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ABSTRACT 
 

YANG ZHAO 
A New Approach for the Automatic Detection of Shear-wave Splitting 

(Under the direction of Professor Jose A. Rial) 

 

This thesis introduces a new approach for the automatic detection of two crucially 

important shear wave splitting (SWS) parameters, fast wave polarization and delay time 

between split waves, from microearthquake seismograms. The method is based on the 

analyses of multiple time windows that include the shear wave arrivals. An automated 

SWS algorithm is performed for each specified window. Over the estimates of the two 

parameters (polarization and time delay) obtained from all windows, an unsupervised 

cluster analysis is applied to locate the region with the most stable estimate. The optimal 

region is that with the lowest variance. The mean value of the optimal cluster is regarded 

as the best estimate of polarization and time delay. The estimates are relatively easy to 

derive from large seismic datasets and show high reliability. We compare the results with 

manually estimated values of the SWS parameters from seismic data collected at The 

Geysers and Coso, CA,  and Hengill, Iceland geothermal fields, and show that the method 

performs better than any other, providing up to 95% reliability (polarization) and 88% 

reliability (delay time) without human intervention.   
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INTRODUCTION 
 
 
Shear-wave Splitting 

Since the discovery of seismic anisotropy in the oceanic mantle (Hess, 1964), 

seismologists have been attempting to characterize it in crust and mantle. One of the most 

powerful and successful methods to study fracture-induced anisotropy is to investigate 

split shear waves that travel through these layers (Crampin, 1993).  

 

 It is known that a shear-wave propagating through rocks with stress-aligned 

micro-cracks (also known as extensive dilatancy anisotropy or EDA-cracks) will split 

into two waves, a fast one polarized parallel to the predominant crack direction, and a 

slow one, polarized perpendicular to it (Crampin, 1981, 1984; Babuska and Cara, 1991). 

The phenomenon is very similar to optical birefringence, whereby light transmitted 

through an anisotropic crystal undergoes analogous splitting and polarization parallel and 

perpendicular to the alignment of atoms in the crystal lattice, which is illustrated by 

Figure 1.1.   In the seismic case, the polarization direction of the fast split shear wave 

parallels the strike of the predominant cracks regardless of its initial polarization at the 

source (Crampin et al., 1986; Peacock et al., 1988). The differential time delay between 

the arrival of the fast and the slow shear waves (typically a few tens of milliseconds) is 

proportional to crack density, or number of cracks per unit volume within the rock body 

traversed by the seismic wave (Hudson, 1981; Crampin, 1987; Crampin and Lovell, 
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1991). Measuring the fast-shear wave polarization and time delay from local 

microearthquakes has thus become a valuable technique to detect the orientation and 

intensity of fracturing in the subsurface of fracture-controlled geothermal field (e.g. Lou 

and Rial, 1997; Vlahovic et al., 2002a,b; Elkibbi and Rial, 2003, 2005; Elkibbi et al., 

2004, 2005; Yang et al., 2003; Rial et al., 2005; Tang et al., 2005). 

 

Applications of the shear-wave splitting technique to geothermal fields have been 

extensively documented (e.g. Lou and Rial, 1994, 1995, 1997; Rial and Lou, 1996; Lou 

et al., 1997; Erten and Rial, 1998, 1999; Vlahovic et al., 2001). Although in principle 

straightforward, the analysis of shear- wave splitting for the purpose of crack detection is 

laborious, requiring careful processing of a large number of 3-component seismograms 

from all azimuths around every station. This is because a number of undesirable effects, 

such as the presence of multiple orientations of cracks between source and receiver, 

complicated earthquake source time history, strong medium heterogeneity, thick 

weathered surface layer or rugged surface topography, among others, may strongly distort 

the signal, making the identification of crack-induced splits difficult to impossible. The 

correct measurement polarization and delay time often requires experience, diligence and 

dedication for the task is very time consuming. It is therefore a seismologist’s  dream  to 

develop new skills to accomplish the measurement automatically, ultimately simplifying 

the monitoring of the field's subsurface crack system during exploration and into 

production 

.  
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Figure 1.1 Illustration of shear wave splitting by the common optical birefringence 
induced by anisotropic crystals. 
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Measuring Polarization and Time Delay 

Traditional techniques to extract polarization and delay time information from 

split seismograms are based on cross-correlation of two horizontal components and the 

standard correction method of Silver and Chan (1991). 

 

In the standard correction method, first, a shear-wave analysis window is defined, 

which is normally picked manually. If anisotropy is present the particle-motion within 

this window will be elliptical. Second, a grid search over polarization and delay time is 

performed, where both components are rotated by polarization and one component is 

lagged by delay time. The result which has the lowest second eigenvalue of the corrected 

particle-motion covariance matrix indicates linear particle motion after correction and is 

the solution which best corrects for the splitting. An F-test is used to calculate the 95% 

confidence interval for the optimum values for polarization and delay time. After the 

splitting correction has been applied the method requires that the corrected waveforms in 

the analysis window match. The second eigenvalue of the particle motion covariance 

matrix provides a measure of this match. The smaller the second eigenvalue, the better 

the match (Teanby et al., 2003). (see sample in Figure 1.2) A good result will have a 

unique solution. Criteria for reliable results are discussed in Savage (1999) and Silver and 

Chan (1991).  

 

The cross-correlation method is also used to accurately detect the switch in 

polarity of the two orthogonally polarized fast and slow shear-waves and to measure the 

split parameters polarization and delay time. Fast shear-wave polarization angle is 

measured by interactive rotation of the seismogram until the horizontal particle motion 
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plot shows that fast and slow shear-waves are oriented along the instrument’s horizontal 

components. The angle of rotation from the original polarization direction determines 

polarization. At the same time, the two shear-wave arrivals, which are often coupled in 

the original recording, separate out in the time domain and the delay time can then be 

directly measured. (see examples in Figure 1.3) 
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Figure 1.2 The standard correction measurement of polarization and delay time from the 
recorded seismogram 
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Figure 1.3  Cross-correlation measurement of polarization and delay time from the 
recorded seismogram  
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Both methods require the manual selection of an appropriate time window by the 

operator, which is time consuming, introduces subjectivity, and usually influences the 

results. Automatic detection of shear wave splitting was attempted by Savage et al (1989). 

The disadvantage of their methods is that they do not address the effect that different 

shear-wave analysis time windows can have on the results. Teanby et al. (2003) used 

cluster analysis to remove subjectivity of window selection. However, their method needs 

manual quality control with diagnostic plot, which can still be human biased and 

laborious.  

 

Current seismic deployments aim for multiple geophone arrays and longer 

recording times. Correspondingly, data volumes from microseismic and teleseismic are 

growing quickly in recent years. These large datasets provide insights into lithological 

properties, making it possible to constrain fracturing and intrinsic anisotropy. But manual 

analysis of each event  easily becomes  an endless job, consequently plagued by operator 

errors.. This facts are forcing seismologists to engineer automated approaches without 

human involvement.   

 

Here I introduce a novel method of automatic detection of shear wave splitting 

parameters, which extends the idea of automated window selection by Teanby (2003), 

and integrates a different splitting technique and cluster algorithm. This method inherits 

the merit of high data processing speed of automated cluster algorithms, while the 

integrated splitting technique avoids the subjectivity of window selection and manual 

quality control, consequently improving the accuracy of splitting estimates, as a result 
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providing a convenient approach to process such huge seismic datasets automatically and 

objectively. In Chapter 2 we discuss the shear wave analysis window selection and 

compare two different splitting techniques with the Automatic SWS algorithm proposed 

by this paper, and then show the clustering algorithm and an optimized cluster choosing 

procedure as well as the best estimate selection process. In Chapter 3, the results of our 

Automatic SWS algorithm are shown using observational data collected from The 

Geysers and Coso, CA and Hengill, Iceland geothermal fields. We illustrated how the 

reliability of the automated estimates can be accurately evaluated by comparing with 

parameters obtained by a skilled operator.   



 

 

 

METHODOLOGY & PROGRAM DESCRITPTION  

 

WINDOW SELECTION 

Finding the optimal shear wave time window for the detection of SWS parameters 

depends on critical factors such as adequate S/N ratio in the shear wave, and enough 

length to include several periods of the dominant frequency. It is however quite time 

consuming and subjective to find the optimal window manually, by visual inspection. On 

the other hand, it is well known that the actual shear wave splitting process is stable with 

respect to the noise (Teanby et al., 2003). Therefore, it is very important to ensure that the 

splitting parameters are stable over a wide range of different window lengths and 

intervals. This steadiness guarantees the robustness of measurement and minimizes the 

effects of noise. The method introduced here achieves this by considering a large number 

of analysis windows to look for stable regions in the space of solutions, that is, in 

polarization and time delay space.  

 

The method proceeds as follows: First, a set of shear wave analysis time windows 

are constructed as illustrated in Figure 2.1. The Start window is selected at beginT  and will 

vary from _ 0beginT  to _1beginT  with beginN  steps of begindT length. Similarly, the End window 

is selected at endT  varying from _ 0endT  to _1endT  with steps endN  of enddT  length.  The total 

number of analysis windows totalN  is thus 
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                            total begin endN N N= ×                        (1) 

where beginT  and endT  are all defined relative to the onset of the shear wave.  

Refer to Table 1 in Chapter 3 for typical numerical values of the window parameters 

applied on microseimic datasets. 
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Figure 2.1. The red line indicates the shear wave onset. The solid green line indicates the 
start of shear wave analysis window, while dashed green lines indicate a number of 
possible window starts. Similarly, the purple lines indicate the window ends. The distance 
between the closest window start/end and shear wave pick is 50 sample intervals for this 
example from The Geyseys. 
 

 

SPLITTING ALGORITHM 

AIC Picker 
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Once the shear wave analysis windows are selected, the splitting algorithm used 

to determine polarization and time delay is applied to each window. We estimate the 

value of polarizations and delay times by making use of existing automatic wave arrival 

picking techniques. The algorithm used is the AIC (Akaike Information Criteria) picker 

by Maeda (1985), which calculates the AIC function directly from the seismograms. The 

onset is the point having the minimum AIC value. For the seismogram x[k] (with k=1, 

2…N) of length N, the AIC value is defined as 

        ( ) log{var( [1, ])} ( 1) log{var( [ 1, ])}AIC k k x k N k x k N= × + − − × +       (2) 

where k ranges through all the seismogram samples.  

 

The idea of this algorithm is to use the well known automatic picking algorithm to 

detect significant arrival time difference (here “significant” means the difference between 

the arrival times of the fast and slow shear waves within 10 to 60 sampling intervals (see 

Section 4 for details) between the two horizontal components in a rotated coordinate 

system. In order to search the entire coordinate span, the algorithm rotates the two 

horizontal components of the seismograms from 0 to 180 degrees by one-degree 

increments. During each incremental rotation of the coordinate axes, the variance of the 

interval (between fast and slow arrival times in the window) in the slow component is 

calculated. The polarization will be the angle corresponding to the rotated coordinate in 

which the differential arrival time is significant and the variance in the slow component 

reaches its minimum (meaning the slow component in that interval is most quiescent). 

Figure 2.2 shows the results of applying AIC picker to a seismogram recorded in the 

original coordinates from The Geysers geothermal field, CA. 
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Figure 2.2. The AIC function is calculated for both horizontal components from a real 
seismogram in the original coordinate. The vertical lines indicate the onset times of the 
waves. The differential arrival time is not significant (<10) in this coordinate.  
 

Illustrative results of the AIC picker algorithm are shown  in Figure 2.3. As 

indicated by the vertical line, the interval [86,112] reaches the minimum among all the 

rotated coordinates at 122 degrees. Therefore, for this seismogram, we obtain that the 

polarization is 122 degree from North, and the delay time is 26 sample intervals.  
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Figure 2.3.Seismogram from Figure 2.2 in a rotated coordinate system. The difference of 
two arrival times between the two components is 26 sampling intervals, and rotating 
angle is 122 degree.  
 

 

Revised AIC Picker 

When there is more noise than signal or multiple seismic phases in a time window 

of the seismogram, the S/N ratio in the seismogram affects the accuracy of the AIC 

picker to some extent. A global minimum indicating the shear-wave arrival cannot be 

guaranteed (Zhang et al., 2003).  In order to further improve the algorithm, we check 

every AIC function plot for each seismogram to determine specific problems caused by 
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using the simple AIC picker technique. Figure 2.4 shows that the method sometimes 

yields erroneous answers to the arrival times for low S/N ratio seismograms. 
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Figure 2.4. The calculated AIC functions for both horizontal components from a 
seismogram. The green and blue vertical lines indicate the onset times of the waves 
defined by the global minima of the AIC functions, while the purple and yellow dash lines 
represent the possible onset times suggested by the local minima. 
 

The problem in Figure 2.4 is that before the slow wave arrives, the north 

component is disturbed, probably by the arrival of a scattered wave, and the AIC picker 

regards this disturbance as a real wave based on its global minimum value position. 

Nevertheless, the AIC picker does give us a clue about the onset of the real wave, that is, 

the arrival time is associated with the relative local minima of the AIC function, as 

indicated by the vertical dash lines in Figure 2.4.   
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In order to avoid that scattered or noise disturbances be regarded as signals, we 

take the global minimum value and local minima into account simultaneously while 

rotating the components of the seismogram. 

 

 

CLUSTERING ALGORITHM 

Once the Automatic Splitting Algorithm is applied on each shear-wave analysis 

window, it results in a set of totalN  estimates of polarization and delay time. With the 

purpose of varying the analysis window and looking for robust values in polarization and 

delay time, we plot the totalN  pairs of polarization and delay times in a 2D plane. These 

estimates condense into point groups or tight clusters as illustrated in Figure 2.5. 
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Figure 2.5. （synthetic） Estimates of delay time and polarization from three hundreds of different 
analysis windows. The estimates condense into tight clusters of points. Many points in the clusters lie 
on top of each other because delay time and polarization are found using a grid search. Different 
colors represent different cluster 
 

Since the polarization and delay time are on different scaled units (degree and 

sampling intervals), we need to normalize the data in order to eliminate different weight 

effects on the polarization and delay time caused by the clustering algorithm. According 

to our microearthquake datasets, we define the standardized range for polarization and 

delay time as 180 degree and 60 sampling intervals, respectively. Scaling by this variable 

range has performed very well in many clustering applications (Teanby et al., 2003; 

Everitt et al., 2001; Milligan and Cooper, 1985 ,1988). 

 

Robust results should be grouped into a tight cluster of close points. An 
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unsupervised technique is required to identify these clusters by reason of the automated 

requirements. Here we use Density-Based Scan Algorithm with Noise (DBSCAN) (Ester 

et al., 1996) to identify clusters and determine optimal cluster number. DBSCAN typically 

regards clusters as dense regions of objects in the data space which are separated by low 

density regions. DBSCAN is a density-based clustering technique which starts from an 

arbitrary object, and if the neighborhood around it within a given radius (Eps) satisfies at 

least the minimum number of objects (MinPts), this object is a core object, and the search 

recursively continues with its neighborhoods and stops at the border objects where all the 

points within the cluster must be in the neighborhood of one of its core objects. Another 

arbitrary ungrouped object is selected and the process is repeated until all data points in 

the dataset have been placed in the clusters. All the non-core objects which are not in the 

neighborhood of any of the core objects are labeled as noise. DBSCAN doesn’t need the 

number of final clusters to be given in advance where it automatically detects dense 

regions and its output is the natural number of clusters. (Daszykowski et al., 2001). Four 

clusters are shown in Figure 2.5 represented with different colors. 

 

Once the clusters are identified by the DBSCAN algorithm, we need to determine 

the optimal cluster, and then the best estimate from the optimal cluster. The criterion to 

determine the optimal cluster depends on the number of data points and the variance 

within each cluster. To implement the criteria, we define _ minclusterN  if one cluster with 

less than _ minclusterN  data points is being regarded as noise. _ minclusterN  Correspond to 

approximately a cycle’s worth of points, which is normally less than the total number of 

windows totalN  divided by the number of clusters clusterN . 
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The within cluster variance 2
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Therefore, the optimal cluster is found in the cluster with the smallest variance ( 2
jσ ). The 

best estimate is the mean value of tδ  and φ  of the optimal cluster. The best estimate 

from the optimal cluster is illustrated with crosses in Figure 2.5. 
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According to the suggestions from my master defense in May, 8th, 2008,  here I attached 

18 cluster plots from the real mircoseismic dataset(The first three from Coso, The second 

three from The Geysers , and the last three from Hengill) 

 

Figure 2.9(a) Coso event- 20060606193911, Estimates of delay time and polarization 
from different analysis windows as the same as the synthetic plot -- figure 2.5, x axis 
represents the polarizations(degree) as well as y axis representing the delay time(sample 
intervals).  Three different clusters represented by three different colors (green, orange, 
and brown) are regarded by the DBSCAN algorithm, as well as the outliers shown in 
blue color being regarded as the noise. The mean values of each cluster are depicted by 
the symbol of asterisk which connected by red solid lines. The mean value with the 
shortest error bar (blue solid line) turns out to be the best estimate. For this Coso event, 
the best automatic estimate (the asterisk within the orange cluster) matches very well 
with the manual measurements (75 degree, 18 sample intervals vs 77 degree, 16 sample 
intervals) 
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Figure 2.9(b) Automatic estimates from the same event as shown in Figure 2.9(a), but 
represented by different colors and symbols.  Each window start (3 window starts totally) 
is indicated by one specific symbols (O – the first window start, * -- the second window 
start, and + -- the third window start), while a range of window ends (20 window ends 
totally) are specified by a range of colors ----which gradually varies from black (RGB 
Value [0 0 0]), blue (RGB Value [0 0 1], green (RGB Value [0 1 0], yellow (RGB Value 
[1 1 0]),  to white (RGB Value [1 1 1]). The window parameters are listed in Table 1.  
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Figure 3.0(a) Coso event – 20060702024436, the same cluster plot as Figure 2.9(a)  
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Figure 3.0(b) Coso event – 20060702024436, the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.1(a) Coso event –20060712081726, the same cluster plot as Figure 2.9(a)  
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Figure 3.1(b) Coso event –20060712081726, the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.2(a) The Geysers event – 9403032027, the same cluster plot as Figure 2.9(a)  
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Figure 3.2(b) The Geysers event – 9403032027, the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.3(a) The Geysers event –9402030208, the same cluster plot as Figure 2.9(a)  
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Figure 3.3(b) The Geysers event –9402030208, the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.4(a) The Geysers event –9403240234, the same cluster plot as Figure 2.9(a)  
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Figure 3.4(b) The Geysers event –9403240234, the same symbol & color plot as Figure 

2.9(b)  

 



 32

 

Figure 3.5(a) Hengill event –2005072206145, the same cluster plot as Figure 2.9(a)  
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Figure 3.5(b) Hengill event –2005072206145, the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.6(a) Hengill event –2005072807484 , the same cluster plot as Figure 2.9(a)  
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Figure 3.6(b) Hengill event –2005072807484 , the same symbol & color plot as Figure 

2.9(b)  
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Figure 3.7(a) Hengill  event –2005080602591 , the same cluster plot as Figure 2.9(a)  
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Figure 3.7(b) Hengill event –2005080602591, the same symbol & color plot as Figure 

2.9(b)  
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Algorithm Flow 

Three flow charts depicted below aim to describe every single step of the 

Auto_SWS program introduced in this chapter. First of all, it is necessary to discuss 

briefly about the main flow of the shear wave splitting analysis, as illustrated in Figure 

2.6. We begin the analysis with picking P-wave arrival times and S-wave arrival times of 

each seismogram for each station. Seismic events are located by using a standard iterative 

non-linear inverting algorithm (LQUAKE) based on Geiger’s method to determine origin 

time and hypocenter of an earthquake from P-wave arrival times. In most cases, as the 

iteration proceeds, the solution vector will converge till the error is within some preset 

tolerance. As for low S/N ratio case, hypocentral locations by only using P-wave readings 

are not very reliable. Therefore, we used both P- and S-wave arrival times when 

necessary. (Rial et al., 2007).  

 

 One qualified event in UW pick file has to display large signal to noise ratio, 

clear shear-wave splitting, recorded more than 4 stations and arrival angles within the  
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Figure 2.6  The  algorithm flow chart of the main flow of shear wave splitting analysis 
procedure 
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shear-wave window. The angle is defined by the critical angle cI = 1( / )s pSin V V− , where 

pV  and sV  are the P-wave and S-wave surface velocities, respectively. Crampin (1981) 

shows that when incident angles (measured from the vertical) are greater than cI  shear-

waves tend to interact strongly with the free surface, which contaminates the incoming 

waveform with converted phases. Normally, the calculated cI  for our geothermal datasets 

is approximately35o , verified by our former papers. (e.g. Lou and Rial, 1997; Vlahovic et 

al., 2002a,b; Elkibbi and Rial, 2003, 2005; Elkibbi et al., 2004, 2005; Yang et al., 2003; 

Rial et al., 2005; Tang et al., 2005).  

 

Once qualified seismic events are selected, they will proceed to Auto-SWS 

program as shown in the red rectangle (see detail in Figure 2.7) in Figure 2.6.  The 

methodology of this program is described previously in this Chapter, so we only discuss 

several key steps.   

 

As mentioned before, slight changes in the analysis window can cause very 

different solutions due to the cycle skipping effect, accordingly the selection of shear 

wave analysis window turns out to be a specific step. (Teanby et al,. 2003) Important 

parameters are beginN , endN , dT , _1beginT  and _ 0endT . Large beginN  endN , small dT  afford 

abundant space for the grid search by the splitting algorithm, however it also requires a 

huge computational time. Since the splitting estimates are much more sensitive to 

window start rather than window end, we typically choose endN  20-30 times more than 

beginN  in order to maintain an appropriate balance between accuracy and speed.   
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Figure 2.7  The algorithm flow chart of Auto_SWS program. 
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Minimum window – the distance between the closest window start/end and shear wave 

pick is defined by _1beginT  and _ 0endT . The splitting algorithm (Revised AIC Picker) 

requires a clear, integrated shear wave arrival and separates S phases from other phases 

which have different amounts of splitting. To satisfy these requirements, we define 50 

sample intervals to be the minimum window.  dT  is not a critical parameter in this study, 

as long as there are large enough range analysis windows and include the duration of 

shear wave energy envelop, which guarantee the robustness of the final results. 

 

  Although our method is much less sensitive to the influence of the cycle skipping 

rather than other automated methods, the cycle skipping/window dependence effect is 

still a severe problem for band limited data. It’s also affected the comparison of the first 

and the second best cluster, where the first two best clusters provide 95% correct estimate 

during our application to the selected geothermal datasets. If the first is obviously better 

than (both in the point number and the variance within the cluster) the second then the 

result is reliable, otherwise results may be affected by cycle skipping.   

 

Similar to other automated methods, the Auto_SWS method still can not entirely 

make a distinction between null and other measurements. However, several features of 

our programs help us to overcome this problem. The first one is setting the upper and low 

limits for the intervals of delay time, ranging from 10 to 60 sampling intervals. Another 

one is the system of cluster identification. Null measurements tend to form poorly 

condensed or incompact cluster, leading totally unconstrained polarization and a large 

spread in delay time, in other words, showing a large scatter of clusters on the 2D plan. 
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It’s consequently rejected by the cluster identification and the interval length control   

 

The Revised AIC Picker served as the splitting algorithm is performed for every 

specific analysis window, as shown in red rectangle (see detail in Figure 2.8) in Figure 

2.7.  Please refer to section 2 for detail. 

.  
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Figure 2.8 The algorithm flow chart of Revised AIC Picker program



 
 
 
 
 

APPLICATIONS 
 
Data Description 

The raw data used in my research are seismograms of micro-earthquakes traveling 

through the crack-induced anisotropic upper crust in The Geysers and Coso, CA,  and 

Hengill, Iceland geothermal reservoir fields.  The anisotropic parameters measured 

manually from these seismograms, namely fast directions and delay times, compose the 

shear-wave splitting data used in my study. Although the manual detection of the 

anisotropic parameters inescapably adds extra random errors into the dataset to some 

extent, it still substantially increases the overall reliability of the shear-wave splitting data 

since current detection methods that are fully automatic are not as accurate as manual 

detection.  

 

The Geysers reservoir is the world’s largest commercially exploited dry-steam 

vapor-dominated geothermal field. The Geysers reservoir is located northeast of the San 

Andreas Fault in the northern Coast Ranges of California about 150 km north of San 

Francisco. The seismic waveforms analyzed for shear-wave splitting were recorded by 

two seismic arrays deployed in the NW and SE Geysers regions by the Lawrence 

Berkeley National Laboratory (LBNL).  

 

The NW Geysers area is an active seismic zone with an average of 17 micro-

earthquakes per day. The depth of events is typically less than 5 km. The data used for the 

present study were collected by a 16-station, digital 3-component network. All 16 
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geophones recorded at 400 sample/sec and were buried about 30 meters below the ground 

surface (Figure 3.2).  

The SE Geysers is also seismically active with an average of 20 micro-

earthquakes per day. Events are generally shallower than 4 km. The data were recorded 

by a 12-station, 3-component, high frequency (480 samples per sec) digital network 

(Figure 3.3). All 12 stations had geophones on the ground surface, which did not 

perceptibly affect the quality of the seismic data in comparison with the NW buried 

instruments, as noise levels contained in the data were generally relatively low. (Elkibbi 

and Rial 2003) 
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Figure 3.1 The locations of the seismic stations and recorded microearthquake in NW and 
SE Geysers. (Elkibbi and Rial 2003) 

  

 

 

Figure 3.2 Rose diagrams showing fast shear wave polarization recorded in NW Geysers, 
CA in 1988 and 1999 (Elkibbi and Rial 2003) 
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Figure 3.3 Rose diagrams showing fast shear wave polarizations recorded in SE Geysers, 
CA in 1999 (Elkibbi and Rial 2003) 
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Iceland is situated on top of the Mid-Atlantic Ridge where the ridge interacts with 

the Iceland Hot Spot. Several volcanic centers, active and extinct, are located within the 

island. One of them is the Hengill volcanic center which lies on the plate boundary 

between the North America and the European crustal plates in Southwestern Iceland. The 

Hengill central volcano and its transecting fissure swarm, extending 70—80 km long 

from the coast south of Hengill to north of Lake Thingvallavatn with an associated 

graben structure, form the Hengill volcanic system, as depicted in Figure 3.4 

 

Between July 2nd and August 12th, a 21-station, 3-component seismic array was 

deployed to the south of the Hengill central volcano, covering an area approximately 5 

km in N-S by 10 km in E-W. The array continuously recorded the seismic activity in the 

study area for forty-two days. The data were collected continuously at a rate of 500 

samples per second. During the forty-two days of operation the array detected an average 

of 3 to 4 well-recorded events per day (observed at 5 or more stations). These are very 

small earthquakes with magnitudes probably no greater than 2. Figure 3.5 shows the 

epicenters of the earthquakes located within and in the vicinity of the array from July 5th 

to August 12th. Also depicted in Figure 3.5 is the distribution of these seismic stations. 

 

The data from seven selected stations in the eastern part of the array (H70—H76) 

have been investigated to measure the fast shear-wave polarization and time delay. These 

stations are selected to ensure that most of the earthquakes fall into the shear-wave 

window, typically a right circular cone with vertex at the station and vertex angle equal to 

35°, of the stations. Figure 3.6 shows the rose diagrams (polar histograms) of fast shear-
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wave polarization directions observed within the shear-wave window of the seven 

stations.(Tang et al., 2006) 
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Figure 3.4 The Location of Hengill geothermal reservoir in active volcanic zone is South 
West Iceland.(Tang et al., 2006) 
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Figure 3.5  The seismicity recorded by the array from July 5th to August 12th is 
shown. Totally 146 events are detected and 130 events properly located. 
(Hengill, Iceland) .(Tang et al., 2006) 
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Figure 3.6 .Rose diagrams showing the fast shear-wave polarization directions observed 
at the seven selected stations in the eastern part of the seismic array. (Hengill, 
Iceland) .(Tang et al., 2006) 
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The Coso geothermal is located along the eastern front of the Sierra Nevada, 

south western Basin and Range Province, California. It is situated to the east of the Sierra 

Nevada Frontal Fault in southern Owens Valley. (Duffield et al., 1980). The tectonics of 

the Coso range are the reflection motion of a stress field influenced by the right slip San 

Andreas Fault system and the extensional Basin and Range environment. Three major 

classes of faults extensively fracture the area. The west-northwest-trending faults with 

right-lateral strike-slip motion are common in the southern and northwestern parts of the 

geothermal field. North-northeast-trending normal faults with a small component of strike 

slip are prevalent within the geothermal field, while northeast-trending strike-slip faults 

with left-lateral sense of motion are well developed in the northeast part of the field 

(Roquemore, 1980;). 

 

The Coso area is one of the most active seismic regions of southern California. 

Most of the events below the field are less than 3 km deep and are surrounded by deeper 

regional seismicity (down to 12 km depth). During the months of January 2005 and 

August 2006, we studied these microearthquakes before, during and after this fluid 

injection tests at Well 46A-19RD area .A large number of high-quality seismograms from 

local microearthquakes in Coso recorded by a permanent, 3-station, downhole, 3-

component seismic array running at 500 samples per second.  

 

Figure 3.7 shows the epicenters of the earthquakes located within the red 

rectangle as depicted in Figure 3.8. Also the ten thousands earthquake data from the three 

selected stations have been inspected to measure the fast shear-wave polarization and 
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time delay. Similarly with Hengill and The Geysers geothermal research, the Coso 

stations are selected to ensure that most of the earthquakes fall into the shear-wave 

window, a right circular cone with vertex at the station and vertex angle equal to 35° of 

the stations. Figure 3.8 shows the rose diagrams (polar histograms) of fast shear-wave 

polarization directions observed within the shear-wave window of the three stations. 

(Zhao et al., 2007) 
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Figure 3.7 The seismicity recorded by the Coso array from 2005 January to 2006 
September is shown in (a). Roughly 10000 events are detected and properly located. The 
depth distribution of the events is shown in (b).
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Figure 3.8.Rose diagrams showing the fast shear-wave polarization directions observed 

at the three selected stations in well 48A-19RD area. 
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Comparison of Estimate Results  

 Availability of previous reliable splitting measurements, diverse subsurface 

structural settings, event depths and qualities of the seismic data make these datasets a 

good test case opportunity for our Automatic SWS Algorithm.  

 

Figure 3.9 summarizes the comparison between the manual results and the results 

from three different splitting algorithms (See Chapter 2) by using the automated window 

selection method. Figure 3.9 (A) obtained from the traditional cross-correlation method. 

(See detail in Chapter 1). However, the solutions do not satisfy the requirements for 

reliable splitting estimates as illustrated in Figure 3.9 (A). The unreliable estimate results 

after implementing the AIC picker method are much reduced in Figure 3.9 (B), but still 

about one third of these estimates are outside of error tolerance .To achieve better 

reliability, the AIC picker is revised to serve as our Automatic SWS algorithm works best 

among the manual results and automated estimates as shown in Figure 3.9 (C). About 

76/80 of polarization estimates and 70/80 of delay time estimates are inside the tolerance 

limits.  
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Figure 3.9. Comparison of the results from manual picks with those calculated by the different methods. A) 
cross-correlation method for 80 samples of split seismograms. The horizontal axis represents 
the manual picks and vertical axis the CC results. If the manual pick equals the CC results, the 
plus symbol should be located on the diagonal solid line. The dashed lines denote the 
acceptable error tolerance for the CC results comparing to the manual picks. The error 
tolerance is 15 degrees and 8 sampling intervals for the polarization and delay time, 
respectively.  B) is same as in A), except that the vertical-axis represents the values obtained 
from the AIC Picker. And in C) the vertical axis represents the values obtained from the Revised 
AIC Picker (Auto SWS Algorithm), in which 76/80 of polarization and 70/80 of delay time are 
located in the error tolerance. 



 

 

CONCLUSION 

This thesis illustrates a novel approach for the automatic, real-time detection of 

shear-wave splitting parameters. In contrast with previous methods, I have developed  

three major improvements: dramatically increasing data processing speed of shear wave 

splitting, successfully avoiding the subjectivity of window selection by using an objective 

automated window selection, and removing the dependence of results on  manual quality 

control. 

 

The method requires travel time picks for the S phase as well as a set of 

windowing and clustering parameters. The parameters in our method are given in Table 1. 

Parameters were chosen based on the main influencing factors on the quality of estimates, 

such as seismic S/N ratio and sampling rate.  

 

This approach can be used to improve the quality of shear wave splitting analysis 

and is especially suited  to large datasets. For Coso and The Geysers geothermal datasets, 

each event took half minute to process on a single 2GHz processor.  

 

The approach has been successfully applied to the shear wave splitting data 

obtained from The Geysers and Coso, California and Hengill, Iceland geothermal fields, 

and is presumably applicable to artificially generated shear wave that splitting in cracked 

hydrocarbon fields. 
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Parameter  Value 

_1beginT  50 ms before shear wave pick

_ 0endT  50 ms after shear wave pick 

begindT  25 

enddT  10 

beginN  3 

endN  20 

Eps 0.8 

MinPts 10 

_ minclusterN  25 

Table 1 Parameter table for the automatic detection code on the Coso, Geyseys and 
Hengill datasets.  
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