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ABSTRACT: A METHOD FOR UNFOLDING THE SPECTRUM OF NEUTRON
ENERGIES PRODUCED BY MEDICAL LINEAR ACCELERATORS by William W.
DeForest

The use of high energy linear accelerators for radiation

therapy has given rise to an unexpected Health Physics

concern.  These accelerators are designed to produce electrons

or photons in excess of 10 MeV.  In recent years it has been

noted that these accelerators are producing significant

fluences of high energy neutrons which contribute greatly to

the dose equivalent received by technicians and others in

areas adjacent to treatment rooms.  Proper shielding of these

neutron fluences requires knowledge of the neutron spectrum at

barriers to the treatment room.  The present paper presents

one method by which the neutron spectrum may be unfolded.  The

method makes use of Bonner Sphere data and matrix inversion

computer codes to approximate the spectrum of neutrons

produced by medical linear accelerators.
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1. PURPOSE

The purpose of this research is to set forth a method by

which a spectrum of neutron energies associated with neutrons

produced by medical accelerators may be determined.  A

technique by which to unfold neutron spectra has been of great

interest to the medical physics field since the advent of high

energy linear accelerators used for radiation therapy.

These high energy linear accelerators are used to provide

both electrons and, with the introduction of target materials,

photons in excess of 20 MeV.  Not long after these

accelerators came into use, it became evident that neutrons

were also being produced.  Neutrons are produced primarily in

the target and head shielding materials.  These neutrons

provide no medical benefit and can be thought of as

contamination to the primary beam.  A detrimental effect of

the neutrons is to increase whole body dose to the patient.

Technicians, and others in adjacent areas, may also be exposed
to these neutrons due to their high penetrability and

scattering characteristics.  The whole body dose equivalent

delivered to patients and others as a result of this

contamination may be significant due to the high quality
factors associated with neutrons.

Proper attenuation of neutron dose equivalents and

fluences is not easy to achieve, even for monoenergetic beams.
This is due to the fact that most interactions that neutrons

go through produce secondary quanta that also must be
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shielded.  This picture is complicated in the use of medical
accelerators because a spectrum of neutrons is produced.

Because neutron reaction cross-sections change appreciably
with neutron energy, the picture is still further complicated.
Neutron spectra arise in accelerators due to the variety of
neutron production modes and materials in which the neutrons

are produced and interact.

Taking these points into consideration, it is evident

that proper neutron shielding is difficult to predict.
Furthermore, in order to make the attempt, knowledge of the

neutron spectrum is a necessity.

This paper will investigate one method by which an

approximation of a neutron spectrum may possibly be
determined.  The method makes use of Bonner sphere data,

matrix inversion computer codes and smoothing routines to
provide an estimate of the spectrum of neutron energies
produced by a source.  This method then is applied to
measurements of neutron spectra produced by medical linear
accelerators.

The research involved with developing this technique was
carried out on a Siemens 20 linear accelerator located in the

radiation therapy department at N.C. Memorial Hospital.

2. LITERATURE REVIEW

2a. Bonner Spheres Used in Previous Studies

The first use of a multisphere neutron spectrometer was
presented by Bramblett, Ewing and Bonner^-'-^ in 1960.  In this

NEATPAGEINFO:id=62642F60-BBD4-47FA-94D8-7868B9FE4431



ͣ-^i^

•

landmark paper, five polyethelyene spheres were used with

diameters of 2, 3, 5, 8 and 12 inches.  After this paper,

these spheres became known as Bonner spheres.  Bonner et al.

used a Li(I) crystal scintillation detector located at the

center of each sphere.  The crystal size was kept to a minimum

(4mm in dia. and 4mm thick) to provide good gamma

discrimination. It was noted that 80% of incident thermal

neutrons are absorbed in the 1st mm of the crystal, whereas a

gamma deposits only a tiny fraction of it's energy in the

entire volume of the crystal.  By providing a large surface to

volume ratio, the gamma discrimination effect is enhanced.

The purpose of the research by Bonner et al. was to

determine the counting efficiency of each sphere as a function

of neutron energy.  In order to accomplish this, each of the

spheres was exposed to a beam of monoenergetic neutrons of

known fluence.  Corrections were made for unequal illumination

and background neutron counts.  The curves that were generated

were the basis for a large number of subsequent studies of

neutron spectra, and also are used in this research.  These

curves are reproduced here in figure 1.

Li(I) detectors will count only those neutrons that are

near thermal energies'^'^^'.  This is because large
probabilities for neutron absorption in Li^, given by the

• •       • fi   •
absorption cross section of Li , will only occur at these

energies (see figure 2).  The polyethylene spheres provide the

function of slowing neutrons to thermal energies from their

initial energies.  The large H content of polyethylene absorbs
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much of the energy of neutrons with each elastic collision

with this light nucleus.  For the bare and 3" diameter sphere

size, Bonner et al. found that for neutron energies above 50

keV, count rates decreased with increases in energy.  Larger

spheres showed increases in count rates per unit fluence with

increases in neutron energies, at least to a point.  As

energies were increased further, count rates per unit fluence

dropped off quickly.  In large spheres, neutrons with low

energies prior to entering the sphere are captured before

reaching the Li(I) crystal.  Small spheres showed decreases in

count rate per unit fluence with increases in neutron energy

due to the fact that energetic neutrons were not slowed to

thermal energies before reaching the Li(I) detector volume.

Bonner et al. suggested that further experiments to

determine neutron energy distributions be performed with the

source to detector distance as small as possible. This

suggestion was intended to reduce the effects of background

and to increase net counting rates.

Each sphere was placed over the detector and exposed to

the neutron source.  The number of interactions in the

detector then was recorded for each sphere.  This number was

was equal to the sum of the number of interactions produced by

neutrons in each energy interval considered by the researchers

(the total neutron spectrum having previously been divided

into discrete energy intervals).

The use of Bonner spheres then, yields a system of linear

equations consisting of m equations and n unknowns,  m is
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given by the number of differently sized  Bonner spheres used,
while n is given by the number of neutron energy intervals to
be solved for in characterizing the neutron energy spectrum.

^ Watkins and Holeman^-^^ suggest that data from Bonner
spheres may be expressed as:

Y{i) = /  A^E,i) X(E) dE(i)
^^min

Here Y(i) is the count rate (counts/s) of the detector
incorporating the ith size sphere, A(E,i) represents the
response or counting efficiency (counts per N/cm') of the ith
sphere for neutrons of energy E, and X(E) represents the
actual intensity of the neutrons in the external neutron field
and m a certain energy interval E to E + dE (N/cm s).  If the
neutron spectrum is divided into a discrete number of energy
intervals, the above equation also can be expressed as a
linear matrix equation of the form

y = AX  (eq. 1)

or equivalently

^m

^1,1' ^1,2' ^1,3' ^1,4' ••* ^1,^
^1,2' ^2,2
^3,1

Am,l' V2 ͣ^Sijn

X-

X.

X-

X
n (eq. 2)

In the matrix equation shown above (eq. 2) , Y-|^ through Y^^
is the array of neutron count rates obtained from the separate
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detector/Bonner sphere coverings exposed to a neutron source.

ͣ^11 through h^^  is the matrix of response coefficients
(counts/N/cm ) for the detector/sphere combinations, with each

row corresponding to a particular diameter of Bonner sphere

for each of n energy intervals.  In other words, A^^  is the
response of the m*" detector/sphere combination to neutrons in

the n^" energy interval.  X is the array of neutron energy
fluence values (N/cm^), one for each of n neutron energy

intervals.  When the X values are multiplied by the

corresponding A values and the products for each row are

summed, a value of Y may be determined.   This may be more

easily understood in the following form.

Yi = Ai^i(Xi) + Ai^2(^2) + Ai^3(X3) + ..... A^^^, (X„)
Because the values of the A matrix are known from the

literature, and the values of Y for any detector/sphere

combination is known (determined by exposing detector/sphere

combinations to the neutron source), the object is to invert

the matrix equation and solve for the unknown elements of the

X array.  Solving for the X array gives the neutron fluence in

each energy interval and hence the neutron spectrum.

Many techniques can be used to invert and solve a system

of n linear equations and n unknowns, an example being through

Gaussian elimination.  Gaussian methods for solving n

equations and n unknowns are well known.  Using Bonner

spheres, the maximum number of equations and unknowns would be

seven, since seven spheres are commercially available.

Although the Gaussian elimination method lends itself to
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computer codes and would seem to simplify the problem of

unfolding the spectrum (relative to use of the integral

equation), it has drawbacks.

The first drawback is that only seven energy intervals

would be generated for the spectrum.  This causes many

significant and important features to be omitted from the

spectrum, such as the high energy (but low count rate) tail

and narrow width energy peaks.

A second drawback of standard Gaussian techniques is that

often negative results are obtained.  This occurs in matrices

of high singularity.  Singularity refers to the condition

often encountered in matrix equations where there is only one

discrete solution array to the equation.   This solution may

be a very sensitive function of the values of Yj^.  Small

fluctuations in the values of Y (due to counting statistics),

or small uncertainties in the values of A, may greatly

influence the values of X that must be assumed in order to

reproduce the values of the Y array.  The Gaussian method

obtains values of X without regard to the magnitude or sign of

values in the X array.  In order to solve the matrix equation

for the unknown array, Gaussian methods may incorporate

negative values into the solution array.  In this case, these

negative values would correspond to negative neutron fluence

values for some neutron energy intervals, a situation which is

physically impossible. The need therefore arose for an

alternative iterative technique to be used, one which did not

give any negative values to the solution array.

NEATPAGEINFO:id=A8837F9C-451E-4360-913D-927CE9ED0C0F
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Rather than using a response matrix of 7 energy

intervals, a larger number of neutron energy intervals in the

response matrix would give much better energy resolution of

the resulting neutron fluence array (X).  Any number of

response coefficients can be generated for detector/Bonner

sphere combinations by determining the counting efficiency of

each detector/sphere combination in monoenergetic neutron

sources of known fluence.  Conventional iterative techniques

(such as Gaussian elimination) cannot be used in this case,

however, due to the fact that there could be more unknowns

than equations (i.e. n may exceed m).  Fortunately there are

other mathematical techniques, known as recursion methods,

which yield an approximation of the array X when n exceeds m.

These techniques start with an initial solution to X, which

usually is obtained by multiplying the array Y by the inverse

of the matrix A or by the identity matrix.  The technique then

slowly modifies X in a systematic manner (specific to the

recursion method) until the product of A and X reproduces Y to

a predetermined degree.  At each point in the recursion, a

check is made to ensure that all values of X cohere to certain

restrictions such as physical plausibility (no negative

values).  The code then modifies the elements of X to yield a

new solution, which is compared to the previous solution (and

so on through a large number of iterations).  An unfortunate

problem with recursion routines is that the final solution for

X often depends upon the choice of the initial solution. At

the moment, however, recursion computer codes based on
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modified iterative techniques seem to be the best choice for
solving the resulting matrix of linear equations produced by
Bonner sphere data in which n exceeds m.  A methodology for
such a technique was put forth in a paper by Watkins and
Holeman^"^^ .  Many authors have used a variety of techniques to
unfold neutron spectra based on count rates obtained from

Bonner Spheres.  A 52 x 7 response matrix for A(E,i) has been
computed by Hansen and Sandmier^^^ containing response
coefficients for 52 energy intervals and for 7 sizes of
spherical polyethylene coverings.  Watkins and Holeman^ ' used
a modified Scofield-Gold iterative technique, which

approximates the unknown elements of a determined system of
simultaneous equations using the diagonal elements of a
diagonal matrix as the initial solution to X.

Various other iterative methods for solving equations
similar to (1) and (2) have been summarized by Nachtigall and
Burger^^' and Patterson and Thomas^^^.  Lowery and Johnson^^^
used a computer code based on the Scofield-Gold technique,
known as SPUNIT, which was developed at Pacific Northwest
Laboratories by Brackenbush and Scherpelz.  This code gives
non-negative solutions to the spectrum and smoothing of the
spectrum could be added to the results.  It is a technique
such as this that has been used in the present research.

2b. Neutron Production

Modes of neutron production and data on neutron yields
from electron linear accelerators have been discussed by many
authorsC7)(8)(9).
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Neutrons are produced in the accelerator primarily when

it is operated in the photon mode.  In this mode, the photons

are produced by introducing a target metal into the electron

beam produced by the accelerator. Photons (X-rays) are

produced as bremsstrahlung radiation in the target.  These

high energy photons then interact with the heavy nuclei

shielding materials surrounding the accelerator head to

produce fast neutrons.

The primary mode of production of neutrons is through the

(^,n) reaction with lesser contributions from the (y,2n) and

(y^pn) reactions.  Direct production of neutrons in either

photon or electron modes is possible from the (e,n) and

(e,e'n) reactions if the energy of the electron is

sufficiently high.  The production of neutrons from these

electron reactions is smaller by a factor of over two orders

of magnitude than the photoneutron reactions (due to the fine

structure constant modified by several other factors). The

production of neutrons from these electron reactions for the

most part can be neglected ^^'.

For medical linear accelerators operating at less than 45

MeV, neutron production is largely due to reactions occurring

in the giant photonuclear resonance, also known as the giant

resonance.  The cross section of this resonance is typified by

a threshold, a rapid rise to a peak, and a gradual decrease of

neutron production at the higher photon energies.  For most of

the medium to heavy nuclei shielding materials, the peak of

the giant resonance occurs between 13 and 18 meV.  The neutron
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spectrum in the giant resonance has two major components.  The
first and largest component is the evaporation spectrum.  In
this component, neutrons are generated by compound nuclear
formation.  The nucleus may be thought of as being heated or
excited by the photon, the result being that neutrons at the
highest energy levels are "boiled out" of their potential
well.  The (8,2n) separation energy occurs well within the
giant resonance for most shielding materials and therefore
contributes a significant number of neutrons to the total
neutron fluence.  One would think that protons, alphas, or
other charged particles would be ejected from the nucleus from
the absorption of a photon as well.  This does not occur,
however, because in the giant resonance sufficient energy is
not imparted to charged particles (such as protons) to
overcome the coulomb barrier for the elements of concern.  The

yield of photoneutrons may be thought of as being proportional
to the convolution of the (K^ri) cross section and the
bremsstrahlung spectrum '^.

The smaller component of the photonuclear giant resonance
arises by the direct or photoionization process.  In this
process, one neutron acquires all of the photon's energy;  the
kinetic energy of the neutron then becomes equal to the
photon's energy minus the binding energy of the neutron in the
nucleus.  The neutrons produced in this fashion are of much
higher energy than those produced by the evaporation process.
These neutrons then are responsible for the high energy tail
on a photoneutron energy distribution plot (see fig 3).   For
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Figure 3.
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Various neutron integral spectra showing both accelerator
primary spectrum and spectrum after passing through shielding.
The Cf-252 spectrum is shown for comparison. Data are from
the Monte-Carlo program MORSELS).
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this direct ejection of the neutron to occur, it is thought
that the angular distribution for the emerging neutrons is
slightly peaked at 90° to the incident photon (8)(10)^

Neutrons are produced inside the head of the accelerator
and penetrate iostropically.  Although the shielding
incorporated into the head attenuates photons well, it does
little to attenuate the fluence of neutrons.  The only
significant dose equivalent attenuation is from energy losses
by the neutrons, this being due to inelastic scattering and
(n,2n) reactions.  This effectively reduces the energy and
quality factor of the neutron.

Inelastic scattering occurs only at neutron energies
above the lowest excited states of the shielding material; 0.6
- 0.8 MeV for lead, and 0.1 MeV for tungsten.  Obviously
tungsten is better for reducing the energy of neutrons.  This
reduction in energy provides a corresponding reduction in dose
equivalent^^^^.

The (n,2n) reaction provides a minimal energy loss equal
to the binding energy of the neutron in the nucleus.
Unfortunately, it also provides two low energy neutrons  of
about equal energy that contribute greatly to the low energy
neutron fluence in the treatment room (8)(^°).

After passing through a certain distance in any shielding
material, essentially all the neutrons in the spectrum have
had their energies reduced below the lowest excited state of
the shielding materials.  At these energies, inelastic
scattering and the (n,2n) reaction can no longer occur.
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Neutrons then may penetrate great distances through shielding

materials in the head with no further energy loss or

attenuation of dose equivalent.

The preceding discussion reviewed some of the factors

that provide the source of neutrons in the treatment room.

The intensity of neutrons from this source as a function of

the distance from the accelerator head can be described by the

inverse square law.  There is, however, a second component

comprised of thermal neutrons which have scattered inelasticly

(and elasticly) off the inside walls of the treatment room.

The fluence of these low energy neutrons is essentially

constant throughout the room.  This thermal neutron fluence is

related to the fast neutron fluence by

P  =  K(Q/S)

where: ^  is the thermal neutron fluence, Q is the fast neutron

fluence, S is the inside surface area of the treatment room

and K is a constant related to the type of shielding used in

the head of the accelerator ^     '.

It has been found that photons are always more

penetrating than neutrons for the energy ranges of interest in

a medical accelerator.  While producing photons of 20 MeV, the

average energy of the neutron spectrum emerging from the

accelerator head is never much above 1 MeV.  If a therapy room

is constructed of enough concrete to sufficiently attenuate

the photons produced, the neutrons will also be modified and

captured by the large hydrogen content of the concrete.  The

problem in neutron shielding, then, is found at the maze
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doorways and any other penetrations to the room, (ducts,

conduits, etc.)-  In these areas, neutrons may easily scatter

to areas unprotected by the massive concrete walls ( ͣ'-°) .

3. THEORY OF NEUTRON MEASUREMENT WITH BONNER SPHERES

Currently, methods used to calculate neutron shielding

for therapy rooms have been rules of thumb and educated

guesses.  Little is known about the spectrum of neutron

energies given off by accelerators or how this spectrum

changes as the neutrons pass through various shielding

materials.  Exact methods for deteirmining required neutron

shielding, therefore, are available but rarely used.   It is

extremely important that barriers be devised to absorb

neutrons and/or reflect neutrons back to the treatment room.

It is necessary to know the spectrum of neutron energies

in order to properly determine the nature of shielding needed.

It is equally important to know how the spectrum changes as

neutrons pass through shields of various constructions.  In

this way it will be possible to develop a series of equations

to take the guess work out of neutron shielding for medical

linear accelerator facilities.

In order to determine neutron spectra, a series of

different sized Bonner spheres are often used.  Although most

researchers have used Bonner spheres to moderate the neutrons,

many types of detectors, placed at the center of the sphere to

detect the moderated neutrons, can be used.  A Li(I)
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scintillation detector, which is a thermal neutron detector,

is a good choice.   Upon absorption of the neutron, the
Li (n,oc)H reaction takes place, releasing an alpha particle.
The track length of the alpha is sufficiently short to deposit
all of it's energy in the crystal.  The amount of energy
released in the crystal will be in the neighborhood of 4.7 MeV
and will be the same for each neutron absorbed.  This release

of energy results in a pulse.  The electrical pulses from the
Li(I) detector located at the center of each sphere then would
all be of the same height regardless of the energy of the
interacting neutron.  The only information gained from each of
the detectors therefore is a count rate.  As Li(I)
scintillation detectors will also record photons interacting
in the crystal, a means of discriminating between neutrons and
photons must be addressed.  This is particularly important
since most neutron fields are accompanied by an appreciable
field of photons.  The small (4mm x 4mm) size of the Li(I)
crystal helps in this respect.  Photons, with their low LETs,
will deposit only a tiny fraction of their energy in the
detector.  This will result in a very small pulse size
compared with the neutron pulse size.  By properly setting
counting thresholds, or by using similar methods, it is
possible to successfully count only the neutron pulses and
discriminate against pulses produced by photons.  Problems
arise only when high photon fluences yield significant pile
up.
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Bonner spheres provide the function of thermalizing fast

neutrons.  Neutrons that are sufficiently thermalized by the

sphere, but not absorbed in the sphere, then will be absorbed

in the Li(I) crystal according to the intrinsic detection

efficiency of the crystal at that neutron energy.

4. MATERIALS AND METHODS

4a. Neutron Counting Equipment

A series of four Bonner spheres manufactured by Ludlum

was used in this research to establish neutron spectra.  The

sizes of the spheres were:  3", 5", 8",  and 12" in diameter.

A bare detector was also used as one of the detector/sphere

combinations.  The Li(I) crystal, light pipe, and PM assembly

were also obtained from Ludlum.

A coaxial cable, designed to carry both the signal and

the high voltage for the detector, was connected to the PM

tube with a type C connector.  The other end of the coaxial

cable was hooked to a Ludlum signal splitter, designed to

split the high voltage and the signal.  High voltage was

supplied to the splitter and hence the PM tube by a separate

HV supply (manufactured by Power Designs).  Leaving the

splitter, the signal travels via coaxial cable to an Ortec pre

amp set on 500 pF.  The pre amp was hooked via coaxial cable

to an Ortec amplifier set on a gain of 20.  Output of the amp

was then hooked up to a Northern Multi Channel Analyzer (MCA).

The HV supply, amp, and pre amp were contained in a portable

N.I.M. bin for easy transport (see figure 4).  An MCA was

NEATPAGEINFO:id=BB49F16A-BAEC-4671-B23B-11FAF2851685



20

chosen in preference to a scaler to aid in discrimination

between neutron and photon pulses.  Typically, photon

discrimination is a difficult task with Li(I) crystals (used

for neutron measurements) since it involves minute adjustment

and readjustment of sensitive discriminator and threshold

settings.  Discrimination of photon counts from neutron counts

is easily accomplished visually with the MCA.  The low photon

detection efficiency of the Li(I) crystal results in a low,

prominent compton shoulder seen on the MCA.  The neutron

counts, however, are at much higher channel numbers due to

nearly complete energy absorption of the secondary alpha.  The

neutron counts also form a prominent peak, so total neutron

counts are easily obtained by integrating under this peak by

setting regions of interest on the MCA or by plotting the

peaks and integrating by hand.

It was decided that the component system and it's ability

to deliver neutron counts needed to be tested.  The

detector/sphere combinations were exposed to a uniform field

of neutrons (and photons) emanating from a PuBe source located

at the Physics Department at UNC.  Each sphere was exposed to

the PuBe source for 10 minutes and counts were obtained.  The

data obtained were interpreted by setting up a matrix similar

to eq. 2 and solving using a computer program described in the

next sub-section.  This test was initially intended only as a

test of the neutron counting system.  It was later decided to

use the data obtained as input to the computer program

NEATPAGEINFO:id=B1AD7C5C-19FE-4A80-B0F8-1C5070374FFE



<SI

Figure 4

Diagram of neutron counting systen

-Bonner Sphere

PH tube
high voltage

ignal splitter     || f
pre-amp

signal

MCA

- NIM bin

\:::^i}

!• « •)

NEATPAGEINFO:id=2F595750-3BF2-4DCC-B9FD-57EB488F7F95



22

described in 4b. as a test of the code's ability to solve
matrix equations of various sizes.

The neutron counting system was taken to the Radiation
Therapy department at N.C. Memorial Hospital and set up in the
therapy room containing the Siemens 20 linear accelerator.
The configuration and position of the equipment is shown in
figure 5.  The detector/sphere setup was placed approximately
1.3 meters off the floor directly between the head and the
door to the maze at approximately 2 meters from the head.  The
accelerator was set to deliver 18 MeV photons.  Each
detector/sphere combination was exposed to photons and
neutrons resulting from identical runs on the accelerator
delivering 400 rads to an imaginary patient.  No phantom
material was added to intercept the beam as this would only
serve to increase photon scatter and potentially decrease
neutron fluences through elastic scattering and radiative
capture in hydrogen.

Pulse height spectra were obtained for each accelerator
run.  Neutron counts for each detector/sphere combination were
determined through integrating the neutron pulse height
spectrum by hand.  This was done because the photon continuum
was of much greater energy and height than is normally
encountered in neutron spectroscopy due to photon pile-up, and
assumptions had to be made as to the shapes of some of the
neutron peaks in order to correctly subtract off photon
counts.  The neutron peak was sitting on top of the high
energy side of the photon peak.  In order to subtract off
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Figure 5.

Diagram of radiation therapy treatment room at N.C. Memorial Hospitalcontaining linear accelerator showing position of Bonner Sphere detectors.

generator -
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door
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photon counts, the high energy slope of the photon peak was

assumed to be exponential in nature, and photon counts were

subtracted off using valley to valley averaging.

4b. The Computer Program

The data obtained from the PuBe source were at first

evaluated using standard matrix inversion (Gaussian

elimination method).  Using this method, negative fluences

were obtained in some of the 5 energy intervals.  It was

summized that a possible reason for these results was the

highly singular nature of the matrix equation.  It was also

noted that the response curves for the 8" and 10" spheres were

extremely similar in nature (fig. 1). That is to say, the

curves were linearly dependent (i.e. theresponse varied with

energy at approximately the same rate).  When solving matrix

equations, linear dependence between two equations heightens

problems encountered with singularity and thereby increases

the probability of obtaining negative results.  In an attempt

to solve future problems of singularity, it was decided that

the 10" sphere would not be used and the bare detector would

be used as the fifth detector/covering combination (at this

time computer codes based on Gaussian elimination methods were

still being used in this research).

In order to resolve the problem of negative fluences, and

to obtain a more detailed neutron spectrum, a recursion

approach in which n exceeded m was adopted.  Available data in

the response matrix. A, included estimates of the response in

52 neutron energy intervals for each sphere diameterV' (see
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table 1).

The unknown element in the system of linear equations to

solve for is the neutron fluence (X) in each of the 52 energy

intervals.  As mentioned before, conventional computer codes

which solve for the unknown elements by inversion cannot be

used in this case since the number of unknowns is larger than

the number of equations.

There was a necessity, then, for a computer code to be

written based on the Scofield-Gold iterative technique.

The Scofield-Gold iterative technique basically operates like

other iterative techniques in that it successively alters (in

some consistent manner) the elements of the solution array (in

this case X) until closest agreement between Y and the product

of A and X is found.  The computed solution array (X) then is

at best a possible close approximation of the true solution

array, with other approximate solutions being possible.  It is

possible to determine in a quantitative manner how close to

the true solution array (Xrp) the computed approximation (Xq)

is by calculating the difference between Y and the product of

A and X^,.  An additional computer code was written to

calculate this difference with each iteration.  The computer

code written for the present research replaces the computed

values of the solution array (in this case the approximated

neutron spectrum X^,) back into the matrix equation (equation

2) and computes the left hand side of the matrix equation (see

equation 2).  This new calculated product is labelled as the

vector array P in the computer code (P referring to the
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interval N energy Bare 3« 5" 8" 12"
(&V) sphere SDhere SDhere SDhere

1 l.OE-2 0.1220 0.1059 0.0540 0.0156 0.0024

2 1.6E-2 0.1220 0.1087 0.0560 0.0162 0.0025

3 2.5E-2 0.1220 0.1140 0.0588 0.0171 0.0026

4 4.OE-2 0.1180 0.1225 0.0639 0.0185 0.0029

5 6.3E-2 0.1160 0.1446 0.0712 0.0207 0.0032

6 l.OE-1 0.1140 0.1530 0.0824 0.0240 0.0037

7 1.6E-1 0.1100 0.1787 0.0975 0.0285 0.0044

8 2.5E-1 0.1020 0.2050 0.1141 0.0333 0.0051

9 4.0E-1 0.1160 0.2326 0.1327 0.0386 0.0059

10 6.3E-1 0.1100 0.2560 0.1480 0.0433 0.0065

11 1.0 0.0840 0.2701 0.1605 0.0479 0.0071

12 1.6 0.0760 0.2809 0.1710 0.0517 0.0080

13 2.5 0.0680 0.2853 0.1818 0.0541 0.0082

14 4.0 0.0600 0.2872 0.1897 0.0572 0.0088

15 6.3 0.0520 0.2880 0.1971 0.0598 0.0091

16 l.OEl 0.0420 0.2877 0.2033 0.0617 0.0096

17 1.6E1 0.0360 0.2847 0.2094 0.0647 0.0100
18 2.5E1 0.0280 0.2800 0.2150 0.0675 0.0105

19 4.0E1 0.0200 0.2743 0.2203 0.0707 0.0111

20 6.3E1 0.0100 0.2672 0.2252 0.0732 0.0113
21 1.0E2 0.0020 0.2608 0.2292 0.0763 0.0117
22 1.6E2 0.0000 0.2535 0.2236 0.0789 0.0122

23 2.5E2 0.0000 0.2451 0.2349 0.0816 0.0127

24 4.0E2 0.0000 0.2362 0.2357 0.0829 0.0129
25 6.3E2 0.0000 0.2227 0.2363 0.0842. 0.0130
26 1.0E3 0.0000 0.2187 0.2375 0.0865 0.0132
27 1.6E3 0.0000 0.2107 0.2392 0.0901 0.0142
28 2.5E3 0.0000 0.2050 0.2409 0.0935 0.0150

29 4.0E3 0.0000 0.1915 0.2412 0.0956 0.0153
30 6.3E3 0.0000 0.1850 0.2418 0.0983 0.0158
31 1.0E4 0.0000 0.1780 0.2423 0.1023 0.0167
32 1.6E4 0.0000 0.1707 0.2445 0.1069 0.0171
33 2.5E4 0.0000 0.1625 0.2453 0.1106 0.0181
34 4.0E4 0.0000 0.1532 0.2474 0.1178 0.0197
35 6.3E4 0.0000 0.1457 0.2499 0.1266 0.0220
36 1.0E5 0.0000 0.1372 0.2536 0.1402 0.0256

37 1.6E5 0.0000 0.1258 0.2591 0.1582 0.0312
38 2.5E5 0.0000 0.1120 0.2644 0.1792 0.0396
39 4.0E5 0.0000 0.0950 0.2641 0.2063 0.0533
40 6.3E5 0.0000 0.0788 0.2520 0.2356 0.0745
41 1.0E6 0.0000 0.0600 0.2310 0.2705 0.1040
42 1.6E6 0.0000 0.0390 0.2050 0.2720 0.1500
43 2.5E6 0.0000 0.0287 0.1550 0.2640 0.1856
44 4.0E6 0.0000 0.0191 0.1153 0.2380 0.2067

45 6.3E6 0.0000 0.0130 0.0685 0.1950 0.1995
46 1.7E7 0.0000 0.0074 0.0563 0.1415 0.1742

47 1.6E7 0.0000 0.0041 0.0337 0.0992 0.1420

48 2.5E7 0.0000 0.0020 0.0205 0.0737 0.1141

49 4.0E7 0.0000 0.0010 0.0130 0.0476 0.0853

50 6.3E7 0.0000 0.0004 0.0056 0.0265 0.0543

51 1.0E8 0.0000 0.0003 0.0037 0.0152 0.0266

52 1.6E8 0.0000 0.0001 0.0001 0.0035 0.0150
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predicted counts).  The squared difference between the newly

computed left hand side (P) of the matrix equation and the

actual left hand side of the matrix equation (in this case the

measurements Y) is taken as the residual.  This calculation is

performed for each of the 5 equations and the residuals summed

after each iteration.  The computed solution array with the

lowest summed residual would be the best approximation of the

solution array, or the "best fit".

The iterative technique must have some initial solution

array (X) from which to start.  This initial array could be

provided, based on educated guesses about the neutron

spectrum, as input, could be calculated by the computer

program using the product of Y and the inverse of A, or could

be obtained by multiplying Y by the identity matrix.   It was

decided to take the latter course since there was no

information on which to base an initial guess about the

neutron spectrum.

In summary, then, the recursion code used in the present

study begins with an initial approximation to the neutron

spectrum.  This approximation is obtained by multiplying the Y

array (i.e. the data array) by a diagonal matrix, D.  In the

initial step of the recursion, X is set equal to the product

of Y and D, then is multiplied by A and the product compared

to Y (i.e. the residual is computed).  The elements of D then

are adjusted by the recursion routine to new values, and a new

solution to X is obtained.  These adjustments occur by

systematically exploring the effect of small changes in each

NEATPAGEINFO:id=5B7D16B2-4881-4DFE-96F0-CBB43A4FF683



28

element of the previous solution array (X), with the change

producing the largest decrease in residual being selected at

each point of the iteration.  This process continues through a

large number of iterations (1500), with the elements of D

changing with each iteration.  The result is a total of 1500

approximations to X, each with an associated residual.

Log-log smoothing also is added to each approximation of the X

matrix before the residual is computed.  This smoothing simply

causes the histogram of X (which contains 52 energy intervals)

to become less subject to large changes in the number of

neutrons in adjacent energy intervals.  Log-log smoothing is

included to preclude the development of a wildly fluctuating

curve.  A more or less smooth neutron spectrum is expected.

Log-log smoothing is applied during each loop of the recursion

routine to each element of the X array, X(n), as well as to

X(n+1) and X(n-l). This serves to take erratic jumps out of

the curve and give a potentially more reasonable spectrum.

The program was written to continue through 1500 successive

approximations of the X matrix (lines 41 through 118 of the

computer program in appx. A).

Each time through this iteration the program takes the

current value of each element of the fluence array X and

multiplies it by the corresponding response coefficient (from

matrix A) in a given energy interval for each detector

sphere/combination.  Summing these products together for each

detector/sphere combination, an array analogous to the

experimentally determined neutron count array Y is developed.
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The elements of this predicted count array are placed into an

array named P (lines 85 - 91 of the computer program in appx.

A)

The value of the elements of the P array, when compared

to the value of the elements of the Y array, provides a test

as to how closely the solution array (X^^) is able to reproduce

the elements of the Y array.  A residual array may then be

computed from the squared difference between the elements of

the P and Y arrays for each detector/sphere combination.  This

residual array is labeled array R in the program code (lines

92 and 93 of the computer program in appx. A).  The total

residual for each loop of the recursion routine may then be

determined as the sum of the elements of the R array (one

value for each detector/sphere combination).  These total

residuals for each loop are stored as elements of array AL, a

vector array of 1500 elements (one for each loop of the

recursion routine).  From the information in this array, the

step which contains the best approximation of the X matrix

could be determined by searching for the lowest residual.

There is much debate in the physics community as to which

recursion routine, if any, is best for solving matrix

equations for neutron spectra.  For this reason it was decided

that in addition to running the iterative-smoothing routine

(which includes both recursion and smoothing), both the

iterative and smoothing routines alone would be applied

independently to the data.  This led to the development of

three different versions of the computer program, each of
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which was applied to both sets of data (the PuBe and

accelerator data).  The iterative routine alone is able to

solve the matrix equation (2) for the values of X although

discontinuities in the spectrum might result.  It was felt

that the log-log smoothing routine alone might also

approximate the solution to the matrix equation.  The

smoothing routine could accomplish this by successively

smoothing the initial spectrum as produced in lines 19 through

40 of the computer program (appx. A), although the final shape

of the spectrum would be heavily influenced by the kind of

smoothing employed.  It was also not clear whether the use of

smoothing alone would allow convergence onto a solution in an

efficient manner or would lead to a physically realistic

solution spectrum (i.e. the elements of the X array).

5. RESULTS

Total counts within the neutron peak for each of the five

detector/sphere combinations exposed to the PuBe source are

outlined in table 2 (integration by the MCA).  The reader

should note that the data from the 10" sphere as well as the

bare detector are omitted.  This is because no data were

gathered for the bare detector, since problems with the linear

dependence of the 8" and 10" spheres data had not yet been

noted during the course of the research.

The total neutron counts under the peak for each of the

detector/sphere combinations exposed to the accelerator follow

in table 3 (Integration was performed by hand using valley-to-
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TABLE 2

PuBe source data, 10 min. counting time for each
detector/sphere combination.

Poly sphere coverina Counts

3" 642

5" 1088

8" 1497

12" 1214

TABLE 3

Accelerator data, 400 rads delivered to each detector/sphere,
counting times equal.

Poly sphere coverina

Bare

B"

5"

8"

12"

Counts

5,875

63,000

42,725

7,900

675
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valley averaging).

Both sets of data then were input into each of the three

forms of the program {smoothing alone, iteration alone,

iteration plus smoothing) as elements of the Y matrix.

Through analysis of the residual array output data for

computer runs made on the PuBe source data it was determined

that the best approximation of the X (neutron fluence) matrix

was to be found at step 580 of the recursion loop for the log-

log smoothing only routine, and at step 1500 for the iteration

only and iteration-smoothing routines.  For runs of the

computer programs utilizing the accelerator data it was found

that the best approximation of the fluence matrix was to be

found at step 875 of the recursion loop for the smoothing only

routine, step 1500 for the iteration only trial, and step 338

for the iteration-smoothing trial.  The X matrix was plotted

at each of these steps.  Spectra were printed at additional

steps to gain an understanding as to how the recursion

routines successively approximated the X matrix.  The reader

should see figures 6 thru 11 for plots of these X matrices

(neutron spectra).  The program also output the value for the

P (predicted Bonner sphere counts) array at all "Best Fit"

steps (tables 4,5, 6, 7, 8, 9) to determine how well the X

array is able to reproduce the Y array by visually comparing

the P array to the Y array.

The reader may refer to tables 4 through 9 for data on

observed counts, predicted counts, standard deviation of

counts and percent deviation ([observed-predicted]/observed)
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Table 4 PuBe Data, Log-Log Smocsthing Alone step 580)

poly observed 2(y predicted % deviation
coverina counts

642

or ranqe

591.3-

counts

1216.1

fO-P)/0

3" 25.3 89.4
692.7

5" 1088 33.0 1022-
1154

891.2 18.1

8" 1497 38.7 1420-
1574

291.8 80.5

12" 1214 34.8 1144-
1284

49.3 95.9

Table 5 PuBe Data, Iteration Alone (step 1500)

poly observed 20- predicted % deviation
coverina counts

642

(J ranae

591.3-

counts

642.2

fO-P)/0

3" 25.3 0.031
692.7

5" 1088 33.0 1022-
1154

1087.6 0.036

8" 1497 38.7 1420-
1574

1497.7 0.047

12" 1214 34.8 1144-
1284

1213.5 0.041

Table 6 PuBe Data, Iteration-Smoothing (step 1500)
poly observed 20r predicted % deviation
coverina counts

642

0" ranae

591.3-

counts

628.6

(0-P)/0

3" 25.3 2.1
692.7

5" 1088 33.0 1022-
1154

1126.6 3.5

8" 1497 38.7 1420-
1574

1474.0 1.5

12" 1214 34.8 1144-
1284

1077.1 11.3
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Table 7 Accelerator Data, log-Log Smoothing Alone (step 875)

poly observed
coverincT counts   0"

Bare 5875   76.6

3" 63000  251.0

5" 42725  206.7

8" 7900   89.9

12" 675   26.0

Table 8 Accelerator Data, Iteration Alone (step 1500)

20^ predicted % deviation

rancre counts (0-P)/0

5722- 19467.7 231.0

6028

62448- 60937.5 3.27

63500

41138- 44120.7 3.27

7722- 14568.6 84.4

8078

623- 2565.4 280

727

poly observed 2(y predicted % deviation

coverina counts

5875

0 rancre

5722-

counts

9000.6

(0-P)/0

Bare 76.6 53.2

6028

3" 63000 251.0 62448-

63500

60717.8 3.6

5" 42725 206.7 41138- 43498.0 1.8

8" 7900 89.9 7722-

8078

13394.8 69.6

12" 675 26.0 623-

727

2161.7 220.0

Table 9 Accelerator Data, Iteration- Smoothing (step 338)

poly observed 2G predicted % deviation

coverina counts

5875

(S ranae

5722-

counts

8848.8

(0-P)/0

Bare 76.6 50.6

6028

3" 63000 251.0 62448-

63500

58753.3 6.7

5" 42725 206.7 41138- 42426.7 0.7

8" 7900 89.9 7722-

8078

13170.0 66.7

12" 675 26.0 623-

727

2119.2 213.0
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of predicted counts (P array) for the PuBe source data and the
accelerator data.

Referring to table 1, it is quickly noted that the width
of the energy intervals, ie, 0-1, 1-2, etc., is not consistent
throughout the range of neutron energies presented.  The
energy intervals continually widen going from interval number
1 to 52.  For this reason, the graphical shapes of the "best
fit" neutron spectra as presented in figures 5 and 8 are
misleading.  The visual features on these graphs are more a
function of neutron energy interval width than actual neutron
fluence at any given energy.  The reader may refer to figures
12 and 13 (probability density distributions) of the
respective "best fit" spectra normalized to energy interval
width.  Here the fluence obtained for any interval was divided
by the width of that interval in eV.  To give the plots still
more meaning, the respective spectra were plotted against a
consistent energy scale (figures 14 and 15).
These plots were developed by normalizing fluences obtained in
figures 12 and 13 respectively in particular energy intervals
of interest and plotting them against a common normalized
scale.  Figure 16 shows the PuBe neutron spectrum determined
by Anderson and Neff using a fast neutron spectrometer,
employing pulse shape discrimination, and utilizing a single
stillbene crystal ^-^^ ^ .  Figure 17 shows figure 14 superimposed
with the Anderson and Neff spectrum.  The Anderson and Neff
spectrum (in figure 17) has been scaled to yield the same
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total number of neutrons as computed by the computer codes
used in this research as a means of comparison.  The
significance of these plots will be discussed in later
sections of this paper. j

6. CONCLUSIONS

Through a review of the data presented, it is evident
that the log-log smoothing routine operating in the computer
program alone provides the worst solution to the matrix
equation of the three program trials.  This conclusion can be
arrived at by looking at the % deviation columns in tables 4
and 7.  In other words, the smoothing routine yields a
solution spectrum with large residual errors compared to other
routines.

There is a difference in the spectral shapes produced by
the smoothing alone and iterative alone routines when
comparing spectra at their respective "best fit" steps (i.e.
the iteration that produces the lowest residual error).  This
can be explained by the fact that each time through the
recursion loop, the log-log smoothing routine shapes the curve
in a logarithmic fashion (see figures 6 and 9).  The smoothing
routine then, is merely logarithymicaly altering the previous
X array during each iteration.  The "best fit" spectrum from
the smoothing routine alone has no obvious physical meaning
but it is interesting to note how close this simple method
actually came to solving the matrix equation (see the %
deviation columns in tables 4 and 7).
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In computer program trials with both sets of data, the

neutron spectra produced with the iterative alone and

iterative-smoothing techniques are very similar.  The

iterative-smoothing trial "best fit" spectrum appears as a

smoothed version of the iterative "best fit" spectrum.

It is interesting to note that for both PuBe and

accelerator data the iterative alone routine solution was

better than the iterative-smoothing solution, this conclusion

being arrived at by looking at residuals for the "best fit"

steps (table 10).  The log-log smoothing routine was added to

give more realistic results, as a smooth (continuous) shape

was expected, and to help in the approximation of the solution

array.  It would seem, however, that the smoothing routine may

prove more a liability than an asset in solving the matrix

equations, at least as far as residual errors are concerned.

The smoothed spectrum is, however, more physically realistic.

The iterative routine, operating in the computer program

with the smoothing routine disabled, leads to somewhat

conflicting observations.  Looking at the PuBe data at step

1500 ("best fit") in table 5 and figure 7 it is noted that the

routine is solving the matrix equation excellently (with very

small % deviation).  Whether or not it is solving for the

actual neutron spectrum is another matter, since many

solutions may be available.   As a test of the ability of the

code to reproduce data obtained by more precise measurement

methods, the calculated PuBe spectrum in it's normalized form,

as shown in figure 14, is compared to the general shape to the
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Table 10    Residuals (array AL) Incurred at "Best Fit" Steps

Program Trial Residuals

PuBe-Smoothing Alone 3177352.0.

PuBe-Iteration Alone 0.0996

PuBe-Iteration-Smoothing 20935.6

Accelerator-Iteration Alone     47978479.2

Accelerator-Iteration-Smoothing 56835457.4
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PuBe spectrum as reported by Anderson and Neff^ ^ in the

energy regions of dosimetric significance (figure 16).

The computed spectrum, however, extends to energy levels far

in excess of the spectrum reported by Anderson and Neff and

appears to be quite unreasonable with respect to those higher

energies.  In this regard it may be concluded that the current

versions of the computer routines tend to "flatten" the

spectrum, pushing the spectrum to higher than reasonable

energies.

The iterative routine operating alone solves the matrix

equation for both the PuBe data and the accelerator data

better than the other methods, considering the amount of

residual (table 10) and the % deviation (tables 3 and 6).

Also, it solves the PuBe matrix equation nearly exactly while

leaving much to be desired with the accelerator matrix

equation.  This can be seen by comparing the % deviation in

tables 5 and 8.  Still, the accelerator spectrum (figure 15)

would appear to be qualitatively reasonable given what is

known about the moderation of neutrons in the head and walls

of linear accelerator installations.  The accelerator spectrum

as shown in figure 15 occurs almost wholly below 100 eV.  This

makes good intuitive sense as the mean energy of the primary

spectrum emanating from the accelerator head is generally

considered to be about 1 MeV.  It is certainly reasonable to

expect the neutrons to be in the slow to thermal energy range

by the time they reach the Bonner sphere positioned as shown

in figure 5.  This is because the great majority of neutrons
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before reaching the detector/Bonner sphere combination have

undergone many interactions in the concrete walls of the

therapy room and have lost energy through elastic collisions

with hydrogen in the concrete.  Still, some higher energy

neutrons would have been expected, and their absence indicates

a potential problem with the method.

A possible problem associated with the accelerator "best

fit" spectra as presented in figures 10 and 11 is that there

is no low energy tail.  This tail would be expected to be

present and quite prominent due to the low energy neutron

fluence which is thought to be quite uniform in the treatment

room.  As noted for the PuBe source, the computer routines

tend to flatten the spectrum, also pushing the spectrum to

higher energies.  This would not, however, account for the

complete removal of the low energy tail.  Keeping this in

mind, it is easy to understand why the spectra as presented in

figures 13 and 15 are preferred.  These figures, particularly

figure 15, give a more understandable representation of the

spectrum including the low energy tail.

Note the extended high energy tail seen in figures 14 and

15 for the PuBe source and accelerator and the over estimation

(by the computer program) of the 12" detector/sphere

combination seen in tables 8 and 9.  A possible reason for the

over estimation of counts in the largest sphere size (for the

accelerator data) is that reported response coefficients in

the A matrix are included for neutron energy intervals in

excess of peak photon, and, therefore, peak neutron energies.
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These energy intervals are found in steps 48 through 52 (table

1).  The iterative routine may try to fit neutron fluences

into these energy inteirvals, thereby overestimating the count

of the 12" poly sphere detector (which is the most responsive

detector to neutrons of these energies) thereby extending the

computed spectrum to energy levels higher than are actually

occurring.  The iteration routine then may effectively take

some low energy fluences and push them into higher energy

levels.  This effect of spectrum extension caused by the

presence of response coefficients in excess of peak neutron

energies in the matrix equation may also be occurring in the

computer runs made on PuBe data, although no over estimation

of the 12" detector/sphere size is seen.

In order to test the possibility that inclusion of high

energy response coefficients might be moving neutrons from low

to high energies, the codes were run with and without response

coefficients at high energies.  The effect of spectrum

extension or shifting mentioned above would probably be more

pronounced for the PuBe data than the accelerator data if this

is in fact occurring.  This is because the PuBe spectrum

naturally extends to a much higher energy range than the

scattered fluence from the accelerator.     A test run was

made on both sets of data with all response coefficients for

neutron energy intervals higher than the realm of possibility

omitted (higher than the upper energies of the particular

neutron source).  A test run of the computer program on the

accelerator data with response coefficients for neutron energy

NEATPAGEINFO:id=249D13F3-F603-45A9-AFC1-49DC61E1282A



50

intervals 48-52 omitted produced exactly the same spectrum
with the same residual at the "best fit" step as computer runs
made with those intervals included.  Trial runs made on the

PuBe data with the response coefficients for neutron energies
in excess of 16 MeV deleted failed to converge onto a

solution.  Clearly, response coefficients cannot simply be
omitted as tried here.  Future studies might focus on a method
for dealing with the problem of unreasonably high energies in
the response matrix.

It is clear that the neutron counting system presented in
this paper gives reasonably good data and performs reliably,
in the sense that residual errors between Y and AX can be made

quite small.  What is not so clear is whether the computer
program gives reasonable shapes to the neutron spectra.  The
relatively good qualitative fit of figure 14 (the normalized
"best fit" PuBe spectrum) to the PuBe spectrum reported by
Anderson and Neff (figure 16) in the region of dosimetric
interest shows that the unfolding method presented at least
has some merit and bears further investigation.  Looking at
the computed accelerator spectrum again (from the last
section) we may note that the counts for some detector/sphere
combinations predicted using the iterative only routine fell
far from the actual counts in those detectors.  This, in
combination with the high residuals, would lead us to believe
that this best fit spectrum, in fact, fits rather poorly.  One
must bear in mind, however, two important points.  The first
is that the residuals are the squared difference between the
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observed and predicted counts, and the second is that the
accelerator "best fit" spectrum predicts counts in four
detector/sphere combinations quite well.  If the spectrum
reproduces the measurement data for four out of five
independent linear equations, the spectrum cannot be too far
from being a reasonable approximation.

Assumed losses of fluences in the low energy range and
over-estimations in the high energy range remain significant
features.  Table 11 displays neutron quality factors relative
to fluence and energy ^-' ͣ•^' .  Loss of neutron fluences in the
near-thermal energy range is not that critical, as this is
where quality factors are lowest.  Over estimations of the
high energy range would only lead to more conservative
calculations, as this is where quality factors are highest.
For the most part, however, neutron fluences per unit energy
above 100 eV in the calculated accelerator spectrum are
extremely small, and are nearly non-existent above 250 eV.
This could have important implications in shielding
calculations, which require information on the higher energy
neutrons.

In order to obtain better estimates of neutron spectra in
the future using techniques similar to the one presented in
this paper, several points may be raised.  First, the presence
of response coefficients above the range of expected neutron
energies warrants further investigation.  Another is that
other smoothing routines may be tried, log-log smoothing
perhaps not being the best approach.  An arithmatic (linear-
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Table 11

Neutron quality factors at various energies

Neutron Energy Quality
fMeV) Factor

thermal 3

0.0001 2

0.005 2.5

0.02 5

0.1 8

0.5 10

1.0 10.5

2.5 8

5.0 7

7.5 7

10 6.5

10-30

Relative

N/cmVs
67.0

50.0

57.0

28.0

8.0

3.0

1.8

2.0

1.8

1.7

1.7

1.0
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linear) approach is one possibility.  Lastly it may be

possible to give the computer program a better initial
starting spectrum.  This a priori spectrum would have to be
one of a shape which is highly expected from past measurements
or theoretical considerations.  Other authors have suggested
this approach and have used it^^'^ '.  The value of this
approach is questionable, however, since it is not clear what
spectrum should be assumed at the start and how that choice
affects the results.  A possible advantage to such an
approach, however, is that it might be more efficient in terms
of computer time, as fewer recursion loops would be necessary
(assuming you chose the right initial spectrum).

The unfolding process as presented in this paper seems to
give qualitatively reasonable results for both PuBe and
accelerator data.  With further work aimed at resolving the
problems associated with spectrum shifting and choice of
initial spectrum, this process may be used in conjunction with
existing and future shielding calculations to provide adequate
barriers to neutron contamination in linear accelerator

radiation therapy rooms.
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APPENDIX A

The Computer Program

(as modified to handle the accelerator data)
C   data input section and echo out
1 IMPLICIT REAL*8 (A-H), INTEGER (I-N)
2 REAL*8

3 A(5,52),X(52),Y(5),B(52,52),AT(52,5),W(52),Z(52),R(5),
4 P(52),D(52,52),AL(1000)
5 DO 20, 1=1,5
6 READ(5,FMT=10)(A(I,J),J=1,52)
7 READ(5,FMT=30) Y(I)
8 30   FORMAT(F7.1)
9 WRITE(6,FMT=15)(A(I,J),J=1,52)
10 15   FORMAT(IX, 9F7.4)
11 10   FORMAT(9F7.4)
12 20  CONTINUE

13 WRITE(6, FMT=40)(Y(I),1=1,5)
14 40  FORMAT(5F10.4)
C transpose of A matrix
15 DO 50, 1=1,52
16 DO 50, J=l,5
17 AT(I,J)=A(J,I)
18 50  CONTINUE

C building of initial spectrum
19 DO 60, 1=1,52
20 WBT=0

21 DO 70, J=l,5
22 WBS=AT(I,J)*Y(J)
23 WBT=WBT+WBS

24 70   CONTINUE

25 WB(I)=WBT
26 60  CONTINUE

27 DO 80, K=l,52
28 DO 90 1=1,52
29 BT=0

30 DO 100, J=l,5
31 BS=AT(I,J)*A(J,K)
32 BT=BT+BS

33 100    CONTINUE

34 B(I,K)=BT
3 5 90   CONTINUE

36 80  CONTINUE

37 N=0

38 DO 110, 1=1,52
39 X(I)=WB(I)
4 0 110  CONTINUE

C beginning of recursion loop
41 DO 500, N=l,2500
C smoothing of each spectrum in loop
42 DO 120, J=2,52
43 IF (X(J-l) .LE. 1.0) THEN
44 X(J-1)=1.1

NEATPAGEINFO:id=87829C48-1D98-4B4D-93D1-847EF88C7D34



55

45 END IF

46 IF (X(J+1) .LE. 1.0) THEN
47 X(J+1)=1.1
48 END IF

49 IF(X(J) .LE. 1.0) THEN
50 X(J) =1.1
51 END IF
52 X(J)=DEXP(DEXP((DL0G(DL0G(X(J-1)))+4*DLOG(DLOG(X(J)))+
53 DL0G(DL0G(X(J+1))))/6))
54 120  CONTINUE

C  printing of various spectra
55 IF (N .EQ. 1.0) THEN
56 PRINT*, 'N =•,N
57 DO 121, 1=1,52
58 PRINT*, •X',I,'=',X(I)
59 121  CONTINUE
60 END IF

61 IF (N .EQ. 500) THEN
62 PRINT*, "N =',N
63 DO 122, 1=1,52
64 PRINT*, •X',I,'=',X(I)
65 122  CONTINUE
66 END IF

67 IF (N .EQ. 875) THEN
68 PRINT*, 'N =•,N
69 DO 123, 1=1,52
70 PRINT*, 'X',1,'=',X(I)
71 123  CONTINUE
72 END IF

73 IF (N -EQ. 1000) THEN
74 PRINT*, 'N =•,N
75 DO 124, 1=1,52
76 PRINT*, 'X',I,'=',X(I)
77 124  CONTINUE
78 END IF

79 IF (N .EQ. 1500) THEN
80 PRINT*, 'N =',N
81 DO 125, 1=1,52
82 PRINT*, 'XSI, • = ',X(I)
83 125  CONTINUE
84 END IF

C calculation of predicted counts in bonner spheres
85 DO 130, K=l,5
86 P(K)=0
87 DO 140, M=l,52
88 Z(M)=0
89 Z(M)=A(K,M)*X(M)
90 P(K)=Z{M)+P(K)
91 140   CONTINUE

C calculation of residuals each bonner sphere
92 R(K) = (Y(K)-P(K) )**2
93 130  CONTINUE
C printing of predicted counts
94 IF (N .EQ. 875) THEN
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95 PRINT*, 'N =',N
96 DO 145, K=l,5
97 PRINT*, 'P(K)',K,'=•,P(K)
98 145  CONTINUE
99 END IF
C calculation of total residual for loop
100 AL(N)=0
101 DO 150, K=l,5
102 AL(N)=AL(N)+R(K)
103 150  CONTINUE
C  calculation of new spectrum (X array)
104 DO 160, 1=1,52
105 WVT=0
106 DO 170, J=l,52
107 WVS=B(I,J)*X(J)
108 WVT=WVT+WVS
109 170   CONTINUE
110 WV(I)=WVT
111 160  CONTINUE
112 DO 180, 1=1,52
113 D(I,I)=X(I)/WV(I)
114 180  CONTINUE
115 DO 190, 1=1,52
116 X(I)=D(I,I)*WB(I)
117 190  CONTINUE
118 500  CONTINUE
C printing of final X array
119 PRINT*,'X'
120 DO 200, 1=1,52
121 PRINT*,'X',I,~=^,X(I)
122 200  CONTINUE
C printing of residuals
123 PRINT*, '   '
124 PRINT*, 'AL',
125 DO 550, N=l,2500
126 PRINT*, "AL" ,N,'=\AL(N)
127 550  CONTINUE
128 RETURN
129 END
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