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Abstract

RYAN C. BURK: Technology Upgrading in Imperfectly Competitive Markets
(Under the direction of Dr. Brian McManus)

Technological advancement is an inherently dynamic process. Yet, existing technology

adoption models in both the theoretical and empirical economics literatures focus on firms’

reaction to a single new technology. This research aims to extend both strands of the literature

by examining how the prospect of future technological advancement alters firms’ incentives to

adopt new technologies in the presence of spillover effects. First, in joint work with Dr. Tim

Moore, we extend the theoretical literature by introducing a second cost-reducing technology

to the seminal duopoly technology adoption timing game. Through a variety of simulations

we examine how the rate of technological diffusion and total market welfare are affected by

the second advancement. We show that the presence of an additional advancement generally

seems to decrease the overall inefficiency in a duopoly market. Second, I solve and estimate an

innovative model where competing firms make repeated decisions regarding whether or not to

upgrade their technology. Each firm’s choice directly affects the incentives of its competitors

as the technological frontier progresses. Firms face uncertainty regarding the release of future

advancements and optimize accordingly. Not surprisingly, adding technological advancements

to the standard model changes firms’ equilibrium adoption dates of the first technology. Con-

ditional on the parameterization of the model there exists a unique equilibrium outcome of the

dynamic upgrading game. However, different parameterizations can generate a variety of firm

behaviors. Using a novel dataset I estimate the model in the context of hospitals’ replacement

of MRI equipment. Results suggest that there are a complicated collection of effects that

influence a hospital’s decision to upgrade its MRI technology.
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Chapter 1

Introduction

Technologies are constantly evolving in every sector of the economy. As new advancements

are released firms are forced to make repeated decisions regarding whether or not to upgrade

their existing technology. In imperfectly competitive markets this decision process is compli-

cated by the fact that each firm’s choice has spillover effects on its competitors. However,

there is currently a void in both the theoretical and empirical economics literatures merging

the analysis of these two ideas. My research attempts to fill this gap by examining strategic

interactions between firms while striving to better capture the dynamics inherent in techno-

logical innovation. In general I find that adding multiple waves of technological advancements

to the standard one-technology models can cause firms’ adoption incentives to vary signifi-

cantly. In fact, equilibrium adoption dates in one-technology models are typically suboptimal

in a multiple-technology context. As a result, any policy prescription derived from a single-

technology model is likely flawed if firms are making dynamic technology upgrading decisions.

In the second chapter of this dissertation my co-author, Tim Moore, and I extend the

seminal duopoly technology adoption model in the theoretical literature to include a second

technology. Despite this seemingly straightforward extension we find that the equilibrium

analysis quickly becomes complicated. We circumvent this issue by running a variety of sim-

ulations and comparative statics exercises aimed at examining the equilibrium properties of

the model. We find that overall market inefficiency seems to decrease with the addition of a

second technological advancement despite the additional adoption costs. Further, we find that

firms may delay adoption of the first technology as the rate of technological diffusion increases.



The third chapter of this dissertation examines a more general technology adoption game

that allows for more than two firms and technologies. The key difference between the two

models is that here I assume firms make technology adoption decisions sequentially in order to

make the solution tractable. Despite this difference the theoretical results from the two models

are qualitatively very similar. In addition to the theoretical results I also estimate the model

using a novel dataset that tracks hospitals’ purchases of magnetic resonance imaging (MRI)

equipment over a 28-year period. I find that adoption decisions are a complicated function

of both hospital- and market-level variables. Extending the empirical framework to include

multiple technologies poses significant data, computing, and modeling issues. However, the

model’s potential to address interesting and pertinent dynamic policy issues is promising.
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Chapter 2

To Adopt or Not? A Duopoly Model of Technology Upgrading

2.1 Introduction

Dating back to the seminal works by Reinganum (1981b) and Fudenberg and Tirole (1985),

a significant strand of the theoretical literature has focused on technology adoption timing

games. In both models a dynamic game begins when a technological innovation is released to

a duopoly market. Each firm’s strategy involves choosing a single point in time to adopt the

new technology. As time passes the cost of adopting the technology decreases, generating a

tradeoff between adopting sooner at a higher cost (and potentially inducing one’s competitor

to delay adoption) versus waiting to adopt at a lower cost. Reinganum (1981b) shows that

even though firms are ex ante identical, in any precommitment (Nash) equilibrium, the two

firms adopt at different points in time, leading to a “diffusion” of the technology. Fudenberg

and Tirole (1985) show that in the Reinganum (1981b) precommitment equilibrium the firm

that commits to adopting first earns higher profits at its competitor’s expense. Further, they

examine subgame perfect Nash equilibria which enables each firm to preempt its competitor.

They show that this preemption incentive drives the “follower” in the Reinganum (1981b)

equilibrium to preempt the “leader.” Each firm continues to preempt its competitor until it is

no longer profitable and both firms’ payoffs are equalized.1 Fudenberg and Tirole (1985) also

demonstrate that for certain parameterizations of the model late “joint” adoption equilibria

1The follower’s adoption date is the same in both the Nash and subgame perfect Nash equilibria
because conditional on acting as follower its best response is unchanged. However, the leader’s adoption
date is strictly earlier in the subgame perfect Nash equilibria due to the preemption incentive.



may exist in addition to the diffusion equilibrium.

A variety of papers have extended these seminal models in several directions. For example,

in a model with asymmetric firms Riordan (1992) examines how price and entry regulations

can affect technological diffusion. He finds that regulations can limit each firm’s incentive to

preempt its competitor and slow the diffusion of the new technology. There is no uncertainty

regarding a technology’s value and that value is realized immediately upon adoption. Other

models, such as Hoppe (2000) and related papers, incorporate a learning process regarding the

new technology’s profitability. Stenbacka and Tombak (1994) examine uncertainty regarding

the amount of time needed to successfully implement a new technology. There are also a

number of duopoly models focused on situations where waiting to adopt rather than preempting

can be advantageous. Three such examples are Katz and Shapiro (1987), Dutta, Lach, and

Rustichini (1995), and Hoppe and Lehmann-Grube (2005).2

All of the aforementioned models involve a single new technology. However, we argue that

most technological innovations are subsequently updated and improved. Newer advancements

allow firms to operate more efficiently by improving productivity, decreasing costs, enhancing

communication and connectivity, and providing firms with more detailed information about

consumers’ preferences. As a result, while a firm decides whether or not to adopt a new

technology today, the technological frontier is advancing. Thus, a firm’s purchasing decision

implicitly incorporates expectations about the likelihood and potential benefit of future ad-

vancements. As time passes and newer technologies are released, firms must make repeated

decisions regarding when/whether to upgrade their current technology. Yet, the current litera-

ture largely abstracts from these dynamic considerations. Two notable exceptions are Horner

(2004) and Harrington, Iskhakov, Rust, and Schjerning (2010).3 Horner (2004) models R&D

competition between two firms as an endless race. In each period the two firms choose a costly

2For a somewhat recent review of the literature see Hoppe (2002).

3While Huisman and Kort (1999) and Huisman and Kort (2000) also analyze multi-technology
duopoly adoption games, in both models firms are still restricted to choosing a single technology. In
other words, a firm cannot replace or upgrade its original technology. Kamien and Schwartz (1972)
analyze a monopoly adoption model with two technologies. However, they consider a stationary envi-
ronment where the cost of adopting each technology is constant so that the timing decision is trivial–the
monopolist either adopts immediately or never.

4



effort level that affects the probability of generating a successful innovation. He finds that in-

vestment efforts increase when the firms’ technologies are further apart which contradicts the

typical intuition in the R&D literature. In a working paper, Harrington, Iskhakov, Rust, and

Schjerning (2010) also develop a dynamic duopoly model where firms can make investments in

order to decrease their marginal cost of production. In each period the duopolists simultane-

ously decide whether or not to adopt a new technology that evolves according to a first-order

Markov process. Once the technology choices are made profits are determined through a static

Bertrand pricing game. While simultaneous adoption cannot be an equilibrium in a static

version of the game, the authors show that investment does occur in the dynamic game.4 Fur-

ther, the authors show that a wide range of equilibria exist for a given parameterization of the

model. Some equilibria exhibit “leap-frogging” where one firm invests in a new technology and

undercuts its rival’s price. The firm at a cost disadvantage may then subsequently undercut

its rival when an improved technology is released. Other equilibria involve “sniping” where

one firm builds a large cost advantage over time until the competitor invests and undercuts

its rival. Additionally, equilibria exist where only one of the two firms ever adopts new tech-

nologies. However, certain aspects of the model are somewhat unclear. For one, the authors

state that most of the “interesting” equilibria occur when firms are “asymmetric” in the sense

that the firm indices matter but do not clarify the source of this asymmetry.5 Second, the

authors state that they use an equilibrium selection rule that in essence forces firms to engage

in leap-frogging behavior but then illustrate “non-leap-frogging” equilibria in their simulation

results. Despite these ambiguities it is clear that a simple extension to the static Bertrand

4Consider the standard static Bertrand pricing game except that each firm has the ability to invest
in a marginal cost-reducing technology. It is unprofitable if both firms adopt the technology because
equilibrium profits are driven to zero (and the firms pay a fixed cost associated with the investment).
The authors define this situation as the “Bertrand Investment Paradox” and show that it does not hold
in a dynamic setting.

5In the paper the authors essentially discuss two different models. In a complete information setting
the firms play the standard Bertrand pricing game in each period. However, they also consider a situ-
ation where in each period each firm receives an IID “adoption cost shock” that is private information.
Even accounting for this private information the reader is led to believe that the firms are asymmetric
along some additional dimension. Further, it is not made clear whether the complete or incomplete
information framework is utilized in the simulations. In a more recent version of the working paper
(Iskhakov, Rust, and Schjerning (2013)) these ambiguities are still not fully resolved.

5



pricing game can generate a wide range of equilibrium investment and price paths. The model

we propose is qualitatively similar to the Harrington, Iskhakov, Rust, and Schjerning (2010)

model except for a key difference. In their model the cost of adopting each new technology is

time-invariant. In other words, the cost of adopting the best technology today is the same as

it would be tomorrow so long as an even newer technology is not released.6 Given that costs

are constant and the probability that a new technology is released follows a first-order Markov

process, there is no incentive for a follower to wait to adopt the best technology available.

Thus, technological diffusion is “degenerate” in the sense that a given technology does not

diffuse gradually through time.7

We take a different approach and extend the model of Fudenberg and Tirole (1985) by

introducing a second technology. There is objective uncertainty regarding the release of the

second advancement but not its affect on each firm’s profitability. We assume that the firms

are Cournot competitors and choose quantities myopically in each period.8 The cost of adopt-

6Giovannetti (2001) develops a similar model where the evolution of the best technology is exoge-
nous. Specifically, an improved technology (i.e. a lower marginal cost of production) only becomes
available if a firm adopts the existing technology. Again, the cost of adopting a given technology is
constant over time.

7It is somewhat unclear if it can ever be an equilibrium for both firms to adopt a new technology
immediately when it is released if firms employ pure strategies. Joint adoption in a static version of the
game cannot be an equilibrium because each firm has an incentive to deviate. However, in a dynamic
setting it is hypothetically possible for both firms to adopt simultaneously in an attempt to transition
to a better future state. In all of the simulated equilibria developed in the paper this outcome never
occurs.

8Two papers use Cournot demand to examine how market concentration affects adoption dates
in the one-technology model of Reinganum (1981b). Reinganum (1981a) extends Reinganum (1981b)
to an n-firm model and solves for the Nash equilibrium adoption dates. She also uses a Cournot
demand specification for the single-technology game to show that an increase in the number of firms
results in early adopters adopting later, intermediate adopters (potentially) adopting earlier, and late
adopting firms being unaffected. Quirmbach (1986) solves for the Nash equilibrium adoption dates in
the Reinganum (1981b) model for the monopoly, duopoly, and socially optimal outcomes but holds
the number of firms fixed. In other words, the “monopoly” is a joint-venture between two firms who
attempt to maximize joint profits and the socially optimum adoption dates are chosen such that the sum
of joint profits and consumer surplus is maximized. Not surprisingly he finds that the noncooperative
duopoly and socially optimal adoption dates are earlier than the respective dates under the joint-
venture. Unlike in the noncooperative duopoly, each firm in the joint-venture internalizes the effect of
its adoption decision on its “competitor,” thereby delaying adoption. We argue that in the absence
of capacity constraints, it is socially optimal for a planner to shut down one of the two firms in order
to limit unnecessary adoption costs. We show that in a single-technology game the planner adopts
weakly earlier than a single monopolist, who adopts weakly earlier than the last adopter in a duopoly.

6



ing each technology declines as time passes since its release. Our goal is to examine how the

rate of technological diffusion is altered when firms are faced with the prospect of a future

advancement. We find that the addition of a second technology greatly complicates the equi-

librium analysis. In general, very little can be said about the equilibrium properties of the

entire dynamic game. This issue arises primarily from the fact that it is difficult to rank the

firms’ continuation values before the second technology is released. Since we cannot derive

many results in general, we instead run a number of simulations aimed at illustrating the

equilibrium properties of the model. Further, we solve for the monopoly and socially optimal

outcomes of the game and use them as a benchmark against the duopoly game. Finally, we

show that if firms instead compete in prices and time periods are “short enough,” at most

one of the two firms will ever adopt the new technologies. This result seems to contradict the

leap-frogging behavior discussed in Harrington, Iskhakov, Rust, and Schjerning (2010).

The remainder of the paper is organized as follows. Section 2 develops the model and

the solutions for the socially optimal, monopoly, and duopoly cases. Section 3 discusses the

simulation results and Section 4 concludes. Appendix A.1 contains all of the figures and tables.

Appendix A.2 solves for the equilibrium assuming that a Bertrand rather than Cournot stage

game is played in each period. Finally, Appendix A.3 elaborates on several issues caused by

the use of discrete time.

2.2 Model

Consider a dynamic technology adoption game between two ex-ante identical firms. Time is

discrete and indexed by t = 0, 1, 2, . . . ,∞. Each period unfolds in two stages. In the first

stage the two firms (indexed by i = 1, 2) simultaneously decide whether or not to adopt the

most efficient technology available. Technologies are indexed by j = 0, 1, 2. It is assumed

that both firms enter period t = 0 operating with technology j = 0 (the “original” or “status

quo” technology). A technological advancement, j = 1, is released at the beginning of t = 0.

Typically the first duopoly adopter chooses to adopt at some date between the socially optimal and
monopoly dates. However, the use of discrete time causes this result to not hold in general.
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Technology j = 1 is the most efficient technology available until j = 2 is released at the

beginning of an unknown date in the future, T , where we assume 0 < T <∞. In each period

0 < t < T , both firms believe that a new technology will be released at the beginning of the

next period with probability ρ.9 For simplicity, we assume that once j = 2 is released, j = 1

can no longer be purchased by a firm operating with technology j = 0.

Given the technological choices from the first stage of each period, the firms subsequently

engage in a static Cournot game to determine output and flow profit levels. The game involves

perfect monitoring so that once the technology choices are made they are common knowledge.10

Let ati ∈ Ati denote firm i’s action in the first stage of period t, chosen from the set of feasible

actions available to the firm in that period, where

Ati =



{0, 1} if t = 0

{0, 1} if at−1
i = 0 and 0 < t < T

{1} if at−1
i = 1 and 0 < t < T

{0, 2} if at−1
i = 0 and t ≥ T

{1, 2} if at−1
i = 1 and t ≥ T

{2} if at−1
i = 2 and t ≥ T

.

Thus, we prohibit the firms from downgrading their technology.11 In each period the firms

face the following market demand function:

D(Q) = 1−Q,

where Q = q1 + q2 denotes market output. Adopting a new technology affords a firm with a

decreased marginal cost. Conditional on a firm’s technology, marginal cost is assumed to be

constant. We assume that the firm’s marginal cost associated with technology j, cj , satisfies

9For now firms do not update their beliefs regarding the release of the second technology.

10Strictly speaking, the game is one of perfect monitoring both within and between periods.

11Neither firm would ever find it optimal to downgrade its technology because the fixed cost of
adopting is sunk and the firm’s marginal cost is decreasing in its technology.
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the following:
1
2
> c0 > c1 > c2 = 0.

The upper bound of 1/2 is imposed to prevent a firm from finding it optimal to produce zero

in any period. Suppressing the time superscript, let π(ai, a−i) denote firm i’s flow profit in a

period where it chooses technology ai and its competitor chooses technology a−i. Given the

assumption of Cournot competition, qi and π(ai, a−i) satisfy the following:

qi =
1− 2cai + ca−i

3

π(ai, a−i) = q2
i ,

where flow profits are assumed to be time-invariant and the scrap value of a firm’s old tech-

nology is taken to be negligible.12

The cost of adopting the most recent technology n periods after its release is denoted by

C(n). We assume that cost function is strictly positive, strictly decreasing, and strictly convex.

Although we assume that both technologies follow the same cost schedule it is straightforward

to allow the function to vary by technology (as long as it satisfies the aforementioned properties

and all functional forms are common knowledge at the beginning of the game).

Let a state s ∈ S be a quadruple (t, n, at−1
i , at−1

−i ), where t denotes the current time period,

n denotes the number of time periods since the release of the most recent technology, at−1
i

denotes firm i’s technology choice in the previous period, and at−1
−i denotes firm i’s competitor’s

technology choice in the previous period. Note that if t > n it must be that t ≥ T and the

second technology, j = 2, has been released. Given the definition of a state, firm i’s Bellman

12Imposing a specific functional form on π(·) represents a departure from the setup in Fudenberg and
Tirole (1985). The introduction of the second technology greatly complicates the equilibrium analysis
of this dynamic game. Without assumptions on not only the ranking of the π(·)’s but also the ranking
of the differences in the π(·)’s, little can be said about the equilibria of the game (i.e. there are a large
number of very specific “cases”). Rather than imposing a laundry list of assumptions on π(·), we choose
to employ a widely-used and well-known demand specification.
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equation can be written as

Vi(t, n, at−1
i , at−1

−i ) = max
at

i∈At
i

π(ati, a
t
−i)− 1[at

i 6=a
t−1
i ]C(n)+

β
[
ρV (t+ 1, 0, ati, a

t
−i) + (1− ρ)V (t+ 1, n+ 1, ati, a

t
−i)
]
, (2.1)

where ρ = 0 for all t ≥ T .

Since there are a finite number of technologies, the equilibrium analysis employs backwards

induction. First, the continuation game beginning in period T is analyzed. The equilibrium

outcome(s) from this game form the continuation values for all periods t < T when the uncer-

tainty has yet to be resolved. Given these values each firm’s optimal strategy is characterized

for all states where t < T . At this point it is instructive to informally discuss firms’ strate-

gies and the equilibrium concept that we employ.13 First, for simplicity we focus exclusively

on pure-strategy equilibria even though mixed-strategy equilibria also exist. Additionally, we

focus on a very specific type of Markov perfect equilibrium where the firms’ output choices in

each period are static. As a result, we abstract from situations where firms could use pun-

ishment strategies to enforce a (potentially) Pareto-improving equilibrium. Thus, conditional

on the vector of technology choices in the period, firms’ outputs and profits are trivial. While

we solve for the Markov perfect equilibria of the game, it is somewhat unconventional for a

Markov state to be a function of the time period. Here, the Markov state is dependent on the

number of periods that have elapsed since the release of the best technology available. Since

C(n) is strictly decreasing in n and flow profits are not linear in technologies, no two states

in the game are the same.14 Therefore, we cannot group states into equivalence classes and

solve for the firms’ optimal strategies in each set of states. We use the term “Markov” because

the actual dates of earlier adoptions are irrelevant to the firm’s optimization problem in the

13We choose to avoid developing unnecessary notation because we do not subsequently use it at any
other point in the paper.

14The only exceptions are states (t, t, 1, 1) and (t, n, 2, 2). In (t, t, 1, 1), where t < T , both firms have
adopted j = 1 and j = 2 has yet to be released. As a result, neither firm is capable of taking any action
until the release of j = 2. In state (t, n, 2, 2), where t > n, both firms have adopted j = 2 and the game
has reached completion.
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current period. Put differently, it only matters whether or not a firm has adopted a technology,

not when the adoption occurred. Before analyzing the duopoly game, we characterize both the

Pareto optimal and monopoly outcomes. Both situations are used as benchmarks for compari-

son against the duopoly outcome. It is difficult (especially in the duopoly case) to prove results

in general. Therefore, we often refer to specific examples in order to illustrate tradeoffs and

equilibrium properties of the model. Unless otherwise noted, the reader should assume that

we employ the following parameterization: β = 0.9, ρ = 0.1, T = 10, and C(n) = 1/(1 + n).

2.2.1 Pareto Efficiency

As a benchmark, consider the Pareto optimal outcome of the dynamic game. In order to

maximize total surplus it is optimal for the social planner to shutdown one of the two firms

and set the market price equal to the marginal cost of the remaining firm. Removing the

second firm eliminates all redundant adoptions of the new technologies, thereby limiting overall

adoption costs in the market.15 We assume that the planner raises revenue to pay for a new

technology through a one-time, lump-sum tax. All of the notation from the previous section

holds except that a state is now only a function of the single operating firm’s technology.

Therefore, let a state s ∈ S be a triple (t, n, at−1), where t and n are unchanged and at−1 is the

operating firm’s action in the previous period. Let σ(a) denote the total flow surplus in the

market when the planner chooses technology a. Conditional on the technology choice, total

surplus in the market is given by

σ(a) =
1
2

(1− ca)2.

In all states where n < t (i.e. states where the second technology has been released) the

planner faces a simple optimal stopping problem. The optimal strategy entails delaying the

adoption of technology j = 2 until the first period where the value of adopting in the current

period exceeds the value of postponing adoption until the subsequent period. In any period

15Here we are implicitly assuming that there are no capacity constraints so that a single firm can
produce sufficient output for the entire market.
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t ≥ T , where n = t− T , the value of adopting j = 2 in the current period is given by

σ(2)− C(n) +
β

1− β
σ(2), (2.2)

and the value of delaying adoption until the subsequent period is

σ(at−1) + β

[
σ(2)− C(n+ 1) +

β

1− β
σ(2)

]
. (2.3)

Due to the strict convexity of C(n), the first period where (2.2) exceeds (2.3) is the first period

t where the following inequality holds:

σ(2)− σ(at−1) > C(n)− βC(n+ 1). (2.4)

The LHS of (2.4) is the marginal increase in surplus from adopting technology j = 2 while

the RHS denotes the discounted cost savings from delaying adoption by a period. As a result,

(2.4) states that the planner’s optimal policy rule is to adopt j = 2 in the first period where

the benefit from adopting today (an immediate increase in surplus) exceeds the benefit from

delaying adoption until tomorrow (a decrease in the cost of j = 2). Note that since σ(a)

is increasing in a, the planner adopts j = 2 weakly earlier when she enters period T with

technology j = 0 than when she enters with technology j = 1.16

In all periods t < T , the planner’s Bellman equation can be written as follows:

V (t, n, 0) = max
at∈{0,1}

σ(at)− 1[at=1]C(n) + β[ρV (T, 0, at) + (1− ρ)V (t+ 1, n+ 1, at)], (2.5)

where the value of having already adopted j = 1 is

V (t, n, 1) = σ(1) + β[ρV (T, 0, 1) + (1− ρ)V (t+ 1, n+ 1, 1)]. (2.6)

16At first glance it might appear that we should claim the planner adopts “strictly earlier” rather
than “weakly earlier.” In continuous time this logic is correct. However, in discrete time if c0 and c1
are relatively close, (2.4) could be satisfied in the same period for both costs. Some additional issues
associated with the use of discrete time are discussed in the appendix.
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The planner’s optimal strategy is to delay adoption of j = 1 until the first period where the

value of adopting in the current period,

σ(1)− C(n) + β [ρV (T, 0, 1) + (1− ρ)V (t+ 1, n+ 1, 1)] ,

exceeds the value of delaying adoption until the subsequent period,

σ(0) + β{ρV (T, 0, 0) + (1− ρ)
[
σ(1)− C(n+ 1) + β

(
ρV (T, 0, 1) + (1− ρ)V (t+ 2, n+ 2, 1)

)]
}.

Noting that V (t+1, n+1, 1) = V (t+2, n+2, 1) because ρ is stationary, after simplification the

planner adopts j = 1 in the first period n (where here n and t are equivalent because t < T )

when the following condition holds:

σ(1)− σ(0) + βρ [V (T, 0, 1)− V (T, 0, 0)] > C(n)− β(1− ρ)C(n+ 1). (2.7)

Again, the LHS of (2.7) is the marginal benefit of adopting in the current period. By adopting

today the planner not only increases flow surplus, but also with probability ρ she assures herself

of transitioning to a more valuable state tomorrow.17 The RHS of (2.7) is the expected cost

savings from delaying adoption until the subsequent period. So, once again, the planner delays

adoption of j = 1 until the first period when the marginal benefit from adopting exceeds the

marginal benefit from further delay. Comparing (2.7) with the corresponding condition in a

one-technology model:

σ(1)− σ(0) > C(n)− βC(n+ 1), (2.8)

it is clear that the RHS of (2.7) is weakly greater than the RHS of (2.8). In waiting to adopt

17The proof that V (T, 0, 1) > V (T, 0, 0) is forthcoming. A sketch of the proof is as follows: (2c−c2)/2
is increasing in c for all 0 ≤ c < 0.5. So, the planner entering period T with technology 0 adopts
technology 2 weakly earlier than she would if she entered period T with technology 1. Abusing notation,
let T0 denote the period when a planner entering period T with j = 0 optimally chooses to adopt j = 2
and define T1 similarly for the j = 1 case. We know that T0 ≤ T1. However, the j = 1 planner could just
as easily choose T1 = T0. Thus, the decreased cost of adoption must outweigh the lower flow surplus
level (σ(1) vs. σ(2)) in all periods T0 ≤ t < T1. This, coupled with the fact that the j = 1 planner is
attaining a strictly higher flow surplus than the j = 0 planner in all periods T ≤ t < T0 ensures that
V (T, 0, 1) > V (T, 0, 0).
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j = 1 the planner faces a risk in the two-technology game that does not exist in the single-

technology game–with probability (1−ρ) an even better technology is released and the option

of adopting j = 1 no longer exists. Fixing the LHS of both (2.7) and (2.8), in any t the cost

savings threshold that must be eclipsed to induce adoption in the two-technology game is larger

(relative to the one-technology game) to compensate for this risk. As ρ approaches zero the

planner’s perceived risk falls and her optimal stopping criterions in the one- and two-technology

games converge. If ρ approaches one the planner believes that there is no cost benefit from

waiting (because in all t < T she believes j = 2 will be released in the subsequent period

with probability one). As a result, in this case the RHS of (2.7) is simply the current cost of

adoption. While the RHS of (2.7) is larger than the RHS of (2.8), the LHS is larger as well.

As a result, the net effect of the presence of j = 2 on the adoption date of j = 1 is ambiguous

(relative to the situation where there is only one technology). Figure A.1 illustrates the effect

of a second technology on the planner’s adoption date of j = 1 for different values of ρ and c1.

When ρ = 0 the planner’s decision problem is equivalent in the one- and two-technology games.

Therefore, when c1 = 0.1, 0.2, and 0.3, in a one-technology model the planner adopts j = 1 in

t = 1, 2, and 4, respectively. When c1 = 0.1 the increase in flow surplus from adopting j = 1 is

relatively large. Thus, the planner adopts j = 1 quickly (in period t = 1) and this decision is

unaffected by j = 2, regardless of the value of ρ. However, consider the case where c1 = 0.3, so

the marginal increase in flow surplus is relatively small. In a one-technology game the planner

would adopt j = 1 in t = 4. The addition of a second technology delays the planner’s adoption

of j = 1 and this delay is increasing in ρ. Here V (T, 0, 1) − V (T, 0, 0) = 0.065, which is less

than it is in the c1 = 0.1 case (0.33), so the added benefit of potentially transitioning to a

preferred state is mitigated in the current adoption decision.18 Since the benefit of adopting

j = 1 is minimal once j = 2 is released, the sunk cost of adoption must be recouped prior to

period T . As ρ increases the planner believes that the window of time when she can benefit

from j = 1 shrinks and therefore she is only willing to adopt it relatively later at a lower cost.

18In this specific parameterization the planner would adopt j = 2 in the same period (T+1) regardless
of whether she entered period T with c = 0.4 or c = 0.3. So, when c1 = 0.3, V (T, 0, 1) only exceeds
V (T, 0, 0) by a one-period difference of σ(1)− σ(0) (i.e. the difference in flow surplus in period T ). If
the planner enters period T with c = 0.1 then she delays adoption of j = 2 until period T + 3.
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2.2.2 Monopoly

For the sake of comparison next assume that instead of two firms, a single monopolist operates

in the market. All of the notation holds from the Pareto efficiency analysis except that the mo-

nopolist maximizes intertemporal profit rather than surplus. Let π(a) denote the monopolist’s

flow profit when choosing technology a. Conditional on his technology choice, the monopolist

maximizes per-period flow profit by setting

Q =
1− ca

2
and p =

1 + ca
2

,

so that π(a) = Q2. Employing similar logic to that used in the Pareto optimal case, once j = 2

is released the monopolist’s optimal strategy is to adopt j = 2 if

π(2)− π(at−1) > C(n)− βC(n+ 1) (2.9)

and choose at = at−1 otherwise. Substituting and comparing the LHS of (2.4) with the LHS

of (2.9) yields the following inequality for all 0 < c < 1/2:

σ(2)− σ(at−1) =
2c− c2

2
>

2c− c2

4
= π(2)− π(at−1).

As a result, conditional on entering period T with the same technology, the planner chooses

to adopt j = 2 weakly earlier than the monopolist. This result is straightforward–since the

monopolist sets p > c, the increase in his profits is less than the increase in total surplus when

p = c. Thus, the planner has a greater incentive to adopt j = 2. Further, the difference between

the LHS of (2.4) and the LHS of (2.9) is increasing in c. At first glance this relationship seems

to indicate that the difference between the two adoption dates is increasing in c. However,

this is not necessarily the case because as c increases, both the planner and the monopolist

want to adopt earlier, so (2.4) and (2.9) are both initially satisfied at lower values of n. If

C(n) decreases quickly at lower values of n then (2.4) and (2.9) will each be satisfied by a

wider range of marginal costs. Figure A.2 plots the adoption times of j = 2 for both the

15



social planner and the monopolist versus marginal cost entering period T . It is assumed that

both the planner and the monopolist enter period T with the same technology. Note that the

difference in adoption times in general decreases with c. The total intertemporal inefficiency

(including adoption costs) associated with the monopolist is also plotted on the same graph

and is greatest at the “extreme” values of c. In other words, the inefficiency is greatest when

j = 2 provides either a significant or very negligible cost savings over the current technology

being utilized. In the former case (when c is close to 0.5), the result appears counterintuitive

because if both the planner and the monopolist are using the same technology, per-period

deadweight loss is smaller as c increases. However, the fact that the planner adopts j = 2 a

period before the monopolist causes the monopoly inefficiency to increase as c increases.19 In

the latter case (when c is approaching zero), there is a greater lag in the monopolist’s adoption

time relative to the efficient adoption date, again causing the inefficiency to increase.

The analysis of the monopolist’s problem in all periods t < T is identical to that for the

social planner, substituting π(·) for σ(·). Thus, the monopolist’s optimal strategy involves

adopting j = 1 in the first period where

π(1)− π(0) + βρ [V (T, 0, 1)− V (T, 0, 0)] > C(n)− β(1− ρ)C(n+ 1). (2.10)

This inequality is analogous to (2.7) in the social planner’s problem. Again, the mere pres-

ence of a second technology which is released at an uncertain date in the future increases the

marginal benefit of adopting in the current period but requires a greater cost savings for adop-

tion to be optimal.20 Figure A.3 is a contour plot of the monopolist’s hypothetical adoption

19This explanation is admittedly somewhat muddled. Consider the range of marginal costs 0.49 >
c > 0.26. In this range both the monopolist’s and the planner’s optimal adoption dates (and therefore
the costs of adoption) are fixed. As c falls the monopolist’s profit, the planner’s total surplus, and
per-period deadweight loss all increase, if the monopolist and the planner are operating with the same
marginal cost. So, if both the monopolist and the planner adopted in the same period, the black line in
Figure A.2 would be increasing in this range of marginal costs. However, in period T + 1 the planner
adopts j = 2 while the monopolist continues operating with c. Since a lower value of c generates higher
total surplus in the monopoly market, the total inefficiency in period T + 1 is smaller for smaller c’s.
This effect dominates so the one-period difference in adoption dates causes the total inefficiency to fall
in this range.

20The proof that V (T, 0, 1) > V (T, 0, 0) for the monopolist is identical to that for the social planner,
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date of j = 1 over the entire c0-c1 grid.21 Not surprisingly, the figure suggests that there is a

negative relationship between the adoption date and the difference between c0 and c1 (which is

illustrated in Figure A.4). As c0−c1 increases, the monopolist has a greater incentive to adopt

j = 1 to increase flow profits before the release of j = 2. In other words, fixing ρ, a greater

value of c0− c1 makes adoption profitable at a higher cost which in turn allows the monopolist

to adopt earlier. Additionally, since we have shown that V (T, 0, 1)−V (T, 0, 0) > 0, waiting to

adopt in the current period leads to possibility of transitioning to a less-desirable state in the

subsequent period. Fixing the difference between c0 and c1, Figure A.3 also shows that the

monopolist’s equilibrium adoption date increases as both costs increase.22

2.2.3 Cournot Competition

Now consider the original specification where two firms play a static Cournot equilibrium

in the second stage of each period. Recall that in the duopoly model a state s ∈ S is a

quadruple (t, n, at−1
i , at−1

−i ), where t denotes the current time period, n denotes the number of

time periods since the release of the most recent technology, at−1
i denotes firm i’s technology

choice in the previous period, and at−1
−i denotes firm i’s competitor’s technology choice in

the previous period. As a result, the two firms can enter period T in one of four states:

s ∈ {(T, 0, 0, 0), (T, 0, 1, 1), (T, 0, 1, 0), (T, 0, 0, 1)}. In the first two states, the continuation

game beginning in period T is a discrete-time version of that found in Fudenberg and Tirole

(1985). As noted in Fudenberg and Tirole (1985), the use of discrete rather than continuous

time generates slightly different equilibrium outcomes.23 In the latter two states, one firm

substituting π(·) for σ(·).
21If T is less than the optimal adoption date, the monopolist simply would not adopt j = 1 in

equilibrium.

22We think that this is being driven in part by the fact that difference between V (T, 0, 1) and
V (T, 0, 0) decreases as c1 and c0 increase (holding c0 − c1 constant). For example, if the monopolist
enters period T with any 0.25 < c < 0.35 then he will adopt j = 2 in period T + 2. However, the
adoption dates are more dispersed at lower values of c (T + 8 if c = 0.05 versus T + 4 if c = 0.15).

23Specifically, as noted in Fudenberg and Tirole (1985), modeling in discrete time eliminates the
majority of their late “joint adoption” equilibria. Oddly enough, in some instances discrete time also
causes what would be a “diffusion” equilibrium in continuous time to appear to be a joint adoption
equilibrium. This issue is discussed further in the appendix. However, it is important to note that the
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enters period T having adopted the first advancement while the competing firm is still operating

with the original technology.

Equilibrium Strategies in (T,0,0,0) and (T,0,1,1)

To simplify the exposition we focus on state (T, 0, 0, 0). The analysis in state (T, 0, 1, 1) is

analogous. In this state, neither firm enters period T with a technological advantage so the

firms’ value functions are identical. Using backwards induction, first consider the situation

where one of the firms (w.l.o.g. firm 1) has already adopted the second technology j = 2. In

this case firm 2’s Bellman equation is

V2(t, n, 0, 2) = max
at

2∈{0,2}
π(at2, 2)− 1[at

2 6=a
t−1
2 ]C(n) + β[V (t+ 1, n+ 1, at2, 2)].

Note that since the competing firm’s technology is fixed, firm 2 is faced with a simple optimal

stopping problem similar to that discussed for both the planner and the monopolist. Since

C(n) is strictly decreasing, the firm maximizes its value by choosing j = 0 until the first point

where adopting in the current period generates a greater value than delaying adoption until

the subsequent period, or the first period n when the following holds

π(2, 2)−C(n)+β[V (t+1, n+1, 2, 2)] > π(0, 2)+β[π(2, 2)−C(n+1)+β(V (t+2, n+2, 2, 2))].

(2.11)

Noting that V (t+ 1, n+ 1, 2, 2) = V (t+ 2, n+ 2, 2, 2) = 1/(9 ∗ (1− β)), this condition can be

simplified as follows:
4
9

(c0 − c2
0) > C(n)− βC(n+ 1). (2.12)

Let T2F denote the first period where the above inequality holds (where “2” signifies j = 2

and “F” stands for “Follower”). So, for all states (t, n, 0, 2) where t > n, firm 2’s best response

involves not adopting j = 2 in periods t < T2F and adopting in periods t ≥ T2F . Defining T2P

and T2M similarly for the social planner and the monopolist and comparing the LHS of (2.12)

comparison between discrete and continuous time outcomes is not the focus of this paper.
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with the LHS of (2.4) and (2.9), we can deduce the following:

T2P ≤ T2M ≤ T2F ,

so that when acting as follower, firm 2 adopts j = 2 weakly later than both the planner and

the monopolist.

Further, as noted in Fudenberg and Tirole (1985), it is straightforward to show that it is a

strictly dominant strategy for each firm to adopt j = 2 in all periods t ≥ T2F . In other words,

when time is discrete, the late “joint-adoption” equilibria analyzed in Fudenberg and Tirole

(1985) (where time is continuous) do not exist. To show this let T2J (where the “J” stands for

“Joint”) be defined as the first period where the following inequality holds:

π(2, 2)− π(0, 0) > C(n)− βC(n+ 1).

This inequality is derived from the same setup as (2.11), substituting π(0, 0) for π(0, 2). Thus,

T2J is first time period where the continuation value of both firms adopting j = 2 in the current

period (conditional on neither firm adopting j = 2 before that date) exceeds the value of both

firms delaying adoption until the subsequent period. Put differently, T2J is the period where

each firm’s value is maximized under a joint-adoption equilibrium. Since π(0, 0) > π(0, 2) it

must be that T2F ≤ T2J . Suppose that T2F < T2J . It is a strictly dominant strategy for

both firms to adopt j = 2 in all t ≥ T2J because in this range the value of joint adoption is

decreasing in the joint adoption date (and the value of acting as follower is decreasing in the

follower’s adoption date). Thus, regardless of the state entering the period, each firm will find

it optimal to adopt j = 2. Next, consider period T2J − 1. In this period each firm recognizes

that regardless of its action today, both firms will adopt j = 2 in the subsequent period. Each

firm’s continuation value from adopting j = 2 in T2J − 1 is

π(2, aT2F−1
−i )− C(n) +

βπ(2, 2)
1− β

,
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and its continuation value of delaying adoption until T2J is

π(0, aT2F−1
−i ) + β

[
π(2, 2)
1− β

− C(n+ 1)
]
.

After simplification, the value of adopting j = 2 in T2J−1 is greater than the value of adopting

in T2J if the following inequality holds:

π(2, aT2F−1
−i )− π(0, aT2F−1

−i ) > C(n)− βC(n+ 1).

Since T2J − 1 ≥ T2F this inequality must hold for each firm, regardless of the competing firm’s

action.24 As a result, each firm has a strictly dominant strategy to adopt j = 2 in period

T2J − 1. Using backwards induction it is a strictly dominant strategy for each firm to adopt

j = 2 in all periods t ≥ T2F . Therefore, in equilibrium no date t > T2F can be reached without

both firms having already adopted j = 2, eliminating the possibility of a “late” joint-adoption

equilibrium.

Given that we know how the “following” firm acts in equilibrium, it is now possible to

determine the “leading” firm’s equilibrium strategy. Taking T2F as given, due to the convexity

of C(n) the leader’s optimal adoption time is the period where the value of adopting today

exceeds the value of delaying adoption until tomorrow. This occurs in the first period n where

the following inequality holds:

π(2, 0)− π(0, 0) > C(n)− βC(n+ 1). (2.13)

Since π(2, 0) − π(0, 0) > π(2, 2) − π(0, 2) it must be that T2L ≤ T2F . Fudenberg and Tirole

(1985) shows that the value of leading in period T2L exceeds the follower’s value of adopting

in period T2F so that each firm would prefer to play the role of leader. These two adoption

dates (T2L, T2F ) form the Reinganum (1981b) pre-commitment (i.e. Nash) equilibrium. In

continuous time, the benefit from acting as leader incentivizes the follower to preempt the

24It is straightforward to show that π(2, 0)− π(0, 0) > π(2, 2)− π(0, 2) for all c0.
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leader and adopt just before T2L, thereby forcing him to take the role of follower and adopt

at T2F .25 Each firm continues to preempt its competitor until it is no longer profitable, which

occurs when the value of leading and following are equalized. While the logic is similar in

discrete time, the discontinuous jumps in the values of leading and following in each period

can cause the equilibrium outcome to be slightly different. Specifically, the preemption may

stop at point before the firms values are equalized, so that the leader still generates some rent

at the follower’s expense. Additionally, for certain marginal cost vectors the discontinuous

jumps in time can generate a “faulty” joint-adoption equilibrium in period T2F . We discuss

these two issues in detail in Appendix B. Nevertheless, defining T ∗2L as the leader’s adoption

date once preemption is completed, the set of equilibria in this continuation game involve one

firm adopting in period T ∗2L and the remaining firm adopting in T2F . The equilibrium is unique

up to the firm index. Figure A.5 plots the duopolists’ equilibrium j = 2 adoption dates for

all potential costs entering period T . The use of discrete time is generating the joint-adoption

equilibria which would become diffusion equilibria if time periods were sufficiently short. The

overall inefficiency of the duopoly is roughly increasing in c. Three types of inefficiencies arise

in the duopoly model relative to the socially optimal outcome: inefficiency created by “too

much” adoption, adoption at suboptimal dates, and setting price above marginal cost. While

j = 2 is always adopted twice in this continuation game, the additional adoption increases

overall market output and decreases the market price. As c decreases the duopolists’ adoption

dates tend to diverge from the planner’s adoption date but adoption costs are also falling.

Overall inefficiency falls because the the adoption cost for the second adopter becomes less

significant.

Equilibrium Strategies in (T,0,1,0) and (T,0,0,1)

Without loss we focus on state (T, 0, 1, 0) and assume that firm 1 enters period T with a

technological advantage. As a result, the firms’ values from acting as leader or follower in each

period are different. Slightly abusing notation, let Ti2F denote firm i’s optimal period to adopt

25It is still optimal for the former leader to adopt at T2F because it is a best-response regardless of
the leader’s precise adoption date.
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j = 2, conditional on being the second firm to adopt j = 2. T12F is therefore the first period

where the following inequality holds

π(2, 2)− π(1, 2) > C(n)− βC(n+ 1), (2.14)

and T22F is defined analogously for firm 2:

π(2, 2)− π(0, 2) > C(n)− βC(n+ 1). (2.15)

Comparing the LHS of these inequalities it is obvious that T22F ≤ T12F . Again, due to

the use of discrete time, there exists a set of cost vectors where T22F = T12F . In these

situations the equilibrium analysis is equivalent to that in state (T, 0, 0, 0) except that firm 1’s

continuation value of leading or following is strictly greater than firm 2’s respective value due

to the technological advantage entering period T . These differences in continuation values can

generate multiple asymmetric diffusion equilibria.26

If T22F < T12F then the equilibrium strategies become slightly more complicated. To

simplify the exposition we employ an example that is summarized in Table A.1 and depicted

in Figure A.6. We assume that firm 1 enters period T with marginal cost c1 = 0.15 while firm 2

enters having not adopted j = 1 (c0 = 0.35). First, using (2.14) and (2.15) it is straightforward

to show that T22F = T + 3 and T12F = T + 4. Given these values I can then calculate each

firm’s value (beginning in period T ) under the three potential equilibria: joint adoption, firm

1 leads and firm 2 follows, and firm 2 leads and firm 1 follows. These values are summarized

in Table A.1 and are calculated such that the first adoption of j = 2 occurs in period n and

if n < Ti2F then firm i acts optimally by following in Ti2F . For instance, suppose that the

first adoption of j = 2 occurs in n = 1. If both firms adopt in n = 1 then firm 1’s value is

26An example of this occurs when c0 = 0.42 and c1 = 0.23. Here T12F = T22F = T + 3 and
T12L = T22L = T + 2. If firm 1 adopts in period T + 2 in hopes of acting as leader, firm 2 preempts
firm 1 in period T + 1 because firm 2’s value of leading in period T + 1 exceeds its value of acting as
follower were firm 1 to lead in period T + 2. However, if firm 2 adopts in period T + 2, it is not optimal
for firm 1 to preempt in period T + 1. So, in the first case the equilibrium adoption times for j = 2 are
(T + 3, T + 1) and in the second case they are (T + 3, T + 2).
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M1 = 0.673 while firm 2’s value is M2 = 0.573. If firm 1 adopts in n = 1 and firm 2 waits to

adopt until T22F = T + 3 then firm 1’s value is L1 = 0.829 and firm 2’s value is F2 = 0.667.

Similarly, if firm 2’s value from leading in n = 1 is L2 = 0.66 and firm 1’s value from acting as

follower is F1 = 0.853. These values are plotted for each firm in Figure A.6.

Using the logic from the previous section, it is straightforward to show that T22J < ∞

and firm 2 has a strictly dominant strategy to adopt in all periods t ≥ T12F , eliminating the

possibility of a late joint-adoption equilibrium.27 Next, consider each period T22F ≤ t < T12F .

By the definition of T12F firm 1’s value from joint adoption must be strictly less than its

value from delaying adoption until T12F . Further, firm 1’s value from leading in period t is

equal to the value under joint adoption because given firm 1’s decision to adopt, firm 2 has a

strictly dominant strategy to adopt as well (since t ≥ T22F ). As a result, the only potential

equilibrium in this range involves firm 2 adopting in period T22F and firm 1 delaying adoption

until T12F . Yet, given this knowledge, firm 2 has an incentive to move its adoption time even

earlier to T22L. In the example, T22L = T + 2 with an associated value of L2 = .728. Next,

we check to see if firm 1 has an incentive to preempt firm 2 in T22L − 1 which is t = T + 1

in the example. If firm 1 allows firm 2 to adopt in t = T + 2 (and subsequently optimizes by

adopting in T12F = T + 4) his continuation value is F1 = .914. If firm 1 preempts firm 2 in

t = T + 1 (forcing firm 2 to optimally adopt in T22F = T + 3) his continuation value decreases

to L1 = 0.829. Thus, firm 1 has no incentive to preempt firm 2 and the unique equilibrium of

this continuation game involves firm 2 adopting j = 2 in t = T + 2 and firm 1 subsequently

adopting in t = T + 4. While simulation results suggest that this type of equilibrium is unique

(where firm 2 acts as the leader and firm 1 follows) if T22F < T12F , we are struggling to prove

this result in general.28

27If π(2, 2) − π(1, 0) < 0 firm 1 prefers to delay a joint-adoption equilibrium indefinitely. However,
the fact that t ≥ T12F ensures that if firm 2 adopts, firm 1’s best response is to adopt as well.

28We have attempted to prove that firm 1 has a strictly dominant strategy to choose to not adopt
in period T22L but cannot show that it is always true. We think that there are certain cost vectors
where firm 1 might be willing to preempt firm 2 but firm 2 is subsequently willing to preempt to an
even earlier date. In other words, firm 2 doesn’t necessarily adopt in T22L–it might adopt at an earlier
date due to the threat of preemption from firm 1. Even though it is clear that firm 2 has a greater
incentive to act as leader because (T22F < T12F ) and π(2, 1)− π(0, 1) > π(2, 0)− π(1, 0) (which can be
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Equilibrium Play Beginning in (0,0,0,0)

Given a marginal cost vector (c0, c1), each firm can calculate the four pertinent expected

continuation values EV (T, 0, a, b), ∀a, b = 0, 1.29 At this point it would seem logical to proceed

as we did in the analysis of (T, 0, 0, 0). However, the expected continuation values cannot be

ranked for all values of (c0, c1). As a result, differences in the EV (·)’s may have different signs,

leading to varying optimality conditions for the adoption of j = 1. Ultimately we will need to

consider several different cases which are explained in detail below.

First consider the situation where one firm has adopted j = 1 and the competing firm is

deciding whether or not to adopt. In period t, the follower’s Bellman equation is

V (t, t, 0, 1) = max
at∈{0,1}

π(at, 1)−1[at 6=at−1]C(t)+β[ρEV (T, 0, at, 1)+(1−ρ)EV (t+1, t+1, at, 1)].

Again, the follower is faced with a simple optimal stopping problem due to the strictly decreas-

ing and strictly convex nature of C(t). So, applying the same logic used to derive (2.7) and

(2.10), the follower waits to adopt j = 1 until the first period t where the following inequality

holds:

π(1, 1)− π(0, 1) + βρ [EV (T, 0, 1, 1)− EV (T, 0, 0, 1)]︸ ︷︷ ︸
x

> C(t)− β(1− ρ)C(t+ 1). (2.16)

In the efficient and monopoly cases we proved that the difference in continuation values (term

“x” above) was positive. Or stated differently, the continuation value was increasing in the

planner’s/monopolist’s technology. However, in a duopoly market this is not always the case.30

shown to be true for 0.5 > c0 > c1), we cannot show that this outweighs the higher cost of adopting at
an earlier date.

29While all uncertainty is technically resolved at the beginning of period T , there is still the potential
issue of multiple equilibria. Thus, EV (T, 0, a, b) is the average continuation value for a firm entering
period T with technology “a” (and competitor’s technology “b”) across all equilibrium outcomes. Any
marginal cost vector generates a maximum of two pure strategy equilibria in the continuation game
beginning in T . If multiple equilibria exist they are generated by each firm wanting to act as leader in
period T2F − 1 in states (T, 0, 0, 0) and T22F − 1 in state (T, 0, 1, 0).

30Setting β = 0.9 and C(t) = 1/(1 + t) we found that 84 of the 1176 marginal cost vectors analyzed
generated EV (T, 0, 1, 1)− EV (T, 0, 0, 1) < 0 and 53 resulted in EV (T, 0, 1, 1)− EV (T, 0, 0, 0) < 0.
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If EV (T, 0, 1, 1)− EV (T, 0, 0, 1) < 0, the follower’s optimal adoption date for j = 1 is pushed

far into the future and if the difference is significant, so that the entire LHS of (2.16) is

negative, the follower will find it optimal to never adopt j = 1. Further, while we showed

in the analysis of the continuation game beginning in (T, 0, 0, 0) it must be that T2F ≤ T2J ,

that isn’t necessarily true for j = 1. Defining T1J as the optimal date for the two firms to

jointly adopt j = 1, it is straightforward to show that T1J is the first t satisfying the following

condition:

π(1, 1)− π(0, 0) + βρ [EV (T, 0, 1, 1)− EV (T, 0, 0, 0)] > C(t)− β(1− p)C(t+ 1). (2.17)

While π(0, 0) > π(0, 1), it may be that EV (T, 0, 0, 1) > EV (T, 0, 0, 0) so that the LHS of (2.17)

is greater than the LHS of (2.16) and T1J ≤ T1F . While this is a departure from Fudenberg

and Tirole (1985) who explicitly show that T1J ≥ T1F using a quasiconcavity argument, it is

still straightforward to characterize the firms’ equilibrium strategies in this case. If T1J = T1F

then both firms have a strictly dominant strategy to adopt j = 1 in all periods t ≥ T1J = T1F .

From that point backwards-induction can be used to solve for the firms’ equilibrium strategies

in all t < T1J using logic similar to that employed in (T, 0, 0, 0) continuation game. Next,

consider T1J < T1F . In T1F the firms again have a strictly dominant strategy to adopt j = 1

in all potential states. In all periods T1J ≤ t < T1F a joint adoption equilibrium will occur in

state (t, t, 0, 0) but the follower will delay adoption until T1F if the leader has already adopted.

However, state (T1J , T1J , 0, 0) will never be reached in equilibrium if there exists a period

t < T1J where the value of leading exceeds the value of joint adoption at T1J . If this date

(T1L) exists then a diffusion equilibrium will ensue where the leader’s actual date of adoption

may occur before T1L due to the preemption incentive. However, the inability to rank the

EV (·)’s prevents us proving the existence of T1L in general.

The real difficulties for this analysis arise when T1F , T1J , or both values equal ∞ (i.e. the

LHS of (2.16), (2.17), or both are negative). In what follows we describe the algorithm used

in each of four different cases. Recall that in period T − 1 the firms are still unsure about

whether or not j = 2 will be released in the subsequent period. As a result, with probability
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(1 − ρ) the firms believe that they will transition to state (T, T, aT−1
i , aT−1

−i ), which we have

not solved for at that point in the backwards-induction process (because working backwards

from the end of the game to T this state does not exist). To calculate EV (T, T, aT−1
i , aT−1

−i )

we need to determine the hypothetical date when all firms have a strictly-dominant strategy

to adopt j = 1.31 The fact that this hypothetical date is potentially infinite (if at least one

firm has a strictly) is what generates the following cases:

Case 1: Both T1F and T1J are finite

• Determine which date is greater and start the backwards induction from that point

• In all potential states entering that date each firm has a strictly dominant strategy to

adopt j = 1 (by the definition of T1F and T1J)

• Using stationarity it is straightforward to solve for each firm’s value in this hypothetical

last period:

EV (t̄, t̄, at̄−1
i , at̄−1

−i ) =π(1, 1)− 1h
at̄

i 6=a
t̄−1
i

iC(n)+

β

[
ρEV (T, 0, 1, 1) + (1− ρ)

π(1, 1) + βρEV (T, 0, 1, 1)
1− β(1− ρ)

]
,

where t̄ = max{T1F , T1J}

Case 2: T1F is finite but T1J is infinite

• The analysis here is similar to that used for the continuation game beginning in state

(T, 0, 0, 0). From the previous analysis we know that there can be no joint adoption

equilibrium after T1F when time is discrete.

• If one firm has adopted j = 1 at an earlier date then we know the remaining firm responds

optimally by adopting in T1F and the values are the same as in Case 1

31For instance, suppose that T = 10 but T1F = 14. Conditional on being preempted at some date
t < 10, the follower will not be able to (optimally) adopt j = 1 before j = 2 is released. However,
the fact that the follower would have adopted j = 1 in t = 14 means that the we would hypothetically
reach a stationary state in t = 14 that would persist until j = 2 is released. This stationarity allows us
to use backwards induction to calculate V (T, T, aT−1

i , aT−1
−i ).
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• If both firms enter T1F having not adopted j = 1 then it must be that either both or

neither of the firms want to adopt j = 1 (because if only one firm adopts j = 1, by

the definition of T1F the non-adopter would want to adopt as well). If joint-adoption is

optimal, values are calculated as in Case 1. If not, each firm’s value is:

EV (T1F , T1F , 0, 0) =π(0, 0) + β

[
ρEV (T, 0, 0, 0) + (1− ρ)

π(0, 0) + βρEV (T, 0, 0, 0)
1− β(1− ρ)

]

Case 3: T1J is finite but T1F is infinite

• If both firms enter period T1J with j = 0 then a joint-adoption equilibrium ensues and

each firm earns the value in Case 1

• If one of the two firms has adopted then the remaining firm finds it optimal to never

adopt j = 1. The continuation value for the adopting firm is:

EV (T1J , T1J , 1, 0) = π(1, 0) + β

[
ρEV (T, 0, 1, 0) + (1− ρ)

π(1, 0) + βρEV (T, 0, 1, 0)
1− β(1− ρ)

]

and the continuation value for the non-adopting firm is:

EV (T1J , T1J , 0, 1) = π(0, 1) + β

[
ρEV (T, 0, 0, 1) + (1− ρ)

π(0, 1) + βρEV (T, 0, 0, 1)
1− β(1− ρ)

]
.

Case 4: Both T1F and T1J are infinite

• In this situation states (t, t, 1, 0), (t, t, 0, 1), and (t, t, 1, 1) are all temporarily stationary

until j = 2 is released. The values in these states are calculated using the correct forms

from Cases 1-3.

• While joint-adoption is not optimal, it may be true that a single firm would find it

optimal to adopt in state (t, t, 0, 0). So, we solve for the earliest t such that a single firm

would find it optimal to adopt. This occurs in the smallest t such that the following

inequality holds:

π(1, 0)− π(0, 0) + βρ [EV (T, 0, 1, 0)− EV (T, 0, 0, 0)] > C(t)− β(1− ρ).
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If this condition is not satisfied for a very large value of t32 then we assume that neither

firm will adopt j = 1. If the condition is satisfied then there are two equilibria in state

(TL, TL, 0, 0): one in which firm 1 adopts and firm 2 does not adopt and another where

the indices are reversed. In this case we simply pick one of the two equilibria and begin

working backwards from T1L.

For each case we now have a way of “closing” the j = 1 and can work backwards to calcu-

late the value of V (T, T, aT−1
i , aT−1

−i ) for every combination of actions. With this value the

backwards-induction process can be continued until we reach t = 0. The presence of these

different cases makes it very cumbersome to discuss the equilibrium adoption dates for j = 1.

Without imposing additional assumptions on C(n) and the ranking of both the EV (·)’s and

the differences in EV (·)’s we cannot make any general comment on the equilibrium adoption

dates. However, we run a variety of simulations to illustrate the dynamics of the technology

adoption game. There are at most four pure strategy Markov perfect equilibria in the dynamic

game. Since firms are ex ante identical all of the equilibrium adoption dates of j = 1 are nec-

essarily isomorphic in the sense that if in one equilibrium firm 1 adopts j = 1 in period x and

firm 2 adopts in period y then the other equilibrium involves firm 1 adopting in y and firm

2 adopting in x. If both firms enter period T with the same technology then the equilibrium

adoption dates in that subgame are also necessarily symmetric. However, as previously dis-

cussed in section 2.2.3, if one firm enters period T with a technological advantage then multiple

equilibria need not be symmetric.

2.3 Simulations

In this section we examine the equilibrium properties of the model for a variety of parameter-

izations. Before discussing all of the simulations in detail it is helpful to highlight some of the

main results which are bulleted below:

• Leap-frogging behavior is most likely when the adoption cost function is relatively flat

and the first advancement is relatively large. In this situation there is a large preemption

32In the simulations we choose t = 500.
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incentive for the first technology but once preempted the remaining firm has little incen-

tive to adopt. However, the preempted firm (if it does not adopt the first technology)

has a much higher marginal benefit from adopting the second technology. If the adoption

cost function declines faster there is a greater chance that both firms will find it optimal

to adopt the first technology.

• As ρ increases both firms tend to delay the adoption of the first technology. The effect is

most evident when the first advancement is relatively small (i.e. high values of c0 − c1)

and the adopt cost function is relatively flat. However, when the adoption cost function

is significantly convex and the first advancement is large, changes in ρ may have no effect

on the equilibrium adoption dates of the first technology.

• Inefficiency in the model is caused by suboptimal adoption dates, too much adoption,

and setting price above marginal cost. Only rarely does the preemption incentive drive

a duopolist to adopt before the planner’s adoption date. Total inefficiency is largest

for high values of (c0 − c1) where both duopolists adopt the first technology relatively

early. Further, when (c0 − c1) is high and adoption costs are relatively flat, a monopoly

market is more efficient than a duopoly market. However, the relationship between total

inefficiency and (c0 − c1) is not monotonic.

• For most marginal cost vectors a steeper adoption cost function will result in lower total

inefficiency. While the adoption average adoption date of the first technology decreases,

adoption costs decrease at a faster rate.

• Ceteris paribus, as ρ increases (i.e. the firms believe that the second advancement is

more imminent) the duopoly inefficiency tends to decrease as firms delay the adoption

of the first technology.

• Comparing a one-technology model with a two technology model, there is no systematic

relationship between firms’ adoption dates of j = 1. However, as c0 − c1 increases,

the leader and follower’s adoption dates in the two-technology model (very roughly)

decrease relative to the values in the respective values in the one-technology model. This
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relationship becomes more pronounced as ρ increases.

• For the chosen parameterization, inefficiency is higher in the one-technology model than

in the two-technology. The discrepancy is largest when both c0 and c1 are small and

smallest when both values are large.

We first vary the convexity of the cost function and calculate the duopoly equilibrium

adoption dates for three different cost vectors. Table A.2 summarizes the results for different

values of x, where we parameterize the cost function as follows:

C(n) =
1

(1 + n)x
,

so that a lower value of x corresponds with a relatively flatter cost function. In all three cases

we set c0 = 0.40, ρ = 0.1, β = 0.9, and T = 10. We arbitrarily define firm 1 as the first adopter

of either technology. Recall that if neither or both of the firms adopt j = 1 then there are

(potentially) two pure strategy Markov perfect equilibria in the continuation game beginning

in T (i.e. either firm can play the role of leader or follower in equilibrium). As a result, in these

situations the firm index for j = 2 is meaningless. However, if only one of the two firms adopts

j = 1 then the firms enter period T in an asymmetric state and the indices do have meaning

when considering the j = 2 adoption dates.33 For j = 1 we list the date when each firm would

hypothetically adopt in the event that j = 2 has not been released. A value of “500” indicates

that the firm would not find it optimal to adopt by t = 500. Consider the situation where x = 0

so that C(n) is constant. Since there is no cost savings from delaying adoption until t = 1, a

firm must either adopt j = 1 immediately or never. In all three cases neither firm ever adopts

j = 1. However, the marginal benefit from adopting j = 2 is large enough to make immediate

adoption profitable for both firms. When x = 0.1, C(n) is decreasing but is still relatively flat.

Only when the difference in c0 − c1 is significant does one firm find it optimal to adopt j = 1

before j = 2 is released. Since the inter-period cost savings is still negligible, preemption drives

33As long as c0 and c1 are not terribly close the equilibrium in this subgame will typically be unique.
However, if multiple equilibria exist we only display one of the two equilibria in an attempt to limit
confusion.
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the leading firm to adopt j = 1 immediately. However, since the difference between c1 and c2

is relatively small, entering period T the non-adopting firm has a significantly higher incentive

to adopt j = 2 (π(2, 1)− π(0, 1) > π(2, 0)− π(1, 0)). The original adopter’s optimal response

is pushed far into the future because π(2, 2) − π(1, 2) is small and costs are decreasing very

slowly. Similar to the result derived in Harrington, Iskhakov, Rust, and Schjerning (2010),

we suspect that this type of leap-frogging behavior would persist if the model is extended to

include more than two technologies but costs remain relatively flat. As x increases and the

cost function becomes more convex the firms adopt j = 1 at earlier dates. While the adoption

dates of j = 1 are increasing in c1, the optimal adoption dates of j = 2 are decreasing in c1.

Fixing c0, as c1 falls the first technological advancement is becoming increasingly significant

while the second advancement is being marginalized. A greater advancement increases the

marginal benefit of leading (π(1, 0)− π(0, 0)) which strengthens the preemption incentive and

leads to earlier adoption. The reverse is true for less-significant technologies.

Table A.3 is similar to Table A.2 except that we now vary the firms’ commonly-held belief

that a new technology will be released (ρ) in all periods t < T . We simulate the equilibrium

adoption dates for two different cost functions (x = 0.5 and x = 1.0). When ρ = 0 the

equilibrium adoption dates of j = 1 coincide with the dates in a one-technology model because

the firms believe that no additional advancements will be released. A change in ρ will have

no effect on the firms’ optimal adoption dates of j = 2 as long as the firms’ technology vector

entering period T is unchanged on the equilibrium path. Recall that a change in ρ has two

countervailing effects on a firm’s decision to adopt j = 1. Since the difference in expected

continuation values associated with adopting (EV (T, 0, 1, a−i) − EV (T, 0, 0, a−i)) is typically

positive, the decision to adopt allows the firm to transition to a preferred state (in expectation)

when j = 2 is released. As ρ increases the firm believes that this transition is more imminent

and thus it is incentivized to adopt sooner. However, at the same time an increase in ρ also

decreases the amount of time that the firm believes it will be able to take advantage of the the

benefits of j = 1 before an even better technology is released. The firm hedges against this risk

by only adopting j = 1 at a lower cost, pushing the equilibrium adoption date later. Table A.3

suggests that the latter effect dominates the former and causes the equilibrium adoption dates
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to increase as ρ increases. The effect of an increase in ρ is greatest when c1 is relatively high

(so that the first technological advancement is less significant) and the cost function is flat. In

this situation it takes much longer for the cost function to fall to compensate for the perceived

risk associated with a greater ρ. As c1 falls and/or the cost function decreases at a faster rate,

the effect of a change in ρ is lessened. In fact, when x = 1.0 and c1 = 0.1 the j = 1 adoption

dates are unaffected by changes in ρ.

Next we examine the relationship between the monopoly, duopoly, and welfare-maximizing

adoption dates. Table A.4 summarizes the adoption dates for various marginal cost vectors

and two different specifications of the cost function (x = 0.2 and x = 1.0). In the table

“P” stands for “planner,” “M” stands for “monopolist,” and “D1” and “D2” signify the two

duopolists. In analyzing the continuation game beginning in state (T, 0, 0, 0) we showed that

following condition holds:

T2P ≤ T2M ≤ T2F .

While the presence of the expected continuation values prevent us from proving that this

relationship holds with certainty for j = 1, the results in Table A.4 suggest that it may be

true. In several instances the follower in the duopoly market adopts j = 1 in the same period

as the monopolist but never adopts in an earlier period. Unless costs are too flat and/or the

marginal benefit from adopting j = 1 is small, the leader in the duopoly market typically

adopts in a period t such that T1P ≤ t ≤ T1M . Put differently, from a welfare-maximizing

perspective the preemption incentive rarely causes either duopolist to adopt “too soon” and

pay an adoption cost that is “too high.” In contrast, both firms adopt later than the socially

optimal date which keeps the market price high and total output and consumer surplus low.

When the second duopolist chooses to adopt j = 1 then the extra adoption cost adds to the

inefficiency. The only case in the table when a duopolist adopts “too early” occurs when

x = 0.2, c0 = 0.25, and c1 = 0.05. Here the cost function is relatively flat so if preempted

the follower will need to delay adoption significantly in order for it to be profitable. This,

coupled with the fact that the technological improvement is significant generates a high value

of leading. As a result, the preemption incentive is very strong and drives the leader’s adoption
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date before T1P .

Figures A.8 and A.9 plot the total intertemporal inefficiency for the monopoly and duopoly

markets, respectively. All adoption costs are included in the calculations. First consider

Figure A.8. When the cost function decreases slowly (x = 0.2) there is a “wedge” of relatively

low inefficiency where the value of c0 − c1 is close to the value of c1 − c2. Here the planner

finds it optimal to adopt j = 1 just before j = 2 is released and the monopolist does not adopt

j = 1. Since σ(2)−σ(1) > σ(1)−σ(0) the planner still has an incentive to adopt j = 2 quickly

(as does the monopolist). The increased inefficiency generated in the short window between

when the planner adopts j = 1 and j = 2 is offset by the fact that the monopolist does not

incur an adoption cost for j = 1. However as x increases there is a greater likelihood that

both the monopolist and the planner adopt j = 1. The window of time between the planner’s

adoption date and the monopolist’s date is roughly the same but now the monopolist incurs

an additional cost which increases the total inefficiency. It is important (although somewhat

obvious) to note that the greatest per-period inefficiency is generated when the planner is

operating with a technology that is sufficiently better than the monopolist’s technology. In

this case the discrepancy between the monopoly and efficient prices is large. Figure A.9

is analogous to Figure A.8 for the duopoly market. For x = 1 the inefficiency is roughly

increasing in the difference between c0 and c1. When c0 is high and c1 is low, the planner and

both of the duopolists adopt j = 1 quickly. As a result, two large adoption costs are incurred

in the duopoly market. Further, the difference between the planner’s adoption date of j = 2

and the duopoly adoption dates are significant because for low values of c1, the difference

between σ(2)−σ(1) and π(2, 1)−π(1, 1) increases. As the value of c0− c1 decreases, all of the

adoption dates tend to converge. In other words, the relative incentive to adopt j = 1 falls

and the incentive to adopt j = 2 increases. There is a greater chance that one or both of the

duopolists choose not to adopt j = 1, thereby limiting the adoption costs in the market. Even

though the equilibrium adoption dates of j = 2 occur earlier, the decreased costs for j = 1

combined with the compression of the planner’s j = 2 adoption date with the duopoly dates

causes the total inefficiency in the market to fall. For certain “intermediate” cost vectors, as

x rises total inefficiency initially increases but then falls. Consider the case where c0 = 0.35
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and c1 = 0.16. As x increases the total inefficiency is initially 0.53 (x = 0.2), increases to 0.75

(x = 0.6), and then falls to 0.66 (x = 1.0). In the first case neither duopolist adopts j = 1 (the

planner adopts in t = 6). As a result, there is a high incentive to adopt j = 2 in the duopoly

market and preemption drives one firm to adopt immediately in t = 10 (the planner adopts

in t = 12). When x increases to 0.6 both duopolists adopt j = 1 (in periods t = 3 and t = 8)

and the planner adopts earlier (t = 3). The increased adoption costs in the duopoly market

do not compensate for the increased total surplus generated (due to higher output and lower

price), so the overall inefficiency increases. However, in the x = 1.0 case the adoption cost

falls sufficiently fast so that the same marginal increase in surplus in the duopoly market can

be attained at a lower cost.

Figure A.10 plots the difference in total surplus generated in the duopoly and monopoly

markets. The monopolist only generates greater surplus when the adoption cost is relatively

flat and the first technological advancement is significant while the second advancement is

marginal. In this situation the preemption incentive for j = 1 is great which leads to two

high adoption costs in the duopoly market. As x increases there is greater incentive to delay

adoption so the additional adoption cost in the duopoly market is less severe. Relative to the

duopoly, the monopoly is most inefficient when both c0 and c1 are both very small. In these

cases neither the monopolist nor either of the duopolists have an incentive to adopt j = 1 and

the adoption dates of j = 2 occur significantly after T so the additional cost incurred in the

duopoly is minimized.

Next, Figure A.11 illustrates how the duopoly inefficiency varies with ρ. Recall that as

ρ increases the equilibrium adoption dates of the first technology tend to increase as well.

However, the positive relationship is more evident when c0 − c1 is relatively small and/or the

adoption cost function is flatter. Table A.5 summarizes the changes in adoption dates and total

surplus for three different marginal cost vectors in Figure A.11. We define σP and σD as total

surplus for the planner and duopolists, respectively, and ∆σ as the difference in the two values

(i.e. the total intertemporal market inefficiency). When c1 = 0.3 changes in ρ have no effect on

the equilibrium outcome or total inefficiency in the market because in all three cases neither

the planner nor either duopolist adopts the first technology. Next, consider the case where
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c1 = 0.20. When ρ = 0.1 the planner and one of the two duopolists adopt j = 1. However,

as ρ increases the adoption dates of the first technology are delayed until it becomes optimal

for no one to adopt j = 1. Interestingly, total surplus in the socially optimal outcome declines

as the planner’s adoption date is delayed and ρ strays from the “consistent” value of 0.1.34

However, total surplus in the duopoly actually increases slightly as ρ increases, suggesting

that the preemption incentive is driving the duopolists to adopt too soon. Put differently, the

increase in consumer surplus (generated by a lower market price and higher market output) is

not compensating for the higher adoption costs associated with earlier adoption. Combining

the decrease in the planner’s surplus with the slight increase in the duopoly surplus we find

that typically market inefficiency will fall as ρ increases.

Finally, in Figures A.12 and A.13 we compare the adoption times and total inefficiency

in a duopoly market when there is only one versus two new technologies. We compare the

adoption times and inefficiency for different values of ρ.35 In Figure A.12, a positive (negative)

value indicates that the firm in the two-technology case is adopting j = 1 after (before) the

corresponding firm in the one-technology case. Comparing panel (a) with panel (b) and panel

(c) with panel (d) we see that an increase in ρ causes both firms in the two-technology game

to delay adoption (as we discovered in Table A.3), which shrinks the area of the plot where

the two-technology firms adopt before their one-technology counterparts. In the ρ = 0.1 case

the leaders’ adoption dates are typically very close except when difference between c0 and c1

is very small. We believe that a significant amount of the “spottiness” is being generated by

the joint-adoption equilibria (which are solely a consequence of modeling in discrete time).

The comparison is somewhat more clear for the followers. Drawing straight lines through

the origin of the graph with different slopes, it appears as though the follower in the two-

technology game is more likely to adopt before its counterpart in the one-technology game if

c1 is a smaller fraction of c0. Fixing ρ and x, when this fraction is high neither firm has great

incentive to adopt j = 1. However, in the one-technology game the follower essentially has no

34Recall that the second technology is released in T = 10 so that “consistency” implies ρ = 1/T .

35In Figure A.12 it is important to note that the color scale is held constant in all four contour plots.
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other option–at some point in time if costs have declined sufficiently then it will be optimal to

adopt. In contrast, in the two-technology game the follower has even less incentive adopt j = 1

because once j = 2 is released it will adopt relatively fast, thus limiting the potential benefit

from j = 1. As c1/c0 falls the relative magnitude of the first advancement rises compared to

the second advancement and the follower in the two-technology game has less incentive to wait.

Therefore, it must be true that EV (T, 0, 1, 1)−EV (T, 0, 0, 1) increasing. Figure A.13 plots the

difference in total inefficiency between the one- and two-technology models. Interestingly, with

the chosen parameterization (β = 0.9, x = 1.0, and T = 10) we find that the one-technology

duopoly is always more inefficient than the two-technology duopoly. The difference is low when

both c0 and c1 are high. In the one-technology game both firms eventually adopt j = 1 after

some delay. In the two-technology game neither firm typically adopts j = 1 before j = 2 is

released but both subsequently adopt j = 2 quickly. Therefore, the per-firm adoption costs

are much higher in the two-technology game. At the opposite end of the spectrum suppose

both c0 and c1 are very small. Here very small differences in c’s generate large differences

in total surplus.36 In the one-technology model the difference between the planner’s optimal

adoption date and the duopolists’ adoption dates is similar to the value under high marginal

costs. However, the inefficiency generated in each period between when the planner adopts

and the duopolists’ adopt is significantly larger. In the two-technology model the adoption

dates are condensed so the intermediate inefficiency is much smaller.37 Lastly, setting both

duopolists’ technology equal to the planner’s technology, per-period inefficiency is decreasing

in c. When both c0 and c1 were high, the “ending state” of the one-technology game (when

both duopolists adopted) was more efficient than ending state in the two-technology game.

When both c0 and c1 fall toward c2 this discrepancy is minimized.

36Suppose c0 = 0.49 and c1 = 0.48. In every period where the planner owns j = 1 but both duopolists
operate with j = 0, the per-period inefficiency is 0.020. Next, suppose c0 = 0.02 and c1 = 0.01. In this
case the per-period inefficiency when the planner has adopted c1 but the duopolists operate with c0 is
0.063. Even though the difference between the technologies is unchanged, the per-period inefficiency
has more than tripled.

37If neither the planner nor the duopolists adopt j = 1 then they all adopt j = 2 very quickly.
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2.4 Conclusion

Technological progress is rarely a one-shot game. Thus, firms are often forced to make repeated

decisions regarding whether or not to upgrade their technology as the technological frontier

progresses. This paper develops a multiple-advancement technology adoption game in an

attempt to better understand the dynamic tradeoffs facing firms as technologies improve. We

extend the seminal model of Fudenberg and Tirole (1985) to include a second technological

advancement that is released at an uncertain date in the future. While the extension is

seemingly straightforward, the resulting equilibrium analysis quickly becomes complicated

due in large part to the expected continuation values associated with the release of the second

technology. To remedy this issue we examine the equilibrium properties of the model by

simulating results using a well-known demand specification and form of competition. This

approach allows us to avoid making a large number of assumptions regarding firms’ flow

profit functions which may lack a reasonable economic justification. The simulated results and

comparative statics exercises reveal how firms’ incentives to adopt vary with changes in market

structure, adoption costs, magnitudes of the technological innovations, and beliefs regarding

the release of an improved technology. Further, we shed light on the inefficiencies generated

by suboptimal adoption dates, “redundant” adoptions, and market power. These results are

an important first step in better understanding multiple-advancement technology adoption

games. Further, these results are relevant to policymakers tasked with determining how to

best promote (or discourage) the uptake of a new technology in different markets/industries to

maximize overall welfare. For instance, the difference in total duopoly inefficiency generated in

a one-technology model versus a two-technology model could yield significantly different policy

prescriptions. The anticipated presence of future advancements may limit current market

inefficiencies and the need for intrusive adoption quotas. This type of long-term, dynamic

consideration simply cannot be addressed in a single-technology model. Hopefully the insights

provided by the model will help to guide future research in this strand of the literature.

37



Chapter 3

Technology Upgrading in Imperfectly Competitive Markets: The Case of

MRI

3.1 Introduction

Technological innovation is an inherently dynamic process. The “most innovative” firms in

the world spend billions of dollars on research and development annually in an attempt to

improve the existing state-of-the-art and bring new products and services to market.1 These

technological advancements allow firms to operate more efficiently by improving productivity,

decreasing costs, enhancing communication and connectivity, and providing firms with more

detailed information about consumers’ preferences. In many instances significant technological

advancement can persist for an extended period of time.2 As a result, while a firm decides

whether or not to adopt a new technology today, the technological frontier is advancing.

Thus, a firm’s purchasing decision implicitly incorporates expectations about the likelihood

and potential benefit of future advancements. As time passes and newer technologies are

released, firms must make repeated decisions regarding when/whether to upgrade their current

technology.

1In a 2011 study, Booz & Co. surveyed over 500 “innovation leaders” in corporations around the
world to select the companies they viewed as most innovative. These executives ranked, in order, Apple,
Google, 3M, GE, and Microsoft as the world’s most innovative firms. In 2010 these five firms combined
to spend more than $19.6 billion on research and development.

2A well-known example of persistent technological change is embodied in Moore’s Law, which states
that the number of transistors placed on a microprocessor should roughly double every two years.
Originally posited by Intel co-founder Gordon Moore in a 1965 paper, the trend roughly continues to
hold to this day.



However, most empirical economic research fails to account for these dynamic considera-

tions. There is a sizable literature that examines the process by which competing firms adopt

a new technology, and a significant number of these analyses stem from the seminal model

developed by Fudenberg and Tirole (1985). Their game begins when a new technology is re-

leased to an oligopoly market. The fixed cost of adopting the technology decreases with time

and each firm’s strategy entails choosing a single date to adopt the technology and incur the

fixed cost. Each firm’s flow profit is a function of both its own and its competitors’ technology

choices. Adopting the new technology increases a firm’s profit at its competitors’ expense.

Thus, there is a tradeoff between adopting the technology sooner and immediately realizing

its benefits versus waiting to purchase it at a lower cost. The game ends once all firms have

adopted the technology.3

To better capture the dynamic nature of technological innovation, I extend this literature by

developing, solving, and estimating a model where competing firms make repeated technology

upgrading decisions. As in Fudenberg and Tirole (1985), the game begins with the release of a

technology. However now, with some commonly-known probability, an even better technology

is released in the subsequent period.4 So, in deciding whether or not to adopt the current

technology, each firm must consider the strategic implications of the decision once an improved

technology is made available. For instance, the benefit from adopting the current technology

may be short-lived if innovation is swift, potentially leading to a “leap-frogging” equilibrium

where firms alternate between adopting and waiting. In each period I assume that firms act

sequentially with asymmetric information about their competitors’ idiosyncratic preferences.

The sequential-move assumption generates a unique equilibrium outcome that I solve for using

a backwards induction algorithm. However, by changing ex-ante market characteristics and/or

the parameterization of the model, I can generate a wide range of equilibrium outcomes. In

3Fudenberg and Tirole (1985) make assumptions on both the marginal benefit of adoption and the
convexity of the fixed cost function so that it is never optimal for a firm to delay adoption indefinitely.

4There is no uncertainty regarding a technology’s value and that value is realized immediately upon
adoption. So, I abstract from situations where a firm learns about a technology’s profitability as time
passes (as analyzed in Jensen (1982), Hoppe (2000), and related papers) and instances where there
is uncertainty regarding the amount of time needed to successfully implement a new technology as in
Stenbacka and Tombak (1994).
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general I find that equilibrium adoption dates of the first technology differ in one-technology

(where the first technology is the only technology) versus multi-technology models. This result

holds even in parameterizations of the model where technological progress is relatively “slow,”

corroborating the importance of modeling firms’ replacement decisions in industries subject to

recurrent innovation.

An example of an industry that is being increasingly driven by technology and innova-

tion is the U.S. market for healthcare. Newer technologies increase a hospital’s productivity

and afford it enhanced diagnostic capabilities and treatment options that consumers value.

However, these benefits come at a significant cost. In 2008 the Congressional Budget Office

concluded “that about half of all growth in health care spending in the past several decades

was associated with changes in medical care made possible by advances in technology.” This

estimate suggests that between 1985 and 2005, technological advancements have increased to-

tal healthcare spending by more than half of a trillion dollars.5 Given the enormity of this

figure, the prospect of continued growth in healthcare spending,6 and the prevalence of expen-

sive, rapidly evolving technologies in the industry, it is important to understand the process

by which healthcare providers purchase and subsequently upgrade their medical technologies.

As a result, I collect and compile a novel dataset that allows me to track hospitals’ magnetic

resonance imaging (MRI) equipment purchases over a twenty-seven-year period which I use

to estimate my dynamic model. MRI technology was originally introduced to the healthcare

industry in the early 1980s and has experienced marked advancement since its inception. Not

surprisingly, parameter estimates from my empirical model suggest that larger hospitals are

more likely to purchase and subsequently upgrade their MRI equipment. Larger hospitals typi-

cally utilize multiple scanners and have greater resources available to upgrade their equipment.

Parameter estimates also suggest that there may exist a spillover effect between competing

hospitals in local markets. However, in contrast to the existing empirical literature, I find

5Congress of the United States, Congressional Budget Office. Technological Change and the Growth
of Health Care Spending, (January 2008).

6In An Update to the Budget and Economic Outlook: Fiscal Years 2012 to 2022, the CBO estimates
that the federal government’s spending on healthcare will exceed total discretionary spending by 2016
(August 2012).
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that the effect is positive. Specifically, an improvement in a competitor’s technology increases

a hospital’s marginal benefit from upgrading its own technology. While this type of positive

spillover is often ruled out by assumption in the technology adoption literature, it is important

to note that I make no such ex ante restrictions on hospitals’ profit functions. Additionally, the

result highlights the importance of better understanding the complicated collection of effects

driving firms’ technology upgrading decisions in oligopoly markets.

The remainder of the paper is organized as follows. I conclude this section with a discussion

of the related literature. Section 3.2 develops the dynamic model and the solution algorithm.

In Section 3.3 I discuss the market for MRI scans and the data. Section 3.4 develops the

empirical model and discusses the results. Finally, Section 3.5 concludes.

3.1.1 Related Literature

This paper is related to several strands of both the theoretical and empirical economic litera-

tures. As previously mentioned, there is a sizable theoretical literature examining technology

adoption games. The literature dates back to Reinganum (1981b), who develops and solves a

duopoly technology adoption game. Symmetric firms each choose a date to incur a sunk cost

and adopt a new technology where the sunk cost decreases with time. She shows that although

the firms are symmetric, in any Nash equilibrium they adopt the technology at different points

in time. Thus, there is a “diffusion” of the technology through time. Fudenberg and Tirole

(1985) show that the firm who adopts the technology first in the Reinganum (1981b) model

earns strictly greater profits. They solve for the subgame-perfect Nash equilibria of the game

and demonstrate that the “follower” in the Nash equilibrium has an incentive to preempt the

“leader.” This preemption incentive drives the leader’s adoption date back to the point that

the two firms’ payoffs are equalized. Again, the technology diffuses in equilibrium, the leading

firm adopts earlier than it would in a Nash equilibrium and the following firm adopts at the

same time.7 In a duopoly model similar to Fudenberg and Tirole (1985) but with asymmetric

7The follower adopts at the same time in both the Nash and subgame-perfect Nash equilibria
because conditional on the competing firm having already adopted, the follower solves the same optimal
stopping problem. Fudenberg and Tirole (1985) also show that certain parameterizations of the model
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firms, Riordan (1992) examines how price and entry regulations can affect technological diffu-

sion. He finds that such regulations can limit each firm’s incentive to preempt its competitor

and slow the diffusion of a new technology.8

Several more recent papers incorporate multiple technologies into duopoly models of com-

petition.9 Horner (2004) models R&D competition between two firms as an endless race. In

each period the two firms choose a costly effort level that affects the probability of generating

a successful innovation. He finds that investment efforts increase when the firms’ technolo-

gies are further apart which contradicts typical intuition. In my model I take the innovation

process as exogenous and examine how firms compete subject to this innovation. Harring-

ton, Iskhakov, Rust, and Schjerning (2010) show that two symmetric firms engaging in static

Bertrand competition in each period still make cost-reducing investments in new technologies.

Many asymmetric equilibria exist where firms invest at different points in time. Some equi-

libria exhibit leap-frogging adoptions while others involve “sniping,” where one firm builds

a large technological advantage over time until the competing firm adopts and undercuts its

rival’s price. Additionally, in some instances only one of the two firms may ever choose to

adopt a new technology. While I also assume that firms play a static Bertrand pricing game in

each period, firms are asymmetric so there is no surprise that adoption decisions may differ as

well. My model also allows for more than two firms to compete in a market which complicates

the equilibrium analysis.

This paper also relates to the empirical technology adoption literature. Levin, Levin, and

Meisel (1987) use a hazard model to examine how optical scanners diffused in the supermarket

industry. They find that the scanners diffused quicker in markets with greater competition.

can generate additional “late joint adoption” equilibria where both firms simultaneously adopt the
technology at a date beyond the follower’s optimal adoption date in the diffusion equilibrium. However,
these equilibria only exist when time is continuous.

8While the aforementioned papers all incorporate a potential first-mover advantage (that can be
nullified through preemption), there are also a number of duopoly models focused on situations where
following is advantageous. Three such examples are Katz and Shapiro (1987), Dutta, Lach, and Rusti-
chini (1995), and Hoppe and Lehmann-Grube (2005).

9In addition to the models discussed below, Huisman and Kort (1999) and Huisman and Kort (2000)
also analyze multi-technology duopoly adoption games. However, in both of these papers firms are still
restricted to choosing a single technology.

42



Genesove (1999) studies the adoption of offset printing presses in the newspaper industry and

shows that smaller firms tend to adopt earlier than larger firms in monopoly markets because

the fixed investment cost is smaller. However, in duopoly markets, larger firms tend to adopt

earlier than smaller firms, suggesting the presence of a preemption incentive. Dranove, Shan-

ley, and Simon (1992) attempt to determine the extent of the “medical arms race” between

competing hospitals in California. Their technology adoption game is static and they use a

reduced form estimation routine. They find that competition mildly affects the number of

specialized services offered within a market but their results are sensitive to the market defini-

tion. Baker (2001) and Baker and Phibbs (2002) use standard hazard models to examine the

effect of HMO market share on the diffusion of MRI and neonatal intensive care technologies,

respectively. As the authors anticipate, managed care is found to slow the diffusion of both

technologies. Hamilton and McManus (2005) find that a new treatment technology for in

vitro fertilization diffused faster in markets with more than one clinic than it did in monopoly

markets. The paper controls for the fact that the adoption of a new technology can act as an

entry deterrent.10 Goettler and Gordon (2011) examine dynamic endogenous R&D and pricing

competition between innovating firms (Intel and AMD) in the microprocessor industry. Since

microprocessors are durable goods the firms face competition from not only each other but

also previous sales. They find that relative to the duopoly case, innovation would increase if

Intel was a monopolist but the resulting increase in the price of microprocessors would cause

consumer surplus to fall. However, in a duopoly setting an increase in one firm’s market share

can cause consumer surplus to rise as the benefits from more frequent innovation outweigh the

cost of a higher market price. In this paper I take the competition between MRI manufacturers

as exogenous and instead focus on the strategic interactions between the “consumers” of new

technologies.11

10In my analysis I abstract from entry/exit considerations and fix the number of firms in a market.
This is obviously a gross oversimplification (especially in the healthcare market). However, as I will
demonstrate in the next section, even my “simple” game suffers from an incredibly large state space.

11An interesting, albeit computationally intensive extension would involve endogenizing MRI manu-
facturers release dates of new technologies. However, it is not immediately clear how responsive release
dates are to the existing state of the MRI equipment in the healthcare industry.
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This paper is most closely related to the work of Schmidt-Dengler (2006), who develops a

timing game of MRI technology adoption between hospitals in local markets. He assumes that

hospitals are asymmetric and focuses on the initial adoption of MRI technology. Firms move

sequentially in each period but there is no uncertainty about competing firms’ profit func-

tions. He finds that competition has a significant effect on the rate of technology diffusion in a

market (greater competition leads to faster diffusion). Using parameters from his estimation,

he runs counterfactual experiments suggesting that faster diffusion is due more to “business

stealing” than preemption. He reaches this conclusion by comparing the equilibrium adoption

dates in the full model with those in a pre-commitment (i.e. Reinganum (1981b)) equilibrium

and an equilibrium where industry profits are maximized. He isolates the preemption effect

by comparing the subgame-perfect Nash equilibrium with the pre-commitment equilibrium.

The discrepancy in adoption dates between these two types of equilibria is small relative to

the overall difference between the adoption dates in the subgame-perfect Nash equilibrium

and the industry-profit-maximizing equilibrium. As a result, he concludes that the business

stealing effect (i.e. the negative effect on competitors’ profits resulting from adoption) is what

largely drives adoption dates earlier. This paper is similar to Schmidt-Dengler (2006) in that

both examine the relationship between competition and technology diffusion. However, in an

attempt to better capture the dynamic nature of technological innovation, this paper incor-

porates uncertainty with respect to future advancements and repeated interactions between

firms. Further, unlike Schmidt-Dengler (2006), I do not restrict the competition between firms

to be consistent with the Fudenberg and Tirole (1985) diffusion equilibrium.

Finally, this paper contributes to a more general class of timing games. Sweeting (2009)

develops a static, incomplete information timing game where competing radio stations (poten-

tially) choose to coordinate the timing of commercial breaks in order to limit listener switching

between stations. He shows how the presence of multiple equilibria in both the model and

the data can be used to identify the stations’ incentive to coordinate. In my model solv-

ing for multiple equilibria in each state in every period becomes computationally infeasible.
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In addition, there is no clear evidence that multiple equilibria exist in my dataset.12 Einav

(2010) studies the timing of motion picture release dates. In each movie “season” distributors

sequentially choose release dates (weeks) for their movies with asymmetric information about

competing distributors’ payoff functions. Decisions made across seasons are assumed to be in-

dependent. He finds that distributors could increase revenues if they moved their release dates

a few weeks away from holiday weekends (when there is greater competition). He also argues

that the presence of asymmetric information lessens the importance of the order of moves

in a sequential-move game because the commitment power associated with moving early is

mitigated by the uncertainty about the remaining competitors’ actions.13

3.2 Model

In this section I develop a dynamic technology adoption game where competing firms make

repeated adoption decisions as the technological frontier progresses. In each period firms

sequentially decide whether or not to adopt the best technology available. Each firm’s decision

is observable by all other firms in the market. However, overall there is asymmetric information

in the model. Specifically, in each period all firms receive an iid draw from a known distribution

that is assumed to be private information. Thus, a firm has incomplete information regarding

competing firms’ payoffs and cannot perfectly anticipate the choices of its competitors who

have yet to act in the period. For instance, consider a market with three firms. The first firm

to act makes its adoption decision while forming an expectation about the second and third

firms’ subsequent actions. The second firm takes the first firm’s action as given, forms an

expectation about the third firm’s strategy, and chooses the optimal technology. Finally, the

third firm takes the first and second firms’ actions as given and simply optimizes accordingly.

In addition to the uncertainty over competitors’ flow profit levels, all firms are uncertain about

12Sweeting (2009) plots histograms of the number of commercials played in each minute of the hour in
different markets. Upon viewing these histograms it is clear that commercials are clustered at different
times across markets, suggesting that there are multiple equilibria in the data. A preliminary analysis
of my dataset did not reveal any systemic relationship between adoption dates across different markets.

13In other words, upon viewing the actions of their competitors, the firms moving later in each period
have an informational advantage over the early-moving firms.
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the release date of the next “best” technology. I assume that this uncertainty is objective and

takes the form of a time-invariant, commonly-held belief.14 Once all firms make their adoption

decisions in a given period, equilibrium flow profit levels are determined via a static Bertrand

pricing game. In what follows I first discuss the static pricing game and then develop the

properties of the dynamic technology upgrading game. I conclude this section by discussing a

variety of simulation results for different parameterizations of the model.

3.2.1 Static Pricing Game

Time is assumed to be discrete and periods are indexed by t = 0, 1, 2, . . . ,∞. There are

M independent markets indexed by m = 1, 2, . . . ,M . Each market m is comprised of a

continuum of consumers and Jm firms, where a representative consumer is indexed by i and

firms are indexed by jm = 1, 2, . . . , Jm. I assume that each firm produces a single differentiated

good so that the notions of “firms” and “products” are synonymous. For instance, in my

empirical application purchasing product j can be thought of as “choosing to have an MRI

scan performed at hospital j.” In each period consumers choose to purchase one of the Jm

products available or the outside option, denoted by j = 0.15 In what follows I employ the

differentiated product demand system developed by Berry (1994) to specify firms’ per-period

flow profits.

Omitting market subscripts, consumer i’s flow utility from purchasing product j in period

t is given by:

uijt = xjtγ + θjtτ − αpjt + ξj + εijt, (3.1)

14For now I simply fix the value of this parameter before solving for the equilibrium of the model.
Estimating this probability would be relatively straightforward as long as it is time-invariant and
constant across firms. However, solving for a perfect Bayesian equilibrium of the dynamic game would
be incredibly complex.

15For now I assume that the outside option is exogenous and time-invariant. In other words, the
price of j = 0 is determined outside of the model prior to the start of the game. While this assumption
is common, it is potentially restrictive in the context of my empirical application. In each market only
hospitals are considered “players” in the dynamic game. Therefore, all independent imagining facilities
are not explicitly modeled. The extent of the competition between hospitals and these imaging facilities
in the market for MRI scans is somewhat unclear. I plan to further investigate this issue and potentially
employ a time-varying outside option in future work.
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where xjt is a vector of product and market-level variables, θjt is firm j’s technology, and

pjt is the price of product j. Assuming τ is positive, on average a consumer values a firm’s

technology. Both ξj , a product characteristic, and εijt, an idiosyncratic consumer taste variable,

are unobserved to the econometrician. Thus, ξj can be interpreted as permanent unobserved

heterogeneity for product j. Following Berry (1994), I denote the mean utility of product j at

time t as

δjt ≡ xjtγ + θjtτ − αpjt + ξj (3.2)

and normalize δ0t = 0, ∀t. Assuming that each εijt is an IID draw from a Type 1 EV distribu-

tion, firm j’s market share in period t is given by the standard logit equation:

sjt(δ) =
eδjt∑J
k=0 e

δkt

. (3.3)

I assume that a firm’s marginal cost is constant in output and is specified as

cjt(θjt, ωjt, φ) = eφ0−φ1θjt+φ2wjt+ωjt , (3.4)

where wjt and ωjt are observable and unobservable firm-specific cost shifters, respectively.

φ0, φ1, and φ2 are parameters. Adopting a new technology decreases a firm’s marginal cost,

where the extent of the cost reduction is governed by φ1. It is important to note that in

the current specification the benefit from adopting a new technology is twofold–through an

increase in consumer utility and therefore demand (τ) along with a decrease in marginal cost

(φ1). However, the equilibrium predictions of the model do not change qualitatively if one of

the two effects is removed.16

I assume that conditional on the vector of chosen technologies, firms subsequently engage

16While I assume that both effects are beneficial to an adopting firm, this might not always be the
case. For instance, a new technology might increase a firm’s marginal cost if it requires more electricity
or labor to operate compared with previous versions. In the case of MRI it is assumed that that
any increase in variable costs required to operate a more advanced scanner are far outweighed by the
decrease in time needed to perform a scan. Thus, it is assumed that a more advanced scanner causes a
hospital’s marginal cost per scan to decrease. In addition to a decrease in the time required for a scan,
consumers are also assumed to benefit from the improved comfort and detail of images afforded by a
newer scanner.
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in a static Bertrand pricing game to determine prices and flow profits. Letting Im denote the

size of market m, flow profit for firm j is defined as

πjt = Imsjt(pjt − cjt). (3.5)

A pure strategy Bertrand equilibrium requires that each firm’s price satisfies the following

first-order condition:

pjt = cjt +
sjt

|∂sjt/∂pjt|
. (3.6)

Using the chain rule it is straightforward to show that

∂sjt
∂pjt

= −α∂sjt
∂δjt

= −αsjt(1− sjt), (3.7)

so that (3.6) simplifies to

pjt = cjt +
1

α(1− sjt)
. (3.8)

The set of equilibrium prices (and corresponding market shares) is then defined as the solution

to both (3.3) and (3.8) for all j ∈ J . To solve for the equilibrium price vector I set each firm’s

price above its marginal cost and gradually decrease the prices until a fixed point is reached.

Equilibrium flow profits are then calculated using (3.5).17

3.2.2 Dynamic Technology Adoption Game

Given this demand specification I now develop the properties of the dynamic technology adop-

tion game. In each period firms sequentially decide whether or not to adopt the best technology

available. I assume that the order of moves is known to all firms in the market and does not

17Berry (1994) develops a technique to estimate the parameters of this demand system in the presence
of unobserved product characteristics (ξ) that are correlated with prices. To cope with this endogeneity
issue Berry (1994) inverts the mean utility levels (δ) so that observed market shares can be regressed
on the observables, treating ξ as an unobserved error term. Unfortunately due to data limitations I
cannot take advantage of this approach in my empirical application because I do not view firm-level
shares and prices. As a result, I will not discuss the details of the mean-utility inversion approach here.
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change over time.18 To generate an ending point for the game I assume that a finite number

of technologies (N) are released over a period of time. Each technology θ is simply an integer

value from zero to N (θ = 0, 1, . . . , N). I restrict each firm’s choice set such that it can only

choose between keeping its current technology and adopting the newest technology. Formally,

let firm j’s action in period t, denoted by ajt, be chosen from the set of feasible actions,

Ajt ≡

 {ajt−1, θBt} if ajt−1 6= θBt

{ajt−1} if ajt−1 = θBt

, (3.9)

where for completeness I define each firm’s action in period t = −1 to equal 0 and θBt is defined

as the best technology available at the beginning of period t. Thus, once a new technology is

released I do not allow firms to adopt previous technological releases. Further, if a firm adopts

technology θBt in period t and no new technology is released in period t+1 (θBt = θBt+1), then

the firm operates with technology θBt in period t + 1 with probability one. In other words,

firms are never allowed to downgrade their current technology.19

Let TθBt
denote the release date of the best technology available in period t. All technologies

follow the same cost structure, C(∆t), where ∆t = t − TθBt
denotes the number of periods

since the release of the current best technology. I assume that C(∆t) is a strictly positive,

decreasing, and convex function. I also assume that C(∆t) is common knowledge to all firms.

Both Fudenberg and Tirole (1985) and Schmidt-Dengler (2006) employ analogous assumptions

on C(·). However, in a game with more than one technology the cost function will “reset” each

time a new technology is released and then decrease deterministically until the technological

frontier is advanced. As I will discuss in greater detail below, the deterministic decrease in

costs each period (conditional on technology) complicates both the state space and the resulting

equilibrium analysis.

18Through simulations I will show that altering the order in which heterogeneous firms act does not
have a significant impact on equilibrium adoption dates.

19Anecdotal evidence from the healthcare industry suggests that hospitals with a fixed MRI scanner
rarely downgrade their MRI technology.
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A game state ψt ∈ Ψt is an ordered triple:

ψt ≡ (t, TθBt
,Θt−1), (3.10)

where Θt−1 denotes the vector of firms’ technologies at the end of the previous period. It

is important to note that the state is a function of the time period t and the vector of firm

technologies entering period t but not the complete history of actions leading to that point. In

other words, only the vector Θt−1 is payoff relevant entering period t, not the dates in which

the firms adopted the technologies. However, even though firms enter period t in state ψt,

when called upon to act a firm may face a technology vector different from Θt−1. Consider

a state where all firms enter period t operating with technology θ = 1 and θBt = 2. If the

first firm to act adopts θ = 2 this alters all of the subsequent firms’ incentives to adopt θ = 2

relative to the case where they acted in the state where all firms owned θ = 1. Therefore, the

effective state for each firm j (other than the first in the adoption order) will be a function of

the choices of all firms acting earlier than firm j.

The timing of the game is as follows:

1. All firms enter t = 0 operating with the “status quo” technology, θ = 0. At the beginning

of t = 0, θ = 1 is released to the market.

2. At the beginning of the period each firm receives its marginal cost draws (wjt, ωjt) and its

idiosyncratic profitability draws (ζjt0, ζjt1), which are defined below. The ζ’s are private

information to each firm.

3. Firms sequentially decide whether or not to adopt θ = 1 in a predetermined order. Each

firm’s adoption decision is public information once it is made. After all firms have made

their adoption decisions they engage in the static Bertrand pricing game to determine

flow profits. Any firm that adopts θ = 1 must incur the appropriate adoption cost,

C(∆t).

4. The game state transitions according to the parameter ρ. With probability ρ, θ = 2 is

released at the beginning of t = 2. With probability 1− ρ, no new technology is released
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at the beginning of period t = 2.

5. In period t = 2 firms realize their idiosyncratic draws, sequentially make adoption deci-

sions (in the same order), determine flow profits, and the game state transitions.

6. Step 5 is repeated until all N technologies are released. At that point firms continue to

make sequential adoption decisions until all firms have adopted θ = N .

In every period t, each firm j receives at most two iid Type 1 EV profitability draws, ζjt0 and

ζjt1. A firm receives both draws if it has not adopted the best technology available, where

the “0” subscript corresponds with the decision to not adopt the best technology and the “1”

subscript denotes the choice to adopt the technology. If a firm has already adopted the best

technology available then it only receives ζjt1.20 These ζ’s are private information to each firm

and are meant to capture each firm’s idiosyncratic preferences for adoption that are unobserved

to both competing firms and the econometrician.21

Note that I assume ρ is time-invariant and constant across technologies. To simplify the

solution algorithm for the dynamic game I assume that ρ is commonly known by all firms at

the start of the game.22 I also assume that C(·) decreases sufficiently so that all firms have an

incentive to adopt θ = N in finite time.23 Finally, I make the sequential moves assumption to

20Note that the “0” and “1” subscripts are simply used for clarification when I write the value
functions for adopting versus not adopting later in this section. If a firm has yet to adopt the best
technology available then only the difference between ζjt1 and ζjt0 is relevant in its decision-making
process (not the actual values of the two draws). If a firm has already adopted the best technology
available then it does not make any decisions until an even better technology is released (since I prevent
firms from downgrading).

21Since the ζ’s are additive it is also straightforward to interpret them as “adoption cost shocks”
instead of profitability shocks (i.e. a higher value of ζjt1 − ζjt0 would correspond with a lower idiosyn-
cratic cost of adopting a new technology). In future extensions I hope to consider serial correlation in
the ζ’s for each individual firm and within-market correlation. The current specification is employed
to simplify the solution algorithm for the dynamic game.

22In essence, this assumption coupled with the known functional form of C(∆t) imply that I am
abstracting from all strategic behavior on the part of technology manufacturers. The adopting firms
take the technological innovation process as exogenous and can perfectly anticipate the value of future
advancements. The only uncertainty surrounds the release dates of technologies θ = 2, . . . , N . Forcing
firms to develop subjective beliefs about technology release dates or values would severely complicate
the equilibrium analysis.

23 Let πLt(N − 1) denote the flow profit of the firm with the least incentive to adopt the last
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eliminate multiplicity and simplify the algorithm necessary to solve for the full equilibrium of

the dynamic game. Schmidt-Dengler (2006) makes the same assumption and shows that the

order of moves in each period is largely irrelevant. I imagine (and will check) that this notion

also holds in my game where firms act with asymmetric information about their competitors’

adoption decisions.

Let firm j’s strategy in period t be a mapping between states and actions. Formally:

σjt : ψt → Ajt(ψt). (3.11)

I focus exclusively on pure strategies and define firm j’s strategy at all points in time as σj . In

this context a pure strategy Markov perfect equilibrium is a set of strategies {σ1,σ2, . . . ,σJ}

that is a subgame-perfect Nash equilibrium in the continuation game beginning in every ψt ∈

Ψt. The assumption that firms act sequentially in each period coupled with the idiosyncratic

ζ’s (which generically ensure that no firm will ever be indifferent between adopting and not

adopting in any period) generate a unique equilibrium outcome to the dynamic game. It is

important to note that I am focusing on a specific type of Markov perfect equilibrium where

firms set prices myopically. Given this assumption I take advantage of the “static-dynamic

breakdown” in the game and calculate flow profit levels in a first step before solving for the

full dynamic technology adoption equilibrium.24

technology when all other firms except L have already adopted θ = N . Let πLt(N) denote the least
profitable firm’s profit after adopting the last technology. In other words, let firm L be the one with
the smallest value of πLt(N) − πLt(N − 1). The assumption requires that there exists a t such that
πLt(N)−πLt(N−1)+(ζLt1−ζLt0) > C(∆t)−βC(∆t+1). In a deterministic setting where the π(·)’s are
constants and the ζ’s equal zero it is straightforward to solve for the first t that satisfies this condition.
In the current setting the presence of marginal cost shocks result in pi(·)’s that are time-varying which
can cause the identity of the least profitable firm to change each period, complicating the process of
determining the last period of the game. However, as t increases, the fact that C(·) is both decreasing
and convex, coupled with the iid profitability draws, suggests that the probability of receiving a high
enough value of (ζLt1− ζLt0) to induce adoption approaches one. In other words, the right-hand side of
the aforementioned inequality decreases with time and the support of distribution from which the ζ’s
are drawn is unbounded. Combining these two facts, the probability of receiving a value of (ζLt1−ζLt0)
favorable enough to induce adoption must increase as t increases.

24The use of static pricing strategies is prevalent in the majority of computational models of dynamic
oligopoly in the industrial organization literature, such as in Ericson and Pakes (1995), where firms
make dynamic entry/exit and investment decisions but play a static pricing equilibrium in each period.
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The date-dependent nature of C(∆t) and the resulting inclusion of t in the state space

forces me to solve for the full backwards-induction solution to the dynamic game. The solution

method to the standard Ericson and Pakes (1995) dynamic oligopoly model is developed in

Pakes and McGuire (1994) (and discussed in Doraszelski and Pakes (2007)). The algorithm

uses value function iteration to solve for the fixed point of both an expected value function

and a policy function, for every firm, in each potential state. Given that each state is date-

dependent in my model, employing this algorithm would force me to solve for an exorbitantly

large number fixed points which is likely computationally intractable. Instead, I simply fix

an ending point to the game, solve for each firm’s best response by comparing the values of

adopting and not adopting, calculate expected continuation values conditional on these choices,

and carry this process backward until the beginning of the game. In essence, the fact that each

ψt is a function of t prohibits me from grouping states into equivalence classes and bounding

the size of the state space. Thus, as the number of technologies and/or firms grows, the model

suffers from a curse of dimensionality.

Given the timing and specification of the model, the Bellman equation can be written as:

Vj(ψt) = max
ajt∈Ajt

− 1[ajt=θBt & ajt−1 6=θBt]C(∆t) + ζjtajt+

Eζj̄t

[
πjt(ajt,Θ∗−jt) + β[ρEVj(t+ 1, TθBt+1,Θ∗t )+

(1− ρ)EVj(t+ 1, TθBt
,Θ∗t )]], (3.12)

where β is the common discount factor, ρ = 0 for all t ≥ TN , 1[·] is an indicator function that

equals one if the firm upgrades its technology, and in a slight abuse of notation, ζjtajt = ζjt0

if the firm chooses not to adopt θBt and ζjtajt = ζjt1 if it adopts or has previously adopted

θBt. I define Θ∗−jt as a (J − 1) × 1 vector containing the equilibrium actions of all firms but

j in period t such that Θ∗−jt = (a1t, a2t, . . . , a(j−1)t, a(j+1)t, . . . , aJt). Similarly, Θ∗t is a J × 1

vector including all firms’ equilibrium actions in period t (including j). The ζ’s generate an

information asymmetry so that when each firm (except the last) acts in order, it must form

A notable exception is Goettler and Gordon (2011), in which competing firms make dynamic pricing
and R&D investment decisions in a durable goods market.
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an expectation, Eζj̄t
(·), about the equilibrium flow profit it will attain in the current period

and the technology vector that will transition into the next period (Θ∗t ).
25 This expectation

is only taken over the set of firms moving after j, which I denote as j̄.

3.2.3 Backwards-Induction Algorithm

In this section I discuss the backwards-induction algorithm utilized to solve for the unique

Markov perfect equilibrium of the dynamic game where firms act sequentially in each period

but with asymmetric information regarding competitors’ profitabilities. I discuss the three-firm

case because it is sufficient and notationally much less cumbersome. To further simplify the

exposition I also assume that conditional on the vector of firms’ technologies, flow profits are

time-invariant.26 Without loss of generality I assume that in each period firm 1 moves first, firm

2 moves second, and firm 3 moves third. As discussed in footnote 23, it is not straightforward to

solve for the “final” period of this dynamic game due to the profitability shocks (ζ). Schmidt-

Dengler (2006) assumes flow profits are such that all firms can be ranked according their

marginal benefit of adoption. This, coupled with a decreasing returns assumption (i.e. the

marginal increase in flow profit is always greater for an individual firm if it adopts (n− 1)-th

rather than n-th) and no uncertainty imply that the last (potential) period of the game can be

calculated as the earliest point in time when the least profitable firm would choose to adopt the

new technology, conditional on it being the last adopter. In contrast, I make no assumptions

on the flow profit function that would allow me to rank firms in a similar manner. Further,

even if I could rank firms by marginal increase in flow profit from adoption, the presence of

the ζ’s could change this ranking each period. To alleviate this issue I simply assume that at

some point in time far after the release of each technology θ = 1, 2, . . . , N , C(∆t) has declined

sufficiently so that all firms have a strictly dominant strategy to adopt θ. For θ = N , this

25In an alternative specification it could be assumed that there is a one period lag between the date
when a technology is adopted and the date when it is implemented. In this case a firm’s flow profit in
period t would be a function of Θt−1 and each firm would know its flow profit when making its adoption
decision. While this specification might quantitatively alter firms’ equilibrium adoption dates it would
not qualitatively distort the dynamics of the model.

26This is equivalent to assuming that ωjt = 0∀j, t and wjt and xjt are both constant across time.
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assumption allows me to generate an ending point to the game. For θ = 1, 2, . . . , N − 1, the

assumption enables me to calculate “pseudo-continuation values” that are necessary for the

algorithm.

Let Tθ define the “end date” for technology θ at which point all firms will adopt the

technology if they haven’t done so already. Also, let πj(a1t, a2t, a3t) denote firm j’s flow profit

given the three firms’ technology choices in the current period t. Suppose firm j has not

adopted θ = N entering period TN . In this case firm j’s value is given by:

Vj(ψTN
) = πj(N,N,N)− C(∆TN

) + ζjTN 1 + βEVj(TN + 1, TN , (N,N,N)). (3.13)

The value for a firm entering period TN having already adopted θ = N is the same as in (3.13)

less the cost term. Employing the logit inclusive value property, EVj(TN + 1, TN , (N,N,N))

is given by:

EVj(TN + 1, TN , (N,N,N)) = ln
[
exp(πj(N,N,N) + βEVj(TN + 2, TN , (N,N,N)))

]
. (3.14)

Beginning in period TN + 1 actions are stationary because all firms have adopted θ = N and

can take no further action. As a result, it must be that the expected continuation values are

equal in all periods beginning in TN + 1:

EVj(TN + 1, TN , (N,N,N)) = EVj(TN + 2, TN , (N,N,N)) =
πj(N,N,N)

1− β
. (3.15)

Given these expected continuation values, (3.13) can now be calculated for all firms and all

states entering period TN . Additionally, from the perspective of period TN−1 it is now possible

to calculate EVj(TN , TN ,ΘTN−1) as

EVj(TN , TN ,ΘTN−1) = ln
[
exp

[
πj(N,N,N)− 1h

ajTN−1 6=N
iC(∆TN

)+

βEVj(TN + 1, TN , (N,N,N))
]]
. (3.16)

I can now initiate the backwards-induction algorithm in period TN − 1 by solving for the
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probability that firm 3 adopts θ = N in every state. Recall that firm 3 moves last in each

period and as a result, its information set includes ψTN−1 plus the actions of firms 1 and 2 in

the current period. Consider a state ψTN−1 where firm 3 has yet to adopt θ = N . The firm

compares the value of adopting:

V3(a3TN−1 = N |ψTN−1, a1TN−1, a2TN−1) =π3(a1TN−1, a2TN−1, N)− C(∆TN−1) + ζ3,TN−1,1+

βEV3(TN , TN , (a1TN−1, a2TN−1, N)), (3.17)

with the value of not adopting,

V3(a3TN−1 = a3TN−2|ψTN−1, a1TN−1, a2TN−1) =π3(a1TN−1, a2TN−1, a3TN−1) + ζ3,TN−1,0+

βEV3(TN , TN , (a1TN−1, a2TN−1, a3TN−1)).

(3.18)

I define the deterministic portion of the value function as V3(·|·) so that

V3(a3TN−1|ψTN−1, a1TN−1, a2TN−1) = V3(a3TN−1|ψTN−1, a1TN−1, a2TN−1)− ζ3,TN−1. (3.19)

Since the ζ’s are distributed Type I EV, the conditional probability that firm 3 adopts θ = N

in t = TN − 1 is

Pr3(a3t = N |ψt, a1t, a2t) =
exp(V3(a3t = N |ψt, a1t, a2t))∑

z∈A3t

exp(V3(a3t = z|ψt, a1t, a2t))
, (3.20)

and Pr3(a3t 6= N |·) = 1 − Pr3(a3t = N |·). If firm 3 has already adopted θ = N then

Pr3(a3t = N |·) = 1. Since firm 2 does not know the realization of firm 3’s ζ’s when it acts, it

must integrate out over firm 3’s conditional choice probabilities when deciding whether or not
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to adopt θ = N . Thus,

Pr2(a2t = N |ψt, a1t) =

exp

[ ∑
z∈A3t

[
Pr3(a3t = z|ψt, a1t, a2t = N)V2(a2t = N |ψt, a1t, a3t = z)

]]
∑

y∈A2t

exp

[ ∑
z∈A3t

[
Pr3(a3t = z|ψt, a1t, a2t = y)V2(a2t = y|ψt, a1t, a3t = z)

]] .
(3.21)

I let y and z denote firm 2 and firm 3’s potential actions, respectively. Firm 2’s expected

value from adoption is a weighted average where the weights are firm 3’s conditional choice

probabilities. Note that V2(·|·) is conditional on firm 3’s technology choice, even though firm

3 has yet to act. Similarly, firm 1’s conditional choice probabilities are a function of both firm

2 and firm 3’s probabilities and its choice-specific value is conditional on both firm 2 and 3’s

subsequent actions:

Pr1(a1t = N |ψt) =

exp

[ ∑
y∈A2t

∑
z∈A3t

[Pr2(a2t = y|ψt, a1t = N)·

∑
x∈A1t

exp

[ ∑
y∈A2t

∑
z∈A3t

[Pr2(a2t = y|ψt, a1t = x)·
· · ·

· · ·
Pr3(a3t = z|ψt, a1t = N, a2t = y)V1(a1t = N |ψt, a2t = y, a3t = z)

]]

Pr3(a3t = z|ψt, a1t = x, a2t = y)V1(a1t = x|ψt, a2t = y, a3t = z)
]] ,
(3.22)

where firm 1’s potential actions are denoted by x. I calculate these conditional choice proba-

bilities for each ψt and all permutations of the firms’ potential actions in period TN −1. Given

these probabilities I can calculate the expected continuation values for period TN − 1 from

the viewpoint of period TN − 2. The standard logit inclusive value term must be augmented

with the conditional choice probabilities that I just calculated. To better explain the intuition

underlying these continuation values, suppose period TN −1 begins in some state ψTN−1. Firm

1 makes its adoption decision in this state with probability one. However, after making its

adoption decision, its flow profit in period TN − 1 is contingent on firm 2 and 3’s decisions.

Firm 2’s situation is slightly different. Firm 1’s action dictates the state it faces when called
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to act and firm 3’s action determines its flow profit. Finally, firm 3’s “state” is a function of

both firm 1 and firm 2’s choices but its flow profit for each choice is known with certainty.

Put differently, the firm moving first knows with certainty the existing state of the world when

acting but not its ultimate payoff from any action. The firm moving last is faced with the

exact opposite situation–it is uncertain what state it will face when called to act but knows

with certainty the outcome (in terms of flow profits) resulting from its decision. A firm moving

not first or last is subjected to both types of uncertainty. The expected continuation values

for all three firms are shown below:

EV1(ψt) = ln

 ∑
x∈A1t

exp

 ∑
y∈A2t

∑
z∈A3t

Pr2(a2t = y|ψt, a1t = x)Pr3(a3t = z|ψt, a1t = x, a2t = y)·

V1(a1t = x|ψt, a2t = y, a3t = z)

]]
, (3.23)

EV2(ψt) =
∑
x∈A1t

Pr1(a1t = x|ψt) ln

 ∑
y∈A2t

exp

 ∑
z∈A3t

Pr3(a3t = z|ψt, a1t = x, a2t = y)·

V2(a2t = y|ψt, a1t = x, a3t = z)

]]
, (3.24)

EV3(ψt) =
∑
x∈A1t

∑
y∈A2t

Pr1(a1t = x|ψt)Pr2(a2t = y|ψt, a1t = x, a2t = y)·

ln

 ∑
z∈A3t

exp
[
V3(a3t = z|ψt, a1t = x, a2t = y)

] . (3.25)

Now the expected continuation values for period TN − 1 are fully characterized from the

perspective of TN − 2. I can continue this process of solving for the conditional choice prob-

abilities and continuation values recursively for all periods t = TN − 2, TN − 3 . . . , TN . Next,

consider period TN −1. I illustrate the timing and transition in this period in Figure 3.1 where
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t = TN − 1. Once all three firms have acted and flow profits are realized, there is uncertainty

(t, TN−1,Θ∗t−1) (TN , TN ,Θ∗t )

(t+ 1, TN−1,Θ∗t )

a1t a2t a3t

TN−1

Figure 3.1: Calculating Expected Continuation Values in TN − 1

regarding whether or not θ = N will be released in the next period. All firms believe that it

will be released in the subsequent period with probability ρ (denoted by the blue line), so that

the state transitions to (TN , TN ,Θ∗TN−1). With probability (1− ρ), the firms believe that they

will transition to state (t + 1, TN−1,Θ∗TN−1), where the final technology is not released (indi-

cated by the red dashed line). Ex ante I know that the release date of θ = N occurs in period

TN so that the state transitions according to the blue line. And, through the backwards-

induction algorithm I have already calculated expected continuation values associated with

state (TN , TN ,Θ∗TN−1). So, while the “red state” (t + 1, TN−1,Θ∗TN−1) can obviously never

be reached, I still need to calculate the “pseudo-continuation value,” EVj(TN , TN−1,Θ∗TN−1),

to proceed with the backwards-induction algorithm. To perform this task I define TN−1 as

the “end date” for technology θ = N − 1 when, if hypothetically reached, all firms have a

strictly dominant strategy to adopt θ = N − 1. In other words, if, hypothetically, θ = N was

not released in all periods t = TN , TN + 1, . . . , TN−1, all firms would find it optimal to adopt

θ = N − 1 in TN−1 (if they had not already adopted the technology by that time). So, I move

forward to this hypothetical point in time and then recursively work backwards until I reach

TN . Suppose firm j enters t = TN−1 having not adopted θ = N − 1. Similarly to (3.13), firm

j’s value in the period is:

Vj(ψTN−1
) =πj(N − 1, N − 1, N − 1)− C(∆TN−1

) + ζjTN−11+

β [ρEVj(TN , TN , (N − 1, N − 1, N − 1))

(1− ρ)EVj(TN−1 + 1, TN−1, (N − 1, N − 1, N − 1))
]
, (3.26)

where EVj(TN , TN , (N − 1, N − 1, N − 1)) has already been calculated in the backwards-
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induction process. Due to the fact that actions are stationary in all hypothetical periods

t = TN−1, TN−1 + 1, . . . until θ = N is released, it can be shown that

EVj(TN−1 + 1, TN−1, (N − 1, N − 1, N − 1)) =EVj(TN−1 + 2, TN−1, (N − 1, N − 1, N − 1))

=
πj(N − 1, N − 1, N − 1) + βρEVj(TN , TN , (N − 1, N − 1, N − 1))

1− β(1− ρ)
. (3.27)

This expected continuation value differs from (3.15) because here each firm only continues to

receive a flow profit of πj(N − 1, N − 1, N − 1) as long as θ = N is not released (and this

event occurs with probability (1− ρ) in each period). Now that (3.26) is fully characterized, I

can begin the backwards-induction process of calculating conditional choice probabilities and

expected continuation values in the hypothetical period TN−1 − 1 and continue the process

backward until reaching period TN . Again, defining Vj(·|·) as firm j’s value less the ζ shock,

the conditional choice probabilities can be calculated using the same equations (3.20)–(3.22).

The expected continuation values are similar to equations (3.23)–(3.25) except that there

is now an additional term due to the uncertain state transition. Slightly abusing notation,

let ẼV j(ψt, ψ̃t) be the “total” expected continuation value for firm j in period t (from the

perspective of period t− 1) prior to knowing whether or not a new technology is released in t.

Let ψt be the state where a new technology is not released in period t and ψ̃t denote the state

where a new technology is released. Then,

ẼV 1(ψt, ψ̃t) =ρEV1(ψ̃t) + (1− ρ) ln

 ∑
x∈A1t

exp

 ∑
y∈A2t

∑
z∈A3t

Pr2(a2t = y|ψt, a1t = x)·

Pr3(a3t = z|ψt, a1t = x, a2t = y)V1(a1t = x|ψt, a2t = y, a3t = z)

]]
, (3.28)

ẼV 2(ψt, ψ̃t) =ρEV1(ψ̃t) + (1− ρ)

 ∑
x∈A1t

Pr1(a1t = x|ψt) ln

 ∑
y∈A2t

exp

 ∑
z∈A3t

Pr3(a3t = z|ψt, a1t = x, a2t = y) · V2(a2t = y|ψt, a1t = x, a3t = z)
]]]

, (3.29)
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ẼV 3(ψt, ψ̃t) =ρEV1(ψ̃t) + (1− ρ)

 ∑
x∈A1t

∑
y∈A2t

Pr1(a1t = x|ψt)Pr2(a2t = y|ψt, a1t = x, a2t = y)·

ln

 ∑
z∈A3t

exp
[
V3(a3t = z|ψt, a1t = x, a2t = y)

] . (3.30)

I recursively calculate these conditional choice probabilities and expected “total” continuation

values in all t = TN−1 − 1, . . . , TN (the dotted red line in Figure 3.1). At that point I have

fully characterized each firm’s expected continuation value in period TN (from the perspective

of period TN −1). Given this value I can continue the backwards-induction process for periods

t = TN − 1, . . . , TN−1. I then repeat the process for all earlier technologies until I reach

t = 0, at which point I have calculated each firm’s conditional choice probability and expected

continuation value in every state of the game. Next, I draw values of ζjt0 and ζjt1 for each firm

in each period and simulate choices under (3.12) in every state. Finally, I start in period 0 in

state ψ0 = (0, 0, (0, 0, 0)) and work forward, noting each firm’s optimal action and transitioning

the state accordingly, to generate the unique Markov perfect equilibrium of the game.

3.2.4 Simulations

To illustrate the equilibrium properties of the dynamic game I run a variety of simulations

with different parameterizations of the model. Not surprisingly, different parameterizations

yield different equilibrium outcomes. In certain instances firms exhibit “leap-frogging” be-

havior while in others a single firm may preempt its competitors in the adoption of all of

the technologies. Further, shifting different parameters can cause adoption dates to be more

condensed or dispersed. In what follows I use the “base” parameterization summarized in

Table 3.1. Notice that since φ2 = ξj = ωjt = 0 and xjt is constant across firms and time,

this implies that firms are ex-ante identical. In fact, the only way that firms differ is in their

predetermined order of moves and ζ draws each period. RD(θ = n) denotes the “release date”

of θ = n, so here new technologies are released at ten-period intervals. The firms’ commonly

held belief that a new technology will be released in each period (ρ) is “consistent” in the sense
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Parameter(s) Value

φ2, ξj , ωjt 0
φ0, φ1, α, τ , xjt 1

γ 6
ρ 0.1
β 0.95

RD(θ = 2) 10
RD(θ = 3) 20

C(∆t) 10/
√

1 + ∆t

Table 3.1: Base Parameterization

that the mean of the geometric distribution defined by ρ is equal to the actual release date of

each technology. Here, the chosen adoption cost function is consistent with the assumptions

discussed in Schmidt-Dengler (2006). Table B.1 summarizes the calculated flow profit values

for 1 ≤ J ≤ 3 using the base parameterization.27

Tables B.2–B.3 summarize the results of 1,000 simulations using the base parameterization

for different market sizes (J) and number of technologies (N). It is important to note that in

Table B.2 firms are ordered by the exogenous order of moves. In other words, j = 1 denotes

the firm acting first in each period, j = 2 denotes the firm moving second, and so on. While

Table B.3 summarizes the same results as in Table B.2, firms are now ordered by the order of

adoption. Here, j = 1 denotes the first firm to adopt a technology, j = 2 denotes the second

firm to adopt, and so on. As an example, consider a duopoly market (J = 2) where the second

firm to act in each period is the first adopter of a new technology. In Table B.2 the firm will

contribute to the j = 2 columns because it moves second in each period. However, since it is

27The simulated flow profits satisfy some but not all of the assumptions in Schmidt-Dengler (2006).
In both cases adoption is rivalrous but always increases the flow profit of the adopting firm. Ad-
ditionally, there are “decreasing returns” in the sense that the marginal increase in flow profit from
adopting is always smaller as the vector of competitors’ technologies improves. However, unlike Schmidt-
Dengler (2006), here I cannot exactly rank firms in a “profitability order.” In other words, due to the
time-varying ζ-draws, the ranking of each firm’s marginal benefit of adoption can vary by period.
This randomness undoubtedly generates a much larger set of potential equilibrium outcomes than the
Schmidt-Dengler (2006) model for a given parameterization. Put differently, fixing the parameteri-
zation, different realizations of the ζ’s can potentially generate different equilibrium outcomes while
in Schmidt-Dengler (2006), conditional on the parameterization an equilibrium is unique. Further,
Schmidt-Dengler (2006) does not provide any simulated equilibria for different market structures that
I could use as a basis for comparison here.
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the first adopter, it will contribute to the j = 1 column in Table B.3. First consider Table B.3

where N = 1. On average, a monopolist adopts the new technology 1.53 periods after its

release. In a duopoly market the preemption incentive drives the first adopter to adopt the

technology relatively sooner (0.70). However, this preemption incentive is mitigated by the

addition of competing firms. The marginal increase in flow profit for the first adopter in a

duopoly is 1.37 and this value decreases to 1.21 in a triopoly. This, coupled with the fact that

the first adopter’s window of “monopoly power” is shortened, lessen the benefit of adopting

first. As a result, adopting first does not warrant paying as high a cost as it does in a duopoly

market. Once a fourth firm is added to the market the first adopter actually adopts later than

a monopolist (on average).

The addition of a second technology (N = 2) further decreases competing firms’ incentives

to preempt, as is evidenced by the increase in the first adopter’s average adoption date of

θ = 1. Again consider the duopoly case. When the leading firm adopts θ = 1 it forms

an expectation regarding the following firm’s optimal adoption date for θ = 1. However, it

is uncertain how long it will be able to earn rents at its competitor’s expense because with

probability ρ, θ = 2 is released in the subsequent period and a new adoption game commences.

This uncertainty decreases the preemption incentive and, on average, drives the leading firm

to adopt slightly later. Stated differently, the leading firm hedges against the additional risk

posed by the potential release of a better technology by waiting and paying a lower cost for the

current technology.28 As a result, a model with only one new technology will tend to overstate

the importance of the preemption incentive relative to a game with multiple advancements.

In addition to the leading firm adopting later, the follower’s average adoption date is earlier

due to the fact that it only adopts θ = 1 roughly 92% of the time (in essence, instances where

θ = 2 is released before the follower would optimally adopt θ = 1 are being truncated). In the

remaining 8% of the simulations, firms enter period T2 in an asymmetric state where only one

firm has adopted θ = 1. In these states, the marginal increase in flow profit from adopting

28While Figure B.2 shows that the average adoption date of θ = 1 across all firms is increasing in
ρ, this relationship also holds for the leading firm’s average adoption date alone. As ρ increases the
expected benefit from adopting relatively early shrinks, so firms are only willing to adopt θ = 1 at a
lower cost.
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θ = 2 is greater for the firm that has not adopted θ = 1 (1.3 versus 1.1), which leads the j = 2

firm’s average adoption date of θ = 2 to come slightly before that of the j = 1 firm. This

property is even more apparent in markets with additional firms (J = 3 and J = 4).

Tables B.4–B.5 are the analogs of Tables B.2–B.3 where each firm j is now differentiated

by its time-invariant value of ξj ∼ N(0, 1). Comparing Table B.2 with Table B.4 it is evident

that the addition of time-invariant heterogeneity limits the importance of the imposed order

of moves on the equilibrium outcome of the game, especially in the adoption of θ = 1 (i.e. the

average adoption dates and number of adoptions are closer in value across firms). However, a

comparison of Table B.3 with Table B.5 illustrates that the equilibrium outcomes generated

under the two parameterizations are significantly different. In particular, the heterogeneity

generates a “ranking” of the firms’ profitabilities that persists across technologies, so that

the firm adopting θ = 1 first will also likely adopt θ = 2 and θ = 3 before its competitors.

Not surprisingly, the heterogeneity also creates greater variance in the average adoption dates

across firms for a given technology.

Figure B.1 demonstrates how the uptake of θ = 1 varies across different market structures

with heterogeneous firms. Each line is a plot of the cumulative probability that θ = 1 is adopted

by period t for a different market structure. As discussed in the homogenous firm case, fixing

the number of technologies the duopoly market is first-order stochastically dominated by all

other-sized markets. Fixing the number of firms, uptake is faster in the single technology game

relative to the model with two technologies.

In general there is a large amount of adoption in the simulations run using the base pa-

rameterization. As a result, Tables B.6–B.9 recreate the results in Tables B.2–B.5 assuming

that new technologies are released more quickly. Specifically, I assume that the new technolo-

gies are now released at five-period intervals (instead of ten-period intervals) and calibrate ρ

accordingly (ρ = 0.2). All other parameters of the model remain unchanged. When N = 1

the two sets of simulations are equivalent and the only difference across specifications in the

average adoption dates and total number of adoptions is due to randomness in the ζ’s and ξ’s

(where applicable). For N > 1 there is less adoption of all technologies except θ = N when

the time between release dates is shortened. Further, this difference is more pronounced as
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the number of firms increases. For instance, comparing Table B.2 with Table B.6, with J = 1

and N = 3 there is 90% as much adoption of θ = 1 and θ = 2 in the five-period-interval

simulations compared with the ten-period-interval simulations. With J = 3, that percentage

drops to 57%. The benefit from adopting a new technology is smaller in markets with more

firms and when release dates are condensed this leads to fewer overall adoptions. Also, with

less overall adoption of θ = 1 and θ = 2, θ = 3 is adopted relatively earlier in the five-period-

interval simulations. With heterogeneous firms the adoption patterns are roughly similar in

both sets of simulations.

Figures B.2 and B.3 illustrate two comparative statics exercises where I vary the values of

ρ and the functional form of C(·), respectively. On average the first technology is adopted later

as the common belief that a new technology will be released increases. If there is a greater

probability of transitioning to state ψt = (t, T2,Θt−1) where a new game commences then the

benefit from adopting θ = 1 falls. Therefore, adopting θ = 1 is only warranted at a lower cost.

This is especially true in a monopoly market void of competitive pressures which dampen the

benefit from adoption. Finally, Figure B.3 depicts the average adoption dates for the leader

and follower (along the left vertical axis) and the average number of adoptions (along the right

vertical axis) of θ = 1 in duopoly markets with two technologies, for different cost structures. A

lower value of x denotes a relatively flatter cost function while a higher value is associated with

a function that initially decreases faster. In the limiting case where x = 0 the cost of adopting

a new technology is constant through time. When x = 0 there is no benefit from waiting

to adopt and the preemption incentive drives a firm to adopt immediately.29 The remaining

firm only adopts θ = 1 if it receives a very profitable ζ1 draw–otherwise it simply waits for

the second technology to be released. As x increases the difference between the leader’s and

follower’s average adoption dates decreases.30 If costs decrease faster then preemption becomes

29The average adoption date for the leader is slightly larger than zero because in some simulations
both firms have low values of (ζ1 − ζ0) in period 0 and neither firm finds it optimal to adopt the
technology in that period.

30The initial increase in the follower’s average date is due to the fact that its average date in the
x = 0 case is essentially random. When x = 1 the follower has a greater incentive to actually adopt
θ = 1 but wants to do so at a later date.
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increasingly more expensive. Thus, the leader adopts relatively later. At the same time, for

higher values of x the follower does not need to wait as long for adoption to be profitable and

therefore adopts relatively sooner. This earlier adoption date also disincentivizes the leader

to adopt because the benefits from being the only adopter of θ = 1 are realized for a shorter

period of time (on average).

3.3 Data

3.3.1 The Market for MRI

MRI is an advanced imaging technology that uses a magnetic field to produce highly-detailed

pictures of human tissue. Unlike a computed tomography (CT or “Cat”) scan, an MRI scan

generates no radiation and is capable of producing an image in any plane. Due to its great

precision and minimal side effects, MRI technology has steadily become more prevalent in the

healthcare industry since its original introduction in the early 1980s. Bell (1996) estimates

that approximately 350 MRI scanners were in operation in the US in 1985 and that number

grew to almost 3,900 units by 1995. A more recent estimate by Aranibar (2013) suggests that

more than 10,000 units were in use by hospitals and other imaging facilities in the US by 2011.

These scanners now combine to produce roughly 30 million scans annually. As MRI technology

has become more widespread in the healthcare industry, the technology itself has advanced.

The strength of the scanner’s main magnet, measured in “tesla” which is symbolized by “T,”

has grown from 0.15T in early models to 3.0T tesla in today’s most advanced clinical models.

Additionally, the advancement of the scanner’s coils and the unit’s software have enabled

physicians to generate higher-resolution images and better diagnose a patient’s condition.31 In

addition to improvements in image quality, MRI scanners have advanced along several other

31The main magnet, along with gradient magnets, radio frequency coils, and a computer system all
work in conjunction to ultimately generate images of the body. Briefly, the main magnet produces a
magnetic field that aligns the hydrogen atoms in the body. The coils then generate pulses which cause
some of the atoms to spin in a different direction. When each pulse is stopped the atoms that were
spinning in a different direction return to their original state and in doing so release energy. This energy
is captured by the coils and processed by the computer to generate an image. The gradient magnets
are used to shift the direction of the magnetic field generated by the main magnet which in turn alters
the angle of final image.
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dimensions. For instance, Frost and Sullivan (1998) notes that in 1985 an MRI scan of the

brain would typically last an hour but that time was cut in half by 1997. Decreasing the

time required per scan allows hospitals to run more scans each day and potentially generate

higher revenue. The length and width of the MRI scanner bore has also changed over time.32

Closed-bore MRI scanners are not conducive for examining claustrophobic and/or overweight

patients. In the 1990s manufacturers began developing short-bore (shorter-length cylinder)

and open (no real cylinder) MRI scanners to alleviate these issues. While short-bore scanners

can generate images comparable to those of closed-bore scanners, scans on open MRI machines

are typically of lesser quality.33 Finally, Frost and Sullivan (2000) notes that manufacturers

are attempting to minimize the significant amount of noise that is generated during an MRI

scan.

The costs of adopting an MRI scanner are substantial. A scanner itself can range in price

from about half of a million dollars to more than two million dollars (Baker and Wheeler

(1998)). Additionally, there are significant construction costs associated with modifying a

facility so that it is capable of handling the strong magnetic field generated by the scanner.

Often smaller healthcare facilities cannot warrant this type of spending to provide their patients

with MRI and in many instances these facilities share a “mobile” MRI scanner with other local

hospitals or imaging centers. A mobile MRI scanner is a scanner housed inside of a trailer

that is transported between sites where each facility typically keeps the scanner for a specified

number of days each week. Thus, the cost of purchasing/leasing the scanner is shared between

several providers. Sometimes the scanners are purchased directly by a group of hospitals (or a

healthcare system that owns and operates several hospitals) and other times they are owned

and maintained by third-party organizations (for instance, Alliance Imaging). As noted in

market research by Frost and Sullivan (1998), the cost of an individual scanner decreases with

time. MRI manufacturers are constantly attempting to innovate and compete for patents on

32The “bore” of the MRI is the outer cylindrical tube that houses all of the magnets and coils. The
patient slides inside the bore on a table for an MRI scan.

33However, over time the image quality of open MRI scanners has improved as the magnet strength
has increased.

67



new technologies. I assume that competition between MRI manufacturers causes the cost of

a particular type of MRI scanner to be decreasing and convex in the time since the scanner’s

original release. If a manufacturer is the first to bring a new type of scanner to market then

it will enjoy a period of monopoly power. However, when competing manufacturers respond

by releasing similar models the price of the scanner must fall. I assume that manufacturers

release new scanners in close succession because they stand to lose significant market share

by delaying the release of a new scanner, causing the price of a new scanner to initially fall

faster before eventually leveling off. However, in this paper I abstract from modeling the R&D

game played by MRI manufacturers and simply take the process that governs the release of

new technologies (and the eventual decrease in their costs of adoption) as exogenous.34

Based on conversations with the University of North Carolina Radiology Department (and

corroborated by Frost and Sullivan (1998)), there is evidence supporting the idea that the ben-

efits received from a new MRI technology can vary between hospitals. In particular, Academic

Medical Centers (AMCs) experience teaching and research spillovers that other hospitals and

private imaging facilities do not enjoy. Purchasing state-of-the-art scanners can help to at-

tract researchers conducting innovative research and medical students hoping to gain valuable

training and experience. Thus, even if an AMC hypothetically conducts the same number of

scans as a privately-owned hospital on a new machine, the AMC still has a higher (implicit)

marginal benefit from the technology and therefore might be incentivized to adopt it sooner.

3.3.2 Data Collection and Sample Selection

Data Collection

To track hospitals’ purchases of MRI scanners I have collected data from three main sources.

The MRI purchase data is collected from the state Certificate of Need (CON) programs in

Mississippi, Michigan, Tennessee, and Virginia. CON programs vary by state and are intended

34Originally there were a large number of MRI manufacturers but over time the market became
more concentrated. According to Frost and Sullivan (1998), by the 1990s the combined market share
of GE Healthcare, Siemens Healthcare, and Philips Healthcare was approximately 70% and according
to Aranibar (2013) that share rose to more than 80% by 2011.
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to limit unnecessary healthcare expenditures. Suppose a hospital wants to purchase a new MRI

scanner in a state where MRI is regulated by a CON law. The hospital must prove to the

state that there is a need for the new scanner (through a demand calculation that includes the

current number of MRI scans conducted in the market). The hospital is granted a CON if the

state decides that there is sufficient demand to warrant the purchase of a new MRI scanner. 21

states in the US currently regulate MRI purchases through a CON program. However, some of

these programs are relatively new and others have minimum spending thresholds that must be

met to require a CON (i.e. if the purchase of an MRI scanner costs less than $3 million then

it is not regulated by a CON). Critics of CON laws argue that they act as entry deterrents

for hospitals holding CONs, therefore limiting competition and leading to higher prices. For

instance, Ford and Kaserman (1993) use changes in CON laws in several states to argue that

these laws significantly inhibit entry in the dialysis industry, leading to highly concentrated

markets. Sloan (1981) finds no evidence that CON laws actually reduce hospital costs.

Since my data comes exclusively from states with CON laws, one could argue that my

sample is not representative of the market for MRI technology in the US, and therefore, the

estimated replacement process is a direct result of regulation. However, Conover and Sloan

(1998) survey the results from more than seventy studies and note that the effect of CON laws

on the diffusion of technology is very inconclusive. They assert that in the majority of these

studies, CON laws are found to have no effect on the rate of diffusion. Additionally, in all of

the states in my sample, the requirements that must be met to warrant the replacement of

an existing MRI scanner are much less stringent than the CON requirements for the purchase

of a new (or an additional) scanner.35 As a result, while CON laws may generate a barrier

35These policies differ by state but in general the process of replacing/upgrading an MRI scanner is
more straightforward than initiating MRI service at an existing facility. In Michigan, while a replace-
ment scanner requires a CON, rather than proving that there is a need for additional MRI capacity (as
would be true to initiate MRI service) it must only be demonstrated that the existing scanner meets
a minimum usage requirement. If the scanner meets this requirement it can be replaced if it is fully
depreciated, poses a safety hazard, or “the proposed replacement equipment offers a significant techno-
logical improvement which enhances quality of care, increases efficiency, and reduces operating costs.”
In informal conversations with the Michigan Department of Community Health it was suggested that
this last provision offers a lot of latitude for hospitals hoping to upgrade. In Mississippi, a hospital
hoping to replace/upgrade an MRI scanner must simply contact the Mississippi State Department of
Health (MSDH) and receive a “declaratory ruling” which is an acknowledgement that the MSDH has
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to entry in the market for MRI scans, I argue that the regulations are less prohibitive when

hospitals decide to upgrade their scanners.

The detail of the MRI purchase data varies by state and is summarized in Table 3.2. There

is a significant amount of variability in the data collection protocols utilized in each state. For

instance, the Michigan Department of Community Health (MDCH) has organized a database

containing summary information on all CON applications dating back to the program’s incep-

tion in 1972. Since the purchase of MRI equipment has always required CON authorization

in the State of Michigan, I am able to track the entire history of MRI purchases in the state.

However, very little information is provided regarding the scanners themselves. In contrast,

the documentation in the Mississippi State Department of Health’s (MSDH) CON program

is significantly more complicated. Older files are only available in hard copies and the orga-

nization of newer digital files is somewhat muddled. Yet, I was able to obtain more detailed

information about MRI scanners’ characteristics than was available through the MDCH. Each

state’s data posed different challenges which I discuss in appendix B.2. However, in all states

I am able to determine the purchase date of MRI scanners and whether they are mobile or

fixed scanners.36 These are the main variables that I will employ in the estimation routine.

In addition to the state CON data I also collect hospital-level data through the American

Hospital Association (AHA) annual surveys from 1987 to 2009. The annual surveys provide

information for all hospitals in the US regarding hospital location, ownership, size, utilization,

been properly notified and that the purchase does not require a CON. The policy in Tennessee is simi-
lar to that in Mississippi–the replacement or upgrade of existing major medical equipment requires “a
notice or prior approval by the Tennessee Health Services and Development Agency (but not a CON).”
In Virginia a facility must register any replacement major medical equipment purchase with the state
Certificate of Public Need Program within thirty days of the capital expenditure but is not required to
apply for a new CON.

36In some instances these variables were missing for observations and I was forced to deduce the
appropriate values. For instance, the project description on a CON might simply indicate that a
hospital was “initiating MRI service” without specifying whether the project involved a fixed or mobile
MRI service. However, the cost of the project might be in excess of $2 million, indicating that the
project likely involved a fixed scanner. Or, several years later the same facility might have another
observation indicating that it was “replacing a mobile scanner,” which implied the type of the original
machine. In instances where I could not comfortably deduce the type of scanner I contacted the facility
in question. Observations with missing purchase dates were incredibly rare. However, I could easily
impute these dates using information from CON applications (or applicable registrations/notifications)
with adjacent reference numbers.
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MI MS TN VA

Facility Name X X X X
Facility Type ∼ X

Facility County X X X
Purchase Date X X X X

Total Cost ∼ ∼ ∼ ∼
Owned/Leased X

Fixed/Mobile X X X X
Scanner Brand ∼ X

Magnet Strength ∼ X
Magnet Type ∼ X

Shared? X X
Active? X

Annual # Scans ∼ ∼ ∼
X indicates the variable was available for nearly all obs.
∼ indicates the variable was available for only some obs.

Table 3.2: Variables Collected Through State CON Programs

and services offered, along with many additional variables. To link the AHA data with the

state MRI purchase data I manually code the seven-digit AHA ID Number for each hospital in

the CON data. While the AHA data do include a variable indicating whether or not a hospital

provides MRI services, I am only able to distinguish between fixed and mobile MRI services for

four years in the panel (1990–1993). I elaborate on this issue in appendix B.2. Finally, I collect

county-level demographic data (i.e. population and per capita income) from the Area Resource

Files (ARF) for 1983 to 2010 that is used to control for variability across markets. To form

markets I follow Schmidt-Dengler (2006) and aggregate counties into healthcare service areas

(HSAs) as designated in Makuc, Haglund, Ingram, Kleinman, and Feldman (1991). Each HSA

is a group of several contiguous counties that “are relatively self-contained with respect to the

provision of routine hospital care.” The land area of an HSA will typically be larger in more

rural regions and smaller in metropolitan areas where the population (and set of hospitals)

is more condensed. There are a total of 802 HSAs in the US which I assume remain fixed

through time.37

37I recognize that due to the length of my panel (1983–2010) it is possible that the appropriate
boundaries of these HSAs may have changed over time because of the opening/closure of hospitals and
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Sample Selection

As previously mentioned, I restrict the sample to only include hospitals that purchased at

least one fixed MRI scanner between 1983 and 2010. I omit hospitals that provide MRI service

(solely) with a mobile scanner for several reasons. First, the investment required for a hospital

to utilize a mobile scanner is far less substantial than the cost of purchasing and installing a

fixed scanner. As a result, the decision to operate a mobile scanner, as opposed to a fixed

scanner, is less binding. Second, anecdotal evidence from the healthcare industry and several

sources at state health departments suggests that mobile MRI scanners frequently are not at

the frontier of MRI technology. Often mobile MRI scanners are used to provide MRI service in

an area that otherwise would not have convenient access to a scanner. Thus, hospitals operating

with mobile MRI scanners are hoping to minimize costs rather than maximize efficiency or

reap the benefits of better MRI technologies.38 As a result, I argue that hospitals with mobile

MRI scanners are not actively engaged in the dynamic technology upgrading game.

In restricting the sample to include only hospitals with fixed MRI scanners, I also omit

all non-hospital imaging facilities. This simplification is made because it is incredibly difficult

to track these facilities through time. Unfortunately there is no comprehensive listing of

outpatient imaging facilities in the US that I can couple with the state CON data. As a result,

changes in a facility’s name, ownership, and/or location are nearly impossible to validate. Since

there is significant turnover in the names of these facilities over time, I cannot confidently build

accurate MRI scanner purchase histories. As noted in Frost and Sullivan (1998), part of this

difficulty is likely the result of the fact that many outpatient imaging facilities closed in the

mid-1990s due to excess capacity. By excluding outpatient imaging facilities from the analysis

I recognize that I may overstate the amount of competition between hospitals alone. However,

it is not immediately clear that hospitals and outpatient imaging facilities are competing for

the same pool of potential patients.

the migration of the US population. I abstract from these issues in the analysis.

38Further, the same sources suggested to me that third-party owners of mobile MRI scanners tend
to delay replacing scanners in order to maximize profits.
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In addition to restricting attention solely to hospitals, I also assume the number of hospitals

competing in each market remains fixed through time, so there is no entry or exit in the model.

Modeling endogenous entry/exit in a dynamic discrete choice game greatly complicates the

state space as firms are forced to form expectations over the set of potential market participants

in the subsequent period. And while a significant amount of turnover has occurred in the

hospital industry over the length of my panel, this is not the case for the firms in my sample.

Of the 255 hospitals in the sample, only nine entered the market after 1987 and three exited

before 2010. For simplicity I assume that these hospitals were in existence for the entire length

of my panel. While entry and exit does not occur frequently in my sample, 34 hospitals took

part in a merger during the sample period. In essence I ignore these mergers and assume merged

hospitals continue operating independently. In most cases even if hospitals have merged I can

still determine exactly which of the merged hospitals purchase new MRI scanners. Whenever I

cannot distinguish between merged hospitals I simply assume that all of the merged hospitals

receive a new scanner.39 I recognize that in ignoring mergers I may be overstating the number

of independent decision-makers in certain markets.

Finally, due to data limitations I assume that all fixed MRI scanners purchased in the

sample are at the technological frontier at the time of the purchase. In other words, at any

point in time hospitals are only capable of purchasing the best technology available. While

this assumption is admittedly a simplification, I am forced to make it for several reasons. I

originally intended to categorize all scanners by the strength of the main magnet. However,

this information is not available for all purchases in the data and differences exist between

scanners with the same magnet strength (for instance, a short-bore scanner versus a closed-

bore scanner). Attempting to use the purchase price as a proxy for a scanner’s quality is

also problematic because as I show in Figure B.6, these values are relatively noisy.40 Further,

39For instance, in 1995 Chippenham Medical Center and Johnston-Willis Hospital merged in Virginia.
In 2008, “Chippenham & Johnston-Willis Hospitals, Inc.” added a second MRI scanner but it is unclear
at which facility the scanner is located. So, I simply assume that both facilities added an MRI scanner
in 2008. This type of situation is rare, only occurring with three sets of merged firms in the data.

40The cost measure is noisy for several reasons. First, a specific CON may include other medical
services regulated by CON laws so that I cannot disentangle the exact amount spent on a new MRI
scanner. Second, certain CONs may include construction costs associated with preparing a hospital to
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as noted by Aranibar (2013), not all facilities purchase scanners with the highest tesla main

magnet. He estimates that in 2011, 3.0T scanners (currently the highest-tesla clinical scanners

available) only accounted for roughly 36% of total MRI market revenue in the US.

Given these assumptions, Table B.11 presents summary statistics for the sample and the

contiguous US. All of the variables are averaged over the duration of my panel (1983–2010) so

that I have a single, time-invariant measure for each market (or hospital).41 Relative to the set

of all HSAs, the markets in my sample are slightly smaller in terms of population. However, the

hospitals in my sample, on average, are larger in terms of bed capacity. I also include a dummy

variable equal to one if the hospital utilized a mobile scanner at some point in time prior to

adopting its first fixed MRI scanner. Roughly half of the hospitals in my sample offered mobile

MRI services before purchasing a fixed scanner. To account for the use of mobile scanners I

will include this dummy variable in the flow profit function when θ = 0 in my empirical model.

Figure B.4 plots the market size distribution of the sample. I observe a significant number of

monopoly markets (42) and a single market with 26 different hospitals each owning a fixed MRI

scanner at some point during the panel (the Greater Detroit Area which extends as far west

as Ann Arbor). Figure B.5 plots the total number of scanner adoptions in each year. Prior to

1990 there are very few adoptions but over time the number of purchases steadily increases as

MRI technology becomes more prevalent in the healthcare industry. I obviously do not have

access to a dataset that would allow me to compare this sample distribution of purchases with

the distribution for the entire United States. However, market research by Aranibar (2013)

suggests that Figure B.5 roughly parallels the overall trends in the industry since 2002. He

claims that “MRI shipments peaked during 2002–2004” and shipments declined from 2008

handle the strong magnetic field generated by the MRI scanner. And finally, the total cost is simply
missing from certain data points.

41I use time-invariant observables in my estimation routine to limit the size of the state space.
If hospitals were forced to form expectations regarding the transitions of market- and hospital-level
observables then the state space would grow exponentially. Further, the focus of the empirical analysis
is on how hospitals dynamically upgrade their MRI technology as both the vector of technologies in
each market and the technological frontier evolve. The additional effects of changes in market- and
hospital-level observables are beyond the scope of the analysis and would be difficult to identify in the
empirical model.
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to 2010 “due to budget freezes and limited access to capital during the economic crisis and

(the) introduction of plans to reform healthcare.” Table B.12 summarizes the average amount

of time that elapses before a hospital adopts its first fixed MRI scanner for different market

sizes. On average, MRI technology diffuses more slowly in markets with only a single adopter

(during the panel). In these monopoly markets no firm adopts MRI prior to 1991. As market

size increases hospitals adopt faster on average. Figure B.7 plots the Kaplan-Meier failure

function for the same market-size bins used in Table B.12. Here a “failure” is the first MRI

purchase by each hospital. The probability of adoption is initially greater in larger markets.

However, later in the sample the probability of adoption in monopoly markets eclipses the

respective probabilities in larger markets. This shift is generated by the fact that there are

smaller hospitals in the larger markets that do not adopt a fixed MRI scanner until toward

the end of the sample. Finally, Table B.13 extends Table B.12 and summarizes the average

purchase dates of the second and third MRI scanner purchases for each hospital (if they exist).

It is important to note that these dates are for any scanner purchases, not necessarily scanners

with improved MRI technologies.42 Nevertheless, on average subsequent MRI purchases occur

faster in markets with more hospitals.

3.4 Estimation

3.4.1 Descriptive Results

Before discussing the estimation routine for the full dynamic game, it is instructive to consider

the results from some preliminary, reduced-form specifications. First I run several multinomial

logistic regressions where the dependent variable is the initial adoption date for each hospital.43

42In the empirical model I set the release date for each MRI technology and once a firm adopts that
technology it can take no further action until an improved technology is released. Suppose that N = 2,
θ = 1 is released in t = 0, and θ = 2 is released in t = 10 and I observe MRI purchases for a hospital in
t = 8, t = 12, and t = 18. In Table B.13 the first adoption would occur in t = 8, the second in t = 12,
and the third in t = 18. However, in the empirical model I would consider t = 8 as the hospital’s
adoption date for θ = 1 and t = 12 as the hospital’s adoption date for θ = 2, dropping the t = 18
adoption.

43Alternatively I could employ an ordered logit model in this instance. Ordered response models are
only applicable if the alternatives can be ranked because it is assumed that there is only one latent
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The adoption dates are grouped into three bins: 1983–1992 (outcome 1), 1993–2001 (outcome

2), and 2002–2010 (outcome 3). The results are reported in Table B.14 with outcome 1 set

as the base outcome. In specifications (1) and (2) I calculate a z-score of the number of firms

in each market to act as a proxy for the amount of competition that a hospital faces. In

specifications (3) and (4) I replace this z-score with dummy variables denoting whether there

are between two and four hospitals in the market (2 ≤ J ≤ 4) or more than four hospitals in

the market (J > 4), where monopoly markets are the omitted group. Finally, in specifications

(2) and (4) I include had mobile?, a dummy variable equal to one if a hospital utilized a

mobile MRI scanner at some point in time before purchasing its first fixed MRI scanner. The

strong significance of the mobile scanner dummy suggests that specifications (1) and (3) are

suffering from omitted variable bias. Operating a mobile scanner seems to be correlated with

delayed adoption which confirms a trend in the data–many late adopters of fixed MRI converted

from some sort of mobile MRI service. In general the presence of greater competition from

additional hospitals (especially when J > 4) increases the odds of earlier adoption. However,

the competitive effect is mitigated by the inclusion of the mobile scanner dummy. In all four

regressions I use a hospital-level z-score of number of beds (z-beds) as a proxy for hospital

size which is always negative and significant for both outcomes. Thus, not surprisingly, larger

hospitals seem to adopt fixed MRI relatively sooner. Both for-profit and non-profit are dummy

variables for hospital ownership, where non-federal government hospitals are omitted (there

are no federal government hospitals in the sample). The positive significance of the non-profit

parameter estimate for outcome 3 suggests that relative to government hospitals, non-profits

are more likely to adopt very late. This result is in contrast to the findings in Schmidt-

Dengler (2006). The medical school? variable is a dummy variable equal to one if the hospital

is affiliated with a medical school. The parameter estimate on this variable is insignificant

across outcomes and specifications. Finally, z-pop. and z-real-inc. are market-level z-scores

for population and real income, respectively. The positive values of z-pop. are somewhat

variable underlying the choices of interest. Here there is a chronological ranking of first adoptions.
While I choose to illustrate the results from an unordered logit model, the results from an ordered logit
estimation were qualitatively very similar.
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confounding for outcome 3, especially since the market-competition variables are negative.44

Table B.15 presents results from several proportional hazard models of the hospitals’ initial

adoption dates. I assume that the underlying hazard rate follows a Weibull distribution, thus

enabling it to vary monotonically over time. The different specifications correspond with

different definitions of “adopting.” In specifications (1) and (2) I do not censor any hospitals

so each hospital’s initial fixed MRI adoption is included in the model. Specifications (3) and (4)

censor all hospitals who do not adopt a fixed MRI scanner until after 2001 and specifications

(5) and (6) do the same for 1991. A positive parameter estimate increases the hazard rate,

meaning that there is a greater likelihood of adoption conditional on no adoption up to that

point. Confirming the results from Table B.14, larger hospitals (in terms of average bed size)

have a faster adoption rate. Further, the use of a mobile scanner decreases the adoption

rate but this effect decreases as the definition of an adoption is relaxed. Put differently, if

a hospital uses a mobile scanner it is much less likely to adopt relatively early in the panel.

Isolating the “early adopters” in specifications (5) and (6) we see that hospitals affiliated with

a medical school have a higher adoption rate than non-academic hospitals. This result seems to

confirm the idea that academic hospitals potentially had an incentive to adopt the original MRI

scanners due to spillover effects. By and large the results in regressions (1)–(4) confirm those

in Table B.14. Finally, it is important to note that p, a parameter of the Weibull distribution,

is greater than one which indicates that the hazard rate is monotonically increasing in time.

This result is consistent with the increased diffusion of MRI in the healthcare industry as a

whole over time.

Both of the reduced-form analyses in Tables B.14 and B.15 focus on each hospital’s initial

fixed MRI purchase. In contrast, Table B.16 and Table B.17 examine the factors influencing a

hospital’s MRI technology later in the panel through an ordered probit model. The dependent

44This result could in part be attributed to the Detroit-area market, where the population z-score is
almost four times as large as the value in the next-largest market, but the difference in the number of
hospitals is relatively smaller in magnitude. Here, half of the firms in the market do not adopt a fixed
MRI scanner until a year in the outcome 3 window. Alternatively, the positive value for the population
parameter could be due to endogeneity.
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variable in these regressions is the hospital’s technology entering 2008.45 This technology is a

function of the hospital’s adoption dates and the release dates of each technological improve-

ment. Each specification corresponds with a different vector of release dates (where in all cases

I assume that θ = 1 is released in 1983). Due to a combination of data limitations and the

fact that MRI scanners have improved along several dimensions since their clinical inception,

I cannot define a single “true” vector of release dates for new technologies to be used in all

of the estimation routines. Instead I vary both the assumed number of technologies and their

release dates to see how parameter estimates change. Varying the number of technologies and

their release dates will also potentially alter each hospital’s observed adoption date(s). As a

result, I define a hospital’s adoption date of technology θBt as the first period t that a hospital

purchases a fixed MRI scanner such that TθBt
≤ t < TθBt+1. To illustrate how altering the

release dates changes a hospital’s observed adoption dates, consider a hospital that purchases

MRI scanners in 1991, 1996, and 2003. In specification (1) the hospital is considered to not

adopt θ = 1, adopt θ = 2 two years after its release (1991-1989), and adopt θ = 3 five years

after its release (2003-1998). However, in specification (4) the same hospital would be assumed

to adopt θ = 1 eight years after its release (1991-1983), adopt θ = 2 four years after its release

(1996-1992), and adopt θ = 3 five years after its release (2003-1998). Thus, in changing the

release dates I alter each hospital’s adoption date of each technology relative to its release and

can examine how sensitive the model is to the definition of the set of new technologies.46 In

the first nine specifications of Tables B.16 and B.17 I assume that there are three waves of

technological advancements while in specifications (10)–(12) I assume that there are only two

different technologies. The reported cuts are the values of “xβ” corresponding to the cutoffs

for each MRI technology.47 The first result to notice is that the prior presence of a mobile

scanner seems to be irrelevant in determining a hospital’s MRI technology late in the panel.

45I choose not to use the MRI technology entering 2010 because at that point almost all firms have
adopted the best technology available.

46I will employ this strategy throughout the remainder of paper.

47There are only two cutoffs for specifications (1)–(3) because in these instances no firms enter 2008
with θ = 1 (i.e. all of the early adopters have subsequently upgraded to θ = 2 or θ = 3 by 2008).
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This result suggests that the hospitals that converted from mobile to fixed MRI service did so

over an extended period of time rather than all at once. Second, the medical school dummy

variable is insignificant across all of the specifications. So, while hospitals affiliated with med-

ical schools tended to be early adopters of the technology, the increased rate of adoption by

all hospitals later in the panel diminishes the appearance of spillover effects.48 Finally, an in-

teresting pattern develops in the three-technology models: fixing the release date of θ = 2, as

the release date of θ = 3 increases the market-competition variables gain significance while the

market-population variable’s significance falls. A potential explanation might be that compe-

tition is actually strongest in smaller, non-monopoly markets where the preemption incentive

is significant but there are still gains from adoption for preempted firms. In larger markets,

once several firms have adopted a new technology the marginal benefit from upgrading may

be smaller due to the sheer number of firms in the market, pushing preempted firms’ adoption

dates further into the future. When the difference between the release date of θ = 3 and the

year under examination (2008) is large, this competitive effect is masked by the fact that more

firms in all markets are adopting in a larger window.

Finally, Tables B.18 and B.19 present results from a hospital-level hazard model of the

adoption of θ = N using the same release dates as in Tables B.16 and B.17. In these mod-

els tech. entering denotes the hospital’s technology entering the TN . In all cases but one

an increase in a hospital’s technology entering TN has a negative effect on its hazard rate of

adopting the last advancement. In other words, the smaller the discrepancy between a hospi-

tal’s existing fixed MRI technology and the latest advancement, the lower the hazard rate of

adopting. This relationship only does not hold in specification (10) where the last advancement

(θ = 2) is released very early when relatively few hospitals have purchased θ = 1. Figure B.9

plots the estimated hazard functions for specifications (8) and (9) for different market sizes

and technologies entering period TN . In all plots the values of all unspecified covariates are

set equal to their mean values. In panels (a) and (c) the blue line corresponds to a monopoly

48This result is also likely due to the assumption that all MRI scanners purchased in the same year
are equivalent. Hospitals with medical school affiliations seem to own more 3.0T scanners than non-
academic hospitals. However, due to data limitations I simply cannot make this type of distinction in
the empirical model.
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market, the red line to a market with 2 ≤ J ≤ 4 firms, and the green line to a market with

J > 4 firms. As discussed in the results in ables B.16 and B.17, the hazard function is greatest

in the intermediate-sized markets. Panels (b) and (d) both illustrate the fact that the hazard

function is decreasing in the technology owned entering T3. And, comparing (a) with (c) and

(b) with (d), the differences in the hazard rates are more marked when T2 is closer in value to

T3.

3.4.2 Empirical Model

Unfortunately due to data limitations I cannot employ the full Berry (1994) demand specifica-

tion discussed in Section 2. Specifically, I do not observe quantities and prices of MRI scans at

the hospital level for all hospital-years in the CON data.49 As result, in the empirical model

I specify a hospital’s flow profit to be a reduced-form function of hospital- and market-level

covariates, the hospital’s own technology, and the sum of all competitors’ technologies:

π(θjm,Θ−jm) =

κxjm + λzm + ν
∑

∀j′ 6=j∈Jm

θj′m

 ln(2 + θjm), (3.31)

where slightly abusing notation, θjm denotes hospital j’s technology in market m, Θ−jm de-

notes the vector of all competitors’ technologies, xjm is a vector of hospital-level variables, zm

is vector of market-level variables, and κ, λ, and ν are (potentially) vectors of parameters to be

estimated. The “2” is included in the ln(2+θjm) term to allow for heterogeneity in firms’ flow

profits when operating with θjm = 0.50 As previously mentioned I assume that flow profits are

time-invariant for tractability. Note that while the flow profit function is deterministic, the

idiosyncratic ζ-draws that each hospital receives in each period introduce a stochastic error

term into the model. In addition to the flow profit function I also must parameterize the cost

49While I do observe hospital-level annual MRI scan totals for most years in Mississippi and some
years in Tennessee, I have no price data. Prices are complicated by hospitals’ agreements with health
insurance companies, HMOs, and PPOs, along with Medicare reimbursement rates which vary through
time. Further, prices typically vary by the type of MRI scan (i.e. brain, chest, abdomen, etc.) and the
quantity data that I have collected do not distinguish between these different scan types.

50In other words, if ln(1 + θjm) was utilized instead of ln(2 + θjm) then all firms operating with
θjm = 0 would earn π(θjm,Θ−jm) = 0 regardless of firm- and market-level characteristics.
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function associated with adopting a new technology. I choose the following functional form:

C(∆t) = η(χ∆t). (3.32)

While both η and χ are identified in the model, I will typically fix the value of χ = 0.98 to

correspond with the value estimated by Schmidt-Dengler (2006).51

Identification in the model is achieved through a combination of variations in the data and

the choice of functional form for π(·). As in any discrete choice model, only differences in flow

profit parameters are identified. Put differently, suppose that I attempted to specify the flow

profit function as

π(θjm,Θ−jm) = υθjm
+ κθjm

xjm + λθjm
zm + νθjm

∑
∀j′ 6=j∈Jm

θj′m, (3.33)

where υθjm
is a different constant for each technology. Without any normalization, none of

the parameters would be identified. In other words, there exists an infinite number of sets

of {κ, λ, ν} that could generate the same differences in flow profit levels and describe the

same data generating process. To alleviate this issue without normalizing the flow profit level

associated with one of the technologies I interact all of the covariates with the technology

choice. I choose not to normalize the flow profit associated with one technology and estimate

a different set of parameters for each of the remaining technologies in order to limit the

total number of parameters in the model. As I will discuss briefly below, the model suffers

from a curse of dimensionality and estimating a larger set of parameters typically requires

more evaluations of the likelihood function, which can increase the run time of the estimation

routine exponentially. The values of κ, λ, and ν are identified through differences in adoption

choices both between firms within the same market and across different markets. For example,

differences in adoption dates of similarly sized hospitals located in different markets can identify

51In order for the adoption cost to fall with time, it must be that χ ∈ (0, 1). When the estimation
routine tests values for χ outside of this range it can often generate “NaN” values for the log-likelihood
function which immediately the stop the routine from converging. To limit this occurrence I simply fix
the value of χ.
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κ. Identification of ν is also aided by the fact that I often observe multiple technology adoption

decisions by the same firm in the same market over time.

The remaining “dynamic” parameters in the model are the discount factor (β), the commonly-

held belief regarding the release of a new technology (ρ), and the scale parameter in the cost

function (η). In a single-agent dynamic optimization problem the discount factor can some-

times be identified if inter-period transitions are affected by something outside of utility. In

this dynamic game inter-period transitions are technically a function of intra-period decisions

by all hospitals acting after the hospital of interest. However, the transition is also directly a

function of ρ, which complicates the potential identification argument for β. For simplification

I choose to fix the values of β and ρ and estimate the value of η, which given the distribu-

tional assumptions on the ζ’s, is identified through the different adoption dates of the same

technology by competing firms.

Estimation Routine

Given specifications for the flow profit and cost functions, below I discuss the algorithm utilized

to estimate the parameters of the dynamic technology adoption game. I define the set of

parameters to be estimated as Λ := {κ, λ, ν, η}.

1. Set the release dates of all new technologies, random order of action in each period, β,

and ρ and make an initial guess at Λ

2. Calculate flow profit levels in market m for all firms j = 1, . . . , Jm and all potential

technology vectors Θ

3. Beginning in period TN , recursively calculate expected continuation values and condi-

tional choice probabilities using the algorithm in Section 2.3

4. Calculate market m’s contribution to the log-likelihood function. Beginning in state

(0, 0, 0, 0), if the first hospital to act chooses a1t = θBt then its contribution to the log-

likelihood function is ln(Pr1(a1t = θBt|ψt)). Otherwise, its contribution is ln(Pr1(a1t =

0|ψt)). If there is more than one hospital in the market, the second hospital to act
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views the first hospital’s decision and its contribution is ln(Pr2(a2t|ψt, a1t)). This process

continues for all firms for all periods in the sample where the state is adjusted accordingly

between periods. As a result, the contribution of market m to the likelihood function is:

LLm(Λ) =
27∑
t=0

Jm∑
j=1

ln(Prj(ajt|·))

5. Repeat steps (2) to (4) for all remaining markets m = 2, . . . ,M

6. Summing over markets, calculate the total log-likelihood function:

LL(Λ) =
M∑
m=1

LLm(Λ)

7. Maximize the log-likelihood function using a combination of both a direct search polytope

algorithm and a simulated annealing algorithm, which perturbs the parameter vector (Λ)

and repeats steps (2)–(6) until the parameter estimates converge.

8. Once the estimated parameter vector converges, calculate standard errors for the param-

eter estimates using the “Outer Product of the Gradient Method” originally proposed in

Berndt, Hall, Hall, and Hausman (1974)

An increase in the maximum number of firms in a market and/or the number of new

technologies causes the state space to grow which in turn increases the runtime for a single log-

likelihood evaluation. As the number of parameters in the model increases, more log-likelihood

function evaluations are typically required for convergence. Thus, the model suffers from a

curse of dimensionality similar to that encountered in most dynamic games.52 To mitigate this

issue I restrict the maximum number of firms in each market to four by choosing the largest

four firms in terms of bed size or the first four adopters of fixed MRI. While these restrictions

are suboptimal, the reduced-form hazard results suggest that strategic interactions between

52If there are two technologies and a maximum of four firms in each market then a single log-likelihood
evaluation takes roughly 4 seconds. Adding a third technology into the model increases the runtime
to 52 seconds. However, allowing for five firms in each market drastically increases the runtimes: 90
seconds for the two-technology game and roughly 35 minutes for the three-technology model.
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hospitals may be greatest in relatively small, non-monopoly markets. In markets with more

than four hospitals I include a variable equal to the log of the number of hospitals excluded

from the analysis to account for the censoring.

Results

Parameter estimates are presented in Tables B.20–B.23. In each specification I rescale the

z-scores for population and bed size so that they only take on positive values and then sub-

sequently take the natural logarithm of the rescaled values (ln(1+z-pop) and ln(1+z-beds)). I

take the natural logarithm of these variables along with the sum of all competitors’ technologies

and number of censored firms (where applicable) simply to limit the value of the flow profits.53

In the displayed results I typically do not vary the value of ρ so that it is consistent with the

chosen release dates for each specification. I choose not to calibrate ρ for each specification

for several reasons. First, if there are three new technologies a “consistent” value of ρ might

be different for θ = 2 versus θ = 3 depending on their release dates and I assume that ρ is

time-invariant in the model.54 Second, in preliminary estimations of the two-technology model

where ρ was calibrated specifically for each parameterization the results were qualitatively very

similar to those presented here. So, to simplify the exposition I typically present results where

ρ = 0.1 which is roughly consistent in most situations. Finally, in markets with more than

four adopting firms I restrict the sample to include the four largest firms in terms of average

number of beds across the length of the entire panel (sample: beds) or the first four adopters

of fixed MRI scanners (sample: first4 ). In any market with more than four firms I proxy

for the potential additional competition posed by all firms omitted from the sample through

the inclusion of the ln(1+extra-hosp.) variable, where extra-hosp. equals the total number of

hospitals in a market that adopt a fixed MRI scanner at some point during the panel minus

four.

Table B.20 presents parameter estimates assuming that there are no strategic effects (i.e.

53If flow profits become too large then the exp(·) terms in the expected continuation values and
conditional choice probabilities can explode which causes issues for the optimization routine.

54However, it would be a relatively straightforward extension to allow ρ to vary by technology.
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every hospital is a monopolist). As a result, all 255 hospitals in the sample are included in the

estimation. In all three specifications it is assumed that there are two technologies and the

only difference between the specifications is the release date of θ = 2. In general the results

align relatively well with the reduced-form results which is not surprising–in both cases I do

not explicitly model the within-market strategic interactions between hospitals. The negative

sign on the had mobile? parameter (where had mobile? is constructed the same as in the

reduced-form regressions) suggests that the benefit of adoption is smaller for hospitals that

operated a mobile MRI scanner compared with those that did not utilize a mobile scanner.

This result is straightforward as hospitals with mobile MRI tend to adopt fixed MRI scanners

relatively later. The positive and strongly significant estimate for the ln(1+z-beds) parameter

supports the results from the descriptive analysis suggesting that larger hospitals tend to have

a greater benefit from MRI technology and thus tend to adopt earlier. Again, the ln(1+z-pop)

parameter is significant and negative. In a true monopoly one would imagine that greater

demand would increase profits. So, potentially the negative sign indicates that the assumption

of monopoly markets is erroneous because there are fewer gains to be had from purchasing a

newer MRI scanner in larger markets where there are likely more scanners in operation. The

magnitudes of all of the parameters increase as the release date of θ = 2 is pushed further

into the future. Fixing each covariate at its mean value, this result seems to be a direct

consequence of the fact that more firms adopt θ = 1. Moving from specification (1) to (3)

the difference between π(1) and π(0) is increasing, meaning that there is a greater marginal

benefit of adopting. As η increases the convexity of the cost function increases suggesting that

there are gains from delaying adoption. Combining these two facts can potentially explain the

additional “late” adoptions of θ = 1 as T2 increases.

Tables B.21 and B.22 present results for different parameterizations of the two-technology

dynamic game. The most striking result is the consistently positive and significant parameter

on the competing hospitals’ technologies variable (ln(1+comp-tech)). This result suggests that

an increase in a hospital’s competitors’ MRI technologies increases the hospital’s own flow

profit and its marginal benefit from adopting an improved technology. This type of positive

spillover effect between competing hospitals is the opposite of what Schmidt-Dengler (2006)
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finds. However, it is important to note that Schmidt-Dengler (2006) places restrictions on

his parameters so that they satisfy the underlying assumptions of the Fudenberg and Tirole

(1985) model. In essence, he forces competing firms to engage in the preemption equilibrium

so it is not surprising that his parameter estimates suggest this is the case. In contrast, I

use a much more flexible flow profit specification that does not impose these types of ex ante

restrictions. While the positive effect on a competitors’ flow profits is admittedly unexpected,

the positive interaction between a hospital’s own technology with its competitors’ technologies

could imply some sort of learning effect. Alternatively, this positive effect could result from

limitations inherent in the data.55 Comparing (7) with (8) the flow profit becomes more

negative as ρ increases. Thus, fixing the covariates, if hospitals believe that the release of the

second technology is more imminent, the model predicts that flow profits will be lower. This

result is in line with the simulation results in Figure B.2 where increases in ρ lead to later

adoption dates of θ = 1 (on average). However, as previously noted, the changes in ρ do not

qualitatively alter the predictions of the empirical model. Finally, Table B.23 shows parameter

estimates for a model with three technological advancements. The results are largely the same

as those in Tables B.21 and B.22 except that here the parameter on the ln(1+extra-hosp.)

variable becomes insignificant while the constant term gains significance.

3.5 Conclusion

This paper develops and analyzes an innovative technology upgrading game. I find that in-

cluding additional advancements into the standard technology adoption model (with a single

technology) alters firms’ adoption incentives. The extent of the difference in equilibrium adop-

tion dates is a function of several factors including the speed of technological advancement,

firm beliefs, and market size and composition. In addition to solving for the equilibrium of the

dynamic game I also estimate the model using a novel dataset that captures repeated adoption

decisions over an extended period of time. The empirical analysis of the dynamic tradeoffs be-

55It would be interesting to see if the positive effect persisted when using a dataset with more detailed
information on MRI scanner characteristics.
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tween adopting a new technology versus waiting to adopt a future advancement in the presence

of strategic interactions is a significant contribution to the literature. While parameter esti-

mates from the empirical model are in contrast to those developed by Schmidt-Dengler (2006),

there is a significant difference in the underlying assumptions and set of potential strategies

in the two models. Extending a single-technology model to include multiple advancements is

a complex task and thus the results from this analysis should be viewed as a first step in the

process of better modeling and understanding technology upgrading games. Using data with

more detailed firm and product characteristics, I am confident that this basic framework can

continue to advance the frontier of this strand in the literature.

The need to better understand the process by which firms upgrade their technologies is

very important from a policy perspective. Technological advancement is pervasive in all sec-

tors of the economy and consumers and firms continue to anticipate future progress. This

forward-looking behavior across multiple waves of advancements necessitates more complex

economic modeling techniques. For instance, suppose firms are delaying the adoption of a new

technology because an even better technology is on the horizon. A policymaker must decide

whether or not to incentivize current investment at a lower cost and potentially increase total

surplus in the short term or attempt to limit current investment because the gains from waiting

outweigh the costs. This type of policy experiment simply cannot be addressed in a single-

technology model. In the healthcare industry if there are indeed positive spillover effects from

increased technological diffusion then states with CON programs might be significantly imped-

ing healthcare efficiency by focusing on the significant fixed costs of new medical equipment.

From a broader perspective there are also policy implications for the innovating firms investing

in R&D. If marginal improvements to existing technologies can be patented then markets may

become saturated with too many advancements resulting in suboptimal upgrading patterns

(or vice versa). As technologies continue to evolve the relationship between innovation rates

and technological uptake has large implications for informed welfare analysis.
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Appendix A

Chapter 2 Appendices

A.1 Tables and Figures

Joint Adoption Firm 1 Leader Firm 2 Leader

n M1 M2 L1 F2 L2 F1

0 0.111 0.111 0.359 0.655 0.234 0.785
1 0.673 0.573 0.829 0.667 0.660 0.853
2 0.863 0.673 0.937 0.679 0.728 0.914
3 0.960 0.689 0.960 0.689 0.715 0.969
4 1.019 0.675 1.019 0.675 0.675 1.019
5 1.059 0.650 1.059 0.650 0.650 1.059
6 1.089 0.620 1.089 0.620 0.620 1.089
7 1.111 0.589 1.111 0.589 0.589 1.111
8 1.128 0.559 1.128 0.559 0.559 1.128
9 1.142 0.530 1.142 0.530 0.530 1.142

10 1.154 0.502 1.154 0.502 0.502 1.154

Table A.1: Continuation Values in Figure A.6 where n = t− T
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c1 = 0.30 c1 = 0.20 c1 = 0.10

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

Firm 1 2 1 2 1 2 1 2 1 2 1 2

x = 0 500 500 10 10 500 500 10 10 500 500 10 10
0.1 500 500 10 13 500 500 10 13 0 62 510 12
0.2 500 500 10 13 30 500 10 13 1 15 116 12
0.3 106 208 10 13 8 66 17 12 1 10 38 13
0.4 90 90 11 13 5 21 16 12 1 7 14 26
0.5 38 38 11 13 3 13 15 12 1 5 14 21
0.6 23 23 11 13 3 9 12 15 1 5 14 19
0.7 16 16 11 13 3 7 13 14 2 4 17 17
0.8 12 12 11 13 3 6 12 14 2 4 14 17
0.9 10 10 11 13 3 5 12 14 2 3 14 16
1.0 8 8 12 13 3 5 13 13 2 3 15 15

Parameterization: C(n) = 1/((1 + n)x), c0 = 0.40, ρ = 0.1, β = 0.9, and T = 10

Table A.2: Duopoly Adoption Dates for Different Parameterizations of C(n)
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c1 = 0.30 c1 = 0.20 c1 = 0.10

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

Firm 1 2 1 2 1 2 1 2 1 2 1 2

x = 0.5, ρ = 0 7 20 13 11 2 8 12 15 2 4 14 21
0.1 38 38 11 13 3 13 15 12 1 5 14 21
0.2 74 74 11 13 6 19 15 12 2 6 14 21
0.3 120 120 11 13 8 25 15 12 2 7 14 21
0.4 174 174 11 13 10 31 13 11 2 8 14 21
0.5 236 236 11 13 12 37 13 11 2 8 14 21
0.6 303 303 11 13 14 43 13 11 3 9 14 21
0.7 374 374 11 13 16 48 13 11 3 9 14 21
0.8 449 449 11 13 17 52 13 11 3 10 21 13
0.9 500 500 11 13 18 57 13 11 3 10 21 13
1.0 500 500 11 13 19 61 13 11 3 10 21 13

x = 1.0, ρ = 0 5 7 12 13 3 4 13 13 2 3 15 15
0.1 8 8 12 13 3 5 13 13 2 3 15 15
0.2 10 10 11 13 3 5 13 13 2 3 15 15
0.3 12 12 11 13 3 5 13 13 2 3 15 15
0.4 14 14 11 13 3 5 13 13 2 3 15 15
0.5 16 16 11 13 4 5 13 13 2 3 15 15
0.6 16 16 11 13 4 5 13 13 2 3 15 15
0.7 16 16 11 13 4 6 13 13 2 3 15 15
0.8 17 17 11 13 4 6 13 13 2 3 15 15
0.9 17 17 11 13 4 6 13 13 2 3 15 15
1.0 17 17 11 13 4 6 13 13 2 3 15 15

Parameterization: C(n) = 1/((1 + n)x), c0 = 0.40, β = 0.9, and T = 10

Table A.3: Duopoly Adoption Dates for Different Firm Beliefs (ρ)
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j = 1 j = 2 σ ∆σ

Firm P D1 D2 P D1 D2 σP σD

c1 = 0.3, ρ = 0.1 10 38 38 11 11 13 2.58 2.10 0.48
0.4 28 174 174 11 11 13 2.58 2.10 0.48
0.7 47 374 374 11 11 13 2.58 2.10 0.48

c1 = 0.2, ρ = 0.1 3 3 13 12 15 12 2.80 2.09 0.71
0.4 6 10 31 12 11 13 2.69 2.10 0.59
0.7 10 16 48 11 11 13 2.58 2.10 0.48

c1 = 0.1, ρ = 0.1 1 1 5 14 14 21 3.30 2.33 0.97
0.4 2 2 8 14 14 21 3.27 2.38 0.89
0.7 3 3 9 14 14 21 3.19 2.36 0.83

Parameterization: C(n) = 1/((1 + n)0.5), c0 = 0.40, β = 0.9, and T = 10

Table A.5: Duopoly and Socially Optimal Adoption Dates and Total Surplus for Different
Beliefs (ρ)

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

Pl
an

ne
r's
	  A
do

p.
on

	  D
at
e	  
of
	  j=
1	  

Rho	  

c1=0.10	  

c1=0.20	  

c1=0.30	  
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Figure A.3: Monopoly Adoption Dates for j=1 (β = 0.9, p = 0.1)
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Figure A.4: Scatter Plot of c0 − c1 versus Monopoly Adoption Dates for j=1
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(a) Firm 1’s Average Adoption Period

(b) Firm 2’s Average Adoption Period

Figure A.7: Cournot Adoption Dates (# of Periods After T ) in State (T, 0, 1, 0)
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(a) x = 0.2

(b) x = 0.6

(c) x = 1.0

Figure A.8: Total Monopoly Inefficiency, Including Adoption Costs (where C(n) = 1
(1+n)x )
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(a) x = 0.2

(b) x = 0.6

(c) x = 1.0

Figure A.9: Total Duopoly Inefficiency, Including Adoption Costs (where C(n) = 1
(1+n)x )
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(a) x = 0.2

(b) x = 0.6

(c) x = 1.0

Figure A.10: Difference in Total Intertemporal Surplus (Duopoly – Monopoly), Including
Adoption Costs (where C(n) = 1

(1+n)x )
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(a) ρ = 0.1

(b) ρ = 0.4

(c) ρ = 0.7

Figure A.11: Total Duopoly Inefficiency, Including Adoption Costs for Different Values of ρ
(where C(n) = 1

(1+n)0.5 )
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(a) Leader (ρ = 0.1) (b) Leader (ρ = 0.7)

(c) Follower (ρ = 0.1) (d) Follower (ρ = 0.7)

Figure A.12: Difference in Adoption Dates of j = 1 for a Two- vs. One-Technology Model
(Two-Technology Date – One-Technology Date, Color Scale Maintained Throughout)
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(a) ρ = 0.1

(b) ρ = 0.7

Figure A.13: Difference in Total Inefficiency (One-Technology Model – Two-Technology Model)
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A.2 Bertrand Stage Game

In this section we examine the dynamic game under the assumption that in each period

firms compete in prices rather than quantities. We find that the unique equilibrium exhibits

“increasing dominance” as in Vickers (1986) and Riordan and Salant (1994).1 Suppose that

rather than competing in quantities, the two firms engage in a Bertrand pricing game in the

second stage of each period. Output is assumed to be homogeneous between the two firms

and all other assumptions from the previous analysis are still maintained. Conditional on the

firms’ technology choices in a given period, flow profits are given by:

π(ai, a−i) =

 (1− ca−i)(ca−i − cai) if ai > a−i

0 if ai ≤ a−i
.

Here a firm’s flow profit is positive only if its technology is strictly better than its competitor’s

technology. Below we show that as periods become shorter, this “all or nothing” payoff struc-

ture yields a unique equilibrium where only one firm (potentially) adopts the new technologies.

The proof is illustrated through a series of lemmas.

Lemma 1. Consider the continuation game beginning in period T (when j = 2 is released).

In this continuation game no joint-adoption equilibrium exists.

Proof. It suffices to show that a profitable one-shot deviation exists in all states (t, n, at−1
i , at−1

−i )

where t ≥ T and both at−1
i and at−1

−i are strictly less than j = 2. In each pertinent state a

firm’s value under joint-adoption is given by:

V (t, n, at−1
i , at−1

−i ) = 0− C(n) + β [V (t+ 1, n+ 1, 2, 2)] = −C(n),

1Vickers (1986) examines a sequence of patent races between duopoly firms. In each period a cost-
reducing technology is released that is won by the highest bidder in second-price auction. He shows that
if profits are determined via a Bertrand equilibrium then only one of the two firms will ever purchase the
new technologies. Riordan and Salant (1994) show that a similar result holds in the Nash equilibrium of
a continuous-time game dynamic duopoly game where adoption costs are constant. They also utilize an
alternating-move framework. Here, we show that if firms compete in prices the unique subgame-perfect
Nash equilibrium of our dynamic game involves only one firm adopting when adoption costs decrease
with time.
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noting that the continuation value V (t+ 1, n+ 1, 2, 2) is equal to zero because both firms set

p = c2 = 0. Now assume that one firm deviates by choosing ati = at−1
i in the current period.

The value of this one-shot deviation is given by:

V (t, n, at−1
i , at−1

−i ) = 0 + β
[
V (t+ 1, n+ 1, âti, 2)

]
= 0.

Here, firm i’s equilibrium strategy in each period after t induced by the one-shot deviation

involves choosing ât̃i = ât̃−1
i , ∀t̃ ≥ t. In other words, once firm i deviates and chooses not to

adopt j = 2, it is optimal to never adopt j = 2 at any point in the future. As a result, the

continuation value under the one-shot deviation, V (t+ 1, n+ 1, âti, 2), is equal to zero. Thus,

the value of not adopting is strictly greater than the value of adopting and a one-shot deviation

always exists.

Lemma 2. Consider the continuation game beginning in period T (when j = 2 is released).

In this continuation game exactly one firm adopts technology j = 2.

Proof. Entering period T there are four potential states: (T, 0, 0, 0), (T, 0, 1, 1), (T, 0, 1, 0),

and (T, 0, 0, 1). The analysis of the first two states is analogous and so is the analysis of the

latter two states. Consider state (T, 0, 0, 0). We have already shown that no joint-adoption

equilibrium exists. Below we show that once one of the firms adopts j = 2 the remaining

firm responds optimally by never adopting j = 2. Suppose firm −i has already adopted

j = 2. Firm i’s continuation payoff from adopting in the current period is −C(n). However,

firm i guarantees itself a continuation payoff of zero by deciding never to adopt. Thus, once

preempted, firm i’s optimal strategy is to never adopt j = 2. The adopting firm’s payoff is

maximized by waiting until the first period where the flow profit from adopting exceeds the

cost benefit from delaying adoption. This occurs at the first date n periods after T when the

following inequality holds:

(1− c0)(c0 − c2) > C(n)− βC(n+ 1).

However, the non-adopting firm has an incentive to preempt its competitor if the continuation
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value from doing so is greater than zero. This preemption incentive drives the period in which

the adopting firm actually adopts j = 2 back to the first point in time where the value of

adopting exceeds the value of never adopting. Specifically, this is the first period t ≥ T where

(1− c0)(c0 − c2)
1− β

≥ C(n).2 (A.1)

The analysis in the asymmetric states is similar. However, in these states there is a unique

outcome–the firm entering period T with technology j = 1 always acts as the sole adopter of

j = 2. The firm entering with j = 1 has a greater incentive to adopt j = 2 because it attains a

higher flow profit in each period after adopting, (1− c0)(c0 − c2), than the firm entering with

j = 0 ((1− c1)(c1− c2)). Thus, the preemption incentive drives the j = 1 firm’s adoption time

back to the latest period where

(1− c1)(c1 − c2)
1− β

≤ C(n).3

Stated differently, the j = 1 firm delays adoption until the last period before it becomes

optimal for the j = 0 firm to adopt.

Lemma 2 essentially states that if the firms enter period T with the same technology, the

incentive to preempt one another drives each firm’s equilibrium continuation value toward

zero. In fact, as the length of each time period decreases, (1) gets closer and closer to holding

with equality. In other words, the adopter of j = 2 generates rents at the competing firm’s

expensive solely due to the fact that both firms are restricted to act at discrete points in time.

If time periods are sufficiently short, only one firm can ever adopt the new technologies in

equilibrium.

2It is important to note that the adopter’s continuation value is greater than the non-adopter’s
continuation value solely because time is discrete. In continuous time the preemption incentive drives
both firms’ continuation values to zero.

3While the adopting firm would prefer to act like a monopolist and set price equal to 1/2, this
cannot be an equilibrium because the non-adopting firm would undercut the price until it once again
reached c0.
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Lemma 3. Suppose time periods are sufficiently short so that V (T, 0, 0, 0) = V (T, 0, 1, 1) = 0.

In this situation there is a unique class of equilibria where only one firm (potentially) adopts

the new technologies.4

Proof. First suppose that both firms have adopted j = 1 when j = 2 is released. In this

situation each firm’s continuation value beginning in period T is equal to zero. Next, suppose

that one firm has adopted j = 1 and the remaining firm is deciding whether or not to adopt

j = 1 in some period t < T . Whether the firm adopts j = 1 or not, its flow profit in the

current period and its continuation value are both equal to zero. Thus, it is never profitable

for the firm to adopt j = 1 and incur a cost of C(t). By Lemma 1 (substituting the correct

continuation values) there also cannot be a joint-adoption equilibrium for j = 1. Thus, by

logic similar to that developed in Lemma 2, the preemption incentive drives exactly one firm

to adopt j = 1 in the first period t where

(1− c0)(c0 − c1)− C(t) + β [ρV (T, 0, 1, 0) + (1− ρ)V (t+ 1, t+ 1, 1, 0)] ≥ 0. (A.2)

By Lemma 2 the firm adopting j = 1 is the only firm to subsequently adopt j = 2. If j = 2 is

released before (2) holds, then neither firm adopts j = 1 and by Lemma 2, a single firm adopts

j = 2.

4This wording is admittedly poor. What we are trying to say is that if both technologies are adopted,
they are adopted by the same firm. However, it is possible that if j = 2 is released early enough, neither
firm adopts j = 1 in equilibrium.
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A.3 Issues with Discrete Time

The use of discrete time can generate equilibrium outcomes different from those developed in

Fudenberg and Tirole (1985). In section 2.2.3 we show why there are no “true” late joint-

adoption equilibria in discrete time. However, there are values of c where what would be a

diffusion equilibrium in continuous time is transformed into a joint-adoption equilibrium in

T2F in discrete time. Consider Figure A.14. The black line plots the leader’s value of adopting
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Figure A.14: A Situation where a Diffusion Equilibrium in Continuous Time Appears to be a
Joint-Adoption Equilibrium in Discrete Time

in continuous time and the blue dots signify the values that the function takes at each point in

discrete time. As explained in section 2.2.3, the leader’s value reaches a maximum at a point

in time before T2F . However, that point in time lies between T2F − 1 = 2 and T2F = 3. As

a result, in discrete time the value of leading in period 2 is less than the value of following

in period 3. Thus, in discrete time, neither firm wants to adopt the technology at any point

in time before T2F and a joint-adoption equilibrium ensues in period 3. This issue is an

obvious shortcoming of modeling the dynamic technology adoption game in discrete time and

is exacerbated in situations where there is less incentive to act as “leader.”

Even when T2L is strictly less than T2F , the use of discrete time can alter each firm’s
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incentive to preempt one another, causing the leader to adopt in a different period than he

would in continuous time. Consider Figure A.15. We suppose that both firms enter period T

with the same technology so that the game is analogous to that discussed in Fudenberg and

Tirole (1985). The blue (red) line denotes the leader’s (follower’s) continuation value from

period T on, conditional on the leader adopting j = 2 in period n and the follower responding

optimally by adopting in period T2F . For instance, suppose that the leader chooses to adopt

in period n = 3. In this case the leader would receive a continuation value of “C” while the

follower would delay adoption until T2F and receive “E.” In the example, T2F = 6, and at
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Figure A.15: Discrete Time Preemption Does Not Lead to Equal Continuation Values

that point the leader’s and follower’s continuation values are equal (because if the “leader”

delays adoption until T2F the “follower” adopts in the same period, generating a joint-adoption

equilibrium). In discrete time the leader’s optimal adoption date is T2L = 5 (and it is slightly

before n = 5 in continuous time). However, if the leader adopts in n = 5, the follower can do

better than simply adopting in T2F and earning a value slightly more than “C” by preempting

the leader in n = 4 and getting a value of “B.” The original leader, now acting as the follower

and earning “D” is better served to preempt his competitor, lead in period n = 3 and earn a

value of “C.” At this point in discrete time the preemption ceases. The follower in n = 3 is

made strictly worse off by preempting the leader in period n = 2 (F < E) and thus chooses
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to act as the follower and adopt in T2F . As a result of the preemption incentive, the leader’s

equilibrium adoption date is n = 3, the follower’s adoption date is n = 6, and the leader earns a

greater continuation value than the follower (C > E). In continuous time, each firm’s incentive

to preempt its competitor drives the leader’s adoption time back to the point where the value

of leading equals the value of following (T2∗). Thus, forcing firms to adopt at discrete points in

time allows the leader to earn rents at the follower’s (and the consumers’) expense. Entering

any state (T, 0, a, a) the two firms are ex ante identical, so each is equally likely to play the

role of leader. As a result, when optimizing in all t < T , each firm’s expected value of entering

period T with the same technology as its competitor is given by EV (T, 0, a, a) = 0.5C + 0.5E.

111



Appendix B

Chapter 3 Appendices

B.1 Simulation Results
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N = 1

θ1 = 0 1.73
θ1 = 1 3.69
θ1 = 2 5.02
θ1 = 3 6.06

N = 2

θ2 = 0 θ2 = 1 θ2 = 2 θ2 = 3
θ1 = 0 (0.81, 0.81)
θ1 = 1 (2.18, 0.38) (0.98, 0.98)
θ1 = 2 (3.29, 0.26) (1.68, 0.58) (1.00, 1.00)
θ1 = 3 (4.23, 0.20) (2.39, 0.41) (1.49, 0.67) (1.00, 1.00)

N = 3

θ3 = 0
θ2 = 0 θ2 = 1 θ2 = 2 θ2 = 3

θ1 = 0 (0.46, 0.46, 0.46)
θ1 = 1 (1.67, 0.21, 0.21) (0.86, 0.86, 0.07)
θ1 = 2 (2.74, 0.14, 0.14) (1.59, 0.53, 0.04) (0.96, 0.96, 0.02)
θ1 = 3 (3.65, 0.11, 0.11) (2.31, 0.38, 0.03) (1.47, 0.65, 0.01) (0.99, 0.99, 0.01)

θ3 = 1
θ2 = 0 θ2 = 1 θ2 = 2 θ2 = 3

θ1 = 0
θ1 = 1 (0.50, 0.50, 0.50)
θ1 = 2 (1.12, 0.31, 0.31) (0.74, 0.74, 0.17)
θ1 = 3 (1.80, 0.22, 0.22) (1.26, 0.52, 0.11) (0.88, 0.88, 0.06)

θ3 = 2
θ2 = 0 θ2 = 1 θ2 = 2 θ2 = 3

θ1 = 0
θ1 = 1
θ1 = 2 (0.50, 0.50, 0.50)
θ1 = 3 (0.94, 0.35, 0.35) (0.68, 0.68, 0.23)

θ3 = 3
θ2 = 0 θ2 = 1 θ2 = 2 θ2 = 3

θ1 = 0
θ1 = 1
θ1 = 2
θ1 = 3 (0.50, 0.50, 0.50)

Table B.1: Simulation Flow Profit Levels Using the Base Parameterization
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.53 1000

J = 2, N = 1
θ = 1 2.51 3.57 1000 1000

J = 3, N = 1
θ = 1 4.49 4.55 5.08 999 1000 1000

J = 4, N = 1
θ = 1 6.42 5.99 6.49 6.49 999 1000 1000 1000

J = 1, N = 2
θ = 1 1.85 1000
θ = 2 12.52 1000

J = 2, N = 2
θ = 1 2.67 3.19 963 952
θ = 2 14.56 15.34 1000 1000

J = 3, N = 2
θ = 1 3.71 3.73 3.88 893 866 839
θ = 2 16.46 16.35 16.56 1000 999 1000

J = 4, N = 2
θ = 1 4.30 4.15 4.39 4.40 808 780 772 767
θ = 2 17.88 18.10 17.98 18.03 998 996 999 996

J = 1, N = 3
θ = 1 1.75 1000
θ = 2 12.81 999
θ = 3 23.19 1000

J = 2, N = 3
θ = 1 2.58 3.13 962 949
θ = 2 13.96 14.19 873 894
θ = 3 26.22 26.70 1000 1000

J = 3, N = 3
θ = 1 3.49 3.86 4.00 884 865 857
θ = 2 14.59 14.80 14.79 785 800 773
θ = 3 27.73 27.96 27.96 998 1000 1000

J = 4, N = 3
θ = 1 4.18 4.19 4.46 4.47 802 763 766 738
θ = 2 15.01 14.93 15.07 14.83 711 716 718 707
θ = 3 29.27 29.66 29.37 29.21 997 991 997 992

Parameterization: φ2 = ξj = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6, ρ = 0.1,
β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=10, and RD(θ = 3)=20

Table B.2: 1,000 Simulations with Homogeneous Firms (by order of moves)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.53 1000

J = 2, N = 1
θ = 1 0.70 5.39 1000 1000

J = 3, N = 1
θ = 1 1.40 3.89 8.84 1000 1000 999

J = 4, N = 1
θ = 1 1.76 3.85 7.10 12.68 1000 1000 1000 999

J = 1, N = 2
θ = 1 1.85 1000
θ = 2 12.52 1000

J = 2, N = 2
θ = 1 1.08 4.94 1000 915
θ = 2 15.08 14.81 1000 1000

J = 3, N = 2
θ = 1 1.65 4.14 6.66 1000 990 608
θ = 2 16.99 16.80 15.59 1000 1000 999

J = 4, N = 2
θ = 1 1.89 4.06 6.34 7.57 1000 998 834 295
θ = 2 18.73 18.49 17.95 16.83 995 997 998 999

J = 1, N = 3
θ = 1 1.75 1000
θ = 2 12.81 999
θ = 3 23.19 1000

J = 2, N = 3
θ = 1 1.00 4.90 1000 911
θ = 2 13.93 14.22 880 887
θ = 3 26.33 26.60 1000 1000

J = 3, N = 3
θ = 1 1.61 4.22 6.60 1000 987 619
θ = 2 14.86 14.85 14.49 780 741 837
θ = 3 27.96 27.64 28.04 999 1000 999

J = 4, N = 3
θ = 1 1.90 4.19 6.40 7.61 1000 993 814 262
θ = 2 15.16 15.15 14.61 14.96 654 693 715 790
θ = 3 29.31 29.11 29.67 29.43 998 995 992 992

Parameterization: φ2 = ξj = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6, ρ = 0.1,
β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=10, and RD(θ = 3)=20

Table B.3: 1,000 Simulations with Homogeneous Firms (by order of adoption)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.59 1000

J = 2, N = 1
θ = 1 3.86 4.54 1000 1000

J = 3, N = 1
θ = 1 6.03 6.40 6.52 999 998 1000

J = 4, N = 1
θ = 1 7.89 8.04 8.27 8.50 988 992 987 991

J = 1, N = 2
θ = 1 1.81 1000
θ = 2 12.47 1000

J = 2, N = 2
θ = 1 2.98 3.23 896 902
θ = 2 16.12 15.63 1000 998

J = 3, N = 2
θ = 1 3.66 3.63 3.83 770 772 770
θ = 2 17.68 17.55 17.97 996 999 996

J = 4, N = 2
θ = 1 4.21 4.08 4.05 4.19 692 663 687 651
θ = 2 18.96 19.44 18.88 19.42 992 989 992 993

J = 1, N = 3
θ = 1 1.78 1000
θ = 2 12.83 1000
θ = 3 23.24 1000

J = 2, N = 3
θ = 1 2.98 3.21 893 889
θ = 2 13.93 14.19 846 805
θ = 3 27.05 27.32 1000 997

J = 3, N = 3
θ = 1 3.67 3.74 3.87 788 766 774
θ = 2 14.48 14.62 14.74 736 734 737
θ = 3 28.73 29.23 28.47 993 995 995

J = 4, N = 3
θ = 1 4.00 4.19 4.16 4.10 663 655 668 661
θ = 2 14.87 15.05 14.75 14.81 663 637 644 629
θ = 3 30.12 30.47 29.98 29.90 984 993 986 991

Parameterization: ξj ∼ N(0, 1), φ2 = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6,
ρ = 0.1, β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=10, and RD(θ = 3)=20

Table B.4: 1,000 Simulations with Heterogeneous Firms (by order of moves)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.59 1000

J = 2, N = 1
θ = 1 1.06 7.34 1000 1000

J = 3, N = 1
θ = 1 1.31 5.19 12.48 1000 1000 997

J = 4, N = 1
θ = 1 1.47 4.68 9.57 17.35 1000 1000 999 959

J = 1, N = 2
θ = 1 1.81 1000
θ = 2 12.47 1000

J = 2, N = 2
θ = 1 1.34 5.31 1000 798
θ = 2 13.92 17.84 1000 998

J = 3, N = 2
θ = 1 1.52 4.78 6.82 1000 927 385
θ = 2 15.32 17.94 19.96 1000 997 994

J = 4, N = 2
θ = 1 1.72 4.53 6.75 7.70 1000 962 606 125
θ = 2 16.17 18.64 18.96 22.99 1000 994 990 982

J = 1, N = 3
θ = 1 1.78 1000
θ = 2 12.83 1000
θ = 3 23.24 1000

J = 2, N = 3
θ = 1 1.28 5.43 1000 782
θ = 2 13.57 14.67 916 735
θ = 3 24.98 29.39 1000 997

J = 3, N = 3
θ = 1 1.52 4.78 7.01 1000 934 394
θ = 2 13.96 14.87 15.20 856 725 626
θ = 3 26.28 28.90 31.27 999 994 990

J = 4, N = 3
θ = 1 1.69 4.60 6.79 7.72 1000 963 563 121
θ = 2 14.26 15.01 14.89 15.82 824 670 665 414
θ = 3 26.82 29.39 31.10 33.27 1000 994 990 970

Parameterization: ξj ∼ N(0, 1), φ2 = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6,
ρ = 0.1, β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=10, and RD(θ = 3)=20

Table B.5: 1,000 Simulations with Heterogeneous Firms (by order of adoption)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.55 1000

J = 2, N = 1
θ = 1 2.50 3.74 1000 1000

J = 3, N = 1
θ = 1 4.63 4.68 4.84 1000 1000 1000

J = 4, N = 1
θ = 1 6.20 6.04 6.46 6.46 999 1000 999 1000

J = 1, N = 2
θ = 1 1.96 968
θ = 2 7.39 1000

J = 2, N = 2
θ = 1 1.88 1.93 728 684
θ = 2 8.50 9.34 1000 1000

J = 3, N = 2
θ = 1 2.34 2.43 2.40 563 539 523
θ = 2 10.37 10.54 10.56 999 1000 1000

J = 4, N = 2
θ = 1 2.57 2.50 2.56 2.55 428 419 418 405
θ = 2 11.36 11.64 12.15 12.07 998 997 998 999

J = 1, N = 3
θ = 1 1.90 980
θ = 2 7.45 823
θ = 3 12.76 1000

J = 2, N = 3
θ = 1 1.60 1.89 759 612
θ = 2 7.03 7.11 642 638
θ = 3 14.70 15.49 999 1000

J = 3, N = 3
θ = 1 2.32 2.41 2.37 570 522 502
θ = 2 7.38 7.38 7.40 504 495 518
θ = 3 16.41 16.45 17.04 998 999 1000

J = 4, N = 3
θ = 1 2.48 2.55 2.49 2.60 435 409 429 391
θ = 2 7.42 7.43 7.47 7.50 433 458 399 416
θ = 3 17.82 17.67 17.95 17.69 999 997 999 998

Parameterization: φ2 = ξj = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6, ρ = 0.2,
β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=5, and RD(θ = 3)=10

Table B.6: 1,000 Simulations with Homogeneous Firms (by order of moves)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.55 1000

J = 2, N = 1
θ = 1 0.66 5.58 1000 1000

J = 3, N = 1
θ = 1 1.41 3.93 8.81 1000 1000 1000

J = 4, N = 1
θ = 1 1.67 3.85 6.99 12.66 1000 1000 1000 998

J = 1, N = 2
θ = 1 1.96 968
θ = 2 7.39 1000

J = 2, N = 2
θ = 1 1.40 3.14 999 413
θ = 2 8.75 9.09 1000 1000

J = 3, N = 2
θ = 1 1.85 3.18 3.70 991 564 70
θ = 2 11.61 9.75 10.10 1000 999 1000

J = 4, N = 2
θ = 1 2.04 3.21 3.67 3.67 986 585 96 3
θ = 2 13.55 10.55 9.11 14.03 995 1000 1000 997

J = 1, N = 3
θ = 1 1.90 980
θ = 2 7.45 823
θ = 3 12.76 1000

J = 2, N = 3
θ = 1 1.21 3.14 1000 371
θ = 2 6.88 7.23 588 692
θ = 3 15.02 15.17 1000 999

J = 3, N = 3
θ = 1 1.82 3.22 3.79 995 541 58
θ = 2 7.46 7.07 7.74 405 628 484
θ = 3 16.47 17.27 16.16 999 998 1000

J = 4, N = 3
θ = 1 2.00 3.19 3.65 3.75 974 570 112 8
θ = 2 7.46 7.01 7.64 8.27 329 582 630 165
θ = 3 18.02 18.57 17.64 16.89 997 999 999 998

Parameterization: φ2 = ξj = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6, ρ = 0.2,
β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=5, and RD(θ = 3)=10

Table B.7: 1,000 Simulations with Homogeneous Firms (by order of adoption)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.58 1000

J = 2, N = 1
θ = 1 3.83 4.70 1000 1000

J = 3, N = 1
θ = 1 6.19 6.58 6.68 999 997 999

J = 4, N = 1
θ = 1 8.08 7.83 8.20 8.37 990 993 992 990

J = 1, N = 2
θ = 1 1.90 966
θ = 2 7.43 1000

J = 2, N = 2
θ = 1 1.95 1.83 647 618
θ = 2 9.28 9.84 998 1000

J = 3, N = 2
θ = 1 2.16 2.25 2.20 488 483 477
θ = 2 11.56 11.48 12.18 997 999 999

J = 4, N = 2
θ = 1 2.30 2.38 2.33 2.34 384 408 359 364
θ = 2 13.06 13.26 13.63 13.53 996 994 991 991

J = 1, N = 3
θ = 1 1.88 965
θ = 2 7.51 832
θ = 3 12.85 1000

J = 2, N = 3
θ = 1 1.85 1.71 644 609
θ = 2 7.11 7.17 634 599
θ = 3 15.47 15.87 998 1000

J = 3, N = 3
θ = 1 2.09 2.10 2.19 482 513 437
θ = 2 7.34 7.36 7.37 487 480 403
θ = 3 17.49 17.32 17.52 998 992 996

J = 4, N = 3
θ = 1 2.33 2.35 2.33 2.34 391 365 396 364
θ = 2 7.40 7.50 7.46 7.48 398 349 368 360
θ = 3 19.31 19.23 18.60 19.06 992 992 993 996

Parameterization: ξj ∼ N(0, 1), φ2 = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6,
ρ = 0.2, β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=5, and RD(θ = 3)=10

Table B.8: 1,000 Simulations with Heterogeneous Firms (by order of moves)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

J = 1, N = 1
θ = 1 1.58 1000

J = 2, N = 1
θ = 1 1.05 7.48 1000 1000

J = 3, N = 1
θ = 1 1.32 5.44 12.73 1000 1000 995

J = 4, N = 1
θ = 1 1.52 4.62 9.53 17.12 1000 1000 1000 965

J = 1, N = 2
θ = 1 1.90 966
θ = 2 7.43 1000

J = 2, N = 2
θ = 1 1.52 3.28 997 268
θ = 2 8.00 11.13 999 999

J = 3, N = 2
θ = 1 1.72 3.22 3.69 995 418 35
θ = 2 9.85 10.10 15.27 999 998 998

J = 4, N = 2
θ = 1 1.85 3.20 3.72 — 985 477 53 0
θ = 2 10.36 10.62 12.23 20.39 996 997 1000 979

J = 1, N = 3
θ = 1 1.88 965
θ = 2 7.51 832
θ = 3 12.85 1000

J = 2, N = 3
θ = 1 1.40 3.25 996 257
θ = 2 6.96 7.39 726 507
θ = 3 13.85 17.50 1000 998

J = 3, N = 3
θ = 1 1.62 3.22 3.79 993 406 33
θ = 2 7.20 7.29 7.90 580 548 242
θ = 3 14.54 17.81 20.01 999 994 993

J = 4, N = 3
θ = 1 1.82 3.27 3.75 3.67 993 469 51 3
θ = 2 7.36 7.28 7.77 8.18 507 566 358 44
θ = 3 15.65 18.25 18.20 24.20 999 998 996 980

Parameterization: ξj ∼ N(0, 1), φ2 = ωjt = 0, φ0 = φ1 = α = τ = xjt = 1, γ = 6,
ρ = 0.2, β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=5, and RD(θ = 3)=10

Table B.9: 1,000 Simulations with Heterogeneous Firms (by order of adoption)
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Average Adoption Date Total Number of Adoptions

j = 1 j = 2 j = 1 j = 2

J = 2, N = 1
θ = 1 1.30 7.17 1000 1000

J = 2, N = 2
θ = 1 1.55 5.10 994 791
θ = 2 12.75 18.96 1000 998

J = 2, N = 3
θ = 1 1.56 5.04 1000 778
θ = 2 13.15 15.10 965 698
θ = 3 24.26 29.71 1000 998

Parameterization: φ2 = ξ2 = ωjt = 0, ξ1 = φ0 = φ1 = α = τ = xjt = 1, γ = 6,
ρ = 0.1, β = 0.95, C(t) = 10/

√
(1 + t), RD(θ = 2)=10, and RD(θ = 3)=20

Table B.10: 1,000 Simulations with Asymmetric Firms (by order of moves)
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B.2 Data Collection

Michigan

As previously mentioned, the data collected by the MDCH are incredibly well-organized. I

started with the entire CON history in the state from 1980 to the present and extracted all of

the projects related to MRI. Cleaning the data was relatively straightforward except for some

isolated instances where it was difficult to determine if a hospital had an affiliation with a local

university. I remedied the issue by calling these facilities and conducting additional research

on the facilities’ websites.

Mississippi

Through conversations with the MSDH I was informed that I would be able to track all MRI

purchases in the state via documentation in the CON program. However, the vast majority of

the documentation was only available in hard copies. As a result, I traveled to Jackson, MS

and collected data over a four-day span. The MSDH publishes an almost-yearly State Health

Plan that lists all of the facilities in the state providing MRI service along with number and

type (fixed/mobile) of their scanners. I used these health plans as the basis for my search

through the myriad of CON applications and listings and declaratory rulings. I was able to

locate the documentation for all but fifteen of the fixed MRI scanners owned by hospitals since

the inception of MRI. Since I was instructed to consider the annual health plans as “absolute

fact,” in these instances I used the year of the annual survey as a hospital’s adoption date.1

Tennessee

The Tennessee Health Services and Development Agency (HSDA) originally provided me with

a “Medical Equipment Registry” that lists both active and inactive MRI scanners in the state.

The registry was initially claimed to be comprehensive, including all scanners that were ever

1Since it is impossible to identify replacement scanners in the State Health Plans it is possible that
I missed some replacement purchases in the data. However, I slowly and systematically read through
binders of CON applications and declaratory rulings to minimize these occurrences.
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utilized in the state. However, an initial data analysis suggested that some facilities claiming to

operate with fixed MRI scanners in the 1980s and early 1990s (according to the AHA dataset)

were missing from the TN Medical Equipment Registry. I reached out to the HSDA and was

informed that the Medical Equipment Registry contains “as much of the equipment history

as could be identified.” In an attempt to rectify this issue I searched through the entire CON

history in the state and identified each instance of a CON relating to the purchase of MRI

equipment.2 I merged the data from the CON listings with the Medical Equipment Registry

to form the final dataset.

Virginia

The Virginia Certificate of Public Need program provided me with a listing of nearly the entire

CON program and equipment registration program histories in the state. While each entry in

the data included the hospital’s name it did not include the hospital’s location. I managed to

identify the location for each facility through a combination of manually searching through the

AHA data, calling facilities using the telephone number provided in the AHA data, and using

information on Google maps. The process was complicated by the fact that many facilities

changed names during my panel due to mergers or acquisitions.

ARF

While the current release of the ARF is publicly available, I was granted access to older versions

through UNC’s Cecil G. Sheps Center for Health Services Research. I merged data from several

editions of the ARF to generate county-level variables spanning the entire length of my panel.3

The FIPS codes utilized for Virginia’s independent cities changed in 1992 so I adjusted all of

2It is somewhat unclear what actions related to MRI required a CON in Tennessee in the 1980s. I
was initially told that only the initiation of MRI services or the addition of MRI equipment required a
CON (so that replacement MRI scanners would not be captured in the CON process). However, there
are several instances in the CON data where a replacement scanner is documented. I recognize that
the potential omission of replacement scanners in the early years of this dataset is a limitation.

3I collected an assortment of variables in addition to population and per capita income. However,
similarly to Schmidt-Dengler (2006), I find that the vast majority of the variables are insignificant when
included in my empirical model.
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the codes accordingly. To construct the per capita income variable I started with data from

1983 to 2008. Next, I extrapolated the 2008 data to 2009 and 2010 using national percent

changes in per capita income from the Bureau of Economic Analysis (per capita income fell

5.64% from 2008 to 2009 and then increased 2.99% from 2009 to 2010). Finally, I converted

nominal per capita income to real per capita income using 2000 as the base year. The ARF

included a county-level population measure for every year in my panel except for 1989. I

interpolated the 1989 population by taking the average of the 1988 and 1990 populations. For

both variables I aggregated counties into HSACs and then averaged the variables across all

years to generate a single income and population measure in each market. After dropping

HSACs that were not included in my sample, I formed z-scores for both variables.

AHA

In addition to the ARF data, I was also granted access to the AHA’s annual survey data for

1987 to 2009 through the Sheps Center. I first merged all of the individual surveys, correct-

ing numerous discrepancies between variable names and codes across years. Additionally, I

corrected several errors in variables across time. For instance, a number of hospitals were

reported as having different FIPS county codes over time even though their physical addresses

remained unchanged.4 I utilized the (corrected) FIPS codes to link the AHA data with the

ARF data. In each survey every hospital is labeled by a seven-digit identification number

that allows me to track the hospitals through time. I use the annual “summary of changes”

to account for differences in these identification numbers across years resulting from mergers,

demergers, entry/exit, etc. Next, I extrapolated all of the 1987 data to years 1983–1986 and

the 2009 data to 2010. I generated time-invariant values for the “control” of each hospital (i.e.

for-profit, not-for-profit, government-federal, government-nonfederal) and whether or not the

hospital is affiliated with a medical school. If a hospital’s control or medical school affiliation

changes over time I set it equal to the mode of variable during my panel. Finally, to calculate

a time-invariant value for each hospital’s bed size I average its bed sizes across all years in the

4In these instances I made sure that the FIPS county codes themselves were not revised during the
years in question.
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panel and subsequently calculate the hospital-level z-score.

The AHA collects data on whether a hospital offers MRI as a service but the information is

summarized in a single variable that is not very informative for my empirical analysis. While

there are slight differences in the survey question across years, in general the survey asks

whether or not a hospital is a “provider” of MRI (and only distinguishes between fixed and

mobile MRI from 1990–1993). In comparing the AHA data with the state CON data I find that

there are significant reporting discrepancies, especially for hospitals with mobile MRI service.

For instance, assuming that the Michigan data is “fact,” some hospitals with mobile MRI are

reported as “providers” in the AHA data and some are reported as non-providers. Thus, in

the context of my analysis, the accuracy and consistency of this variable is questionable at

best.5

5Schmidt-Dengler (2006) uses the AHA dataset in his empirical analysis. For the years in his sample
(1986–1993), each hospital is asked whether MRI is “a hospital-based service,” “provided by another
hospital or provider,” or “not an available service.” He assumes that if a hospital responds that it
has MRI as “a hospital-based service” then the hospital has adopted an MRI scanner. However, in
comparing my state CON data with the AHA data, there is little consistency in the responses to this
question by hospitals with a mobile MRI scanner (some report a mobile MRI as a hospital-based service
and others do not). Since I focus attention on hospitals with fixed MRI scanners, my dataset likely
suggests that there are fewer adopters of MRI scanners (in the early years of the panel) relative to his
dataset.
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B.3 Sample Statistics

Figure B.4: Sample Market Size Distribution
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Figure B.5: Total Number of MRI Scanners Purchased in Each Year

Figure B.6: Median Adoption Cost in Each Year
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Figure B.7: Kaplan-Meier Failure Function By Market Size

Figure B.8: Total Number of Initial Adoptions by Year
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Mkt. Size Obs. Mean S.D. Min. Max.

J = 1 42 16.64 4.62 8 26
2 ≤ J ≤ 4 82 15.83 7.04 2 26

J ≥ 5 131 12.87 7.33 1 27

Values measured relative to 1983

Table B.12: Years Until First Adoption for Each Hospital By Market Size

Mkt. Size Obs. Mean S.D. Min. Max.

Second Adoption

J = 1 21 19.71 4.62 13 27
2 ≤ J ≤ 4 41 17.88 7.04 7 26

J ≥ 5 90 17.49 7.33 5 27

Third Adoption

J = 1 9 22.11 4.62 16 25
2 ≤ J ≤ 4 27 20.96 7.04 8 27

J ≥ 5 59 19.29 7.33 8 26

Values measured relative to 1983

Table B.13: Years Until Second and Third Adoptions for Each Hospital By Market Size
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B.4 Descriptive Results

(a) Diff. Mkt. Size (8) (b) Diff. Tech. Entering (8)

(c) Diff. Mkt. Size (9) (d) Diff. Tech. Entering (9)

Figure B.9: Hazard Rates for Specifications (8) and (9) in Table B.19 for Different Market
Sizes and Technologies Entering Period TN
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(1) (2) (3) (4)

Outcome 2 (1993–2001)
constant 0.50 -0.01 1.42* 0.73

(0.37) (0.41) (0.64) (0.65)
for-profit 0.55 0.49 0.62 0.57

(0.63) (0.65) (0.63) (0.66)
non-profit 0.09 0.07 0.08 0.07

(0.46) (0.49) (0.47) (0.49)
medical school? -0.32 -0.23 -0.22 -0.14

(0.52) (0.53) (0.53) (0.55)
z-beds -1.11* -1.08* -1.09* -1.07*

(0.29) (0.30) (0.29) (0.30)
z-pop. 0.43 0.31 0.20 0.16

(0.24) (0.26) (0.12) (0.13)
z-real-inc. -0.59 -0.48 -0.49 -0.42

(0.31) (0.31) (0.31) (0.31)
z-num-firms -0.31 -0.22 — —

(0.30) (0.31)
2 ≤ J ≤ 4 — — -1.36* -1.04

(0.66) (0.66)
J > 4 — — -1.39* -1.06

(0.70) (0.74)
had mobile? — 1.21* — 1.11*

(0.40) (0.40)

Outcome 3 (2002–2010)
constant -0.63 -2.10* 0.25 -1.48

(0.46) (0.60) (0.67) (0.80)
for-profit 0.75 0.87 0.81 0.93

(0.68) (0.73) (0.68) (0.74)
non-profit 1.05* 1.15* 1.02 1.11*

(0.50) (0.58) (0.50) (0.57)
medical school? -0.52 -0.36 -0.43 -0.27

(0.65) (0.62) (0.65) (0.64)
z-beds -2.78* -2.77* -2.62* -2.64*

(0.58) (0.58) (0.55) (0.55)
z-pop. 1.14* 0.88* 0.52* 0.42*

(0.30) (0.32) (0.14) (0.13)
z-real-inc. -0.68* -0.45* -0.51* -0.32

(0.17) (0.17) (0.20) (0.21)
z-num-firms -0.89* -0.67* — —

(0.30) (0.33)
2 ≤ J ≤ 4 — — -0.97 -0.59

(0.69) (0.75)
J > 4 — — -2.04* -1.56

(0.77) (0.89)
had mobile? — 2.39* — 2.37*

(0.48) (0.46)
* denotes significance at the 5% level with robust standard errors

Table B.14: Multinomial Logit Regression Results of Initial Adoption Date Versus Hospital-
and Market-Level Covariates (Base Outcome: Initial Adoption in 1983–1992)
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(1) (2) (3) (4) (5) (6)

for-profit -0.18 -0.10 -0.04 -0.17 -0.09 -0.04
(0.34) (0.28) (0.25) (0.35) (0.28) (0.25)

non-profit 0.09 0.29 0.19 0.08 0.26 0.16
(0.29) (0.24) (0.20) (0.29) (0.24) (0.20)

medical school? -0.37 -0.20 -0.08 -0.38 -0.21 -0.10
(0.34) (0.30) (0.26) (0.34) (0.30) (0.26)

z-beds 0.46** 0.38** 0.47** 0.48** 0.40** 0.49**
(0.18) (0.15) (0.13) (0.18) (0.15) (0.13)

z-pop. -0.11** -0.09* -0.07 -0.11** -0.09* -0.06
(0.05) (0.05) (0.04) (0.05) (0.05) (0.04)

z-real-inc. 0.02 -0.06 -0.07 0.02 -0.06 -0.07
(0.12) (0.10) (0.09) (0.12) (0.10) (0.08)

2 ≤ J ≤ 4 -0.09 0.43 0.47** -0.10 0.40 0.44*
(0.36) (0.27) (0.23) (0.37) (0.27) (0.23)

J ≥ 5 -0.18 0.43 0.42 -0.21 0.37 0.35
(0.41) (0.31) (0.27) (0.41) (0.31) (0.26)

had mobile? -0.02 -0.08 -0.01 -0.02 -0.08 0.00
(0.23) (0.20) (0.17) (0.23) (0.20) (0.17)

Cut 1 -2.08 -1.47 -1.45 -2.11 -1.52 -1.51
(0.39) (0.29) (0.27) (0.39) (0.30) (0.27)

Cut 2 -1.59 -0.61 0.11 -1.93 -1.34 -1.33
(0.37) (0.27) (0.24) (0.38) (0.29) (0.26)

Cut 3 — — — -1.62 -0.65 0.04
(0.37) (0.27) (0.24)

Release Dates...
θ = 2 1989 1989 1989 1992 1992 1992
θ = 3 1998 2001 2004 1998 2001 2004

** and * denote significance at the 5% and 10% levels, respectively

Table B.16: Ordered Probit Regressions of Hospital-Level Technology Entering 2008 Versus
Hospital- and Market-Level Covariates (For Different Release Dates of the New Technologies)
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(7) (8) (9) (10) (11) (12)

for-profit -0.18 -0.11 -0.08 0.76 0.02 -0.09
(0.35) (0.28) (0.25) (0.61) (0.41) (0.30)

non-profit 0.07 0.23 0.13 0.28 -0.11 0.24
(0.29) (0.23) (0.20) (0.40) (0.33) (0.25)

medical school? -0.37 -0.21 -0.09 -0.58 -0.39 -0.35
(0.34) (0.29) (0.25) (0.53) (0.36) (0.31)

z-beds 0.47** 0.38** 0.46** 1.06** 0.57** 0.45**
(0.18) (0.15) (0.12) (0.40) (0.21) (0.16)

z-pop. -0.11** -0.09* -0.06 -0.20** -0.11** -0.09*
(0.05) (0.05) (0.04) (0.08) (0.05) (0.05)

z-real-inc. 0.01 -0.06 -0.08 0.02 -0.07 -0.02
(0.12) (0.10) (0.08) (0.23) (0.12) (0.11)

2 ≤ J ≤ 4 -0.09 0.40 0.44* -0.30 -0.13 0.26
(0.36) (0.27) (0.23) (0.56) (0.41) (0.29)

J ≥ 5 -0.18 0.38 0.37 -0.10 -0.15 0.27
(0.40) (0.31) (0.26) (0.68) (0.45) (0.33)

had mobile? -0.03 -0.07 0.00 -0.43 -0.18 0.05
(0.23) (0.20) (0.17) (0.36) (0.25) (0.20)

Cut 1 -2.10 -1.53 -1.51 -2.60 -2.37 -1.57
(0.39) (0.30) (0.27) (0.59) (0.44) (0.31)

Cut 2 -1.75 -1.18 -1.17 — -2.01 -0.83
(0.38) (0.28) (0.25) (0.43) (0.29)

Cut 3 -1.61 -0.67 0.03 — — —
(0.37) (0.27) (0.24)

Release Dates...
θ = 2 1995 1995 1995 1990 1995 2000
θ = 3 1998 2001 2004 — — —

** and * denote significance at the 5% and 10% levels, respectively

Table B.17: Ordered Probit Regressions of Hospital-Level Technology Entering 2008 Versus
Hospital- and Market-Level Covariates (For Different Release Dates of the New Technologies)
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(1) (2) (3) (4) (5) (6)

for-profit -0.16 -0.17 -0.14 -0.17 -0.18 -0.16
(0.23) (0.24) (0.27) (0.23) (0.24) (0.27)

non-profit -0.04 0.02 -0.02 -0.04 0.02 -0.04
(0.17) (0.18) (0.20) (0.17) (0.18) (0.20)

medical school? -0.09 0.05 0.27 -0.12 0.02 0.24
(0.21) (0.21) (0.22) (0.21) (0.21) (0.22)

z-beds 0.54** 0.49** 0.50** 0.53** 0.48** 0.52**
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

z-pop. -0.12** -0.10** -0.11** -0.11** -0.09** -0.10**
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

z-real-inc. 0.11 0.03 0.07 0.11 0.03 0.08
(0.07) (0.07) (0.08) (0.07) (0.07) (0.08)

2 ≤ J ≤ 4 -0.25 0.20 0.36 -0.26 0.20 0.36
(0.20) (0.22) (0.26) (0.20) (0.22) (0.26)

J ≥ 5 -0.25 0.22 0.30 -0.29 0.18 0.25
(0.23) (0.24) (0.28) (0.23) (0.24) (0.28)

tech. entering -0.22** -0.37** -0.68** -0.20** -0.34** -0.67**
(0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

constant -2.61** -2.52** -1.87** -2.61** -2.53** -1.87**
(0.25) (0.28) (0.31) (0.25) (0.28) (0.31)

p 1.70 1.70 1.70 1.69 1.69 1.69
(0.09) (0.09) (0.10) (0.09) (0.09) (0.10)

Release Dates...
θ = 2 1989 1989 1989 1992 1992 1992
θ = 3 1998 2001 2004 1998 2001 2004

** and * denote significance at the 5% and 10% levels, respectively

Table B.18: Proportional Hazard Model of θ = N Adoption Date with Hospital- and Market-
Level Covariates (Using a Weibull Distribution)
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(7) (8) (9) (10) (11) (12)

for-profit -0.20 -0.24 -0.26 0.27 0.07 -0.18
(0.23) (0.24) (0.27) (0.21) (0.22) (0.24)

non-profit -0.05 0.01 -0.07 -0.26 -0.20 -0.04
(0.17) (0.18) (0.20) (0.17) (0.17) (0.17)

medical school? -0.12 0.01 0.22 0.34 0.07 -0.05
(0.21) (0.20) (0.22) (0.21) (0.21) (0.20)

z-beds 0.50** 0.46** 0.49** 0.32** 0.47** 0.50**
(0.10) (0.10) (0.10) (0.09) (0.10) (0.09)

z-pop. -0.10** -0.08** -0.10** -0.15** -0.09** -0.10**
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

z-real-inc. 0.09 0.01 0.05 0.24** -0.02 0.13
(0.07) (0.07) (0.08) (0.08) (0.08) (0.08)

2 ≤ J ≤ 4 -0.23 0.23 0.43* -0.25 -0.19 0.00
(0.20) (0.22) (0.25) (0.20) (0.20) (0.21)

J ≥ 5 -0.28 0.19 0.30 -0.01 -0.02 0.00
(0.23) (0.24) (0.28) (0.23) (0.23) (0.23)

tech. entering -0.18* -0.32** -0.63** 0.16 -0.33** -0.62**
(0.11) (0.09) (0.10) (0.25) (0.17) (0.16)

constant -2.64** -2.56** -1.93** -4.49** -4.06** -2.64**
(0.25) (0.28) (0.31) (0.31) (0.30) (0.28)

p 1.68 1.68 1.68 1.95 2.08 1.75
(0.09) (0.09) (0.10) (0.10) (0.11) (0.09)

Release Dates...
θ = 2 1995 1995 1995 1990 1995 2000
θ = 3 1998 2001 2004 — — —

** and * denote significance at the 5% and 10% levels, respectively

Table B.19: Proportional Hazard Model of θ = N Adoption Date with Hospital- and Market-
Level Covariates (Using a Weibull Distribution)
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B.5 Results

(1) (2) (3)

constant -0.58 0.69 4.06**
(1.13) (1.37) (1.90)

had mobile? -2.71** -4.13** -7.01**
(0.46) (0.61) (0.82)

ln(1+z-beds) 8.94** 11.56** 18.00**
(1.16) (1.31) (1.69)

ln(1+z-pop) -1.04** -1.57** -2.23**
(0.43) (0.46) (0.58)

ln(1+comp-tech) — — —

ln(1+extra-hosp.) — — —

η 6.87** 7.26** 9.89**
(0.50) (0.43) (0.48)

medical school? — — —

Fixed Parameters...
T2 1990 1995 2000

sample — — —
β 0.94 0.94 0.94
ρ 0.10 0.10 0.10
χ 0.98 0.98 0.98

Total Adoptions
θ = 1 39 96 141
θ = 2 255 246 230

** and * denote significance at the 5% and 10%
levels, respectively

Table B.20: Parameter Estimates for the Model Assuming Every Hospital is a Monopolist
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