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Abstract

FERNANDO DANIEL CHAGUE: Conditional Betas: Asymmetric Responses to
Good and Bad News.

(Under the direction of Eric Ghysels.)

In this dissertation we propose a theoretical model for conditional betas. Within a rational

expectation equilibrium model, we provide a precise characterization of the dynamics of betas

and the price of beta risk in terms of the model’s primitive parameters and state variables.

The expressions reveal that during periods of higher uncertainty, the investor requires a higher

market premium. Likewise, the conditional betas also respond to levels of uncertainty; de-

pending on the cash-flow properties of the asset, the asset’s beta can increase or decrease on

higher uncertainty. Because of the connection with uncertainty, conditional betas derive the

stochastic properties from investor beliefs. One of such properties is the asymmetric response

to positive and negative news.

We also provide empirical evidence of the model’s predictions about the dynamics of betas.

For this empirical investigation, we propose an econometric specification that provides time-

varying estimates of betas and relates them, non-linearly, to investor beliefs. As a by-product,

we suggest proxies for investor beliefs and uncertainty that can be extracted from stock returns.

The dynamics implied by the estimated parameters confirms the model’s prediction that value

and growth betas have opposing sensitivity to the levels of uncertainty.

ii



Acknowledgments

First and foremost, I thank my advisor Eric Ghysels for all the valuable guidance and help

during the development of this dissertation. It was a privilege and a great opportunity working

with him.

I also deeply thank Eric Renault, from whom I learned a lot on the many great courses

he taught us. I wish to express my sincere gratitude to Saraswata Chaudhuri for sharing

his experiences with me, helping me during the very busy times, and giving me very useful

feedbacks.

I thank Jonathan Hill, Michael Aguilar and Christian Lundblad, for contributing with

helpful comments and ideas concerning my work. I also would like to express my gratitude

to Helen Tauchen and all the faculty of the University of North Carolina at Chapel Hill for

allowing me to pursue my academic ambitions.

Special thanks to my colleagues, Racha Moussa, Guansong Wang, Kenneth Reddix and

Justin Contat for the academic and non-academic discussions, and particularly to David

Fragoso Gonzalez, who also helped me a lot in the important stages of this work.

Finally, I would like to express my heartfelt thanks to my beloved wife and family for the

good wishes and support during this journey.

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Asset Prices and Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 The Risk-Neutral Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Simulated Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Conditional Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2.1 Cross-Section Asymmetries . . . . . . . . . . . . . . . . . . . . 20

2.3.2.2 Time-Series Asymmetries . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Graphs and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Asset Pricing Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Cross-Section Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Investor Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Estimation of Conditional Betas . . . . . . . . . . . . . . . . . . . . . . 45

iv



3.3.3 Estimation of Price of Market Risk . . . . . . . . . . . . . . . . . . . . . 50

3.4 Time-Series Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Graphs and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Decomposing Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Decomposing Market Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Graphs and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

v



List of Tables

2.1 NBER Business Cycles and Book-to-Market Portfolios Log-Dividend Growth . . . . 30

2.2 Calibration Parameters, Model and Sample Moments . . . . . . . . . . . . . . . . . . 31

2.3 Time Series Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Asymmetric Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Asymmetric Covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Markov-Switching Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Descriptive Statistics of Beliefs and Uncertainty Proxies . . . . . . . . . . . . . . . . 61

3.3 5 Book-to-Market Portfolios Conditional Betas . . . . . . . . . . . . . . . . . . . . . 62

3.4 Book-to-Market, Size, Momentum and Industry Portfolios Betas (Beliefs) . . . . . . 63

3.5 Book-to-Market, Size, Momentum and Industry Portfolios Betas (Uncertainty) . . . 64

3.6 Conditional Price of Risk – Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Conditional Price of Risk – Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Asymmetric Betas – β+
+ (c) and β−

− (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Asymmetric Betas – β+ (c) and β− (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Asymmetric Betas – β+ (c) and β− (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Beta Decomposition – Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Cross Section Sorting – NYSE, Amex and Nasdaq (1963-2009) . . . . . . . . . . . . 90

4.3 Fama-Macbeth Regressions – NYSE (1963-2009) . . . . . . . . . . . . . . . . . . . . 91

4.4 Determinants of β−
+ – NYSE (1963-2009) . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Sorting Stocks by β−
+ – NYSE, AMEX and Nasdaq (1963-2009) . . . . . . . . . . . . 93

vi



List of Figures

2.1 Theoretical Expressions Conditional on πt . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Impulse Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Markov-Switching Implied Beliefs π̂t . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Estimates of Model (M1) of Conditional Betas (1956-2010). . . . . . . . . . . . . . . 71

3.3 Estimates of Model (M1) of Conditional Betas (1956-2010 excl. years 1997-2001) . . 71

3.4 Joint Confidence Region for Model (M2) with UCt = V XIt . . . . . . . . . . . . . . 72

3.5 Conditional Market Betas of Book-to-Market Sorted Portfolios . . . . . . . . . . . . 73

3.6 Conditional Market Betas of Size Sorted Portfolios . . . . . . . . . . . . . . . . . . . 74

3.7 Conditional Market Betas of Momentum Sorted Portfolios . . . . . . . . . . . . . . . 75

3.8 Conditional Market Betas of Industry Portfolios . . . . . . . . . . . . . . . . . . . . . 76

3.9 Upside and Downside Betas of Size, Book-to-Market and Momentum Portfolios . . . 77

3.10 Upside and Downside Betas of Industry Portfolios. . . . . . . . . . . . . . . . . . . . 78

4.1 Four-Fold decomposition – Equally-Weighted . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Four-Fold Decomposition – Value-Weighted . . . . . . . . . . . . . . . . . . . . . . . 95

vii



Chapter 1

Introduction

It has long been acknowledged that the systematic risk of stocks, as measured by the market

beta, is time-varying. In empirical applications as early as Fama and MacBeth (1973), betas

were already computed from rolling-sample moments. However, the conditional Capital Asset

Pricing Model (CAPM), that usually motivates time-varying betas, does not provide any hint

on how betas ought to be estimated. In fact, not much is known about what makes betas

vary over time and across assets. An evidence of this is that rolling betas are still used in

empirical applications. Indeed, based on such rolling betas, Lewellen and Nagel (2006) have

condemned the conditional CAPM, by claiming it cannot explain the returns on momentum

and book-to-market portfolios. In order to give the conditional CAPM a fair trial, and also to

improve the measurement of systematic risk, a better understanding of the dynamics of market

betas is urged. The goal of this dissertation is to provide a step in this direction.

In Chapter 2, we derive new theoretical expressions for market betas based on a rational

expectation equilibrium model. The central assumption of the model is the uncertainty faced

by the investor about the true profitability of the assets, which can take on two forms, depend-

ing on the state of the economy. Using the available information, the investor learns about the

state of the economy, and optimally allocates wealth across the assets. In the rational expecta-

tion equilibrium that results, expected returns derive their stochastic properties from investor

beliefs, and can be decomposed into exposures to market risk and hedging risk. The market

risk of an asset is derived from its comovement with the market portfolio, and the hedging risk,

from its comovement with investor beliefs.



The two peculiarities of this factor decomposition are the following. First, it says what the

hedging risk is. The Intertemporal Capital Asset Pricing model (ICAPM) of Merton (1973)

does not specify it and, as a result, empirical applications of the ICAPM, and of multifactor

models in general, typically justify risk factors from empirical considerations1. Second, it

provides a functional form for conditional betas and prices of risk. Since the model solves asset

prices in closed-form formulas2, the covariance of returns and prices of risk are also obtainable

in closed-form formulas. As a result, conditional betas and prices of risk are linked to the

model’s primitive parameters and to the stochastic properties of investor beliefs. This, again,

contrasts with the lack of characterization of the dynamics of beta risk in the ICAPM and also

in the conditional CAPM.

In Chapter 2 we also verify the model’s pricing predictions by means of a simulation. We

calibrate an economy with five assets, each set to resemble one of the five book-to-market

sorted portfolios. For a reasonable choice of the primitive parameters, which include the risk-

aversion parameter, the assets cash-flow parameters, and the probabilities driving the states

of the economy, the model can reproduce the unconditional excess returns and, to a certain

degree, the variance of excess returns of the actual data. Given the difficulties in reconciling,

within an equilibrium framework, the equity premium puzzle — that forces a large risk aversion

parameter — and the excess volatility puzzle — that results in incompatible volatility of returns

and dividends — the fact that the model matches the (unconditional) equity premia of a cross-

section of assets with reasonable parameters is remarkable.

The following empirical implications arise from this calibration. First, a conditional CAPM,

with the defined beta dynamics, provides an appropriate representation of expected returns.

Some empirical studies on the conditional CAPM have assumed away the hedging factors, such

as Jagannathan and Wang (1996), but here this approximation is based within a formal model.

Second, conditional market betas are time-varying and non-linearly related to investor beliefs.

1For example, the variables from the predictability literature, such as the price-dividend ratio and the term
spread, are usually taken as the proxies driving the investment opportunity set. Also, the cross-section anomalies
summarized by Fama and French (1993) motivate the size- and value-related factors of risk that now constitute
the Fama-French three factor model.

2Up to the numerical solution of two ordinary differential equations.
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This non-linearity can be approximated by a monotonic relation of betas with uncertainty,

where by uncertainty we mean the distance of investor beliefs probabilities from the high

certainty cases. Third, the conditional betas of value and growth portfolios have opposing

dynamics; value betas are higher during high uncertainty periods while growth betas are lower

during high uncertainty periods.

Our model also suggests a different interpretation3 for the relevance of return asymmetries

to risk and to asset pricing. The particular sign of returns matters because it can signal a

potential change in the economic conditions. In particular, the average negative news, weighted

by a signal-to-noise ratio, increases uncertainty, whereas the average positive news decreases

uncertainty. Since betas and prices of risk depend on the level of uncertainty, asymmetries

also arise in expected returns. One of the extra features of this interpretation is that it also

identifies which assets are more susceptible to pricing asymmetries — those with cash-flows

that are very sensitive to shifts in the economic conditions.

The last two chapters of this dissertation are devoted to the investigation of the model’s

main empirical implications using data from U.S. stock markets.

In Chapter 3 we explore two aspects of the dynamics of betas: i) how betas relate to different

levels of investor beliefs, and ii) how betas relate to changes in investor beliefs, where changes in

beliefs are proxied by shocks in return. The results reveal different asymmetric patterns across

portfolios, particularly across those associated with the pricing anomalies. For instance, among

book-to-market portfolios, value betas are higher during high uncertainty periods, while growth

betas are lower during high uncertainty periods. This empirical finding, albeit marginally

significant, corroborates the calibration results in Chapter 2. Among momentum portfolios,

a clear pattern emerges that distinguishes the risk dynamics of past-winners and past-losers

portfolios. Past-winners betas tend to be lower during periods of high uncertainty, while past-

losers betas tend to be higher during periods of high uncertainty.

3The usual justification for the relevance of return asymmetries to asset pricing resides on investor asymmetric
preferences. We can go back as far as Markowitz (1959), who suggested the mean and the semi-variance
as the key parameters to investor risky choices, and to Hogan and Warren (1974), who derive asset pricing
implication for such risk preferences. Recent approaches include Ang, Chen, and Xing (2006), who assume the
disappointment aversion preferences of Gul, 1991, and Harvey and Siddique (2000), who conjectured investors
with skewness aversion.

3



The asymmetric patterns with respect to changes in beliefs are also different across portfo-

lios. Among size portfolios, small firms are particularly riskier during negative news markets

than during positive news markets. Among book-to-market portfolios, value firms also display

higher betas during negative news markets, and this asymmetry further increases with the

relevance of negative news. Interestingly, the asymmetric patterns on the industry portfolios

are less clear, which indicates that the size, book-to-market and momentum anomalies may be,

at least partially, related to misspecified beta asymmetries.

In Chapter 4 we dissect betas according to the signs of market and asset returns, and

further unveil the asymmetries in betas. The suggested decomposition of betas into signed

betas holds, as a special case, the upside and downside betas of Ang, Chen, and Xing (2006).

For this exploratory task, we consider all common stocks on the Center for Research in Security

Prices (CRSP) dataset, that were listed on the NYSE, Nasdaq and Amex markets. The results

point to a potential asymmetry related to the beta computed on positive market and negative

asset returns that cannot be explained by the measures of risk commonly considered by the

literature, including the coskewness measure of risk of Harvey and Siddique (2000).

4



Chapter 2

Theoretical Model

2.1 Introduction

The conditional Capital Asset Pricing Model (CAPM) does not impose any structure on how be-

tas should vary. This has largely been tackled from an empirical perspective. Early parametrical

approaches include the multivariate GARCH framework (Bollerslev, Engle, and Wooldridge,

1988) and the instrumental variables betas (Harvey (1989), Harvey and Kirby (1996)). Recent

parametric models suggest treating conditional betas as latent variables: Adrian and Franzoni

(2009) suggest using the Kalman filter while Ang and Chen (2007) apply Markov-chain Monte-

Carlo and Gibbs sampling to obtain time varying betas. Non-parametric approaches have been

suggested by Andersen, Bollerslev, Diebold, and Wu (2006), who use high-frequency data to

estimate betas and Ang, Chen, and Xing (2006), who point out how asymmetries in betas may

be important.

As the econometric literature indicates, there is still an ongoing debate as to how conditional

betas should be estimated. Ghysels (1998) points out that misspecified conditional betas can

result in higher pricing errors than static betas. This is one of the reasons why many empirical

works still use the rolling betas of Fama and MacBeth (1973) to avoid taking a stand on an

econometric model (Lewellen and Nagel, 2006).

In this chapter we contribute to this debate from an economic theoretical perspective. We

investigate the dynamics of conditional betas implied by a rational expectations equilibrium.

More specifically, we consider a multiple asset version of the rational expectations equilibrium



model of Veronesi (1999) first suggested by Ribeiro and Veronesi (2002). In this model, the

investor is uncertain about the true distribution of each asset’s cash-flow stream. In particular,

the investor does not observe the drift of the continuous process that characterizes cash-flows,

which can take on two values according to a Markov-chain process. As a result of this uncer-

tainty, investor decisions, and pricing formulas, are affected by a learning process. Expected

returns are decomposed by the asset’s exposures to common sources of risk and a similar expres-

sion to Merton’s (1973) ICAPM is obtained. The extra structure imposed on asset’s cash-flows,

however, allows for closed-form formulas of conditional market betas and prices of market risk

that are not possible with the standard assumptions in the ICAPM.

The main implications to the dynamics of conditional betas are the following. First, at

given levels of investor beliefs, conditional betas differ across assets that have distinct cash-

flows properties. Assets that are very sensitive to changes in the economic conditions have

higher betas during high uncertainty periods. As we show in a calibration exercise, an example

of such assets is the value portfolio. The empirical evidence in Petkova and Zhang (2005), who

show that value betas tend to be larger during recessions and growth betas tend to be smaller,

is supported by our model’s predictions.

Second, conditional betas respond asymmetrically changes in beliefs. This result is an

extension of the asymmetric response of volatility and covariance to news. These two asym-

metries are well known empirical properties of stocks returns, but the empirical evidence of

similar asymmetries to news in betas is not as clear (Braun, Nelson, and Sunier, 1995). How-

ever, recent empirical evidence by Ang, Chen, and Xing (2006), that points to the relevance of

downside betas1 for the risk premium, relates to our model’s predictions about the asymmetric

response of betas to news.

This chapter is related to Santos and Veronesi (2004), who derive implications to market

betas within a general equilibrium model. In their model, it is assumed that the investor has

habit-persistent preferences and that the dividends in the economy are random shares of the

1Downside beta is defined in that paper as the beta conditional on negative market returns.
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total endowment process of the economy. They find that betas can be decomposed into a cash-

flow and a discount risk components and that the dynamics of conditional betas is determined

by the component that is relatively most important.

This chapter proceeds as follows: in Section 2.2 we solve the model and discuss the resulting

asset pricing formulas. Then, in Section 2.3 we simulate an economy and investigate the model’s

predictions. First, we calibrate the model with U.S. data and discuss the pricing implications

that arise. Then, we simulate time-series of returns and estimate univariate and multivariate

GARCH models to assess the dynamics of covariance and market betas. We conclude the

chapter in Section 2.4 with a summary of the results and some final remarks.

2.2 The Model

The model is a multiple asset version of the rational expectations equilibrium model of Veronesi

(1999), and that was also derived by Ribeiro and Veronesi (2002). The authors show how

uncertainty about the state of the world economy can result in the observed excess covariation

in international stock markets during downturns. However, they do not address the factor

structure of expected returns that arises in that model. In contrast, here we investigate the

dynamics of the different components of the risk premia and, in particular, how good and bad

news are incorporated into market betas.

The key assumption of the model is the uncertainty the investor faces about the true

distribution of the asset’s cash-flows. More specifically, the drifts of the continuous stochastic

processes that describe cash-flows can on take two values according to an unobserved two state

Markov-switching process. It is further assumed that the investor optimally infers the true

drifts from cash-flows realizations. This generates a learning process that results in asset prices

that bear many of the empirical properties observed in real data.

Apart from the ability to replicate many of the stylized facts about stock returns, the model

is appealing for it provides a tractable framework to incorporate a learning dynamic into pricing

formulas. For instance, it allows us to assess how news about the economy can change the risk

of assets. As we will see below, different cash-flow structures can result in opposite responses

of market betas to news of the same sign.

7



2.2.1 The Economy

The economy has one representative investor that maximizes expected utility subject to a

budget constraint. There are n+1 financial assets: a risk-free asset that is inelastically supplied

with a known rate of return rdt and n risky assets that pay continuous stream of cash-flows

given by:

dDit = θitdt+ σidξt i = 1, ..., n (2.1)

where dξt is a (n× 1) vector of Brownian motions and σi a (1× n) vector of diffusion co-

efficients. The n expressions presented above can be written in matrix notation as dDt =

θtdt+ Φdξt, where θt is the (n× 1) vector of drift terms θit, and Φ is the (n× n) matrix that

stacks the diffusion terms σi. Denote by Σ = ΦΦ′ the cash-flow covariance matrix. The market

portfolio cash-flow is defined as the sum of all cash-flows times the available shares of each

asset, Dmt ≡
∑n

i=1 ωiDit, where ω = [ω1, ..., ωn]
′ are the available shares.

The investor does not observe the random vector {θt} but knows it can take two values:

θG = [θ1G, ..., θnG]
′ in the good state and θB = [θ1B, ..., θnB]

′ in the bad state. This random

vector switches between the two states with conditional probabilities that follow a two-state

Markov-chain process with parameters µ, the probability of going to a good state from a bad

state, and λ, the probability of shifting from the good state to the bad state. Note that

the same Markov-switching process governs the shifts of all drifts and thus can be naturally

associated with the business cycles shifts. We label asset i cyclical if ∆θi ≡ θG − θB > 0 and

countercyclical otherwise.

The investor optimally infers the true drifts of cash-flows from past observations. That is,

he conditions his beliefs about the true drifts on the information set Ft = σ (Dτ , τ < t). As

was shown by Veronesi (1999), the optimal prediction is conveniently described by a stochastic

process. The following lemma is an extension of the univariate case for multiple assets.

Lemma 1. The investor’s belief that the economy is in the good state, πt ≡ Prob (θt = θG|Ft),

evolves according to the stochastic process:

dπt = (λ+ µ) (πs − πt) dt+ πt (1− πt)∆θ′Φ′−1dvt (2.2)

8



where πs = µ
λ+µ is the unconditional probability of πt, ∆θ′ = [θ1G − θ1B, ..., θnG − θnB], and

dvt ≡ Φ−1 (dDt − E [dDt|Ft]) is a (n× 1) vector of standard Brownian motions with respect to

the filtration Ft, with E [dDit|Ft] = θiGπt + θiB(1− πt) for i = 1, ..., n.

Proof. It follows from theorem 9.3 in Lipster and Shiryaev (2001).

Note that πt mean reverts towards its unconditional mean, πs, at a rate of λ + µ. Shocks

to dvt are weighted by a signal to noise ratio, ∆θ′Φ′−1, and by the uncertainty level about the

state of the economy, h (πt) ≡ πt (1− πt). The closer πt is to 0.50, the more uncertain the

investor is about the true state, and the larger the revisions to the conditional probability are.

For ease of notation, let απ ≡ (λ+ µ) (πs − πt) and σ2
π ≡ π2

t (1− πt)
2∆θ′Σ−1∆θ. We will also

denote the (1× n) vector by σπ ≡ πt (1− πt)∆θ′Φ′−1.

As we will see below, the second moments of asset returns will be non-linear functions of

uncertainty, h (πt). In order to study the dynamics of these moments, it will be instructive

to assess how uncertainty evolves by differentiating h (πt). We define the market at time t as

good if πt ≥ 0.5 and as bad otherwise. The following corollary gives the conditional dynamics

of uncertainty.

Corollary 2. Define uncertainty as h (πt) ≡ πt (1− πt). Then the following process describes

the evolution of conditional uncertainty over time

dht =















[

αh − (µ− λ)
√
hmax − ht

]

dt− σhdvt if the market is good, πt ≥ 0.5

[

αh + (µ− λ)
√
hmax − ht

]

dt+ σhdvt if the market is bad, πt < 0.5

(2.3)

where αh ≡ 2 (λ+ µ) (hmax − ht) − h2t∆θ′Σ−1∆θ, σh ≡ 2ht
√
hmax − ht∆θ′Φ′−1 is a (1 × n)

row vector and hmax = 1
4 . dvt is the same (n × 1) vector of standard Brownian motions with

respect to Ft = σ (Dτ , τ < t) defined in proposition (1).

Proof. The result follows from the application of Ito’s lemma to h (πt).

Note that the sign on the term σh in equation (2.3) shows that positive news in a bad

market and negative news in a good market increase uncertainty2.

2In what follows, we refer to news as shocks to dvt times the signal to noise ratio ∆θ′Φ′−1. This normalization
will help us compare news across assets and simplify our exposition. For instance, a shock to cash-flows from an
asset with a very volatile process is not as informative as a shock of the same magnitude to an asset with more
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Whenever expansions last longer than recessions, λ < µ, the unconditional mean πs will be

greater than 0.50, that is, the market will be good more often than not3. As a result, it follows

from corollary (2) that increases in uncertainty are more likely to arise after bad news than

after good news. We will see below that this asymmetric response of uncertainty to news will

also induce asymmetries in sample moments of asset returns, volatility and covariances.

In this economy investor preferences are represented by a constant absolute risk aversion

utility function:

U (c, t) = −exp [−ρt− γc]

where γ is the coefficient of absolute risk aversion and ρ the time preference parameter.

Under the incomplete information set, Ft, cash-flows can be written as dDt = αDtdt+Φdvt,

where αDt = [α1D,t, ..., αnD,t]
′ and αiD,t ≡ θiGπt + θiB(1 − πt). The investor’s optimization

problem is solved by expressing dDt in terms of the Brownian motion dvt and including πt as

a state variable. Pricing formulas are obtained by imposing a market clearing condition on the

available shares of the risky assets.

2.2.2 Asset Prices and Returns

The following proposition shows that asset prices that solve the investor problem and clear the

market are non-linear functions of the investor beliefs and cash-flows.

Proposition 3. [Ribeiro and Veronesi (2002)] The following asset prices solve the investor

problem and clear the market:

Pit = p0i +
Dit

r
+ pπiπt + p1i + Si (πt) (2.4)

stable cash-flows. Also, a positive shock to an countercyclical asset is actually bad news about the state of the
economy. Thus, by considering news as ∆θ′Φ′−1dvt, we do not need to be more specific about the cash-flow
structure of the assets.

3In fact, NBER cycles imply an unconditional mean of around πs = 0.80

10



where Si is the solution to a differential equation given in the Appendix and

p0i =
θiB
r2

+
(θiG − θiB)

r2 (r + λ+ µ)
µ

pπi =
(θiG − θiB)

r (r + λ+ µ)

p1i = −γσi,m
r2

for i = 1, ..., n. The market portfolio is the aggregate portfolio Pmt =
∑n

i=1 ωiPit.

Proof. See Appendix.

The Si function in equation (2.4) discounts cyclical assets and inflates countercyclical assets,

generating a premium for holding risky assets. This discount (inflation) reaches a minimum

(maximum) in the interior of πt ∈ (0, 1) if the asset is cyclical (countercyclical).

From asset prices, excess returns, variances and covariances can be obtained by direct

application of Ito’s lemma, as the following proposition shows.

Proposition 4. Define excess return as Re
it ≡ dPit

Pit
+Dit

Pit
dt−rdt. Then the following continuous

process describes excess returns in terms of the model’s parameters:

Re
it = αiR,tdt+ σiR,tdvt (2.5)

αiR =
1

Pit

[

γ

r
e′iΣω − rSi (πt) + S′

i (πt)απ +
1

2
S′′
i (πt)σ

2
π

]

σiR =
1

Pit

[

e′iΦ

r
+
[

S′
i (πt) + pπi

]

πt(1− πt)∆θ′Φ′−1

]

for i = 1, ..., n assets, where ei is a (n× 1) vector of zeros and one at the ith row. For the market

portfolio, set i = m and em ≡ ω. Expected excess returns are then given by Et [R
e
it] = αiRdt

and covariance between assets i and j, where i, j = 1, ..., n,m, by:

σij,R =
1

PitPjt

[

(Aij +Mij(πt))π
2
t (1− πt)

2 + (Bij +Nij(πt))πt (1− πt) + Cij

]

dt
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where

Aij =
∆θi∆θj

r2 (r + λ+ µ)2
∆θ′Σ−1∆θ

Bij = 2
∆θi∆θj

r2 (r + λ+ µ)

Cij =
1

r2
covt (dDit, dDjt)

Mij(πt) = ∆θ′Σ−1∆θ

[

S′
i(πt)S

′
j(πt) +

S′
i(πt)∆θj + S′

j(πt)∆θi

r (λ+ µ+ r)

]

Nij(πt) =

[

S′
i(πt)∆θj + S′

j(πt)∆θj

]

r

The excess return variance of asset i follows by setting both subscripts above to i.

Proof. It follows by applying Ito’s lemma to the definition of excess returns.

If the investor is risk-neutral, the discounting function S is zero and expected returns are

proportional to the cash-flow covariance of the asset with the market portfolio, normalized by

prices. If we instead assume the investor is risk averse, expected returns will also depend on

the conditional probability πt through the S function. Increases in the discounting of prices,

−rSi (πt), and in their sensitivity to πt, S
′
i (πt)απ, imply higher expected returns. Also, higher

uncertainty will command higher expected returns through the term 1
2S

′′
i (πt)σ

2
π. In addition

to time-varying expected returns, the model also implies that return covariance and volatility

are stochastic.

Expected returns can also be expressed in terms of the exposure of the asset to the common

sources of risk, or risk factors. In this representation, the risk premium of an asset should equal

its quantity of risk, the conditional beta, times the price of such risk. This decomposition

is convenient as it splits the difficult task of estimating returns into two separate ones, the

estimation of conditional betas and the price of risk. The price of risk is the same for all assets;

conditional betas are functions of second moments, potentially easier to estimate (Merton,

1980).

Proposition 5. Expected returns have the following factor representation:

Et [R
e
it] = λmtβim,t + λπtβiπ,t (2.6)
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where the prices of risk are given by:

λmt = rγPmtσ
2
mR,t

λπt = f ′ (πt)− rγS′
m (πt)

and conditional betas, defined as βim,t ≡ σim,R

σ2
m,R

and βiπ,t ≡ σiπ,R, are given by:

βim,t =
Pmt

Pit
× (Aim +Mim(πt))h (πt)

2 + (Bim +Nim(πt))h (πt) + Cim

(Amm +Mmm(πt))h (πt)
2 + (Bmm +Nmm(πt))h (πt) + Cmm

(2.7)

βiπ,t =
1

Pit

[

(

piπ + S′
i (πt)

)

h (πt)
2 +

h (πt)∆θi
r

]

(2.8)

where A, B, C, M and N are given in proposition (4). The functions f and S are solutions

to differential equations given in the Appendix.

Proof. The expression for expected returns (2.5) follows by rewriting the optimal demand for

shares, equation (5.3) in Appendix, in terms of expected returns and substituting for the market

clearing condition, X∗
t = ω. After scaling by the market variance, σ2

m,R, we obtain market betas

and prices of market risk. The expressions of betas in terms of the primitive parameters of the

model follow after substituting for the covariances and variances given in (4).

The first component of expression (2.6) is the usual conditional CAPM term, with variable

beta and price of risk. The conditional market beta is defined as the ratio of the conditional

covariance of asset and market excess returns normalized by the conditional variance of the

market excess returns, βim,t = σim,R/σ
2
m,R. This measure of risk captures the responsiveness

of asset returns to changes in market returns. An asset with a high market beta will be riskier

as it amplifies the volatility, or risk, of the investor’s portfolio. Indeed, the price of market risk

is positive as all elements in λmt are greater than zero, and assets with high betas reward the

investor with higher returns.

As expressions for returns are available (see proposition (4)), we substitute covariances

and variances of returns and link market betas to the parameters of the model and the state

variables. As equation (2.7) shows, the market beta is a non-linear function of πt and depends

upon the discounting function S that can only be obtained numerically. In Section 2.3 we
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investigate betas by solving the model for calibrated parameters and computing the S function

numerically. Before we proceed with the calibration, the case of a risk-neutral investor is

discussed as this obviates the numerical computation of the S function.

The second term of the expected returns expression (2.6) results from the time-varying

nature of the investment opportunity set (Merton, 1973). Note that the drift and diffusion

terms of stock returns in equation (2.5) are functions of the random variable πt and are thus

stochastic. Assets that can help the investor hedge against future changes in profitability should

be more expensive, i.e. have lower expected returns. The exposure of an asset to this source

of risk is measured by its factor loading, defined as βiπ,t ≡ σiπ,R, and is also equal to (2.8). We

observe that assets that are very sensitive to changes in πt, and have a large state shift risk,

i.e. a large ∆θi, also have large betas.

The price of a unit of such risk is given by λπt and it can be positive or negative, depending

on the function f and the market discount Sm function. For the parameters selected in the

next section, the price of risk is negative at lower values of πt and positive for higher values.

2.2.3 The Risk-Neutral Case

The risk-neutral investor does not require a premium for uncertainty, the function S is zero

and the analytical expressions of returns are simpler to interpret. The risk-neutral expressions

still retain some interesting characteristics, e.g. time-variation and nonlinearity in πt, as the

investor is still uncertain and has to predict cash-flows.

Consider first the dynamics of the risk-neutral return volatility. Setting S equal to zero in

(4), the risk-neutral variance of asset i is given by:

σ2
iRN =

(

1

PRN
it

)2
[

Aiih (πt)
2 +Biih (πt) + Cii

]

where PRN
it = p0i + Dit/r + pπiπt denotes risk-neutral prices and the constants Aii, Bii and

Cii are the same ones defined in proposition (4). Note that these constants are positive for

both cyclical and countercyclical assets and so variance is increasing on uncertainty. Further-

more, return volatility of assets with a higher state shift risk is more responsive to changes on

uncertainty.
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From corollary (2) we argued that: i) good markets are more frequent than bad markets and

ii) in good markets, negative news is followed by an increase on uncertainty whereas positive

news implies a decrease on uncertainty. Both aspects of the learning process combined with the

monotonic relation of volatility and uncertainty results in an asymmetric response of volatility

to news. On average, bad news will be followed by a larger increase in volatility than good news.

This predicted volatility asymmetry has long been observed in stock returns and was originally

attributed to a leverage effect (Black, 1976) – negative stock returns reduce the equity value of

the firm and increase the debt-to-equity ratio and the riskiness of the firm, which ultimately

increase variance. Here, the mechanism behind is closer to the volatility feedback hypothesis

of Campbell and Hentschel (1992) – negative shocks increase the required risk premium which

further depreciate price to compensate the increase in the expected return.

As above, risk-neutral covariance of an asset i with the market simplifies to:

σim,RN =
1

PRN
it PRN

mt

[

Aimh (πt)
2 +Bimh (πt) + Cim

]

If the asset is cyclical, ∆θi > 0, the constants Aim and Bim are positive, since ∆θm > 0

as the market is by definition cyclical. On the other hand, these constants are negative for

countercyclical assets. For simplicity, assume that Cim, the covariance of the asset and market

cash-flows, is positive. Then, the covariance of asset and market returns increase with uncer-

tainty if the asset is cyclical but decrease if the asset is countercyclical. Since the economy

is in the good state most of the time, covariances will also respond asymmetrically to shocks:

negative news has a stronger, upwards, effect upon covariances of cyclical assets than positive

news. The opposite is true for countercyclical assets.

Finally, we consider how risk-neutral conditional betas respond to news. With S equal to

zero, the market betas from equation (2.7) are simplified to:

βRN
im,t =

PRN
m,t

PRN
it

× Aimh (πt)
2 +Bimh (πt) + Cim

Ammh (πt)
2 +Bmmh (πt) + Cmm

(2.9)
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As discussed above, for cyclical assets and assuming Cim positive, both numerator and denom-

inator are increasing functions of uncertainty. Depending upon which term responds more to

uncertainty, the asset’s beta will be either increasing or decreasing on uncertainty. An inspec-

tion of the constants Aim, Amm, Bim and Bmm indicates that assets with smaller ∆θi than

that of the market’s, ∆θm, have a decreasing beta on uncertainty and vice-versa. This pattern

is maintained after scaling equation (2.9) by the ratio of prices. For the countercyclical asset,

the market covariance is declining in uncertainty and, as a result, conditional betas decline

as uncertainty increases. As with the other moments, conditional betas are also expected to

respond asymmetrically to news. For assets with large state shift risk, ∆θi > ∆θm, conditional

betas, on average, increase more after negative news than after positive news. However, for

countercyclical assets, ∆θi < 0, or assets with low state shift risk, 0 < ∆θi < ∆θm, conditional

betas increase, on average, more after positive news than after negative news.

We summarize the findings about risk-neutral moments as follows: first, conditional vari-

ance increases on uncertainty, irrespective of the asset’s cash flow structure. Second, the

conditional covariance of asset returns and market returns increases on uncertainty if the asset

is cyclical and decreases if it is countercyclical. Finally, conditional betas of assets with a

larger state shift risk than the market’s will increase on uncertainty and decrease otherwise.

Since these moments are monotonic functions of uncertainty and uncertainty responds asym-

metrically to news, risk-neutral variance, covariance and betas also respond asymmetrically to

news.

As we will see in the next section, similar patterns are observed when the investor is

risk averse. These expressions of returns are also monotonic functions of a “risk adjusted”

uncertainty, that attains a maximum point slightly to the right of πt = 0.5.

2.3 Simulated Economy

To further investigate the model’s predictions, we calibrate an economy with five assets, each

following one of the five book-to-market sorted portfolios, with parameters drawn from the

U.S. economy. The cash-flow parameters implied by such portfolios varies substantially across

quintiles and provide an appropriate framework for this investigation. This variation across
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quintiles is in line with the perception that low book-to-market firms (growth firms) derive

most of their profitabiliy from future cash-flows as opposed to value firms, that derive most of

their profitability from current cash-flows and assets and that, as a result, are more susceptible

to the current economic conditions. Indeed, general equilibrium models that explain the value

premium anomaly4 often explore the differences in the investment and cash-flow characteristics

of those firms (Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003) and Zhang

(2005)).

In the Subsection 2.3.1, we perform the calibration and show that the model is able to

match reasonably well the unconditional mean and variance of excess returns of the five book-to-

market portfolios. Then, in Subsection 2.3.2, we investigate how conditional market betas varies

across portfolios with distinct risk characteristics and how news about economic conditions

relates to the dynamics of betas.

2.3.1 Calibration

For this calibration, we will set the risk aversion parameter equal to one, γ = 1, as in Veronesi

(2004). The other free parameters of the model will be calibrated from the U.S. economy. The

risk-free instantaneous rate is set at r = 0.045, a relatively high value but close to the average

one month treasury bill rate on the same period (4.9%).

The free parameters of the cash-flow processes are: the drift vectors θG = [θ1G, ..., θ5G]
′ and

θB = [θ1B, ..., θ5B]
′, the diffusion matrix Φ, and the scalars of the Markov-switching transition

matrix µ and λ, that characterize the random switches of the drifts. For the transition matrix,

we select the parameters implied by the NBER cycles data5 from 1956 to 2010. As shown in

Panel A of Table 2.1, the NBER cycles data indicate 83.3% of the months are expansionary,

with an average duration of a recession of 11 months and of an expansion of 62 months. These

numbers imply6 the following monthly transition matrix parameters: λ = 0.016, the probability

4The discrepancy of high and low book-to-market portfolios expected returns relative to the static CAPM
predictions.

5http://www.nber.org/cycles.html

6From the NBER average length of an expansion we obtain λ ≡ prob (St+1 = Bad|St+1 = Good) by setting
the average sample duration of an expansions equal to 1/λ. µ ≡ prob (St+1 = Good|St+1 = Bad) is then obtained
by setting µ/ (µ+ λ) equal to the proportion of expansionary months in the sample.
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of going from the good state to the bad state, and µ = 0.080, the probability of switching to

the good state from the bad state.

The drifts of the cash-flows θG and θB are calibrated7 using the moments implied by the

log-dividend growth of the five book-to-market portfolios data8, from 1956 to 2010. The log-

dividend growth series are constructed from the difference in the monthly returns with and

without dividend payouts as in Bansal, Dittmar, and Lundblad (2005). In order to avoid

seasonal variations typical to dividend payouts, monthly log-dividend growth are aggregated at

the annual frequency. Panel B of Table 2.1 shows the sample means and the standard deviations

of log-dividend growth for the five book-to-market portfolios on the full sample as well as the

means and standard deviations conditional on recessionary and expansionary years9. The log-

dividend growth average of the value portfolio varies the most across the two sub-samples,

from −0.130 during recessionary years to 0.109 during expansionary years. The difference in

the conditional averages is 0.239. On the other hand, the log-dividend growth averages of the

growth portfolios change the least, 0.058 and 0.046 in recessions and expansions respectively.

The difference in the conditional averages is −0.011.

It should be noted the log-dividend series are very volatile and the distinctive pattern

between value and growth portfolios may not be supported on statistical grounds. However,

this pattern is roughly monotonic across quintiles, particularly the average log-dividend growth

during recessions, indicating this to be an economically meaningful pattern related to the book-

to-market ratio. Furthermore, it has been argued that value firms are particularly susceptible

to economic downturns, which is in line with our empirical findings. For instance, Fama and

French (1993) conjectured that value firms are riskier than growth firms because a higher book-

to-market ratio associates most often with distressed firms. Also, Zhang (2005) characterizes

value firms as those with costly-to-adjust investments (e.g. asset’s in place type of investment)

7Because of the assumption that cash-flows follow arithmetic Brownian motions and that the data actually
show exponential growth of dividends, the parameters used for calibration, based on log-differences, are only
valid as approximations, and particularly around cash-flow levels close to one.

8The data was obtained from the website of Kenneth French.

9A year is considered a recessionary year if five or more months are recessionary months according to the
NBER data

18



and thus those with cash-flow more susceptible to adverse shocks, i.e. recessions, whereas

growth firms as those with more flexible investments scales (e.g. growth options type of in-

vestment) and thus those with cash-flow less sensitive to fluctuations in economic conditions.

The empirical findings above combined with the economic theory indicates that a reasonable

calibration for the changes in the cash-flow drift, ∆θi = θiG − θiB, to be larger for the value

portfolio and smaller for the growth portfolio.

The numbers chosen for the drifts θG and θB, and diffusion matrix Φ follow the patterns

observed by the data but also are such that the model’s implied unconditional excess return are

similar to real data sample averages. Because the model cannot exclude a priori negative prices,

this calibration strategy ensures that prices, and therefore returns, are within a reasonable

range.

Table 2.2 shows the parameters chosen for assets 1 to 5, that respectively mimic the lowest

to highest book-to-market quintile portfolios. Asset 1 (A1), that resembles the growth portfolio,

has the lowest state-shift risk among the assets, ∆θ1 = −0.01, the lowest unconditional drift,

θ̄1 = 0.04, and the largest volatility σ1 = 0.16. On the other side is asset 5 (A5), that

resembles the value portfolio. It has the highest state-shift risk, ∆θ5 = 0.23, but also the

highest unconditional drift θ̄5 = 0.062 and the lowest volatility, σ5 = 0.09. Note that this

diffusion term is smaller than the one implied by the data. This was needed to match sample

and theoretical returns, a result of our calibration strategy discussed above10. The correlation

parameters, ρij , were set equal to 0.25, 0.15, 0.10 and 0.05 for |i − j| equal to 1, 2, 3 and

4, respectively, and sets a higher correlation to portfolios with similar book-to-market values.

Table 2.2 also shows the expected excess returns and deviations at πt = πs implied by the

model, i.e. the unconditional moments, as well as the sample counterparts of the five book-to-

market portfolios11. A comparison of the values on Panel B and Panel C shows that the model

reproduces the cross-section dispersion on expected returns of the book-to-market portfolios

10If we imposed a higher variance for A5 cash-flow and kept the state-risk spread, this would have resulted in
a very risky asset with an incompatible high expected returns. We preferred to keep the state-risk spread but
reduce the diffusion risk.

11Cash-flow levels are set at 1. At this point, the drift parameters better approximate the log-dividend changes
that were used to calibrate them.
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for reasonable parameters.

2.3.2 Conditional Betas

Given the parameters that calibrated the model, functions f and S can be computed numeri-

cally and the pricing formulas in equation (4) follows. Next, we discuss the properties of these

formulas. First, we discuss how conditional betas differ across asset for given levels of beliefs.

Then, we discuss how conditional betas differ across assets given changes in investor beliefs,

that is, following the arrival of news.

2.3.2.1 Cross-Section Asymmetries

Figure 2.1 shows the model’s main expressions for all possible values of πt and fixed cash-flows

at Dt = 1. On the top-left plot, we see that A1 has the highest price on almost all the domain

of πt. This asset is the least profitable, as it has the lowest unconditional drift among all

cash-flows, but also the least susceptible to changes in the economic conditions and so less

risky. At the other extreme is asset A5, which is the most profitable one, but also the most

risky and discounted one, with the lowest price on almost all the domain of πt. In the top-right

plot we see that expected returns for asset A5 is the most sensitive to πt, changing from 3%,

when πt is close to one, to almost 15%, when uncertainty is higher. All the other cyclical assets

also have increasing expected returns on uncertainty, but the change is less substantial. The

expected return on the countercyclical asset A1 slightly declines on uncertainty. The second

row in Figure 2.1 shows covariances of the assets with the market as well as the variances of

asset returns. The shapes are similar to the ones implied by the risk-neutral case, but peaking

slightly to the right of the maximum uncertainty point, around πt = 0.6.

The last four plots in Figure 2.1 show all the elements in the factor decomposition of excess

returns (5), the market betas, βim,t, hedging betas, βiπ,t, and their corresponding prices, λm,t

and λπ,t, as functions of all possible values of πt and given cash-flows. First, we observe that

the premium for exposure to market risk is more important than the premium for exposure

to hedging risk. The most sensitive asset to the hedging factor, A5, has the highest absolute

hedging premium at πt = 0.75 when λπtβ5π,t = −1%. At the same point, the risk premium for

market risk is much larger, around λmtβ5m,t = 15%. This confirms Merton’s (1980) observation
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that the market portfolio is likely the most important factor determining expected returns and

justifies the assumption made by Jagannathan and Wang (1996) of hedging motives not being

sufficiently important.

Second, as we previously noted analytically for the risk-neutral case, market beta of assets

with a high and positive ∆θi, such as A5, increases as uncertainty about the state of the

economy increases. Since the investor is now risk-averse, the market beta of asset A5 peaks

slightly above12 the point of maximum uncertainty, taking its maximum value of β5m,t = 1.80

at around πt = 0.60. On the other hand, the beta of asset A1, declines as πt moves away from

0 and 1, reaching a minimum of β1m,t = 0.40 also around πt = 0.60. We note also that there

is enough variation in betas to make A1 riskier than A5. In periods of low uncertainty, e.g.

when πt > 0.95, the beta of A1 is higher than that of A5.

Third, the price of market risk, or the market premium, is positive and also increasing

on uncertainty. It reaches a maximum of about λmt = 8% at πt = 0.60 and a minimum of

λmt = 3% at πt = 1. At πs = 0.83, the unconditional or long run mean of the random variable

πt, the price of market risk is 6.5% and close to its historical sample mean13.

Finally, time-variation of market betas is relevant to some assets but less important to

others. Figure 2.1 indicates that for A1 and A5, both the conditional market beta and price

of market risk are equally important for the asset’s risk premium. Consider a shift to investor

beliefs from π1 = 0.90 to π2 = 0.50. The price of market risk, λmt, increases from 4.93% to

7.81%, a change of 58%. Likewise, asset A5 beta also change significantly, from 1.33 to 1.87,

an increase of 41%. The change in the asset A1 beta is also important but to the opposite

direction, from 0.72 to 0.42, a decrease of 42%. The variation in the betas is less important

than the variation in the price of market risk for the other assets, as we clearly observe from

the plots.

The above expressions are for all possible values of πt ∈ [0, 1], but not all are equally

likely. For the chosen parametrization, in particularly λ and µ that matches the U.S. business

12This rightward shift resulting from increases in risk aversion was also observed, in the single asset case, by
Veronesi (1999).

13The price of market risk is often estimated by the sample mean of the market portfolio excess return.
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cycles, most of the mass of the πt distribution is above 0.50, since the economy is most often in

expansionary periods. Thus, on average, negative news about the economic conditions increases

uncertainty while positive news decreases it. Consequently, the response of market betas14 to

news is asymmetric due its (approximately) monotonic relation to uncertainty.

Another aspect of the πt distribution under this parametrization is that periods of higher

uncertainty most often occur during the bad state. The persistence of learning process coupled

with its shorter duration results in a higher proportion of uncertainty periods during the bad

state. Therefore, volatility of asset returns, the covariance of cyclical asset with the market

returns and the price of market risk, will tend to be higher during the bad state, as these vari-

ables typically increase on uncertainty. The model thus provides theoretical justification to the

empirical findings that such variables tend to increase during recessions. Another implication

of the model is that the value premium should be higher during the bad state, as the difference

in market betas of value and growth portfolios is also higher during high-uncertainty periods.

This countercyclicality of the value premium predicted by the model has also been observed

empirically (Petkova and Zhang, 2005).

2.3.2.2 Time-Series Asymmetries

To assess the relevant portion of the pricing formulas, we generate time-series of the variables

in our model using the same parameters discussed in the calibration. Once cash-flows are gen-

erated according to (2.1), beliefs are computed as indicated by the optimal filtration equation

(1). These state variables, πt and Dt, are then used to determine the model’s pricing formulas.

The length of the generated series is equivalent to a sample of six years of daily data. We avoid

a sample larger than 6 years because of our assumption that cash-flows follow an arithmetic

Brownian motion. As the cash-flow level moves away from its starting value, D0 = 1, the

drift of the stochastic process becomes a worse approximation of percentage changes, the scale

used for the calibration. On the other hand, we do not select a smaller sample because of the

duration of recessions and expansions implied by the transition matrix parameters. The six

year time frame allows an expansionary period lasting five years and a recession lasting one

14And also the variance of returns and the covariance of returns with the market.
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year, which implies average durations and proportions of good and bad months that are similar

to the ones imposed by the calibration of λ and µ.

In order to assess how the proportion of good and bad states can have an impact, we

consider three different combinations of good and bad states. First, we consider the case of

no bad state and six years of good state. We will refer this case as the bull market case. In

the second scenario the economic conditions are average, with five years of the good state and

one year of the bad state. In the third scenario, two out of the six years the economy is in

the bad state. We refer this as the bear market case. For all three scenarios, the bull, bear

and regular markets, 500 histories are generated, each with 1584 observation (six years of daily

observations).

The top two panels in Table 2.3 show the averages and standard deviations across the 500

histories of the expected and realized excess returns. We observe that for the bull and bear

markets, expected excess returns do not coincide with realized excess returns. In the bull

market case, asset A5, that resembles the value portfolio, outperforms and has higher realized

returns than would be expected; the annual average realized return of asset A5 is around 9%

and the average annual expected returns is 4%. On the other hand, in the bear market, A5

underperforms, with an annual average realized return of 4.8% against an average expected

return of 7.6%. The opposite holds for asset A1, the asset that resembles the growth portfolio.

It underperforms in the bull market but overperforms in bear market. When the economic

conditions are the ones implied by the calibration, the second scenario, expected returns are

similar to the realized ones. The values do not coincide because of sample variation and

of the approximation imposed by the assumption that cash-flows follow arithmetic Brownian

motions15.

Since expected excess returns also have a factor characterization in our model, such dis-

crepancies or anomalies observed above for expected returns are also observed in the factor

regression. The pricing errors captured by the intercepts of static CAPM regressions, the real-

ized alphas in the lower-left panel of Table 2.3, indicates the existence of a value premium when

15Veronesi (2004), that investigates the properties of the univariate version of our model, also faces similar
approximation errors.
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sample are generated by bull markets. The average intercept across all histories is negative for

asset A1 and positive for asset A5. The opposite is observed for bear markets, where a growth

premium arises. We have deliberately ignored the hedging factor in the regressions of the static

CAPM, as its contribution to risk premium is much smaller than the exposure to market risk.

As Table 2.3 shows, the average price of the hedging risk is around λπ = −1% and the average

quantity of hedging risk is 0.6 for the asset A5, resulting in an average hedging premium of

about −0.6%, less than a tenth of the market risk premium, 6.5%.

These results point to an interpretation of the forces behind the value premium related to

biased sampling. A similar argument has been employed by Veronesi (2004) to explain the

equity premium puzzle. The author, using the univariate version of our model, attributes the

apparent puzzle that market average returns are too high relatively to its observed (realized)

riskiness, to a rational premium required by the investor to account for a peso-problem type of

event – a very unfavorable event, which the investor is aware of, that has never happened, at

least in the particular sample considered.

The importance of the sample to the value premium was also observed by Ang and Chen

(2007). They argue that most studies that find a value premium on the U.S. stock market

generally consider only the post-1963 period, mainly due to the ready availability of data, and

that the omission of previous years is key to finding a value premium. In fact, they show

that the alphas in the static CAPM regressions turn out to be insignificant when the sample

is extended to include the months from 1926 to 1962. Since our objective is to explore the

dynamics of market betas implied by our theory and not to propose a solution to the value

premium, we restrict our analysis to the unbiased histories generated under the second scenario.

For the task of unveiling the dynamics of market betas, we first fit an univariate asymmetric

GARCH(1,1) model to the simulated returns to discuss the dynamics of volatility. The specifi-

cation of conditional volatility, also referred to as GJR-GARCH model (Glosten, Jagannathan,

and Runkle, 1993), is the following:

rit = αi + uit

σit = κ+ δσit−1 + γuit−1 + γ−1[uit−1<0]uit−1 (2.10)
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where uit = σitǫit, ǫit
iid∼ N (0, 1), and 1[.] the indicator function. This specification is ap-

propriate here as it allows past shocks to influence future volatility, in line with the model

assumption that investor beliefs are based on past information, and also because the sign of

shocks, consistent with the learning feature of the model, can be informative about shifts in

the economic conditions.

We use mean-adjusted past excess returns as proxies for cash-flows news, which is what

actually drives beliefs. This can be justified by the following. From equations (1) and (4) we

observe that both beliefs and excess returns are driven by same the standard Brownian motion,

dvt. Furthermore, both diffusion terms in those equation, σπ and σiR, indicate that shocks to

returns will be positively related to shocks to beliefs when the term S′
i (πt) + pπi is positive,

which is the case for all cyclical assets on most values of πt (the term S′
i (πt) can be negative

and offset pπi for lower values of πt, which only seldom occur).

Table 2.4 shows the averages, standard deviations and quantiles of the estimated parameters

of (2.10) across the 500 histories for each asset. First, we observe that conditional volatilities are

very persistent, the δ’s are high and close to one, a well known stylized fact about stock returns.

Second, negative shocks to returns are more important to future volatility than positive shocks,

as for all assets the coefficient γ− is positive. This asymmetric response of volatility to past

shocks has long been observed empirically and referred to as the leverage effect (Black, 1976).

Finally, assets with cash-flows that are more exposed to shifts have stronger asymmetries. The

average coefficient γ− across the 500 histories for asset A5 is 0.089 while for asset A1 it is

only 0.016. This was expected, as A5’s expected returns is the most responsive one to changes

in uncertainty. Furthermore, shocks to A5 are also the most informative ones, as it has the

highest signal to noise ratio among all cash-flows.

We now turn to the question of how the covariances respond to past shocks. In order to do

so, we fit an asymmetric multivariate GARCH model to the simulated data. More precisely,

we follow the BEKK specification of Engle and Kroner (1995) but also introduce asymmetric

terms as in Hafner and Herwartz (1998). For computational convenience, we focus on bivariate

models of asset excess returns and market excess returns.

Denote as before demeaned excess returns by uit for i = 1, ..., 5 and i = m, the market
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portfolio, the vector as ut = [uit, umt]
′ and let Gt be the information set at time t. The

conditional joint distribution is assumed to be ut|Gt−1 ∼
(

0,Σt|t−1

)

with conditional covariance

given by

Σt|t−1 = C ′C +A′Σt−1|t−2A+B′ut−1u
′
t−1B (2.11)

+1[uit−1<0]D
′
1ut−1u

′
t−1D1 + 1[umt−1<0]D

′
2ut−1u

′
t−1D2

where A, B, D1 and D2 are 2× 2 matrices and C an upper triangular 2× 2 matrix. Matrices

D1 and D2 are new to the original BEKK formulation and add the needed flexibility to capture

asymmetric responses of the covariance matrix to shocks. Assuming that the joint distribution

is normal, parameters are estimated by maximizing the log-likelihood function.

The estimated parameters16 of equation (2.11) for a simulated17 history are shown in Table

2.5. We also show the log-likelihood ratio (LR) statistics that compares the full model (2.11)

with an specification with just one asymmetric matrix, D2, and another with no asymmetric

matrices. The LR-test p-values indicates that the difference in the likelihoods of the symmetric

BEKK and the asymmetric BEKK, with matrices D1 and D2, are statistically significant. The

LR-test also shows that asymmetries at the asset level are not statistically relevant, except for

asset A5. This was expected, as A5 is the most informative asset about the state of the nature

and so its returns shocks relate more closely to changes in aggregate returns.

We can also see that asymmetries are relevant by noting that the parameters on matrices D1

and D2 are significant and relatively large. However, in order to make sense of these numbers,

we compute impulse response functions (IRFs). First, we need to rewrite the matrices of

parameters in vector form using the vec operator that stacks columns:

vec (Σt) = C +Avec (Σt−1) +Bvec
(

utu
′
t

)

+D11[uit−1<0]vec
(

utu
′
t

)

+D21[umt−1<0]vec
(

utu
′
t

)

16The asymptotic distribution of the estimates is generally unknown and the results can only provide a
description of the dataset (Herwartz and Lutkepohl, 2000).

17The precise results can vary, depending on the particular history chosen. We have selected the history
where the results of the unconditional market betas that follows from the estimation are similar to the ones
predicted by the theory.
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where C = (C ⊗ C)′ vec (I2), A = (A⊗A)′,B = (B ⊗B)′, D1 = (D1 ⊗D1)
′, D2 = (D2 ⊗D2)

′

and I2 is a (2× 2) identity matrix. Here, vec (Σt) will then be a (4× 1) vector, with the first ele-

ment being the asset return conditional variance, the second and third elements the conditional

covariance of the asset return with the market return and the last term the market return con-

ditional variance. Hafner and Herwartz (1998) define the IRF as Vt (ξ0) = E [vec (Σt) |ξ0,Σ0],

which can be computed by starting the above auto-regression at the long run value of the

covariance matrix, Σ, and perturbing it with standardized shocks, ξ0. At t = 1 we have

V1 (ξ0) = C +
(

B + 1[ξ0,i<0]D1 + 1[ξ0,m<0]D2

)

vec
(

Σ1/2ξ0ξ
′
0Σ

1/2
)

+Avec (Σ)

and for t ≥ 2

Vt (ξ0) = C +

(

A+B +
D1

2
+

D2

2

)

Vt−1 (ξ0)

Impulse response functions for betas easily follow from the ratio of the covariance and

market variance IRFs:

βit (ξ0) =
Vim,t (ξ0)

Vm,t (ξ0)

where Vim,t (ξ0) and Vm,t (ξ0) are the second and fourth elements of the vector Vt (ξ0).

Figure 2.2 shows the IRFs of assets A1 and A5 22 days after the initial shock. The first

column shows the variances IRFs. The upper plot shows the responses to shocks in the market

portfolio, leaving asset return unperturbed, and the lower plot responses to shocks in the assets,

leaving market return unperturbed. The asymmetric response to shocks is clear, particularly to

A5, as was noted in the univariate estimation above. We observe that negative shocks to both

market and the assets returns result in a larger change in the volatility than positive shocks.

The second column in Figure 2.2 shows the IRFs of the covariance of assets A1 and A5

with the market portfolio, where we have written the y-axis in terms of percentage changes

to the initial position. The upper plot shows how shocks to the market portfolio changes

future covariances. Negative shocks, particularly larger than two standard deviations, increase
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the covariance of A5 with the market portfolio substantially. On the other hand, when the

shocks are positive, the covariance declines slightly. This shape is in line with our previous

discussion on the relation of covariances with uncertainty and how uncertainty changes with

news. The covariance of A1 with the market portfolio is relatively stable, and slightly increases

with negative shocks and slightly decreases after positive shocks in the market portfolio. The

lower plot on the second column, shows a similar response of the covariance of A5 to shocks on

its own returns, but with changes of smaller magnitude.

Finally, the last column in Figure 2.2 shows the betas IRF for both assets A1 and A5. In

the top plot we see how betas respond to shocks in the market. As discussed analytically, we

have that negative shocks to market returns result in an increase in the market beta of the

asset A5 but a decrease in the market betas of A1. A5 beta increases by about 30% on large

negative news, while A1 beta decreases by about 30% on large negative news. On the other

hand, positive news have a much smaller impact on betas.

2.4 Conclusion

The implications of the model for the variance, covariance and conditional market betas of

asset returns confirm many empirical facts and also suggests new results. First, as pointed by

Veronesi (1999) for the market portfolio in the univariate model, excess returns display the

predicted volatility asymmetry so pervasive in real data. This has been originally attributed

by Black (1976) to a leverage effect, but in our model the justification is closer to the volatility

feedback hypothesis of Campbell and Hentschel (1992). A novel implication for the dynamics

of volatility is that assets that are very sensitive to the economic conditions should also display

stronger asymmetric responses to news.

Second, the covariance of asset returns with the market portfolio also responds asymmet-

rically to the arrival of news, a result also verified empirically, for instance, in the contagion

literature of international markets (Ribeiro and Veronesi, 2002). Our model shows that neg-

ative news increases the covariance of cyclical assets with the market portfolio by a larger

magnitude than positive news. Again, this asymmetry will be larger the more sensitive the

asset is to changes in economic conditions. In the case of a countercyclical asset, the model
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predicts an opposite asymmetric response of covariances to news.

Third, the conditional market betas respond asymmetrically to news. Market betas of assets

that are very sensitive to changes in the economic conditions increase during high uncertainty

cases as opposed to less sensitive assets. A concrete example of assets with such opposing risk

dynamics, as shown in the calibration exercise, are the value and growth portfolios.

The empirical evidence regarding the asymmetric response of market betas to news is

unclear (Braun, Nelson, and Sunier, 1995). Nonetheless, the difficulty of assessing the opposite

response of betas to news from realized returns in a multivariate GARCH framework was also

present in our investigation under the controlled environment of simulated returns. Despite the

analytical equations indicating that asymmetries are relevant, the parameters estimated from

an asymmetric GARCH model did show such asymmetries but for some histories only. Since

the forces behind the beta asymmetry are the same ones behind the asymmetry of variance and

covariances, which are two well known empirical facts about stock returns, the lack of empirical

evidence of beta asymmetry could be a result of econometric misspecification as opposed to

economic irrelevance.
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2.5 Graphs and Tables

Table 2.1: NBER Business Cycles and Book-to-Market Portfolios Log-Dividend
Growth

Panel A reports the average number of months and proportion of recessions and expansions according to the

NBER business cycles data. Panel A also shows the Markov-switching transition matrix parameters that is

implied by NBER data, where: λ ≡ prob (St+1 = Bad|St = Good) is obtained by setting the average sample

duration of expansion equal to 1/λ; and µ ≡ prob (St+1 = Good|St = Bad) is obtained by setting µ/ (µ+ λ)

equal to the proportion of expansionary months in the sample. Panel B reports the unconditional and conditional

sample moments of the annual log-dividend growth on the 5 book-to-market portfolios. The lowest quintile

portfolio is the growth portfolio and the highest quintile, the value portfolio. Log-dividend growth series are

constructed from monthly returns with and without dividend payouts, as in pg. 1648 of Bansal, Dittmar, and

Lundblad (2005). Log-dividend growth is aggregate at the annual frequency to avoid seasonal variations. Mean

and standard deviations are computed for the full sample and conditional to recessionary and expansionary

years, where a year is recessionary if five or more months in it were recessionary according to NBER.

Panel A: NBER Cycles (1956 - 2010)

Sample (Months) Implied Transition Matrix

Recessions Expansions t | t+1 Good State Bad State

Average 11.22 62.22 Good State 0.984 0.016

Proportion 0.17 0.83 Bad State 0.080 0.920

Panel B: Log-Dividend Growth Sample Moments (1956 - 2010)

Mean Standard Deviation

Full Sample Recession Expansion Full Sample Recession Expansion

Growth 0.0487 0.0579 0.0464 0.0888 0.0742 0.0927

Qnt 2 0.0479 0.0324 0.0506 0.1040 0.1089 0.1039

Qnt 3 0.0558 -0.0026 0.0704 0.1021 0.1053 0.0970

Qnt 4 0.0519 -0.0192 0.0697 0.1196 0.1985 0.0848

Value 0.0610 -0.1305 0.1089 0.1769 0.2438 0.1173
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Table 2.2: Calibration Parameters, Model and Sample Moments

Panel A reports the parameters that calibrated the cash-flow processes, defined by the equation (2.1). θG,i

(θB,i) is the cash-flow drift of asset i in the good (bad) state. σD,i is the standard deviation of asset i’s cash-

flow. The correlation parameters, ρij , are set equal to 0.25, 0.15, 0.10 and 0.05 for |i − j| equal to 1, 2, 3

and 4, respectively. Both standard deviation vector and correlation matrix are used to determine the diffusion

term Φ, which is the same across the two states. Panel B reports the main numbers that result from the

calibration and from the model’s pricing equations. ∆θi ≡ θG,i − θB,i is a measure of the asset’s sensitivity to

shifts. θ̄i = πsθG,i + (1− πs) θB,i is the unconditional or long-run drift, where πs ≡ µ/ (µ+ λ) = 0.83. E [rexi ]

is the unconditional excess return or, equivalently, the conditional excess return when πt = πs. σr,i is the

unconditional standard deviation of asset’s i excess return or, equivalently, the conditional standard deviation

when πt = πs. Panel C reports the sample moments of the empirical counterparts in Panel B. The sample

moments from the five book-to-market portfolios monthly were computed from monthly data from 1956 to

2010, and then annualized.

Panel A: Calibrated Parameters

A1 A2 A3 A4 A5

θG,i 0.040 0.059 0.066 0.074 0.100

θB,i 0.050 0.000 -0.020 -0.040 -0.130

σD,i 0.160 0.135 0.130 0.130 0.090

Panel B: Model’s Implied Parameters

A1 A2 A3 A4 A5

∆θi -0.010 0.059 0.086 0.114 0.230

θ̄i 0.042 0.049 0.052 0.055 0.062

E [rexi ] 3.49% 4.85% 5.51% 5.95% 8.22%

σr,i 0.151 0.135 0.141 0.152 0.213

Panel C: Book-to-Market Sample Parameters

Growth Qnt 2 Qnt 3 Qnt 4 Value

θ̄i 0.049 0.048 0.056 0.052 0.061

σD,i 0.089 0.104 0.102 0.120 0.177

E [rexi ] 3.50% 4.81% 5.96% 6.53% 8.03%

σr,i 0.190 0.166 0.165 0.181 0.198
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Table 2.3: Time Series Simulations

500 histories are simulated, each with 6 years of daily data for three different combination of recessions and expansions. In case A there is no recession. In

case B, there is one recession in the first year and then 5 years of expansions. In case C there are two years of recessions. The Table shows the averages

and standard deviations of the 500 histories sample means. Expected excess returns, expected market betas and expected hedging betas, and the prices of

market risk, λm, and of hedging risk, λπ, are ex-ante variables. Realized excess returns is the ex-post average return generated by the model. Realized betas

and alphas are the average coefficients obtained from running regressions with realized returns for each history. A1 through A5 are the calibrated assets that

resembles the growth through value portfolios and M is the market portfolio.

case A case B case C case A case B case C

mean std. mean std. mean std. mean std. mean std. mean std.

Expected Excess Returns Realized Excess Returns

A1 0.035 0.002 0.034 0.001 0.034 0.002 0.035 0.052 0.038 0.052 0.040 0.054

A2 0.037 0.002 0.041 0.003 0.044 0.003 0.050 0.038 0.045 0.042 0.040 0.045

A3 0.039 0.003 0.045 0.004 0.049 0.004 0.056 0.038 0.048 0.046 0.038 0.045

A4 0.039 0.004 0.047 0.005 0.053 0.006 0.062 0.038 0.053 0.041 0.040 0.042

A5 0.040 0.007 0.062 0.013 0.076 0.013 0.091 0.024 0.075 0.025 0.048 0.030

M 0.033 0.003 0.054 0.005 0.046 0.005 0.056 0.021 0.048 0.023 0.036 0.025

Expected Market Beta Realized Market Betas

A1 0.972 0.293 0.826 0.298 0.734 0.285 0.867 0.210 0.689 0.166 0.611 0.179

A2 1.005 0.002 0.958 0.003 0.917 0.003 0.997 0.126 0.929 0.126 0.906 0.133

A3 1.052 0.087 1.039 0.105 1.027 0.100 1.038 0.118 1.017 0.154 1.010 0.143

A4 1.042 0.086 1.068 0.099 1.084 0.105 1.067 0.135 1.097 0.147 1.112 0.157

A5 1.070 0.341 1.331 0.462 1.505 0.475 1.162 0.206 1.509 0.221 1.649 0.263

λm 0.039 0.012 0.047 0.017 0.051 0.017

Expected Hedging Beta Realized Alphas

A1 -0.031 0.023 -0.026 0.022 -0.021 0.020 -0.012 0.050 0.006 0.049 0.018 0.054

A2 0.168 0.123 0.148 0.121 0.122 0.107 -0.005 0.034 0.001 0.037 0.007 0.037

A3 0.247 0.181 0.221 0.179 0.185 0.162 -0.002 0.033 0.000 0.041 0.002 0.038

A4 0.315 0.230 0.285 0.227 0.241 0.206 0.002 0.035 0.001 0.035 0.000 0.037

A5 0.618 0.435 0.616 0.463 0.542 0.431 0.024 0.033 0.002 0.037 -0.012 0.042

λπ -0.011 0.011 -0.012 0.013 -0.015 0.014
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Table 2.4: Asymmetric Volatility

This Table shows the descriptive statistics of the coefficients estimated across the 500 histories of simulated
returns of the GJR-GARCH(1,1) model of asymmetric conditional variance,

σit+1 = κ+ δσit + γuit + γ−1[uit<0]uit

where uit = rit−E [rit], rit is the excess returns in one of the 5 assets calibrated to resemble the book-to-market

portfolios, A1 after the growth portfolio and A5 after the value porftolio. 1[] is the indicator function.

mean std. min. 5% 25% 50% 75% 95% max

persistence (δ) A1 0.939 0.163 0.000 0.608 0.979 0.985 0.988 0.990 0.993

A2 0.945 0.162 0.000 0.678 0.979 0.984 0.987 0.990 0.993

A3 0.958 0.126 0.000 0.953 0.976 0.982 0.985 0.989 0.991

A4 0.979 0.009 0.824 0.967 0.976 0.980 0.984 0.987 0.991

A5 0.952 0.008 0.921 0.937 0.947 0.953 0.958 0.964 0.973

M 0.966 0.007 0.922 0.953 0.962 0.967 0.971 0.977 0.983

news (γ) A1 0.006 0.012 0.000 0.000 0.000 0.001 0.007 0.026 0.083

A2 0.005 0.009 0.000 0.000 0.000 0.001 0.007 0.019 0.063

A3 0.005 0.007 0.000 0.000 0.000 0.002 0.008 0.018 0.057

A4 0.004 0.006 0.000 0.000 0.000 0.001 0.007 0.016 0.030

A5 0.002 0.005 0.000 0.000 0.000 0.000 0.001 0.012 0.038

M 0.008 0.008 0.000 0.000 0.000 0.007 0.013 0.022 0.034

leverage (γ−) A1 0.016 0.017 -0.078 -0.006 0.012 0.017 0.022 0.035 0.102

A2 0.017 0.014 -0.063 0.002 0.012 0.018 0.022 0.031 0.131

A3 0.022 0.011 -0.043 0.006 0.016 0.021 0.026 0.039 0.102

A4 0.026 0.009 -0.013 0.011 0.020 0.026 0.031 0.039 0.082

A5 0.089 0.017 0.036 0.060 0.077 0.088 0.100 0.117 0.135

M 0.036 0.012 -0.011 0.017 0.029 0.036 0.045 0.055 0.071
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Table 2.5: Asymmetric Covariance

This Table shows the coefficients of a bivariate asymmetric BEKK model estimated for each simulated asset and the market portfolio excess returns:

Σt|t−1 = C′C +A′Σt−1|t−2A+B′ut−1u
′
t−1B

+1[uit−1<0]D
′
1ut−1u

′
t−1D1 + 1[umt−1<0]D

′
2ut−1u

′
t−1D2

for i = 1, ..., 5, where uit = rit − E [rit], rit is the excess return in one of the 5 assets calibrated to resemble the book-to-market portfolios, A1 after the

growth portfolio and A5 after the value porftolio, and rmt is the market portfolio. Conditional on yt = σ (uτ , τ < t), it is assumed that ut|yt ∼
(

0,Σt|t−1

)

is

jointly normal, and parameters are obtained by the maximum likelihood method. The sample comprises of simulated data, with 1584 observations, which

is equivalent to 6 years of daily data. Standard deviations are in brackets. Log-likelihood ratio (LR) test is performed with respect to the model with both

asymmetries included, D1 and D2. The constants estimated are multiplied by 100.

C A B D1 D2 Max LogLik LR test

A1 and M 0.234 0.014 0.930 0.011 0.006 -0.045 -0.040 0.023 -0.232 0.005 Full Model 11539.2 LR stat p-value

[0.086] [0.029] [0.042] [0.006] [0.023] [0.020] [0.075] [0.028] [0.071] [0.008] D1 = 0 11538.2 2.0 0.73

0.000 0.023 0.975 -0.196 0.071 -0.137 0.036 0.015 -0.238 D1, D2 = 0 11514.3 49.8 0.00

[0.004] [0.012] [0.006] [0.071] [0.042] [0.070] [0.069] [0.021] [0.033]

A2 and M 0.126 0.040 0.991 0.003 -0.013 -0.003 -0.129 -0.005 -0.052 -0.016 Full Model 11610.3 LR stat p-value

[0.146] [0.059] [0.031] [0.014] [0.009] [0.023] [0.114] [0.014] [0.098] [0.030] D1 = 0 11608.2 4.1 0.39

-0.036 -0.021 0.977 -0.005 0.024 0.078 0.019 0.309 0.246 D1, D2 = 0 11587.1 46.3 0.00

[0.016] [0.016] [0.010] [0.015] [0.012] [0.165] [0.017] [0.150] [0.053]

A3 and M 0.046 0.048 0.995 0.000 -0.009 0.000 -0.029 0.000 -0.008 0.000 Full Model 11977.5 LR stat p-value

[0.029] [0.022] [0.012] [0.008] [0.016] [0.006] [0.041] [0.014] [0.024] [0.009] D1 = 0 11975.6 3.9 0.42

0.026 -0.009 0.981 0.072 0.011 -0.141 -0.077 0.161 0.219 D1, D2 = 0 11952.7 49.6 0.00

[0.022] [0.022] [0.011] [0.139] [0.059] [0.069] [0.071] [0.052] [0.035]

A4 and M 0.070 0.035 0.974 -0.001 0.125 0.053 0.010 0.088 0.150 0.017 Full Model 12092.8 LR stat p-value

[0.028] [0.036] [0.022] [0.009] [0.068] [0.082] [0.026] [0.055] [0.123] [0.080] D1 = 0 12091.2 3.2 0.52

0.044 0.005 0.979 -0.012 -0.062 0.222 0.044 -0.025 0.166 D1, D2 = 0 12063.4 58.8 0.00

[0.024] [0.037] [0.014] [0.013] [0.094] [0.106] [0.137] [0.073] [0.071]

A5 and M 0.017 -0.085 0.958 0.003 -0.114 0.035 -0.282 -0.087 0.022 0.056 Full Model 11500.9 LR stat p-value

[0.106] [0.056] [0.037] [0.027] [0.182] [0.072] [0.150] [0.068] [0.034] [0.058] D1 = 0 11492.2 17.4 0.00

0.000 0.033 0.960 0.149 -0.076 0.118 0.123 0.431 0.154 D1, D2 = 0 11458.5 84.8 0.00

[0.115] [0.112] [0.058] [0.153] [0.094] [0.311] [0.133] [0.095] [0.104]
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Figure 2.1: Theoretical Expressions Conditional on πt
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Chapter 3

Empirical Analysis

3.1 Introduction

The price of a risky asset — a claim to an uncertain stream of cash-flows — is the present value

of its payments discounted by an appropriate rate. A large portion of the asset pricing literature

is concerned with the properties of such discounting rate, the so-called stochastic discount factor

(SDF). For instance, the equity premium puzzle generated a voluminous debate in the literature

as to how the marginal utility of consumption relates to the SDF. In this chapter, we rather

focus on the implications to asset pricing of varying investor uncertainty about such payments.

The investigation here is an empirical one, drawing from the theoretical results laid out in

Chapter 2.

The standard assumption in asset pricing models is that the investor does not observe

future cash-flows, but knows the distribution from which they are generated. For example, the

Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973), assumes that cash-

flows are drawn from a continuous Gaussian process. In contrast, the theoretical framework

investigated here, and that was originally suggested by Ribeiro and Veronesi (2002), adds an

extra layer of uncertainty. Cash-flows are assumed to originate from a continuous Gaussian

process with a drift that can take on two different values, each according to the state of the

economy. The states, unobserved by the investor, follow a Markov-switching process that takes

on two values, one associated with business cycles expansions, where the average profitability

is high, and the other with recessions, where the average profitability is low. Since the investor



has an incomplete characterization of the cash-flow distributions, he optimally infers them

from past observations, and allocates his wealth among assets according to such beliefs. The

resulting rational expectation equilibrium that follows the imposition of the market clearing

conditions provides the pricing implications that are empirically verified here.

This extra layer of cash-flow uncertainty creates a dynamic learning process, and imposes a

factor structure on expected returns that is richer than the ICAPM: it defines the relevant state

variables and the functional forms of market betas and of price of risk. This extra structure

provides many testable restrictions on the joint distribution of stock returns. In this chapter,

we investigate the dynamics of conditional betas across portfolios, formed with U.S. stocks, that

are sorted according to the firm’s characteristics, such as size, book-to-market and industry

portfolios, and according to past performance of the stocks.

Two aspects of the dynamics of market betas are investigated: first, how betas relate to

different levels of investor beliefs; second, how betas relate to signs of news, or equivalently,

how betas relate to changes in investor beliefs.

To relate betas to investor beliefs, we propose an econometric model that projects betas

on proxies of investor beliefs and uncertainty. The proxy for beliefs follows the suggestion

by Ozoguz (2009), who derives it from a two state Markov-switching model fitted on market

returns. For investor uncertainty, we suggest two proxies, one based on the distance of proba-

bilities of investor beliefs, and the other based on the risk-neutral variance of option prices.

To assess how betas relate to changes in investor beliefs, we follow Ang and Chen (2002)

and estimate upside and downside betas from sample moments conditional on opposing sides of

the joint distribution of returns. We use the statistic proposed by Hong, Tu, and Zhou (2007)

to verify if there are statistically significant asymmetries across upside and downside betas.

We summarize our findings about the cross-sectional differences in the relation of beta risk

and levels of beliefs as follows. First, we observe an opposing pattern across portfolios sorted

by book-to-market ratio. Value betas tend to increase during periods of high uncertainty,

while growth betas tend to decrease on uncertainty. Since the price of market risk is positively

related to uncertainty, this opposing response of betas goes in the direction of explaining the

value premium puzzle. These results also imply a counter-cyclical value premium, also found by
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Petkova and Zhang (2005), as periods of higher uncertainty are typically recessionary periods.

This cross-sectional asymmetric response of value and growth betas confirms the theoretical

predictions in Chapter 2.

Second, we find a clear pattern across momentum betas. The betas of portfolios formed

by past-losers stocks are higher in periods of high uncertainty and lower in periods of lower

uncertainty. In contrast, the betas of portfolios formed by past-winners stocks are lower in

periods of high uncertainty and higher in periods of low uncertainty. Past-winners are riskier on

lower uncertainty because in such periods the economy is typically doing well, which increases

correlations with the market. A similar argument follows to past-losers betas during high

uncertainty periods.

Similar qualitative results hold for the different functional forms of market betas suggested,

as well as for the different proxies of investor beliefs used. Interestingly, the two proxies for in-

vestor uncertainty used, one based on the distance of investor beliefs from the high-probabilities

and the other obtained from option prices, resulted in similar conclusions. The later proxy is

motivated by the monotonic relation between risk-neutral variance and uncertainty found in

Chapter 2 and can be obtained directly from the VIX volatility index, calculated by the Chicago

Board Options Exchange (CBOE). Thus, our results also point to the relevance of the VIX in-

dex in explaining market returns, as observed recently by Bollerslev, Tauchen, and Zhou (2009).

In that paper, the authors show that the difference between implied and realized variation on

the market portfolio, what they call the variance risk premium, explains a portion of future

market returns, particularly at the quarterly frequency. Here, the evidence points that the

risk-neutral variance helps explaining systematic risk. The particular horizon of predictability

is also conformable with our assumption about investor’s learning process, as it is reasonable

to expect the uncertainty resulting from a shift in the economic conditions to dissipate only

after some months of data, but before not too many months, as economic recessions last an

year on average.

Our findings about the asymmetries of betas to news are the following. First, as was

predicted by the model, value betas are more sensitive to negative news than to positive news.

The downside beta — the beta conditional on returns being below a negative threshold —
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is higher than its corresponding upside beta — the beta conditional on returns being above

a positive threshold. Furthermore, the asymmetry becomes more important with the size of

news, as the difference between upside and downside betas increases with the threshold values.

In contrast, the growth portfolio does not show important asymmetries; upside and downside

betas are equal, and both decrease with the size of news.

Second, size and momentum sortings also result in asymmetric betas across deciles, but each

with a different associated pattern. The lowest decile, with smaller firms, has a downside beta

that is substantially higher than its upside beta. In contrast, the highest decile, with larger

firms, has an upside beta slightly higher than its downside beta. The highest momentum

decile, formed with past-winner stocks, has a slightly higher downside beta than its upside

beta. Also, past-winners beta decreases as thresholds increase, regardless of sign, indicating

that past-winners systematic risk decreases with the size of news. Asymmetries were largely

absent in the industry sortings, an indication that the size, book-to-market and momentum

sortings, usually taken as evidence of pricing anomalies, may in fact be associated with different

aspects of a misspecified dynamics of beta risk.

Our investigation is closest in purpose to Ozoguz (2009). The author also analyzes the

implications of investor uncertainty to the cross-section of expected returns using U.S. data.

Also, the main theoretical implications in that paper are drawn from Veronesi (1999), who

derives the univariate version of the model investigated here. However, the paper does not

analyze the implications of uncertainty to conditional betas.

This Chapter proceeds as follows. Section 3.2 presents the theoretical expressions of Chapter

2 that are investigated here and discusses testable functional forms of market betas and prices

of risk. Section 3.3 describes the estimation of beliefs, and reports our empirical results on

the relation of conditional betas and beliefs. Section 3.4 reports and discusses how conditional

betas respond to news. Section 3.5 presents our conclusions.
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3.2 Asset Pricing Formulas

Under the assumptions of Chapter 2, asset i expected excess return, ri,t+1, can be decomposed

in two terms, each corresponding to risk premia for exposure to market and the hedging risks:

Et [ri,t+1] = λm,tβim,t + λπ,tβiπ,t (3.1)

where the prices of risk are λm,t and λπ,t, and the quantities of risk, or betas, are defined

as βim,t ≡ covt (ri,t+1, rm,t+1) /vart (rm,t+1) and βiπ,t ≡ covt (ri,t+1, πt+1) /vart (πt+1). πt+1 ≡

Prt (statet+1 = Good) is the probability that the economy is in the good state at time t + 1.

The subscript t denote conditional moments with respect to the information available to the

investor at time t. This particular interpretation of the hedging factor is new and follows from

the particular set of assumptions in the model. In the ICAPM of Merton (1973), the hedging

factor is left unspecified and is typically justified by the empirical observation that investment

opportunities are time-varying. In practice, empirical research has either assumed away the

hedging factor or proposed variables with some predicting power over returns as proxies for the

state variables driving investment opportunities, with no necessary theoretical justification. In

our empirical research, we follow the model’s implications, shown by means of a calibration in

Section 2.3, that a conditional CAPM with an appropriately defined conditional market beta

is sufficient to explain expected returns, without the need of including hedging factors.

Since the model is solved and closed-form formulas1 for returns are obtained, the dynamics

of conditional betas and prices of risk are precisely characterized. This also contrasts with the

ICAPM, and with the conditional CAPM, that do not impose any structure on the dynamics of

beta. Empirical research traditionally imposes that betas are constant. Time-varying attempts

to estimate the ICAPM derive functional forms from empirical regularities, such as multivariate

GARCH models that explore the clustering feature of returns second moments (Bali and Engle

(2010)), or by projecting betas on a set of instrumental variables (Brandt and Wang (2010)),

just to mention some of the recently proposed approaches.

1Up to the numerical solution of two ordinary differential equations.
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Figure 2.1 depicts the model’s market betas and prices of market risk, conditional on the

relevant state variable, πt, of five assets calibrated to resemble the five book-to-market sorted

portfolios. We observe that the conditional market beta of asset A5, that resembles the value

portfolio, increases as πt moves away from 0 and 1, towards points where uncertainty, measured

by πt (1− πt), is higher. Eventually, the market beta of A5 reaches a maximum at around

πt = 0.60. We observe a similar response of betas to changes in uncertainty in all the other

assets. For instance, the beta of asset A1, that resembles the growth portfolio, decreases on

uncertainty and reaches a minimum at πt = 0.60.

A functional form that would capture this non-linear relation of conditional market betas

and investor beliefs, πt, but that is flexible enough so not to impose it a priori, is the following:

βmi,t = a1,i + a2,iπt + a3,iπ
2
t (3.2)

where ak,i, k = 1, 2, 3, are parameters to be estimated. This functional form, which can be seen

as a reduced form of the true one given in Proposition (2.7), allows several different shapes of

the relation between market betas and beliefs. For instance, if both coefficients a2,i and a3,i

are zero, we have the constant beta implied by the static CAPM. If a3,i is zero, we have an

affine relation of market betas and investor beliefs; it would either be increasing or decreasing

on beliefs, depending on the sign of a2,i. Only when all the tree parameters ak,i, i = 1, 2, 3,

are non-zero, we have a non-linear relation between betas and πt. For instance, for some

positive values of a2,i and negative values of a3,i, market beta initially increases on πt and then

decreases, as for larger values of πt the term π2
t becomes more important. Thus, in terms of

the model’s predictions, a combination of a2,i > 0 and a3,i < 0 is expected for value betas, and

a combination with opposite signs, a2,i < 0 and a3,i > 0, is expected growth betas.

Another possible functional form imposes symmetry of betas with respect to uncertainty.

This, more parsimonious form, is obtained by setting a2,i = −a3,i in equation (3.2) so the affine

relation of betas and uncertainty results:

βmi,t = a4,i + a5,iπt (1− πt) (3.3)
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Apart from having fewer parameters, this functional form requires the specification of a proxy

for uncertainty, πt (1− πt), which may be easier to find, as shown in the next section.

3.3 Cross-Section Asymmetries

In this section we estimate betas from monthly returns of portfolios formed with stocks traded in

the NYSE, Nasdaq and Amex markets. Before we proceed with the estimation of the suggested

functional forms, we need to find appropriate proxies for investor beliefs and uncertainty.

3.3.1 Investor Beliefs

We follow Ozoguz (2009) and infer investor beliefs from market returns. This is done by fitting a

two-state Markov-switching model to the conditional mean and variance of the market returns.

The resulting filtered probability, π̂t+1 = Prt (statet+1 = good), is then used as a proxy for

investor beliefs about the economy being in the good state. This state is identified as the state

with longer duration.

The econometric specification of the two-state Markov-switching model follows Perez-Quiros

and Timmermann (2000):

rm,t = c0,st + c1,stDeft−1 + c2,stTermt−1 + c3,stIt−1 + c4Y ieldt−1 + ǫt

ǫt ∼ N (0, hSt) , ln (hSt) = c5,st + c6,stIt−1

where the explanatory variables of the conditional mean of market excess returns, rm,t, are

taken from the predictability literature: the dividend yield on the market portfolio (Y ieldt),

the spread on the yields of the U.S. 10 year and 1 year treasury bonds (Termt), the spread

on the corporate bonds rated BAA and AAA by Moody’s (Deft), and the interest rate on

the 3 months treasury bill (It). The error term is assumed to be conditionally normal with

a time-switching variance, which is an affine function of the short-run interest rates. The

Markov-switching transition matrix parameters are specified as follows:

pt = Pr (st = good|st−1 = good, zt−1) = φ (d0 + d1∆CLIt−1)

qt = Pr (st = bad|st−1 = bad, zt−1) = φ (d0 + d2∆CLIt−1)
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where pt is the probability that at time t the economy is in state st = good, conditional on

available information, zt−1, and on the previous states being good. 1 − pt is then probability

of switching to the bad state, st = bad, conditional on the same information. Likewise, qt is

the conditional probability that the economy remains in the bad state and 1− qt that it shifts

to the good state. The transition probabilities have a t subscript because they are allowed

to change over time according to the year-over-year changes of the variable ∆CLIt, a leading

indicator of business cycles turning points. φ is the cumulative normal distribution and ensures

that the probabilities pt and qt are numbers between 0 and 1.

The parameters estimated by maximum likelihood on the monthly sample from 1956 to 2010

are shown in Table 3.1. Our proxy of investor beliefs, the filtered probability shown in Figure

3.1 along with shaded areas denoting NBER recessions, captures reasonably well changes in

the states of the economy. A measure for uncertainty is directly obtained from this proxy of

beliefs by computing h (π̂t) = π̂t (1− π̂t).

We also consider another proxy for investor uncertainty based on the implied volatility

of option contracts on the market portfolio, the VIX index computed by the Chicago Board

Options Exchange (CBOE)2. This index is calculated from the S&P 500 index options and

measures the risk-neutral variance implied by the contracts, with a fixed 30-day maturity.

This uncertainty proxy based on option prices can be justified theoretically, since the market’s

risk neutral expected volatility is positively and monotonically related to uncertainty, as seen

in Section 2.2.3. The advantage of this proxy is that it is model-free, and can be obtained

directly from prices of traded contracts. In this regard, since such prices ultimately reflect true

investors beliefs, this proxy is likely more appropriate than h (π̂t). The disadvantage is the

limited sample size, monthly data is only available since 1990.

The choice of this proxy is also motivated by the recent empirical evidence pointing to the

predictive power of the VIX index over stock returns. Bollerslev, Tauchen, and Zhou (2009)

have shown that the difference between implied and realized volatility on the market portfolio,

what they call the variance risk premium, is able to explain future market returns, particularly

2http://www.cboe.com/micro/VIX/historical.aspx
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at the quarterly frequency, that cannot be accounted for by the traditional predicting variables,

such as the price-earnings ratio and default spread. However, the theoretical justification for

the predicting properties of the risk-neutral variance is different than the one suggested here.

The authors introduce time-variation in the volatility consumption process, i.e. the volatility

of consumption volatility, which is equivalent, in their endowment economy, to the volatility

of cash-flow volatility. In our context, risk-neutral variance, like other variables of interest,

is a function of investor uncertainty. And because the risk-neutral variance is also an exact

monotonic function of uncertainty, it works as an appropriate proxy for the unobserved investor

uncertainty.

Table 3.2 shows the descriptive statistics of the proxies for belief and uncertainty. The two

proxies for uncertainty are correlated only to a certain extent.

3.3.2 Estimation of Conditional Betas

First, we estimate the parameters in the factor regression Ri,t = αi+βmi,tRm,t+ǫi,t, i = 1, ..., N ,

by imposing the less restrictive functional form (3.2) on βmi,t. To account for heteroskedasticity

and autocorrelation in errors and across assets, we jointly estimate the parameters by the

Generalized Method of Moments (GMM) by specifying the following set of moments conditions:

E

{

[

Ri,t − αi −
(

a1,i + a2,iπ̂t + a3,iπ̂
2
t

)

Rm,t

]

⊗ Zt

}

= 0 (3.4)

where the instruments are Zt =

[

1 Rm,t π̂tRm,t π̂2
tRm,t

]′

. In this specification, the

system is exactly identified, with same number of parameters and restrictions, N × 4.

We first use the same dataset that calibrated the model in Section 2.3.1. This dataset

consists of monthly excess returns from 1956 to 2010 of five book-to-market sorted portfolios and

the value-weighted market portfolio from the Center for Research in Security Prices (CRSP).

We expect parameters to corroborate the patterns predicted by the model, shown in Figure

2.1.

In the top panel of Table 3.3, the estimated parameters of the specification (3.4) have the

predicted signs, but are statistically insignificant. The estimated functional forms depicted
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in Figure 3.2 indicate that conditional beta of the low book-to-market portfolio decreases on

uncertainty whereas that of high book-to-market portfolio increases on uncertainty. Figure 3.2

also shows the implied dynamics for conditional betas on the sample that excludes the years

1997 to 2001, a period where the growth portfolio constituted a larger portion of the stock

market. In this case, the market beta of the value portfolio also increases on uncertainty and,

additionally, is higher than that of the growth portfolio for some levels of πt, as predicted. We

also observe that portfolios with similar book-to-market ratios share similar patterns; the beta

of the fourth quintile (4 Qnt) also increases on uncertainty, and the beta of the second quintile (2

Qnt) decreases on uncertainty. However, the variation in the conditional betas, particularly on

the two extreme portfolios, the value and growth ones, does not have the amplitude suggested

by the theory.

We now extend the analysis of beta dynamics to deciles portfolios and sortings by different

characteristics. We estimate the market betas of 10 portfolios sorted on book-to-market ratio,

10 momentum portfolios sorted according to past performance, 10 size portfolios sorted by

firm’s market capitalization, and 10 industry portfolios sorted by firm’s businesses. The sample

period is the same as before, monthly returns from 1956 to 2010, and the source for this dataset

is also the website of Kenneth French.

The market betas of the 40 portfolios, jointly estimated by GMM, are shown in Table 3.4.

First, we note that the patterns discussed above for the five book-to-market sorted portfolios

extend to the decile sort. The market betas of portfolios with lower ratios seem to respond neg-

atively to increases in uncertainty as opposed to portfolios with higher ratios. The estimated

coefficients for a2,i are generally negative for the lowest deciles and positive for the highest

deciles portfolios. The opposite holds for the coefficients a3,i, positive for the lowest deciles and

negative for the highest deciles. This opposing response of market betas to uncertainty across

book-to-market portfolios is best noted on Figure 3.5. Because of the flexible functional form

imposed to betas, some of the estimated patterns are very different from the ones implied by

the theory, but typically market betas do seem to either increase or decrease on uncertainty. It

should be pointed, however, that the parameters t-statistics, which account for heteroskedas-

ticity, autocorrelation and correlation across errors, are generally not statistically different than
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zero.

The second panel of Table 3.4 shows the estimated parameters of size sorted portfolios.

Interestingly, the patterns implied by the parameters and plotted on Figure 3.6 are similar

across portfolios; the betas generally increase with the belief that the economy is in the good

state, and are thus positively related to π̂t. Among the betas, that of smaller firms is the most

variable one; it reaches a minimum of 0.90 at π̂t = 0 and a maximum of 1.20 at π̂t = 1. The

beta of largest firms vary the least; it reaches a minimum of 0.87 a π̂t = 0 and a maximum of

0.94 at π̂t = 0.60. Again, these patterns cannot be sustained on statistical grounds.

The third panel of Table 3.4 reveals some interesting dynamics related to the momentum

sorting. The shapes of betas implied by such parameters and shown in Figure 3.7 follow

a clear pattern across deciles. Except for the sixth decile, all betas are clearly symmetric

around πt = 0.50 and thus monotonically related to uncertainty. The response of betas to

uncertainty is also clearly positive for the lowest deciles and clearly negative for the highest

deciles. Furthermore, the portfolios on the two extreme deciles are also the ones with the most

variation in conditional betas. As opposed to the book-to-market and size sorted portfolios,

such dynamics of betas can be sustained statistically, as the coefficients are significantly different

than zero.

Finally, the last panel of Table 3.4 shows the parameters estimated for 10 industry betas.

The implied shapes shown in Figure 3.8 are very diverse, as would be expected for a sorting

based on industries categories. High-technology is the riskier industry, has the highest beta

of 1.40 at π̂t = 0.60, and most sensitive to changes in uncertainty. Utilities is the least risky

portfolio, with a maximum beta of 0.64, and an increasing beta on uncertainty. Other portfolios

have market betas decreasing on uncertainty, such as Non-Durables, Energy and Health. Retail

and Manufacturing have betas increasing betas on π̂t while Durables and Telecom decreasing

on π̂t. The slope coefficients, however, are not statistically different than zero.

We have seen that many of the predicted patterns for the book-to-market betas are observed

on the data, but that cannot be supported statistically. We now impose the more restrictive

and simpler functional form of market betas in an attempt to obtain more precise estimators.

We will also consider two proxies for uncertainty that are constructed in very different ways,
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π̂t (1− π̂t) and V IXt, to assess to which extent the results depend on the proxy chosen. As

before, we estimate the parameters by GMM to obtain robust covariances by imposing the

following set of moment conditions:

E

{

[Ri,t − αi − (a4,i + a5,iUCt)Rm,t]⊗ Zt

}

= 0 (3.5)

where the instruments are Zt =

[

1 Rm,t UCtRm,t

]′

. As before, the system is exactly

identified, with N × 3 parameters and moment restrictions.

Initially, we estimate the symmetric betas on the same dataset that calibrated the model

in Section 2.3.1, as we can contrast the results with the theory predictions. The second, third

and fourth panels of Table 3.3 confirm the predicted patterns about betas and uncertainty. For

two different proxies of uncertainty, π̂t (1− π̂t) and V IXt, and two different sample sizes, from

March 1956 to December 2010 and January 1990 to December 2010, the estimated coefficients

a5,i are generally positive for value portfolios and negative for growth portfolios. Furthermore,

if for the proxy, π̂t (1− π̂t), the coefficients are not significant, for the model-free proxy, V IXt,

the coefficients are significantly different than zero. Based on the covariance matrix of the

parameters from the regression with V IXt, most of the joint confidence region of the slope

parameters for growth and value betas, shown in Figure 3.4, lays on the second quadrant, and

indicates that these portfolios have opposite sensitivity to uncertainty.

For a robust assessment of our previous results, we re-estimate the market betas of the 40

portfolios, this time using as a proxy for uncertainty V IXt. The results are shown in Table 3.5.

The slope coefficient, a5,i, of the 10 book-to-market sorted portfolios is lowest and negative

for growth portfolios and positive and highest for value portfolios, with some of the estimates

statistically significant. The average slope of the 3 lowest deciles is -0.26, of the 4 mid-deciles

is 0.59 and of the 3 highest deciles is 1.09. This pattern, predicted by our model, corroborates

the findings above with different proxy for uncertainty and functional form of betas.

The second panel of Table 3.5 shows how market betas of size portfolios depend on uncer-

tainty. The slope coefficient, a5,i, is higher and significant for small firms, but closer to zero

and insignificant for large firms. The average slope of the 3 lowest deciles is 0.53, of the 4
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mid-deciles 0.31, and of the 3 highest deciles 0.16. This pattern is in-line with the intuition

that small firms are riskier than larger firms, particularly during periods of high uncertainty.

The third panel of Table 3.5 confirms the findings of Table 3.4 that betas of past-losers

are more sensitive to changes in uncertainty than betas of past-winners. The average response

to uncertainty of the 3 lowest deciles is 1.47, of the 4 mid-deciles is 0.52 and of the 3 highest

deciles is -0.65. Note that when there is no uncertainty, only the coefficient a4,i matters for

risk, and, in this case, past-winners would be riskier than past-losers, as they are likely to be

more correlated with the market portfolio. The average a4,i coefficient of the 3 lowest deciles

is 0.91, of the 4 mid-deciles is 0.70 and of the 3 highest deciles is 1.14.

Finally, the last panel of Table 3.5 shows the estimated coefficients for the 10 industry

portfolios. We see that for the Durables, Manufacturing and Other portfolios, the coefficient

a5,i is now positive and statistically significant.

In this subsection we have seen how the dynamics of risk differs across portfolios. Our em-

pirical findings suggest that market betas of value and growth portfolio do respond differently

to changes in uncertainty, as predicted by our theory. Both the more flexible functional form

estimated from (3.4) and the affine function of uncertainty estimated from (3.5) result in value

betas increasing on uncertainty and growth betas decreasing on uncertainty. The qualitative

results remain when another proxy for uncertainty is used, V IXt, but with stronger statistical

significance. The amplitude of the variation in conditional betas, however, is smaller than the

one predicted by the model. Furthermore, a value premium still remains as can be observed

by the significance of the intercepts, αi. Thus, despite correctly capturing the model’s main

implications regarding the dynamics of market betas, and thus going on the direction of solv-

ing the value premium, the proposed estimators may not completely capture the cross-section

variation in expected returns. This agrees with Petkova and Zhang (2005) that, despite condi-

tional betas going in the right direction in explaining the value premium puzzle, they cannot

completely explain it. A point argued by Lewellen and Nagel (2006).

Another empirical result, perhaps not surprising, is the clear opposite risk dynamics of

momentum portfolios. We have seen that portfolios formed with past-loser stocks are riskier

than past-winner stocks during periods of higher uncertainty. However, during periods of lower
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uncertainty, the opposite is true, past-winners are riskier than past-losers and have higher

betas. Apparently contradictory, this result is in fact intuitive: during expansions past-winner

stocks are likely to be highly correlated with the market portfolios, and thus riskier, but during

recessions, past-loser stocks are likely to be highly correlated with the market portfolio, and

thus riskier. Thus, time-varying betas are essential to explain returns on momentum portfolios.

The fact that some of the intercepts in the time-series regressions are significantly different

than zero can still be reconciled with the theory, as the model predicts that the price of risk

is also time-varying. In the next section, we estimate the price of risk and assess if its time-

variation is related to investors beliefs as noted by theory.

3.3.3 Estimation of Price of Market Risk

In this section we investigate another implication of the model. Namely, we assess whether

the price of market risk is also a function of investor beliefs about the state of the economy.

As discussed above, the model predicts that, as investor uncertainty increases, the price of one

unit of market risk, the so-called market premium, should also increase and reach a maximum

price around the point of maximum uncertainty.

As opposed to the estimation of betas above, the task of estimating the price of market

risk is more complicated, particularly because it requires the joint estimation of betas and

prices of risk. The traditional approach of Fama and MacBeth (1973) involves a two-step

procedure, where in the first step time-series regressions are used to estimate betas, and in the

second, cross-section regressions with the estimated betas as regressands are used to obtain

an estimate of the price of risk. Despite the computational simplicity, this procedure requires,

for correct statistical inference, the adjustment of t-statistics to account for the existence of

error-in-variables problem.

To impose fewer restrictions on the distribution of returns and avoid the problems associated

with the two-step approach, we jointly estimate the parameters by GMM. The GMM framework

is also flexible enough to allow us investigate time-varying functional forms for the price of

market risk. However, as pointed out by Shanken and Zhou (2007), the moment restrictions

typically imposed on the cross-section of stock returns, such as those in chapter 12 of Cochrane
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(2005), are difficult to solve numerically, and the convergence, when possible, depends on the

initial values chosen. These computational complications arise from the need of joint estimation

of the constants on the time-series factor regressions and the constants on the cross-section

pricing restriction. To avoid such difficulties, we follow Shanken and Zhou (2007) and estimate

the parameters sequentially, imposing the following set of moments suggested by Harvey and

Kirby (1996):

E



















ri,t − µi

rm,t − µm

(rm,t − µm)2 − σ2
m

ri,t − λ0 − λm,t
(ri,t−µi)(rm,t−µm)

σ2
m



















= 0 (3.6)

where i = 1, ..., N . The first N + 2 set of moment restrictions exactly identify the N + 2

parameters µi, i = 1, .., N , µm and σ2
m and are estimated separately, in the initial step. In the

second step, the remaining N moment restrictions are used to estimate λ0 and the parameters

of λm,t. Here, we allow the price of market risk to be time-varying with the suggested functional

forms, λm,t = b1 + b2π̂t + b3π̂
2
t and λm,t = b4 + b5UCt. The proxy of beliefs, π̂t, is the same

as before, and also the two proxies for uncertainty, UCt = π̂t (1− π̂t) and UCt = V IXt.

The GMM estimators, λ̂0, b̂j , j = 1, ..., 5, are obtained analytically. For more details on this

sequential procedure, the reader is referred to Shanken and Zhou (2007).

Table 3.6 shows the GMM estimated parameters λ̂0, b̂j , j = 1, 2, 3, implied by the same 40

portfolios used in previously. To simplify our analysis, however, the betas of such portfolios are

assumed static here. Model (1) is the classic CAPM cross-sectional regression. The intercept

is positive and significantly different than zero and the price of market risk is negative and

insignificant. This economically inconsistent result usually arises when portfolios sorted on

book-to-market and size are used in the regressions. The specifications on Model (2) and

Model (3) allow the price of market risk to be time-varying, by projecting λm,t on beliefs, π̂t,

and squared beliefs, π̂2
t . The significance of the coefficients indicates that time-variation is a

statistically relevant characteristic of market premium. The point estimates, however, indicate

a price dynamics that is at odds with our theory. The parameters imply that the price of
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market risk is actually lower during periods of high uncertainty. Model (5) controls for other

two commonly used risk factors, the HML and SMB factors of the Fama and French 3 factor

model. In this case, all the coefficients are insignificant, which suggests an over-specification of

the dynamics of price of risk.

Table 3.7 shows the GMM estimated parameters λ̂0, b̂j , j = 4, 5, with a more restrictive

functional form on the price of market risk. Two different sample sizes and proxies for uncer-

tainty are considered. The coefficients in Model (6) confirm the results on Table 3.6 that the

price of market risk is time-varying and also decreasing on levels of uncertainty. The coeffi-

cient b̂5 is negative, −0.1799, and statistically significant with a t-statistic well below −3 when

π̂t (1− π̂t) is the uncertainty proxy, and on the monthly sample from 1956 to 2010. The inclu-

sion of the High-Minus-Low (HML) and Small-Minus-Big (SMB) risk factors of the three-factor

Fama-French model does not change its negative sign, but reduces its statistical significance.

In Model (8) a different proxy, V IXt, as well as a different sample period, from January 1990

to December 2010, are used. The point estimates cannot be compared because of the different

scales of the proxies, but the qualitative results are the same, as the negative sign remains.

Thus, the evidence also points to a decreasing equity premium on uncertainty in this restricted

sample periods and for the model-free proxy of uncertainty, although this time not statistically

different than zero.

The dynamics of market risk price revealed by the data does not match our model pre-

dictions. This inconsistent result is typically found in similar empirical investigations. For

instance, a large body of literature has long debated on what is the appropriate econometric

approach to assess the risk versus return trade-off on the market portfolio. Depending on

the chosen approach, a negative relation between return and market variance can be found

(Whitelaw (1994) and Brandt and Kang (2004)). The task of assessing the price of market risk

from the cross-section of returns, which is essentially the same as finding a positive risk-return

trade-off on the market portfolio, has also presented with contradictory results, as evidenced

by the murderings and resurrectings of the CAPM (Fama and French (1996) and Lettau and

Ludvigson (2001)).
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3.4 Time-Series Asymmetries

In the previous section we empirically investigated how the systematic risk of different assets

relates to levels of investor beliefs and uncertainty about the state of the economy. In particular,

we have confirmed the prediction of our model that assets with opposing cash-flow sensitivities,

such as those of low and high book-to-market portfolios, have different levels of risk for given

beliefs. In this section, we explore the impact of changes in beliefs on betas.

The empirical approach will also be different in this section. Instead of defining a proxy for

investor beliefs and uncertainty, we will use the fact that asset returns, and in special returns

on the market portfolio, can be informative about investor beliefs. As was discussed in Section

2.2, asset excess returns that result from that rational expectation equilibrium model (see

Proposition (4)) share a common Brownian motion with investor beliefs (dvt in the expression

(1)). Furthermore, the excess returns diffusion term multiplying the common term is typically

positive, meaning that positive returns should be on average positively related to positive

updates on beliefs.

The model’s predictions regarding the response of conditional betas to news were discussed

in Section 2.3.1. We fitted a multivariate asymmetric BEKK model to the simulated series

and, with the estimated parameters, impulse response functions (IRF) for conditional betas

were computed. The dynamics seen on the IRFs revealed that assets that have higher levels of

systematic risk during uncertain periods, such as the value portfolio, should have conditional

betas increasing on negative news. On the other hand, assets that have lower levels of systematic

risk during uncertain periods, such as the growth portfolio, should have conditional betas

decreasing on negative news.

In order to assess to which extent the betas of book-to-market portfolios have the predicted

asymmetries, and how betas of portfolios with different sortings respond to news, we obtain

estimates of market betas directly from sample moments that are conditional on returns be-

ing above or below certain thresholds. If asymmetries are indeed relevant, such conditioned

betas should differ. And, if our model is correct, the direction of such asymmetries should

also have the predicted directions. The value beta conditional on negative returns should be
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higher than the value beta conditional on positive returns. Likewise, the growth beta should

be lower conditional on negative returns but higher conditional on positive returns. This ap-

proach to assessing asymmetries has the advantage of being straightforward to interpret and

computationally easier than the asymmetric BEKK to estimate.

A similar exercise is performed by Ang and Chen (2002), who investigate the asymmetries

of correlations of several portfolio sortings with the market portfolio. The authors show that

correlations are typically larger in downside markets than in upside markets. Furthermore,

they find that small stocks, value stocks and past-loser stocks are more susceptible to such

asymmetric correlations with the market.

Following Ang and Chen (2002), we define upside beta, β+
+ (c), and downside beta, β−

− (c),

in the following way:

β+
+ (c) =

cov (r̃i,t, r̃m,t|r̃i,t > c, r̃m,t > c)

var (r̃m,t|r̃i,t > c, r̃m,t > c)

β−
− (c) =

cov (r̃i,t, r̃m,t|r̃i,t < −c, r̃m,t < −c)

var (r̃m,t|r̃i,t < −c, r̃m,t < −c)

where c is the threshold. The return on portfolio i, r̃i,t, and the return on the market portfolio,

r̃m,t, are normalized to have zero mean and unit variance. The thresholds will take values

between 0 and 1.5, and not larger to avoid too restricted samples. Two other conditionings are

also considered, one restricts the sample to positive market returns, β+ (c), and the other to

positive portfolio returns, β+ (c):

β+ (c) =
cov (r̃i,t, r̃m,t|r̃i,t > c)

var (r̃m,t|r̃i,t > c)

β+ (c) =
cov (r̃i,t, r̃m,t|r̃m,t > c)

var (r̃m,t|r̃m,t > c)

and similarly for β− (c) and β− (c).

In order to improve the estimation of betas on the restricted samples, we increase the

number of observations by considering weekly returns as opposed to the monthly frequency of

previous section. The first row of plots in Figure 3.9 shows the conditional betas of the size

portfolios for values of c between −1.5 and 1.5. The lines show a discontinuity at c = 0 and
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indicate a clear asymmetric pattern across positive and negative thresholds, c. The betas of the

smallest firms decile, ME1, are higher when news is negative than when news is positive, for all

of the three conditionings. The betas of the largest firms decile, M10, also displays asymmetries,

but in the opposite direction. The betas of large firms are slightly higher on positive news than

on negative news. This is consistent across all threshold levels and conditioning specifications.

The dynamics on the deciles between the lowest and highest, M3, M5 and M8, confirms the

increasing asymmetric pattern towards the lowest deciles of downside betas being higher than

upside betas.

The second row of plots in Figure 3.9 shows different asymmetric patterns across book-to-

market sorted portfolios. The downside beta of the value portfolio, BE10, is typically higher

than the upside betas across all thresholds and conditioning specifications. The plot on the first

column, with the conditioning that both returns are above and below the thresholds, β+
+ (c)

and β−
− (c), shows that the asymmetry becomes more pronounced as we move towards the (odd-

quadrants) tails of their joint distribution. This is in-line with the model’s prediction that value

portfolios are particularly riskier during bad news markets. In contrast, the betas of the growth

portfolio, BE1, do not display asymmetries across positive and negative thresholds. For a given

threshold, the upside and downside growth betas are similar across the three conditionings. As

before, the dynamics on the deciles between the lowest and highest book-to-market, BE3, BE5

and BE8, confirms the opposing patterns of value and growth betas.

Finally, the third row in Figure 3.9 shows that some asymmetric patterns are also present

on the momentum sorted portfolios. The downside betas of past-winners are higher than their

corresponding upside betas at all values of c. Also, as was the case with growth portfolios, past-

winners are less risky in extreme news markets. On the other hand, the betas of past-losers do

not display strong asymmetries across values of c, but increase in riskiness on extreme news

markets. The difference in risk across past-winners and past-losers is most important during

good markets. This is more clearly seen with the betas of portfolio M3, which should share

some of the characteristics of M1.

In order to see if these results are statistically relevant, we need a formal test to verify if

such asymmetries persist after accounting for sample variation. For this task, we use the test
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suggested by Hong, Tu, and Zhou (2007). The advantages of the test are that it is model-free

and relatively simple to compute. The null hypothesis of symmetric betas across thresholds, c,

is tested against no asymmetries for some c:

H0 : β+
+ (c) = β−

− (c) , for all c ≥ 0

Ha : β+
+ (c) 6= β−

− (c) , for some c ≥ 0

To compute a statistic to test such hypothesis, let n thresholds c1, ..., cn and define the (n× 1)

vector β+
+ −β−

− =
[

β+
+ (c1)− β−

− (c1) , ..., β
+
+ (cn)− β−

− (cn)
]′

. The test statistic is the following:

Jβ = T
(

β+
+ − β−

−

)′
Ψ̂−1

(

β+
+ − β−

−

)

where Ψ̂ =
∑T−1

l=1−T k (l/p) γ̂l is a weighted sum of γ̂l, an N ×N matrix with (i, j)− th element

given by γ̂l (ci, cj) = T−1
∑T−1

t=|l|+1 ξ̂t (ci) ξ̂t−|l| (cj) and

ξ̂t (ci) =
T − T+

+

T+
+





(

r̃j,t − µ+
+j (ci)

)

(

r̃m,t − µ+
+m (ci)

)

σ+2
+m (ci)

− β+
+ (ci)



 1 (r̃j,t > ci, r̃m,t > ci)

−T − T−
−

T−
−





(

r̃j,t − µ−
−j (ci)

)

(

r̃m,t − µ−
−m (ci)

)

σ−2
−m (ci)

− β−
− (ci)



 1 (r̃j,t < −ci, r̃m,t < −ci)

where T+
+ is the number of observations when both returns are above ci, µ

+
+ (ci) and σ+2

+ (ci)

are the mean and variance conditional on both returns above ci. Define likewise the variables

associated with the −ci threshold. The statistic is asymptotically chi-square distributed with

n degrees of freedom, Jβ ∼ χ2
n. The same test statistic can be applied to the other difference

of conditional betas, β+ − β− and β+ − β−.

Table 3.8 shows the results of the asymmetry tests on the betas conditional on both re-

turns being above and below c’s. The tests are conducted for three sets of thresholds, c = [0],

c = [0, 0.5, 1.0, 1.5] and c = [0, 0.1, ..., 1.4, 1.5] on the same 40 portfolios studied on the previ-

ous section. The dataset used for the tests begins on July 1963 and the weekly returns are

standardized. The p-values of the Jβ statistics for each portfolio and for each of three sets of
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thresholds are shown.

The p-values on the first panel of Table 3.8 show that asymmetries are generally not sta-

tistically significant on the book-to-market portfolios. However, the averages of differences in

betas, β+
+ − β−

− , show the monotonic pattern predicted by our theory. The downside beta of

the value portfolio is higher than its upside beta. In contrast, the downside beta of the growth

portfolio is slightly smaller than its upside beta.

As was observed graphically, the asymmetries on the small firms are the most important

ones. The p-values are below 10% for the lowest 4 deciles, and the averages of the differences

in betas, β+
+ − β−

− , are negative and large. The asymmetries are not statistically relevant for

larger firms portfolios. However, the negative asymmetries become less important as we move

towards highest deciles and eventually turn positive.

The p-values also indicate that beta asymmetry is significant for the past-winners portfolio.

The negative sign on the average of differences shows that downside beta is higher than upside

betas on this portfolio. This negative asymmetry is consistent with the negative asymmetries

on the other high-deciles portfolios, although for these they are not statistically significant.

This result contrasts with our findings about the relation of momentum betas and the level

of uncertainty in the economy. As seen in the previous section, the evidence pointed that

the market beta of past-winners is lower during periods of high uncertainty and, as discussed,

should decrease on negative news.

Finally, some significant asymmetries arise on the industry portfolios for the case with mul-

tiple thresholds. In this case, the beta of Non-Durables and High-Tech portfolios show negative

asymmetries while the beta of Health and Utilities portfolios show positive asymmetries.

The Tables 3.9 and 3.10 report the same statistics but for two different conditionings.

The qualitative results regarding the sign of the asymmetries are generally the same, but

with some of the p-values now falling inside a rejection range. The asymmetries that arise

from conditioning on market returns only result in greater statistical significance on the lower

deciles of the size portfolios. For all the other sortings, conditioning betas to asset returns

thresholds result in an overall increase in the rejection of the null hypothesis of no asymmetry.

In particular, Table 3.10 now shows that the asymmetries of values betas are statistically, with
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downside betas being significantly higher than upside betas.

3.5 Conclusion

In this chapter we investigated the time-varying features of market betas of portfolios sorted

by size, book-to-market and momentum and also of industry portfolios. Two aspects of the

variation were considered: first, how betas relate to different levels of investor beliefs; second,

how betas relate to signs of news, or equivalently, how betas relate to changes in investor

beliefs.

In the case of the book-to-market betas, we contrasted the empirical findings with those

predicted by the theory in Chapter 2 and concluded that the patterns found confirm the

predictions. Despite the statistical evidence being marginal — in some of the specifications

of betas parameters were not statistically different from zero — the estimates pointed to a

consistent pattern emerging across all deciles of the sort. Value betas tend to be higher during

periods of high uncertainty and lower otherwise. In contrast, growth betas tend to be higher

during periods of low uncertainty and lower during periods of high uncertainty. Asymmetries

were also found with respect to the signs of news. For the value portfolio, a downside beta,

defined as a beta conditional on negative news markets, is higher than the opposing upside

beta, defined as a beta conditional on positive news markets. Furthermore, this difference

in upside and downside betas increases as the conditioning is made on more significant news

markets.

We observed a clear and significant relation between levels of investor beliefs and betas of

momentum portfolios. Past-winners betas tend to be higher during periods of low uncertainty

but lower during periods of higher uncertainty. In contrast, past-losers betas tend to be higher

during periods of high uncertainty and lower during periods of low uncertainty. Interestingly,

a contradictory pattern emerged on the relation of betas and changes in investor beliefs. The

downside betas of past-winners are higher than their corresponding upside betas. This opposes

the prediction that assets that are less risky during high-uncertainty periods, as is the case of

past-winners, negative news should be followed by lower betas as opposed to higher betas.

The betas of size portfolios, particularly the smallest firms, show the most asymmetry with
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respect to changes in investor beliefs. The downside beta of the lowest decile is substantially

and statistically larger than their corresponding upside betas. This result is in line with the

perception that small firms are more susceptible to changes in the market conditions.

Finally, the asymmetries of betas to news that arise in the industry sortings are less pro-

nounced and generally occur conditional on extreme news. This difference in asymmetric

patterns may be an indication that the size, book-to-market and momentum sortings, usually

taken as evidence of pricing anomalies, are effectively capturing different aspects of a non-trivial

dynamic of beta risk.
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3.6 Graphs and Tables

Table 3.1: Markov-Switching Model

This Table shows the estimated parameters of the Markov-switching model for the excess return on the market
portfolio. The conditional mean and variance are specified as:

rm,t = c0,st + c1,stDeft−1 + c2,stTermt−1 + c3,stIt−1 + c4Y ieldt−1 + ǫt

ǫt ∼ N (0, hst) , ln (hst) = c5,st + c6,stIt−1

pt = Pr (st = good|st−1 = good, zt−1) = φ (d0 + d1,1∆CLIt−1)

qt = Pr (st = bad|st−1 = bad, zt−1) = φ (d0 + d1,2∆CLIt−1)

where rm,t is the CRSP value-weighted market portfolio, Deft the default premium, Termt the term spread,

Y ieldt the dividend yield on the market portfolio, It the short-run interest rate. The transition probabilities qt

and pt are allowed to vary over time and are functions of ∆CLIt, the year-over-year change in the composite

leading indicator. The subscript st indicates the parameter switches with state st ∈ {good, bad}. The data are

at the monthly frequency, from January of 1956 to December of 2010. The coefficient c4 is the same on the two

states; the estimated coefficient is on the left column and the standard deviation on the right column.

Good State Bad State

Parameter Std. Dev. parameter Std. Dev.

Mean c0 -0.007 0.006 -0.029 0.042

c1 1.70 0.53 -3.68 1.80

c2 0.58 0.36 3.10 1.80

c3 -2.76 1.03 3.25 7.18

c4 0.32 0.22

Variance c5 -7.28 0.17 -5.85 0.28

c6 127.23 34.84 118.96 86.82

Transition probabilities d0 -1.89 0.27 -1.12 0.38

d1 -11.80 13.16 -10.31 11.53

Log-likelihood value 1172.54
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Table 3.2: Descriptive Statistics of Beliefs and Uncertainty Proxies

This Table shows the descriptive statistics of the proxies for investor beliefs and uncertainty. The beliefs proxy,

π̂t, are the probabilities that the economy is in the good state implied by a two-state Markov-switching model

fitted to the excess return on the market portfolio. The uncertainty proxy π̂t (1− π̂t) is directly computed from

investor beliefs, π̂t. The other proxy for uncertainty is V IX, the Chicago Board Options Exchange (CBOE)

volatility index, which is a measure of the implied volatility of S&P 500 index options.

Starting Sample Obs Mean Std Min Max

π̂t Jan-1957 648 0.84 0.20 0.08 0.99

π̂t (1− π̂t) Jan-1957 648 0.09 0.06 0.01 0.25

V IX Jan-1990 252 20.39 7.87 10.42 59.89

Correlations

π̂t π̂t (1− π̂t) V IX

π̂t 1.00 -0.77 -0.62

π̂t (1− π̂t) 1.00 0.52

V IX 1.00
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Table 3.3: 5 Book-to-Market Portfolios Conditional Betas

This Table shows the GMM estimated parameters from the monthly excess returns on the five book-to-market
portfolios from 1956 to 2010 that results from the moment restrictions:

E
{[

ri,t − αi −
(

a1,i + a2,iπ̂t + a3,iπ̂
2
t

)

rm,t

]

⊗ Zt

}

= 0

for i = 1, ..., 5. Two different specifications for market betas are considered: βi,t = a1,i + a2,iπ̂t + a3,iπ̂
2
t ,

denoted model (M1), and βi,t = a4,i + a5,iUCt, denoted model (M2). π̂t, is a proxy for investor beliefs

implied by the probabilities of a two-state Markov-switching model fitted to the excess return on the market

portfolio. In model (M2), UCt can be one of two investor uncertainty proxies: UCt = π̂t (1− π̂t), directly

obtained from π̂t, or UCt = V IXt, the Chicago Board Options Exchange (CBOE) volatility index, a measure

of the implied volatility of S&P 500 index options. The instruments used to estimate the parameters in (M1)

are Zt =
[

1 rm,t π̂trm,t π̂2
t rm,t

]′
and the instruments in (M2) are Zt =

[

1 rm,t UCtrm,t

]′
. Both

models are exactly identified. The long-run covariance matrix of the moments is estimated with the Newey-West

kernel and the optimal bandwidth.

Growth Qnt 2 Qnt 3 Qnt 4 Value

M1 αi param 0.0031 0.0045 0.0057 0.0063 0.0072

Mar-56 to Dec-10 t-stat 4.47 6.54 7.24 5.87 5.95

a1,i param 1.11 1.00 1.03 0.90 0.94

t-stat 12.92 10.76 14.43 5.74 5.55

a2,i param -0.26 -0.51 -0.63 0.15 0.41

t-stat -0.99 -1.29 -1.60 0.22 0.55

a3,i param 0.20 0.55 0.54 -0.22 -0.45

t-stat 0.97 1.74 1.49 -0.39 -0.70

M2 αi param 0.0031 0.0045 0.0057 0.0063 0.0072

UCt = π̂t (1− π̂t) t-stat 4.44 6.64 7.15 5.85 5.94

Mar-56 to Dec-10 a4,i param 1.05 1.05 0.93 0.82 0.90

t-stat 41.60 39.69 23.72 18.69 15.45

a5,i param -0.05 -0.69 -0.29 0.39 0.52

t-stat -0.21 -3.58 -0.86 0.90 1.00

M2 αi param 0.0028 0.0045 0.0042 0.0046 0.0053

UCt = π̂t (1− π̂t) t-stat 2.39 3.74 2.62 2.22 2.52

Jan-90 to Dec-10 a4,i param 1.03 0.98 0.90 0.81 0.82

t-stat 22.98 17.99 11.18 9.11 8.23

a5,i param -0.14 -0.57 -0.17 0.30 0.88

t-stat -0.39 -1.67 -0.27 0.39 1.03

M2 αi param 0.0021 0.0045 0.0049 0.0058 0.0060

UCt = V IXt t-stat 1.81 3.18 2.68 2.59 2.51

Jan-90 to Dec-10 b4,i param 1.13 0.93 0.77 0.62 0.77

t-stat 24.97 11.32 7.35 4.67 5.36

b5,i param -0.42 -0.09 0.38 0.77 0.59

t-stat -3.29 -0.42 1.46 2.47 1.61
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Table 3.4: Book-to-Market, Size, Momentum and Industry Portfolios Betas (Beliefs)

This Table shows the GMM estimated parameters from the monthly excess returns on 10 book-to-market, 10 size, 10 momentum and 10 industry portfolios from 1956 to
2010 that results from the moment restrictions:

E
{[

ri,t − αi −
(

a1,i + a2,iπ̂t + a3,iπ̂
2
t

)

rm,t

]

⊗ Zt

}

= 0

for i = 1, ..., 40 where βi,t = a1,i + a2,iπ̂t + a3,iπ̂
2
t . π̂t, is a proxy for investor beliefs implied by the probabilities of a two-state Markov-switching model fitted to the excess

return on the market portfolio. The instruments used to estimate the parameters in (M1) are Zt =
[

1 rm,t π̂trm,t π̂2
t rm,t

]′
and so the model is exactly identified.

The long-run covariance matrix of the moments is estimated with the Newey-West kernel and the optimal bandwidth.

params t-stat params t-stat

Portfolios αi a1,i a2,i a3,i αi a1,i a2,i a3,i Portfolios αi a1,i a2,i a3,i αi a1,i a2,i a3,i

Low BEME -0.018 1.000 0.158 -0.085 -1.711 8.66 0.40 -0.26 Low Mom. -0.124 0.820 4.141 -3.976 -6.051 2.97 3.56 -3.96

2 -0.002 1.021 -0.324 0.345 -0.279 13.54 -0.85 1.04 2 -0.047 0.778 2.851 -2.772 -3.142 3.79 2.98 -3.33

3 0.004 0.798 0.154 0.092 0.551 5.39 0.31 0.24 3 -0.016 0.840 1.522 -1.560 -1.319 4.75 1.97 -2.42

4 0.005 1.037 -0.550 0.553 0.543 8.49 -1.00 1.17 4 -0.005 0.897 0.581 -0.617 -0.447 8.81 1.20 -1.49

5 0.016 0.902 -0.346 0.393 1.585 8.81 -0.70 0.89 5 -0.005 0.772 0.528 -0.418 -0.557 7.07 0.99 -0.91

6 0.017 0.961 -0.305 0.281 1.905 6.50 -0.56 0.64 6 0.002 0.837 -0.011 0.156 0.243 7.60 -0.02 0.38

7 0.020 0.594 1.155 -0.948 1.673 3.42 1.45 -1.43 7 0.007 1.022 -1.251 1.281 0.816 9.89 -2.64 3.14

8 0.031 0.931 -0.024 -0.039 2.366 3.36 -0.02 -0.05 8 0.027 1.027 -1.155 1.191 3.447 8.96 -2.38 2.94

9 0.036 0.790 0.701 -0.624 2.943 4.35 0.91 -0.97 9 0.029 1.028 -1.235 1.385 2.941 7.80 -2.37 3.11

High BEME 0.039 0.966 0.722 -0.715 2.222 3.15 0.67 -0.83 High Mom. 0.061 1.077 -1.231 1.592 3.924 5.37 -1.45 2.25

Low ME 0.016 0.853 0.400 -0.074 0.790 3.89 0.48 -0.11 Non-Dur. 0.033 0.803 -0.321 0.375 2.469 6.32 -0.42 0.54

2 0.008 0.947 0.463 -0.177 0.532 5.06 0.56 -0.25 Durables -0.014 1.267 -0.500 0.318 -0.796 3.32 -0.40 0.34

3 0.016 0.995 0.332 -0.100 1.206 5.29 0.44 -0.16 Manuf. -0.001 0.973 0.047 0.044 -0.109 8.45 0.09 0.10

4 0.013 1.006 0.177 0.021 1.022 5.80 0.24 0.04 Energy 0.026 1.061 -1.386 1.215 1.439 6.27 -1.76 1.79

5 0.015 0.888 0.786 -0.532 1.482 5.51 1.24 -1.02 High-Tec. -0.009 1.004 1.452 -1.323 -0.520 4.63 1.52 -1.61

6 0.014 0.805 0.798 -0.495 1.508 6.91 1.73 -1.30 Telecom 0.011 0.997 -0.498 0.190 0.693 4.11 -0.55 0.26

7 0.015 0.983 0.206 -0.075 1.917 8.26 0.47 -0.21 Retail 0.010 0.894 0.183 -0.074 0.764 5.30 0.23 -0.11

8 0.011 0.894 0.652 -0.494 1.471 10.25 1.80 -1.60 Health 0.032 1.012 -1.028 0.953 2.018 4.28 -1.12 1.27

9 0.010 0.963 0.065 -0.027 1.884 9.62 0.19 -0.10 Utilities 0.021 0.565 0.329 -0.421 1.412 3.10 0.38 -0.57

High ME -0.003 0.869 0.242 -0.209 -0.545 10.72 0.96 -1.09 Others -0.007 0.867 0.708 -0.500 -0.621 7.77 1.25 -1.00
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Table 3.5: Book-to-Market, Size, Momentum and Industry Portfolios Betas (Uncertainty)
This Table shows the GMM estimated parameters from the monthly excess returns on 10 book-to-market, 10 size, 10 momentum and 10 industry portfolios from 1956 to
2010 that results from the moment restrictions:

E
{

[ri,t − αi − (a4,i + a5,iUCt) rm,t]⊗ Zt

}

= 0

for i = 1, ..., 40 where βi,t = a4,i + a5,iUCt. UCt can be one of two investor uncertainty proxies: i) UCt = π̂t (1− π̂t), directly obtained from π̂t, the proxy for

investor beliefs implied by the probabilities of a two-state Markov-switching model fitted to the excess return on the market portfolio; and ii) UCt = V IXt, the Chicago

Board Options Exchange (CBOE) volatility index, a measure of the implied volatility of S&P 500 index options. The instruments are Zt =
[

1 rm,t UCtrm,t

]′

and so the model is exactly identified. The long-run covariance matrix of the moments is estimated with the Newey-West kernel and the optimal bandwidth.

params t-stat params t-stat

Port. αi a4,i a5,i αi a4,i a5,i Port. αi a4,i a5,i αi a4,i a5,i

Low BEME -0.014 1.17 -0.39 -0.82 16.04 -1.81 Low Mom. -0.102 1.13 1.90 -1.99 3.15 1.43

2 0.002 0.96 -0.03 0.12 13.36 -0.22 2 -0.012 0.82 1.60 -0.36 4.03 2.46

3 0.005 1.02 -0.35 0.37 8.52 -0.76 3 -0.002 0.77 0.92 -0.09 6.68 2.81

4 0.040 0.68 0.89 1.87 6.70 3.79 4 0.023 0.66 0.90 0.84 4.40 1.93

5 0.027 0.73 0.49 1.16 5.17 1.08 5 0.010 0.69 0.61 0.52 5.30 1.26

6 0.024 0.68 0.79 1.25 7.34 3.53 6 0.014 0.66 0.63 0.95 6.62 2.09

7 0.024 0.77 0.19 0.85 5.66 0.70 7 0.015 0.80 -0.06 0.95 8.26 -0.28

8 0.046 0.44 1.42 1.79 3.12 3.03 8 0.039 0.86 -0.14 2.97 10.05 -0.81

9 0.034 0.75 0.52 1.35 5.75 1.84 9 0.002 1.02 -0.49 0.13 8.76 -1.23

High BEME 0.052 0.66 1.32 1.44 3.70 1.97 High Mom. 0.016 1.55 -1.32 0.50 11.10 -3.55

Low BE 0.043 0.80 0.83 1.19 5.98 2.61 Non-Dur. 0.036 0.56 0.20 1.35 3.96 0.68

2 0.012 1.09 0.35 0.40 8.64 0.89 Durables 0.010 0.72 1.63 0.26 4.31 3.43

3 0.017 1.05 0.40 0.67 10.62 1.75 Manuf. 0.034 0.83 0.50 1.81 10.49 2.33

4 0.005 1.05 0.30 0.23 11.99 1.30 Energy 0.053 0.54 0.41 1.93 4.34 1.31

5 0.016 1.07 0.31 0.86 13.23 1.32 High-Tec. -0.033 1.73 -0.82 -0.95 8.69 -1.29

6 0.017 1.02 0.20 1.02 16.44 0.96 Telecom -0.041 1.03 -0.21 -1.43 8.55 -0.60

7 0.029 0.93 0.44 1.89 17.33 3.07 Retail 0.010 0.88 -0.04 0.43 7.22 -0.16

8 0.015 1.03 0.20 1.07 23.28 1.69 Health 0.019 0.76 -0.33 0.67 5.22 -0.95

9 0.024 0.90 0.33 2.25 15.65 1.70 Utilities 0.031 0.37 0.10 1.01 2.54 0.24

High ME -0.007 0.95 -0.04 -0.82 13.97 -0.15 Others 0.009 0.79 0.90 0.37 5.85 2.07
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Table 3.6: Conditional Price of Risk – Beliefs

This Table shows the sequential GMM estimates of the risk premia parameters from the monthly excess returns on 10 book-to-market, 10 size, 10 momentum
and 10 industry portfolios from 1956 to 2010, with the pricing restriction imposed in the second step being:

E

[

ri,t − λ0 −
∑

j λj,t
(ri,t−µi)(rj,t−µj)

σ2
j

]

= 0

where i = 1, ..., 40 and j = MKT,HML,SMB, respectively the market portfolio, high-minus-low and small-minus-big risk factors of the Fama and French

3-factor model. Risk premia, λj,t, are allowed to vary with the functional form λm,t = b1 + b2π̂t + b3π̂
2
t . π̂t, is a proxy for investor beliefs implied by the

probabilities of a two-state Markov-switching model fitted to the excess return on the market portfolio.

MKT HML SMB

Model λ0 const. π̂t π̂2
t const. π̂t π̂2

t const. π̂t π̂2
t J − stat

(1) param 0.0063 -0.0015 117.65

t-stat 4.62 -0.72 0.00

(2) param 0.0064 -0.0211 0.0262 112.047

t-stat 4.23 -2.09 1.97 0.00

(3) param 0.0057 0.0420 -0.2598 0.2376 97.36

t-stat 3.50 1.57 -2.51 2.84 0.00

(4) param 0.0063 -0.0008 0.0030 0.0027 107.289

t-stat 4.11 -0.33 2.35 2.39 0.00

(5) param 0.0059 0.0384 -0.1675 0.1362 0.0311 -0.0832 0.0553 -0.0040 -0.0462 0.0619 86.523

t-stat 3.33 1.00 -1.17 1.19 1.17 -0.86 0.73 -0.09 -0.32 0.56 0.00
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Table 3.7: Conditional Price of Risk – Uncertainty

This Table shows the sequential GMM estimates of the risk premia parameters from the monthly excess returns on 10 book-to-market, 10 size, 10 momentum
and 10 industry portfolios from 1956 to 2010, with the pricing condition imposed in the second step being:

E

[

ri,t − λ0 −
∑

j λj,t
(ri,t−µi)(rj,t−µj)

σ2
j

]

= 0

where i = 1, ..., 40 and j = MKT,HML,SMB, respectively the market portfolio, high-minus-low and small-minus-big risk factors of the Fama and French

3-factor model. Risk premia, λj,t, are allowed to vary with the functional form λm,t = b4 + b5UCt. UCt can be one of two investor uncertainty proxies:

i) UCt = π̂t (1− π̂t), directly obtained from π̂t, the proxy for investor beliefs implied by the probabilities of a two-state Markov-switching model fitted to

the excess return on the market portfolio; and ii) UCt = V IXt, the Chicago Board Options Exchange (CBOE) volatility index, a measure of the implied

volatility of S&P 500 index options.

MKT HML SMB

proxy model λ0 const. UCt const. UCt const. UCt J − stat

UCt = π̂t (1− π̂t) (6) param 0.0060 0.0185 -0.1799 103.56

t-stat 3.99 2.79 -3.42 0.00

(7) param 0.0058 0.0082 -0.0821 0.0022 0.0109 0.0141 -0.1044 85.6976

t-stat 3.34 0.79 -0.99 0.40 0.25 2.18 -1.75 0.00

UCt = V XI (8) param 0.0068 0.0027 -0.0028 47.6514

t-stat 3.62 0.54 -1.06 0.11

(9) param 0.0073 0.0020 -0.0041 -0.0001 0.0004 0.0008 0.0040 48.8237

t-stat 3.70 0.33 -1.03 -0.02 0.13 0.30 0.67 0.04
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Table 3.8: Asymmetric Betas – β+
+ (c) and β−

− (c)

This Table reports the p-values of the statistic Jβ = T
(

β+
+ − β−

−

)′
Ψ̂−1

(

β+
+ − β−

−

)

, where β+
+ (c) =

cov(r̃i,t,r̃m,t|r̃i,t>c,r̃m,t>c)
var(r̃m,t|r̃i,t>c,r̃m,t>c)

and β−
− (c) =

cov(r̃i,t,r̃m,t|r̃i,t<−c,r̃m,t<−c)
var(r̃m,t|r̃i,t<−c,r̃m,t<−c)

, with r̃ denoting standardized returns and c

thresholds. The null hypothesis is H0 : β+
+ (c) = β−

− (c) , for all c ≥ 0 versus Ha : β+
+ (c) 6= β−

− (c) , for some c ≥ 0.

β+
+ − β−

− refers to the average of the vector β+
+ − β−

− =
[

β+
+ (c1)− β−

− (c1) , ..., β
+
+ (cn)− β−

− (cn)
]′

.

c = [0] c = [0, 0.5, 1, 1.5] c = [0, 0.1, ..., 1.5]

Portfolios p-value β+
+ − β−

− p-value β+
+ − β−

− p-value β+
+ − β−

−

Low BEME 0.001 -0.380 0.000 -0.502 0.000 -0.504

2 0.043 -0.207 0.061 -0.320 0.121 -0.309

3 0.067 -0.178 0.052 -0.291 0.078 -0.278

4 0.093 -0.164 0.040 -0.273 0.483 -0.266

5 0.226 -0.117 0.279 -0.198 0.821 -0.186

6 0.395 -0.076 0.326 -0.095 0.005 -0.092

7 0.325 -0.091 0.261 -0.127 0.298 -0.119

8 0.617 -0.044 0.895 -0.079 0.286 -0.081

9 0.880 0.014 0.987 -0.019 0.937 -0.010

High BEME 0.334 0.078 0.219 0.102 0.212 0.095

Low ME 0.738 0.030 0.983 0.013 0.754 0.018

2 0.632 0.041 0.905 0.058 0.372 0.060

3 0.707 0.032 0.695 0.030 0.468 0.029

4 0.993 -0.001 0.962 0.011 0.533 0.016

5 0.893 -0.013 0.461 -0.008 0.486 -0.006

6 0.773 -0.029 0.980 -0.095 0.668 -0.093

7 0.743 0.032 0.009 0.037 0.027 0.032

8 0.638 -0.059 0.826 -0.142 0.611 -0.134

9 0.325 -0.096 0.464 -0.153 0.003 -0.145

High ME 0.324 -0.119 0.409 -0.192 0.137 -0.194

Low Mom. 0.669 0.052 0.786 -0.020 0.200 0.012

2 0.298 0.110 0.800 0.120 0.138 0.133

3 0.160 0.157 0.223 0.154 0.115 0.173

4 0.306 0.105 0.898 0.216 0.937 0.220

5 0.297 0.096 0.261 0.189 0.023 0.192

6 0.471 0.065 0.938 0.083 0.270 0.088

7 0.736 -0.030 0.917 -0.044 0.924 -0.046

8 0.890 -0.012 0.924 0.002 0.821 -0.008

9 0.166 -0.124 0.532 -0.222 0.070 -0.223

High Mom. 0.023 -0.204 0.049 -0.348 0.032 -0.353

Non-Dur. 0.475 -0.074 0.506 -0.047 0.071 -0.050

Durables 0.827 -0.026 0.423 -0.139 0.834 -0.120

Manuf. 0.598 -0.051 0.445 -0.148 0.256 -0.140

Energy 0.413 -0.100 0.839 -0.109 0.183 -0.130

High-Tec. 0.780 0.027 0.305 -0.153 0.009 -0.120

Telecom 0.943 -0.009 0.668 0.101 0.741 0.076

Retail 0.853 -0.019 0.859 0.023 0.561 0.025

Health 0.967 0.004 0.730 0.244 0.003 0.222

Utilities 0.588 0.075 0.313 0.249 0.082 0.256
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Table 3.9: Asymmetric Betas – β+ (c) and β− (c)
This Table reports the p-values of the statistic Jβ = T (β+ − β−)

′ Ψ̂−1 (β+ − β−), where β+ (c) =
cov(r̃i,t,r̃m,t|r̃m,t>c)

var(r̃m,t|r̃m,t>c)
and β− (c) =

cov(r̃i,t,r̃m,t|r̃m,t<−c)
var(r̃m,t|r̃m,t<−c)

, with r̃ denoting standardized returns and c thresholds. The

null hypothesis is H0 : β+ (c) = β− (c) , for all c ≥ 0 versus Ha : β+ (c) 6= β− (c) , for some c ≥ 0. β+ − β−

refers to the average of the vector β+ − β− = [β+ (c1)− β− (c1) , ..., β+ (cn)− β− (cn)]
′.

c = [0] c = [0, 0.5, 1, 1.5] c = [0, 0.1, ..., 1.5]

Portfolios p-value β+ − β− p-value β+ − β− p-value β+ − β−

Low. BEME 0.575 0.042 0.589 0.054 0.004 0.037

2 0.463 0.055 0.582 0.084 0.451 0.086

3 0.494 0.050 0.605 0.081 0.080 0.082

4 0.718 0.029 0.965 0.052 0.852 0.054

5 0.932 0.007 0.218 0.024 0.564 0.030

6 0.800 -0.021 0.970 -0.057 0.261 -0.050

7 0.444 0.061 0.618 0.115 0.990 0.113

8 0.836 -0.021 0.889 -0.054 0.480 -0.045

9 0.557 -0.046 0.893 -0.057 0.102 -0.049

High. BEME 0.326 -0.091 0.419 -0.104 0.049 -0.092

Low. ME 0.000 -0.374 0.000 -0.420 0.000 -0.416

2 0.003 -0.227 0.000 -0.229 0.000 -0.227

3 0.018 -0.181 0.001 -0.207 0.000 -0.206

4 0.029 -0.169 0.001 -0.196 0.000 -0.199

5 0.113 -0.121 0.027 -0.138 0.008 -0.136

6 0.332 -0.071 0.232 -0.052 0.090 -0.054

7 0.272 -0.087 0.165 -0.088 0.124 -0.090

8 0.671 -0.033 0.897 -0.052 0.158 -0.053

9 0.746 0.026 0.932 0.005 0.957 0.009

High. ME 0.255 0.084 0.092 0.110 0.207 0.105

Low Mom. 0.530 0.059 0.423 0.124 0.125 0.150

2 0.133 0.130 0.283 0.177 0.032 0.192

3 0.060 0.178 0.036 0.198 0.227 0.223

4 0.106 0.140 0.270 0.240 0.490 0.251

5 0.168 0.107 0.018 0.196 0.015 0.201

6 0.212 0.097 0.082 0.119 0.009 0.128

7 0.773 -0.022 0.856 -0.017 0.945 -0.020

8 0.859 0.013 0.788 0.049 0.825 0.044

9 0.144 -0.106 0.007 -0.134 0.002 -0.145

High Mom. 0.006 -0.193 0.001 -0.283 0.000 -0.301

Non-Dur. 0.893 0.011 0.215 0.040 0.215 0.040

Durables 0.813 0.022 0.177 -0.048 0.177 -0.048

Manuf. 0.677 -0.034 0.582 -0.099 0.582 -0.099

Energy 0.704 -0.033 0.335 -0.023 0.335 -0.023

High-Tec. 0.627 0.035 0.172 -0.037 0.172 -0.037

Telecom 0.198 0.112 0.472 0.133 0.472 0.133

Retail 0.868 0.014 0.616 0.055 0.616 0.055

Health 0.418 0.065 0.002 0.167 0.002 0.167

Utilities 0.302 0.102 0.045 0.205 0.045 0.205
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Table 3.10: Asymmetric Betas – β+ (c) and β− (c)
This Table reports the p-values of the statistic Jβ = T

(

β+ − β−
)′
Ψ̂−1

(

β+ − β−
)

, where β+ (c) =
cov(r̃i,t,r̃m,t|r̃i,t>c)

var(r̃m,t|r̃i,t>c)
and β− (c) =

cov(r̃i,t,r̃m,t|r̃i,t<−c)
var(r̃m,t|r̃i,t<−c)

, with r̃ denoting standardized returns and c thresholds. The

null hypothesis is H0 : β+ (c) = β− (c) , for all c ≥ 0 versus Ha : β+ (c) 6= β− (c) , for some c ≥ 0. β+ − β−

refers to the average of the vector β+ − β− =
[

β+ (c1)− β− (c1) , ..., β
+ (cn)− β− (cn)

]′
.

c = [0] c = [0, 0.5, 1, 1.5] c = [0, 0.1, ..., 1.5]

Portfolios p-value β+ − β− p-value β+ − β− p-value β+ − β−

Low. BEME 0.764 0.022 0.918 0.001 0.881 0.010

2 0.639 0.034 0.371 0.018 0.035 0.018

3 0.890 0.010 0.589 -0.021 0.578 -0.031

4 0.592 -0.042 0.863 -0.053 0.011 -0.061

5 0.440 -0.059 0.926 -0.138 0.456 -0.140

6 0.562 -0.048 0.900 -0.123 0.699 -0.122

7 0.957 -0.004 0.016 -0.071 0.028 -0.064

8 0.212 -0.124 0.499 -0.255 0.011 -0.264

9 0.046 -0.152 0.074 -0.255 0.137 -0.249

High. BEME 0.117 -0.140 0.324 -0.283 0.092 -0.271

Low. ME 0.000 -0.369 0.000 -0.523 0.000 -0.531

2 0.005 -0.219 0.004 -0.331 0.060 -0.337

3 0.021 -0.178 0.040 -0.270 0.007 -0.278

4 0.038 -0.163 0.044 -0.265 0.386 -0.260

5 0.114 -0.122 0.189 -0.201 0.755 -0.195

6 0.161 -0.104 0.105 -0.132 0.438 -0.130

7 0.178 -0.109 0.116 -0.162 0.020 -0.161

8 0.469 -0.055 0.886 -0.110 0.631 -0.112

9 0.848 0.015 0.873 -0.034 0.799 -0.024

High. ME 0.308 0.073 0.288 0.081 0.021 0.077

Low Mom. 0.841 -0.018 0.954 -0.087 0.032 -0.070

2 0.676 0.034 0.228 -0.087 0.006 -0.094

3 0.259 0.096 0.013 0.000 0.019 0.007

4 0.845 0.016 0.951 -0.014 0.043 -0.007

5 0.875 0.012 0.035 -0.111 0.346 -0.092

6 0.966 0.003 0.763 -0.022 0.386 -0.017

7 0.479 -0.053 0.304 -0.096 0.225 -0.094

8 0.937 -0.006 0.588 -0.007 0.005 -0.023

9 0.176 -0.098 0.664 -0.218 0.582 -0.217

High Mom. 0.015 -0.175 0.016 -0.295 0.016 -0.288

Non-Dur. 0.010 -0.196 0.001 -0.276 0.000 -0.273

Durables 0.472 -0.062 0.494 -0.180 0.039 -0.159

Manuf. 0.306 -0.083 0.728 -0.182 0.078 -0.181

Energy 0.021 -0.187 0.001 -0.190 0.013 -0.209

High-Tec. 0.830 0.015 0.391 -0.091 0.488 -0.083

Telecom 0.820 -0.019 0.954 -0.045 0.078 -0.050

Retail 0.307 -0.078 0.359 -0.160 0.346 -0.153

Health 0.487 -0.053 0.274 0.061 0.126 0.032

Utilities 0.162 -0.126 0.177 -0.143 0.000 -0.130
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Figure 3.2: Estimates of Model (M1) of Conditional Betas (1956-2010)
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Figure 3.3: Estimates of Model (M1) of Conditional Betas (1956-2010 excl. years 1997-2001)
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Figure 3.5: Conditional Market Betas of Book-to-Market Sorted Portfolios
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Figure 3.6: Conditional Market Betas of Size Sorted Portfolios
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Figure 3.7: Conditional Market Betas of Momentum Sorted Portfolios
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Figure 3.8: Conditional Market Betas of Industry Portfolios
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Figure 3.9: Upside and Downside Betas of Size, Book-to-Market and Momentum Portfolios
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Figure 3.10: Upside and Downside Betas of Industry Portfolios

78



Chapter 4

Decomposing Betas

4.1 Introduction

It is natural to presume that positive and negative returns have different implications to risk.

Despite the popularity of the mean-variance characterization of investor risky choices, which

imposes positive and negative returns to have the same risk implications, asymmetric measures

of risk have long been advocated. Indeed, we can go back as far as Markowitz (1959), who pro-

posed a mean-semivariance characterization of investor risky choices. Measures of asymmetric

risk, such as Value at Risk (VaR), are also widely used by practitioners. The implications of

asymmetric measure of portfolio risk to asset pricing have also long been investigated; Hogan

and Warren (1974) derived a semi-variance version of the CAPM, and Bawa and Lindenberg

(1977) derived a lower partial moments CAPM. Recently, empirical implications of asymmet-

ric risk to asset pricing have also been uncovered. Ang, Chen, and Xing (2006), henceforth

ACX, find that exposures to downside risk, captured by the downside beta, are priced in the

cross-section of U.S. returns and carry a premium of 6% per year. Harvey and Siddique (2000)

also find that exposures to systematic skewness, captured by the coskewness, help explain the

cross-section of stock returns.

In this chapter, we dissect betas and analyze the sources of its asymmetries. We propose

a decomposition that partitions betas into four “signed-betas”, each according to one of the

four market conditions: the stock is up and the market is up (β+
+), the stock is down and the

market is up (β−
+), the stock is up and the market is down (β+

−), and the stock is down and



the market is down (β−
−).

The theoretical justification of a premium for downside risk is usually based on asymmetric

preferences. For instance, Hogan and Warren (1974) assumes investor choices can be repre-

sented by a mean versus semivariance trade-off; ACX assume investor has the disappointment-

aversion (DA) preferences of Gul (1991); Harvey and Siddique (2000) conjectured that investors,

given mean and variance, prefer positive skewness.

In the model discussed in Chapter 2, asymmetries arise in a different context. The particular

signs of returns matter because it can signal a potential change in the economic conditions. In

particular, the average negative news, weighted by a signal-to-noise ratio, increases uncertainty,

whereas the average positive news decreases uncertainty. Because betas and prices of risk

depend on the level of uncertainty, asymmetries also arise in expected returns. An appealing

feature of this approach is that it also indicates which assets are more prone to asymmetries,

namely those more susceptible to change in the economic conditions. In the model, economic

conditions refer to macroeconomic conditions, such as business cycles. Furthermore, it is also

possible that asset related news to impact its systematic risk, as it can also be informative

about the general economic conditions. However, not much is known about this direction of

the causality. Such insights have motivated the sign decomposition of betas and the exploratory

investigation of this chapter.

The main results of this chapter are the following. First, using data on common stocks

traded on the NYSE, Amex and Nasdaq, during the years 1963 and 2009, the proposed de-

composition shows that equally signed betas contributed the most for the overall betas. On

average, the contributions are: 0.62 from the β−
− , 0.67 from the β+

+ , −0.12 from the β+
− , and

−0.15 from the β+
− .

Second, we find that the cross-signed betas and the downside betas, β−
+ ,β+

− and β−
− , are all

associated with higher returns in the cross-section of stocks. We also find that the two betas

related to downside markets, β+
− and β−

− , are not relevant when controlling for coskewness

and cokurtosis. However, the higher return associated with β−
+ , the beta when the stock is

down and market is up, remains positive and significant after controlling for the sources of risk

commonly studied in the literature.
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The chapter proceeds as follows. In Section 4.2 we describe the decomposition. Then, in

Section 4.3, we present the empirical results. Finally, in Section 4.4 we conclude with some

final remarks.

4.2 Decomposing Market Betas

With the availability of high-frequency data, estimators of return variance and covariance

based on realized measures have become increasingly popular. Following such developments,

Andersen, Bollerslev, Diebold, and Wu (2006) have proposed an estimator of the market betas

using high-frequency data, the so-called realized beta:

βi,t,t+1 =

∑

j=1,...,[1/∆]

rm,tjri,tj

∑

j=1,...,[1/∆]

r2m,tj

where the market return rm and stock return ri are in excess of the risk-free rate, ∆ is the

number of partitions in the period between t and t + 1. Under this framework, upside and

downside realized betas are defined as:

β+ =

∑

j=1,...,[1/∆]

rm,tjri,tjI[rm,tj
≥τ ]

∑

j=1,...,[1/∆]

r2m,tj
I[rm,tj

≥τ ]

β− =

∑

j=1,...,[1/∆]

rm,tjri,tjI[rm,tj
<τ ]

∑

j=1,...,[1/∆]

r2m,tj
I[rm,tj

<τ ]

where τ is a threshold, that will be set to τ = 0, and I[.] the indicator function. These

upside and downside realized betas can be regarded as the high-frequency estimates of the

upside and downside betas of Bawa and Lindenberg (1977), who defined them as βBL
− =

E (rirm|rm < 0) /E
(

r2m|rm < 0
)

and βBL
+ = E (rirm|rm ≥ 0) /E

(

r2m|rm ≥ 0
)

, and of ACX,

who defined them as βACX
− = cov (rirm|rm < 0) /var (rm|rm < 0) and βACX

+ = cov (rirm|rm ≥ 0) /

var (rm|rm ≥ 0).

βACX
+ = cov (rirm|rm ≥ 0) /var (rm|rm ≥ 0).
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This notation reveals a simple but interesting decomposition of the realized beta: as the

sum of upside β+ and downside β− betas, with appropriately chosen weights:

β = ω+β+ + ω−β−

ω+ =

∑

j=1,...,[1/∆]

r2m,tjI[rm,tj
>0]

∑

j=1,...,[1/∆]

r2m,tj

ω− =

∑

j=1,...,[1/∆]

r2m,tjI[rm,tj
<0]

∑

j=1,...,[1/∆]

r2m,tj

where it follows directly that ω+ + ω− = 1. The decomposition of betas into market news

is a natural one because of the long tradition of downside betas in the literature, but other

decompositions can be computed, as long as the conditioning events are disjoints. For example,

betas could be decomposed according to industry news, country news and according to the size

of news.

As Chapter 2 revealed within an imperfect information model, signs of returns can contain

additional information about the underlying riskiness of an asset. The sign on market return

may be the most informative, but firms specific news can also contain relevant information

about the systematic risk of the stock. In order to shed new light on the importance of the

signs of returns to systematic risk, we take the above decomposition one step further. We

decompose downside and upside betas according to firm specific news. This would give us

a four-fold decomposition, each resulting from all the possible combinations of up and down

markets returns with up and down stocks returns:

β = ω1β
+
+ + ω2β

−
+ + ω3β

+
− + ω4β

−
− (4.1)
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where

β+
+ =

∑

j=1,...,[1/∆]

rm,tjri,tjI
[

ri,tj >0,rm,tj
>0

]

∑

j=1,...,[1/∆]

r2m,tj
I[

ri,tj >0,rm,tj
>0

]

ω1 =

∑

j=1,...,[1/∆]

r2m,tjI
[

ri,tj >0,rm,tj
>0

]

∑

j=1,...,[1/∆]

r2m,tj

and likewise for the other betas β+
− , β−

+ and β−
− and weights ω2, ω3 and ω4. As before,

1 =
∑4

i=1 ωi. We will refer β+
+ as the beta on PP-markets (positive asset return and positive

market return), and analogously for the other cases. This four-fold decomposition includes

as a special case the downside and upside betas of ACX and Bawa and Lindenberg (1977),

as, for instance, the downside beta can be recovered from it with appropriate weights, β− =

(ω3/ω−)β
+
− + (ω4/ω−)β

−
− .

4.3 Empirical Results

For this empirical study, we use all the common stocks (share-codes 10 and 11) available on

the Center for Research in Security Prices (CRSP) dataset that are, or were, traded on the

NYSE, Amex and Nasdaq stock markets during the years of 1963 and 2009. We use log-excess

returns at the daily frequency.

Table 4.1 shows some descriptive statistics of the four-fold decomposition (4.1). The aver-

ages across all assets are aggregated in two different ways, one with equal-weights and wind-

sorizing, and the other with weights based on the market size of the firm. Only stocks with more

than 150 trading days in the year were included. Consider the panel with the value-weighted

statistics. The first column shows that, on average, a stock has 221 valid observations per year

and, of those, in 80 the stock and market were up, in 32 the stock was up and the market down,

in 40 the stock was down and the market up, and in 69 both the market and stock were down.

Despite the PP case is the most frequent, the NN case is given higher weights, ω4 = 39% while

ω1 = 37%, a result of down markets being more volatile. However, betas are higher during PP

markets, β+
+ = 1.85 versus β−

− = 1.66, and the overall contribution of PP market is actually
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higher, ω1β
+
+ = 0.67 versus ω4β

−
− = 0.62. The last column of the table shows the cumulative

returns on conditional on each event.

Figure 4.1 and 4.2 show the evolution of such statistics over the years. First, we observe an

increase in the dispersion of the decomposed log-excess returns; the gap on the negative returns

during the NN and NP markets versus PP and PN markets has being widened. Second, the

four decomposed betas, in absolute value, have been decreasing over past 20 years. Third, the

PN markets are the least likely over the years, followed by NP, NN and PP markets. Fourth,

among the cross-signed betas, the NP beta contributes slightly more than the PN beta.

We now turn to the question of how each of these signed betas are related to the dispersion

of stock returns. To do so, we follow the approach suggested by ACX. In the paper, the

authors investigate if a downside beta is priced on the cross-section of returns. They define

downside beta as βACX
− = cov (rirm|rm < 0) /var (rm|rm < 0) and compute them from 12

months of rolling-windows with daily data. They proceed by sorting stocks into portfolios

according to their downside betas. The authors find that portfolios with highest downside

betas earn on average 6% per year more than portfolios with lowest downside betas. Because

the procedure requires computing returns contemporaneously to the calculation of betas, the

moments have to be centralized in order to avoid implicitly selecting stocks with lower returns.

In other to avoid introducing such biases in the sorting, we centralize betas by computing them

from centralized sample moments: β−
− = cov (rirm|rm < 0, ri < 0) /var (rm|rm < 0, ri < 0),

and likewise for other betas in the decomposition. Note that now these centered betas can take

positive and negative values on every quadrant.

Another possible approach, which is not pursued here, is suggested by Post, Van Vliet, and

Lansdorp (2009). The authors investigate the (uncentered) version of downside beta suggested

by Bawa and Lindenberg (1977), βBL
− = E (rirm|rm < 0) /E

(

r2m|rm < 0
)

. They also construct

portfolios by sorting stocks according to their downside betas, but instead of computing returns

contemporaneously, returns are calculated one period ahead of the sorting, so no overlapping

occurs.

Table 4.2 shows the returns of the portfolios following the sorting procedure adopted by

ACX. We observe the following. First, we find that the sorting of stocks by downside beta, β−,
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shows a significant premium. The ex-post average return on the portfolio that contains the

stocks with highest downside betas is 9.5% per year, while that containing stocks with the lowest

downside beta is 3.0%. This results in a premium of 6.6% per year, which is also statistically

significant, with a heteroskedasticity and autocorrelation consistent (HAC) t-statistic of 1.94.

This premium is similar to the one found by ACX, of 6%. In contrast, the sorting by the upside

beta, β+, does not result in a significant premium.

Second, despite the insignificant premium on the sorting by upside beta, the four-fold

decomposition reveals that a positive premium arises on β−
+ , the NP-markets beta, when the

stock is negative but the market is positive. Stocks with high β−
+ earn, on average, 3.2% more

than stocks with low β−
+ . This premium is also statistically significant, with a HAC t-statistic

of 3.24.

Third, both betas based on downside markets, β+
− and β−

− , show a statistically significant

premia. Stocks with highest β+
− earn on average 4.8% more, while stocks with highest β−

− earn

on average 6.8% more than stocks with lowest betas.

We observed similar results when we used a reduced sample, that included only NYSE

stocks, when we weighted stocks equally, and when we extended the sample period to the years

between 1927 and 2009. These result are not reported.

Since we have found a significant premium across the sortings, a natural question that

arises is whether these betas are in fact capturing the variation on other sources of risk. In

order to answer this question, we run the two-step Fama and MacBeth (1973) regressions of the

cross-section returns on such betas and several other variables associated to various elements of

risk. For this analysis, we restrict the sample to stocks traded on the NYSE only, although we

perform one regression with our entire universe. The results that we show in Table 4.3 reveal

the following. First, regression IV shows that the premium for downside beta, β−, remains

significant and large even after controlling for other characteristics usually associated with

risk. These results confirm the main finding by ACX, and extend the evidence to the sample

period between 1963 and 2009.

Second, when we regress the cross-section of returns on the sign decomposed betas, the

estimated coefficients confirm what we observed on the sorting of stocks into portfolios. The
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PP-markets betas, β+
+ , shows no premium but all the other three betas do show positive and

significant premia. The highest coefficient is on the NN-markets beta, β−
− , with a point estimate

of 0.052. The other two significant coefficients are 0.011, for the β−
+ , and 0.014, for the β+

− .

Third, when we control for the variables that contain relevant information about risk,

and that is not captured by the symmetric market beta, such as log-size, book-to-market

and part-returns, the coefficients of the decomposed betas remain significant (regressions VI

through VIII). However, when we include the cokurtosis and coskewness variables, that were

recently suggested by Harvey and Siddique (2000) and Dittmar (2002), the coefficients on the

downside betas, β−
− and β+

− , turn insignificant. Surprisingly, the coefficient on the negative

asset return and positive market return, β−
+ , remains significant and with a value of 0.013,

consistent throughout the regressions (regressions IX through XII). The significance of this

coefficient still remains when we expand the Fama-Macbeth regressions to our entire sample,

which includes stocks traded on the NYSE, Nasdaq and Amex markets (regression XII).

Following the surprising results about the significance of the NP-markets betas, β−
+ , even

after controlling for the common sources of risk usually considered by the literature, we further

investigate which stock and firms characteristics may be associated with it. In order to do

so, we run again several Fama-Macbeth regressions, but now the cross-section of β−
+ as the

regressand. To control for industry-specific characteristics, we include 49 industry dummies in

the regressions but do not report the estimated coefficients. We show the results in Table 4.4.

First, we note that β−
+ is positively related to the standard deviation of returns, the cokurtorsis

of returns with the market, the size of the firm; and negatively related to dividends.

Second, NP-markets beta, β−
+ , shows almost no persistence, as the coefficient on its lagged

value is close to zero, and so could not be used as a stable predictor of future risk.

Third, the coefficients on the firm accounting ratios are not generally significant, and so do

not show any clear pattern relating them to β−
+ . Only marginally, we could argue a positive

relation of β−
+ with the leverage ratio Total Assets / Common Equity (TACE).

As a final exercise, we sort all stocks into deciles according to β−
+ , form value-weighted port-

folios, and compute several characteristics of the resulting portfolios. The numbers calculated

for each decile are shown in Table 4.5. We observe that β−
+ is non-trivially related to the firm
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and stock characteristics. Some of the patterns that emerge across deciles and the variables

conforming to these are:

• Increasing from lowest to highest deciles: coskewness, cokurtosis and past returns;

• Higher on the mid-deciles and lower on extremities: dividend yield, size, price of the stock,

activity ratio (inventory turnover (IT)), profitability ratios (return on equity (ROE); net

profit margin (NPM)), leverage ratios (Interest Coverage Before Tax (ICBT); Long-Term

Debt/Shareholder’s Equity (LTBSE); Total Assets/Common Equity (TACE));

• Lower on mid-deciles and higher on extremities: standard deviation, default risk, volume,

turnover, book-to-market ratio, activity ratio (Total Asset Turnover (TAT)), performance

ratio (Sales (Net)/ Stockholder’s Equity (SSE)), liquidity ratios (Current Ratio (CR);

Quick Ratio (QR)) and default ratio (Total Debt/Total Capital (TBTC)).

As the various non-linear patterns and different variables suggest, it is not clear how we can

relate β−
+ to firms and stocks characteristics.

4.4 Conclusion

We have shown in Chapter 2 why the signs of returns are important to betas. Because of the

properties of the learning process discussed in that model, the average negative news increases

investor uncertainty, while the average positive news decreases investor uncertainty. As a result,

betas, which are (approximately) monotonic functions of uncertainty, are also asymmetrically

related to positive and negative news. The direction of such asymmetry is determined by the

asset’s risk characteristics.

In this chapter, we took an exploratory approach and investigated how the signs of returns

are important to betas.

The main contributions of this chapter are the following. First, we propose a decomposition

of betas motivated by the definition of realized betas that resulted into four signed betas, one

for each possible combination of positive and negative market and stock returns. We show that

the four betas exactly add up to the full, symmetric beta, by using the appropriate weights.

Using data on common stocks traded on the NYSE, Amex and Nasdaq, during the years 1963
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and 2009, we observe that the same signed betas contributed the most for the overall betas.

On average, the contributions are: 0.62 from the β−
− , 0.67 from the β+

+ , −0.12 from the β+
− ,

and −0.15 from the β+
− .

Second, we analyzed how each of the four betas relate to the cross-section risk premium.

Following the same procedure adopted by ACX, we find that cross signed betas and the down-

side betas, β−
+ ,β+

− and β−
− , are all associated with higher returns in the cross-section of stocks.

Furthermore, we find that the two betas related to downside markets, β+
− and β−

− , are not rel-

evant when controlling for coskewness and cokurtosis. However, the higher returns associated

with β−
+ , the beta when the stock is down and market is up, remain positive and significant

after controlling for the sources of risk commonly studied in the literature.

While we cannot conclude, based solely on the results presented here, that β−
+ actually

captures exposures to a common factor of risk, we do take this as another evidence that

asymmetries are an important feature of systematic risk.
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4.5 Graphs and Tables

Table 4.1: Beta Decomposition – Descriptive Statistics

Realized betas are computed from daily log-excess returns of common stocks on the CRSP dataset, from 1963 to

2010. Only stocks with more than 150 trading days on a year are considered. The Table shows two aggregations

across stocks, an equally-weighted (windsorized at the 5% and 95% levels) and a value-weighted by the market

size of the firm. Weights, ωi, betas, β, contributions, ωiβ, are shown for all 4 cases: PP, [ri > 0, rm > 0], PN,

[ri > 0, rm < 0], NP, [ri < 0, rm > 0], and NN, [ri < 0, rm < 0]. Rets are the accumulated log-excess returns

over the year conditional on each case.

Equally Weighted Value Weighted

Case Days Weights Contr. Betas Rets. Days Weights Contr. Betas Rets.

ALL 169 74.96% 0.76 -0.063 221 92.65% 1.01 0.081

PP 53 24.91% 0.76 3.75 1.618 80 37.37% 0.67 1.85 1.335

PN 30 9.58% -0.32 -3.76 0.865 32 7.49% -0.12 -1.70 0.402

NP 39 12.22% -0.41 -3.59 -1.082 40 8.81% -0.15 -1.63 -0.483

NN 48 28.25% 0.74 3.23 -1.449 69 38.96% 0.62 1.66 -1.168
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Table 4.2: Cross Section Sorting – NYSE, Amex and Nasdaq (1963-2009)
Stocks on CRSP, traded on NYSE, Amex and Nasdaq, are sorted every month based on (overlapping) 12-month-estimates of risk measures.

Then, quintiles-portfolios are formed and value weighted returns calculated contemporaneously. Only common shares with more than 150

valid observations (i.e. days with trading activity on the 12-month span) are included. T-stats are based on HAC std. errors with 12 lags.

Beta Quintile Mean Median Std. Dev. Skew. Kurt. t-stat

β Low 0.040 0.038 0.127 0.365 1.293

Qnt 2 0.050 0.060 0.124 -0.035 0.125

Qnt 3 0.044 0.057 0.137 -0.231 0.540

Qnt 4 0.052 0.078 0.173 -0.531 0.163

High 0.070 0.114 0.280 -0.384 -0.178

High-Low 0.030 0.042 0.254 -0.046 0.826 0.940

β+ Low 0.028 0.042 0.173 -0.146 1.630

Qnt 2 0.051 0.059 0.133 -0.088 0.717

Qnt 3 0.054 0.067 0.137 -0.208 0.330

Qnt 4 0.049 0.069 0.161 -0.411 0.043

High 0.047 0.091 0.252 -0.483 -0.185

High-Low 0.019 0.020 0.207 -0.199 1.325 0.780

β
−

Low 0.030 0.032 0.131 0.617 2.368

Qnt 2 0.039 0.051 0.122 -0.154 0.108

Qnt 3 0.057 0.078 0.154 -0.291 0.133

Qnt 4 0.074 0.104 0.200 -0.358 0.025

High 0.095 0.124 0.308 -0.212 -0.001

High-Low 0.066 0.061 0.276 0.188 1.756 1.940

β
+

+
Low 0.049 0.055 0.165 0.564 1.712

Qnt 2 0.049 0.057 0.133 -0.046 0.844

Qnt 3 0.050 0.061 0.140 -0.174 0.275

Qnt 4 0.054 0.077 0.166 -0.414 0.030

High 0.048 0.094 0.253 -0.520 -0.102

High-Low -0.001 0.011 0.192 -0.207 1.751 -0.060

β
−

+
Low 0.023 0.051 0.191 -0.529 0.530

Qnt 2 0.052 0.070 0.154 -0.486 0.369

Qnt 3 0.057 0.069 0.151 -0.217 0.251

Qnt 4 0.060 0.080 0.159 -0.323 -0.073

High 0.056 0.073 0.210 -0.320 -0.018

High-Low 0.032 0.028 0.097 0.206 1.442 3.240

β
+

−

Low 0.022 0.050 0.198 -0.490 0.153

Qnt 2 0.045 0.062 0.147 -0.335 0.136

Qnt 3 0.059 0.078 0.149 -0.316 0.145

Qnt 4 0.070 0.092 0.172 -0.269 0.067

High 0.070 0.087 0.248 -0.148 0.289

High-Low 0.048 0.027 0.126 1.208 2.995 3.300

β
−

−

Low 0.009 0.008 0.134 0.565 1.498

Qnt 2 0.045 0.057 0.128 -0.084 0.133

Qnt 3 0.055 0.072 0.151 -0.319 0.353

Qnt 4 0.068 0.097 0.189 -0.399 0.099

High 0.077 0.108 0.290 -0.300 0.057

High-Low 0.068 0.069 0.249 0.227 1.687 2.240
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Table 4.3: Fama-Macbeth Regressions – NYSE (1963-2009)

This Table shows the Fama-Macbeth 2-step regression results where the dependent variable is the 12-month

compounded excess returns. Independent variables are also computed over a 12-month period. The regressions

are performed monthly. Betas, coskewness, cokurtosis and standard deviation are contemporaneous to the

dependent variable. Log-size, book-to-market ratio and past returns correspond to the previous year values.

Standard errors are HAC with 12 lags. T-statistics are in brackets. Only stocks with more than 150 valid

(i.e. days with transaction) in the 12-month span are included. Regression XII also includes stocks in the the

Nasdaq and Amex markets.

Model I II III IV V VI VII VIII IX XI XII

Intercept 0.038 0.529 0.040 0.469 0.059 0.282 0.190 0.186 0.200 0.430 0.596

[2.28] [6.86] [2.42] [6.46] [3.54] [3.78] [3.05] [3.03] [3.28] [6.07] [6.53]

β 0.056 0.140

[2.75] [5.07]

β+ -0.015 0.011

[-2.22] [1.19]

β− 0.061 0.064

[4.80] [4.91]

β+
+ -0.009 0.000 0.007 0.007 0.019 0.018 0.008

[-1.09] [-0.04] [0.92] [0.95] [1.84] [2.10] [0.73]

β−
+ 0.014 0.015 0.015 0.015 0.021 0.013 0.020

[3.80] [4.06] [3.83] [3.89] [5.23] [3.57] [2.08]

β+
− 0.011 0.011 0.012 0.010 0.006 0.002 0.007

[2.98] [2.79] [2.61] [2.50] [1.52] [0.60] [1.20]

β−
− 0.052 0.051 0.053 0.049 0.021 0.014 0.004

[3.97] [3.96] [4.54] [4.28] [1.78] [1.57] [0.39]

Log-Size -0.036 -0.033 -0.018 -0.013 -0.013 -0.015 -0.033 -0.055

[-6.88] [-6.53] [-3.54] [-3.06] [-3.13] [-3.71] [-6.48] [-8.31]

BEME 0.023 0.025 0.028 0.030 0.028 0.024 0.025

[3.49] [3.91] [4.32] [4.42] [4.20] [3.66] [5.40]

Past Ret. -0.010 -0.010 0.011 0.011 -0.003 -0.001

[-0.72] [-0.69] [0.63] [0.62] [-0.22] [-0.03]

Coskew. -0.174 -0.090 -0.164 -0.199 -0.191

[-5.97] [-1.96] [-4.08] [-4.57] [-4.80]

Cokurt. 0.018 0.042 0.071 0.138

[1.89] [4.14] [5.99] [7.54]

Std. Dev. -6.347 -4.541 -2.753 0.122

[-6.34] [-4.64] [-2.79] [0.07]

Adj. R2 0.048 0.148 0.053 0.142 0.048 0.072 0.084 0.100 0.127 0.143 0.146
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Table 4.4: Determinants of β−
+ – NYSE (1963-2009)

This Table shows the results of Fama-Macbeth regressions where the dependent variable is the cross-signed beta β−
+,t. The

independent variables are lagged financial or market variables. All regressions include 49 industry dummies. Standard

errors are HAC with 12 lags. T-statistics are in brackets. Only stocks with more than 150 valid observations (i.e.

days with transaction) in the 12-month span are included. The financial ratios are the following: Activity: Inventory

Turnover (IT), Total Asset Turnover (TAT); Performance: Sales (Net) to Stockholders Equity (SSE); Liquidity: Current

Ratio (CR), Quick Ratio (QR); Profitability: Return on Equity (ROE); Leverage and Default: Interest Coverage Before

Tax (ICBT), Long-Term Debt/Shareholders Equity (LTBSE), Total Debt/Total Capital (TBTC), Total Assets/Common

Equity (TACE).

Model I II III IV V VI VII VIII IX X

β
−

+,t−1
0.007 -0.005 0.007 0.042 0.023 0.076 0.008 -0.009 -0.020 0.015

[1.76] [-0.32] [0.93] [1.33] [1.80] [1.12] [1.50] [-0.52] [-0.69] [2.26]

Std. Dev. 1.266 1.078 1.532 1.552 2.173 2.079 1.441 1.630 1.165 1.402

[4.31] [3.02] [5.00] [3.81] [2.73] [2.99] [4.31] [3.71] [3.57] [4.42]

Log-Size 0.008 0.004 0.007 0.010 0.017 0.013 0.008 0.009 0.005 0.007

[3.11] [0.95] [2.54] [3.49] [1.81] [2.51] [3.26] [3.20] [1.11] [2.40]

Returns 0.001

[0.10]

Coskewness 0.014 0.005 -0.007 -0.075 -0.104 -0.131 0.011 0.019 -0.004 -0.028

[1.30] [0.34] [-0.25] [-0.93] [-1.17] [-1.01] [0.44] [1.00] [-0.15] [-0.78]

Cokurtosis 0.021 0.021 0.018 0.011 0.009 0.004 0.019 0.023 0.014 0.018

[6.51] [5.43] [4.22] [1.01] [1.01] [0.23] [4.83] [5.91] [2.54] [3.59]

Dividends -0.660 -0.320 -0.596 -2.228 -0.563 -0.470 -0.348 -0.263 -0.312

[-2.30] [-1.70] [-2.07] [-1.14] [-1.85] [-2.11] [-2.85] [-0.72] [-2.00]

Book-to-Market -2.465

[-0.57]

IT -0.001

[-0.28]

TAT 0.009

[0.99]

SSE 0.002

[1.38]

CR 0.019

[0.83]

QR -0.017

[-0.75]

ROE -0.023

[-1.39]

ICBT 0.000

[0.65]

LTBSE 0.000

[-0.30]

TBTC -0.002

[-1.27]

TACE 0.001

[1.82]

Avg. R2 0.096 0.091 0.103 0.099 0.103 0.102 0.101 0.096 0.117 0.102
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Table 4.5: Sorting Stocks by β−
+ – NYSE, AMEX and Nasdaq (1963-2009)

The Table shows the characteristics of portfolios sorted by β−
+ . Only stocks with more than 150 days with transactions in the rolling 12-month period are included. Default

Risk Index is obtained from Maria Vassalou’s website, and spans from 1971 and 1999. The financial ratios are the following: activity: Inventory Turnover (IT), Total Asset

Turnover (TAT); Performance: Sales (Net) to Stockholders Equity (SSE); Liquidity: Current Ratio (CR), Quick Ratio (QR); Profitability: Return on Equity (ROE), Net

Profit Margin (NPM); Leverage and Default: Interest Coverage Before Tax (ICBT), Long-Term Debt/Shareholders Equity (LTBSE), Total Debt/Total Capital (TBTC),

Total Assets/Common Equity (TACE).

Performance Measures of Risk

Returns β β+ β− β+
+ β−

+ β+
− β−

− MES σ σ+ σ− Cosk. Cokur. D. Risk.

Dec. t-12 t+1 t+12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t-12 t

1 6.20% 1.07% 13.16% 0.77 0.20 1.05 1.13 -1.27 0.19 0.70 -0.05 0.05 0.03 0.03 -0.13 1.26 0.12

2 10.96% 1.48% 11.36% 0.75 0.47 0.94 0.48 -0.44 0.11 0.62 -0.05 0.03 0.02 0.02 -0.13 1.53 0.06

3 11.61% 1.54% 10.74% 0.72 0.51 0.87 0.44 -0.21 0.14 0.57 -0.05 0.03 0.02 0.02 -0.13 1.64 0.05

4 11.90% 1.25% 10.28% 0.70 0.54 0.83 0.45 -0.07 0.13 0.54 -0.05 0.03 0.02 0.02 -0.13 1.71 0.04

5 12.18% 1.23% 10.12% 0.71 0.59 0.82 0.41 0.04 0.14 0.54 -0.05 0.03 0.02 0.02 -0.13 1.78 0.05

6 12.61% 1.27% 10.03% 0.75 0.67 0.86 0.41 0.14 0.20 0.56 -0.04 0.03 0.02 0.02 -0.12 1.87 0.05

7 12.86% 1.22% 9.98% 0.82 0.77 0.93 0.46 0.25 0.20 0.60 -0.04 0.03 0.02 0.02 -0.11 1.96 0.03

8 13.21% 1.22% 9.94% 0.92 0.91 1.02 0.50 0.39 0.19 0.66 -0.04 0.03 0.02 0.02 -0.10 2.05 0.04

9 13.32% 1.28% 10.32% 1.04 1.10 1.14 0.55 0.59 0.22 0.73 -0.04 0.03 0.02 0.02 -0.09 2.08 0.06

10 11.35% 0.45% 11.11% 1.23 1.57 1.27 0.86 1.23 0.63 0.84 -0.04 0.05 0.03 0.03 -0.05 1.91 0.14

Trade Characteristics Performance Charac. Financial Ratios

P Vol. Turn. DY Size BEME IT TAT SSE CR QR ROE NOM ICBT LTBSE TBTC TACE

t t-12 t-12 t-12 t t t t t t t t t t t t t

1 14.8 213,111 4.70 1.32% 519 1.00 3.83 0.39 2.94 2.82 2.28 -0.09 -0.43 3.29 56.08 3.02 2.91

2 21.5 168,610 3.47 2.01% 791 0.86 4.04 0.38 2.86 2.74 2.15 0.00 -0.21 9.19 56.68 2.35 3.33

3 22.9 162,720 3.09 2.38% 977 0.82 4.19 0.36 2.73 2.66 2.05 0.04 -0.15 12.28 58.44 2.28 3.61

4 27.3 164,752 2.93 2.57% 1,147 0.80 4.30 0.35 2.65 2.62 2.01 0.05 -0.11 13.93 59.18 2.09 3.75

5 34.0 175,417 2.83 2.64% 1,257 0.80 4.41 0.35 2.60 2.58 1.95 0.06 -0.09 13.62 59.19 2.10 3.84

6 38.2 180,651 2.86 2.60% 1,330 0.79 4.53 0.35 2.64 2.58 2.00 0.06 -0.09 13.36 59.78 2.19 3.86

7 33.4 193,228 3.05 2.40% 1,330 0.79 4.21 0.36 2.71 2.62 1.95 0.06 -0.11 13.89 57.43 2.28 3.72

8 24.8 205,521 3.37 2.14% 1,261 0.76 4.09 0.37 2.76 2.68 2.02 0.03 -0.15 11.93 57.77 2.61 3.51

9 21.3 208,825 3.86 1.74% 1,077 0.77 3.86 0.38 2.80 2.80 2.17 0.02 -0.23 9.22 54.63 2.85 3.18

10 16.5 226,435 5.09 1.09% 694 0.92 3.82 0.38 2.95 2.88 2.31 -0.09 -0.42 1.19 57.56 3.33 2.97
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Figure 4.1: Four-Fold decomposition – Equally-Weighted
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Figure 4.2: Four-Fold Decomposition – Value-Weighted
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Chapter 5

Appendix to Chapter 2

In this appendix we solve the investor problem and derive the asset pricing equations. This

model was also derived by Ribeiro and Veronesi (2002). The problem of the representative

investor has two parts. In the first part, the investor optimally infer the conditional means of

the cash-flow processes. In the second part, the investor maximize the utility function subject to

the intertemporal budget constraint, with choice variables consumption, {ct}, and demand for

assets, {Xt}, Xt = [x1t ... xnt]
′. The maximization is solved using the Bellman-Hamilton-Jacobi

equation with two state variables, wealth, Wt, and the belief πt.

Recall the assumptions about the available assets in this economy. There are n risky assets

in this economy that pay a continuous stream of cash-flows: dDt = θtdt + Φdξt. The random

vector θt, is not observed by the investor, who only knows the values it can take, [θG, θB], and

that it follows a 2 state Markov process with the following infinitesimal transition matrix:

M =







−λ λ

µ −µ







with λ = Prob (θt+dt = θB|θt = θG) and µ = Prob (θt+dt = θG|θt = θB). The lemma (1)

shows that the investor’s optimal beliefs about the state of the economy conditional on Ft =

σ (Dτ , τ < t) can be represented by the following stochastic differential equation:

dπt = (λ+ µ) (πs − πt) dt+ πt (1− πt)∆θ′Φ′−1dvt



Under this incomplete information set, Ft, cash-flows can be written as dDt = αDtdt+ Φdvt,

where αDt = [α1D,t, ..., αnD,t]
′ and αiD,t ≡ θiGπt + θiB(1− πt).

With the optimal beliefs already defined, we now turn to the utility maximization problem.

First, since the risk free is inelastically supplied, the budget constraint is given by:

dWt = X ′
t (dPt +Dtdt) +

(

Wt −X ′
tPt

)

rdt− ctdt

= X ′
t (dPt +Dtdt− rPtdt) + (Wtr − ct) dt

where Xt = [x1t ... xnt]
′ are the demand for asset shares and Pt = [P1t ... Pnt] the asset prices.

As in Veronesi (1999), first conjecture a functional form for prices and then find are param-

eters that solve the problem. The conjectured form is linear in Dt but possibly non-linear in

πt, through the function Si:

Pit = pi0 + piππt + piDDit + pi1 + Si (πt)

and by Ito’s lemma we obtain:

dPit = αipdt+ σipdvt i = 1, ..., n

αip =
(

piπ + S′
i (πt)

)

απ + piDmit +
1

2
S′′
i (πt)h (πt)

2H

σip = h (πt)
(

piπ + S′
i (πt)

)

∆θ′Φ′−1 + piDσi

with the simplifying notation απ ≡ (λ+ µ) (πs − πt), h (πt) ≡ πt (1− πt) and H ≡ ∆θ′Σ−1∆θ.

Furthermore, denote the vector of price changes by: dPt = αpdt+Φpdvt, where αp = [α1p, ..., αnp]
′

and Φp is a n× n matrix that stacks the row vectors σip, and Σp = ΦpΦ
′
p. Substitute the con-

jecture prices into the budget constraint to obtain:

dWt =
[

X ′
t (αp +Dt − rPt) +Wtr − ct

]

dt+X ′
tΦpdvt

97



Risk Neutral Prices

The parameters p0 = [p10, ..., pn0]
′, pπ = [p1π, ..., pnπ]

′ and pD = [p1D, ..., pnD]
′ are found by

solving for risk neutral prices, PRN
i,t :

PRN
i,t ≡ Et





∞̂

0

e−rsDi,t+sds



 =

∞̂

0

e−rsEt [Di,t+s] ds

where the equality follows from Foubini’s theorem. Since, Di,t+s = Dit +
´ s
0 αiD,t+τdτ +

σi (vt+s − vt), the only conditional expectation that matters is
´ s
0 Et [αiD,t+τ ] dτ . For this, we

need the eigendecomposition of the infinitesimal transition matrix M to compute the tran-

sition matrix over τ periods. The eigenvalues of M are 0 and − (λ+ µ) with corresponding

eigenvectors [1 1]′ and
[

−1 µ
λ

]′
. The transition matrix over τ is:

P (τ) =







1 −1

1 µ
λ













e0τ 0

0 e−(λ+µ)τ













1 −1

1 µ
λ







−1

=
1

(λ+ µ)







µ+ λe−(λ+µ)τ λ− λe−(λ+µ)τ

µ− µe−(λ+µ)τ λ+ µe−(λ+µ)τ







and so Et [αiD,t+τ ] = [πt 1− πt]P (τ) [θiG θiB]
′ = θis + ∆θi (πt − πs) e

−(λ+µ)τ , where πs =

µ/ (µ+ λ) and θis = θiGπs + θiB (1− πs). Now, the conditional expectation of cash-flows are:

Et [Di,t+u] = Dit +

s
ˆ

0

[

θis +∆θi (πt − πs) e
−(λ+µ)τ

]

dτ

= Dit + θiss+
∆θi (πs − πt)

λ+ µ

[

e−(λ+µ)s − 1
]
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and finally, risk neutral prices are found by continuously discounting expected dividends at the

risk free rate:

PRN
i,t =

∞̂

0

e−rs

[

Dit + θiss+
∆θi (πs − πt)

λ+ µ

[

e−(λ+µ)s − 1
]

]

ds

=
Dit

r
+

θis
r2

− ∆θi (πs − πt)

λ+ µ

[

1

r
− 1

(λ+ µ+ r)

]

= pi0 + piππt + piDDit

where

pi0 =
θiB
r2

+
∆θiµ

r2 (λ+ µ+ r)

piπ =
∆θi

r (λ+ µ+ r)

piD =
1

r

Risk Averse Prices

To solve for the risk aversion case, we need to solve the investor problem:

J (Wt, πt, t) = max
{ct,Xt}

E





∞̂

0

U (cs, s) ds





s.t. dWt =
[

X ′
t (αp +Dt − rPt) +Wtr − ct

]

dt+X ′
tΦpdvt (Budget Constraint)

Xt = [ω1 ... ωn]
′ ≡ ω (Market Clearing)

This problem is solved using the Hamilton-Bellman-Jacobi equation:

0 = max
ct,Xt

[

U (ct, t) + Jt + JW
Et [dWt]

dt
+ Jπ

Et [dπt]

dt
+

1

2
JWW

Et

[

dW 2
t

]

dt

+
1

2
Jππ

Et

[

dπ2
t

]

dt
+ JWπ

Et [dWtdπt]

dt

]
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where we have that:

Et [dWt] =
[

X ′
t (αp +Dt − rPt) +Wtr − ct

]

dt

Et

[

dW 2
t

]

= X ′
tΣpXtdt

Et [dπt] = απdt

Et

[

dπ2
t

]

= h (πt)
2Hdt

Et [dWtdπt] = X ′Φpσ
′
πdt

A solution to problem, c∗t and X∗
t , satisfy the first order conditions:

0 = Uc (c
∗
t , t)− JW

0 = JW (αp +Dt − rPt) + JWWΣpXt + JWπΦpσ
′
π (5.1)

In order to advance, we have to conjecture a functional form for the value function. Follow-

ing the univariate model of Veronesi (1999), we set J (Wt, πt, t) = −exp (−ρt− rγWt − g (πt)− β)

where g (πt) is a function to be determined and β a constant to be defined. Substituting the

partial derivatives of the conjecture value function and of the utility function, U (ct, t) =

−exp (−ρt− γct), on the first order conditions we obtain:

c∗t =
1

γ
(rγWt + g (πt) + β − ln (r)) (5.2)

X∗
t =

1

rγ
Σ−1
p (αp +Dt − rPt)−

g′ (πt)

rγ
Σ−1
p Φpσ

′
π (5.3)

We have an extra equation that will help to identify the problem. Evaluate the HJB

equation at the maximum and set it equal to zero:

0 = −exp (−ρt− γc∗t )− ρJ − rγJ
[

X∗′
t (αp +Dt − rPt) +Wtr − ct

]

− g′ (πt) Jαπ +(5.4)

1

2
(rγ)2 JX∗′

t ΣpX
∗
t +

1

2

(

−g′′ (πt) + g (πt)
2
)

Jh (πt)
2H + rγg′ (πt) JX

∗′Φpσ
′
π
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Before we proceed, we can simplify the expression for αp + Dt − rPt by substituting the pa-

rameters that were obtained for the risk neutral price, pi0, piπ and piD.

αip +Dit − rPit =
(

piπ + S′
i (πt)

)

απ + piDDit +
1

2
S′′
i (πt)h (πt)

2H +Dit

−r (pi0 + piππt + piDDit + pi1 + Si (πt))

= −rpi1 − rSi (πt) + S′
i (πt)απ +

1

2
S′′
i (πt)Hh (πt)

2

Take the above simplification, the expression for c∗t from the first order condition (5.2) and the

market clearing X∗
t = ω and substitute them in the equality (5.4) to get:

0 = r − ρ− rγ

[

ω′

(

−rp1 − rS (πt) + S′ (πt)απ +
1

2
S′′ (πt)Hh (πt)

2

)

− g (πt)

γ
− β

γ
+

ln (r)

γ

]

+

rγg′ (πt)
[

ω′
(

h (πt)
(

pπ + S′ (πt)
)

∆θ′Φ′−1 + pDΦ
) (

Φ−1∆θh (πt)
)]

+

1

2
(rγ)2

[

ω′
(

h (πt)
(

pπ + S′ (πt)
)

∆θ′Φ′−1 + pDΦ
) (

h (πt)
(

pπ + S′ (πt)
)

∆θ′Φ′−1 + pDΦ
)′
ω
]

+

1

2

(

−g′′ (πt) + g (πt)
2
)

h (πt)
2H − g′ (πt)απ

where we have used the notation pm1 ≡ ω′p1, pmπ ≡ ω′pπ, ∆θm ≡ ω′∆θ. Also, let σ2
ω ≡ ω′Σω

and σiω ≡ e′iΣω denote the variance of the market portfolio cash-flow and covariance of the

market and asset i cash-flows, where ei is a vector with zeros and one the ith position. Note

that in the above equation the S = [S1, ..., Sn]
′ vector of functions is multiplied by the market

clearing vector ω and so the equality only depends on Sm ≡ ω′S. After some simplifications

and substituting f (πt) = g (πt)+rγSm (πt) we get the following nonlinear differential equation

for f (πt):

0 = −f ′′ (πt)Q3 (πt) +
(

f ′ (πt)
)2

Q3 (πt) + f ′ (πt)Q2 (πt) + f ′ (πt) r +Q0 (πt)
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where

Q3 (πt) =
1

2
h2 (πt)H

Q2 (πt) = γh (πt)∆θm + rγh (πt)
2H

∆θm
r (r + µ+ λ)

− απ

Q0 (πt) =
1

2
H

(

rγh (πt)∆θm
r (r + µ+ λ)

)2

+ rγ2h (πt)
∆θ2m

r (r + µ+ λ)

where some extra terms in Q0 (πt) were eliminated after choosing appropriately the parameters

β and p1:

β =
ρ

r
+ ln (r) +

γ2

2r
σ2
ω − 1

pi1 = − γ

r2
e′iΣω

which in vector notation is p1 = − γ
r2
Σω. This non-linear differential equation f is the same

one in Veronesi (1999) and it was shown there it has a unique solution on the relevant domain,

πt ∈ (0, 1).

Next, we have to find the individual discounting functions, Si. In order to do so, we use the

first order conditions (5.3) for asset demands, X∗
t , and the market clearing condition X∗

t = ω

to get the equalities:

rγΣpX
∗
t = (αp +Dt − rPt)− g′ (πt) Φpσ

′
π

rγΣpω =

(

−r − γ

r2
Σω − rS (πt) + S′ (πt)απ +

1

2
S′′ (πt)Hh (πt)

2

)

−
(

f ′ (πt)− rγS′
m (πt)

)

Φpσ
′
π

If we left multiply both sides of the above expression by ei, i = 1, ..., n, we get individual

expression for Si:

rγσim,p =

(

−r − γ

r2
σim − rSi (πt) + S′

i (πt)απ +
1

2
S′′
i (πt)Hh (πt)

2

)

−
(

f ′ (πt)− rγS′
m (πt)

)

σipσ
′
π
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that if we substitute for σim,p, σip, σim and σπ and rearrange the terms, we observe that

the market discount function S′
m (πt) cancels out and a differential equations for each asset

i = 1, ...n is obtained:

0 = S′′
i (πt)P3 (πt) + S′

i (πt)P2 (πt) + S′
i (πt) r + Pi0 (πt)

where

P3 (πt) = −1

2
h2 (πt)H

P2 (πt) = γh (πt)∆θm + rγh (πt)
2H

∆θm
r (r + µ+ λ)

+ h (πt)
2Hf ′ (πt)− απ

Pi0 (πt) = γh (πt)
∆θi∆θm

r (r + µ+ λ)

(

2 +
h (πt)H

(r + µ+ λ)

)

+ f ′ (πt)∆θih (πt)

(

h (πt)H

r (r + µ+ λ)
+

1

r

)

This differential equation is essentially the same one in Veronesi (1999). We refer the reader

to that paper for a proof that a solution exists on relevant domain, πt ∈ (0, 1). Note that only

the last term, Pi0 (πt), varies across assets. Furthermore, we observe that if two assets have

the same ∆θi they will share the same discounting function.
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