
SOME CONTRIBUTIONS TO HIGH DIMENSIONAL STATISTICAL

LEARNING

Hanwen Huang

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Statistics and Operations Research (Statistics).

Chapel Hill
2011

Approved by

Advisor: J. S. Marron

Advisor: Yufeng Liu

Reader: Andrew B. Nobel

Reader: Jan Hannig

Reader: D. Neil Hayes

© 2011
Hanwen Huang

ALL RIGHTS RESERVED

ii

ABSTRACT

HANWEN HUANG: Some Contributions to High Dimensional Statistical Learning

(Under the direction of Professor J. S. Marron and Professor Yufeng Liu)

This dissertation consists of two major contributions to high dimensional statistical learn-

ing. The focus is on classification which is one of the central research topics in the field of

statistical learning. This research is on both binary and multiclass learning.

For binary classification, we propose the Bi-Directional Discrimination (BDD) method

which generalizes linear classifiers from one hyperplane to two or more hyperplanes. BDD

combines the strengths of linear and general nonlinear methods. Linear classifiers are

very popular, but can suffer some serious limitations when the classes have distinct sub-

populations. General nonlinear classifiers can give improved classification error rates, but

do not give clear interpretation of the results and present great challenges in terms of

overfitting in high dimensions. BDD gives much of the flexibility of a general nonlinear

classifier while maintaining the interpretability, and less tendency towards overfitting, of

linear classifiers. While the idea is generally applicable, we focus our discussion on the gen-

eralization of the Support Vector Machine (SVM) and Distance Weighted Discrimination

(DWD) methods. The performance and usefulness of the proposed method are assessed

using asymptotics, and demonstrated through analysis of simulated and real data.

For multiclass learning, the DWD method is generalized from the binary case to the

multiclass case. DWD is a powerful tool for solving binary classification problems which has

been shown to improve upon SVM in high dimensional situations. We extend the binary

DWD to the multiclass DWD. In addition to some well known extensions which simply

combine several binary DWD classifiers, we propose a global multiclass DWD (MDWD)

which finds a single classifier that simultaneously considers all classes. Our theoretical re-

iii

sults show that MDWD is Fisher consistent, even in the particularly challenging case when

there is no dominating class (i.e., maximal class conditional probability is less than 1/2).

The performances of different multiclass DWD methods are assessed through simulation

and real data studies.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

1 Introduction 1

1.1 Statistical Classification Problem . 1

1.2 Summary of Existing Classification Methods 3

1.3 Kernel Space . 10

1.4 Bi-Directional Discrimination . 14

1.5 Multiclass Classification . 16

2 Bi-Directional Discrimination with Application to Data Visualization 19

2.1 Introduction . 19

2.2 Bi-Directional Discrimination Framework 23

2.2.1 Review of Uni-Directional Methods 23

2.2.2 Bi-Directional Discrimination . 25

2.2.3 Starting Points . 27

2.2.4 More Than Two Directions . 33

2.3 Visualization, Simulation and Data Analysis 34

2.3.1 Simulated Low Dimensional Examples 35

2.3.2 Simulated High Dimensional Examples 39

2.3.3 Simulated Tri-Directional Examples 44

2.3.4 Real Data . 46

v

2.4 Mathematical Statistics . 51

2.4.1 Four Clusters Case . 52

2.4.2 Three Clusters Case . 58

2.5 Proof . 59

2.5.1 Proof of Theorems 2.1 and 2.2 . 59

2.5.2 Proof of Theorem 2.3 . 63

2.6 Discussion . 68

3 Multiclass Distance Weighted Discrimination 70

3.1 Introduction . 70

3.2 Illustration of Batch Adjustment . 73

3.3 Methodology . 77

3.3.1 Simple Pair-Wise Extension . 77

3.3.2 Full Multiclass Version . 79

3.4 Theoretical Properties . 80

3.4.1 Fisher Consistency of Pair-Wise Version 81

3.4.2 Fisher Consistency of Full Multiclass Version 82

3.5 Simulations . 84

3.6 Proof . 88

3.6.1 Proof of Theorem 3.1 . 88

3.6.2 Proof of Theorem 3.2 . 88

3.7 Discussion . 91

vi

List of Tables

2.1 Performance summary, average error rates over 100 simulations,
of the application of the one-direction and the two-direction
classification methods to three two-dimensional simulation ex-
amples. The numbers in the parentheses show standard errors. 38

2.2 Performance summary, average error rates over 100 simulations,
of the application of the one-direction and the two-direction
classification methods to three high-dimensional simulation ex-
amples. The numbers in the parentheses show standard error. 44

2.3 Cross validation errors over 100 replications for the human lung
carcinoma microarray data set. The numbers in the parentheses
show standard errors. 49

2.4 Cross validation errors for GBM data MES versus NL 50

3.1 Test errors (in percentage) over 100 replications 86

vii

List of Figures

1.1 Illustration of SVM using a toy example. The red plus signs
represent the positive class and the blue circle signs represent
the negative class. The black boxes highlight the support vec-
tors. The black dashed lines show where the functional margin
is 1. 8

1.2 Illustration of the kernel embedding idea using a two-dimensional
toy example. The four panels use different polynomial embed-
ding. The white band represents the decision boundary. The
two classes are represented by red plus and blue circle sym-
bols. Results shown in the four panels are obtained by using
variables x1, x2 (upper-left), x1, x2, x

2
1 (upper-right), x1, x2, x

2
2

(lower-left), and x1, x2, x
2
1, x

2
2 (lower-right), respectively. 11

2.1 Toy data example in two dimensions with three different dis-
crimination curves shown using a solid line-type. Red color
(plus and “x” symbols’) indicates the positive class and blue
color (up and down triangles) indicates the negative class. Dif-
ferent symbols in the same class represent different sub-clusters.
Note the two non-linear methods give (middle and right panels)
major improvements. 20

2.2 Illustration plots for both one-direction SVM (left panel) and
two-direction SVM (right panel). Solid lines represent decision
boundaries. Dashed and dotted lines in the left panel are de-
fined by f = 1 and f = −1 respectively. Dashed curves and
Dotted curves in the right panel are defined by f1f2 = 1 and
f1f2 = −1 respectively. 26

2.3 KDE plot of objective function values for different starting points. 29

2.4 Illustration of some different sub-cluster situations for binary
classification problems. Red color (plus and “x” symbols’) in-
dicates the positive class and blue color (up and down triangles)
indicates the negative class. Different symbols in the same class
represent different sub-clusters. 29

viii

2.5 Application to 4-Cluster-Twisted type of two-dimensional sim-
ulated data set. This realization was carefully chosen to show
both types of local optima (left panel) and the global optimum
(central panel). Observed objective values and their relative
frequencies based on 1000 random starts are shown in the table
(right panel). 37

2.6 Application to 4-Cluster-Twisted type of high dimensional sim-
ulated data set. Upper left panel shows the raw data projected
onto the first two directions. Projections onto 1DWD and or-
thogonal PC1 directions are shown in the lower left panel. Pro-
jections onto f1, f2 directions are shown in the middle and right
panels. 40

2.7 Application to 3-Cluster-Triangle type of high dimensional sim-
ulated data set. Upper left panel shows the raw data projected
onto the first two directions. Projections onto 1DWD and or-
thogonal PC1 directions are shown in the lower left panel. Pro-
jections onto f1, f2 directions are shown in the middle and right
panels. 41

2.8 Visualization of a 4-Cluster-Straight example using Cluster1-1
initialization for both training (left) and test (right) data. 45

2.9 Classification results for the Linear 4-Cluster Gaussian mixture
example: The positive class is a mixture of N(−7.5, 1) and
N(2.5, 1) denoted by ”+” and ”x” symbols respectively and
the negative class is a mixture of N(−2.5, 1) and N(7.5, 1) de-
noted by triangles. The left panel is the classification boundary
obtained by 1SVM; the middle panel shows the classification
boundary obtained by BDD; the right panel shows the clas-
sification boundary obtained by TDD. The error rates show
that the one-directional method and BDD deliver similar per-
formance while TDD works the best for this example. 45

2.10 Classification results for the donut example. The positive class,
denoted by ”+” symbol, lies within a small center, the negative
class, denoted by triangle, surrounds this entirely. The top left,
top right, bottom left, bottom right display the classification
boundaries by 1SVM, BDD, TDD, and the full quadratic-kernel
SVM, respectively. Note that BDD offers improvement over
the one-directional method (the error rate changes from 31%
to 15%), and TDD further improves BDD(error rate changes
from 15% to 5%). Interestingly, TDD gives performance that
is not far from that of the full quadratic-kernel SVM although
it only uses three directions. 46

ix

2.11 Application to the human lung carcinoma microarray data set:
Normal (red ”+”) + SmallCell (red ”x”) versus Carcinoid (blue
up-triangle) + Colon (blue down-triangle). Note Cluster2-2
method correctly subdivide the classes. 48

2.12 Application to GBM data set: MES (red ”+” sign) versus NL
(blue triangle). 50

2.13 Heatmap of GBM data by using top 200 genes selected from
1DWD methods (left panel) and BDD Cluster1-2 methods (right
panel). Genes are in the rows and samples are in the columns 51

2.14 Illustration of the mean positions (C+1,d,C+2,d,C−1,d,C−2,d) of
the four clusters, where (C+1,d,C+2,d) belong to the positive
class and (C−1,d,C−2,d) belong to the negative class. 55

2.15 Summary of the classification performance given in Theorem
2.2 for the one-direction methods and the two-direction methods. 57

3.1 PCA projection scatter plot view of raw GBM data, showing
1D (diagonal) and 2D projections of raw data onto PC direc-
tions. Groupings of colors indicate batch biases. Samples from
Classical, Mesenchymal, Proneural, and Neural are indicated by
“+”, “x”, circle and triangle symbols respectively. This shows
a very strong batch effect, so that adjustment is essential before
combining data sets. 75

3.2 PCA scatter plot view of MDWD adjusted GBM data (labels
are the same as in Figure 3.1), showing effective removal of
batch biases. Biological class differences are now much more clear. 76

3.3 Plots of data points and decision boundaries in the first two
coordinate axis directions for one training set of Example 2.
Upper left panel for Bayes boundary, upper right for MDWD,
lower left for OVR, lower right for OVO. The numbers in the
parentheses show the test errors for this set. 87

x

CHAPTER 1

Introduction

Statistical learning plays a key role in many areas of science, finance and industry. The

major focus of statistical learning research is to automatically learn to recognize complex

patterns and make intelligent decisions based on data (Duda et al. (2000); Hastie et al.

(2009)). This learning process falls into two main categories: supervised learning, and

unsupervised learning. In supervised learning, the training sample data comprise input

vectors along with the corresponding target values (output objects). The task of the

supervised learner is to find a model (hypothesis) using the given data and to predict

the target values for any new data. Supervised learning is called classification if the target

values can be categorized into discrete classes. Unsupervised learning is a class of problems

in which one seeks to summarize and explain key features of the data. It is distinguished

from supervised learning in that the given data consists of input vectors without any

corresponding target values. Our work focuses on classifications.

1.1 Statistical Classification Problem

Statistical classification is a supervised learning procedure in which each element in

the sample is labeled as belonging to some class. Denote by xi = (xi1, · · · , xid) ∈ Rd the

input for the ith training case, and let yi be the corresponding class label which can only

take values in a discrete set. Classification is the problem of building a classification rule

ŷ = Ĝ(x) based on the training sample (x1, y1), · · · , (xn, yn) of labeled cases, where the

joint values of all of the variables are known. This rule will enable us to predict the class

label ŷ for any new object with input x.

The simplest and most widely studied case is two-class learning where there are only

two classes or categories. The two classes are often coded as −1 and +1. The more

complicated case is called multi-class learning when there are more than two classes. The

most commonly used coding for K-classes is an element of G = {1, · · · , K}.

Suppose that (x, y) are random variables governed by some joint probability distribution

P(x, y), and the examples are independently and identically generated from P(x, y). The

classification can be formally characterized as a density estimation problem where one

is concerned with determining properties of the conditional probability P(y|x). Once the

conditional (discrete) distribution P(y|x) is given, the Bayes classifier classifies the object

to the most probable class, i.e., Ĝ(x) = gk if P(gk|x) = maxg∈G P(g|x).

For classification problems, the feature space can be optimally divided into a collection

of regions labeled according to the Bayes classification. The machine learning view of

classification ignores probability distributions, but instead focuses on decision boundaries.

Optimal decision boundaries result in regions which yield minimal classification errors.

Points on each region will be classified as belonging to the corresponding class. The decision

boundaries are also called separating hyperplanes if they are based on linear combinations

of the input features.

2

1.2 Summary of Existing Classification Methods

There are many existing classification methods in the literature. Examples include

K-Nearest Neighbors (kNN) (Cover and Hart (1967)), Neural Networks (see Anderson

and Rosenfeld (1988) for a good discussion), Fisher Linear Discrimination Analysis (LDA)

(Fisher (1936)), Logistic Regression (see Section 4.4 in Hastie et al. (2009) for a good

discussion), Support Vector Machine (SVM) (proposed by Vapnik (1995), see Cristianini

and Taylor (2000) for a good introduction) and Distance Weighted Discrimination (DWD)

(Marron et al. (2007)). In the following, we give a brief description of each method for the

binary classification problem.

K-nearest Neighbors

The k-nearest neighbors (kNN) algorithm is amongst the simplest of all machine learn-

ing methods. In this method, one first finds in the d-dimensional feature space the k

closest objects from the training set to the new object being classified. The object is

simply assigned to the majority class amongst these k neighbors, where k is a positive

integer, typically small. If k = 1, then the object is simply assigned to the class of its

nearest neighbor. Since the neighbor is nearby, it is likely to be similar to the object being

classified and so is likely to belong to the same class as that object.

Nearest neighbor methods are easy to implement and can also give quite good results

if the features contain sufficient information (and if they are weighted carefully in the

computation of the distance). However, as noted in Hastie et al. (2009), there are several

serious disadvantages of the nearest-neighbor methods. First, they do not represent the

distribution of objects in a low dimensional parameter space but rather retain the entire

training set as a description of the object distribution. Therefore, the method is slow if

the training set has many examples. Second, the kNN methods are very sensitive to the

3

presence of irrelevant variables. Adding variables that have random values for all objects

(so they do not separate the classes) can cause these methods to fail.

Neural Networks

As noted by Hastie et al. (2009), neural networks are computational models that try

to simulate the structure and functional aspects of biological neural networks. They are

multi-stage classification methods. First derive features Zm, m = 1, · · · ,M , from linear

combinations of the inputs X via the activation function σ(), and then model the target

Y as a function of linear combinations of the Zm,

Zm = σ(α0m + αT
mX),

T = β0 + βTZ, f(X) = g(T), (1.1)

where Z = (Z1, · · · , ZM). The Zm are called hidden units because the values Zm are

not directly observed. The activation function σ(v) is usually chosen to be the sigmoid

σ(v) = 1/(1 + e−v). The output function g(T) is typically chosen to be identity function

g(T) = T or the softmax function g(T) = eT /(1 + eT).

The neutral network model has unknown parameters {α0m,αm; m = 1, · · · ,M} and

{β0,β}, often called weights, and we seek values for them that make the model fit the

training data well. Usually, sum-of-squared error or cross-entropy (deviance) defined as

−
∑n

i=1 yi log f(xi) are used as the measure of fit, and the corresponding classifier is Ĝ(x) =

sign(f̂(x)).

As noted by Duda et al. (2000), neural networks are non-linear statistical data modeling

tools. They can be used to model complex relationships between inputs and outputs or

to find patterns in data. The significant disadvantage of neural networks is that it is very

4

difficult to intuitively understand how the net is making its decision. In practice, it is hard

to determine which of the features being used are important and useful for classification

and which are worthless.

Fisher Linear Discrimination Analysis

Fisher’s linear discriminant method seeks to find the linear combination of features

which best separate classes of objects. LDA methods can be approached nonparametrically

using the mean difference between the classes. The LDA methods adjust for common

covariance structure by first transforming the data space of each class using their pooled

within class covariance, i.e.,

Σw =
n−1Σ−1 + n+1Σ+1

n
, X̃k = Σ−1/2

w Xk, for k = −1, +1, (1.2)

where nk denotes the number of the samples in the kth class, and n = n−1 + n+1. Then

the LDA separating hyperplane is the perpendicular bisector of the line segment between

the two class means in the transformed space. LDA can also be viewed as the likelihood

ratio discrimination, e.g, as noted by Hastie et al. (2009). In particular, assume that

the conditional probability density functions P(x|y = −1) and P(x|y = +1) are both

normally distributed and the class covariances are identical Σ−1 = Σ+1 = Σ. Under these

assumptions, the likelihood ratio discrimination reduces to LDA.

In principle, the LDA decision criterion predicts points as being from the negative class

when wTx < c for some threshold constant c, where w = Σ−1(µ+1
−µ−1

), and where µ−1,

µ+1 are mean vectors of the negative class and the positive class respectively. In practice

we do not know the parameters of the Gaussian distributions, and will need to estimate

5

them using training data:

µ̂k =
∑

gi=k

xi

nk

, k = −1, +1; (1.3)

Σ̂ =
1

n − 2

(
∑

gi=−1

(xi − µ̂−1)(xi − µ̂−1)
T +

∑

gi=1

(xi − µ̂1)(xi − µ̂1)
T

)

. (1.4)

Note that this classifier is linear, in the sense that it is based on a linear function of x.

The basic assumption of LDA is that the data originates from two classes, where the

data in each class is distributed in the feature space according to a normal distribution.

Despite its simplicity, as mentioned in Friedman (1989), the main weakness of LDA is that

it assumes more structure in the data than is usually necessary (namely a certain normal

distribution per class), and sometimes, more than what can be satisfactorily learned from

the data.

Logistic Regression

The logistic regression model arises from the desire to model the posterior probabilities

of the two classes via linear functions in x. The model has the form

P (G = +1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)
. (1.5)

The parameters to be estimated are θ = {β0,β}. Given the conditional distribution

P (G = +1|X = x), y follows the binomial distribution, thus the logistic regression models

can be fitted by maximum likelihood. The log-likelihood for n observations is

l(θ) =
n∑

i=1

[

I(yi = +1) log p+1(xi; θ) + I(y1 = −1) log(1 − p+1(xi; θ))
]

, (1.6)

6

where p+1(x; θ) = P(G = +1|X = x). The label for the new input x is predicted to be

Ĝ(x) = sign(p+1(x; θ̂) − 1/2). The logistic regression model can be considered as linear

in the sense that the log-odds-ratio between the posterior probabilities of two classes is

modeled as a linear function of x.

Logistic regression is robust in the sense that it does not assume a linear relationship

between the input variables and output variables, also the normal distribution is not re-

quired. However, the disadvantages of logistic regression is that it requires much more data

to achieve stable, meaningful results.

Support Vector Machine

SVM performs classification by constructing a d-dimensional hyperplane that seeks to

optimally separate the data into 2 categories based on certain criteria. For the separable

cases, as shown in Figure 1.1, there are infinite number of lines that we can draw to separate

the two classes. The SVM hyperplane (green dashed line) is oriented in such a way that

the minimum distance between the separating hyperplane and the data points from each

class is maximized. The minimum distance is equivalent to the distance from the green

dashed line to each of the two black thin dashed lines parallel to it. This distance is also

called the geometric margin. The three data points covered by black boxes on the two

thin dashed lines are called the support vectors.

If we choose w ∈ Rd as the normal vector for our hyperplane and β ∈ R to determine

its position, in general cases (not necessarily separable), the SVM analysis involves the

following minimization

min
w,β,ξi

[1

2
‖w‖2 + C

∑

i

ξi

]

(1.7)

7

Class +1

Class −1

Normal Vector

Separating Hyperplane

Residuals, r
i

Support Vectors

Figure 1.1: Illustration of SVM using a toy example. The red plus signs represent the
positive class and the blue circle signs represent the negative class. The black boxes
highlight the support vectors. The black dashed lines show where the functional margin is
1.

subject to:

yi(x
T
i w + β) ≥ 1 − ξi, ξi ≥ 0, for i = 1, 2, · · · , n. (1.8)

The functional margin is defined to be f(x) = xTw+β. In (1.7), C is a tuning parameter,

and the ξi, i = 1, · · · , n are slack variables for handling nonseparable data. Intuitively,

the sign of f(x) is used to classify a new unseen example x. The larger the C, the higher

the penalty for violation of separability. Thus, C should be chosen with care to avoid

overfitting.

One important feature of SVM is that only the support vectors, i.e. the points falling

exactly on the hyperplanes which satisfy f(x) = 1 and the violated points with ξi > 0,

have a direct impact on determining the coefficients of the SVM.

8

Distance Weighted Discrimination

Recently, Marron et al. (2007) proposed a new binary classification method, Distance

Weighted Discrimination (DWD) which is specifically designed for High Dimension Low

Sample Size (HDLSS) situations. DWD has similar performance to SVM when the number

of samples is larger than the number of dimensions, but performs better than SVM in

HDLSS cases. Like SVM, DWD is also a large margin classifier method and performs

classification tasks by constructing a hyperplane in a multidimensional space that separates

the two classes. The DWD hyperplane is constructed by minimizing the sum of the inverses

of perpendicular distances from a candidate for the hyperplane to the data points. Suppose

the separating hyperplane is expressed as xTw+β = 0, then (w, β) can be found by solving

the optimization problem,

min
w,β,ξ

n∑

i=1

(1

ri

+ Cξi

)

, (1.9)

subject to:

ri = yi(x
T
i w + β) + ξi for i = 1, · · · , n, ‖w‖2 ≤ 1, (1.10)

ri ≥ 0, ξi ≥ 0 for i = 1, · · · , n. (1.11)

DWD is different from SVM in that it seeks to maximize a notion of average distance

instead of only the minimum distance between the two classes. Thus, DWD allows all

data points (ξi ≥ 0) rather than just those support vectors to have a direct impact on

the separating hyperplane. It gives high significance to those points that are close to the

hyperplane, with little impact from points that are farther away. The computation of the

DWD is based on Second Order Cone Programming (SOCP), a modern computationally

intensive optimization method (see http://www.math.nus.edu.sg/ mattohkc/sdpt3.html

for an update software for doing this).

9

1.3 Kernel Space

Among the set of all classification methods, the linear methods are an important and

widely studied family. The linear classification rule can be obtained as Ĝ(x) = signf(x)

based on the function f(x) which is a linear combination of the input features x. The

linear classification methods are convenient because they have simple functional forms and

the relative contribution of each covariate is easy to interpret.

However, in practice, the true decision boundary will frequently be quite nonlinear in

x as shown in Figure 1.2. The appealing kernel approach to going beyond linearity is to

enlarge the feature space with additional variables, which are transformations of x, and

then use linear methods in this new space. This idea is illustrated by Figure 1.2 where FDA

is applied to a simple two-dimensional toy example. Note that the results based on x1, x2

only (upper-left panel) are not able to effectively capture the class difference in this case.

The performances will be improved as more variables are added to the model as shown

in the other three panels in Figure 1.2. Adding x2
1 (upper-right panel) or x2

2 (lower-left

panel) alone offers significant improvement over linear method while adding both x2
1 and x2

2

leads a much more improved decision boundary which almost makes a perfect separation

between the two classes.

Let hm(x) : Rd → R denote the mth transformation also called the basis transformation

of x, m = 1, · · · ,M . Once the basis functions hm have been determined, linear classifi-

cation can be performed on the hm. We fit the classifier using input features h(x) =

(h1(x), · · · , hM(x)), and produce the (nonlinear) function f̂(x) = h(x)T β̂ + β̂0. The clas-

sifier is Ĝ(x) = sign(f̂(x)) as before. Generally linear boundaries in the enlarged space

achieve better training-class separation, and translate to nonlinear boundaries in the orig-

inal space.

Once the dimension of the enlarged space gets very large, the computations will become

10

Figure 1.2: Illustration of the kernel embedding idea using a two-dimensional toy exam-
ple. The four panels use different polynomial embedding. The white band represents the
decision boundary. The two classes are represented by red plus and blue circle symbols. Re-
sults shown in the four panels are obtained by using variables x1, x2 (upper-left), x1, x2, x

2
1

(upper-right), x1, x2, x
2
2 (lower-left), and x1, x2, x

2
1, x

2
2 (lower-right), respectively.

11

a challenge. Also with sufficient basis functions, the data will nearly always be separable,

and there will be large potential for overfitting. Many classification methods attempt to

address this overfitting problem using some form of regularization.

We first use SVM as an example to show how to implement this basis transformation

using the kernel trick and then cast it into the larger context of regularization methods

to deal with overfitting. The SVM optimization problem (1.7) can be presented in such

a way that the input feature space only appears in terms of inner products. We describe

this using the transformed feature vectors h(x). The Lagrange dual function of (1.7) with

x replaced by h(x) has the form

LD =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

i′=1

αiαi′yiyi′〈h(xi),h(xi′)〉. (1.12)

The solution function can be written as

f(x) =
n∑

i=1

αiyi〈h(x),h(xi)〉 + β0. (1.13)

So both (1.12) and (1.13) involve h(x) only through inner products. Thus we don’t need

to specify the transformation h(x), but only need to know the kernel function K(x,x′) =

〈h(x), h(x′)〉 that computes inner products in the transformed space. Here K should be a

symmetric positive (semi-) definite function.

It is well known that many important classification methods can be fit in a general

class of regularization problem of the form written as solutions to

min
f∈H

[n∑

i=1

L(yi, f(xi)) + λJ(f)
]
, (1.14)

where L(y, f(x)) is a loss function, J(f) is a penalty functional, and H is a space of

functions on which J(f) is defined.

12

Suppose that the f in (1.14) lives in a reproducing kernel Hilbert space (RKHS) HK

generated by a positive definite kernel K(x,x′). Further define the penalty functional for

the space HK to be the squared norm J(f) = ‖f‖2
HK

. Then (1.14) can be written as

min
f∈HK

[n∑

i=1

L(yi, f(xi)) + λ‖f‖2
HK

]
. (1.15)

It can be shown using the representer theorem (Wahba (1990)) that the solution to (1.15)

is finite-dimensional, and has the form f(x) =
∑n

i=1 αiK(x,xi). This approach is called

the kernel trick.

Using the kernel trick, a linear algorithm can easily be transformed into a non-linear

algorithm by mapping the data into a high dimensional feature space. This non-linear

algorithm is equivalent to the linear algorithm operating in that space. The nice feature of

the kernel trick is that it enables us to operate in the new space without ever computing the

coordinates of the data in that space, but rather by simply computing the inner products

of the base functions between all pairs of data in the original feature space. This operation

is often computationally cheaper than the explicit computation of the coordinates.

If the kernel function is chosen to be K(x,x′) = 〈x,x′〉, the corresponding kernel space

is equivalent to the original feature space. Some commonly used kernel functions include:

• lth Degree polynomial: K(x,x′) = (1 + 〈x,x′〉)l,

• Radial basis: K(x,x′) = exp(−‖x − x′‖2/c),

• Neutral network: K(x,x′) = tanh(κ1〈x,x′〉 + κ2).

The kernel space corresponding to the first choice is finite-dimensional and the kernel

spaces corresponding to the second and third choices are infinite-dimensional. Algorithms

capable of operating with kernel tricks include LDA, SVM, DWD and many others.

13

1.4 Bi-Directional Discrimination

Linear classifiers are simple and easy to interpret, but can suffer some serious limi-

tations in the complicated situations. Kernel learning enables us to easily generalize the

linear classifiers to nonlinear classifiers and improve the classification error rates. A poten-

tial trade off is that nonlinear classifiers may not give clear interpretation of the results in

terms of the original features. Motivated by these concerns, we propose the Bi-Directional

Discrimination (BDD) classification method in Chapter 2 which generalizes the classifi-

cation boundary from using only one hyperplane to using two hyperplanes. The BDD

method is anticipated to be more effective in the cases where the classes have distinct

sub-populations.

In Section 2.2, we use SVM and DWD to illustrate how to generalize one-direction

methods to the proposed BDD method. It is important to note that the generalization

can apply to any other linear classification methods as well. The optimization problems

for the BDD method involve replacing the linear function f(x) = xTw + β (in the linear

classification methods) by the product of two linear functions f1(x)f2(x), where f1(x) =

xTw1 +β1 and f2(x) = xTw2 +β2. As a consequence, we have two separating hyperplanes

instead of one. The classification rule can be stated as Ĝ(x) = sign(f̂1(x)f̂2(x)), i.e., points

in the regions f̂1(x) > 0, f̂2(x) > 0 or f̂1(x) < 0, f̂2(x) < 0 are labeled as belonging to

the positive class while points in the regions f̂1(x) > 0, f̂2(x) < 0 or f̂1(x) < 0, f̂2(x) > 0

are labeled as belonging to the negative class. The two directions introduced in the BDD

method can also provide a visualization tool for HDLSS data.

It is difficult to solve the optimization problems which involve the form f1(x)f2(x) for

(w1, β1) and (w2, β2) simultaneously. In Section 2.2.2, we propose an iterative algorithm

to obtain the BDD optimization solution in such a way that at each iteration we first fix

one hyperplane and transform the problem into the form of the usual one-direction linear

14

classification problem. Then the other hyperplane can be solved from this transformed

problem. This procedure is repeated until convergence is achieved.

Like many iterative algorithms, local minima are also a serious concern here especially in

the HDLSS situations. Thus how to choose proper initial values will become an important

issue. In Section 2.2.3, we propose four methods for choosing initial values based on two

different considerations. We call the four methods Cluster1-1, Cluster2-2, Cluster1-2 and

FullQuadProj respectively. The first three methods choose the initial values by considering

the different subcluster situations within each class. The last method chooses the initial

values by finding the two hyperplanes which best approximate an appropriate full quadratic

kernel method. For each method, there are situations in which it performs better than the

others.

The proposed BDD method is studied in Section 2.3 through several simulations and

two real data examples. The performances of various initial value methods are evaluated

using data visualization and careful studies of the test errors (for simulated data) and

cross-validation errors (for real data). Comparison with the usual one-direction linear

classification methods is also included. The numerical results show that in contrast to

the one-direction methods, the BDD method is competitive for different data settings and

gives major improvement in the case when there are distinct subclusters within each class.

In Section 2.3.2, we study the asymptotic properties of the BDD method in the limit as

d → ∞ with the sample size n fixed. This is different from the classic asymptotics which

is in the limit as n → ∞. We give the asymptotic geometric representations of the data

set which include subclusters. We also study when the BDD method performs better than

the usual one-direction classification methods.

15

1.5 Multiclass Classification

Summary of Existing Multiclass Classification Methods

Now turn our attention to the multicategory classification problem. Binary classifica-

tion is a well studied special case. In practice, multicategory problems are important as

well. Binary classification methods can be generalized in many ways to handle multiple

classes. Some multicategory classification methods are straightforward extension of binary

ideas such as kNN, neural network, LDA, and logistic regression discussed in Section 1.2.

However, the extension from binary to multicategory case is more challenging for others.

The generalization of the kNN method is straightforward. In the multicategory case,

one first finds the k closest objects from the training sample to a new object being classified,

then assign this object to the class which appears most frequently among these k neighbors.

For the neural network method, the generalization needs to introduce K functions fk, for

k = 1, · · · , K, which are defined as

Tk = β0k + βT
k Z, k = 1, · · · , K,

fk(X) = gk(T), k = 1, · · · , K.

The unknown parameters can be solved in the same way as for the binary case. The

corresponding classifier is Ĝ(x) = argmaxkf̂k(x). The extension of the LDA classifier can

be implemented using the following steps. First compute the pooled within class covariance

Σw =
K∑

k=1

nkΣk/n, , (1.16)

16

and use it to transform the data

X̃k = Σ−1/2
w Xk, for k = 1, · · · , K. (1.17)

Then label a new object according to the closest class centroid of the training data in the

transformed space. The generalization of logistic regression can be carried out by modeling

the posterior probabilities of K classes as

P (G = k|X = x) =
exp(βk0 + βT

k x)

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

, k = 1, · · · , K − 1, (1.18)

P (G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

. (1.19)

The classifier is Ĝ(x) = argmaxkpk(x; θ̂) with pk(x; θ) = P(G = k|X = x).

Multiclass SVM and DWD

The generalization from the binary case to the multicategory case for large margin clas-

sification methods like SVM and DWD requires careful consideration. There are a number

of different multicategory extensions of SVM in the literature. However, the extension

of the DWD method has not been studied previously. We have developed several DWD

extension methods in Chapter 3 and studied some statistical issues associated with them.

Two general strategies are commonly used to tackle multicategory SVM problem. One

strategy is to solve the multicategory problem by solving a series of binary problems. The

second one treats the population in a simultaneous fashion and considers all classes at once

in a single optimization problem. Various aggregation of all pairwise classifiers and one-

versus-the-rest approaches are the first strategy (Duda et al. (2000); Hastie et al. (2009)).

Various extension methods along the line of the second strategy include Lee et al. (2004);

Weston and Watkins (1999); Crammer and Singer (2000); Liu and Shen (2006). Following

17

the SVM results, our work involves the study of the extension of DWD from the binary

case to the multicategory case using both strategies. We make comparisons among various

methods and settings by extensive simulated data and real data applications.

Many statistical properties of binary classifiers, such as Fisher consistency, have been

well investigated in a variety of settings. However, it turns out that one can lose consis-

tency in the generalization from the binary to the multicategory case. Fisher consistency

is a desired condition for a classification method although a consistent method may not

always give better classification accuracy. Liu (2007) reviewed Fisher consistency of sev-

eral commonly used extensions and proposed some modifications to make the inconsistent

extensions consistent. Fisher consistency for the binary DWD method has been proved by

Qiao et al. (2010). We have investigated the Fisher consistency properties of multiclass

DWD methods in different settings in Section 3.4.

18

CHAPTER 2

Bi-Directional Discrimination with

Application to Data Visualization

2.1 Introduction

As noted in Section 1.4, while linear classifiers have been very widely used, there is

an important collection of problems where they can be dramatically improved upon. This

is illustrated in Figure 2.1. In this case, each class contains diverse sub-populations. For

example, in microarray analysis, within each class of interest (e.g., disease versus control)

immaterial differences such as male versus female can lead to diverse sub-populations. A toy

example illustrating this is given in Figure 2.1 which shows a scatter plot of two dimensional

data. The positive and negative classes are represented as red and blue respectively. Each

class is further divided into two sub-clusters which are distinguished using different symbols

in the scatter plot. The linear SVM model is fit to these data and its decision boundary

is denoted by the solid line in the left panel of Figure 2.1. Note that linear methods

for classification are not able to effectively capture the class difference in this case which

motivates us to find a more general hypersurface that can divide the two classes of samples.

One of the nice features of the DWD and SVM methods is that their extension from the

−4 −2 0 2 4

−4
−2

0
2

4

SVM Linear Hyperplane

−4 −2 0 2 4
−4

−2
0

2
4

Full Quadratic Curve

−4 −2 0 2 4
−4

−2
0

2
4

−4 −2 0 2 4
−4

−2
0

2
4

−4 −2 0 2 4

−4
−2

0
2

4

BDD Hyperplanes

(+,+)

(+,−)(−,−)

(−,+)

Figure 2.1: Toy data example in two dimensions with three different discrimination curves
shown using a solid line-type. Red color (plus and “x” symbols’) indicates the positive class
and blue color (up and down triangles) indicates the negative class. Different symbols in the
same class represent different sub-clusters. Note the two non-linear methods give (middle
and right panels) major improvements.

linear case to the non-linear case is allowed and quite straightforward using the kernel trick

(Aizerman et al. (1964); Boser et al. (1992)). This is accomplished by mapping the data

to a high-dimensional space where the classification is achieved via a linear classifier, and

then by mapping the results back to the original feature space. This results in a non-planar

hypersurface that can be more adapted to the complexity of the interface between the two

classes, and thus is more effective. The solid curves in the middle panel of Figure 2.1

are the non-linear decision boundary implemented using the full quadratic kernel method

(Vapnik (1995); Burges (1998)). Its performance is clearly much better than that of the

linear classifier.

Although non-linear classification methods can be very effective in resolving subtle

and complex class differences, they do not easily provide intuitive interpretation of the

result, as compared to the linear ones. Especially in the HDLSS settings, the complex

form of general non-linear classifiers makes it difficult to apply them to data visualization.

Moreover, general non-linear methods may deal with a space whose dimensionality is much

20

higher than that of the original feature space and thus tend to be far more prone to serious

overfitting in high dimensions. In order to get around these problems and be able to

display class differences in a way that is not only effective, but also suitable for visual

interpretation of the data, we develop a new classification method in this dissertation,

called Bi-Directional Discrimination (BDD). The basic idea of BDD is to find two (or

more) linear hyperplanes instead of one to separate the two classes. The BDD decision

boundary is shown in the right panel of Figure 2.1 which does a more intuitively appealing

job of separating the two classes since it not only provides good between-class separation

but also clearly divides each class into two sub-clusters.

The BDD method has big advantages over general non-linear methods especially for

HDLSS data. HDLSS data are becoming increasingly common in various fields including

genetic microarrays, medical imaging and chemometrics, etc. If the dimension is d, the

number of parameters included in the BDD method will be 2d, much less than that included

in the quadratic kernel method which is at least






d

2




. As a consequence of its simplicity,

the overfitting problem for the full quadratic kernel illustrated in Section 2.3 is greatly

reduced by BDD. Another important feature of our BDD method is that its two hyperplanes

can automatically provide a visualization tool for HDLSS data. For many tasks of HDLSS

data analysis, visualization plays an important role. This is key for efficient integration of

human expertise - not only to include background knowledge, intuition and creativity, but

also the powerful human pattern recognition and processing capability (Walter (2004)).

Therefore, studying the projections of the data points onto the two directions solved by

our BDD approaches can help us obtain more insights from the data, and thus reveals a

whole new family of methods between the simple one-direction linear methods and the full

general non-linear methods.

Other approaches in the literature also have the potential to address the subcluster

21

problem that is tackled by BDD. For example, Gaussian mixture models (see e.g. Hastie

and Tibshirani (1996)) have the flexibility to associate Gaussian mixture components to

each subclass to facilitate effective classification when the classes have subpopulation. But

they are not suitable for high dimensional analysis, which is the main motivation of BDD.

Classification and Regression Trees (CART) and more advanced tree methods (Breiman

et al. (1984)) can tackle very high dimensions, but are much less flexible than BDD because

they only allow splits in coordinate directions.

In this chapter, we initially focus on the two-directional method. We also generalize

BDD to multiple directions. In particular, we discuss the three-directional method as well

as its implementation. Moreover, although our BDD method is motivated by the SVM and

DWD methods, we note that the fundamental concept is more general and can be applied

to the extension of any other linear classifier as well. In this dissertation, we only focus on

the discussion of the SVM and DWD methods and use them as examples to illustrate how

the BDD method works.

The rest of the chapter is organized as follows. In Section 2.2 we briefly review the

one-direction SVM and DWD methodologies, from now on labeled 1SVM and 1DWD

respectively, and introduce their extension to BDD. We develop iterative algorithms to

solve the optimization problem of BDD in Section 2.2.2. In particular, the challenging

issue of initial values is discussed in Section 2.2.3. Extensions of BDD to more than two

directions are discussed in Section 2.2.4. In Section 2.3 we present numerical results on both

simulated and real data to demonstrate the effectiveness of our method. Some asymptotic

properties which demonstrate the value of BDD in the presence of subclusters, in the limit

as the dimension tends to infinity, are explored in Section 2.4. We provide the proofs of

the theorems in Section 2.5 and some conclusions in Section 2.6.

22

2.2 Bi-Directional Discrimination Framework

This section gives the details of how to generalize the 1SVM and 1DWD methods

from the usual one-direction case to the two-direction case. Let us first set the notation

to be used. Suppose that the training data set consists of n d-vectors xi together with

corresponding class indicators yi ∈ {+1,−1}, which are distributed according to some

unknown probability distribution function P (x,y).

2.2.1 Review of Uni-Directional Methods

The main idea behind the classical one-direction classification problem in the separable

case is to find the separating hyperplane with maximum separation between the two classes.

More specifically, the 1SVM hyperplane maximizes the distance between the hyperplane

and the closest data point of each class, while the 1DWD hyperplane minimizes the sum of

the reciprocals of the distances from every data point to the separating hyperplane. One

important goal is to do prediction, i.e., if we choose w ∈ Rd as the normal vector for our

hyperplane and β ∈ R to determine its position, the sign of f = xTw + β can be used

for prediction of class labels for new inputs x. The optimization problems, for both the

1SVM and 1DWD approaches, depend on the signed distance from each data point to the

decision boundary, which is defined as

r0
i = yi(x

T
i w + β), i = 1 · · · , n. (2.1)

If separation between the two classes is not feasible, we need to add perturbation terms to

make sure that all residuals are positive (Cortes and Vapnik (1995)). We obtain

ri = yi(x
T
i w + β) + ξi, (2.2)

23

where the slack variable ξi ≥ 0, and the equality holds when the data vector xi lies on

the correct side of the separating hyperplane. The hyperplane parameters (w, β) can be

determined to encourage all ri to be positive and large. The 1SVM classifier solves the

regularization problem

min{w,β}

(

1

2
||w||2 + C1SV M

n∑

i=1

ξi

)

, (2.3)

subject to yi(x
T
i w + β) + ξi ≥ 1 and ξi ≥ 0, where C1SV M > 0 is the penalty parameter,

which balances the separation and the amount of violation of the constraints. Here ||w||

refers to the Euclidean norm of w.

The optimization formula (2.3) is the primal problem of the 1SVM. Using Lagrange

multipliers, it can be converted to an equivalent dual problem as follows

minα

(

1

2

n∑

i,j=1

yiyjαiαj〈xi,xj〉 −
n∑

i=1

αi

)

, (2.4)

subject to
∑n

i=1 yiαi = 0; 0 ≤ αi ≤ C1SV M , ∀i. This convex optimization problem has

quadratic objective function and linear constraints and can be easily solved. Once the

solution of (2.4) is obtained, w can be calculated as
∑n

i=1 yiαixi, and β can be computed

using the Karash-Kuhn-Tucker (KKT) conditions of the optimization theory (Fletcher

(1987)).

The optimization task of 1DWD is to find a separating hyperplane which solves

min{w,β}
∑

i

(
1

ri

+ C1DWDξi

)

, (2.5)

subject to ri = yi(x
T
i w + β) + ξi ≥ 0, ||w||2 = 1 and ξi ≥ 0, where C1DWD > 0 is the

1DWD penalty parameter. The optimization formula (2.5) can be reparametrized as a

second order cone programming (SOCP) problem, which has a linear objective function

24

and is subject to linear constraints with the requirement that various sub-vectors of the

decision vector must lie in second-order cones. SOCP problems have also been extensively

studied and there exist well established algorithms for solving them, see Alizadeh et al.

(2001). The dual problem of 1DWD can also be described in terms of the SOCP settings.

Both primal and dual problems of 1DWD have optimal solutions. For detailed description

of 1DWD formulation and optimization, we refer to the original 1DWD paper (Marron

et al. (2007)).

2.2.2 Bi-Directional Discrimination

In the two-direction case, we have two hyperplanes represented by parameters (w1, β1)

and (w2, β2) respectively. Let f1 = xTw1+β1 and f2 = xTw2+β2 be classification functions

representing each of the two separating hyperplanes (as f1 = 0 and f2 = 0). As shown in

the right panel of Figure 2.1, we denote by (+, +) the region which satisfies f1 > 0 and

f2 > 0. The other three regions can be denoted in a similar way. It turns out that the

data from the positive class tend to be located on the upper-right and lower-left regions

with labels (+, +) and (−,−) while the data from the negative class tend to lie in the

upper-left and lower-right regions with labels (−, +) and (+,−). Thus sign(f1f2) is used

as the predicted rule in the two-direction setting. Therefore, a natural way of generalizing

linear classifiers is to replace the signed distance ri of the ith data point (2.2) with

si = yif1f2 + ξi. (2.6)

Once the si are given, the optimization problem solved by the two-direction SVM can be

stated as

minw,β,ξ
1

2
(||w1||2 + ||w2||2) + CSV M

n∑

i=1

ξi (2.7)

25

subject to

si = yi(x
T
i w1 + β1)(x

T
i w2 + β2) + ξi ≥ 1, ξi ≥ 0. (2.8)

The illustration plots for one-direction SVM and two-direction SVM are shown in the

left panel and the right panel of Figure 2.2 respectively. The decision boundary of two-

direction SVM consists of two lines. The curves defined by yf1f2 = 1 are four hyperbolas

which correspond to the two lines defined by yf = 1 in the one-direction plot. Thus two-

direction SVM seeks to choose two hyperplanes to maximize the distances between the

four hyperbolas that are as far apart as possible. The data points which lie on the four

hyperbolas are the support vectors for two-direction SVM.

−10 −5 0 5

−1
0

−5
0

5
10

x1

x2

−10 −5 0 5

−1
0

−5
0

5
10

−10 −5 0 5

−1
0

−5
0

5
10

−10 −5 0 5

−1
0

−5
0

5
10

−4 −2 0 2 4 6

−4
−2

0
2

4
6

x1

x2

−4 −2 0 2 4 6

−4
−2

0
2

4
6

−4 −2 0 2 4 6

−4
−2

0
2

4
6

−4 −2 0 2 4 6

−4
−2

0
2

4
6

−4 −2 0 2 4 6

−4
−2

0
2

4
6

Figure 2.2: Illustration plots for both one-direction SVM (left panel) and two-direction
SVM (right panel). Solid lines represent decision boundaries. Dashed and dotted lines in
the left panel are defined by f = 1 and f = −1 respectively. Dashed curves and Dotted
curves in the right panel are defined by f1f2 = 1 and f1f2 = −1 respectively.

Similarly, the optimization problem solved by the two-direction DWD can be stated as

minw,β,ξ

∑

i

(
1

si

+ CDWDξi

)

, (2.9)

26

subject to

si = yi(x
T
i w1 + β1)(x

T
i w2 + β2) + ξi ≥ 0, ξi ≥ 0,

||w1||2 + β2
1 = 1, ||w2||2 + β2

2 = 1. (2.10)

To meet the uniqueness requirement, here we use the constraints ||wj||2 + β2
j = 1 instead

of ||wj||2 = 1, j = 1, 2, as used in the original 1DWD method. We choose this type of

constraint to ensure that the optimization problem can be described in SOCP terms.

The multiplicative form of the si in (2.6) poses significantly greater optimization chal-

lenges and makes it difficult to simultaneously solve for (w1, β1) and (w2, β2) both in (2.7)

and in (2.9). However, we note that as long as one of the two hyperplanes is given, (2.7)

and (2.9) can be solved for the other hyperplane using methods similar to the ordinary

1SVM and 1DWD. This property suggests that iterative algorithms can be used here.

Therefore we propose to solve the two-direction minimization problem by minimizing a

sequence of one-direction sub-problems. We can proceed as follows. First propose initial

values for {w(0)
1 , β

(0)
1 }. Then obtain {w(0)

2 , β
(0)
2 } by solving the revised 1SVM and 1DWD

problems with yi replaced by ŷi = yi(x
T
i w

(0)
1 + β

(0)
1). Then based on {w(0)

2 , β
(0)
2 } we can

obtain {w(1)
1 , β

(1)
1 } and repeat this process until convergence of both parameters. Thus,

a solution can be achieved by alternately updating each hyperplane based on each fixed

value of the other one. In each iteration, we only need to solve the modified 1SVM or

1DWD problems whose response values are continuous (ŷi) instead of binary (yi). In all

cases we considered, this algorithm converges in at most 10 steps.

2.2.3 Starting Points

Local minima can be a serious concern for iterative optimization methods. The solution

based on the iterative algorithm described in Section 2.2.2 strongly depends on the choice of

27

the initial values {w(0)
1 , β

(0)
1 }. Different initial values may end up with different solutions.

Especially for high dimensional situations, the objective functions can have many local

minima due to the complexity of their special multiplicative form. Figure 2.3 shows the

distribution of the final (after convergence of the iterative algorithm) objective function

values based on a single realization of a simulated data set with d=1000. Details of this

simulation are discussed in Section 2.3.2. The blue kernel density estimation (KDE) plot is

derived from 1000 samples of objective function values, each of which is calculated based on

one randomly selected starting point. The vertical lines with different colors represent the

results derived from some special initial points. Here MIN-RAND represents the minimum

values among the 1000 random simulations and the other notations will be discussed in

detail in this section. Figure 2.3 illustrates how crucial the starting points are to our

optimization algorithm. Our next goal is to propose some appropriate ways to choose

good initial values.

These ideas are effectively illustrated using a set of 3 two-dimensional toy examples de-

scribed in Section 2.2.3.1. An approach to starting values based on the full quadratic kernel

embedding is developed in Section 2.2.3.2. An alternative approach, based on clustering,

is given in Section 2.2.3.3.

2.2.3.1 Toy Examples

Since one of the motivations of our two-direction classification method comes from

the fact that there might be further sub-clusters within each class, we can illustrate our

methods using examples as shown in Figure 2.4 where three types of 2-dimensional data

sets are generated from normal distributions with different means.

Example 1 (4-Cluster-Twisted):

This example is shown in the plot (a) of Figure 2.4 which includes four clusters, two

28

2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

FullQuadProj

Cluster1−2

Cluster2−2

DWD1−START

MIN−RAND

Figure 2.3: KDE plot of objective function values for different starting points.

−5 0 5

−6

−4

−2

0

2

4

6

Example 1: 4−Cluster−Twisted

+1

+2 −1

−2

−5 0 5

−6

−4

−2

0

2

4

6

+1

−2 +2

−1

Example 2: 4−Cluster−Straight

−5 0 5

−6

−4

−2

0

2

4

6

Example 3: 3−Cluster−Triangle

+1

−1

+2

Figure 2.4: Illustration of some different sub-cluster situations for binary classification
problems. Red color (plus and “x” symbols’) indicates the positive class and blue color
(up and down triangles) indicates the negative class. Different symbols in the same class
represent different sub-clusters.

for each class. The four clusters are sampled from four shifted standard bi-variate normal

distributions whose means are (µ, µ), (−µ, µ), (−µ,−µ), and (−µ, µ) with µ =
√

5. We

label the four distinct clusters as +1 (red plus sign), +2 (red “x” sign), −1 (blue down-

triangle), −2 (blue up-triangle) as shown in the plot. Clusters +1 and +2 (centered in the

upper right and lower left quadrants) belong to the positive class and clusters −1 and −2

(centered in the upper left and lower right quadrants) belong to the negative class. The

29

numbers of individuals in each cluster are 25.

Example 2 (4-Cluster-Straight):

This example is shown in the plot (b) of Figure 2.4 which also includes four clusters

whose means are (µ, µ), (−µ, µ), (−µ,−µ), and (−µ, µ) with µ =
√

5 and identity covari-

ance. In this example, clusters +1 and +2 (centered in the upper right and lower right

quadrants) belong to the positive class and clusters −1 and −2 (centered in the upper left

and lower left quadrants) belong to the negative class. The numbers of individuals in each

cluster are 25.

Example 3 (3-Cluster-Triangle):

This example is shown in the plot (c) of Figure 2.4 where only the positive class includes

two sub-clusters. Thus we have three shifted standard Gaussian clusters whose means are

(µ, 0), (−µ, 0), and (0, µ) with µ =
√

5. We label the three distinct clusters as +1 (red

plus sign), +2 (red “x” sign) and −1 (blue up-triangle). Clusters +1 and +2 belong to the

positive class and cluster −1 belongs to the negative class. Here n+1 = n+2 = n−1/2 = 25,

which means that the total number of individuals in the positive class is equal to that in

the negative class.

2.2.3.2 Full Quadratic Kernel Approach

Note that the multiplication of two linear expressions in the optimization problems

(2.7) and (2.9) results in a special second order polynomial. We can solve this approxi-

mately by comparing with the corresponding non-linear problem. Thus our first type of

approach (abbreviated as FullQuadProj) is to finding two initial hyperplanes so that their

multiplication is the closest one to the hypersurface solved using the full quadratic kernel

method. Here closeness is measured by the sum of square distances. Then use one of these

two hyperplanes as initial values for the iterative algorithms. Using the kernel trick, the

30

extension from the linear case to the non-linear case can be obtained by simply replacing

the vector xi by Φ(xi), where the non-linear mapping Φ is obtained from the symmetric

kernel function K by performing Cholesky factorization K(xi,xj) = Φ(xi)
T Φ(xj). This is

equivalent to solving the linear problem in the feature space induced by the kernel K to

achieve the nonlinear solution in the original space. We choose the second order polynomial

kernel function which is of the form

K(xi,xj) = (1 + 〈xi,xj〉)2. (2.11)

Once we get the non-linear classification function evaluated at each data point

ȳi = Φ(xi)
T w̄ + β̄, (2.12)

we can find the approximate solutions of (2.7) and (2.9) by minimizing the following residual

sum-of-squares

n∑

i

(ȳi − (xT
i w1 + β1)(x

T
i w2 + β2))

2. (2.13)

Using these solutions as initial values, we can proceed with the iterative method to get the

final solution. It is also difficult to find a simple closed form solution to the optimization

problem (2.13). However, since it has nice properties in the sense that both function values

and derivatives can be analytically evaluated, the solution can be obtained using standard

numerical optimization algorithms. We use conjugate gradient methods from Fletcher

(1987) to solve this.

31

2.2.3.3 Clustering Approach

Our second type of initialization approach is proposed on the basis of the sub-cluster

structure of the data set. We use the three examples given in Section 2.2.3.1 as a simple

illustration for this.

For Example 1 (4-Cluster-Twisted), the ideal choice for the initial hyperplane will be

the one-direction hyperplane that separates groups (+1,−1) and (+2,−2) or else the one

that separates groups (+1,−2) and (+2,−1). Therefore, our Cluster2-2 method first uses

2-means clustering algorithm to divide the positive class into two clusters labeled as c+1

and c+2 and similarly divides the negative class into two clusters labeled as c−1 and c−2.

Then we choose the initial hyperplane as the usual one-direction hyperplane that either

separates between groups (c+1, c−1) and (c+2, c−2) or separates between groups (c+1, c−2)

and (c+2, c−1).

For Example 2 (4-Cluster-Straight), it is better to choose the usual one-direction linear

classifier as an initial value. Thus, our Cluster1-1 method chooses the usual one-direction

hyperplane between the positive and the negative classes as the initial value.

For Example 3 (3-Cluster-Triangle), a good choice of the initial value is the one-direction

hyperplane that separates groups (+1) and (+2,−1) or the one that separates groups (+2)

and (+1,−1). Our Cluster1-2 method using the 2-means clustering algorithm divides the

positive class into two clusters labeled as c+1, c+2. The initial hyperplane is chosen to be

the one that separates either between groups (c+1) and (c+2, c−1) or between groups (c+2)

and (c+1, c−1), where c−1 denotes the entire negative class.

We will see that each method for finding initial values has a situation for which it works

the best. Typically, there is no prior knowledge as to the sub-cluster structure of the data

set. Therefore, we propose to implement all of these proposed initial values and take our

solution to be the one that gives the minimum value of the objective function.

32

2.2.4 More Than Two Directions

Although our focus is this dissertation is on the two-directional method, it can be

extended to multiple directions. To generalize BDD to the K-direction case, discrimination

is based on K hyperplanes represented by parameters (w1, β1), · · · , (wK , βK) respectively.

Let fi = xTwi + βi, for i = 1, · · · , K be classification functions representing each of the K

separating hyperplanes (i.e. fi = 0, i = 1, · · · , K). The class label for a new input x is

predicted to be sign(f1(x) · · · fK(x)). The optimization problem in (2.7) and (2.8) can be

written as

minw,β,ξ
1

2

K∑

j=1

||wj||2 + CSV M

n∑

i=1

ξi (2.14)

subject to

si = yi

K∏

j=1

(xT
j wj + βj) + ξi ≥ 1, ξi ≥ 0.

The DWD problem can be described in a similar way.

The optimization problem (2.14) can be solved using an iterative algorithm similar to

the BDD case. Now the choice of initial values is more challenging because we need to

choose K − 1 initial directions. We only briefly explain the case with K = 3 here. For the

Tri-Direction Discrimination (TDD) problem, we need to choose two initial hyperplanes.

For each class (“+” or “−”) we consider three cases in terms of subclusters:

• All data lie in a single, well defined cluster (labeled as (+) or (−)).

• The data in the class lie in exactly two distinct subclusters (labeled as (+I, +II) or

(−I,−II)).

• The data in the class lie in three or more clusters (labeled as (+1, +2, +3) or (−1,−2,−3)),

where clusters are appropriately combined when there are more than 3).

33

We recommend choosing the initial two hyperplanes based on the consideration of the

following clustering:

1. Cluster1-1: BDD output for (+) versus (−) using the Cluster1-2 method.

2. Cluster1-2: BDD output for (+I, +II) versus (−) or for (+) versus (−I,−II) using

Cluster1-1 method.

3. Cluster1-3: get BDD output for all pairwise classification problems of the form (±)

versus (∓i,∓j) for i, j = 1, 2, 3 using the Cluster1-2 method and choose the one

which gives the lowest TDD objective function value.

4. Cluster2-2a: BDD output for (+I, +II) versus (−I,−II) using the Cluster2-2 method.

5. Cluster2-2b: get the BDD output for all pairwise classification problems of the form

(±I) versus (∓I,∓II) using the Cluster1-2 method and choose the one which gives

the lowest TDD objective function value.

6. Cluster2-3: get the BDD output for all such classification problems as (±I,±II)

versus (∓i,∓j) for i, j = 1, 2, 3 using the Cluster2-2 method and choose the one

which gives the lowest TDD objective function value.

7. Cluster3-3: get the BDD output for all pairwise classification problems of the form

(±i,±j) versus (∓i′,∓j′) for i, j, i′, j′ = 1, 2, 3 using the Cluster2-2 method and

choose the one which gives the lowest TDD objective function value.

As in Section 2.2.3, the finally selected method of TDD is that which minimizes the objec-

tive value. In Section 2.3.3, we will demonstrate TDD using two simulated examples.

2.3 Visualization, Simulation and Data Analysis

In this section, we investigate the performance of the proposed method using both

simulated and real data. We apply our BDD method to simulated low dimensional data

34

sets in Section 2.3.1 and then to simulated high dimensional data sets in Section 2.3.2. We

apply our TDD method to simulated data sets in Section 2.3.3. The application of the

BDD method to two real data sets is discussed in Section 2.3.4. In Sections 2.3.1, 2.3.2

and 2.3.3, we set the sample sizes of training and test data as 100 and 1000, respectively.

We generated the test data from the same distributions as the training data. Both the

DWD and SVM methods were used in the numerical calculations and their results were

quite similar. Due to space limitations, only DWD results are reported here.

A simple recommendation for the choice of the 1DWD tuning parameter was made in

Marron et al. (2007) as C1DWD = 100/d2
t , where dt is the median of the pairwise between

class Euclidean distances. This simple default value of the tuning parameter is implemented

by most users and has been shown to work well (Qiao et al. (2010)). For BDD we found

this simple default approach to tuning was not as reliable as in the case of 1DWD. It was

adequate in our simulated example, so we used it to reduce the computational burden in

Sections 2.3.1 and 2.3.2. However, it gave an inferior result for the real data sets in Section

2.3.4, so we use cross-validation (CV) there, and recommend this in general.

2.3.1 Simulated Low Dimensional Examples

We consider three two-dimensional simulated examples. The simulation setting here is

identical to that of Section 2.2.3.1 . We apply the iterative two-direction DWD algorithms

described in Section 2.2.3 to each data set. The four different initial hyperplane options

(Cluster1-1, Cluster2-2, Cluster1-2 and FullQuadProj) considered in Sections 2.2.3.2 and

2.2.3.3 are used. The combined BDD solution is determined from the one that gives the

minimum objective function value among the four options. Let COMBO represent this

combined BDD approach which is defined as

COMBO = argmin{OBJ(Cluster1-1),OBJ(Cluster2-2),

35

OBJ(Cluster1-2),OBJ(FullQuadProj)}.

The data and the resulting two-direction hyperplanes using the four initializations are

plotted in the left and middle panels of Figure 2.5 for the 4-Cluster-Twisted example. For

comparison, we also randomly simulated 1000 initial values and compute the objective

function values based on each of them. The calculated objective function takes only 3

values, with frequencies shown in the table in the right panel of Figure 2.5. These 3

values correspond to three local optimal solutions which correspond to the three distinct

decision boundaries shown in the left and middle panels of Figure 2.5. The Cluster2-2 and

FullQuadProj methods give the same solution which corresponds to the objective value

59.3. The solutions from the Cluster1-1 and Cluster1-2 methods correspond to the other

objective values 157.9 and 162.0. These two solutions are both driven by combining pairs

of subgroups into a single group as their corresponding objective values are similar. The

third possible way of combining subgroups (chosen by Cluster2-2 and FullQuadProj) is

better, as indicated by the much smaller objective value of 59.3. It is important to note

that for most of the simulated realizations, the four starting options all choose the global

optimal solution. This is consistent with the high frequency of globally optimal solution

shown in the table in the right panel of Figure 2.5. The realization shown in Figure 2.5

was carefully culled from the whole collection to display all three types of local optima.

The visualization results for the other two examples are quite similar and will not be

shown here. To further investigate the initial value dependence of our BDD method in

low dimensional situations, we replicate each example 100 times. The average performance

over 100 replications of the proposed BDD methods applied to the three toy examples of

Section 2.2.3.1 are exhibited in Table 2.1. The three main blocks summarize results for

the three underlying distributions. For each example, a simulated approximation, based

on 1000 test data points, of the Bayes Error indicates the difficulties of the corresponding

36

−6 −4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Cluster1−1

x
1

x 2

−6 −4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Cluster2−2

x
1

x 2

−6 −4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Cluster1−2

x
1

x 2

−6 −4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

FullQuadProj

x
1

x 2

OBJ values REL FREQ
59.3 75.3%
157.9 10.7%
162.0 14.0%

Figure 2.5: Application to 4-Cluster-Twisted type of two-dimensional simulated data set.
This realization was carefully chosen to show both types of local optima (left panel) and the
global optimum (central panel). Observed objective values and their relative frequencies
based on 1000 random starts are shown in the table (right panel).

classification problem. For each example, the classification methods are assessed in terms

of Training Error, Test Error (based on sets of 1000 test points as above) and the value of

the objective functions. For comparison, we include in Table 2.1 the results calculated for

1DWD. Table 2.1 also includes the COMBO results using the initial values which give the

minimal objective function values among the four proposed options.

Note that not all data sets are separable so that the training errors are not zero for

all methods. For the 4-Cluster-Twisted example, as expected, the Cluster2-2 method per-

forms the best among the three clustering based initialization methods. The FullQuadProj

method gives the same performance. The Cluster1-2 method is substantially worse but

it is still much better than the conventional 1DWD method. For the 4-Cluster-Straight

example, the Cluster1-1 method performs the best among the three clustering based meth-

ods. The performances of the Cluster2-2 and FullQuadProj methods are slightly worse.

The worst one is the cluster1-2 method. The 1DWD method, as expected, works very

37

Table 2.1: Performance summary, average error rates over 100 simulations, of the ap-
plication of the one-direction and the two-direction classification methods to three two-
dimensional simulation examples. The numbers in the parentheses show standard errors.

4-Cluster-Twisted Bayes Error = 0.025(0.0005)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Training 0.350 0.017 0.065 0.026 0.017 0.017

(0.008) (0.0015) (0.0023) (0.0027) (0.0015) (0.0015)
Test 0.36 0.030 0.085 0.039 0.030 0.030

(0.008) (0.0006) (0.0009) (0.002) (0.0006) (0.0006)
Objective 51.6 160 69.9 51.6 51.6

(1.43) (1.14) (4.43) (1.43) (1.43)

4-Cluster-Straight Bayes Error = 0.013(0.0004)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Training 0.011 0.015 0.050 0.011 0.017 0.011

(0.001) (0.002) (0.0036) (0.001) (0.0022) (0.001)
Test 0.014 0.018 0.065 0.014 0.022 0.014

(0.0004) (0.0018) (0.004) (0.0004) (0.0025) (0.0004)
Objective 66.56 108.1 62.9 70.1 62.9

(1.74) (3.67) (0.71) (2.31) (0.71)

3-Cluster-Triangle Bayes Error = 0.077(0.0008)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Training 0.133 0.073 0.073 0.127 0.074 0.073

(0.0031) (0.0029) (0.0029) (0.0032) (0.0031) (0.0029)
Test 0.137 0.092 0.092 0.134 0.093 0.0092

(0.0012) (0.001) (0.001) (0.0014) (0.0012) (0.001)
Objective 157.5 157.5 246.6 159.6 157.5

(4.09) (4.09) (4.06) (4.34) (4.09)

38

well in this example, but Cluster1-1 and COMBO give the same strong performance. For

the 3-Cluster-Triangle example, the Cluster1-2 method performs the best among the three

clustering based methods. The Cluster2-2 method is the same and the FullQuadProj

method is slightly worse. The worst one is Cluster1-1 which is still better than the 1DWD

method. Here the performances are measured in terms of the criteria of small objective

function value and small test error. For all three examples, the COMBO method, based

only on objective values, always chooses the best one among the four initialization meth-

ods. The FullQuadProj method gives performances which are fairly comparable to the best

among the three clustering based methods which reflects the fact that in low dimensional

situations, nonlinear classifiers easily adapt to complex data structure.

2.3.2 Simulated High Dimensional Examples

Consider a typical HDLSS context. Let d = 1000. We simulated three types of exam-

ples. The first two dimensions are generated using distributions similar to the three 2d

examples described in Section 2.3.1. We maintain an appropriate signal to noise ratio by

taking µ =
√

d/8 here instead of the constant µ =
√

5. The rest of the d − 2 dimensions

are pure noise, i.e., all sampled from the standard normal distribution.

The visualization results of the simulated training data are shown in the plots in Figure

2.6 and Figure 2.7 for the 4-Cluster-Twisted and 3-Cluster-Triangle high dimensional ex-

amples, respectively. The visualization results for the 4-Cluster-Straight example is similar

to that for the 4-Cluster-Twisted example and thus is not shown here. The plots in the

upper left panels show the data in the original co-ordinates in the first two directions. The

plots in the lower left panel visualize the projections of the data points onto the 1DWD

and orthogonal PC1 directions. The plots in the middle and right panels visualize the pro-

jections of the data points onto the two direction vectors based on the 4 initializations from

our BDD method with the x-axis representing f1i = xT
i w1 +β1 and the y-axis representing

39

f2i = xT
i w2 + β2. Note that all of the training data sets are separable and the training

errors are equal to zero under both the 1DWD method and the BDD methods for all four

initial value options. This is a common property of HDLSS data where there is potential for

overfitting, since one can almost always find separating hyperplanes to correctly classify

all training data points. This is consistent with the idea of Hall et al. (2005), which was

explicitly stated in Ahn and Marron (2005) that if the underlying distribution of the data is

continuous in the data space and the dimension is larger than the sample size, the data are

separable with probability one. A central issue to the statistical analysis of HDLSS data is

whether observed separations represent important and reproducible underlying structure,

or are spurious artifacts of the sampling variation, i.e., the result of overfitting. This will

be studied in detail in Table 2.2

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
Raw Data

x
1

x 2

2.5 3 3.5 4 4.5

−4

−3

−2

−1

0

1

2

3

4

Cluster1−1

f
1

f 2 +
−

−5 0 5

−6

−4

−2

0

2

4

6

8

Cluster2−2

f
1

f 2 +
−+

−

−5 0 5

−6

−4

−2

0

2

4

6

Cluster1−2

f
1

f 2

+

+

−

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

5

FullQuadProj

f
1

f 2

+

−+

−

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

10
1DWD

1DWD

O
rt

ho
 P

C
1

+−

Figure 2.6: Application to 4-Cluster-Twisted type of high dimensional simulated data set.
Upper left panel shows the raw data projected onto the first two directions. Projections
onto 1DWD and orthogonal PC1 directions are shown in the lower left panel. Projections
onto f1, f2 directions are shown in the middle and right panels.

For the 4-Cluster-Twisted example (Figure 2.6), Cluster2-2 seems to find the right

40

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

4

5

6
Raw Data

x
1

x 2

3 4 5
−6

−4

−2

0

2

4

Cluster1−1

f
1

f 2

+
−

−5 0 5

−6

−4

−2

0

2

4

6

Cluster2−2

f
1

f 2

+

−+

−

−5 0 5

−6

−4

−2

0

2

4

6

Cluster1−2

f
1

f 2

+

+

−

−5 0 5

−4

−2

0

2

4

6
FullQuadProj

f
1

f 2

+

−+

−

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

1DWD

1DWD

O
rt

ho
 P

C
1

+−

Figure 2.7: Application to 3-Cluster-Triangle type of high dimensional simulated data set.
Upper left panel shows the raw data projected onto the first two directions. Projections
onto 1DWD and orthogonal PC1 directions are shown in the lower left panel. Projections
onto f1, f2 directions are shown in the middle and right panels.

41

structure. The combination of 1DWD and orthogonal PC1 directions can separate the 4

clusters but the structure is twisted in contrast to the original one as shown in the upper

left plots. No structure of this type is part of the underlying signal in the data, so we

conclude that it is a noise artifact. All the other three BDD methods exhibit artifacts

that suggest overfitting. Cluster1-2 attempts to divide the data into three clusters and

gives apparently reasonable separation of the negative class into two clusters. Cluster1-1

attempts to divide the data into only two clusters. Even Cluster2-2 may be affected by

overfitting, as the clusters are better separated than in the raw data.

The visualization for the 3-Cluster-Triangle example (Figure 2.7) suggests that the

Cluster1-2 method works the best for this example because it correctly divides the data

into three clusters although the clusters are better separated than in the raw data. All

the other three BDD methods fail to correctly find the cluster identification. Cluster2-2

divides the data into four clusters which seems appropriate, but are likely to lead to some

loss of generalization ability.

The visualization results in Figures 2.6-2.7 can only provide some partial ideas about

the performances of different methods in each example. To analyze the pivotal question

of which methods have found reproducible structure in the data, we repeat the simulation

100 times. The performance summaries over 100 replications are listed in Table 2.2. As

mentioned before, for HDLSS data, the training errors are frequently zero for all methods

and thus are not included in this table. For the 4-Cluster-Twisted example, not sur-

prisingly, the Cluster2-2 method works the best. The Cluster1-1 method has no power.

The performances of the Cluster1-2 and the FullQuadProj methods are in-between. For

the 4-Cluster-Straight example, the Cluster1-1 method works the best as expected and

the Cluster2-2 method has no power. For the 3-Cluster-Triangle example, the Cluster1-2

method works the best as expected. For all three examples, the COMBO method always

chooses the best one among the four initialization methods. On the other hand, the normal

42

1DWD method can achieve the best performance only in the 4-Cluster-Straight example.

It has no power in the 4-Cluster-Twisted example and gives moderate performance in the

3-Cluster-Triangle example.

Note that the FullQuadProj method typically did not achieve the best performance due

to a tendency towards overfitting as shown in Figures 2.6 and 2.7. As mentioned before,

the FullQuadProj method works in a space with much higher dimension than the original

one and thus is very prone to overfitting. The consequence of overfitting is that small

changes in training data can have significant influence on the outcome of the prediction for

test data and models will have high classification error. Comparing the objective values

for the 4-Cluster-Twisted example shown in Table 2.2 with the corresponding KDE plot

in Figure 2.3, we note that random choice of the initial values can hardly achieve good

optimization for HDLSS data. The reason is that the optimization problems considered

here have many more local solutions in the high-dimensional situation than in the low-

dimensional situation.

There is one subtle point we want to mention here. For the Cluster1-1 method, as

shown in the upper left panel of Figures 2.6 and 2.7, only one hyperplane of the BDD

solution has an impact on the classification, because all the data points are located on the

same side of the other hyperplane. Thus in the case when one-direction methods work well,

the inclusion of the second hyperplane can make the performance worse. This is illustrated

in Figure 2.8 where the Cluster1-1 method is applied to the 4-Cluster-Straight example

for both training data (left panel) and test data (right panel). The left panel shows that

all training data points are on one side of the second hyperplane (the vertical line) of our

BDD solution. However, this is no longer true for the test data as shown (on the same

scale of axis) in the right panel, where a quite large test error is seen. Figure 2.8 suggests

that the inclusion of the second hyperplane can greatly increase the test error although it

does not affect the training points. We address this issue as follows. When the Cluster1-1

43

Table 2.2: Performance summary, average error rates over 100 simulations, of the ap-
plication of the one-direction and the two-direction classification methods to three high-
dimensional simulation examples. The numbers in the parentheses show standard error.

4-Cluster-Twisted Bayes Error = 5 × 10−5 (2 × 10−5)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Test 0.502 0.0024 0.219 0.501 0.397 0.0024

(0.0016) (1.7×10−4) (0.0012) (0.0015) (0.0089) (1.7×10−4)
Objective 4.06 6.59 10.01 9.25 4.06

(0.01) (0.015) (0.025) (0.067) (0.01)
4-Cluster-Straight Bayes Error = 1 × 10−5(1 × 10−5)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Test 0.0012 0.503 0.439 0.0012 0.394 0.0012

(1.1 × 10−4) (0.0016) (0.0016) (1.1 × 10−4) (0.0028) (1.1 × 10−4)
Objective 6.54 6.29 6.23 6.79 6.23

(0.019) (0.014) (0.015) (0.063) (0.015)
3-Cluster-Triangle Bayes Error = 3.9 × 10−3 (2 × 10−4)

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
Test 0.149 0.26 0.061 0.264 0.304 0.061

(0.0014) (0.0029) (0.001) (0.0013) (0.001)
Objective 6.85 5.80 7.73 8.18 5.80

(0.018) (0.016) (0.022) (0.081) (0.016)

method gives the lowest objective value for a data set (e.g., 4-Cluster-Straight example)

and all training data are on the same side of one of the two hyperplanes, we choose the

first hyperplane to be the usual one-direction separating hyperplane and the second one

to be w2 = 0 and β2 = 1. This solution is equivalent to the normal one-direction solution

and the second hyperplane does not play any role in the classification.

2.3.3 Simulated Tri-Directional Examples

Two examples are shown here to further demonstrate the usefulness of our TDD

method. The first one is called the Linear 4-Cluster Gaussian mixture toy example in

which our two-direction BDD may not give major improvements over linear methods. As

shown in Figure 2.9 below, linear methods tend to miss the 4 cluster structure of the data.

While BDD looks better visually, in fact the test error rate (misclassification error rate

on independently generated test data) is no better (both are around 25%). However, our

44

−3 −2 −1 0 1 2 3 4 5

−10

−8

−6

−4

−2

0

2

4

6

8

10

Train

f
1

f 2

+

−+

−

−3 −2 −1 0 1 2 3 4 5

−10

−8

−6

−4

−2

0

2

4

6

8

10

Test

f
1

f 2

+

−+

− +

−+

−

Figure 2.8: Visualization of a 4-Cluster-Straight example using Cluster1-1 initialization for
both training (left) and test (right) data.

TDD works much better in this case, by correctly accounting for the 4 cluster nature of the

data. Note that the Cluster2-2b initialization method was chosen by the objective function

minimization for the TDD solution.

−5 0 5

−2
−1

0
1

2

Test Error = 0.261

(+) (−)

−5 0 5

−2
−1

0
1

2

Test Error = 0.286

(+−) (++) (−+)

−5 0 5

−2
−1

0
1

2

Test Error = 0.042

(+++) (++−) (+−−) (−−−)

Figure 2.9: Classification results for the Linear 4-Cluster Gaussian mixture example: The
positive class is a mixture of N(−7.5, 1) and N(2.5, 1) denoted by ”+” and ”x” symbols
respectively and the negative class is a mixture of N(−2.5, 1) and N(7.5, 1) denoted by
triangles. The left panel is the classification boundary obtained by 1SVM; the middle panel
shows the classification boundary obtained by BDD; the right panel shows the classification
boundary obtained by TDD. The error rates show that the one-directional method and
BDD deliver similar performance while TDD works the best for this example.

The second one is the Donut example, shown in Figure 2.10, which is a typical example

to demonstrate the use of full kernel methods in low dimensional problems. As we can

45

see from Figure 2.10, BDD offers significant improvement over linear methods and TDD

performs even better. Interestingly, the TDD can yield similar performance as a full

nonparametric kernel method by using only three directions. Note that the Cluster1-

3 initialization method was chosen by the objective function minimization for the TDD

solution.

−6 −4 −2 0 2 4 6

−
5

0
5

Test Error = 0.309

(+) (−)

−6 −4 −2 0 2 4 6

−
5

0
5

Test Error = 0.145

(+−)

(++)
(−+)

−6 −4 −2 0 2 4 6

−
5

0
5

Test Error = 0.05

(+++)

(−++)

(−−+)
(+−+)

(+−−)

(++−)
(−+−)

−6 −4 −2 0 2 4 6

−
5

0
5

Test Error = 0.014

−6 −4 −2 0 2 4 6

−
5

0
5

−6 −4 −2 0 2 4 6

−
5

0
5

Figure 2.10: Classification results for the donut example. The positive class, denoted by
”+” symbol, lies within a small center, the negative class, denoted by triangle, surrounds
this entirely. The top left, top right, bottom left, bottom right display the classification
boundaries by 1SVM, BDD, TDD, and the full quadratic-kernel SVM, respectively. Note
that BDD offers improvement over the one-directional method (the error rate changes
from 31% to 15%), and TDD further improves BDD(error rate changes from 15% to 5%).
Interestingly, TDD gives performance that is not far from that of the full quadratic-kernel
SVM although it only uses three directions.

2.3.4 Real Data

In this section, we apply our BDD method to two real data sets. We analyze a Lung

Carcinoma data set in Section 2.3.4.1 and a Glioblastoma Multiforme data set in Section

2.3.4.2. The first example includes four clusters, two for each class. The subcluster labels

46

for each class are known and our method can identify them correctly. In the second

example we apply our method to the two class problem without knowing whether there

are subpopulations within each class or not, our method finds two distinct subclusters

within the class Neural which are worth further biological investigation.

2.3.4.1 Lung Carcinoma Data

In this section we show the performance of the BDD method on the Human Lung Car-

cinoma Microarray Data set (available from http://www.broad.mit.edu/lung/). Here, we

focus the analysis on four unambiguous histological types for which there is little diagnostic

confusion: normal lung, pulmonary carcinoid tumors, colon cancer metastases, and small

cell carcinoma. These samples have been described in detail previously (Bhattacharjee

et al. (2001); Meyerson and Hayes (2005)) and are analyzed by Liu et al. (2008). The

original data contain 12,625 genes. After filtering the genes using the ratio of the sample

standard deviation and sample mean of each gene, 2,530 genes with large ratios are kept

in the data set, as in Liu et al. (2008). The data set contains 51 patients with 2,530 genes.

Among the 51 samples, there are 20 pulmonary carcinoid samples (Carcinoid), 8 colon

cancer metastases (Colon), 17 normal lung samples (Normal) and 6 small cell carcinoma

samples (SmallCell).

We considered several combinations of the data, and the most interesting was the

classification problem which treats Normal & SmallCell as the positive class and Carcinoid

& Colon as the negative class. The four methods of choosing initial values considered

in this dissertation are applied to this data set for the calculation of the BDD decision

boundaries. Similar visualization results to those of Section 2.3.2, based on the default

tuning parameter, are shown in Figure 2.11.

From the visualization results, the Cluster2-2 method performs much better than the

47

10 15 20 25 30

−30

−20

−10

0

10

20

30

Cluster1−1

−20 0 20 40

−30

−20

−10

0

10

20

30

Cluster2−2

−30 −20 −10 0 10 20 30 40

−25

−20

−15

−10

−5

0

5

10

15

20

Cluster1−2

−15 −10 −5 0 5 10 15 20

−30

−20

−10

0

10

20

FullQuadProj

Figure 2.11: Application to the human lung carcinoma microarray data set: Normal (red
”+”) + SmallCell (red ”x”) versus Carcinoid (blue up-triangle) + Colon (blue down-
triangle). Note Cluster2-2 method correctly subdivide the classes.

other three methods, in the sense that it correctly split the four distinct types of data

(Normal, SmallCell, Carcinoid and Colon) into four clusters.

The visualization results have suggested some interesting structures for the data set

but it is also important to study the generalizability of each method. Due to the limited

sample size, we study the generalization properties of our method using CV. The data

set is randomly split into a training set (80%) and a test set (20%). We further split the

training set (80% and 20%) to give 5-fold CV for tuning parameter selection. This division

of the training data is randomly repeated 100 times and the tuning parameter is chosen to

be the one which gives the lowest average CV error. The test error is calculated based on

this parameter.

The CV errors for the classification problem are listed in Table 2.3. The CV errors are

computed on the basis of 100 random splits of the data set, and the means are summarized

in the table. The Monte Carlo standard errors over 100 splits are included in the paren-

48

Table 2.3: Cross validation errors over 100 replications for the human lung carcinoma
microarray data set. The numbers in the parentheses show standard errors.

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
1.2(0.33) 0(0) 1.4(0.38) 2.8(0.53) 1.7(0.4) 0.3(0.22)

theses in the table. All methods give relatively low CV errors due to the nature of this

problem. The Cluster2-2 method gives the best performance among the four initialization

methods. The CV error from the usual 1DWD method is higher than that from our BDD

method. This is consistent with the visualization results shown in Figure 2.11.

2.3.4.2 Glioblastoma Multiforme Data

Glioblastoma Multiforme (GBM) is the most common form of malignant brain cancer in

adults. For the purposes of the current analysis, we selected a cohort of patients with GBM

cancer whose brain samples were assayed on three gene expression platforms (Affymetrix

HuEx array, Affymetrix U133A array, and Agilent 244K array) into a single unified data

set. Several clinical relevant subtypes were identified using integrated genomic analysis in

Verhaak et al. (2010). For our analysis example, we focused on Mesenchymal and Neural

subtypes because there was some feeling that the Neural might really have two subclasses.

After filtering the genes using the ratio of the sample standard deviation and sample mean

of each gene, the data set contains 186 patients with 2,727 genes. Among the 186 samples,

there are 117 Mesenchymal samples (MES) and 69 Neural samples (NL).

We consider the classification problem which treats MES as the positive class and NL

as the negative class. Similar to the first example, the visualization plots and the CV

errors are shown in Figure 2.12 and Table 2.4 respectively. As shown in the visualization

plots, Cluster2-2 method tends to split both classes into two subclusters and Cluster1-2

method tends to split the NL class into two subclusters. CV errors show that Cluster1-2

method gives the best performance although the difference between Cluster1-2 method and

49

Table 2.4: Cross validation errors for GBM data MES versus NL

1DWD Cluster2-2 Cluster1-2 Cluster1-1 FullQuadProj COMBO
3.00(0.28) 8.97(0.59) 2.92(0.26) 3.00(0.28) 4.19(0.48) 3.05(0.28)

1DWD method is not so significant. Note that the CV error from the COMBO method

is slightly bigger than the ones from the Cluster1-1 method and the Cluster1-2 method.

This is because a lower objective value does not always correspond to a lower error rate

when we compare two methods with slightly different objective values. Therefore, our CV

analysis for every individual method is very important here and confirms that the NL class

has two distinct subclusters. To verify whether or not these clusters represent potentially

important new cancer subclasses, the SigClust method (Liu et al. (2008)) was performed

to evaluate the significance of this cluster splitting of the NL class, i.e., as given by our

Cluster1-2 method as shown in the bottom left panel of Figure 2.12. The resulting p-value

is very significant at 1.12×10−17. Therefore, we conclude that there are further subclusters

within the NL samples that are worth deeper biological investigation.

−5 0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

10

20

30

40

Cluster1−1

−30 −20 −10 0 10 20
−50

−40

−30

−20

−10

0

10

20

30

40

Cluster2−2

−30 −20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30

Cluster1−2

−40 −20 0 20 40

5

10

15

20

25

30

35

40
FullQuadProj

Figure 2.12: Application to GBM data set: MES (red ”+” sign) versus NL (blue triangle).

50

Two subsets of genes were selected based on the 200 biggest absolute coefficient values

of the normal direction vectors solved from 1DWD and BDD Cluster1-2 methods. We

found 51 common genes in both groups. The heatmaps of the two subsets are shown in

Figure 2.13. The left panel is for the genes selected from 1DWD method and shows two

distinct clusters, one for each class. The right panel is for the genes selected from BDD

Cluster1-2 method and shows three distinct clusters, one for MES and two for NL. This is

consistent with the visualization result shown in the lower left panel in Figure 2.12.

Gene expression (Top 200 genes from 1DWD)

 MES NL

Gene expression (Top 200 genes from BDD)

 MES NL

Figure 2.13: Heatmap of GBM data by using top 200 genes selected from 1DWD methods
(left panel) and BDD Cluster1-2 methods (right panel). Genes are in the rows and samples
are in the columns

2.4 Mathematical Statistics

To gain further insight into BDD, in this section we study some of its theoretical

properties. A parallel theory can be developed for TDD, but the main ideas are seen most

directly through examples of the computationally simpler BDD.

We could investigate classical asymptotics in the limit as n → ∞. But because the main

51

value of BDD is in the HDLSS case, we consider asymptotics of the method for d → ∞ with

the sample size n fixed. Hall et al. (2005) first demonstrated the mathematical statistical

insight available from this type of asymptotics. They showed that, under some conditions,

each data point in a sample of size n tends to lie near a vertex of a regular n-simplex

and all the randomness in the data appears in the form of a random rotation of this

simplex, i.e., they found a geometric representation for HDLSS data. This data structure

yield new insight into the binary classification problem. In practice, data points from the

positive class (size n+) and those from the negative class (size n−) can be viewed as an

n+-simplex and an n−-simplex respectively. This gave direct results on completely perfect

and completely imperfect classifications.

The regularity conditions for the geometric representation in Hall et al. (2005) requires

that the entries of the data vector satisfy a ρ-mixing condition. Ahn et al. (2007) gave

a milder condition using asymptotic properties of the sample covariance. A more general

and even milder set of conditions for the result of Hall et al. (2005) is given in Jung and

Marron (2009); Qiao et al. (2010).

Here we obtain new statistical insight as to the superior properties of BDD, using this

HDLSS geometry. To illustrate the important principles that underlie BDD, in the binary

classification problem, we consider two examples. The first example is discussed in Section

2.4.1 which includes four clusters, two for each class. The second example is discussed

in Section 2.4.2 which includes three clusters, two for the positive class and one for the

negative class.

2.4.1 Four Clusters Case

The first example includes four clusters labeled as +1, +2, −1, and −2 respectively.

Assume that data points from clusters +1 and +2 belong to the positive class and those

52

from clusters −1 and −2 belong to the negative class.

We use the regularity conditions of Qiao et al. (2010). Consider the +1 cluster consisting

of data vectors x+1
1 (d), · · · ,x+1

n+1
(d) with d variables, where x+1

j (d) = (x+1
1j , · · · , x+1

dj)T ∈ Rd,

j = 1, · · · , n+1. Assume these vectors are independent and identically distributed from a

d-dimensional multivariate distribution. Concatenate these into a d × n+1 data matrix

X+1
d = [x+1

1 (d), · · · ,x+1
n+1

(d))] with d > n+1.

For a fixed n+1, consider a sequence of random data matrices X+1
1 , · · · , X+1

d , · · · , in-

dexed by the number of rows d. Assume each X+1
d comes from a d-dimensional multivariate

distribution with covariance matrix Σ+1
d . Let λ+1

1,d ≥ · · · ≥ λ+1
d,d be the eigenvalues of Σ+1

d .

Assume the following:

(1) The fourth moments of each entry of each column of X+1
d are uniformly bounded.

(2) The entries of Z+1
d = (Σ+1

d)−
1
2 X+1

d are independent.

(3) The eigenvalues of Σ+1
d are sufficiently diffused, in the sense that

ǫ+1
d =

∑d
j=1(λ

+1
j,d)2

(
∑d

j=1 λ+1
j,d)2

→ 0 as d → ∞. (2.15)

(4) The sum of the eigenvalues of Σ+1,d is of the same order as d, in the sense that

∑d
j=1 λ+1

j,d = O(d) and 1/
∑d

j=1 λ+1
j,d = O(1/d).

Define the scaled variance (σ+1
d)2 = 1

d

∑d
j=1 λ+1

j,d . Under Assumptions (1)-(4), as d → ∞,

these n+1 data vectors tend to form a regular n+1-simplex in Rd with side length
√

2dσ+1
d .

Assume that the other three independent data samples X+2(d), X−1(d) and X−2(d) also

satisfy Assumptions (1)-(4). Define σ+2
d , σ−1

d and σ−2
d similarly to σ+1

d . Then the four

clusters can be viewed asymptotically as four simplices within the d-dimensional space

having side lengths
√

2dσ+1
d ,

√
2dσ+2

d ,
√

2dσ−1
d , and

√
2dσ−2

d respectively. Based on this

geometric representation, our next goal is to develop conditions under which the two-

53

direction SVM (DWD) method is better than the usual 1SVM (1DWD) method.

In general, the population mean positions of the four clusters lie in a 3-dimensional

hyperplane in Rd. They are located at the vertices of a tetrahedron. In order to illustrate

the basic idea of when the two-direction method is preferred, we consider a simple setting

as shown in Figure 2.14. Given two sequences of between-class distances l+,d ≥ 0, l−,d ≥ 0

and a sequence of within-class distances l0,d ≥ 0, assume that

(5) The mean positions of the four clusters +1, +2, −1, and −2 in the 3-dimensional

space are C+1,d = (l+,d/2, 0, l0,d/2),C+2,d = (−l+,d/2, 0, l0,d/2), C−1,d = (0, l−,d/2,−l0,d/2),

C−2,d = (0,−l−,d/2,−l0,d/2) respectively.

These mean positions can also be parametrized in terms of variance shifts and rotations

but this form we used to make the main idea most clear. Note that the geometries of this

setting are fully characterized by three sequences l+,d, l−,d and l0,d. Here l+,d is equal to

the length of the line segment C+1,dC+2,d and l−,d is equal to the length of line segment

C−1,dC−2,d, and thus can be viewed as notions of within-class distances. Similarly, l0,d is

equal to the distance between the line C+1,dC+2,d and the line C+1,dC+2,d, and thus can be

viewed as a notion of between-class distance, i.e., the distance between the positive class

and the negative class. Here for simple understanding of the main ideas, we assume that

the sample sizes and variances of the two clusters within each class are the same, i.e.

(6) n+1 = n+2 = n+/2, n−1 = n−2 = n−/2.

(7) For given constants σ+, σ− > 0, σ+1,d = σ+2,d = σ+,d → σ+, σ−1,d = σ−2,d = σ−,d →

σ−, as d → ∞.

For some distance orders α± ≥ 0 and α0 ≥ 0, we study the asymptotic behaviors of

the one-direction and the two-direction classifiers as the within-class distances l±,d grow

at the rate of dα± and the between-class distance l0,d grows at the rate of dα0 , in the sense

54

X

C
+1,d

C
−2,d

Z

C
−1,d

C
+2,d

Y

Figure 2.14: Illustration of the mean positions (C+1,d,C+2,d,C−1,d,C−2,d) of the four clusters,
where (C+1,d,C+2,d) belong to the positive class and (C−1,d,C−2,d) belong to the negative
class.

that
l±,d

dα±
→ µ± and

l0,d

dα0
→ µ0 for some µ± > 0 and µ0 > 0. To test the performance

of the classification methods, we need to add a new random point to a d-variate space

which is independent of the data in X+1
d ∪ X+2

d ∪ X−1
d ∪ X−2

d and has the distribution of

any of the four clusters. The following Theorem characterizes the HDLSS asymptotics of

the one-direction and the two-direction methods for the unbalanced case under the above

setting.

Theorem 2.1. Assume that σ2
+/n+ > σ2

−/n−; if need be, interchange + and − to achieve

this. Under Assumptions (1)-(7), we have the following results:

1. 1SVM gives either completely correct or incorrect classification as:

(a) If limd→∞(µ2
0d

2α0−1) > σ2
+/n+−σ2

−/n−, then the probability that the usual 1SVM

hyperplane gives correct classification of new points converges to 1 as d → ∞.

(b) If limd→∞(µ2
0d

2α0−1) < σ2
+/n+ − σ2

−/n−, then with probability converging to 1 as

d → ∞ a new datum from either population will be classified by the usual 1SVM

hyperplane as belonging to the positive population.

2. BDD gives completely correct classification as:

55

(a) If either limd→∞(µ2
0d

2α0−1) > σ2
+/n+ − σ2

−/n− or limd→∞(µ±dα±− 1
2) > 0, the

probability that the BDD classifier gives correct classification of new points con-

verges to 1 as d → ∞.

Part 1 of Theorem 2.1 says that the 1SVM method gives an asymptotically correct

classification of a new point when the between-class distance is large enough, in the sense

that either α0 > 1/2 or α0 = 1/2 and µ2
0 > σ2

+/n+ − σ2
−/n−. When the between class

distance is small enough in the sense that either α0 < 1/2, or α0 = 1/2 and µ2
0 < σ2

+/n+ −

σ2
−/n−, the one-direction method will fail regardless of the size of the within-class distances.

Part 2 of Theorem 2.1 shows that the BDD classification works as well as the one-direction

method when either α0 > 1/2 or α0 = 1/2 and µ2
0 > σ2

+/n+−σ2
−/n−. More importantly, the

major improvement available from BDD is demonstrated in the result that it will classify

correctly when α± ≥ 1/2, for any value of between-class distance.

The following Theorem characterizes the HDLSS asymptotics of the one-direction and the

two-direction methods for the balanced case under the above setting.

Theorem 2.2. Under Assumptions (1)-(7),, assume that σ+ = σ− and n+ = n−, we have

the following results:

1. If α0 ≥ 1/2, the probability that the usual 1SVM hyperplane gives correct classification

of new points converges to 1 as d → ∞. If α0 < 1/2, this probability converges to

1/2.

2. If either α0 ≥ 1/2 or else α± ≥ 1/2, the probability that the BDD classifier gives

correct classification of new points converges to 1 as d → ∞.

Remark: Under the assumptions of Theorem 2.2, since all four clusters have the same

sample sizes, the DWD hyperplanes asymptotically coincide with the corresponding SVM

hyperplanes for both one-direction and two-direction cases. Thus all the above conclusions

in Theorem 2.2 for SVM methods hold for DWD methods as well.

56

A summary of how the classification performance of Theorem 2.2 for the one-direction

methods and the two-direction methods is driven by the rates α± and α0 is illustrated

in Figure 2.15. We divide the set of possible contexts into a “strong classification” part

(right side) and a “weak classification” part (left side) according to whether α0 ≥ 1/2 or

α0 < 1/2. We also divide the set of contexts into a “strong clustering” part (top side) and

a “weak clustering” (bottom side) part according to whether α± ≥ 1/2 or α± < 1/2. The

one-direction classification methods work in the “strong classification” areas, i.e., areas

(I) and (IV). Our two-direction methods work not only in the “strong classification” area

but also in the “strong clustering” area, i.e., areas (I), (II) and (IV). The one-direction

methods will fail to classify in the “weak classification” areas. Our two-direction methods

are superior because they continue to work in this area when the clustering is strong.

0 0.5

0.5

α
0

α±

Strong Classification

Strong Clustering

(I)

Weak Classification

Strong Clustering

(II)

Strong Classification

Weak Clustering

(IV)

Weak Classification

Weak Clustering

(III)

Figure 2.15: Summary of the classification performance given in Theorem 2.2 for the one-
direction methods and the two-direction methods.

As a remark, we note that the BDD classification will work well with the Cluster2-2

type of initial value method when α± ≥ 1/2 and will work well with the 1DWD-START

type of initial value method when α0 ≥ 1/2. Furthermore, our method for choice between

starting values will tend to find the correct one.

57

2.4.2 Three Clusters Case

The second example includes three clusters labeled as +1, +2, and −1 respectively.

Thus only the positive class contains two distinct clusters. Similar to the four clusters

case, we consider a simple setting here. Given within-class distances l+,d ≥ 0 and a

between-class distance l0,d ≥ 0, assume that

(A) The mean positions of the three clusters +1, +2, −1 in the 2-dimensional space are

C+1,d = (l+,d/2, l0,d/2), C+2,d = (−l+,d/2, l0,d/2), C−,d = (0,−l0,d/2) respectively.

(B) n+1 = n+2 = n+/2.

(C) For a given constant σ+ > 0, σ+1,d = σ+2,d = σ+,d → σ+, as d → ∞.

The following Theorem characterizes the HDLSS asymptotics of the one-direction and

the two-direction methods under the above setting.

Theorem 2.3. Assume that σ2
+/n+ > σ2

−/n−; if need be, interchange + and − to achieve

this. Under Assumptions (1)-(4) and assumptions (A)-(C), we have the following results:

1. 1SVM gives either completely correct or incorrect classification as:

(a) If limd→∞(µ2
0d

2α0−1) > σ2
+/n+−σ2

−/n−, then the probability that the usual 1SVM

hyperplane gives correct classification of new points converges to 1 as d → ∞.

(b) If limd→∞(µ2
0d

2α0−1) < σ2
+/n+ − σ2

−/n−, then with probability converging to 1 as

d → ∞ a new datum from either population will be classified by the usual 1SVM

hyperplane as belonging to the positive population.

2. BDD gives completely correct classification as:

(a) If either limd→∞(µ2
0d

2α0−1) > σ2
+/n+ − σ2

−/n− or else limd→∞(µ2
+d2α+−1) >

8σ2
+/n+, the probability that the BDD classifier gives correct classification of new

points converges to 1 as d → ∞.

58

The first part of Theorem 2.3 discusses the performance of 1SVM and is similar to

the first part of Theorem 2.1 and Theorem 2.2. The performance of the 1SVM method

is uniquely determined by the between-class distance. The second part of Theorem 2.3

provides the conditions under which the BDD methods give correct classification of a new

data point. It shows that the BDD works as well as the one-direction method when the

between-class distance is large enough, in the sense that either α0 > 1/2 or α0 = 1/2

and µ2
0 > σ2

+/n+ − σ2
−/n−. More importantly, when the two clusters in positive class are

separated enough in the sense that either α+ > 1/2 or α+ = 1/2 and µ2
+ > 8σ2

+/n+, our

BDD method will classify correctly regardless of value of between-class distance.

2.5 Proof

2.5.1 Proof of Theorems 2.1 and 2.2

Recall that we refer to the limiting simplices of the samples X+1
d , X+2

d , X−1
d , and X−2

d

as the four simplices. Let O+1, O+2, O−1, and O−2 denote the centroids of these four

simplices. To analyze the geometries of these centroids, note that, for each d, the union

of the data and the class centroids, X+1
d ∪ X+2

d ∪ X−1
d ∪ X−2

d ∪ {C+1,d, C+2,d, C−1,d, C−2,d}

generate a subspace of dimension n+3 (n = n+1+n+2+n−1+n−2). Using the orthogonality

properties developed by Hall et al. (2005); Jung and Marron (2009), for each d, there is a

rotation of this space, i.e., a suitable basis so that the elements of X+1
d can be written as

{(l+,d/2, 0, l0,d/2),
√

dσ+,d(1, · · · , 0
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

), (0, · · · , 0
︸ ︷︷ ︸

n−2

)}, · · · ,

{(l+,d/2, 0, l0,d/2),
√

dσ+,d(0, · · · , 1
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

), (0, · · · , 0
︸ ︷︷ ︸

n−2

)}. (2.16)

59

Note that the centroid O+1 has co-ordinates

{(l+,d/2, 0, l0,d/2),
√

dσ+,d(1/n+1, · · · , 1/n+1
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

), (0, · · · , 0
︸ ︷︷ ︸

n−2

)}. (2.17)

Similarly, the other three centroids O+2, O−1, and O−2, can be represented in the same

(3 + n)-dimensional space as the vectors

{(−l+,d/2, 0, l0,d/2), (0, · · · , 0
︸ ︷︷ ︸

n+1

),
√

dσ+,d(1/n+2, · · · , 1/n+2
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

), (0, · · · , 0
︸ ︷︷ ︸

n−2

)}, (2.18)

{(0, l−,d/2,−l0,d/2), (0, · · · , 0
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

),
√

dσ−,d(1/n−1, · · · , 1/n−1
︸ ︷︷ ︸

n−1

), (0, · · · , 0
︸ ︷︷ ︸

n−2

)}, (2.19)

{(0,−l−,d/2,−l0,d/2), (0, · · · , 0
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

),
√

dσ−,d(1/n−2, · · · , 1/n−2
︸ ︷︷ ︸

n−2

)},(2.20)

respectively.

Denote Lij be the line that connects Oi and Oj and [OiOj] be the line segment between

Oi and Oj, where Oi is the centroid of ith cluster. A straightforward extension of Theorem

1 of Hall et al. (2005) is

Lemma 2.1. Assume that the two closest points in lines L12 and L34 lie inside the line

segments [O1O2] and [O3O4] respectively. Then the 1SVM hyperplane that separates be-

tween group (1,2) and group (3,4) perpendicularly bisects the line segment between these

two closest points.

Proof of Lemma 2.1: The line Lij can be represented as Lij = {(Oi+(Oj−Oi)t) : t ∈ R}.

The line segment [OiOj] can be represented as [OiOj] = {(Oi + (Oj − Oi)t) : t ∈ [0, 1]}.

The squared distance between two lines L12 and L34 can be expressed as

D = mint1,t2 |(O1 + (O2 − O1)t1) − (O3 + (O4 − O3)t2)|2

= mint1,t2 |O13 + O21t1 − O43t2|2, (2.21)

60

where t1, t2 are two free parameters and Oij = Oi − Oj. We try to find t̂1 and t̂2 which

minimize the square distance D. Taking derivative over t1 and t2, we get two equations

|O21|2t̂1 − OT
21O43t̂2 + OT

21O13 = 0,

OT
21O43t̂1 − |O43|2t̂2 + OT

43O13 = 0. (2.22)

The solution t̂1 and t̂2 are

t̂1 =
−OT

21O13|O43|2 + OT
43O13O

T
21O43

|O21|2|O43|2 − (OT
21O43)2

,

t̂2 =
|O21|2OT

43O13 − OT
21O43O

T
21O13

|O21|2|O43|2 − (OT
21O43)2

. (2.23)

If the two points O∗
I = O1 + O21t̂1 and O∗

II = O3 + O43t̂2 lie inside the line segments

[O1O2] and [O3O4] respectively, then t̂1 ∈ [0, 1] and t̂2 ∈ [0, 1], and the distance between

these two points is the closest distance between the convex hull of the positive class points

and the convex hull of the negative class points. The hyperplane which is perpendicularly

bisects the line segment between these two points is f(x) = xT β̂ + b̂ = 0, where

β̂ =
2(O13 + O21t̂1 − O43t̂2)

D̂
,

b̂ = −(O13 + O21t̂1 − O43t̂2)
T (O1 + O3)

D̂
, (2.24)

where D̂ = |O13 + O21t̂1 − O43t̂2|2. We can show that all points from the positive group

(1,2) satisfy xT β̂+ b̂ = 1 while all points from the negative group (3,4) satisfy xT β̂+ b̂ = −1.

Assume that x1 is from cluster 1, we have

xT
1 β̂ + b̂ = (x1 − O1)

T β̂ + OT
1 β̂ + b̂ = 1, (2.25)

since (x1 − O1)
T β̂ = 0 and OT

1 β̂ + b̂ = 1. Similar results can be obtained for data points

61

from other 3 clusters. Thus, we conclude that an asymptotic representation of the SVM

classifier is f(x) = xT β̂ + b̂. ¤

Using the SVM hyperplane derived above, it is straightforward to show that the new

datum x∗
i from the ith cluster, for i = 1, 2, 3, 4, will give the classification function values

f(x∗
1) = x∗T

1 β̂ + b̂ = 1 − 2(1 − t̂1)σ
2
1

n1D̂
, (2.26)

f(x∗
2) = x∗T

2 β̂ + b̂ = 1 − 2t̂1σ
2
2

n2D̂
, (2.27)

f(x∗
3) = x∗T

3 β̂ + b̂ = −1 +
2(1 − t̂2)σ

2
3

n3D̂
, (2.28)

f(x∗
4) = x∗T

4 β̂ + b̂ = −1 +
2t̂2σ

2
4

n4D̂
, (2.29)

respectively. Here ni and σ2
i denote the sample size and the scaled variance of the ith

cluster respectively.

1. Let us first derive the 1SVM hyperplane that separates the positive class (X+1
d , X+2

d)

from the negative class (X−1
d , X−2

d). Plug the formulas (2.17)–(2.20) into (2.26)–(2.29)

with O1 = O+1, O2 = O+2, O3 = O−1 and O4 = O−2, we have that

f(x∗
+) =

l20,d/d − σ2
+,d/n+ + σ2

−,d/n−

l20,d/d + σ2
+,d/n+ + σ2

−,d/n−
−→ µ0d

2α+−1 − σ2
+/n+ + σ2

−/n−
µ0d2α+−1 + σ2

+/n+ + σ2
−/n−

(2.30)

for a new data point x∗
+ from the positive class, and

f(x∗
−) = −

l20,d/d + σ2
+,d/n+ − σ2

−,d/n−

l20,d/d + σ2
+,d/n+ + σ2

−,d/n−
−→ −µ0d

2α+−1 + σ2
+/n+ − σ2

−/n−
µ0d2α+−1 + σ2

+/n+ + σ2
−/n−

(2.31)

for a new data point x∗
− from the negative class. Hence the part one of Theorem 1 can be

easily concluded.

2. For BDD method, if limd→∞µ2
0d

2α0−1 > σ2
+/n+ − σ2

−/n−, we choose the usual 1SVM

hyperplane as initial values for the BDD method, the two hyperplanes of the BDD method

62

can be represented as f1(x
∗) = f(x∗) and f2(x

∗) = 1. Thus the same conclusion as in 1

follows immediately.

If we choose the Cluster2-2 type of initial values, the BDD classifier includes the fol-

lowing two hyperplanes. The first one is the 1SVM hyperplane that separates between

groups (X+1
d , X−1

d) and (X+2
d , X−2

d), which provides the classifier f1. In the same manner

by the replacement of O1 = O+1, O2 = O−1, O3 = O+2 and O4 = O−2 in (2.26)–(2.29),

it can be shown that, f1(x
∗) equals to

l2+,d
/d

l2+,d
/d+(σ+

d
)2/n+

, − µ2
+d2α+−1

µ2
+d2α+−1+

(σ+
d

)2

n+

,
µ2
−

d2α−−1

µ2
−

d2α−−1+
(σ−

d
)2

n−

, and

− µ2
−

d2α−−1

µ2
−

d2α−−1+
(σ−

d
)2

n−

for a new data point which is of type X+1
d , X+2

d , X−1
d and X−2

d respectively.

The second hyperplane is the 1SVM hyperplane that separates between groups (X+1
d , X−2

d)

and (X+2
d , X−1

d), which provides the classifier f2. Then, by the replacement of O1 = O+1,

O2 = O−2, O3 = O+2 and O4 = O−1 in (2.26)–(2.29), f2(x
∗) equals to

µ2
+d2α+−1

µ2
+d2α+−1+

(σ+
d

)2

n+

,

− µ2
+d2α+−1

µ2
+d2α+−1+

(σ+
d

)2

n+

, − µ2
−

d2α−−1

µ2
−

d2α−−1+
(σ−

d
)2

n−

, and
µ2
−

d2α−−1

µ2
−

d2α−−1+
(σ−

d
)2

n−

for a new data point which is of type

X+1
d , X+2

d , X−1
d and X−2

d respectively.

Thus we can show that, as d → ∞, the probability that the two-direction clas-

sifier f1f2 provides correct classification tends to 1 if both limd→∞µ2
+d2α+−1 > 0 and

limd→∞µ2
−d2α−−1 > 0.

Combine the above two cases, we immediately get part 2 of Theorem 1. ¤

Proof of Theorem 2 follow from the proof of Theorem 1 immediately. ¤

2.5.2 Proof of Theorem 2.3

Note that the centroid of O+1 has co-ordinates

{(l+,d/2, l0,d/2),
√

dσ+,d(1/n+1, · · · , 1/n+1
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

)}. (2.32)

63

Similarly, the other two centroids O+2, O−1, can be represented in the same (2 + n)-

dimensional space as the vectors

{(−l+,d/2, l0,d/2), (0, · · · , 0
︸ ︷︷ ︸

n+1

),
√

dσ+,d(1/n+2, · · · , 1/n+2
︸ ︷︷ ︸

n+2

), (0, · · · , 0
︸ ︷︷ ︸

n−1

)}, (2.33)

{(0,−l0,d/2), (0, · · · , 0
︸ ︷︷ ︸

n+1

), (0, · · · , 0
︸ ︷︷ ︸

n+2

),
√

dσ−,d(1/n−1, · · · , 1/n−1
︸ ︷︷ ︸

n−1

)}, (2.34)

respectively.

Lemma 2.2. The 1SVM hyperplane that separates group (1,2) and group 3 perpendicularly

bisects the line segment between O3 and the closest point in the line segment [O1O2].

Proof of Lemma 2.2: The square distance between O3 and [O1O2] can be expressed as

D = min0≤t≤1|(O1 + (O2 − O1)t − O3|2

= min0≤t≤1|O13 − O12t|2. (2.35)

The solution is

t̂ =







0 if
OT

13O12

|O12|2 < 0

OT
13O12

|O12|2 if 0 ≤ OT
13O12

|O12|2 ≤ 1

1 if
OT

13O12

|O12|2 > 1

It is easy to check that the distance between O3 and the closest point in line segment

[O1O2] is the closest distance between the convex hull of the positive class points and the

convex hull of the negative class points. Thus the SVM hyperplane is the same as the

hyperplane which is perpendicularly bisects this line segment and can be represented as

xT β̂ + b̂ = 0, where

β̂ =
2(O13 − O12t̂)

D̂
,

64

b̂ = −(O13 − O12t̂)
T (O1 + O3 − O12t̂)

D̂
, (2.36)

where D̂ = |O13 −O12t̂|2. We can show that all points from the cluster 1 satisfy xT β̂ + b̂ =

1+2 (O13−O12 t̂)T O12 t̂

D̂
≥ 1, all points from the cluster 2 satisfy xT β̂+b̂ = 1+2 (O13−O12 t̂)T O12(t̂−1)

D̂
≥

1 and all points from the cluster 3 satisfy xT β̂ + b̂ = −1. Assume that x1 is from cluster

1, we have

xT
1 β̂ + b̂ = (x1 − O1)

T β̂ + OT
1 β̂ + b̂ = 1 + 2

(O13 − O12t̂)
T O12t̂

D̂
, (2.37)

since (x1−O1)
T β̂ = 0 and OT

1 β̂+b̂ = 1+2 (O13−O12 t̂)T O12 t̂

D̂
. Similar results can be obtained for

data points from the other 2 clusters. Thus, we conclude that an asymptotic representation

of the SVM classifier is xT β̂ + b̂. ¤

Using the SVM hyperplane derived above, it is straightforward to show that the new

datum x∗
i from the ith cluster, for i = 1, 2, 3, will give the classification function values

f(x∗
1) = x∗T

1 β̂ + b̂ = 1 + 2
(O13 − O12t̂)

T O12t̂

D̂
− 2

(1 − t̂)σ2
1

n1D̂
, (2.38)

f(x∗
2) = x∗T

2 β̂ + b̂ = 1 + 2
(O13 − O12t̂)

T O12(t̂ − 1)

D̂
− 2

t̂σ2
2

n2D̂
, (2.39)

f(x∗
3) = x∗T

3 β̂ + b̂ = −1 + 2
σ2

3

n3D̂
, (2.40)

respectively.

1. Let us first derive the 1SVM hyperplane that separates the positive class (X+1
d , X+2

d)

from the negative class (X−1
d). For convenience, we define µ̃i = limd→∞ µid

αi−1/2 for

i = {+, 0}. Plug the formulas (2.32)–(2.34) into (2.38)–(2.40) with O1 = O+1, O2 = O+2,

O3 = O−1, we have that

OT
13O12

|O12|2
=

1

2
. (2.41)

65

Therefore t̂ = 1/2 and

f(x∗
+) =

µ̃2
0 − σ2

+/n+ + σ2
−/n−

µ̃2
0 + σ2

+/n+ + σ2
−/n−

(2.42)

for a new data point x∗
+ from the positive class, and

f(x∗
−) = − µ̃2

0 + σ2
+/n+ − σ2

−/n−
µ̃2

0 + σ2
+/n+ + σ2

−/n−
(2.43)

for a new data point x∗
− from the negative class. Hence the part one of Theorem 3.

2. For BDD method, if µ̃2
0 > σ2

+/n+ − σ2
−/n−, we choose the usual 1SVM hyperplane

as initial values for the BDD method, the two hyperplanes of the BDD method can be

represented as f1(x
∗) = f(x∗) and f2(x

∗) = 1. Thus the same conclusion as in 1 follows

immediately.

If we choose the Cluster1-2 type of initial values, the BDD classifier includes the fol-

lowing two hyperplanes. The first one is the 1SVM hyperplane that separates between

groups (X+1
d , X−1

d) and (X+2
d), which provides the classifier f1. In the same manner by the

replacement of O1 = O+1, O2 = O−1, and O3 = O+2, it can be shown that,

OT
13O12

|O12|2
=

µ̃2
+

2
+ 2

σ2
+

n+

µ̃2
+

4
+ µ̃2

0 + 2
σ2
+

n+
+

σ2
−

n−

. (2.44)

Therefore if µ̃2
+ ≤ 4(µ̃2

0 +
σ2
−

n−
), we have 0 ≤ OT

13O12

|O12|2 ≤ 1 and

t̂ =
2(µ̃2

+ + 4σ2
+/n+)

µ̃2
+ + 4(µ̃2

0 + 2σ2
+/n+ + σ2

−/n−)
, (2.45)

and

f1(x
∗
+1) =

σ4
+ + µ̃2

+(µ̃2
0 + 2σ2

+/n+ + σ2
−/n−)

(µ̃2
+ + 4σ2

+/n+)(µ̃2
0 + σ2

+/n+ + σ2
−/n−)

, (2.46)

66

f1(x
∗
+2) = − µ̃2

+(µ̃2
0 + σ2

−/n−) − 4σ4
+/n2

+

(µ̃2
+ + 4σ2

+/n+)(µ̃2
0 + σ2

+/n+ + σ2
−/n−)

, (2.47)

f1(x
∗
−1) =

µ̃2
0 + σ2

+/n+

µ̃2
0 + σ2

+/n+ + σ2
−/n−

(2.48)

If µ̃2
+ > 8σ2

+/n+, we have f1(x
∗
+1) > 0, f1(x

∗
+2) < 0 and f1(x

∗
−1) > 0. The first and the third

ones are quite straightforward. To show the second one, we use 8σ2
+/n+ < µ̃2

+ ≤ 4(µ̃2
0 +

σ2
−

n−
)

to get (µ̃2
0 +

σ2
−

n−
) > 2σ2

+/n+, thus µ̃2
+ >

16σ4
+/n2

+

µ̃2
0+σ2

−
/n−

>
4σ4

+/n2
+

µ̃2
0+σ2

−
/n−

.

If µ̃2
+ > 4(µ̃2

0 +
σ2
−

n−
), we have

OT
13O12

|O12|2 > 1, thus t̂ = 1 and

f1(x
∗
+1) =

3µ̃2
+ + 8σ2

+/n+ − 4(µ̃2
0 + σ2

−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
, (2.49)

f1(x
∗
+2) = − µ̃2

+ − 8σ2
+/n+ + 4(µ̃2

0 + σ2
−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
, (2.50)

f1(x
∗
−1) =

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 − σ2

−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
. (2.51)

If µ̃2
+ > 8σ2

+/n+, we have f1(x
∗
+1) > 0, f1(x

∗
+2) < 0 and f1(x

∗
−1) > 0.

The second hyperplane is the 1SVM hyperplane that separates between groups (X+1
d)

and (X+2
d , X−1

d), which provides the classifier f2. In the same manner by the replacement

of O1 = O+2, O2 = O−1, and O3 = O+1, it can be shown that,

OT
13O12

|O12|2
=

µ̃2
+

2
+ 2

σ2
+

n+

µ̃2
+

4
+ µ̃2

0 + 2
σ2
+

n+
+

σ2
−

n−

. (2.52)

Therefore if µ̃2
+ ≤ 4(µ̃2

0 +
σ2
−

n−
), we have 0 ≤ OT

13O12

|O12|2 ≤ 1 and

t̂ =
2(µ̃2

+ + 4σ2
+/n+)

µ̃2
+ + 4(µ̃2

0 + 2σ2
+/n+ + σ2

−/n−)
, (2.53)

67

and

f2(x
∗
+1) =

µ̃2
+(µ̃2

0 + σ2
−/n−) − 4σ4

+/n2
+

(µ̃2
+ + 4σ2

+/n+)(µ̃2
0 + σ2

+/n+ + σ2
−/n−)

, (2.54)

f2(x
∗
+2) = − σ4

+ + µ̃2
+(µ̃2

0 + 2σ2
+/n+ + σ2

−/n−)

(µ̃2
+ + 4σ2

+/n+)(µ̃2
0 + σ2

+/n+ + σ2
−/n−)

, (2.55)

f2(x
∗
−1) = − µ̃2

0 + σ2
+/n+

µ̃2
0 + σ2

+/n+ + σ2
−/n−

(2.56)

If µ̃2
+ > 4(µ̃2

0 +
σ2
−

n−
), we have

OT
13O12

|O12|2 > 1, t̂ = 1 and

f2(x
∗
+1) =

µ̃2
+ − 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
, (2.57)

f2(x
∗
+2) = −3µ̃2

+ + 8σ2
+/n+ − 4(µ̃2

0 + σ2
−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
, (2.58)

f2(x
∗
−1) = − µ̃2

+ + 8σ2
+/n+ + 4(µ̃2

0 − σ2
−/n−)

µ̃2
+ + 8σ2

+/n+ + 4(µ̃2
0 + σ2

−/n−)
. (2.59)

For both cases, we can show that if µ̃+
2 > 8σ2

+/n+, we have f2(x
∗
+1) > 0, f2(x

∗
+2) < 0 and

f2(x
∗
−1) < 0.

Thus we can show that, as d → ∞, the probability that the two-direction classifier f1f2

provides correct classification tends to 1 if limd→∞µ2
+d2α+−1 > 8σ2

+/n+.

Combine the above two cases, we immediately get part 2 of Theorem 3. ¤

2.6 Discussion

In this chapter, we have proposed a new set of classification methods which use multiple

hyperplanes to do classification and provide more information about the data structure.

Our methods open up an important area that lies between standard linear approaches

(linear SVM, DWD, etc., which lack needed flexibility in many cases) and full on kernel

approaches (which are very flexible, but suffer greatly from overfitting in HDLSS situa-

68

tions). Although BDD can be used for low dimensional problems as well, it is specifically

designed for handling HDLSS data which are becoming increasingly common in various

fields such as genetics, drug discovery and image analysis. Our method not only builds a

useful visualization tool for high dimensional data but also can be used to find important

sub-clusters within each class. Although our focus is on the SVM and DWD, the basic

idea can be applied to many other linear classification methods as well.

We note that many real data sets are unbalanced, i.e., the sample sizes from the two

classes are very different. As mentioned in Qiao and Liu (2009) and Qiao et al. (2010),

the SVM and DWD decision boundaries heavily depend on the ratio of sample sizes from

the two classes considered. Our next step is to generalize our BDD method to incorporate

weights such that our method can have even broader application. We will allow different

weights on the two classes, with greater weight on the minority class and smaller weight

on the majority class.

In this dissertation, our simulation and real data studies mainly focus on two direction

cases. As discussed in Section 2.2.4, the extension of our method to multi-directional cases

is quite straightforward and already implemented. Our next research direction is to extend

our method to more complicated data sets which include multiple subclasses.

69

CHAPTER 3

Multiclass Distance Weighted Discrimination

3.1 Introduction

As noted in Section 1.5, binary classification is a well studied special case. In many

applications, multiclass (or multicategory) problems are important as well. Binary classi-

fication methods can be generalized in many ways to handle multiple classes. Generaliza-

tions from binary SVM to multiclass SVM have been well studied in the literature. Two

general strategies are commonly used to tackle the multiclass SVM problem. One strategy

is to solve the multiclass problem by solving a series of binary problems. Examples include

One-Versus-One (OVO) and One-Versus-The-Rest (OVR) approaches (Duda et al. (2000);

Hastie et al. (2009)). The second strategy treats the population in a simultaneous fashion

and considers all classes at once. Various methods along the line of the second strategy

include Weston and Watkins (1999); Crammer and Singer (2000); Lee et al. (2004); Liu

and Shen (2006); Liu and Yuan (2010). However, to our knowledge, generalization from

binary DWD to multiclass DWD has not been studied. This chapter involves the study of

the extension of DWD from the binary case to the multiclass case using both strategies.

For multiclass classification methods, one needs either to construct several binary clas-

sifiers or to solve a larger optimization problem which involves all classes at the same time.

The OVO and OVR methods are computationally simple, and the global method is com-

putationally more complex. However, the OVO method has the disadvantage of potential

variance increase, because a smaller number of observations are used to learn each clas-

sifier. The OVR method may fail under the circumstance where there is no dominating

class, see Friedman (1996) and Lee et al. (2004). This leads to an interesting question of

whether a more sophisticated method can achieve stronger results than the combination

of several simple binary methods.

For multiclass SVM problems, comparisons of these three methods have been studied.

Hsu and Lin (2002) conducted large-scale experiments and claimed that the OVO method

is more suitable for practical use than the other methods. Lee et al. (2004) and Liu and

Yuan (2010) demonstrated the superiority of their global method over the simple OVR

method through some numerical studies. Rifkin and Klautau (2004) claimed that a simple

OVR method is as accurate as any other approach. They supported their position by a

critical review of the existing literatures and some experimental work. It is interesting to

consider whether similar results can be obtained using the DWD method. We will carry

out some simulation studies in this paper for all three methods and indicate the situations

under which each specific method is preferred.

Microarray analysis has become a powerful tool in biological science. Microarray tech-

nologies allow for the measurement of thousands of gene expression levels simultaneously.

The primary goal of a microarray study is to extract useful information from differential

expression and provide insight into biological effects. However, nonbiological experimen-

tal variation such as batch effects are commonly observed in microarray experiments due

to different experimental conditions. Large batch effects can make it difficult to obtain

meaningful and accurate biological results and also make it difficult to integrate data

from several sources or from multiple independent studies. Disregarding batch effects

could result in misleading conclusions. Therefore, it is important and necessary to identify

71

and adjust batch effects prior to microarray data analysis. Common approaches include

mean/median centering, Singular Value Decomposition (SVD Alter et al. (2000)) and

ANOVA-like modeling (Wolfinger et al. (2001)) to balance the expression measurement

across experiments. More sophisticated procedures have also been developed including an

empirical Bayes method (Tibshirani et al. (2002); Johnson et al. (2007)), DWD (Benito

et al. (2004); Liu et al. (2009)), and XPN (Shabalin et al. (2008)). See Scherer (2009) for

a good review of this area.

The DWD classification method has been shown to provide effective batch adjustment

for microarray data by Benito et al. (2004), and Liu et al. (2009). They also demonstrated

that DWD can work better than SVM and SVD for the adjustment of systematic mi-

croarray effects. Benito et al. (2004) implement batch adjustment by first projecting the

data onto the DWD normal direction and then moving the means of the two classes to a

common point along that direction. When there are more than two batches, they take a

stepwise approach. For example, for data including three batches, they first made a batch

adjustment between Batches 1 and 2 (combined) and Batch 3. Next, they applied the same

method to the adjusted data, to separate Batch 1 from Batch 2. This stepwise method

creates an additional level of complexity especially when the number of batches considered

is large because we need to decide which pair should be chosen in each step. For a K

class problem, our proposed global multiclass DWD (MDWD) method will simultaneously

produce K direction vectors which provide the basis of our new batch adjustment method.

The K normal direction vectors determine a subspace which contains each class mean.

We move each class in such a way that the class means move to a common point in this

subspace. In Section 3.2 we will show how our new multiclass batch adjustment method

gives better performance than any combination of binary methods.

The rest of the chapter is organized as follows. In Section 3.2 we present the batch

adjustment results for a real data set using our MDWD method. Different types of mul-

72

ticlass DWD methods including OVO, OVR and MDWD are introduced in Section 3.3.

Some theoretical properties of multiclass DWD are explored in Section 3.4. In Section

3.5 we present numerical results on simulated data to compare the performances of differ-

ent methods. We collect proofs of the theoretical results in Section 3.6 and provide some

discussions in Section 3.7.

3.2 Illustration of Batch Adjustment

Here we study data from a cohort of patients with Glioblastoma Multiforme (GBM)

brain cancer whose brain samples were assayed using mircroRNA expression arrays (Agilent

Human miRNA Microarray Rel12.0), as well as by multiple other genomic technologies, see

TCGA (2010). Tumors analyzed by TCGA were procured from multiple institutions over

the course of several years and accordingly the genomic analyses, including microarrays,

were performed in batches of several dozen individuals at a time. Such a production process

is well known to generate batch effects, although in many cases such as TCGA, no obvious

alternative has emerged to allow large scale profiling projects to proceed Leek et al. (2010).

Therefore, investigators generally expect and correct for batch effects rigorously. In the

current example, we tackle a particularly challenging dataset generated from the miRNA

arrays. These arrays are challenging because only a minority of miRNA’s measured by

the array are expressed in any given sample. Most probes on the array are therefore

measuring only background or nonspecific hybridization, a measurement which is highly

influenced by batch and completely uninfluenced by biology. The data for the example

used in the current work is a set of 168 arrays which have been quantile normalized for

overall image array intensity and for which replicate measurements for a single probe have

been averaged. On average, there are 3 probes (a probe set) designed to assess each miRNA

on the array, and no attempt was made in the current analysis to collapse probe sets to

73

miRNA’s. Each probe was median centered across all arrays and all measurements for that

probe were divided by the standard deviation for that probe across all arrays. No probe

filtering was performed. Since the goal of normalization is to correct for batch effects while

retaining biologic differences, we investigated our ability to detect clinical phenotypes in

the data before and after batch correction. The phenotype we chose to detect is a tumor

classification based on gene expression analysis (as opposed to miRNA analysis which are

the data studied in the current work). Four clinically relevant subtypes were identified

using mRNA analysis in Verhaak et al. (2010), they are Proneural, Neural, Classical, and

Mesenchymal. Among the 168 samples, there are 52 Proneural, 24 Neural, 36 Classical,

and 56 Mesenchymal samples.

Figure 3.1 studies the raw GBM data using a scatter plot matrix visualization based on

the first four Principal Component (PC) axes. Observations from different batches are dis-

tinguished by different colors. The symbol types indicate the biological classes. The plots

on the diagonal show the one-dimensional projections of the data onto each PC direction

vector. A different height is added to each symbol just for convenient visual separation.

In each diagonal plot we also include several smooth histograms, colored according to the

batch label. The off-diagonal plots are projections of the data onto 2-d planes, determined

by the various pairs of the PC directions. Note that Batch 5 (red color) is clearly sepa-

rated from the rest of the batches in the PC1 direction. Figure 3.1 gives some suggestion of

biological classes; for example in the PC 4 direction, Proneural (circle) seems to separate

itself from the rest. However, this class is not very distinct in the sense that the distances

between batches are large relative to the distances between biological classes. Therefore,

it will be very useful to remove the batch effects before doing data analysis.

The steps of the proposed MDWD batch adjustment are as follows: (1) The MDWD

direction vectors generate a subspace. (2) The subpopulations (e.g. respective batch

subsets) are all projected onto that subspace. (3) The coordinates of the subpopulation

74

−20 0 20 40
0

0.02

0.04

Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7

PC1 Direction

−10 0 10 20 30
0

0.05

0.1

PC2 Direction

−10 0 10 20
0

0.02

0.04

0.06

0.08

PC3 Direction

−10 0 10
0

0.05

0.1

0.15

0.2

PC4 Direction

−10 0 10 20 30

−20

0

20

40

PC2 Direction

P
C

1
D

ire
ct

io
n

−10 0 10 20

−20

0

20

40

PC3 Direction

P
C

1
D

ire
ct

io
n

−10 0 10

−20

0

20

40

PC4 Direction

P
C

1
D

ire
ct

io
n

−20 0 20 40
−10

0

10

20

30

PC1 Direction

P
C

2
D

ire
ct

io
n

−10 0 10 20
−10

0

10

20

30

PC3 Direction

P
C

2
D

ire
ct

io
n

−10 0 10
−10

0

10

20

30

PC4 Direction

P
C

2
D

ire
ct

io
n

−20 0 20 40

−10

0

10

20

PC1 Direction

P
C

3
D

ire
ct

io
n

−10 0 10 20 30

−10

0

10

20

PC2 Direction

P
C

3
D

ire
ct

io
n

−10 0 10

−10

0

10

20

PC4 Direction

P
C

3
D

ire
ct

io
n

−20 0 20 40

−10

0

10

PC1 Direction

P
C

4
D

ire
ct

io
n

−10 0 10 20 30

−10

0

10

PC2 Direction

P
C

4
D

ire
ct

io
n

−10 0 10 20

−10

0

10

PC3 Direction

P
C

4
D

ire
ct

io
n

Figure 3.1: PCA projection scatter plot view of raw GBM data, showing 1D (diagonal) and
2D projections of raw data onto PC directions. Groupings of colors indicate batch biases.
Samples from Classical, Mesenchymal, Proneural, and Neural are indicated by “+”, “x”,
circle and triangle symbols respectively. This shows a very strong batch effect, so that
adjustment is essential before combining data sets.

projected means are computed. (4) Each subpopulation is shifted in such a way that

its projected mean is moved in the subspace to a fixed point which is common to all

subpopulations. An important advantage of the MDWD adjustment over PCA adjustment

is that it preserves the variation that is not due to batch effects, because the MDWD

directions maximize the separations between the batches and ignore the variation in the

data.

Figure 3.2 shows (using the same view) the same data after the MDWD adjustment.

Now in all of the PC directions, the huge differences among batches visible in Figure 3.1

have disappeared, because the colors, representing the seven batches, are very well mixed.

This shows that the systematic sample batch effects in the data have been effectively

removed. Note that in the first row, second column subplot of Figure 3.2, the Proneural

75

(circles on the right) are clearly distinguished from the Mesenchymal (x symbol on the left).

Thus the batch differences are much smaller in magnitude than the biological features in

this data set.

−10 0 10 20 30
0

0.05

0.1 Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7

PC1 Direction

−10 0 10 20
0

0.05

0.1

0.15

0.2

PC2 Direction

−10 0 10 20
0

0.1

0.2

PC3 Direction

−10 0 10 20
0

0.1

0.2

PC4 Direction

−10 0 10 20

−10

0

10

20

30

PC2 Direction
P

C
1

D
ire

ct
io

n
−10 0 10 20

−10

0

10

20

30

PC3 Direction

P
C

1
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

30

PC4 Direction

P
C

1
D

ire
ct

io
n

−10 0 10 20 30

−10

0

10

20

PC1 Direction

P
C

2
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC3 Direction

P
C

2
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC4 Direction

P
C

2
D

ire
ct

io
n

−10 0 10 20 30

−10

0

10

20

PC1 Direction

P
C

3
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC2 Direction

P
C

3
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC4 Direction

P
C

3
D

ire
ct

io
n

−10 0 10 20 30

−10

0

10

20

PC1 Direction

P
C

4
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC2 Direction

P
C

4
D

ire
ct

io
n

−10 0 10 20

−10

0

10

20

PC3 Direction

P
C

4
D

ire
ct

io
n

Figure 3.2: PCA scatter plot view of MDWD adjusted GBM data (labels are the same as
in Figure 3.1), showing effective removal of batch biases. Biological class differences are
now much more clear.

Adjusting batch effects in microarray data sets with more than two batches using the

OVR and OVO methods can be implemented by the combination of a series of binary

adjustments. The stepwise approach described in Benito et al. (2004) is based on the

OVR DWD method. The batch adjustment using the OVO method also takes a stepwise

approach as follows. In each step, a pair of classes are combined together through a binary

adjustment. So the number of unadjusted classes is reduced by one after each step. This

process is repeated until all classes have been combined together.

The main drawback of the OVR and OVO adjustment methods is that their results

depend on the order, i.e, which pair of classes are used in each binary problem. In each

76

step, the number of options in constructing the binary problem increases with the number

of total classes. Therefore, in the case where the number of classes considered is big, this

can be a complicated problem because it is hard to find the optimal order among so many

options. Moreover, the class size can be quite unbalanced which will further complicate the

problem as shown in Qiao et al. (2010). A significant advantage of the MDWD method over

the OVR and OVO methods is that it provides a convenient way to do batch adjustment

for data sets with more than two batches. The MDWD method considers all batches at

once and makes adjustment simultaneously for all batches.

3.3 Methodology

In the classification problem, we are given a training dataset consisting of n observations

(xi, yi) for i = 1, · · · , n. Here xi ∈ Rd represents an input vector, and yi ∈ {1, · · · , K}

denotes the corresponding output class label. We assume that each (xi, yi) is independent

random vectors distributed according to some unknown distribution function P (x, y). The

task is to build a classification rule φ(x) : Rd → {1, · · · , K} which can be used to predict

the class label for a new input x. In this section, we generalize binary DWD to the

multiclass case. We first define OVR and OVO DWD which are based on solving several

binary DWD classifications. Then we introduce MDWD which considers all classes in a

single optimization.

3.3.1 Simple Pair-Wise Extension

The OVR constructs K binary classifiers, each one trained to distinguish the examples

in the single class from the examples in all remaining classes. When it is desired to classify

a new example, the K classifiers are run, and the classifier which outputs the largest value

is chosen.

77

In contrast to SVM, which seeks to maximize the smallest residual distance to the

separating hyperplane, DWD aims to minimize the sum of inverse residuals. In particular,

for the ith DWD classifier which is trained with all of the examples in the ith class with

positive labels and all other examples with negative labels, we solve the following problem

min
wi,βi,ξi

∑

k

(1

rk

+ Cξi
k

)

, (3.1)

subject to rk = (xT
k wi + βi) + ξi

k, for k : yk = i,

rk = −(xT
k wi + βi) + ξi

k, for k : yk 6= i,

wiTwi ≤ 1, rk ≥ 0, ξi
k ≥ 0. (3.2)

After solving (3.1), there are K decision functions and we say x is in the class which has

the largest value of the decision function, i.e. class of x = argmaxi(x
Twi + βi).

The OVO approach constructs K(K−1)/2 classifiers where each one is trained on data

from two classes. For the classifier i, j which is trained on data from the ith class and the

jth class, we solve the similar binary classification problem

min
wij ,βij ,ξij

∑

k:yk=i or yk=j

(1

rk

+ Cξij
k

)

, (3.3)

subject to rk = (xT
k wij + βij) + ξij

k , for k : yk = i,

rk = −(xT
k wij + βij) + ξij

k , for k : yk = j,

wijTwij ≤ 1, rk ≥ 0, ξij
k ≥ 0. (3.4)

There are different methods for combining the results of all K(K−1)/2 classifiers. The most

commonly used method is called Friedman’s “Max-wins” voting strategy: if sign(xT
k wij +

βij) says x is in the ith class, then the vote total for the ith class is increased by one;

otherwise the vote total for the jth class is increased by one. Then we predict x is in the

class with the largest vote total.

78

3.3.2 Full Multiclass Version

Here we propose an approach for multiclass DWD problems by considering all classes

at once and solving one single optimization problem simultaneously. We will show that the

generalized formulation encompasses that of the two category DWD, regaining the desirable

properties of the binary DWD. Consider a K-class classification problem. There are many

different ways to represent classifiers. One of the most natural ways is to introduce a

vector of discriminant functions f = (f1, · · · , fK), where each component represents one

class. For any new input x, its label is estimated via a decision rule ŷ = argmaxkfk(x),

where fk(x) = xTwk + βk. We also write w for (w1, · · · ,wK), with ||w||2 =
∑K

k=1 ||wk||2.

For extension of DWD from the binary to the multiclass case, the objective function

can be naturally constructed in such a way that it encourages fy to be the largest among

K functions. Here we formulate multiclass DWD in terms of the following optimization

problem

min
w,β,ξ

n∑

i=1

∑

k 6=j

(

1

ri
jk

+ Cξi
jk

)

, (3.5)

subject to ri
jk = fj(xi) − fk(xi) + ξi

jk, for yi = j, k 6= j

ri
jk ≥ 0, ξi

jk ≥ 0,
K∑

k=1

wk = 0,
K∑

k=1

βk = 0, ||w||2 ≤ 1. (3.6)

Note that the i-th individual’s contribution to the first term in the objective function (3.5)

is the sum of the inverse of the differences between fyi
(xi) and all the other functions. This

represents a natural generalization of the term yif(xi) appearing in the binary DWD loss

function. The parameter C in the second term in (3.5) controls the penalty on the variable

ξ, the amount of violation of classification. It also plays the role of tuning parameter.

Similar to the binary case, using additional variables and constraints, the optimization

problem (3.5) can be reformulated as a second-order cone programming problem. If K = 2,

79

it is easy to show that the problem (3.5) reduces to the original binary DWD.

3.4 Theoretical Properties

In this section we study some of the statistical properties of multiclass DWD. We will

focus on Fisher consistency. In statistics, Fisher consistency is a desirable property of

an estimator asserting that if the estimator were calculated using the entire population

rather than a sample, the true value of the estimated parameter would be obtained (Fisher

(1922)). For example, suppose an estimator of a parameter θ based on the sample can be

represented as a functional of the empirical distribution Fn, θ = T (Fn). Then the estimator

is said to be Fisher consistent if its population analog, T (F), is the same as the parameter

θ.

Adapting the idea to the procedures of loss function minimization for classification,

consider a procedure of finding f from all measurable functions F that minimizes a loss

with respect to L̂ = (1/n)
∑n

i=1 L(f(xi), yi). We say that a loss function L is Fisher

consistent if the population minimizer of the loss EL(f(X), Y) leads to the Bayes optimal

decision rule (Bartlett et al. (2006)). The Fisher-consistent condition basically says that

with infinite samples, one can exactly recover the Bayes rule by minimizing the loss. Let

pi(x) = P (y = i|x) denote the conditional probability of the ith class (i = 1, · · · , K), then

the Bayes decision rule is argmaxk∈{1,··· ,K}P (y = k|x). For notational simplicity, we denote

pi(x) by pi for i = 1, · · · , K in the following.

Fisher consistency has been well investigated for binary classification methods. Many

commonly used methods, such as SVM and DWD, are Fisher consistent. However, it turns

out that one loses consistency in the generalization from the binary SVM to some multiclass

SVM methods. In this section we study whether or not the consistency can be kept for the

generalization from binary DWD to multiclass DWD. We first study the Fisher consistency

80

of OVO and OVR DWD in Section 3.4.1 and then study the Fisher consistency of MDWD

in Section 3.4.2.

3.4.1 Fisher Consistency of Pair-Wise Version

It is easy to study the consistency property of the OVO type of approach to the multi-

class classification problem, since the properties of the corresponding binary classifiers are

well studied. Friedman (1996) pointed out that the “Max-wins” rule is equivalent to the

Bayes rule when the class posterior probabilities pi are known:

argmaxi(pi) = argmaxi

[∑

j 6=i

I
(pi

pi + pj

>
pj

pi + pj

)]

. (3.7)

Equation (3.7) suggests that the OVO method will be Fisher consistent as long as the

consistency of its underlying binary classifiers is satisfied. This allows us to conclude that

the OVO DWD is Fisher consistent since the Fisher consistency of binary DWD has been

proved in Qiao et al. (2010).

For the OVR SVM, Lee et al. (2004) argued that Fisher consistency holds only in the

case when there exists a dominating class, i.e., a class j with pj > 1/2, because only the

support vectors appear in each optimization, resulting in a flat region of the loss. More

specifically, the minimizer of the OVR SVM classifier is sign(pi − 1
2
) for i = 1, · · · , K. If

there is a class j with pj > 1
2
, then we can easily pick the majority class j because fj would

be near 1 and all of the other fi would be close to −1. However, if there is no dominating

class, then all fi’s would be close to −1, making the classifier inconsistent.

In sharp contrast, since DWD uses all data points, the resulting loss is smoothly de-

creasing, so Fisher consistency holds much more broadly in the sense that the solution

satisfies f ∗
i > f∗

j if pi > pj regardless of whether pi is bigger than 1
2

or not. The following

81

theorem establishes Fisher consistency of the OVR DWD method:

Theorem 3.1. Let f ∗
i be the minimizer of the ith binary DWD classifier defined in the

OVR DWD method (5). Assume that the unique maximum of pi for i = 1, · · · , K exists.

Then argmaxi(f
∗
i) =argmaxi(pi).

Proof of this Theorem and other proofs are given in Section 3.6.

3.4.2 Fisher Consistency of Full Multiclass Version

Qiao et al. (2010) proved the Fisher consistency of binary DWD by using an equivalent

formulation of the DWD optimization. We will show the Fisher consistency of multiclass

DWD based on the extension of the equivalent formulation from the binary case to the

multiclass case.

For each i = 1, · · · , n and k ∈ {1, · · · , K}/{yi}, we define f i
yik

= f i
yi
− f i

k = (xT
i wyi

+

βyi
) − (xT

i wk + βk). The multiclass DWD optimization problem (3.5) can be shown to be

equivalent to the following problem

min
w,β:||w||≤1

n∑

i=1

∑

k 6=j

min
ξi
yik

≥0

(

1

f i
yik

+ ξi
yik

+ Cξi
yik

)

. (3.8)

It can be shown that the optimal solution for the inside optimization part of (3.8) is given

by (ξi
yik

)∗ = 1√
C
− f i

yik
if f i

yik
≤ 1√

C
; (ξi

yik
)∗ = 0 otherwise. Then the multiclass DWD

problem amounts to

min
w,β

n∑

i=1

∑

k 6=yi

(

[2
√

C − Cf i
yik

]I

[

f i
yik

≤ 1√
C

]

+
1

f i
yik

I

[

f i
yik

≥ 1√
C

])

(3.9)

subject to ||w||2 ≤ 1. (3.10)

82

If we define the multiclass DWD loss function as

V (f , y) =
∑

j 6=y

l(fyj), (3.11)

where

l(fyj) =







2
√

C − Cfyj iffyj ≤ 1√
C

1
fyj

otherwise,

then the multiclass DWD optimization is min
w,β

∑n
i=1 V (f(w,β), yi), s.t. ||w|| ≤ 1.

Consider y ∈ {1, · · · , K}. For any classification function f = (f1, · · · , fK), the expected

multiclass DWD loss, that is, the risk, is R(f) = E(E(V (f(x), y)|x)). Fisher consistency

requires that argmaxkf
∗
k =argmaxkpk, where f∗(x) = (f ∗

1 (x), · · · , f ∗
K(x)) denotes the min-

imizer of R(f). Theorem 3.2 shows the Fisher consistency of multiclass DWD.

Theorem 3.2. Let f∗ be the global minimizer of R(f) = E(E(V (f(x), y)|x)), where V (·)

is the multiclass DWD loss given in (3.11). Assume that the unique maximum of pk for

k = 1, · · · , K exists. Then argmaxk(f
∗
k) =argmaxk(pk).

There are previous studies on Fisher consistency of multiclass SVM methods such as

Zhang (2004); Lee et al. (2004); Tewari and Bartlett (2005); Liu (2007); Zou et al. (2008).

Liu (2007) summarized the Fisher consistency properties of four commonly used SVM loss

functions:

(a) (Zou et al. (2008)) [1 − fy(x)]+;

(b) (Lee et al. (2004))
∑

j 6=y[1 + fj(x)]+;

(c) (Vapnik (1998); Weston and Watkins (1999); Bredensteiner and Bennett (1999))
∑

j 6=y[1−

(fy(x) − fj(x))]+;

83

(d) (Crammer and Singer (2000); Liu and Shen (2006)) [1 − minj(fy(x) − fj(x))]+.

It was shown in Liu (2007) that, under the sum-to-zero constraint, except for loss (b),

classifiers based on these losses are not always Fisher consistent. Two approaches were

proposed in Liu (2007) to modify inconsistent classifiers to be consistent. It is interesting

to see that the DWD loss function we used in (3.11) is related to the SVM counterpart

(c). But the DWD loss function yields a Fisher consistent classifier without modification.

The reason is that the loss function (3.11) is continuously differentiable as opposed to the

SVM loss function which is not differentiable. This appealing property of DWD is due to

the fact that all data points have a direct influence, instead of only the support vectors.

3.5 Simulations

In this section, simulations are conducted to investigate the performance of the proposed

OVR, OVO and MDWD methods. For comparison, the results from the Bayes classifiers,

which are derived based on the true underlying distributions, are also included.

The simulated data sets include training, tuning and test sets. We generated the tuning

and testing data from the same distributions as the training data. For the reason noted in

Shao (1993), we set the sample sizes of tuning sets equal to that of the training sets. The

sizes of the test sets are taken to be 10 times bigger than that of the training sets. Each

experiment was replicated 100 times. Tuning sets are used to choose the tuning parameter

C through a grid search, and the testing errors, evaluated on independent testing data, are

used to measure the accuracy of various classifiers.

We have tried many different settings, including both low- and high-dimensional. To

save space, we only report the results from the high-dimensional settings since the focus

of MDWD is on high-dimensional situations. We consider HDLSS settings with d = 1000

84

in all simulations.

Our simulation results show that in situations where each class can be well separated

from the rest, the performance of all three multiclass DWD methods are quite similar and

are close to the optimal Bayes rule. We do not explicitly show these results here. The

first example we show belongs to the situations where not all individual classes can be

well separated from the rest. The data include three classes with the sample size of each

training class being 50. The three classes are generated using three different Gaussian

distributions with unit covariance and the first two components of the mean vectors as

(−5, 0), (5, 0) and (0, 1). The rest of the d − 2 dimensions are pure noise, i.e., all sampled

from the standard normal distribution. If it is known that one should look in the direction

of the first two coordinates, then the three classes are easy to separate, as shown by the tiny

test error of the Bayes rule. However, in high dimensions, it can be quite challenging to

find those directions. To investigate the generalizability property of the different methods,

we exhibit the average performance over 100 replications in the first row of Table 3.1. The

table summarizes the mean and standard error (over the 100 replications) of the proportion

(out of 1500 members of each test data set) of incorrect classifications. Note that none

of the three methods can achieve results close to optimal. But both OVO and MDWD

are quite comparable, and much better than OVR, which is consistent with the ideas of

Friedman (1996).

Example 2 is a case where MDWD is the best of these three methods. The data include

three classes with the same sample size as Example 1. The first two components of the

distributions for the three classes are Gaussians with means (−10, 0), (10, 0) and (0, 2) and

variances (5, 1), (5, 1) and (1, 2). Figure 3.3 shows the projections of the data points and

the decision boundaries onto the first two directions. The first, second and third classes

have n1 = n2 = n3 = 50 data vectors denoted by red plus, blue square, and white circle

signs respectively. The optimal Bayes decision boundary is quadratic for this case due to

85

Table 3.1: Test errors (in percentage) over 100 replications

OVR OVO MDWD Bayes
Example 1 16.18 7.59 7.59 0.72

(0.11) (0.08) (0.08) (0.02)
Example 2 9.45 8.64 6.96 4.67

(0.15) (0.12) (0.14) (0.05)
Example 3 19.36 19.81 18.02 15.23

(0.06) (0.05) (0.13) (0.07)
Example 4 29.00 24.63 15.28 0.70

(0.17) (0.19) (0.20) (0.02)
Example 5 30.96 28.75 19.08 3.39

(0.17) (0.18) (0.27) (0.06)

the fact that the variances are different among three classes. In this example, classes 1 and

2 can be easily separated and it is challenging to separate class 3 from the other two. The

MDWD classifier results in a decision area for class 3 which is close to the one provided

by the Bayes rule. In contrast, the OVR and the OVO decision areas for class 3 are either

too thin or too wide near the bottom of plot where most data lie. The small distances and

different covariances among classes make it difficult to do separation using the OVR and

OVO methods. The MDWD method can provide improvement in this situation as shown

by both the test error rate in the second row of Table 3.1 and the illustration in Figure

3.3.

Example 3 also includes three classes with the same sample size as the previous two

examples. The distributions of the first two classes are single Gaussians with the first two

components of mean vectors as (−10, 0) and (10, 0). However, the third class is a mixture

of two Gaussian distributions with the first two components of mean vectors as (10, 1) and

(10, 20). We have 60% of the data from the first Gaussian component and the remaining

from the second component. The small distance between the first component of class 3

and class 2 makes it difficult to separate these two classes using binary DWD. The MDWD

method can provide improvement in this situation. It considers all data points from the

86

−10 0 10 20

−2

0

2

4

6

8

Bayes (0.0453)

−10 0 10 20

−2

0

2

4

6

8

MDWD (0.0527)

−10 0 10 20

−2

0

2

4

6

8

OVR (0.101)

−10 0 10 20

−2

0

2

4

6

8

OVO (0.0787)

Figure 3.3: Plots of data points and decision boundaries in the first two coordinate axis
directions for one training set of Example 2. Upper left panel for Bayes boundary, upper
right for MDWD, lower left for OVR, lower right for OVO. The numbers in the parentheses
show the test errors for this set.

three classes simultaneously and the impact of the second component in class 3 can help

the separation between classes 2 and 3. Thus it improves the test error rate over the OVO

method as shown in the third row of Table 1.

All three of the above examples are balanced designs, i.e., the sample size of each class

is the same. Examples 4 and 5 are unbalanced cases where different classes have different

sample sizes. Example 4 includes three classes with training sample sizes being 50, 20, and

30 respectively. The distributions of the three classes are the same as those in Example

1. The test errors for this example (the fourth row of Table 1) show clear improvement

of the MDWD method over the other two. Example 5 includes four classes with training

sample sizes being 50, 20, 30, and 10 respectively. The distributions of the four classes are

Gaussian with unit covariance and the first three components of the mean vectors being (-

87

5,0,0), (5,0,0), (0,2,0) and (0,0,2) respectively. The outperformance of the MDWD method

over the other methods for this example can be shown in the fifth row of Table 1. Examples

4 and 5 show that the MDWD method can give a big improvement in classification error

rate over the OVO and OVR methods in unbalanced situations. This is a quite appealing

property of MDWD because real data are often unbalanced.

3.6 Proof

3.6.1 Proof of Theorem 3.1

From Qiao et al. (2010), we get that the minimizer for the ith binary classifier in the

OVR DWD method is

f ∗
i =

1√
C







√
pi

1−pi
if pi > 1

2

0 if pi = 1
2

−
√

1−pi

pi
if pi < 1

2
.

Thus, we can easily show that f ∗
i > f∗

j if pi > pj regardless whether pi is bigger than 1
2

or

not. Hence the Theorem immediately follows. ¤

3.6.2 Proof of Theorem 3.2

Note that R(f) = E(E(V (f(x), y)|x)), We can minimize R(f) by minimizing E(V (f(x), y)|x)

for every x. For any fixed x, E(V (f(x), y)|x) can be written as
∑K

j=1 pj(x)[
∑

k 6=j l(fjk(x))].

For any given X = x, assume that pj(x) > pk(x). Then we can conclude that the solu-

tion of f ∗
j (x) ≥ f ∗

k (x). To show this, suppose that f ∗
j (x) < f∗

k (x); then it is easy to see

that switching f ∗
j (x) and f ∗

k (x) will yield a smaller objective value due to the decreasing

88

property of l. Without loss of generality, assume that p1(x) > p2(x) ≥ p3(x) · · · ≥ pK(x),

which implies that the minimizer must satisfy f ∗
1 (x) ≥ f ∗

2 (x) ≥ · · · ≥ f ∗
K(x). We need to

show that f ∗
1 (x) > f∗

2 (x). For notational convenience, let fk = fk(x) and pk = pk(x) for

k = 1, · · · , K. Consider f1 − f2 = s1, f2 − f3 = s2, · · · , fK−1 − fK = sK−1. Then the

problem reduces to

min
s

L(s) (3.12)

subject to sj ≥ 0, j = 1, · · · , K − 1, (3.13)

where

L(s) =
K∑

k=1

pk(l(−s1 − · · · − sk−1) + · · · + l(−sk−1) + l(sk) + · · · + l(sk + · · · + sK−1)).

Since the objective function is continuously differentiable and the constraints are linear,

the optimal solution s∗ of (3.12) must satisfy Karush-Kuhn-Tucker (KKT) condition, i.e.

∂L(s)

∂si

− αi

∣
∣
∣
∣
s=s∗

=
i∑

k=1

pk(l
′(s∗k + · · · + s∗i) + · · · + l′(s∗k + · · · + s∗K−1))

+
K∑

k=i+1

pk(−l′(−s∗1 − ... − s∗k−1) − · · · − l′(−s∗i − · · · − s∗k−1)) − αi

=
i∑

k=1

pk(l
′(s∗k + · · · + s∗i) + · · · + l′(s∗k + · · · + s∗K−1)) + iC

K∑

k=i+1

pk − αi

= 0, (3.14)

where

αi ≥ 0 and αis
∗
i = 0, for all i = 1, · · ·K − 1.

89

(3.15)

It is sufficient to show that s∗1 = 0 is not a minimizer. Toward this end, suppose that

s∗1 = 0, we have

∂L

∂s1

∣
∣
∣
∣
s=s∗

= p1(l
′(s∗1) + · · · + l′(s∗1 + · · · + s∗K−1)) +

K∑

k=2

Cpk

= p1(l
′(0) + l′(s∗2) · · · + l′(s∗2 · · · + s∗K−1)) +

K∑

k=2

Cpk = α1, (3.16)

and

∂L

∂s2

∣
∣
∣
∣
s=s∗

= p1(l
′(s∗1 + s∗2) + · · · + l′(s∗1 + · · · + s∗K−1))

+p2(l
′(s∗2) + · · · + l′(s∗2 + · · · + s∗K−1)) + 2

K∑

k=3

Cpk

= (p1 + p2)(l
′(s∗2) + · · · + l′(s∗2 + · · · + s∗K−1)) + 2

K∑

k=3

Cpk = α2. (3.17)

From (3.16) we have

l′(s∗2) + · · · + l′(s∗2 + · · · + s∗K−1) =
α1 −

∑K
k=2 Cpk + Cp1

p1

=
α1 − C + 2Cp1

p1

.

Substitute into (3.17), we have

α2 = (p1 + p2)
α1 − C + 2Cp1

p1

+ 2
K∑

k=3

Cpk

=
(p1 + p2)α1 + C(p1 − p2)

p1

> 0, (3.18)

which implies s∗2 = 0 from the fact that α2s
∗
2 = 0.

90

Suppose that αj = 0 for all j = 1, · · · , i − 1. From (3.16), we have

l′(s∗i) + · · · + l′(s∗i + · · · + s∗K−1) =
α1 −

∑K
k=2 Cpk + (i − 1)Cp1

p1

=
α1 − C + iCp1

p1

.

Then substitute into the ith formulae, we have

αi = (p1 + · · · + pi)(l
′(s∗i) + · · · + l′(s∗i + · · · + s∗K−1)) + i

K∑

k=i+1

Cpk

= (p1 + · · · + pi)
α1 − C + iCp1

p1

+ iC(1 − (p1 + · · · + pi))

=
(p1 + · · · + pi)α1 + iCp1 − C(p1 + · · · + pi)

p1

> 0, (3.19)

thus we have s∗i = 0. We conclude that s∗j = 0 for all j = 1, · · · , K − 1. But from (3.16),

we have that

α1 = (K − 1)p1l
′(0) +

K∑

k=2

Cpk =
K∑

k=2

Cpk − C(K − 1)p1 < 0,

which is contradict to the KKT requirement that α1 ≥ 0. Thus s∗1 = 0 can not be the

minimizer which implies f ∗
1 is the unique maximum. ¤

3.7 Discussion

In this chapter we have extended the DWD classification method to the multiclass case.

In addition to the OVR and OVO approaches which solve the multiclass problem via a

sequence of binary DWD, we have proposed a new MDWD approach which generalizes

the binary DWD to a simultaneous multiclass formulation. Our theoretical results show

that MDWD is Fisher consistent even in the absence of a dominating class for multiclass

problems. The simulation studies show that our MDWD method can always work as well

as, and frequently better than, the existing OVR and OVO methods in multiclass problems.

91

An important direct application of our MDWD is to provide a powerful method for

the adjustment of various types of systematic biases such as source and batch effects in

microarray experiments. We have demonstrated the usefulness of this method through

application to a microarray data set. We recommend MDWD as a general approach for

removing systematic bias effects from microarray data and for merging different data sets.

Although our focus in this chapter is on the application of batch adjustment, the pro-

posed MDWD method can also be applied to general multiclass classification problems,

as indicated by our simulation studies. An important future research issue is the HDLSS

asymptotics. Hall et al. (2005) showed that under certain conditions, there exists a geo-

metric representation of data in the high dimensional case. This representation has been

successfully applied to study the asymptotic properties of binary classifiers such as SVM,

DWD, and Bi-Drectional Discrimination (BDD) (Hall et al. (2005); Qiao et al. (2010);

Huang et al. (2010)). However, no HDLSS asymptotic studies have yet been carried out

for any multiclass classifier. In future research, we will use this geometric representation

to study the asymptotic behaviors of the proposed multiclass DWD classifier in HDLSS

settings.

92

Bibliography

J. Ahn and J. S. Marron. The direction of maximal data piling in high dimensional space.
Submitted, 2005.

Jeongyoun Ahn, J. S. Marron, Keith M. Muller, and Yueh-Yun Chi. The high-dimension,
low-sample-size geometric representation holds under mild conditions. Biometrika, pages
760–766, August 2007.

A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:
821–837, 1964.

F. Alizadeh, F. Alizadeh, D. Goldfarb, and D. Goldfarb. Second-order cone programming.
Mathematical Programming, 95:3–51, 2001.

Orly Alter, Patrick O. Brown, and David Botstein. Singular value decomposition for
genome-wide expression data processing and modeling. Proceedings of the National
Academy of Sciences of the United States of America, 97(18):10101–10106, 2000.

J. Anderson and E. Rosenfeld. Neurocomputing: Foundations of Research. MIT Press,
Cambridge, MA, 1988.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and
risk bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.
(Was Department of Statistics, U.C. Berkeley Technical Report number 638, 2003).

Monica Benito, Joel Parker, Quan Du, Lambert Skoog, Annika Lindblom, Charles M.
Perou, and J. S. Marron. Adjustment of systematic microarray data biases. Bioinfor-
matics, 20:105–144, 2004.

A Bhattacharjee, W G Richards, J Staunton, C Li, S Monti, P Vasa, C Ladd, J Beheshti,
R Bueno, M Gillette, M Loda, G Weber, E J Mark, E S Lander, W Wong, B E Johnson,
T R Golub, D J Sugarbaker, and M Meyerson. Classification of human lung carcinomas
by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proceedings
of the National Academy of Sciences of the United States of America, 98:13790 – 5,
2001/11/20/ 2001.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory (COLT), pages 144–152. ACM Press, 1992.

Erin J. Bredensteiner and Kristin P. Bennett. Multicategory classification by support
vector machines. Computational Optimizations and Applications, 12:53–79, 1999.

93

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification
and Regression Trees. Chapman & Hall, New York, NY, 1984.

Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discov., 2(2):121–167, 1998.

Corinna Cortes and Vladimir Vapnik. Support vector networks. In Machine Learning,
volume 20, pages 273–297, 1995.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. Institute of Electrical
and Electronics Engineers Transactions on Information Theory, 13:21–27, 1967.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for
multiclass problems. In In Proceedings of the Thirteenth Annual Conference on Compu-
tational Learning Theory, pages 35–46, 2000.

N. Cristianini and Shawe J. Taylor. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, Cambridge, 2000.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience
Publication, 2000.

Ronald A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society, A, 222:309–368, 1922.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals
Eugen., 7:179–188, 1936.

R. Fletcher. Practical Methods of Optimization, chapter 8.7 : Polynomial time algorithms,
pages 183–188. John Wiley & Sons, New York, second edition, 1987.

Jerome H. Friedman. Regularized discriminant analysis. Journal of the American Statistical
Association, pages 175–165, 1989.

Jerome H. Friedman. Another approach to polychotomous classification. Technical report,
Department of Statistics, Stanford University, 1996.

Peter Hall, J. Marron, and Amnon Neeman. Geometric representation of high dimension,
low sample size data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(3):427–444, 2005.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
second edition, 2009.

Trevor Hastie and Robert Tibshirani. Discriminant analysis by gaussian mixtures. Journal
of the Royal Statistical Society, Series B, 58:155–176, 1996.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

94

H. Huang, Y. Liu, and J. S. Marron. Bi-directional discrimination with application to data
visualization. Submitted, 2010.

W. Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics, 8(1):118–127, 2007.

S. K. Jung and J. S. Marron. Pca consistency in high dimension, low sample size context.
The Annals of Statistics, 37:4104–4130, 2009.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data. Journal
of the American Statistical Association, 99(465):67–82, 2004.

Jeffrey T Leek, Robert B Scharpf, Heacutector Corrada Bravo, David Simcha, Benjamin
Langmead, W Evan Johnson, Donald Geman, Keith Baggerly, and Rafael A Irizarry.
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nature reviews. Genetics, 11(10):733–9, 2010. ISSN 1471-0064.

X. Liu, J. Parker, C. Fan, C. M. Perou, and J. S. Marron. Visualization of cross-platform
microarray normalization. In A. Scherer, editor, Batch Effects and Noise in Microarray
Experiments: Sources and Solutions, pages 167–181. Wiley, New York, 2009.

Yufeng Liu. Fisher consistency of multicategory support vector machines. In Eleventh
International Conference on Artificial Intelligence and Statistics, pages 289–296, 2007.

Yufeng Liu and Xiaotong Shen. Multicategory ψ-learning. Journal of the American Sta-
tistical Association, 101:500–509, 2006.

Yufeng Liu and Ming Yuan. Reinforced multicategory support vector machines. Journal
of Computational and Graphical Statistics, page to appear, 2010.

Yufeng Liu, David Neil Hayes, Andrew Nobel, and J. S Marron. Statistical significance of
clustering for high-dimension, low-sample size data. Journal of the American Statistical
Association, 103(483):1281–1293, 2008.

J. S. Marron, M. Todd, and J. Ahn. Distance-weighted discrimination. Journal of the
American Statistical Association, 102:1267–1271, 2007.

M. Meyerson and D. N. Hayes. Microarray approaches to gene expression analysis. In
Molecular Diagnostics: For the Clinical Laboratorian. 2nd ed. Tsongalis GJ, Coleman
WB, eds., pages 121–148. Totowa, NJ: Humana Press, 2005.

X. Qiao, H. H. Zhang, Y. Liu, M. J. Todd, and J. S. Marron. Asymptotic properties of
distance-weighted discrimination. Journal of the American Statistical Association, 105
(489):401–414, 2010.

Xingye Qiao and Yufeng Liu. Adaptive weighted learning for unbalanced multicategory
classification. Biometrics, 65:159–168, 2009.

95

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101–141, 2004. ISSN 1532-4435.

A. Scherer. Batch Effects and Noise in Microarray Experiments: Sources and Solutions.
Wiley,New York, 2009.

Andrey A. Shabalin, Hkon Tjelmeland, Cheng Fan, Charles M. Perou, and Andrew B.
Nobel. Merging two gene-expression studies via cross-platform normalization. Bioinfor-
matics, 24(9):1154–1160, 2008.

Jun Shao. Linear model selection by cross-validation. Journal of the American Statistical
Association, 88(422):pp. 486–494, 1993.

TCGA. The cancer genome atlas research network.
http://cancergenome.nih.gov/wwd/pilot program/research network/cgcc.asp, 2010.

Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification meth-
ods. In Peter Auer and Ron Meir, editors, COLT, volume 3559 of Lecture Notes in
Computer Science, pages 143–157. Springer, 2005.

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Diag-
nosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of
the National Academy of Sciences of the United States of America, 99(10):6567–6572,
2002.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, NY, 1995.

V. N. Vapnik. Statistical Learning Theory. Springer, 1998.

Roel G. Verhaak, Katherine A. Hoadley, Elizabeth Purdom, Victoria Wang, Yuan Qi,
Matthew D. Wilkerson, C. Ryan Miller, Li Ding, Todd Golub, Jill P. Mesirov, Gabriele
Alexe, Michael Lawrence, Michael O’Kelly, Pablo Tamayo, Barbara A. Weir, Stacey
Gabriel, Wendy Winckler, Supriya Gupta, Lakshmi Jakkula, Heidi S. Feiler, J. Graeme
Hodgson, C. David James, Jann N. Sarkaria, Cameron Brennan, Ari Kahn, Paul T.
Spellman, Richard K. Wilson, Terence P. Speed, Joe W. Gray, Matthew Meyerson, Gad
Getz, Charles M. Perou, D. Neil Hayes, and Cancer Genome Atlas Research Network.
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma char-
acterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer cell, 17(1):98–110,
2010.

G. Wahba. Spline Models for Observing Data. SIAM, Philadelphia, 1990.

Jörg A. Walter. H–MDS: A new approach for interactive visualization with multidimen-
sional scaling in the hyperbolic space. Information Systems, Elsevier, 29(4):274–292,
2004.

Jason Weston and Chris Watkins. Support vector machines for multi-class pattern recogni-
tion. In Proceedings of the Seventh European Symposium on Artificial Neural Networks,
pages 219–224, 1999.

96

Russell D. Wolfinger, Greg Gibson, Elizabeth D. Wolfinger, Lee Bennett, Hisham Hamadeh,
Pierre Bushel, Cynthia Afshari, and Richard S. Paules. Assessing gene significance from
cdna microarray expression data via mixed models. Journal of Computational Biology,
8:625–637, 2001.

Tong Zhang. Statistical analysis of some multi-category large margin classification meth-
ods. Journal of Machine Learning Research, 5:1225–1251, 2004.

Hui Zou, Ji Zhu, and Trevor Hastie. New multicategory boosting algorithms based on
multicategory fisher-consistent losses. The Annals of Applied Statistics, pages 1290–
1306, 2008.

97

