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ABSTRACT 

 

Nithya Srinivas: Distribution of antiretrovirals within the brain tissue and relationship with 
neurocognitive impairment due to HIV 

(Under the direction of Angela DM Kashuba) 

As of the year 2015, 36.7 million people worldwide were living with HIV infection. While 

the introduction of highly active antiretroviral therapy (HAART) has greatly reduced the 

morbidity and mortality of HIV infection, there is still no cure for this disease. In the central 

nervous system (CNS), HIV RNA in the cerebrospinal fluid (CSF) has been found even in 

patients who otherwise have viral suppression in the plasma. Further, HIV infection in the 

brain may lead to the development of HIV-associated neurocognitive disorders (HAND). 

Milder forms of cognitive decline in HAND remain highly prevalent in people taking 

HAART and this may be a function of ineffective antiretroviral (ARV) distribution in the 

brain tissue. However, existing methods only measure ARV pharmacokinetics (PK) in the 

CSF and are insufficient to explain brain distribution of ARVs. Therefore, the goal of this 

project was to conduct a comprehensive analysis of ARV penetration into the brain tissue in 

preclinical models, evaluate the role of drug transporters in modulating ARV brain tissue 

disposition across species, and develop a model to predict disposition of one ARV (efavirenz 

[EFV]) in human brain tissue using PK data from preclinical models and determine the 

relationship between model-predicted drug exposure in the brain and neurocognitive 

impairment in a cohort of HIV-positive participants.    
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In the first aim of the study, the brain tissue concentration and brain tissue:plasma 

penetration ratio of six ARVs were determined across two humanized mouse models and one 

nonhuman primate (NHP) model by LC-MS/MS. ARV brain tissue:plasma concentrations 

were only preserved across all three species for raltegravir, and showed no differences based 

on infection status or sex (in the NHPs). In the NHPs, ARV concentrations in the CSF were 

>6-fold lower than brain tissue. The CSF concentrations were poorly predictive of the brain 

tissue concentrations for all ARVs except EFV (r=0.91, p<0.001). Mass-spectrometry 

imaging could only detect EFV distribution within the brain, and greater accumulation was 

noted in the white matter vs. gray matter. The total colocalization to HIV target cell 

(microglia and CD4+ T-cells) area in the brain ranged from 45-80%. EFV was the only ARV 

to achieve concentrations >IC90 in the brain tissue across all NHPs, however, MSI showed 

that <3% of HIV-target cells contained EFV at concentrations>IC50 of viral replication. 

In the second aim of the study, we noted significant differences in the gene 

expression of drug-transporters in the brain tissue across all three species. For example, the 

gene expression of Abcb1 was ten-fold higher in the hu-HSC-RAG mice compared to the 

BLT mice. The concentration of only BCRP and P-gp proteins were quantified in the 

majority of the brain tissue samples and there was 16-fold higher BCRP protein in the NHPs 

relative to the humanized mouse models. There were no differences in the expression of drug 

transporters due to infection status, but female macaques showed >two-fold higher protein 

expression of BCRP and P-gp compared to male animals. The protein concentration of 

transporters in the brain tissue did not predict the brain tissue:plasma concentration of any of 

the ARVs. 
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In the final aim of the study, we developed an eight-compartment PK model to 

describe the distribution of EFV into the CSF and brain tissue in rhesus macaques. Using the 

preclinical model structure and human PK data from a small clinical trial, the brain tissue 

distribution of EFV was predicted in our cohort of HIV positive participants. At steady state, 

EFV profile in the brain tissue was predicted to be flat with a median concentration of 8,000 

ng/mL. Model-predicted brain tissue exposure showed good agreement with plasma (r=0.99, 

p<0.001). However, due to the high variability in the CSF measurements, the correlation 

between brain tissue and CSF concentrations in humans was poor (r=0.34, p=0.11). A 1,000-

replicate Monte Carlo simulation of the final clinical model was able to capture observed 

EFV brain tissue concentration data available from three participants in the National Neuro-

AIDS Tissue Consortium (NNTC) repository, indicating the biological plausibility of our 

model predictions. The model-predicted brain tissue exposures did not show any correlation 

with neurocognitive score measurements that were collected from the study participants 

(rho<0.05, p>0.05).  

Through these experiments, it was determined that ARV penetration into the brain 

tissue is highly variable across preclinical models. With the limited ARV concentration data 

that are available from the human brain tissue, drug concentrations achieved in the brain 

tissue of NHPs closely approximate what is seen clinically. The CSF is not an appropriate 

surrogate for brain tissue PK of all ARVs investigated except EFV, and our surrogate 

measures of efficacy for EFV indicate that although the drug achieves high concentrations in 

the brain tissue, a lack of adequate spatial coverage over HIV-target cells may lead to 

reduced efficacy. There are several inter-species differences in drug transporter expression in 

the brain tissue; however, brain tissue transporter expression was not predictive of ARV 
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brain tissue penetration. Finally, our data demonstrate that sparse preclinical and clinical data 

can be leveraged to predict human brain tissue exposure of ARVs by the use of novel 

Bayesian models. Our small study suggests that factors other than ARV brain tissue PK may 

influence HAND persistence. 
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CHAPTER-I: CLINICAL PHARMACOKINETICS AND PHARMACODYNAMICS 

OF DRUGS ACTING IN THE CENTRAL NERVOUS SYSTEM1 

 

1.1. Summary 

Despite significant advances in the treatment of human immunodeficiency virus (HIV) 

infection, HIV may still persist within the central nervous system (CNS) and can cause a 

spectrum of neurocognitive deficits known as HIV-associated neurocognitive disorders 

(HAND). While the continued persistence of HAND despite therapy may be related to the 

concentration of antiretrovirals achieved in the brain tissue, it is difficult to quantify brain 

tissue concentrations pre-mortem in humans. Animal models can be used to determine the 

pharmacokinetics (PK) of antiretrovirals in the brain tissue and translate the relationship with 

efficacy to humans. However, a focused assessment is required to identify the differences in 

pharmacokinetics/pharmacodynamics (PK/PD) between animal models and humans. In this 

review, we summarize available literature from human studies on the PK and 

pharmacodynamics (PD) in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used 

in the treatment of neuroHIV as well as psychosis and Alzheimer’s disease and address critical 

questions in the field. We also explore newer methods to predict the clinical PK and better 

characterize PK/PD relationships at the CNS target site for these classes of drugs. 

 
1This chapter was previously published as an article in the journal Clinical Pharmacokinetics. The original 

citation is as follows: Srinivas N, Maffuid K, & Kashuba ADM, Clin Pharmacokinet, 2018 September; 

57(9):1059-1074 
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1.2. Introduction 

Disorders of the brain contribute significantly to global disease burden. Psychiatric, 

neurological, developmental and substance abuse disorders affect more than 1 billion people 

worldwide(1).  As of 2010, these were the leading cause of years lived with disability (YLD) 

globally, accounting for approximately 30% of all YLDs(2). However, CNS drug development 

is extremely challenging. Compared to non-CNS drug development, these programs have a 

lower clinical approval rate (6% versus 13%) and a longer time to market (12 years versus 6-

7 years)(3–6). This has led to several companies withdrawing drug development programs in 

the neurosciences(7–9) signaling an uncertain future for novel research in CNS disorders. 

Difficulty selecting initial drug dosage, untoward toxicities and lack of efficacy are 

cited as some driving forces behind the high attrition rate of CNS therapies(10). A robust 

concentration-effect analysis can provide valuable, reproducible information regarding both 

the therapeutic as well as adverse effect drug profile over a wide range of doses and greatly 

aid the development of CNS-acting drugs. However, a report from 2007 indicated that there 

were very few sets of pharmacodynamic data generated from human studies over a wide range 

of doses or concentrations(11). Although concentration-effect relationships are assessed in 

animals, animal models do not always accurately predict human disease, especially in case of 

CNS disorders(12). Difference in blood-brain barrier (BBB) permeability, drug metabolizing 

enzymes and transporters can lead to differences in drug exposure in the human brain compared 

to animals(13) and only rarely can drug be sampled from the human brain for pharmacokinetic 

(PK) measures. Further, animal models may only mimic some mechanisms of human CNS 

disease or contain targets not seen in humans, challenging the translation of efficacy and/or 

toxicity of novel therapeutics. Therefore, to address these issues a focused 
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pharmacokinetic/pharmacodynamic (PK/PD) assessment is required in humans to identify 

differences from animal models and adjust dosing. This has been accomplished by employing 

alternate methodologies such as in-vitro systems, translational studies or in-silico modelling to 

supplement the understanding of pharmacology within the CNS. 

This review is broadly divided into three parts. In section 1.3, existing methods to 

measure PK and PD in the brain tissue, cerebrospinal fluid (CSF) and interstitial fluid (ISF) 

are reviewed. While there is abundance of PK/PD information from animal models in the CNS, 

less complete information is available from human studies. In sections 1.4-1.6, we examine 

clinical PK/PD analyses at relevant target sites in the CNS for antipsychotics, anti-Alzheimer’s 

drugs and antiretrovirals and examine the utility of available information and the need for more 

research to answer critical questions in the field. In the absence of clinical results, available 

animal data are presented and cautiously interpreted for clinical relevance. Finally, new 

methods to improve CNS drug development are examined in section 1.7. 

 

1.3. Methodology 

An extensive literature search was performed to identify research articles and conference 

abstracts published in Embase (including articles in the MEDLINE® database) using terms for 

drugs used to treat disorders of the brain and CNS, combined with terms for PK or PD and 

terms for the brain and CNS. A full search strategy is provided in Appendix 1.1. These 

searches were augmented by targeted searches in PubMed, Google Scholar, and Google Books, 

which combined terms from the full search strategy, plus additional terms for PK or PD 
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measures or factors affecting these measures. The bibliographies of relevant review articles 

were also hand searched for additional relevant studies. 

 

1.4. Pharmacokinetic and pharmacodynamic considerations for drugs acting in the 

CNS 

1.4.1. Measures of drug pharmacokinetics in the CNS:  

Drug distribution into the CNS has been characterized by several methods: measuring 

drug uptake into cultured brain cells (in-vitro), or measuring drug concentration in the brain 

tissue (ex-vivo) or CSF or ISF (in-vivo).  

In-vitro models of the BBB are used as a first line-approach for determining the extent 

to which investigational agents cross into the brain(14). There are several validated models of 

the BBB from multiple species(15) and while no ideal cell line exists, the human cell line most 

widely used and well characterized is the human immortalized endothelial cell line 

hCMEC/D3. hCMEC/D3 experiments can quantify drug permeability, identify relevant drug-

efflux transporter interactions, rapidly screen drug candidates for CNS activity and carry out 

initial PK studies. However, these models are a static measure of drug PK. For anti-infectives 

in particular, these models do not account for time-dependent killing and may be less clinically 

relevant. In-vitro systems also do not fully replicate all in-vivo features of the BBB. For 

example hCMEC/D3 is more “leaky” than the BBB, and can express lower levels of BBB-

specific enzymes and drug transporters(15). Therefore, in-vitro systems may have to undergo 

modification such as co-culture with other brain cells to replicate tight junctions of BBB.(16) 
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Newer microfluidic technologies such as BBB-on-a-chip or neurovascular-unit-on-a-chip(17) 

hold promise to mimic the dynamic in-vivo environment. 

There are several ex-vivo approaches to measuring drug concentrations in brain tissue 

either after surgical resection or necropsy.  Most PK information comes from brain tissue 

homogenates using liquid chromatography-mass spectrometry (LC-MS) analysis. These 

measurements are then used to calculate ISF and intra-cellular fluid (ICF) concentrations(18). 

Though commonly used, these methods do not provide information about drug localization. 

Mass spectrometry (MS) imaging has emerged as a method to quantify drug molecules by MS 

and spatially visualize drug distribution in tissue slices(19). The advantage of MS imaging is 

that it can capture drug distribution patterns within different regions of a tissue(20). For 

example, using Matrix Assisted Laser Desorption Ionization (MALDI) imaging MS, the anti-

tubercular drug pretomanid was found to localize predominantly in the corpus callosum of 

Sprague Dawley rats(21). By using serial sections collected at different time points, it was 

shown that pretomanid distributed into the corpus callosum 1-2 hours after an intraperitoneal 

dose of 20mg/kg and diffused into other parts of the brain at later time points.  With advances 

in imaging technology, this technique may be used to image intracellular drug concentrations 

and can be coupled with PD targets through immunohistochemistry (IHC) or in-situ 

hybridization in contiguous slices. While this has not yet been demonstrated for brain cells, 

Aikawa et al. used hematoxylin and eosin (H&E) along with IHC staining for CD31 and 

multidrug resistance transporter 1 (MDR1) to show the colocalization of anti-cancer drug 

alectinib with blood vessels in murine brains(22).  A drawback of ex-vivo imaging is that it is 

a static measurement, and a composite of multiple images from different animals is required 

to gain information across a dosing interval.  
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In-vivo imaging techniques, such as Positron Emission Tomography (PET), can 

provide longitudinal information on drug disposition.  PET is a non-invasive imaging 

technique that relies on the detection of radio-labelled ligands over time. It has been used to 

measure absolute spatial concentration of drug and determine PK parameters as well as target 

occupancy of several CNS-acting drugs. While a detailed discussion of PET is beyond the 

scope of this review, the reader is directed to a 2013 review(23) for a detailed summary on 

estimating PK parameters using PET studies. Despite the spatial advantages and applicability 

to human studies, PET scans are expensive, generally limited to fewer patients because of the 

use of radioactivity and may not distinguish between parent compound and metabolites. 

Other in-vivo drug estimation methods measure drug penetration into fluid 

compartments of the CNS. Microdialysis involves inserting a dialysis probe into the cerebral 

region of the brain to measure the protein-unbound concentration in the ISF. This technique is 

regularly used in animal models for continuous monitoring of drug concentration, but is only 

applicable during intra-operative procedures in humans(24). Further, this procedure might not 

be suitable to measure the concentration of highly lipophilic or protein bound drugs as there 

can be a high degree of non-specific binding to the microdialysis probe and poor recovery of 

drug from the fluid(24,25). Additionally, intracellular active metabolites are not captured using 

this technique.   

The most common approach to generating PK data is drug sampling in CSF. This is 

done by lumbar puncture for a single sample and spinal catheterization in the subarachnoidal 

space for continuous sampling. While less invasive than microdialysis, lumbar punctures are 

painful and not without medical risks, and are not routinely performed. Also, concentrations 

measured by lumbar puncture can differ based on the location and time of measurement(13). 
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For example, using a mathematical model, phenytoin was predicted to reach 300% greater 

concentration in cranial CSF than spinal CSF(26). Generally, unbound CSF concentrations are 

used as surrogates for unbound brain tissue concentrations in animal models(27) based on the 

free drug hypothesis which stipulates that protein-unbound drug passively moves from the 

plasma through the BBB and blood-CSF barrier (BCSFB) into the brain and CSF(28). 

However, this generalization holds true for certain drugs(29,30) with two significant 

exceptions: i) Drugs that use membrane transporters for influx and efflux (Eg. antidepressants, 

antiretrovirals [ARVs]) and ii) Drugs with low permeability to cross through the BBB where 

CSF bulk flow exceeds passive diffusion of the compound into CSF(31). For substrates of 

efflux membrane transporters such as P-gp, CSF concentrations tend to overestimate ISF 

concentrations(32). While the exact reason for this observation remains unknown, some 

hypotheses include subapical or apical localization of P-gp on the choroid plexus that results 

in drug transfer and accumulation into the CSF(33), or non-functionality of P-gp at the 

BCSFB(34). Since the CSF is recycled at a faster rate than ISF, the CSF acts as a “sink” to 

clear drug(31). For high permeability compounds, this effect is negligible but for low-

permeability compounds, CSF concentrations underestimate the brain or ISF concentrations 

(Eg. morphine 6-glucuronide). Therefore, the unbound concentration in the brain may differ 

from the CSF concentration and confound target site assumptions.   

In case of in-vivo measurements made at a single time point, the concentration of drug 

in brain or CSF may be normalized to a simultaneously-collected plasma concentration.  While 

this is a common means of estimating the extent of drug uptake into the CNS, and allows for 

comparisons of uptake between drugs, the rates of entry and elimination of the drug in plasma, 

CSF and brain compartments differ(35). For example, the CSF:plasma concentration ratio for 
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ciprofloxacin increases by as much as 1400% over 24 hours(35). One approach to avoid this 

confounding is to use sparse serial sampling in a group of animals or humans to characterize 

the drug’s full PK profile in the CSF and plasma and calculate the ratio of drug exposure in the 

two compartments by measuring the area under the concentration-time curve. This approach 

has been performed for several anti-infective drugs(36) during ventricle catheterization when 

CNS infections need to be monitored(37) or excess CSF fluid needed to be drained(38,39). 

Due to difficulties in obtaining multiple CSF samples from patients, population PK modeling 

has been used with sparse CSF and plasma sampling in order to obtain exposure profiles of 

various drugs such as abacavir(40). 

1.4.2. Intracellular vs. Extracellular drug concentrations:  

When considering the site of action, it is important to distinguish between extracellular 

and intracellular CNS drug concentrations. For drugs that act on receptors on neuronal cell 

membranes such as anti-epileptic drugs (AEDs) and anti-Alzheimer’s drugs, it is preferable to 

measure drug concentration in the ISF where the PD effect is exerted. Extracellular acting 

drugs have been measured in brain tissue homogenates, but this approach may be misleading. 

For AEDs and other basic drugs (pKa >7) where brain volume of distribution is greater than 

brain water volume (0.8 mL/g), ISF concentrations are over-estimated by brain tissue 

homogenate due to non-specific binding in brain tissue(41,42). For anti-infective and anti-

cancer drugs which act on intracellular targets, the unbound intracellular drug concentration is 

the most appropriate PK measure linked with activity. Friden and colleagues demonstrated a 

method to indirectly estimate unbound intracellular drug concentration.  Briefly, in-vitro 

volume of distribution of unbound drug in brain (Vu,brain) is measured in brain slices from drug-

naïve animals incubated in drug containing buffer (brain slice method(43)) and fraction of 
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unbound drug in the brain (fu,brain) is measured by adding drug to brain homogenates from drug-

naïve animals(18). The ratio of intracellular to extracellular unbound drug concentration 

(Kp,uu,cell) is given by Equation 1.1. 

Kp,uu,cell = Vu,brain * fu,brain        (1.1) 

Using this method, intracellular drug concentrations of gabapentin, oxycodone, 

morphine and codeine were found to be greater than extracellular concentrations(18).    

1.4.3. Factors affecting pharmacokinetics of drugs in the CNS:  

Many factors have been identified to affect drug exposure in the CNS. These are 

summarized in Figure 1.1.  For an in-depth analysis on specific classes of drugs, the reader is 

referred to two excellent reviews(36,44). 

 

Figure 1.1. Factors affecting the pharmacokinetics and pharmacodynamics of drugs in 

central nervous system.  This figure demonstrates various factors the influence 

pharmacokinetic and pharmacodynamic activity in CNS and highlights various compartments 

of drug action.  Effect of drug transporters, physicochemical properties and specific and non-

specific protein binding are illustrated. Drug transporters along the membranes may also co-

localize which leads to bidirectional movement of drugs.  Legend: BBB – blood brain barrier, 

BCSFB – blood CSF barrier 
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a) Protein Binding – Protein binding influences the entry and activity of drug into the CNS. 

Drugs that are highly protein bound in the plasma concentrate to a lesser extent in the CSF 

and brain tissue. Conversely, for drugs that accumulate intracellularly in brain tissue such 

as gabapentin and morphine, the degree of plasma protein binding is low (3% for 

gabapentin and 20% for morphine). The degree of protein binding varies between plasma, 

CSF and tissue, based on the concentration of drug-binding proteins.  For albumin, 

concentrations range from 35-50g/L in plasma and are <250mg/L in CSF. For AAG, 

concentrations are approximately 0.77g/L in plasma and 8.4mg/L in CSF(31). These 

proteins can also be synthesized by microglial cells(45). Therefore, while highly protein-

bound drugs (>95% protein binding) such as efavirenz and fluoxetine have lower total drug 

concentrations in the CSF compared to blood plasma, protein-unbound drug concentrations 

are similar in both fluids. In general, use of unbound drug concentrations in the CSF leads 

to mechanistic PK/PD relationships(46) and better translatability between species(47).  

b) Drug Efflux Transporters – Drug efflux transporters such as MDR1 (P-glycoprotein), 

BCRP and MRP4 are highly expressed at the BBB(48–50). MDR1 and MRPs have also 

been identified on the surface of astrocytes(48). Studies using transporter knockout (KO) 

mice have shown that MDR1 KO increases brain concentrations of MDR1 substrates by 

10-100 fold(51), while the KO of BCRP and MRP4 has minimal effect(52,53).  Therefore, 

MDR1 inhibition should be a viable option to increase the CNS exposure of drugs in rodent 

models. Indeed, it has been shown that the co-administration of MDR1 inhibitors (eg. 

cyclosporin or zosuquidar) increases CNS brain penetration of MDR1 substrates such as 

nelfinavir or paclitaxel(54). For indinavir(55), increased CSF penetration was 

demonstrated in HIV-infected patients when MDR1 inhibitor ritonavir, was given 
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concomitantly.  Although there was increase in plasma exposure, this was driven by a 5-

fold increase in trough concentration. Linear regression analysis showed that increase in 

CSF concentrations (2.67 fold) was not explained by increase in plasma concentrations 

alone, and inhibition of efflux transporters at the BBB might also contribute to increased 

CSF exposure of indinavir. 

c) Physicochemical properties– Lipophilic drugs show greater permeability through the 

lipophilic BBB. In a study of compounds ranging from highly polar (sucrose, logD = -4.49) 

to highly lipophilic (estradiol, logD = 4.14), the log brain uptake index (BUI) of estradiol 

in Sprague-Dawley rats was 232 times higher than sucrose(56). However, a higher 

lipophilicity also results in a higher degree of non-specific tissue binding(57). In a study of 

7 compounds that ranged in BBB permeability by 160-fold, the highly lipophilic compound 

fluoxetine showed the greatest permeability through the BBB (evidenced by the highest 

permeability surface area product of 600 ml/kg*hr) of Sprague-Dawley rats but a free drug 

fraction (0.23%)(58) that was lower than plasma (6-15%). Similarly efavirenz has a 

permeability surface area product of 2.4 ml/kg*hr through the BBB and a free fraction of 

only 0.197%(59) in rat brain tissue, compared to 1% in blood plasma.  
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1.4.4. Measures of drug pharmacodynamics in the CNS: 

Many PD targets are utilized in CNS disorders. In the following section, common 

clinical PD endpoints are summarized. The pros and cons of these measures are outlined in 

Table 1.1. 

a) Receptor occupancy/ binding affinity: 

Receptor occupancy and binding affinity are related in that receptor binding affinity is 

an in-vitro measure of the concentration of ligand resulting in a ligand-receptor complex 

while receptor occupancy is the proportion of receptors that have formed a ligand-receptor 

complex in-vivo relative to the baseline receptor density. The examples of the N-methyl-

D-aspartate (NMDA) receptor agonists amantadine and memantine are illustrative of the 

binding affinity concept.  Amantadine and memantine have weak affinity to the σ site of 

the NMDA receptor with binding affinities of 20.25 ± 16.48 uM and 19.98 ± 3.08 uM 

respectively(60). The drugs showed higher affinity to the PCP binding site on the receptor 

(10.5 ± 6.1 uM for amantadine and 0.54 ± 0.23 uM for memantine). By taking into account 

the therapeutic concentrations of these drugs attained in the human brain(60), it was 

determined that amantadine acted at both the σ and PCP binding site, while memantine 

only acted at the PCP binding site. Receptor occupancy studies have been performed for 

several classes of drugs by means of PET scans and clinical data are available for dopamine 

D1 and D2 receptors (antipsychotics(61–63)), histamine H1 receptor (antidepressants(64)) 

and serotonin 5-HT 2 receptor (antipsychotics(63)). 
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b) Change in behavioral symptoms and clinical ratings scales: 

For Parkinson’s, depression and psychosis, the Unified Parkinson’s Disease Ratings 

Scale (UPDRS)(65), Hamilton – Depression Rating Scale (HAM-D)(66) and Brief 

Psychiatric Rating Scale (BPRS)(67) respectively are widely used by clinicians to aid with 

diagnosis and progression of the disease as well as assess PD. In case of Alzheimer’s, the 

Alzheimer’s Disease Assessment Scale (ADAS) is commonly administered in almost all 

clinical trials of symptomatic Alzheimer’s(68). However, several other ratings scales have 

been developed for Alzheimer’s. A review published in 2010 identified 68 distinct, relevant 

scales(68), though only 5 of these scales met the requirements for a robust multi-domain 

assessment of the disease. 

c) Neuroimaging markers: 

Neuroimaging modalities can be used for several different PD measures. For example, 

in case of anti-depressants(69), PET scans have been used to derive receptor abundance 

and occupancy profiles in-vivo while functional magnetic resonance imaging (fMRI) 

provides information about changes in brain structure and white matter integrity. 

d) PD endpoints for anti-infectives: 

Common PD endpoints include time to mitigation of neurological symptoms such as 

headache, confusion and muscle weakness and lowering of antimicrobial load (eg. bacterial 

count, HIV viral RNA) in the CSF.  Antibiotics are used to target CNS infections on the 

basis of in-vitro MIC and IC50 (drug concentration that yields 50% inhibition of microbial 

growth). Similarly, antiretrovirals may be selected for activity in the CNS on the basis of 

in-vitro IC50 values(70). HIV also causes a spectrum of neurocognitive deficits in patients 



14 

and in such instances, neurocognitive test scores, such as the global deficit score (GDS) 

have been developed as a PD measure to provide a baseline of neurocognitive impairment 

and track disease progression(71). 

Table 1.1: Commonly used pharmacodynamic measures for CNS drugs and the 

advantages and disadvantages of each technique 

Class of drugs / 

pharmacodynamic measure 

Advantages Disadvantages 

I. Drugs used in psychiatric and neurological disorders 

1. Receptor 

occupancy/ binding 

affinity 

+ Direct measure of efficacy of 

drug 

+ Can be used for interacting 

drugs on different receptor 

sites 

+ Discrepancy between in-

vitro and in-vivo values 

+ Species differences may 

result in difficulties in 

translation 

2. Change in 

behavioral 

symptoms and 

clinical ratings 

scales 

+ Are easy to understand 

clinically 

+ Non-expensive 

+ Can be made longitudinally 

to track progression of the 

disorder 

+ Non-invasive 

+ Difficult to translate 

between animal models 

and humans 

+ Some disorders 

(Alzheimer’s) present with 

several ratings systems 

which may not always 

agree. This causes issues 

with interpretation 

3. Neuroimaging 

markers 

+ Can provide more detailed 

information than subjective 

tests 

+ PET scans are expensive 

+ With fMRI, there is 

exposure to high-intensity 

magnetic fields 

II. Anti-infectives 

1. Mitigation of 

symptoms 

+ Easy to make PD 

measurement 

+ May be subjective 

+ May be difficult to 

interpret PK/PD 

relationship 

2. Bacterial count/ 

viral load in CSF 

+ Straight-forward correlation + Invasive procedure 

which can be painful 
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Class of drugs / 

pharmacodynamic measure 

Advantages Disadvantages 

+ Not enough information 

on whether CSF 

measurements 

approximates brain tissue 

measurements 

3. Neurocognitive 

scores for HAND 

+ Non-invasive procedure 

+Technique accounts for 

comorbidities 

+ Research tool that is not 

used clinically 

 

The following three sections examines currently available target site clinical pharmacology 

data for three disease states: Psychosis/Schizophrenia, Alzheimer’s disease and neuro-HIV. 

The reader is referred to Table 1.2 for more detailed information on the studies that are 

referenced in this manuscript. 

 

1.5. Clinical pharmacokinetics and pharmacodynamics of antipsychotics in the CNS: 

Since chlorpromazine was approved over 60 years ago, there are now 21 FDA-

approved first- and second-generation antipsychotics for the treatment of pediatric and adult 

psychosis. Despite significant advances in the field, a critical area that is yet to be fully 

addressed with these drugs is the variability in PD response required for efficacy, and the 

relationship to target site exposure. There is also lack of consensus on the appropriate PK target 

measure to correlate to anti-psychotic efficacy. 

Anti-psychotic drugs are known to penetrate readily into the brain. For example, 

haloperidol is found in the brain tissue at concentrations that are 10-30 times higher than serum 

concentrations(72). Further reports of brain tissue concentration of antipsychotics are available 
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from autopsy tissue: a 2012 analysis in the prefrontal cortex tissue from 18 human autopsy 

samples noted high concentration of several drugs such as olanzapine (33,378 ng/g) and 

quetiapine (16,769 ng/g)(73). However, such reports often include no supporting information 

such as plasma concentrations and post-mortem interval of collection and are therefore difficult 

to interpret. Given that olanzapine and the other drugs showed a range from undetectable 

(<2ng/g) to high concentrations, the authors postulated that the exceedingly high 

concentrations were the result of overdose. Therefore, such studies may not provide accurate 

information about the therapeutic range of concentrations of antipsychotics. For the newer 

antipsychotics aripiprazole, lurasidone, and perospirone, clinical brain PK is unknown(74). 

However, extensive tissue distribution is evidenced by their large apparent volume of 

distribution of 400-6000 L(74). In the absence of brain tissue concentration data, CSF 

concentration may be predictive of unbound brain tissue PK(27), although this has not been 

verified in humans. Antipsychotics extensively enter the CSF(31) and historical estimates of 

total CSF:plasma protein-unbound concentration ratios for the older agents are indicative of 

significant binding to CSF proteins.  For example, from a study of thioridazine in 48 patients, 

lumbar puncture followed by venipuncture was performed to obtain ratios of parent drug and 

metabolite in CSF compared to plasma. The average total CSF:unbound plasma ratio of 

thioridazine was determined to be 6 and ranged from 1.9 – 16.9(75), although it is unknown if 

all the patients in this analysis were under steady state conditions or what the time of sampling 

of CSF and plasma were relative to the dose(75). From the same analysis, mean free fraction 

of thioridazine in the CSF was 49% and the unbound concentration in CSF was twice that in 

plasma, possibly on account of passive diffusion of thioridazine across BBB. A significant 

correlation (p=0.002) was shown between the unbound concentration of thioridazine in plasma 
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and CSF(75), suggesting that  unbound concentrations in plasma could potentially be used as 

a surrogate for CSF concentrations or neuroleptic efficacy. In a later study, the plasma from 

53 patients newly started on 200mg/day thioridazine was sampled 12 hours post-dose 6 times 

over the course of two weeks. However, this analysis did not establish any link between plasma 

concentrations of thioridazine and anti-psychotic efficacy(76). 

Substrates of drug efflux transporters (eg risperidone and P-gp affinity), may show a 

lack of correlation between plasma and CSF concentrations. In these cases, other correlates of 

efficacy such as unbound CSF drug concentrations need to be used. More recent PK/PD 

analyses have explored the relationship between CSF concentration of anti-psychotics and 

receptor occupancy data(77,78). In general, while CSF concentrations of antipsychotics 

correlated with efficacy (eg chlorpromazine)(79,80), this is not always the case due to 

difficulties in quantifying low CSF drug concentrations (eg. haloperidol)(79,81). Another 

potential confounder in the relationship between drug concentration and efficacy occurs if 

there is metabolism to a moiety with anti-psychotic effect. For example, the active metabolite 

of risperidone, 9-hydroxyrisperidone (paliperidone) is itself a marketed antipsychotic.  

The importance of combined PK/PD modeling compared to PD alone has been 

demonstrated for anti-psychotics. Aripiprazole was dosed in 18 subjects from 2mg to 30mg, 

and PET scans were taken pre-dose and 3, 4, 5, and 120 hours post-dose(82). Hysteresis was 

present in the relationship between dopamine receptor occupancy and plasma concentrations 

due to delayed effect site equilibration.  This resulted in the EC50 value changing based on the 

type of modeling performed. With the combined PK/PD analysis of predicted effect site 

concentration versus receptor occupancy, the EC50 was 8.6ng/ml(82). However, considering 

only PD, the EC50 was slightly higher (11.1 ng/mL) due to hysteresis causing a change in the 
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concentration-response slope.  Therefore, for drugs where there is discrepancy between the 

time course of measured plasma concentration and receptor occupancy(82,83), a combined 

PK/PD analysis results in more reliable estimates of activity and accurate PD endpoints.  

 

1.6. Clinical pharmacokinetics and pharmacodynamics of drugs used to treat 

Alzheimer’s disease in the CNS 

In the fall of  2017, interpedine and verubecestat were the latest drug failures for 

Alzheimer’s disease(84). An examination of the clinical pharmacology of the currently 

approved drugs for Alzheimer’s identifies several potential sources for failure of clinical trials. 

Alzheimer’s is a progressive disease where deteriorating brain pathology may lead to altered 

drug concentrations in the brain. This may be challenging when interpreting PK results from 

healthy volunteers or animal models. For example, a recent PET scan analysis performed 2.5-

3 hour (Tmax) after a single oral dose of 1mg or 30ug 11C-donepezil in four healthy women(85) 

showed that the mean standardized unit value for mean intensity of pixels imaged (SUVmean) 

was 0.9 in the brain for both doses which is indicative of an almost even distribution of 

radioactivity in the brain compared to the rest of the body. However, in a study of donepezil in 

patients with Alzheimer’s, despite achieving concentrations in the CSF that were ten times 

lower than plasma, higher concentrations at 24 hours post-dose compared to 12 hours post-

dose was observed in CSF but not plasma(86,87). This is thought to be due to the degradation 

of P-gp protein in the progressive pathogenesis of Alzheimer’s (donepezil is a substrate of P-

gp) that reduces the efflux of drug from CSF(87). Given the localization of P-gp in BBB and 

its role in the efflux of drugs from the brain tissue, one might expect similar accumulation of 

donepezil to occur in brain tissue of Alzheimer’s patients as well, however, this is unknown. 

Another consideration is the suitability of surrogate PK measurements and their relationship 
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with target site concentrations. For the NMDA receptor antagonist memantine, concentrations 

in the CSF from six patients (0.05-0.3uM) were 50% lower than serum concentrations(88) 

while the brain tissue concentration of memantine measured from a single autopsy patient (5.7 

mg/kg) was 2.7-times higher than the heart blood concentration (2.1 ug/ml) and 6.9-times 

higher than the femoral blood concentration (0.83 ug/ml)(89). While such data may be too 

sparse to interpret, memantine is a basic compound (pKa = 10.7)(88), and sequestering within 

acidic lysosomes via pH partitioning and lysosomal trapping may be responsible for the 

enhanced brain accumulation of the drug compared to CSF. While clinical brain tissue 

concentrations are unknown for the acetyl cholinesterase (AChE) inhibitor rivastigmine(90), 

continuous CSF sampling in 18 patients at steady state for up to 12 hours post-dose(91) 

demonstrated that rivastigmine exhibited differential PK in plasma and CSF. The Cmax in CSF 

was lower than plasma by 2- to 4-fold and Tmax in CSF was longer than plasma (1.4-3.8 hours 

compared to 0.5-1.67 hours).  

There is limited data on the utility of PD measures in patients with Alzheimer’s disease. 

For example, an earlier review noted complications of using AChE activity measurements as 

an outcome measure due to confounding by a number of factors such as diet, concomitant 

medication or time of lumbar puncture(92), making the effect size of PK/PD analyses more 

difficult to interpret. Further, while there are some studies that utilize plasma concentrations to 

correlate with treatment outcomes(93), plasma concentrations must first be validated as an 

appropriate surrogate for the target site. 
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1.7. Clinical pharmacokinetics and pharmacodynamics of antiretrovirals in the CNS 

In 2007, research nosology in the field of HIV was updated(71) to provide guidance on 

the neurocognitive disorders caused due to HIV – collectively called HIV-associated 

neurocognitive disorders (HAND). Since this time, the CNS has been implicated as an 

anatomical reservoir for HIV(94–97), capable of harboring latent viral infection in macrophage 

and microglia cells in the brain. To advance our understanding of both the treatment and 

potential cure for HIV in the CNS, it is imperative to understand the PK of antiretrovirals 

(ARVs) in the CNS and their relationship with neurocognition and latent reservoirs.  

ARV PK has been extensively studied in the CSF and the reader is referred to two 

reviews summarizing this topic(44,98). Using measures of CSF PK of ARVs along with 

physicochemical properties of the drugs and clinical utility, Letendre and colleagues devised a 

CNS-penetration effectiveness (CPE) score that accounts for efficacy of ARVs and extent of 

penetration into the CNS(99). The scores range from 1-4 with 1 being less effective (having 

lowest CNS penetration), and 4 being most effective (having highest CNS penetration)(99). 

ARVs having higher CPE score cause greater reduction in viral load in the CSF in HIV 

patients(100). However, the correlation between CPE score and degree of neurocognitive 

impairment in patients with HAND is variable. For example, while improvement in 

neurocognitive function was noted by using agents with a higher CPE score in some 

studies(101), there are instances where higher CPE was not associated with neurocognitive 

improvement(102), or where higher CPE was associated with poorer functioning(103,104).  

Given the contradicting PK/PD results, one hypothesis is that brain tissue concentration 

of ARVs may be a better predictor of neurocognitive impairment in patients with HAND. 

However, there are sparse clinical data on the agreement between CSF and brain tissue 
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concentrations of ARVs. In a small study by Bumpus and colleagues, sub-compartmental brain 

tissue concentration of ARVs were evaluated in nine HIV-positive adults who had AIDS at the 

time of death(105). Concentrations in white matter, cortical gray matter and globus pallidus 

regions of the brain were taken from necropsy samples, and compared to historical CSF 

concentration data(105). No difference in brain and CSF concentration was found for 

efavirenz, emtricitabine, atazanavir and lamivudine. However, for tenofovir, the overall brain 

concentration of 206 ng/g was 37-fold higher than CSF. For lopinavir, a protease inhibitor, 

greater accumulation was found in white matter (>400 ng/g) compared to other brain regions 

(<25 ng/g).  Contrary to these data, a recent in-silico model(59) predicted that efavirenz 

accumulates in brain tissue, with a median tissue-plasma penetration ratio of 15.8.  Data 

recently published in 12 nonhuman primates(106) showed that tenofovir, emtricitabine, 

efavirenz, raltegravir, maraviroc, and atazanavir all reached higher total concentrations in brain 

tissue compared to CSF at trough. For efavirenz, the brain tissue to CSF concentration ratio 

was highest (769-fold) and brain tissue-plasma penetration ratio ranged from 3-5.7, indicating 

accumulation of efavirenz.  Since information on patient adherence was not available for the 

Bumpus study and comparisons between brain tissue and CSF concentrations were made with 

historical CSF estimates, low adherence to an ARV regimen before death could explain why 

efavirenz concentrations were equivalent to the CSF measurements and much lower in these 

samples than that demonstrated in the nonhuman primates or predicted in the model.  

A critical area for future investigation is PK/PD correlations as they relate to 

development of latent reservoirs in target cells of the brain tissue. With advances in mass 

spectrometry imaging, this work may be able to determine specific distribution patterns of 

ARVs in the brain(20) that can lead to differential viral growth or establish latency if there is 



22 

insufficient ARV coverage. Another area of research is to understand the optimal range of 

intracellular concentration that can prevent HIV cellular infection without CNS toxicity(107). 

 

Table 1.2: Summary of pharmacokinetic and pharmacodynamic measurements made in 

the CSF and brain tissue for anti-psychotic drugs, anti-Alzheimer’s drugs and 

antiretrovirals in human studies 

Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

I. Psychosis 

Pharmacokinetics 

Wode-

Helgodt et 

al. 

Humans with 

a psychotic 

disorder 

44 Chlorpromazine CSF and plasma 

were analyzed. 

Clinical 

improvements in 

patients with drug 

concentrations 

greater than 

1ng/ml in CSF 

and 40ng/ml in 

plasma 

(80) 

 

Kornhube

r et al. 

Postmortem 

brain tissue of 

humans 

treated with 

Haloperidol 

11 Haloperidol Liquid 

chromatography 

was used to 

measure 

concentrations in 

5 brain regions. 

Drug 

concentrations 

were 10x higher 

than serum 

concentrations 

optimal to treat 

schizphrenia. 

Elimination T1/2 

from brain tissue 

was estimated by 

population PK 

analysis and was 

6.8 days 

(72) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

Rimón et 

al. 

Humans with 

chronic 

schizophrenia 

12 Haloperidol At steady-state, 

CSF and serum 

concentrations 12 

hours post-dose 

were compared. 

CSF 

concentrations 

were 4.3% of 

serum 

(81) 

Sampedro 

et al. 

Postmortem 

brain tissue 

18 Amisulpiride, 

haloperidol, 

levomepromazin

e, norclozapine, 

olanzapine, 

paliperidone, 

quetiapine, 

risperidone, 

Sulpiride, 

triapride, 

ziprasidone 

Liquid 

chromatography 

tandem mass 

spectroscopy was 

used to measure 

concentration of 

17 antipsychotics 

in the prefrontal 

cortex. 

Concentrations 

below lower limit 

of quantification 

noted in ten 

samples. Some 

samples had high 

drug 

concentrations 

indicating drug 

overdose 

(73) 

Nyberg et 

al. 

Humans with 

a psychotic 

disorder 

48 Thioridazine Paired CSF and 

blood samples 

were obtained. 

Collection time-

point is unclear. 

Mean total 

concentration was 

19.4nmol/L in 

CSF 

Free fraction in 

CSF = 49.1% 

(75) 

 

Pharmacodynamics 

Kim et al. Healthy 

volunteers 

18 Aripiprazole PET was used to 

measure 

dopamine 

receptor 

(82) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

occupancy at 3, 

45 and 120 hours 

post-dose.  

EC50 = 

11.1ng/ml from 

PD modeling. 

EC50 = 

8.63ng/mL from 

PK-PD modeling 

Yokoi et 

al. 

Healthy 

volunteers 

15 Aripiprazole PET was used to 

measure D2 and 

D3 occupancy 

after two weeks 

of daily dosing.  

Dose dependent 

receptor 

occupancy from 

40-95% observed 

(61) 

Farde et 

al. 

Humans with 

a psychiatric 

disorder 

14 Chlorpromazine, 

Clozapine, 

flupentixol, 

haloperidol, 

melperone, 

perphenazine, 

pimozide, 

raclopride, 

sulpride, 

thioridazine, 

thioxanthene, 

trifluperazine 

hydrochloride 

PET was used to 

measure 

dopamine 

receptor 

occupancy at 

steady-state, 6 

hours post-dose 

65-85% D2 

receptor 

occupancy across 

the 11 drugs 

 

(62) 

 

Mamo et 

al. 

Humans with 

schizophrenia 

16 Ziprasidone PET was used to 

measured 

dopamine and 

serotonin 

occupancy after 3 

weeks of 

administration at 

trough. 

Occupancy at 5-

HT2 was 76% 

and at D2 was 

56% 

(63) 

 

II. Alzheimer’s disease 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

Pharmacokinetics 

Mochida 

et al. 

Healthy 

women 

4 11C-Donepezil Women were 

orally 

administered 1mg 

and 30ug 11C-

Donepezil and 

underwent PET 

scan 2.5 hours 

post-dose 

Mean 

standardized unit 

value for mean 

intensity of pixels 

imaged was 0.9 in 

the brain, 

indicating even 

distribution of 

radioactivity in 

brain as the rest 

of the body 

(85) 

Valis et al. Humans with 

Alzheimer’s 

16 Donepezil Donepezil 

concentrations in 

CSF were 

measured via 

liquid 

chromatography. 

CSF 

concentration 

higher at 24h 

(7.54ng/ml) vs 

12hr (5.19ng/ml). 

No accumulation 

in plasma 

(86) 

 

Darreh-

shori et al. 

Humans with 

Alzheimer’s 

104 Donepezil CSF and blood 

AChE measured 

via Ellman’s 

colrimetric assay. 

Collection 

timepoint is 

unclear, but all 

patients were at 

steady-state.  

CSF 

concentrations 

(87) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

were 10x lower 

than plasma. CSF 

AChE-S 

inhibition was 30-

40% after 5mg 

dose and 45-55% 

after 10mg dose. 

Kornhube

r et al. 

Humans with 

mild to 

moderate 

dementia 

6 Memantine Plasma and CSF 

measured 2-3 

hours after dose 

in 4 patients 

CSF 

concentration was 

0.05-0.3uM and 

50% lower than 

in serum 

(88) 

Rohrig et 

al. 

Postmortem 

human brain 

tissue 

1 Memantine Brain tissue 

concentration was 

5.7 mg/kg which 

was 2.7-times 

higher than the 

heart blood 

concentration (2.1 

ug/ml) and 6.9-

times higher than 

the femoral blood 

concentration 

(0.83 ug/ml) 

(89) 

Cutler et 

al. 

Humans with 

Alzheimer’s 

18 Rivastigmine Cmax in CSF was 

lower than plasma 

by 2-4-fold and 

Tmax in CSF 

(1.4-3.8 hours) 

was longer than 

plasma (0.5-1.67 

hours) 

(91) 

Pharmacodynamics 

Wattmo et 

al. 

Humans with 

Alzheimer’s 

84 Galantamine Alzheimer’s 

Disease 

Assessment Scale 

- cognitive 

subscale (ADAS-

cog) 

(93) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

Mini-Mental 

State 

Examination 

(MMSE) 

instrumental 

activities of daily 

living (IADL) 

Plasma 

concentrations 

did not correlate 

with any of the 

PD measures 

 

 

III. Neuro-HIV 

Pharmacokinetics 

Yilmaz et 

al. 

HIV-positive 

humans 

1 Efavirenz Liquid 

chromatography 

tandem mass 

spectoscopy was 

used to quantify 

drug 

concentrations. 

Median 

concentration in 

plasma was 

3,718ng/ml and in 

CSF was 

16.3ng/ml. CSF 

penetration was 

0.44% of plasma 

(37) 

 

Bumpus et 

al. 

Postmortem 

human brain 

tissue 

21 Atazanavir, 

Efavirenz, 

Emtricitabine, 

Lamivudine, 

Lopinavir, 

Tenofovir 

Drug 

concentrations 

were assessed by 

liquid 

chromatography 

and compared to 

historical CSF 

measures. 

Concentrations 

varied by brain 

regions and lower 

in cortical grey 

matter than other 

(105) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

regions for 

lopinavir (p=0.01) 

No difference for 

other drugs and 

tenofovir had 

higher 

concentration in 

brain tissue than 

CSF 

Curley et 

al. 

Virtual cohort 

of humans 

NA/100 

virtual 

simulati

ons 

Efavirenz CNS distribution 

predicted using 

permeability-

limited PBPK 

model. Median 

Cmax was 

3,184ng/ml, 

49.9ng/ml, and 

50,343ng/ml in 

plasma, CSF, and 

brain tissue. Brain 

tissue to plasma 

ratio was 15.8.  

(59) 

 

Pharmacodynamics 

Smurzyns

ki et al. 

HIV-positive 

humans 

2,636 Combination 

ARV therapy 

Neuropsychiatric 

testing scores 

(NPZ3) – better 

scores associated 

with higher CPE 

for more than 3 

ARV drug 

regimens. No 

association for 

regimens less 

than 3 ARVs 

(101) 

Baker et 

al. 

HIV-positive 

humans 

64 Combination 

ARV therapy 

Neuropsychiatric 

testing scores 

(NPZ4) – no 

relationship with 

CPE 

Brain volumetric 

changes – no 

relationship with 

CPE 

(102) 
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Authors Study 

population 

Sample 

size 

Drug(s) Parameters and 

Results 

Reference 

Caniglia 

et al. 

HIV-positive 

humans 

61,938 Combination 

ARV therapy 

“intention-to-

treat” hazard 

ratios of 4 neuro-

AIDS conditions 

– high CPE 

associated with 

increased risk of 

dementia 

(104) 

 

1.8. Optimization of Pharmacokinetics/Pharmacodynamics: 

1.8.1. Study of biomarkers:  

In Alzheimer’s disease, abnormal aggregation of protein can manifest as cognitive 

impairment or dementia(108). Often, protein accumulation processes begin before clinical 

manifestations. Therefore, the search for quantifiable proteins or biomarkers in the CSF or 

blood is important for diagnosis. Biomarkers may also have utility as PD endpoints and a recent 

review identified amyloid and tau in the CSF as commonly used biomarker outcome measures 

in ongoing clinical trials for Alzheimer’s disease(109). As previously demonstrated(110) the 

utility of these measures comes from the stability of these biomarkers over time and significant 

differences in concentrations attained between patients with Alzheimer’s and healthy 

volunteers. Utility of biomarkers to aid in anti-depressant drug development was recently 

demonstrated by Kielbasas et al. In an indirect response analysis, plasma PK concentrations of 

the antidepressants atomoxetine, duloxetine and edivoxetine were modeled against the CSF 

concentration of 3,4-dihydroxyphenylglycol (DHPG)(111), the deaminated form of 

norepinephrine, as a biomarker. The analysis showed that the antidepressants all had a maximal 

inhibition of rate of formation of DHPG (Imax) of 33-37% in plasma and that edivoxetine was 

most potent. However, when in CSF, Imax was much greater for edivoxetine (75%) compared 
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to atomoxetine (53%) and duloxetine (38%). Further investigation of such biomarkers in the 

clinic can assist in the discovery of novel drug candidates. 

Identification of novel biomarkers may also be useful in the field of neuro-HIV as a 

surrogate measure for neurocognitive impairment(112) to avoid the possibility of confounding 

with subjective psychiatric tests. In this regard, neurofilament light chain (NFL) has shown 

promise as a biomarker relating to HAND, although there have been no clinical studies 

evaluating the correlation of ARV and biomarker concentrations in HIV patients. Similarly, 

biomarkers should also be explored as a surrogate for establishment of latent HIV reservoir in 

the brain(113). 

1.8.2. Modeling and simulation:  

Several modeling tools have been developed to predict drug disposition within brain. 

Both a top-down approach (population PK modeling)(78) and a bottom-up approach (PBPK 

modeling)(26,77,114,115) have been used to predict the brain penetration of various drugs in 

humans using in-vitro and animal data. Gaohua and colleagues recently developed an extensive 

PBPK model that incorporated four additional compartments of the brain(26): brain blood, 

brain mass and cranial and spinal CSF. The model was well suited to describe anatomy and 

physiology of the brain including passive and active transport mechanisms through the BBB. 

The model was validated with measured clinical concentrations and in-vitro data for phenytoin 

and paracetamol and was used to simulate various scenarios that mimicked transporter 

mediated mechanisms and CSF turnover. A recently developed generic PBPK model that 

incorporated five CSF compartments, including the extravascular drainage from CSF as well 

as intracellular and extracellular brain compartments was utilized to predict the human brain 

and CSF PK of nine diverse drugs, including antipsychotics and antidepressants(116). Such 
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efforts will greatly improve our understanding of CNS target site approximations in humans. 

Modeling techniques further benefit from incorporating both the PK profile as well as the 

concentration and effect of endogenous substances. For example, a mechanistic monkey 

PK/PD model was developed using plasma and CSF concentrations from the cisterna magna 

of two novel BACE-1 inhibitors with beta-amyloid and secreted amyloid-precursor protein 

biomarkers(117). This model could predict in-vivo inhibition of BACE-1 and effect on 

amyloid precursor processing by the BACE-1 inhibitors using in-vitro cellular inhibition and 

enzyme activities as well as drug concentration data. 

1.8.3. PK/PD translation from preclinical models: 

Developing innovative animal models for CNS research could address issues in clinical 

PK/PD such as the relationship between effect site drug concentrations and novel biomarkers, 

as well as allow for the discovery of novel targets. Zebrafish models have been refined to study 

several neuro-behavioral disorders such as depression, Parkinson’s disease and attention-

deficit hyperactive disorder (ADHD)(118). They offer the advantages of low cost and genetic 

manipulation over traditional lab species such as rodents, and show a high degree of genetic 

and physiologic homology to mammals(119). Novel rodent models have also been explored 

for pediatric epilepsy(120) and CNS involvement in HIV infection(121). 

For current animal models, their clinical applicability must be carefully examined. For 

example, certain animals may lack receptors or drug targets available in humans. Animal 

models may also differ in expression or activity of drug metabolizing enzymes and 

transporters. Comprehensive work by Terasaki and colleagues in quantitative targeted absolute 

proteomics (QTAP) have quantified transporter protein concentrations on the BBB of several 

species, including humans(50,122) and found interspecies differences in several important 
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transporters. For instance, humans have a greater absolute concentration (fmol/ug of protein) 

of BCRP compared to mice, while mice have a greater absolute concentration of P-gp, 

OATP1A2, MRP4 and OAT3. Similarly, absolute transporter concentrations in cynomolgus 

monkeys track more closely with humans than mice. Since multiple transporters contribute to 

both the uptake and efflux of drugs at the BBB, the relationship between transporter 

expression/activity and PK is not straight forward in the CNS. Therefore, while transporter 

differences at BBB are not currently considered in allometry, models that account for 

differential transporter-activity between species in CNS are needed to understand if this 

warrants changes in human dose.   

 

1.9. Conclusions 

Understanding the extent of drug penetration and concentration-effect relationship at 

the various sites of the CNS is essential for neuro-active drug development. Currently, 

information on brain and CSF drug distribution exists for anti-psychotics, Alzheimer’s drugs 

and anti-infectives. However, the interaction between drug concentration and effect is still not 

clearly defined across these areas. 

This thesis provides a framework to understand PK/PD of ARVs in the brain tissue as 

this relates to the treatment of HIV in the brain. Three well-characterized preclinical models 

of HIV infection were utilized to compare the inter-species differences in the extent of ARV 

penetration into the brain tissue and CSF. The gene expression and protein concentration of 

drug transporters across the three species were measured to explore if inter-species differences 

in transporter concentration were associated with differential penetration of ARVs into the 
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brain across the three models. Finally, modeling and simulation was used to predict clinical 

PK in the brain tissue and CSF of efavirenz using data collected from a nonhuman primate 

model. The model-predicted brain exposure in humans was then correlated with the extent of 

neurocognitive impairment in a cohort of HIV-positive participants in order to explore PK/PD 

relationships. 

Integration of PK/PD information for ARVs in the CNS can provide valuable 

information on clinical concentration-effect relationships in the brain tissue and can lead to 

better precision medicine in HIV-positive individuals with neurocognitive disorders. In 

support of this, better utilization of clinical pharmacology tools can help pave the way for more 

rigorous explanation of clinical brain PK/PD. 
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SPECIFIC AIMS 

 

AIM 1: Quantify the penetration of antiretrovirals (ARVs) within the brain tissue in 

nonhuman primates (NHPs) and humanized mouse models using IR-MALDESI imaging 

and LC-MS/MS methods. 

(Discussed in Chapter-II) 

1a: Use IR-MALDESI imaging technique to visualize and quantify the distribution of ARVs 

from five therapeutic classes within the brain tissue of two species of humanized mice and 

NHPs. 

1b: Colocalize the drug exposure by IR-MALDESI imaging with the distribution of target cells 

in the brain tissue of humanized mouse models and NHPs 

1c: Quantify ARV concentrations in the brain tissue collected in Aim 1a using traditional LC-

MS/MS in humanized mouse models and NHPs and determine brain tissue:plasma penetration 

ratio of ARVs and 90% inhibitory quotients in the brain tissue of NHPs.  

AIM 2: Determine the expression patterns of five efflux transporters and four uptake 

transporters involved in ARV distribution in the brain tissue of NHPs and humanized 

mouse models. Identify if inter-species differences in expression of transporters affects 

the disposition patterns of ARVs.  

(Discussed in Chapter-III) 

2a: Quantify and evaluate inter-species differences in the gene expression by quantitative 

polymerase chain reaction (qPCR) and protein expression by western blotting and quantitative 
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targeted absolute proteomics (QTAP) of relevant drug transporters in the brain tissue of 

humanized mouse models and NHPs. 

2b: Determine if inter-species differences in the expression of transporters is correlated with 

the disposition of ARVs in the brain tissue of humanized mouse models and NHPs. 

2c: Visualize the distribution of BCRP, P-gp, MRP4, MRP1, and OATP1A2 in the brain tissue 

of humanized mouse models and NHPs using immunohistochemistry (IHC) staining. 

AIM 3: Develop a PK model in NHPs and humans to predict the exposure of efavirenz in 

brain tissue and explore the relationship between the model-predicted concentration of 

efavirenz in brain tissue and neurocognitive outcome in HIV positive participants.  

(Discussed in Chapter-IV) 

3a: Develop a PK model for penetration of efavirenz into the cerebrospinal fluid (CSF) and 

brain tissue of NHPs using data generated in Aim 1c. 

3b: Develop a human PK model from the NHP PK model developed in Aim 3a to predict 

efavirenz penetration into the brain using sparse plasma and CSF concentrations from patients 

in the THINC Clinical Study (PO1 grant no. MH094177).  

3c: Perform correlation analysis between model-predicted exposure of efavirenz in the brain 

tissue and neurocognitive scores data from the THINC study in 24 HIV-positive participants. 
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CHAPTER-II: ANTIRETROVIRAL CONCENTRATIONS IN THE BRAIN TISSUE 

AND CEREBROSPINAL FLUID IN HUMANIZED MOUSE MODELS AND 

NONHUMAN PRIMATES1 

 

2.1. Summary 

            Antiretroviral (ARV) concentrations in the cerebrospinal fluid (CSF) are used as a 

surrogate for brain tissue, although sparse data support this. Here, we quantified ARV 

concentrations in the brain tissue across preclinical models commonly used to study HIV 

infection, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) in the brain 

tissue of nonhuman primates (NHPs). Spatial distribution of efavirenz was performed with 

mass spectrometry imaging (MSI) and the colocalization of efavirenz distribution with the 

distribution of microglia and CD4+ T-cell target cell populations was explored. HIV or RT-

SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem 

cell/RAG2- [Hu-HSC-Rag, number of animals = 36] and the bone marrow-liver-thymus [BLT, 

number of animals = 13]) and an NHP model (rhesus macaque, number of animals = 18) were 

dosed to steady state with tenofovir, emtricitabine, efavirenz, raltegravir, maraviroc, and 

atazanavir. Brain tissue, CSF (NHPs only) and plasma were collected at necropsy. Drug 

concentrations were measured by liquid chromatography tandem mass spectroscopy (LC-

MS/MS). Rapid equilibrium dialysis was used to determine protein binding of ARVs in the 

NHP brain. MSI was by infrared matrix-assisted laser desorption electrospray ionization (IR-
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MALDESI). CD11b and CD4 staining were performed by immunofluorescence in order to 

identify the microglia and T-cell populations in the brain tissue. Colocalization of the MSI and 

immunofluorescence images was performed in Matlab. ARV brain tissue concentrations 

normalized to plasma concentrations were >ten-fold lower (p<0.02) in the humanized mouse 

models than NHPs for all ARVs except raltegravir. Brain tissue concentrations in NHPs were 

>6-fold higher (p<0.02) than CSF concentrations.  Most ARVs were less than 25% bound in 

the brain tissue except for efavirenz that was highly protein-bound (97%). Despite the high 

protein binding in the brain tissue, efavirenz was the only ARV which achieved IQ90>1 in all 

animals. Efavirenz showed a 1.1- to 3-fold greater penetration into the white matter compared 

to the grey matter and the fractional coverage of CD11b cells and CD4+ T-cells that contained 

efavirenz at a concentration above the IC50 was only 3%. This analysis revealed that brain 

tissue penetration varied widely across animal models for all ARVs except raltegravir, and 

extrapolating brain tissue concentrations between models should be avoided. With the 

exception of efavirenz, CSF is not a suitable surrogate for brain tissue concentrations of ARVs. 

Our two surrogate measures of efficacy for efavirenz show that despite a high concentration of 

free drug, inadequate coverage of efavirenz at relevant target cells may contribute to HIV 

persistence in the brain, and this should be investigated further.  

 

 

 

 

 
 
 
1This chapter was previously published as an article in the journal Xenobiotica. The original citation is as 
follows: Srinivas N, Rosen EP, Gilliland WM Jr, Kovarova M, Remling-Mulder L, De La Cruz G, White N, 
Adamson L, Schauer AP, Sykes C, Luciw P, Garcia JV, Akkina R, & Kashuba ADM, Xenobiotica, 2018. 
https://doi.org/10.1080/00498254.2018.1539278 
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2.2. Introduction 

HIV invades the central nervous system (CNS) early after infection. HIV RNA can be 

detected in the cerebrospinal fluid (CSF) of acutely infected patients eight days after 

exposure(1), and may be detected in the CSF even when undetectable in the plasma(2,3). In 

the brain, HIV replication occurs in long lived cells such as macrophages and astrocytes(4) and 

the resulting immune activation is hypothesized to cause neuronal death and decline in 

neurological functioning(5,6). Before combination antiretroviral (ARV) therapy, almost 60% 

of patients with AIDS developed a debilitating form of neurological disease called HIV 

associated dementia (HAD)(7). Currently, the prevalence of HAD has been reduced to 5%, 

although milder forms of neurocognitive impairment remain high at 20-50%(8). This may be 

related to the extent of antiretroviral (ARV) penetration into the CNS(9). While our 

understanding of ARV exposure/response relationships in the CSF has greatly improved in the 

past decade, some key knowledge gaps still exist. 

The first critical knowledge gap is the extent of ARV penetration into the brain tissue 

and the agreement between the CSF and brain tissue concentration of ARVs. The brain is the 

relevant target site for HIV replication in the CNS, however, a paucity of information exists 

on ARV concentrations achieved in the brain tissue. Furthermore, while CSF concentrations 

are often considered as a surrogate for brain tissue exposure, little data support this for ARVs.  

For several classes of drugs acting in the CNS, CSF concentrations are either much lower than, 

or not predictive of, brain tissue concentrations(10,11). This may also be the case for ARVs 

due to their affinity for the drug uptake and efflux transporters at the blood-brain barrier (BBB) 

and the blood-CSF barrier (B-CSF-B).  Active transport of ARVs along the BBB and B-CSF-

B disturbs the equilibrium of passive protein-unbound drug movement(12), which may result 
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in different relationships between plasma, CSF and brain tissue concentrations for different 

ARVs.   

The second critical gap is related to defining an appropriate efficacy target for drug 

exposure in the CNS. An efficacy target that is commonly employed is the drug concentration 

required to inhibit HIV viral replication by 50% (IC50). While achieving drug concentration 

>IC50 has been generally considered optimal in the CSF(13,14), having coverage at IC50 

concentrations may not be enough to avoid the onset of resistance mutations(15). In a recent 

analysis by Calcagno(15), inhibitory quotients (IQ) were calculated for commonly used ARV 

regimens in the CSF by using a standardized wild-type IC95 for HIV clinical isolates(16). The 

investigators were able to demonstrate the utility of this measurement in optimizing CNS-

penetrating ARV regimens by showing that an IQ95>1 was associated with better viral control 

in the CSF. While such an approach could provide a standardized drug efficacy target across 

studies, the wild-type IC95 estimates utilized in this analysis were corrected for protein binding 

in the plasma and not the CSF. Since drugs usually exhibit a higher extent of protein binding 

in the plasma compared to the CSF(17,18), it is likely that some of the final IQ estimates may 

have been underestimated. Furthermore, these values have not been determined for brain 

tissue. 

Since it is not practical to obtain robust human brain tissue pharmacokinetic (PK) data, 

animal models can be used to address the knowledge gaps detailed above. However, there is 

no consensus in the field as to which animal model would best approximate human brain tissue 

PK. Therefore, in this work, we measure the penetration of ARVs across three commonly used 

HIV preclinical models – two humanized mouse models and one nonhuman primate (NHP) 

model(19,20). In the NHPs, we evaluate the agreement between total ARV concentrations in 
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the brain tissue and CSF and measure unbound ARV brain tissue concentrations in order to 

calculate the IQ90 estimates. To provide a measure of spatial brain tissue distribution of ARVs 

in the brain tissue, we use mass spectrometry imaging (MSI). These results were then 

combined with immunohistochemistry (IHC), to determine the colocalization of ARV 

distribution in the brain tissue with the distribution of relevant HIV target cells as a second 

surrogate measure of efficacy of ARVs within the brain tissue. 

 

2.3. Materials and Methods 

2.3.1. Animal models:  

This analysis utilized three commonly used animal models: two species of humanized 

mouse models [human stem cell hemopoietic/RAG 2- (hu-HSC-Rag, number of animals = 36) 

and bone marrow-liver-thymus (BLT, number of animals = 13)] and one species of NHP 

(rhesus macaques, number of animals = 18). Humanization of the mice was by protocols that 

have been previously described(21,22). The extent of humanization for the humanized mouse 

models was assessed by quantifying the human T-cell populations using flow cytometry. All 

the humanized mice were female, while six (33.3%) of the NHPs were female. Half of the 

animals were left uninfected while the other half were infected with 200 μL 2.1 x 106 IU/mL 

of HIVBal D7 intraperitoneally (hu-HSC-RAG), or 200 μL 90,000 tissue culture infectious units 

(TCIU) of HIVJRcsf intravenously (BLT), or 104.5 tissue culture infective dose (TCID50) RT-

SHIV intravenously (macaques)(23,24) for four weeks. The hu-HSC-RAG and BLT mice 

underwent humanization when aged three to six months and were then dosed with various 

ARV regimens for a period of ten days. Hu-HSC-RAG mice were dosed with EFV 10 mg/kg 

only (six uninfected and six infected animals), or atazanavir (ATZ) 140 mg/kg only (six 
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uninfected and six infected animals), or a combination of tenofovir (TFV) 208 mg/kg, 

emtricitabine (FTC) 240 mg/kg, raltegravir (RAL) 56 mg/kg, and maraviroc (MVC) 62 mg/kg 

(six uninfected and six infected animals). BLT mice were dosed with a combination of TFV, 

FTC, RAL, MVC, and ATZ at equivalent doses but not EFV due to toxicity concerns (personal 

communication from J. Victor Garcia). All drugs were administered by oral gavage once a day, 

and dosing solutions were prepared by solubilizing formulated drug. Dosing regimens for each 

of the animal models are summarized in Table 2.1. The dosage selection for all the drugs in 

the animal models was based on standard doses used for the treatment of HIV in these animal 

models, and to minimize the potential for drug-drug interactions. ARVs were dosed for ten 

days to achieve PK steady-state conditions in tissues based on known half-lives of these drugs. 

Table 2.1. Sample size and dosage regimens for the preclinical models 

 

Dosing Regimen 

Humanized Mice Rhesus macaques 

Hu-HSC-

RAG 
BLT Male Female 

HIV- HIV+ HIV- HIV+ 
RT-

SHIV+ 

RT-

SHIV- 

RT-

SHIV+ 

RT-

SHIV- 

EFV N=6 N=6       

ATZ N=6 N=6       

TFV/FTC/RAL/MVC N=6 N=6       

TFV/FTC/RAL/MVC/ATZ   N=6 N=7     

TFV/FTC/EFV/RAL     N=3 N=3 N=1 N=2 
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Dosing Regimen 

Humanized Mice Rhesus macaques 

Hu-HSC-

RAG 
BLT Male Female 

HIV- HIV+ HIV- HIV+ 
RT-

SHIV+ 

RT-

SHIV- 

RT-

SHIV+ 

RT-

SHIV- 

TFV/FTC/MVC/ATZ     N=3 N=3 N=1 N=2 

 

The macaques were dosed with a backbone of TFV 30 mg/kg administered 

subcutaneously and FTC 16 mg/kg administered subcutaneously, with a combination of either 

EFV 200 mg/day and RAL 200 mg/day (four uninfected and five infected animals) given orally 

with food, or MVC 150 mg/day and ATZ 270 mg/kg (four uninfected and five infected 

animals) given orally with food. Similar to the humanize mouse models, the doses and 

regimens in the rhesus macaques were chosen based on standard doses used for the treatment 

of HIV in these animal models and to minimize the potential for drug-drug interactions. One 

infected female macaque dosed with TFV, FTC, EFV, and RAL developed liver failure before 

necropsy and the measured drug concentrations in the plasma, CSF, and tissue matrices in this 

animal were >100-fold higher than in the other NHPs. As a result, the drug concentration data 

from this animal were excluded from the final liquid chromatography mass spectrometry (LC-

MS/MS) analysis. All animal studies were performed in concordance with institutional animal 

care and use committee (IACUC) protocols from the University of North Carolina at Chapel 

Hill (protocol 15-168), Colorado State University (protocol 16-6998A) and the University of 

California at Davis (protocol 18345). 
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2.3.2. Fluid and tissue collection from animal models:  

The humanized mice were euthanized by isoflurane overdose and underwent necropsy 

one day after the final ARV dose was administered by a trained veterinary pathologist. Whole 

blood was collected via retroorbital or cardiac puncture and centrifuged at 2,500 RPM for 15 

minutes to separate out the plasma. CSF was not collected in the animals because of the small 

CSF volume and risk of plasma contamination. For the NHPs, animals were sedated with 

ketamine hydrochloride one day after the final ARV dose and CSF was collected. The animals 

were then euthanized by a barbiturate overdose and whole blood was collected via 

venipuncture, and centrifuged for 15 minutes at 2500 RPM to separate out the plasma. All 

animals underwent necropsy by trained veterinary pathologists. The plasma and CSF fluid 

samples were stored at -80˚C within a few hours after collection. 

At necropsy, several potential tissue reservoirs for HIV persistence were collected from 

all animals, including the brain tissue. After removal from the body, the humanized mouse 

brain tissue was cut in half longitudinally and placed into separate aluminum foil pouches and 

snap frozen on dry ice. In case of the NHPs, four distinct regions of the brain tissue were 

collected – the frontal cortex, the cerebellum, the basal ganglia, and the parietal cortex. These 

regions were snap frozen with dry-ice and then placed into aluminum foil. The brain regions 

chosen for investigation were both cortical (frontal and parietal lobes) and sub-cortical 

(cerebellum and basal ganglia). These were chosen to evaluate morphologically different areas 

and to select the areas that had more extensive involvement in HIV injury to the brain. The 

total time from euthanization to tissue freezing was less than one hour for all tissues. After 

freezing, tissues were stored at -80˚C within a few hours of collection, until further analysis.  
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2.3.3. Tissue preparation for LC-MS/MS:  

Brain tissue was mounted on optimal cutting temperature (OCT) compound and sliced 

frozen at 10 μm thickness using a cryostat (Leica Biosystems, Wetzlar, Germany) in order to 

obtain serial sections needed for the various analyses (LC-MS/MS, mass spectrometry imaging 

and immunofluorescence). The 10 μm thick sections were then thaw mounted onto glass 

microscope slides in the following order: eight slices for IHC and three slices for MSI (one for 

analysis and two for backup). Three slices of brain tissue at 40 μm thickness were placed in an 

Eppendorf tube and subsequently homogenized for the LC-MS/MS analysis. The glass slides 

and Eppendorf tubes were stored at -80°C until the time of analysis. For the analysis of ARV 

active metabolites, tissue slices could not be used for the LC-MS/MS analysis as all the 

analytes were below the limit of quantification (BLQ). Therefore, for these analyses 10-15 mg 

of tissue was homogenized for further analysis by LC-MS/MS. 

2.3.4. Sample analysis for antiretroviral concentrations in the brain tissue:  

Plasma and CSF samples were extracted by protein precipitation using stable, 

isotopically labeled internal standards as described previously(25). The extracts were analyzed 

on a Shimadzu HPLC system with a Waters Atlantis T3 (50 mm x 2.1 mm, 3 µm particle size) 

column, with an API 5000 mass spectrometer (SCIEX, Framingham, MA) detector equipped 

with a TurboIonSpray interface. The lower limit of quantification (LLOQ) was 1 ng/mL. The 

inter- and intra-day precision and accuracy of the assays (two separate assays for TFV/FTC 

and for EFV/RAL/MVC/ATZ) were within 15%. 

Brain samples were homogenized in a Precelly’s tube with metal beads (Precelly’s 

tissue homogenizer) in one mL of 70:30 acetonitrile:1 mM ammonium phosphate (pH 7.4) and 
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then extracted by protein precipitation with stable, isotopically labeled internal standards. TFV 

and FTC were analyzed by the method described for plasma and CSF, while ATZ, EFV, MVC, 

and RAL were separated using an Agilent Pursuit XRs 3 Diphenyl (50 mm x 2 mm, 3 µm 

particle size) HPLC column. The LLOQs were 0.002 ng/mL (FTC and MVC), 0.005 ng/mL 

(ATZ, EFV, and RAL), and 0.01 ng/mL (TFV), respectively. These concentrations in ng/mL 

were converted to ng/g using a density of 1.06 g/m3(26). The intracellular active metabolites 

of TFV (tenofovir diphosphate: TFV-dp) and FTC (emtricitabine triphosphate: FTC-tp) were 

also quantified in the brain tissue. TFV-dp and FTC-tp were extracted by homogenizing the 

tissue with 70:30 acetonitrile:1 mM ammonium phosphate (pH 7.4).  An aliquot of the resulting 

homogenate was mixed with acetonitrile containing an isotopically-labelled internal standard, 

13C5-TFV-dp, (Moravek Biochemicals, Brea, CA).  The extracts were evaporated to dryness, 

reconstituted with 1 mM ammonium phosphate (pH 7.4), and transferred to a 96-well plate for 

analysis.  TFV-dp and FTC-tp were analyzed using anion exchange chromatography on a 

Thermo BioBasic AX (50 x 2.1 mm, 5 µm particle size) analytical column (Waters, Milford, 

MA) followed by detection under positive ion electrospray conditions.  Data were collected 

using an AB Sciex API-5000 triple quadrupole mass spectrometer. The dynamic range was 

0.300–300 ng/mL homogenate (rhesus macaques) and 0.0200 – 300 ng/mL homogenate 

(humanised mouse models) for both TFV-dp and FTC-tp. The inter- and intra-day precision 

and accuracy of the assays were within 15%. 

2.3.5. Determination of protein binding in the NHP brain tissue 

The protein binding of EFV, RAL, MVC, and ATZ in the brain tissue was determined 

by rapid equilibrium dialysis (RED). Briefly, 5 to 10 mg of frontal cortex brain tissue samples 

were homogenized in Precelly’s tubes and incubated at 37°C for 18 hours in RED cartridges 
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(Thermo Scientific, Pittsburg, PA). The samples subsequently underwent liquid-liquid 

extraction with methyl tert-butyl ether (MTBE) (Fisher Scientific, Norcross, GA, USA). An 

Agilent 1200 series HPLC System and an Agilent 1100 MSD (Agilent Technologies, New 

Castle, DE) in positive ESI mode were used. Analytes were separated on an Agilent Zorbax 

Eclipse XDB-C8 (3.0 mm × 50 mm, 1.8 m) column. Assay sensitivity was two ng/ml and inter- 

and intra-day precision was within 15%. The median fraction unbound value was used to 

determine the unbound ARV concentration across all NHP brain tissue samples. 

2.3.6. Calculation of 90% Inhibitory Quotients in the NHP brain tissue 

IQ90 was calculated as a measure of ARV efficacy in brain tissue using the protein-

unbound brain tissue concentrations and the protein-unbound IC90 for the RT-SHIV strain of 

virus, when available. Since the RT-SHIV viral strain has the reverse transcriptase (RT) 

enzyme from HIV-1 clinical isolates, the IC90 values of ARV classes targeting this enzyme: 

nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase 

inhibitors (NNRTI) were taken from the values for HIV-1 clinical isolates from various 

sources(16,27,28). MVC IC90 values for RT-SHIV were available from Pal(29) and RAL IC90 

values for RT-SHIV were available from Hassounah(30). IC90 value of ATZ against RT-SHIV 

(12,750 ng/g) was calculated from concentration-response data provided by Z. Ambrose 

(personal communication, September 18th, 2018). All values were corrected for protein binding 

as described by Yilmaz(31) The formula for ARV IQ90 in brain tissue is given by Equation 

2.1. 

 IQ90= 𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢 𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝ℎ𝑝𝑝 𝑢𝑢𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑢𝑢𝑝𝑝
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑤𝑤𝑢𝑢−𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 𝐼𝐼𝐼𝐼90 𝑝𝑝𝑓𝑓 𝐴𝐴𝑅𝑅−𝑆𝑆𝑆𝑆𝐼𝐼𝐴𝐴

 (2.1) 
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2.3.7. Mass-spectrometry imaging:  

 We chose to investigate EFV concentrations by MSI due to its accumulation in brain 

tissue(25) and its well-known clinical toxicity profile. Methods for the Infrared Matrix-

Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) MSI analysis have been 

published previously(25,32). Frozen slices (10 µm) of discrete tissue regions (NHPs) or whole 

brain (humanized mouse models) were thaw-mounted onto a glass slide and placed in the 

source chamber maintained at -10°C. Humidity inside the chamber was reduced to <6% with 

liquid nitrogen for ten minutes, following which the humidity was then increased to deposit a 

layer of ice across the entire stage. Tissues were ablated with two mid-IR laser pulses (IR-

Opolette 2371, Opotek, Carlsbad, CA) with a 100 μm spot-to-spot distance. Ablated molecules 

were ionized by electrospray and sampled into a Thermo Fisher Scientific Q Exactive mass 

spectrometer (Bremen, Germany) for analysis. Raw data from each volumetric pixel (voxel) 

were converted to the mzXML format with MS Convert (ProteoWizard) and then imzML 

format to evaluate using MSiReader(33). Both the mzXML and imzML formats are widely 

used for the processing of mass spectrometry data. Images were ultimately converted and 

stored in the imzML format due to the smaller file size and greater efficiency in storage. Since 

the .RAW mass spectrometry file could not be directly converted to imzML, the mzXML 

format was first generated before converting to imzML. ARV concentrations were quantified 

by spotting calibration standards of known concentration onto a non-dosed tissue slice from 

identical matrix (Bioreclamation IVT, Baltimore, MD). The resulting ng/slice concentrations 

were converted to ng/g using the area of each slice, the tissue thickness, and a density of 1.06 

g/mL(26).  

 



58 

2.3.8. Immunofluorescence (IF):  

Dual IF on frozen sections of humanized mouse and NHP brain tissue were performed 

at the UNC Tissue Pathology Laboratory with the Bond fully-automated slide staining system 

(Leica Microsystems) using the Bond Polymer Refine Detection kit (DS9800). The slides 

remained at room temperature for 15 minutes and were then fixed in 10% neutral buffered 

formalin for 15 minutes. Following this, slides were placed in Bond wash solution (AR9590) 

and antigen retrieval was done at 100°C in Bond-epitope retrieval solution 2 (pH9.0, AR9640) 

for ten minutes. Staining was performed for two distinct subsets of cells: CD3/CD4 staining 

for the CD4+ T-cells and CD45/CD11b for the microglial cells. For the CD3/CD4 cellular 

subset, staining was first performed using a CD4 EPR6855 antibody (Abcam, Cambridge, UK) 

at 1:1000 dilution for one hour with Bond Polymer reagents and then Cy5 fluorochrome 

(Perkin Elmer) for 15 minutes. Antigen retrieval was done at 100°C in Bond-epitope retrieval 

solution 2, while Bond-epitope retrieval solution 1 was used between protocols. Slides were 

then stained with CD3 LN10 (Leica, Wetzlar, Germany) ready-to-use antibody for 15 minutes 

with Bond Polymer and Post-Primary reagents for 30 minutes. Cy3 fluorochrome (Perkin 

Elmer) was applied for 15 minutes. Slides were counterstained with Hoechst 33258 

(Invitrogen, Carlsbad, CA) and mounted with ProLong Gold antifade reagent (P36934, Life 

Technologies). Similarly, for the CD45/CD11b cellular subset, the tissue section was first 

stained with CD11b NB110-89474 antibody (Novus Biologicals, Littleton, CO) at a 1:1000 

dilution for one hour with Bond Polymer reagents and then Cy5 fluorochrome for 15 minutes. 

Antigen retrieval was done at 100°C in Bond-epitope retrieval solution 1 during the first stain. 

Following this, the slides were stained with CD45 NCL-LCA at 1:500 dilution with Bond 

Polymer and Post-Primary reagents for 30 minutes followed by Cy3 fluorochrome for 15 
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minutes. A background 4′,6-diamidino-2-phenylindole (DAPI) stain was used for cellular 

staining. 

2.3.9. Image Colocalization:  

Manipulation and co-registration of images were performed using the Matlab v. 

R2015a Image Processing Toolbox (Mathworks, Natick, MA). For MSI, pixel intensity 

matrices for cholesterol, heme, and each ARV of interest were exported into Matlab across the 

entire tissue slice using MSi Reader. The cellular IF samples were scanned as described above 

and down sampled from the one µM (cellular) resolution in order to match the 100 µM 

resolution of the MSI data and facilitate image overlay. The cholesterol signal was used to 

mask any off-tissue ARV response, and a heme distribution mask was applied to show only 

the ARV signal that localized outside of the microvasculature, to account for blood 

contamination. Co-registration of images was performed on the cholesterol image using the 

background DAPI staining as a reference to ensure that the MSI and IF images were aligned 

appropriately before colocalization. A transform variable that resulted from aligning the 

orientation of the DAPI and cholesterol map images was then applied to all ARV images so 

that every image was oriented in an identical direction. Finally, the heme-corrected 

transformed ARV images were overlaid with the variable of interest (CD4 or CD11b) to 

generate a fused image containing both the ARV (in red) and the cellular variable of interest 

(in green). After image overlay was performed, the fractional coverage of the total cellular area 

that contained detectable drug concentration and drug concentrations above IC50 and IC90 were 

calculated by masking the cellular area with the EFV drug distribution maps at various 

concentrations.  
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2.3.10. Statistical analysis:  

 To compare the CSF and brain tissue concentrations between species, ARV 

concentrations were normalized to plasma to give either a CSF: plasma penetration ratio or a 

brain tissue: plasma penetration ratio. Comparisons between species, sex, and brain tissue and 

CSF compartments were made using the Kruskal-Wallis test. The Spearman rank-order 

correlation was used to determine the relationship between the ARV concentrations in the brain 

tissue and the CSF. Data were analyzed using SigmaPlot 13.0 (Systat Software Inc., San Jose, 

CA); the significance was set at p<0.05. Data are presented as median (range) unless otherwise 

noted. 

 

2.4. Results 

2.4.1. Concentration of ARVs in the plasma of the animal models:  

The ARV trough concentrations in the plasma that were collected at necropsy were 

measured in order to ensure consistency in ARV exposure across the animal models. ARV 

plasma concentrations were detectable in >90% of samples. Figure 2.1 compares plasma 

exposure between infected and uninfected animals from each model. Since there were no 

significant differences in plasma exposure between these groups, the data were combined in 

Figure 2.2, which shows plasma data across all three animal models. There were no 

statistically significant differences in plasma concentrations between the two humanized 

mouse models for any of the ARVs. The NHPs had plasma concentrations that were not 

significantly different than the humanized mouse models for most ARVs, with the exception 

of RAL which was 7- to 70-fold higher in NHPs relative to the humanized mice (p<0.02). 
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Plasma concentrations in NHPs were usually within two- to ten-fold of human concentrations 

from the literature(34–38). 

 
Figure 2.1. Antiretroviral concentrations in the plasma of the (a) hu-HSC-RAG mice, (b) 
BLT mice, and (c) NHPs stratified by infection status. The plasma trough concentrations of 
antiretrovirals are shown in the uninfected animals (white bars) and infected animals (gray 
bars). There were no differences in ARV concentrations on the basis of infection status. Boxes 
represent 1st and 3rd quartile with median line. Whiskers represent 10th and 90th percentile 
and open circles represent outliers. BLT mice were not dosed with efavirenz due to prior 
toxicity concerns (personal communication, JV Garcia).  
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Figure 2.2. Antiretroviral concentrations in the plasma of the hu-HSC-RAG mice, BLT 
mice and NHPs and comparison to concentrations achieved in humans. There were no 
differences in the plasma concentration of ARVs in across the preclinical models for all ARVs 
except RAL. RAL concentration was ten-fold higher in the NHPs relative to the BLT mice, 
and 100-fold higher compared to the hu-HSC-RAG mice. Boxes represent 1st and 3rd quartile 
with median line. Whiskers represent 10th and 90th percentile and open circles represent points 
outside the 10th and 90th percentile. Human ARV concentrations were from the literature. 
Legend: NS – not significant. *BLT mice were not dosed with EFV due to prior toxicity 
concerns (personal communication, JV Garcia).  

 

2.4.2. Concentration of ARVs in the brain tissue of humanized mice:  

The brain tissue concentrations of all ARVs were <150 ng/g for most of the humanized 

mice, except for one hu-HSC-RAG mouse where the brain tissue concentration of EFV was 

1,400 ng/g (Figure 2.3a). The brain tissue:plasma penetration ratio ranged from 0.001 (TFV 

and FTC) to 100 (ATZ) (Figure 2.3b) and was five-fold higher in the BLT mice compared to 

the hu-HSC-RAG mice for MVC (p=0.002) and three- to five-fold higher in the BLT mice 

compared to the hu-HSC-RAG mice for TFV and FTC (p>0.15), respectively. RAL brain 

tissue:plasma penetration ratios were 0.13 in both humanized mouse models and the ratio of 
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ATZ concentration in the brain tissue:plasma were 0.12 and 0.13 in the hu-HSC Rag mice and 

BLT mice respectively. Infection status did not impact ARV concentrations or ratios (p=1.0, 

data not shown). 

 
Figure 2.3. (a) Antiretroviral concentrations in the brain tissue and (b) brain tissue: 
plasma antiretroviral concentrations in humanized-mice. The penetration of antiretrovirals 
into the brain tissue of the hu-HSC-RAG mice (white bars) was generally lower than in the 
BLT mice (gray bars). Penetration of antiretrovirals into the brain tissue of BLT mice was 
significantly higher for MVC (p=0.002). Boxes represent 1st and 3rd quartile with median line. 
Whiskers represent 10th and 90th percentile and open circles represent points outside the 10th 
and 90th percentile. *BLT mice were not dosed with efavirenz due to prior toxicity concerns 
(personal communication, JV Garcia).  
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2.4.3. Concentration of ARVs in the CSF and brain tissue of NHPs: 

ARV concentrations across the four brain regions that were sampled in the NHPs did 

not differ by LC-MS/MS (Figure 2.4; p>0.08). Therefore, these concentrations were 

combined for one concentration measure per animal.   

 
Figure 2.4. Antiretroviral concentrations in different parts of the nonhuman primate 
brain. ARV concentration was not significantly different across the various parts of the brain 
(p>0.08). FC – frontal cortex, CLM – cerebellum, BG – basal ganglia, PC – Parietal cortex. 

 

EFV reached the highest concentration in the brain tissue (775 [240-1982] ng/g), which 

was >9-fold higher than all other ARVs, where median concentrations were <100ng/g (Figure 

2.5a). The lowest brain tissue concentrations were found for FTC (26.29 [2-69.2] ng/g) and 

RAL (21.8 [11.5-264.9] ng/g). Brain tissue:plasma concentration ratio was highest for EFV 

(4.2 [4-4.6], Figure 2.5b) and lowest for RAL (0.09 [0.02-0.21]).  Brain tissue ARV 

concentrations were >6-fold higher (p<0.02) than the CSF. EFV concentration in the CSF 

strongly correlated with brain tissue (r=0.91, p<0.001) but this was not the case (r<0.5) for 

other ARVs (Figure 2.6). EFV concentrations in the brain tissue also showed strong 
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correlation with the plasma concentrations (r=0.97, p<0.001), which was not the case for the 

other ARVs (data not shown). For EFV and RAL, the brain tissue:plasma concentration ratio 

was two- to four-fold lower in infected animals relative to uninfected animals, although this 

difference was not statistically significant (p=0.15). We also noted a two-fold increase in brain 

tissue:plasma concentration in female NHPs for RAL, but this did not reach statistical 

significance (p=0.15).  

 
Figure 2.5. (a) Antiretroviral concentrations in the CSF and brain tissue and (b) the 
penetration ratio of CSF or brain tissue: plasma concentrations in NHPs. ARV 
concentrations and penetration ratios are shown in the CSF (stripes) and brain tissue (solid fill) 
stratified by infection status (uninfected animals in white and infected animals in gray). Brain 
tissue concentrations were higher than CSF for all ARVs (p<0.01). Tissue penetration ratios 
were higher than CSF penetration ratios for all ARVs except ATZ (p<0.01). Infection did not 
alter brain and CSF distribution of ARVs (p>0.15). Boxes represent 1st and 3rd quartile with 
median line. Whiskers represent 10th and 90th percentile.  
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Figure 2.6. Correlation analysis between antiretroviral concentrations in the brain tissue 
and cerebrospinal fluid in the NHPs. Significant correlations between the brain tissue and 
CSF concentrations were only noted for efavirenz (r=0.91; p<0.001). Black open circles – 
uninfected animals and red open circles – RT-SHIV-infected animals. Legend: CSF – 
cerebrospinal fluid. 

 

2.4.4. Inter-species comparison of the brain tissue:plasma concentration of ARVs and 

brain tissue concentration of active metabolites: 

For most ARVs, brain tissue:plasma concentration ratio in the NHPs was 10- to 100-

fold higher than the BLT mice (p<0.006), and 5- to 100-fold higher than the hu-HSC-RAG 

(p<0.02). Often, this result was due to lower ARV concentrations in the brain tissue and plasma 

of both humanized mouse models (Figure 2.7 and Appendix 2.1). However, in the case of 

TFV and FTC, the low brain tissue penetration in the two humanized mouse models was a 

result of lower brain tissue concentrations and higher plasma concentrations in the mice 

compared to NHPs. Only the brain tissue: plasma penetration ratio of RAL (median of 0.132; 

p=0.6) was preserved across all three species while the MVC brain tissue: plasma penetration 

ratio (median of 1.86; p=1.0) was preserved across the BLT mice and NHPs (Figure 2.7). RAL 
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was the only ARV that showed strong positive correlation between brain tissue and plasma 

concentrations across all animal models (r=0.85, p<0.001, data not shown). The concentration 

of ARVs in the plasma, CSF, and brain tissue across all the individual animals is shown in 

Appendix 2.2. 

 
Figure 2.7. Antiretroviral brain tissue:plasma penetration ratio in the hu-HSC-RAG 
mice (n=26), BLT mice (n=13) and nonhuman primates (n=17). Only the brain 
tissue:plasma penetration ratio of RAL was preserved across all three species (p=0.6). MVC 
brain tissue:plasma penetration ratio did not differ between the BLT mice and NHPs (p=1.0) 
and ATZ penetration did not differ between the hu-HSC-RAG and BLT mice (p=0.8). For all 
other ARVs, the order of brain tissue penetration ratio was hu-HSC-RAG<BLT<NHP. Boxes 
represent the 1st and 3rd quartile of the data with median line. Whiskers represent the 10th and 
90th percentile of the data and open circles represent outliers. The BLT mice were not dosed 
with EFV due to toxicity issues.  

 

The active metabolite of TFV, TFV-dp, was quantifiable in all brain tissue samples, 

with concentrations ranging from 851 to 179,000 fmol/g of tissue. Median brain tissue 

concentrations of TFV-dp were 10-fold higher in the hu-HSC-RAG mice (14,700 fmol/g) 

compared to the BLT mice (1440 fmol/g), despite TFV concentrations being lower in the hu-

HSC-RAG mice, though this did not reach statistical significance (p=0.29).  TFV-dp 

concentration in the NHP brain was 34,800 (15,000-179,000) fmol/g.  Due to the low 

concentration of FTC in the brain tissue for both the humanized mouse models (3.31 ng/g [0.14 
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ng/g to 29.1 ng/g] and NHPs (26.3 ng/g [2.0 ng/g to 69.3 ng/g]), its active metabolite FTC-tp 

was not quantifiable across all three animal models (Figure 2.8). TFV-dp concentrations 

across the individual animals are shown in Appendix 2.3. 

 
Figure 2.8. Concentration of active metabolites of tenofovir and emtricitabine in the 
brain tissue of hu-HSC-RAG mice, BLT mice and nonhuman primates. Emtricitabine 
triphosphate (FTC-tp) was not detected in the brain tissue of any of the animal models. Median 
brain tissue concentrations of tenofovir diphosphate (TFV-dp) were 10-fold higher in the hu-
HSC-RAG mice compared to the BLT mice (14371 fmol/g vs 1443 fmol/g, p=0.29). TFV-dp 
concentration in the NHP brain was 34,840 fmol/g. 

 

2.4.5. Protein binding of ARVs in the brain tissue of nonhuman primates and IQ90 

calculation: 

Protein binding in the brain tissue for EFV was 97% (91%, 98%), whereas it was lower 

for ATZ, (24% [0%, 39%]) and negligible for MVC (3%, [0%, 19%]). Due to low 

concentrations of RAL in brain tissue, the fraction unbound could only be estimated for one of 

the samples (24%, n=1).   
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The IQ90 calculated using the unbound brain tissue drug concentration (EFV, MVC, 

ATZ, and RAL) and unbound IC90 values, are shown in the open circles in Figure 2.9. Only 

EFV was consistently above an IQ90 of one in all of the animals. One animal showed RAL IQ90 

of 1.1 while one other animal showed a TFV-dp IQ90 of 1.1. For MVC, ATZ, TFV, and FTC 

none of the animals had IQ90 >1. IQ values across the individual NHPs are shown in Appendix 

2.4. 

 
Figure 2.9. 90% inhibitory quotients (IQ90) for antiretrovirals and metabolites in the 
brain tissue of nonhuman primates. EFV had the highest IQ90 values in the nonhuman 
primates, which was above one for all eight animals. In case of TFV, TFV-dp, FTC, MVC, 
and ATZ none of the animals had IQ90 above one. Boxes represent the 1st and 3rd quartile of 
the data with median line. Whiskers represent the 10th and 90th percentile of the data. Dot-
plot overlay represents individual values; the open circles represent values that were derived 
from the unbound brain tissue concentrations while the grey filled circles represent values that 
were derived from the total brain tissue concentrations. The numbers at the top of the graph 
represent total number of NHPs 
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2.4.6. Mass-spectrometry imaging to visualize spatial distribution of ARVs in the brain 

tissue: 

With the exception of EFV, all other ARVs were not detected in the brain tissue of the 

humanized mice and NHPs by IR-MALDESI as the median concentration of these ARVs were 

<100 ng/g in the brain tissue by LC-MS/MS.  

The MSI results in Figure 2.10 show response to EFV and endogenous marker 

cholesterol (Figure 2.10, left-pane) which was used to delineate regions of WM and GM, and 

heme (Figure 2.10, middle-pane), which was used as a surrogate for blood contamination in 

the brain tissue samples. EFV distribution (Figure 2.10, right-pane) was masked based on the 

heme distribution in order to show the EFV response that did not colocalize with heme. EFV 

distribution was visualized in only one hu-HSC-RAG mouse with the highest EFV 

concentration measured by LC-MS/MS (1,400 ng/g) (Figure 2.10a).  In this animal, drug 

distribution was relatively homogeneous across the brain structures and heme distribution 

accounted for 30% of the summed EFV MSI response across the tissue. EFV was not detected 

in the other mice, where concentrations were <35 ng/g. In the NHPs, EFV was detected in all 

tissues. In the uninfected animals (Figure 2.10b), EFV concentrations were up to 2-fold higher 

in the WM relative to the GM. The variability (as defined by CV%) of concentration/voxel in 

the uninfected animals was approximately 85% in the GM and 78% in the WM. Infected 

animals showed 86% lower EFV concentration (Figure 2.10c) compared to uninfected 

animals, and no morphological differences in EFV distribution pattern were evident. The 

variability (CV%) of concentration/voxel in the infected NHPs was similar to the uninfected 

NHPs; 77% in the GM and 83% in the WM. The heme response was negligible in the 
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uninfected and SHIV-infected NHPS and accounted for only 1% of the summed EFV MSI 

response across the tissue. 

 
Figure 2.10. Mass-spectrometry imaging of the cholesterol and heme distribution and the 
concentration of efavirenz per volumetric pixel in the brain tissue of preclinical species. 
The cholesterol heat maps shown on the left-pane were used to indicate morphological 
differences in the brain tissue between the WM and the GM. The heme distribution maps 
shown in the middle-pane were used as a marker of blood contamination in the brain tissue. 
The efavirenz heat maps shown on the right-pane were masked with the heme distribution to 
show efavirenz response outside of the blood contamination.  

(a) Efavirenz was detected in only one infected hu-HSC-RAG mouse with homogenous 
distribution throughout the tissue. The blood contamination in this animal accounted for 30% 
of the total efavirenz response in the brain tissue (b) In the cerebellum tissue of uninfected 
NHPs, preferential distribution of efavirenz was noted in the WM compared to the GM. (c) In 
the RT-SHIV-infected NHPs, there was 86% lower concentration of efavirenz in the brain 
tissue. Heme distribution in all NHPs was minimal, accounting for ~1% of the efavirenz 
response.  Legend: WM – white matter, GM – grey matter, NHP – nonhuman primate. 

 

In the infected female macaque that developed liver failure, the median brain tissue 

concentrations were 3600, 280, 5610, and 230 ng/g for TFV, FTC, EFV, and RAL, 

respectively. However, despite these concentrations being 10- to 100-fold higher than the other 

animals, the brain tissue distribution of only TFV and EFV were detected in this animal by IR-
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MALDESI. Figure 2.11 shows the drug distribution images in the cerebellum tissue. The 

median concentration of EFV across the four regions of the brain tissue by IR-MALDESI was 

23,151 ng/g (four-fold higher than the LC-MS/MS results) while the median concentration of 

TFV was 915 ng/g (four-fold lower than the LC-MS/MS results). EFV showed slight 

preferential distribution in the white matter (WM) versus gray matter (GM) in the cerebellum 

while TFV was preferentially distributed in the GM in the cerebellum and frontal cortex 

regions.  

 
Figure 2.11. Mass spectrometry imaging of cholesterol, efavirenz and tenofovir 
distribution in one RT-SHIV infected female macaque. The cholesterol heat maps shown 
on the left-pane are used to indicate morphological differences in the cerebellum tissue 
between the white matter and the gray matter. The efavirenz and tenofovir heat maps show 
drug signal intensity per volumetric pixel. For the two antiretrovirals detected in this animal, 
slight preferential distribution of efavirenz was noted in the white matter versus gray matter. 
For tenofovir, there appeared to be slightly higher drug distribution in the gray matter relative 
to the white matter. Increase in signal intensity represents increase drug concentrations. 
Legend: WM – white matter, GM – gray matter. 

 

Finally, the MSI drug distribution heat maps of EFV were overlaid with the CD11b cell 

and CD4+ T-cell distribution maps in the brain tissue. In Figure 2.12, the overlay of CD11b 
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cells is shown with EFV in the cerebellum of uninfected (Figure 2.12a) and RT-SHIV-infected 

NHPs (Figure 2.12b). For uninfected animals, the fraction of total CD11b cell or CD4+ T-cell 

cellular area with detectable EFV concentrations ranged from 50-80%. For the infected 

animals, the fractional coverage of cells was even lower from 45-70%. However, the fractional 

coverage of cells that contained EFV at a concentration above the IC50 target was only ~3% 

for both uninfected and infected animals. 

 
Figure 2.12. Overlay between efavirenz MSI and CD11b+ cell distribution in the 
cerebellum tissue in a) uninfected and b) RT-SHIV-infected animals. Distribution of EFV 
and CD11b+ cells in the cerebellum and the overlay of distribution are shown in (a) uninfected 
and (b) RT-SHIV-infected animals. In the far-left panel, brighter colors represent higher 
concentration of EFV. In the panel second from the left, light color represents greater density 
of cells, increasing form light blue to yellow. In the panel second from the right, overlay 
between EFV MSI and cell distribution is shown. In far-right panel, only the target cells 
containing detectable EFV or EFV above IC50 are shown. Fractional coverage of the CD11b+ 
cells with detectable EFV was higher in the uninfected animals compared to the RT-SHIV 
infected animals. Coverage with EFV concentration >IC50 was only 3% regardless of infection 
status. 
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2.5. Discussion 

In this analysis we present a comprehensive overview of brain tissue concentrations of 

ARVs across three commonly used HIV preclinical models. We show that ARV brain tissue 

penetration by LC-MS/MS is highly variable between the ARVs (50-150%), and between the 

animal models for a given ARV. This variability is consistent, albeit greater, than the 

variability shown with ARV LC-MS/MS concentration data in human CSF (~35%)(15).  

Comparing drug exposure between the species, brain tissue penetration rank order 

distinctively increased from hu-HSC-RAG mice to BLT mice to NHPs for TFV and FTC. For 

ATZ, the brain tissue penetration was similar in hu-HSC-RAG and BLT humanised mouse 

models, but was 100-fold lower higher in NHPs.  For MVC, brain tissue penetration was lower 

in the hu-HSC-RAG model and similar in the BLT mice and NHPs. RAL penetration into the 

brain was similar across all three species and this may be a result of the increased plasma 

concentration of RAL in the NHPs relative to the BLT and the hu-HSC-RAG mice. For the 

other ARVs that showed a large degree of overlap in plasma concentrations between the 

preclinical models, underlying drug-transporter interactions or physicochemical properties 

may play a role in the variability in brain tissue concentrations. For example, the greater brain 

tissue:plasma penetration of TFV, FTC, and MVC in the BLT mice relative to the hu-HSC-

RAG mice may be due to co-administration of these ARVs with ATZ in the BLT model, which 

inhibits drug efflux by P-gp, BCRP, and MRP1(39). While we were not able to avoid drug-

drug interactions due to the limited number of animals, such interactions are clinically 

unavoidable as well since multiple drugs constitute HIV treatment regimens. In such cases, we 

can use these preclinical models to also test how different ARV combinations may affect tissue 

distribution.  
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In this study, we found that CSF ARV concentrations in NHPs approximate human 

concentrations as reported by Calcagno(40).  FTC was the one exception, where CSF 

concentrations were approximately three-fold lower in NHPs. While there are fewer human 

brain tissue studies to compare to our preclinical models, one recent study by Nicol provides 

some insights(41).  Three African men with AIDS taking EFV and TFV had brain tissue 

concentrations measured post-mortem. The median concentrations of EFV and TFV were 900 

ng/g and 80 ng/g, respectively, which agree with the values we report in the NHPs (775 ng/g 

and 65 ng/g, respectively).      

To address the current gap of whether CSF exposures of ARVs are an appropriate 

surrogate for brain tissue exposure, we compared ARV concentrations between the brain tissue 

and CSF in the NHPs. Our data show that the total brain tissue concentrations are consistently 

higher than CSF concentrations. This was shown across all classes of drugs, irrespective of 

drug lipophilicity, pKa, drug transporter affinity, or other physicochemical properties, and 

agrees with what has been shown in the literature for several classes of CNS-acting drugs. For 

example, anti-epileptics like carbamazepine that are moderately lipophilic (pKa=2) showed 

CCSF/Cbrain=0.2(11), while poorly lipophilic CNS stimulant theophylline showed CSF to brain 

tissue exposure ratio of 0.74(10).  For the low permeability ARVs such as TFV and MVC (both 

ARVs are BCS class III), CSF concentrations may have underpredicted brain tissue 

concentrations due to the fast recycling rate of the CSF that acts like a ‘sink’ to clear drug(42). 

For other ARVs that have higher permeability, underlying interactions between ARVs and 

drug transporters might also play a role in the discrepancy between drug concentration 

measurements. For example, FTC is a highly permeable drug (BCS class I) and is a substrate 

of MRP1(43), an efflux transporter that is localized on the basolateral membrane of the B-
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CSF-B. MRP1 effluxes drug-substrates out in the direction of CSF to blood(44,45) at the B-

CSF-B but is not localized on the BBB(45). Thus, the presence of MRP1 on the B-CSF-B but 

not on the BBB could result in lower FTC concentrations in the CSF relative to the brain tissue. 

For the remaining ARVs: EFV, RAL, and ATZ, which are highly permeable (BCS class I or 

class II) and substrates of either P-gp or BCRP, our results may appear to contradict 

conventional understanding, since P-gp and BCRP are both localized on the apical membrane 

of the BBB (direction of drug-efflux is brain to blood) and the B-CSF-B (direction of drug-

efflux is blood to CSF)(45). However, many of these ARVs (FTC, EFV, MVC, and ATZ) are 

also inhibitors of P-gp and BCRP(46). As previously discussed, co-administration of multiple 

ARVs may have resulted in significant inhibition of the function of P-gp and BCRP and 

accumulation of ARVs in the brain tissue relative to the CSF. These data suggest that deriving 

concentration-efficacy relationships in the CNS using only CSF concentrations may be 

inaccurate. 

This is the first study to define ARV IQ90 in the brain tissue using protein-unbound 

brain tissue concentrations. We chose to calculate IQ values since they have previously 

demonstrated utility in studying the relationship between drug exposure and efficacy(47,48). 

Targeting IQ90>1 in plasma has been associated with improvement in virologic control and 

clinical outcomes(47,48). Importantly, recent work by Calcagno(15) suggested that the CSF 

IQ95 may guide the rational selection of CNS-targeted ARV regimens. In order to derive the 

IQ90, we measured the unbound concentration in the brain tissue for EFV, RAL, MVC, and 

ATZ. Since TFV and FTC protein binding in plasma is <10%, we used the total concentrations 

in brain tissue for their IQ90 estimation This analysis provided a few novel findings regarding 

brain tissue protein binding and surrogate measures of efficacy using IQ90 estimation.  First, 
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we showed that the extent of drug binding in the brain tissue was low (0-24%) for all ARVs 

except EFV (91-99%). The degree of brain tissue binding for all ARVs was lower than the 

blood plasma protein binding that has been previously reported for these drugs. For example, 

ATZ has been shown to be highly bound in the blood plasma (86%)(49), however, the median 

binding of ATZ in the brain tissue was only 24%. Similarly, while MVC has been shown to be 

moderately bound in the blood plasma (~76%)(50), the binding of MVC to the brain tissue was 

negligible (<3%) in this analysis.  These results can be explained by the very low concentration 

of drug binding proteins in the brain tissue, relative to the plasma. For example, albumin 

concentration ranges from 35 to 50 g/L in the plasma, but is <1 mg/L in the brain tissue(51). 

The relatively high protein binding of EFV (97%) in the brain tissue, comparable to the plasma 

(99.5%)(49), may be due to the high lipophilicity of EFV (logP=4.6) and the binding affinity 

of EFV for CYP46A1 (cholesterol hydroxylase), an enzyme localized to the endoplasmic 

reticulum of neurons(52,53).  

These data may also be useful for understanding drug toxicity in the CNS.  For 

example, ATZ has been shown to cause neuronal toxicity, both in pig-tail macaques (with the 

same dosage regimen of ATZ that we used in this study), as well as in an in-vitro system of 

human cells(54). While ATZ concentrations in the CSF of our NHPs ranged from 0.5 ng/mL 

to 40 ng/mL, we found the unbound brain tissue concentrations of ATZ (38 ng/g to 418 ng/g) 

to be at least two-fold higher than the total ATZ concentrations that caused neuronal toxicity 

in the human in-vitro system, potentially explaining the macaque toxicity finding. Our data are 

among the first that can be used to make this connection, since previous analyses relied on CSF 

concentrations of ATZ which are low clinically (ranged from 5-21 ng/mL)(55). High ATZ 
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concentrations in the human brain tissue may also explain the clinical cases of CNS toxicity 

that have been reported due to ATZ(56). 

We further demonstrate that for most ARVs, the IQ90 was <1 for all but two of the 

animals. For RAL, the IQ90 in the one animal where we could measure unbound brain tissue 

concentration was 0.07. Even when using total brain tissue concentrations, the IQ90 of RAL 

was <1 for six of the remaining seven animals. This shows that despite brain tissue 

concentrations being 16- to 1000-fold greater than the CSF, very few animals achieve ARV 

concentrations >IC90 of RT-SHIV replication. We also show that despite having a high degree 

of protein binding in the brain tissue, EFV still achieves an IQ90 of >1, in all eight animals. 

This suggests that by the IQ method, free EFV concentrations are high enough in the brain to 

achieve efficacy. 

The results above were based on our LC-MS/MS analysis, whereby tissue homogenate 

was assessed for drug concentrations.  However, the results of our MSI analysis indicated that 

there was heterogeneity in EFV distribution into the brain tissue that led to a different 

estimation of surrogate efficacy. In uninfected NHPs, EFV had a relatively heterogeneous 

distribution across brain tissue, accumulating up to three-fold higher in the cerebellar WM 

versus GM. Given recent evidence that EFV binds to CYP46A1 (cholesterol hydroxylase; an 

enzyme localized to the endoplasmic reticulum of neurons)(52,53), widespread EFV 

distribution may be a function of neuronal binding with a very low fraction unbound (~3%) as 

described above.  In the case of RT-SHIV infected NHPs, the brain tissue concentrations were 

seven-fold lower than the uninfected animals, which made it more difficult to detect regional 

differences in drug localization. Interestingly, the regional coverage of HIV target cells with 

EFV concentrations >IC50 in this analysis was only 3%, in all animals. Despite all animals 
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having EFV concentrations >the IC90 by tissue homogenate, none of the areas where the target 

cells were located contained EFV at these concentrations. Rather, preferential accumulation of 

EFV was in the WM, whereas an increased density of microglial cells or CD4+ T-cells (target 

cells for HIV replication) is found in the GM(57). Taken together with the high brain tissue 

protein binding, these preliminary results indicate the potential for suboptimal coverage of 

active EFV within the brain tissue and active viral replication despite high IQs as measured by 

tissue homogenate. These results may help explain why CSF escape may still occur in patients 

who are treated with EFV(2,58), despite the high concentrations of drug that are achieved in 

the CNS. Future experiments imaging viral replication in the CNS along with drug 

concentrations should be performed to understand the clinical implications of these findings. 

There were a few limitations to this investigation.  Sex differences in the plasma PK of 

laboratory animals have been observed with several classes of anti-infective and CNS-acting 

drugs(59). Although we were unable to secure male humanised mice for this investigation, we 

evaluated the CNS distribution of ARVs in male and female NHPs and did not find any 

substantive differences in CSF or brain tissue concentrations between males and females. 

Another limitation of this study is the missing information on IC90 values against the RT-SHIV 

strain of virus for several of the ARVs in our analysis. As mentioned earlier, in case of the 

NRTIs and NNRTIs, using the IC90 for the clinical HIV-1 isolates was a reasonable estimate, 

as has been shown for the IC50 for viral replication(60). Finally, the IC90 values against RT-

SHIV were 20-fold (RAL), 100-fold (MVC), and 1,000-fold (ATZ) higher than against the 

clinical HIV-1 isolates, respectively. If unbound exposures in the human brain tissue 

approximate the NHP exposures, MVC and ATZ would achieve IQ90 >1 in the human brain, 
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although this may not the case for RAL (IQ90 would be 0.9 based on the unbound exposures 

from one NHP).  

 

2.6. Conclusions 

For the ARVs examined in this study, penetration into the brain tissue relative to plasma 

was only preserved across all three species for RAL and was otherwise 10- to 100-fold higher 

in NHPs compared to the humanized mice. NHP brain tissue penetration of TFV, EFV, RAL 

and MVC were 6- to 1000-fold higher than the CSF. Because of this variable and increased 

concentration of ARVs in brain tissue, the CSF may not be a global surrogate for brain tissue 

concentrations.  Except for EFV, all ARVs were >75% unbound in the brain tissue and only 

EFV showed unbound concentrations in the brain tissue above an IQ90 in all the animals. 

Contrary to the IQ results, our IR-MALDESI investigations found that EFV poorly colocalized 

with HIV-target cells in the brain as a result of preferential accumulation in the white matter. 

These results show that despite a high concentration of free drug, lack of adequate EFV spatial 

coverage at the target cells of interest may contribute to HIV persistence in the brain(58) and 

this should be investigated further. 
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CHAPTER-III: INTER-SPECIES DIFFERENCES IN THE EXPRESSION OF DRUG 

TRANSPORTERS IN THE BRAIN TISSUE AND RELATIONSHIP WITH 

ANTIRETROVIRAL PENETRATION INTO THE BRAIN1 

 

3.1. Summary 

The persistence of HIV in the brain may be related to the limited penetration of 

antiretroviral (ARV) drugs into the brain tissue. At the blood brain barrier (BBB), several 

efflux transporters limit the entry of ARVs. However, the relationship between transporter 

expression within the brain tissue and ARV disposition into this compartment is complex and 

difficult to study clinically. While preclinical species could be used to better determine this 

relationship, there are no definitive studies examining transporter gene and protein expression 

in the brain tissue across the commonly used animal models for HIV infection. Further, while 

there have been several reports on transporter expression at the BBB, there are fewer studies 

examining drug transporter expression within the brain parenchyma, which serves as an 

important secondary barrier for the entry of ARVs into HIV target cells such as the microglia. 

The aims of this analysis were to measure the gene and protein expression as well as 

localization of drug transporters in the brain tissue, determine if factors such as sex and 

infection status led to alterations in transporter expression and examine the ability of 

transporter data in the brain tissue to predict the brain tissue:plasma penetration ratio of six 

ARVs across three preclinical species. Brain tissue samples were collected from two 
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humanized mouse (hu-HSC-Rag [36 animals]; BLT [13 animals]) models and one nonhuman 

primate (rhesus macaque, [NHP, 18 animals]) model and analyzed for gene (qPCR) and protein 

(liquid chromatography mass spectroscopy [LC-MS/MS] proteomics and Western blot) 

expression and localization (immunohistochemistry) of five efflux and four uptake 

transporters. ARV penetration into the brain tissue was determined by LC-MS/MS. The 

Kruskal-Wallis test was used to compare transporter expression across the preclinical species. 

Pearson’s correlation test was used for the correlation analysis between ARV penetration into 

the brain and transporter expression.  All transporter genes were detected in the brain tissue, 

and there were several significant differences in transporter expression detected across the 

preclinical species. For example, the gene expression of efflux transporter P-gp (Abcb1) was 

100-fold lower (p<0.001) in the BLT mice compared to the hu-HSC-Rag mice, while the 

uptake transporter Oatp1a4 (Slco1a4) was five-fold lower in the BLT mice compared to the 

hu-HSC-RAG mice. The transporter protein measurements showed that only P-gp and BCRP 

were detected in >85% of the brain tissue samples. There were no inter-species differences in 

the protein concentration of P-gp in the brain tissue (p=0.08), however, there was a 16-fold 

higher BCRP protein concentration in the brain tissue of the NHPs compared to both the 

humanized mouse models (p<0.001). Infection status did not alter transporter expression 

patterns in humanized mouse models or NHPs (p>0.1), however sex differences did influence 

transporter expression. Male macaques had higher gene expression but lower protein 

concentration of BCRP and P-gp relative to female macaques (p<0.05). Although the 

concentrations of P-gp and BCRP in the brain tissue showed a similar relative abundance as 

compared to the BBB, protein concentrations in the brain tissue were not a true surrogate for 

the BBB and did not have any utility in predicting the penetration of ARVs into the brain tissue. 
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From these analyses, we can conclude that uninfected animals can be used as preclinical 

models to study ARV transporters in the brain tissue since HIV infection status did not lead to 

differences in transporter expression across the preclinical models.  While measurement of 

transporter expression in the brain tissue provides valuable information on the secondary 

transporter barrier in the brain tissue, drug transporter expression in the brain tissue appeared 

to only be a surrogate for the BBB expression of P-gp and not BCRP, possibly due to more 

extensive P-gp localization in the brain cells that comprise the neurovascular unit. Therefore, 

the integration of our results with drug transporter measurements at the BBB may provide more 

insight into the role of drug transporters in modulating ARV entry into the brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1This work has been presented, in part, at the 2017 IAS Meeting, Paris, France, July 23 – 26, 2017. 
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3.2. Introduction 

Of the nearly 37 million people worldwide living with HIV infection, approximately 

53% are currently on antiretroviral (ARV) therapy(1). With an increased access to ARV 

coverage, what was once a deadly disease has been transformed into a chronic, manageable 

illness with lifespan in HIV-infected individuals approaching that in uninfected individuals. 

However, despite the general effectiveness of ARV therapy in suppressing HIV viral load in 

the plasma, virus may continue to persist in various anatomical reservoirs in the body despite 

therapy(2–4) and this creates additional challenges to overcome for the treatment and cure of 

HIV.  

Alongside other compartments such as the lymphatic system and genital tract, the 

central nervous system (CNS) has long been considered an anatomical reservoir for the 

persistence of HIV. Evidence for this comes from several studies within the cerebrospinal fluid 

(CSF), where there is poor exchange of viral genetic information with other sites of the body(5) 

that leads to a distinct evolution of macrophage and microglia derived virus (M-tropic virus) 

in the CSF despite a phenotype of CD4+ T-cell derived virus in the plasma(6). HIV may 

continue to replicate in the CSF of patients who otherwise exhibit viral suppression in the 

plasma, a phenomenon termed “CSF escape”(7,8). HIV RNA has also been detected in autopsy 

brain tissue from patients treated with ART and with undetectable HIV viral load in the 

plasma(9,10). Clinically, the continued persistence of HIV and low-level viral replication in 

the CNS has been associated with the high prevalence (20-50%)(11), of mild forms of HIV-

associated neurocognitive impairment(12) as well as the emergence of drug resistance to 

ARVs(13). Since the events described above occur in the presence of ARV concentrations that 

suppress virus in the plasma, it is hypothesized that the inadequate penetration of ARVs into 
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the brain tissue results in ongoing HIV viral replication within this compartment. Sparse data 

exist on ARV concentrations and penetration into the brain tissue, and we have explored this 

across commonly used preclinical models for HIV infection in Chapter II. In Chapter IV, we 

explored the relationship between the model-predicted brain tissue concentrations of efavirenz 

(EFV) in HIV-positive patients and neurocognitive impairment scores. The objectives of this 

Chapter were to explore if there were differences in drug transporter expression in the brain 

tissue across the preclinical models and if any differences in transporter expression were 

associated with alterations in ARV PK in the brain tissue. 

The CNS is regarded as a sanctuary site because the entry of ARVs into the brain tissue 

and CSF is highly regulated by two barriers: the blood brain barrier (BBB) and the blood-CSF-

barrier (B-CSF-B). A combination of factors influences drug passage through the BBB and B-

CSF-B. For example, highly lipophilic drugs are more likely to cross through the barriers and 

accumulate within the fat-rich brain tissue(14). Affinity for drug transporters might also 

influence ARV concentrations within the CNS since ARVs are substrates for several efflux 

transporters that are highly expressed along the barrier membranes (e.g. P-glycoprotein [P-gp] 

and breast cancer resistance protein [BCRP])(15,16). Several uptake and efflux drug 

transporters are found to be localized at the BBB(17,18), and there are marked inter-species 

differences in the protein concentration of these transporters at the BBB(17,19). The influence 

of other factors such as infection(20) and sex may also contribute to differences in transporter 

expression and have not been well characterized. Furthermore, drug transporters located within 

the brain tissue parenchyma could present a second barrier to cellular ARV permeability, 

however there is no clear consensus across the field on the differences in drug transporter 

expression between the brain tissue parenchyma and BBB. In this work, the gene expression 
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and protein concentration of drug transporters in the brain tissue of two species of humanized 

mice and rhesus macaques(21,22) were measured and correlation analyses were performed 

between transporter expression measurements in the brain tissue and brain tissue:plasma 

penetration ratio of six different ARV drugs. Finally, immunohistochemistry (IHC) staining 

was conducted to determine localization patterns of drug transporters within the brain tissue. 

 

3.3. Materials and Methods 

3.3.1. Antiretroviral dosing and tissue collection in preclinical models:  

Animal dosing and tissue collection were described in detail in Chapter II, but briefly, 

three commonly used animal models were employed in this study: the hemopoietic stem-

cell/RAG2- (hu-HSC-Rag; number of animals=36) and bone marrow-liver-thymus (BLT; 

number of animals=13) humanized mouse models, and a nonhuman primate model (rhesus 

macaque, [NHP]; number of animals=18), with half of each cohort infected with HIV or SHIV 

as described previously. The hu-HSC-RAG mice were dosed orally with one of several ARV 

regimens for ten days: EFV 10 mg/kg (six uninfected and six infected animals) alone; 

atazanavir (ATZ) 140 mg/kg (six uninfected and six infected animals) alone; or tenofovir 

(TFV) 208 mg/kg, emtricitabine (FTC) 240 mg/kg, raltegravir (RAL) 56 mg/kg, and maraviroc 

(MVC) 62 mg/kg (six uninfected and six infected animals) in combination. The BLT mice 

were dosed with all ARVs (at similar doses as in the hu-HSC-RAG mice) except for EFV, due 

to concerns of neurotoxicity of EFV in these animal models (personal communication with JV 

Garcia). The NHPs were dosed for ten days with a backbone of TFV 30 mg/kg subcutaneously 

and FTC 16 mg/kg subcutaneously with one of the following regimens added on: MVC 270 

mg/kg twice daily (BID) with ATZ 150 mg/kg BID (four uninfected animals and five infected 
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animals) or EFV 200 mg once daily with RAL 100 mg/kg BID (four uninfected animals and 

five infected animals). Doses for all drugs were chosen based on commonly used treatment 

doses for HIV infection in these models(23–27). Brain tissue was collected at necropsy, snap 

frozen and stored at -80˚C until further analysis. All experiments were performed in 

accordance with locally-approved institutional animal care and use committee (IACUC) 

protocols. 

3.3.2. Gene expression of drug transporters in the brain tissue:  

The gene expression of five efflux and four influx transporters were analyzed by 

quantitative PCR. These transporters were chosen based on relevance to the ARVs chosen in 

this analysis and the expression in the BBB (Table 3.1 and Figure 3.1). Approximately 30 mg 

of tissue was homogenized in QIAzol lysis buffer using a Precellys Tissue Homogenizer 

(Bertin Technologies, Montigny-le-Bretonneux, France) and RNA was extracted by using 

Qiagen RNAeasy Lipid Mini Kit (Qiagen, Valencia, CA). VILO Superscript cDNA Synthesis 

Kit (Thermo Fisher) was used to reverse-transcribe 200 ng of RNA. A ten-cycle pre-

amplification step was performed to obtain a large enough volume of cDNA using Taqman 

Pre-amplification Master Mix (Life Technologies, Carlsbad, CA) and Taqman Gene 

Expression Assays (Appendix 3.1). This was followed by a 40-cycle quantitative PCR 

performed using Taqman primers and probes in QuantStudio7 (Life Technologies). 

Transporter expression was normalized to the GAPDH gene using the 2-ΔCT method(28). In 

the humanized mouse models, separate assays were run to detect mouse and human transporter 

genes. The extent of humanization of the drug transporters was expressed as a ratio by 

subtracting the mouse transporter CT threshold value in the logarithmic scale from the human 
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transporter CT threshold value in the logarithmic scale for each brain tissue sample, in order 

to get the equivalent ratio of mouse transporter/human transporter in the linear scale. 

 
Figure 3.1. Localization of drug transporters (gene name in italics) at the (a) blood-brain-
barrier and (b) blood-CSF-barrier. At the (a) blood-brain-barrier, efflux transporters P-gp, 
BCRP and MRP4 on the apical side of the membrane efflux drug out from the brain into the 
blood, while the uptake transporter OATP1A4 (mouse) or OATP1A2 (human) facilitates drug 
entry into the brain. OAT3 is localized on the basolateral membrane and effluxes drug out of 
the brain into the cell. At the (b) blood-CSF-barrier, BCRP and P-gp localized on the apical 
side of the membrane actively efflux drug out from the blood into the CSF, while MRP1 and 
MRP4 present on the basolateral side of the membrane actively efflux drug out into the blood. 
OAT3 is localized on the apical membrane and effluxes drug out from the CSF into the cell. 
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Table 3.1. Efflux and uptake transporters that were analyzed in the brain tissue of the 

preclinical models and antiretroviral (ARV) substrates and inhibitors of these 

transporters. Transporters are listed as gene (transporter) name.  

TRANSPORTERS SUBSTRATES INHIBITORS1 REFERENCES 

EFFLUX TRANSPORTERS    

ABCC1 

(Multi-drug resistance-associated 

protein-1 [MRP1]) 

ATZ, FTC TFV, FTC, ATZ (15) 

ABCC2 

(Multi-drug resistance-associated 

protein-2 [MRP2]) 

ATZ TFV, FTC (15) 

ABCC4 

(Multi-drug resistance-associated 

protein-4 [MRP4]) 

TFV - (29) 

ABCB1 

(P-glycoprotein [P-gp]) 

 

TFV, RAL, MVC, 

ATZ 

 

FTC, EFV, MVC, 

ATZ 

(30) 

ABCG2 

(Breast cancer resistance protein 

[BCRP]) 

TFV, EFV, RAL EFV, ATZ (31) 

UPTAKE TRANSPORTERS    

Slco1a4/SLCO1A2 ATZ - (32) 
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TRANSPORTERS SUBSTRATES INHIBITORS1 REFERENCES 

(Organic anion transporting 

polypeptide 1a4/1A2 

[Oatp1a4/OATP1A2]) 

SLC29A1 

(Equilibrative nucleoside 

transporter 1 [ENT1]) 

TFV, FTC - (15) 

SLC22A2 

(Organic cation transporter 2 

[OCT2]) 

- TFV, FTC (33) 

SLC22A8 

(Organic anion transporter 3 

[OAT3]) 

TFV - (34) 

1 – indicates that the information on inhibitors of the transporter are unknown. 

3.3.3. Protein extraction and expression by western blot:  

Transporter protein that was used for Western blot and LC-MS/MS proteomics 

analyses was isolated using a modified version of an extraction method optimized for 

proteomics as described previously(35,36). Briefly, tissue samples (10 to 100 mg) were 

homogenized in 1.3 mL hypotonic buffer containing 10 mM NaCl, 1.5 mM MgCl2, 10 mM 

Tris HCl pH 7.4, and 150 µL of Complete Protease Inhibitor Solution (Sigma-Aldrich, St. 

Louis, MO) using the Precellys tissue homogenizer. Tissue homogenates were left on ice for 

30 minutes, then sonicated for five minutes and centrifuged for ten minutes at 10,000 g. The 

supernatant was saved and subjected to high-speed centrifugation at 55,000 rpm for one hour. 

Supernatant was then discarded and the pellet was resuspended in cOmplete™ Protease 
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Inhibitor solution. Protein concentrations were quantified using the BCA protein assay (Pierce, 

Rockford, IL). The total protein isolated from each tissue was split between the western blot 

and proteomics analyses. A fraction of the isolated protein (30 µg) was reserved for 

proteomics, while the remaining protein was used for western blot. 

For the western blot analysis, up to 10 μg of protein was combined with 7.5 μL sample 

buffer (NuPage, ThermoFisher) and 0.5 M dithiothreitol (DTT, Sigma-Aldrich) and heated at 

70˚C for 10 minutes. Then, samples were loaded onto a 4-12% electrophoresis gel (NuPage) 

and run for 110 minutes at 180 V. Transfer onto a PVDF membrane (NuPage) occurred over 

90 minutes at 30 V. Once the transfer was completed, membranes were rinsed with tris-

buffered saline with tween-20 (TBS-T) and blocked for one hour at room temperature in 5% 

milk. After blocking, primary antibody was added for one of the six following drug transporter 

proteins: P-gp (1:4000, ab170904; Abcam, Cambridge, MA), MRP2 (1:200, ALX-801-037-

C125; Enzo Life Sciences, Farmingdale, NY), MRP1 (1:200, ALX-801-007-C125; Enzo), 

BCRP (1:1000, ab3380; Abcam), OATP1A2 (1:500, ab105124; Abcam) and GAPDH (1:2000, 

sc-25778; Santa Cruz Biotechnology, Dallas, TX). Membranes were incubated in primary 

antibody for one to three hours, then rinsed with TBS-T and incubated in milk with appropriate 

secondary antibody (anti-rabbit, 1:2000, ab16284, Abcam; anti-mouse, 1:10000, ab112458 

Abcam; anti-goat, 1:5000, sc2020, Santa Cruz) for one to two hours, then rinsed again with 

TBS-T. Development was performed using Clarity ECL reagents (Bio-Rad, Hercules, CA) 

with a Chemi-Doc XRS+ Imager (Bio-Rad) with a five-minute exposure. The densitometry 

relative to GAPDH was calculated using ImageLab 5.2.1 (Bio-Rad). P-gp and GAPDH were 

analyzed during the same exposure, and then each membrane was stripped and re-probed for 

MRP2 and BCRP, then MRP1, with all densitometry being compared to the initial five-minute 
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GAPDH exposure. A combination of 15 μg each of mouse brain extract (six µL), liver extract 

(two µL), and T98G cell lysate (six µL, Santa Cruz) was used as a positive control sample for 

the efflux transporters. For OATP1A2, a separate positive control of 15 µL MDA-Mb-468 cell 

lysate was employed. 

3.3.4. Absolute protein concentration of drug transporters in the brain tissue:  

The absolute protein concentration of drug transporters was determined by quantitative 

targeted absolute proteomics (QTAP). Total protein (30 μg) was isolated(35,36) and digested 

for 18 hours with trypsin after adding one pmol of stable isotope labeled (SIL) peptide 

standards, obtained from Theracode JPT Inc (Acton, MA)(35). The transporter sequences were 

loaded into the uniport software and SIL peptides were chosen on the basis of electrospray 

efficiency, hydrophobic index and specificity across mice, macaques, and humans. Sample 

analysis was conducted with a nanoACQUITY system (Waters, Milford, MA) coupled to a 

QTRAP 5500 mass spectrometer (SCIEX) equipped with a Nanospray III source. Around 0.06 

to 0.12 μg of membrane microsomal protein was loaded onto a C18 trap column (180 μm x 20 

mm, 5 μm particle size, Waters) connected to a BEH130 C18 main separation column (150 μm 

x 100 mm, 1.7 μm particle size, Waters). Analyst 1.5 software (SCIEX) was used for multiple 

reaction monitoring (MRM) data acquisition within a detection window of 90 seconds and a 

pause time of three milliseconds between MRMs. Data analysis was performed using 

MultiQuant 2.0 software (SCIEX). Area ratios of unlabeled/SIL peptides were determined 

using the MRM sums. The limit of detection for the peptides was 0.1 pmol/mg protein. The 

list of standard peptide sequences used for the drug transporters are provided in Appendix 3.2. 
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3.3.5. Antiretroviral concentrations in the plasma and brain tissue:  

Analytical techniques for quantifying ARV concentrations in the plasma and brain 

tissue have been described in detail in Chapter II. In brief, plasma samples were extracted by 

protein precipitation with methanol containing stable, isotopically-labeled internal standards. 

Samples were vortexed and centrifuged, then the supernatant was diluted with water prior to 

the LC-MS/MS analysis. The lower limit of quantitation (LLOQ) was one ng/mL for each 

analyte. The precision and accuracy of the calibration standards and quality control samples 

were within the acceptable range of 15%. 

Tissue samples were placed in a Precellys tube (Precellys 2 mL Hard Tissue Metal 

Beads Kit) containing one mL of ice-cold 70:30 acetonitrile:water. Samples were homogenized 

using a Precellys 24 benchtop homogenizer. A portion of the homogenate was then mixed with 

methanol containing stable, isotopically labeled internal standards. Following centrifugation, 

the supernatant was evaporated to dryness and reconstituted with water (for TFV and FTC 

analysis) or 25:75 methanol:water (for ATZ, EFV, MVC, and RAL analysis). The LLOQs for 

the tissue analysis were 0.002 ng/mL (FTC and MVC), 0.005 ng/mL (ATZ, EFV, and RAL), 

and 0.01 ng/mL (TFV). Tissue concentrations were ultimately converted into ng/g tissue units 

by assuming a brain tissue density of 1.06 g/cm3(37) and the brain tissue:plasma penetration 

ratio was calculated by dividing the trough concentration in the brain tissue by the trough 

concentration in the plasma. 

3.3.6. Immunohistochemistry (IHC) for localization of drug transporters:  

Briefly, tissues were sliced frozen at ten μm thickness using a cryostat (Leica 

Biosystems, Wetzlar, Germany) and thaw mounted onto glass microscope slides as described 

previously in Chapter II. The frozen tissues were stained with primary antibody for P-gp (1:50 
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dilution; Abcam), BCRP (1:50 dilution; Santa Cruz) or OATP1A2 (1:20 dilution; Santa Cruz) 

for 15 to 60 minutes followed by pH antigen retrieval (Leica). 3,3’-diaminobenzidine (DAB) 

was used as a substrate-chromogen for detection. All staining was performed on a Leica Bond 

automated tissue stainer (Leica). Staining protocols were optimized using mouse and NHP 

liver as a positive control for the antibodies against all transporters except OATP1A2. For 

OATP1A2, human tonsil tissue was used as a positive control for protocol optimization. 

Samples were visually evaluated for transporter localization. 

Quantification of transporter response was performed using FiJi ImageJ software 

(www.imagej.net). Five unique focal viewpoints at 20X magnification and of one mm2 area 

were captured from the raw brain tissue scanned slides loaded into the ImageScope software. 

These images were loaded onto Fiji and thresholded by color in order to separate out the 

transporter stain from the background. Following this, the image was converted into grayscale 

and thresholded in order to calculate the fractional area of the transporter protein, which was 

the quantitative endpoint.  

3.3.7. Statistical analysis:  

Comparisons between the gene and protein expression stratified by species, infection 

and sex (in the rhesus macaques) were made using one-way Kruskal-Wallis ANOVA on ranks. 

Dunn’s post-test was used for pairwise multiple comparisons when significant differences 

(p<0.05) were detected.  

Spearman rank-order correlation test was used to determine the relationship between 

brain tissue:plasma penetration ratio of the ARVs and transporter measurements. All statistical 

tests were conducted using SigmaPlot 13.0 (Systat Software Inc., San Jose, CA). 
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3.4. Results 

3.4.1 Gene expression of drug transporters:  

In the humanized mouse models, human transporter gene expression of several uptake 

transporters represented <10% of total transporter expression. For example, human SLC22A8 

was detected in only one hu-HSC-RAG mouse and one BLT mouse, and human SLC22A2 and 

SLCO1A4 were undetectable in all samples. Human SLC29A1, however, was detected in 70% 

of the samples. Efflux transporters were generally detected in more samples, although human 

ABCC2 was only detected in six hu-HSC-RAG mice (out of 36 mice, 16%) and five BLT mice 

(out of 13 mice, 38%). Uninfected and infected BLT mice had higher human gene expression 

of only one efflux transporters (ABCC1, 5-fold higher; p<0.05) relative to the hu-HSC-RAG 

mice. Infected BLT mice had higher gene expression of one efflux transporter (ABCC4, 10-

fold higher; p<0.001) and one uptake transporter (SLC29A1, 9-fold higher; p<0.001), relative 

to the hu-HSC-RAG mice. Generally, the mouse gene expression of all the drug transporters 

was greater than the human gene expression for uninfected (Figure 3.2a) and infected animals 

(Figure 3.2b).  

The mouse transporter gene expression was similar between the hu-HSC-RAG and 

BLT mice for most efflux and uptake transporters (Figure 3.3 and Figure 3.4). However, 

significantly higher gene expression (p<0.001) was noted in the hu-HSC-RAG mice compared 

to the BLT mice for the efflux transporter ABCB1 (100-fold greater), and the uptake 

transporter Slco1a4 (five-fold greater). Comparisons of transporter gene expression between 

the humanized mice cohorts are shown in Appendix 3.3. 
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Figure 3.2. Human gene expression in the brain tissue of humanized mouse models by 
qPCR in (a) uninfected humanized mouse models and (b) infected humanized mouse 
models. The extent of human gene expression relative to mouse gene expression is shown for 
the efflux and uptake transporters. The number of animals having detectable transporter 
concentrations in the brain tissue is shown to the right of the graph. Slco1a4/SLCO1A2 and 
SLC22A2 were not detected in any of the humanized mice while SLC22A8 was not detected 
in the infected mice. Data are shown as median (range). * p<0.05, ***p<0.001 
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Considering the expression of the efflux transporters in the brain tissue, there were 

several interspecies differences in the gene expression that are summarized in Figure 3.3. Of 

note, both the hu-HSC-RAG mice and the BLT mice showed a four-fold higher expression of 

Abcg2/ABCG2 (p<0.001) compared to the NHPs. The BLT mice showed 100-fold lower 

expression of Abcb1/ABCB1 compared to both the hu-HSC-RAG mice and the NHPs 

(p<0.001).  

When considering the gene expression of the uptake transporters, only the gene 

expression of Slc29a1/SLC29A1 was similar across all three animal models (Figure 3.4).  The 

expression of Slc22a2/SLC22A2 and Slc22a8/SLC22A8 was >100-fold higher in both the hu-

HSC-RAG and the BLT humanized mouse models, compared to the NHPs (p<0.001), while 

Oatp1a4/OATP1A2 expression was five-fold higher in the hu-HSC-RAG mice compared to 

the NHPs (p<0.001).  The transporter gene expression measurements across all the individual 

animals are summarized in Appendix 3.4. 

Sex differences were shown to influence gene expression as the male NHPs had >two-

fold higher gene expression (p<0.05) of three efflux transporters (ABCC4, ABCB1, ABCG2) 

and two uptake transporters (SLCO1A2, SLC29A1) compared to the female animals (Figure 

3.5). However, there were no significant differences in gene expression of drug transporters in 

either of the humanized mouse models or the NHPs on the basis of infection status (p=0.3, 

Figure 3.6). 
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Figure 3.3. Gene expression of efflux transporters in the brain tissue of humanized mouse 
models and rhesus macaques by qPCR. There were several inter-species differences in the 
transporter gene expression normalized to the expression of GAPDH. Difference in gene 
expression between the humanized mouse models was only noted for the efflux transporter 
ABCB1 (100-fold higher in the hu-HSC-RAG mice compared to BLT mice; p<0.001). For the 
other transporters, the transporter gene expression did not differ between the humanized mouse 
models. The hu-HSC-RAG mice and BLT mice showed a 10-fold higher gene expression of 
ABCC1 (p<0.001) and a 4-fold higher gene expression of ABCG2 (p<0.001) relative to the 
NHPs. ABCC2 expression was 3-fold lower (p<0.001) in the hu-HSC-RAG mice and BLT 
mice compared to the NHPs. Boxes represent the 1st and 3rd quartile of the data with median 
line. Whiskers represent the 10th and 90th percentile of the data and the open circles represent 
outliers. Legend: qPCR – quantitative polymerase chain reaction 
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Figure 3.4. Gene expression of uptake transporters in the brain tissue of humanized 
mouse models and rhesus macaques by qPCR. There were several inter-species differences 
in the gene expression of uptake transporters normalized to the expression of GAPDH. 
Differences in gene expression between the humanized mouse models was only noted for the 
Slco1a4/SLCO1A2 transporter, with hu-HSC-RAG mice showing five-fold higher gene 
expression compared to the BLT mice (p<0.001). The gene expression of SLC29A1 was 
similar across all three preclinical species (p=0.15). The gene expression of SLC22A2 and 
SLC22A8 were >100-fold higher in both the humanized mouse models as compared to the 
NHPs (p<0.001). Boxes represent the 1st and 3rd quartile of the data with median line. 
Whiskers represent the 10th and 90th percentile of the data and the open circles represent 
outliers. Legend: qPCR – quantitative polymerase chain reaction 
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Figure 3.5. Significant differences in the gene expression of efflux and uptake 
transporters in the brain tissue of rhesus macaques due to sex differences. The gene 
expression of the efflux transporters ABCC4, ABCB1, and ABCG2 and uptake transporters 
SLCO1A2 and SLC29A1 were >2-fold lower in female macaques compared to male macaques 
(p<0.05). The boxes represent the 1st and 3rd quartile of the data with median line. The 
whiskers represent the 10th and 90th percentile of the data and the open circles represent 
outliers. 
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Figure 3.6. Effect of infection status on the gene expression of drug transporters across 
the preclinical species. Infection status did not appreciably alter the gene expression of drug 
transporters across any of the preclinical models. The uninfected animals are shown in white 
and infected animals are shown in red. The boxes represent the 1st and 3rd quartile of the data 
with median line. The whiskers represent the 10th and 90th percentile of the data and the open 
circles represent outliers. 

 

3.4.2. Protein expression of drug transporters by western blot: 

BCRP was detected in the majority of the brain tissue samples (96%) across all the 

preclinical models by western blot analysis. Both the monomer (72 kDa) and dimer (144 kDa) 

forms of BCRP were detected in the humanized mouse models (0.62 [0.0-18.1] fold change 

over GAPDH; Figure 3.7a) and the male rhesus macaques (1.32 [0.62-6.21] fold change over 

GAPDH; Figure 3.7b). P-gp was only detected in 34% of the brain tissue samples, while 

Oatp1a4/OATP1A2 was detected in 25% of the samples. Given the limited number of 
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transporters that were detected by the western blot analysis, QTAP was used as the only 

measure of transporter protein expression. 

 
Figure 3.7. BCRP transporter protein expression relative to GAPDH by western blot. 
Western blots for BCRP expression in the (a) six hu-HSC-RAG mice from the atazanavir and 
efavirenz dosing cohorts, and (b) eight uninfected male nonhuman primates dosed with 
efavirenz and raltegravir. + represents the positive control samples. Both the dimer and 
monomer forms of BCRP were detected in the brain tissue samples. Legend: ATZ – atazanavir, 
EFV – efavirenz, NHP – nonhuman primate. 

 

3.4.3. Protein concentration of drug transporters by QTAP: 

Across the preclinical models, MRP1 and MRP2 were undetectable in all samples and 

Mrp4/MRP4, Oatp1a4/OATP1A2, Oat3/OAT3 and Oct3/OCT3 were undetectable in 60-94% 

of the samples. P-gp and BCRP were undetectable in <15% of the samples. Therefore, only 

the QTAP data for BCRP and P-gp are reported.  

P-gp was found at higher concentrations in the hu-HSC-RAG mice (2.0 [0.8-6.6] 

pmol/mg protein) and BLT mice (0.76 [0.7-5.7] pmol/mg of protein), than Bcrp (p<0.01). This 

contrasted the gene expression results where the gene expression of P-gp was >10-fold lower 
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than Bcrp in both the humanized mouse models. Bcrp protein concentrations were similar in 

both the humanized mouse models (Figure 3.8, 0.14 [0.1-0.47] pmol/mg protein in the hu-

HSC-RAG mice and 0.2 [0.1-0.61] pmol/mg protein in the BLT mice; p=0.25) and P-gp 

protein was higher in the hu-HSC-RAG compared to BLT mice (2- to 2.7-fold, p<0.01). 

Comparisons of transporter protein expression between the humanized mouse cohorts are 

shown in Appendix 3.5. 

In the NHPs, BCRP was found at a higher concentration (1.8 [0.7-4.3] pmol/mg 

protein) than P-gp (1.24 [0.1-4.46] pmol/mg protein). The protein concentration of BCRP in 

the brain tissue of the NHPs was 16-fold higher than in the brain tissue of the BLT and hu-

HSC-RAG humanized mouse models (p<0.001). The P-gp concentration was 4.5-fold lower 

in the NHP brain tissue compared to the hu-HSC-RAG mice, however, this was not statistically 

significant (p=0.08). The protein concentrations of BCRP and P-gp across all the preclinical 

species are shown in Appendix 3.6. 

 
Figure 3.8. Multispecies absolute protein concentration of (a) P-gp and (b) BCRP efflux 
transporters in the brain tissue by QTAP. There were no differences in the concentration of 
(a) P-gp transporter between the preclinical models (p=0.08). (b) BCRP protein concentration 
was 16-fold higher in the NHPs compared to the hu-HSC-RAG mice and the BLT mice 
(p<0.001). The number of animals with detectable transporter concentrations in the brain tissue 
are listed above the graphs. The boxes represent the 1st and 3rd quartile of the data with median 
line. The whiskers represent the 10th and 90th percentile of the data and the open circles 
represent outliers. Legend: QTAP – quantitative targeted absolute proteomics 
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Female macaques showed >2-fold higher absolute protein concentrations of BCRP and 

P-gp (p≤0.002) in the brain tissue compared to the male animals (Figure 3.9). No significant 

differences in BCRP or P-gp protein concentrations were noted in either the humanized mouse 

models or NHPs on the basis of infection status (Figure 3.10). 

 

Figure 3.9. Significant differences in the absolute protein concentration of efflux 
transporters in the brain tissue by QTAP due to sex difference. Sex differences in the 
protein concentration of transporters were noted in the rhesus macaques. The protein 
concentration of efflux transporters BCRP and P-gp were 1.9-fold higher (p=0.002) and 5.2-
fold higher (p=0.001) in female macaques compared to male macaques, respectively. The 
boxes represent the 1st and 3rd quartile of the data with median line. The whiskers represent 
the 10th and 90th percentile of the data and the open circles represent outliers. Legend: QTAP: 
quantitative targeted absolute proteomics 
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Figure 3.10. Effect of infection status on absolute protein expression of drug transporters. 
Infection status did not appreciably alter the protein expression of (a) P-gp or (b) BCRP across 
both the species of humanized mice and NHPs. The number of animals with detectable 
transporter concentrations are listed above the graphs. The uninfected animals are shown in 
white and infected animals are shown in red.  

 

3.4.4. Comparison of drug transporter protein and gene expression evaluation methods: 

Figure 3.11 shows correlation plots between the gene expression relative to GAPDH 

and protein concentration of P-gp and Bcrp/BCRP across the animal models. There was no 

correlation noted between the gene expression and protein expression of the P-gp transporter 

(rho=0.01) (Figure 3.11a). In case of Bcrp/BCRP (Figure 3.11b), an increase in transporter 

gene expression relative to GAPDH expression was associated with a weak decrease in the 

protein concentration of BCRP (rho = -0.26, p=0.01). 
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Figure 3.11. Correlation plots between protein concentration by QTAP and gene 
expression of (a) P-gp and (b) BCRP transporters across preclinical species. The 
relationship between the absolute protein concentration by QTAP (pmol/mg of protein) and 
gene expression normalized to GAPDH are shown across the preclinical models for (a) P-gp 
(rho=0.01; p=0.93) and (b) BCRP (rho=-0.26; p=0.01). Legend: QTAP – quantitative targeted 
absolute proteomics 

 

3.4.5. Correlation between the protein concentration of drug transporters in the brain 

tissue and brain tissue:plasma penetration of ARVs: 

The QTAP measurements of two efflux transporters (Bcrp/BCRP and P-gp) were 

retained in the correlation analysis with ARV brain tissue:plasma penetration ratio. The gene 

expression measurements for the drug transporters were not utilized in the analysis since the 

gene expression results poorly correlated with the QTAP (Figure 3.11). Significance was set 

at p<0.025, to account for the multiple comparisons of the ARV brain tissue:plasma penetration 

ratio with the two drug transporters. In Table 3.2, the results of the correlation analyses 

between the six ARVs and the two efflux transporters are summarized. 
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Table 3.2. Results of the correlation analysis between the two efflux transporters and six 

antiretrovirals. Correlation coefficients (rho) are listed in the table. The significant 

relationships are shown in the bold text. 

Antiretroviral Drug BCRP transporter P-gp transporter 

Tenofovir 0.65 -0.26 

Emtricitabine 0.68 -0.34 

Efavirenz 0.64 -0.26 

Raltegravir 0.10 0.32 

Maraviroc 0.42 -0.32 

Atazanavir 0.53 -0.19 

 

The penetration of TFV, FTC, and EFV into the brain tissue appeared to show a modest 

increase with the increase in concentration of Bcrp/BCRP transporter in the brain tissue 

(r=0.65, 0.68, and 0.64, respectively). However, on visual examination of the data (Figure 

3.12a-c), it appeared that the ARV brain tissue penetration ratio plateaued at the higher 

concentrations of BCRP transporter measured in the NHPs. When this relationship was re-

examined with the humanized mouse data alone, there was no longer any correlation between 

BCRP transporter concentration and the penetration of these three ARVs into the brain (insets 

of Figure 3.12a-c).  

In the case of P-gp, there were only weak correlations noted between transporter 

concentrations and ARV penetration into the brain (rho ranged from -0.34 to 0.32), and these 

relationships did not reach statistical significance for any of the ARVs (Figure 3.13). 
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Figure 3.12. Relationship between BCRP protein concentrations and ARV penetration 
into the brain tissue. Brain tissue:plasma penetration ratio versus BCRP concentration by 
QTAP is shown stratified by species for (a) TFV, (b) FTC, and (c) EFV. At the higher BCRP 
concentrations measured in the NHPs, the brain tissue:plasma penetration ratios plateaued for 
all three ARVs, and appeared to drive the positive correlation noted between transporter 
concentration and ARV brain tissue:plasma ratio. The inset shows the relationship between 
BCRP transporter concentrations and brain tissue:plasma penetration ratio for the humanized 
mouse brain tissue samples alone. Considering these data alone, there was no longer any 
correlation between BCRP transporter concentration and the penetration of ARVs into the 
brain. Legend: QTAP – quantitative targeted absolute proteomics 
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Figure 3.13. Relationship between P-gp protein concentrations and ARV penetration 
into the brain tissue. Brain tissue:plasma penetration ratios versus P-gp concentration by 
QTAP are shown stratified by species for (a) TFV, (b) FTC, (c) EFV, (d) RAL, (e) MVC, 
and (f) ATZ. There were no significant relationships noted between P-gp concentration and 
brain tissue penetration for any of the six ARVs. Legend: QTAP – quantitative targeted 
absolute proteomics 
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3.4.6. Localization of drug transporters in the brain tissue by immunohistochemistry: 

In the case of the hu-HSC-RAG mice, cells stained more extensively for P-gp than 

BCRP across both uninfected (5X fractional area of P-gp staining relative to BCRP, p=0.02) 

as well as infected animals (7X fractional area of P-gp staining relative to BCRP, p=0.002) 

(Figure 3.14). BCRP staining was often diffuse in these sections with more scattered positive 

cells throughout the tissue section. Oatp1a4 transporter distribution (data not shown) was 

minimal in the humanized mice (~2 cells per square millimeter of tissue at 20X magnification). 

Infection status did not lead to differences in IHC staining of either BCRP or P-gp. 

 
Figure 3.14. Immunohistochemistry staining of P-gp and BCRP drug transporters in the 
brain tissue of hu-HSC-RAG mice. Representative transporter immunohistochemistry 
images of 20X magnification in the brain tissue for BCRP in (a) uninfected and (c) infected, 
and P-gp in (b) uninfected and (d) infected hu-HSC-RAG humanized mouse models. The 
arrows represent cells stained positive for the transporter stain. 
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BCRP and P-gp were extensively distributed throughout the cerebellar tissue sections 

of both uninfected and RT-SHIV infected rhesus macaques (Figure 3.15). OATP1A2 was 

found more sparingly with an average of two to five stained cells per square-millimeter at 20X 

magnification (data not shown). The fractional area of BCRP was similar across both 

uninfected and RT-SHIV infected macaques (1.1% and 1.4% respectively, p=0.24). Similarly, 

the fractional area of P-gp also showed no difference based on RT-SHIV infection status 

(0.74% and 0.86% in uninfected and RT-SHIV infected macaques, p=0.4).  

 
Figure 3.15. Immunohistochemistry staining of P-gp and BCRP drug transporters in the 
cerebellum of rhesus macaques. Representative transporter immunohistochemistry images 
of 20X magnification in the cerebellum tissue for BCRP in (a) uninfected and (c) infected, and 
P-gp in (b) uninfected and (d) infected rhesus macaques. 
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Finally, transporter images generated from the IHC analyses were overlaid with the 

EFV drug distribution maps that were generated from mass-spectrometry imaging (MSI) in 

Chapter II (figure 3.16). Correlation between drug transporter and EFV distribution was low 

(r ranged from 0.1 to 0.3), regardless of infection status. Despite transporter distribution 

throughout the tissue, there was notably less transporter staining in regions of white matter in 

uninfected animals, where EFV was shown to preferentially accumulate (Chapter II). In the 

infected animals, EFV was found at lower concentrations in the brain tissue and differences in 

localization were less readily apparent across different parts of the tissue. 

 
Figure 3.16. Colocalization between immunohistochemistry staining of drug transporters 
and mass spectrometry imaging of efavirenz distribution in cerebellum of uninfected and 
infected rhesus macaques. Representative transporter immunohistochemistry images (green 
color) were overlaid with the distribution maps of EFV (red color) in the cerebellum tissue for 
BCRP in (a) uninfected and (c) infected and P-gp in (b) uninfected and (d) infected rhesus 
macaques. Legend: GM – gray matter, and WM – white matter. 
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3.5. Discussion 

The aim of this study was to evaluate the gene and protein expression of drug 

transporters across three commonly used HIV preclinical models. We chose to evaluate drug 

transporters that are known to be present in the brain tissue and involved in the disposition of 

ARVs. We noted several inter-species differences in transporter gene expression across the 

preclinical models. BLT mice had five-fold and 100-fold lower gene expression of the uptake 

transporter Slco1a4 and the efflux transporter Abcb1, respectively, compared to the hu-HSC-

RAG mice. Similarly, both the hu-HSC-RAG mice and the BLT mice showed higher gene 

expression of Abcc1/ABCC1, Abcg2/ABCG2, Slc22a8/SLC22A8 and Slc22a2/SLC22A2 

(p<0.01) compared to the NHPs.  

When considering the protein expression of drug transporters, however, both the 

western blot as well as the QTAP analyses were able to detect fewer transporters of interest 

compared to gene expression. From the QTAP analysis, only two efflux transporters (BCRP 

and P-gp) were detected in greater than 85% of all brain tissue samples. In case of the western 

blot analysis, BCRP was detected in 96% of the brain tissue samples, however, P-gp and 

Oatp1a4/OATP1A2 were only detected in 35% and 25% of the brain tissue samples, 

respectively. These results may seem surprising since antibody-based analyses have 

historically been considered to be more sensitive than LC-MS/MS proteomics analyses(38). 

However, with the proper optimization of standard peptides, LC-MS/MS proteomics assays 

can be as sensitive or even more sensitive than western blot(36,39,40). For our LC-MS/MS 

proteomics analyses, we initially optimized three to four standard peptide sequences per 

transporter and chose our final peptides based on the most optimal response shown across 

multiple samples. While our western blot assays were also previously optimized by our 
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laboratory, these conditions could have potentially been refined even further in order to 

improve the signal:noise ratio for the low-abundance transporters (for e.g. by choosing a more 

sensitive chemiluminescent substrate). While we ultimately excluded results from the western 

blot analysis for the inter-species comparisons, the detection of predominant BCRP bands 

within the brain tissue at a higher molecular weight was an interesting result. It has been shown 

that anti-BCRP antibodies are also capable of co-precipitating structural proteins called 

caveolins that function to link BCRP molecules into dimeric and tetrameric forms in the 

presence of cholesterol(41). Interestingly, these polymeric forms of BCRP are also associated 

with higher transporter activity as a 50% reduction in cholesterol can result in a 40% reduction 

in transporter activity(42). In fact, the modest positive correlation (r=0.6) that we noted 

between absolute BCRP transporter protein concentration and the penetration of the very 

lipophilic drug EFV into the brain tissue may be a result of high extent of accumulation of both 

the drug and transporter within the cholesterol-rich environment of the brain, though further 

studies are needed to confirm this. 

Similar to the gene expression results, there were some interspecies differences in our 

QTAP data across the three preclinical models; for example, BCRP was 16-fold higher in the 

NHPs than the humanized mouse models. One caveat with our QTAP results is that the 

absolute protein concentration of BCRP and P-gp that we measured in this study were >two-

fold lower than previously published measurements made from concentrated BBB samples in 

mice and cynomolgus monkeys.(19,43) This is due to our use of whole brain tissue resulting 

in diluted concentrations compared to the measurements made from a transporter-rich 

concentrated sample of the BBB. For similar reasons, only BCRP and P-gp could be quantified 

in the brain tissue samples, although MRP4, OATP1A2 and ENT1 were previously detected 
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in the BBB of cynomolgus monkeys(19). Since these other transporters were detected at lower 

concentrations in the BBB, they were below the limit of quantification (BLQ) in our brain 

tissue samples. Similar to the BBB measurements(19,43), our brain tissue samples also showed 

a differential gradient of transporter concentrations (Table 3.3) across the preclinical models. 

For example, P-gp was the predominant transporter detected in both the brain tissue and BBB 

in mice, while BCRP was the most abundant transporter in the NHPs. However, the transporter 

measurements in our brain tissue samples did not perfectly correlate with the BBB transporter 

measurements. For BCRP, the brain tissue protein concentrations were 8- to 40- fold lower 

than the BBB transporter protein concentrations, while for P-gp the brain tissue protein 

concentrations were 4- to 5-fold lower relative to the protein concentrations at the BBB. These 

results indicate that BCRP protein concentrations in the brain parenchyma are much lower than 

P-gp protein concentrations. This may be due to the more pronounced expression of P-gp on 

various cell types in the brain tissue such as astrocytes, microglia, and neurons(44,45). In 

contrast, previous studies have shown that BCRP appears to only be localized to the microglial 

cells in the brain parenchyma(44). Therefore, while our results do show similarities between 

the relative abundance of transporter protein concentrations in the brain tissue and at the BBB, 

the brain tissue is not an appropriate surrogate for BBB for all drug transporters. 
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Table 3.3. Concentration of efflux and uptake transporters measured in the blood brain 

barrier from previous studies and in the brain tissue of our preclinical models by QTAP. 

P-gp and BCRP drug transporters were predominantly detected by QTAP in the BBB from 

previously published studies, as well as in the brain tissue samples (data generated in this 

thesis). Generally, transporters detected at low concentrations (<2 pmol/mg protein) in the 

BBB were not detected in the brain tissue. Data are shown as means. 

Transporter 
Mouse 

BBB(17) 

Mouse Brain 

Tissue 

Monkey 

BBB(19) 

NHP Brain 

Tissue 

Human 

BBB(17) 

BCRP 

(pmol/mg protein) 
4.41 0.12 14.2 1.8 8.1 

P-gp 

(pmol/mg protein) 
14.1 2.6 4.7 1.2 6.1 

MRP4 

(pmol/mg protein) 
1.6 <0.1 0.30 <0.1 0.2 

OATP1A2 

(pmol/mg protein) 
2.0 <0.1 0.73 0.2 (n=26) <0.2 

ENT1 

(pmol/mg protein) 
0.9 <0.1 0.54 <0.1 0.6 

 

We also explored the effect of factors that could alter drug transporter measurements 

in the three preclinical models. Overall, infection status did not alter the gene or protein 

expression of drug transporters across any of the individual dosing cohorts or animal models. 

However, we did note significant differences in both the gene as well as the protein 

concentration of transporters based on sex in the NHPs. While the gene expression of P-gp and 
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BCRP were lower in female macaques compared to males, the QTAP results showed the 

opposite result; BCRP was 1.9-fold higher in female macaques while P-gp was 5.2-fold higher 

in females. Higher protein expression of drug transporters in females compared to males has 

been shown before(46), and may be due to the effects of the female sex hormones. Estrogen, 

estradiol, and other female sex hormones bind to the estrogen receptor (ER), and activate the 

downstream estrogen receptor elements (ERE) that are located in the promoter region of target 

genes such as MDR1 and ABCG2 to increase transporter expression and ultimately the efflux 

of substrates(47–49). The ER proteins also interact with other transcription factors such as 

nuclear factor-kβ (NF-kβ)(48) that can induce the gene and increase the protein expression of 

P-gp and BCRP. 

As shown previously by our laboratory with the intestinal tissue(36), poor agreement 

was demonstrated between the gene expression and protein concentration by QTAP analysis 

for P-gp (rho=0.1). While these results differ from a previous study that demonstrated a strong, 

positive relationship (r2=0.8) between the gene expression, protein concentration and function 

of P-gp(50), it should be noted that this result was derived from an in-vitro cell line system, 

which provides a more controlled environment for transporter studies. With the brain tissue 

collected from our in-vivo experiments, the interplay of complex processes involved in the 

synthesis and degradation of RNA and protein might have affected the extent of agreement 

between gene and protein expression. We also noted a weak negative correlation between the 

gene expression and protein concentration of BCRP (rho=-0.26, p=0.01). Though such a 

negative relationship might just be an artefact of our sparse and variable proteomics data, a 

few other studies have also shown negative relationships between the gene message and protein 

concentration of cytokines(51,52). Such data may be explained by the difference in half-lives 
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between RNA and protein, post-translational modifications to proteins that lead to enhanced 

stability compared to RNA, or a negative-feedback loop that results in degradation of RNA 

with higher concentrations of protein(53).  

We performed a correlation analysis between our QTAP drug transporter 

measurements and the brain tissue:plasma penetration ratio across our preclinical models to 

determine if drug transporter concentration in the brain tissue had any utility in predicting ARV 

penetration into the brain. Given the large number of transporter concentration values that were 

BLQ in our brain tissue samples and the imperfect correlation between drug transporter 

concentrations in the brain tissue and the BBB, the correlation analysis may have been more 

informative if we were able to correlate drug transporter measurements at the BBB with the 

plasma:brain tissue ratio of ARVs. However, given the methodological complexities in 

isolating the BBB, such as the need to pool brain tissue samples across multiple animals and 

the destructive nature of this technique, we were unable to isolate transporter protein at the 

BBB. However, despite this important limitation, there is still significant utility in the 

measurement of drug transporters in the brain tissue(54). The brain cells such as microglia, 

astrocytes, and neurons make up 80% of the total brain tissue volume(55), and drug 

transporters present on these cells are important regulators for drug uptake into cells(16,56). 

Our correlation analysis showed a surprising modest increase (rho ranged from 0.64 to 

0.68) in the brain tissue:plasma penetration ratio of TFV, FTC and EFV with an increase in 

BCRP transporter concentrations. However, on visual examination of our data, it became clear 

that this positive relationship was only driven by the plateau in ARV penetration into the brain 

tissue at higher BCRP transporter concentrations that were measured in the NHPs. When we 

re-examined this relationship with the data from the humanized mouse models alone, there was 
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no longer any significant relationship between transporter concentrations and brain tissue 

penetration for any of the three ARVs. This suggests that differences in BCRP transporter 

concentrations have no relationship with ARV penetration into the brain tissue. This finding 

agrees with previously generated in-vivo data that shows that the inhibition of BCRP does not 

significantly alter the brain tissue distribution of several known substrates of this 

transporter(57).  

Our results also showed that there was no relationship between P-gp transporter 

concentrations in the brain tissue and the penetration of ARVs into the brain tissue, although 

there seemed to be a very weak trend between increased P-gp concentrations and lower ARV 

penetration into the brain for most of the ARV substrates except RAL. A careful review of our 

brain tissue transporter measurements relative to previously generated BBB measurements 

indicated that the brain parenchyma P-gp transporter measurements were a surrogate for the 

BBB, although future studies are needed to confirm this. Such a result could be explained by 

the pronounced localization of P-gp in various brain cells(44,45) that comprise the 

neurovascular unit. Therefore, the quantification of P-gp in this secondary barrier may not only 

inform ARV penetration into the brain by could also be important to inform the cellular 

penetration of ARVs. Although we did not measure intracellular drug concentrations in this 

analysis, future work employing methods as described by Fridén(58) or Guo(59) could be used 

to measure the intracellular concentrations of ARVs in the relevant HIV target cells (such as 

the microglia) and determine the ability of transporter concentrations in the brain parenchyma 

to predict these concentrations. 

Finally, we performed IHC analyses to determine the localization of drug transporters 

within the brain tissue. Our IHC results showed good agreement with the QTAP results. For 
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example, only BCRP and P-gp were predominantly detected, with very minimal detection of 

OATP1A2. Further, BCRP transporter was predominantly expressed in the NHP tissue, while 

in the humanized mouse models, P-gp was more widely expressed. There were no differences 

in the transporter expression profiles between uninfected and infected animals and this was 

consistent across all the measures of transporter detection. The drug transporter IHC images 

for both P-gp and BCRP showed a poor correlation (r<0.2) with the distribution of EFV by 

MSI. Furthermore, in the uninfected animals it appeared that the transporter distribution was 

denser in the gray matter, while EFV distribution was more concentrated in the white matter, 

an observation that we noted in Chapter II. With the RT-SHIV infected animals, this was not 

as readily apparent due to the lower concentrations of EFV that were detected by MSI. Since 

we did not have the ability to co-stain for multiple transporters across one tissue slice, but used 

concomitantly sliced tissue for each individual transporter stain, we were not able to show the 

co-staining of multiple transporters or overlay images of cellular markers and transporters. 

Because of our experimental set-up, we used frozen tissue sections for IHC and these sections 

were not as strongly bound to the glass slide as compared to formalin-fixed paraffin-embedded 

tissue. Therefore, the multiple heating steps that were involved in multiplexing resulted in 

stripping of the tissue section from the glass slide.  

There are some other important limitations to this work. Only BCRP was 

predominantly detected in the brain tissue samples in the western blot analysis and showed 

poor correlation to the absolute transporter protein concentrations as measured by the QTAP 

analysis. Further, although we used the QTAP analysis for our transporter protein 

concentrations, there were several limitations with this technique such as low sensitivity 

resulting in BLQ values for most transporters, and high variability in peptide measurements. 
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Finally, while we measured the differences in transporter absolute protein concentrations 

across the preclinical species, we were not able to measure the differences in the transporter 

function across the species, which might also considerably influence the penetration of ARVs 

into the brain tissue. 

 

3.6. Conclusions 

From the results presented in this study, important inter-species differences in drug 

transporters were detected between commonly used models for HIV-infection, such as 16-fold 

higher protein concentration of BCRP in NHPs compared to humanized mouse models. While 

the two measures of drug transporter protein expression (localization and concentration) 

generally agreed with each other, there was poor correlation noted between the gene expression 

and protein expression measurements. BCRP and P-gp showed similarities in relative 

abundance in the brain tissue and the BBB, however an imperfect correlation between the 

protein concentrations of both these transporters at the two different sites suggests that brain 

tissue transporter protein concentrations may not be a suitable surrogate for the protein 

concentrations at the BBB. We noted no significant relationship between transporter 

concentrations in the brain tissue and ARV brain tissue:plasma penetration ratio. While these 

data provide an important proof-of-concept for examining the relationship between transporter 

differences and PK of ARVs in the brain tissue, the lack of significant findings may be due to 

the limited number of samples we had for this analysis and the imperfect correlation between 

transporter concentrations measured in our brain tissue samples and the BBB. Future work 

measuring the intracellular concentration of ARVs in relevant HIV target cells in the brain 

tissue would further elucidate the importance of the secondary barrier of drug transporters in 
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the brain parenchyma. Integration of our data with transporter measurements made at the BBB 

would allow for a better translation of the mechanistic differences in transporter expression 

and activity between the preclinical models and could be a useful tool to predict clinical brain 

tissue concentrations. 
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CHAPTER-IV: PREDICTING THE EXPOSURE OF EFAVIRENZ IN THE HUMAN 

BRAIN TISSUE AND RELATIONSHIP TO NEUROCOGNITIVE IMPAIRMENT IN 

HIV-INFECTED INDIVIDUALS1 

 

4.1. Summary 

Sparse data exist in the literature on the penetration of antiretrovirals into the brain 

tissue. In this work, we present a modeling framework to use efavirenz (EFV) pharmacokinetic 

(PK) data in the plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques 

to predict the brain tissue exposure of EFV in a cohort of 24 HIV-infected participants from a 

clinical trial. We then perform exposure-response analysis with the model-predicted EFV brain 

tissue exposure and neurocognitive scores that were obtained from the study participants. Adult 

rhesus macaques were dosed with 200 mg EFV (as part of a four-drug regimen) for ten days 

and then sacrificed. Plasma was collected at eight time points over ten days and at necropsy, 

while CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained 

from one paired plasma and CSF sample from participants who were prescribed EFV, and 

neuropsychological test evaluations were administered across 15 domains. PK modeling was 

performed using ADAPT v5.0 with the iterative two-stage analysis estimation method. An 

eight-compartment model best described EFV distribution in the plasma, CSF and brain tissue 

in rhesus macaques and humans. EFV was predicted to have a flat profile in the CSF and brain 

tissue with a median concentration of 31 ng/mL and 8,000 ng/mL, respectively. Model-
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predicted brain tissue exposure of EFV was highly correlated with the plasma exposure 

(rho=0.99, p<0.001) but not with the CSF exposure (rho=0.34, p=0.1) and did not show any 

relationship with neurocognitive scores (rho<0.05, p>0.05). This analysis provides an 

approach to estimate PK in the brain tissue using sparse data in order to perform 

pharmacokinetic-pharmacodynamic analyses at the target site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

1This work has been submitted as a manuscript to the journal Clinical and Translational Sciences. 
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4.2. Introduction 

HIV-associated neurocognitive disorders (HAND) are a spectrum of neurocognitive 

deficits in people living with HIV that remain highly prevalent despite the introduction of 

highly active antiretroviral therapy (HAART). Although the prevalence of HIV-associated 

dementia (HAD) has dramatically declined from 60% at end-stage disease in the pre-HAART 

era to 5% currently(1), the milder forms of HAND – asymptomatic neurocognitive impairment 

(ANI) and mild neurocognitive disorder (MND) - remain highly prevalent in 20-50% of HIV 

positive participants(1).  

While the exact cause of HAND is unknown, it is hypothesized that HAND in HAART-

treated individuals is a result of irreversible damage to neurons and other brain cells in the 

central nervous system (CNS), resulting from uncontrolled HIV replication and inflammation 

that occurred before the initiation of antiretroviral (ARV) therapy (also called a “legacy 

effect”)(2). The extent of ARV penetration into the CNS may also contribute to HAND in two 

ways. Restricted ARV penetration into the brain tissue could lead to ongoing viral replication 

and inflammation in the brain tissue(3). Alternatively, for ARVs that reach high concentrations 

within the brain tissue, potential neurotoxicity may contribute to the onset of HAND(4,5). 

Several studies have investigated neurocognitive impairment as a function of ARV 

cerebrospinal fluid (CSF) pharmacokinetics (PK)(4,6–8), but have been inconclusive. A 

possible explanation for this might be that neurocognitive impairment was only assessed as a 

function of drug exposure in the CSF. With the inability to obtain brain tissue in humans 

premortem for PK sampling, either CSF concentrations of ARVs or the CNS-penetration 

effectiveness (CPE) scores are used as surrogates(3). The CPE scores are derived from a 

combination of the ability of the ARVs to control HIV replication in the CSF, the concentration 
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of the ARVs achieved in the CSF, and physicochemical properties of the ARVs(9). Since the 

site of action of ARVs is either within or on the surface of HIV target cells (for e.g. 

macrophages, microglia, and CD4+ T-cells) found in the brain, the brain tissue is the relevant 

target for PK assessment.  

Modeling and simulation techniques may be useful to predict the pattern of drug 

distribution in the brain tissue(10). Non-linear mixed effects modeling (NLMEM), most 

frequently applied to ‘population’ pharmacokinetic/pharmacodynamic (PK/PD) analyses, can 

also provide better estimates at the individual subject level, when population inference is not 

relevant. Bayesian estimation methods such as the iterative two-stage (IT2S) method are 

particularly useful to describe individuals with sparse data(6). In such an approach, parameter 

estimates are initially defined from a prior distribution as in other Bayesian analyses, with an 

iterative estimation of the parameters to provide refined estimates for each individual. Such an 

NLMEM method allows data to be leveraged from all study samples, in order to better describe 

the PK in each study subject.  

In this work, we apply NLMEM to predict the exposure of efavirenz (EFV) in human 

brain tissue based on PK data (plasma, CSF and brain tissue concentrations) obtained from 

rhesus macaques, combined with sparse plasma and CSF concentrations obtained from a 

clinical trial. EFV is part of a fixed dose combination regimen (Atripla®; a fixed dose regimen 

of 600 mg EFV, 200 mg emtricitabine [FTC] and 300 mg tenofovir disoproxil fumarate given 

once daily) that is a part of the World Health Organization’s list of essential medicines(11) and 

is used in several developing regions of the world where the HAND prevalence is comparable 

to, or higher than, rates in the western world(12). Given the clinical relevance and established 

link of EFV usage with HAND prevalence(13) we investigated whether a relationship could 



137 
 

be established between model-predicted EFV brain tissue concentrations and neurocognitive 

impairment. 

 

4.3. Materials and Methods 

4.3.1. Antiretroviral dosing in rhesus macaques and preclinical study design:  

Details on the PK evaluation of ARVs in the CSF and brain tissue in rhesus macaques 

have been previously reported in Chapter II. Briefly, nine (six male and three female) adult 

rhesus macaques (Macaca mulatta) were dosed for ten days with tenofovir (TFV) 30 mg/kg 

subcutaneously daily, FTC 16 mg/kg subcutaneously daily, EFV 200 mg orally daily, and 

raltegravir (RAL) 100 mg orally twice a day in order to achieve steady-state conditions. 

Animals were dosed in the morning, and the second dose of RAL was administered in the 

afternoon. For the morning dose, EFV and RAL were fed orally by mixing the contents of a 

200 mg Sustiva® (EFV) capsule and a 100 mg Isentress® (RAL) chewable tablet with a peanut 

butter sandwich. For the afternoon dose, the Isentress® tablet was fed to the animals with 

strawberry jam. Five of the animals were first infected with 104.5 median tissue culture 

infective dose (TCID50) of RT-SHIVmac239 intravenously in order to determine if infection 

status influenced EFV concentrations in the brain. Plasma HIV RNA was measured every week 

after inoculation up to four weeks in order to confirm infection. Plasma was sampled at the 

following time points in all animals: 0 hours, 4 hours, 10 hours and 24 hours after the first 

dose, then 24 hours after the dose on days four, six, nine, and ten (necropsy). All animals were 

sedated 24 hours after the last dose with ketamine hydrochloride, and plasma and CSF were 

collected. The macaques were then given a lethal dose of pentobarbital and euthanized. Brain 

tissue was collected at necropsy, snap frozen, and stored at -80˚C until further analysis. Four 
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distinct regions of the brain tissue were collected for the measurement of EFV concentrations: 

the frontal cortex, the parietal cortex, the cerebellum and the basal ganglia. All animal 

experiments were performed in accordance with a locally-approved Institutional Animal Care 

and Use Committee (IACUC) protocol from the University of Davis, California (protocol 

18345). One RT-SHIV-infected macaque developed liver failure during the course of the 

study, with measured concentrations in the plasma, CSF, and brain tissue matrices over 100-

fold higher than in the other macaques, and was excluded from the analysis. 

4.3.2. Clinical Study Participants:  

The “Tropism of HIV, Persistence, Inflammation and Neurocognition in Therapy 

Initiation Cohort” (THINC, grant PO1 MH094177) study was conducted in full accordance 

with the Declaration of Helsinki. The study protocol was approved by the Institutional Review 

Boards at all three participating sites and participants provided informed consent before 

screening and study enrollment.  

This multi-center study was conducted to provide a better understanding of the 

mechanisms behind the persistence of neurocognitive impairment in HIV-infected participants 

during ARV therapy. This large study included several interlinked projects that enrolled HIV-

positive participants into two distinct observational cohorts based on their length of time on 

ARV therapy. Cohort A was comprised of individuals who were newly diagnosed, naïve to 

treatment, or who were off ARV therapy for at least three months. Cohort B was comprised of 

treatment-experienced individuals, who were on therapy for at least one year before study 

enrollment, and for whom viral replication was suppressed in the plasma and CSF. All 

participants were on drug regimens chosen by their primary care physician. While these two 

distinct cohorts were enrolled to evaluate two distinct hypotheses under the main THINC 
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study, participants from both cohorts provided PK samples that were combined for the PK sub-

study analysis. The PK sub-study had two main objectives. The first objective was to use 

modeling and simulation in order to predict ARV exposure in the plasma, CSF and brain tissue 

after collection of sparse PK samples from the plasma and CSF. The second objective of the 

PK sub-study was to determine if model-derived brain tissue exposure predicted in each 

individual participant correlated with neurocognitive impairment scores obtained from the 

study participants.   

This study enrolled HIV-infected men and women above the age of 18, who had a nadir 

CD4 count <400 cells/µL at some point prior to study enrollment. Participants were excluded 

if they had a physician-identified contraindication to lumbar punctures, had an active 

psychiatric illness, currently abused alcohol or drugs, or had a brain infection besides HIV that 

required acute or chronic therapy. The complete list of inclusion and exclusion criteria for the 

THINC study are provided in Appendix 4.1. 

4.3.3. Clinical study design:  

The design of the THINC study is shown in Figure 4.1 for cohorts A and B. A 

longitudinal analysis was conducted for the participants in cohort A.  Subjects were enrolled, 

initiated on ARVs (as per their primary care physician, with regimens not determined by the 

clinical study investigators) and followed for one year with four distinct study visits at various 

time points: the study baseline, two weeks, six months and one-year post enrollment. At the 

baseline, six-month and one-year visits, neurocognitive tests were administered by trained 

research assistants under the supervision of a neuropsychologist. At the two-week and one-

year study visits, blood was drawn to measure ARV concentrations in plasma, and a lumbar 

puncture was performed to measure CSF concentrations. Participants were followed for one 
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year so that changes in cognitive function could be tracked over time from high viral load (at 

study entry) to no detectable viral replication (at the one-year visit). Cognitive tests were 

performed every six months to reduce memory bias. The blood draw and lumbar puncture 

procedures were scheduled within two to three hours of each other, and samples were collected 

based on subject and technician availability, with no pre-selected sampling time post-dose.  

 

Figure 4.1. Study design for the two cohorts of the THINC study. Cohort A were treatment-
naïve and were followed for one year. One single paired PK sample was obtained in the plasma 
and CSF, at two-weeks and one-year post study enrollment. Neuropsychiatric tests were 
administered at baseline, and six months and one-year post enrollment into the study. Cohort 
B participants were treatment-experienced and enrolled into the study at least one year after 
initiating therapy. PK samples in the plasma and CSF were collected soon after study 
enrollment and neuropsychiatric tests were administered. The double red line indicates the time 
of enrollment into the study. CSF: cerebrospinal fluid *Neurocognitive tests were administered 
at study baseline for individuals enrolled into cohort A. 

 

A cross-sectional (single time point) analysis was conducted for participants in cohort 

B. In this cohort, participants with neurocognitive impairment were enrolled into the study and 

had a PK visit within two weeks of enrollment. At this visit, plasma and CSF were sampled at 

a single time point as described for cohort A and neuropsychological tests were administered. 

There were no follow-up visits for this cohort, unless participants were viremic in the CSF. 
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4.3.4. Neuropsychological test evaluations:  

Neuropsychological performance was assessed in the following domains (tests): 

premorbid verbal/language (Wide Range Achievement Test 4 - Reading Subtest(14)), learning 

(Hopkins Verbal Learning Test – Revised (HVLT-R)(15)), verbal memory (HVLT-R), speed 

of information processing (Trailmaking Test A(16,17) and Stroop Color Test(18)), WAIS-III 

Digit Symbol Test(19)), attention/working memory (WAIS-III Symbol Search Test(19) and 

Stroop word(18), fine motor (Grooved Pegboard Test(20)), gross motor (Timed Gait Test(21)) 

and executive functioning (Trailmaking Test B, Stroop interference test, and Letter and 

Category Fluency Test(22)). 

For each participant and each individual domain/test, z-scores were computed from the 

normative scores that were demographically corrected by adjusting for age, education, gender, 

and race where appropriate. This was done by subtracting the raw test score from the corrected 

score followed by dividing by the normative standard deviation(23). The total z-score for each 

participant was calculated by averaging the individual z-scores across the 15 tests. A score of 

zero reflected average performance, positive scores denoted better than average and negative 

scores denoted lower than average performance. The global deficit score (GDS)(24) was 

computed by taking individual test scores across the neuropsychological battery, and 

converting them to deficit scores. The deficit scores ranged from zero (normal or above normal 

performances) to five (severe impairment)(25). The GDS was determined by averaging the 

deficit scores. 

4.3.5. Quantification of efavirenz concentration in the fluid and tissue matrices:  

Analytical methods for quantification of EFV in fluid and tissue samples of the rhesus 

macaques have been previously described.(26) EFV concentrations in the brain tissue 
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homogenate were expressed in ng/ml by using a density of 1.06 g/cm3. In the clinical samples, 

EFV concentrations in the plasma and the CSF were analyzed by liquid chromatography 

tandem mass spectroscopy (LC-MS/MS) assays available at the UNC Center for AIDS 

Research Clinical Pharmacology and Analytical Chemistry Laboratory at the University of 

North Carolina at Chapel Hill(27). The lower limit of quantification (LLOQ) for EFV was 50 

ng/ml in the plasma and 1 ng/ml in the CSF, with an intra- and inter-day precision and accuracy 

that was within 15%. For the brain tissue, the LLOQ of EFV was 0.005 ng/mL of tissue 

homogenate, and the inter- and intra-day precision and accuracy of the assay were within 20%. 

4.3.6. Development of the preclinical pharmacokinetic model:  

EFV concentrations in the plasma, CSF, and brain tissue of the rhesus macaques were 

fit in a sequential approach in ADAPT version 5.0 (Biomedical Simulation Resource, Los 

Angeles).(28) First, plasma concentrations alone were fit in each macaque using the iterative 

two-stage analysis (IT2S) NLMEM approach(29). The starting values for model parameters 

were derived from a previously published noncompartmental analysis (NCA) in rhesus 

macaques and empiric estimates of variability (coefficients of variation [CV%]) were made for 

all the plasma parameters(29). Bayesian priors were then updated based on the fitted values. 

After obtaining reasonable plasma fits, individual plasma parameters were fixed and CSF and 

brain tissue drug concentrations from all eight animals were added into the model. The CSF 

and brain tissue distributional parameters were then fit using a naïve pooled analysis by a 

maximum likelihood (ML) estimation method. This approach was used because the plasma 

data were sufficient to obtain macaque-specific estimates, but the CSF and brain data were 

limited. Because of issues with identifiability, the volume of distribution within the CSF was 

fixed in all animals to 0.015 L – which is the physiologic volume of the CSF in rhesus 
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macaques.(30) The CSF and brain tissue distributional parameters from the best fit were then 

used as initial estimates of the Bayesian prior means (with empiric variances) for the final PK 

model where the plasma, CSF and brain tissue exposure data from all eight animals (79 

concentrations in all three matrices) were co-modelled by IT2S. Table 4.1 includes detailed 

modeling methods, including the total number of data points available at each step. Weighting 

of the plasma, CSF, and brain tissue data was by the inverse of the estimated variance, which 

was composed of both additive and proportional components. Model discrimination was by 

Akaike’s Information Criterion (AIC(31)). Bias and precision were evaluated based on the 

objective function, relative standard error (RSE%), and other goodness-of-fit diagnostic plots 

such as the observation versus individual model prediction plot.  

Table 4.1: Modeling methods for the preclinical and clinical efavirenz PK models 

Step Modeling Methods Data available Source 

Preclinical Model 

1) Step I Iterative two-stage analysis 

to estimate plasma PK 

parameters in each macaque 

(fit individually in each 

animal) 

Eight plasma 

concentrations to 

determine seven 

parameters in each 

animal 

Initial estimates 

were from 

noncompartmental 

analysis(29) 

2) Step II Iterative two-stage analysis 

with refined estimates from 

Step I to estimate plasma 

PK parameters in each 

Eight plasma 

concentrations to 

determine seven 

parameters in each 

animal 

Refined estimates 

from Step I 

(geometric mean 

of parameter 

estimates) 
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Step Modeling Methods Data available Source 

macaque (fit individually in 

each animal) 

3) Step III Mixed likelihood naïve 

pooled data Analysis to 

estimate CNS parameters 

after fixing plasma 

parameters for individual 

macaques (fit with data 

combined from all eight 

animals) 

16 CSF and brain 

tissue trough 

concentrations to 

determine seven CNS 

PK parameters in 

eight animals 

Parameters 

defined from 

sensitivity 

analysis 

4) Step IV Maximum a-priori 

Bayesian analysis to refine 

plasma and CNS parameters 

in each macaque (fit 

individually in each animal) 

Ten plasma, CSF, and 

brain tissue 

concentrations from 

each animal to 

determine 14 

parameters in eight 

animals 

Plasma model 

estimates from 

Step I and CNS 

model estimates 

from Step III 

5) Step V Iterative two-stage analysis 

with refined estimates from 

Step IV to determine final 

plasma and CNS PK 

parameters (fit with data 

79 plasma, CSF and 

brain tissue 

concentrations to 

determine 14 

Geometric mean 

of parameter 

estimates 

determined in step 

IV 
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Step Modeling Methods Data available Source 

combined from all eight 

animals) 

parameters in eight 

animals 

 

 

Clinical Model 

1) Step VI Iterative two-stage analysis 

to estimate plasma PK 

parameters 

24 plasma 

concentrations to 

determine six plasma 

PK parameters in 24 

participants 

Initial estimates 

from EFV 

population PK 

model by 

Kappelhoff et al. 

(32) 

2) Step VII Iterative two-stage analysis 

with refined estimates from 

Step I to estimate plasma 

PK parameters 

24 plasma 

concentrations to 

determine six plasma 

PK parameters in 24 

participants 

Geometric mean 

of parameter 

estimates from 

Step VI (refined 

estimates) 

3) Step VIII Iterative two-stage analysis 

to estimate CNS parameters 

after fixing plasma 

parameters in each 

individual 

24 CSF concentrations 

to determine seven 

CNS PK parameters in 

24 participants 

CNS PK 

parameter 

estimates from the 

macaque model 

determined in 

Step V 
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4.3.7. Development of the clinical pharmacokinetic model:  

A sequential approach was also employed to fit the clinical data. The plasma data were 

initially fit alone by the IT2S method(33,34). Because of the sparseness of the clinical data, 

the structural model for EFV disposition in the clinical model was the same as for the rhesus 

macaques. However, the initial estimates for the plasma parameters, including the absorption 

parameters, were derived from a previously published EFV population PK model(32). The 

individual plasma PK parameters were then fixed in each participant and the CSF 

concentrations were added in to the model to fit the CSF exposures and predict the brain tissue 

exposures. The volume of distribution in the CSF (VCSF) was fixed to a physiologically relevant 

volume of 0.15 L(35), that was allometrically scaled from the macaque CSF volume. The initial 

estimate of the brain tissue volume of distribution (Vbrain) was allometrically scaled from the 

macaque model. The initial estimates of the distributional rate constants describing EFV 

movement between the plasma, CSF, and brain tissue were the same values from the final 

macaque model, using the assumption that the structural model of EFV distribution was the 

same in macaques and humans. All these parameters were then re-estimated by IT2S. The final 

PK model was used to simulate EFV concentrations at steady state over a 24-hour dosing 

interval in the plasma, CSF, and brain tissue in the study participants. Model discrimination 

and residual variance weighting was as described for the rhesus macaque model. The model 

was validated by measuring EFV in brain tissue samples that were available from the National 

Neuro-AIDS Tissue Consortium (NNTC) repository. Postmortem brain tissue concentrations 

from three HIV-positive participants were overlaid with the implications of the final model 

that were obtained by performing a 1000-replicate Monte-Carlo simulation. 
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4.3.8. Pharmacokinetic/pharmacodynamic correlation analysis:  

Individual concentration versus time profiles over the 24-hour dosing interval at steady 

state were simulated post-hoc from the final model parameters in the plasma, CSF, and brain 

tissue. The trough concentration of EFV at the end of the dosing interval (C24h) and the 

exposure of EFV over the dosing interval (AUC0-24h) were determined in the various matrices. 

Correlation analyses were performed between the model-predicted C24h and AUC0-24h 

parameters in the plasma, CSF, and brain tissue. Finally, the individual PK parameters were 

correlated with the relevant neurocognitive scores – the Z score and GDS. 

4.3.9. Statistical analysis:  

Comparison of EFV concentrations between the different regions of the brain tissue, 

and between sex and infection status in the rhesus macaques was performed by the Kruskal 

Wallis test; p<0.05 was considered significant. Tests for correlation were performed using the 

Spearman correlation test. The PK estimates are presented as geometric means and the model-

predicted C24h, AUC0-24h and brain tissue:plasma AUC0-24h ratio and brain tissue:CSF AUC0-

24h ratio values are presented as median (range) unless noted otherwise. Data were analyzed 

using SigmaPlot 13.0 (Systat Software Inc., San Jose, CA); p<0.05 was considered significant. 

 

4.4. Results 

4.4.1. Pharmacokinetic model for efavirenz in the plasma, cerebrospinal fluid and brain 

tissue in rhesus macaques 

In the rhesus macaques, the median concentration (range) of EFV was 691 ng/g (280-

1929 ng/g) in the frontal cortex, 687 ng/g (232-2440 ng/g) in the cerebellum, 758 ng/g (213-

2139 ng/g) in the basal ganglia, and 834 ng/g in the parietal cortex (190-1890 ng/g), 
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respectively. The concentration of EFV was similar across all regions of the brain (p=0.95) 

and averaged to give one brain tissue concentration per animal. There were no statistically 

significant differences in EFV concentrations by sex (p=0.9) or infection status (p=0.1). The 

disposition of EFV in the plasma, CSF, and brain tissue in the animals was best described by 

an eight-compartment model with a log-normal error model which included the central plasma 

compartment, one peripheral compartment and three transit absorption compartments to 

accommodate the delayed absorption of EFV (Figure 4.2). Models that did not include a 

peripheral compartment were also tested and the total number of transit compartments were 

determined by adding in these compartments sequentially until the best fit (based on r2 value 

of the model fit) and successful run diagnostics for all eight animals were obtained (Table 4.2).  

 
Figure 4.2. Structure of the pharmacokinetic model for efavirenz in rhesus macaques and 
humans. An eight-compartment model with first-order absorption and linear elimination, best 
described efavirenz disposition in the plasma, CSF, and brain tissue. Three transit 
compartments were used to describe the delayed peak of efavirenz in the plasma. Drug 
movement between the plasma, CSF, and the brain tissue were described by rate constants. 
The CSF volume of distribution was fixed to physiologically relevant values in rhesus 
macaques and humans (0.015 and 0.15 L respectively). Legend – CMPT: compartment, CSF: 
cerebrospinal fluid 
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Table 4.2: Evaluation of absorption models for efavirenz PK model in rhesus macaques 

 Structural Model 

 
One Transit 

Compartment 

Two Transit 

Compartments 

Three Transit 

Compartments 

Animal 

Number 

Model fit 

r2 
Diagnostics1 

Model 

fit r2 
Diagnostics 

Model 

fit r2 
Diagnostics 

Macaque 1 0.962 Pass 0.894 Pass 0.957 Pass 

Macaque 2 0.981 Pass 0.944 Pass 0.820 Pass 

Macaque 3 0.992 Pass 0.967 Pass 0.701 Pass 

Macaque 4 0.999 Pass 0.993 Pass 0.995 Pass 

Macaque 5 0.413 Fail 0.797 Pass 0.960 Pass 

Macaque 6 0.784 Pass 0.262 Fail 0.828 Pass 

Macaque 7 0.903 Pass 0.897 Pass 0.898 Pass 

Macaque 8 0.931 Pass 0.990 Pass 0.996 Pass 

1 A failed run was defined as a near singular matrix and high standard errors 

 

In four out of the eight macaques, plasma C24h values measured from day four until 

necropsy were 4- to 40-fold lower than the C24h values after the first dose (Figure 4.3). This 

type of inter-occasion variability was accommodated by incorporating a multiplicative term 

(M) on clearance such that the oral clearance (CL/F) after 24 hours was given by the product 

of clearance for the first 24 hours and M (if time > 24h, then CL/F = CL/F⋅M). Four macaques 

had observed EFV concentrations that were below the limit of quantification (BLQ) in the 

CSF. The BLQ data were censored by the M5 (BLQ values imputed as LLOQ/2) method. This 

simple approach was considered appropriate to censor our data since we used a Bayesian 
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iterative estimation method (inferences are based on assumed prior distribution and are not 

sensitive to missing values). The parameter estimates from the M5 method were also similar 

to the the M1 (BLQ values ignored) and the M7 (BLQ values imputed as 0) methods. 

 
Figure 4.3. Individual model-predictions versus observations in the plasma in rhesus 
macaques. The model predictions for efavirenz pharmacokinetics in the plasma are shown 
over the 10 days in which the drug was administered in the eight rhesus macaques. The solid 
model prediction lines are overlaid with the observations in the open squares. 
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In the fits of individual macaques, the median RSEs were generally small (<30%) with 

moderate RSEs (30-50%) for the peripheral volume of distribution (V6/F), Kplasma-CSF, KCSF-

brain, and Kbrain-CSF. The CL/F was 8.7 L/hr, V5/F was 6.5 L, and Ka was 0.18 1/hr. The Vbrain 

(conditioned on the fixed estimate for VCSF) of distribution was 0.037 L. The geometric mean 

of the parameter estimates and standard deviation of the parameter estimates (RSE%) are listed 

in Table 4.3.  

 
Table 4.3: Model parameters from the final efavirenz pharmacokinetic model in rhesus 
macaques and humans 

Rhesus Macaques 

Parameter1 Geometric Mean Median CV% 

CL/F (L/hr) 8.70 10.74 89.8 

V5/F (L) 6.45 5.00 51.2 

Ka (1/hr) 0.183 0.17 36.4 

V6/F (L) 14.6 13.69 155.0 

Q/F (L/hr) 4.66 5.9895 89.1 

TAU (1/hr) 0.95 1.16 48.5 

M1 2.63 2.07 103.0 

Kplasma-CSF (1/hr) 1.71E-06 1.91E-06 59.5 

KCSF-plasma (1/hr) 0.18 0.18 27.3 

Kplasma-brain (1/hr) 2.42E-03 2.34E-03 31.1 

Kbrain-plasma (1/hr) 0.15 0.14 26.8 

KCSF-brain (1/hr) 2.56E-03 0.002779 36.0 

Kbrain-CSF (1/hr) 5.58E-06 4.6E-06 68.2 
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Vbrain/F (L) 0.037 0.036 21.8 

VCSF/F (L) 0.015 (fixed) 0.015 (fixed) - 

Humans2 

Parameter Geometric Mean Median CV% 

CL/F (L/hr) 12.37 12.20 58.5 

V5/F (L) 155.34 147.25 39.1 

Ka (1/hr) 0.135 0.025 94.6 

V6/F (L) 405.4 200.05 35.8 

Q/F (L/hr) 6.31 28.33 142.0 

TAU (1/hr) 1.00 1.95 27.8 

Kplasma-CSF (1/hr) 4.27E-06 4.11E-06 88.8 

KCSF-plasma (1/hr) 0.244 0.244 26.0 

Kplasma-brain (1/hr) 2.00E-03 2.00E-03 30.2 

Kbrain-plasma (1/hr) 0.175 0.175 31.2 

KCSF-brain (1/hr) 3.00E-03 3.00E-03 40.2 

Kbrain-CSF (1/hr) 2.41E-06 2.41E-06 70.5 

Vbrain/F (L) 0.514 0.514 25.1 

VCSF/F (L) 0.15 (Fixed) 0.15 (Fixed) - 

1M was not incorporated on the clearance term in the human EFV PK model 
2The human pharmacokinetic model was developed by a sequential estimation method where 
the plasma was initially estimated, followed by the CSF and brain tissue distributional 
parameters 

 

From the final model, the r2 value for the line of individual conditional model 

predictions versus observations in the plasma (overall, minimum-maximum individual value) 
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was 0.96 (0.91 – 0.99; Figure 4.4). The overall r2 value for the individual conditional model 

predictions versus observations in the CSF and the brain tissue was 0.91 and 0.99 respectively. 

The overlay between observations and individual model predictions for the eight macaques in 

the plasma are shown in Figure 4.5. The data file used in the final IT2S estimation and model 

code are provided in Appendix 4.2. 

 
Figure 4.4. Goodness of fit plots for individual model predictions versus observations in 
the plasma in rhesus macaques for the final PK model. The diagnostic plots are shown 
overall in the 8 macaques and in each individual macaque. The overall r2 value was 0.95 and 
ranged from 0.91 to 0.99 in the individual macaques. 
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Figure 4.5. Goodness-of-fit spaghetti plots for the rhesus macaque efavirenz PK model. 
Spaghetti plots of the individual model predictions are shown for the eight individual macaques 
with observations overlaid in the open circles in the (a) plasma (b) CSF and (c) brain tissue. 
Each color represents one individual macaque. In the CSF compartment, four animals had 
undetectable EFV concentrations in the CSF and these values were imputed at 0.5 ng/mL (half 
of the LLOQ value). Legend – CSF: cerebrospinal fluid. LLOQ – lower limit of quantification. 

 

4.4.2. Clinical study demographics:  

Of the 109 HIV-positive men and women who enrolled into the study across both 

cohorts, twenty-six subjects were on EFV-based regimens. Atripla® was the most commonly 

prescribed regimen (n=22, 92%). Five participants (18%) were in cohort A (naïve to ARV 

therapy before study enrollment, and five (18%) were women. One of the subjects enrolled in 

the treatment-naïve cohort provided study measurements at baseline and week two but was lost 

to follow-up for the remainder of the study. Another treatment-naïve subject switched ARV 

regimens after the first two-week study visit and was not on an EFV-based regimen at the one-

year PK visit. The EFV concentrations in the plasma and CSF from the two-week samples 

were below the LLOQ for both of these participants. Therefore, these participants were 

determined to not be adherent to therapy, and their PK samples were excluded from the final 

analysis. The complete study demographics for the participants included in the final analysis 

are listed in Table 4.4.  
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Table 4.4. Demographic Characteristics of the THINC study population 

Demographic characteristic Cohort A – treatment 

naïve (n=3) 

Cohort B – treatment 

experienced (n=21) 

Sex, female 0 (0%) 4 (19%) 

Age, years 32 (19 – 53) 54 (42 – 66) 

Weight, kg 65.8 (56.7 – 110.2) 71.0 (45.4 – 136.1) 

BMI1 18.5 (17.2 – 31.2) 21.8 (15.3 – 48.4) 

Race 

White 

African American 

 

0 (0%) 

3 (100%) 

 

13 (62%) 

8 (38%) 

Combination Regimen 

Atripla 

Other three-drug regimen 

Other three+ drug regimen 

 

3 (100%) 

0 (0%) 

0 (0%) 

 

16 (76%) 

1 (5%) 

4 (19%) 

Time on efavirenz treatment2, 

years 
<1 5 (3-12) 

Entry CD4 count, cells/mm3 303 (158 – 354) 594 (198 – 1,251) 

Entry plasma viral load3, 

copies/mL 
95,870 (18,334-176,506) BLQ 

Entry CSF viral load3, 

copies/mL 
15,118 (355-38,400) BLQ 

Entry neurocognitive score 

Z-score 

 

-0.8 (-1.3-0.13) 

 

-0.43 (-2.8-0.86) 
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Demographic characteristic Cohort A – treatment 

naïve (n=3) 

Cohort B – treatment 

experienced (n=21) 

Global Deficit Score (GDS) 0.88 (0.125-1.31) 0.44 (0.0-3.27) 

Data are expressed as median value (range) or number (%) of subjects. 
1Body mass index (BMI) is calculated as the weight in kilograms divided by the height in 
square meters 
2Information was available for 16/24 patients 
3The lower limit of quantification for HIV RNA in the plasma and CSF was 40 copies/mL 
 
 
4.4.3. Pharmacokinetics of efavirenz in the plasma, cerebrospinal fluid and brain tissue 

of HIV-positive participants:  

A total of twenty-nine paired EFV concentration measurements were available from 

the plasma and CSF to develop the clinical PK model. Similar to the rhesus macaques, the 

disposition of EFV in the plasma, CSF and brain tissue in humans was described by an eight-

compartment model which included three transit absorption compartments to account for the 

delayed absorption of EFV. The structure of the final model for EFV distribution in the plasma, 

CSF and brain tissue in rhesus macaques and humans is shown in Figure 4.2. In humans, the 

Vbrain conditioned on the CSF volume was 0.51 L. The geometric mean CL/F was 12.4 L/hr, 

V5/F was 155 L and ka was 0.135 1/hr. Individual estimates of the model parameters were 

generally estimated with high precision (overall r2, for plasma and for CSF, was 0.97 and 0.92, 

respectively). Table 4.3 summarizes the sample statistics for the PK parameters. The median 

RSE was high (>50%) for Ka, Q/F and Kbrain-CSF. For the remaining parameters, the median 

RSE varied between 12 and 40%. The goodness-of-fit diagnostic plots for the individual and 

population predicted values for plasma and CSF are shown in Figure 4.6. 
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Figure 4.6. Goodness-of-fit diagnostic plots for the final clinical PK model in the plasma 
and CSF. The light blue solid lines represent the zero lines (b, c, e and f) or the lines of unity 
(a and d). Observations versus individual predictions in the double logarithmic scale in the 
plasma (a) and the CSF (d) are shown in the purple open circles. Conditional weighted residuals 
(CWRES) versus individual model predictions in the linear scale in the plasma (b) and CSF 
(e) and CWRES versus time after last dose in the plasma (c) and the CSF (f) are shown in the 
purple open circles. 

 

The implications of the final model in the plasma and CSF, as well as the predicted 

EFV concentration-time profile in the brain tissue are shown in Figure 4.7. The 5th to 95th 

percentile of the 1000 model replicates of the ms captured 88% and 96% of all EFV 

observations in the plasma and CSF respectively, suggesting that the model was able to 

sufficiently describe the observations in both matrices, with reasonable partitioning between 

residual and inter-subject variability. The model-predicted concentration-time profiles in the 
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CSF and brain tissue were flat, with a median EFV concentration in the CSF and brain tissue 

of 31 ng/ml (6 to 170 ng/ml) and 8,000 ng/ml (2,300 to 29,000 ng/ml), respectively. The ratio 

of predicted EFV AUC0-24h in the brain tissue to plasma was 3.6 (3.2 to 3.8) while the ratio of 

AUC0-24h in the brain tissue to the CSF was 213 (23 to 834). The data file used in the final IT2S 

estimation and model code are provided in Appendix 4.3. 

Demographic information for the three HIV-positive patients from the NNTC 

repository, from whom EFV concentrations in the brain tissue were available for model 

validation are presented in Table 4.5. Model overlay with the external dataset observations 

(black triangles, Figure 4.7) showed that the model predictions adequately captured the 

observed brain tissue data (ranging from 1,800 ng/mL to 8,000 ng/mL). 

 

Figure 4.7. Graphical overlay of the implications of the final PK model in the (a) plasma, 
(b) CSF, and (c) brain tissue. The purple open circles represent the observations from the 
THINC study and the black open triangles represent observations from our external dataset. 
The dashed red lines represent the 5th and 95th percentiles of the 1000-replicate simulations, 
the dashed green lines represent the 25th and 75th percentiles while the thick solid black line is 
the median concentration. The 5th to 95th percentile captured 88% of the THINC study 
observations in the plasma and 96% of the observations in the CSF while the brain tissue 
predictions showed good agreement with the concentrations available from the external 
dataset. 
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Table 4.5: Demographic information from the HIV-positive patients in the National 
Neuro-AIDS Tissue Consortium (NNTC) repository from whom efavirenz brain tissue 
concentrations were available. 

ID Sex ARV regimen 

Brain tissue 

collection time 

post-dose 

(hours)1 

EFV concentration (ng/mL) 

Plasma2 CSF3 
Brain 

tissue 

10015 Male 

600 mg EFV + 300 mg 

lamivudine + 80 mg 

stavudine 

? (trough) - 16.9 1,800 

716 Male 

600 mg EFV + 200 mg 

emtriva + 300 mg 

tenofovir 

21 - - 8,000 

725 Male 

600 mg EFV + 100 mg 

lamivudine + 100 mg 

zidovudine 

21 - - 3,600 

1For ID 10015, no information was available from the NNTC repository on the exact time of 
brain tissue collection post-dose. This value was imputed as a trough concentration for the 
overlay with the model predictions 
2No plasma concentration data were available for the three individuals at the time of autopsy 
3CSF concentration data were only available from ID 10015 at the time of autopsy 
 

Generally, the model-predicted EFV C24h in all three matrices showed a stronger 

correlation to each other than did the model-predicted AUC0-24h parameters, as shown in 

Figure 4.8. The model-predicted brain tissue C24h and AUC0-24h showed stronger correlation 

with the respective parameters in the plasma (rho = 0.99, p < 0.001 and rho = 0.99, p < 0.001) 

than with the respective parameters in the CSF (rho = 0.42, p = 0.04 and rho = 0.36, p = 0.09). 
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Figure 4.8. Correlation analysis between model-predicted efavirenz concentration at 24 
hours (C24h) post-dose and AUC0-24h in the plasma, cerebrospinal fluid (CSF) and brain 
tissue in humans and observed concentrations at 24 hours in rhesus macaques. The top 
panels show correlation plots between the model-predicted C24h in humans and observed 
C24h in macaques for the (a) plasma and CSF, (b) plasma and brain tissue, and (c) CSF and 
brain tissue. The bottom panels show correlation plots between the model-predicted AUC in 
humans for the (d) plasma and CSF, (e) plasma and brain tissue, and (f) CSF and brain tissue. 
The open blue circles represent the predicted C24h and AUC parameters in humans while the 
filled red triangles represent observed C24h in the rhesus macaques. The red long dashed lines 
and blue short dashed lines represent the regression lines for the observed macaque data and 
the predicted human data, respectively. Brain tissue C24h and AUC parameters showed better 
correlation with the plasma parameters (rho= 0.99, p<0.001 and rho=0.99, p<0.001) than with 
the CSF (rho= 0.44, p=0.04 and rho=0.34, p=0.1). 

 

4.4.4. Pharmacokinetic/pharmacodynamic correlation analysis:  

The Z-score and the GDS did not show any correlation with the model-predicted 

exposure of EFV in the brain tissue as shown in Figure 4.9 (rho = 0.005, p = 1.0 and rho = 

0.045, p = 0.8) or with the model-predicted EFV exposure in the CSF (rho = 0.05, p = 0.8 and 

rho = 0.005, p = 1.0; data are not shown). 
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Figure 4.9. Correlation analysis between model-predicted efavirenz exposure (AUC0-24h) 
in the brain tissue in humans and the (a) Z-score and (b) global deficit score (GDS) 
neurocognitive scores. The correlation analysis is shown between the model predicted 
exposure of EFV in the brain tissue and (a) Z-scores and (b) GDS. No relationship was noted 
with either neurocognitive score measurement. 

 

4.5. Discussion 

In this analysis, we present a novel framework for analyzing sparse PK data of EFV in 

preclinical species and translating the model to humans in order to predict drug exposure in 

the human brain tissue. Since sparse data were available from the rhesus macaques and 

humans, we chose to develop a PK model for EFV with the prior knowledge that this drug  

reaches high concentrations in the brain tissue(36). Our analysis showed that the observed 

C24h in the plasma and brain tissue of macaques were highly correlated (rho = 0.97, p < 0.001), 

as were C24h in CSF and brain tissue (rho = 0.91, p < 0.001).  Similarly, model-predicted EFV 

AUC0-24h and C24h in human brain tissue were highly correlated with the plasma parameters. 

These results add credence to previous analyses(37,38) where EFV plasma concentrations may 

be sufficient to predict brain tissue exposure. 
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Our data predicted a ten-fold range in EFV exposure in the plasma (median exposure 

of 41,365 ng•hr/mL and range of 19.223-165,487 ng•hr/mL) and in the brain tissue (149,549 

ng•hr/mL [61,908-576,048 ng•hr/mL]) and an almost 50-fold range of exposure in the CSF 

(875 ng•hr/mL [200-9,940 ng•hr/mL]). The wide range in predicted CSF exposures reflects 

the high variability of observed CSF data in our participants (90% CV). This high variability 

resulted in the wide range in AUCbrain/AUCCSF values, and the lack of correlation between 

brain tissue and CSF exposure despite a flat EFV profile in both matrices. High inter-individual 

variability in plasma concentrations of EFV has been demonstrated previously(39–41) and our 

brain tissue concentration data from our external dataset were also highly variable (72% CV).  

This variability is helpful to quantify, as it is not evident within an approach such as the CPE, 

where a particular ARV regimen has a score equivalent to the sum of the scores of the 

individual drugs and is the same in all individuals on the same drug regimen.  

The observed CSF EFV concentrations in humans (30 ng/mL) were 15-fold higher than 

the CSF concentrations in the rhesus macaques (~2 ng/mL). These differences in 

concentrations appear to be driven primarily by the approximately ten-fold higher plasma EFV 

concentrations in humans (2,100 ng/mL) compared to the macaques (200 ng/mL). These 

species differences were also reflected in the brain tissue, and the macaque EFV brain tissue 

concentrations (775 ng/mL) were approximately ten-fold lower than our model-predicted EFV 

brain tissue concentrations (8,000 ng/mL) in humans. These model-predicted brain tissue 

concentrations were 267-fold higher than CSF, four-fold higher than plasma, and 15,000-fold 

higher than the protein-adjusted IC90 of 0.22 ng/ml(42). A 2017 PBPK model(43) predicted 

that EFV accumulated in the brain tissue with a steady-state concentration of 50,000 ng/ml 

which is ~ten-fold higher than our model predictions. However, the brain tissue PK data 
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recently presented by Nicol(44) were within two- to four-fold of our predictions and the brain 

tissue concentration data from our external NNTC repository dataset showed good agreement 

with our model. As a result, we believe our PK model predictions are biologically plausible. 

In this analysis, our PD measure for the degree of HAND impairment were scores 

obtained from neurocognitive testing, considered to be the gold standard diagnostic 

tool(45,46).  The lack of relationship between the model-predicted exposure in brain tissue and 

neurocognitive impairment scores may have been due to the limited range of neurocognitive 

testing scores in our study participants. Further, we had a small sample size for this analysis 

and our PK model predicted a narrow range of EFV drug exposures in the plasma and brain 

tissue. In fact, for 20/24 of our study participants, the model-predicted EFV exposures in the 

plasma were in the optimal range of exposure previously defined in a population PK analysis 

by Csjaka(47) as the EFV plasma exposure required for a high probability of viral suppression 

and a low probability of CNS toxicity. Given the insensitivity of neurocognitive tests to discern 

milder forms of impairment, future PK/PD studies that explore the relationship between ARV 

exposure and quantifiable biomarkers of CNS disease may be useful. Several biomarkers have 

been discovered for events such as underlying inflammation and immune activation in the CNS 

(neopterin)(48) or neuronal injury (neurofilament light chain)(49). In our analysis, greater EFV 

exposure in the brain tissue was modestly associated (r=0.7, p=0.04) with lower CSF 

concentration of neurofilament light chain but not neopterin (data are not shown). While these 

biomarkers are not routinely used in the clinic, validation of sensitive biomarkers in large trials 

of HAND in the CSF or plasma may add to the predictability of PK/PD analyses in this setting. 

The approach we used in the macaques allowed us to estimate the plasma PK 

parameters with high precision (high r2 values for the individual macaque fits) and leverage 
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data from all animals to estimate CSF and brain tissue profile. We considered simpler CNS 

model structures, such as the use of inter-compartmental clearance values. However, because 

of the high variability in CSF and brain tissue concentrations, restricting the distribution to 

clearance values led to model instability and failure of the covariance matrix to converge. 

Further, characterizing drug distribution into the CNS by rate constants was biologically 

relevant since different processes govern EFV movement into (passive diffusion) and out of 

(active efflux by BCRP) the CNS. Similarly, we also tried multiple modeling approaches for 

the clinical PK model. Initially, we considered a MAP-Bayesian estimation from a literature 

model to describe the plasma(32). However, since this model did not adequately capture the 

observed plasma concentrations (Figure 4.10), it gave us limited confidence to predict brain 

tissue concentrations. Instead, we performed model fitting using the IT2S estimation method. 

Given that this tool is also Bayesian in nature and provides valuable individual estimates(33), 

IT2S is an appropriate method for analyzing sparse data. An important consideration for the 

use of this method is the accuracy of the initial parameter estimates. For this purpose, we used 

the published population PK model(32) for obtaining the initial plasma parameter estimates, 

and refined the parameters to better describe the plasma concentrations in our study subjects.  

Given the small number of rhesus macaques and humans for model development, we 

had limited ability to draw population inferences from our data. The results that we present 

here used population tools to better characterize individual PK profiles, but are not a substitute 

for population PK analyses. Indeed, the information gained from prior population PK analyses 

was invaluable to characterize plasma distribution in our clinical model. Our analysis provides 

an important proof of concept for the enrichment of sparse data (such as in the setting of 

therapeutic drug monitoring) with information from data-rich population PK models. Such an 
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approach allows for the better description of the individual profile and provides the ability to 

predict PK at otherwise inaccessible sites. Our external validation dataset was a unique data 

source to compare with our model predictions in the brain tissue. While the observed brain 

tissue data were all either at, or below, the median concentration of our model predictions, this 

is not indicative of model misspecification. There were very few brain tissue observations to 

conclude differences in distribution of the external dataset observations and our model 

predictions, and most importantly there were no population inferences drawn from our model 

to assume that the distributions of the external dataset and the model predictions had to be 

similar. Rather, the external data highlight the strength of our approach to predict hard-to-

obtain clinical data, as well as the accuracy of our individual predictions. Ultimately, high 

individual precision and satisfactory plasma fit in both macaques and humans were leveraged 

to estimate CSF and brain tissue PK, and provides a novel approach to handle sparse data. 

 
Figure 4.10. Diagnostic plots showing model fit by MAP-Bayesian analysis with the 
Kappelhoff model. On performing a MAP-Bayesian estimation and performing model 
diagnostics with (a) VPC and (b) DV vs IPRED plot, it was apparent that the model did not 
adequately capture the lower plasma EFV concentrations. Furthermore, the VPC indicated 
model misspecification (only 67% of the data were captured in the 90-percentile interval). 
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We had a limited ability to identify the mechanism for the increase in CL/F, noted in 

four macaques, and opted for a parsimonious, empiric structural model that fit the data well. 

Of note, the lowered plasma concentrations were observed after 96 hours of the first dose. This 

is early for EFV auto-induction (predicted to occur in humans after a week of dosing(55)), 

although early auto-induction effect has been shown for some other drugs(56). The four 

animals that showed lower C24h were predicted to have higher peak concentration after the 

first dose compared to the other animals (>2,200 ng/mL versus <1,500 ng/mL) and auto-

induction may occur earlier with higher concentration of the inducing agent. The faster 

autoinduction in macaques compared to humans could be attributed to the high variability in 

CYP2C9 oxidation in macaques(57) and differential drug-enzyme interaction across both 

species. For example, EFV is also a potent inhibitor of CYP2B6 (Ki=1.68 µm)(58) but 

CYP2C9 is only moderately inhibited by EFV (Ki=19.46 µm)(58). In our clinical model, since 

we often had only one plasma concentration per individual collected at steady state, we were 

not able to estimate the effect of auto-induction. 

Another limitation of our approach is the assumption of the same EFV structural model 

in both macaques and humans. This approach has been demonstrated to work best for drugs 

that do not undergo active influx or efflux by drug transporters and for drugs that are not highly 

protein bound(36,37). However, EFV is highly protein bound and is a substrate of the active 

efflux transporter BCRP(38), which is highly expressed on the blood brain barrier(39,40). 

Regardless, macaques and humans have similar EFV plasma protein binding (99.4% vs 

99.5%)(16) and abundance of BCRP on the blood brain barrier(39,40). These characteristics 

make our approach suitable.  
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Finally, the CSF and brain tissue concentrations in the macaques were only collected 

at the end of the dosing interval at necropsy and this prevented us from estimating the volume 

of distribution in the CSF and brain tissue due to identifiability issues. Since we had an estimate 

for the physiologic volume of CSF(30) but had limited data on the physiologic brain tissue 

volume, we conditioned brain tissue volume on a fixed CSF volume in the macaques. For 

similar reasons, the CSF volume was also fixed in humans. This resulted in the low values of 

distributional rate constants describing EFV movement into the CSF. Since only trough 

concentration data were available from the CSF and brain tissue, we made limited inferences 

on time-dependent EFV PK profile and performed PK/PD analyses with brain tissue exposure 

as a more stable model estimate. However, our model-predicted EFV PK profile in these 

matrices (no distinction between Cmax and C24h) agrees with the relatively flat EFV PK 

profile observed in the CSF(35), and previously predicted in the brain tissue(43), and highlights 

the utility of EFV C24h measurements in the CSF and brain tissue. 

 

4.6. Conclusions 

In conclusion, an eight-compartment PK model was developed in rhesus macaques and 

the structural model was translated to humans in order to predict the CSF and brain tissue 

exposure of EFV. EFV showed first-order absorption and linear elimination from the central 

compartment and three transit compartments were utilized in order to describe the delay in 

EFV peak concentrations in the plasma. The PK model predicted the median brain tissue 

concentration of EFV to be 8,000 ng/ml with median brain tissue AUC0-24h to be 150,000 

ng•hr/ml. The 5th to 95th percentile of the 1000 Monte-Carlo replicates of our final model 

predictions adequately described the plasma and CSF data and captured the post-mortem brain 
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tissue concentration data, that were available from three HIV-positive individuals from an 

external validation dataset. The AUC0-24h ratio of brain tissue to plasma was 3.6 while the 

AUC0-24h ratio of brain tissue to CSF was 212. The brain tissue C24h and AUC0-24h were highly 

correlated (rho=0.99, p<0.001) with their respective parameters in the plasma but were poorly 

correlated with the CSF parameters (rho= 0.44, p=0.04 and rho=0.34, p=0.09). The individual 

predictions of EFV AUC0-24h and C24h in the brain tissue did not correlate with the 

neurocognitive impairment scores of the study participants, indicating that in this small study 

there may be factors other than PK that are responsible for influencing neurological outcomes 

in individuals with HAND. 

 

 

 

 

 

 

 

 

 

 

 



169 
 

4.7. REFERENCES 

1.  Marra CM. HIV-associated neurocognitive disorders and central nervous system drug 
penetration: what next? Antivir Ther. 2015;20(4):365–7.  

2.  Tan IL, McArthur JC. HIV-associated neurological disorders: A guide to 
pharmacotherapy. CNS Drugs. 2012;26(2):123–34.  

3.  Letendre S. Central Nervous System Complications in HIV Disease : HIV-Associated 
Neurocognitive Disorder. Top Antivir Med. 2011;19(4):137–42.  

4.  Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of 
combination antiretroviral therapy on cerebrospinal fluid HIV RNA and 
neurocognitive performance. AIDS. 2009;23(11):1359–66.  

5.  Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol. 
2012;18(5):388–99.  

6.  Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized 
Trial of Central Nervous System-Targeted Antiretrovirals for HIV-Associated 
Neurocognitive Disorder. Clin Infect Dis. 2014;58:1015–22.  

7.  Caniglia EC, Cain LE, Justice A, Tate J, Logan R, Sabin C, et al. Antiretroviral 
penetration into the CNS and incidence of AIDS-defining neurologic conditions. 
Neurology. 2014;83(2):134–41.  

8.  Scott Lentendre. Randomized Clinical Trial of Antiretroviral Therapy for Prevention 
of Hand (Abstract no. 56). In: Conference on Retroviruses and Opportunistic 
Infections (CROI) Seattle, Washington. 2015.  

9.  Letendre S. Validation of the CNS Penetration-Effectiveness Rank for Quantifying 
Antiretroviral Penetration Into the Central Nervous System. Arch Neurol. 
2008;65(1):65–70.  

10.  Standing JF. Understanding and applying pharmacometric modelling and simulation in 
clinical practice and research. Br J Clin Pharmacol. 2017;83(2):247–54.  

11.  WHO Model List of Essential Medicines (19th List). World Health Organization 
http://www.who.int/topics/essential_medicines/en/ Last Accessed June 20th, 2018.  

12.  Gannon P, Khan M, Kolson D. Current understanding of HIV-associated 
neurocognitive disorders pathogenesis. Curr Opin Neurol. 2011;24(3):275–83.  

13.  Ciccarelli N, Fabbiani M, Baldonero E. Efavirenz associated with cognitive disorders 
in otherwise asymptomatic HIV- infected patients. Neurology. 2011;76:1403–9.  

14.  Wilkinson G. Wide Range Achievement Test - 3rd Edition. 1993.  

15.  Benedict RH, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test – 
Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability. Clin 
Neuropsychol. 1998;12(1).  



170 
 

16.  Reitan R, Davison L. Clinical Neuropsychology: Current Status and Applications. 
1974.  

17.  Army Individual Test Battery, 1944. 1944.  

18.  Stroop J. Studies of Interference in Serial Verbal Reaction. J Exp Psychol. 
1935;18(6):643–62.  

19.  Wechsler D. Wechsler adult intelligence scale–Third Edition (WAIS–III). San 
Antonio, Texas; 1999.  

20.  Klove H. Clinical Neuropsychology. Med Clin North Am. 1963;47:1647–58.  

21.  Robertson K, Parsons T, Sidtis J, Hanlon Inman T, Robertson W, Hall C, et al. Timed 
Gait test: Normative data for the assessment of the AIDS dementia complex. J Clin 
Exp Neuropsychol. 2006;28(7):1053–64.  

22.  Gladsjo J, Schuman C, Evans J, Peavy G, Miller S, Heaton R. Norms for Letter and 
Category Fluency: Demographic Corrections for Age, Education and Ethnicity. 
Psychol Assess. 1999;6(2):147–78.  

23.  Heaton R, Miller S, Taylor M, Grant I. Revised Comprehensive Norms for an 
Expanded Halstead Reitan Battery: Demographically Adjusted Neuropsychological 
Norms for African American and Caucasian Adults. Lutz: Psychological Assessment 
Resources, Inc. 2004.  

24.  Blackstone K, Moore D, Franklin D, Clifford D, Collier A, Marra C. Defining 
Neurocognitive Impairment in HIV: Deficit Scores versus Clinical Ratings. Clin 
Neuropsychol. 2012;26(6):894–908.  

25.  Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, et al. Predictive 
Validity of Global Deficit Scores in Detecting Neuropsychological Impairment in HIV 
Infection Predictive Validity of Global Deficit Scores in Detecting 
Neuropsychological Impairment in HIV Infection. J Clin Exp Neuropsychol. 
2004;26(3):307–19.  

26.  Thompson CG, Fallon JK, Mathews M, Charlins P, Remling-Mulder L, Kovarova M, 
et al. Multimodal analysis of drug transporter expression in gastrointestinal tissue. 
AIDS. 2017;31(12):1669–78.  

27.  Rezk NL, Tidwell RR, Kashuba ADM. High-performance liquid chromatography 
assay for the quantification of HIV protease inhibitors and non-nucleoside reverse 
transcriptase inhibitors in human plasma. J Chromatogr B Anal Technol Biomed Life 
Sci. 2004;805(2):241–7.  

28.  D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User’s Guide: 
Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical 
Simulations Resource, Los Angeles, 2009.  

29.  Balani SK, Kauffman LR, Deluna FA, Lin JH. Nonlinear pharmacokinetics of 
efavirenz (DMP-266), a potent HIV-1 reverse transcriptase inhibitor, in rats and 
monkeys. Drug Metab Dispos. 1999;27(1):41–5.  



171 
 

30.  Barten DM, Cadelina GW, Weed MR. Dosing, collection and quality control issues in 
cerebrospinal fluid research in animal models. In: Cerebrospinal Fluid in Neurologic 
Disorders, Volume 146. 2017. p. 47–65.  

31.  Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s information criterion 
(AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet 
Pharmacodyn. 1978;6(2):165–75.  

32.  Kappelhoff BS, Huitema ADR, Yalvaç Z, Prins JM, Mulder JW, Meenhorst PL, et al. 
Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected 
individuals. Clin Pharmacokinet. 2005;44(8):849–61.  

33.  Steimer J-L, Mallet A, Golmard J-L, Boisvieux J-F. Alternative Approaches to 
Estimation of Population Pharmacokinetic Parameters: Comparison with the Nonlinear 
Mixed-Effect Model. Drug Metab Rev. 1984;15(1–2):265–92.  

34.  Sheiner LB. The population approach to pharmacokinetic data analysis: Rationale and 
standard data analysis methods. Drug Metab Rev. 1984;15(1–2):153–71.  

35.  Yilmaz A, Watson V, Dickinson L, Back D. Efavirenz pharmacokinetics in 
cerebrospinal fluid and plasma over a 24-hour dosing interval. Antimicrob Agents 
Chemother. 2012;56(9):4583–5.  

36.  Thompson CG, Bokhart MT, Sykes C, Adamson L, Fedoriw Y, Luciw PA, et al. Mass 
spectrometry imaging reveals heterogeneous efavirenz distribution within putative 
HIV reservoirs. Antimicrob Agents Chemother. 2015;59(5):2944–8.  

37.  Marzolini C, Telenti A, Decosterd L, Biollaz J, Buclin T. Efavirenz plasma levels can 
predict treatment failure and central nervous system side effects in HIV-1-infected 
patients. AIDS. 2001;15(9):1193–4.  

38.  Gutiérrez F, Navarro A, Padilla S, Antón R, Masiá M, Borrás J, et al. Prediction of 
neuropsychiatric adverse events associated with long-term efavirenz therapy, using 
plasma drug level monitoring. Clin Infect Dis. 2005;41(11):1648–53.  

39.  Ståhle L, Moberg L, Svensson J-O, Sönnerborg A. Efavirenz plasma concentrations in 
HIV-infected patients: inter- and intraindividual variability and clinical effects. Ther 
Drug Monit. 2004;26(3):267–70.  

40.  Dhoro M, Zvada S, Ngara B, Nhachi C, Kadzirange G, Chonzi P, et al. CYP2B6*6, 
CYP2B6*18, Body weight and sex are predictors of efavirenz pharmacokinetics and 
treatment response: population pharmacokinetic modeling in an HIV/AIDS and TB 
cohort in Zimbabwe. BMC Pharmacol Toxicol. 2015;16(1):4.  

41.  Peroni RN, Di Gennaro SS, Hocht C, Chiappetta D a, Rubio MC, Sosnik A, et al. 
Efavirenz is a substrate and in turn modulates the expression of the efflux transporter 
ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 
2011;82(9):1227–33.  

42.  Albright A V, Erickson-Viitanen S, O’Connor M, Frank I, Rayner MM, Gonzalez-
Scarano F. Efavirenz is a potent nonnucleoside reverse transcriptase inhibitor of HIV 
type 1 replication in microglia in vitro. AIDS Res HumRetroviruses. 



172 
 

2000;16(15):1527–37.  

43.  Curley P, Rajoli RKR, Moss DM, Liptrott NJ, Letendre S, Owen A. Efavirenz Is 
Predicted To Accumulate in Brain Tissue: and In Silico, In Vitro and In Vivo 
Investigation. Antimicrob Agents Chemother. 2017;61(1):1–10.  

44.  Nicol M, Taylor J, Pastick K, Fisher J, Karuganda C, Rhein J, et al. Differential Brain 
Tissue Penetration of Antiretrovirals and Fluconazole. In: Conference on Retroviruses 
and Opportunistic Infections (CROI); Abtract number: 474; Available from: 
https://www.croiconference.org/sessions/differential-brainissue- penetration-
antiretrovirals-and-fluconazole [Accessed 10 August 2018]. Boston, Massachusetts; 
2018.  

45.  Carroll A, Brew B. HIV-associated neurocognitive disorders: recent advances in 
pathogenesis, biomarkers, and treatment. F1000Research. 2017;6:312.  

46.  Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated 
research nosology for HIV-associated neurocognitive disorders. Neurology. 
2007;69(18):1789–99.  

47.  Csajka C, Marzolini C, Fattinger K, Décosterd L, Fellay J, Telenti A, et al. Population 
pharmacokinetics and effects of efavirenz in patients with human immunodeficiency 
virus infection. Clin Pharmacol Ther. 2003;73(1):20–30.  

48.  Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal 
fluid neopterin: An informative biomarker of central nervous system immune 
activation in HIV-1 infection. AIDS Res Ther. 2010;7:1–12.  

49.  McGuire JL, Gill AJ, Douglas SD, Kolson DL. Central and peripheral markers of 
neurodegeneration and monocyte activation in HIV-associated neurocognitive 
disorders. J Neurovirol. 2015;21(4):439–48.  

50.  Sharma V, McNeill JH. To scale or not to scale: The principles of dose extrapolation. 
Br J Pharmacol. 2009;157(6):907–21.  

51.  Zou P, Yu Y, Zheng N, Yang Y, Paholak HJ, Yu LX, et al. Applications of Human 
Pharmacokinetic Prediction in First-in-Human Dose Estimation. AAPS J. 
2012;14(2):262–81.  

52.  Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, et al. Quantitative 
membrane protein expression at the blood-brain barrier of adult and younger 
cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50.  

53.  Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative 
targeted absolute proteomics of human blood-brain barrier transporters and receptors. 
J Neurochem. 2011;117(2):333–45.  

54.  Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer 
resistance protein interacts with various compounds in vitro, but plays a minor role in 
substrate efflux at the blood-brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.  

55.  Ke A, Barter Z, Rowland-Yeo K, Almond L. Towards a Best Practice Approach in 



173 
 

PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting 
for Induction of CYPs 3A4 and 2B6. CPT Pharmacometrics Syst Pharmacol. 
2016;5(7):367–76.  

56.  Shimizu T, Akimoto K, Yoshimura T, Niwa T, Kobayashi K, Tsunoo M, et al. 
Autoinduction of MKC-963 [(R)-1-(1-Cyclohexylethylamino)-4- Phenylphthalazine] 
Metabolism in Healthy Volunteers and its Retrospective Evaluation Using Primary 
Human Hepatocytes and CDNA-Expressed Enzymes. Drug Metab Dispos. 
2006;34(6):950–4.  

57.  Iwasaki K, Kitsugi Y, Ikeda K, Yoshikawa T, Hosaka S, Uehara S, et al. In vivo 
individual variations in pharmacokinetics of efavirenz in cynomolgus monkeys 
genotyped for cytochrome P450 2C9. Biopharm Drug Dispos. 2016;37:379–83.  

58.  Xu C, Desta Z. In Vitro Analysis and Quantitative Prediction of Efavirenz Inhibition 
of Eight Cytochrome P450 (CYP) Enzymes: Major Effects on CYPs 2B6, 2C8, 2C9 
and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362–71.  

 



174 
 

 

 

CHAPTER-V: IMPACT AND FUTURE DIRECTIONS 

 

 In the past two decades, the widespread use of antiretroviral (ARV) therapy has 

considerably changed the landscape of the treatment of human immunodeficiency virus (HIV) 

infection. However, despite many important advances in HIV therapy, the treatment of 

comorbidities such as HIV-associated neurocognitive disorder (HAND) still remains challenging. 

While the incidence rate of HIV-associated dementia (HAD), the most debilitating form of 

neurocognitive impairment due to HIV, dropped from 80% to 30% in patients with a CD4+ T-cell 

count <200 cell/mm3 after the introduction of highly active antiretroviral therapy (HAART)(1), 

the reduction in HAD incidence has come with the increased incidence and prevalence of milder 

forms of HAND. Currently, the less severe forms of HAND such as asymptomatic neurocognitive 

impairment (ANI) remain highly prevalent in the HIV-positive population (50-60%)(2). Though 

there are few studies that have measured the incidence of mild forms of HAND, one longitudinal 

study showed that the incidence of mild impairment in individuals on ARV treatment was also 

high at 20%(3).  

Limited information on ARV drug distribution within the CNS and the exact mechanism 

for HAND pathogenesis creates obstacles for the treatment of HIV in the brain. The increased 

knowledge on ARV drug distribution in the cerebrospinal fluid (CSF) has led to some important 

advances in the field. In particular, the development of CNS penetration effectiveness (CPE) scores 

to qualify ARV penetration into the CNS was monumental in providing a simple approach to guide 
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the choice of ARV regimens with improved CNS efficacy(4,5). However, despite a strong 

association between higher CPE scores and reduced viral replication in the CSF(6), the relationship 

between CPE and the degree of neurocognitive impairment is still not clearly defined(7). This lack 

of relationship may be because the CPE scores are developed using CSF PK and the PK of ARVs 

are not measured in the brain tissue, which is the relevant target site for ARVs in the CNS. Since 

studies that measure ARV concentrations in the brain tissue are difficult to perform premortem in 

humans, the CSF drug concentration measurements are considered to be a surrogate of brain tissue 

concentrations. However, studies across multiple classes of drugs acting in the CNS have shown 

that this is often an incorrect assumption(8,9), particularly if the drug is a substrate for active drug 

transporters such as P-gp and BCRP. The scope of this dissertation project was to address these 

pertinent questions by providing a comprehensive overview of ARV drug concentrations in the 

brain tissue across three commonly used preclinical models, quantifying the gene and protein 

expression of relevant drug transporters in the brain tissue, and examining the relationship between 

model-predicted ARV PK in the human brain tissue and neurocognitive scores in HIV-positive 

patients. These results were synthesized with the use of several clinical pharmacology tools such 

as preclinical models, drug transporter measurements, and pharmacometric modeling and 

simulation.  

 

5.1. Clinical pharmacology tools can be used to address critical gaps in CNS drug 

development 

As discussed in Chapter I, CNS drug development is particularly challenging due to 

difficulties in predicting the first-in-human dose required for drug efficacy. A comprehensive 

review of CNS targeting drugs revealed that the high attrition rate (50-70%)(10) in CNS drug 



176 
 

development was mainly driven by the poor translation of PK/PD from animal models to humans 

due to some critical knowledge gaps that are discussed in this section. The studies presented in this 

dissertation aimed to address these critical gaps in order to improve treatment strategies for HAND.  

The first critical gap is the limited knowledge of CNS target site PK of ARVs in preclinical 

models of HIV infection. To address this gap, a comprehensive analysis of brain tissue ARV 

concentrations was performed across three commonly used preclinical models for HIV infection 

in Chapter II, and surrogate efficacy measures at the target site were evaluated in the nonhuman 

primate (NHP) model due to the close resemblance to humans. This work highlighted important 

differences in ARV PK between the CSF and brain tissue and is critical to the field to rethink the 

current method of evaluating the extent of ARV penetration and efficacy in the CNS. This work 

also serves as an important foundation for future studies to explore the efficacy and toxicity of 

ARVs within the brain tissue.  

A second important critical gap is the limited understanding of differences among animal 

models that could lead to differences in CNS target site PK and poor clinical predictions. In 

Chapter II, we explored differences in ARV concentrations in the brain tissue due to sex and 

infection status. In Chapter III, we quantified transporter expression in the brain tissue across 

preclinical species to evaluate if these factors contributed to differences in ARV brain tissue 

penetration. While the data generated in Chapter II suggested that differences in sex and infection 

status are not crucial to inform ARV concentrations in the brain tissue, the transporter data 

generated in Chapter III suggested that transporter concentrations were variable among preclinical 

models. Therefore, using mechanistic models that capture these differences may be valuable to aid 

in the clinical prediction of ARV concentrations in the brain tissue.  
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Finally, the last critical gap addressed within this dissertation is the limited ability to predict 

ARV PK in human brain tissue using animal models. To address this gap, we developed a novel 

posterior Bayesian modeling approach in Chapter IV to predict clinical brain tissue PK using 

sparse data available from preclinical models (NHPs) and humans. This method was used to 

predict efavirenz (EFV) concentrations in the human brain tissue in a cohort of HIV-infected 

participants and closely captured observed human brain tissue concentration data available from 

an external dataset. Further, we used this method to perform target site exposure-response analyses 

using neurocognitive score data collected from the study participants. Such an approach could not 

only find utility in predicting the extent of CNS penetration of drugs that have already been 

approved (similar to the context presented here), but could also improve the predictions of human 

brain tissue PK earlier in the drug development pipeline for novel therapeutics (Phase II) to aid in 

dose optimization for further clinical studies. 

While the work presented here could be used to address several key gaps highlighted in 

Chapter I, there are two important gaps that we were unable to address within the scope of this 

dissertation. First, clinical PK/PD translation could be greatly improved by the use of animal 

models that closely mimic the human form of the disease with relevant targets. However, the work 

presented here was performed in commonly used animal models of HIV infection and not in a 

specific “HAND” rodent or NHP model. The second caveat was that we were not able to explore 

the use of biomarkers to aid in PK/PD assessment, although such an approach holds considerable 

promise for improving CNS drug development(11). However, the development of animal models 

that mimic mild neurocognitive disorders due to HIV infection(12,13), and biomarker discovery 

for underlying HAND pathogenesis(14) are fields of study that are still evolving with our increased 

understanding of HAND etiology. Therefore, future work integrating the clinical pharmacology 
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tools discussed in this thesis along with refined animal models/biomarker tools could further 

improve clinical PK/PD assessments in the brain tissue. The following sections provide a detailed 

discussion of the knowledge gaps covered by this dissertation and a critical evaluation of future 

studies needed to further advance the field. 

 

5.2. ARV brain tissue concentrations in preclinical models and surrogate measures of 

efficacy in the CNS 

In Chapter II, we demonstrated that ARV brain tissue:plasma concentration ratios were 

markedly variable across the three different preclinical models for all drugs except raltegravir 

(RAL). Brain tissue concentrations of the ARVs showed a general increase in penetration rank 

order from hu-HSC-RAG mice<BLT mice<NHPs, while the plasma concentrations were largely 

overlapping for all drugs except RAL (rank order in concentrations in the plasma was also hu-

HSC-RAG mice<BLT mice<NHPs). Therefore, the increase in brain tissue concentrations of RAL 

across the preclinical models was driven by a proportional increase in plasma concentrations. 

However, for the other ARVs in our analysis, alternative factors appeared to be driving the inter-

species differences in brain tissue concentrations. The high variability in ARV concentrations in 

the brain tissue may be a result of drug-drug interactions and drug-transporter interactions. For 

example, in the hu-HSC-RAG mice, tenofovir (TFV) and emtricitabine (FTC) were administered 

along with raltegravir (RAL) and maraviroc (MVC), while in the BLT mice and the NHPs, these 

drugs were administered along with EFV or atazanavir (ATZ), two ARVs that inhibit P-gp and 

BCRP efflux transporters at the blood-brain-barrier (BBB)(15,16). While we had a limited number 

of BLT mice and NHPs to dose ARVs individually in these models as dosed in the hu-HSC-RAG 

mice, the potential for drug-drug interactions are clinically unavoidable since HIV regimens are 
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made up of multiple ARVs. For this reason, the brain tissue concentration data from our BLT mice 

and NHPs may more closely approximate what would be seen in the human brain tissue, in the 

setting of combination ARV therapy.  

Brain tissue concentrations in the nonhuman primates (NHPs) were >6-fold higher than the 

cerebrospinal fluid (CSF) concentrations and with the exception of efavirenz (EFV), the CSF 

concentrations of ARVs were not an appropriate surrogate for the brain tissue concentrations. 

These data indicate that CSF concentrations of ARVs alone may not be a good predictor of the 

extent of drug penetration into the CNS, and this has important implications for drug efficacy. For 

example, FTC concentrations in the brain tissue (25 ng/g) showed a modest 6-fold increase relative 

to the CSF concentrations (6 ng/mL). However, these higher brain tissue concentrations were still 

below the IC90 of FTC in all 17 NHPs(17). The concentrations of the active metabolite of FTC, 

emtricitabine triphosphate (FTC-tp) were also below the limit of quantification in all of our brain 

tissue samples. These low concentrations of FTC achieved in the brain tissue may result in reduced 

FTC efficacy in the CNS. In support of this hypothesis, several studies of HIV-positive patients 

on ARV treatment who had CSF escape (detectable HIV viral replication in the CSF in the absence 

of viral replication in the plasma) showed that a common HIV resistance mutation identified in 

these patients was the M148V mutation(18,19), which reduces the efficacy of FTC. The onset of 

such resistance mutations is usually linked to limited ARV coverage, and the data from our animal 

models can be used to make this connection.  

In order to examine our PK data in the context of ARV efficacy in the brain tissue, we 

presented two measures of surrogate ARV efficacy: the 90% inhibitory quotient (IQ90) values that 

were derived from the protein-unbound ARV LC-MS/MS concentrations of the brain tissue 

homogenate, and the colocalization of EFV spatial distribution and HIV target-cells distribution 
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(the microglia and CD4+ T-cells) in brain tissue slices. We were limited to surrogate measures of 

efficacy due to the considerations of our NHP animal model. All NHPs were infected with the RT-

SHIV mac239 strain of virus that shows limited distribution into the brain tissue(20,21). In 

previous studies performed with these models, RT-SHIV infected animals that were left untreated 

for an entire year of infection still showed very low viral RNA load (~5 copies/million cells) in the 

brain tissue collected at necropsy(20). In our study, animals were treated with ARVs for only ten 

days to maximize the ability to detect virus in all the tissues. However, the viral load was 

undetectable in most of the samples in the CSF, and ranged from 9-70 copies/million cells in the 

brain tissue. The copy number in the brain tissue was 10- to 1000-fold lower than in other tissue 

HIV reservoirs (such as the lymph nodes and spleen). Therefore, the IQ90 values were calculated 

to interpret the PK data and provide useful hypotheses for interpretation in future studies. In order 

to compute the IQ90 values, we performed rapid equilibrium dialysis (RED) to measure the protein-

free concentrations of ARVs in the brain tissue, and are among the first to report these values for 

ARV. Our IQ90 data showed that EFV was the only ARV that would achieve concentrations greater 

than the IC90 in the brain tissue(17,22–26), despite the fact that EFV was also the most highly 

protein-bound ARV in the tissue. Given the high degree of accumulation that we saw for EFV in 

the brain tissue, these results were not surprising.  

An interesting result was the discrepancy between our two surrogate measures of EFV 

efficacy in the brain tissue: i.e. the IQ90 results and the MSI colocalization results. Despite EFV 

achieving IQ90>1 in all of the animals, and brain tissue accumulation that was 1000-fold higher 

than the CSF, only about 3% of the HIV target cell area across the brain tissue section colocalized 

with EFV at a concentration above the HIV IC50. This discrepancy can be explained by the 

heterogenous distribution of EFV within the brain tissue. The white matter concentrations of EFV 
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were 1.1- to 3-fold higher than in the gray matter where we noted the greater density of the 

microglia and the CD4+ T-cells. Therefore, despite the tissue homogenate data indicating that 

there would be adequate EFV exposure in the brain tissue, the MSI results showed that the spatial 

coverage of EFV over the relevant target cells may be insufficient to prevent viral replication. In 

fact, these results may help explain the instances of CSF escape that has been observed in patients 

treated with EFV, despite the high drug concentrations achieved in the CNS(27). Taken together, 

these data highlight the importance of elucidating brain tissue PK of ARVs and emphasizes the 

advantage of MSI approaches over conventional LC-MS/MS to spatially quantify drug 

concentrations in the brain tissue. By using concomitantly sliced tissue for other investigations 

such as immunohistochemistry (IHC) staining for distinct cell populations (e.g. macrophages, 

microglia), it is also possible to correlate drug distribution to other variables of interest to provide 

more information about the drug pharmacology at the target site. 

There are, however, important limitations with our approach. Reconsideration of simian 

model of HIV infection would be very important for future studies. The choice of a model with 

more pronounced CNS involvement such as SIVmac251(28) virus could provide more insight on 

the persistence of HIV in the CNS despite therapy and allow us to perform in-situ hybridization or 

RNA-scope techniques to visualize drug disposition by MSI in relation to the localization of HIV 

RNA within the brain tissue. While tissue collection is invasive regardless of the sampling 

location, sampling brain tissue from living patients is virtually impossible unless the patient is 

undergoing brain surgery. This necessitates the translation of the LC-MS/MS or MSI results from 

preclinical models to humans. While our results suggest this may be a reasonable approach for 

most ARVs at the doses chosen in this study due to the similarity in plasma concentrations, the 

high variability in plasma concentrations across the preclinical models is an important caveat for 
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consideration.  ARV concentrations in the brain tissue could also be quantified from brain tissue 

samples that are collected post-mortem from individuals with known adherence to therapy prior to 

death. Though such resources are limited, these data could add valuable information on the 

appropriateness of preclinical to clinical PK approximations in the brain tissue. While other 

techniques such as microdialysis have been employed to directly sample the CSF for drug 

concentrations from living patients, CSF concentrations may not necessarily be a good measure of 

the target site concentration of ARVs, as we have shown in this work. Finally, while we were able 

to measure drug concentrations over the total area of HIV target cells, IHC images had to be down-

sampled (image quality had to be imported at a lower resolution than the original image generated) 

because of the colocalization analysis with the lower resolution MSI image. Therefore, we were 

not able to spatially quantify the intracellular concentrations of EFV, although this holds promise 

as an exciting avenue for future research in the field. 

 

5.3. Inter-species differences in gene and protein expression of drug transporters and 

utility in predicting penetration of ARVs into the brain tissue 

In Chapter III, we conducted an evaluation of drug transporters in the brain tissue across 

the preclinical models that were previously evaluated in Chapter II. Across all three animal models, 

we identified significant differences in the gene expression of all influx and efflux transporters 

except Slc29a1/SLC29A1. Although we were able to quantify the gene expression of all 

transporters of interest in the brain tissue, there were fewer transporters for which we could 

quantify the protein concentrations. Only BCRP and P-gp protein concentrations could be 

quantified in the majority of our tissue samples, and this suggests that these efflux transporters are 
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the major constituent of the secondary transporter barrier present on cells in the brain 

parenchyma(29,30).  

One surprising result was that our HIV- and RT-SHIV-infected animals showed a similar 

profile in transporter expression (gene expression as well as protein concentration and localization) 

relative to the uninfected animals. This would indicate that ARV disposition should not 

significantly change with infection status, and uninfected preclinical models can be used as a 

surrogate for drug disposition studies within the CSF and brain tissue. While our results indicated 

that there was a trend for increased efflux transporter protein concentration in the infected animals 

relative to uninfected animals, previous analyses have shown that inflammation generally 

decreases the gene and protein expression of P-gp and BCRP, although P-gp and BCRP expression 

at the BBB appears to be upregulated with infection(31,32). Specific to HIV, the Tat protein found 

on the surface of HIV, has been shown to upregulate both the gene and protein expression of 

MRP1(33). In humans acutely infected with HIV, the ongoing cascade of inflammatory reactions 

as soon as HIV enters the CNS can lead to changes in the permeability of the BBB(34), though 

normal permeability is restored after initiation of therapy for chronic infections(34,35,13). It is yet 

to be explored how these changes during acute infection would alter ARV disposition, either 

through alterations in the extent of drug diffusion through the membrane or through an altered 

profile of transporter expression/function. Alterations in permeability through the BBB may also 

be an underlying cause for persistent neurocognitive impairment(36) despite therapy, and is 

contrary to the idea that ARVs with higher CNS penetration would result in a lower degree of 

neurocognitive impairment. 

Neither the protein concentration of BCRP nor P-gp showed correlation with ARV brain 

tissue:plasma concentration ratios, indicating that drug transporter protein concentrations had 
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limited utility in predicting ARV penetration into the brain tissue. Although we did not measure 

the concentration of drug transporters at the blood brain barrier (BBB) in this analysis, we 

compared the results from previous QTAP analyses performed in the BBB from mice and 

cynomolgus monkeys to our brain tissue data and noted an imperfect correlation between 

transporter protein concentrations measured at the BBB and the brain tissue(37,38). P-gp 

transporter protein in the brain tissue was two- to four-fold lower than the BBB P-gp transporter 

protein concentrations, while BCRP transporter protein was >7-fold lower in the brain tissue 

relative to previous BBB analyses. These results may be because P-gp is expressed on the surface 

of various cell types such as neurons, microglia, and astrocytes in the brain tissue(39,40) and BCRP 

is only expressed on the microglia cells in the brain parenchyma(39). The consequence of these 

findings is that while the brain tissue drug transporters provide valuable information on inter-

species differences in transporter expression patterns and represent a secondary barrier to drug 

penetration into the brain cells (component of the neurovascular unit)(29), they are not a correlate 

for the BBB transporter measurements. Finally, our drug transporter IHC and QTAP results 

showed good agreement with each other. Both techniques indicated that the brain tissue of NHPs 

contained a high absolute protein concentration (as measured by QTAP) and fractional area of 

coverage (as measured by IHC) of the efflux transporter BCRP followed by P-gp, while the 

expression of the influx transporter OATP1A2 showed minimal expression within the brain. 

However, the gene expression results showed considerably less agreement with the measures of 

protein concentration. This observation is in line with the growing body of literature(41–43) that 

indicates that the downstream measurements of protein expression are more reliable indicators for 

drug transporter expression. 
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An important limitation of this investigation was the lack of measures of brain transporter 

function across the preclinical species. It is well known that transporter function is not always 

conserved across species. For example, the ratio of maximal velocity (Vmax) to Michalis constant 

(Km) for the transport of diltiazem by P-gp is similar in humans and monkeys but is 5.6-fold higher 

than canine P-gp.(44) Though beyond the scope of this project, future work should determine the 

extent of functional differences in drug-transporters across species for ARV substrates by the use 

of in-vitro assays(45). If there are pronounced differences in transporter function across species, 

these changes may also contribute to inter-species differences in the penetration of ARVs into the 

brain tissue.  

 

5.4. Using sparse data from preclinical models to predict clinical brain tissue 

concentrations of ARVs and relationship to HAND 

In Chapter IV, a PK model was developed to predict the disposition of EFV in the plasma, 

CSF, and brain tissue of HIV-positive participants in the THINC study. Since we did not have PK 

measurements for the brain tissue from the THINC study participants, we employed allometric 

scaling of the CSF and brain tissue volume from a PK model developed in rhesus macaques. We 

developed a clinical model for EFV distribution in the plasma, CSF and brain tissue by combining 

our NHP structural model with sparse plasma and CSF data obtained from the THINC study by 

the iterative two-stage (IT2S) estimation method. The initial estimates for the clinical PK model 

were from a previously published EFV population PK analysis(46). As discussed in the previous 

chapter, allometric scaling and preclinical to clinical translation is not always a reliable approach 

to predict PK profiles of drugs in humans, particularly when the drug disposition is non-linear, 

mediated by drug transporters or when the drug is highly protein bound, as was the case with EFV. 
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Regardless, similarities in the protein binding of EFV and concentration of BCRP transporter at 

the BBB (37,38,47) across macaques and humans gives us more confidence with this translational 

approach. Since we had sparse PK data in the preclinical species as well as humans, this precluded 

the use of other techniques such as physiologically-based pharmacokinetic (PBPK) models that 

rely on more robust data to better characterize drug uptake into tissues.  

The modeling methodology that was employed for this analysis showcased a novel 

approach for the handling of sparse data. The data used to develop the PK model in the NHPs and 

the HIV-positive participants came from two unique datasets that were originally intended for 

purposes other than PK modeling. Accordingly, the longitudinal information from these studies 

was very minimal. Since most of our study participants contributed only one EFV PK 

concentration in the plasma and CSF at random sampling times (not pre-specified to correspond 

to certain timepoints along the dosing curve), traditional ‘population’ PK modeling approaches 

such as a naïve-pooled data (NPD) analysis could not be utilized to fit the data. Instead, we used a 

Bayesian posterior approach to fit the data through several estimation steps by the iterative two-

stage estimation (IT2S)(48). By this approach, our parameter estimates were updated and refined 

based on the posterior of the individual fits in the model. Importantly, the estimates that we 

reported for the final model are the geometric mean of the parameters returned for each individual, 

and not the “population” estimate, since our data were limited to draw these inferences. Since this 

analysis was Bayesian in nature, it was imperative that we had robust initial estimates for both the 

NHP model and the clinical model from the literature to characterize our population. Because the 

literature data on EFV distribution in the CSF and brain tissue were also quite limited, we had to 

ensure that our model perfectly fit our plasma concentrations so that the plasma EFV PK profile 

could serve as a forcing function to adequately predict the EFV time course in the CSF and brain 
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tissue. Obtaining a perfect plasma fit for the EFV model required adding in more complexity to 

the model, such as using three transit compartments to capture the absorption phase in NHPs, and 

describing the decrease in EFV trough concentrations from day one to day four with the use of a 

semi-empirical clearance model. What is important to note is that these complexities did not affect 

the excellent precision of our individual PK parameter estimates, and this was our most important 

consideration for this approach. 

A third unique dataset that was available to us for the development of the PK model were 

EFV human brain tissue concentration data from the National Neuro-AIDS Tissue Consortium 

(NNTC), which is a repository established for the collection of CSF and postmortem brain tissue 

samples from HIV-positive participants. While there have been studies that report the use of this 

repository to answer various questions on HIV involvement in the CNS(49), our study is the first 

to our knowledge to obtain brain tissue samples in order to quantify the concentrations of ARVs 

in these samples. The brain tissue concentration data that we measured from three HIV-positive 

participants served as an important external validation dataset for our final clinical model 

predictions in the brain tissue. Our final PK model adequately captured the brain tissue 

concentrations from all three samples and provided important evidence that our PK predictions 

were biologically plausible. 

For our pharmacokinetic/pharmacodynamic (PK/PD) analysis, the model-predicted 

exposure of EFV in human brain tissue did not show any correlation with the neurocognitive test 

scores in our study cohort. Since our study looked at a cross-sectional cohort, neurocognitive 

outcome was only measured at a single time-point, at least one-year after the initiation of drug 

therapy. Therefore, changes in neurocognitive outcome over time for patients who were on EFV 

were not captured in our dataset, and this may have been a better PD measure to explore against 
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our model predictions. The lack of relationship between PK and neurocognitive outcome may also 

reflect the complex multi-factorial etiology of HAND, as shown previously in larger 

studies(50,51). In this regard, biomarker-based endpoints such as measurement of neopterin levels 

in the plasma or CSF may be more reliable measures of disease progression and underlying 

mechanisms of disease such as a low-level of inflammation(36,52). Future studies should evaluate 

their utility as a diagnostic marker for HAND severity and examine their relationship to ARV PK 

at the target site. 

 

5.5. Emerging advances to measure antiretroviral concentrations in the brain tissue and 

enhance the treatment paradigm of HIV 

Important mechanistic studies performed in animal models have helped to advance our 

understanding of HIV pathogenesis in the brain. For a long time the consensus in the field was that 

HIV infection in the CNS was initiated by the macrophage/monocyte trafficking into the brain 

through the BBB (“Trojan-horse mechanism”)(53), followed by interruption of the BBB and entry 

of activated CD4+ T-cells into the CNS. However, the recent discovery of lymph vessels in the 

meninges(54) shows that an alternate mechanism for the infiltration of HIV-infected CD4+ T-cells 

into the brain tissue is through the meningeal lymphatic system. Recent analyses using T-cell only 

BLT mice(55), as well as NHPs infected with a strain of SHIV that more closely approximates the 

natural course of HIV infection of the brain in humans(13), have been used to confirm that HIV 

infection of the brain can be maintained with CD4+ T-cells, and that initial HIV-infection in the 

brain may be mediated by a pronounced CD4+ T-cell response, followed by  a sustained and 

enhanced response of the activated monocyte/macrophage cell population. This discovery 

provides an important pharmacological consideration. If ARV infection in the CNS proceeds in 
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such a biphasic manner, it would be important to categorize the differential efficacy of ARVs in 

these two distinct cell populations of the CD4+ T-cells and the monocytes/macrophages in the 

CNS. In the acutely infected stage, drugs of the nucleoside reverse transcriptase inhibitor (NRTI) 

ARV drug class show higher efficacy in the macrophages compared to CD4+ T-cells(56). While 

the exact mechanism for this is unknown, the hypothesis is that lower cellular deoxyribonucleoside 

triphosphates (dNTP) pools in the macrophages relative to the CD4+ T-cells results in decreased 

competition for cellular kinases, and a greater ability of the NRTIs to get phosphorylated to active 

metabolites and show antiviral activity(56). Similarly, protease inhibitors (PIs) also show greater 

antiviral activity in macrophages compared to the CD4+ T-cells(56). The consequence of these 

data are that ARVs may need to have higher intra-cellular concentrations in the CD4+ T-cells 

relative to the macrophages in order to prevent active viral replication in these cell types. Although 

our MSI technology currently does not have the sensitivity to address these types of questions, 

refinement of this technology may hold promise for studies that research this hypothesis further. 

As mentioned in Section 5.2, as we further develop our MSI tools, this technology may also be 

used to determine ARV concentrations in the various cells of the brain. In order to get to this stage, 

the key concerns that are to be addressed include improvement of the sensitivity and resolution of 

the technology. Some approaches to improve sensitivity include increasing the ionization ability 

or improving the spot-to-spot resolution of MSI.  Improved resolution may be achieved by 

decreasing the spot-size of the laser pulse for tissue ablation in the MSI workflow, so as to allow 

for the quantification of intracellular drug concentrations. Though we have some distance to go 

before we can begin to implement these improvements, it is clear that these tools could play a 

major role in elucidating intra-cellular pharmacology and activity of ARVs within tissue 

reservoirs. 
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As discussed in Chapter IV, another novel tool that holds promise in improving our 

understanding of ARV concentrations within the brain tissue (and potentially cells) is modeling 

and simulation. The analysis described in this thesis utilized a novel framework of Bayesian 

analyses and preclinical translation in order to predict human brain tissue PK, even with sparse 

data. Another modeling and simulation tool that can be applied in a wide variety of analyses is 

PBPK modeling, that is recently gaining regulatory attention. While the development of PBPK 

models require rich data in order to have predictive utility, the detail on physiology and enzyme 

and transporter mechanisms that can be captured with PBPK models make them an attractive 

option for predicting changes in PK due to disease or other physiological alterations. These models 

may also be used to capture complex transport mechanisms throughout the CNS such as active 

drug efflux by drug transporters. In fact, a recent, innovative modeling approach by Yamamoto 

and colleagues(57) demonstrated a method to input inter-species differences in transporter 

expression into PBPK models in order to scale the preclinical to clinical CNS distribution of a 

diverse set of drugs. The data that we have generated in Chapter III on the inter-species differences 

in drug transporter protein concentrations in the brain tissue could be an informative and valuable 

dataset to be used in this manner. The development of a similar PBPK framework could help to 

mechanistically predict ARV penetration into the brain and characterize underlying factors 

responsible for inter-species differences in brain tissue distribution of ARVs. 

While there may be several novel tools to explore ARV PK in the brain tissue, PK/PD 

analyses in this matrix are more challenging. For example, our PK/PD analysis in Chapter IV was 

not able to detect any relationship between model-predicted ARV PK in the brain tissue and 

neurocognitive scores, and this is reflective of the underlying complex etiology of this disorder. 

HIV enters the brain tissue early in the course of infection(58) and it is possible that inflammatory 
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processes lead to unresolved neurological damage that is not reversible even on initiation of 

therapy(5). Novel biomarker analyses might help quantify underlying processes such as 

immunological involvement in the CNS. Various biomarkers such as neurofilament light chain 

(NFL), neopterin, and cytokines have been measured in the plasma and CSF in relation to severity 

of HAND. While there does not as yet exist an ideal biomarker that is associated with HAND 

progression that can also be easily measured in the plasma, further development in this area can 

be conducive to the personalized medicine approach to treat HAND. For example, some patients 

with HAND may benefit from the addition of neuroprotective therapies such as CCR5 antagonists 

(intranasal peptide T) or N-methyl-D-aspartate (NMDA) antagonists (memantine)(59). In order 

for such interventions to be effective, it becomes important to identify appropriate patient 

populations early in the course of treatment who have underlying neurocognitive disorders and 

would benefit from the addition of these therapies. Also, this evaluation should not be limited to a 

one-time assessment as the HIV-positive population will continue to age and become susceptible 

to age-related neurocognitive decline. Considering all the above, routine screening for HAND in 

the clinic and measuring biomarker levels in the plasma is a potential first step towards optimizing 

patient care and drug therapy towards the treatment of HAND. 

 

5.6. Implications for HIV cure strategies within the CNS 

While the framework of this dissertation explored ARV penetration into the brain in 

relation to HIV persistence within the brain tissue and the treatment of HAND, this work also has 

implications for the development of cure strategies for HIV. Latency in the CNS has historically 

been a controversial topic, but recent translational breakthroughs such as the development of a 

macrophage-only humanized mouse model(60), and optimization of a macrophage-specific 
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quantitative viral outgrowth assay (QVOA)(61) to determine the size of the latent macrophage 

reservoir have confirmed that latent HIV reservoirs can be established in a dominant macrophage 

population as seen in the CNS. While the exact mechanisms behind establishment of such latent 

reservoirs in the CNS are unclear, they are established very early in infection and are unaffected 

by ARV therapy(62). Instead, novel strategies such as “shock and kill”(63) are being explored 

wherein the quiescent latently infected cells are first activated to release virions, followed by 

treatment with a high dose of ARVs to kill the virus and prevent a new round of HIV replication. 

While there are significant challenges associated with such therapies in general(64), achieving 

such a functional cure in the CNS is specifically hindered by a few considerations. The first 

consideration is the limited entry of the latency reversing agents (LRAs) into the CNS. LRAs(65) 

are derived from classes of oncology drugs such as histone deacetylase inhibitors and protein 

kinase C agonists that show the pharmacologic effect of reversing HIV latency, which leads to 

mass release of virus from quiescent cells. However, not all LRAs may be useful for the reversal 

of latency in CNS cell types at therapeutic concentrations(66). The use of agents that have a good 

ability to cross the BBB such as bryostatin-1(65) should be explored further for future CNS cure 

strategies. In this regard, the MSI technique we have utilized within this dissertation could also be 

used in preclinical models to study the spatial distribution of such LRAs in the brain tissue. This 

has been demonstrated previously by our group for other HIV reservoirs such as the lymph node 

tissue and the gut-associated lymphoid tissue(67,68). 

Another potential obstacle for the reversal of latency in the CNS is the limited exposure of 

ARVs in the brain tissue. If there is inadequate ARV drug exposure within the CNS, then the 

virions that are released after initial treatment with the LRAs could infect more cells and even 

increase the size of the latent reservoir(69,70). As discussed in Chapter II, we showed that both 
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EFV and tenofovir (TFV) heterogeneously distributed within the brain tissue by MALDESI and 

poorly colocalized with the microglia and CD4+ T-cells. The poor CNS coverage of existing 

therapies indicates that newer agents with enhanced CNS penetration may need to be developed 

in order to further cure efforts in the CNS. Importantly, since the reactivation of the quiescent 

reservoir could lead to the stimulation of neurotoxic proteins within the CNS, therapies would need 

to be developed that are capable of targeting the cellular transcription factor NF-kβ(71) and the 

viral transactivator Tat(72) since these targets play a central role in neurotoxicity and 

encephalitis(73). The development of novel targeted immunotherapies for HIV in the brain such 

as dendritic cell vaccines and T-cell backpacks(74), or agents that specifically target neurotoxic 

HIV proteins(70) are all promising avenues of future research. 

 

5.7. Conclusion 

This dissertation describes the use of clinical pharmacology tools to aid in our 

understanding of ARV penetration into the brain tissue. We measured the total concentration, 

protein binding, and spatial localization of six ARVs within the brain tissue across three commonly 

used preclinical models, demonstrated that PK measurements made in the CSF do not serve as a 

surrogate for the brain tissue, and derived surrogate measures of efficacy for ARVs in the brain 

tissue that may have important implications for the efficacy and toxicity of ARVs in the CNS. We 

demonstrated that HIV infection did not alter the gene or protein expression of transporters, and 

showed that transporter protein concentrations measured at the brain tissue showed limited utility 

in predicting ARV brain tissue penetration. Finally, we developed a PK model to describe the 

distribution of EFV in the plasma, CSF, and brain tissue of rhesus macaques, and used this model 

to predict the exposure of EFV in the brain tissue of HIV-positive participants. The model was 
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adequately able to capture observed plasma and CSF concentrations from our study cohort, and 

was also able to predict brain tissue concentrations measured from the brain tissue samples from 

three HIV-positive individuals, post-necropsy, obtained from the NNTC repository. However, our 

analysis showed that there was no relationship between model-predicted brain tissue exposure and 

neurocognitive outcome in our cohort, and this may be due to the limited range of EFV exposure 

in the brain tissue, and limited information on the longitudinal development of HAND in our 

cohort. These data provide a framework to better inform the neuro-HIV field and can be applied 

to the study of therapies and personalized medicine approaches for the treatment and cure of HIV 

in the brain. 
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APPENDIX-1.1: SEARCH STRATEGY EMPLOYED FOR THE LITERATURE 
REVIEW IN CHAPTER-I 

Embase Search 

Search Query Items Found 
#1 (pharmacokinetic OR pharmacokinetics OR pharmacodynamic OR 

pharmacodynamics) NEAR/5 brain 
2,712 

#2 (pharmacokinetic OR pharmacokinetics OR pharmacodynamic OR 
pharmacodynamics) NEAR/5 'central nervous system' 

822 

#3 (pharmacokinetic OR pharmacokinetics OR pharmacodynamic OR 
pharmacodynamics) NEAR/5 cns 

303 

#4 #1 OR #2 OR #3 3,708 
#5 trovafloxacin OR nelfinavir OR didanosine OR etravirine OR 

rilpivirine OR amprenavir OR fosamprenavir OR tipranavir OR 
maraviroc OR elvitegravir OR dolutegravir OR abacavir OR 
aciclovir OR albendazole OR amikacin OR amoxicillin OR 
ampicillin OR atazanavir OR azithromycin OR cefazolin OR 
cefepime OR cefixime OR cefotaxime OR cefpirome OR 
ceftazidime OR ceftriaxone OR cefuroxime OR cephaloridine OR 
chloramphenicol OR cilastatin OR ciprofloxacin OR clarithromycin 
OR clavulanate OR clindamycin OR cloxacillin OR colistin OR 
cycline OR dapsone OR darunavir OR doxycycline OR efavirenz 
OR enfuvirtide OR ethambutol OR ethionamide OR fluconazole OR 
flucytosin OR foscarnet OR fosfomycin OR fusidic AND acid OR 
gentamicin OR imipenem OR indinavir OR isoniazid OR 
itraconazole OR lamivudine OR levofloxacin OR linezolid OR 
lopinavir OR meropenem OR metronidazole OR mezlocillin OR 
micafungin OR moxifloxacin OR nafcillin OR netilmicin OR 
nevirapin OR ofloxacin OR penicillin OR piperacillin OR 
posaconazole OR praziquantel OR pyrazinamide OR pyrimethamine 
OR raltegravir OR rifampin OR ritonavir OR saquinavir OR 
stavudine OR steptomycin OR streptomycin OR sulbactam OR 
sulfadiazine OR sulfamethoxazole OR tazobactam OR tetroxoprim 
OR tige OR trimethoprim OR valaciclovi OR vancomycin OR 
voriconazole OR zidovudine OR levodopa OR bromocriptine OR 
pergolide OR lisuride OR cabergoline OR pramipexole OR 
ropinirole OR piribedil OR entacapone OR doripenem OR 
emtricitabine OR tenofovir OR carbamazepine OR oxcarbazepine 
OR lamotrigine OR levetiracetam OR topiramate OR clonazepam 
OR apomorphine OR selegiline OR tolcapone OR amantadine OR 
donepezil OR rivastigmine OR galantamine OR memantine OR 
haloperidol OR aripirazole OR perospirone OR lurasidone OR 
cariprazine OR fluoxetine OR fluvoxamine OR norfluoxetine OR 
venlafaxine OR duloxetine OR mirtazapine OR citalopram 

954,442 

#6 #4 AND #5 660 
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Total screened: 660 + references not located by searches (100) 
Total conference abstracts screened: 1 
Total journal articles screened: 758 
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APPENDIX-2.1: COMPARISON OF ANTIRETOVIRAL CONCENTRATIONS IN THE PLASMA, CSF (NHPS) AND 

BRAIN TISSUE AND ANTIRETROVIRAL BRAIN TISSUE:PLASMA AND CSF:PLASMA PENETRATION RATIOS 

(NHPS) ACROSS THE THREE PRECLINICAL SPECIES 

ARV/ 

Animal 

Model 

ARV concentration (ng/mL [plasma and CSF] or ng/g [brain tissue]) ARV penetration ratio 

Plasma Brain Tissue CSF 
Brain tissue:plasma 

ratio 

CSF:plasma 

ratio 

Hu-HSC-

RAG 
BLT NHP 

Hu-HSC-

RAG 
BLT NHP NHP 

Hu-HSC-

RAG 
BLT NHP NHP 

TFV 
150 

(77.1, 368) 

125 

(89.5, 

241) 

60.3  

(47.8, 

84.4) 

4.49 

(0.62, 

18.8) 

14.3 

(11.9, 

47.9) 

51.3 

(34.9, 

57.5) 

2.04 

(1.40, 

2.82) 

0.02 

(0.01, 

0.11)  

0.11 

(0.07, 

0.14) 

0.75 

(0.59, 

0.92) 

0.035 

(0.016, 

0.055) 

FTC 
24.0 

(19.8, 68.4) 

46.6 

(27.8, 

79.2) 

13.5 

(8.46, 

20.1) 

1.78 

(0.20, 

2.46) 

8.33 

(4.29, 

14.2) 

26.3 

(15.9, 

31.9) 

3.97 

(2.50, 

6.48) 

0.05 

(0.01, 

0.12) 

0.16 

(0.10, 

0.18) 

1.55 

(1.20, 

2.43) 

0.33 

(0.17, 0.42) 

EFV1 
2.5 

(0.50, 10.7) 
- 

187 

(71.6, 

339) 

0.58 

(0.27, 

19.8) 

- 

775 

(318, 

1453) 

0.94 

(0.50, 

1.89) 

1.14 

(0.25, 

1.90) 

- 

4.26 

(4.07, 

4.54) 

0.007 

(0.005, 

0.008) 

RAL 1.81 21.9 157 0.22 2.29 21.8 0.50 0.13 0.13 0.12 0.003 
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ARV/ 

Animal 

Model 

ARV concentration (ng/mL [plasma and CSF] or ng/g [brain tissue]) ARV penetration ratio 

Plasma Brain Tissue CSF 
Brain tissue:plasma 

ratio 

CSF:plasma 

ratio 

Hu-HSC-

RAG 
BLT NHP 

Hu-HSC-

RAG 
BLT NHP NHP 

Hu-HSC-

RAG 
BLT NHP NHP 

(78.6, 297) (10.5, 

32.2) 

(78.6, 

297) 

(0.19, 

0.26) 

(1.53, 

3.17) 

(14.2, 

67.1) 

(0.50, 

1.05)  

(0.05, 

0.41) 

(0.07, 

0.17) 

(0.05, 

0.21) 

(0.001, 

0.007) 

MVC 
1.26 

(0.50, 5.73) 

5.67 

(0.94, 

23.4) 

31.8 

(18.0, 

80.6) 

0.22 

(0.20, 

1.16) 

12.3 

(4.44, 

19.7) 

57.5 

(37.6, 

108) 

0.50 

(0.50, 

4.96) 

0.39 

(0.25, 

0.44) 

1.86 

(0.64, 

4.84) 

1.81 

(0.76, 

2.14) 

0.030 

(0.014, 

0.082) 

ATZ 
9.91 

(2.50, 18.7) 

9.80 

(8.64, 

14.4) 

2.40 

(0.50, 

106) 

0.98 

(0.49, 

1.54) 

2.10 

(0.71, 

10.1)  

84.1 

(47.2, 

269) 

0.50 

(0.50, 

4.96) 

0.13 

(0.06, 

0.76) 

0.12 

(0.04, 

0.28) 

97.4 

(0.41, 

166) 

0.21 

(0.039, 

0.98) 
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APPENDIX-2.2: ANTIRETROVIRAL CONCENTRATIONS IN THE PLASMA, CSF (NHPS) AND BRAIN TISSUE AND 

ANTIRETROVIRAL BRAIN TISSUE:PLASMA AND CSF:PLASMA PENETRATION RATIOS (NHPS) ACROSS THE 

INDIVIDUAL ANIMALS 

I. Hu-HSC-RAG mice 
a) Tenofovir, emtricitabine, raltegravir, and maraviroc 

Drug TFV FTC RAL MVC 

Animal 

ID 

Plasma 

(ng/mL) 

Brain 

Tissu

e 

(ng/g) 

Brain 

Tissue:Plasm

a 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

Uninfected hu-HSC-RAG 

1686 143 17.23 0.118 9.96 3.20 0.31 0.5 0.22 0.44 0.5 0.22 0.44 

1698 114 19.36 0.167 19.9 2.46 0.12 0.5 0.20 0.39 0.5 0.20 0.39 

1699 127 1.75 0.013 10.0 2.42 0.24 0.5 0.83 1.63 0.5 0.20 0.38 

1712 62.1 7.23 0.114 26.3 1.57 0.06 2.69 0.22 0.08 0.5 0.22 0.44 

1713 59.1 0.57 0.009 19.2 0.14 0.01 2.06 0.14 0.07 0.5 0.14 0.28 

1649 62.8 0.45 0.007 21.9 0.21 0.01 0.5 0.21 0.41 0.5 0.21 0.41 

Infected hu-HSC-RAG 
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Drug TFV FTC RAL MVC 

Animal 

ID 

Plasma 

(ng/mL) 

Brain 

Tissu

e 

(ng/g) 

Brain 

Tissue:Plasm

a 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue: 

Plasma 

1756 474 0.43 0.001 109 0.16 0.001 14.8 0.16 0.011 23.3 0.16 0.007 

1784 432 23.29 0.053 79.9 3.97 0.049 6.68 0.27 0.039 12.1 2.00 0.162 

1803 377 10.10 0.026 25.1 1.98 0.077 2.61 0.24 0.091 3.44 0.88 0.250 

2132 151 0.78 0.005 28.7 0.19 0.007 1.17 0.19 0.161 1.98 0.50 0.247 

2242 312 1.08 0.003 81.2 0.43 0.005 6.32 0.21 0.032 6.34 3.87 0.598 

2244 255 22.31 0.086 20.9 2.46 0.115 1.48 0.26 0.172 2.74 1.25 0.449 

 

b) Efavirenz and atazanavir 

Drug EFV Drug ATZ 

Animal ID 
Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 

Brain 

Tissue:Plasma 
Animal ID 

Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

Uninfected hu-HSC-RAG 

1590 4.23 14.33 3.322 1670 0.5 0.44 0.85 

1592 2.74 0.16 0.058 1700 9.75 0.94 0.09 
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Drug EFV Drug ATZ 

Animal ID 
Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 

Brain 

Tissue:Plasma 
Animal ID 

Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

1594 3.57 0.14 0.038 1701 2.5 1.27 0.49 

1606 2.27 0.41 0.177 1706 129 7.46 0.06 

1628 0.5 0.24 0.476 1707 27.9 0.49 0.02 

1641 0.5 0.47 0.915 1708 16.4 1.13 0.07 

Infected hu-HSC-RAG 

1831 1.5 5.62 3.670 2097 2610 1.02 0.0004 

2110 0.5 0.35 0.682 2108 0.5 122.95 241 

2118 12.6 24.51 0.159 2109 1.67 0.50 0.293 

2125 0.5 0.70 1.372 2116 1.32 0.21 0.157 

        

2246 724 1458.54 0.165 2255 1.2 1.63 1.335 

2254 17.5 34.09 0.159 2256 10.5 0.71 0.066 
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II. BLT mice 

a) Tenofovir and emtricitabine 

Drug TFV FTC 

Animal ID 
Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 
Brain Tissue:Plasma 

Plasma 

(ng/mL) 
Brain Tissue (ng/g) Brain Tissue:Plasma 

Uninfected hu-HSC-RAG 

BLT A - 178.90 - - 14.54 - 

BLT B 96.7 123.93 1.256 45.4 13.86 0.30 

BLT C 245 11.74 0.047 24.7 2.64 0.10 

BLT D 126 14.35 0.112 41.2 7.10 0.17 

BLT E 86.6 12.28 0.139 58.4 9.66 0.16 

BLT F 65.5 8.56 0.128 21.5 8.33 0.38 

Infected hu-HSC-RAG 

BLT G 51 12.09 0.232 20.5 3.83 0.183 

BLT H 210 14.64 0.068 59.2 6.45 0.107 

BLT I 406 43.33 0.105 111 10.13 0.089 

BLT J 91.2 11.96 0.129 83.8 15.65 0.183 

BLT K 173 17.40 0.099 45.9 4.75 0.102 
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Drug TFV FTC 

Animal ID 
Plasma 

(ng/mL) 

Brain Tissue 

(ng/g) 
Brain Tissue:Plasma 

Plasma 

(ng/mL) 
Brain Tissue (ng/g) Brain Tissue:Plasma 

BLT L 119 9.21 0.076 35.1 3.31 0.093 

BLT M 1010 52.44 0.051 182 29.08 0.157 

 

b) Raltegravir, maraviroc, and atazanavir 
 

Drug RAL MVC ATZ 

Animal ID 
Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasm

a 

Uninfected hu-HSC-RAG 

BLT A - 2.90 - - 23.70 - - 14.10 - 

BLT B 46.7 3.45 0.07 0.5 20.46 40.12 9.61 29.58 3.018 

BLT C 32.9 0.92 0.03 0.5 2.40 4.71 9.1 0.69 0.075 

BLT D 20.3 1.69 0.08 2.21 3.96 1.76 18.3 2.09 0.112 

BLT E 27.9 1.86 0.07 0.5 4.23 8.30 9.72 1.98 0.199 

BLT F 5.66 0.99 0.17 3.01 15.00 4.89 2.48 0.72 0.285 
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Drug RAL MVC ATZ 

Animal ID 
Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

Brain 

Tissue:Plasm

a 

Infected hu-HSC-RAG 

BLT G 4.11 2.45 0.586 5.25 16.73 3.124 8.93 2.34 0.257 

BLT H 11.7 2.29 0.192 14.6 5.01 0.336 13.5 7.78 0.565 

BLT I 22.9 2.47 0.106 74.5 46.37 0.610 93.6 4.16 0.044 

BLT J 22.8 3.45 0.148 25.7 19.03 0.726 14.1 1.96 0.136 

 BLT K 16.1 2.16 0.131 6.17 12.34 1.961 8.47 0.24 0.028 

BLT L 9.89 1.36 0.135 5.87 4.64 0.775 4.03 0.17 0.042 

BLT M 48.5 7.35 0.149 50.8 11.87 0.229 434 12.39 0.028 
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III. Nonhuman primates 
a) Tenofovir and emtricitabine 

Drug TFV FTC 

Animal 

ID 

Plasma 

(ng/mL) 

CSF 

(ng/mL) 

Brain Tissue 

(ng/g) 

CSF:Plasm

a 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

CSF 

(ng/mL

) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 

Brain 

Tissue:Plasm

a 

Uninfected Macaques 

40905 59.1 0.5 55.8 0.008 0.925 19.2 1.78 34.8 0.091 1.78 

41033 91.7 0.5 47.1 0.005 0.504 17.4 3.35 33.4 0.189 1.88 

42109 67.6 0.5 54.3 0.007 0.788 16.6 0.5 26.3 0.030 1.55 

39510 664 10.4 392 0.015 0.579 73.7 11.7 69.3 0.156 0.92 

42528 73.8 4.58 56.7 0.061 0.753 6.17 0.5 26.1 0.079 4.15 

40585 63.3 1.68 53.9 0.026 0.835 7.07 2.37 17.1 0.329 2.37 

42474 19.2 1.3 25.4 0.066 1.296 4.1 2.84 19.1 0.679 4.58 

41735 58.6 2.71 41.0 0.045 0.686 8.37 4.65 22.2 0.545 2.61 

Infected Macaques 

40437 31.3 2.04 33.5 0.064 1.050 16.3 7.09 27.1 0.426 1.63 

42226 32 2.3 22.7 0.070 0.694 9.98 3.88 14.8 0.381 1.45 

42971 50.3 1.84 30.1 0.036 0.587 9.16 2.62 13.9 0.280 1.49 
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Drug TFV FTC 

Animal 

ID 

Plasma 

(ng/mL) 

CSF 

(ng/mL) 

Brain Tissue 

(ng/g) 

CSF:Plasm

a 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL) 

CSF 

(ng/mL

) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 

Brain 

Tissue:Plasm

a 

42827 43.4 1.49 65.1 0.034 1.470 13.2 5.48 33.6 0.407 2.50 

41380 59.4 2.94 36.3 0.049 0.599 20.2 7.33 29.9 0.356 1.45 

42966 54.9 2.62 51.3 0.047 0.916 21.9 5.86 29.8 0.262 1.33 

42707 52.8 1.72 48.1 0.032 0.892 8.21 3.97 2.1 0.474 0.25 

40422 226000 4910 3572 0.021 0.015 1420 163 281 0.113 0.19 

42706 136 2.37 58.3 0.017 0.420 10.5 4.21 2.0 0.393 0.19 

42350 166 5.93 99.8 0.035 0.589 27.6 7.31 30.3 0.260 1.08 

 

b) Efavirenz and raltegravir 

Drug EFV RAL 

Animal 

ID 

Plasma 

(ng/mL

) 

CSF 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 

Brain 

Tissue:Plasma 

Plasma 

(ng/mL

) 

CSF 

(ng/mL

) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 
Brain Tissue:Plasma 

Uninfected Macaques 

40905 420 3.38 1983 0.008 4.629 287 1.29 27.7 0.004 0.09 
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41033 215 1.38 965 0.006 4.401 109 1.21 15.8 0.011 0.14 

42109 371 2.06 1615 0.005 4.268 81.2 0.5 78.3 0.007 0.21 

42474 62.7 0.5 293 0.008 4.582 1060 0.5 265 0.0005 0.24 

Infected Macaques 

40437 59.3 0.5 240 0.008 3.965 1990 0.5 33.6 0.000 0.02 

42226 183 1.39 792 0.007 4.245 303 0.5 11.5 0.002 0.04 

42971 92.7 0.5 392 0.005 4.141 199 0.5 16.0 0.002 0.08 

42707 184 0.5 759 0.003 4.041 64.7 0.5 13.7 0.008 0.21 

40422 2280 45.6 5610 0.020 2.412 520 35.4 233 0.067 0.44 

 

 

c) Maraviroc and atazanavir 

Drug MVC ATZ 

Anima

l ID 

Plasma 

(ng/mL) 

CSF 

(ng/mL) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 
Brain Tissue:Plasma 

Plasma 

(ng/mL

) 

CSF 

(ng/mL

) 

Brain 

Tissue 

(ng/g) 

CSF:Plasm

a 
Brain Tissue:Plasma 

Uninfected Macaques 

39510 400 12.1 193 0.030 0.473 1760 40.5 554 0.023 0.31 

42528 31.2 2.87 57.5 0.090 1.808 0.5 0.5 49.7 0.980 97.44 
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40585 10.5 0.5 21.9 0.047 2.045 0.5 0.5 84.1 0.980 164.92 

41735 82.6 6.24 40.5 0.074 0.481 51.4 1.11 26.5 0.021 0.51 

Infected Macaques 

42827 46 0.5 105 0.011 2.23 5.93 0.5 138 0.083 22.8 

41380 24.8 0.5 48.7 0.020 1.92 0.5 0.5 133 0.980 261 

42966 30.1 0.5 34.7 0.016 1.13 0.5 0.5 59.4 0.980 116 

42706 7.29 4.56 110 0.613 14.8 2.35 0.5 399 0.209 166 

42350 75.5 0.5 79.2 0.006 1.03 157 8.8 44.8 0.055 0.28 
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APPENDIX-2.3: BRAIN TISSUE CONCENTRATION OF TENOFOVIR 
DIPHOSPHATE ACROSS THE INDIVIDUAL ANIMALS 

Species/Animal ID 
Tenofovir diphosphate concentration 

(fmol/g) 

Uninfected macaques 

41033 35344 

42109 30862 

40905 45839 

42528 21509 

39510 178703 

40585 34841 

42474 25485 

41735 120646 

Infected macaques 

42226 14996 

42971 23685 

40437 33910 

42827 32965 

41380 36272 

42966 31537 

42707 38348 

40422 1379987 

42350 75359 
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42706 44518 

Uninfected TFRM hu-HSC-RAG1 

1686 - 

1698 - 

1699 - 

1712 - 

1713 - 

1649 - 

Infected TFRM hu-HSC-RAG 

1756 13343 

1784 14731 

1803 23258 

2132 7629 

2242 BLQ 

2244 15314 

Uninfected BLT 

BLT A - 

BLT B 2335 

BLT C 1841 

BLT D 1963 

BLT E 980 

BLT F 1195 
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Infected BLT 

BLT G 851 

BLT H 1376 

BLT I 10485 

BLT J 1510 

BLT K 1166 

BLT L 852 

BLT M 2941 

1 – indicates that the sample was not available 
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APPENDIX-2.4: INHIBITORY QUOTIENTS IN THE BRAIN TISSUE ACROSS THE 
INVIDUAL NHPS 

Animal/Species 

ID 

Protein-free IC90 for RT-SHIV virus 

2980 84 3 107 290 12750 169811 

Drug IQ90 (unbound trough concentration/ protein-free IC90) 

TFV FTC EFV RAL MVC ATZ TFV-dp 

Uninfected macaques 

41033 0.016 0.398 9.029 0.150 - - 0.208 

42109 0.018 0.313 15.110 0.698 - - 0.182 

40905 0.019 0.414 18.550 0.519 - - 0.270 

42474 0.009 0.228 2.742 2.471 - - 0.150 

42528 0.019 0.311 - - 0.193 0.003 0.127 

39510 0.132 0.825 - - 0.648 0.033 1.052 

40585 0.018 0.203 - - 0.074 0.005 0.205 

41735 0.014 0.265 - - 0.136 0.002 0.710 

Infected macaques 

42226 0.008 0.176 7.412 0.107 - - 0.088 

42971 0.010 0.165 3.663 0.149 - - 0.139 

40437 0.011 0.323 2.264 0.073 - - 0.200 

42707 0.016 0.025 7.096 0.127 - - 0.226 

40422 1.199 3.343 52.484 2.173 - - 8.127 

42827 0.022 0.400 - - 0.352 0.008 0.194 

41380 0.012 0.355 - - 0.163 0.008 0.214 
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42966 0.017 0.354 - - 0.117 0.004 0.186 

42350 0.033 0.361 - - 0.266 0.003 0.444 

42706 0.020 0.024 - - 0.370 0.024 0.262 
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APPENDIX-3.1: GENE EXPRESSION ASSAYS 

 

Gene Name Species Catalog Number 

Abcc1 Mouse Mm00456156_m1 

Abcc2 Mouse Mm00496899_m1 

Abcc4 Mouse Mm01226381_m1 

Abcb1 Mouse Mm00440736_m1 

Abcg2 Mouse Mm00496364_m1 

Slco1a4 Mouse Mm01267407_m1 

Slc29a1 Mouse Mm01270577_m1 

Slc22a2 Mouse Mm00457295_m1 

Slc22a8 Mouse Mm00459534_m1 

GAPDH Mouse Mm99999915_g1 

ABCC1 Macaque Hs01561502_m1 

ABCC2 Macaque Rh02788077_m1 

ABCC4 Macaque Rh02858818_m1 

ABCB1 Macaque Rh02788239_m1 

ABCG2 Macaque Rh02788848_m1 

SLCO1A2 Macaque Rh01072345_m1 

SLC29A1 Macaque Rh02794207_m1 

SLC22A2 Macaque Hs01010723_m1 

SLC22A8 Macaque Rh02848022_m1 
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GAPDH Macaque Rh02621745_g1 

ABCC1 Human Hs01561502_m1 

ABCC2 Human Hs00166123_m1 

ABCC4 Human Hs00988717_m1 

ABCB1 Human Hs00184500_m1 

ABCG2 Human Hs01053790_m1 

SLCO1A2 Human Hs00245360_m1 

SLC29A1 Human Hs01085704_g1 

SLC22A2 Human Hs01010723_m1 

SLC22A8 Human Hs00188599_m1 

GAPDH Human Hs02758991_g1 
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APPENDIX-3.2: PEPTIDE SEQUENCES FOR THE PROTEOMICS ANALYSIS OF 
DRUG TRANSPORTERS 

 

BCRP (humanized mice): SSLLDVLAAR 

BCRP (macaques): VIQLGDLK 

P-gp (humanized mice/macaques): NTTGALTR 

Oatp1a4 (humanized mice):  IYLGLPAALR 

OATP1A2 (macaques): YIYLGLPAALR 
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APPENDIX-3.3: GENE EXPRESSION OF DRUG TRANSPORTERS IN THE 
HUMANIZED MICE DOSING COHORTS 

 

 

EFV: hu-HS-RAG mice dosed with efavirenz only 

ATZ: hu-HSC-RAG mice dosed with atazanavir only 

TFRM: hu-HSC-RAG mice dosed with tenofovir, emtricitabine, raltegravir and maraviroc 

BLT: BLT mice 

Uninfected (gray) and infected (red) cohorts are indicated 
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APPENDIX-3.4: GENE EXPRESSION OF DRUG TRANSPORTERS ACROSS THE INDIVIDUAL ANIMALS 

 

Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

Uninfected macaques 

40905 3.98E-03 8.72E-04 7.63E-03 3.46E-03 3.87E-03 7.88E-03 1.29E-02 3.46E-03 - 

41033 4.94E-03 5.14E-04 1.71E-03 1.73E-02 3.69E-03 2.99E-02 5.87E-03 5.46E-03 1.01E-08 

42109 4.84E-03 2.14E-03 1.12E-02 1.38E-02 6.93E-03 1.33E-02 1.57E-02 1.06E-02 3.74E-08 

39510 6.32E-03 4.91E-04 5.82E-03 7.66E-03 1.60E-03 8.84E-03 9.05E-03 2.18E-02 - 

42528 9.69E-03 

  

2.16E-03 1.91E-03 1.02E-02 3.68E-03 3.16E-02 3.38E-03 6.14E-04 8.25E-09 

40585 5.75E-03 2.88E-04 2.74E-03 9.87E-03 2.05E-03 1.53E-02 4.15E-03 2.20E-03 - 

42474 - 6.59E-04 1.04E-03 4.10E-03 1.63E-03 4.28E-03 1.60E-03 8.51E-04 3.11E-06 

41735 - 2.07E-04 1.18E-03 4.30E-03 1.44E-03 6.18E-03 1.66E-03 2.33E-04 1.07E-07 

Infected macaques 

40437 4.86E-03 9.31E-04 2.82E-03 3.85E-03 2.40E-03 1.22E-02 3.10E-03 6.29E-04 2.12E-08 
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Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

42226 5.95E-03 3.88E-04 2.60E-03 1.50E-02 5.34E-03 2.33E-02 7.72E-03 5.69E-03 5.91E-08 

42971 4.89E-03 2.75E-04 2.23E-03 7.52E-03 3.36E-03 1.80E-02 3.21E-03 3.92E-04 - 

42827 3.82E-03 1.53E-04 1.96E-03 4.60E-03 3.30E-03 1.20E-02 3.26E-03 8.12E-04 3.09E-08 

41380 7.11E-03 8.60E-04 8.67E-04 4.88E-03 2.37E-03 1.54E-02 1.37E-03 2.21E-04 - 

42966 4.08E-03 1.77E-04 1.25E-03 4.07E-03 2.08E-03 1.05E-02 1.18E-03 1.49E-04 - 

42707 - 1.39E-04 1.08E-03 4.77E-03 2.02E-03 5.81E-03 2.14E-03 6.46E-04 2.84E-06 

40422 - 8.44E-04 1.71E-03 4.07E-03 1.19E-03 6.68E-03 1.08E-03 4.01E-04 2.25E-08 

42706 - 4.56E-04 7.03E-04 3.65E-03 1.73E-03 8.26E-03 2.65E-03 4.44E-04 4.06E-06 

42350 - 1.07E-04 9.30E-04 3.09E-03 1.07E-03 5.64E-03 8.86E-04 1.74E-04 5.61E-07 

Uninfected EFV hu-HSC-RAG 

1592 8.58E-02 7.17E-04 6.50E-03 1.09E-01 1.08E-02 3.46E-02 3.25E-02 6.21E-02 8.36E-03 

1594 8.35E-02 6.95E-04 5.81E-03 8.28E-02 1.07E-02 2.76E-02 2.84E-02 4.33E-02 5.67E-03 

1606 6.03E-02 2.01E-04 3.80E-03 2.29E-02 2.03E-03 1.44E-02 2.73E-02 5.14E-02 9.25E-03 
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Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

1628 3.74E-02 1.77E-04 4.54E-03 2.38E-02 1.87E-03 1.00E-02 2.32E-02 3.80E-02 4.68E-03 

1641 2.97E-02 3.34E-04 5.59E-03 3.33E-02 2.88E-03 6.87E-03 2.39E-02 7.05E-02 7.58E-03 

Infected EFV hu-HSC-RAG 

1831 3.53E-02 6.39E-05 4.59E-03 1.81E-02 2.35E-03 1.80E-02 1.90E-02 3.30E-02 4.17E-03 

2110 3.22E-02 1.87E-04 3.91E-03 1.63E-02 1.59E-03 1.52E-02 1.76E-02 1.87E-02 3.23E-03 

2118 2.92E-02 6.84E-05 4.69E-03 1.73E-02 2.76E-03 1.29E-02 1.46E-02 2.19E-02 1.48E-03 

2125 2.52E-02 9.63E-05 5.68E-03 1.12E-02 2.12E-03 9.18E-03 1.50E-02 2.92E-02 4.90E-03 

2246 3.37E-02 1.35E-04 4.22E-03 1.63E-02 3.79E-03 1.27E-02 1.67E-02 5.50E-02 6.39E-03 

2254 6.07E-02 1.45E-04 5.74E-03 2.18E-02 2.11E-03 1.88E-02 1.93E-02 1.54E-02 7.26E-03 

Uninfected TFRM hu-HSC-RAG 

1686 7.19E-02 6.49E-04 4.31E-03 8.71E-02 8.53E-03 4.57E-02 1.95E-02 6.51E-02 8.01E-03 

1698 8.89E-02 6.46E-04 4.07E-03 1.05E-01 1.20E-02 4.39E-02 2.60E-02 3.54E-02 3.92E-03 

1699 4.96E-02 2.16E-05 2.12E-03 9.12E-03 1.42E-03 1.24E-02 1.46E-02 2.49E-02 2.14E-03 
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Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

1712 9.47E-02 9.43E-04 6.26E-03 1.12E-01 1.66E-02 4.65E-02 3.16E-02 5.10E-02 3.46E-03 

1713 3.71E-02 8.95E-05 2.32E-03 9.31E-03 1.50E-03 9.00E-03 1.29E-02 1.90E-02 6.47E-04 

1649 8.82E-02 1.68E-04 3.14E-03 1.46E-02 1.92E-03 1.99E-02 2.03E-02 4.55E-02 5.55E-03 

Infected TFRM hu-HSC-RAG 

1756 4.31E-02 1.23E-04 2.62E-03 1.26E-02 2.18E-03 1.31E-02 1.31E-02 7.95E-04 1.08E-02 

1784 3.92E-02 5.76E-05 2.25E-03 9.28E-03 1.47E-03 1.50E-02 9.63E-03 2.07E-02 4.00E-03 

1803 5.30E-02 5.19E-05 1.33E-03 9.00E-03 1.07E-03 1.15E-02 1.38E-02 1.24E-02 1.70E-03 

2132 3.47E-02 3.30E-05 2.19E-03 1.41E-02 1.80E-03 1.13E-02 1.08E-02 2.98E-03 3.14E-02 

2242 4.53E-02 6.78E-05 2.20E-03 8.54E-03 1.76E-03 7.84E-03 1.25E-02 1.77E-03 2.27E-02 

2244 4.89E-02 4.60E-05 2.50E-03 9.84E-03 1.35E-03 2.08E-02 1.46E-02 1.47E-02 3.81E-03 

Uninfected ATZ hu-HSC-RAG 

1670 8.03E-02 7.15E-04 5.08E-03 7.30E-02 8.73E-03 4.09E-02 2.27E-02 6.63E-02 2.78E-03 

1700 1.09E-01 6.86E-04 6.56E-03 1.05E-01 1.05E-02 5.39E-02 3.74E-02 6.04E-02 7.87E-03 
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Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

1701 1.26E-01 2.04E-04 4.25E-03 9.20E-02 6.80E-03 7.05E-02 2.90E-02 2.98E-02 2.36E-03 

1706 4.36E-02 1.24E-04 3.45E-03 1.73E-02 2.52E-03 1.22E-02 1.82E-02 2.88E-02 1.53E-03 

1707 4.09E-02 1.41E-04 3.21E-03 1.93E-02 2.01E-03 1.15E-02 2.52E-02 3.02E-02 1.64E-03 

1708 5.16E-02 3.93E-05 3.44E-03 1.96E-02 1.90E-03 2.02E-02 2.32E-02 5.91E-02 9.63E-03 

Infected ATZ hu-HSC-RAG 

2097 3.46E-02 8.63E-05 1.49E-03 6.21E-03 1.19E-03 8.18E-03 1.08E-02 8.96E-03 1.98E-03 

2108 4.22E-02 7.20E-05 1.82E-03 8.32E-03 1.96E-03 9.14E-03 1.14E-02 3.01E-03 1.95E-02 

2109 2.99E-02 5.08E-05 2.35E-03 1.28E-02 1.39E-03 1.28E-02 1.44E-02 1.86E-03 2.83E-02 

2116 3.04E-02 2.29E-05 9.96E-04 4.72E-03 1.11E-03 7.61E-03 7.36E-03 6.25E-04 1.05E-02 

2255 3.44E-02 7.49E-05 1.89E-03 8.40E-03 1.27E-03 1.03E-02 1.10E-02 1.37E-02 1.42E-03 

2256 3.03E-02 1.04E-04 3.11E-03 1.05E-02 1.44E-03 9.41E-03 1.14E-02 1.60E-02 2.36E-03 

Uninfected BLT 

BLT A 3.36E-02 5.80E-05 3.57E-03 1.57E-02 4.62E-05 1.14E-02 9.36E-04 1.29E-02 4.19E-03 
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Specimen/ 

Animal ID 

Gene Expression normalized to GAPDH 

MRP1 MRP2 MRP4 BCRP PGP ENT1 OATP1A2 OAT3 OCT2 

BLT B 4.31E-02 3.99E-05 8.50E-03 2.57E-02 4.46E-05 2.68E-02 4.12E-03 3.91E-02 5.03E-03 

BLT C 2.88E-02 1.06E-04 3.63E-03 2.08E-02 3.73E-05 1.95E-02 5.01E-03 2.52E-02 4.14E-03 

BLT D 3.33E-02 5.76E-05 3.03E-03 1.59E-02 3.37E-05 1.99E-02 3.68E-03 1.92E-02 2.54E-03 

BLT E 4.06E-02 7.07E-05 1.45E-03 1.05E-02 2.72E-05 1.05E-02 5.96E-04 2.50E-02 2.90E-03 

BLT F 3.91E-02 9.22E-05 2.21E-03 1.32E-02 4.57E-05 1.42E-02 8.28E-04 2.05E-02 2.08E-03 

Infected BLT 

BLT G 2.82E-02 5.65E-05 7.81E-03 2.48E-02 4.53E-05 1.27E-02 3.45E-03 3.11E-02 4.23E-03 

BLT H 6.71E-02 6.57E-05 2.58E-03 1.38E-02 3.48E-05 1.34E-02 2.72E-03 2.04E-02 3.51E-03 

BLT I 5.58E-02 6.65E-05 2.29E-03 1.32E-02 5.75E-05 1.07E-02 3.04E-03 1.57E-02 4.01E-03 

BLT J 3.62E-02 1.28E-04 3.51E-03 2.01E-02 3.23E-05 1.60E-02 1.03E-03 2.70E-02 3.90E-03 

BLT K 5.29E-02 1.26E-04 4.19E-03 3.06E-02 7.57E-05 1.43E-02 2.40E-03 5.13E-02 1.09E-02 

BLT L 3.21E-02 2.92E-05 2.97E-03 1.95E-02 3.92E-05 1.21E-02 1.54E-03 2.65E-02 2.59E-03 

BLT M 6.97E-02 1.38E-04 3.15E-03 1.63E-02 2.04E-05 1.32E-02 7.89E-04 2.97E-02 6.18E-03 
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APPENDIX-3.5: PROTEIN EXPRESSION OF DRUG TRANSPORTERS BY 
QUANTITATIVE TARGETTED ABSOLUTE PROTEOMICS IN HUMANIZED 

MICE DOSING COHORTS 

 

 

EFV: hu-HS-RAG mice dosed with efavirenz only 

ATZ: hu-HSC-RAG mice dosed with atazanavir only 

TFRM: hu-HSC-RAG mice dosed with tenofovir, emtricitabine, raltegravir and maraviroc 

BLT: BLT mice 

Uninfected (gray) and infected (red) cohorts are indicated 

* denotes significant differences (p<0.05) with a one-way ANOVA test 
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APPENDIX-3.6: PROTEIN EXPRESSION OF DRUG TRANSPORTERS BY 
QUANTITATIVE TARGETTED ABSOLUTE PROTEOMICS ACROSS ALL THE 

INDIVIDUAL ANIMALS 

Specimen/Animal ID 

Drug Transporter Protein Concentration (pmol/mg 

protein)1 

BCRP PGP 

Uninfected Macaques 

40905 0.97 0.21 

41033 0.89 0.11 

42109 1.15 1.65 

39510 1.10 0.85 

42528 0.66 0.24 

40585 1.88 0.27 

42474 2.51 2.38 

41735 4.27 4.46 

Infected Macaques 

40437 2.40 1.57 

42226 1.80 BLQ 

42971 1.25 0.26 

42827 1.24 0.91 

41380 2.37 0.63 

42966 2.13 BLQ 

42707 2.29 2.29 

40422 2.99 2.36 
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42706 1.71 1.975 

42350 2.79 3.36 

Uninfected EFV hu-HSC-RAG 

1590 BLQ BLQ 

1592 0.23 2.34 

1594 0.27 BLQ 

1606 BLQ 1.49 

1628 0.11 1.61 

1641 BLQ 1.07 

Infected EFV hu-HSC-RAG 

1831 BLQ 1.92 

2110 0.47 1.97 

2118 0.28 6.62 

2125 0.25 3.44 

2246 0.14 BLQ 

2254 BLQ 1.66 

Uninfected TFRM hu-HSC-RAG 

1686 BLQ 0.78 

1698 0.25 3.07 

1699 0.16 3.84 

1712 0.37 4.11 

1713 BLQ 2.18 

1649 BLQ 2.05 
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Infected TFRM hu-HSC-RAG 

1756 0.26 1.49 

1784 0.13 1.58 

1803 BLQ 2.58 

2132 BLQ 2.03 

2242 BLQ BLQ 

2244 BLQ 3.25 

Uninfected ATZ hu-HSC-RAG 

1670 BLQ 2.04 

1700 0.12 2.24 

1701 BLQ 4.06 

1706 0.21 1.71 

1707 0.13 5.01 

1708 0.44 4.83 

Infected ATZ hu-HSC-RAG 

2097 0.19 1.92 

2108 0.12 1.97 

2109 BLQ 6.62 

2116 0.11 3.44 

2255 0.14 BLQ 

2256 0.38 1.66 

Uninfected BLT 

BLT A 0.18 BLQ 
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BLT B 0.24 BLQ 

BLT C 0.11 0.76 

BLT D 0.38 0.85 

BLT E 0.61 1.49 

BLT F 0.22 BLQ 

Infected BLT 

BLT G BLQ 1.46 

BLT H BLQ BLQ 

BLT I 0.12 5.07 

BLT J BLQ 1.95 

BLT K BLQ 1.84 

BLT L BLQ BLQ 

BLT M BLQ 0.65 

1BLQ indicates that transporter concentration was <0.1 pmol/mg of protein 
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APPENDIX-4.1: INCLUSION AND EXCLUSION CRITERIA FOR THE THINC 
CLINICAL STUDY 

 

I. Cohort A (Treatment naïve patients) 

Inclusion Criteria 

1. Men and women age > 18 years  

2. HIV Positive 

3.  Treatment Naïve* 

4. Ability to provide informed consent 

5. CD4 count < 400 cells/µL any time prior to study entry 

6. Plasma viral load > 5,000 c/mL within 90 days prior to study entry 

7. Hemoglobin > 10 Gms/dL within 60 days prior to study entry 

8.  Neurologic examination by a physician revealing no contraindication to LP (if 

examination suggests any suspicion of space-occupying brain mass lesion, a cranial 

computer tomographic (CT) scan without contrast must show no such lesion) 

9.  Platelet count greater than or equal to 50,000 cells/mm3  

10. Prothrombin time (PT) or partial thromboplastin time (PTT): The PT must be 

documented to be less than or equal to the upper limit of normal or an INR of less 

than 1.3 prior to study entry.  The PTT must be less than or equal to the upper limit of 

normal. 
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Exclusion Criteria 

1. HIV Negative 

2. Allergy to skin numbing medications for LP 

3.  Any active psychiatric illness including schizophrenia, severe depression, or severe 

bipolar affective disorder that, in the opinion of the investigator, could confound the 

analysis of the neurological examination or neuropsychological test results 

4.  Active drug or alcohol abuse that, in the investigator’s opinion, could prevent 

compliance with study procedures or confound the analysis of study endpoints 

5. Active brain infection (except for HIV-1), fungal meningitis, toxoplasmosis, central 

nervous system (CNS) lymphoma, brain neoplasm, or space-occupying brain lesion 

requiring acute or chronic therapy 

6.  Ongoing maintenance treatment for any of the above lesions  

 

 

 

 

*HIV subjects naïve to antiretroviral therapy in whom antiretroviral therapy is planned by the treating 
physician can be enrolled.  The study design does not propose to assign study subjects to any specific 
class or type of antiretroviral therapy. 

*Subjects will be considered treatment naïve if they have had NO greater than 7 days of ARVs 

*Subjects will be considered treatment naïve if they have had greater than 7 days of ARVs but the 
period of treatment was at least 12 months before enrolling in the study 
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II. Cohort B (Treatment experienced patients) 

Inclusion Criteria 

1. Men and women age > 18 years 

2. HIV positive 

3. Ability to provide informed consent 

4. CD4 < 400 cells/µL prior to the initiation of cART 

5. Hemoglobin > 10gms/dl 

6. On stable ARV regimen (no changes in regiment at least 3 months prior to study 

entry) 

7. cART for greater than or equal to 12 months prior to study entry 

8. Plasma viral load < 200 c/mL for > 12 months (Must have a minimum of 2 measures 

before study entry) 

9. Neurologic examination by a physician revealing no contraindication to LP (If 

examination suggests any suspicion of a space-occupying brain mass lesion, a cranial 

computed tomographic (CT) scan without contrast must show no such lesion) 

10. Platelet count greater than or equal to 50,000 cells/mm3 

11. Prothrombin time (PT) or partial thromboplastin time (PTT): The PT must be 

documented to be less than or equal to the upper limit of normal or an INR of less 

than 1.3 prior to study entry.  The PTT must be less than or equal to the upper limit of 

normal. 
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Exclusion Criteria 

1. HIV Negative 

2. Allergy to skin numbing medications for LP 

3.  Any active psychiatric illness including schizophrenia, severe depression, or severe 

bipolar affective disorder that, in the opinion of the investigator, could confound the 

analysis of the neurologic examination or neuropsychological test results 

4.  Active drug or alcohol abuse that, in the investigator’s opinion, could prevent 

compliance with study procedures or confound the analysis of study endpoints 

5. Active brain infection (except for HIV-1), fungal meningitis, toxoplasmosis, central 

nervous system (CNS) lymphoma, brain neoplasm, or space-occupying brain lesion 

requiring acute or chronic therapy 

6.  Ongoing maintenance treatment for any of the above lesions 

7. Allergy to skin numbing medications for LP 

8. Any active psychiatric illness including schizophrenia, severe depression, or severe 

bipolar affective disorder that, in the opinion of the investigator, could confound the 

analysis of the neurological examination or neuropsychological test results. 
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APPENDIX-4.2: DATASET AND MODEL CODE USED IN THE FINAL RHESUS 
MACAQUE ITERATIVE TWO-STAGE ESTIMATION PK MODEL  

 

Dataset: Source file – EFV_population_NHP.dat 

m40437 

 7 

 1 

 12 

    0.00000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00  

 24.0000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 48.0000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 72.0000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 96.0000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00  

 120.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 144.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 168.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 192.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 216.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 240.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 268.000 2.105 7.97 0.167 24.36 4.625 1.462 6.414 200.00 

 3 

 8 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 3.290000 -1.000000 -1.000000  

 10.000000 2.610000 -1.000000 -1.000000  

 23.500000 2.0400000 -1.000000 -1.000000  

 95.500000 0.2120000 -1.000000 -1.000000   

 143.500000 0.0466000 -1.000000 -1.000000  

 216.000000 0.0392000 -1.000000 -1.000000  
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 239.500000 0.0593000 0.0005000 0.2398190  

m40905 

 7 

 1 

 12 

     0.000 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00  

 24.00 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 48.00 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 72.00 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 96.00 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00  

 120.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 144.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 168.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 192.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 216.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 240.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 268.0 18.2 6.61 0.574 14.08 3.601 0.318 0.7983 200.00 

 3 

 9 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 0.385000 -1.000000 -1.000000  

 10.000000 0.616000 -1.000000 -1.000000  

 23.500000 0.1300000 -1.000000 -1.000000  

 95.500000 0.0570000 -1.000000 -1.000000  

 143.500000 0.0709000 -1.000000 -1.000000  

 191.500000 0.0566000 -1.000000 -1.000000  

 239.500000 0.1020000 -1.000000 -1.000000  

 263.500000 0.2870000 0.0033800 1.9829390  

m41033 
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 7 

 1 

 12 

    0.000 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00  

 24.00 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 48.00 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 72.00 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 96.00 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00  

 120.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 144.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 168.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 192.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 216.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 240.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 268.0 4.877 6.938 0.4991 15.46 3.603 0.324 2.854 200.00 

 3 

 9 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 0.757000 -1.000000 -1.000000  

 10.000000 2.310000 -1.000000 -1.000000  

 23.500000 0.851000 -1.000000 -1.000000  

 95.500000 0.2120000 -1.000000 -1.000000  

 143.500000 0.1400000 -1.000000 -1.000000  

 215.500000 0.2120000 -1.000000 -1.000000  

 263.500000 0.0950000 -1.000000 -1.000000  

 287.500000 0.2150000 0.0013800 0.9652010 

m42109 

 7 

 1 
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 12 

    0.00000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00  

 24.0000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 48.0000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 72.0000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 96.0000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00  

 120.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 144.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 168.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 192.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 216.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 240.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 268.000 21.15 6.743 0.169 14.42 3.484 1.115 0.41 200.00 

 3 

 9 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 0.833000 -1.000000 -1.000000   

 10.000000 0.438000 -1.000000 -1.000000  

 23.500000 0.0693000 -1.000000 -1.000000   

 95.500000 0.2340000 -1.000000 -1.000000   

 143.500000 0.1380000 -1.000000 -1.000000   

 215.500000 0.0847000 -1.000000 -1.000000  

 263.500000 0.1240000 -1.000000 -1.000000  

 287.500000 0.3710000 0.0020600 1.6151680 

m42226 

 7 

 1 

 12 

    0.00000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00  
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 24.0000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 48.0000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 72.0000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 96.0000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00  

 120.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 144.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 168.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 192.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 216.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 240.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 268.000 3.867 7.164 0.453 18.17 4.057 0.782 1.845 200.00 

 3 

 9 

 0.000000 0.0000000 -1.000000 -1.000000   

 4.000000 3.3300000 -1.000000 -1.000000  

 10.000000 2.6500000 -1.000000 -1.000000  

 23.500000 0.6330000 -1.000000 -1.000000   

 95.500000 0.2250000 -1.000000 -1.000000  

 143.500000 0.1880000 -1.000000 -1.000000  

 191.500000 0.1260000 -1.000000 -1.000000   

 239.500000 0.1760000 -1.000000 -1.000000  

 263.500000 0.1830000 0.0013900 0.7922860 

m42474 

 7 

 1 

 12 

    0.00000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00  

 24.0000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 48.0000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 
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 72.0000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 96.0000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00  

 120.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 144.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 168.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 192.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 216.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 240.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 268.000 6.712 9.827 0.427 7.213 5.23 0.411 13.39 200.00 

 3 

 7 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 0.4700000 -1.000000 -1.000000  

 10.000000 2.9400000 -1.000000 -1.000000  

 23.500000 0.2740000 -1.000000 -1.000000  

 143.500000 0.0060500 -1.000000 -1.000000  

 215.500000 0.0092000 -1.000000 -1.000000  

 263.500000 0.0062700 0.0005000 0.2930570  

m42707 

 7 

 1 

 12 

     0.00000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00  

 24.0000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 48.0000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 72.0000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 96.0000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00  

 120.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 144.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 



245 
 

 168.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 192.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 216.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 240.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 268.000 10.91 6.57 0.832 26.19 4.11 0.462 1.04 200.00 

 3 

 8 

 0.000000 0.000000 -1.000000 -1.000000   

 4.000000 1.2500000 -1.000000 -1.000000  

 10.000000 0.6030000 -1.000000 -1.000000  

 23.500000 0.1430000 -1.000000 -1.000000   

 95.500000 0.1130000 -1.000000 -1.000000  

 167.500000 0.0373000 -1.000000 -1.000000  

 215.500000 0.0412000 -1.000000 -1.000000  

 239.500000 0.1840000 0.0005000 0.7585000  

m42971 

 7 

 1 

 12 

   0.00000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00  

 24.0000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 48.0000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 72.0000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 96.0000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00  

 120.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 144.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 168.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 192.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 216.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 
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 240.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 268.000 14.76 5.75 0.794 16.34 3.26 0.394 1.17 200.00 

 3 

 9 

 0.000000 0.000000 -1.000000 -1.000000  

 4.000000 0.827000 -1.000000 -1.000000   

 10.000000 0.3870000 -1.000000 -1.000000   

 23.500000 0.0894000 -1.000000 -1.000000  

 95.500000 0.0750000 -1.000000 -1.000000   

 143.500000 0.0583000 -1.000000 -1.000000  

 191.500000 0.0339000 -1.000000 -1.000000  

 239.500000 0.0409000 -1.000000 -1.000000  

 263.500000 0.0927000 0.0005000 0.3915840  
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Model code: Source file – EFV_population_NHP.for 

C###################################################################
###C 
 
        Subroutine DIFFEQ(T,X,XP) 
        Implicit None 
 
        Include 'globals.inc' 
        Include 'model.inc' 
 
        Real*8 T,X(MaxNDE),XP(MaxNDE), CL,V2,Ka,V3,CLD,TAU,M,Kpc,Kcp 
        Real*8 Kpb,Kbp,Kcb,Kbc,V8 
 
CC 
C-------------------------------------------------------------------
---C 
C   Enter Differential Equations Below  {e.g.  XP(1) = -P(1)*X(1) }    
C 
C----c--------------------------------------------------------------
---C 
 

  CL=P(1) 
     IF (T.GT.24) CL=(P(7))*CL 
       V2=P(2)+0.01 
        Ka=P(3) 
        V3=P(4) 
        CLD=P(5) 
        TAU=P(6) 
     M=P(7) 
  Kpc=P(8) !plasma-CSF rate 
  Kcp=P(9) !CSF-plasma rate 
  Kpb=P(10) !plasma-brain rate 
     Kbp=P(11) !brain-plasma rate 
    Kcb=P(12) !CSF-brain rate 
     Kbc=P(13) !brain-CSF rate 
     V8=P(14)+0.000001 !brain volume 
 
   
         XP(1) = -TAU*X(1) 
    XP(2) = TAU*X(1) -TAU*X(2) 
    XP(3) = TAU*X(2) - TAU*X(3) 
    XP(4) = TAU*X(3) -Ka*X(4) 
         XP(5) = Ka*X(4)- CL*(X(5)/V2)- CLD*(X(5)/V2) 
     x  + CLD*(X(6)/V3)  
    XP(6) = CLD*(X(5)/V2)- CLD*(X(6)/V3)  
    XP(7) = Kpc*X(5) -Kcp*X(7) -Kcb*X(7) +Kbc*X(8) !CSF 
    XP(8) = Kcb*X(7) -Kbc*X(7) +Kpb*X(8) -Kbp*X(8) !brain 
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APPENDIX-4.3: DATASET AND MODEL CODE USED IN THE FINAL HUMAN 
ITERATIVE TWO-STAGE ESTIMATION PK MODEL  

 

Dataset: Source file – EFV_population_human2.dat 

p3006 

 6 

 1 

 31 

    0.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 24.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 48.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 72.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 96.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 120.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 144.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 168.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 192.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 216.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 240.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 264.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 288.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 312.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 336.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 360.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 384.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 408.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 432.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 456.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 480.0 14.6561 156.829 0.131 405.579 6.34 1 600 
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 504.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 528.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 552.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 576.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 600.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 624.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 648.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 672.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 696.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 720.0 14.6561 156.829 0.131 405.579 6.34 1 600 

 2 

 2 

 732.170000 2.0816000 -1.000000 

 736.780000 -1.000000 0.0804000 

p3007 

 6 

 1 

 31 

    0.0 22.59  160.16  0.12 405.38  6.41 1 600 

 24.0 22.59  160.16  0.12 405.38  6.41 1 600 

 48.0 22.59  160.16  0.12 405.38  6.41 1 600 

 72.0 22.59  160.16  0.12 405.38  6.41 1 600 

 96.0 22.59  160.16  0.12 405.38  6.41 1 600 

 120.0 22.59  160.16  0.12 405.38  6.41 1 600 

 144.0 22.59  160.16  0.12 405.38  6.41 1 600 

 168.0 22.59  160.16  0.12 405.38  6.41 1 600 

 192.0 22.59  160.16  0.12 405.38  6.41 1 600 

 216.0 22.59  160.16  0.12 405.38  6.41 1 600 

 240.0 22.59  160.16  0.12 405.38  6.41 1 600 



250 
 

 264.0 22.59  160.16  0.12 405.38  6.41 1 600 

 288.0 22.59  160.16  0.12 405.38  6.41 1 600 

 312.0 22.59  160.16  0.12 405.38  6.41 1 600 

 336.0 22.59  160.16  0.12 405.38  6.41 1 600 

 360.0 22.59  160.16  0.12 405.38  6.41 1 600 

 384.0 22.59  160.16  0.12 405.38  6.41 1 600 

 408.0 22.59  160.16  0.12 405.38  6.41 1 600 

 432.0 22.59  160.16  0.12 405.38  6.41 1 600 

 456.0 22.59  160.16  0.12 405.38  6.41 1 600 

 480.0 22.59  160.16  0.12 405.38  6.41 1 600 

 504.0 22.59  160.16  0.12 405.38  6.41 1 600 

 528.0 22.59  160.16  0.12 405.38  6.41 1 600 

 552.0 22.59  160.16  0.12 405.38  6.41 1 600 

 576.0 22.59  160.16  0.12 405.38  6.41 1 600 

 600.0 22.59  160.16  0.12 405.38  6.41 1 600 

 624.0 22.59  160.16  0.12 405.38  6.41 1 600 

 648.0 22.59  160.16  0.12 405.38  6.41 1 600 

 672.0 22.59  160.16  0.12 405.38  6.41 1 600 

 696.0 22.59  160.16  0.12 405.38  6.41 1 600 

 720.0 22.59  160.16  0.12 405.38  6.41 1 600 

 2 

 2 

 731.50000 1.4086000 -1.000000 

 735.83000 -1.000000 0.0604000 

p3013 

 6 

 1 

 31 

    0.0 14.36  156.39  0.13 405.2  6.37 1 600 



251 
 

 24.0 14.36  156.39  0.13 405.2  6.37 1 600 

 48.0 14.36  156.39  0.13 405.2  6.37 1 600 

 72.0 14.36  156.39  0.13 405.2  6.37 1 600 

 96.0 14.36  156.39  0.13 405.2  6.37 1 600 

 120.0 14.36  156.39  0.13 405.2  6.37 1 600 

 144.0 14.36  156.39  0.13 405.2  6.37 1 600 

 168.0 14.36  156.39  0.13 405.2  6.37 1 600 

 192.0 14.36  156.39  0.13 405.2  6.37 1 600 

 216.0 14.36  156.39  0.13 405.2  6.37 1 600 

 240.0 14.36  156.39  0.13 405.2  6.37 1 600 

 264.0 14.36  156.39  0.13 405.2  6.37 1 600 

 288.0 14.36  156.39  0.13 405.2  6.37 1 600 

 312.0 14.36  156.39  0.13 405.2  6.37 1 600 

 336.0 14.36  156.39  0.13 405.2  6.37 1 600 

 360.0 14.36  156.39  0.13 405.2  6.37 1 600 

 384.0 14.36  156.39  0.13 405.2  6.37 1 600 

 408.0 14.36  156.39  0.13 405.2  6.37 1 600 

 432.0 14.36  156.39  0.13 405.2  6.37 1 600 

 456.0 14.36  156.39  0.13 405.2  6.37 1 600 

 480.0 14.36  156.39  0.13 405.2  6.37 1 600 

 504.0 14.36  156.39  0.13 405.2  6.37 1 600 

 528.0 14.36  156.39  0.13 405.2  6.37 1 600 

 552.0 14.36  156.39  0.13 405.2  6.37 1 600 

 576.0 14.36  156.39  0.13 405.2  6.37 1 600 

 600.0 14.36  156.39  0.13 405.2  6.37 1 600 

 624.0 14.36  156.39  0.13 405.2  6.37 1 600 

 648.0 14.36  156.39  0.13 405.2  6.37 1 600 

 672.0 14.36  156.39  0.13 405.2  6.37 1 600 

 696.0 14.36  156.39  0.13 405.2  6.37 1 600 



252 
 

 720.0 14.36  156.39  0.13 405.2  6.37 1 600 

 2 

 2  

 733.350000 2.0585000 -1.000000 

 736.750000 -1.000000 0.0412000 

p3014 

 6 

 1 

 31 

    0.0 17.99  156.28  0.13 405.47  6.41 1 600 

 24.0 17.99  156.28  0.13 405.47  6.41 1 600 

 48.0 17.99  156.28  0.13 405.47  6.41 1 600 

 72.0 17.99  156.28  0.13 405.47  6.41 1 600 

 96.0 17.99  156.28  0.13 405.47  6.41 1 600 

 120.0 17.99  156.28  0.13 405.47  6.41 1 600 

 144.0 17.99  156.28  0.13 405.47  6.41 1 600 

 168.0 17.99  156.28  0.13 405.47  6.41 1 600 

 192.0 17.99  156.28  0.13 405.47  6.41 1 600 

 216.0 17.99  156.28  0.13 405.47  6.41 1 600 

 240.0 17.99  156.28  0.13 405.47  6.41 1 600 

 264.0 17.99  156.28  0.13 405.47  6.41 1 600 

 288.0 17.99  156.28  0.13 405.47  6.41 1 600 

 312.0 17.99  156.28  0.13 405.47  6.41 1 600 

 336.0 17.99  156.28  0.13 405.47  6.41 1 600 

 360.0 17.99  156.28  0.13 405.47  6.41 1 600 

 384.0 17.99  156.28  0.13 405.47  6.41 1 600 

 408.0 17.99  156.28  0.13 405.47  6.41 1 600 

 432.0 17.99  156.28  0.13 405.47  6.41 1 600 

 456.0 17.99  156.28  0.13 405.47  6.41 1 600 



253 
 

 480.0 17.99  156.28  0.13 405.47  6.41 1 600 

 504.0 17.99  156.28  0.13 405.47  6.41 1 600 

 528.0 17.99  156.28  0.13 405.47  6.41 1 600 

 552.0 17.99  156.28  0.13 405.47  6.41 1 600 

 576.0 17.99  156.28  0.13 405.47  6.41 1 600 

 600.0 17.99  156.28  0.13 405.47  6.41 1 600 

 624.0 17.99  156.28  0.13 405.47  6.41 1 600 

 648.0 17.99  156.28  0.13 405.47  6.41 1 600 

 672.0 17.99  156.28  0.13 405.47  6.41 1 600 

 696.0 17.99  156.28  0.13 405.47  6.41 1 600 

 720.0 17.99  156.28  0.13 405.47  6.41 1 600 

 2 

 2 

 733.470000 1.6553000 -1.000000 

 736.880000 -1.000000 0.0234000 

p3017 

 6 

 1 

 31 

    0.0 9.58  154.17  0.14 405.53  6.3 1 600 

 24.0 9.58  154.17  0.14 405.53  6.3 1 600 

 48.0 9.58  154.17  0.14 405.53  6.3 1 600 

 72.0 9.58  154.17  0.14 405.53  6.3 1 600 

 96.0 9.58  154.17  0.14 405.53  6.3 1 600 

 120.0 9.58  154.17  0.14 405.53  6.3 1 600 

 144.0 9.58  154.17  0.14 405.53  6.3 1 600 

 168.0 9.58  154.17  0.14 405.53  6.3 1 600 

 192.0 9.58  154.17  0.14 405.53  6.3 1 600 

 216.0 9.58  154.17  0.14 405.53  6.3 1 600 
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 240.0 9.58  154.17  0.14 405.53  6.3 1 600 

 264.0 9.58  154.17  0.14 405.53  6.3 1 600 

 288.0 9.58  154.17  0.14 405.53  6.3 1 600 

 312.0 9.58  154.17  0.14 405.53  6.3 1 600 

 336.0 9.58  154.17  0.14 405.53  6.3 1 600 

 360.0 9.58  154.17  0.14 405.53  6.3 1 600 

 384.0 9.58  154.17  0.14 405.53  6.3 1 600 

 408.0 9.58  154.17  0.14 405.53  6.3 1 600 

 432.0 9.58  154.17  0.14 405.53  6.3 1 600 

 456.0 9.58  154.17  0.14 405.53  6.3 1 600 

 480.0 9.58  154.17  0.14 405.53  6.3 1 600 

 504.0 9.58  154.17  0.14 405.53  6.3 1 600 

 528.0 9.58  154.17  0.14 405.53  6.3 1 600 

 552.0 9.58  154.17  0.14 405.53  6.3 1 600 

 576.0 9.58  154.17  0.14 405.53  6.3 1 600 

 600.0 9.58  154.17  0.14 405.53  6.3 1 600 

 624.0 9.58  154.17  0.14 405.53  6.3 1 600 

 648.0 9.58  154.17  0.14 405.53  6.3 1 600 

 672.0 9.58  154.17  0.14 405.53  6.3 1 600 

 696.0 9.58  154.17  0.14 405.53  6.3 1 600 

 720.0 9.58  154.17  0.14 405.53  6.3 1 600 

 2 

 2 

 733.500000 3.0087000 -1.000000 

 736.920000 -1.000000 0.4860000 

p3019 

 6 

 1 

 31 



255 
 

    0.0 8.72  153.38  0.14 405.17  6.31 1 600 

 24.0 8.72  153.38  0.14 405.17  6.31 1 600 

 48.0 8.72  153.38  0.14 405.17  6.31 1 600 

 72.0 8.72  153.38  0.14 405.17  6.31 1 600 

 96.0 8.72  153.38  0.14 405.17  6.31 1 600 

 120.0 8.72  153.38  0.14 405.17  6.31 1 600 

 144.0 8.72  153.38  0.14 405.17  6.31 1 600 

 168.0 8.72  153.38  0.14 405.17  6.31 1 600 

 192.0 8.72  153.38  0.14 405.17  6.31 1 600 

 216.0 8.72  153.38  0.14 405.17  6.31 1 600 

 240.0 8.72  153.38  0.14 405.17  6.31 1 600 

 264.0 8.72  153.38  0.14 405.17  6.31 1 600 

 288.0 8.72  153.38  0.14 405.17  6.31 1 600 

 312.0 8.72  153.38  0.14 405.17  6.31 1 600 

 336.0 8.72  153.38  0.14 405.17  6.31 1 600 

 360.0 8.72  153.38  0.14 405.17  6.31 1 600 

 384.0 8.72  153.38  0.14 405.17  6.31 1 600 

 408.0 8.72  153.38  0.14 405.17  6.31 1 600 

 432.0 8.72  153.38  0.14 405.17  6.31 1 600 

 456.0 8.72  153.38  0.14 405.17  6.31 1 600 

 480.0 8.72  153.38  0.14 405.17  6.31 1 600 

 504.0 8.72  153.38  0.14 405.17  6.31 1 600 

 528.0 8.72  153.38  0.14 405.17  6.31 1 600 

 552.0 8.72  153.38  0.14 405.17  6.31 1 600 

 576.0 8.72  153.38  0.14 405.17  6.31 1 600 

 600.0 8.72  153.38  0.14 405.17  6.31 1 600 

 624.0 8.72  153.38  0.14 405.17  6.31 1 600 

 648.0 8.72  153.38  0.14 405.17  6.31 1 600 

 672.0 8.72  153.38  0.14 405.17  6.31 1 600 



256 
 

 696.0 8.72  153.38  0.14 405.17  6.31 1 600 

 720.0 8.72  153.38  0.14 405.17  6.31 1 600 

 2 

 2 

 732.080000 3.3657000 -1.000000 

 735.000000 -1.000000 0.0726000  

p3021 

 6 

 1 

 31 

    0.0 11.46  154.9  0.136 405.47  6.34 1 600 

 24.0 11.46  154.9  0.136 405.47  6.34 1 600 

 48.0 11.46  154.9  0.136 405.47  6.34 1 600 

 72.0 11.46  154.9  0.136 405.47  6.34 1 600 

 96.0 11.46  154.9  0.136 405.47  6.34 1 600 

 120.0 11.46  154.9  0.136 405.47  6.34 1 600 

 144.0 11.46  154.9  0.136 405.47  6.34 1 600 

 168.0 11.46  154.9  0.136 405.47  6.34 1 600 

 192.0 11.46  154.9  0.136 405.47  6.34 1 600 

 216.0 11.46  154.9  0.136 405.47  6.34 1 600 

 240.0 11.46  154.9  0.136 405.47  6.34 1 600 

 264.0 11.46  154.9  0.136 405.47  6.34 1 600 

 288.0 11.46  154.9  0.136 405.47  6.34 1 600 

 312.0 11.46  154.9  0.136 405.47  6.34 1 600 

 336.0 11.46  154.9  0.136 405.47  6.34 1 600 

 360.0 11.46  154.9  0.136 405.47  6.34 1 600 

 384.0 11.46  154.9  0.136 405.47  6.34 1 600 

 408.0 11.46  154.9  0.136 405.47  6.34 1 600 

 432.0 11.46  154.9  0.136 405.47  6.34 1 600 



257 
 

 456.0 11.46  154.9  0.136 405.47  6.34 1 600 

 480.0 11.46  154.9  0.136 405.47  6.34 1 600 

 504.0 11.46  154.9  0.136 405.47  6.34 1 600 

 528.0 11.46  154.9  0.136 405.47  6.34 1 600 

 552.0 11.46  154.9  0.136 405.47  6.34 1 600 

 576.0 11.46  154.9  0.136 405.47  6.34 1 600 

 600.0 11.46  154.9  0.136 405.47  6.34 1 600 

 624.0 11.46  154.9  0.136 405.47  6.34 1 600 

 648.0 11.46  154.9  0.136 405.47  6.34 1 600 

 672.0 11.46  154.9  0.136 405.47  6.34 1 600 

 696.0 11.46  154.9  0.136 405.47  6.34 1 600 

 720.0 11.46  154.9  0.136 405.47  6.34 1 600 

 2 

 2 

 724.650000 2.1173000 -1.000000 

 727.500000 -1.000000 0.0715000 

p3023 

 6 

 1 

 31 

    0.0 24.15  159.17  0.12 404.9  6.43 1 600 

 24.0 24.15  159.17  0.12 404.9  6.43 1 600 

 48.0 24.15  159.17  0.12 404.9  6.43 1 600 

 72.0 24.15  159.17  0.12 404.9  6.43 1 600 

 96.0 24.15  159.17  0.12 404.9  6.43 1 600 

 120.0 24.15  159.17  0.12 404.9  6.43 1 600 

 144.0 24.15  159.17  0.12 404.9  6.43 1 600 

 168.0 24.15  159.17  0.12 404.9  6.43 1 600 

 192.0 24.15  159.17  0.12 404.9  6.43 1 600 



258 
 

 216.0 24.15  159.17  0.12 404.9  6.43 1 600 

 240.0 24.15  159.17  0.12 404.9  6.43 1 600 

 264.0 24.15  159.17  0.12 404.9  6.43 1 600 

 288.0 24.15  159.17  0.12 404.9  6.43 1 600 

 312.0 24.15  159.17  0.12 404.9  6.43 1 600 

 336.0 24.15  159.17  0.12 404.9  6.43 1 600 

 360.0 24.15  159.17  0.12 404.9  6.43 1 600 

 384.0 24.15  159.17  0.12 404.9  6.43 1 600 

 408.0 24.15  159.17  0.12 404.9  6.43 1 600 

 432.0 24.15  159.17  0.12 404.9  6.43 1 600 

 456.0 24.15  159.17  0.12 404.9  6.43 1 600 

 480.0 24.15  159.17  0.12 404.9  6.43 1 600 

 504.0 24.15  159.17  0.12 404.9  6.43 1 600 

 528.0 24.15  159.17  0.12 404.9  6.43 1 600 

 552.0 24.15  159.17  0.12 404.9  6.43 1 600 

 576.0 24.15  159.17  0.12 404.9  6.43 1 600 

 600.0 24.15  159.17  0.12 404.9  6.43 1 600 

 624.0 24.15  159.17  0.12 404.9  6.43 1 600 

 648.0 24.15  159.17  0.12 404.9  6.43 1 600 

 672.0 24.15  159.17  0.12 404.9  6.43 1 600 

 696.0 24.15  159.17  0.12 404.9  6.43 1 600 

 720.0 24.15  159.17  0.12 404.9  6.43 1 600 

 2 

 2 

 731.900000 1.3143000 -1.000000 

 734.880000 -1.000000 0.0505000 

p3027 

 6 

 1 



259 
 

 31 

    0.0 14.65  156.56  0.13 405.51  6.31 1 600 

 24.0 14.65  156.56  0.13 405.51  6.31 1 600 

 48.0 14.65  156.56 0.13 405.51 6.31 1 600 

 72.0 14.65  156.56 0.13 405.51 6.31 1 600 

 96.0 14.65  156.56  0.13 405.51  6.31 1 600 

 120.0 14.65  156.56  0.13 405.51  6.31 1 600 

 144.0 14.65  156.56  0.13 405.51  6.31 1 600 

 168.0 14.65  156.56  0.13 405.51  6.31 1 600 

 192.0 14.65  156.56  0.13 405.51  6.31 1 600 

 216.0 14.65  156.56  0.13 405.51  6.31 1 600 

 240.0 14.65  156.56  0.13 405.51  6.31 1 600 

 264.0 14.65  156.56  0.13 405.51  6.31 1 600 

 288.0 14.65  156.56  0.13 405.51  6.31 1 600 

 312.0 14.65  156.56  0.13 405.51  6.31 1 600 

 336.0 14.65  156.56  0.13 405.51  6.31 1 600 

 360.0 14.65  156.56  0.13 405.51  6.31 1 600 

 384.0 14.65  156.56  0.13 405.51  6.31 1 600 

 408.0 14.65  156.56  0.13 405.51  6.31 1 600 

 432.0 14.65  156.56  0.13 405.51  6.31 1 600 

 456.0 14.65  156.56  0.13 405.51  6.31 1 600 

 480.0 14.65  156.56  0.13 405.51  6.31 1 600 

 504.0 14.65  156.56  0.13 405.51  6.31 1 600 

 528.0 14.65  156.56  0.13 405.51  6.31 1 600 

 552.0 14.65  156.56  0.13 405.51  6.31 1 600 

 576.0 14.65  156.56  0.13 405.51  6.31 1 600 

 600.0 14.65  156.56  0.13 405.51  6.31 1 600 

 624.0 14.65  156.56  0.13 405.51  6.31 1 600 

 648.0 14.65  156.56  0.13 405.51  6.31 1 600 



260 
 

 672.0 14.65  156.56  0.13 405.51  6.31 1 600 

 696.0 14.65  156.56  0.13 405.51  6.31 1 600 

 720.0 14.65  156.56  0.13 405.51  6.31 1 600 

 2 

 2 

 732.620000 2.0606000 -1.000000 

 735.080000 -1.000000 0.1110000 

p304 

 6 

 1 

 31 

    0.0 18.56  154.76  0.13 405.7  6.39 1 600 

 24.0 18.56  154.76  0.13 405.7  6.39 1 600 

 48.0 18.56  154.76  0.13 405.7  6.39 1 600 

 72.0 18.56  154.76  0.13 405.7  6.39 1 600 

 96.0 18.56  154.76  0.13 405.7  6.39 1 600 

 120.0 18.56  154.76  0.13 405.7  6.39 1 600 

 144.0 18.56  154.76  0.13 405.7  6.39 1 600 

 168.0 18.56  154.76  0.13 405.7  6.39 1 600 

 192.0 18.56  154.76  0.13 405.7  6.39 1 600 

 216.0 18.56  154.76  0.13 405.7  6.39 1 600 

 240.0 18.56  154.76  0.13 405.7  6.39 1 600 

 264.0 18.56  154.76  0.13 405.7  6.39 1 600 

 288.0 18.56  154.76  0.13 405.7  6.39 1 600 

 312.0 18.56  154.76  0.13 405.7  6.39 1 600 

 336.0 18.56  154.76  0.13 405.7  6.39 1 600 

 360.0 18.56  154.76  0.13 405.7  6.39 1 600 

 384.0 18.56  154.76  0.13 405.7  6.39 1 600 

 408.0 18.56  154.76  0.13 405.7  6.39 1 600 



261 
 

 432.0 18.56  154.76  0.13 405.7  6.39 1 600 

 456.0 18.56  154.76  0.13 405.7  6.39 1 600 

 480.0 18.56  154.76  0.13 405.7  6.39 1 600 

 504.0 18.56  154.76  0.13 405.7  6.39 1 600 

 528.0 18.56  154.76  0.13 405.7  6.39 1 600 

 552.0 18.56  154.76  0.13 405.7  6.39 1 600 

 576.0 18.56  154.76  0.13 405.7  6.39 1 600 

 600.0 18.56  154.76  0.13 405.7  6.39 1 600 

 624.0 18.56  154.76  0.13 405.7  6.39 1 600 

 648.0 18.56  154.76  0.13 405.7  6.39 1 600 

 672.0 18.56  154.76  0.13 405.7  6.39 1 600 

 696.0 18.56  154.76  0.13 405.7  6.39 1 600 

 720.0 18.56  154.76  0.13 405.7  6.39 1 600 

 2 

 2 

 734.500000 1.5370000 -1.000000 

 735.000000 -1.000000 0.0927000 

p305 

 6 

 1 

 31 

    0.0 4.87  150.6  0.146 404.2  6.34 1 600 

 24.0 4.87  150.6  0.146 404.2  6.34 1 600 

 48.0 4.87  150.6  0.146 404.2  6.34 1 600 

 72.0 4.87  150.6  0.146 404.2  6.34 1 600 

 96.0 4.87  150.6  0.146 404.2  6.34 1 600 

 120.0 4.87  150.6  0.146 404.2  6.34 1 600 

 144.0 4.87  150.6  0.146 404.2  6.34 1 600 

 168.0 4.87  150.6  0.146 404.2  6.34 1 600 
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 192.0 4.87  150.6  0.146 404.2  6.34 1 600 

 216.0 4.87  150.6  0.146 404.2  6.34 1 600 

 240.0 4.87  150.6  0.146 404.2  6.34 1 600 

 264.0 4.87  150.6  0.146 404.2  6.34 1 600 

 288.0 4.87  150.6  0.146 404.2  6.34 1 600 

 312.0 4.87  150.6  0.146 404.2  6.34 1 600 

 336.0 4.87  150.6  0.146 404.2  6.34 1 600 

 360.0 4.87  150.6  0.146 404.2  6.34 1 600 

 384.0 4.87  150.6  0.146 404.2  6.34 1 600 

 408.0 4.87  150.6  0.146 404.2  6.34 1 600 

 432.0 4.87  150.6  0.146 404.2  6.34 1 600 

 456.0 4.87  150.6  0.146 404.2  6.34 1 600 

 480.0 4.87  150.6  0.146 404.2  6.34 1 600 

 504.0 4.87  150.6  0.146 404.2  6.34 1 600 

 528.0 4.87  150.6  0.146 404.2  6.34 1 600 

 552.0 4.87  150.6  0.146 404.2  6.34 1 600 

 576.0 4.87  150.6  0.146 404.2  6.34 1 600 

 600.0 4.87  150.6  0.146 404.2  6.34 1 600 

 624.0 4.87  150.6  0.146 404.2  6.34 1 600 

 648.0 4.87  150.6  0.146 404.2  6.34 1 600 

 672.0 4.87  150.6  0.146 404.2  6.34 1 600 

 696.0 4.87  150.6  0.146 404.2  6.34 1 600 

 720.0 4.87  150.6  0.146 404.2  6.34 1 600 

 2 

 2 

 732.000000 5.7878000 -1.000000 

 734.000000 -1.000000 0.1510000 

p306 

 6 



263 
 

 1 

 31 

    0.0 21.54  154.58  0.14 405.13  6.16 1 600 

 24.0 21.54  154.58  0.14 405.13  6.16 1 600 

 48.0 21.54  154.58  0.14 405.13  6.16 1 600 

 72.0 21.54  154.58  0.14 405.13  6.16 1 600 

 96.0 21.54  154.58  0.14 405.13  6.16 1 600 

 120.0 21.54  154.58  0.14 405.13  6.16 1 600 

 144.0 21.54  154.58  0.14 405.13  6.16 1 600 

 168.0 21.54  154.58  0.14 405.13  6.16 1 600 

 192.0 21.54  154.58  0.14 405.13  6.16 1 600 

 216.0 21.54  154.58  0.14 405.13  6.16 1 600 

 240.0 21.54  154.58  0.14 405.13  6.16 1 600 

 264.0 21.54  154.58  0.14 405.13  6.16 1 600 

 288.0 21.54  154.58  0.14 405.13  6.16 1 600 

 312.0 21.54  154.58  0.14 405.13  6.16 1 600 

 336.0 21.54  154.58  0.14 405.13  6.16 1 600 

 360.0 21.54  154.58  0.14 405.13  6.16 1 600 

 384.0 21.54  154.58  0.14 405.13  6.16 1 600 

 408.0 21.54  154.58  0.14 405.13  6.16 1 600 

 432.0 21.54  154.58  0.14 405.13  6.16 1 600 

 456.0 21.54  154.58  0.14 405.13  6.16 1 600 

 480.0 21.54  154.58  0.14 405.13  6.16 1 600 

 504.0 21.54  154.58  0.14 405.13  6.16 1 600 

 528.0 21.54  154.58  0.14 405.13  6.16 1 600 

 552.0 21.54  154.58  0.14 405.13  6.16 1 600 

 576.0 21.54  154.58  0.14 405.13  6.16 1 600 

 600.0 21.54  154.58  0.14 405.13  6.16 1 600 

 624.0 21.54  154.58  0.14 405.13  6.16 1 600 
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 648.0 21.54  154.58  0.14 405.13  6.16 1 600 

 672.0 21.54  154.58  0.14 405.13  6.16 1 600 

 696.0 21.54  154.58  0.14 405.13  6.16 1 600 

 720.0 21.54  154.58  0.14 405.13  6.16 1 600 

 2 

 2 

 723.000000 0.8521000 -1.000000 

 723.750000 -1.000000 0.0121000 

p316 

 6 

 1 

 31 

    0.0 20.51  157.76  0.13 405.48  6.19 1 600 

 24.0 20.51  157.76  0.13 405.48  6.19 1 600 

 48.0 20.51  157.76  0.13 405.48  6.19 1 600 

 72.0 20.51  157.76  0.13 405.48  6.19 1 600 

 96.0 20.51  157.76  0.13 405.48  6.19 1 600 

 120.0 20.51  157.76  0.13 405.48  6.19 1 600 

 144.0 20.51  157.76  0.13 405.48  6.19 1 600 

 168.0 20.51  157.76  0.13 405.48  6.19 1 600 

 192.0 20.51  157.76  0.13 405.48  6.19 1 600 

 216.0 20.51  157.76  0.13 405.48  6.19 1 600 

 240.0 20.51  157.76  0.13 405.48  6.19 1 600 

 264.0 20.51  157.76  0.13 405.48  6.19 1 600 

 288.0 20.51  157.76  0.13 405.48  6.19 1 600 

 312.0 20.51  157.76  0.13 405.48  6.19 1 600 

 336.0 20.51  157.76  0.13 405.48  6.19 1 600 

 360.0 20.51  157.76  0.13 405.48  6.19 1 600 

 384.0 20.51  157.76  0.13 405.48  6.19 1 600 
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 408.0 20.51  157.76  0.13 405.48  6.19 1 600 

 432.0 20.51  157.76  0.13 405.48  6.19 1 600 

 456.0 20.51  157.76  0.13 405.48  6.19 1 600 

 480.0 20.51  157.76  0.13 405.48  6.19 1 600 

 504.0 20.51  157.76  0.13 405.48  6.19 1 600 

 528.0 20.51  157.76  0.13 405.48  6.19 1 600 

 552.0 20.51  157.76  0.13 405.48  6.19 1 600 

 576.0 20.51  157.76  0.13 405.48  6.19 1 600 

 600.0 20.51  157.76  0.13 405.48  6.19 1 600 

 624.0 20.51  157.76  0.13 405.48  6.19 1 600 

 648.0 20.51  157.76  0.13 405.48  6.19 1 600 

 672.0 20.51  157.76  0.13 405.48  6.19 1 600 

 696.0 20.51  157.76  0.13 405.48  6.19 1 600 

 720.0 20.51  157.76  0.13 405.48  6.19 1 600 

 2 

 2 

 723.750000 1.0382000 -1.000000 

 724.250000 -1.000000 0.0299000 

p327 

 6 

 1 

 31 

    0.0 21.95  161.75  0.12 405.54  6.18 1 600 

 24.0 21.95  161.75  0.12 405.54  6.18 1 600 

 48.0 21.95  161.75  0.12 405.54  6.18 1 600 

 72.0 21.95  161.75  0.12 405.54  6.18 1 600 

 96.0 21.95  161.75  0.12 405.54  6.18 1 600 

 120.0 21.95  161.75  0.12 405.54  6.18 1 600 

 144.0 21.95  161.75  0.12 405.54  6.18 1 600 
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 168.0 21.95  161.75  0.12 405.54  6.18 1 600 

 192.0 21.95  161.75  0.12 405.54  6.18 1 600 

 216.0 21.95  161.75  0.12 405.54  6.18 1 600 

 240.0 21.95  161.75  0.12 405.54  6.18 1 600 

 264.0 21.95  161.75  0.12 405.54  6.18 1 600 

 288.0 21.95  161.75  0.12 405.54  6.18 1 600 

 312.0 21.95  161.75  0.12 405.54  6.18 1 600 

 336.0 21.95  161.75  0.12 405.54  6.18 1 600 

 360.0 21.95  161.75  0.12 405.54  6.18 1 600 

 384.0 21.95  161.75  0.12 405.54  6.18 1 600 

 408.0 21.95  161.75  0.12 405.54  6.18 1 600 

 432.0 21.95  161.75  0.12 405.54  6.18 1 600 

 456.0 21.95  161.75  0.12 405.54  6.18 1 600 

 480.0 21.95  161.75  0.12 405.54  6.18 1 600 

 504.0 21.95  161.75  0.12 405.54  6.18 1 600 

 528.0 21.95  161.75  0.12 405.54  6.18 1 600 

 552.0 21.95  161.75  0.12 405.54  6.18 1 600 

 576.0 21.95  161.75  0.12 405.54  6.18 1 600 

 600.0 21.95  161.75  0.12 405.54  6.18 1 600 

 624.0 21.95  161.75  0.12 405.54  6.18 1 600 

 648.0 21.95  161.75  0.12 405.54  6.18 1 600 

 672.0 21.95  161.75  0.12 405.54  6.18 1 600 

 696.0 21.95  161.75  0.12 405.54  6.18 1 600 

 720.0 21.95  161.75  0.12 405.54  6.18 1 600 

 2 

 2 

 724.580000 1.1000000 -1.000000 

 725.750000 -1.000000 0.0109000 

p1014 
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 6 

 1 

 31 

    0.0 8.57  151.6  0.15 406.57  6.29 1 600 

 24.0 8.57  151.6  0.15 406.57  6.29 1 600 

 48.0 8.57  151.6  0.15 406.57  6.29 1 600 

 72.0 8.57  151.6  0.15 406.57  6.29 1 600 

 96.0 8.57  151.6  0.15 406.57  6.29 1 600 

 120.0 8.57  151.6  0.15 406.57  6.29 1 600 

 144.0 8.57  151.6  0.15 406.57  6.29 1 600 

 168.0 8.57  151.6  0.15 406.57  6.29 1 600 

 192.0 8.57  151.6  0.15 406.57  6.29 1 600 

 216.0 8.57  151.6  0.15 406.57  6.29 1 600 

 240.0 8.57  151.6  0.15 406.57  6.29 1 600 

 264.0 8.57  151.6  0.15 406.57  6.29 1 600 

 288.0 8.57  151.6  0.15 406.57  6.29 1 600 

 312.0 8.57  151.6  0.15 406.57  6.29 1 600 

 336.0 8.57  151.6  0.15 406.57  6.29 1 600 

 360.0 8.57  151.6  0.15 406.57  6.29 1 600 

 384.0 8.57  151.6  0.15 406.57  6.29 1 600 

 408.0 8.57  151.6  0.15 406.57  6.29 1 600 

 432.0 8.57  151.6  0.15 406.57  6.29 1 600 

 456.0 8.57  151.6  0.15 406.57  6.29 1 600 

 480.0 8.57  151.6  0.15 406.57  6.29 1 600 

 504.0 8.57  151.6  0.15 406.57  6.29 1 600 

 528.0 8.57  151.6  0.15 406.57  6.29 1 600 

 552.0 8.57  151.6  0.15 406.57  6.29 1 600 

 576.0 8.57  151.6  0.15 406.57  6.29 1 600 

 600.0 8.57  151.6  0.15 406.57  6.29 1 600 
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 624.0 8.57  151.6  0.15 406.57  6.29 1 600 

 648.0 8.57  151.6  0.15 406.57  6.29 1 600 

 672.0 8.57  151.6  0.15 406.57  6.29 1 600 

 696.0 8.57  151.6  0.15 406.57  6.29 1 600 

 720.0 8.57  151.6  0.15 406.57  6.29 1 600 

 2 

 4 

 348.500000 3.2400000 -1.000000 

 350.330000 -1.000000 0.0227000 

 730.880000 3.5300000 -1.000000 

 733.580000 -1.000000 0.0212000 

p358 

 6 

 1 

 31 

    0.0 8.12  158.39  0.13 405.18  6.38 1 600 

 24.0 8.12  158.39  0.13 405.18  6.38 1 600 

 48.0 8.12  158.39  0.13 405.18  6.38 1 600 

 72.0 8.12  158.39  0.13 405.18  6.38 1 600 

 96.0 8.12  158.39  0.13 405.18  6.38 1 600 

 120.0 8.12  158.39  0.13 405.18  6.38 1 600 

 144.0 8.12  158.39  0.13 405.18  6.38 1 600 

 168.0 8.12  158.39  0.13 405.18  6.38 1 600 

 192.0 8.12  158.39  0.13 405.18  6.38 1 600 

 216.0 8.12  158.39  0.13 405.18  6.38 1 600 

 240.0 8.12  158.39  0.13 405.18  6.38 1 600 

 264.0 8.12  158.39  0.13 405.18  6.38 1 600 

 288.0 8.12  158.39  0.13 405.18  6.38 1 600 

 312.0 8.12  158.39  0.13 405.18  6.38 1 600 
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 336.0 8.12  158.39  0.13 405.18  6.38 1 600 

 360.0 8.12  158.39  0.13 405.18  6.38 1 600 

 384.0 8.12  158.39  0.13 405.18  6.38 1 600 

 408.0 8.12  158.39  0.13 405.18  6.38 1 600 

 432.0 8.12  158.39  0.13 405.18  6.38 1 600 

 456.0 8.12  158.39  0.13 405.18  6.38 1 600 

 480.0 8.12  158.39  0.13 405.18  6.38 1 600 

 504.0 8.12  158.39  0.13 405.18  6.38 1 600 

 528.0 8.12  158.39  0.13 405.18  6.38 1 600 

 552.0 8.12  158.39  0.13 405.18  6.38 1 600 

 576.0 8.12  158.39  0.13 405.18  6.38 1 600 

 600.0 8.12  158.39  0.13 405.18  6.38 1 600 

 624.0 8.12  158.39  0.13 405.18  6.38 1 600 

 648.0 8.12  158.39  0.13 405.18  6.38 1 600 

 672.0 8.12  158.39  0.13 405.18  6.38 1 600 

 696.0 8.12  158.39  0.13 405.18  6.38 1 600 

 720.0 8.12  158.39  0.13 405.18  6.38 1 600 

 2 

 2 

 722.250000 2.6100000 -1.000000 

 723.000000 -1.000000 0.0129000  

p3036 

 6 

 1 

 31 

    0.0 15.76  157.14  0.13 406.07  6.34 1 600 

 24.0 15.76  157.14  0.13 406.07  6.34 1 600 

 48.0 15.76  157.14  0.13 406.07  6.34 1 600 

 72.0 15.76  157.14  0.13 406.07  6.34 1 600 
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 96.0 15.76  157.14  0.13 406.07  6.34 1 600 

 120.0 15.76  157.14  0.13 406.07  6.34 1 600 

 144.0 15.76  157.14  0.13 406.07  6.34 1 600 

 168.0 15.76  157.14  0.13 406.07  6.34 1 600 

 192.0 15.76  157.14  0.13 406.07  6.34 1 600 

 216.0 15.76  157.14  0.13 406.07  6.34 1 600 

 240.0 15.76  157.14  0.13 406.07  6.34 1 600 

 264.0 15.76  157.14  0.13 406.07  6.34 1 600 

 288.0 15.76  157.14  0.13 406.07  6.34 1 600 

 312.0 15.76  157.14  0.13 406.07  6.34 1 600 

 336.0 15.76  157.14  0.13 406.07  6.34 1 600 

 360.0 15.76  157.14  0.13 406.07  6.34 1 600 

 384.0 15.76  157.14  0.13 406.07  6.34 1 600 

 408.0 15.76  157.14  0.13 406.07  6.34 1 600 

 432.0 15.76  157.14  0.13 406.07  6.34 1 600 

 456.0 15.76  157.14  0.13 406.07  6.34 1 600 

 480.0 15.76  157.14  0.13 406.07  6.34 1 600 

 504.0 15.76  157.14  0.13 406.07  6.34 1 600 

 528.0 15.76  157.14  0.13 406.07  6.34 1 600 

 552.0 15.76  157.14  0.13 406.07  6.34 1 600 

 576.0 15.76  157.14  0.13 406.07  6.34 1 600 

 600.0 15.76  157.14  0.13 406.07  6.34 1 600 

 624.0 15.76  157.14  0.13 406.07  6.34 1 600 

 648.0 15.76  157.14  0.13 406.07  6.34 1 600 

 672.0 15.76  157.14  0.13 406.07  6.34 1 600 

 696.0 15.76  157.14  0.13 406.07  6.34 1 600 

 720.0 15.76  157.14  0.13 406.07  6.34 1 600 

 2 

 2 
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 731.820000 1.9600000 -1.000000 

 735.330000 -1.000000 0.0117000 

p1011 

 6 

 1 

 31 

    0.0 3.55  152.12 0.14 401.1 6.39 1 600 

 24.0 3.55  152.12  0.14 401.1  6.39 1 600 

 48.0 3.55  152.12  0.14 401.1  6.39 1 600 

 72.0 3.55  152.12  0.14 401.1  6.39 1 600 

 96.0 3.55  152.12  0.14 401.1  6.39 1 600 

 120.0 3.55  152.12  0.14 401.1  6.39 1 600 

 144.0 3.55  152.12  0.14 401.1  6.39 1 600 

 168.0 3.55  152.12  0.14 401.1  6.39 1 600 

 192.0 3.55  152.12  0.14 401.1  6.39 1 600 

 216.0 3.55  152.12  0.14 401.1  6.39 1 600 

 240.0 3.55  152.12  0.14 401.1  6.39 1 600 

 264.0 3.55  152.12  0.14 401.1  6.39 1 600 

 288.0 3.55  152.12  0.14 401.1  6.39 1 600 

 312.0 3.55  152.12  0.14 401.1  6.39 1 600 

 336.0 3.55  152.12  0.14 401.1  6.39 1 600 

 360.0 3.55  152.12  0.14 401.1  6.39 1 600 

 384.0 3.55  152.12  0.14 401.1  6.39 1 600 

 408.0 3.55  152.12  0.14 401.1  6.39 1 600 

 432.0 3.55  152.12  0.14 401.1  6.39 1 600 

 456.0 3.55  152.12  0.14 401.1  6.39 1 600 

 480.0 3.55  152.12  0.14 401.1  6.39 1 600 

 504.0 3.55  152.12  0.14 401.1  6.39 1 600 

 528.0 3.55  152.12  0.14 401.1  6.39 1 600 
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 552.0 3.55  152.12  0.14 401.1  6.39 1 600 

 576.0 3.55  152.12  0.14 401.1  6.39 1 600 

 600.0 3.55  152.12  0.14 401.1  6.39 1 600 

 624.0 3.55  152.12  0.14 401.1  6.39 1 600 

 648.0 3.55  152.12  0.14 401.1  6.39 1 600 

 672.0 3.55  152.12  0.14 401.1  6.39 1 600 

 696.0 3.55  152.12  0.14 401.1  6.39 1 600 

 720.0 3.55  152.12  0.14 401.1  6.39 1 600 

 2 

 4 

 337.200000 5.4800000 -1.000000 

 338.730000 -1.000000 0.0332000 

 734.166000 7.5800000 -1.000000 

 735.500000 -1.000000 0.0475000 

p1018 

 6 

 1 

 31 

    0.0 5.78  165.14  0.11 410.9  6.08 1 600 

 24.0 5.78  165.14  0.11 410.9  6.08 1 600 

 48.0 5.78  165.14  0.11 410.9  6.08 1 600 

 72.0 5.78  165.14  0.11 410.9  6.08 1 600 

 96.0 5.78  165.14  0.11 410.9  6.08 1 600 

 120.0 5.78  165.14  0.11 410.9  6.08 1 600 

 144.0 5.78  165.14  0.11 410.9  6.08 1 600 

 168.0 5.78  165.14  0.11 410.9  6.08 1 600 

 192.0 5.78  165.14  0.11 410.9  6.08 1 600 

 216.0 5.78  165.14  0.11 410.9  6.08 1 600 

 240.0 5.78  165.14  0.11 410.9  6.08 1 600 
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 264.0 5.78  165.14  0.11 410.9  6.08 1 600 

 288.0 5.78  165.14  0.11 410.9  6.08 1 600 

 312.0 5.78  165.14  0.11 410.9  6.08 1 600 

 336.0 5.78  165.14  0.11 410.9  6.08 1 600 

 360.0 5.78  165.14  0.11 410.9  6.08 1 600 

 384.0 5.78  165.14  0.11 410.9  6.08 1 600 

 408.0 5.78  165.14  0.11 410.9  6.08 1 600 

 432.0 5.78  165.14  0.11 410.9  6.08 1 600 

 456.0 5.78  165.14  0.11 410.9  6.08 1 600 

 480.0 5.78  165.14  0.11 410.9  6.08 1 600 

 504.0 5.78  165.14  0.11 410.9  6.08 1 600 

 528.0 5.78  165.14  0.11 410.9  6.08 1 600 

 552.0 5.78  165.14  0.11 410.9  6.08 1 600 

 576.0 5.78  165.14  0.11 410.9  6.08 1 600 

 600.0 5.78  165.14  0.11 410.9  6.08 1 600 

 624.0 5.78  165.14  0.11 410.9  6.08 1 600 

 648.0 5.78  165.14  0.11 410.9  6.08 1 600 

 672.0 5.78  165.14  0.11 410.9  6.08 1 600 

 696.0 5.78  165.14  0.11 410.9  6.08 1 600 

 720.0 5.78  165.14  0.11 410.9  6.08 1 600 

 2 

 4 

 346.880000 4.2300000 -1.000000 

 348.830000 -1.000000 0.0237000 

 732.380000 -1.000000 0.0123800 

 737.660000 4.6800000 -1.000000 

p336 

 6 

 1 
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 31 

    0.0 11.05  155.45  0.135 405.4  6.32 1 600 

 24.0 11.05  155.45  0.135 405.4  6.32 1 600 

 48.0 11.05  155.45  0.135 405.4  6.32 1 600 

 72.0 11.05  155.45  0.135 405.4  6.32 1 600 

 96.0 11.05  155.45  0.135 405.4  6.32 1 600 

 120.0 11.05  155.45  0.135 405.4  6.32 1 600 

 144.0 11.05  155.45  0.135 405.4  6.32 1 600 

 168.0 11.05  155.45  0.135 405.4  6.32 1 600 

 192.0 11.05  155.45  0.135 405.4  6.32 1 600 

 216.0 11.05  155.45  0.135 405.4  6.32 1 600 

 240.0 11.05  155.45  0.135 405.4  6.32 1 600 

 264.0 11.05  155.45  0.135 405.4  6.32 1 600 

 288.0 11.05  155.45  0.135 405.4  6.32 1 600 

 312.0 11.05  155.45  0.135 405.4  6.32 1 600 

 336.0 11.05  155.45  0.135 405.4  6.32 1 600 

 360.0 11.05  155.45  0.135 405.4  6.32 1 600 

 384.0 11.05  155.45  0.135 405.4  6.32 1 600 

 408.0 11.05  155.45  0.135 405.4  6.32 1 600 

 432.0 11.05  155.45  0.135 405.4  6.32 1 600 

 456.0 11.05  155.45  0.135 405.4  6.32 1 600 

 480.0 11.05  155.45  0.135 405.4  6.32 1 600 

 504.0 11.05  155.45  0.135 405.4  6.32 1 600 

 528.0 11.05  155.45  0.135 405.4  6.32 1 600 

 552.0 11.05  155.45  0.135 405.4  6.32 1 600 

 576.0 11.05  155.45  0.135 405.4  6.32 1 600 

 600.0 11.05  155.45  0.135 405.4  6.32 1 600 

 624.0 11.05  155.45  0.135 405.4  6.32 1 600 

 648.0 11.05  155.45  0.135 405.4  6.32 1 600 
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 672.0 11.05  155.45  0.135 405.4  6.32 1 600 

 696.0 11.05  155.45  0.135 405.4  6.32 1 600 

 720.0 11.05  155.45  0.135 405.4  6.32 1 600 

 2 

 2 

 734.750000 2.5400000 -1.000000 

 736.460000 -1.000000 0.0199000 

p353 

 6 

 1 

 31 

    0.0 18.64  150.11  0.15 404.88  6.17 1 600 

 24.0 18.64  150.11  0.15 404.88  6.17 1 600 

 48.0 18.64  150.11  0.15 404.88  6.17 1 600 

 72.0 18.64  150.11  0.15 404.88  6.17 1 600 

 96.0 18.64  150.11  0.15 404.88  6.17 1 600 

 120.0 18.64  150.11  0.15 404.88  6.17 1 600 

 144.0 18.64  150.11  0.15 404.88  6.17 1 600 

 168.0 18.64  150.11  0.15 404.88  6.17 1 600 

 192.0 18.64  150.11  0.15 404.88  6.17 1 600 

 216.0 18.64  150.11  0.15 404.88  6.17 1 600 

 240.0 18.64  150.11  0.15 404.88  6.17 1 600 

 264.0 18.64  150.11  0.15 404.88  6.17 1 600 

 288.0 18.64  150.11  0.15 404.88  6.17 1 600 

 312.0 18.64  150.11  0.15 404.88  6.17 1 600 

 336.0 18.64  150.11  0.15 404.88  6.17 1 600 

 360.0 18.64  150.11  0.15 404.88  6.17 1 600 

 384.0 18.64  150.11  0.15 404.88  6.17 1 600 

 408.0 18.64  150.11  0.15 404.88  6.17 1 600 
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 432.0 18.64  150.11  0.15 404.88  6.17 1 600 

 456.0 18.64  150.11  0.15 404.88  6.17 1 600 

 480.0 18.64  150.11  0.15 404.88  6.17 1 600 

 504.0 18.64  150.11  0.15 404.88  6.17 1 600 

 528.0 18.64  150.11  0.15 404.88  6.17 1 600 

 552.0 18.64  150.11  0.15 404.88  6.17 1 600 

 576.0 18.64  150.11  0.15 404.88  6.17 1 600 

 600.0 18.64  150.11  0.15 404.88  6.17 1 600 

 624.0 18.64  150.11  0.15 404.88  6.17 1 600 

 648.0 18.64  150.11  0.15 404.88  6.17 1 600 

 672.0 18.64  150.11  0.15 404.88  6.17 1 600 

 696.0 18.64  150.11  0.15 404.88  6.17 1 600 

 720.0 18.64  150.11  0.15 404.88  6.17 1 600 

 2 

 2 

 721.750000 0.81300000 -1.000000 

 723.670000 -1.000000 0.0124000 

p328 

 6 

 1 

 31 

    0.0 7.998  153.22  0.14 405.24  6.3 1 600 

 24.0 7.998  153.22  0.14 405.24  6.3 1 600 

 48.0 7.998  153.22  0.14 405.24  6.3 1 600 

 72.0 7.998  153.22  0.14 405.24  6.3 1 600 

 96.0 7.998  153.22  0.14 405.24  6.3 1 600 

 120.0 7.998  153.22  0.14 405.24  6.3 1 600 

 144.0 7.998  153.22  0.14 405.24  6.3 1 600 

 168.0 7.998  153.22  0.14 405.24  6.3 1 600 
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 192.0 7.998  153.22  0.14 405.24  6.3 1 600 

 216.0 7.998  153.22  0.14 405.24  6.3 1 600 

 240.0 7.998  153.22  0.14 405.24  6.3 1 600 

 264.0 7.998  153.22  0.14 405.24  6.3 1 600 

 288.0 7.998  153.22  0.14 405.24  6.3 1 600 

 312.0 7.998  153.22  0.14 405.24  6.3 1 600 

 336.0 7.998  153.22  0.14 405.24  6.3 1 600 

 360.0 7.998  153.22  0.14 405.24  6.3 1 600 

 384.0 7.998  153.22  0.14 405.24  6.3 1 600 

 408.0 7.998  153.22  0.14 405.24  6.3 1 600 

 432.0 7.998  153.22  0.14 405.24  6.3 1 600 

 456.0 7.998  153.22  0.14 405.24  6.3 1 600 

 480.0 7.998  153.22  0.14 405.24  6.3 1 600 

 504.0 7.998  153.22  0.14 405.24  6.3 1 600 

 528.0 7.998  153.22  0.14 405.24  6.3 1 600 

 552.0 7.998  153.22  0.14 405.24  6.3 1 600 

 576.0 7.998  153.22  0.14 405.24  6.3 1 600 

 600.0 7.998  153.22  0.14 405.24  6.3 1 600 

 624.0 7.998  153.22  0.14 405.24  6.3 1 600 

 648.0 7.998  153.22  0.14 405.24  6.3 1 600 

 672.0 7.998  153.22  0.14 405.24  6.3 1 600 

 696.0 7.998  153.22  0.14 405.24  6.3 1 600 

 720.0 7.998  153.22  0.14 405.24  6.3 1 600 

 2 

 2 

 733.250000 3.5800000 -1.000000 

 734.130000 -1.000000 0.0248000 

p3015 

 6 
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 1 

 31 

    0.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 24.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 48.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 72.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 96.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 120.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 144.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 168.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 192.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 216.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 240.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 264.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 288.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 312.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 336.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 360.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 384.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 408.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 432.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 456.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 480.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 504.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 528.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 552.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 576.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 600.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 624.0 31.22  140.77  0.195 405.24  6.36 1.037 600 
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 648.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 672.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 696.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 720.0 31.22  140.77  0.195 405.24  6.36 1.037 600 

 2 

 2 

 737.000000 0.62090000 -1.000000 

 740.060000 -1.000000 0.0072499 

p3022 

 6 

 1 

 31 

    0.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 24.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 48.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 72.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 96.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 120.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 144.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 168.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 192.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 216.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 240.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 264.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 288.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 312.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 336.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 360.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 384.0 5.54  158.53  0.128 404.69  6.4 1.006 600 
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 408.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 432.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 456.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 480.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 504.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 528.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 552.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 576.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 600.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 624.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 648.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 672.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 696.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 720.0 5.54  158.53  0.128 404.69  6.4 1.006 600 

 2 

 2 

 723.000000 4.1626000 -1.000000 

 726.750000 -1.000000 0.1639999 

 

 

 

 

 

 

 

 

 

 

 



281 
 

Model code: Source file – EFV_population_human.for 

 
C###################################################################
###C 
 
        Subroutine DIFFEQ(T,X,XP) 
        Implicit None 
 
        Include 'globals.inc' 
        Include 'model.inc' 
 
        Real*8 T,X(MaxNDE),XP(MaxNDE), CL,V2,Ka,V3,CLD,Ktr,Kpc,Kcp 
        Real*8 Kpb,Kbp,Kcb,Kbc,V8 
CC 
C-------------------------------------------------------------------
---C 
C   Enter Differential Equations Below  {e.g.  XP(1) = -P(1)*X(1) }    
C 
C----c--------------------------------------------------------------
---C 
       CL=R(1) 
       V2=R(2)+0.01 
       Ka=R(3) 
       V3=R(4) 
       CLD=R(5) 
  Ktr=R(6) 
  Kpc=P(1) 
  Kcp=P(2) 
  Kpb=P(3) 
  Kbp=P(4) 
  Kcb=P(5) 
  Kbc=P(6) 
  V8=P(7) 
 
      
       XP(1) = -Ktr*X(1) 
    XP(2) = Ktr*X(1) -Ktr*X(2) 
    XP(3) = Ktr*X(2) - Ktr*X(3) 
    XP(4) = Ktr*X(3) -Ka*X(4) 
       XP(5) = Ka*X(4)- CL*(X(5)/V2)- CLD*(X(5)/V2) 
     x  +CLD*(X(6)/V3) 
       XP(6) = CLD*(X(5)/V2)- CLD*(X(6)/V3)  
  XP(7) = Kpc*X(5) -Kcp*X(7) -Kcb*X(7) +Kbc*X(8) !CSF 
  XP(8) = Kcb*X(7) -Kbc*X(8) +Kpb*X(5) -Kbp*X(8) !brain 
 

 

 

 



282 
 

APPENDIX-5: RELEVANT PREVIOUSLY PUBLISHED ABSTRACTS 

 

ABSTRACT PRESENTED AT THE AMERICAN SOCIETY OF CLINICAL 

PHARMACOLOGY AND THERAPEUTICS 2018 CONFERENCE, ORLANDO, 

FLORIDA 

 

 Development and Application of a Population Pharmacokinetic (PK) Model of 

Maraviroc to Predict HIV Pre-Exposure Prophylaxis (PrEP) Efficacy in Mucosal Tissues 

Nithya Srinivas, Mackenzie Cottrell, Nicole White, Craig Sykes, Heather Prince, Daniel 

Gonzalez & Angela DM Kashuba 

 

Maraviroc (MVC) monotherapy 300 mg daily has been studied in a phase 2 trial as a 

chemoprophylactic against HIV. Infection occurred in 4 men with low MVC plasma 

concentrations. Using data from a phase 1 dose-ranging study, we developed a predictive PK 

model for MVC in plasma, rectal tissue (RT) and female genital tract tissue (FGT) and explored 

the effect of adherence on efficacy.  

PK data were taken from a single-dose study of 24 women given 150, 300 or 600 mg of MVC 

and sampled in plasma, RT and FGT over 48 h (NCT01330199). A population PK model was 

developed using NONMEM 7.4. Goodness of fit was assessed by standard diagnostic plots and 

visual predictive checks. Using the final model, Monte Carlo simulations were performed to 

simulate 1000 virtual subjects taking 300 mg MVC daily. PrEP efficacy with imperfect 

adherence was explored by using 2 targets from published tissue explant data: EC80 (1 uM in 

FGT, 0.63 uM in RT) and complete protection (100 uM).  
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A 10-compartment linear model captured 90% of the data. 5 transit compartments described 

accumulation in RT. In simulated subjects, steady state was achieved after a single dose in 

FGT and 10 doses in RT. Even with 100% adherence, 0% of the virtual subjects achieved 

protection in FGT using the 2 targets. Adherence had little effect on protection in RT: 100% 

of population with 30% adherence (2 doses/week) reached the EC80 target, while 0% 

population with 100% adherence reached the complete inhibition target.  

The variable estimates of MVC exposure associated with favorable efficacy identified in 

literature profoundly affected the outcome of the simulations. However, these data suggest that 

oral MVC monotherapy may not achieve suitable PrEP efficacy in all populations, and if used, 

should be combined with other active agents. 
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ABSTRACT PRESENTED AT THE 2018 CONFERENCE ON RETROVIRUSES AND 

OPPORTUNISTIC INFECTIONS, BOSTON, MASSACHUSSETS  

 

Mapping the Distribution of Efavirenz Relative to Brain Tissue Cells 

Nithya Srinivas, Elias P Rosen, Gabriela De La Cruz, Craig Sykes, Amanda Schauer, Lourdes 

Adamson, Paul Luciw & Angela DM Kashuba 

 

Despite ongoing antiretroviral (ARV) therapy, HIV continues to persist in the central nervous 

system (CNS), as demonstrated by the establishment of latent microglia reservoirs and HIV-

associated neurocognitive disorder. HIV persistence in the brain may be due to inadequate drug 

exposure in HIV-target cells; however, there is little information on brain distribution of ARVs. 

In this study, we have quantified the concentration of 4 ARVs in brain tissue by LC-MS/MS 

and infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) while 

mapping their distribution relative to expression of CD4+ T-cells and CD11b+ microglia. 

In 4 male macaques (2 uninfected; 2 SHIV-infected) dosed to steady-state, concentrations of 

4 ARVs – tenofovir (TFV), emtricitabine (FTC), efavirenz (EFV), and raltegravir (RAL) were 

measured in 10-micron cerebellum tissue slices by LC-MS/MS (LLOQ of homogenate ranged 

from 0.002-0.01 ng/mL). IR-MALDESI mass spectrometry imaging (MSI) was used to 

characterize drug distribution. Density of 1.06g/cm3 was used to convert tissue concentrations 

to ng/g. Immunohistochemistry (IHC) staining of CD11b+ microglia and CD4+ T-cells was 

performed on contiguous slices. Image analysis of co-registered MSI and down-sampled IHC 

images was performed in MATLAB. 
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TFV, FTC, and RAL were not detected by MALDESI and were <100 ng/g by LC-MS/MS 

(range of concentration was 9.4-61.2 ng/g). EFV concentrations by IR-MALDESI had a 

standard deviation of 663 ng/g for all samples and was 2.2-fold greater in SHIV- than SHIV+ 

brain (median = 1596 and 723 ng/g, respectively). The fractional coverage of target cells co-

localized with EFV (FrC) differed based on infection status: for CD11b FrC = 22-59% 

(SHIV+) and 76-81% (SHIV-) and for CD4 FrC = 14-59% (SHIV+) and 73-77% (SHIV-). 

However, the FrC of total CD11b and CD4 cells exposed to EFV concentrations above IC50 

(0.5 ng/g) was considerably smaller: 0-3.3%, regardless of infection status (Figure 1, panel 

IV). 

EFV accumulation was 12 to 60-fold greater in brain tissue compared to other ARVs in SHIV+ 

animals but only 14% to 59% of CD11b and CD4 brain cells in these animals were colocalized 

with detectable EFV. This suggests that ARV coverage may be incomplete for cell populations 

that harbor, or can become infected, with HIV. We have shown in this preliminary analysis 

that this approach has the potential to provide ARV concentration-effect relationships in the 

brain at the cellular level. 
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Figure 1 
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ABSTRACT PRESENTED AT THE INTERNATIONAL AIDS SOCIETY 2017 

CONFERENCE, PARIS, FRANCE 

 

 SHIV Infection and Drug Transporters Influence Brain Tissue Concentrations of 

Efavirenz 

Nithya Srinivas, John K Fallon, Craig Sykes, Nicole White, Amanda Schauer, Michelle 

Matthews, Lourdes Adamson, Paul Luciw, Phil Smith & Angela DM Kashuba 

 

Despite antiretroviral (ARV) therapy, there is a high prevalence of HIV-associated 

neurocognitive disorder (HAND) in HIV-infected individuals. Using CSF data, it has been 

theorized that inadequate ARV concentrations may contribute. However, information on brain 

tissue concentrations is sparse. This study compared the concentration of ARVs in four regions 

of brain tissue with CSF in uninfected and SHIV-infected rhesus macaques. 

In 12 male macaques (6 uninfected; 6 SHIV-infected) dosed to steady-state, concentrations of 

6 ARVs – tenofovir (TFV), emtricitabine (FTC), efavirenz (EFV), raltegravir (RAL), 

maraviroc (MVC) and atazanavir (ATZ) were measured by LC-MS/MS in the CSF 

(LLOQ=0.5 ng/mL) and cerebrum, cerebellum, basal ganglia and parietal cortex regions of the 

brain (LLOQ of homogenate ranged from 0.002-0.01 ng/mL). Tissue concentrations were 

converted to ng/g using density of 1.06. To assess the influence of drug transporters on ARV 

concentration, brain tissue was analyzed for P-gp and BCRP efflux transporter proteins by LC-

MS proteomics (LLOQ=0.1 pmol/mg protein). Data are presented as median (range); statistical 

analysis was by Kruskal-Wallis test. 
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CSF concentrations did not differ by infection status (p>0.1). Since there was no difference in 

ARV concentration in the various regions of the brain (p>0.1), these data were combined. 

Concentrations in brain tissue were significantly greater than CSF for TFV, FTC and EFV: 

ranging from 5-times (FTC) to 769- times (EFV) higher. Brain tissue concentration of EFV 

was 4.1 times higher in uninfected animals. BCRP concentration was 1.7 times higher in 

infected animals (p=0.02); P-gp concentration did not differ with infection status (p=0.06). 

In this study, brain tissue concentration of EFV was 4-fold lower in infected macaques and this 

may be due to increased BCRP concentrations. Further, we have shown that ARV CSF 

concentrations may need cautious interpretation when used as surrogate for brain tissue 

exposure. Based on these data, further investigations are needed to determine how ARV brain 

tissue concentrations influence HAND prevalence. 

 CSF concentration (ng/mL) Brain tissue concentration (ng/g) 

 Uninfected Infected Uninfected Infected 

TFV 
0.8 

(0.0, 4.6) 

2.2 

(1.5, 3) 

55.0 

(47.1, 392.1) 

34.9 

(22.7, 65.1) 

FTC 
2.1 

(0.o, 11.7) 

5.7 

(3.9, 7.3) 

29.9 

(17.1, 69.2) 

28.4 

(14.8, 33.6) 

EFV 
2.1 

(1.4, 3.4) 

0.5 

(0.5, 1.4) 

1615.2 

(965.2, 1983.0) 

391.6 

(239.8, 792.3) 

RAL 1.2 0.5 27.7 14.7 
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(0.6, 1.3) (0.5, 0.5) (15.8, 78.3) (9.7, 21.8) 

MVC 
2.9 

(0.5, 11.1) 

0.0 

(0.0, 0.0) 

57.5 

(21.9, 193.0) 

48.7 

(34.8, 104.8) 

ATZ 
0.5 

(0.0, 40.5) 

0.5 

(0.5, 0.5) 

84.1 

(49.7, 554.1) 

133.1 

(59.4, 138.0) 
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ABSTRACT PRESENTED AT THE AMERICAN SOCIETY OF CLINICAL 
PHARMACOLOGY AND THERAPEUTICS 2016 CONFERENCE, SAN DIEGO, 
CALIFORNIA 

 

Antiretroviral Drug Exposure in Cerebrospinal Fluid (CSF) as a Predictor of 

Neurocognitive Outcomes in HIV Infected Patients 

Nithya Srinivas, Kuo H Yang, John W Collins, Craig Sykes, Sarah-Beth Joseph, Kevin R 

Robertson, Joseph J Eron, Ronald Swanstrom & Angela DM Kashuba 

 

Neurocognitive impairment in HIV patients remains prevalent despite potent antiretroviral 

therapy. This may be related to drug penetration into the central nervous system. Here we use 

a population pharmacokinetic (PK) model to estimate exposure of tenofovir (TFV), 

emtricitabine (FTC) and darunavir boosted with ritonavir (DRV/r) in CSF over a dosing 

interval and explore the relationship with neurocognitive outcomes.  

In the HIV Tropism, Persistence, Inflammation and Neurocognition in Therapy Initiation 

Cohort (THINC), we selected 8 subjects on TFV /FTV /DRV /r whose plasma HIV RNA was 

<40 copies/ml for <'.12mos. One paired plasma and CSF sample was obtained in each subject 

and analyzed by LC-MS/MS. Published plasma PK models were used for Bayesian posthoc 

estimates of exposure. CSF data were added and uptake into CSF estimated (NONMEM 7.3). 

CSF AUC penetration ratio was calculated as (CSFAUC/plasmaAUC)*100. Neurocognitive 

impairment was assessed by global deficit score (GDS) and Z test and correlated with CSF 

drug exposure (R studio). Median data are reported. 
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The population model captured 99% of observed data. Uptake (mL/h) into CSF was 

determined to be 14, 164 and 11 for TFV, FTC and DRV and inter individual variability (CV%) 

was 60, 35 and 84. CSF concentrations (ng/ml) averaged over dosing interval were 7, 103 and 

32, respectively. Penetration ratios were 4%, 19% and 1%. Increased DRV exposure in CSF 

correlated with lower total Z score and worse neurocognitive performance (r=-0.73, p=0.04), 

whereas TFV and FTC did not. 

Quantification of antiretroviral penetration into CSF across the dosing interval is possible with 

sparse data. In this small study, increased CSF DRV exposure was associated with poorer 

neurocognition and warrants further investigation. 

 


	Title Page
	Second Page
	Abstract
	Abstract
	Abstract_continued

	Acknowledgements
	Dedications and acknowledgements
	Acknowledgements_continued

	TOC
	Table of Contents
	Table of Contents_continued

	List of tables
	List of figures
	List of abbreviations
	Chapter-I
	Aims summary
	Chapter-II
	2.3.5. Determination of protein binding in the NHP brain tissue
	2.3.6. Calculation of 90% Inhibitory Quotients in the NHP brain tissue

	Chapter-III
	Chapter-IV
	Chapter-V
	Appendices
	Appendix 1.1
	appendix2.1-2,2
	Appendix2.3-3.3
	Appendix3.4
	Appendix3.5-


