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ABSTRACT
HANNAH T. MEDFORD: Colon Cancer Diagnosis Using NMR Spectra

of Urine.
(Under the direction of Dr. Jeffrey Macdonald

.)

Colon cancer is the third most common cancer in people, and early diagnosis is crit-

ical to survival. This study investigates the efficacy of using metabolomic technology in

diagnosing colon cancer in a mouse model. Urine from a genetically defined population

of mice was analyzed by NMR spectrometry, after carcinogen exposure and catego-

rization for tumor development based on histological examination. The NMR spectra

were then analyzed by statistical methods of classification to determine if colon tumors

result in changes to the metabolites secreted in urine that can be detected by NMR

spectrometry. Different statistical analyses were also compared to determine which is

most effective at retrieving information from the NMR data. Principal Component

Analysis (PCA), a popular analysis for metabolomic data, is ineffective on this data

set. Support Vector Machine (SVM) reveals six significant components, which when

entered into PCA results in clear separation of normal and tumor-bearing mice.
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Chapter 1

Introduction

Cancer has become a serious public health issue. It’s also one of the least under-

stood disease processes. While a small handful of cancers have been determined to be

familial, following a fairly obvious inheritance pattern, the vast majority appear spo-

radically in the general population. These cancers are suspected to be governed by an

environmentally-induced genetic susceptibility.

Because of the uncontrollable variation in the environment, cancer susceptibility is

very difficult to study in humans. Therefore, the need has arisen for strains of mice

which show varying susceptibility to certain cancers, so that the development of these

cancers can be studied in a laboratory setting. Such studies would provide insight into

which genes play a part in cancer susceptibility and how they affect the resistance to

carcinogenic effects in certain individuals.

Another barrier to this form of cancer studies is the difficulty in following the pro-

gression of most tumors over time. Most studies require that individuals be sacrificed

to obtain information at different time-points. Obviously, once an individual has been

sacrificed, no more information can be gathered.

Metabolomic techniques allow us to obtain data at many different time-points on

a single individual non-invasively. Metabolomics will provide the scientific community

with an enormous amount of invaluable data which must then be sorted and analyzed



to extract the information. In fact, Metabolomic studies often yield so much data that

they present a unique challenge. Often, the number of samples is quite small while the

number of variables measured is enormous. Additionally, there can be unknown vari-

ables that lead to correlations between the observed variables adding to the complexity

of the problem. Thus, it has become necessary to develop new and better statistical

methods to extract usable information from the morass of data produced.
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Chapter 2

Background

2.1 Cancer

Cancer is a general term used for many different diseases characterized by uncon-

trolled, abnormal growth of cells. A tumor may develop locally, spread into nearby

tissues, or cancerous cells may spread through the blood stream or lymphatic system

to other parts of the body(Tannock IF, Hill RP et al. 2005).

Normally, cells grow and divide only when the body needs new cells. Normal cells

are programmed to grow old and die in an orderly process. When mutations occur

within the genes that control the process of cell division and cell death, new cells form

when the body does not need them, and old cells do not die when they should. The

extra cells form masses called neoplasms or tumors. Tumors can be either benign or

malignant. Malignant tumors can spread by invasion and a process called metastasis,

while benign tumors tend to grow only locally.

Metastasis is when cells break off from the primary tumor, penetrate the lymphatic

and blood vessels, and circulate to other parts of the body where they form tumors in

normal tissue elsewhere in the body. When cancer cells spread to form a new tumor,

it is called a secondary, or metastatic tumor, and its cells are like those in the original

tumor. This means, for example, that if colon cancer metastasizes to the liver, the



secondary tumor is made up of abnormal colon cells, not abnormal liver cells. The

disease in the liver is metastatic colon cancer, not liver cancer.

A number of factors contribute to the process of metastasis. The abnormal cell must

attach to and degrade the proteins of the extracellular matrix separating the tumor

from surrounding tissues. Once the proteins of the matrix have been broken down, the

cell can breach the extracellular matrix and is free to escape and migrate through the

circulatory system. Another critical event required is the growth of a new network of

blood vessels. This process of forming new blood vessels is called angiogenesis. Tumor

angiogenesis actually starts with cancerous tumor cells releasing molecules that send

signals to surrounding normal host tissue. This signaling activates certain genes in the

host tissue that, in turn, make proteins to encourage growth of new blood vessels.

Cancers are classified based on the type of cell in which they originate. Adenomas

originate from glandular tissue. Carcinomas originate in epithelial cells. Leukemia

starts in the bone marrow stem cells. Lymphoma is a cancer originating in lymphatic

tissue. Melanoma arises in melanocytes. Sarcoma begins in the connective tissue of

bone or muscle. Teratoma begins within germ cells.

Early detection of cancer is critical to the clinical outcome in cancer treatment. For

example, 15% of all cancer related deaths in the United States are do do colon cancer.

Only 37% of colon cancer cases are detected early enough for standard treatments.

Once colon cancer reaches the metastatic stage, only 7% of patients survive.

The current state-of-the-art standard for detecting colon cancer is white light en-

doscopy with gross visualization of the cancerous lesions. Unfortunately, the visual

clues available to determine diseased states of lesions are very small. This is especially

true in discriminating between benign, dysplastic growths, and malignant lesions.
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2.2 Metabolomics

Metabolomics is the study of the entire complement of small molecules in an organ-

ism. It has become a rapidly expanding approach to biomedical and pharmaceutical

research, and has a myriad of clinical applications.

Like the other ”’omics,” Genomics, Proteomics, etc, Metabolomics is a systems inte-

gration approach. Metabolomics describes the information gleaned from an endogenous

survey of the metabolic profile or metabolome. Though some confusion exists over the

creation of additional terms, such as ”metabonomics” there can be no doubt of the

value provided by the study of Metabolomics.

The small molecule complement in a cell provide an insight into that cell’s status. It

is the total result of all metabolic processes in the cell, both catabolic and anabolic. It

also reflects absorption, distribution, and detoxification of materials, energy utilization,

signal transduction, and regulation. It results from the expression of the genome and

proteome in response to the cellular environment. While the Genome is representative

of what might be, and the Proteome is what is expressed, it is the Metabolome that

represents the current status of the cell or tissue.

A living cell responds to its environment quickly by utilizing and altering proteins

whose effect is reflected in the metabolome. Thus, metabolomics also has a temporal

component as some biomarkers reflect an immediate response while some reflect events

that occured some time in the past.

When taken in its entirety it is not always necessary to know the identity of indi-

vidual components in a metabolic profile. Systemic changes in pattern are indicative of

specific states or of changes in status.

Just as it is possible to retrieve useful information from a comprehensive profile, it

is also possible to focus on specific sub-systems (e.g. measurement of DNA adducts or

protein oxidation products) to tease out information about specific states.

5
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Figure 2.1: The Interactive System

6



The Metabolome is extremely sensitive to exogenous stimulation. For example, fol-

lowing the administration of a drug or toxin numerous pathways can be affected. Not

only are changes seen in the system targeted but also in many other pathways.

High-throughput metabolomic techniques can be used for rapid profiling of large

numbers of samples, while still being able to provide, to different extents, specific

chemical information. Samples can be examined after solvent extraction (no derivati-

zation required), or as intact tissues (magic angle spinning NMR), liquids or semi-solids

(NMR )(Holmes, 2000).

Two major challenges have been recognized in the field of Metabolomics: Incredibly

large data sets make it difficult to find relevant data on marker compounds. Detect-

ing and identifying subtle changes can be problematic with the sensitivity required to

identify such molecules.

2.3 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon first described by

Felix Bloch and Edward Mills Purcell in 1946. They shared the 1952 Nobel Prize for

physics for their discovery. NMR is used as a spectroscopy technique to obtain physical,

chemical, and electronic information about molecules. NMR is also the technology on

which Magnetic Resonance Imaging (MRI) is based. Both NMR and MRI technologies

have become invaluable tools in many aspects of science and medicine.

NMR involves the interaction of some atomic nuclei within an external magnetic

field while being exposed to a second oscillating magnetic field. Not all nuclei experience

this interaction, dependent on whether or not they possess a property called ’spin’. The

property of spin can be thought of as a small magnetic field which causes the nuclei to

produce an NMR signal. The magnetic conditions within the molecules are measured

by monitoring the frequencies absorbed and emitted by the nuclei. NMR spectroscopy

7



takes advantage of this phenomenon to obtain physical, chemical, and electronic prop-

erties of molecules and is the underlying technique of Magnetic Resonance Imaging

(MRI).

In NMR, a sample of the material to be tested is placed inside a static external

magnetic field formed by a strong electromagnet. An antenna is formed by a coil of

wire around the sample, and is used to irradiate the sample with radio waves. At

certain frequencies, atomic nuclei within the sample will absorb the radiation and enter

an excited state. After a time, the nuclei will re-emit the radiation, which can be

detected by the antenna. Finally, a measurement is taken of how much radiation is

re-emitted, and when.

The Larmor equation can be used to determine the amount of energy needed for a

given nucleus to resonate. The equation describes the relationship between the strength

of the magnetic field, B0, and the precessional (Larmor) frequency, ω0.

ω0 = γB0

The gyromagnetic ratio, γ, is the ratio of the magnetic moment to the angular

momentum of a particle, and is constant for a given nuclei. For example, hydrogen

(1H) has γ = 4, 258Hz/G.

In principle, proton (1H) NMR can detect any metabolites containing hydrogen.

Signals can be assigned by comparison with libraries of reference compounds, or by

two-dimensional NMR. 1H NMR spectra of urine are inevitably crowded not only be-

cause there is a large number of contributing compounds, but also because of the low

overall chemical shift dispersion. 1H spectra are also complicated by spin-spin couplings

which add to signal multiplicity, although they are an important source of structural

information(Nelson, 2003).

8



2.4 Computational Methods of Classification

Generally, classification is the art of placing objects or concepts into groups based on

a set of rules. In statistics, classification is a type of algorithm, which takes a feature

representation of an object or concept and maps it to a label. Typically, a classification

algorithm computes the probability of a class label based on the feature inputs that

were observed.

There are many different approaches to solving classification problems. However

every approach has the same goals, to imitate human decision-making behavior, but

with greater consistency, to be able to handle a wide variety of problems and generalize

when given enough data.

Multivariate data analysis is all about separating the information from the noise in

a large dataset with a lot of variables. An effective analytical method should produce

results that summarize the essential information in an easy to interpret format.

When the data set has many variables and the relationships between them are

poorly understood, the problem becomes more and more difficult. This is especially

true when the number of variables far exceeds the number of samples in a given data

set.

2.5 Principal Component Analysis

Principal component analysis is designed to analyze the variance of a dataset in terms

of the principal components. The principal components are defined as a set of variables

that define a hyperplane that captures the maximum amount of variation in a dataset

and is orthogonal to the previous principal component of the same dataset(Yeung,

2001). Essentially, PCA tries to find the parts of the dataset which are most important

and defining, while simultaneously filtering out noise. This makes it easier to identify

9



groupings and outliers and spot trends in the data.

PCA is a transform that chooses a new coordinate system for a data set such that

the greatest variance by any projection of the data set comes to lie on the first axis,

the first principal component, the second greatest variance on the second axis, and

so on. PCA is used to reduce the dimensionality of a dataset and yet retain those

characteristics of the dataset that contribute most to its variance by eliminating the

lower principal components. These characteristics may be the ’most important’, but

this is not necessarily the case, depending on the application.

Unlike other transforms, PCA does not have fixed basis vectors, because in PCA

the basis vectors are dependent on the data set.

If one assumes the empirical mean of the dataset is zero, the principal component

(w1) of dataset (x) can be defined as:

w1 = arg max
‖w‖=1

E{(wT x)2}

The k-th components can be found by subtracting the first k-1 components from x:

x̂k−1 = x−
k−1∑
i=1

wiw
T
i x

and by substituting this as the new dataset to to find a principal component in:

wk = arg max
‖w‖=1

E{(wT x̂k−1)
2}

A simpler way to calculate the components wi uses the empirical covariance matrix

of x, the measurement vector. By finding the eigenvalues and eigenvectors of the

covariance matrix, we find that the eigenvectors with the largest eigenvalues correspond

to the dimensions that have the strongest correlation in the dataset. The original

measurements are finally projected onto the reduced vector space.

2.6 Partial Least Squares

The method of Partial Least Squares (PLS) is known to be useful in some problems

where the number of variables is equal to or less than the number of samples, and/or

10



there are other variables that may lead to a correlation between variables(?). This

method aims to identify the underlying factors, or linear combination of the independent

variables, which best model the dependent variables. PLS has been applied in many

different areas of research and technology, especially biotechnology and chemometrics.

PLS is similar to PCA, but instead of finding maximum variance hyperplanes, it

is based on a linear regression. PLS forms a set of orthogonal components or factors

from a large number of original variables. The main purpose of the method is to create

a model between the factors rather the original data. So, the orthogonal factors are

chosen so as to result in the greatest correlation. Sometimes the model is too strongly

correlated such that it not only explains the data but also the noise! This is called

”overfitting” and is one of the dangers of PLS because the model will appear to be very

good, but is really useless in predicting samples that are not included in the training

set(Denham, 1994).

The basic algorithm for PLS is described by the following equations:

w = (X′y)√
norm(X′y)

t = Xw

p = (X′t)
norm(t)

q = (y′t)
norm(t)

X(k+1) = X − tp′

y(k+1) = y − qt′

Here, N is the number of samples, M is number of variables, X[N,M] is the descriptor

matrix, y[N] is the activity vector, w[M] is the auxiliary weight vector, t[N] is the factor

coefficient vector, p[M] is the loading vector, and q is the scalar coefficient of relationship

between factor and activity.

11



2.7 Support Vector Machine

A support vector machine (SVM) is a supervised learning technique first described by

Vladimir Vapnik. An SVM is a maximum-margin hyperplane that lies in some space.

Given training examples labeled either ”yes” or ”no”, a maximum-margin hyperplane

splits the ”yes” and ”no” examples, such that the distance from the closest examples to

the hyperplane is maximized(Vapnik, V. 1995). So essentially, an SVM maximizes the

distance between groups and minimizes the distance between points within a group.

The use of a maximum-margin hyperplanes is driven by the statistical learning

theory. This provides a probabilistic test error bound which is minimized when the

margin is maximized.

The original SVM was a linear classifier. However, Vapnik suggested using the

kernel trick. In the kernel trick, every time a linear algorithm uses a dot product

,replace it with a non-linear kernel function. This causes the linear algorithm to operate

in a different space. For SVMs, using the kernel trick makes the maximum margin

hyperplane be fit in a feature space. The feature space is a non-linear map from the

original input space, usually of much higher dimensionality than the original input

space. In this way, non-linear SVMs can be created. If the kernel used is a radial

basis function, the corresponding feature space is a Hilbert space of infinite dimension.

SVMs are well regularized, so the infinite dimension does not alter the results.

The formulation of an SVM starts with a basic linear maximum-margin classifier.

The performance of the classifier is measured in terms of classification error.

The decision making function of the classifier is f(x, λ) = sgn(wẋ + b)

The kernel function of the SVM determines the margin, and the separability of the

data. Different kernel functions may have differing levels of success in separating the

data and maximizing the margin. The kernel function is:

K(xi, xj) = φ(xi)
T φ(xj)

12
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Figure 2.2: Decision Margin of Oriented Hyperplane
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New kernels are being proposed by researchers all the time, but these are the four

basic kernels used in the formulation of SVMs:

• linear: K(xi, xj) = xT
i xj

• polynomial: K(xi, xj) = (γ ∗ xT
i xj + r)d, γ > 0

• radial basis function (RBF): K(xi, xj) = xT
i xj

• sigmoid: K(xi, xj) = xT
i xj

SVM is a powerful method, but has not been utilized in the field of metabolomics.

2.8 Mutant Mouse Models

The development of transgenic and ”knock out” mice has resulted in a revolution in

our thinking. The mouse has emerged as the major research model for biology. The

mouse has been referred to as the E. coli of modern biology and the surrogate for human

biology. The mouse is inexpensive to maintain, easy to manipulate and its genome is

syntetic with the human. The mouse has become the mammal of choice for the analysis

of interaction of specific genes with the whole animal(Clarke, 2002).

In 1921, inbred strains of mice that were predisposed to tumor development were

developed and disseminated among cancer researchers. In 1962, the discovery of a mu-

tant mouse with low immunity led to human tumor transplantation. This development

was valuable to cancer research. Then in the 1980’s, transgenic mice were discovered.

These mice have genes which have been altered to produce a desired characteristic.

The inbreeding of mice predisposed to developing cancer has led to a variety of

specialized strains. In 1921, Leonell Strong established many inbred strains that fre-

quently and spontaneously developed cancer. Serving as a virtually unlimited source

14



of many types of tumors, these inbred mice have made it possible to study the growth

and general characteristics of tumors.

In the late 1980s the methodology for engineering transgenic mice made it possible

to create mice to address specific questions and problems. Transgenic mice result

from genetically altered embryos: a gene or combination of genes is microinjected into

developing oocytes. The genetic alteration affects the germ plasm, and subsequently can

be transmitted to progeny. Through selective breeding, it then is possible to maintain

a strain of mice consisting of individuals with particular traits of interest.

A specific trait, such as a predisposition to develop a particular type of tumor, can

be introduced into a mouse strain by injecting into the embryo an oncogene, a gene that

causes cancer. Transgenic mice permit the study of cancer in specific tissues, including

initial tumor development.

15



Chapter 3

Methods

3.1 Animal Treatment

A population of recombinant inbred mice were treated with the carcinogen, azoxymethane

(AOM). Each recombinant inbred strain has a different mix of the two parental strains.

The A/J, which is highly susceptible to AOM induced tumors, and C57BL/6J, which

is relatively resistant, inbred mouse strains were used to generate the AXB/BXA panel

of recombinant inbred strains that were used in this experiment.

The mice were then sacrificed under anesthesia. Urine was collected from each

individual, at the time of sacrifice, by inserting a needle into the bladder. The samples

were immediately closed in tubes, frozen and stored at -80 degrees Celcius. The mice

were then examined histologically for the presence of liver and colon tumors. The

tumors were identified, scored, and recorded for each individual.

3.2 Sample Preparation

The urine samples were thawed to room temperature. The urine samples were pre-

pared for NMR analysis by mixing 100 microliters of urine, 70 microliters of Phosphate

Buffer (1mM TSP) and 530 microliters of D2O. Then the samples were centrifuged to



separate any solid matter. The resulting supernatant was removed with a pipette and

inserted into a clean NMR tube, which was capped and labeled.

3.3 NMR Analysis

Proton NMR spectra were obtained from each urine sample on a ANOVA 600 MHz

NMR Spectrometer. A NOESY pulse sequence was used to collect the spectra, with a

tau = 0, for greatest solvent suppression. Varian software was used to output relative

peak intensities of the various resonances.

3.4 Data Processing

The freeware program Mestre-C was used to process the spectra and prepare them

for statistical analysis. First, the spectra were imported from the Varian format. Then,

a high-pass filter was applied to remove remaining solvent signal. The baseline of the

spectra was then corrected using a point-by-point splines technique. Finally, the real

parts of the processed spectra were outputted as a single column of intensities in ASCII

format. Each spectra 240 bins, the total of all the bins was normalized to equal 1000.

The magnitudes of the 240 bins created a histogram of numbers for each spectrum.

The histograms for all spectra were combined to for a matrix which served as the input

for the statistical analysis.

3.5 Statistical Analysis

The numerical text output from the Mestre-C program was loaded into Matlab and

normalized so that mean = 0 and standard deviation = 1, and then used to form a

matrix for input into two statistical analyses. The PLS toolbox plug-in for Matlab was

17



used to run both sets of analyses.

First, PCA was used. The plot of Principal Components versus Eigenvalues (the

Scree Plot) was used to determine the appropriate number of Principal Components for

this analysis. These components were then mapped against one another to determine

their usefulness in separating the data.

18



Chapter 4

Results

4.1 NMR

Each sample spectra was compared with histological data and labeled with either

normal or sick, with degrees of metastasis. These are some representative sample

spectra that resulted from our NMR spectrometry.

ppm-0.00.51.01.52.02.53.03.54.0

Figure 4.1: Normal

This individual, shown in figure 4.1, having no tumors, was determined to be of the

normal phenotype. This spectra can be used for comparison when compared to the



metabolomic spectra of animals in various stages of disease in this experiment.

ppm1.01.52.02.53.03.54.0

Figure 4.2: Colon Cancer

When histologically examined, this individual, shown in figure 4.2, was found to

have significant tumors in the colon, but not elsewhere in the body.

ppm1.01.52.02.53.03.54.04.5

Figure 4.3: Liver and Colon Cancer

This unfortunate animal, shown in figure 4.3, was found to have tumors in both the

colon and liver, and represents the most severe stage of the disease.
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There are clearly differences in the spectra showing various stages of disease but

these are too complex to be understood without the benefit of multivariate analysis.

4.2 Correlation Coefficient

Using the normalized matrix of data, the correlation coefficient was computed. The

square of the correlation coefficient results in the coefficient of determination. This tells

us how much of the variation in each bin is accounted for by the cancer score of the

animal.

Figure 4.4: Correlation Coefficient
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The results shown in 4.4 indicate that no significant correlation was found by this

method.

4.3 PCA Results

The PCA resulted in a Scree Plot that indicated four significant principal Compo-

nents.

Figure 4.5: Scree Plot

When these components were plotted against one another, the analysis revealed

that there was no tendency for clustering that would reflect the presence or the stage

22



of cancer in the subject. The following figures show this data.

Figure 4.6: PC 1 versus PC 2

The plot of PC4 versus PC5, show in 4.18, shows slightly better separation of the

classes than the remaining components. However, the separation is extremely weak

and likely to be accidental.
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Figure 4.7: PC 1 versus PC 3

Figure 4.8: PC 1 versus PC 4

24



Figure 4.9: PC 1 versus PC 5

Figure 4.10: PC 1 versus PC 6
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Figure 4.11: PC 2 versus PC 3

Figure 4.12: PC 2 versus PC 4
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Figure 4.13: PC 2 versus PC 5

Figure 4.14: PC 2 versus PC 6
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Figure 4.15: PC 3 versus PC 4

Figure 4.16: PC 3 versus PC 5
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Figure 4.17: PC 3 versus PC 6

Figure 4.18: PC 4 versus PC 5
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Figure 4.19: PC 4 versus PC 6

Figure 4.20: PC 5 versus PC 6
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Figure 4.21: Loadings Plot for PC 1 versus PC 4

A Loadings Plot was created to show the loadings based on PC1 and PC4. This

Loadings Plot, 4.21, also shows no tendency to significance of any of the variables.
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4.4 Six Bin Analysis

PLS-DA is not appropriate in this case because the number of samples is so much

smaller than the number of variables. A separate line of analysis using SVM has

established that six of the bins are significant. PCA was run on the six bins and

Figure 4.22: Scree Plot using only six variables

revealed clearer separation by class than the initial PCA.

The Scree Plot for this analysis, shown in 4.22, reveals that all six principal compo-

nents are significant. As was done before, these components were plotted against each

other and evaluated for separation of data points.
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Figure 4.23: PC 1 versus PC 2

Figure 4.24: PC 1 versus PC 3
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Figure 4.25: PC 1 versus PC 4

Figure 4.26: PC 1 versus PC 5
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Figure 4.27: PC 2 versus PC 3

Figure 4.28: PC 2 versus PC 4
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Figure 4.29: PC 2 versus PC 5

Figure 4.30: PC 3 versus PC 4
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Figure 4.31: PC 3 versus PC 5

Figure 4.32: PC 4 versus PC 5
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Figure 4.33: Loadings Plot for PC 1 and PC 2 using only six variables.

In this analysis, the best separation was shown by PC 1 and PC 2, 4.23. A Loadings

Plot was created based on these components, shown in 4.33.
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Chapter 5

Conclusions

Our results demonstrate that the one-pulse 1H NMR of mouse urine can be obtained

within 30 minutes and then 240 peaks selected for input into the statistical algorithms.

While the spectra themselves appeared subjectively to have differences according to

the presence and stage of cancer in the subject, the correlations were too complex to

be appreciated by the naked eye.

While PCA is currently the standard method of choice for metabolomic analyses, it

proved to be wholly ineffective in this experiment. When the principal components were

calculated and then plotted against one another, the data showed very little clustering

at all. The method was too weak to sufficiently separate the data according to class,

and this was probably due to the small number of samples relative to the number of

variables. PLS-DA was not attempted because such an analysis would be even more

unsuitable for such a small sample size. The question arises, is the lack of separation

due to weakness in the method of statistical analysis or is NMR spectroscopy of urine

not a sufficient vehicle for diagnosing colon cancer.

The SVM analysis revealed that six of the bins were more significant than the others.

When PCA was run again using only those variables, eliminating the remaining bins,

the data showed a much stronger tendency to cluster. The normal animals, with a

cancer score of zero, were clearly separated from sick animals, with cancer scores of one



or more. This tells us that the NMR spectra of urine does contain enough information

to be useful in diagnosing cancer, but that PCA alone is not a sufficient analytical

method for extracting the information.

This study is interesting because it does prove that the disease state of colon cancer

results in characteristic changes in the small molecule metabolites secreted in urine.

Further study is necessary to fully develop this technology and explore the use of new

methods for multivariate analysis. In future experiments, it will be necessary to use a

much larger data set, on the order of 500 samples, to yield better resolution. A larger

sample group would result in a better predictive model, which could then be used to

diagnose and potentially stage cancer in an individual not included in the training set.

Such a model could be used in human clinical medicine as a non-invasive diagnostic tool,

catching more cases of colon cancer at an early stage, increasing survival rates. Effective

determination of the significance of each bin could also lead to potential biomarkers for

colon cancer. Once these biomarkers have been identified, they may be explored for

potential drug targets, which could lead to more effective, safer treatments for a serious

human health threat.
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