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Abstract

YIJUAN HU: Statistical Analysis of Haplotypes, Untyped SNPs, and
CNVs in Genome-Wide Association Studies.

(Under the direction of Dr. Danyu Lin.)

Missing data arise in genetic association studies when one is interested in assessing

the effects of haplotypes, untyped single nucleotide polymorphisms (SNPs) or copy

number variants (CNVs). Haplotypes are combinations of nucleotides at multiple loci

along individual homologous chromosomes, and the use of haplotypes tends to yield

more efficient analysis of disease association than SNPs. Untyped SNPs are SNPs that

are not on the genotyping chips used in the study (i.e., missing on all study subjects),

and the analysis of untyped SNPs can facilitate localization of disease-causing variants

and permit meta-analysis of association studies with different genotyping platforms. A

CNV refers to the duplication or deletion of a segment of DNA sequence compared to

a reference genome assembly, and can play a causal role in genetic diseases.

In the first part of the proposal, we provide a general likelihood-based framework for

making inference on the effects of haplotypes or untyped SNPs and their interactions

with environmental variables. Unlike most of the existing methods, we allow genetic

and environmental variables to be correlated. We show that the maximum likelihood

estimators are consistent, asymptotically normal, and asymptotically efficient and we

develop EM algorithms to implement the corresponding inference procedures. We con-

duct extensive simulation studies and apply the methods to a genome-wide association

study (GWAS) of lung cancer.

In the second part, we focus on comparing two approaches in the analysis of untyped

SNPs. The maximum likelihood approach integrates prediction of untyped genotypes
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and estimation of association parameters into a single framework and yields consis-

tent and efficient estimators of genetic effects and gene-environment interactions with

proper variance estimators. The imputation approach is a two-stage strategy which

first imputes the untyped genotypes by either the most likely genotypes or the ex-

pected genotype counts and then uses the imputed values in downstream association

analysis. We conduct extensive simulation studies to compare the bias, type I error,

power, and confidence interval coverage between the two methods under various situa-

tions. In addition, we provide an illustration with genome-wide data from the Wellcome

Trust Case-Control Consortium (WTCCC).

In the third part, we present a general framework for the integrated analysis of

CNVs and SNPs in association studies, including the analysis of total copy number as

a special case. We use allele-specific copy numbers (ASCNs) to describe both the copy

number and allelic variations of a locus. Our approach combines the ASCN calling and

association analysis into a single step while allowing for differential errors. We construct

likelihood functions that properly account for the case-control sampling and measure-

ment errors. We establish the asymptotic properties of the maximum likelihood estima-

tors and develop EM algorithms to implement the proposed inference procedures. The

advantages of the proposed methods over the existing ones are demonstrated through

realistic simulation studies and an application to a GWAS of schizophrenia.
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Chapter 1

Introduction

Many diseases of utmost public health significance, including cancer, hypertension,

diabetes, and schizophrenia, are influenced by a variety of genetic and environmental

factors, as well as gene-environment interactions. It is widely recognized that genetic

dissection of such complex human diseases requires large-scale association studies, which

relate disease phenotypes to genetic variants such as single nucleotide polymorphisms

(SNPs) and copy number variants (CNVs). In fact, there is now a proliferation of

genetic association studies worldwide thanks to the availabilities of dense SNP maps

across the human genome and precipitous drops in genotyping costs. An increasing

number of these studies survey the entire genome with high-density genotyping chips

containing hundred thousand or more SNPs for thousands of individuals; such studies

are referred to as genome-wide association studies (GWAS).

There are several options in designing population-based genetic association studies.

The simplest is the cross-sectional design, which is preferable if the disease of interest is

common or if one is interested in some disease-related traits, such as blood pressure. For

rare diseases, it is more cost-effective to adopt the case-control design, which collects

genetic and exposure information on each subject retrospectively; as a matter of fact,

owing to the strong negative selection and thereby rarity of many complex diseases,



most of ongoing studies are case-control. If one is interested in the age at onset of a

disease, then it is desirable to follow a cohort of at-risk individuals.

Missing data present a major challenge in genetic association studies. Specifically,

missing data arise when one is interested in assessing the effects of haplotypes, untyped

SNPs or CNVs on disease phenotypes. The new features of such genetic variants

call for the development of novel statistical methods. In addition, the unprecedented

scale of GWAS entails new challenges. First, as the enormous number of variants

leads to serious multiple comparison problems, it is crucial to develop tests that are

optimally powered for the true associations to reach the stringent threshold of statistical

significance. Second, the computational burden of GWAS requires methods that can

be implemented in computationally efficient algorithms.

The dissertation is organized as follows. In the rest of this chapter, we review

the existing literature and identify unresolved problems. In Chapter 2, we provide

a general framework for studying the effects of haplotypes or untyped SNPs and/or

their interactions with environmental factors. In particular, we relax the assumption of

gene-environment independence. In Chapter 3, we focus on comparing two approaches

to studying the effects of untyped SNPs, maximum likelihood and single imputation.

In Chapter 4, we present a likelihood-based framework for integrated analysis of CNVs

and SNPs in association studies, including the analysis of total copy numbers as a

special case. In Chapter 5, we outline some ongoing and future work.

1.1 Inference on Haplotype Effects

A haplotype is a specific sequence of nucleotides on the same chromosome of a subject.

Because haplotypes incorporate the linkage disequilibrium (LD) information (i.e., cor-

relation structure) of multiple SNPs and correspond to protein sequences, the use of

haplotypes tends to yield more efficient analysis of disease association than the use of

individual SNPs, especially when the causal variants are not directly measured or when

2



there are strong interactions among multiple mutations on the same chromosome (Akey

et al., 2001; Fallin et al., 2001; Li, 2001; Morris and Kaplan, 2002; Schaid et al., 2002;

Zaykin et al., 2002; Schaid, 2004). Unfortunately, current genotyping technologies do

not separate a subject’s two homologous chromosomes, so that we can only observe the

combination of the two haplotypes, which is referred to as the (unphased) genotype.

Many papers have focused on inferring haplotypes or estimating haplotype frequen-

cies from unphased genotype data alone, regardless of the phenotype. Excoffier and

Slatkin (1995) proposed maximum-likelihood estimation of haplotype frequencies via

the expectation-maximization (EM) algorithm. Their model for haplotype frequencies

makes no assumption about the LD structure among multiple loci. Their method can

only be applied to a small number of markers at a time, because the haplotype fre-

quencies become too low to be estimated with any accuracy when more than a handful

of markers are considered. Stephens et al. (2001) developed a Bayesian approach to

inferring haplotypes via a Markov chain-Monte Carlo (MCMC) algorithm. They made

explicit assumptions about the LD patterns, exploiting ideas from population genetics

and coalescent theory. Their method can cope with a large number of linked SNPs

simultaneously, but the running time will increase greatly as the number of SNPs in-

creases. Given the probabilistically inferred haplotypes by Excoffier and Slatkin (1995)

or Stephens et al. (2001), one can then relate them to the phenotype through a regres-

sion model in the downstream association analysis (e.g., Zaykin et al., 2002; Kraft et al.,

2005; Cordell, 2006). This two-stage strategy is a form of imputation, and has several

potential problems. Lin and Huang (2007) discussed in the context of case-control stud-

ies that the haplotype phasing algorithms do not acknowledge the selective-sampling

feature of the case-control design and do not take into account the phenotype. Kraft

et al. (2005) also noted that the variance estimators do not account for the uncertainty

of haplotype phasing. As a result, this imputation strategy can yield substantial bias

3



of estimated genetic effects, poor coverage of confidence intervals, significant inflation

of type I error and diminished power of risk haplotype detection (Kraft et al., 2005;

Cordell, 2006; Lin and Huang, 2007).

A large number of papers have been published in genetic journals on how to make

proper inference about the effects of haplotypes on disease phenotypes. Virtually all of

these methods pertain to likelihood and most of them deal with case-control studies, so

we first make a distinction between the prospective and retrospective likelihoods. For

case-control studies, in which the sampling is conditional on the case-control status, it

is appropriate to use the retrospective likelihood. Although Prentice and Pyke (1979)

established the equivalence of the retrospective and prospective likelihoods in making

inference on the odds ratios, the equivalence requires the distribution of the covariates

to be unrestricted and does not hold when the covariate of interest is the haplotype pair

(diplotype), the distribution of which has to be restricted for the sake of identifiability.

In light of this, the method of Zhao et al. (2003), which uses an estimating function

approximating the expectation of the complete-data prospective-likelihood score func-

tion given the observable data, is not statistically efficient, compared to the method of

Epstein and Satten (2003), which is based on a proper retrospective likelihood. Indeed,

Satten and Epstein (2004) compared the methods of Zhao et al. (2003) and Epstein

and Satten (2003) via simulation studies and concluded that the retrospective-likelihood

method has increased efficiency with respect to the prospective method. However, Ep-

stein and Satten (2003) did not allow environmental factors as Zhao et al. (2003) did.

Stram et al. (2003) described an approach based on the joint likelihood of disease and

genotype data, after accounting for the ascertainment scheme of the case-control design.

This approach requires the sampling probabilities of cases and controls to be known

and does not allow environmental factors either. Spinka et al. (2005) accommodated

environmental factors in the proposed retrospective maximum-likelihood method and

4



showed that the method is equivalent to an extension of the method by Stram et al.

(2003), which can incorporate environmental factors. Meanwhile, Schaid et al. (2002)

and Lake et al. (2003) discussed likelihood-based inference for cross-sectional studies

under generalized linear models. Lin (2004) showed how to perform the Cox (1972) re-

gression when potentially censored age-at-onset of the disease observations are collected

in cohort studies. In a general framework, Lin and Zeng (2006) provided appropriate

likelihoods for all commonly used study designs (i.e., cross-sectional, case-control and

cohort) and a variety of disease phenotypes (i.e., quantitative traits, disease indicators

and potentially censored age-at-onset). The effects of haplotypes on the phenotype are

formulated through flexible regression models, which can accommodate various genetic

mechanisms and gene-environment interactions. Later, Zeng et al. (2006) extended the

framework of Lin and Zeng (2006) to case-cohort and nested case-control designs.

To be specific, we outline the method of Lin and Zeng (2006) for case-control studies.

Let H and G denote the pair of haplotypes and the genotype for an individual based

on M biallelic SNPs. We write H = (hk, hl) if the individual’s haplotypes are hk and

hl, representing the kth and lth of total K possible haplotypes in the sample. Let Y

be the disease status, and let X be the environmental factors. The conditional density

of Y given (H = (hk, hl),X), denoted by Pα,β(Y |H = (hk, hl),X), can be formulated

by the logistic regression with linear predictor, α + βTZ(H = (hk, hl),X), or more

specifically,

α + β1{I(hk = h∗) + I(hl = h∗)}+ βT
2X+ βT

3 {I(hk = h∗) + I(hl = h∗)}X,

where h∗ is the target haplotype of interest. Note that an additive genetic effect and a

gene-environment interaction are assumed in the example above, although any genetic

mechanisms can be similarly formulated. Write πk = P (h = hk). Lin and Zeng

(2006) demonstrated that it is generally impossible to make inference about haplotype
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effects without imposing any structure on P
(
H = (hk, hl)

)
. Thus they considered the

assumption of Hardy-Weinberg equilibrium (HWE), in which case

P
(
H = (hk, hl)

)
= πkπl,

and two specific forms of departure from HWE,

P
(
H = (hk, hl)

)
= (1− ρ)πkπl + δklρπk,

and

P
(
H = (hk, hl)

)
=

(1− ρ+ δklρ)πkπl

1− ρ+ ρ
∑K

j=1 π
2
j

,

where δkk = 1 and δkl = 0 (k ̸= l). Denote π = (π1, . . . , πK) under HWE or π =

(ρ, π1, . . . , πK) under the two forms of Hardy-Weinbery Disequilibrium (HWD). Lin

and Zeng (2006) allowed the distribution function of X to be fully nonparametric,

denoted as F (x); let f(x) be the corresponding density. When the disease is rare,

considerable simplicity arises because of the approximation Pα,β(Y |H,X) ≈ exp
{
Y
(
α+

βTZ(H,X)
)}

. Lin and Zeng (2006) additionally assumed that X is independent of H,

so the retrospective likelihood based on (Gi,Xi, Yi), i = 1, . . . , n, can be approximated

by

L(θ, F ) =
n∏

i=1

∑
(hk,hl)∈S(Gi)

eYiβ
TZ(H,Xi)Pπ(hk, hl)f(Xi)∫

x

∑
(hk,hl)

eYiβ
TZ(H,x)Pπ(hk, hl)dF (x)

,

where n is the number of study subjects, θ = (β,π), and S(G) denotes the set of

diplotypes that are consistent with genotype G. Note that missing genotype values can

be incorporated by expanding the set S(G) accordingly. Lin and Zeng (2006) adopted

the nonparametric maximum likelihood estimation (NPMLE) approach, in which F (.)

is treated as a right-continuous function with jumps at the observed X. The objective

function to be maximized is obtained from L(θ, F ) by replacing f(x) with the jump
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size of F (.) at x. In this case, the profile likelihood, derived by maximizing L(θ, F )

with respect to the jump sizes of F (.) for fixed values of θ, has a closed form

L∗(µ,θ) =
n∏

i=1

∑
(hk,hl)∈S(Gi)

eYi

{
µ+βTZ(H,Xi)

}
Pπ(hk, hl)∫

y=0,1

∑
(hk,hl)

eYi

{
µ+βTZ(H,x)

}
Pπ(hk, hl)

,

where µ is an unknown constant and should be treated as a free parameter. Lin

and Zeng (2006) carried out the maximization by the Newton-Raphson algorithm,

and established the identifiability of the parameters and the consistency, asymptotic

normality, and efficiency of the maximum likelihood estimators (MLE).

All the aforementioned work assumes HWE (or certain 1-parameter extensions)

and independence of genetic and environmental factors (or absence of environmental

factors). The assumption of gene-environment independence fails in many applications.

For example, certain genes may influence both environmental exposure and disease

occurrence. Violation of the independence assumption can cause serious bias in the

analysis (e.g., Spinka et al., 2005).

Recently, Chen et al. (2008) relaxed the assumption of gene-environment indepen-

dence by postulating a polytomous logistic regression model for the distribution of the

haplotypes conditional on the environmental factors. Specifically, they assumed

log

{
P
(
H = (hk, hl)|X

)
P
(
H = (hK , hK)|X

)} = ζ0,k,l + ζ1,k,lX,

where H = (hK , hK) is chosen as the reference diplotype. For the purpose of identifi-

ability, they imposed further constraints on ζ0 and ζ1, which are vectorized forms for

the parameters ζ0,k,l and ζ1,k,l. Because the odds ratio associated with the distributions

P (X|H) and P (H|X) are the same, ζ1 can be interpreted as measures of diplotype

effects on the distribution of X. Thus it is natural to specify ζ1 according to certain
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model of effects of the underlying haplotypes. For example, assuming an additive effect

for the haplotypes, one can write ζ1,k,l = ζ1,k+ζ1,l, which allows the diplotype effects to

be determined by a reduced set of haplotype effect parameters ζ1,k. Note that ζ0 defines

the diplotype frequencies for a baseline value of X. It is common to use population ge-

netics models, such as HWE, to specify a relationship between diplotype and haplotype

frequencies. However, if the diplotypes can influence certain environmental factors, the

frequencies of the diplotypes within X categories may not follow HWE although the

underlying population, as a whole, may be in HWE. Thus, the parameter ζ0 can be

defined to entail that the marginal diplotype frequencies follow HWE. Denoting the

marginal haplotype frequencies by π = (π1, . . . , πK), HWE means that

P
(
H = (hk, hl)

)
= πkπl.

Thus, ζ0 is defined as an implicit function of ζ1, π and F (X), denoted as Ψ(ζ1,π, F ),

through the relationship

πkπl =

∫
X

P (H|X, ζ0, ζ1)dF (X),

where F (.) is treated nonparametrically. To make inference, Chen et al. (2008) first

derived the profile log-likelihood by profiling F (.) out of the complete-data likelihood

which assumes that the underlying haplotype information is known, and then replaced

ζ0 by Ψ(ζ1,π, F̃ ), where F̃ is the empirical distribution of X. After the substitution,

they obtained the complete-data estimating equation for (β, ζ1,π). Then they incor-

porated the uncertainty of the phase information by constructing a weighted version of

the complete-data estimating equation, which is solved by an EM-like algorithm. Using

their method, Chen et al. (2008) were able to detect an interaction between smoking

and a NAT2 haplotype in the development of colorectal adenoma that was undetected
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under the assumption of gene-environment independence.

Chen et al. (2008) decomposed the joint density function P (X, H) as P (H|X)P (X).

Given that genetic susceptibility may influence environmental exposures and not vice

versa, for causal interpretation of parameters it is more natural to consider a model

for X given H. Chen et al. (2008) assumed HWE in the general population. Because

P (H|X) generally does not follow HWE when P (H) is in HWE, Chen et al. (2008) de-

fined the intercepts in their polytomous logistic model for P (H|X) as implicit functions

of all other parameters so as to impose HWE on P (H). Those constraints complicate

the estimation process. In addition, the estimating equations of Chen et al. (2008) are

not likelihood score equations, the convergence properties of their EM-like algorithms

are unclear and their estimators are not asymptotically efficient. As last, their work is

confined to case-control studies.

1.2 Inference on Untyped SNP Effects

Untyped SNPs are SNPs that are not on the genotyping chip used in the study and

are thus missing on all study subjects. Because current genotyping platforms assay

only a small fraction of SNPs in the human genome, many disease-susceptibility loci

will inevitably be untyped. Conducting association analysis at untyped SNPs is highly

desirable because it can facilitate the selection of SNPs to be genotyped in follow-up

studies and enable investigators to compare or combine results from multiple studies

with different genotyping chips. Indeed, this analysis has been successful in finding

associations that would not have been found using only the original genotypes. For

example, Zeggini et al. (2008) imputed 2.20 million HapMap SNPs (Altshuler, 2005)

in three studies of type 2 diabetes. Two of the studies had been genotyped on the

Affymetrix 500K GeneChip, while the third had been genotyped on the Illumina 317K

chip. The imputation of untyped SNPs resulted in two significant results that would not
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have been found using only the original genotypes. One of these was a known association

with PPARG, while the second was a novel association with CDC123-CAMK1D, which

has been confirmed through genotyping in replication samples. These associations are

not among the top hits in any one study, but show a trend in each component study.

Because untyped SNPs are not measured on any study subject, the missing infor-

mation cannot be recovered from the study data alone. Fortunately, the LD structure

observed in an external reference panel can be used to predict untyped SNPs from

typed ones. The most common reference is the HapMap, because of the dense level of

genotyping, including over 3.1 million SNPs, on these samples. Once a reference panel

is chosen, “untyped SNPs” are often redefined to be SNPs that are not genotyped in

the study sample, but are characterized in the reference panel.

The analysis of untyped SNPs is closely related to the concept of “tagging”. Specif-

ically, Carlson et al. (2004) selected a single tag SNP as a proxy for every untyped

SNP such that the correlation coefficient r2 between the two SNPs in the reference set

is higher than a certain threshold. de Bakker et al. (2005) proposed a multimarker

method, acknowledging the fact that some groups of SNPs as a whole work better to

predict the untyped SNP than does any single SNP. They selected a specific haplotype

to serve as a proxy by r2 criteria and compared the frequency of that haplotype be-

tween the cases and the controls. Their method results in a 1 d.f. χ2 test. Although

multimarker methods are a considerable advancement, de Bakker’s method does not

fully take advantage of the correlation structure between SNPs and their multimarker

tags by ignoring the additional information given by the other haplotypes other than

the proxy haplotype. Zaitlen et al. (2007) proposed a new criteria r2h for tag SNP

selection that measures the LD between a weighted combination of all haplotypes and

the untyped SNP. The weights are chosen to maximize r2h. Zaitlen et al. (2007) also

proposed a new test statistic that computes a weighted sum of all haplotype frequency
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differences between the cases and controls. Their method is similar to that of Stram

(2004), but they did not restrict the tag SNP selection within regions of haplotype

blocks as Stram (2004) did. Their method is also similar to that of Nicolae (2006), but

they formulated a much broader set of tests than Nicolae (2006) by choosing different

weights, which encompasses the previous single-marker and multimarker approaches

involving one haplotype. Nevertheless, the three criteria, Zaitlen’s r2h, Stram’s R2
s and

Nicolae’s MD, are equivalent. All the aforementioned methods, although simple and

intuitive, are not statistically efficient and are confined to case-control comparisons

without environmental factors. In a similar spirit of tagging, Lin et al. (2008) proposed

a likelihood-based method for the analysis of untyped SNPs in case-control studies

with or without environmental factors. The likelihood integrates the study and refer-

ence data while reflecting the biased nature of the case-control sampling. This method

yields consistent and efficient estimators of genetic effects and gene-environment inter-

actions, and the variance estimators fully account for the uncertainty in inferring the

unknown variants.

In what follows, we outline the method of Lin et al. (2008). First, the LD information

from a reference panel is used to select a set of (M − 1) typed SNPs that provide the

most accurate prediction of the untyped SNP, where M is a small number, which

is set to five here. The accuracy of prediction is measured by R2
s of Stram (2004).

Given H and G defined on the set of M SNPs, with one of the component in G

always missing at the untyped locus, Lin et al. (2008) extended the framework of Lin

and Zeng (2006) from the analysis of haplotypes to untyped SNPs. Specifically, the

conditional density Pα,β(Y |H,X) is formulated by the logistic regression with linear
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predictor α+ βTZ(H,X), and Z(H,X) now models the untyped SNP effects or SNP-

environment interactions. For example, under additive mode of inheritance with gene-

environment interaction,

βTZ(H,X) = β1Gu(H) + βT
2X+ βT

3 Gu(H)X,

where Gu(H) denotes the genotype induced by the diplotype H at the untyped locus.

Under the assumptions of rare disease, HWE and gene-environment independence, the

likelihood for (β,π, F ) for the n study subjects takes the form

n∏
i=1

∑
(hk,hl)∈S(Gi)

eYiβ
TZ(H,Xi)πkπlf(Xi)∫

x

∑
(hk,hl)

eYiβ
TZ(H,x)πkπldF (x)

.

Lin et al. (2008) used the profile-likelihood arguments of Lin and Zeng (2006) to elim-

inate the distribution of X, so the MLE of β and π can be equivalently obtained by

maximizing the profile likelihood

LS(θ) =
n∏

i=1

∑
(hk,hl)∈S(Gi)

eYi

{
µ+βTZ(H,Xi)

}
πkπl∑

y=0,1

∑
(hk,hl)

ey
{
µ+βTZ(H,Xi)

}
πkπl

,

where θ = (µ,β,π) and µ is an unknown constant. If there are no environmental

factors, the likelihood is simply

LS(θ) =
n∏

i=1

∑
(hk,hl)∈S(Gi)

eYiβ
TZ(H)πkπl∑

(hk,hl)
eYiβ

TZ(H)πkπl
.

Unlike Lin and Zeng (2006), the likelihood for study subjects alone does not contain

any information about β because β will be factored out of the likelihood when the

values of the variant of interest are completely missing. Fortunately, the likelihood of

the reference panel, denoted as LR(π), can be used. It is natural to assume that the
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study and reference panel are generated from the same underlying population, so the

haplotype frequencies in the reference panel can be denoted by the same parameter π.

Lin et al. (2008) maximized the combined likelihood LC(θ) = LS(θ)LR(π) through the

EM algorithm. The resulting MLE is statistically efficient in that it has the smallest

variance among all valid estimators and the corresponding test of association is the most

powerful among all valid tests based on the same data and same assumptions. Indeed,

Lin et al. (2008) showed through simulation studies that their method is uniformly

more powerful than that of Nicolae (2006).

It is worth noting that the tagging-based methods, such as the method of Lin, Hu

and Huang (2008), can only be applied to a small number of tags at a time, because

the haplotype frequencies become too low to be estimated with good accuracy when

more than a handful of tags are considered. Also note that there is no mediating model

for the LD structure of the haplotypes, but the haplotype frequencies are estimated

directly (nonparametrically).

Recently, gaining popularity are a group of imputation methods which take advan-

tage of Hidden Markov Models (HMMs) (Scheet and Stephens, 2006; Marchini et al.,

2007; Li et al., 2010; Browning and Browning, 2007, 2009). As opposed to the aforemen-

tioned tagging-based methods, these HMM-based methods exploit population-genetic

theory for the LD structure and use information from all markers in LD with the un-

typed SNP. They are based on variants of the “product of approximate conditionals”

(PAC) models described in Li and Stephens (2003). In these models, a subset of hap-

lotypes comprising all SNPs on one chromosome is selected as a reference set, and each

reference haplotype represents a hidden state of the HMM at each marker. The true

haplotypes underlying the observed genotype data are assumed to be imperfect mosaics

of the reference haplotypes. Points of change from one reference haplotype to another

allow for historical recombination. The observed alleles may differ from the alleles on
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the underlying true haplotypes to allow for historical mutations and genotype errors.

As part of the model fitting process, parameters such as historical recombination rates

between adjacent markers, and mutation rates may be estimated. Once the haplotypes

are inferred, the untyped genotypes can be imputed. The imputed values are then be

used as known quantities in downstream association analysis.

Like the imputation methods for haplotype analysis, the imputation approach for

untyped SNPs is, statistically speaking, less satisfactory than maximum likelihood

methods such as that of Lin et al. (2008) because of its bias and inefficiency (Lit-

tle, 1992). Imputing missing data for cases and controls together can lead to a bias

toward the null hypothesis of no association and therefore a loss of power, whereas

imputing missing genotypes for cases and controls separately can inflate type I error

rates (Balding, 2006; Lin and Huang, 2007). The HMM-based imputation methods

tend to extract more LD information from the typed SNPs than maximum likelihood,

and there is likely a strong relationship between the amount of information for the

untyped SNP and the performance of the association test. However, it is not guaran-

teed that more information leads to more powerful tests as the imputation approach

often uses the information inefficiently. Nevertheless, imputation has several practi-

cal advantages over maximum likelihood. First, once the missing data are imputed,

the association analysis can be readily carried out for any traits and study designs

in standard software packages. Second, for each additional dataset included, it is not

necessary to conduct imputation again for existing datasets. Third, analyses regarding

secondary and tertiary phenotypes do not require specific imputation. Given the opera-

tional convenience of imputation and the statistical optimality of maximum likelihood,

comprehensive comparisons of these two approaches are sorely needed.
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1.3 Inference on Joint Effects of CNVs and SNPs

A single nucleotide polymorphism (SNP) is a DNA sequence variation that occurs when

a single nucleotide in the DNA sequence is altered. SNPs account for a majority of

human genetic variation and have been shown to have a significant impact on disease

susceptibility. A copy number variant (CNV) refers to the amplification or deletion of

a segment of DNA sequence compared to a reference genome assembly. Recent studies

have documented the extensive presence of CNVs in the human genome (Sebat et al.,

2004; Iafrate et al., 2004; Tuzun et al., 2005; Redon et al., 2006; Kidd et al., 2008;

McCarroll et al., 2008). Changes in copy number can have dramatic phenotypic conse-

quences by altering gene dosage, disrupting coding sequences, or perturbing long-range

gene regulation. Indeed, CNVs, in particular common copy-number polymorphisms,

have been reported to be associated with several complex disease phenotypes, includ-

ing HIV acquisition and progression (Gonzalez et al., 2005), lupus glomerulonephritis

(Aitman et al., 2006), and three systemic autoimmune diseases: systemic lupus ery-

thematosus, microscopic polyangiitis and Wegener’s granulumatosis (Yang et al., 2007;

Fanciulli et al., 2007).

Because CNVs and SNPs coexist throughout the human genome and may both

contribute to phenotype variation, it is desirable to consider both types of variations

in association studies of complex human diseases, characterized by allele-specific copy

numbers (ASCNs). Ignoring CNVs during SNP genotype calling can lead to erroneous

genotypes that appear to violate Mendelian inheritance (MI) or Hardy-Weinberg equi-

librium (HWE). For this reason, SNPs in the CNV regions are typically filtered out.

In addition, CNVs and SNPs may act in concert to influence disease phenotypes. For

example, several cancer studies have shown evidence of the joint effects of CNVs and

SNPs (e.g., Van Loo et al., 2010).

SNP genotyping arrays, such as those from Affymetrix and Illumina, hold the
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promise to study CNVs and SNPs simultaneously. SNP arrays capture ASCN informa-

tion by generating quantitative two-dimensional measurements. Specifically, Affymetrix

arrays provide a pair of raw allele-specific intensities for each SNP while Illumina ar-

rays transform the pair of raw intensities to a measurement of total copy number and

a measurement of allelic contrast.

Since the underlying ASCNs are not directly observed, an intuitive approach is to

call ASCNs first and then use the ASCN calls in downstream association analysis. Var-

ious calling algorithms have been proposed to dissect copy number states from SNP

genotyping arrays. For example, several methods, such as QuantiSNP (Colella et al.,

2007), PennCNV (Wang et al., 2007) and GenoCNV (Sun et al., 2009), rely on Hid-

den Markov Models (HMMs) to segment the intensity measurements along the genome.

They were designed for Illumina array data for a single sample. PennCNV assumes that

the parameters of the HMM are known. QuantiSNP imposes some common priors for

these parameters so that only a few hyper-parameters need to be estimated. GenoCNV

allows these parameters to be estimated from the data. GenoCNV directly estimate

ASCNs. PennCNV and QuantiSNP only output calls for total copy numbers, though

ASCNs can be obtained by applying appropriate thresholds for the allelic contrast mea-

surements. For the Affymetrix 6.0 array, a commonly used software is Birdsuite (Korn

et al., 2008). While assuming prior information are available for common CNVs but

not for rare ones, rare CNVs and common CNVs are handled differently in Birdsuite.

Rare CNVs are discovered by an HMM. For common CNVs, Birdsuite makes use of

their prior knowledge, such as the locations and copy number states, and reduces the

identification of CNVs to CNV “genotyping”, which is analogous to SNP genotyping.

Specificly, at each known common CNV region, a univariate Gaussian mixture model

(GMM) is used to cluster total copy number measurements across individuals and as-

sign each individual a total copy number state. At last, the ASCNs are derived at SNP
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sites by two-dimensional GMMs informed by the total copy number assignments.

After ASCN calling, the downstream association analysis can be carried out in stan-

dard software packages. This two-step strategy is a form of “imputation” in missing

data literature. This imputation approach is not optimal for two reasons. First, the

association testing may not be robust to the differential errors between cases and con-

trols caused by differences in DNA quality or handling; see Figure 1.1. For example,

differential errors arise when batch effects in array processing are correlated with the

disease status. Differential errors are prevalent and difficult to exclude, as case and

control samples can rarely be obtained in strictly comparable circumstances to ensure

identical DNA handling. In the presence of such errors, calling ASCNs with cases and

controls combined will lead to differential misclassification and will generate excessive

false-positive findings of association. Second, imputation per se carries serious flaws

because it ignore the phenotype which may be informative about the missing data and

the association analysis does not account for the uncertainty in inferring missing data.

In general, imputation may yield biased parameter estimators and incorrect variance

estimators, which may result in inflated type I error (Hu and Lin, 2010).

Barnes et al. (2008) described a likelihood-based method for association studies with

total CNVs, which accounts for differential errors and avoids imputation. We illustrate

the method of Barnes et al. (2008) in the following. Let R denote the quantitative

copy number measurement, K the unobserved true copy number, which is an integer,

Y the phenotype and X the environmental factors. Barnes et al’s method is based on

the following factorization:

Pγ,δ,α,β,ξ,π(R, Y,K|X) = Pγ,δ(R|Y,K,X)Pα,β,ξ(Y |K,X)Pπ(K|X),

where the three component parts are referred to as the “signal model”, “phenotype

model” and “copy number model”, respectively. For the signal model, R is assumed to
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be normally distributed with mean and variance depending on K as well as on (Y,X)

to allow for differences in DNA sources and batch effects. The “signal mean” can be

modeled through the linear regression with parameters γ, and the “signal variance”

can be linked to the δ-indexed linear predictor by a logarithmic link function. The

phenotype model can be any generalized linear model (GLM), and in particular logistic

regression for case-control studies. The copy number model Pπ(K|X) can be simplified

by assuming gene-environment independence. Then the distribution of K is assumed

to be multinomial with π denoting the frequencies. Barnes et al. (2008) maximized the

likelihood of n study subjects

n∏
i=1

Pγ,δ,α,β,ξ,π(Ri, Yi, Ki|Xi)

by a variation of the EM algorithm, termed the ECM algorithm, and tested the null

hypothesis β = 0 by the likelihood ratio test.

The method of Barnes et al. (2008) has important limitations. First, it is confined to

the total copy number and ignores possible allelic effects. It collapses the allele-specific

copy number measurements at SNP sites into total copy number measurements, which

may lose information and reduce power. In addition, it adopts a prospective likelihood,

which may not be appropriate for case-control studies with missing data or measurement

errors.
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Figure 1.1: An example of Affymetrix intensity data at a SNP site showing differential
errors. The data are from a GWAS of schizophrenia (Shi et al., 2009).
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Chapter 2

A General Framework for Studying

Genetic Effects and

Gene-Environment Interactions

with Missing Data

2.1 Introduction

In this chapter, we extend the work of Lin and Zeng (2006) to allow gene-environment

dependence and to handle untyped SNPs. We provide a unified framework for assess-

ing the roles of individual SNPs (including untyped SNPs) or their haplotypes in the

development of disease. The effects of genetic and environmental factors on disease phe-

notypes are formulated through flexible regression models that incorporate appropriate

genetic mechanisms and gene-environment interactions. The dependence between ge-

netic and environmental factors is characterized by a class of odds-ratio functions. The

marginal distribution of environmental factors is completely unspecified, while genetic

variables may be in Hardy-Weinberg equilibrium or disequilibrium. We construct ap-

propriate likelihoods for all commonly used study designs (including cross-sectional,



case-control, and cohort designs) and a variety of disease phenotypes/traits. Unlike

the case of gene-environment independence, the likelihoods involve the (potentially

infinite-dimensional) distribution of environmental variables even under cross-sectional

and cohort designs and are thus difficult to handle both theoretically and numerically.

We establish the theoretical properties of the maximum likelihood estimators by ap-

pealing to modern asymptotic techniques, and develop efficient and stable numerical

algorithms to implement the corresponding inference procedures. We evaluate the pro-

posed methods through extensive simulation studies and apply them to a major GWAS

of lung cancer (Amos et al., 2008).

2.2 Methods

2.2.1 Notation and Assumptions

We consider a set of SNPs that are in linkage disequilibrium (i.e., correlated). We may

have a direct interest in the haplotypes of these SNPs or wish to use the haplotype

distribution to infer the unknown value of one SNP from the observed values of the

other SNPs. Let H and G denote the diplotype (i.e., the pair of haplotypes on the

two homologous chromosomes) and genotype, respectively. We write H = (h, h′) if the

diplotype consists of h and h′, in which case G = h + h′. We allow the values in G to

be missing at random. Note that H cannot be determined with certainty on the basis

of G if the two constituent haplotypes differ at more than one position or if any SNP

genotype is missing.

Let Y and X denote, respectively, the phenotype of interest and the environmen-

tal factors or covariates. We allow X to include both covariates that are potentially

correlated with H and those known to be independent of H. For cross-sectional and

case-control studies, the effects of X and H on Y are characterized by the conditional
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density of Y = y given X = x and H = (h, h′), denoted by Pα,β,ξ(y|x, (h, h′)), where

α, β and ξ pertain to intercept(s), regression parameters, and nuisance parameters

(e.g., variance and overdispersion parameters), respectively. The regression effects are

specified through the design vector Z(X, H), which is a vector-function of X and H.

For example, if we are interested in the additive genetic effect of a risk haplotype h∗

and its interactions with X, then we may specify

Z(x, (h, h′)) =


I(h = h∗) + I(h′ = h∗)

x

{I(h = h∗) + I(h′ = h∗)}x

 , (2.1)

where I(·) is the indicator function. For dominant and recessive models, we replace

I(h = h∗) + I(h′ = h∗) by I(h = h∗ or h′ = h∗) and I(h = h′ = h∗), respectively; the

co-dominant model contains both additive and recessive effects. If we are interested in

the additive effect of a particular SNP, then we replace I(h = h∗) + I(h′ = h∗) by the

value of (h+h′) at that SNP position; dominant, recessive and co-dominant effects are

defined similarly.

Let K be the total number of haplotypes that exist in the population. For k =

1, . . . , K, we denote the kth haplotype by hk. Define πkl = Pr(H = (hk, hl)) and

πk = Pr(h = hk), k, l = 1, . . . , K. Under HWE,

πkl = πkπl, k, l = 1, . . . , K. (2.2)

We also consider two forms of Hardy-Weinberg disequilibrium (HWD),

πkl = (1− ρ)πkπl + δklρπk, (2.3)
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and

πkl =
(1− ρ+ δklρ)πkπl

1− ρ+ ρ
∑K

j=1 π
2
j

, (2.4)

where 0 < πk ≤ 1,
∑K

k=1 πk = 1, δkk = 1, and δkl = 0 (k ̸= l) (Lin and Zeng,

2006). Both (2.3) and (2.4) reduce to (2.2) if ρ = 0. Excess homozygosity (i.e.,

πkk > π2
k, k = 1, . . . , K) and excess heterozygosity (i.e., πkk < π2

k, k = 1, . . . , K) arise

when ρ > 0 and ρ < 0, respectively, although the range of heterozygosity is restrictive.

Denote the probability function of H by Pγ(·), where γ consists of π = (π1, . . . , πK)
T

under (2.2) and π and ρ under (2.3) or (2.4).

We formulate the dependence of X on H through the conditional density function

P (X|H). Because of missing genetic data, P (X|H) cannot be completely nonparamet-

ric. Mimicking Chen (2004)’s idea, we define the general odds-ratio function

η(X,x0, H, (h0, h
′
0)) =

P (X|H)P (x0|h0, h′0)
P (X|h0, h′0)P (x0|H)

,

where (h0, h
′
0) and x0 are fixed points in the sample spaces of H and X, respectively.

Then

P (X|H) =
η(X,x0, H, (h0, h

′
0))P (X|h0, h′0)∫

x
η(x,x0, H, (h0, h′0))P (x|h0, h′0)dx

,

so the conditional density function is represented by the odds ratio function η and the

conditional density at a fixed point P (X|h0, h′0). We abbreviate P (x|h0, h′0) as f(x)

and denote the corresponding distribution function by F (x).

Without loss of generality, set (h0, h
′
0) = (hK , hK). If X consists of S components

that are either continuous or dichotomous, then we may specify that

log η(x,x0, (hk, hl), (hK , hK)) =
S∑

s=1

ζs,k,l(xs − x0,s),

where x = (x1, . . . , xS)
T, x0 = (x0,1, . . . , x0,S)

T, and ζs,k,l (s = 1, . . . , S; k, l = 1, . . . , K)
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are log odds ratios with ζs,K,K = 0. Any categorical covariate of l levels can be repre-

sented by (l−1) dichotomous variables. Specific mode of inheritance is imposed on ζs,k,l

(k, l = 1, . . . , K) to ensure identifiability. Under the additive model, ζs,k,l = ζs,k + ζs,l

with ζs,K = 0. If a certain component of X, indexed by s′, is known to be indepen-

dent of H, then we set the corresponding ζs′,k,l (k, l = 1, . . . , K) to 0. In general,

log η(x,x0, (hk, hl), (hK , hK)) = ζTD(x, hk, hl), where ζ is a set of log-odds ratio pa-

rameters, and D(x, hk, hl) is a set of distance measures. This formulation encompasses

all generalized linear models for X with canonical links to H.

REMARK 2.1 Chen et al. (2008) assumed HWE and decomposed the joint density

function P (X, H) as P (H|X)P (X). Because P (H|X) generally does not follow HWE

when P (H) is in HWE, Chen et al. (2008) defined the intercepts in their polytomous

logistic model for P (H|X) as implicit functions of all other parameters so as to impose

HWE on P (H). Those constraints complicate the estimation process. By contrast,

we decompose P (X, H) as P (X|H)P (H), so that the population genetics assumption

on P (H) can be incorporated directly and there are no constraints on other parame-

ters. The odds ratios associated with P (X|H) and P (H|X) are the same and can be

interpreted as the effects of H on X or the effects of X on H.

In the sequel, S(G) denotes the set of diplotypes that are compatible with genotype

G, h† denotes a haplotype that differs from h at only one SNP site, and ∇uf(u,v) =

∂f(u,v)/∂u. For any parameter θ, we use θ0 to denote its true value when the dis-

tinction is necessary. We assume that the true value of any Euclidean parameter θ

belongs to the interior of a known compact set within the domain of θ and that F0 is

twice-continuously differentiable with positive derivatives in its support.
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2.2.2 Cross-Sectional Studies

In a cross-sectional study, we measure the phenotype Y, genotype G and covariates X

on a random sample of n subjects, so the data consist of (Yi,Xi, Gi) (i = 1, . . . , n).

The phenotype or trait Y can be any type (e.g., binary or continuous) and possibly

multivariate. As mentioned in Section 2.2.1, the conditional density of Y given X and

H is given by Pα,β,ξ(Y|X, H), which can be formulated by generalized linear models

for univariate traits and by generalized linear mixed models for multivariate traits.

Write θ = (α,β, ξ,γ, ζ). The likelihood for θ and F is

Ln(θ, F ) =
n∏

i=1

∑
H∈S(Gi)

Pα,β,ξ(Yi|Xi, H)Pζ,F (Xi|H)Pγ(H), (2.5)

where

Pζ,F (x|h, h′) =
exp{ζTD(x, h, h′)}f(x)∫

x̃
exp{ζTD(x̃, h, h′)}dF (x̃)

.

We use the NPMLE approach. In this approach, the distribution function F (·) is

treated as a right-continuous function with jumps at the observed X. The objective

function to be maximized is obtained from (2.5) by replacing f(x) with the jump size

of F at x. The maximization can be carried out by the EM algorithm described in

Section 2.6.1.

2.2.3 Case-Control Studies

In a case-control study, we measure X and G on n1 cases (Y = 1) and n0 controls

(Y = 0). It is natural to formulate the effects of X and G on Y through the logistic

regression model

Pα,β(Y |X, H) =
exp{Y (α + βTZ(X, H))}
1 + exp{α+ βTZ(X, H)}

, (2.6)

where α is an intercept and β is a set of log odds ratios.
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Write θ = (α,β,γ, ζ). To reflect case-control sampling, we employ the retrospective

likelihood:

Ln(θ, F ) =
n∏

i=1

∑
H∈S(Gi)

Pα,β(Yi|Xi, H)Pζ,F (Xi|H)Pγ(H)∫
x

∑
H Pα,β(Yi|x, H)Pζ,F (x|H)Pγ(H)dx

. (2.7)

There is very little information about α in case-control data, so the problem is virtually

non-identifiable. We focus on two tractable situations: when the disease is rare, and

when the disease rate is known. Under such conditions, the haplotype distribution of

the general population can be estimated reliably from case-control data.

Rare Disease

When the disease is rare, model (2.6) simplifies to Pα,β(Y |X, H) ≈ exp
{
Y
(
α +

βTZ(X, H)
)}
. Then the likelihood given in (2.7) becomes

Ln(θ, F ) =
n∏

i=1

{∑
H∈S(Gi)

exp{βTZ(Xi, H)}Pζ,F (Xi|H)Pγ(H)∫
x

∑
H exp{βTZ(x, H)}Pζ,F (x|H)Pγ(H)dx

}Yi

×

{ ∑
H∈S(Gi)

Pζ,F (Xi|H)Pγ(H)

}1−Yi

, (2.8)

in which θ consists of β, γ and ζ only. We again adopt the NPMLE approach, which

is implemented via the EM algorithm described in Section 2.6.2.

Known Disease Rate

Let p1 be the known disease rate. We maximize the likelihood given in (2.7) or

equivalently

Ln(θ, F ) =
n∏

i=1

∑
H∈S(Gi)

Pα,β(Yi|Xi, H)Pζ,F (Xi|H)Pγ(H)
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subject to the constraint that
∫
x

∑
H Pα,β(Y = 1|x, H)Pζ,F (x|H)Pγ(H)dx = p1. We

show in Section 2.6.3 that the NPMLEs of θ and F can be obtained via an EM algo-

rithm.

REMARK 2.2 Chen et al. (2008) also focused on the situations of rare disease and

known disease rate. Because their estimating equations are not likelihood score equa-

tions and involve constraints for the intercepts of their polytomous logistic model, the

convergence properties of their EM-like algorithm are unclear, and their estimators are

not asymptotically efficient. By contrast, our objective functions are likelihood func-

tions, which are guaranteed to increase at each step of the EM algorithms, and the

resulting estimators are asymptotically efficient.

2.2.4 Cohort Studies

In a cohort study, we follow a random sample of n at-risk subjects to observe their ages

at onset of disease. The subjects who are disease-free during the follow-up contribute

censored observations. Let Y and C denote the time to disease occurrence and the

censoring time, respectively. It is assumed that C is independent of Y andH conditional

on X and G. The data consist of (Ỹi,∆i,Xi, Gi), i = 1, . . . , n, where Ỹi = min(Yi, Ci),

and ∆i = I(Yi ≤ Ci).

We formulate the effects of X and H on Y through a class of semiparametric trans-

formation models

Λ(t|X, H) = Q(Λ(t)eβ
TZ(X,H)),

where Λ(·|X, H) is the cumulative hazard function of Y given X and H, Λ(·) is an

unspecified increasing function, and Q(·) is a three-time differentiable function with

Q(0) = 0 and Q′(x) > 0 and satisfying condition (e) of Zeng and Lin (2007). Here

and in the sequel, g′(x) = dg(x)/dx and g′′(x) = d2g(x)/dx2. The choices of Q(x) = x
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and Q(x) = log(1 + x) yield the proportional hazards model (Cox, 1972) and the

proportional odds model (Bennett, 1983), respectively.

Write θ = (β,γ, ζ). The likelihood concerning θ, Λ and F takes the form

Ln(θ,Λ, F ) =
n∏

i=1

∑
H∈S(Gi)

{
Λ′(Ỹi)e

βTZ(Xi,H)Q′(Λ(Ỹi)e
βTZ(Xi,H))

}∆i

× exp
{
−Q(Λ(Ỹi)eβ

TZ(Xi,H))
}
Pζ,F (Xi|H)Pγ(H). (2.9)

Adopting the NPMLE approach, we regard Λ and F as right-continuous functions and

replace Λ′(Ỹi) and f(x) in (2.9) with the jump size of Λ at Ỹi and the jump size of F

at x. The estimation can be carried out through EM algorithms; see Section 2.6.4.

2.2.5 Asymptotic Properties

The NPMLEs in Sections 2.2.2–2.2.4, denoted by θ̂, F̂ and Λ̂, are consistent, asymptot-

ically normal, and asymptotically efficient; rigorous statements and proofs are provided

in Theorems 2.1–2.4 of Section 2.6. The limiting covariance matrix of θ̂ can be consis-

tently estimated by inverting the information matrix for all parameters (including the

jump sizes of nuisance functions) or by using the profile likelihood function (Murphy

and van der Vaart, 2000).

2.2.6 Untyped SNPs

When one of the SNPs in G is untyped, i.e., missing on all study subjects, the haplotype

distribution π cannot be estimated from the study data alone. Fortunately, external

databases, such as the HapMap, can be used to estimate π provided that the external

sample and the study sample are generated from the same underlying population.

Let LR(π) denote the likelihood for π based on the external sample. If the external
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sample consists of ñ unrelated subjects, then LR(π) =
∏ñ

j=1

∑
(hk,hl)∈S(Gj)

πkπl, where

Gj is the genotype of the jth subject. The HapMap database provides genotype infor-

mation for trios. For an external sample of ñ trios, the genotype data for the jth trio

consist of Gj ≡ (GFj, GMj, GCj) (j = 1, . . . , ñ), where GFj, GMj and GCj denote the

genotypes for the father, mother and child, respectively. Then

LR(π) =
ñ∏

j=1

∑
(hk,hl,hk′ ,hl′ )∈S(Gj)

πkπlπk′πl′ ,

where (hk, hl, hk′ , hl′) ∈ S(Gj) means that (hk, hl) is compatible with GFj, (hk′ , hl′)

is compatible with GMj, and (hk, hk′), (hk, hl′), (hl, hk′) or (hl, hl′) is compatible with

GCj.

Denote the likelihood for the study data by LS(θ), in which θ consists of π, as well

as all other finite- and infinite-dimensional parameters in the likelihood. The likelihood

for θ that combines the study data and the external data is LC(θ) ≡ LS(θ)LR(π). We

maximize LC(θ) in the same manner as in the maximization of LS(θ); the score function

and information matrix for LR(π) are provided in Appendix B of Lin et al. (2008).

The resulting estimators of θ are consistent, asymptotically normal and asymptotically

efficient.

2.3 Simulation Studies

We conducted extensive simulation studies to assess the operating characteristics of the

proposed methods in realistic scenarios. We considered 5 SNPs (rs10519198, rs13180,

rs3743079, rs8034191 and rs3885951) in a gene on chromosome 15 that is known to

affect both smoking behaviour and lung cancer (Amos et al., 2008). Table 2.1 displays

the haplotype frequencies of the 5 SNPs. We simulated genotype data from those

haplotype frequencies under HWE.
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Our first set of studies was concerned with the inference on haplotype effects and

haplotype-environment interactions in case-control studies. We simulated disease status

from the logistic regression model with an additive effect of h2:

logitPr{Y = 1|X,H = (h, h′)}

= α + β1{I(h = h2) + I(h′ = h2)}+ β2X + β3{I(h = h2) + I(h′ = h2)}X,

whereX is Bernoulli with Pr(X = 1|(hK , hK)) = .2. We let log η(X, 0, (hk, hl), (hK , hK)) =

(ζ1,k + ζ1,l)X, where ζ1,2 = 0.2, ζ1,4 = −0.2, ζ1,9 = 0.1 and ζ1,k = 0 (k ̸= 2, 4, 9).

For making inference on β1, we set β2 = .25 and β3 = .0 and varied β1 from −.5

to .5; for making inference on β3, we set β1 = β2 = .25 and varied β3 from −.5 to

.5. We chose α = −3 and −2.1 to yield disease rates between 5% and 15%. We let

n1 = n0 = 500 and adopted the rare disease assumption in the analysis. We also

included the method of Lin and Zeng (2006), which assumes haplotype-environment

independence. The results are summarized in Table 2.2.

The proposed estimator for β1 is virtually unbiased. The proposed estimator for β3

seems to be slightly biased downward when the disease rate is close to 15%. The pro-

posed variance estimators accurately reflect the true variabilities, the Wald tests have

proper type I error, and the confidence intervals have reasonable coverage probabilities.

The rare-disease assumption is a good approximation even when the disease rate is as

high as 15%. Under the Lin-Zeng method, the estimators are biased, the type I error

is inflated, and the confidence intervals have poor coverage probabilities, especially for

interactions.

To assess the efficiency loss of modelling gene-environment dependence when the

independence assumption actually holds, we modified the above simulation set-up by

letting ζ = 0. For making inference on β1, we set α = −3, β2 = .25 and β3 = 0
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and varied eβ1 from 1.3 to 1.6; for making inference on β3, we set β1 = β2 = .25 and

varied eβ3 from 1.5 to 2.3. As shown in Figure 2.1, the power loss is more substantial

in testing interactions than in testing main effects. In practice, one should incorporate

the independence assumption into the analysis if it is known to be true. Indeed, our

formulation allows one to impose the independence on any subset of X. If the indepen-

dence is not known to hold or not, then the empirical Bayes-type shrinkage estimation

(e.g., Chen et al., 2009) provides a nice trade-off between efficiency and robustness; see

Section 2.6.5.

The aforementioned studies pertain to a binary covariate and to risk haplotype h2,

which has a relatively high frequency. Additional simulation studies revealed that the

above conclusions continue to hold for other haplotype frequencies and other covariate

distributions. For example, the left panel of Table 2.3 shows the results under the

logistic regression model

logitPr{Y = 1|X1, X2, (h, h
′)}

= α + βh2{I(h = h2) + I(h′ = h2)}+ βh1{I(h = h1) + I(h′ = h1)}

+βx1X1+βx2X2+βx1h2{I(h = h2)+I(h
′ = h2)}X1+βx1h1{I(h = h1)+I(h

′ = h1)}X1,

coupled with the odds ratio function log η((X1, X2), (0, 0), (hk, hl), (hK , hK)) = (ζ1,k +

ζ1,l)X1, where X1 and X2 are independent conditional on H, the conditional distribu-

tion of X1 given H = (hK , hK) is standard normal, X2 is Bernoulli with .4 success

probability, α = −3, βh1 = βh2 = .25, βx1 = βx2 = .3, βx1h2 = βx1h1 = .0, ζ1,2 = 0.2,

ζ1,4 = −0.2, ζ1,9 = 0.1 and ζ1,k = 0 (k ̸= 2, 4, 9).

To assess the robustness of the proposed method, we modified the above setting to

simulate a conditional distribution of X given H that does not fit into the odds ratio

formulation. Specifically, we let the conditional density of X1 given H = (hk, hl) be ζk+
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ζl + t, where t follows a 3 d.f. t-distribution truncated at ±5. The results are provided

in the right panel of Table 2.3. The proposed method is robust to misspecification of

the dependence structure.

We also compared the proposed method to that of Chen et al. (2008). We simulated

data from the logistic regression model

logitPr{Y = 1|X,H = (h, h′)}

= α + β1{I(h = h3) + I(h′ = h3)}+ β2X + β3{I(h = h3) + I(h′ = h3)}X,

and the odds ratio function log η(X, 0, (hk, hl), (hK , hK)) = (ζ1,k + ζ1,l)X, where the

conditional distribution of X given H = (hK , hK) is standard normal, ζ1,3 = 0.2,

ζ1,4 = −0.2, ζ1,9 = 0.1 and ζ1,k = 0 (k ̸= 3, 4, 9). We set n1 = n0 = 500 and α = −3. For

making inference on β1, we set β2 = 0.25 and β3 = 0 and varied eβ1 from 1.5 to 1.8; for

making inference on β3, we set β1 = β2 = 0.25 and varied eβ3 from 1.5 to 1.8. For each

combination of simulation parameters, we generated 1,000 data sets. Our algorithm

always converged, whereas the algorithm of Chen et al. (2008), as implemented in their

SAS program, failed to converge in about 3% of the data sets. Figure 2.2 presents the

power curves of the two methods based on the data sets in which the algorithm of Chen

et al. converged. The proposed method is uniformly more powerful than Chen et al.’s,

especially in detecting interactions.

Our final set of studies dealt with analysis of untyped SNPs in cohort studies. We

simulated ages at onset of disease from the proportional hazards model Λ(t|X,H) =

t2eβ1G4(H)+β2X+β3G4(H)X , where G4(H) is the genotype induced by the diplotype H at

the 4th locus, and X is the same as in the first set of case-control studies. We gener-

ated censoring times from the uniform (0, τ) distribution, where τ was chosen to yield

approximately 250, 500 or 1,000 cases under n =5,000. We set β1 = β2 = .25 and
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varied β3 from −.5 to .5. We set the 4th SNP to be missing in the observed data and

generated an external data set of 30 trios from the haplotype distribution of Table 2.1.

As shown in Table 2.4, the proposed method performs very well.

2.4 Lung Cancer Study

Lung cancer is the most common type of cancer in terms of both incidence and mortality,

with the highest rates in Europe and North America. Although this malignancy is

attributable to environmental exposures, primarily cigarette smoking, genetic factors

influencing lung cancer susceptibility have been reported in numerous studies. Recently,

a genome-wide case-control association study of histologically confirmed non-small cell

lung cancer was conducted to identify common low-penetrance alleles influencing lung

cancer risk (Amos et al., 2008). Controls were matched to cases according to smoking

behavior, age (in 5-year groups) and sex, and former smokers were further matched by

years of cessation. The study population was restricted to individuals of self-reported

European descent to minimize confounding by ethnic variation.

In the discovery phase of the study, 1,154 ever-smoking cases and 1,137 ever-smoking

controls were genotyped for 317,498 tagging SNPs on Illumina HumanHap300 v1.1

BeadChips. Two SNPs, rs1051730 and rs8034191, mapping to a region of strong link-

age disequilibrium within 15q25.1 containing PSMA4 and the nicotinic acetylcholine

receptor subunit genes CHRNA3 and CHRNA5, were found to be significantly associ-

ated with lung cancer risk. The investigators kindly provided us data on a cluster of

37 SNPs surrounding those two SNPs.

We first investigate haplotype effects and haplotype-smoking interactions with slid-

ing windows of 5 SNPs. For each window, we fit a logistic regression model that

compares all haplotypes (with observed frequencies greater than 0.2% in the control
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group) to the most frequent haplotype under the additive mode of inheritance and in-

cludes cigarettes per day as a continuous covariate. Because the SNPs in the region are

known to be associated with smoking behavior, we allow all haplotypes (with observed

frequencies greater than 0.4% in the control group) to be potentially correlated with

the smoking variable in the proposed general odds-ratio function. We assume HWE

and adopt the rare-disease approximation. For comparisons, we also fit the haplotype-

environment independence model of Lin and Zeng (2006).

Table 2.5 presents the results for a window containing SNP rs1051730. Haplotype

11110 is significantly related to smoking. Haplotype 00000 also has a large effect on

smoking, although not significant at the 0.05 level. For those two haplotypes, the

Lin-Zeng method would declare statistical significance at the 0.05 level for haplotype-

smoking interactions, whereas the proposed method would not. These differences are

consistent with the simulation results shown in Table 2.2 that the Lin-Zeng method

tends to produce false positive results for haplotype-environment interactions when the

independence assumption fails.

Next, we investigate the effects of individual SNPs and their interactions with smok-

ing in the development of lung cancer for the 37 typed SNPs and 259 untyped HapMap

SNPs in the region. In accordance with the study sample, we choose the HapMap sam-

ple of Utah residents with ancestry from northern and western Europe as the reference

panel in the analysis of untyped SNPs. For each untyped SNP, we identify a set of

4 typed SNPs within 100,000 base pairs that provides the best prediction (Lin et al.,

2008). We apply the proposed and Lin et al. (2008) methods. The former allows gene-

environment dependence whereas the latter assumes independence. For typed SNPs,

we also perform standard logistic regression analysis, which allows any form of gene-

environment dependence and thus serves as a benchmark. The dependence between

smoking and SNPs in the region of interest turns out to be very strong; the results are
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not shown here. Figure 2.3 displays the results for testing SNP effects (adjusted for

smoking) and for testing SNP-smoking interactions. For typed SNPs, the results based

on the proposed method and standard logistic regression are highly similar, suggesting

that our odds ratio formulation is reasonable; the results of the Lin et al. method are

different, especially for interactions. For untyped SNPs, the Lin et al. method yields

more significant results, especially for interactions, than the proposed method. Because

of the strong gene-environment dependence, the results of the Lin et al. method are

unreliable.

2.5 Discussion

This chapter extends the work of Lin and Zeng (2006) to allow gene-environment de-

pendence and to handle untyped SNPs. As demonstrated in the simulation studies

and real example, the results of association analysis depend critically on the assump-

tion about gene-environment relationship. If the genetic and environmental factors

are known to be independent, then one should impose this structure in the analysis

to improve efficiency. If the independence does not hold, then one should avoid this

assumption to enhance the validity of inference.

Unlike Lin and Zeng (2006), our likelihood functions involve the (potentially infinite-

dimensional) distribution of covariates even for cross-sectional and cohort studies. Also,

Lin and Zeng (2006) did not consider case-control studies with known disease rates.

Even for case-control studies with rare disease, our likelihood function is more compli-

cated than that of Lin and Zeng (2006) because the distribution of covariates cannot

be profiled out due to the modeling of gene-environment dependence. Thus, our nu-

merical algorithms are fundamentally different from those of Lin and Zeng (2006) for

all study designs. Although the basic structures of our theoretical proofs are similar

to those of Lin and Zeng (2006), the actual techniques employed are novel. Due to the
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presence of multiple nonparametric conditional distribution functions of X given H,

the proofs of identifiability of parameters and nonsingularity of information matrices

are very delicate.

Lin and Zeng (2006) considered the setting in which X is independent of H condi-

tional on G. It is difficult to construct realistic scenarios in which X is independent of

H conditional on G but not independent of H unconditionally. Indeed, G is equivalent

to H if there is only a single SNP or H consists of (h, h) or (h, h†). It is more natural

to allow direct association between H and X, as is done in this chapter.

We have assumed that X is completely observed. In practice, the values of certain

environmental variables (e.g., smoking history and dietary information) may be un-

known on some study subjects. A major advantage of the odds-ratio formulation is that

it can readily handle missing covariates (Chen, 2004). Specifically, we express P (X|H)

as P (X1|H)P (X2|X1, H) ×P (X3|X1, X2, H) . . ., and represent each conditional density

function in terms of a general odds ratio function and an arbitrary one-dimensional dis-

tribution function. In this way, we can accommodate arbitrary missing patterns in X

and easily extend the theory and numerical algorithms of this chapter.

In the genetic and epidemiologic literature, it has become a common practice to infer

the haplotypes or the values of untyped SNPs for each subject based on the genotype

data alone and then include those imputed values in downstream association analysis.

This is single imputation with improper posterior distributions and can yield biased

estimates of genetic effects, inflated type I error and reduced statistical power (e.g., Lin

and Huang, 2007; Lin et al., 2008).

We infer the unknown value of an untyped SNP nonparametrically from a small

set of typed SNPs which is chosen to provide the best prediction among all flanking

SNPs. An alternative approach is to use all typed SNPs on the chromosome under

a population genetics model. To incorporate the latter approach into our framework,
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we let G denote all the SNPs on the chromosome and decompose G into the typed

component Gt and the untyped component Gt. The joint density of the observed data

(Y,X, Gt) can be written as

P (Y,X, Gt) =
∑
Gu

P (Y|X, Gt, Gu)P (X|Gt, Gu)P (Gt, Gu).

We calculate P (Gt, Gu) through a hidden Markov model (e.g., Marchini et al., 2007). It

is difficult to correctly specify the regression model P (Y|X, Gt, Gu). For estimating the

marginal effect of an untyped SNP, we include only that SNP in the regression model.

Even when we are interested in the marginal effect of a single SNP, we need to include

all the SNPs on the chromosome that are correlated with X in P (X|Gt, Gu). Inclusion

of a large number of SNPs is computationally infeasible and statistically inefficient,

whereas omission of important SNPs can bias the association analysis. We prefer the

flanking SNPs approach because it is computationally simpler and yield more robust

and possibly more efficient inference.
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Table 2.1: Observed haplotype frequencies from a lung cancer study

Index Haplotype Frequency
h1 00000 .0278
h2 00010 .2101
h3 00011 .0923
h4 01000 .2080
h5 01001 .0005
h6 01010 .0026
h7 10010 .0078
h8 10011 .0083
h9 11100 .1465
h10 11110 .0158
h11 10000 .2803
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Table 2.2: Simulation results for estimating and testing haplotype effects and
haplotype-environment interactions in case-control studies

Proposed Lin-Zeng
α β1 Bias SE SEE CP Power Bias SE SEE CP Power
-2.1 -.5 .001 .138 .137 .989 .861 -.051 .131 .131 .985 .955

-.25 .000 .132 .132 .989 .250 -.049 .125 .125 .987 .433
0 .003 .129 .127 .990 .010 -.047 .121 .120 .985 .015
.25 .002 .123 .125 .993 .287 -.047 .114 .117 .988 .198
.5 .002 .122 .123 .992 .940 -.046 .114 .114 .982 .918

-3 -.5 -.001 .138 .139 .992 .863 -.052 .131 .132 .988 .951
-.25 .002 .133 .133 .988 .239 -.048 .126 .126 .985 .416
0 .003 .127 .128 .993 .007 -.048 .119 .120 .985 .015
.25 .003 .123 .124 .991 .290 -.047 .116 .116 .982 .203
.5 .000 .124 .122 .991 .941 -.050 .114 .113 .984 .916

α β3
-2.1 -.5 -.003 .270 .270 .992 .243 .284 .190 .193 .842 .052

-.25 -.010 .261 .260 .989 .052 .255 .178 .178 .857 .011
0 -.004 .259 .254 .990 .010 .217 .167 .167 .891 .109
.25 -.004 .253 .251 .991 .051 .161 .158 .158 .937 .519
.5 -.017 .257 .252 .989 .250 .082 .149 .151 .981 .899

-3 -.5 -.001 .273 .270 .989 .227 .248 .194 .193 .883 .079
-.25 -.002 .256 .259 .988 .051 .238 .176 .178 .880 .009
0 -.002 .255 .251 .988 .012 .221 .164 .165 .882 .118
.25 -.003 .245 .246 .991 .052 .195 .155 .155 .901 .612
.5 -.010 .249 .243 .989 .282 .154 .148 .148 .936 .967

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE
is the mean of the standard error estimator. CP is the coverage probability of the
99% confidence interval. Power pertains to the .01-level test of zero parameter value.
Each entry is based on 5,000 replicates.
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Table 2.3: Simulation results for estimating and testing haplotype effects and
haplotype-environment interactions in case-control studies with two risk haplotypes
and two covariates

Correctly specified P (X|H) Misspecified P (X|H)
Para. True Value Bias SE SEE CP Power Bias SE SEE CP Power

βh2 .25 .000 .116 .114 .992 .361 .010 .113 .114 .989 .378
βh1 .25 .003 .288 .283 .990 .041 .013 .298 .287 .989 .045
βx1 .3 .003 .084 .083 .991 .859 .014 .060 .059 .988 .997
βx2 .3 -.005 .129 .130 .991 .377 .001 .131 .132 .989 .385
βx1h2 .0 -.002 .109 .105 .987 .013 -.017 .070 .071 .989 .011
βx1h1 .0 .005 .267 .269 .991 .009 -.008 .181 .182 .990 .010

NOTE: See the Note to Table 2.2.

Table 2.4: Simulation results for the analysis of an untyped SNP in cohort studies

β3 Cases Bias SE SEE CP Power
0 250 -.003 .236 .233 .990 .010

500 .004 .164 .163 .992 .008
1,000 .001 .120 .120 .990 .010

-.25 250 -.003 .262 .256 .991 .049
500 .003 .180 .178 .988 .112

1,000 .001 .130 .129 .990 .254
-.5 250 -.009 .295 .285 .990 .194

500 -.000 .203 .197 .991 .491
1,000 .001 .144 .142 .989 .842

.25 250 .001 .217 .215 .991 .077
500 .003 .154 .153 .991 .177

1,000 .000 .114 .115 .992 .345
.5 250 .000 .203 .202 .991 .457

500 .002 .147 .146 .991 .813
1,000 -.003 .113 .112 .991 .973

NOTE: See the Note to Table 2.2.
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Table 2.5: Estimates of haplotype effects and haplotype-smoking interactions for a set
of 5 SNPs in the lung cancer study

Parameters Proposed Lin-Zeng
Logistic disease-risk model (β)
11110 .249(.069)** .252(.069)**
11011 -.097(.084) -.099(.084)
00000 .198(.139) .201(.139)
11010 -.255(.237) -.252(.237)
00011 .519(.737) .536(.748)
smoking .093(.090) .021(.071)
11110×smoking -.013(.069) .094(.047)*
11011×smoking -.032(.087) -.061(.062)
00000×smoking .108(.132) .190(.086)*
11010×smoking -.044(.236) -.006(.181)
00011×smoking .289(.349) .290(.348)

General odds-ratio function (ζ)
11110 .108(0.050)* –
11011 -.030(.061) –
00000 .083(.100) –
11010 .038(.151) –

NOTE: Standard error estimates are shown in parentheses. *P < 0.05. **P < 0.001.
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Figure 2.1: Power of testing (a) main effects and (b) interactions at the 1% nomi-
nal significance level for the proposed and Lin-Zeng methods when the independence
assumption holds.
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Figure 2.2: Power of testing (a) main effects and (b) interactions at the 1% nominal
significance level for the proposed and Chen et al. methods.
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Figure 2.3: Results of association tests for additive effects of individual SNPs in the lung
cancer study: the − log10(p-values) for the genotyped and untyped SNPs are shown in
circles and dots, respectively; (a), (b) and (c) pertain to testing SNP effects (adjusted
for smoking) under the standard logistic regression, the proposed method and the Lin
et al. method, respectively; (d), (e) and (f) pertain to testing SNP-smoking interactions
under the standard logistic regression, the proposed method and the Lin et al. method,
respectively.
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2.6 Appendix

In this section, we present the EM algorithms (treating H as missing data) for all the

designs considered. We state in Theorems 2.1–2.4 the asymptotic properties of the

NPMLEs described in Sections 2.2.2–2.2.4 and provide the proofs of the theorems. For

each theorem, it is necessary to verify that the parameters are identifiable and the

information matrices along all non-trivial parametric submodels are non-singular. We

state those intermediate results in Lemmas 2.1–2.8.

2.6.1 Cross-Sectional Studies

Numerical Algorithm

Suppose that there are J distinct values of X, denoted by x1, . . . ,xJ . Let F{xj}

be the jump size of F at xj. To incorporate the restriction that
∑

j F{xj} = 1, we

estimate log(F{xj}/F{xJ}) (j = 1, . . . , J − 1) instead. Define Djkl = D(xj, hk, hl),

Zjkl = Z(xj, hk, hl),

Wkl =


I(hk = h1) + I(hl = h1)

...

I(hk = hK−1) + I(hl = hK−1)

 ,Mjkl =



Djkl

I(j = 1)

...

I(j = J − 1)


, δ =



ζ

log(F{x1}/F{xJ})
...

log(F{x(J−1)}/F{xJ})


.

To incorporate the constraint that
∑

k πk = 1, we define νk = log(πk/πK) and ν =

(ν1, . . . , νK−1)
T, so Pγ(H = (hk, hl)) = exp(νTWkl)/

∑
k,l exp(ν

TWkl). Under X = xj

and H = (hk, hl),

exp{ζTD(X, H)}f(X)∫
x
exp{ζTD(x, H)}dF (x)

=
exp(δTMjkl)∑
j′ exp(δ

TMj′kl)
.
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The complete-data log-likelihood is

lcn =
∑
i,j,k,l

I{Xi = xj, Hi = (hk, hl)}
{
logPα,β,ξ(Yi|xj, (hk, hl)) + νTWkl + δTMjkl

− log
∑
j′

exp(δTMj′kl)

}
− n log

∑
k,l

exp(νTWkl).

In the E-step, we evaluate E{I(Xi = xj, Hi = (hk, hl))
∣∣Xi,Yi, Gi}, which can be shown

to be

ωijkl ≡
I{Xi = xj , (hk, hl) ∈ S(Gi)}Pα,β,ξ(Yi|xj , (hk, hl))e

νTWkl+δTMjkl/
∑

j′ e
δTMj′kl∑

(hk′ ,hl′ )∈S(Gi)
Pα,β,ξ(Yi|xj , (hk′ , hl′))e

νTWk′l′+δTMjk′l′/
∑

j′ e
δTMj′k′l′

.

In the M-step, we maximize lcn with I{Xi = xj, Hi = (hk, hl)} replaced by ωijkl. The

maximization is carried out by the quasi-Newton algorithm. Starting with α = 0,

β = 0, δ = 0 and νk = log(π̃k/π̃K) (k = 1, . . . , K − 1), where the π̃k’s are the MLEs

of the πk’s based on Gi (i = 1, . . . , n), we iterate between the E-step and M-step until

the change in the observed-data log-likelihood is negligible.

We can estimate the limiting covariance matrix of θ̂ and F̂ by inverting the (observed-

data) information matrix for all the parameters including the jump sizes of F̂ . The

information matrix is obtained via the Louis (1982) formula. We can also estimate

the limiting covariance matrix of θ̂ by using the profile likelihood function pln(θ) ≡

maxF logLn(θ, F ). Particularly, the (s, t)th element of the inverse covariance matrix of

θ̂ can be estimated by −ϵ−2
n

{
pln(θ̂+ϵnes+ϵnet)−pln(θ̂+ϵnes)−pln(θ̂+ϵnet)+pln(θ̂)

}
,

where ϵn is a constant of order n−1/2, and es, and et are the sth and tth canonical vec-

tors. We calculate pln(θ) via the EM algorithm by holding θ constant in both the

E-step and M-step.

Theoretical Results

We impose the following conditions.
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CONDITION 2.1 If Pα,β,ξ(Y|X, H) = Pα̃,β̃,ξ̃(Y|X, H) for any H = (h, h) and H =

(h, h†), then α = α̃, β = β̃, and ξ = ξ̃.

CONDITION 2.2 If there exists a constant vector ν such that νT∇α,β,ξ logPα,β,ξ(Y|X, H) =

0 for any H = (h, h) and H = (h, h†), then ν = 0.

CONDITION 2.3 If there exists a function a(H) and a constant vector b such that

a(H) + bTD(X, H) = 0 with probability one, then a = 0 and b = 0.

REMARK 2.3 Condition 2.1 ensures that (α,β, ξ) are identifiable from the geno-

type data while Condition 2.2 ensures nonsingularity of the information matrix. All

commonly used regression models, particularly generalized linear (mixed) models with

design vectors in the form of (2.1), satisfy these two conditions. Condition 2.3 pertains

to the identifiability of ζ. This condition holds under all common modes of inheritance

for the ζs,k,l provided that X is linearly independent given H.

LEMMA 2.1 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribution

of the data, then θ = θ̃ and F = F̃ .

Proof: Suppose that

∑
H∈S(G)

Pα,β,ξ(Y|X, H)Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

Pα̃,β̃,ξ̃(Y|X, H)Pζ̃,F̃ (X|H)Pγ̃(H).

Letting G = 2h or G = h+ h† and integrating over Y on both sides, we obtain

Pζ,F (X|H)Pγ(H) = Pζ̃,F̃ (X|H)Pγ̃(H).

Integrating over X on both sides then yields that Pγ(H) = Pγ̃(H). By Lemma 1 of Lin

and Zeng (2006), γ = γ̃. Thus, Pζ,F (X|H) = Pζ̃,F̃ (X|H). It follows from the definition
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of Pζ,F (X|H) that

exp{(ζ − ζ̃)TD(X, H)}f(X)

f̃(X)
=

∫
x
exp{ζTD(x, H)}dF (x)∫

x
exp{ζ̃

T
D(x, H)}dF̃ (x)

.

By setting H = (h0, h
′
0), we obtain D(X, H) = 0, so the above equation reduces to

f(x) = f̃(x) for any x. It then follows from Condition 2.3 that ζ = ζ̃. Therefore,

Pα,β,ξ(Y |X, H) = Pα̃,β̃,ξ̃(Y |X, H) for any H = (h, h) or H = (h, h†). By Condition 2.1,

α = α̃, β = β̃ and ξ = ξ̃.

LEMMA 2.2 If there exist a vector µθ ≡ (µT
α,β,ξ,µ

T
γ ,µ

T
ζ )

T and a function ψ(x) with

E[ψ(X)] = 0 such that µT
θ lθ(θ0, F0) + lF0(θ0, F0)[

∫
ψ dF0] = 0, where lθ is the score

function for θ, and lF0 [
∫
ψ dF0] is the score function for F along the submodel F0 +

ϵ
∫
ψ dF0 with scalar ϵ, then µθ = 0 and ψ = 0.

Proof: We wish to verify that if there exist a vector µθ ≡ (µT
α,β,ξ,µ

T
γ ,µ

T
ζ )

T and a

function ψ(x) with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF0(θ0, F0)[

∫
ψ dF0] = 0, (2.10)

where lθ is the score function for θ, and lF0 [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψ dF0 with scalar ϵ, then µθ = 0 and ψ = 0. To this end, we set

G = 2h or G = h+ h†. Then (2.10) becomes

µT
α,β,ξ∇α,β,ξ logPα0,β0,ξ0(Y|X, H) + µT

γ∇γ logPγ0
(H)

+µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0. (2.11)
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Taking the expectation with respect to Pα0,β0,ξ0(Y|X, H) yields

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0. (2.12)

Since D(x, H) = 0 for any x under H = (h0, h
′
0), we have

µT
γ∇γ logPγ0

(h0, h
′
0) + ψ(X)−

∫
x

ψ(x)dF0(x) = 0.

This implies that ψ(x) is constant over x, so ψ = 0. Thus, (2.12) reduces to

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0.

By Condition 2.3, µζ = 0. It then follows from Lemma 1 of Lin and Zeng (2006) that

µγ = 0. Hence, (2.11) reduces to µT
α,β,ξ∇α,β,ξ logPα0,β0,ξ0(Y|X, H) = 0. By Condition

2.2, µα = 0, µβ = 0, and µξ = 0.

THEOREM 2.1 Under Conditions 2.1-2.3, |θ̂ − θ0|+ supx |F̂ (x)− F0(x)| → 0 almost

surely. In addition, n1/2(θ̂−θ0) converges in distribution to a zero-mean normal random

vector whose covariance matrix attains the semiparametric efficiency bound.

Proof: We first prove the consistency of θ̂ and F̂ . Because θ̂ is bounded and F̂ is a

distribution function, it follows from Helly’s selection theorem that, for any subsequence

of θ̂ and F̂ , there exists a further subsequence, still denoted as θ̂ and F̂ , such that

θ̂ → θ∗ and F̂ → F ∗ in distribution. It suffices to show θ∗ = θ0 and F ∗ = F0.

Since F̂ maximizes the likelihood function and its jump sizes are positive, there exists
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a Lagrange multiplier λ̂ such that

1

F̂{Xk}
−

n∑
i=1

∑
H∈S(Gi)

Pα̂,β̂,ξ̂(Yi|Xi, H)Pγ̂(H) exp{ζ̂
TD(Xi,H)} exp{ζ̂TD(Xk,H)}

[
∫
x exp{ζ̂TD(x,H)}dF̂ (x)]2∑

H∈S(Gi)
Pα̂,β̂,ξ̂(Yi|Xi, H)Pγ̂(H) exp{ζ̂TD(Xi,H)}∫

x exp{ζ̂TD(x,H)}dF̂ (x)

− λ̂ = 0,

where F̂{Xk} is the jump size of F̂ at Xk. Due to the constraint that
∑

k F̂{Xk} = 1,

the above equation implies that λ̂ = 0. Define F̃ as a distribution function with jumps

at the Xk’s such that the jump size is proportional to

 n∑
i=1

∑
H∈S(Gi)

Pα0,β0,ξ0(Yi|Xi, H)Pγ0
(H) exp{ζ

T
0 D(Xi,H)} exp{ζT

0 D(Xk,H)}
[
∫
x exp{ζT

0 D(x,H)}dF0(x)]2

Pα0,β0,ξ0(Yi|Xi, H)Pγ0
(H) exp{ζT

0 D(Xi,H)}∫
x exp{ζT

0 D(x,H)}dF0(x)

−1

.

By the Glivenko-Cantelli theorem, F̃ uniformly converges to F0. In addition, F̂ is

absolutely continuous with respect to F̃ , and dF̂/dF̃ converges uniformly to some

positive function g. Finally, since n−1 log{Ln(θ̂, F̂ )/Ln(θ0, F̃ )} ≥ 0, we can take the

limit as n→ ∞. Thus, the Kullback-Leibler information for (θ∗, F ∗) is non-positive, so

the density under (θ∗, F ∗) is the same as the true density. It then follows from Lemma

2.1 that θ∗ = θ0 and F ∗ = F0. This establishes the consistency of (θ̂, F̂ ). The weak

convergence of F̂ to F0 can be strengthened to the uniform convergence since F0 is a

continuous distribution function.

To derive the asymptotic distribution, we consider the score equation along the

submodel (θ̂ + ϵv, dF̂ + ϵ(ψ −
∫
ψdF̂ )), where v is a vector with norm bounded by 1,

and ψ is any function with
∫
ψdF0 = 0 and with total variation bounded by 1. The

score equation takes the form

√
n Ω1(v, ψ)

T(θ̂ − θ0) +
√
n

∫
Ω2(v, ψ)d(F̂ − F0) = Gn

{
lTθ v + lF [ψ]

}
+ op(1),
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where Gn denotes the empirical measure, lθ is the score function for θ0, lF is the score

operator for F0, (Ω1,Ω2) is a linear operator of the first-order Fredholm-type which

maps (v, ψ) to the same space as (v, ψ), and op(1) means a random variable converging

in probability to zero uniformly in v and ψ. By some algebra, (Ω1,Ω2)[v, ψ] = 0 implies

that the Fisher information along the submodel is zero, so v = 0 and ψ = 0 by Lemma

2.2. Thus, (Ω1,Ω2) is invertible. We then verify all the conditions in Theorem 3.3.1 of

van der Vaart and Wellner (1996). Hence,
√
n(θ̂ − θ0, F̂ − F0) weakly converges to a

mean-zero Gaussian process.

In light of the above derivation, the influence function for θ̂ is a linear combination

of some lTθ v + lF [ψ]. Thus, the influence function lies on the tangent space spanned

by the score functions and thus must be the efficient influence function. This means

that θ̂ is asymptotically efficient in that its limiting covariance matrix attains the

semiparametric efficiency bound.

2.6.2 Case-Control Studies with Rare Disease

Numerical Algorithm

We adopt the notation of Section 2.6.1. The E-step of the EM algorithm is the

same as in Section 2.6.1. In the M-step, the objective function to be maximized is

l̃n(β,ν, δ) =
∑
i,j,k,l

ωijkl

{
Yiβ

TZjkl + νTWkl + δTMjkl − log
(∑

j′

eδ
TMj′kl

)}

− n1 log

{∑
j,k,l

eβ
TZjkl+νTWkl

eδ
TMjkl∑

j′ e
δTMj′kl

}
− n0 log

{∑
k,l

eν
TWkl

}
,

where ωijkl is defined in Section 2.6.1. We use the Louis formula to calculate the

observed-data information matrix, whose inverse is used to estimate the asymptotic

covariance matrix of the NPMLEs; the profile likelihood method can also be used to
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estimate the covariance matrix of θ̂.

Theoretical Results

We impose the following identifiability condition.

CONDITION 2.4 If α + βTZ(X, H) = α̃ + β̃
T
Z(X, H) for any H = (h, h) and

H = (h, h†), then α = α̃ and β = β̃.

LEMMA 2.3 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribu-

tion, then θ = θ̃ and F = F̃ .

Proof: Suppose that{∑
H∈S(G) exp{β

TZ(X,H)}Pζ,F (X|H)Pγ(H)∫
x

∑
H exp{βTZ(x,H)}Pζ,F (x|H)Pγ(H)dx

}Y { ∑
H∈S(G)

Pζ,F (X|H)Pγ(H)

}1−Y

=

{∑
H∈S(G) exp{β̃

T
Z(X, H)}Pζ̃,F̃ (X|H)Pγ̃(H)∫

x

∑
H exp{β̃

T
Z(x, H)}Pζ̃,F̃ (x|H)Pγ̃(H)dx

}Y{ ∑
H∈S(G)

Pζ̃,F̃ (X|H)Pγ̃(H)

}1−Y

.

(2.13)

Setting Y = 0 and G = 2h or G = h+ h† in (2.13), we obtain

Pζ,F (X|H)Pγ(H) = Pζ̃,F̃ (X|H)Pγ̃(H).

Integrating over X on both sides yields Pγ(H) = Pγ̃(H), so γ = γ̃. Thus, Pζ,F (X|H) =

Pζ̃,F̃ (X|H). By the arguments in the proof of Lemma 2.1, f = f̃ and ζ = ζ̃. Letting

Y = 1 and G = 2h or G = h + h† in (2.13), we see that exp{(β − β̃)TZ(X, H)} must

be a constant. It then follows from Condition 2.4 that β = β̃.

LEMMA 2.4 If there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )

T and functions ψ(x) with

E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0,
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where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψ dF0, then µθ = 0 and ψ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )

T and functions

ψ(x) with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0, (2.14)

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψ dF0, then µθ = 0 and ψ = 0. To this end, we choose Y = 0

and G = 2h or G = h+ h†. Then (2.14) becomes

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0. (2.15)

With H = (h0, h
′
0), (2.15) reduces to µT

γ∇γ logPγ0
(h0, h

′
0)+ψ(X)−

∫
x
ψ(x)dF0(x) = 0.

This implies that ψ(x) is constant, so it must be zero. Thus, (2.15) reduces to

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0.

By Condition 2.3, µζ = 0, so (2.15) further reduces to µT
γ∇γ logPγ0

(H) = 0. By

Lemma 1 of Lin and Zeng (2006), µγ = 0. Setting Y = 1 and G = 2h or G = h + h†,

we see that µT
βZ(X, H) must be a constant. By Condition 2.4, µβ = 0.

We provide a mathematical definition of rare disease in Condition 2.5 and state the

asymptotic results in Theorem 2.2.
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CONDITION 2.5 Pr(Yi = 1|Xi, Hi) = an exp{βT
0Z(Xi, Hi)}/[1+an exp{βT

0Z(Xi, Hi)}],

i = 1, . . . , n, where an = o(n−1/2).

THEOREM 2.2 Assume that Conditions 2.3-2.5 hold and n1/n→ q ∈ (0, 1). Then |θ̂−

θ0|+supx |F̂ (x)−F0(x)| → 0 almost surely, and n1/2(θ̂−θ0) converges in distribution to

a zero-mean normal random vector whose covariance matrix attains the semiparametric

efficiency bound.

Proof: Let P̃n be the probability measure generated by the likelihood function given

in (2.8) and let Pn0 be the true likelihood function. Since an = o(n−1/2), we have

log P̃n/Pn0 →P̃n or Pn0
1. By LeCam’s lemma, P̃n and Pn0 are equivalent. Thus, the

asymptotic properties under the true likelihood is equivalent to those under the the

approximate likelihood given in (2.8). In other words, we can assume that data are

generated from (2.8). Hence, the conclusion of the theorem follows from the arguments

in the proof of Theorem 2.1.

2.6.3 Case-Control Studies with Known Disease Rate

Numerical Algorithm

The E-step is similar to that of Section 2.6.1. In the M-step, we use the Lagrange

multiplier λ for the constraint

∑
j,k,l

Pα,β(Y = 1|xj, hk, hl)
exp(νTWkl + δTMjkl)∑

j′ exp(δ
TMj′kl)

= p1
∑
k,l

exp(νTWkl).

The objective function to be maximized in the M-step is

l̃n(α,β,ν, δ, λ) =
∑
i,j,k,l

ωijkl

{
logPα,β(Yi|xj , hk, hl) + νTWkl + δTMjkl − log

(∑
j′

eδ
TMj′kl

)}

−λ
{∑

j,k,l

Pα,β(Y = 1|xj, hk, hl)e
νTWkl+δTMjkl/

∑
j′

eδ
TMj′kl − p1

∑
k,l

eν
TWkl

}
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−n log
{∑

k,l

eν
TWkl

}
.

We can treat λ as a free parameter in l̃n(α,β,ν, δ, λ), so that the constraint is auto-

matically met by setting the derivative with respect to λ to zero. The maximization

can be carried out by the quasi-Newton method. The variances and covariances can be

estimated by the inverse information matrix or by the profile-likelihood method.

Theoretical Results

LEMMA 2.5 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribu-

tion, then θ = θ̃ and F = F̃ .

Proof: Suppose that

∑
H∈S(G)

Pα,β(Y |X, H)Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

P
α̃,β̃

(Y |X,H)P
ζ̃,F̃

(X|H)Pγ̃(H).

Letting G = 2h or G = h+ h†, we have

Pα,β(Y |X, H)Pζ,F (X|H)Pγ(H) = P
α̃,β̃

(Y |X,H)P
ζ̃,F̃

(X|H)Pγ̃(H). (2.16)

Set Y = 0 or 1 in (2.16). The summation of the two resulting equations yields

Pζ,F (X|H)Pγ(H) = Pζ̃,F̃ (X|H)Pγ̃(H).

By the arguments in the proof of Lemma 2.3, γ = γ̃, f = f̃ , and ζ = ζ̃. Then (2.16)

reduces to exp
{
(α− α̃)+(β− β̃)TZ(X, H)

}
= 1. By Condition 2.4, α = α̃ and β = β̃.

LEMMA 2.6 If there exist a vector µθ ≡ (µα,µ
T
β ,µ

T
γ ,µ

T
ζ )

T and a function ψ with

E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0,
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where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψdF0 that satisfies the constraint Pr(Y = 1) = p1, then µθ = 0

and ψ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µα,µ
T
β ,µ

T
γ ,µ

T
ζ )

T and functions

ψ with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0, (2.17)

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψdF0 that satisfies the constraint Pr(Y = 1) = p, then µθ = 0

and ψ = 0. With G = 2h or G = h+ h†, (2.17) becomes

(µα+µT
βZ(X, H))

[
Y − exp{α0 + βT

0Z(X, H)}
1 + exp{α0 + βT

0Z(X, H)}

]
+µT

γ∇γ logPγ0
(H)+µT

ζD(X, H)

−
µT

ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
+ψ(X)−

∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0.

The difference of the two equations under Y = 1 and Y = 0 yields µα+µT
βZ(X, H) = 0.

By Condition 2.4, µα = 0 and µβ = 0. It then follows from the arguments in the proof

of Lemma 2.4 that µζ = 0, µγ = 0, and ψ = 0.

THEOREM 2.3 Under Conditions 2.3-2.4, the results of Theorem 2.2 hold.

Proof: First, we prove the consistency. Since θ̂ is bounded and F̂ is a distribution func-

tion, for any subsequence of (θ̂, F̂ ), there exists a further subsequence, still denoted as

(θ̂, F̂ ), such that θ̂ → θ∗, and F̂ weakly converge to F ∗. The consistency will hold if

we can show that θ∗ = θ0 and F ∗ = F0. We abbreviate η(x,x0, (h, h
′), (h0, h

′
0)) and

Pα,β(Y |x, H)Pγ(H) as η(x, H) and q(α,β,γ,x, H, Y ), respectively. After differentiat-

ing the log-likelihood function with respect to the jump sizes of F , we see that there
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exist some Lagrange multipliers λ̂1 and λ̂2 such that, for k = 1, . . . , n,

1

F̂{Xk}
−

n∑
i=1

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi, H, Yi)η(Xi,H)η(Xk, H)/{
∫
x η(x,H)dF̂ (x)}2∑

H∈S(Gi)
q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)/

∫
x η(x,H)dF̂ (x)

−λ̂2
∑
H

[
q(α̂, β̂, γ̂,Xk, H, 1)η(Xk, H)∫

x
η(x, H)dF̂ (x)

−
η(Xk, H)

∫
x
q(α̂, β̂, γ̂,x, H, 1)η(x, H)dF̂ (x)

{
∫
x
η(x, H)dF̂ (x))}2

]
−λ̂1 = 0.

In addition, λ̂1 and λ̂2 satisfy the constraint equations

n∑
k=1

F̂{Xk} = 1,

n∑
k=1

∑
H

q(α̂, β̂, γ̂,Xk, H, 1)
η(Xk, H)∫

x
η(x, H)dF̂ (x)

F̂{Xk} = p1.

It follows that λ̂1 = 0. Thus,

{
n∑

i=1

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)η(Xk,H)/{
∫
x η(x,H)dF̂ (x)}2∑

H∈S(Gi)
q(α̂, β̂, γ̂,Xi, H, Yi)η(Xi,H)/

∫
x η(x, H)dF̂ (x)

+λ̂2
∑
H

[
q(α̂, β̂, γ̂,Xk, H, 1)η(Xk, H)∫

x
η(x, H)dF̂ (x)

−
η(Xk, H)

∫
x
q(α̂, β̂, γ̂,x, H, 1)η(x, H)dF̂ (x)

{
∫
x
η(x, H)dF̂ (x))}2

]}−1

= 1,

and each denominator on the left-hand side should be positive. This equation for λ̂2

has a unique solution satisfying the above constraints. In addition, we can show that

λ̂2/n is bounded with probability one. Thus, we can choose a further subsequence such

that λ̂2/n→ λ∗2.

We construct a discrete distribution function F̃ such that F̃ → F0 uniformly. The

sequence can be constructed along the lines of Lin and Zeng (2006, §A.4.6). Although

F̃ is a distribution function, it may not satisfy the constraint that

∫
x

∑
H

Pα0,β0
(Y = 1|x, H)Pγ(H)Pζ0,F (x|H)f(x)dx = p1.
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Thus, we modify the jump size of F̃ at Xk as [F̃{Xk} + ξ/n]/(1 + ξ) for some con-

stant ξ such that ξ satisfies the above constraint. It can be shown that the solution

exists and ξ → 0. The modified distribution function F̃ then satisfies all the con-

straints. By the Glivenko-Cantelli theorem, F̂ is absolutely continuous with respect

to F̃ , and dF̂ /dF̃ (x) → q(x) uniformly in x for some positive function q(·). Since

n−1 log{Ln(θ̂, F̂ )/Ln(θ0, F̃ )} ≥ 0, we take limits. We conclude that the Kullback-

Leibler information for (θ∗, F ∗) is non-positive. Hence, Lemma 2.5 entails that θ∗ = θ0

and F ∗ = F0.

We now derive the asymptotic distribution. We obtain score functions by differ-

entiating logLn(θ, F ) with respect to θ̂ along the direction v and with respect to F̂

along submodels with tangent direction ψ satisfying all the constraints and with the

total variation bounded by 1. The linearization of the score functions around the true

parameter value, together with the Donsker theorem, yields

n1/2

[
Ω1(v, ψ)

T(θ̂ − θ0) +

∫
Ω2(v, ψ)d(F̂ − F0)

]
= n−1/2

n∑
i=1

(
vTlθ + lF [ψ]

)
+ op(1),

where Ω ≡ (Ω1,Ω2) corresponds to the information operator and has the form of

the first-order Fredholm type, and lθ and lF are the score operators for θ and F ,

respectively. According to Lemma 2.6, Ω is invertible. Thus, the weak convergence

follows from Theorem 3.3.1 of van der Vaart and Wellner (1996). In addition, θ̂ is an

asymptotically linear estimator for θ0 with the influence function in the score space,

so it follows from Proposition 3.3.1 of Bickel et al. (1993) that the limiting covariance

matrix of n1/2(θ̂ − θ0) attains the semiparametric efficiency bound.

2.6.4 Cohort Studies

Numerical Algorithm
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We present the EM algorithm for the proportional hazards model. Suppose that

there are L distinct failure times t1, . . . , tL. Let Λ{tl} denote the jump size of Λ at

tl, and dl the number of failures at tl. In the E-step, we evaluate the conditional

expectations

ωijkl ≡E{I(Xi = xj, Hi = (hk, hl))
∣∣Ỹi,∆i,Xi, Gi}

=
I(Xi = xj, (hk, hl) ∈ S(Gi))Rijkl(β,ν, δ)/

∑
j′ exp(δ

TMj′kl)∑
(hk′ ,hl′ )∈S(Gi)

Rijk′l′(β,ν, δ)/
∑

j′ exp(δ
TMj′k′l′)

,

where Rijkl(β,ν, δ) = exp(∆iβ
TZjkl + νTWkl + δTMjkl − eβ

TZjkl
∑

m:tm≤Ỹi
Λ{tm}). In

the M-step, we maximize

l̃n(β,ν, δ,Λ) =
∑
i,j,k,l

ωijkl∆i log Λ{Ỹi}+
∑
i,j,k,l

ωijkl

(
∆iβ

TZjkl + νTWkl + δTMjkl

− log

{∑
j′

exp(δTMj′kl)

}
− eβ

TZjkl

∑
m:tm≤Ỹi

Λ{tm}
)
− n log

{∑
k,l

exp(νTWkl)
}
.

The estimate for Λ{tm} is given explicitly by dm
/∑

i:Ỹi≥tm

∑
j,k,l ωijkle

βTZjkl , and the

estimate for β solves the equation

∑
i,j,k,l

ωijkl∆iZjkl −
L∑

m=1

dm

∑
i:Ỹi≥tm

∑
j,k,l ωijklZjkle

βTZjkl∑
i:Ỹi≥tm

∑
j,k,l ωijkleβ

TZjkl
= 0.

The remaining parameters can be estimated by maximizing

∑
i,j,k,l

ωijkl

[
νTWkl + δTMjkl − log

{∑
j′

exp(δTMj′kl)

}]
− n log

{∑
k,l

exp(νTWkl)
}
.

We can estimate the asymptotic variances and covariances by the inverse information

matrix or the profile-likelihood method. For other transformation models, we may

use the Laplace transformation to convert the estimation problem into that of the
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proportional hazards model with a random effect; see Zeng and Lin (2007).

Theoretical Results

We impose the following conditions:

CONDITION 2.6 There exists a positive constant δ0 such that Pr(C ≥ τ |X, G) =

Pr(C = τ |X, G) ≥ δ0 almost surely, where τ corresponds to the end of the study.

CONDITION 2.7 The true value Λ0(t) of Λ(t) is a strictly increasing function in [0, τ ]

and is continuously differentiable. In addition, Λ0(0) = 0 and Λ′
0(0) > 0.

LEMMA 2.7 If two sets of parameters (θ, F,Λ) and (θ̃, F̃ , Λ̃) yield the same joint

distribution, then θ = θ̃, F = F̃ and Λ = Λ̃.

Proof: Suppose that

∑
H∈S(G)

[
Λ′(Ỹ )eβ

TZ(X,H)Q′(Λ(Ỹ )eβ
TZ(X,H))

]∆
exp

{
−Q(Λ(Ỹ )eβ

TZ(X,H))
}
Pζ,F (X|H)Pγ(H)

=
∑

H∈S(G)

[
Λ̃′(Ỹ )eβ̃

TZ(X,H)Q′(Λ̃(Ỹ )eβ̃
TZ(X,H))

]∆
exp

{
−Q(Λ̃(Ỹ )eβ̃

TZ(X,H))
}
Pζ̃,F̃ (X|H)Pγ̃(H).

We choose ∆ = 1 and integrate Ỹ from 0 to y on both sides to obtain the equation

∑
H∈S(G)

[
1− exp{−Q(Λ(y)eβTZ(X,H))}

]
Pζ,F (X|H)Pγ(H)

=
∑

H∈S(G)

[
1− exp{−Q(Λ̃(y)eβ̃

TZ(X,H))}
]
Pζ̃,F̃ (X|H)Pγ̃(H). (2.18)

We obtain a second equation by setting ∆ = 0 and Ỹ = y. The summation of the two

equations yields

∑
H∈S(G)

Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

Pζ̃,F̃ (X|H)Pγ̃(H).
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By the arguments in the proof of Lemma 2.1, γ = γ̃, f = f̃ and ζ = ζ̃. By letting

G = 2h or G = h+ h̃ in (2.18), we have Λ(y)eβ
TZ(X,H) = Λ̃(y)eβ̃

TZ(X,H), which entails

Λ = Λ̃ and β = β̃ under Condition 2.4.

LEMMA 2.8 If there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )

T and functions ψ(x) and ϕ(t)

with E[ψ(X)] = E[ϕ(Y )] = 0 such that

µT
θ lθ(θ0, F0,Λ0) + lF (θ0, F0,Λ0)[

∫
ψ dF0] + lΛ(θ0, F0,Λ0)[

∫
ϕ dΛ0] = 0,

where lθ is the score function for θ, lF [
∫
ψ dF0] is the score function for F along the

sub-model F0+ϵ
∫
ψ dF0, and lΛ[

∫
ϕ dΛ0] is the score function for Λ along the sub-model

Λ0 + ϵ
∫
ϕ dΛ0, then µθ = 0, ψ = 0 and ϕ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )

T and functions

ψ(x) and ϕ(t) with E[ψ(X)] = E[ϕ(Y )] = 0 such that

µT
θ lθ(θ0, F0,Λ0) + lF (θ0, F0,Λ0)[

∫
ψ dF0] + lΛ(θ0, F0,Λ0)[

∫
ϕ dΛ0] = 0, (2.19)

where lθ is the score function for θ, lF [
∫
ψ dF0] is the score function for F along the

sub-model F0+ϵ
∫
ψ dF0, and lΛ[

∫
ϕ dΛ0] is the score function for Λ along the sub-model

Λ0 + ϵ
∫
ϕ dΛ0, then µθ = 0, ψ = 0 and ϕ = 0. With ∆ = 1, (2.19) becomes

∑
H∈S(G)

Λ′
0(Ỹ )eβ

T
0 ZQ′(Λ0(Ỹ )eβ

T
0 Z) exp

{
−Q(Λ0(Ỹ )eβ

T
0 Z)

}
Pγ0

(H)
exp{ζT

0D(X, H)}f0(X)∫
x
exp{ζT

0D(x, H)}dF0(x)

×

{
µT

βZ +

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)

)2]
Λ0(Ỹ )eβ

T
0 ZµT

βZ

Q′(Λ0(Ỹ )eβ
T
0 Z)

+ϕ(Ỹ )+

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)

)2] ∫ Ỹ

0
ϕ(t)dΛ0(t)e

βT
0 Z

Q′(Λ0(Ỹ )eβ
T
0 Z)

+µT
γ∇γ logPγ0

(H)
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+µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

}
= 0. (2.20)

In the above equation, we integrate Ỹ from 0 to τ . We also let ∆ = 0 and Ỹ = τ in

(2.19). The summation of these two equations with G = 2h or G = h+ h† yields

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x
exp{ζT

0D(x, H)}D(x, H)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)

+ ψ(X)−
∫
x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x
exp{ζT

0D(x, H)}dF0(x)
= 0.

It follows from the arguments in the proof of Lemma 2.2 that µγ = 0, µζ = 0,

and ψ = 0. By letting G = 2h or G = h + h† and Y = 0 in (2.20), we obtain

µT
βZ(X, H) + ϕ(0) = 0. It then follows from Condition 2.4 that µβ = 0 and ϕ(0) = 0.

Thus, (2.20) reduces to

ϕ(Ỹ ) +

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)

)2] ∫ Ỹ

0
ϕ(t)dΛ0(t)e

βT
0 Z

Q′(Λ0(Ỹ )eβ
T
0 Z)

= 0

for H = (h, h). Since Q is strictly increasing, we conclude that ϕ(y) = 0 for any y.

THEOREM 2.4 Under the conditions of Theorem 2.3 and Conditions 2.6-2.7, |θ̂ −

θ0| + supx |F̂ (x) − F0(x)| + supt∈[0,τ ] |Λ̂(t) − Λ0(t)| → 0 almost surely. In addition,

n1/2(θ̂−θ0, Λ̂−Λ0) converges weakly to a zero-mean Gaussian process in Rd×l∞([0, τ ]),

where d is the dimension of θ0, and l
∞([0, τ ]) is the space of all bounded functions on

[0, τ ] equipped with the supremum norm. Furthermore, the limiting covariance matrix

of θ̂ attains the semiparametric efficiency bound.
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Proof: First, we show that Λ̂ is uniformly bounded in [0, τ ] as n → ∞. Note that Λ̂

maximizes L̃n(Λ) ≡ Ln(θ̂,Λ, F̂ )/
∏n

i=1 F̂{Xi}. Clearly,

L̃n(Λ) ≤ c0

n∏
i=1

∑
H∈S(Gi)

{
Λ′(Ỹi)e

βTZ(Xi,H)Q′(−Λ(Ỹi)e
βTZ(Xi,Hi)

)}∆i

exp
{
−Q

(
Λ(Ỹi)e

βTZ(Xi,Hi)
)}

for some constant c0. According to the conditions of this theorem and Appendix B of

Zeng and Lin (2007), L̃n(Λ) ≤ c1
∏n

i=1

[
Λ′(Ỹi)

∆i(1 + Λ(Ỹi))
−(∆i+δ0)

]
for some positive

constants c1 and δ0. By the partitioning arguments in the proof of Theorem 1 of Zeng

and Lin (2007), we can show that if Λ̂(τ) is unbounded, then the difference between

Ln(θ̂, Λ̂, F̂ ) and Ln(θ0, Λ̃, F̂ ), where Λ̃ is a step function converging to Λ0, diverges to

−∞. Thus, Λ̂(τ) must be bounded with probability one.

Using the above result and the arguments in the proof of Theorem 2.3, we choose a

uniformly convergent subsequence from any subsequence of (θ̂, Λ̂, F̂ ). By the Glivenko-

Cantelli theorem and the property of the Kullback-Leibler information, the limit of

the convergent subsequence must be the true parameters (θ0,Λ0, F0). The asymptotic

distribution of θ̂, Λ̂ and F̂ follows from the arguments used in the proof of Theorem

2.3.

2.6.5 More Numerical Results

We conducted simulation studies in the set-up of Chen et al. (2009). Specifically, we

generated haplotypes under HWE from the distribution given in Table 1 of Chen et al.

(2009) and generated a binary environmental covariate X with Pr(X = 1) = 0.3,

ζ1,3 = 0 or −.4 and ζ1,j = 0 (j ̸= 3). Given H and X, the disease status was generated

from model (13) of Chen et al. (2009).

For each simulated data set, we calculated the proposed estimator of β allowing for

gene-environment dependence and the Lin-Zeng estimator assuming gene-environment
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independence, denoted as β̂dep and β̂ind, respectively. Given these two estimators, we

constructed two empirical Bayes estimators using formula (7) of Chen et al. (2009).

Specifically, the multivariate shrinkage estimator of β is

β̂EB1 = β̂dep +K(β̂ind − β̂dep),

where K = V
[
V + (β̂ind − β̂dep)(β̂ind − β̂dep)

T
]−1

, and V is the estimated covariance

matrix of (β̂ind − β̂dep); the component-wise shrinkage estimator of the jth component

of β is

β̂EB2,j = β̂dep,j + kj(β̂ind,j − β̂dep,j),

where β̂ind,j and β̂dep,j are the jth components of β̂ind and β̂dep, kj = vj/
[
vj + (β̂ind,j −

β̂dep,j)
2
]
, and vj is the jth diagonal element of V.

Write θ = (βT,χT)T, where χ denotes all nuisance parameters (including finite-

dimensional nuisance parameters and jump sizes of nuisance functions). Also, let θ∗
ind

and θ∗
dep be the probability limits of θ̂ind and θ̂dep. We note the following representations

β̂ind − β∗
ind =

(
Ip 0

)
I−1
ind(θ

∗
ind)

n∑
i=1

Uind,i(θ
∗
ind) + op(n

−1/2),

and

β̂dep − β∗
dep =

(
Ip 0

)
I−1
dep(θ

∗
dep)

n∑
i=1

Udep,i(θ
∗
dep) + op(n

−1/2),

where Uind,i(θ) and Udep,i(θ) are the ith subject’s contributions to the score functions

of θ under the Lin-Zeng and proposed methods, respectively, Iind(θ) and Idep(θ) are

the corresponding information matrices, Ip is the p × p identity matrix, and 0 is the

p × q zero matrix, with p and q being the dimensions of β and χ, respectively. Thus,
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we estimate the covariance matrices for β̂ind and β̂dep as follows:

v̂ar(β̂ind) ≡
(
Ip 0

)
I−1
ind(θ̂ind)

{ n∑
i=1

Uind,i(θ̂ind)U
T
ind,i(θ̂ind)

}
I−1
ind(θ̂ind)

(
Ip 0

)T

,

v̂ar(β̂dep) ≡
(
Ip 0

)
I−1
dep(θ̂dep)

{ n∑
i=1

Udep,i(θ̂dep)U
T
dep,i(θ̂dep)

}
I−1
dep(θ̂dep)

(
Ip 0

)T

,

ĉov(β̂ind, β̂dep) ≡
(
Ip 0

)
I−1
ind(θ̂ind)

{ n∑
i=1

Uind,i(θ̂ind)U
T
dep,i(θ̂dep)

}
I−1
dep(θ̂dep)

(
Ip 0

)T

.

The simulation results for the dominant and recessive models are presented in Table

2.6, in the same format as Tables 2 and 3 of Chen et al. (2009). Our results for

the Lin-Zeng estimator (i.e., β̂ind) are similar to those of Chen et al.’s (2009) model-

based estimator, especially under the recessive model. Under the dominant model,

the proposed estimator (i.e., β̂dep) tends to be more efficient than Chen et al. (2009)’s

model-free estimator, particularly in estimating gene-environment interactions. The

efficiency gain is much more substantial under the recessive model, for both main effects

and interactions. Consequently, our empirical Bayes estimators are more efficient than

Chen et al.’s, especially under the recessive model.
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Table 2.6: Simulation results of the mean square error (bias of the parameter estimator)
for the empirical Bayes estimators under dominant and recessive models

n1 = n0 = 150 n1 = n0 = 300 n1 = n0 = 600
Dominant Model H H ×X H H ×X H H ×X

ζ1,3 = 0 β̂dep .109(-.016) .292(.024) .054(-.008) .141(.003) .025(-.006) .069(-.007)

β̂ind .097(-.001) .203(-.002) .049(.004) .095(-.022) .023(.004) .047(-.031)

β̂EB1 .106(-.018) .274(.024) .054(-.007) .137(.001) .025(-.005) .067(-.008)

β̂EB2 .101(-.013) .234(.016) .052(-.003) .118(-.007) .024(-.002) .059(-.016)

ζ1,3 = −.4 β̂dep .111(-.008) .310(.044) .051(-.005) .156(.005) .026(-.005) .074(-.013)

β̂ind .120(.133) .375(-.398) .062(.128) .275(-.416) .038(.122) .225(-.418)

β̂EB1 .107(-.004) .293(.026) .051(-.001) .155(-.008) .026(-.002) .074(-.022)

β̂EB2 .107(.028) .290(-.072) .051(.021) .163(-.079) .026(.012) .081(-.065)

Recessive Model

ζ1,3 = 0 β̂dep .099(-.048) .261(-.049) .049(-.027) .127(-.031) .029(-.023) .073(-.023)

β̂ind .095(-.057) .197(-.043) .047(-.030) .092(-.034) .026(-.023) .052(-.031)

β̂EB1 .097(-.050) .239(-.046) .049(-.028) .115(-.030) .028(-.023) .066(-.024)

β̂EB2 .096(-.054) .225(-.047) .048(-.030) .108(-.031) .027(-.024) .062(-.026)

ζ1,3 = −.4 β̂dep .087(-.050) .339(-.065) .044(-.026) .173(-.031) .026(-.022) .088(-.032)

β̂ind .095(.117) .778(-.720) .065(.147) .621(-.699) .047(.149) .536(-.678)

β̂EB1 .087(-.039) .352(-.107) .044(-.020) .177(-.053) .026(-.018) .090(-.044)

β̂EB2 .087(-.029) .370(-.170) .044(-.015) .185(-.080) .026(-.015) .094(-.069)

NOTE: β̂dep and β̂ind pertain to the proposed estimator allowing for gene-environment
dependence and the Lin-Zeng estimator assuming gene-environment independence,
respectively. H and H ×X stand for main haplotype effect and
haplotype-environment interaction. Each entry is based on 1,000 replicates.
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Chapter 3

Analysis of Untyped SNPs:

Maximum Likelihood and

Imputation Methods

3.1 Introduction

This chapter provides comprehensive comparisons of (single) imputation and maximum

likelihood methods under cross-sectional and case-control designs. We expand the ap-

proach of Lin et al. (2008) to encompass both cross-sectional and case-control studies.

In addition, we develop a tagging-based imputation strategy. We establish the theoret-

ical properties of the proposed imputation method and conduct extensive simulation

studies to evaluate the performance of the imputation and maximum-likelihood meth-

ods in testing/estimating genetic effects and gene-environment interactions. We apply

the two methods to the GWAS data from the Wellcome Trust Case-Control Consortium

(WTCCC) (Burton et al., 2007).



3.2 Methods

3.2.1 Imputation

Suppose that we are interested in a particular untyped SNP, whose genotype is denoted

by Gu. Let Y denote the phenotype of interest, which can be quantitative or qualitative.

Also, let X denote a set of environmental factors. We characterize the effects of genetic

and environmental factors on the phenotype through the conditional density function

Pα,β,ξ(Y |Gu,W), where W consists of X and the genotypes of typed SNPs, and α, β

and ξ pertain to the intercept, regression parameters, and nuisance parameters (e.g.,

error variance), respectively. (If we are interested in the marginal effect of Gu, then W

is an empty set.) We formulate Pα,β,ξ(Y |Gu,W) through a generalized linear regression

model with linear predictor α+βTZ(Gu,W), where Z(Gu,W) is a vector-function of

Gu and W under a particular mode of inheritance. We assume the additive mode

of inheritance here, although all the formulas can be easily modified to accommodate

other modes of inheritance. For a quantitative trait, we specify the linear regression

model:

Y = α + βTZ(Gu,W) + ϵ,

where ϵ is zero-mean normal with variance σ2. For a binary trait, it is natural to use

the logistic regression model:

Pr(Y = 1|Gu,W) =
eα+βTZ(Gu,W)

1 + eα+βTZ(Gu,W)
. (3.1)

We use the LD information from a reference panel to select a set of (M − 1) typed

SNPs that provides the most accurate prediction of the untyped SNP, where M is a

small number, which is set to five here. The accuracy of prediction is measured by

R2 of Stram (2004). The M -locus genotype G consists of Gu and Gt, where Gt is the
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genotype of the (M − 1) typed SNPs. Suppose that the M SNPs have a total of K

haplotypes. For k = 1, . . . , K, let hk denote the kth haplotype, and πk denote the

frequency of hk. Assume that the HWE holds. For a reference panel of ñ trios, the

likelihood for π = (π1, . . . , πK)
T is

LR(π) =
ñ∏

j=1

∑
(hk,hl,hk′ ,hl′ )∼Gj

πkπlπk′πl′ , (3.2)

where Gj = (GFj, GMj, GCj) is the genotype data for the jth trio with the M -locus

genotypes GFj, GMj and GCj for the father, mother and child, respectively, and

(hk, hl, hk′ , hl′) ∼ Gj means that (hk, hl) is compatible with GFj, (hk′ , hl′) is compatible

with GMj, and (hk, hk′), (hk, hl′), (hl, hk′), or (hl, hl′) is compatible with GCj.

By maximizing LR(π) given in equation (3.2) via the EM algorithm, we obtain

the maximum-likelihood estimator π̃ = (π̃1, . . . , π̃K)
T. Assuming that the haplotype

frequencies are the same between the study population and the external panel, we can

estimate the probability distribution of Gu from the observed values of Gt for each

study subject according to the formula

Pr(Gu = g| Gt; π̃) =

∑
(hk,hl)∼(Gt,Gu=g) π̃kπ̃l∑

g′=0,1,2

∑
(hk,hl)∼(Gt,Gu=g′) π̃kπ̃l

, g = 0, 1, 2, (3.3)

where (hk, hl) ∼ (Gt, Gu = g) means that (hk, hl) is compatible with (Gt, Gu = g).

We use this (estimated) probability distribution to impute the unknown value of Gu,

either as the expected count (i.e., dosage) or the most likely value of Gu. We replace

the unknown values of Gu by the imputed values for all study subjects to create a

“complete” data set, which is then analyzed by standard regression methods.

In the Appendix, we prove that the above imputation method yields a valid test

of the null hypothesis H0 : βG = 0 under the linear predictor α + βGuGu + βT
WW,

where βGu and βW pertain to the effects of Gu and W, respectively, provided that Gt
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is independent of Y conditional on W. This result holds for both cross-sectional and

case-control studies, even when the reference panel and the study sample are drawn from

different underlying populations. However, the estimator of βGu is generally biased with

underestimated variance when βGu ̸= 0, and type I error may not be properly controlled

for other hypotheses.

3.2.2 Maximum Likelihood

Let H denote the diplotype associated with the M -locus genotype G. We write

H = (hk, hl) if the diplotype consists of haplotypes hk and hl. In the previous sub-

section, we formulate the effects of G and X through the conditional density function

Pα,β,ξ(Y |Gu,W), where W consists of Gt and X. In this subsection, we represent

the same regression model in the form of Pα,β,ξ(Y |G(hk, hl),X), where G(hk, hl) de-

note the genotype G induced by the diplotype (hk, hl). We assume that H and X are

independent.

Let n denote the total number of study subjects. For i = 1, . . . , n, let Yi, Gti and

Xi denote the values of Y , Gt and X on the ith subject. For a cross-sectional study,

the likelihood for θ = (α,βT, ξT)T and π takes the form

LS(θ,π) =
n∏

i=1

∑
(hk,hl)∼Gti

Pα,β,ξ

(
Yi|G(hk, hl),Xi

)
πkπl, (3.4)

where (hk, hl) ∼ Gti means that the diplotype (hk, hl) is compatible with genotype Gti.

For case-control studies, we assume the logistic regression model given in (3.1) with

the linear predictor α+βTZ(G(hk, hl),X). Because the sampling is conditional on the

case-control status, the likelihood takes the retrospective form
∏n

i=1 P (Gti,Xi|Yi). If
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there are no environmental factors and the disease is rare, then this likelihood becomes

LS(θ,π) =
n∏

i=1

∑
(hk,hl)∼Gti

eYiβ
TZ(G(hk,hl))πkπl∑

k,l e
Yiβ

TZ(G(hk,hl))πkπl
, (3.5)

where θ = β. In the presence of X, the retrospective likelihood involves the unknown

distribution of X, which is high-dimensional. We eliminate the distribution of X by the

profile-likelihood approach (Lin and Zeng, 2006) and replace (3.5) with the following

profile likelihood:

LS(θ,π) =
n∏

i=1

∑
(hk,hl)∼Gti

eYi{µ+βTZ(G(hk,hl),Xi)}πkπl∑
k,l,y e

y{µ+βTZ(G(hk,hl),Xi)}πkπl
,

where θ = (µ,βT)T, µ is an unknown constant, and the summation in the denominator

is taken over k, l = 1, . . . , K and y = 0, 1.

The likelihood that combines the study data and the reference panel is LC(θ,π) =

LS(θ,π)LR(π), where LR(π) is given in equation (3.2). We maximize this combined

likelihood via the Newton-Raphson algorithm. We set the initial value of π at π̃, the

maximizer of LR(π). To improve numerical stabilities, we exclude the haplotypes whose

estimated frequencies are 0 or very close to 0, i.e., less than max(2/n, 0.001). The

maximum-likelihood estimator (MLE) of (θ,π) is consistent, asymptotically normal

and asymptotically efficient.

Note that the likelihood for case-control studies was previously given in Lin et al.

(2008) and is reformulated in this section to conform with the notation for the impu-

tation method. The likelihood for cross-sectional studies is new.
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3.3 Simulation Studies

We carried out extensive simulation studies to evaluate the performance of the MLE

and imputation methods in realistic settings. We generated genotype data for various

sets of five SNPs according to the LD patterns observed in the HapMap CEU sample.

For each SNP set, we chose one SNP to be untyped in the study data. For some SNP

sets, we picked more than one SNP to be untyped, one at a time, each representing

a different scenario. Table 3.1 lists the nine scenarios used in the simulation studies,

with R2 (Stram, 2004) ranging from .41 to .98.

We explored three types of association: (1) single-SNP effects, (2) gene-environment

interactions, (3) multi-SNP effects. For each type of model, we considered both cross-

sectional and case-control designs. Since the case-control design naturally requires a

binary trait, we focused on quantitative traits for cross-sectional studies. Thus, there

were six series of simulation studies. For each set-up, we simulated 10,000 data sets

with 2,000 study subjects and 60 trios. Under the case-control design, we set the

overall disease rate to be approximately 1% and selected an equal number of cases

and controls. We chose 60 trios for the reference panel so as to approximate the CEU

sample in the current version (i.e., phase 3) of the HapMap database, which consists

of 44 trios, 8 duos and 17 singletons. For each simulated data set, we applied the

MLE and imputation approaches. For the latter approach, we imputed the unknown

genotype by both the dosage and the most likely genotype, which are referred to as

the IMP-DOS and IMP-MLG methods, respectively. All the analysis was based on the

Wald statistic.

Our first series of simulation studies was concerned with the (marginal) effect of an

untyped SNP on a quantitative trait in a cross-sectional study. We generated the trait
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value from the linear regression model

Y = α + βGu + ϵ,

where ϵ is standard normal and α = 0. Table 3.2 displays the results for various

values of β. As expected, the MLE is virtually unbiased in all cases. IMP-DOS also

shows negligible bias, which is not surprising because conditional mean imputation is

known to yield consistent estimators of regression parameters under the linear model

(Little, 1992). The estimator of β produced by IMP-MLG is seriously biased towards

zero and the bias can be as much as 25% of the true parameter value. For non-zero β,

both IMP-DOS and IMP-MLG tend to underestimate the variances, so their confidence

intervals have poor coverage probabilities. Under scenario S8, in which R2 = .98, the

coverage probability of the 99% confidence interval of IMP-DOS is only 98% when

β = .9. IMP-MLG is much worse than IMP-DOS because it suffers from both biased

estimation of parameter and underestimation of variance; see S1-S3. As predicted by

our theory, both IMP-DOS and IMP-MLG have appropriate type I error. In some cases

(i.e., S2, S3 and S5), IMP-DOS is slightly more powerful than MLE. This phenomenon

is attributed to the underestimation of variance by IMP-DOS. When R2 is large (e.g.,

S7-S9), all methods have the same power.

In our second series of studies, we simulated case-control data under the logistic

regression model

Pr(Y = 1|Gu) =
eα+βGu

1 + eα+βGu
,

where α was set to −4.6 to yield disease rates of approximately 1%. The results are

summarized in Table 3.3. Unlike linear regression, IMP-DOS can produce substantial

bias under logistic regression; see S1–S3 and S5. MLE is now uniformly more powerful

than both IMP-DOS and IMP-MLG; this feature can be seen more clearly in Figure
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3.1. The power gain of MLE over imputation persists as R2 approaches 1 because MLE

exploits the HWE assumption whereas imputation does not. When R2 is low, the bias

of imputation (under non-linear models) also affects its power. Again, all three methods

have accurate control of type I error. As in cross-sectional studies, both IMP-DOS and

IMP-MLG tend to underestimate the variances (for non-zero β) and thus yield poor

confidence interval coverage, especially when β is large and R2 is low.

Our third and fourth series of studies were focused on gene-environment interactions

under the cross-sectional and case-control designs, respectively. We generated data from

the same models as in the first two series but with the linear predictors α+β1Gu+β2X+

β3GuX, where X is Bernoulli with Pr(X = 1) = 0.4. The results for cross-sectional

studies are displayed in Table 3.4. For detecting interactions, both IMP-DOS and IMP-

MLG produce confidence intervals with poor coverage probabilities, especially when the

effects are large and the LD is low; see S1-S6. Both may lose control of type I error and

are substantially less powerful than MLE. The power gain of MLE is largely attributed

to its incorporation of gene-environment independence. The power difference decreases

as R2 increases. In the extreme case of R2 = 1, the summation in (3.4) disappears

and MLE is equivalent to imputation. The results for case-control studies are shown in

Table 3.5. Both imputation methods yield biased estimates, poor confidence interval

coverage and diminished power. The power difference between MLE and imputation is

further illustrated in Figure 3.2. The power gain of MLE is again largely attributed to

its use of gene-environment independence. If we analyzed the imputed genotypes (either

the dosage or the most likely genotype) by the method of Chatterjee and Carroll (2005),

which also exploits gene-environment independence, then the power gain of MLE was

reduced considerably (results not shown).

Our last two series of studies dealt with multi-SNP effects. We set the untyped SNP

to be causal and included all five SNPs in the joint analysis. For making inference on
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the effect of the untyped SNP, the performance of IMP-DOS and IMP-MLG is similar to

the first two series of studies (results not shown). In particular, type I error is properly

controlled. This is not surprising because our theory indicates that imputation yields

a valid test of the untyped SNP even when there are environmental factors or typed

SNPs in the model. On the other hand, if the untyped SNP is associated with the trait,

the bias in the estimation of its effect can cause bias in estimating the null effects of

the typed SNPs. Indeed, both IMP-DOS and IMP-MLG can have inflated type I error

in testing the effects of the typed SNPs and the inflation of type I error becomes more

severe as the effect of the untyped SNP increases. Figure 3.3 and 3.4 display these

results for cross-sectional and case-control studies, respectively. As before, MLE has

accurate control of type I error.

3.4 WTCCC Data

We considered WTCCC data on type 1 diabetes (T1D). The database contains 1,963

subjects with T1D and 2,938 controls. For the typed SNPs, we applied the standard

Armitage trend test. For the untyped SNPs that are cataloged in the HapMap phase 3

database, we applied both MLE and IMP-DOS, with the phase 3 HapMap CEU sample

as the reference panel. For each untyped SNP, we first identified the typed SNPs within

50 kb and then found a set of four that yields the largest R2. If there were fewer than

eight SNPs within 50 kb, we enlarged the window until a minimum of eight SNPs were

located. If there were more than twenty SNPs within 50 kb, we restricted our attention

to the closest twenty SNPs so as to reduce computation time.

As shown in Figure 3.5, MLE and IMP-DOS produce nearly identical quantile-

quantile (Q-Q) plots for the untyped SNPs, which are similar to that of the typed

SNPs. The deviations of the test statistics from the null distribution are minor except

in the extreme tails, which correspond to significant associations. The over-dispersion
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parameter (i.e., the genomic control λ) was estimated at approximately 1.05 for all three

plots. These results illustrate that, for single-SNP analysis, both MLE and imputation

have correct type I error.

Figure 3.6 displays the results of the association tests for both typed and untyped

SNPs on chromosomes 1, 6 and 12, which have the strongest evidence of association.

Both MLE and IMP-DOS were able to identify untyped SNPs that are more strongly

associated with the disease than typed SNPs, but MLE picked out those SNPs more

clearly. This is not surprising since MLE is expected to be more powerful than impu-

tation.

3.5 Discussion

We have presented two approaches to the analysis of untyped SNPs and investigated

their properties both theoretically and numerically. The maximum-likelihood approach

yields approximately unbiased parameter estimators, proper confidence intervals and

accurate control of type I error. It tends to be more powerful than the imputation

approach, especially for case-control studies and in testing gene-environment interac-

tions. The maximum-likelihood method requires the study sample and reference panel

be generated from the same underlying population and may be numerically unstable

when the haplotype frequencies are low.

We have assumed gene-environment independence in the maximum likelihood ap-

proach. This assumption is satisfied in most applications and can substantially improve

the efficiency of association analysis, especially in case-control studies (Chatterjee and

Carroll, 2005). It is possible to allow gene-environment dependence, but the analysis

will be more complicated and less efficient.

The imputation approach has some advantages over the maximum likelihood ap-

proach. Numerically, the former is more stable than the latter. For single-SNP tests,
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imputation has proper control of type I error even if the reference panel does not

match the study population. For testing other hypotheses, however, imputation may

have inflated type I error. In general, imputation yields biased parameter estimators

and incorrect variance estimators. Because the bias can be upward and the variance

is underestimated, imputation can sometimes be more powerful than maximum like-

lihood. Thus, maximum likelihood and imputation are complementary to each other.

One possible strategy is to use imputation (with the dosage as the imputed value) in

the initial single-SNP tests and to use maximum likelihood for more complex analysis

once a region of disease association has been identified.

For cross-sectional studies, Xie and Stram (2005) showed that the score test based

on the dosage of the risk haplotype is asymptotically valid. We have shown that

imputation is asymptotically valid for single-SNP tests under both cross-sectional and

case-control designs whether the untyped SNP is imputed by the dosage or the most

likely genotype. Note that haplotype analysis does not involve external data whereas

analysis of untyped SNPs does.

Because it ignores the random variation of the reference panel, the imputation ap-

proach generally underestimates the variances of the parameter estimators. As the size

of the reference panel increases, the underestimation of variance becomes less severe

and thus confidence intervals have better coverage probabilities. The size of the refer-

ence panel, however, has little influence on the bias of imputation. On the other hand,

increasing the size of the reference panel reduces the variance of the MLE. Indeed, the

power of maximum likelihood improves at a faster rate than imputation as the reference

panel becomes larger, especially under the case-control design (results not shown).

Both MLE and imputation are computationally fast, and the relevant software is

available at our website. It took about 8 hours on a 64 bit, 30 GHz Intel Xeon machine

to perform the MLE analysis on chromosome 1 of the WTCCC GWAS data. Imputation
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was slightly faster. The computational savings of imputation will be more substantial if

there are multiple traits of interest because the untyped SNPs only need to be imputed

once.

For computational expediency, we used the significance level of 0.01 in our simula-

tion studies. The relatively small number of replicates required for obtaining accurate

summary statistics at this significance level allowed us to explore a very wide variety

of scenarios. It would be formidable to conduct extensive simulation studies at the

significance level of 10−4 or lower, which would require at least 1 million replicates. We

repeated some of our simulation studies using the significance level of 10−4, and the

basic conclusions regarding the relative merits of MLE and imputation remained the

same.

We have focused on tagging-based imputation. An alternative approach is to use

HMM (Browning and Browning, 2007; Marchini et al., 2007; Li et al., 2010). The latter

approach, which explores the LD information over a larger region and incorporates

population genetics knowledge, can yield more accurate prediction of untyped genotypes

in certain situations. We chose tagging over HMM in this chapter for several reasons:

(1) using the same amount of information to infer missing genotypes ensures that the

maximum-likelihood and imputation methods are compared on equal footing; (2) an

investigation by the imputation working group of GAIN (Manolio et al., 2007) revealed

that tagging is nearly as accurate as HMM (unpublished data); (3) tagging is much

simpler and faster than HMM and can handle much larger studies. We are currently

trying to incorporate HMM into the maximum likelihood framework. The conclusions of

this chapter regarding the relative merits of the maximum likelihood versus imputation

approaches are expected to hold when tagging is replaced by HMM.
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Table 3.1: Haplotype frequencies for the scenarios used in simulation studies

S1: R2 = .41, MAF=.39 S2: R2 = .59, MAF=.28 S3: R2 = .70, MAF=.15
Haplotype UTTTT Frequency TTTUT Frequency TTUTT Frequency

h1 00011 .0513 00100 .3171 00000 .0513
h2 00100 .0260 00101 .0988 00100 .1460
h3 01011 .0855 00111 .2027 01000 .6958
h4 01100 .3094 01001 .1518 10011 .1069
h5 01101 .1377 10100 .1059
h6 11011 .0085 10101 .0209
h7 11100 .1775 10111 .0793
h8 11101 .0247 11001 .0235
h9 11111 .1794

S4: R2 = .81, MAF=.33 S5: R2 = .84, MAF=.24 S6: R2 = .93, MAF=.15
Haplotype UTTTT Frequency TTUTT Frequency TTUTT Frequency

h1 00011 .2846 01101 .2852 00011 .0513
h2 00101 .0128 10100 .2510 00100 .0260
h3 00111 .0342 11000 .2393 01011 .0855
h4 10101 .2374 11100 .0321 01100 .3094
h5 10111 .1917 11101 .0963 01101 .1377
h6 11110 .2393 11110 .0961 11011 .0085
h7 11100 .1775
h8 11101 .0247
h9 11111 .1794

S7: R2 = .95, MAF=.09 S8: R2 = .98, MAF=.28 S9: R2 = .98, MAF=.29
Haplotype UTTTT Frequency TTUTT Frequency TTTTU Frequency

h1 00111 .3809 01000 .4231 01000 .4231
h2 01110 .2350 01010 .1154 01010 .1154
h3 01111 .2900 01011 .0043 01011 .0043
h4 11001 .0897 01111 .2821 01111 .2821
h5 11111 .0044 10010 .1751 10010 .1751

NOTE: “U” and “T” indicate the untyped and typed SNP positions, respectively. R2

is the squared correlation between the expected and true allele counts (Stram 2004).
MAF is the minor allele frequency of the untyped SNP.
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Table 3.2: Simulation results for studying the effect of an untyped SNP on a quantitative
trait under the cross-sectional design

MLE IMP-DOS IMP-MLG
β Bias SE SEE CP PW Bias SE SEE CP PW Bias SE SEE CP PW

S1 .0 .000 .051 .051 .989 .011 .000 .051 .051 .990 .010 .000 .041 .041 .989 .011
.1 .000 .051 .051 .990 .274 -.001 .051 .051 .990 .267 -.031 .041 .041 .965 .190
.2 .000 .052 .051 .990 .905 -.002 .051 .051 .990 .903 -.062 .042 .041 .857 .781
.6 .000 .053 .052 .990 1.00 -.007 .056 .053 .987 1.00 -.185 .047 .043 .063 1.00
.9 -.002 .054 .052 .988 1.00 -.010 .061 .056 .982 1.00 -.277 .053 .046 .001 1.00

S2 .0 .000 .046 .046 .991 .009 .000 .046 .046 .990 .010 .000 .036 .036 .991 .009
.1 .000 .046 .047 .991 .325 .000 .046 .046 .990 .336 -.026 .036 .036 .965 .309
.2 .000 .048 .048 .992 .960 .000 .048 .046 .988 .963 -.051 .038 .036 .843 .937
.6 .001 .057 .057 .988 1.00 -.001 .061 .047 .954 1.00 -.154 .048 .037 .151 1.00
.9 .000 .060 .060 .985 1.00 -.001 .077 .049 .903 1.00 -.231 .060 .038 .059 1.00

S3 .0 .000 .055 .054 .992 .008 .000 .055 .054 .991 .009 .000 .041 .041 .990 .010
.1 .000 .055 .055 .992 .217 .001 .055 .054 .989 .237 -.025 .041 .041 .977 .233
.2 .001 .057 .057 .991 .856 .001 .058 .054 .986 .871 -.050 .042 .041 .907 .863
.6 .001 .070 .070 .987 1.00 .004 .078 .055 .936 1.00 -.149 .046 .041 .172 1.00
.9 .000 .074 .073 .987 1.00 .006 .100 .056 .863 1.00 -.224 .051 .042 .033 1.00

S4 .0 .000 .037 .037 .989 .011 .000 .037 .037 .989 .011 .000 .035 .035 .989 .011
.1 .000 .037 .037 .989 .544 .000 .037 .037 .989 .544 -.007 .035 .035 .986 .540
.2 .000 .038 .037 .989 .998 -.001 .037 .037 .988 .998 -.013 .035 .035 .983 .997
.6 .000 .038 .038 .988 1.00 -.002 .039 .038 .986 1.00 -.039 .036 .036 .929 1.00
.9 .000 .039 .038 .989 1.00 -.003 .041 .038 .984 1.00 -.059 .036 .036 .829 1.00

S5 .0 .000 .041 .040 .991 .009 .000 .041 .040 .991 .009 .000 .036 .036 .991 .009
.1 .000 .041 .041 .991 .456 .000 .041 .040 .990 .463 -.012 .036 .036 .985 .463
.2 .001 .042 .042 .991 .991 .001 .042 .040 .988 .991 -.023 .036 .036 .971 .991
.6 .001 .048 .048 .988 1.00 .001 .050 .041 .966 1.00 -.071 .036 .036 .722 1.00
.9 .001 .052 .051 .987 1.00 .002 .060 .041 .929 1.00 -.106 .037 .036 .365 1.00

S6 .0 .000 .050 .050 .990 .010 .000 .050 .050 .990 .010 .000 .048 .047 .990 .010
.1 .000 .050 .050 .990 .286 .000 .050 .050 .990 .284 -.008 .048 .047 .988 .266
.2 .000 .050 .050 .990 .919 -.001 .050 .050 .990 .918 -.015 .048 .047 .985 .904
.6 .000 .050 .050 .990 1.00 -.003 .050 .050 .990 1.00 -.046 .048 .048 .943 1.00
.9 .000 .050 .049 .989 1.00 -.004 .051 .051 .991 1.00 -.069 .049 .049 .876 1.00

S7 .0 .000 .056 .056 .990 .010 .000 .056 .056 .990 .010 .000 .055 .055 .990 .010
.1 .000 .056 .056 .990 .215 .000 .056 .056 .990 .214 .000 .055 .055 .990 .215
.2 .000 .056 .056 .990 .844 .000 .056 .056 .990 .844 -.001 .055 .055 .990 .845
.6 .000 .056 .056 .990 1.00 .000 .056 .056 .990 1.00 -.003 .055 .055 .990 1.00
.9 .000 .056 .056 .990 1.00 .000 .056 .056 .990 1.00 -.004 .056 .056 .990 1.00

S8 .0 .000 .036 .036 .990 .010 .000 .036 .036 .990 .010 .000 .035 .035 .990 .010
.1 .000 .036 .036 .990 .590 .000 .036 .036 .990 .590 -.002 .035 .035 .991 .590
.2 .000 .036 .036 .991 .999 .000 .036 .036 .990 .999 -.003 .035 .035 .991 .999
.6 .000 .037 .037 .990 1.00 .000 .037 .036 .987 1.00 -.009 .035 .035 .988 1.00
.9 .000 .038 .038 .989 1.00 .000 .038 .036 .982 1.00 -.014 .035 .035 .984 1.00

S9 .0 .000 .036 .035 .990 .010 .000 .036 .035 .990 .010 .000 .035 .035 .990 .010
.1 .000 .036 .035 .990 .599 .000 .036 .035 .990 .599 -.001 .035 .035 .990 .598
.2 .000 .036 .035 .990 .999 .000 .036 .035 .990 .999 -.001 .035 .035 .990 .999
.6 .000 .036 .035 .990 1.00 .000 .036 .035 .990 1.00 -.004 .035 .035 .991 1.00
.9 -.001 .036 .035 .990 1.00 -.001 .036 .035 .989 1.00 -.005 .035 .035 .990 1.00

NOTE: S1-S9 denote the nine scenarios listed in Table 3.1. Bias and SE are the bias
and standard error of the parameter estimator. SEE is the mean of the standard error
estimator. CP is the coverage probability of the 99% confidence interval. PW is the
type I error/power for testing zero parameter value at the .01 nominal significance
level. Each entry is based on 10,000 replicates.
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Table 3.3: Simulation results for studying the effect of an untyped SNP on the risk of
disease under the case-control design

MLE IMP-DOS IMP-MLG
β Bias SE SEE CP PW Bias SE SEE CP PW Bias SE SEE CP PW

S1 .0 .001 .100 .099 .989 .011 .001 .101 .101 .990 .010 .001 .082 .082 .990 .010
.3 .000 .103 .101 .990 .651 -.010 .101 .100 .989 .633 -.093 .082 .081 .922 .483
.6 .000 .108 .106 .989 .999 -.031 .102 .099 .984 .999 -.190 .082 .081 .580 .993
.9 -.008 .115 .113 .986 1.00 -.070 .104 .100 .961 1.00 -.297 .083 .082 .156 1.00

S2 .0 -.002 .091 .090 .991 .009 -.001 .093 .092 .989 .011 -.001 .073 .072 .988 .012
.3 .000 .085 .084 .989 .844 .012 .094 .091 .987 .805 -.067 .075 .072 .934 .753
.6 -.002 .084 .082 .990 1.00 .046 .103 .092 .971 1.00 -.117 .083 .073 .757 1.00
.9 -.009 .084 .083 .989 1.00 .093 .115 .094 .919 1.00 -.157 .097 .075 .566 1.00

S3 .0 -.002 .106 .106 .992 .008 -.001 .109 .108 .989 .011 .000 .082 .082 .989 .011
.3 -.001 .099 .098 .991 .693 .012 .110 .105 .987 .651 -.067 .081 .079 .953 .641
.6 .000 .096 .096 .990 1.00 .047 .120 .103 .969 1.00 -.116 .082 .078 .841 1.00
.9 -.003 .096 .097 .989 1.00 .096 .136 .103 .915 1.00 -.153 .087 .078 .682 1.00

S4 .0 .000 .073 .073 .990 .010 .000 .075 .074 .989 .011 .000 .071 .070 .989 .011
.3 .001 .075 .074 .990 .929 .002 .078 .077 .990 .913 -.016 .074 .073 .986 .909
.6 .000 .077 .077 .989 1.00 .007 .082 .081 .990 1.00 -.028 .077 .077 .984 1.00
.9 -.006 .082 .081 .990 1.00 .011 .088 .087 .989 1.00 -.039 .083 .082 .979 1.00

S5 .0 .000 .079 .079 .989 .011 .000 .082 .081 .989 .011 .000 .072 .071 .989 .011
.3 .001 .086 .087 .990 .837 -.005 .085 .084 .988 .830 -.040 .074 .074 .977 .830
.6 .002 .103 .102 .989 1.00 -.023 .093 .088 .980 1.00 -.092 .078 .077 .912 1.00
.9 .009 .130 .127 .988 1.00 -.051 .102 .093 .961 1.00 -.154 .082 .081 .744 1.00

S6 .0 .000 .096 .097 .991 .009 .000 .100 .100 .991 .009 .000 .095 .095 .991 .009
.3 .001 .102 .103 .990 .634 .000 .105 .106 .989 .603 -.022 .100 .101 .989 .578
.6 -.002 .112 .112 .989 .999 -.007 .114 .114 .990 .997 -.049 .108 .108 .981 .996
.9 -.004 .122 .121 .989 1.00 -.014 .125 .123 .987 1.00 -.077 .118 .117 .964 1.00

S7 .0 .000 .109 .108 .991 .009 .000 .112 .111 .992 .008 .000 .112 .111 .992 .008
.3 -.001 .103 .102 .989 .632 -.001 .106 .106 .991 .601 -.002 .106 .105 .991 .599
.6 .000 .097 .098 .990 1.00 .001 .102 .102 .990 1.00 -.002 .101 .101 .990 1.00
.9 -.003 .096 .095 .989 1.00 -.001 .101 .100 .989 1.00 -.005 .100 .099 .989 1.00

S8 .0 .000 .070 .069 .989 .011 .000 .072 .071 .989 .011 .000 .071 .070 .989 .011
.3 .000 .066 .067 .990 .972 .002 .069 .070 .990 .962 -.003 .068 .069 .989 .962
.6 -.001 .066 .066 .990 1.00 .004 .071 .070 .990 1.00 -.006 .069 .069 .989 1.00
.9 -.006 .066 .066 .990 1.00 .005 .072 .071 .990 1.00 -.008 .070 .070 .991 1.00

S9 .0 .000 .069 .069 .988 .012 .000 .071 .071 .989 .011 .000 .071 .070 .989 .011
.3 .000 .067 .067 .992 .971 .000 .069 .069 .991 .960 -.001 .069 .069 .991 .960
.6 -.002 .066 .066 .991 1.00 -.001 .069 .069 .992 1.00 -.004 .069 .069 .992 1.00
.9 -.007 .067 .066 .989 1.00 -.002 .072 .071 .989 1.00 -.007 .071 .070 .988 1.00

NOTE: See the Note to Table 3.2.
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Table 3.4: Simulation results for studying gene-environment interactions under the
cross-sectional design with a quantitative trait

MLE IMP-DOS IMP-MLG
β1 β3 Bias SE SEE CP PW Bias SE SEE CP PW Bias SE SEE CP PW

S1 .5 .0 .000 .097 .096 .990 .010 -.002 .107 .107 .991 .009 -.001 .087 .087 .990 .010
.5 .2 .000 .095 .094 .990 .328 -.004 .108 .109 .991 .210 -.063 .088 .089 .970 .150
.5 .3 .000 .094 .093 .990 .740 -.005 .108 .111 .992 .531 -.094 .089 .090 .943 .385
.5 .9 .000 .092 .091 .990 1.00 -.012 .115 .121 .993 1.00 -.279 .098 .100 .409 1.00

1.2 .0 .000 .085 .084 .991 .009 -.002 .116 .123 .994 .006 -.001 .099 .102 .992 .008

S2 .5 .0 -.001 .092 .092 .991 .009 -.002 .097 .096 .990 .010 -.001 .076 .075 .991 .009
.5 .2 -.001 .092 .091 .990 .352 -.002 .098 .097 .989 .303 -.053 .077 .076 .964 .273
.5 .3 -.001 .092 .091 .990 .763 -.002 .100 .098 .989 .682 -.078 .078 .076 .926 .633
.5 .9 -.001 .091 .090 .991 1.00 -.003 .118 .103 .977 1.00 -.232 .092 .081 .377 1.00

1.2 .0 .000 .087 .087 .989 .011 -.002 .107 .105 .989 .011 -.001 .083 .083 .992 .009

S3 .5 .0 .000 .110 .110 .991 .009 .000 .113 .112 .989 .011 .000 .085 .084 .989 .011
.5 .2 .001 .110 .110 .990 .224 .001 .115 .112 .987 .223 -.050 .086 .085 .974 .218
.5 .3 .000 .111 .111 .989 .560 .002 .118 .113 .986 .541 -.075 .087 .085 .951 .533
.5 .9 .000 .110 .111 .991 1.00 .006 .144 .116 .964 1.00 -.224 .094 .087 .487 1.00

1.2 .0 .000 .108 .108 .990 .010 -.001 .124 .116 .984 .017 .000 .093 .088 .984 .016

S4 .5 .0 -.001 .077 .076 .988 .012 -.001 .077 .077 .990 .010 -.001 .073 .072 .989 .011
.5 .2 -.001 .077 .076 .988 .516 -.002 .077 .077 .990 .496 -.014 .073 .073 .988 .488
.5 .3 -.001 .077 .076 .988 .913 -.002 .078 .077 .991 .901 -.021 .073 .073 .987 .895
.5 .9 -.001 .076 .075 .988 1.00 -.004 .079 .080 .990 1.00 -.060 .074 .076 .966 1.00

1.2 .0 -.001 .076 .075 .988 .012 -.001 .080 .080 .990 .010 -.001 .076 .076 .990 .010

S5 .5 .0 -.001 .084 .083 .990 .011 -.001 .084 .083 .989 .011 -.001 .074 .073 .989 .011
.5 .2 -.001 .084 .083 .989 .432 -.001 .085 .083 .988 .432 -.025 .075 .073 .985 .432
.5 .3 -.001 .085 .084 .989 .842 -.001 .086 .084 .988 .840 -.036 .075 .074 .978 .840
.5 .9 -.001 .085 .084 .989 1.00 .000 .097 .085 .978 1.00 -.108 .077 .075 .872 1.00

1.2 .0 -.001 .084 .083 .988 .012 -.001 .089 .086 .987 .013 -.001 .078 .076 .987 .013

S6 .5 .0 -.001 .102 .101 .989 .011 .000 .102 .102 .990 .010 -.001 .097 .098 .990 .010
.5 .2 -.001 .102 .101 .989 .277 -.001 .102 .103 .990 .261 -.016 .098 .098 .990 .245
.5 .3 -.001 .101 .101 .989 .649 -.002 .102 .103 .990 .621 -.024 .098 .098 .989 .591
.5 .9 -.001 .101 .100 .989 1.00 -.005 .103 .105 .991 1.00 -.070 .099 .100 .973 1.00

1.2 .0 -.001 .099 .099 .989 .011 .000 .103 .105 .991 .009 -.001 .100 .101 .991 .009

S7 .5 .0 -.002 .114 .114 .991 .009 -.002 .114 .114 .991 .009 -.002 .114 .113 .991 .009
.5 .2 -.002 .114 .114 .991 .202 -.002 .114 .114 .991 .202 -.003 .114 .113 .991 .201
.5 .3 -.002 .114 .114 .990 .515 -.002 .114 .114 .991 .512 -.004 .114 .113 .991 .512
.5 .9 -.004 .114 .114 .990 1.00 -.003 .114 .114 .991 1.00 -.007 .114 .114 .991 1.00

1.2 .0 -.002 .114 .114 .990 .010 -.002 .115 .114 .991 .009 -.002 .114 .114 .991 .009

S8 .5 .0 .001 .073 .073 .989 .011 .001 .074 .073 .989 .011 .001 .072 .072 .989 .011
.5 .2 .001 .074 .073 .989 .572 .001 .074 .073 .989 .572 -.002 .072 .072 .989 .572
.5 .3 .001 .074 .073 .989 .939 .001 .074 .073 .990 .939 -.004 .072 .072 .989 .939
.5 .9 -.001 .074 .073 .989 1.00 .001 .075 .073 .989 1.00 -.013 .073 .072 .987 1.00

1.2 .0 .001 .074 .073 .990 .011 .001 .074 .073 .989 .011 .001 .073 .072 .989 .011

S9 .5 .0 .001 .073 .072 .990 .010 .001 .073 .072 .990 .010 .001 .073 .072 .990 .010
.5 .2 .001 .073 .072 .990 .579 .001 .073 .072 .990 .577 .000 .073 .072 .990 .577
.5 .3 .000 .073 .072 .990 .943 .001 .073 .072 .990 .942 -.001 .073 .072 .990 .943
.5 .9 -.001 .073 .072 .990 1.00 .000 .073 .073 .990 1.00 -.005 .073 .072 .989 1.00

1.2 .0 .001 .073 .072 .990 .010 .001 .073 .073 .990 .011 .001 .073 .072 .990 .010

NOTE: β2 = .2. See the Note to Table 3.2.
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Table 3.5: Simulation results for studying gene-environment interactions under the
case-control design

MLE IMP-DOS IMP-MLG
β3 Bias SE SEE CP PW Bias SE SEE CP PW Bias SE SEE CP PW

S1 .0 .000 .151 .149 .990 .010 -.002 .210 .209 .990 .010 -.002 .169 .169 .991 .009
.5 -.008 .165 .163 .988 .679 -.021 .218 .216 .988 .359 -.157 .175 .175 .952 .270
.9 -.025 .188 .187 .987 .985 -.065 .233 .231 .985 .859 -.295 .187 .187 .840 .751

S2 .0 .000 .136 .135 .992 .008 -.001 .189 .189 .991 .009 -.001 .148 .147 .991 .009
.5 -.006 .140 .139 .991 .863 .032 .198 .194 .989 .565 -.103 .157 .152 .965 .521
.9 -.023 .153 .153 .989 1.00 .098 .216 .204 .978 .990 -.153 .174 .160 .927 .980

S3 .0 .002 .162 .160 .992 .008 .001 .226 .223 .991 .009 .000 .170 .168 .990 .010
.5 -.002 .160 .158 .990 .756 .034 .232 .223 .987 .424 -.100 .171 .168 .973 .421
.9 -.016 .167 .166 .987 1.00 .099 .247 .227 .977 .968 -.152 .177 .171 .948 .967

S4 .0 -.002 .110 .109 .988 .012 -.002 .154 .153 .990 .010 -.002 .145 .144 .990 .010
.5 -.011 .130 .129 .989 .882 .004 .169 .169 .990 .660 -.026 .160 .159 .989 .657
.9 -.036 .157 .158 .990 .996 .007 .193 .194 .990 .977 -.044 .182 .183 .989 .977

S5 .0 -.001 .118 .118 .992 .008 .001 .166 .166 .991 .009 .001 .146 .146 .991 .009
.5 -.011 .150 .150 .991 .756 -.014 .187 .185 .989 .521 -.072 .163 .163 .982 .521
.9 -.031 .200 .199 .991 .963 -.056 .221 .216 .987 .904 -.157 .191 .190 .965 .904

S6 .0 -.003 .146 .146 .990 .010 -.003 .205 .206 .992 .008 -.003 .196 .195 .993 .007
.5 -.017 .186 .185 .991 .521 -.005 .238 .235 .990 .329 -.041 .226 .223 .988 .307
.9 -.049 .243 .241 .993 .806 -.023 .282 .280 .991 .701 -.087 .268 .266 .989 .682

S7 .0 .003 .165 .163 .991 .009 .000 .230 .230 .990 .010 .000 .229 .229 .990 .010
.5 -.004 .157 .156 .991 .735 -.001 .227 .226 .988 .356 -.003 .226 .225 .989 .354
.9 -.015 .157 .156 .990 1.00 .000 .225 .226 .992 .926 -.004 .224 .225 .991 .926

S8 .0 .001 .104 .104 .991 .009 .000 .146 .146 .991 .009 .000 .144 .144 .991 .009
.5 -.007 .107 .107 .990 .985 .005 .149 .149 .991 .792 -.003 .147 .147 .991 .792
.9 -.025 .116 .116 .986 1.00 .008 .159 .157 .989 .999 -.006 .156 .155 .989 .999

S9 .0 .001 .104 .103 .991 .009 .000 .146 .145 .990 .010 .000 .145 .145 .990 .010
.5 -.007 .108 .107 .989 .983 .002 .148 .149 .989 .792 -.001 .147 .148 .990 .792
.9 -.026 .117 .116 .986 1.00 .000 .158 .157 .991 .999 -.006 .157 .156 .990 .999

NOTE: β1 = .0, β2 = .1. See the Note to Table 3.2.
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Figure 3.1: Power of testing the effect of an untyped SNP at the 1% nominal significance
level under the case-control design. The solid, dashed and dotted curves pertain to
MLE, IMP-DOS and IMP-MLG, respectively.
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Figure 3.2: Power of testing gene-environment interactions at the 1% nominal signifi-
cance level under the case-control design. The solid, dashed and dotted curves pertain
to MLE, IMP-DOS and IMP-MLG, respectively.
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Figure 3.3: Type I error for testing the null effect of a typed SNP on a quantitative trait
at the 1% nominal significance level in the joint analysis involving a causal, untyped
SNP under the cross-sectional design. The solid, dashed and dotted curves pertain to
MLE, IMP-DOS and IMP-MLG, respectively.
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Figure 3.4: Type I error for testing the null effect of a typed SNP at the 1% nominal
significance level in the joint analysis involving a causal, untyped SNP under the case-
control design. The solid, dashed and dotted curves pertain to MLE, IMP-DOS and
IMP-MLG, respectively.
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Figure 3.5: Q-Q plots for the single-SNP analysis of the T1D data from the WTCCC
study: (a) Armitage trend test for typed SNPs, (b) MLE for untyped SNPs, and (c)
IMP-DOS for untyped SNPs. Chi-squared statistics exceeding 30 are truncated. The
black curve in (a) pertains to 392,746 typed SNPs that pass the standard project filters,
have minor allele frequencies (MAF) > 1% and missing data rates < 1%, and have good
cluster plots. The black curves in (b) and (c) pertain to 819,727 untyped SNPs that
are cataloged in Phase 3 of HapMap with MAF > 1%. The Q-Q plots which exclude
all SNPs located in the regions of association listed in Table 3 of the WTCCC (Burton
et al., 2007) paper are superimposed in grey. The grey curves show that departures in
the extreme tails of the distributions of test statistics are due to regions with strong
signals for association.
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Figure 3.6: Results of single-SNP association tests for the WTCCC study of T1D. The
log10 p-values for typed SNPs and untyped SNPs are shown in blue circles and red
dots, respectively. The three rows correspond to chromosomes 1, 6 and 12, which have
the strongest evidence of association. The left column corresponds to the trend test
for the typed SNPs and the MLE method for the untyped SNPs. The right column
corresponds to the trend test for the typed SNPs and the IMP-DOS method for the
untyped SNPs. All typed SNPs pass the standard project filters, have MAF > 1% and
missing data rate < 1%, and have good cluster plots. All untyped SNPs have MAF
> 1% in HapMap.
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3.6 Appendix

We are interested in the effect of the untyped SNP genotype Gu on the phenotype Y

adjusted for the effects of covariates W (if there are any). The covariates, which are

required to be fully observed, may include environmental factors and typed SNPs and

are allowed to be correlated with the untyped SNP. The linear predictor is assumed to

take the form of α+βGuGu+βT
WW, where βGu and βW represent the regression effects

of Gu and W, respectively. Write β = (βGu ,β
T
W)T. We are particularly interested in

testing the null hypothesis H0 : βGu = 0.

Let n denote the total number of study subjects. For i = 1, . . . , n, let Yi, Gui

and Wi denote the values of Y , Gu and W on the ith subject. We replace Gui by

Ĝui, where Ĝui is the imputed value of Gui based on equation (3.3), and then apply

standard likelihood methods to the imputed data set (Yi, Ĝui,Wi) (i = 1, . . . , n). The

validity of such analysis does not follow from standard likelihood theory because the n

imputed values {Ĝui} (i = 1, . . . , n) are correlated due to the presence of the estimator

π̃ in them.

We first consider cross-sectional studies. The “likelihood” for θ = (α,βT, ξT)T

based on the imputed data set takes the form L(θ) =
∏n

i=1 Pα,β,ξ(Yi|Ĝui,Wi). Denote

the resulting estimator by θ̂. As mentioned above, standard likelihood theory is not

applicable to θ̂ because the n terms in L(θ) are not independent.

Under H0 : βGu = 0, Y is related to W only and is independent of Gu given W.

Assume that Gt is independent of Y given W. (This assumption holds if Gt is inde-

pendent of Y or is part of W.) Then Ĝu, which is a function of Gt and π̃, is also

independent of Y given W, regardless of the value of π̃. In other words, the regression

effects of Ĝu and W on Y are the same as those of Gu and W under H0. Denote the

reference panel by R. Conditional on R, the imputed values are uncorrelated, so that,
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under H0, the random vector I1/2(θ̂)(θ̂ − θ) converges to a multivariate normal distri-

bution with mean zero and identity covariance matrix, where I(θ) = −∂2 logL(θ)/∂θ2.

Because the limiting distribution does not depend on R, the convergence also holds

unconditionally. Thus, standard likelihood methods can be used to test H0 (even if the

study sample and reference panel are drawn from different populations).

The above result hinges critically on the null hypothesis H0 : βGu = 0 under the

linear predictor α+ βGuGu + βT
WW, which ensures that θ̂ converges to the true value

of θ conditional on R. If βGu ̸= 0, then the asymptotic distribution of θ̂ conditional

on R depends on R, so that the inverse information matrix I−1(θ̂), which ignores the

variability in the reference panel, will underestimate the true variation of θ̂. Thus, the

confidence intervals for βGu will not have proper coverage probabilities unless βGu = 0.

It should also be pointed out that the validity of association testing is not guaranteed

if the linear predictor does not take the form of α + βGuGu + βT
WW.

We now consider the analysis of case-control data under the logistic regression model

Pr(Y = 1|Gu,W) =
eα+βGuGu+βT

WW

1 + eα+βGuGu+βT
WW

.

Write θ = (α, βGu ,β
T
W)T. If Gu were observed on all study subjects, then the maximum

likelihood estimator of θ (based on the prospective likelihood) would converge to θ∗

and its covariance matrix would be consistently estimated by the inverse information

matrix, where θ∗ is the same as θ except that α is replaced by a different constant

(Prentice and Pyke, 1979). Let θ̂ be the maximizer of the (prospective) likelihood

based on the imputed data:

L(θ) =
n∏

i=1

eYi(α+βGu Ĝui+βT
WWi)

1 + eα+βGu Ĝui+βT
WWi

.

It then follows from the above arguments for cross-sectional studies that, under H0 :
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βGu = 0, the random vector I1/2(θ̂)(θ̂ − θ∗) converges to a multivariate normal distri-

bution with mean zero and identity covariance matrix, where I(θ) = −∂2 logL(θ)/∂θ2.

Thus, the association testing is valid. Again, the variance is underestimated by the

inverse information matrix if βGu ̸= 0, and the association testing may not be valid for

other types of hypotheses.
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Chapter 4

A Likelihood-Based Framework for

Association Analysis of

Allele-Specific Copy Numbers

4.1 Introduction

In this chapter, we propose a framework for the integrated analysis of CNVs and SNPs

in association studies, including analysis of total copy numbers as a special case. We

allow for differential errors. We focus on case-control studies, although our methods

can easily be modified for quantitative trait association analysis. We unify the ASCN

calling and association analysis into a single step, so that the ASCN calling is informed

by the phenotype and the association analysis fully accounts for the uncertainty in

the calling. We formulate the effects of CNVs and SNPs on the phenotype through

flexible regression models, which can accommodate various genetic mechanisms and

gene-environment interactions. We construct appropriate likelihoods, which may in-

volve high-dimensional parameters. We establish the consistency, asymptotic normal-

ity, and asymptotic efficiency of the maximum likelihood estimators by appealing to

modern asymptotic techniques. We develop efficient and reliable numerical algorithms.



We conduct extensive simulation studies to assess the performance of the proposed

methods and compare them with existing approaches. We illustrate our methods with

a GWAS data of schizophrenia (Shi et al., 2009).

4.2 Methods

4.2.1 Notation and Model Assumptions

Suppose that the SNP has two alleles, A and B. Denote the total copy number and the

B allele copy number by K and L, respectively, where 0 ≤ L ≤ K ≤ S, and S is the

maximum copy number we will consider. Let Y be the phenotype of interest and X

be a set of environmental factors. For case-control studies, the conditional density of

Y = y given (K = k, L = l,X = x) is formulated through the logistic regression model

Pα,β(y|k, l,x) =
exp{y(α + βTZ(k, l,x))}
1 + exp{α + βTZ(k, l,x)}

, (4.1)

where Z(k, l,x) is a design vector excluding the unit component. There is considerable

flexibility in specifying the disease model. Suppose that there are no environmental

factors. A linear predictor in the form of α + βk pertains to an additive effect of the

total copy number and α+β1I(k = 1)+ . . .+βSI(k = S) pertains to a saturated model.

Replacing k with l in the above linear predictors leads to additive and saturated models

of the B allele copy number. Combining k and l, we may specify α + β1(k − l) + β2l

with β1 and β2 corresponding to the A allele and B allele copy numbers, respectively,

or α + β1k + β2{(k − l) − l} with β1 and β2 corresponding to the total copy number

and allelic difference, respectively.
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Although we are interested in the effects of (K,L,X) on Y , we only observe allele-

specific intensity measurements on the Affymetrix platform and the transformed quan-

tities on the Illumina platform, instead of (K,L). We denote the observed two-

dimensional measurements by R. Thus we have a regression problem with measure-

ment errors. We describe below how to model the measurement error distribution

P (R|Y,K,L,X). Note that by modelling the distribution conditional on Y and X,

we allow for the distribution to depend on the disease group and environmental fac-

tors such as indicators of batches. Specific formula of P (R|Y,K,L,X) depends on the

platforms.

Affymetrix SNP Data

Each SNP on the Affymetrix platform generates a pair of intensity measurements

(RA, RB) for the A and B alleles, respectively. The two measurements are log2-

transformed values from the normalized raw intensities (R̃A, R̃B). We assume that

(RA, RB) given (Y,K,L,X) follows a bivariate Gaussian distribution:

Pγ,δ(RA, RB|Y,K,L,X)

= ϕ

{RA

RB

 ;

γT
AA

γT
BB

 ,
 g(δT

AC) δT
ρW

√
g(δT

AC)g(δT
BD)

δT
ρW

√
g(δT

AC)g(δT
BD) g(δT

BD)

},
where γ = (γA,γB), δ = (δA, δB, δρ), ϕ(r;µ,Σ) is the bivariate normal density func-

tion with mean µ and covariance matrix Σ, A, B, C, D and W stand for A(y, k, l,x),

B(y, k, l,x), C(y, k, l,x), D(y, k, l,x) andW(y, k, l,x), respectively, which are the design

vectors for the means, variances and the correlation coefficient, and g(.) is a link func-

tion, such as the exponential function, that constraints the variances to be non-negative.

We may utilize a saturated model for the dependence of (RA, RB) on (Y,K,L,X), so
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each bivariate Gaussian distribution of (RA, RB) given (Y,K,L,X) are completely de-

termined by five parameters consisting of two means, two variances and a correlation

coefficient.

Illumina SNP Data

On the Illumina platform, we obtain the measurements on so-called Log R ratio

and B allele frequency (RLRR, RBAF), which are transformed values of the raw allele-

specific intensities (R̃A, R̃B). Let R̃T = R̃A + R̃B and η = arctan(R̃A/R̃B)/(π/2) so

that R̃T measures the total copy number and η measures the allelic contrast. Then,

RLRR, a normalized measure of the total signal intensity for each SNP, is calculated

as RLRR = log2(R̃T,observed/R̃T,expected), where R̃T,expected is computed from a linear

interpolation of the canonical genotype clusters corresponding to AA, AB and BB. A

normalized measure of η is calculated as

RBAF =



0 if η < ηAA,

0.5(η − ηAA)/(ηAB − ηAA) if ηAA ≤ η < ηAB,

0.5 + 0.5(η − ηAB)/(ηBB − ηAB) if ηAB ≤ η < ηBB,

1 if η ≥ ηBB,

where ηAA, ηAB, and ηBB are the η values for the three canonical genotype clusters

generated from a large set of reference samples. As a result, RBAF should be around

0, 0.5 and 1 for genotype AA, AB and BB, respectively. If the RBAF value of a SNP

deviates from the three values, it may indicate CNV. For instance, a RBAF value 0.33

may indicate a genotype of AAB.

By their definitions, RLRR andRBAF can be treated as independent given (Y,K,L,X).
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We model the conditional distribution of RLRR|(Y,K,L,X) by a normal density

Pγ,δ(RLRR|Y,K,L,X) = ϕ(RLRR;γ
T
LRRA(Y,K,X), g(δT

LRRC(Y,K,X))),

where ϕ(r;µ, σ2) is the univariate normal density function with mean µ and variance σ2,

A(y, k,x) and C(y, k,x) are the design vectors for the mean and variance, respectively,

and g(.) is the link function for the variance. Note that the design vectors do not

depend on L.

We model the distribution of RBAF given (Y,K,L,X) by a (truncated) normal

density,

Pγ,δ(RBAF|Y,K,L,X) = ϕ(RBAF;γ
T
BAFB, g(δT

BAFD))I(0<RBAF<1)

× Φ(0;γT
BAFB, g(δT

BAFD))I(RBAF=0)

×
(
1− Φ(1;γT

BAFB, g(δT
BAFD))

)I(RBAF=1)

,

where Φ(r;µ, σ2) is the cumulative distribution function corresponding to ϕ(r;µ, σ2),

and B, D stand for B(y, k, l,x), D(y, k, l,x), respectively, which are the design vectors

for the mean and variance. Note that γ = (γLRR,γBAF) and δ = (δLRR, δBAF). When

K = 0 indicating deletion of both copies, we assume that the mean of RBAF to be a

constant 0.5 and the variance is smaller than 0.15 so that the probability of truncation

is smaller than 0.001. Therefore as an approximation, we can estimate the variance as

if Pγ,δ(RBAF|Y,K = 0, L,X) is non-truncated normal. When K > 0, we assume the

means to be 0.0 and 1.0 for the two homozygous genotypes, so we only need to estimate

the variances, which is straightforward because the truncation points are exactly the

mean values. Specifically, we simply use the observed RBAF such that 0 < RBAF < 1

to estimate the variance. For all the other normal components (which correspond

to heterozygous genotypes), we assume that the mean values are far away from the
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boundary (0 or 1) so that the truncation effects can be neglected.

Write R = (RA, RB) for Affymetrix data and R = (RLRR, RBAF) for Illumina data.

In addition, write ξk,l = P (K = k, L = l) and ξ = (ξ0,0, ξ1,0, ξ1,1 . . . , ξS,S). We suppose

that ξk,l > 0 for all (k, l). In some applications, X and (K,L) are correlated. One

important example is when X represents the principal components for ancestry. Also,

certain genes may influence both environmental exposure and disease occurrence, as

is the case in a lung cancer study involving a gene and a smoking variable (Amos

et al., 2008). In such cases, we allow gene-environment dependence by leaving the

distributions of X given (K,L), denoted by Fk,l(.), completely unspecified. Because of

the case-control sampling, we adopt the retrospective likelihood

Lr(θ, {Fk,l}) =
n∏

i=1

{
S∑

k=0

k∑
l=0

Pγ,δ(Ri|Yi, k, l,Xi)
Pα,β(Yi|k, l,Xi)fk,l(Xi)ξk,l∑

k′
∑

l′

∫
x
Pα,β(Yi|k′, l′,x)ξk′,l′dFk′,l′(x)

}
,

where θ = (α,β, ξ,γ, δ), and n is the number of study subjects. We can see that the

observed data (Ri, Yi,Xi) for subject i is modeled by a mixture of bivariate-Gaussian

clusters. The intensity measurements are used to infer the cluster membership, sepa-

rately within cases and controls at each level of X. The inferred frequencies of each

cluster are compared between cases and controls, and differences of the frequencies are

attributed to the disease model as association.

Because the distribution of the covariates (K,L,X) is completely unspecified, the

retrospective maximum likelihood estimate of β can be obtained by maximizing the

prospective likelihood,

Lp(θ, {Fk,l}) =
n∏

i=1

{
S∑

k=0

k∑
l=0

Pγ,δ(Ri|Yi, k, l,Xi)Pα,β(Yi|k, l,Xi)fk,l(Xi)ξk,l

}
; (4.2)

see Roeder et al. (1996) for justification for such equivalence. We use the NPMLE
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approach. In this approach, the distribution functions {Fk,l} are treated as right-

continuous functions with jumps at the observed X. The objective function to be

maximized is obtained from Lp(θ, {Fk,l}) by replacing fk,l(x) with the jump size of

Fk,l at x. The maximization can be carried out by the EM algorithm described in the

Appendix.

In many applications, it is appropriate to assume gene-environment independence,

so that {Fk,l} reduces to a single distribution function F . In addition, by the HWE

assumption, L = l given K = k follows a binomial distribution with parameters k

and pB, where pB is the population frequency of the B allele. We denote the binomial

distribution by Pk,pB(l) and denote πk = P (K = k), so that ξk,l = Pk,pB(l)πk. Let

π = (π0, . . . , πS). When we impose such structures in the covariate distribution, the

equivalence between the retrospective and prospective likelihoods no longer holds and

the retrospective likelihood should be used.

There is very little information about α in the retrospective likelihood, so the prob-

lem is virtually nonidentifiable. One possible solution is to assume that the disease

is rare, which is generally true in case-control studies. Then we have the following

approximation to (4.1):

Pα,β(y|k, l,x) ≈ exp{y(α + βTZ(k, l,x))}.

Write θ = (β,π, pB,γ, δ). The retrospective likelihood can then be approximated by

L̃r(θ, F )

=
n∏

i=1

{
S∑

k=0

k∑
l=0

Pγ,δ(Ri|Yi, k, l,Xi)
exp{βTZ(k, l,Xi)}Pk,pB(l)πkf(Xi)∫

x

∑
k′
∑

l′ exp{β
TZ(k′, l′,x)}Pk′,pB(l

′)πk′dF (x)

}I(Yi=1)

×

{
S∑

k=0

k∑
l=0

Pγ,δ(Ri|Yi, k, l,Xi)Pk,pB(l)πkf(Xi)

}I(Yi=0)

. (4.3)
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We see that α is dropped from the likelihood. We again adopt the NPMLE approach,

which is implemented via the EM algorithm described in the Appendix.

4.2.2 Total Copy Number Measurement

In some cases, such as the copy number probes of Affymetrix 6.0 array and the ar-

ray comparative genomic hybridization (CGH), the observed data only contain mea-

surements of the total copy number. Let Ri be the one-dimensional measurement and

Pγ,δ(R|Y, k,X) be a univariate normal density, which is the same as Pγ,δ(RLRR|Y, k, l,X).

We can easily accommodate such cases by reducing (4.2) and (4.3) to

Lp(θ, {Fk}) =
n∏

i=1

{
S∑

k=0

Pγ,δ(Ri|Yi, k,Xi)Pα,β(Yi|k,Xi)fk(Xi)πk

}
, (4.4)

where θ = (α,β,π,γ, δ), and

L̃r(θ, F ) =
n∏

i=1

{
S∑

k=0

Pγ,δ(Ri|Yi, k,Xi)
exp{YiβTZ(k,Xi)}πkf(Xi)∫

x

∑
k′ exp{Yiβ

TZ(k′,Xi)}πk′dF (x)

}I(Yi=1)

×

{
S∑

k=0

Pγ,δ(Ri|Yi, k,Xi)πkf(Xi)

}I(Yi=0)

, (4.5)

where θ = (β,π,γ, δ), respectively. Barnes et al. (2008) dealt with this problem by

adopting a simpler prospective likelihood

n∏
i=1

{
S∑

k=0

Pγ,δ(Ri|Yi, k,Xi)Pα,β(Yi|k,Xi)Pζ(k|Xi)

}
, (4.6)

where Pζ(k|x) is the multinomial regression model of K = k given X = x. When there

are no environmental factors, (4.6) is exactly the same as (4.4). Thus, Barnes’ method is

justified. In the presence of environmental factors, Barnes et al. (2008) decomposed the

joint density function P (K,X) as P (K|X)P (X) and imposed a parametric structure
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on P (K|X). With the parametric restriction, the use of prospective likelihood is no

longer appropriate.

4.3 Simulation Studies

We conducted extensive simulation studies to evaluate the performance of the proposed

and existing methods in realistic settings. We generated data with the pattern observed

at one SNP site in the GWAS data of schizophrenia (Shi et al., 2009); see Figure 4.1(a).

Specifically, we assumed that in the general population the total copy number state K

takes values 0, 1, and 2 with probabilities 0.06, 0.33 and 0.61. GivenK, the B allele copy

number L follows the binomial distribution with probability 0.65. We simulated the

disease status from the logistic regression model logitP (Y = 1|K,L) = α+βTZ(K,L),

where α = −4.6 yielding disease rate about 1% and Z(K,L) is a specific function

of K and L. We repeated the above processes until we obtained 1,000 controls and

1,000 cases to form the case-control samples. For controls, the intensity measurements

given each (K,L) cluster were normal with the observed means and variances. The

distribution of intensity measurements for cases were allowed to have different means

or variances as compared to controls. We obtained 5,000 replicates of the dataset.

Our first set of simulation studies was designed to explore the sensitivity of the type

I error to the differences in the cluster mean and variance between cases and controls.

We simulated the disease status from the logistic regression model with an additive

effect of the B allele copy number:

logitP (Y = 1|K,L) = α + β0L. (4.7)

We applied our method as well as two alternative imputation methods that mimic the

existing calling algorithms. Both imputation methods use a two-dimensional GMM
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to assign each individual to the most likely ASCN cluster. While one fits the GMM

with cases and controls combined (imputation-C), the other one with cases and con-

trols separated (imputation-S). As shown in Figure 4.2, imputation-C is robust to

differential variances between cases and controls in that it does not generate differen-

tial misclassification. However, this approach breaks down in the presence of location

shifts. Imputation-S is not affected by differential errors in either means or variances as

cases and controls are modeled separately. However, inflation of type I error remains in

all cases. The inflation results from ignoring the uncertainty in cluster assignment and

from over-estimating the differences in cluster frequencies between cases and controls,

as nuisance parameters are allowed to vary between cases and controls. As a result,

the true variance of the estimator of β0 is greater than the naive variance estimator.

Figure 4.2(b) shows that the inflation of type I error for imputation-S grows as the

overall variation increases and is independent of differential variances. By contrast,

the proposed method provides the most robust test by modelling cases and controls

separately and accounting for all uncertainties.

In the second set of simulation studies, we investigated the pitfalls of the imputation

approach more closely. We assumed no differences in cluster means and variances

between cases and controls in order to separate the influence of imputation itself from

that of differential errors; the rest of the simulation set-up was the same as the first

set of simulation studies. Table 4.1 shows that the coefficient estimator of imputation-

C is biased towards the null, which is due to ignoring the phenotype when inferring

the ASCN states so that the imputed ASCN states are more homogeneous between

cases and controls than they actually are. As a result, the power of imputation-C is

diminished compared to the proposed method. Imputation-C yields correct variance

estimator under the null and thus has proper control of type I error; see Hu and Lin
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(2010) for a proof in the context of SNP association analysis. As expected, imputation-

S is not subject to bias. However, Table 4.1 exhibits large discrepancies between the

true variances of β̂0 and the naive estimators. The discrepancy remains under the null,

leading to inflated type I error. As a result, imputation-S can sometimes be more

powerful than the proposed method.

When only the effect of the total copy number is of interest, Barnes’ method can

also be used to account for differential errors. In this case, our method still relies on the

two-dimensional measurements for ASCN while Barnes’ method relies on the summed

measurements for the total copy number. We compared the two methods in the third

set of simulation studies. We generated the disease status from the logistic regression

model

logitP (Y = 1|K) = α + β0K. (4.8)

The results are summarized in Table 4.2. Both methods yield unbiased estimators for

β0 and correct variance estimators and consequently correct type I error. However, the

proposed method gains power by exploiting more information; see Figure 4.3.

Our previous simulation studies are based on ASCN intensity data at SNP sites.

It is also of interest to compare the proposed and Barnes’ methods when only total

copy number measurements are obtained. Since we theoretically proved that the two

methods are equivalent in the absence of environmental factors, we focused on testing

the gene-environment interaction on the disease in the forth set of studies. We adopted

the disease model

logitP (Y = 1|K,X) = α + β1K + β2X + β3KX,

where X follows the standard normal distribution and is independent of K. We gen-

erated cluster means and variances of the one-dimensional measurements mimicking
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those of CN 615718 in the schizophrenia data; see Figure 4.1(b). As shown in Figure

4.4, the proposed method based on the retrospective likelihood (4.3) is substantially

more powerful than Barnes’ method. The power gain of the propose method is largely

attributed to its incorporation of gene-environment independence.

4.4 Schizophrenia Data

Schizophrenia is a severe psychiatric disorder marked by hallucinations, delusions, cog-

nitive deficits and apathy, with a lifetime prevalence of 0.4-1%. Schizophrenia has high

heritability (∼ 80%) and genetically heterogeneous. Recent studies implicated that

common SNPs and rare, large CNVs are associated with schizophrenia, but the joint

effects of CNVs and SNPs have not been investigated. We applied our methods for

integrated analysis of CNVs and SNPs using the data from the Molecular Genetics of

Schizophrenia (MGS) GWAS (Shi et al., 2009). MGS GWAS collected self-reported

European ancestry (EA) and African American (AA) unrelated adult cases with DSM-

IV schizophrenia from ten sites in the United States and Australia, and recruited EA

and AA unrelated adult controls through Knowledge Networks by phone calls. Part of

the MGS GWAS was genotyped with the Affymetrix 6.0 platform at the Broad Insti-

tute, under the auspices of the Genetic Association Information Network (GAIN) and

was referred to as the GAIN samples. The GAIN samples consist of both EA and AA

subjects. Our data is the EA portion, including 1172 cases and 1378 controls. The

different collection processes of cases and controls imply the possibility of differential

errors. Indeed, when we treated all controls as if they were from the 11th site, the prin-

cipal components (PCs) calculated from the raw intensity data were correlated with

many of these eleven site indicators.

For intensity data at SNP sites, our method regresses the disease status on both
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the total copy number and the difference of the allelic copy number

logitP (Y = 1|K,L) = α + β1K + β2{(K − L)− L}.

A two-degrees-of-freedom test of the null hypothesis H0 : β1 = β2 = 0 provides a

combined test of CNV and allelic effects; the null hypothesis H0 : β1 = 0 gives a test of

the CNV effect controlling for allelic variation; the null hypothesis H0 : β2 = 0 gives a

test of the allelic effect controlling for copy number variation.

The testing results of the intensity data displayed in Figure 1.1 are shown in Ta-

ble 4.3. As Figure 1.1 suggests serious differential errors but no appreciable differ-

ences of cluster frequencies between cases and controls, the proposed method yielded

non-significant p-values for all three tests. As expected, imputation-C is sensitive to

differential means. Imputation-S is sensitive to cluster variances, especially when the

variances are large so that the clusters are not well-separated.

On the other hand, the intensity data at the SNP site displayed in Figure 4.5 show

little differential errors but a sign of true association. Consistent with the second set of

simulation results, the proposed method tends to generate a smaller p-value than both

imputation methods (Table 4.4).

For intensity data at copy number probes, we fitted the saturated model

logitP (Y = 1|K) = α + β1I(K = 0) + β2I(K = 1).

A two-degrees-of-freedom test of the null hypothesis H0 : β1 = β2 = 0 provides an

overall test of CNV effects. As a comparison, we also included an imputation approach

with CNVs called by PennCNV. Note that PennCNV assumes the intensity means

and variances given a CNV state to be constant, regardless of the disease status. The

intensity data and testing results are presented in Figure 4.6 and Table 4.5, respectively.
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Again, the proposed method is robust to differential errors and more powerful in the

presence of true association as compared to the imputation method.
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Figure 4.1: Observed intensity measurements in the schizophrenia data. (a) Intensity
measurements at the SNP site “SNP A-2055772”. (b) Intensity measurements at the
copy number probe “CN 615718”.
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Table 4.1: Simulation results for studying the effect of the B allele copy number when
there are no differential errors

Proposed Imputation-C Imputation-S
β0 Bias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power
.00 .000 .064 .064 .993 .007 .001 .062 .063 .992 .008 .000 .072 .063 .975 .025
.14 .000 .063 .064 .992 .346 -.004 .062 .063 .992 .335 .000 .072 .063 .976 .384
.18 .001 .065 .064 .989 .599 -.005 .064 .063 .989 .590 .001 .073 .063 .973 .610
.22 .001 .064 .064 .991 .806 -.005 .062 .063 .991 .797 .002 .073 .063 .975 .793
.26 .001 .065 .064 .988 .929 -.007 .063 .063 .988 .925 .000 .073 .063 .976 .912
.30 .001 .065 .064 .990 .981 -.008 .063 .063 .988 .980 .002 .073 .063 .974 .975
.40 .000 .065 .065 .990 .999 -.013 .065 .063 .985 1.00 .000 .075 .064 .972 .999
.80 -.002 .066 .066 .991 1.00 -.027 .067 .067 .983 1.00 .002 .079 .067 .973 1.00

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE
is the mean of the standard error estimator. CP is the coverage probability of the
99% confidence interval. Power is the type I error/power for testing H0 : β0 = 0 at the
.01 nominal significance level.

Table 4.2: Simulation results for studying the effect of the total copy number

Proposed Barnes et al.
β0 Bias SE SEE CP Power Bias SE SEE CP Power
0.0 -0.002 0.087 0.087 0.991 0.009 -0.001 0.089 0.090 0.989 0.011
0.1 0.000 0.090 0.089 0.990 0.069 0.000 0.091 0.092 0.990 0.065
0.2 0.000 0.091 0.091 0.991 0.351 0.000 0.093 0.094 0.991 0.324
0.3 -0.001 0.095 0.094 0.991 0.738 0.000 0.097 0.096 0.990 0.719
0.4 -0.001 0.096 0.097 0.992 0.945 0.000 0.098 0.099 0.992 0.934

NOTE: see the Note to Table 4.1.

Table 4.3: P-values of hypothesis tests at the SNP site showing differential errors

β1 = β2 = 0 β1 = 0 β2 = 0
Proposed 9.47e-01 7.51e-01 9.41e-01
Imputation-C 9.35e-12 2.96e-10 1.08e-02
Imputation-S 2.39e-41 4.04e-34 2.88e-07

Table 4.4: P-values of hypothesis tests at the SNP site showing true association

β1 = β2 = 0 β1 = 0 β2 = 0
Proposed 1.65e-02 9.00e-01 4.65e-03
Imputation-C 2.53e-02 1.51e-01 1.47e-02
Imputation-S 9.91e-02 8.24e-01 4.02e-02
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Figure 4.2: Type I error for testing the null effect of the B allele copy number at the
1% nominal significance level. (a) Type I error is estimated for association methods at
different values of differential shift of means. We let ∆µ to be the uniform difference of
all cluster means between cases and controls. (b) Type I error is shown for association
methods at different values of differential shift in variances. The cluster variances
of cases are inflated against those of controls by a factor of ∆σ2. Note that when
∆σ2 < 1.0, cases have deflated cluster variances compared to controls. The green line
indicates the nominal level of 1%.

Table 4.5: P-values of hypothesis tests at the copy number probes

CN 710839 CN 1197999
Proposed 9.80e-01 1.67e-02
Imputation 8.70e-03 3.74e-01
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Figure 4.3: Power for testing the effect of the total copy number.
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Figure 4.4: Power of testing the gene-environment interaction at the 1% nominal sig-
nificant level.
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Figure 4.5: Observed intensity measurements at the SNP site “SNP A-8303785”.
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Figure 4.6: PC-summarized intensity data at copy number probes “CN 710839” (left
panel) and “CN 1197999” (right panel).
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4.5 Appendix

4.5.1 Theoretical Properties

NPMLE of Likelihood (4.2)

We first impose the following identifiability conditions and verity the identifiability

of the parameters in Lemma 4.1.

CONDITION 4.1. If α + βTZ(K,L,X) = α̃ + β̃
T
Z(K,L,X) for any (K,L,X), then

α = α̃ and β = β̃.

CONDITION 4.2. If Pγ,δ(R|Y,K,L,X) = Pγ̃,δ̃(R|Y,K,L,X) for any (R, Y,K, L,X),

then γ = γ̃ and δ = δ̃.

LEMMA 4.1. If two sets of parameters (θ, {Fk,l}) and (θ̃, {F̃k,l}) yield the same

likelihood, then θ = θ̃ and Fk,l = F̃k,l for all (k, l).

Proof: Suppose that

S∑
k=0

k∑
l=0

Pγ,δ(R|Y, k, l,X)Pα,β(Y |k, l,X)fk,l(X)ξk,l

=
S∑

k=0

k∑
l=0

Pγ̃,δ̃(R|Y, k, l,X)Pα̃,β̃(Y |k, l,X)f̃k,l(X)ξ̃k,l.

By Proposition 1 of Teicher (1963) that all finite mixtures of normal distributions is

identifiable and Condition 4.2, γ = γ̃, δ = δ̃, and for all (k, l),

Pα,β(Y |k, l,X)fk,l(X)ξk,l = Pα̃,β̃(Y |k, l,X)f̃k,l(X)ξ̃k,l.

Summarizing over Y = 0, 1 yields fk,l(X)ξk,l = f̃k,l(X)ξ̃k,l. In addition, integrating

over X gives ξk,l = ξ̃k,l and then fk,l(.) = f̃k,l(.) for any (k, l). Thus, Pα,β(Y |k, l,X) =
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Pα̃,β̃(Y |k, l,X). It then follows from that Pα,β(Y |k, l,X) is logistic regression model

and from Condition 4.1, α = α̃ and β = β̃.

We then verify that the information matrices along all non-trivial parametric sub-

models are non-singular in LEMMA 4.2.

CONDITION 4.3. If there exists a constant µ such that µT∇α,β logPα,β(Y |k, l,X) = 0

for any (k, l), then µ = 0.

CONDITION 4.4. For any (k, l), the function fk,l is positive its support and continu-

ously differentiable.

LEMMA 4.2. If there exist a vector µθ = (µα,µβ,µξ,µγ ,µδ) and functions ψk,l(x)

with E[ψk,l(X)] = 0 such that

µT
θ lθ(θ0, F0) +

∑
k,l

lFk,l
(θ0, Fk,l,0)[

∫
ψk,l dFk,l,0] = 0, (4.9)

where lθ is the score function for θ, and lFk,l
[
∫
ψk,l dFk,l,0] is the score function for Fk,l

along the submodel Fk,l,0 + ϵ
∫
ψk,l dFk,l,0, then µθ = 0 and ψk,l = 0 for any (k, l).

Proof: For ease of exposition, we derive the proof based on the likelihood (4.4) with

univariate normal densities. A similar equation to (4.9) is expanded as

∑
k

Pγ,δ(R|Y, k,X)

{
Pα,β(Y |k,X)fk(X)πk

[
(R− γTA)

exp δTC
µT

γA−1

2

(
1−(R− γTA)2

exp δTC
)
µT

δ C

]

+ µT
α,β∇α,βPα,β(Y |k,X)fk(X)πk + Pα,β(Y |k,X)fk(X)µT

π∇ππk

+ Pα,β(Y |k,X)fk(X)ψk(X)πk

}
= 0,
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which is essentially

S∑
k=0

exp
(
−(R− µk)

2

2σ2
k

)
(akR

2 + bkR + ck) = 0, (4.10)

where µk = γTA(Y, k,X) and σ2
k = exp δTC(Y, k,X). Let ϕk = exp

{
−(R − µk)

2/2σ2
k

}
and reorder the component ϕ0, . . . , ϕS lexicographically by: ϕk ≺ ϕk′ if σk > σk′ or if

σk = σk′ but µk > µk′ . Denote the ordered ϕk as (ϕ0̃, . . . , ϕS̃). Dividing (4.10) by ϕ0̃,

we have

a0̃R
2 + b0̃R + c0̃ = −

S̃∑
k=1̃

exp
(
−(R− µk)

2

2σ2
k

+
(R− µ0̃)

2

2σ2
0̃

)
(akR

2 + bkR + ck).

Each exponential component on the right hand side will be of the order either exp(−R2)

or exp(−R), so the right hand side will go to zero as R → ∞. On the contrary, the left

hand side will go away from 0 if a0̃ and b0̃ are not 0. Thus a0̃ = 0, b0̃ = 0 and c0̃ = 0.

Next, divide the remains of (4.10) by ϕ1̃. By the same argument, a1̃ = 0, b1̃ = 0 and

c1̃ = 0. Iterate until ak, bk and ck are 0 for all k, which implies µγ,δ = 0 and for any k,

µT
α,β∇α,βPα,β(Y |k,X)fk(X)πk + Pα,β(Y |k,X)fk(X)µT

π∇ππk

+ Pα,β(Y |k,X)fk(X)ψk(X)πk = 0.

Summarizing over Y = 0, 1 and applying Condition 4.4 yields µT
π∇ππk +ψk(X)πk = 0.

Further, taking expectation over X gives µπ = 0 and hence ψk = 0. Thus,

µT
α,β∇α,βPα,β(Y |k,X)fk(X)πk = 0, for any k. By Condition 4.3 and 4.4, µα,β = 0.

We state the asymptotic results in Theorem 4.1.

THEOREM 4.1. Assume that Conditions 4.1-4.4 hold. Then |θ̂−θ0|+supx,k,l |F̂k,l(x)−

Fk,l,0(x)| → 0 almost surely, and n1/2(θ̂ − θ0) converges in distribution to a zero-mean
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normal random vector whose covariance matrix attains the semiparametric efficiency

bound.

NPMLE of Likelihood (4.3)

We first verity the identifiability of the parameters in Lemma 4.3.

LEMMA 4.3. If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same likelihood,

then θ = θ̃ and F = F̃ .

Proof: Suppose that

{
S∑

k=0

k∑
l=0

Pγ,δ(R|Y, k, l,X)
exp{βTZ(k, l,X)}Pk,pB(l)πkf(X)∫

x

∑
k′
∑

l′ exp{β
TZ(k′, l′,x)}Pk′,pB(l

′)πk′dF (x)

}I(Y=1)

×

{
S∑

k=0

k∑
l=0

Pγ,δ(R|Y, k, l,X)Pk,pB(l)πkf(X)

}I(Y=0)

=

{
S∑

k=0

k∑
l=0

Pγ̃,δ̃(R|Y, k, l,X)
exp{β̃

T
Z(k, l,X)}Pk,p̃B(l)π̃kf̃(X)∫

x

∑
k′
∑

l′ exp{β̃
T
Z(k′, l′,x)}Pk′,p̃B(l

′)π̃k′dF̃ (x)

}I(Y=1)

×

{
S∑

k=0

k∑
l=0

Pγ̃,δ̃(R|Y, k, l,X)Pk,p̃B(l)π̃kf̃(X)

}I(Y=0)

. (4.11)

Letting Y = 0 in (4.11), we obtain

S∑
k=0

k∑
l=0

Pγ,δ(R|Y, k, l,X)Pk,pB(l)πkf(X) =
S∑

k=0

k∑
l=0

Pγ̃,δ̃(R|Y, k, l,X)Pk,p̃B(l)π̃kf̃(X).

By Proposition 1 of Teicher (1963) and Condition 4.2, γ = γ̃, δ = δ̃, and

Pk,pB(l)πkf(X) = Pk,p̃B(l)π̃kf̃(X),

for any (k, l). Summarizing over l gives πkf(X) = π̃kf̃(X). Further, summarizing over

k yields f(.) = f̃(.) and then πk = π̃k for any k. Thus, Pk,pB(l) = Pk,p̃B(l), implying
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pB = p̃B. Letting Y = 1 in (4.11) and applying Proposition 1 of Teicher (1963) again,

we see that for any (k, l),

exp{βTZ(k, l,X)}∫
x

∑
k′
∑

l′ exp{β
TZ(k′, l′,x)}Pk′,pB(l

′)πk′dF (x)

=
exp{β̃

T
Z(k, l,X)}∫

x

∑
k′
∑

l′ exp{β̃
T
Z(k′, l′,x)}Pk′,p̃B(l

′)π̃k′dF̃ (x)
.

It then follows from Condition 4.1 that β = β̃.

We then verify that the information matrices along all non-trivial parametric sub-

models are non-singular in LEMMA 4.4.

LEMMA 4.4. If there exist a vector µθ = (µβ,µπ, µpB ,µγ ,µδ) and functions ψ(x)

with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0, (4.12)

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along

the submodel F0 + ϵ
∫
ψ dF0, then µθ = 0 and ψ = 0.

Proof: We first set Y = 0 in (4.12), which then becomes

∑
k,l

Pγ,δ(R|Y, k, l,X)

{
µT

γ,δ∇γ,δ logPγ,δ(R|Y, k, l,X)Pk,pB(l)πk

+ µT
π,pB

∇π,pBPk,pB(l)πk + Pk,pB(l)πkψ(X)

}
= 0.

By the same argument in the proof of Lemma 4.2, µγ,δ = 0 and for any (k, l),

µT
π,pB

∇π,pBPk,pB(l)πk + Pk,pB(l)πkψ(X) = 0.
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Summarizing over l yields ψ = 0 and then µπ,pB
= 0.

Letting Y = 1 in (4.12), we have

∑
k,l

Pγ,δ(R|Y, k, l,X)eβ
TZ(k,l,X)Pk,pB(l)πk

×

{
µT

βZ(k, l,X)−
∫
x

∑
k′
∑

l′ e
βTZ(k′,l′,x)µT

βZ(k′, l′,X)Pk′,pB(l
′)πk′dF (x)∫

x

∑
k′
∑

l′ e
βTZ(k′,l′,x)Pk′,pB(l

′)πk′dF (x)

}
= 0.

Applying Proposition 1 of Teicher (1963) yields µT
βZ(k, l,X) being a constant for all

(k, l). By Condition 4.1, µT
β = 0.

We impose the following regularity conditions, and then state the asymptotic results

in Theorem 4.2.

CONDITION 4.5. The fraction n1/n→ ϱ ∈ (0, 1).

CONDITION 4.6. The function f is positive in its support and continuously differen-

tiable.

CONDITION 4.7. For i = 1, . . . , n, the conditional distribution of Yi given (Ki, Li,Xi)

satisfies that

P (Yi|Ki, Li,Xi) = an exp{βT
0Z(Ki, Li,Xi)}/[1 + an exp{βT

0Z(Ki, Li,Xi)}],

where an = o(n−1/2).

THEOREM 4.2. Assume that Conditions 4.1-4.2,4.5-4.7 hold. Then |θ̂−θ0|+supx |F̂ (x)−

F0(x)| → 0 almost surely, and n1/2(θ̂ − θ0) converges in distribution to a zero-mean

normal random vector whose covariance matrix attains the semiparametric efficiency

bound.
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Proof: The proof follows the arguments in the proofs of Theorem S.1 and S.2 in Hu

et al. (2010).

4.5.2 Numerical Algorithms

EM Algorithm to maximize (4.2)

Suppose that there are Jk,l distinct values of X given (K = k, L = l), denoted by

xk,l,1, . . . ,xk,l,Jk,l . Let ηk,l,j be the jump size of Fk,l at xk,l,j. Note that
∑Jk,l

j=1 ηk,l,j = 1.

The complete-data score function is

n∑
i=1

S∑
k=0

k∑
l=0

Jk,l∑
j=1

I(Ki = k, Li = l,Xi = xk,l,j)

{
logPγ,δ(Ri|Yi, k, l,Xi)

+ logPα,β(Yi|k, l,Xi) + log ηk,l,j + log ξk,l

}
.

In the E-step, we evaluate E{I(Ki = k, Li = l,Xi = xk,l,j)|Ri, Yi,Xi}, which can be

shown to be

ωiklj ≡
I(Xi = xk,l,j)Pγ,δ(Ri|Yi, k, l,Xi)Pα,β(Yi|k, l,Xi)ηk,l,jξk,l∑

k′,l′ Pγ,δ(Ri|Yi, k′, l′,Xi)Pα,β(Yi|k′, l′,Xi)ηk′,l′,jξk′,l′
.

In the M-step we use the one-step Newton-Raphson iteration to update the parameter

estimates based on first and second derivatives derived from the complete-data score

function with I(Ki = k, Li = l,Xi = xk,l,j) replaced by ωiklj. Note that the update of

ηk,l,j is subject to
∑Jk,l

j=1 ηk,l,j = 1 for any (k, l) and all ηk,l,js are nonnegative. Similarly,

ξk,l is subject to
∑

k,l ξk,l = 1 and all ξk,ls are nonnegative. These constraints can be

incorporated by transforming the parameters to η†k,l,j = log(ηk,l,j/ηk,l,1), where j =

2, . . . , Jk,l and ξ†k,l = log(ξk,l/ξ0,0), where (k, l) ̸= (0, 0). The initial values of the

parameters are set as follows. We set α, β, η†k,l,j and ξ†k,l all to 0. We let (γ, δ)
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take the empirical means and variances of the clusters classified by any CNV calling

method. For example, Birdsuite can directly call allele-specific copy numbers. Starting

with such initial values, we iterate between the E-step and M-step until the change of

logLp(θ, {Fk,l}) is negligible.

We can estimate the limiting covariance matrix of θ̂ and F̂k,l by inverting the

(observed-data) information matrix for all the parameters including the jump sizes

of F̂k,l. The information matrix is obtained via the Louis (1982) formula. We can also

estimate the limiting covariance matrix of θ̂ by using the profile likelihood function

pln(θ) ≡ max{Fk,l} logLp(θ, {Fk,l}). Particularly, the (s, t)th element of the inverse co-

variance matrix of θ̂ can be estimated by −ϵ−2
n

{
pln(θ̂ + ϵnes + ϵnet)− pln(θ̂ + ϵnes)−

pln(θ̂ + ϵnet) + pln(θ̂)
}
, where ϵn is a constant of order n−1/2, and es, and et are the

sth and tth canonical vectors. We calculate pln(θ) via the EM algorithm by holding θ

constant in both the E-step and M-step.

Profile Likelihood of (4.3)

Suppose that there are J distinct values of X, denoted by x1, . . . ,xJ . Let n+j be

the number of times that xj is observed in the data and let ηj be the jump size of

F at xj. Note that
∑J

j=1 ηj = 1. Before we use EM algorithm, we first show that

η = (η1, . . . , ηJ)
T can be profiled out by introducing one free parameter. The log-

likelihood is

l̃n(θ,η) =
n∑

i=1

log

{∑
k,l

Pγ,δ(Ri|Yi, k, l,Xi) exp{YiβTZ(k, l,Xi)}Pk,pB(l)πk

}

+
J∑

j=1

n+j log ηj − n1 log
{∑

j′

∑
k′,l′

exp{βTZ(k′, l′,xj′)}Pk′,pB(l
′)πk′ηj′

}
.

We introduce a Lagrange multiplier λ for the constraint
∑J

j=1 ηj = 1 and set the
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derivative with respect to ηj to 0. We then obtain

n+j

ηj
−

n1

∑
k,l exp{β

TZ(k, l,xj)}Pk,pB(l)πk∑
j

∑
k,l exp{β

TZ(k, l,xj)}Pk,pB(l)πkηj
+ λ = 0.

Multiplying both sides by ηj and summing over j = 1, . . . , J , we see that λ = n1 − n.

Thus

ηj =
n+j

n0 + n1

∑
k,l exp{β

TZ(k, l,xj)}Pk,pB(l)πk/ν
,

where ν =
∑

j

∑
k,l exp{β

TZ(k, l,xj)}Pk,pB(l)πkηj. Plugging ηj back into l̃(θ,η), we

see the objective function to be maximized is,

l∗n(θ, ν) =
n∑

i=1

log

{∑
k,l

Pγ,δ(Ri|Yi, k, l,Xi) exp{βTZ(k, l,Xi)}Pk,pB(l)πk

}

− n+j log
{
1 +

n1

n0ν

∑
k,l

exp{βTZ(k, l,xj)}Pk,pB(l)πk

}
− n1 log ν.

Suppose that the conditional distribution of (R, Y ) given X is characterized by

P (R, Y |X) = Pγ,δ(R|Y, k, l,X)
exp{β∗TZ∗(k, l,X, Y )}Pk,pB(l)πk∑

y=0,1

∑
k′,l′ exp{β

∗TZ∗(k′, l′,X, y)}Pk′,pB(l
′)πk′

,

where

β∗ =

log(n1/(n0ν))

β

 ,Z∗(k, l,x, y) =

 y

yA(k, l,x)

 .
We can show that l∗n(θ, ν) is equivalent to the log-likelihood

l∗n(ϑ) =
n∑

i=1

log

{∑
k,l

Pγ,δ(Ri|Yi, k, l,Xi)
exp{β∗TZ∗(k, l,Xi, Yi)}Pk,pB(l)πk∑

y=0,1

∑
k′,l′ exp{β

∗TZ∗(k′, l′,Xi, y)}Pk′,pB(l
′)πk′

}
,

where ϑ = (β∗,π, pB,γ, δ). We maximize l∗n(ϑ) through the EM algorithm, in which

(K,L) is treated as missing. The estimation of the covariance matrix of ϑ̂ is based on
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the information matrix of l∗n(ϑ).

EM Algorithm to maximize (4.3)

The complete-data score function is

n∑
i=1

S∑
k=0

k∑
l=0

I(Ki = k, Li = l)

{
logPγ,δ(Ri|Yi, k, l,Xi)

+ log
exp{β∗TZ∗(k, l,Xi, Yi)}Pk,pB(l)πk∑

y=0,1

∑
k′,l′ exp{β

∗TZ∗(k′, l′,Xi, y)}Pk′,pB(l
′)πk′

}
.

In the E-step, we evaluate E{I(K = k, L = l)|R, Y,X}, which can be shown to be

ωikl ≡
Pγ,δ(Ri|Yi, k, l,Xi) exp{β∗TZ∗(k, l,Xi, Yi)}Pk,pB(l)πk∑

k′,l′ Pγ,δ(Ri|Yi, k′, l′,Xi) exp{β∗TZ∗(k′, l′,Xi, Yi)}Pk′,pB(l
′)πk′

.

In the M-step we use the one-step Newton-Raphson iteration to update the parameter

estimates based on first and second derivatives derived from the complete-data score

function with I(Ki = k, Li = l) replaced by ωikl. The initial values of the parameters

are set as follows. We set β∗ = 0 and π = (1/(1+S), . . . , 1/(1+S)). We let pB take the

pfb (population frequency of B allele) values in the annotation file of the platform. We

let (γ, δ) take the empirical means and variances of the clusters classified by any CNV

calling method, for example, Birdsuite, which directly calls allele-specific copy numbers.

Starting with such initial values, we iterate between the E-step and M-step until the

change in l∗n(ϑ) is negligible. Finally, the information matrix of l∗n(ϑ) is obtained via

the Louis (1982) formula.
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Chapter 5

Ongoing and Future Research

5.1 Analysis of Untyped SNPs: Tagging-Based and HMM-

Based Methods

5.1.1 Introduction

In Chapel 3, we compared maximum likelihood and imputation methods in analysis of

untyped SNPs, both based on tag SNPs. In this chapter, we compare tagging-based

and HMM-based methods in the analysis of untyped SNPs. Specifically, we consider

four methods: 1) the expected genotype count (dosage) imputed by tag SNPs (e.g.,

tagIMPUTE of Hu and Lin, 2010); 2) the expected genotype count imputed by all

SNPs in LD with the untyped SNP (e.g., beagle of Browning and Browning, 2007,

2009); 3) maximum likelihood methods based on tag SNPs (SNPMStat of Lin et al.,

2008, Hu and Lin, 2010); 4) a new quasi-maximum likelihood approach to incorporate

posterior probabilities of genotypes at untyped SNPs generated by any imputation

methods (in particular, HMM-based methods) and to account for the uncertainty in

inferring the posterior probabilities. We establish the theoretical properties of the

proposed quasi-maximum likelihood method and conduct extensive simulation studies,

based on a whole-genome simulation program that mimics the LD patterns in human



populations, to evaluate the performance of the four methods in testing/estimating

genetic effects and gene-environment interactions. We apply the four methods to the

GWAS data from the WTCCC (Burton et al., 2007).

5.1.2 Methods

We propose a new method to analyze the imputed posterior probabilities of genotypes

at untyped SNPs while properly accounting for the imputation uncertainty. We let Gt

denote all genotyped SNPs on the chromosome and let Gu denote the untyped SNP of

interest. Write G = (Gt, Gu). As usual, let Y denote the phenotype of interest, which

can be quantitative or qualitative, and X denote a set of environmental factors. The

joint density of the observed data (Y,X, Gt) can be decomposed as

P (Y,X, Gt) =
∑

g=0,1,2

P (Y |X, Gt, Gu = g)P (X|Gt, Gu = g)P (Gu = g|Gt)P (Gt).

For analyzing the marginal effect of the untyped SNP, P (Y |X, Gt, Gu) reduces to

P (Y |X, Gu). In addition, we assume that the genetic factors are independent of the

environmental factors, so that P (X|Gt, Gu) = P (X), which is modelled nonparamet-

ricly with distribution function F (.). We can obtain an estimate of P (Gu|Gt) from any

imputation method, such as beagle or tagIMPUTE. In the presence of a large number of

SNPs in Gt, we can neither estimate P (Gt) nor obtain it from any imputation method,

as it is close to zero for every possible value. Fortunately, we can avoid estimating

P (Gt) as shown below.

Parameter Estimation

We propose to estimate the parameters by maximizing the objective functions derived

below. These objective functions are based on likelihoods for different study designs,
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but not themselves proper likelihoods because of the use of the reference sample. Thus

we adopt the term “quasi-maximum likelihood estimator (qMLE)” for the method.

In a cross-sectional study, we measureX andG on n study subjects. We characterize

the association between Y and (X, Gu) by the conditional density Pα,β,ξ(Y |X, Gu),

where α,β, and ξ denote the intercept(s), regression effects and the nuisance parameters

(variance and overdispersion parameters), respectively. The prospective likelihood takes

the form

Ln(α,β, ξ) =
n∏

i=1

∑
g=0,1,2

Pα,β,ξ(Yi|Xi, Gu = g)P (Gu = g|GOi)P (GOi)

∝
n∏

i=1

∑
g=0,1,2

Pα,β,ξ(Yi|Xi, Gu = g)P (Gu = g|GOi).

Denoting ci,g as the estimate of P (Gu = g|GOi), g = 0, 1, 2, for the ith subject, gener-

ated from the previous stage of imputation, the objective function to be maximized is,

after plugging in ci,Gu ,

L̃n(α,β, ξ) =
n∏

i=1

∑
g=0,1,2

Pα,β,ξ(Yi|Xi, Gu = g)ci,g.

In a case-control study, we measure X and G on n1 cases (Y = 1) and n0 controls

(Y = 0). It is natural to formulate the effects of X and Gu on Y through the logistic

regression model

Pα,β(Y |X, Gu) =
eY (α+βTZ(X,Gu))

1 + eα+βTZ(X,Gu)
,

where α is an intercept, β is a set of log odds ratios, and Z(X, Gu) is a vector-function of

X andGu under a particular mode of inheritance. We make the rare disease assumption,

so Pα,β(Y |X, Gu) ≈ eY (α+βTZ(X,Gu)). To reflect the case-control sampling, we adopt the
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retrospective likelihood

Ln(β, F ) =
n∏

i=1

∑
g=0,1,2 exp

{
Yiβ

TZ(Xi, g)
}
F (Xi)P (Gu = g|GOi)P (GOi)∫

x

∑
Gt,g

exp
{
Yiβ

TZ(x, g)
}
P (Gt, Gu = g)dF (x)

=
n∏

i=1

∑
g exp

{
Yiβ

TZ(Xi, g)
}
F (Xi)P (Gu = g|GOi)P (GOi)∫

x

∑
g exp

{
Yiβ

TZ(x, g)
}
P (Gu = g)dF (x)

We further let mg, g = 0, 1, 2, denote the estimates of the marginal distributions of the

untyped SNP, i.e., mg = P (Gu = g). Assuming that the study and reference sample

are from the same population, we obtain mg as

n0

n0 + ñ
p̂C(Gu = g) +

ñ

n0 + ñ
p̂R(Gu = g),

where n0 is the number of controls, ñ is the number of founders in the reference panel

(if it consists of trios), p̂R(Gu = g) is simply the empirical frequency of genotype g at

the untyped SNP in the reference sample, and p̂C(Gu = g) =
∑n0

i=1 ci,g. The estimator

p̂C(Gu = g) of the marginal distribution of Gu in the control sample results from the

fact that P (Gu = g) = EGtP (Gu = g|Gt), which can be approximated by
∑n0

i=1 ci,g.

Plugging in ci,g and mg, the objective function to be maximized is

L̃n(β, F ) =
n∏

i=1

∑
g=0,1,2 exp

{
Yiβ

TZ(Xi, g)
}
F (Xi)ci,g∫

x

∑
g exp

{
Yiβ

TZ(x, g)
}
mgdF (x)

.

Note that L̃n(β, F ) involves infinite-dimensional parameters if X have continuous com-

ponents. By profiling out F (X), the MLE of β can be equivalently obtained by maxi-

mizing

L∗
n(β, µ̃) =

n∏
i=1

∑
g=0,1,2 e

Yi{µ̃+βTZ(Xi,g)}ci,g∑
y=0,1

∑
g e

y{µ̃+βTZ(Xi,g)}mg

,

where µ̃ is a free parameter. When there are no environmental factors, the objective
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function is based on the retrospective likelihood

L̃n(β) =
n∏

i=1

∑
g=0,1,2 e

Yiβ
TZ(Gu)ci,g∑

g e
Yiβ

TZ(g)mg

.

Variance Estimation Accounting for Imputation Uncertainty

We denote all relevant parameters in the objective functions by θ. The usual variance

estimatior for θ based on the inverse the negative second derivatives of the correspond-

ing objective functions does not account for the imputation variation induced by ci,g

and mg. We can incorporate the uncertainty by bootstrapping the samples from which

ci,g and mg are derived. While ci,g solely relies on the reference samples, mg depends on

both the study and reference samples. Thus we bootstrap all samples B times, where

B is set to be 20 here. For each bootstrap, we obtain a new set of ci,g and mg, plug into

the objective functions which is always constructed from the original study samples,

and obtain the estimator θ̂b, b = 1, . . . , B. Finally, denoting θ̄ = B−1
∑B

b=1 θ̂b as the

parameter estimation averaging over the bootstraps, the variance for θ̄ is estimated to

be

1

B

B∑
b=1

V̂ar(θ̂b) +
B + 1

B
· 1

B − 1

B∑
b=1

(θ̂b − θ̄)2,

where V̂ar(θ̂b) is obtained by inverting the negative second derivatives of the objective

functions at the bth bootstrap.
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5.1.3 Future Work

We will establish the theoretical properties of the proposed quasi-maximum likelihood

method. We will conduct extensive simulation studies, based on a whole-genome sim-

ulation program that mimics the LD patterns in human populations (e.g., GWAsim-

ulator of Li and Li, 2008), to evaluate the performance of the four methods in test-

ing/estimating genetic effects and gene-environment interactions. Specifically, we will

explore the extent of the LD information loss due to the restricted number of tag SNPs.

To this end, we will compare tagIMPUTE and beagle in terms of the imputation ac-

curacy and the power of association testing using their imputed dosages. We will also

compare the power of beagle-based imputation, MLE and qMLE. We will apply all of

these methods to the GWAS data from the WTCCC.

5.2 Association Analysis of Allele-Specific Copy Numbers Us-

ing Sequence Data

Figure 5.1 shows that the next-generation sequencing data and SNP array data are

highly similar in term of measuring the total copy number. In Chapter 4, we modeled

the intensity data from the SNP array by a mixture of normal distributions. We plan

to model the number of sequence reads from one window by a Poisson or negative

binomial distribution. There are existing score tests to decide whether there is over-

dispersion in the Poisson model. If there is over-dispersion, we choose a negative

binomial distribution.

One aspect of information missing from Figure 5.1 is the measurement of the ASCN.

The measurements of ASCNs using sequencing data do not readily fit into the model

for SNP array data, so we are currently working on appropriate modeling of ASCN

measurements by sequencing data.
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Figure 4 Copy number. Comparison of copy number plots for chromosome
Figure 5.1: Comparison of copy number plots for chromosome 11 of NCI-H2171 be-
tween massively parallel paired-end sequencing and Affymetrix SNP6 genomic array
data (Campbell et al., 2008). In the upper panel of the sequencing data, each point
represents the number of mappable sequence reads in a sliding window of 15kb, which
is transformed to the scale of copy number. In the lower panel of the array data, each
point represents the fluorescent intensity measurement at a SNP site or a copy number
probe.
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