).  The XmaI - Not I 

restriction fragment of pEXFP (Clontech) containing the fluorescent protein gene was 

ligated into into Xma I – Not I digested pGEX4T3 using T4 Ligase (Invitrogen).  The 

resulting GST-EXFP fusion proteins contain the poly peptide linker 

LVPRGSPNSRVPVAT harboring a thrombin cleavage site.  Single pass primer 

extension DNA sequencing was performed by ACGT inc. using the GEX 5’ and GEX 3’ 

sequencing primers.   

 

4.3.1.2 Creation of GST – Tetracysteine fusion protein 

Iproof High-Fidelity DNA polymerase (Biorad) was used for all PCR reactions.  

The GST-tetra cysteine fusion (GST-TC) was created through PCR amplification of the 

3‘ portion of the GST gene between the BstBI and NotI restriction sites in pGEX-4T3. 

The 3 ‘ mutagenic primer replaced Aspartate 232 and Serine 233 with the tetra cysteine 
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motif CysCysProGlyCysCys.  The PCR product and the vector pGEX4T3 were 

sequentially digested with BstBI and Not I.  The restriction digest products were purified 

by agarose gel electrophoresis, ligated, and transformed into E.coli XL 10 (Stratagene).  

Subsequent clones were screened by the absence of an XhoI restriction site that is 

removed upon mutagenesis.  Clones without an Xho I restriction sites were sequenced 

(ACGT inc). 

 

4.3.2 Protein Expression and Activity Measurement 

4.3.2.1 Expression of GST-Fusion Proteins 

Tryptone and yeast extract were purchased from Fisher Scientific.  Plasmids 

harboring the GST fusion proteins were transformed into E. coli BL21 (Stratagene).  

Starter cultures of 50 ml LB media (10 g Tryptone, 5 g Yeast Extract and 10 g NaCl / l) 

containing 100 mg/l ampicillin were inoculated from single bacterial colony and 

incubated at 37 C and shaking at 250 RPM until the optical density at 600 nm reached 0.4 

to 0.6.  10 ml of the starter culture was used to inoculate 2.8 l Fernbach flasks containing 

500 ml 2xYT media (16 g tryptone, 10 g yeast extract, and 5 g NaCl / l) and 100 mg/ml 

ampicillin.  Cells were grown at 37 C, 250 RPM to an O.D. of 0.8 to 1.0 and then induced 

by adding IPTG at a final concentration of 1 mM.  The temperature was lowered to 30 C 

and the cells were grown an additional 12 – 14 hours shaking at 250 RPM.  Cells were 

collected by centrifugation and stored at – 80 C until use. 
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4.3.2.2 Purification and Characterization of GST fusion proteins 

Frozen bacterial cells were resuspended in 4 volumes (4 ml / gram wet cell paste) 

50 mM Tris-HCl pH 7.4 300 mM NaCl containing 4 mg / ml lysozyme, 0.05 mg/ml 

DNase,0.05 mg/ml RNase (Sigma Aldrich) and COMplete EDTA free protease inhibitor 

cocktail (Roche) (1 tablet / 25 ml).  Cells were stirred on ice 30 min followed by 

sonication for 30 seconds at 50 % duty cycle and 60% power (Branson Model 450 

sonifier).  Cells were then stirred an additional 30 min.  Cell debris was removed by 

centrifugation at 10000 RPM for 30 min in a Beckman J2-21 centrifuge equipped with a 

JA-20 rotor.  The supernatant was loaded onto a 3 ml GSTrap affinity column (GE 

Healthcare) equilibrated in 50 mM Tris HCl pH 7.4 300 mM NaCl and then washed with 

9 ml of equilibration buffer.  The pure GST fusion protein was eluted with buffer 

containing 10 mM reduced glutathione (GSH).  Fractions containing an XFP (or GST 

activity in the case of GST-TC) were pooled and concentrated using an Amicon Ultra 

centrifugal concentrators with a 10000 MW cutoff.  Excess GSH was removed from the 

samples by passing over a G25 column equilibrated in 0.1 M KPi pH 7.4.  Protein 

samples were either used immediately or frozen in liquid nitrogen after the addition of 

glycerol at a final concentration of 20%.  Frozen stocks were stored at – 80 C until use. 

 

4.3.2.3 Enzyme Activity Measurement  

Enzyme activity was measured using a well characterized GST catalyzed reaction 

of GSH and 1-chloro-2,4-dinitrobenzene (CDNB) whose product has an increased 

absorbance at 340 nm (11).  A stock solution of CDNB was prepared in absolute ethanol 

at a final concentration of 40 mM and a 0.1 M GSH stock solution was prepared in 0.1 M 
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KPi pH 6.5.  Reactions were carried out in 0.1 M potassium phosphate buffer, pH 6.5, 1 

mM CDNB, 5 mM GSH.  Kinetic traces were obtained by monitoring the absorbance 

increase at 340 nm.  A background rate of reaction was recorded for 1 min prior to the 

addition of GST fusion protein.  Reactions were initiated by the addition of an 

appropriate amount of the GST fusion protein and the pseudo first order rate was 

determined from the initial slope of the kinetic traces.  The extent of fluorescent protein 

chromophore maturation was estimated by measuring protein concentration using the 

BCA protein assay (Pierce) and comparing these values to the values obtained from the 

published chromophore extinction coefficients (Clonetech). 

 

4.3.3 Chromophore Assisted Laser Inactivation Setup 

An unfocused continuous wave argon-ion laser (Stabilite 2017, Spectra-Physics, 

Mountain View, CA) was used to irradiate FP-GST at the following wavelengths:  488nm 

for EGFP and FlaSH, 514nm for EYFP, and 457.9 for ECFP.  Laser power output was 

verified using a power meter (Coherent FieldMate with PM3Q head, Santa Clara, CA).  

The laser light was directed onto a chamber consisting of a Teflon plate into which a hole 

10 mm deep and 5 mm in diameter had been milled (Figure S-1).  This plate was placed 

on an x-y translation stage and the chamber was centered under the beam. In separate 

experiments, the temperature increase in the chamber during illumination was monitored 

at regular time intervals (1min)  using a thermistor TA-29 (Warner Instruments, Hamden 

CT) connected to temperature controller TC-344B (Warner Instruments, Hamden CT).  
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Prior to irradiation, the GST activity of the sample was assayed as a baseline for 

CALI efficiency measurements.  The UV-Vis absorbance spectrum, and the fluorescence 

intensity at the emission maximum of the FP GST enzyme activity were measured.  After 

illumination for a determined amount of time, the GST activity, absorbance and 

fluorescence were again measured as described above to determine the amount of CALI 

as well as the extent of chromophore and fluorophore bleaching. Typical UV-vis 

absorbance spectra before and after CALI are shown in (Figure 1B insets). The amount of 

CALI as a percentage is defined as: 

 

CALI =[1-(Aillumin/Acontrol)] x 100    Eqn. 1 

 

where Aillumin denotes enzymatic activity of the illuminated sample and Acontrol is the 

enzymatic activity before illumination.  To determine the possible temperature effect on 

the activity of GST-EGFP, a 100 µL sample of EGFP-GST was incubated for 5 minutes 

at temperatures ranging from 37 to 55 C and then assayed for GST activity and 

chromophore integrity. 

 

Oxygen Depletion and Singlet Oxygen Quenchers:  Oxygen was reduced in the 

GST samples by incubating with 2mM Na2S2O4 (Kodak, Cat. 1066513) solution in KPi 

buffer pH 7.4 for 10 minutes prior to irradiation. Oxygen was also reduced in the GST-FP 

samples by incubating with OxyFluor (Oxyrase, Inc, Mansfield, Ohio) and 10mM lactic 

acid in KPi (pH 7.4) for 30 minutes. A drop of mineral oil (~ 50 µl) was layered on top of 

the sample chamber to prevent oxygen exchange with the environment before and during 
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irradiation. The chamber was then flushed with Argon and sealed with a coverslip. The 

oxygen level in the buffer was measured using a calibrated Clark-type O2 mini-electrode 

(12). The sample was carefully removed to avoid the top layer of oil.  The singlet oxygen 

quencher sodium azide (10mM, and 100 mM; Sigma), and GSH (10mM, 40mM, Fisher) 

were incubated with samples containing GST-XFP for 15 minutes prior to illumination. 

 

 

4.4 RESULTS & DISCUSSION 

 

4.4.1 Spatial selectivity of FP CALI 

To assess the importance of the proximity of the fluorophore to the target protein, 

experiments were conducted in the presence and absence of thrombin which will 

specifically cleave the fusion in the linker region between GST and EGFP. Fig 4.1 A (left 

panel) shows pre and post irradiation kinetic traces for GST-EGFP (top) and a thrombin 

cleaved GST ::: EGFP (bottom). The CALI effect is evident only when the fusion protein 

remains intact thereby maintaining the EGFP and GST in close proximity.  When the 

fusion protein is cleaved, EGFP is bleached but no inactivation occurs. 
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Figure 4.1. The CALI effect and fluorophore and chromophore photobleaching depend on 
the illumination dose. 
(A) Kinetic traces of CDNB turnover. Top Left: GST-EGFP Before irradiation (circles) and after 
irradiation (squares). Bottom Left: GST-EGFP + 0.1U thrombin, before irradiation (circles) after 
irradiation (squares). Right SDS PAGE: Lane 1. Standards 2: GST-EGFP 3: GST:EGFP + 0.1 U 
Thrombin. (B, C &D) Relative activity (diamonds), fluorescence (rectangles) and peak 
absorbance (open triangles) remaining after irradiation decrease with increasing irradiation dose 
(obtained by increasing time at constant laser power) for purified XFP-GST. (B) ~ 25µM 
concentrations of EGFP-GST illuminated with 1200 mW at 488 nm. (C) a 27.5 µM concentration 
of EYFP-GST illuminated with 1200 mW at 514 nm. (D) a 29.1 µM concentration of ECFP-GST 
illuminated with 400 mW at 457.9 nm. Data points were collected in two (ECFP and EYFP) or 
three (EGFP) separate experiments and every point is the result of triplicate determinations. Error 
bars are standard deviations of such measurements. (In the case of EYFP and ECFP, 
determinations on the same day yielded error bars within the dimension of points on the graph.) 
All measurements (activity, blue; fluorescence, red and absorbance, green) were normalized to 
the initial values of non-illuminated sample to give relative values on the ordinate. 
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4.4.2 CALI dose-response characteristics for XFP-GST 

Figure 4.1 B, C, and D  show that bleaching and inactivation depends on the 

illumination dose (intensity [irradiance] X time) for GST-EXFP fusions.  The insets show 

representative absorption spectra at various exciting light doses and show that only the 

chromophore bleaches leaving UV absorption of the fusion protein intact.  Comparison of 

the results for GST-EGFP, GST- EYFP and GST- ECFP are instructive and yields some 

unexpected observations.  The dependence on light dose for fluorophore and 

chromophore bleaching is different for each XFP.  For EGFP and EYFP fusions, the 

fluorophore and chromophore bleaching exhibit similar dependencies on dose suggesting 

they are closely related processes.  For EYFP-GST, the dependence on dose is almost 

exactly similar for fluorophore and chromophore bleaching and both bleaching processes 

show perfect reciprocity between excitation flux and time of excitation (Figure S4.2).  

However, the ECFP chromophore is considerably more resistant to bleaching while the 

bleaching of the fluorescence occurs at lower illumination doses (compare Figure 4.1D to 

4.1B and 4.1C).  

 

The relationship between bleaching and CALI also depends on the XFP 

employed. First, when the chromophore is bleached, CALI is no longer effective as 

expected. In the case of EGFP-GST CALI, chromophore and fluorophore bleaching are 

parallel processes (Figure 4.1B), all tending towards completion, suggesting a common 

intermediate, most likely singlet oxygen (see below). By contrast, CALI of ECFP-GST 

and EYFP-GST is not complete and plateaus to non-zero values of inhibition as a 

function of dose (Figure 4.1C,D).  The magnitude of this effect depends on the laser 
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power employed.  When similar doses of illumination to EGFP-GST are delivered with 

600 mW of power but for longer durations, CALI is similarly not complete; compare 

Figure S4.3A (the same as Figure 4.1B for convenience) and S4.3B. One possibility for 

apparent protection of the enzyme at high light doses is that in the case of EYFP and 

ECFP, the chromophore is much more sensitive to the ROS produced during irradiation; 

thus, bleaching occurs before a significant amount of ROS can escape the β-barrel, 

thereby lowering the efficiency of inactivation.  Another possibility is that a fraction of 

these fusions is protected from CALI, presumably by structural factors inherent in the 

fusion protein.  

  

For EXFP fusions to be effective CALI reagents the inactivation needs to be 

specific and act on the target of interest in the presence of other cellular proteins.  In 

Figure S4.4, we show that similar characteristics for CALI are obtained when EGFP-GST 

is irradiated in bacterial cell lysates.  This is important because such lysates will be a 

more realistic approximation to CALI in the protein rich cytosol of cells.  

 

It was initially surprising that the CALI effect exhibited a strong dependence on 

the concentration of the XFP-GST tested.  This dependence is shown for EGFP-GST, 

EYFP-GST and for ECFP-GST in Figure 4.2.  This suggests that protein concentration 

dependent factors such as light-induced oligomerization or micro-aggregation play an 

important role in the mechanism of inactivation. This can be clearly seen in the 

absorption spectra of EGFP-GST in Figure 1B. At high dose, the spectra is typical of that 

dominated by light scattering and the samples become visibly turbid. To compare the 
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relative CALI efficiencies of the XFPs and FlAsH, we employed concentrations in which 

aggregation was limited.  These results are summarized in Table 4.1 and are normalized 

to the number of photons absorbed.  The study shows that the order of CALI 

effectiveness per absorbed photon is FlAsH>EGFP>EYFP>ECFP.  

 

TABLE 4.1 

Table I. Relative CALI efficiencies of purified FP-GST variants and FlAsH-labeled GST 

Probe λexc (nm) Dose (Joules) CALI 
inactivation 
(%) 

Relative CALI 
efficiency 

Relative CALI 
efficiency per 
absorbed 

EGFP 488 144 94 1 1 

ECFP 457.9 144 9 0.1 0.27 

EYFP 514 144 51 0.5 0.34 

FlAsH 488 36 80 6.6 2.43 

 

Data in column 4 are averaged experimental values as defined by Eqn 1. Values in column 5 were 
obtained by defining EGFP % CALI as 1 and correcting for dose. Final numbers in column 6 
were obtained by correcting the values in column 5 by a factor that reflects the product of the 
difference in the number of photons for an excitation dose at a given wavelength (e.g. there are 
more photons in a 144J dose at 488 nm than at 457.9 nm by a factor of 1.07) and the difference in 
the extinction coefficient for each CALI reagent at the excitation wavelength. 
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Figure 4.2. CALI effect of FP-GST depends on the concentration of illuminated sample. 
EGFP-GST (rectangles, 90J dose) and YFP-GST (open triangles, 144J dose) show similar 
dependency of CALI effect on illuminated sample concentration while CFP-GST (diamonds, 
216J dose), require much higher concentrations of the sample to show similar CALI effect. 
Inactivation is defined in Equation 1. Error bars are standard deviations of triplicate 
determinations at each concentration. 

 

 

4.4.3 Mechanism of EGFP-CALI 

4.4.3.1 CALI depends on oxygen and ROS: 

The FP-CALI and FlaSH-CALI process depends on both light and oxygen.  

Figure 3A shows a summary of the effects of adding ROS scavengers.  We employed the 

oxygen scavenger, Na2S2O4, to demonstrate that oxygen is required for the CALI 

process; we also removed oxygen using Oxy-Flour with similar effect.  It is likely that the 

predominant ROS is singlet oxygen as shown by the efficient quenching of CALI by 

NaN3, which increases going from 10 mM to 100 mM NaN3. In addition the general 

ROS trap, glutathione which is also present in the cytoplasm abrogates the CALI process.  

Interestingly, NaN3 had little effect on absorbance (Figure 4.3B) and fluorescence 

photobleaching of EGFP (data not shown).  However, it is clear that CALI of EGFP-GST 
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was inhibited because the light scattering signature is lost from the spectrum in the 

presence of NaN3.  (The  absorbance increase in the spectral region below 280 nm is due 

to specific absorption of NaN3 and not a light  scattering effect as determined by 

absorbance measurements of pure NaN3 in solution (data not shown)). This effect may be 

explained by the accessibility of the chromophore to the inhibitor.  Upon irradiation and 

interaction with molecular oxygen, the chromophore is exposed to a locally high 

concentration of ROS; unless the inhibitor can diffuse freely through the structure of the 

protein, inhibition of bleaching is apparently less efficient.  This also strongly suggests 

that it is the ROS that escape the β-barrel structure that cause the CALI effect and it is 

these species that can be quenched by azide.  Similar, though not identical, inhibition 

effects are seen for EYFP- and ECFP-GST CALI experiments (Figure S4.5). 

 

4.4.3.2 CALI is accompanied by cross-linking and breakdown 

SDS PAGE was employed at the end of the experiment to assess the integrity of 

the EGFP-GST as shown in Figure 4.3B (inset) after maximum dose.  The gel reveals 

evidence of small amounts of both higher and lower MW components.  The former 

suggests ROS induced cross-linking (13) while the latter band at ~ 25KDa reveals a 

photoinduced cleavage, possibly between EGFP and GST.  
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Figure 4.3. Effect of inhibitors on the CALI effect and chromophore bleaching 
(A) EGFP-GST CALI effect depends on the presence of oxygen. GST activity diminishes after 
illumination with 180J dose (middle bar) but removal of oxygen from solution by addition of 2.5 
mM of sodium dithionate (Na2SO4) or OxyFluor prevents inactivation of GST by light. Addition 
of 10 mM and 100 mM of sodium azide (NaN3) partially decreases the inactivation of EGFP-
GST after illumination with 180 J dose of light and its effect increases with the concentration 
implicating singlet oxygen in CALI inactivation of EGFP-GST. When introduced into solution at 
10 mM and 40 mM (not shown) concentrations, GSH—a general ROS inhibitor, commonly 
present in cells, almost fully protects the enzymatic activity of EGFP-GST against CALI. (B) 
Absorbance spectra of EGFP-GST show formation of crosslinked photoproducts after 
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illumination with 144J dose of light (green line, compare to control, red line). Addition of 
100mM NaN3 prevents the formation of such aggregates but it does not prevents the 
chromophore photobleaching. This indicates that ROS are responsible for formation of 
crosslinked aggregates. Inset: SDS PAGE analysis of EGFP-GST after illumination with different 
doses of light. Main band, centered around 53 kD, represents EGFP-GST construct. High 
molecular weight (>100 kD) bands with increased amount of protein show after illumination of 
the sample with increasing doses of laser light. These bands are probably crosslinked 
photoproduct. Minor amounts of degradation (presumably, photocleavage) indicated by lower 
molecular weight bands (~ 30 kD). 
 

4.4.3.3 CALI is not due to thermal effects 

The temperature increase at the end of a given irradiation was monitored and a 

substantial temperature increase (to~ 45 C) occurred due to the absorption of XFP but no 

appreciable increase was recorded in buffer alone.  This is shown in Figure S4.6A. 

However, the GST part of the fusion protein remains enzymatically active when 

incubated at temperatures up to 50 C for 5 min (Figure S4.6B), which is similar to the 

heating observed during irradiation.  During this same incubation, the fluorophore and 

chromophore were similarly stable (Figure S4.6B).   Above 50 C, enzyme activity 

dropped rapidly presumably due the thermal denaturation of the GST but molecular 

integrity of the fusion was retained as shown by SDS-PAGE analysis (Figure S4.6C) as 

would be expected.  GST-ECFP and GST-EYP were also tested and remained stable at 

temperatures <50 C (data not shown).  Therefore, we conclude that the inhibition of 

CALI activity is due to light-mediated damage and is not due to thermal effects. 
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4.5 DISCUSSION 

 

Overall, we have shown that the XFP-CALI effect involves light and oxygen.  

Bleaching and CALI follow parallel courses for GST-EGFP but not in the case of GST-

ECFP or GST-EYFP where some of the fusion protein is effectively protected against 

CALI at higher irradiation doses (Figure 4.1). Post CALI SDS gels followed show that 

EGFP-GST remains largely intact after irradiation (Figure 4.3B, inset), although a small 

amount of aggregation and cleavage occurs. At higher concentrations of protein, 

crosslinking and aggregation, as evidenced by the spectra in Figure 3B as well as the 

dependence of inactivation on protein concentration, presumably play a role in the 

mechanism of inactivation.  Indeed, our results conform to general patterns of singlet 

oxygen damage inflicted on proteins: breakage of the protein backbone is relatively 

unlikely but aggregation via singlet oxygen mediated cross-linking is a common damage 

mode (13-15). 

 

The effectiveness of an XFP as a CALI reagent appears to involve a complex 

interplay of various factors as depicted in Figure 4.4.  First, there are factors intrinsic to 

the XFP itself including the type of chromophore, its maturation and its stability.  Next, 

one needs to consider the particular fusion, the inactivating light dose and the presence of 

molecular oxygen.  Finally,  mechanistic factors will be important: the spatial disposition 

of the chromophore and the target protein (some orientations may not favor inactivation 

mediated by ROS), the relative amounts of ROS released from the XFP vs. ROS trapped 

inside the XFP which will cause bleaching, and, the propensity for intramolecular as 
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contrasted to cross-linking damage inflicted on the target protein. In general, the 

mechanism of fluorescent protein CALI will be multifactorial so that, at this juncture, 

case by case empirical studies will be required before rational design principles can be 

developed. 

 

 

Figure 4.4 Factors influencing the effectiveness of XFP-CALI 

 

It is likely that both the photobleaching and the CALI effect proceed from the 

triplet state obtained via intersystem crossing after excitation (see, for example, 3). 

However the quantum yields for photobleaching and CALI are much smaller than that for 

emission. Thus when a pulse of light is absorbed by the chromophore, a large burst of 

emitted photons accompanies the absorption as well as a much smaller burst of ROS, 

albeit with time delays.  It is likely that the major ROS produced by light interaction with 
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EGFP, at least, will be singlet oxygen (3, 16, 17). If the photoproducts escape the XFP, 

they will form a cloud whose dimension is defined by the excitation intensity, the 

mobility of the ROS and the density of reactive sites proximate to the ROS generator.  

We suppose that the effectiveness of CALI will depend on the ratio of escaped ROS to 

those trapped in the barrel where they can bleach the fluorophore and chromophore; 

bleaching the chromophore will effectively terminate CALI. Xanthene-based dyes would 

be expected to be more effective CALI reagents since they have a higher intrinsic 

quantum yield for the production of ROS and the ROS produced have little structural 

impediment to reaching reactive amino acid residues.  Thus, the increased effectiveness 

of FlAsH as compared to the XFPs (Table 4.1) could be expected. Indeed, the first studies 

done on the effectiveness of GFP for CALI in vitro were done by Surrey et al. (10) who 

showed that the irradiation dose for a given inactivation of β-galactosidase was roughly 

6000X and 70X higher than that required for fluorescein and malachite green tagged 

antibodies, respectively.  Rajfur et al performed the first EGFP-CALI studies in cells (1) 

and showed that when EGFP-alpha-actinin was locally inactivated, detachment of the 

actin filaments linked to integrins through alpha-actinin occurred.  The local irradiation 

dose was estimated to be approximately 200X that used for ReAsH studies (105 kJ/cm2) 

(8). 

 

The order of CALI effectiveness is FlAsH>EGFP>EYFP>ECFP normalized to 

equal number of photons absorbed, with FlAsH being considerably more effective. Being 

a good sensitizer is a double-edged sword, however, because it generally means that the 

probes are quite bleachable.  This hampers localization by fluorescence imaging and 
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means that CALI is being effected while the target protein is being localized in the image.  

In this respect, some XFPs, such as EGFP, will have an advantage in that the CALI 

regime is separated from the imaging regime in terms of the irradiation dose required for 

each operation.  

 

We have discussed desirable characteristics for a CALI chromophore elsewhere 

(3) and several improvements could be anticipated. First, for the XFPs, high throughput 

screens (18) can be designed to screen many FP mutants for an optimal compromise 

between CALI and facile imaging.  Second small, highly specific, dyes may be designed 

to bear both a CALI chromophore and a spectrally distinct fluorophore for imaging the 

location of the target protein without excessive bleaching.  Recently, an optimization of 

CALI chromophores was accomplished based on the Halo reagent (19). 
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4.6 SUPPLEMENTAL FIGURES 

 

 

Figure S4.1 Experimental setup 
Schematic showing the experimental setup for in vitro EGFP-CALI. An unfocused beam from a 
continuous wave (cw) Argon ion laser is reflected off a mirror into a single well of a Teflon 
chamber containing FP-GST sample. Each individual well of the sample chamber has 5 mm 
diameter, close to the laser beam diameter (3 mm) to insure irradiation of the entire sample 
volume (100 µl). 
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Figure S4.2 Reciprocity in flux and time of irradiation for EYFP-GST. 
EYFP fluorescence (A) and chromophore (B) photobleaching depends on the illumination dose 
only, with laser beam power and time of illumination being reciprocal (1200 mW and 600mW at 
514 nm). The results are presented as a ratio of sample fluorescence signal after illumination 
(Filluminated) and before illumination (Fcontrol). Correspondingly, chromophore photobleaching is 
measured as ratio of sample absorbance at 514 nm after illumination (Ailluminated) and before 
illumination (Acontrol). 
  

B

A
il

lu
m

in
a

te
d
/A

c
o

n
tr

o
l

Figure S-2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

Dose(J)

600mW 1200mW

A

F
il

lu
m

in
a

te
d
/F

c
o

n
tr

o
l

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

Dose(J)

600mW 1200mW

B



 
 

106 

 

Figure S4.3 CALI depends on the power that is used to deliver a given dose.  
Both the CALI and fluorophore and chromophore photobleaching is more pronounced at similar 
doses when GST-EGFP is illuminated with 1200 mW (A) than with 600 mW (B) at 488 nm laser 
power. Figure S-3A is reproduced from text figure 1B for reader convenience. All measurements 
(activity, blue; fluorescence, red and absorbance, green) were normalized to the initial values of 
non-illuminated sample to give relative values on the ordinate. 
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Figure S4.4 CALI of EGFP-GST in bacterial cell lysates. 
GST-EGFP activity (open bars) and EGFP fluorescence (full bars) decrease with increasing 
illumination dose, showing the same trend as purified protein. The presence of NaN3 diminishes 
CALI effect while the decrease in fluorescence remains comparable to that without NaN3. 
Concentration of GST-EGFP in lysate is estimated to be ~ 12µM based on enzyme activity. All 
measurements (activity, open bars) and fluorescence (filled bars) were normalized to the initial 
values of non-illuminated sample (control) to give relative values on the ordinate. 
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Figure S4.5 Effect of singlet oxygen quencher sodium azide on ECFP & EYFP-mediated 
CALI. 
A and B: Enzymatic activity of GST–EYFP decreases after 144J dose illumination with 514 nm 
laser light. Enzymatic activity of GST-EYFP is protected from CALI inactivation in the presence 
of 100mM NaN3 (panel A). A similar effect is observed for GST-ECFP (216J of 457.9nm laser 
light) (panel B). C and D: Fluorophore bleaching in the presence and absence of sodium azide for 
GST- ECFP and GST-EYFP, respectively. For A-D, all measurements were normalized to the 
initial values of non-illuminated sample (control) to give relative values on the ordinate. E and F: 
Absorbance spectra of GST-ECFP (panel E) and GST- EYFP (panel F) show the chromophore 
photobleaching in the presence and absence of sodium azide. These results are similar to those of 
GST-EGFP (Figure 3B) where CALI of GST activity is inhibited in the presence of azide yet the 
bleaching of the chromophore /fluorophore is relatively unaffected. 
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Figure S4.6 CALI is not due to laser heating-induced thermal denaturation of GST. 
(A) Laser illumination of 15.2 µM of EGFP-GST increases the sample temperature (blue 
diamonds) but not of buffer alone (red triangles). (B) EGFP- GST activity (triangles), as well as 
the chromophore (empty squares) and the fluorophore (full squares) are thermally stable up to 50 
C. (C) SDS PAGE analysis of EGFP-GST shows no crosslinking or degradation products after 
incubating EGFP-GST at different temperatures, 49 C, 52 C and 55 C for 5 min demonstrating 
that molecular integrity of EGFP-GST is retained after laser illumination.   
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CHAPTER 5 

Use of microfabrication to measure local cell-substrate adhesion: 
An FET (Field Effect Transistor) cell adhesion sensor 1 

 
5.1 SUMMARY 

 

 The regulation of cell substratum adhesion is central to cell migration but there is no 

real measure of the strengths of local adhesion bonds to the substratum at different points 

under the cell. We are testing the use of micron scale Bio-Field Effect Transistors (BioFET) 

to sense the presence of cell adhesions under individual migrating cells.  Feasibility tests 

have begun with charged beads and extracellular matrix proteins.  Charges from the bead or 

ECM protein coating juxtaposed to the BioFET gate will modulate the source to drain 

current.  In live cell adhesion experiments, the attachment of the cell to the gate produces a 

significant signal change that can be partially restored using Trypsin/EDTA to detach the 

cells.  The signal change is based on the charge density of the cell surface and its proximity 

to the gate interface. Further studies will establish the feasibility of this method to detect 

local cell adhesion followed by the use of the technique as a basis to estimate adhesion forces 

using spatially resolved mechanical methods provided by, for example, AFM.    

 

                                                
1 Zaozao Chen contributed to all of the Figures in this Chapter, and also was the primary 
contributor to the overall organization, writing and editing of this manuscript. Smita Sarkar 
and Bongmook Lee contributed to Figure 5.2, 5.3, 5.4, data analysis, and editing of the 
methods. 
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5.2 INTRODUCTION 

 

 The regulation of cell substratum adhesion is central to cell migration. A textbook 

paradigm for cell migration, based on fibroblasts and epithelial cells, is that a cycle exists 

whereby first cells make adhesions at their leading edge, which forms a base for internal 

contractile forces to pull up the trailing. The latter process requires that cells break adhesions 

at their trailing edge by mechanically pulling them up and/or enzymatically releasing them 

(1). Adhesions in these cell types include focal adhesions and their precursors, about which 

much is known (2) and close adhesions about which far less is known although these 

adhesions are prevalent in fast moving cells (3). Conventional wisdom is that focal adhesions 

form much stronger bonds to the substrate than do close contacts. Although much is being 

learned about the regulation and function of focal adhesions in fibroblasts (1, 4, 5), virtually 

nothing is known about the strength of individual adhesions to the substrate. Yet the strength 

of adhesions will dictate how efficiently internal contractile forces can be delivered to the 

substrate to generate tractions which serve to move the cell and/or remodel the surrounding 

extracellular matrix. Thus, knowledge of the strengths of adhesions will play a key role in 

our understanding of how cells migrate. Indeed, such knowledge will be important in 

generating complete understanding of the metastatic phenotype in which benign tumor cells 

lose positional control and migrate to distal sites to seed new tumors. 

 

          Various methods have been developed to measure relative adhesion of cells to 

substrates. These include mechanical methods including centrifugal force (6) or fluid flow 

(7) to detach cells from their substrates. Some instrumentally sophisticated technologies for 
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cell-based assays have emerged including optophoresis-based cell analysis in an optical field 

(8), acoustic field-based detection (9), optical biosensors (10), piezoelectric approaches such 

as Quartz Crystal Microbalance (QCM) (11), and electrical detection based on cell–substrate 

impedance measurements, such as ECIS or RT-CES systems (12, 13, 14). These techniques 

are either based on cell population averages or individual cells as units with no subcellular 

resolution of adhesion strength. 

 

          Thus, a barrier to cell migration investigations is that there is no real measure of local 

adhesion strength. To address this void in our knowledge, we collaborated with Professor 

Veena Misra at North Carolina State University. In this Chapter, we report our development 

of individually addressable open gate field effect transistors that can sense the presence of 

adhesive regions under single cells attached to the substrate, based on a chemical ion sensor 

pioneered by Dr. Misra (15). The concept of the device is similar to the BioFET pioneered by 

Fromherz lab, which has been used for detection of neuron action potentials (16). 

 

5.3 MATERIALS & METHODS 

 
5.3.1 Cells, Staining and Microscopy 

NIH 3T3 cells and NBT-II cells were acquired from the ATCC (Manassas, VA). NIH 

3T3 cells and NBT-II cells was maintained in high glucose DMEM and DMEM/F-12 

medium (Gibco, Grand Island, NY) respectively; both medium contain 10% FBS, 100 

units/ml penicillin and 100 µg/ml streptomycin.  
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The EGFP-Paxillin-β was generated by subcloning DNA fragments expressing wild-

type paxillin and wild type vinculin into a pEGFP-C vector (Clontech, Mountain View, CA). 

NBT-II cells were transfected using the Lipofectamine Plus transfection reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s protocol.  

 

For immuno-staining, NBTII cells were fixed by using paraformaldehyde solution [4 

% (w/v) in PBS, pH 7.4] for 20 minutes at 25°C. Cells were then permeabilized with PBS 

containing 0.05 % Triton-X-100 for 5 minutes at 25°C. Fluorescence labeling was carried out 

by treating with primary antibodies, washing with medium and then treating with fluorescent 

secondary antibodies followed by washing.   

 

Epi-fluoresence imaging was carried out on a dual-channel Olympus IX81 inverted 

microscope equipped with a 60×, oil immersion, 1.45 NA objective. Interference Reflection 

Microscopy (IRM) imaging was performed using a 100×, oil immersion, 1.65 NA objective. 

Images were captured using an air-cooled SensiCam QE CCD camera (Cooke Corp., 

Romulus, MI) driven by Metamorph (Molecular Devices/Meta Imaging, Downingtown, PA). 

 

5.3.2 Mask design 

Fabrication of the 3D structure on a silicon wafer includes doping, forming an 

insulator level SiO2, coating metal for contact, and finally covering the insulator on the top. 

We used five mask layers (in the MoleFlash mask set), which are: (i) Zero, (ii) Active, (iii) 

Contact, (iv) Metal, and (v) Glass. The Zero level is used for making lithography alignments 

at the wafer level. Each level after that is primarily aligned to the preceding level. There are 
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secondary alignment marks to align to any of the previous levels. Dr. Smita Sarkar, our 

collaborator in Dr. Misra’s lab, designed this mask, and I participated in the design. 

 

5.3.3 FET fabrication: Process Flow 

An overview of the processing steps involved in each of the mask levels of the 

MoleFlash mask set is provided here, and illustrated in figure 5.1.  

 

1. Zero Layer:  

Lithography alignment marks are made at the wafer level by etching them into Si. 

The sequence of steps in this layer involved, starting from blanket Si (100) n-

type(phosphorous-doped) polished wafers, is: (i) JTBaker wafer cleaning. (ii) 

photolithography to pattern the alignment marks (pre-coat hard bake, photoresist spin-coat, 

pre-exposure soft bake, exposure, develop, and post-develop hard bake). (iii) “de-scum” 

using plasma asher, a type of cleaning, to improve resist edge profile. (iv) wet etch Zero layer 

Si using poly etch. (v) strip photoresist. 

 

2. Active Layer:  

The P+ source-drain regions are defined by ion implantation of boron atoms using 

patterned wet oxide layer as mask. The sequence of steps is: (i) JTBaker clean. (ii) wet oxide 

(~ 100 nm) growth for ion implant mask. (iii) photolithography to pattern oxide as mask for 

ion implantation including wafer backside photoresist coat. (iv) descum. (iv) wet oxide etch 

using buffered oxide etch (BOE) to open up source drain regions. (v) strip photoresist. (vi) 



 
 

117 

JTBaker clean. (vii) ion (boron, or phosphorus) implantation. (viii) wet oxide etch to 

completely remove mask oxide layer (both front and back). 

 

3. Contact Layer:  

Isolation (field) oxide is grown and gate region and source-drain regions are opened 

up by patterning the oxide using the contact layer mask. The thermal oxidation step also 

serves as an implant anneal to activate the source-drain dopants. The sequence of steps is: (i) 

JTBaker wafer cleaning. (ii) field (wet) oxide growth. (iii) photolithography. (iv) descum. (v) 

wet oxide etch to open up gate region and source-drain regions. (vi) strip photoresist. 

 

4. Metal Layer:  

Metal contacts to source-drain regions are formed by lift-off processing of the 

sputtered metal. The metal typically used is tungsten (W). The sequence of steps is: (i) 

JTBaker wafer cleaning. (ii) photolithography for metal lift-off. (iii) descum. (iv) source-

drain remnant oxide etch (BOE). (v) back-door etch using 1% hydrofluoric acid (HF). (vi) 

metal deposition (W sputtering or aluminum/titanium evaporation). (vii) lift-off processing. 

 

5. Glass Layer:  

Low temperature oxide (LTO) is deposited as passivation layer using low pressure 

chemical vapor deposition (LPCVD) process, and holes to gate region and end of the metal 

lines to source-drain regions by patterning the oxide using the contact layer mask. The 

sequence of steps is: (i) LTO (~ 400 nm) deposition. (ii) photolithography. (iii) descum. (iv) 

wet oxide etch to open up the holes to gate region and metal contact pads. (v) resist strip.  
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Figure 5.1. Schematic figure for fabrication of 5 layers. FET process flow (MoleFlash mask 
levels): cross-sectional view of FET active area. The figure corresponding for each level shows the 
critical step at that level. The final cross-sectional view of the FET device is shown in (v). (reprinted 
with permission from 15).  

 

5.3.4 Electrical analyses 

The electrical analyses were performed using a CHI 600 electrochemical analyzer and 

an HP 4155B semiconductor parameter analyzer. A silver wire was used as the 

counter/reference electrode. PBS (PH 7.4) (Gibco) and DMEM (Gibco) are used as 

electrolytes in the measurement. 

 

  



 
 

119 

5.4 RESULTS 

 

5.4.1 Fabrication of BioFET. 

The fabrication of our BioFET was processed according to the steps described in 

methods 5.3.2 and 5.3.3. Figure 5.2 shows the structure of our final fabricated BioFETs. 

Each BioFET contains five layers, as described above. Figure 5.2 left panel is an EM images 

of the device. The parameters for each structure are marked and indicated in the figure. The 

upper panel on the right is a 10X interference reflection microscope image showing the 

whole FET device; the lower panel is a 40X interference reflection microscope image 

focusing on one side of the device, including active layer, contact layer, metal layer and the 

5µm gate region. 

 

Figure 5.2. Fabrication and structure of our BioFETs. In fabrication, each bioFET contains five 
layers, which are shown in SEM images (panel A). The device in panel A has a gate size of 10µm x 
50 µm. Panel B and C are 10x and 40x interference reflection microscopy images showing the 5µm 
gate FET device. In the images, the grayscale reflects thickness of each layer and different material in 
each layer.  
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Use of Nano-technology to measure local cell-substrate adhesion 
An FET (Field Effect Transistor) cell adhesion sensor 
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1.Department of Cell and Developmental Biology, UNC-Chapel Hill. 2. Department of Electrical and Computer Engineering, NCSU 
3.Program in Molecular and Cellular Biophysics, School of Medicine, UNC-Chapel Hill 

Background:  
BioFETs (biologically active field-effect transistors) are biosensors with a semiconductor transducer. 
Compared to other technologies, BioFETs have the advantages of direct measurement, label-free, 
ultrasensitive, and real-time operation; they have gained attention as potentially fast, reliable, and 
low-cost biosensors for a wide range of applications including detection of immobilized enzymes 
(enzyme FETs), antibodies (ImmunoFETs), or DNA (DNAFETs) 
 
Specific Aims:  
Use of BioFET as a cell adhesion sensor to measure local cell-substrate adhesion: 
 (1) Demonstrate the feasibility of a device that can spatially resolve the adhesions of single cells to 
substrates based on an array of individually addressable open gate field effect transistors. 
 (2) Increase the spatial resolution of the instrument by developing the technology to place more 
open gate field effect transistors under adherent cells. 
 (3) Explore methods to calibrate the signals from each transistor in terms of adhesion strength at 
that point under the cell. 
 

1. Concept of BioFET and Cell adhesion FET sensor. 
 

2. Fabrication and setup of BioFET for Cell adhesion measurement 
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3. Charged beads, Fibronectin and Cell adhesion signal on FET 
 

4. New designs and future plan 
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Figure 1, A schematic figure of FET. FET structure is schematically shown as 
above. The channel connects source and drain, and the gate can modulate the 
current through the channel. Here we use the water as an analogy to explain how 
FET works (lower panel). 

Figure 2, Cell adhesion FET sensor. Cells keep on forming very dynamic adhesions to substrate as shown by an 
Interference Reflection Microscopy (IRM) image (left panel). Our long term aim is to develop an array of FET sensors, 
which are less than micron in dimension and individually addressable, thus these FETs can be applied to measure the 
cell local adhesion and record the dynamics of adhesion in real-time.  

Figure 3, How does BioFETs function and their  potential 
applications. Upper panel is a schematic figure showing how the 
charges from the bio-moleculars can modulate bio-FET signal. 
BioFETs have been applied to detect layers of immobilized 
enzymes, antibodies, or dna strands. In the lower panel there is 
an example of application of BioFET: 
Nano-wire detect single virus binding,  
Cui Y, Lieber CM. PNAS, 2004, 101: 14017-22 
 
 

Figure 4, How does cell adhesion BioFETs function. At pH 
7.4 most of the cell surface are negatively charged. During the 
cell attachment process, negatively charged cell membrane is 
brought near to the BioFET gate. Thus the changes of charge 
density on the BioFET gate will produce a correspondingly FET 
signal change, which may be detectable. 
 

Figure 5, System setup of cell adhesion BioFETs. The 
probing system is conneted to Source, Drain, Gate and Bulk of 
our BioFET. Gate electrode has a silver wire immersed in 
electrolyte –contained pippet tip. As shown in right panel, voltage 
is applied between Source and Drain, and Id-s current is 
measured. A reference voltage is applied to the gate. Electrolyte 
on the gate can be PBS, or cell culture medium. 
 
 

Figure 6, Fabrication and structure of our BioFETs. In fabrication, each bioFET contains five layers, 
which are shown in EM images (left panel). Right panel is a reflection microscope image showing a device 
with 5um gate.  
 

Figure 7, Comparison between solid state FET and our BioFET. 
Standard FET fabrication and application are mainly based on solid state 
devices, which have direct metal-gate contact and can only be used in none 
conductive environments such as vacuum or airs but not in buffers or 
solutions. A careful study of our BioFET characteristic is essential , since our 
bioFETs have different gate structure than solid state FET while cell 
attachment process require aqueous environment and isolation between 
buffer and FET chips. By experiment and comparison between our device 
with normal solid state device. We found they have similar Id-Vd curve 
patterns and fabricated BioFETs have very good FETs characteristics.  
 
 

Figure 9, 3T3 cell adhesion can be detected by BioFET. Upper panel is the schematic figure for 
our device, middle panel is the reflective microscopy image to show the cells attachment on the 
gate. We plant cell into the well for 24 hours for their adhesion. BioFET signal was measured before 
and after cell attachment. Cells are then fixed labeled with Rhodamine-pholloidin for their actin-
cytoskeleton. The lower panel shows the the Id-Vg signal change before and after cell adhesion for 
n-FET and p-FET respectively. 
 

Figure 8, Charged beads and Fibronectin were detected by BioFET. 
Charged beads with ~-50mV surface charge (Invitrogen), and Fibronectin are 
tested on nFET. Correspondingly significant signal modulation was observed. 
 

Figure 10, New designs of BioFET. Left panels are our new designs of cell adhesion BioFETs. The design of Parallel gates will allow us to study adhesions at different sub-regions of the 
cell, or the adhesion formation and disassembly when cell migrating through different FET gates. AFM or Magnetic tweezers is planned to be utilized to calibrate the signals from each 
transistor in terms of adhesion strength at that point under the cell. 
 

Supported by NIH GM073180, Cell Migration Consortium GM64346 
Acknowledgment to NC state Nanofabrication Center. 
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5.4.2 Performance testing of the BioFETs 

After the fabrication of BioFETs, we tested their electrical behavior and compared it 

with a conventional solid state FET. This step is essential mainly because of following 

reasons: 

a) The gate of a normal solid state FET is usually covered with metal and the voltage is 

applied directly to the gate. However, in our open-gated-BioFET, there is no metal on the 

gate. The gate voltage is applied from the silver wire, which is immersed in the electrolyte on 

the top of the gate such that the silver wire has no direct contact to the gate.  

b) All of the cell experiments require cell culture medium which is the gate electrolyte in our 

BioFET experiments. Thus, understanding of device electrical behavior under these buffers is 

important.  

 

In order to confirm whether our fabricated BioFETs behave similar to a normal FET, 

we tested the Id-Vd (current from source to drain (Id) against the voltage applied between 

source and drain (Vd) , under a specified gate voltage) characteristic curves of our open gate 

FET and compared them to the solid state FET in a similar range of gate voltages, as shown 

in figure 5.3. We found they have similar Id-Vd curve patterns but fabricated BioFETs have 

lower source to drain currents.  
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Figure 5.3. Comparison between solid state FET and our BioFET. Standard FETs are solid state 
devices, which have direct metal-gate contact and can only be used in none conductive environments 
such as vacuum or air but not in electrolyte solutions. Our bioFETs have a different gate structure 
than solid state FETs. Cell studies require aqueous as environment, here, gate oxide isolate the FET 
gate region from the electrolyte solution. A) Id-Vd curve of our 5µm gate BioFET in PBS (ph7.4). Id-
Vd curve patterns of our fabricated BioFETs shows typical FET characteristics, in the range of 1.1v-
1.5V; an increase of 100mV induced more than a 150% Id current increase. B) Id-Vg curve of a 
standard solid state FET.   
 
 

5.4.3 Charged beads on FET devices  

 

In order to study the effect of charge on the bioFET characteristics, we first applied 

Dynal beads M-280 Streptavidin (Invitrogen) to the device as a cell mimic. Dynal beads are 

small in diameter (2.8µm) while containing strong negative charges (-50mV) on their surface 

providing a similar negative surface potential cells. After adding charged beads to the gate, 

the signal from device changed by more than 60%, indicating the potential of this device for 

live cell measurements. 
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Figure 1, A schematic figure of FET. FET structure is schematically shown as 
above. The channel connects source and drain, and the gate can modulate the 
current through the channel. Here we use the water as an analogy to explain how 
FET works (lower panel). 

Figure 2, Cell adhesion FET sensor. Cells keep on forming very dynamic adhesions to substrate as shown by an 
Interference Reflection Microscopy (IRM) image (left panel). Our long term aim is to develop an array of FET sensors, 
which are less than micron in dimension and individually addressable, thus these FETs can be applied to measure the 
cell local adhesion and record the dynamics of adhesion in real-time.  

Figure 3, How does BioFETs function and their  potential 
applications. Upper panel is a schematic figure showing how the 
charges from the bio-moleculars can modulate bio-FET signal. 
BioFETs have been applied to detect layers of immobilized 
enzymes, antibodies, or dna strands. In the lower panel there is 
an example of application of BioFET: 
Nano-wire detect single virus binding,  
Cui Y, Lieber CM. PNAS, 2004, 101: 14017-22 
 
 

Figure 4, How does cell adhesion BioFETs function. At pH 
7.4 most of the cell surface are negatively charged. During the 
cell attachment process, negatively charged cell membrane is 
brought near to the BioFET gate. Thus the changes of charge 
density on the BioFET gate will produce a correspondingly FET 
signal change, which may be detectable. 
 

Figure 5, System setup of cell adhesion BioFETs. The 
probing system is conneted to Source, Drain, Gate and Bulk of 
our BioFET. Gate electrode has a silver wire immersed in 
electrolyte –contained pippet tip. As shown in right panel, voltage 
is applied between Source and Drain, and Id-s current is 
measured. A reference voltage is applied to the gate. Electrolyte 
on the gate can be PBS, or cell culture medium. 
 
 

Figure 6, Fabrication and structure of our BioFETs. In fabrication, each bioFET contains five layers, 
which are shown in EM images (left panel). Right panel is a reflection microscope image showing a device 
with 5um gate.  
 

Figure 7, Comparison between solid state FET and our BioFET. 
Standard FET fabrication and application are mainly based on solid state 
devices, which have direct metal-gate contact and can only be used in none 
conductive environments such as vacuum or airs but not in buffers or 
solutions. A careful study of our BioFET characteristic is essential , since our 
bioFETs have different gate structure than solid state FET while cell 
attachment process require aqueous environment and isolation between 
buffer and FET chips. By experiment and comparison between our device 
with normal solid state device. We found they have similar Id-Vd curve 
patterns and fabricated BioFETs have very good FETs characteristics.  
 
 

Figure 9, 3T3 cell adhesion can be detected by BioFET. Upper panel is the schematic figure for 
our device, middle panel is the reflective microscopy image to show the cells attachment on the 
gate. We plant cell into the well for 24 hours for their adhesion. BioFET signal was measured before 
and after cell attachment. Cells are then fixed labeled with Rhodamine-pholloidin for their actin-
cytoskeleton. The lower panel shows the the Id-Vg signal change before and after cell adhesion for 
n-FET and p-FET respectively. 
 

Figure 8, Charged beads and Fibronectin were detected by BioFET. 
Charged beads with ~-50mV surface charge (Invitrogen), and Fibronectin are 
tested on nFET. Correspondingly significant signal modulation was observed. 
 

Figure 10, New designs of BioFET. Left panels are our new designs of cell adhesion BioFETs. The design of Parallel gates will allow us to study adhesions at different sub-regions of the 
cell, or the adhesion formation and disassembly when cell migrating through different FET gates. AFM or Magnetic tweezers is planned to be utilized to calibrate the signals from each 
transistor in terms of adhesion strength at that point under the cell. 
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5.4.4   3T3 cell adhesion detected by BioFET 

Next, we tested whether cell adhesion can be detected by BioFETs.  104 3T3 cells 

were plated on the BioFET gate (0.5cm2), and cultured for 24 hours in a 37-degree incubator. 

The source to drain current (Id) was tested under different gate voltage to get the Id-Vg 

curve. Id-Vg curves were measured before and after cell attachment. A schematically figure 

for the device and measurement setup is shown in Figure 5.4A. Figure 5.4B is the IRM 

image indicating the structure of the device. Figure 5.4C shows the 3T3 cells labeled with 

cytoskeleton marker showing that one cell is on the top of our BioFET gate. Figure 5.4D is 

the overlay of the cell and BioFET. (The fixation and Rhodamine-phalloidin labeling for 

actin-cytoskeleton was done after BioFET measurement). Figure 5.4E shows the Id-Vg curve 

before and after cell attachment on an nFET (negative channel Field Effect Transistor). A 

clear difference can be observed. Figure 5.4F shows the Id-Vg curve before and after cell 

attachment in same conditions but on a pFET (possitive channel Field Effect Transistor). The 

nFET uses electrons as the charge carrier in the channel; thus, the negative charge on the cell 

surface results in a signal decrease (shift downwards of Id-Vg). The pFET uses holes as the 

charge carrier in the channel; thus, the negative charge on the cell surface results in a signal 

increase (shift upwards of Id-Vg curve). Comparing with previous panel, we can see the 

pFET is less sensitive than the nFET in detecting cell attachment. Figure 5.4G shows source 

to drain current (Id) against time after the 3T3 cells were cultured overnight. Then PBS w/o 

Mg2+ and Ca2+ was used to wash 3T3 cells and when cells were maintained  at  37C in PBS 

for 30mins, a significant Id signal decrease was observed, which indicates weakening of cell-

substrate adhesions. Use of trypsin treatment for 30mins further decreased the signal to a 

lower state, which indicates nearly total detachment of the cells.  
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Figure 5.4  3T3 cell adhesion can be detected by BioFET. Panel A is the schematic figure for our 
device and setup of experiment. Panel B is the IRM image showing the structure of the BioFET 
including: gate, source and drain structures which are marked in the panel correspondingly. Panel C is 
the EPI fluorescent image showing Rhodamine-phalloidin labeled actin cytoskeleton of 3T3 cells. 
Panel D is the overlay of panel B and C showing 3T3 cells attachment on the gate. Panel E and F 
show the Id-Vg curves before and after cell adhesion for n-FET and p-FET respectively. Panel G 
measures the Id current against time, first Id values was measured during cells in culture; next Id was 
measured after cell had been washed with PBS for 3 times and kept in PBS for 30mins; lastly, when 
cells were treated with trypsin for 30mins and Id was again measured. 
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Figure 1, A schematic figure of FET. FET structure is schematically shown as 
above. The channel connects source and drain, and the gate can modulate the 
current through the channel. Here we use the water as an analogy to explain how 
FET works (lower panel). 

Figure 2, Cell adhesion FET sensor. Cells keep on forming very dynamic adhesions to substrate as shown by an 
Interference Reflection Microscopy (IRM) image (left panel). Our long term aim is to develop an array of FET sensors, 
which are less than micron in dimension and individually addressable, thus these FETs can be applied to measure the 
cell local adhesion and record the dynamics of adhesion in real-time.  

Figure 3, How does BioFETs function and their  potential 
applications. Upper panel is a schematic figure showing how the 
charges from the bio-moleculars can modulate bio-FET signal. 
BioFETs have been applied to detect layers of immobilized 
enzymes, antibodies, or dna strands. In the lower panel there is 
an example of application of BioFET: 
Nano-wire detect single virus binding,  
Cui Y, Lieber CM. PNAS, 2004, 101: 14017-22 
 
 

Figure 4, How does cell adhesion BioFETs function. At pH 
7.4 most of the cell surface are negatively charged. During the 
cell attachment process, negatively charged cell membrane is 
brought near to the BioFET gate. Thus the changes of charge 
density on the BioFET gate will produce a correspondingly FET 
signal change, which may be detectable. 
 

Figure 5, System setup of cell adhesion BioFETs. The 
probing system is conneted to Source, Drain, Gate and Bulk of 
our BioFET. Gate electrode has a silver wire immersed in 
electrolyte –contained pippet tip. As shown in right panel, voltage 
is applied between Source and Drain, and Id-s current is 
measured. A reference voltage is applied to the gate. Electrolyte 
on the gate can be PBS, or cell culture medium. 
 
 

Figure 6, Fabrication and structure of our BioFETs. In fabrication, each bioFET contains five layers, 
which are shown in EM images (left panel). Right panel is a reflection microscope image showing a device 
with 5um gate.  
 

Figure 7, Comparison between solid state FET and our BioFET. 
Standard FET fabrication and application are mainly based on solid state 
devices, which have direct metal-gate contact and can only be used in none 
conductive environments such as vacuum or airs but not in buffers or 
solutions. A careful study of our BioFET characteristic is essential , since our 
bioFETs have different gate structure than solid state FET while cell 
attachment process require aqueous environment and isolation between 
buffer and FET chips. By experiment and comparison between our device 
with normal solid state device. We found they have similar Id-Vd curve 
patterns and fabricated BioFETs have very good FETs characteristics.  
 
 

Figure 9, 3T3 cell adhesion can be detected by BioFET. Upper panel is the schematic figure for 
our device, middle panel is the reflective microscopy image to show the cells attachment on the 
gate. We plant cell into the well for 24 hours for their adhesion. BioFET signal was measured before 
and after cell attachment. Cells are then fixed labeled with Rhodamine-pholloidin for their actin-
cytoskeleton. The lower panel shows the the Id-Vg signal change before and after cell adhesion for 
n-FET and p-FET respectively. 
 

Figure 8, Charged beads and Fibronectin were detected by BioFET. 
Charged beads with ~-50mV surface charge (Invitrogen), and Fibronectin are 
tested on nFET. Correspondingly significant signal modulation was observed. 
 

Figure 10, New designs of BioFET. Left panels are our new designs of cell adhesion BioFETs. The design of Parallel gates will allow us to study adhesions at different sub-regions of the 
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5.5   DISCUSSION AND FUTURE DIRECTIONS 

 

In the above study, we demonstrated that both charged beads and cell adhesion can be 

detected by our BioFET. However, more development is required as discussed below. 

 

One of the barriers is the complexity of components in culture media, especially, 

various proteins in the serum. During cell culture, proteins in the serum nonspecifically 

absorb to the FET gate, producing a time-dependent signal change (16). This prohibits long 

time study of cell adhesion/migration behavior using this device. In our tests, we found use 

DMEM without serum can reduce the protein absorption. Thus, we used BioFETs precoated 

with fibronectin (5µg/ml) and DMEM w/o serum in a later studies of cell adhesion. Serum 

free medium reduced the nonspecific protein absorption, while the fibronectin coating 

induced a quick cell spreading which also minimizes the attachment time (data not shown). 

 

Secondly, cleaning and reuse of the device resulted in a changed surface condition 

and unstable signals; moreover, the electrical characteristics differ from device to device. 

Therefore, at this juncture, devices really cannot be reused reliably.  

 

To obtain sub-cellular adhesion resolution, we developed individually addressable 

multi-gate BioFET devices with different gate sizes (Figure 5.5). This device has an array of 

gates that can be measured individually. Therefore we would be able to measure subcellular 

adhesion via BioFET signal changes in each device that is under a cell.  
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Figure 5.5 Multigate BioFET. Each gate is individually addressable. The device in upper panel A 
and B is the same device that has multiple 2µm width gate channels imaged at 10x and 40x using 
interference reflection microscopy. The device in lower panel C and D is another device that has a 
gate size of 5µm imaged at 10x and 40x using interference reflection microscopy. Panel E is a 
schematic figure showing a cell migrating on a 20µm multigate BioFET, so that adhesions in different 
subcellular regions can be measured.  
 

Thirdly, our BioFET measures basically proximity and charge of the ventral surface 

of the cell to the substratum. The longer-term goal is to translate this proximity into a 

measure of adhesion strength (Figure 5.6B). The way we proposed is to employ atomic force 

microscopy (AFM) in manner similar what has been done when the AFM is employed as a 

single molecule force spectrometer (17, 18). The basic idea will be to coat the AFM 
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Figure 1, A schematic figure of FET. FET structure is schematically shown as 
above. The channel connects source and drain, and the gate can modulate the 
current through the channel. Here we use the water as an analogy to explain how 
FET works (lower panel). 

Figure 2, Cell adhesion FET sensor. Cells keep on forming very dynamic adhesions to substrate as shown by an 
Interference Reflection Microscopy (IRM) image (left panel). Our long term aim is to develop an array of FET sensors, 
which are less than micron in dimension and individually addressable, thus these FETs can be applied to measure the 
cell local adhesion and record the dynamics of adhesion in real-time.  

Figure 3, How does BioFETs function and their  potential 
applications. Upper panel is a schematic figure showing how the 
charges from the bio-moleculars can modulate bio-FET signal. 
BioFETs have been applied to detect layers of immobilized 
enzymes, antibodies, or dna strands. In the lower panel there is 
an example of application of BioFET: 
Nano-wire detect single virus binding,  
Cui Y, Lieber CM. PNAS, 2004, 101: 14017-22 
 
 

Figure 4, How does cell adhesion BioFETs function. At pH 
7.4 most of the cell surface are negatively charged. During the 
cell attachment process, negatively charged cell membrane is 
brought near to the BioFET gate. Thus the changes of charge 
density on the BioFET gate will produce a correspondingly FET 
signal change, which may be detectable. 
 

Figure 5, System setup of cell adhesion BioFETs. The 
probing system is conneted to Source, Drain, Gate and Bulk of 
our BioFET. Gate electrode has a silver wire immersed in 
electrolyte –contained pippet tip. As shown in right panel, voltage 
is applied between Source and Drain, and Id-s current is 
measured. A reference voltage is applied to the gate. Electrolyte 
on the gate can be PBS, or cell culture medium. 
 
 

Figure 6, Fabrication and structure of our BioFETs. In fabrication, each bioFET contains five layers, 
which are shown in EM images (left panel). Right panel is a reflection microscope image showing a device 
with 5um gate.  
 

Figure 7, Comparison between solid state FET and our BioFET. 
Standard FET fabrication and application are mainly based on solid state 
devices, which have direct metal-gate contact and can only be used in none 
conductive environments such as vacuum or airs but not in buffers or 
solutions. A careful study of our BioFET characteristic is essential , since our 
bioFETs have different gate structure than solid state FET while cell 
attachment process require aqueous environment and isolation between 
buffer and FET chips. By experiment and comparison between our device 
with normal solid state device. We found they have similar Id-Vd curve 
patterns and fabricated BioFETs have very good FETs characteristics.  
 
 

Figure 9, 3T3 cell adhesion can be detected by BioFET. Upper panel is the schematic figure for 
our device, middle panel is the reflective microscopy image to show the cells attachment on the 
gate. We plant cell into the well for 24 hours for their adhesion. BioFET signal was measured before 
and after cell attachment. Cells are then fixed labeled with Rhodamine-pholloidin for their actin-
cytoskeleton. The lower panel shows the the Id-Vg signal change before and after cell adhesion for 
n-FET and p-FET respectively. 
 

Figure 8, Charged beads and Fibronectin were detected by BioFET. 
Charged beads with ~-50mV surface charge (Invitrogen), and Fibronectin are 
tested on nFET. Correspondingly significant signal modulation was observed. 
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cantilever with receptors (integrins) such as would be found on the cell surface and employ 

cantilevers with areas similar to what is in contact with the FET. The cantilever would be 

lowered to the point where the FET signal is modulated to a value similar to what is 

measured in the cell experiment. The cantilever would then be withdrawn to the point where 

contact is broken whereupon the force would suddenly decrease. The force-extension curve 

would then give a measure of adhesion strength at that rate of cantilever withdrawal.  
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CHAPTER 6 

Conclusions and Outlook  

 

 In this dissertation, we report our study on Abl family inhibitor induced shape 

and migration changes in rat bladder tumor cells, a study on the mechanism of protein 

inactivation mediated by fluorescent protein CALI, and the progress towards a Field 

Effect Transistor based detector of local cell adhesion. Some of the work I participated in 

is not included in this thesis, such as a study on smurf1-mediated talin head 

ubiquitylation and cell migration (Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, 

Ginsberg MH. Nat Cell Biol. 2009,11(5):624-30), and an unpublished study on 

keratocyte traction force mapping.  

 

 In this conclusion, I would like to discuss a little bit more about fast migrating 

cells and the impact of our study on NBT-II cell migration, and then raise some potential 

future directions. 

 
 

6.1 SURPRISING SIMILARITIES BETWEEN TWO FAST MIGRATING CELLS  

 

In Chapter 3, we reported the formation of special “fan shape” (or “canoe shape”) 

morphology and fast migration of Gleevec-treated NBT-II cells. The “fan shape” (or 

“canoe shape”) was originally employed to describe the migration of keratocytes. What 
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are the similarities between Gleevec-treated NBT-II cells and keratocytes.   

Keratocytes are employed as a model system for the study of cell migration, because: 

 (i) They usually form a large and intact fan-shaped lamellipodium during migration, 

which facilitates investigations of lamellipodium structure and formation; 

(ii) They usually move with nearly constant speed and direction. This characteristic 

makes them a versatile tool in the study of cytoskeletal dynamics and migration, 

including cell adhesion, cell traction force, actin polymerization / treadmilling, etc.  

 

Keratocyte migration is distinct in that it is neither an amoeboid nor mesenchymal 

migration. It maintains its unique fan shape during migration, which is not seen in any 

other type of migrating cells (1-3). The transition between other cell migration 

phenotypes to a keratocyte phenotype has never been found (4). This is surprising 

considering that most of other migration types are actually switchable; for example, the 

switch between mesenchymal and amoeboid has been observed during the process of 

cancer cell metastasis (4,5).  

 

One of the novelties in this thesis work is the discovery of fan-shaped migrating 

NBT-II cells after Gleevec-treatment, which, to our knowledge, is the first report of a 

non-keratocyte cell migrating with a consistent fan shape. As shown in Figure 6.1, 

Gleevec treated NBT-II cells (panel A) and fish keratocyte (panel B) have very similar 

fan shape during migration. Both cells form large and intact lamellipodium. Both cells 

are elongated perpendicular to the direction of migration (with aspect ratio close to 2*) 

                                                
* the aspect ratio was defined in Chapter 3 
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(Figure 3.2A in Chapter 3); while control NBT-II cells or most of other types of 

migrating cells are mostly roundish or elongated along the direction of migration of the 

cell (aspect ratio close to or smaller than 1) (Figure 3.2A in Chapter 3). Phosphorylated 

myosin II patterns in fish keratocytes and canoe shape NBT-II cells are similar, shown in 

panel C and D, respectively. And panel F and G compares the traction pattern of canoe 

shape NBT-II (E) and keratocytes (F). Both the phosphorylated myosin II or traction 

pattern indicates similarity between Gleevec induced NBT-II cells and keratocytes. 

 

 

Figure 6.1 Comparison between fan-shape NBT-II cells and fish keratocytes 
Panel A and B are DIC images for fan-shape NBT-II cells and keratocytes respectively. C and D 
show the antibody labeling of phosphorylated myosin II in fan-shaped NBT-II cells and 
keratocytes, respectively. E and F are elastic substrate traction mapping of fan-shaped NBT-II 
and keratocytes, respectively. Colors from blue to red indicate relative cell traction stress (unit, 
Pa). Scale bars are 20μm. 
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6.2 FUTURE DIRECTIONS 
 

 Combining our knowledge in fan-shaped NBT-II cells and fish keratocytes, we 

suggest following four points for future research: 

 

1. The balance between cell traction and cell adhesion in fast migrating cells.  

 Cell migration speed is based on a delicate balance between the cell traction force 

and cell adhesion (rather than the absolute magnitude of either). Take fish epidermal 

keratocytes as an example: on one hand, cells on low adhesive substrate are usually 

smaller in size and aspect ratio, and migrate slower than on medium adhesive substrate; 

on the other hand, cells on high adhesive substrate actually don’t migrate faster than on 

medium substrate, but migrate slower due to insufficient retraction. Treatment of 

calyculinA to cells on high adhesive substrates can activate myosin contraction and 

increase cell migration speed (6). In Gleevec-treated NBT-II cells, we found there is an 

increase in integrin-mediated adhesion coupled with increases in the size and number of 

discrete adhesions. Moreover, Gleevec-treated cells have greater RhoA activity which, 

via myosin activation, led to an increase in the magnitude of total traction force applied to 

the substrate. The balance between adhesion strength and cell traction in part determines 

the migration status of the cell and we suggest this is an important parameter in the study 

of all types of cell migration. 

 

2. Nascent adhesions at leading edge of fast migrating cells.   

In fish keratocytes, a band of grey area at the leading edge of the lamellipodium 

can be observed in interference reflection microscopy (IRM). These regions are defined 
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as close contacts (Figure 2.3A in Chapter 2). Those close contact areas at the rim of 

leading edge were found enriched in β1-integrin and talin, with paxillin and FAK but 

without vinculin (1). Close contacts are mediated by integrins.  Forward movement of 

keratocyte lamellae can be halted by adding RGD peptide or an anti-integrin mAb. 

 

In Gleevec-treated NBT-II cells, TIRFM image of EGFP-paxillin show a rim of 

punctate adhesions at the leading margin of the fan-shaped lamellipodium as a common 

feature (Figure 3.5E,F in Chapter 3). The size distribution of punctate adhesions in 

Gleevec-treated NBTII cells had a peak at ~350nm in diameter, and the average area of 

punctate was about 0.1μm2. These punctate adhesions turned over very rapidly with an 

average lifetime of ~70s. Our study shows those punctate adhesions contain paxillin but 

no vinculin. Similar to keratocyte migration, lamellar protrusion in Gleevec-treated NBT-

II cells can be halted by RGD peptide or anti-integrin mAb. 

 

In sum, punctate adhesions and close contacts both locate to the leading edge of 

the lamellipodium. They both contain integrins,both are distributed in a band shape and 

both exhibit fast turnover.   Since it is difficult to study close adhesion in fish keratocytes 

due to multiple reasons (will be discussed later), the study of nascent adhesions in NBT-

II cells could be very revealing. 
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3. Microtubule function in cell migration. 

In keratocytes, microtubules (MT) and intermediate filaments do not penetrate the 

thin, actin-rich lamellipodium but are confined to the perinuclear region. 

Depolymerization of MT in keratocytes does not significantly affect their migration 

(Figure 6.2A).  

 

In contrast, microtubules in Gleevec treated NBT-II cells can penetrate into 

lamellipodium, and actually play an important role in both maintaining cell nuclear-shape 

and lamellipodium (Figure 6.2B) since depolymerization of MT with Nocodazole in 

NBT-II cells results in reduced lamellipodium size, less migration speed and persistence, 

and relaxation of cell nucleus.   Thus, investigation of the role of MTs in fan-shaped 

NBT-II is a worth future direction. 

 

 

Figure 6.2 Actin and microtubule cytoskeleton of gleevec treated fan-shape NBT-II cells and 
fish keratocytes. Confocal fluorescent images of the f-actin (Rhodamine-phalloidin, Red) and 
microtubules (alpha-tubulin antibody, Green) in the fan shape NBT-II cell (A) and fish keratocyte 
(B). Scale bars are 20μm. 
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4. Technical advantages of NBT-II cells in comparison to keratocytes. 

There are some well-known technical difficulties in conducting research with 

keratocytes: 

(a) Keratocytes are terminally differentiated primary cells that must be freshly isolated. 

The yield is small, with only hundreds of cells harvested from one fish scale. This 

prevents keratocytes from being used in some biochemical analyses, which require a 

much larger numbers of cells. 

(b) Keratocytes are difficult to transfect or microinject. Although electroporation has 

recently been used for keratocyte transfection (7), a very small proportion (less than 1%) 

expresses the target protein.  

(c) Keratocyte itself is a very good model for cell migration research. However, the direct 

linkage between keratocyte migration and cancer cell migration is still unknown. 

(d) Genetically encoded biosensors provide real-time spatial and temporal activity 

information for many regulatory signaling proteins/kinases in crawling cells (8,9). 

Although the application of these biosensors in this model would likely be very 

informative, no biosensors have been successfully used in migrating keratocytes. 

 

The technical problems restrict the scope of keratocyte-based research, while 

NBT-II cells have none of those problems. NBT-II cells are rat bladder cancer cell line. 

They can be easily transfected and have good expression level of target proteins (We 

successfully expressed the Rho and Rac1 biosensor in NBT-II cells so that Rho-family 

biosensors can be employed to study migration of these cells.)  NBT-II cells are easier to 

microinject than keratocytes. Lastly, NBT-II is a well-known migrating cancer cell line 
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(10) so that the observation of a special migration phenotype raises the question whether 

other cancer cells may undergo similar migration under certain circumstances.  
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