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ABSTRACT

William T. Barry: Resampling-based tests of functional categories
in gene expression studies

(Under the direction of Dr. Fred A. Wright and Dr. Andrew B. Nobel)

DNA microarrays allow researchers to measure the coexpression of thousands of genes,

and are commonly used to identify changes in expression either across experimental con-

ditions or in association with some clinical outcome. With increasing availability of gene

annotation, researchers have begun to ask global questions of functional genomics that

explore the interactions of genes in cellular processes and signaling pathways. A common

hypothesis test for gene categories is constructed as a post hoc analysis performed once

a list of significant genes is identified, using classically derived tests for 2x2 contingency

tables. We note several drawbacks to this approach including the violation of an inde-

pendence assumption by the correlation in expression that exists among genes. To test

gene categories in a more appropriate manner, we propose a flexible, permutation-based

framework, termed SAFE (for Significance Analysis of Function and Expression).

SAFE is a two-stage approach, whereby gene-specific statistics are calculated for the

association between expression and the response of interest and then a global statistic is

used to detect a shift within a gene category to more extreme associations. Significance

is assessed by repeatedly permuting whole arrays whereby the correlation between all

genes is held constant and accounted for. This permutation scheme also preserves the

relatedness of categories containing overlapping genes, such that error rate estimates can
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be readily obtained for multiple dependent tests. Through a detailed survey of gene

category tests and simulations based on real microarray, we demonstrate how SAFE

generates appropriate Type I error rates as compared to other methods. Under a more

rigorously defined null hypothesis, permutation-based tests of gene categories are shown

to be conservative by inducing a special case with a maximum variance for the test

statistic. A bootstrap-based approach to hypothesis testing is incorporated into the

SAFE framework providing better coverage and improved power under a defined class

of alternatives. Lastly, we extend the SAFE framework to consider gene categories in

a probabilistic manner. This allows for a hypothesis test of co-regulation, using models

of transcription factor binding sites to score for the presence of motifs in the upstream

regions of genes.
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1 Introduction and Literature Review

1.1 Introduction

Recent advances in high-throughput biotechnologies have led to the development of ex-

perimental methods for simultaneously measuring the expression of multiple genes, at

either the transcriptional (Schena et al. 1995) or translational level (Honore et al. 2004).

In particular, DNA microarray technology has found the widest application, extending

across many areas of biology and medicine. With nucleotide sequences representing thou-

sands of genes affixed onto a single slide, microarrays are able to obtain a snap-shot of

transcription across much of the genome for one or more biological samples, and have

been constructed for many diverse organisms. These technologies, along with other large-

scale efforts, have allowed researchers to ask more global questions of functional genomics

(Kohane et al. 2003) that extend the biological knowledge obtained for single genes to

that of groups of genes and their interactions in cellular processes and signaling pathways.

In applying microarrays to the study of functional genomics, most experimental de-

signs can be broadly characterized as one of two types. The first are discriminant analyses

of either biological samples or gene expression profiles (Eisen et al. 2001), where many

traditional methods of supervised and unsupervised learning have been implemented.

These include hierarchical clustering (Eisen et al. 2001), self organized maps (Golub

et al. 1999), and support vector machines (Brown et al. 2001) along with novel methods,

such as biclustering across both genes and samples (Kluger et al. 2003). The second



popular use of microarrays is the identification of differential expression among the set of

genes represented on the array (Schena et al. 1995). Although these studies often employ

classical methods for testing the associations of gene expression, statistical considerations

are needed for the high dimensionality of the data where thousands of genes are being

measured over a much smaller number of samples, typically numbering in the tens, or at

most hundreds, of arrays.

While it is important to address the differential expression of genes individually, most

biological phenomena and human diseases are thought to occur through the interactions

of multiple genes, via signaling pathways or other functional relationships. As the under-

standing of cellular processes has grown, descriptions of gene function have accumulated

in databases of annotation that extend across the known genome for one or multiple

species. For example, one of the first databases of known genes, SWISS-PROT, provides

a set of keywords for each gene based on a taxonomy that includes pathways, diseases

and general biological processes (Boeckmann et al. 2003). Gene annotation has also been

presented in more complicated structures, such as the hierarchical vocabularies generated

by the Gene Ontology Consortium (Ashburner et al. 2000). With the biological informa-

tion assembled into curated vocabularies, one can group genes together based on a shared

keyword or function. Thus, research questions are beginning to shift from the activity

of genes individually to that of broader functional groups of genes, and the coexpression

measured by microarray technologies provides a unique opportunity to design hypothesis

tests to answer these questions.

Herein, we will examine some of the standard statistical methodologies utilized in

differential expression experiments, and develop a series of methodologies for address-
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ing research questions involving functional categories of genes. The remainder of this

chapter provides a detailed description of the common microarray technologies and some

techniques for processing gene expression data. The statistical methods that have been

used to conduct hypothesis tests of differential expression are reviewed, along with is-

sues regarding multiple comparison. Modern databases for the annotation and functional

characterization of known genes are summarized, and a recent class of “gene-list enrich-

ment” tests is briefly described.

In Chapter 2, a general framework for conducting hypothesis tests of gene categories

is presented with a distinct nomenclature for describing the multivariable expression

data and also for sets of functional categories. Within this framework a permutation-

based approach to hypothesis testing is proposed and implemented in an example dataset

involving several different types of comparisons. Chapter 3 more closely surveys the

different methods of testing gene categories that have been proposed in the literature.

For each distinct method, the underlying null hypotheses are explicitly derived since little

consideration has been given in the literature. We then use these null hypotheses and

simulations based on real microarray data to illustrate shortcomings in these methods and

to suggest a broader null hypothesis for functional categories. A bootstrap-based method

is suggested as being able to test this broader null without parametric assumptions and

is shown to be less conservative than permutation in this setting. Improved coverage

and power are presented via simulation and a real microarray setting. In Chapter 4

the concept of a functional category is extended to a more probabilistic definition to

incorporate uncertainty in gene annotation. This extension provides a novel method

for studying transcriptional regulation of DNA sequences. Models are defined based
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on methodologies for transcription factor motif discovery, and used to score the non-

coding sequences around genes for the presence of known motifs. From this we calculate

the posterior probability of a gene’s membership in a function category of transcription

factor targets, and test for concerted differential expression in microarray data. Lastly,

these methods are extended to consider the interactions of transcription factors, and to

update estimates of binding sites based on new co-expression data.

1.2 Microarray technology

Over the past decade, a number of different DNA microarray technologies have been de-

veloped that allow researchers to assay gene expression across either the human genome

or the genome of several model organisms (Brown and Botstein 1999). Broadly speaking,

microarrays measure gene expression in mRNA samples by reverse-transcribing a labeled

target sample and hybridizing it to a series of probes that have been affixed to chips in a

specified grid. Protocols vary in the manner in which target samples are labeled and in

how probes are designed to correspond to known transcripts. The preprocessing of mi-

croarray data into estimates of expression are highly platform specific, but will typically

involve the following steps: 1) quantifying hybridization from the intensity of scanned

images, 2) spatial and/or global normalization of arrays, 3) model-based estimation of

expression from either sets of probes for a single transcript, or ratios of probes from

different samples, 4) the potential filtering of lowly expressed genes or outlying samples.

The usual output of such preprocessing steps is a rectangular matrix of expression es-

timates for a given set of genes and samples. Details about the chip design and data

4



preprocessing steps are given below for two of the most common array types: spotted

cDNA microarrays and high-density oligonucleotide arrays.

In spotted cDNA arrays, first introduced by Schena et al. (1995), robotics is used

to adhere specified probes onto a glass slide. Probes are usually nucleotide sequences

that are a few hundred base pairs in length and which have been individually amplified

by PCR from bacterial clones. This allows researchers to design customized arrays to

include the parts of a species’ genome that are of interest. Commercially prepared arrays

are also available from companies such as Agilent Technologies which provide a standard

platform that cover a large proportion of the genome of interest. Because of the unknown

efficiency in immobilizing a probe to a particular spot, arrays have been designed to

measure expression in two mRNA samples labeled separately with the red Cy5 and green

Cy3 dyes. It is common for a reference sample to be used as one of the samples for

all arrays in a given experiment, although other designs have been proposed that use

chips in a more efficient manner by balancing samples across arrays and using dye-swaps

(Kerr and Churchill 2001). Appropriate methods for the normalization of cDNA have

been suggested in literature. Dudoit et al. (2002) suggested using LOESS normalization

within the print-tips for robotically spotting arrays, while Wolfinger et al. (2001) proposed

a linear mixed model with random effects for array and dyes with interactions. With these

and other preprocessing steps, cDNA microarray data is presented as either individual

expression estimates, or ratios between the two channel intensities. The following section

will describe testing procedures that have been proposed for both data structures.

High-density oligonucleotide arrays are another popular form of gene expression tech-

nology, and arrays for many different species have been made commercially available by
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Affymetrix. Probes consist of short oligonucleotide sequences (usually 25 base pairs in

length) that are synthesized directly to glass slides using a photolithographic process

(Kohane et al. 2003). This technique can produce chips with hundreds of thousands of

different probes affixed which allows multiple probes to be designed for a single transcript

(and are collectively termed a “probeset” by Affymetrix). A probeset typically consists of

anywhere from five to twenty probe-pairs that correspond to distinct sequences within the

transcript. Each probe-pair consists of a “perfect match” (PM) probe and a “mismatch”

(MM) probe where a single base change switch is made in the 13th position of the probe.

Different models have been proposed for estimating expression from a probeset, with

considerable debate as to whether MM probes appropriately represent the non-specific

hybridization to the short oligomers. Li and Wong (2001) proposed several models that

contain multiplicative parameters for every probe, termed “probe sensitivity indexes”,

that represent the rate at which hybridization occurs, and use either the PM information

only, the difference in PM and MM measurements, or both. Chu et al. (2004) proposed

a similar set of linear mixed models for log-transformed intensities, and Irizarry et al.

(2003) proposed using quantile normalization and robust fitting of an additive model on

the log scale to obtain expression estimates from the PM data in oligonucleotide arrays.

1.3 Multiple testing of differential expression

In many applications of microarray data, the experimenter seeks to identify statistically

significant associations between the expression profiles of genes and another variable re-

lated with each array, such as a sample group assignment, an experimental factor, or
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survival time. We will refer to this additional variable as the “response” regardless of

whether it is an observation of a random variable, or a fixed constant determined by the

experimental design. The most common methods for analyzing expression data proceed

in a gene-specific manner, using a statistical model to relate the response to the expres-

sion of each gene. In the earliest publications of cDNA spotted arrays, a hard threshold

for fold change was suggested as the criterion for considering significant differential ex-

pression (Chen et al. 1997; Schena et al. 1995). However, such tests are non-statistical

in that they ignore the amount of variability that exists in the expression data. Subse-

quently, more appropriate tests have been employed in two-sample comparisons, including

the parametric Student’s t-test (Galitski et al. 1999) and the non-parametric Wilcoxon

rank sum test (Troyanskaya et al. 2002). More complex models have been suggested

for particular microarray types, including mixed models that combine normalization and

testing into a single step (Wolfinger et al. 2001) and a Bayesian model for the ratios

of expression particular to cDNA arrays (Newton et al. 2001). In each of these meth-

ods, the association of each gene’s expression to the response is considered separately;

however, “shrinkage”-based methods are becoming popular in which improved estimates

are obtained from considering the entire dataset (Cui et al. 2005; Hu and Wright 2005).

A permutation-based method has been proposed by Tusher et al. (2001) that employs a

modified t-statistic in two-sample comparisons. By adding an estimated variance inflation

factor to the denominator of all statistics, this approach effectively down-weights genes

that are lowly expressed, and thereby shows an improvement in the expected number of

false discoveries among the genes significantly associated with the response.

Once a test statistic has been chosen, the primary statistical obstacle is accounting
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Table 1: Possible outcomes from m hypothesis tests when the true states of
being either null or alternative are fixed and known.

Accept Reject Total

Truly Null U V m0

Truly Alternative T S m1

W R m

for the number of comparisons needed to test all genes. In the multiple testing literature,

the outcomes of the m tests are usually delineated as falling into one of four types, as

shown in Table 1 (Benjamini and Hochberg 1995).

The random variables U and S represent the two kinds of correct conclusions that

are made, while V is the number of false positives (Type I errors) and T is the number

of false negatives (Type II errors) that occur. Two parameters that are often used to

describe error when conducting multiple tests are the family-wise error rate (FWER)

and the false discovery rate (FDR). Different methods have been proposed for either

controlling or estimating one of these error rates in analyses containing multiple tests.

The FWER is defined as the probability of having at least one Type I error among

the rejected hypotheses, Pr(V ≥ 1). Classically, a Bonferroni correction is employed as

a single-step p-value adjustment, where for the ith test p̃i = min(m · pi, 1). This provides

conservative control of the FWER regardless of the correlation structure among the tests
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Ge et al. (2003). Holm (1979) suggested a similar step-down procedure that applies

successively less stringent adjustments to the ordered values, pr1 ≤ pr2 ≤ . . . ≤ prm

p̃ri
= max

l:1,...,i

[
min((m − l + 1) · prl

, 1)

]
(1.1)

Westfall and Young (1989) proposed a resampling-based procedures for controlling the

FWER when correlation exists among the hypothesis tests, that defines the adjusted

p-values as

p̃ri
= max

l:1,...,i

[
Pr( min

h:l,...,m
Prh

≤ prl
|m1 = 0)

]
. (1.2)

Even though this definition conditions on the fact that all genes are truly null (m1 = 0),

strong control of the FWER was proved for any realization of null and alternative hy-

potheses (Westfall and Young 1993). For each of these controlling procedures, a corre-

sponding estimate of the FWER exists for every p-value cut-off to a rejection region.

The FWER error rate is often criticized as being too stringent a criterion when

rejecting more than a few hypotheses. For this reason, methods that focus on the FDR

have received much attention in the microarray literature where thousands of genes are

tested simultaneously. The FDR was originally defined by Benjamini and Hochberg

(1995) to be the expected rate of false positives among the rejected hypotheses E[ V
R

]

where in order to be finite, the ratio V
R

is defined to be zero when R = V = 0.

FDR = E

[
V

R
|R > 0

]
Pr(R > 0) (1.3)

A second definition termed the “positive” false discovery rate (pFDR) considers the

expectation alone, and has a direct Bayesian interpretation when the hypotheses are

treated as random (Storey 2003) . In many applications the probability of no rejections
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is small so the difference between these alternative definitions is negligible. Linear step-

up procedures to control the FDR were proposed by Benjamini and Hochberg (1995)

for independent tests and then by Benjamini and Yekutieli (2001) for correlated tests.

To estimate the positive FDR of a given rejection region Storey and Tibshirani (2003)

proposed several methods based on the following formulation, and applied the term “q-

value” as the following error rate of a p-value and its corresponding estimate

q(p) = inf
{Γ:p∈Γ}

pFDR(Γ)

q̂(p) = min
{pΓ≥p}

(
m̂0 · pΓ

#{pi ≤ pΓ}

)

where Γ is the rejection region applied marginally to all hypothesis tests. It should

be noted that the FDR controlling and estimating procedures can be applied to either

parametrically derived p-values or empirical p-values obtained from resampling. Because

of correlation in gene expression, the resampling-based procedures for estimating error

rates have been shown to be more powerful in example microarray datasets (Ge et al.

2003; Reiner et al. 2003).

1.4 Gene categories

Over the past few decades the biological knowledge obtained from conventional biochem-

ical and genetic studies have been accumulated in different public databases. As an

example of one of the earliest endeavors, the SWISS-PROT database was established

in 1986 to provide detailed description of protein sequences in a standard nomenclature

(Boeckmann et al. 2003). Now containing over 230,000 entries, SWISS-PROT provides
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sequence information along with names, species of origin, and references for every entry.

In addition SWISS-PROT provides a set of keywords, based on a taxonomy that includes

pathways, diseases and general biological processes. SWISS-PROT also provides cross

references to other gene classifications, like that of InterPro and the Protein Families

(Pfam) databases. Pfam has used multiple sequence alignment and hidden Markov mod-

els to identify 8296 “protein families” that share homology-based domains in their protein

amino acid sequence (Sonnhammer et al. 1997). From these sources of information, a

functional category can be formed by the set of genes which share a annotation feature,

such as a SWISS-PROT keyword or a Pfam domain.

More recently, the Gene Ontology Consortium (GO) has developed a comprehensive

vocabulary of gene annotation that is separated into three domains of classification:

Biological Process, Cellular Component, and Molecular Function (Ashburner et al. 2000).

In each domain, the ontology is structured as a directed acyclic graph (DAG), with a

hierarchy of terms that vary from broad levels of classification (e.g. ‘DNA Metabolism’)

down to more narrow levels (e.g. ‘leading strand elongation’), as represented in Figure

1. For each GO term, a functional category is generally defined as containing the set of

genes annotated directly to the node or to any terms that occupy descendant nodes in

the ontology (Ashburner et al. 2000; Zhou et al. 2002). For example, from the subset

of the Biological Process ontology shown in Figure 1, the mouse gene Lig1 would be

in categories for ‘DNA ligation’, ‘DNA recombination’, ‘DNA repair’, ‘DNA-dependent

DNA replication’, ‘DNA replication’ and the parent node ‘DNA metabolism’.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database that further

details the interaction of genes by the signaling pathways the gene products are involved
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Figure 1: Example of the structure of Gene Ontology from Ashburner et al.
(2000). A subset of the Biological Process DAG is shown with gene members
from 3 different species

in (Kanehisa 1997). While a KEGG pathway contains considerably more information

than mere membership of the genes, testing procedures are not available for the complex

interactions of proteins networks, and as such whole or partial pathways may be reduced

to functional categories as a way of examining their general associations to a response of

interest in a microarray dataset.

Traditional gene-specific approaches for testing differential expression do not readily

provide a way of making inferences about functional categories. Originally, researchers

have informally perused lists of significant genes for functional annotations in order to

make judgments about the underlying biology (Tusher et al. 2001). This is a subjective

12



process at best, and frequently the list of significant genes is too long to develop a

parsimonious understanding of the role of biological function.

A number of publications and software packages in the last three years have pro-

posed simple hypothesis tests for the differential expression of gene categories, in which

a secondary analysis is performed once the list of significant genes has been determined.

The most common method looks for over-representation, or “enrichment”, of the category

within the gene-list using techniques traditionally employed in the analysis of contingency

tables (e.g. Fisher’s Exact Test). Draghici et al. (2003) and Kim and Falkow (2003) were

two of the first publications to describe the tests for over and provide tools for conduct-

ing tests on lists of genes: Onto-Express and LARK respectively. Subsequently, a series

of online tools have also been developed including GOStat from Beißbarth and Speed

(2004), FatiGO (Al-Shahrour et al. 2004), EASE (Hosack et al. 2003), and FuncAssoci-

ate (Berriz et al. 2003). Several other softwares have been developed that can also display

the tests of over-representation across the DAG structure of a GO ontology: MAPPfinder

(Doniger et al. 2003), GoMiner (Zeeberg et al. 2003), GoSurfer (Zhong et al. 2004), and

GO Tree Machine (Zhang et al. 2004). In all of these software packages, testing for over

of a keyword is done by appealing to standard sampling theory. Assume a total of m

genes are on the array, and g of them are annotated to the term of interest. The p-

value for having x genes make a gene-list of length k is derived from the hypergeometric

distribution as

P (X ≥ x|m, g, k) =

min(g,k)∑

i=x

(
g
i

)(
m−g
k−i

)
(

m
k

) (1.4)

Many of the softwares also use Binomial, χ2, or Normal approximations in conducting

13



the traditional tests of the difference in proportions, and in some, tests are also conducted

by permuting the gene assignments of categories (Berriz et al. 2003; Zhong et al. 2004).

In this way, the random sampling of genes assumed in the parametric tests is induced, but

the relatedness of overlapping categories is accounted for in the estimated error rates for

multiple testing. Other parametric tests have been proposed that use a more continuous

measure of gene-specific significance (e.g. Boorsma et al. (2005); Goeman et al. (2004);

Kim and Volsky (2005)), and permutation-based tests have been proposed using similar

statistics (Mootha et al. 2003; Virtaneva et al. 2001). The gene-list enrichment tests have

been criticized for having ill-defined null hypotheses (Allison et al. 2006) and for making

assumptions inappropriate for microarray data (Barry et al. 2005), but are increasingly

becoming a default tool for testing functional categories in differential expression studies.

A full discussion of the various hypothesis testing methodologies and their associated

assumptions will be given in the following chapters.

1.5 Resampling-based tests

In many statistical applications, it is necessary to develop procedures which do not depend

on any parametric assumptions about the observed data. The field of non-parametric

statistics has sought to identify quantities whose distributions under a null hypothesis

are not restricted by as many assumptions of how the data are derived; examples include

rank-based statistics and other values that compare empirical distribution functions of

the data in various ways. For many complex problem, no such distribution-free quantities

may exist for the association of interest. If instead a statistic is chosen that will depend
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Figure 2: The cumulative number of citations of gene category tests plotted
quarterly since 2003. Results are shown for ‘gene-list’ methods, resampling
based methods that permute either gene- or array-assignments, and the union
of the three sets (see Chapter 3 for a full discussion of these methodologies).
Citations were obtained from ISI Web of Knowledge on 8/15/06.

on some parametric assumptions of the data, one may be able to use resampling in

order to understand its underlying distribution. By recalculating the quantity from

replicate datasets inferences can be made about certain properties of the underlying

distribution. The two most common resampling-based tests can be broadly categorized as

permutation where resampling observations without replacement allows a null hypothesis

to be induced, and bootstrap methods where resampling the data with replacement can

produce interval estimates around the observed statistic. Over the past few decades,

advancements in technology have allowed these computationally-intensive methods to be
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widely implemented in statistical applications.

1.5.1 Permutation testing

Permutation of observed data was originally proposed by R.A Fisher in the 1930s as a

theoretical argument for justifying the t-distribution in a two-sample location problem,

and has been utilized in deriving the null distribution for many non-parametric statistics

(Hollander and Wolfe 1999). Specifically, if a statistic is written as some function of

independent units of the observed data, tobs = T (x1, . . . , xn), an empirical p-value can be

simply obtained from the n! reorderings of the data, x∗
1, . . . , x

∗
n

p =
# of permutations where T (x∗

1, . . . , x
∗
n) ≥ tobs

n!
(1.5)

For many experimental designs, like the two-sample comparison, there will be fewer than

n! unique values T ∗ can take, which leads to a more discrete distribution of empirical

p-values. Also, for large n it is often times sufficient to approximate p with a smaller

number of randomly selected permutations

p
.
=

1 +
∑K

k=1 I(t∗k ≥ tobs)

K + 1
(1.6)

Under this definition, p follows the discrete uniform distribution for the null hypothesis

induced via permutation. For many uses of permutation tests, the induced null may not

be expressly stated nor confirmed as pertaining to the research question of interest.

Examples of the use of permutation in the microarray literature extend from differ-

ential expression (Tusher et al. 2001) and corrections for multiple testing (Dudoit et al.

2003; Tusher et al. 2001), to validating unsupervised classification methods like principal
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component analysis (Landgrebe et al. 2002), and similarity scores for gene categories

(Rahnenführer et al. 2004). When applying permutation-based methods to microarray

analysis, it is important to recognize what null hypothesis is induced by the randomiza-

tion scheme, and whether it is appropriate for the given task (Allison et al. 2006).

1.5.2 Bootstrap testing

The general bootstrap method was proposed by Efron (1979) and is based on the pre-

sumption that the observed data is generated from an unknown probability model, F ,

as depicted in Figure 3 as adapted from Efron and Tibshirani (1998). If one defines

θ = T (F ) as a parameter of interest that is some function of the underlying distribution

of the data, the plug-in principle suggests that a simple estimate of θ can be obtained

from the empirical distribution function, F̂ , that is a corresponding estimate of F . In

order to make inference on θ from θ̂ = T (F̂ ), resamples of the data are drawn from F̂

yielding replicates of the statistic {θ̂∗}.

Many different methods have been proposed for using the bootstrap resamples to

build confidence intervals for θ. If a normal approximation is assumed for the statistic,

the replicate values can be used to generate bias and variance estimates for a confidence

interval (Efron 1979, 1981). When a reasonable estimate for the variance of the statistic is

available, confidence intervals can be generated from studentized versions of the statistic

(Efron 1981). Percentile intervals use quantiles of the resampled statistics to estimate the

limits such that results are completely insensitive to monotonic transformations of the

statistic. Adjusted quantiles have been prosed in the “BCa” method to account for any
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Figure 3: Schematic of the bootstrap philosophy recreated from page 87 of
Efron and Tibshirani (1998). In order to know the properties of a test statistic
when there is an unknown probability model, F , that generates the observed
data, x, resamples taken from the empirical distribution of the data gives
replicates of the statistic that allow one to approximate its distribution.

biases in the statistic (Efron 1981). Improvements to these basic bootstrap intervals can

be made by “double bootstrap methods” where the bias of using resamples of the observed

data is measured by resampling a second time from the bootstrap replicates (Beran

1987). For all interval estimates that can be obtained from bootstrap methodologies,

there exists a corresponding hypothesis test that looks for the inclusion of null value of

the statistic, θ0 = EH0 [θ̂] in the interval. The proper coverage of any of these intervals

may not be precise for small n because the discreteness of F̂ might prevent it from being

a good estimate of F , and smoothing methods may be employed to improve performance

(Polansky and Schucany 1997).

Bootstrap algorithms have been proposed in the microarray literature as a means for

the cross-validation of classification studies (Braga-neto and Dougherty 2004), and for
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multiple testing issues with differential expression studies (Tsai et al. 2003); however,

the effects of resampling in the high-dimensional space of microarrays must be carefully

considered in any new application (Troendle et al. 2004).
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2 Testing categories by structured permutation

2.1 Introduction

With the understanding of gene function now extending across much of the genome, in-

vestigators are increasingly turning from questions about individual genes to those about

cellular processes involving groups of genes. In microarray experiments that measure the

association between gene expression and some response of interest, this is translated into

constructing hypothesis tests for the differential expression observed across any number

of functional categories. As detailed in the previous chapter, several publications have

proposed examining functional categories after a gene-by-gene analysis has been per-

formed (Al-Shahrour et al. 2004; Beißbarth and Speed 2004; Berriz et al. 2003; Doniger

et al. 2003; Draghici et al. 2003; Hosack et al. 2003; Kim and Falkow 2003; Zeeberg et al.

2003; Zhang et al. 2004; Zhong et al. 2004). Each of these methods tests for the over-

representation of a functional category within a list of significant genes through use of the

hypergeometric distribution (see equation 1.4) or an approximation thereof. However,

there are several disadvantages in applying these methods to microarray data. First,

they rely in an inherent way on the gene-specific analysis that generated the significant

list, and are sensitive to the criteria used to determine the cutoff for inclusion in the

list. Moreover, by merely testing over-representation these methods fail to consider a

gene’s relative position in (or out) of the ranked list. If genes belonging to a functional



category show a consistent but modest association to the response of interest, they may

fail to reach the criteria for inclusion in the gene list when issues like multiple testing

are accounted for. In this case, the accumulation of effects across a category would go

unnoticed when examining only membership in the list. A much bigger concern with

gene-list enrichment tests is that do not take into account the possible correlation among

genes within and outside a category. For categories with highly correlated genes, the

true Type I error will be substantially higher than the reported p-value, resulting in

anti-conservative tests. These drawbacks suggest the importance in finding an improved

method of testing gene categories. In the following chapter a framework is presented for

testing the associations of a functional category of genes in a more valid manner.

2.2 The SAFE framework

In order to assess the differential expression of gene categories, we propose a flexible,

permutation-based framework, termed SAFE (for Significance Analysis of Function and

Expression). SAFE extends and builds on an approach first employed in Virtaneva et al.

(2001) for a two-sample microarray comparison of cancer subtypes. More recently, a

similar method was proposed for a comparison of diabetes subtypes (Mootha et al. 2003).

A two-stage approach is employed to assess the significance of a gene category. First,

gene-specific statistics are calculated that measure the association between expression

and the response of interest. Hereafter, we will refer to these as local statistics. Then a

larger-scale global statistic is constructed as a function of the local statistics, with the goal

of detecting a shift within a gene category to more extreme values, as compared to all
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Figure 4: Schematic for the significance analysis of function and expression
(SAFE). The observed data consist of a matrix of normalized expression esti-
mates, X, a response vector, y, and gene category assignments defined a priori
in a matrix C. For the observed and permuted data, gene-specific local statis-
tics and category-specific global statistics are computed such that p-values are
obtained for each category along with estimated error rates.

other genes. The significance of the global statistics is assessed by repeatedly permuting

the array assignments and recomputing local and global statistics. In this manner, the

correlation between all genes is maintained by holding the gene expression data constant.

Furthermore, the relationships among categories which contain overlapping genes will be

preserved, which is important for multiple testing considerations.

The SAFE procedure is described in detail in the following sections and a schematic

is provided in Figure 4. It generalizes and extends the method of Virtaneva et al. (2001)

in two critical respects: 1) SAFE naturally encompasses a wide variety of experimental

designs and response vectors, and 2) appropriate methods of error rate estimation can be

applied directly in the permutation scheme. A series of informative plots are proposed

for visualizing the differential expression seen within significant category.
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2.2.1 The observed data

The following notation is introduced for describing DNA microarray data and gene cate-

gory tests. In the following chapter we will demonstrate how this general form allows the

variety gene category tests proposed in the literature to be presented in a unified way.

Let the observed expression data for m genes and n samples be given by the matrix x,

where the expression of the i-th gene in the j-th sample is xij. For the expression values

of the i-th gene, the row vector that corresponds is given as xi∗, and for the j-th sample,

the column vector is written as x∗j . The term “gene” is used to generically identify a row

of x but can also correspond to a probe or probeset for a transcript, depending on the

array platform and pre-processing steps. Therefore, a single gene might be represented by

different transcripts and appear as multiple rows of x. Extensions of SAFE are proposed

in Chapter 4 that would give an appropriate way to account for the multiple represen-

tation of a gene on an array. We will generally assume that suitable normalization and

other data pre-processing steps as described in Chapter 1 (cf. Dudoit et al. (2002); Li

and Wong (2001)) have been performed. The relevant sample information is represented

by the response vector y, where each element, yj, can be a group assignment based on

the experimental design or a continuous measure. For some experimental designs yj may

be more than a scalar value, as seen in the survival analysis performed in section 2.3.3.

Prior to SAFE analysis, a collection of functional categories of interest must be spec-

ified. When a total of L categories are under examination, the gene membership can be

stored in a m×L matrix of indicators, where cih = 1 if gene i belongs to category h and

cih = 0 otherwise. Thus, the data for a SAFE analysis is contained in the three objects,
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X, y, and C.

2.2.2 Statistics and permutation

Two statistics must be specified in SAFE: The first is based on the experimental design,

and termed a “local” statistic t = T (xi∗,y), measuring the association between the

expression profile of gene i and the response vector. In a study where yj ∈ {0, 1} denotes

one of two experimental conditions, one might use either a t-statistic, a non-parametric

statistic, or some other measure for comparing {xij : yj = 0} and {xij : yj = 1} (e.g.

fold-change.) As genes in the same category might exhibit changes in either direction, a

two-sided local statistic such as the absolute value of a t-statistic would be the natural

choice in a exploratory analysis unless the underlying biological suggests a concerted

direction of differential expression in a category of interest.

The global statistic assesses how the distribution of local statistics within a category

differs from local statistics outside the category. For a given category, h, the statistic

u = U(t1, . . . , tm; cl) measures some difference between the local statistics of genes within

category, namely {ti : cih = 1}, and the local statistics of genes in the complement of

the category, namely {ti : cih = 0}. Typically little is known about the joint density of

the local statistics. For this reason we favor rank-invariant choices for U , such as the

Wilcoxon rank sum (Virtaneva et al. 2001) as likely to retain reasonable power under a

variety of experimental designs.

The significance of the global statistic for each functional category is assessed through

a group Π = {π1, . . . , πK} of permissible permutations of the response vector. The per-
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mutations in Π reflect the underlying experimental design, including pairing of samples,

blocking, or other sampling-based constraints. For many experimental designs, all n!

permutations are permissible, although fewer equivalent permutations of the response

vector may exist (as in the two-sample problem). For datasets of even modest size, it

may not be computationally feasible to use all permutations, and the elements of Π are

chosen as a random sample from all permissible permutations. The elements of Π can

be represented as permutations of the integers {1, . . . , n}, so that Π is stored an n × K

matrix. We will restrict π1 to be the identity permutation, corresponding to the observed

order of the response vector.

For each gene and each permutation πk ∈ Π, let tik = T (xi∗,y · πk) be the value of

T when the response is permuted according to πk. Here y · π = (yπ(1), . . . , yπ(n)) is a

re-ordering of the components of y according to π. Let u be the K × L matrix with

entries ukh for the h-th functional category under permutation πk. Permutation-based

p-values are computed for each category as ph = K−1
∑K

k=1 I{ukh ≥ u1h}, with I{·}

denoting the indicator function. By restricting π1 in this manner, the empirical p-value

will appropriately follow a discrete uniform distribution under permutation.

2.2.3 Error rate estimation and plots

As in gene-specific analyses of microarray data, it is important to correct for multiple

testing when a set of gene categories are considered. In addition to computing empir-

ical p-values as described above, the permutation scheme can also be used to compute

resampling-based estimates of the FWER (Westfall and Young 1989) or the FDR (Storey
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and Tibshirani 2003; Yekutieli and Benjamini 1999) for the set of categories that fall

within a given rejection region. First, the matrix of global statistics is converted into a

K × L matrix of empirical p-values with elements

pkl =
1

K

K∑

h=1

I{uhl ≥ ukl} (2.1)

In this way, every column, and thus every category, has empirical p-values that range

from 1
K

to 1. If we define a rejection region by the interval, [0, p], the Westfall-Young

estimate of the FWER can be written as

F̂WERWY (p) = max
l:pl≤p

[
1

K

K∑

k=1

I

(
min

h:ph≥pl

pkh ≤ pl

)]
(2.2)

Thus each p-value that occurs in the rejection region (indexed by l in equation 2.2) is

compared to the minimum permuted p-value of all categories less significant. Then, the

maximum of these comparisons is taken as the FWER estimate as part of the step-down

procedure.

To estimate the FDR through resampling, Yekutieli and Benjamini (1999) proposed

the following statistic for a similarly defined rejection region.

F̂DRY B(p) = min
l:pl≥p

[
1

K − 1

K∑

k=2

(
V̂k(pl)

V̂k(pl) + Ŝ(pl)

)]
(2.3)

The functions V̂k(·) and Ŝk(·) correspond to estimates of the number of true and false

positives as presented in Table 1, and are defined as V̂k(p) =
∑L

l=1 I(pkl ≤ p) and

Ŝ(p) = V̂1(p) − 1
K−1

∑K
k=2

∑L
l=1 I(pkl ≤ p). The minimum is taken among the categories

less than or equal to rejection region as part of the step-up procedure common to FDR

estimation and control.
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Storey and Tibshirani (2003) has also proposed a resampling-based method for esti-

mating the FDR. In addition to defining a rejection region, another region is required

that is thought to contain almost entirely true null hypotheses, [p0, 1].

p̂FDRST (p) = min
l:pl≥p

[
W1(p0) · 1

K−1

∑K
k=2 Rk(pl)

1
K−1

∑K
k=2 Wk(p0) · R1(pl)

]
(2.4)

where Rk(p) =
∑L

l=1 I(pkl ≤ p) and Wk(p) =
∑L

l=1 I(pkl ≥ p) also represent estimates of

the corresponding unknown outcomes given in Table 1.

Non-resampling based error estimates, such as the traditional FDR step-up procedure

by Benjamini and Hochberg (1995) and the basic q-value estimate (Storey and Tibshirani

2003) can be readily applied to {ph}. However, these methods may be less appropriate

for the unknown dependence among categories. Permutation enables control of multiple-

testing error rates among correlated tests without the need to adopt overly conservative

procedures (e.g. Benjamini and Yekutieli (2001)). Permutation-based control of the

FWER exploits positive correlation among the global statistics for categories with over-

lapping genes, while a Bonferroni threshold in this case will be highly conservative. In

our examples using the GO ontologies, the dependence between some categories (nodes)

is very strong, as many related categories contain identical or nearly identical sets of

genes.

In addition to a p-values and error rate estimates, the significance of each category

can be presented in the form of a SAFE-plot. For category h, the SAFE-plot displays

the empirical cumulative distribution function (eCDF) of the ranked local statistics {ti :

cih = 1}. A category that contains many genes that are more differentially expressed

on average will have higher ranked local statistics, and therefore show a right-ward shift
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in the eCDF from the diagonal. In cases where an absolute value is taken to create a

two-sided local statistic, such as |t| in the two-sample comparison, ranking genes by the

untransformed statistic will reveal the directions of differential expression for individual

genes in the category. Labeled tick marks along the top of the graph allow the investigator

to observe the genes most responsible for a categories significance. When gene categories

have additional structural relationship such as the hierarchy of GO ontologies, we find it

is also useful to display the SAFE significance results within a graphical representation

of the structure. For GO, SAFE results can be plotted across the directed acyclic graph

to identify the relationships among significant categories.

2.3 Examples from a microarray dataset

To demonstrate the applicability and flexibility of SAFE, gene category analyses were

conducted for several responses in a study of human lung carcinomas by Bhattacharjee

et al. (2001). A total of 202 lung specimens were assayed with hgu95Av2 oligonucleotide

arrays (Affymetrix, Santa Clara, CA). The data consisted of 16 normal tissues and 186

tumors, sub-classified as adenocarcinomas (n = 139), pulmonary carcinoids (n = 20),

small-cell lung carcinomas (n = 6), and squamous cell lung carcinoma (n = 21). Addi-

tional clinical information, including survival times, were available for 125 of the adeno-

carcinomas. Our significance analyses focused on three comparisons: (1) a two-sample

comparison of normal versus cancerous samples; (2) an ANOVA model comparing cancer

subtypes; and (3) a survival analysis within the adenocarcinoma subgroup.

CEL files for the 202 hgu95Av2 arrays were obtained from http://www.pnas.org and
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expression estimates were obtained from the dChip v1.3 software from Li and Wong

(2001). In keeping with the terminology above, each hgu95Av2 probeset is referred to as

a “gene” even though in many cases multiple probesets are known to correspond to the

same gene. Arrays were normalized by quadratic scaling to an artificial array of median

expressions for each gene (Yoon et al. 2002). Genes were filtered out when called absent

by the Affymetrix MAS5.0 algorithm in more than half the samples of every tissue type.

These preprocessing steps resulting in expression estimates for 202 microarrays and 7299

genes.

Each SAFE analysis involved a common set of functional categories derived from GO

and Pfam. Annotations for the hgu95Av2 array are available in the NetAffx (Liu et al.

2003) format from http://www.affymetrix.com. GO gene categories sets were generated

from the hierarchical structure of an ontology in the standard manner (Ashburner et al.

2000; Beißbarth and Speed 2004; Zeeberg et al. 2003), using simple algorithms to create

the C matrix of indicators required for the SAFE analysis. The 7299 expressed genes

had a total of 3860 GO nodes and 1811 Pfam domains linked to them. In order to retain

power in this example, only categories of a sufficient size are considered: including 120

cellular component nodes having at least 10 expressed genes, and 207 biological process

nodes and 132 molecular function nodes having at least 40 expressed genes. Pfam gene

categories were limited to the 176 domains annotated to at least 10 expressed genes.

For each response vector, an appropriate local statistic was chosen, the Wilcoxon rank

sum was used as the global statistic,

u =
m∑

i=1

ci · Rank(ti) (2.5)
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and K = 10, 000 permutations was randomly generated for the set of arrays correspond-

ing to the response of interest. Permutation p-values were calculated for each category,

along with the Westfall-Young FWER estimate and the Benjamini-Yekutieli FDR es-

timate (Westfall and Young 1989; Yekutieli and Benjamini 1999). All significant cate-

gories in the rejection region with an estimated FDR ≤ 0.10 are reported in Table 2.

This demonstrates that significant results are achievable in SAFE, even when explic-

itly accounting for multiplicity of tests far greater in number than previous reports have

considered (Berriz et al. 2003; Mootha et al. 2003; Zeeberg et al. 2003; Zhong et al. 2004).
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Table 2: Significant GO and Pfam gene categories for the three comparisons
in the Bhattacharjee et al. (2001) lung carcinoma study. For each response,
the largest subset of all categories with a FDR ≤ 0.1 is reported along with
the corresponding FWER estimates.

Category ID and Name Size p-value F̂DR F̂WER

Normal versus Cancer

GO:0016460, ‘Myosin II’ 10 0.0004 0.066 0.157

GO:0000786, ‘Nucleosome’ 19 0.0004 0.066 0.157

Pfam:PMP22 Claudin 11 0.0005 0.066 0.188

ANOVA among subtypes

GO:0007010, ‘Cytoskeleton org. and biogen.’ 128 0.0003 0.064 0.125

GO:0007017, ‘Microtubule-based process’ 67 0.0005 0.064 0.194

GO:0006996, ‘Organelle org. and biogen.’ 153 0.0005 0.064 0.194

GO:0016043, ‘Cell org. and biogenesis’ 283 0.0007 0.064 0.253

GO:0009117, ‘Nucleotide metabolism’ 82 0.0007 0.064 0.253

GO:0007028, ‘Cytoplasm org. and biogen.’ 175 0.0011 0.087 0.358

GO:0006164, ‘Purine nucleotide biosynth.’ 45 0.0016 0.099 0.459

Survival of adenocarcinomas

GO:0005643, ‘Nuclear pore’ 30 0.0002 0.034 0.084

GO:0046930, ‘Pore complex’ 30 0.0002 0.034 0.084
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2.3.1 Two-sample comparison

As a first examination of differential expression, a two-sample comparison was made

between normal and tumor samples using the absolute value of the Welch t-statistic as

the local statistic. Using the SAFE nomenclature, where yj = 1 if the array corresponded

to a tumor sample, and yj = 0 if it corresponded to a normal sample, the local statistic

for the i-th gene is written as

ti =
|x̄i,1 − x̄i,0|√

s2
i,1

n1
+

s2
i,0

n0

(2.6)

where nc =
∑n

j=1 I(yj = c), x̄i,c = 1
nc

∑n
j=1 xij ·I(yj = c) , and s2

i,c = 1
nc−1

∑n
j=1(xij −

x̄i,c)
2 · I(yj = c) c = 0, 1 . Observed values ranged from very close to 0 to 18.4. Under

10,000 permutations of the array assignments, 1235 genes (17% of all tests) achieved

a minimum empirical p-value 0.0001. With such dramatic differences between normal

and tumor tissue producing a long list of differentially expressed genes, obtaining useful

biological conclusions requires a broader perspective.

Among the 635 functional categories we considered in SAFE, three categories had

p ≤ 0.0005 and met the criteria for inclusion in Table 2: the cellular component nodes,

GO:001640 ‘Myosin II’ and GO:0000786 ‘Nucleosome’, and also the Pfam domain ‘PMP22

Claudin.’ SAFE-plots display the relative extent and direction of differential expression

observed for the sets of genes in these categories (Figure 5). Of the 10 expressed genes

annotated to ‘Myosin II,’ 9 were substantially under-expressed in the tumor samples

compared to normal (p = 0.0004). In contrast, the GO term ‘Nucleosome’ had 16 of 19

genes over-expressed in the tumor samples (p = 0.0004). Of the 11 genes annotated to

‘PMP22 Claudin,’ 4 were substantially over-expressed in cancer and 6 were substantially
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under-expressed, (p = 0.0005).

These results demonstrate the various directions of differential expression that can be

detected in a two-sample SAFE analysis. Since no overlap in gene membership occurs

among the three categories, they can be separate findings. Several of the genes that are

present in these categories have been associated with other forms of cancer, however the

SAFE results suggest that families related genes may be dis-regulated in cancer.

The roles of myosin-related and cell-motility genes have long been studied in cancer

and metastasis. A novel myosin family gene, MYO18B, was recently shown to be inac-

tivated in approximately 50% of lung cancers (Nishioka et al. 2002). The nucleosome

genes we observed to be overexpressed in cancer were primarily histone family genes;

acetylation of histones has been linked to MYO18B inactivation and lung cancer (Tani

et al. 2004). Over of Claudin-4, as observed here, has been linked to metastatic breast

and pancreatic cancers (Michl et al. 2003; Nichols et al. 2004). By examining entire gene

categories instead of individual genes, we are able to identify a manageable number of

gene categories warranting further hypothesis and study.
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Figure 5: SAFE-plots for significant categories in normal versus tumor. Welch
t-statistics were computed for all expressed genes. The shaded region repre-
sents the 5% tail area of the empirically derived null (|t| > 2.26). The empirical
CDF for a gene category is plotted (solid line) against the ranks of all genes
(dashed line). Tick marks above each plot display the location of genes within
a category. Several genes are represented by more than one hgu95Av2 probe-
set. Significant gene categories can show consistent (A) under, or (B) over in
tumor versus normal, or (C) bidirectional differential expression.
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2.3.2 ANOVA

To look for differences in gene expression among the four cancer subtypes, the stan-

dard ANOVA F -statistic was used. A scaled F -statistic can be defined in the SAFE

nomenclature using yj ∈ {1, 2, 3, 4} for each of the four tumor classifications

ti =

∑4
c=1 nc(x̄i,c − ¯̄xi)

2

(
∑n

j=1(xij − ¯̄xi)2 −
∑4

c=1 nc(x̄i,c − ¯̄xi)2)
(2.7)

where nc =
∑n

j=1 I(yj = c), x̄i,c = 1
nc

∑n
j=1 xij · I(yj = c) c = 1, 2, 3, and 4 , and

¯̄xi = 1
n

∑n
j=1 xij . For a total of 2689 genes (37% of all tests) the observed local statistic

achieved the minimum empirical p-value (p = 0.0001). The substantial differences in ex-

pression profiles between cancer subtypes provided the basis for successful discrimination

in the original report (Bhattacharjee et al. 2001). Here we employ SAFE to establish

which functional categories consistently differ in expression across cancer subtypes.

Eight biological process nodes (having p-values ≤ 0.0019) met the criterion of F̂DR ≤

0.1 for inclusion in Table 2. By viewing the location of the significant categories in

the hierarchical structure of the ontology (Figure 6) it is apparent that they fall into

two distinct families: ‘Cell organization and biogenesis’ (GO:0009117), and ‘Nucleotide

metabolism’ (GO:0016043). The plot also illustrates that a broader category can be more

significant than any of the nodes beneath it, due to the aggregation of gene effects across

different descendants. These results add biological interpretability to the cluster analyses

and gene-specific analyses from the original report.
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Figure 6: SAFE results displayed across the DAG structure for Biological
Process nodes. In Gene Ontology, nodes can have multiple parents, and for
lateral or upward edges, arrows are drawn from parent to child to indicate
the lineage. The area of each node is proportional to the number of genes in
the corresponding category. Nodes are colored by statistical significance: blue
(p < 0.001) green (0.001 ≤ p < 0.01), or red (0.01 ≤ p < 0.1). Two distinct
sub-graphs containing all significant nodes (blue or green) are expanded in the
figure: (B) nodes under ‘Nucleotide metabolism’ GO:0009117 and (C) nodes
under ‘Cell organization and biogenesis’ GO:0016043.
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2.3.3 Survival analysis

Censored survival data were available for 125 subjects with adenocarcinomas, with 71

observed deaths and 54 censored observations. The association between a gene’s expres-

sion and survival was assessed with a univariate Cox proportional hazard model (Cox

1972). Let yj represent the censored failure time for the j-th array, using the pair of

values yj = {tj, dj} with tj measuring the time to event and letting dj = 1 if a death

occurred, and dj = 0 if the corresponding subject was censored. In the Cox model,

regression coefficients are estimated by the maximum of the partial likelihood

β̂i = sup
βi

L(βi) = sup
βi

n∏

j=1

dj · exp(xij · βi)∑
r∈Risk(tj)

exp(xir · βi)
(2.8)

where Risk(tj) refers to the riskset for that time consisting of all subjects for whom a

death or censored outcome had not yet been observed. Although β̂i does not have a

closed form, the log likelihood is strictly concave, and can thus be solved quickly for all

genes using Newton-Raphson iteration or a bisection algorithms.

The local statistic is the Wald-type statistic

ti =
|β̂i|

ŝe(β̂i)
(2.9)

where the standard error of the regression estimate is approximated by the observed

information of the partial likelihood

ŝe(β̂i) =

(−∂2

∂β2
i

log L(βi)|βi=β̂i

)− 1
2

(2.10)

The resulting Z-like statistics ranged from 0 to 3.98. While 496 expressed genes had a

gene-specific p-value less than 0.05 (|z| ≥ 1.96), none was significant after multiple-testing
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correction (all the common FDR and FWER estimates presented in this proposal were

greater than 0.2). The data provide an example where standard gene-specific approaches

fail to provide useful conclusions because no effects are strong enough to pass the multiple-

testing criterion. We then applied the SAFE approach, which is sensitive to the aggregate

effect of genes with related biological functions.

After accounting for multiple testing, two related GO cellular component nodes were

significant (Table 2): GO:0005643 ‘Nuclear pore,’ and GO:0046930 ‘Pore complex.’ How-

ever, the nodes for ‘Nuclear pore’ and ‘Pore complex’ contain an identical set of 30 genes

and should be considered a single finding (p = 0.0002). Likewise, the parental node, ‘Nu-

clear membrane,’ was marginally significant (p = 0.0012, F̂DR = 0.106) but shared 30 of

51 genes with the other nodes. An additional SAFE-plot for the genes unique to ‘Nuclear

membrane’ (not shown) indicates that only the nuclear pore genes are associated with

survival.

Although the original report (Bhattacharjee et al. 2001) found a relationship between

survival and a cluster-defined adenocarcinoma subclass (p = 0.005), this result is stronger,

remarkably specific in its biological implications, and offers new directions for exploration

in the biology of cancer progression and survival. We note that the role of nuclear

transport in cancer (Kau et al. 2004) and cancer aggressiveness (Agudo et al. 2004) has

been the subject of recent attention in the literature.
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2.4 Discussion

These examples demonstrate the applicability of SAFE to a variety of experimental de-

signs and measures of gene-specific differential expression. It is further observed that

significant categories can be found both when many gene-specific associations are ob-

served across the array or with few significant genes.

Although both SAFE and the gene-set enrichment analysis (GSEA) proposed by

Mootha et al. (2003) are two-stage procedures that employ array permutation, there

are two distinctions to be made. First, GSEA uses a Kolmogorov-Smirnov type global

statistic that looks for any general difference between the empirical CDFs of category

and complement local statistics. In doing so, this method has been criticized for being

sensitive to departures from the null that do not necessarily reflect increased associa-

tion of expression and response values in the category (Damian and Gorfine 2004). For

instance, a category containing local statistics that are very non-significant but similar

in magnitude (e.g., t-statistics all close to 0 in a two-sample experiment) will also be

rejected by GSEA.

Secondly, we note that SAFE calculates permutation-based p-values using a sepa-

rate null permutation distribution for each category (i.e., column of u; equation 2.1),

rather than pooling all the values in u into a single null distribution. In contrast, GSEA

uses pooling to compute a FWER-adjusted p-value for the largest Kolmogorov-Smirnov

statistic, after scaling the statistics based upon differing category sizes. However, such

standardization methods ignore the unknown correlation among local statistics and can

therefore produce unequal null distributions among the categories. The inadequate stan-
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dardization of global statistics provides a strong rationale against pooling in SAFE. Ex-

amining the permutation distributions of several exemplary Wilcoxon statistics that have

been standardized (Figure 7) demonstrates the instances in the example data where the

global statistics remain improperly scaled. In this circumstance, a p-value generated from

the pooled null distribution will not control the Type I error of a given category prop-

erly, and can differ from the nominal p-value by a factor of 10 or more. Although pooling

within SAFE meets the technical requirements for weak control of the FWER (Westfall

and Young 1989), inadequate standardization will reduce power for most categories.
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Figure 7: Null distributions for standardized global statistics for 4 GO cellu-
lar component categories in the analysis of survival among adenocarcinomas.
A scaled normal density is overlaid on each histogram as the asymptotic dis-
tribution of a standardized Wilcoxon. Empirical p-values were calculated for
the observed statistic relative to the permuted nulls for each category, and
are invariant to standardization of the Wilcoxon statistics. The upper panels
show good agreement between the theoretical and empirical null distributions
for (A) the most significant category and (B) a marginally significant cate-
gory. The lower panels (C) and (D) display poorly standardized statistics that
have greater variance than the theoretical distribution, and would thus have
inflated Type I errors for pooling-based p-values (p = 0.0133 and p = 0.0352,
respectively).
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3 A comparison of gene category tests

3.1 Introduction

Beginning with Virtaneva et al. (2001), a number of publications have proposed tests

for assessing the association between response and gene categories. The most commonly

employed tests are designed to begin with a list of significant genes. A secondary analysis

then looks for over-representation, or enrichment, of genes within the category on the

gene-list, using Fisher’s Exact Test or other tests of 2 x 2 contingency tables (see Section

1.4 for a list of methods and softwares). Other approaches examine the significance of

genes using more direct comparisons of the gene-specific measures of DE, thereby avoiding

any need for intervening gene lists. In these methods, tests are constructed either for an

average difference of gene-specific statistics (Boorsma et al. 2005; Kim and Volsky 2005),

or using classical rank-based procedures for two-sample comparisons (Barry et al. 2005;

Ben-shaul et al. 2005; Mootha et al. 2003). Herein we describe how the existing gene

category methods can also be broadly sorted according to the null hypotheses they test

against.

Gene category testing is now widely performed in a range of fields and the results

of such analyses are frequently reported without independent verification. However, we

argue that category testing has not yet been placed on firm statistical foundation. As

pointed out in a recent review by Allison et al. (2006), even fundamental issues such as a



formal definition of the underlying null hypothesis and a proper demonstration of Type

I error have not been provided for many of the various methods in the literature.

3.1.1 Contributions

In this chapter we provide a careful and rigorous analysis of gene category testing by

first defining a general framework. Presenting and contrasting existing methods in this

manner allows us to identify two distinct classes that are defined by the null hypothe-

ses they assume or induce. Several shortcomings of these methods are revealed through

derivation and through simulations from an example dataset. We then propose an al-

ternative approach to hypothesis testing that can overcome these shortcomings so that

it provides more power while demonstrating proper coverage under the null hypothesis.

This approach can also be applied to a wider set of experimental designs.

As a first class of gene category test, many methods implicitly assume the gene-specific

test statistics are independent and identically distributed (i.i.d.). However, a casual

inspection of the microarray literature indicates that the assumption of independence is

violated in the vast majority of cases. In simulations generated from real microarray

data, we illustrate how correlation in expression causes these methods to be extremely

anti-conservative, leading to a large number of false discoveries. As another approach

to category testing, permutation of the expression data has been proposed as a means

of inducing suitable null hypotheses. In these methods, the choice of sampling unit

greatly influences the outcome (Breslin et al. 2004). We describe how permutation of

gene assignments merely induces the same null in class 1 tests of there being i.i.d. gene-

43



specific statistics. Conversely, array permutation methods constitute a second class of

gene category tests, having been proposed with the stated intention of preserving the

correlation in expression observed among genes (Barry et al. 2005; Mootha et al. 2003).

We next define an important property of gene-specific statistics that is necessary for

proper coverage under array permutation. When this property is met, the induced null

hypothesis is that gene-specific test statistics are dependent, yet approximately identically

distributed according to no association with the response. Gene category methods that

rely on this null are shown to provide better coverage in simulated data.

In defining these two classes of tests, we propose that a broader null hypothesis is

warranted for gene categories tests, allowing for both dependent coexpression of genes and

also varied degrees of association between gene expression and response. Interestingly,

array permutation approaches can be quite conservative under certain forms of this null.

The conservativeness can be explained in part through an analytical argument which

shows that the maximum variance of the category-wide test statistic occurs under the

special case induced by array permutation. We present a simple and powerful bootstrap-

based approach that allows for the more general null hypothesis to be tested. Finally, we

demonstrate the utility of this new method in a breast cancer dataset, and discuss several

other advantages that the bootstrap-based tests have over array permutation procedures.
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3.2 A general framework for gene category tests

3.2.1 Notation and framework

To describe the variety of gene category tests in a unified way, we will continue to refer

to the observed expression data as x, and the response as y as in Section 2.2.1. When

we regard an unrealized expression matrix as a collection of random variables, we will

use uppercase versions of the standard notation, i.e., X, Xij, Xi∗ and X∗j .

To more easily derive the properties of tests, a single gene category will be represented

by a subset C ⊆ {1, . . . , m} such that i ∈ C if and only if gene i is a member of the

category. The size of a category C will be denoted by mC =
∑m

i=1 I(i ∈ C). For

any category C, the complementary set of genes will be denoted by C̄ and be of size

mC̄ = m − mC .

We also adopt the terminology in the previous chapter, where hypothesis tests of

gene categories can be viewed as a two-stage procedure (see Box 1). In the first stage,

a local statistic measures the association between the expression profile of each gene

and the response. We denote the local statistic of gene i by Ti = T (Xi∗,y) and let ti

be the corresponding value from observed data. The function T (·) is typically chosen

in accordance with the experimental design and scientific goal of the study. In a two-

condition experiment, one could use a t-statistic or average fold change, while in more

complex experimental designs, for example censored time-to-event data, a local statistic

derived from the Cox proportional hazard model may be used to test for an association

between gene expression and patient outcome. For many common experiments, T will

estimate or be related to an gene-specific parameter that captures the association between

45



response and expression. In the example local statistics for a two-condition experiment

that are given above, the related parameters would be a scaled difference and a ratio of

population means, respectively. Properties of local statistics are examined more fully in

Section 3.5.3.

In the second stage of a gene category test, a global statistic is used to compare the

local statistics of genes within a category C to those in the complement. We denote the

global statistic for category C by U = U(T1, . . . , Tm : C), and in the following sections

describe the functional forms of U(·) that relate to methods of testing gene categories that

have already been proposed. Existing methods focus on either detecting a difference in

the proportion of genes called significant, or detecting a shift in the average local statistic

within the category versus its complement. Through describing the global statistics these

methods employ, and the way in which p-values are obtained, it can be seen that two

distinct classes of gene category tests exist. These classes are defined by the underlying

null hypotheses that are either assumed or induced by resampling-based procedures.
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Box 1: Common elements of gene category tests

Gene category tests are typically two-stage procedures requiring the follow-

ing statistics:

• A local statistic that measures the association between response (e.g.

experimental condition) and expression of each gene.

• A global statistic that compares the local statistics within a category

to those of its complement.

Two classes of hypothesis tests are typically designed for each global statistic:

1. Parametric or rank-based procedures that assume independent and

identically distributed local statistics, or gene permutation methods

that induce the same null.

2. Array permutation methods which induce a null that maintains the

correlation structure among genes while removing all associations to

the response.

Error rate controlling or estimating procedures address the multiple compar-

isons involved in simultaneously testing a number of different gene categories.
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3.3 A Survey of gene category test statistics

Gene category test statistics can be generally be represented as looking for a change in

the DE of genes within a category relative to the genes in its complement. In a number

of the gene category publications, hypothesis tests are designed from traditional methods

for comparing two random samples of data. In these proposals, though, we note that

the null hypothesis has not be explicitly defined, and it is rarely discussed whether the

necessary assumptions are met in gene expression data. In the following section, we will

demonstrate that a particular null hypothesis is assumed by a variety of gene category

tests. The tests that fall into this class vary in terms of the global statistics that are

chosen, and whether exact or approximate distributions are used to determine p-values,

but can be collectively stated as follows.

Definition 1. Class 1 gene category tests are defined by the assumed or induced null

hypothesis. For local statistics T1, . . . , Tm, the null can be stated as

H0 : T1, T2, . . . , Tm are i.i.d with Ti ∼ F (3.1)

where F can take any general form, but is typically thought to correspond to there being

no association between expression and the response of interest.

The global statistics that have been proposed can be classified as “categorical” when

a list of significant genes has been previously identified by a gene-specific analysis, and

“continuous” when a more direct measure of DE is available for each gene. Two global
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statistics are presented below for each case, and a brief description is given of the cor-

responding non-resampling based Class 1 tests. We will focus on one-sided forms of the

tests because in most applications one is only interested in categories showing increased

association with the response relative to what is seen across the array.

3.3.1 A survey of the global test statistics

Categorical Test Statistics

Gene-list enrichment methods have developed as a post hoc means of testing a category

once genes with significant amounts of DE have been identified. Let R denote the re-

jection region for the local statistics that produces the significant gene list. R might be

determined independently from the data, (e.g., from quantiles of a central t-distribution),

or in a data-dependent manner (e.g., from methods to control the FWER or FDR for

the multiple comparison of m genes).

Gene-list enrichment tests only consider the dichotomous outcomes of the m gene-

specific hypothesis tests, I{Ti ∈ R} . The differential expression within C and C̄ is

therefore summarized by a 2 × 2 contingency table (Figure 8).

The traditional contingency table tests that have been proposed for gene category

analysis include the χ2 test of homogeneity, Fisher’s Exact test, and minor variants

of these. In the classical derivation of these tests, the Bernoulli variables I{T1 ∈

R}, . . . , I{Tm ∈ R} are assumed to be independent with the probabilities of rejection

P (Ti ∈ R) = πC for i ∈ C and P (Ti ∈ R) = πC̄ for i ∈ C̄, respectively. The tests then
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Figure 8: The results from a gene-specific analysis as given in a 2×2 table for
a category versus its complement. The size of the two gene sets, given by mC

and mC̄ respectively, are assumed to be fixed quantities. The complete table
can then be determined by knowing the number of rejections in the category
and either the total number of rejections, k, or the number of rejections in the
complement.

look for departures from πC̄ = πC , where all indicators would be i.i.d. It is worthwhile

to note that the Class 1 null (3.1) is sufficient but not necessary for the dichotomous

outcomes to be i.i.d. under a given R. However, (3.1) guarantees the categorical null

holds for any possible choice of rejection region.

In several of the gene-list enrichment software packages the χ2 test of homogeneity is

proposed as an approximate test for large categories (Beißbarth and Speed 2004; Draghici

et al. 2003). The one-sided version of this test is equivalent to the difference in proportions

test proposed originally by Pearson (1911), where the global statistic can be written as

UP = π̂C − π̂C̄ =
1

mC

∑

i∈C

I{Ti ∈ R} − 1

mC̄

∑

i′∈C̄

I{Ti′ ∈ R}. (3.2)

By the central limit theorem, the two proportions are asymptotically Gaussian for large
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mC and mC̄ , and a Z-test is performed on a standardized form of UP .

Fisher’s Exact Test is more commonly applied in gene-list methods, and is noted to be

a conditional test based on the total number of rejected hypotheses, K =
∑m

i=1 I{Ti ∈ R}.

Once K is established, the global statistic can be represented as the number of genes in

the category that are rejected,

UF =
∑

i∈C I{Ti ∈ R} (3.3)

and an exact one-sided p-value is obtained from the hypergeometric distribution. This

p-value is conditional on K, and using it in an unconditional hypothesis test will lead to

slightly conservative results, particularly when the category is small (Yates 1984). De-

pending on how the gene-list is determined, it is not always clear whether it is appropriate

to condition on K, but exact tests are often favored in order to handle small categories.

For moderately sized categories, we note there will be little difference between the exact

conditional and approximate unconditional tests.

Continuous Test Statistics

It is also possible to directly compare the associations of expression to response without

first using a gene-specific test to dichotomize the local statistics. Several of the more

recently proposed gene category tests are designed in this manner. In particular, if one

is interested in the average amount of DE seen in C relative to that of C̄ than a straight

forward global statistic for this comparison is the average difference in local statistics
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between the two sets.

UD =
1

mC

∑

i∈C

Ti −
1

mC̄

∑

i′∈C̄

Ti′. (3.4)

Hypothesis tests of UD have been proposed by two similar methods. In one, a t-test is

performed after standardizing by the pooled sample variance of local statistics (Boorsma

et al. 2005), while in the second method a Z-test is done after UD is scaled by the overall

standard deviation in local statistics (Kim and Volsky 2005). For a typical category

where mC � m, the variance estimates in both methods will be reasonable close, and

similar results will be obtained because of the large number of degrees of freedom of the

t-distribution (df = m − 2).

When using the global statistic in (3.4), the results will be sensitive to the chosen form

of the local statistics (e.g., deciding between a t-statistic or its corresponding p-value),

and may not be robust to skew or outlying observations. Rank-based global statistics

avoid both of these shortcomings, as they are invariant to monotone transformations of

the local statistics. The Wilcoxon rank sum test has been implemented in its classical

form in the software GOStat (Beißbarth and Speed 2004). In the absence of ties the

global statistic is written as

UW =
∑

i∈C

Rank(Ti) (3.5)

Under the Class 1 null hypothesis, the discrete CDF of UW is known once mC and mC̄

are specified. In this case a hypothesis test can be implemented using tables of exact

p-values, or through a Z-test based on a standardized form UW that under independence

will be asymptotically correct for large categories.

The rank-based Kolmogorov-Smirnov test has also been implemented in a gene cat-
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egory test which can also be characterized as testing against the class 1 null (Ben-shaul

et al. 2005). However, the Kolmogorov-Smirnov type statistic has been criticized in gene

category testing for being sensitive to departures that do not necessarily reflect increased

amount of DE in the category (Damian and Gorfine 2004); for example, a category with

no DE but with local statistics that all happen to be very close to one another would be

identified as significant by these tests. For this reason, we will restrict our focus to the

tests of average differences when considering continuous global statistics.

3.4 The effect of correlation on Class 1 tests

In this section we more closely examine the assumption of independent local statistics,

and its failure to hold in gene expression data. First, correlation in expression is defined

and related to correlation in local statistics. Decompositions of the variances of global

statistics demonstrate the effect this dependency has on Class 1 hypothesis tests. A

simulation study based on real microarray data exhibits the extreme anti-conservative

behavior of these tests in the presence of realistic levels of correlation in expression.

3.4.1 Correlations in expression and local statistics

Let ρX
i,i′ = Corr(Xij, Xi′j) be the population correlation between genes i and i′. For

experimental designs with independent arrays, a natural estimate of ρX
i,i′ is the observed

Pearson sample correlation coefficient

ri,i′ =

∑n
j=1(xij − x̄i)(xi′j − x̄i′)√∑n

j=1(xij − x̄i)2 ·
∑n

j=1(xi′j − x̄i′)2
(3.6)
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where x̄i = n−1
∑n

j=1 xij.

The distributions of global statistics under the Class 1 null hypothesis are noted

to be more directly effected by the correlation between local statistics, namely ρT
i,i′ =

Corr(Ti, Ti′). In the special case that T takes a linear form T (Xi∗,y) =
∑n

j=1 a(yj) · Xij

for some function a(·), a simple calculation shows that ρT
i,i′ = ρX

i,i′. An example of a

linear local statistic would be an unscaled difference in sample means, e.g., fold change

on the log-scale; this choice of local statistic is appropriate if the logarithm is a variance-

stabilizing transformation of expression data.

In general, the relationship between the correlations ρX
i,i′ and ρT

i,i′ does not have a

closed analytic form, although it can often be shown numerically to be monotone and

quite linear. Monte Carlo simulations of gene expression data demonstrate this linear

relationship holds in several standard experimental designs and corresponding measures

of DE including t-statistics for two-condition studies and for simple linear regressions

(Figure 9). When linearity holds, (3.6) is also a good estimate of ρT
i,i′.

3.4.2 Correlation and Variance Inflation

The effect that the m·(m−1)
2

pairwise correlations will have on some of the Class 1 gene

category tests can be seen by expanding the variances of particular global statistics. Here,

we derive the true variances of the continuous global statistics, UD and UW , and show

how they are greater than what occurs under the i.i.d. assumption when categories have

positively correlated gene members. For the categorical global statistics, UF and UP , the

variance is also inflated in the presence of positively correlated categories, but is not as
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Figure 9: Correlations in expression and local statistic were generated by
Monte Carlo simulation of Gaussian expression for two genes in several exper-
imental designs: (A) Student’s t for a two-sample comparison; (B) F statistic
for an ANOVA with 4 groups; (C) Cox-proportional hazard model for relating
expression to exponentially distributed survival and censoring times. In each
design, the variance of expression in the second gene ranged from 1 to 10 times
greater, and data was simulated for n = 40 arrays.

easily presented because of its dependency on both the underlying distribution of local

statistics T and also the rejection region R.

For the average difference global statistic, UD, the true variance will differ from that

under the i.i.d. null in class 1 tests by three additive terms

Var[UD] = Vari.i.d.[UD] +
mC − 1

mC
ρC +

mC̄ − 1

mC̄

ρC̄ − ρC,C̄ (3.7)

where ρC =
1

mC · (mC − 1)

∑

i∈C

∑

i′∈C
i′ 6=i

ρT
i,i′ (3.8)

ρC̄ =
1

mC̄ · (mC̄ − 1)

∑

i∈C̄

∑

i′∈C̄
i′ 6=i

ρT
i,i′ (3.9)

ρC,C̄ =
1

mC · mC̄

∑

i∈C

∑

i′∈C̄

ρT
i,i′ . (3.10)
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The additional terms in the variance are the average pairwise correlation within the cat-

egory (3.8), within the complement (3.9), and across the two gene sets (3.10). Moreover,

the variance implied by (3.1) (given by Vari.i.d.[UD] in the above equation) is inversely

proportional to mC . Thus, for fixed values of the average correlations, the proportional

variance inflation Var[UD]

Vari.i.d.[UD]
will become more pronounced in larger categories. We note

that ρC can vary greatly across categories while ρC̄ and ρC,C̄ will close to the average

correlation across the array, which is nearer to zero in most datasets. Because of this, cat-

egories exhibiting positive correlation will have a UD global statistic with greater variance

than what is assumed under (3.1) leading to an anti-conservative Class 1 test.

For the Wilcoxon rank sum global statistic, it is difficult to relate the effect correlation

in expression will have on the exact test of UW which is based on the discrete distribution

of the ranked sum. Nonetheless, solving for the variance of the statistic provides indirect

evidence that the distribution will be misspecified when independence is violated, and

also relates to the improper standardization of UW that occurs in the class 1 approximate

Z-test. In the following theorem, Var[UW ] is derived in the special case of jointly Gaussian

local statistics with any correlations {ρT }. The pdf and cdf of a univariate and bivariate

Gaussian distribution are denoted by φ, Φ and φ2, Φ2 respectively.

Theorem 1. Let T1, . . . , Tm be identically distributed random variables that follow a

multivariate Gaussian distribution with unit variances and pairwise correlations {ρT
ij}.

Then for some category, C ⊂ {1, . . . , m}, the variance of UW =
∑

i∈C Rank(Ti) is given

by
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Var[UW ] =
1

2π

∑

i∈C

∑

j∈C

∑

k/∈C

∑

l /∈C

sin−1


 ρT

ij + ρT
kl − ρT

jk − ρT
il√

(2 − 2ρT
ik) · (2 − 2ρT

jl)


 (3.11)

Proof: The variance of UW can be decomposed into covariances between pair-wise com-

parisons of local statistics through use of the Mann-Whitney form of the statistic as

follows

Var[UW ] = Var
[∑

i∈C

Rank(Ti)
]

= Var
[mC · (mC + 1)

2
+
∑

i∈C

∑

i′∈C̄

I{Ti > Ti′}
]

=
∑

i∈C

∑

j∈C

∑

k/∈C

∑

l /∈C

Cov[I{Ti > Tk}, I{Tj > Tl}] (3.12)

where

Cov[I{Ti > Tk}, I{Tj > Tl}]

= E[I{Ti > Tk} · I{Tj > Tl}] − E[I{Ti > Tk}] · E[I{Tj > Tl}]

= Pr({Tk − Ti < 0} ∩ {Tl − Tj < 0}) − Pr(Tk − Ti < 0) · Pr(Tl − Tj < 0) (3.13)

Note that Each pair of differences in local statistics follows a centered bivariate Normal

distribution



Tk − Ti

Tl − Tj


 ∼ N







0

0


 ,




2 − 2 · ρT
ik ρT

ij + ρT
kl − ρT

il − ρT
jk

ρT
ij + ρT

kl − ρT
il − ρT

jk 2 − 2 · ρT
jl





 . (3.14)
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Therefore each term in (3.12) may be evaluated as follows

Cov[I{Ti > Tk}, I{Tj > Tl}]

= Φ2

(
0, 0; ρ =

ρT
ij + ρT

kl − ρT
jk − ρT

il√
(2 − 2ρT

ik) · (2 − 2ρT
jl)

)
− Φ(0) · Φ(0) (3.15)

=

∫ 0

−∞

∫ 0

−∞
φ2(x, y; ρ) dx dy − 1

4

=

∫ 0

−∞

∫ −ρ2z2√
1−ρ2

−∞
φ2(z1, z2; ρ = 0) dz1 dz2 −

1

4
(3.16)

=

∫ ∞

0

r · exp

(
−r2

2

)
dr ·

∫ 3π
2

+sin−1(ρ)

π

1

2π
dθ − 1

4
(3.17)

=
1

4
+

sin−1(ρ)

2π
− 1

4
=

sin−1(ρ)

2π
(3.18)

where in (3.16) we have used the transformation z1 = x−ρy√
1−ρ2

, z2 = y and then in (3.17)

the transformation z1 = r cos θ , z2 = r sin θ �

Despite these analytical solutions for UD and UW under a special case, in general the

relationship between {ρX
i,i′} and {ρT

i,i′}, and also the relationship between {ρT
i,i′} and the

variance of the global statistic is unknown. Thus, we have conducted a simulation using

real microarray data to quantify the improper Type I error rates when applying Class 1

tests to gene expression data that is correlated but has no association to the response of

interest.

3.4.3 A Simulation Study

A simulation of a two-condition experiment was constructed from a subset of the lung car-

cinoma microarray data from Bhattacharjee et al. (2001). 100 adenocarcinoma samples
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Figure 10: Scatterplot and histograms of the 1823 within-category correla-
tions for the adenocarcinomas samples in the simulation study. 95% of GO and
88% of Pfam categories showed positive correlation on average. The dashed
line separates categories with mC · ρC > 2.5.

were arbitrarily selected and for which expression estimates were available for 7299 genes

(see Chapter 2 for the microarray pre-processing steps). 1823 GO and Pfam categories

were identified with at least 5 members among the expressed genes. The within-category

average pairwise sample correlations ranged from -0.09 to 0.93, with more than 86% of

the categories exhibiting more correlation than what is seen on average across the entire

array (r̄ = 0.012). A scatter plot of average correlation versus size is given in Figure 10,

and is representative of what is seen in most datasets. This general increase in correlation

within categories reflects the findings that coexpression among genes is highly linked to

function (Lee et al. 2004).
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500 randomly selected response vectors were generated for a two-condition experiment

with equal sample size n1 = n2 = 50. In this way, there is no association between

expression and experimental condition, and thus no category is deemed to have greater

DE. In this scheme, we note that the expression matrix is held constant across simulations

and the sample gene-gene correlations {ri,i′} remain fixed.

For each realization of the response vector, the absolute value of a pooled-variance

t-statistic is used as the local statistic, and UF , UP , UD, and UW were calculated. For

the Fisher’s Exact Test statistic UF and the difference in proportions UP , the rejection

region is set at the 0.95 quantile of the t98-distribution. For each global statistic and

each category, parametric tests yield a nominal p-value for every realized response vec-

tor. Histograms of the nominal p-values pooled across all categories and all realizations

demonstrate the extreme non-uniformity of p-values under the induced null hypothesis,

indicating the poor performance of Class 1 tests (Figure 11).

The average coverage of these tests is estimated by the proportion of simulated p-

values that fall below a given α level. For each global statistic, the corresponding Class

1 test becomes more anti-conservative as one considers smaller p-values cut-offs for sig-

nificance (Table 3). To illustrate how this behavior also affects the family-wise error rate

among the L = 1823 categories, we applied a Bonferroni correction to a nominal α level

for the different p-values. In this case, the true FWER seen across 500 simulations is

defined as

FWER =
1

500

500∑

i=1

I

{
L∑

j=1

I
{
pi,j <

α

L

}
> 0

}
(3.19)

where pi,j is the p-value for category j under realization i. Since there is substantial
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Figure 11: Histograms of p-values (1823 categories and 500 simulations) for
the gene-list enrichment tests ((A) Fisher’s Exact (B) and Pearson’s differ-
ence in proportions), and for the average difference tests ((C) Z-test and (D)
Wilcoxon rank sum). The large number of small and large p-values demon-
strate the over dispersion that occurs in positively correlated gene categories
from incorrect estimates of the variance.

overlap in the membership of gene categories with annotations like Gene Ontology, the

use of Bonferroni threshold should be conservative in controlling the FWER. Therefore it

might be thought to provide some protection against the nominally anti-conservativeness

of Class 1 tests. However, for each global statistic, the minimum p-value passed the

Bonferroni threshold in the majority of simulations (UF : 0.772, UP : 0.906, UD : 0.926,

and UW : 0.916), illustrating the error rate is far greater than the target level. The

extreme anti-conservativeness of the class 1 tests of all four global statistics suggests a

different approach is needed to conduct valid gene category tests.
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3.5 Class 2 tests and permutation

3.5.1 Defining the null hypothesis in class 2 tests

In the above sections, we demonstrate how the null hypothesis of class 1 tests (3.1) is

violated by the correlation in gene expression. For this reason, a second class of gene

category tests is warranted that can identify increases in differential expression within a

category while accounting for correlation.

Definition 2. Class 2 gene category tests are defined by the assumed or induced null

hypothesis. For local statistics T1, . . . , Tm, the desired null is stated as

H0 : T1, T2, . . . , Tm are identically distributed with Ti ∼̇ F (3.20)

where F can take any general form, but is typically thought to correspond to there being

no association between expression and the response of interest.

If all pairwise correlations in local statistics were known, {ρT
i,i′}, the true variances

of the average difference statistic, UD, and Wilcoxon rank sum statistic, UW , will be as

given in (3.7) and (3.11) respectively. From this, approximate Z-tests could be performed

on standardized global statistics. In absence of knowing true correlations, a certain type

of resampling-based tests can be used to induce the class 2 null.
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3.5.2 Permutation-based gene category tests

Several gene category tests have proposed using permutation as a means of obtaining em-

pirical p-values. In applying permutation to the data matrix of gene expression, methods

have chosen the independent sampling unit to either be the expression profile of genes

(i.e., row permutation) or of arrays (i.e., column permutation). It is important to note

that the choice of sampling unit will directly effect the induced null hypothesis, and has

been shown to dramatically influence the outcome of gene category tests (Breslin et al.

2004). Here, we present the induced null hypothesis of each in more detail and illustrate

how array permutation methods are uniquely able to induce the class 2 null when the

form of local statistics are chosen appropriately.

Gene permutation

Several permutation-based methods have proposed randomly reordering the rows of the

data matrix (Ashburner et al. 2000; Pavlidis et al. 2004; Zhong et al. 2004). In this setup,

the collection of local statistics remains unchanged while the category assignments are

randomized. This resampling scheme is noted to induce the null hypothesis in (3.1)

with reassigned local statistic following the empirical distribution of the observed values

F̂ (t) = 1
m

∑m
i=1 I{ti ≤ t}. The randomization also removes all correlation among the

reassigned local statistics, and therefore will give results that are approximately equal to

the i.i.d. tests. This was confirmed in the simulations presented above, with test results

of the four global statistics under row permutation being equally anti-conservative when
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a sufficient number of resamples is taken for the desired α-level of the test. Therefore,

these methods do not offer any improvements in coverage over the non-resampling based

class 1 tests.

Array permutation

The second manner in which permutation has been implemented is through reordering

the column vectors of expression, reflecting that an array constitutes the independently

sampled unit. This design has been implemented in GSEA for a Kolmogorov-Smirnov

type global statistic (Mootha et al. 2003), and in SAFE for a Wilcoxon rank sum type

global statistic (Barry et al. 2005). Array permutation procedures are applicable to ex-

perimental designs where reassigning samples or response information effectively removes

the association of interest. As noted previously (Barry et al. 2005), this form of permu-

tation does not change the observed correlation in expression among genes, such that

the Class 2 null hypothesis is induced if the local statistics are identically distributed. In

order to more fully describe a necessary property of local statistics required to induce this

null (3.20), we revisit the process of selecting an appropriate form of T (·) for a certain

experimental design.

3.5.3 δ-dependent local statistics

In most settings where gene category testing is performed, investigators are also interested

in examining some gene-specific association to the response of interest. For many common

64



differential expression experiments, an unknown gene-specific parameter δi can be defined

that meaningfully captures this association. In order to conduct a gene-specific analysis

of differential expression, T (·) is chosen as a measure that can be used in a hypothesis

test against a null value for the {δi}. As illustration, consider a two-condition experiment

where the response vector yj takes values in the set {1, 2}, indicating the sample condition

of the array. If the expression of gene i has expectation µ1i and µ2i under the two

conditions and common variance σ2
i , then the underlying association of interest in these

experiments could be presented as the scaled difference in means

δi =
µ1i − µ2i

σi ·
√

1
n1

+ 1
n2

(3.21)

where nk =
∑n

j=1 I{yj = k} (Hu and Wright 2005). In this case, the gene-specific test

of interest is H0,i : δi = 0 and the pooled-variance t-statistic is a natural choice of local

statistic (Galitski et al. 1999). When gene expression is Gaussian the local statistic

follows a central t-distribution under the null hypothesis. Other choices of T (·) that may

also be appropriate for gene-specific testing of δi = 0 as defined in (3.21), e.g., a Wilcoxon

rank sum statistic.

In general, a function T (·) is a proper choice of test statistic for a null of the form,

H0,i : δi = d, when the distribution F (Ti | δi = d) is known and does not depend on

any nuisance parameters. We note that some distributional properties may still require

specification. For instance, with the Student’s t-statistic proposed above, the distribution

is known for gene expression data that is Gaussian once the degrees of freedom n1+n2−2

is specified. When the distribution of T (·) can be specified in this manner for any choice of

d, we refer to it as being δ-determined. This property is noted to also be important in the
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theory of interval estimation and pivotal quantities. If the CDF F (Ti | δi = d) is known

and does not depend on nuisance parameters, it can always be used as a pivotal quantity

to construct a confidence set for δi by inverting the rejection region of the corresponding

hypothesis test (Casella and Berger 2002).

Being δ−determined is also important when conducting gene category tests, so that

differences in nuisance parameters do not influence the comparison of a category against

its complement. We illustrate the ramifications of this by returning the two-condition

experiment and the gene-specific parameter from (3.21). Under this definition of δ,

the individual means and variances of expression are considered nuisance parameters.

Suppose that for each gene one directly uses the modified t-statistic from the SAM

software (Tusher et al. 2001) as the local statistic. This statistic contains a constant in

the denominator that effectively penalizes lowly-expressed genes in order to improve the

FDR for lists of rejected genes. The SAM t-statistic is not δ−determined because its

distribution will depend on the means and variances of expression. Consider a category

consisting of mainly highly-expressed genes (e.g., “housekeeping” genes). Even if no

genes were differentially expressed across conditions, and thus no category should be

considered special in this regard, genes in the category would often appear amongst the

most-significant genes in a ranked list. The category would thus appear to be significant.

Categories with lowly-expressed genes would experience the opposite effect, and would

be unlikely to be considered significant even under the alternative hypothesis.

When δ−determined statistics are chosen, the null induced by array permutation,

where every gene-specific association takes a null value, H0 : δ1 = . . . = δm = d can be

stated in terms of the Class 2 null (3.20) where F = F (T | d). For the remainder of the
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paper, we will only consider local statistics that are δ−determined, or approximately so

when n is large.

3.5.4 Simulated coverage of class 2 tests

Array permutation can be employed to construct a Class 2 test of each of the global

statistic presented above, and are evaluated through the simulation study. In this case,

the tests are ensured to be of proper size, since both the randomization procedure in

the simulation and array permutation employ the same sampling schemes. We confirmed

this by obtaining empirical p-values for each category and each realization of the response

vector, but due to computational restrictions the minimum possible empirical p-value was

0.001. The slight error in coverage that are noted for UP , UZ and UW reflect sampling

variability. The Class 2 Fisher’s Exact Test results are somewhat conservative, and can

be attributed to the numerous tied global statistics that occur in small categories, and

which produced highly discretized p-values that will be conservative at a given α-level.

3.6 A more general null for gene category tests

In writing the Class 2 null hypothesis (3.20) induced by array permutation, we note a

second potential shortcoming of the existing gene category methods. Both classes of

procedures assume a null hypothesis under which the marginal distribution of every local

statistic is identically distributed. However, the overall goal of gene category testing

is to establish whether or not an relative increase in the amount of differential expres-
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Table 3: The ratio of realized Type I error rates over different α levels for
the Class 1 (parametric) and Class 2 (array permutation) tests of each global
statistics. Results are from 500 randomizations of a subset of the adenocarci-
noma sample from Bhattacharjee et al. (2001) into a two-condition experiment
n1 = n2 = 50.

Fisher’s Pearson’s Z-test Wilcoxon

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

α = 0.1 1.19 0.40 1.32 1.01 1.82 1.02 1.86 1.02

α = 0.01 3.40 0.21 3.49 1.02 5.92 1.02 5.83 1.03

α = 0.001 13.3 0.14 14.7 1.06 25.2 1.06 23.5 1.02

α = 1e − 4 65.3 -NA- 72.6 -NA- 130 -NA- 116 -NA-

α = 1e − 5 366 -NA- 432 -NA- 759 -NA- 669 -NA-

α = 1e − 6 2219 -NA- 2918 -NA- 4880 -NA- 4183 -NA-

sion is observed. For example, if a fraction of the genes on the array are differentially

expressed to an identical degree while the remaining genes non-differentially expressed,

than any category with the same proportions should be considered no different than the

complementary set of genes. However, the array permutation null is violated in this case.

Based on this example, we propose the following less restrictive null hypothesis. In-

stead of requiring all to have a common level of differential expression, we allow each

gene to fall into one of K ≤ mC strata, where each has a different degrees of associa-

tion with the response of interest. Formally, we restrict the gene-specific parameters δi,
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i = 1, . . . , m, to belong to a finite set {d1, d2, . . . , dK}. Let βC,k = m−1
C

∑
i∈C I{δi = dk}

denote the proportion of genes in C that belong to the k-th stratum, and let βC̄,k denote

the corresponding proportion of genes in the complement with the same amount of DE.

The null hypothesis is that the proportions of genes in each of the K strata is the same

for both gene sets:

H0 : βC,k = βC̄,k = βk k = 1, . . . , K (3.22)

The null in (3.22) allows a broad variety of associations with the response of interest,

while maintaining the overall goal of gene category tests. This formulation can also

be thought of as ensuring the empirical distribution of gene-specific parameters will be

identical between the two sets. Last, we note that the Class 1 and Class 2 nulls become

special cases with K = 1 stratum.

To define a set of alternative hypotheses of interest, we restate that a functional

category of interest is one with more overall differential expression among its constituent

genes than what is seen across the array. Thus, a natural alternative to (3.22) is when

the average DE of genes in the category is greater than in the complementary set. In our

notation, this can be written as

HA :
K∑

i=1

βC,k · dk >
K∑

i=1

βC̄,k · dk (3.23)

where the Wilcoxon rank sum, UW , will continue to be a well suited global statistic

for identifying increased amounts of differential expression in a robust manner. Other

alternatives to (3.22) exist, where the category’s eCDF of gene-specific parameters is

different than that of the complement, but without DE being greater on average. But

these alternatives relate to the earlier criticism of Kolmogorov-Smirnov type tests as
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being of less biological interest.

In the following subsections we will describe simple bootstrap-based tests that are

compatible with the stratified null (3.22) and which approximately maintain the correla-

tion structure of the expression data. Distributional properties of UW are derived under

(3.22) that demonstrate both its utility in the bootstrap and also a reason they have im-

proved coverage over Class 2 tests when under the stratified null. The simulation study is

adapted to create the more general null in order to quantify the improvements with real

gene categories, and to also demonstrate increases in power under defined alternatives

(3.23).

3.6.1 Defining the bootstrap-based tests

Standard bootstrap methodology is based on the assumption that the observed data can

be divided into independent units that are derived from an unknown probability model.

When the statistic of interest is sufficiently regular, resampling from the empirical distri-

bution of the observed data enables one to form confidence intervals without parametric

assumptions (Efron and Tibshirani 1998).

For most experimental designs in the analysis of microarray data, the independent

sampling unit is the joint vector {x∗j , yj} containing both the m gene expression mea-

surements and response information for a sample. In order to approximate the unknown

probability model of the data, we resample the joint vectors with replacement. Let

b = (b1, . . . , bn) be a resampling vector whose elements are independent and uniformly

distributed over the integers {1, . . . , n}. Associated with b is a resampled response
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y∗b = (yb1 , . . . , ybn), and a resampled expression matrix in which the measurements of

gene i are given by x∗b
i· = (xib1 , . . . , xibn). From the resampled data, local statistics

t∗bi = T (x∗b
i· ,y

∗b), and a global statistic u∗b = U(t∗b1 , . . . , t∗bm : C) may be calculated in the

usual way. Let B denote the total number of bootstrap samples.

We use standard methods to generate bootstrap confidence intervals for the parameter

θ = E[U ], where U is suitably chosen so that the expectation is known under the stratified

null H0 in (3.22). The corresponding hypothesis test determines if θ0 = EH0 [U ] falls in

the constructed interval.

In the following theorem, we show that the expectation of the Wilcoxon global statistic

UW under the stratified null hypothesis is the same as in the classical i.i.d. setting,

θ0 = mC ·(m+1)
2

, regardless of K and the constants d1, . . . , dK.

Let T1, . . . , Tm be absolutely continuous random variables having densities in an in-

dexed family {f(t; δ) : δ ∈ D}. In particular, we assume that the distribution of Ti

has density fTi
(t) = f(t; δi) for some sequence of indices δ1, . . . , δm. For any Ti and Tj

with δi = δj, we assume that the joint distribution is symmetric, i.e., fTi,Tj
(t1, t2) =

fTi,Tj
(t2, t1) for all t1, t2

The following elementary lemma will be useful in evaluating the moments of UW .

Lemma 1. Let T1 and T2 be distributed as f(t; δ1) and f(t; δ2) and assume that Pr(T1 =

T2) = 0. Define µ(δ1, δ2) ≡ E[I{T1 > T2}], then µ(δ1, δ2) = 1−µ(δ2, δ1) and µ(δ1, δ2) = 1
2

when δ1 = δ2.

Let K be the number of strata of differentially expressed genes present on the array,
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so that for each i = 1, . . . , m the index δi is contained in the fixed set D = {d1, . . . , dK}.

Let βk = 1
m

∑m
i=1 I{δi = dk} be the proportion of genes on the array that are in the k-th

strata (see Section 3.6 for more detail).

Theorem 2. For a category C ⊆ {1, . . . , m} where 1
mC

∑
i∈C I{δi = dk} = 1

m

∑m
i=1 I{δi =

dk} = βk for every stratum, then the expectation of UW is

E[UW ] =
mC · (m + 1)

2
. (3.24)

Proof: The expectation of UW may be calculated as follows by decomposing the mC ·mC̄

pairwise comparison of T ’s into K2 different terms involving µ(dk, dk′).

E[UW ] = E
[∑

i∈C

Rank(Ti)
]

= E
[mC · (mC + 1)

2
+
∑

i∈C

∑

j /∈C

I{Ti > Tj}
]

=
mC · (mC + 1)

2
+

K∑

k=1

K∑

k′=1

∑

i∈C
δi=dk

∑

j /∈C
δj=d

k′

µ(dk, dk′)

=
mC · (mC + 1)

2
+

K∑

k=1

K∑

k′=1

mC · βk · mC̄ · βk′ · µ(dk, dk′)

=
mC · (mC + 1)

2
+ mC · mC̄

[ K∑

k=1

β2
k

2
+
∑

k′<k

βk · βk′ ·
[
µ(dk, dk′) + µ(dk′, dk)

]]

=
mC · (mC + 1)

2
+ mC · mC̄

[ K∑

k=1

β2
k

2
+
∑

k′<k

βk · βk′

]

=
mC · (mC + 1)

2
+

mC · mC̄

2

[ K∑

k=1

βk

]2

=
mC · (mC + 1)

2
+

mC · mC̄

2
=

mC · (m + 1)

2

We note that the last expression does not depend on the number of strata K, the propor-

tion of genes in each {β1, . . . , βK}, nor the degrees of association {d1, . . . dK}. Further-
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more, it equals the expectation of the Wilcoxon rank sum under the traditional Class 1

null (3.1) �

Theorem 2 holds regardless of the dependence structure among local statistics. Since

the expectation of UW is fixed under any form of the stratified null, a hypothesis test

can be conducted by determining whether the null value is contained in an appropri-

ately defined confidence interval. Similar derivations for the global statistics UZ and UP

can demonstrate they also have a fixed expectation of 0 under (3.22). By contrast, the

expectation of the global statistic employed in Fisher’s Exact test depends on the K

gene-specific parameters, and the expectation of the Kolmogorov-Smirnov type global

statistic used in Mootha et al. (2003) depends on both the gene-specific parameters and

the correlation structure among local statistics. Thus, standard bootstrapped confidence

intervals can not be used to conduct hypothesis tests for these global statistics. The

Wilcoxon global statistic UW is still favored as a robust statistic that avoids the arbi-

trariness of choosing a rejection region for the gene-list methods. Thus, in the remaining

sections it will be the only global statistic considered.

In order to test the null in (3.22) against the one-sided alternatives described in

(3.23), we produce a confidence interval for UW whose lower bound Lα is an estimate of

the α quantile of the unknown distribution of UW . The associated test rejects H0 when

θ0 < Lα. A basic procedure for producing a confidence interval via bootstrap resampling

is the percentile method (Efron 1979). In this case the lower bound is simply the sample

α-percentile of the resampled values {u∗b} : Lα = u∗
(B·α). The percentile method is

73



straightforward to compute and invariant under monotone transformations of the global

statistics. However, its coverage is often poor, especially when the sample size is small

(Efron 1987) due to the difficulty of estimating the tail distribution of the global statistic.

The slight anti-conservativeness of the resulting test is reflected in simulations below.

Alternatively, if one assumes that the distribution of the global statistic is approxi-

mately Gaussian, a confidence interval can be generated using common bootstrap-based

estimates of the moments of UW . The resulting one-sided confidence interval has a lower

bound given by

Lα = ū∗ − ŝe∗(U) · tn−1,1−α. (3.25)

where

ū∗ =
1

B

B∑

b=1

u∗
b and ŝe∗(U) =

[∑B
b=1(u

∗
b − ū∗)2

B − 1

] 1
2

(3.26)

In (3.5) we note that the Wilcoxon global statistic UW is the sum of mC · (m − mC)

pairwise comparisons of local statistics. When the average correlation between terms is

not extreme and mC is large, approximate normality of UW follows from the Central Limit

Theorem. Histograms of resampled global statistics confirm that the approximation to

the Gaussian distribution is appropriate for the large number of genes considered in most

microarray experiments. One advantage the t-interval has over the percentile interval is

that the maximum attainable significance is not bounded by the number of resamples

taken. Our simulations suggest that B = 200 arrays are typically sufficient for estimating

the first two moments.
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3.6.2 Coverage Under a Simulated Null

The coverage of permutation- and bootstrap-based tests of UW under the stratified null

hypothesis was examined using randomization of the lung cancer dataset from Section

3.4.3. Several null hypotheses were investigated with K = 2 classes of genes. In each

the gene-specific parameters in (3.21) took one of two values, 0 or d > 0. To artificially

generate differentially expression in the i-th gene, the expression values were first stan-

dardized to have unit variance; then d ·
√

1/n1 + 1/n2 was added to the measurements

xij with yj = 1. Simulations were run with three levels of DE, d = 1, 3, and 5, and

also for three proportions of DE, β = 1
5
, 1

3
, and 1

2
. For each proportion, β, a subset of

non-overlapping categories were selected such that β · mC and β · mC̄ are integers. This

resulted in 41 categories being considered for β = 1
5
, 40 categories for β = 1

3
, and 34

categories for β = 1
2
. The categories exhibited a wide range of correlation, reflective of

that seen across all categories.

For each of 1000 randomizations of tumor status, array permutation and bootstrap-

based hypothesis tests were conducted using 2500 permutations and resamples, respec-

tively. Coverage was determined by comparing the empirically derived p-values to various

α levels (Figure 12). For α = 0.05, the bootstrap coverage was only slightly greater and

remained relatively unchanged regardless of β and d, whereas the coverage of permuta-

tion testing dropped dramatically as β and d diverged from 0. For d = 3 and β = 1
3
, the

minimum empirical p-value under permutation was 0.012, so the estimated coverage for

any α < 0.012 would be zero (Figure 12C).
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These findings were also confirmed using simulated data from an independent Gaus-

sian model for a two-condition experiment, although not demonstrated here. In the

simulation above, the bootstrap methods, while slightly anti-conservative, maintained

their approximately correct coverage regardless of the null hypothesis being induced.

However, in simulated expression data with a smaller sample size of n = 20, the anti-

conservativeness of the percentile-based bootstrap method becomes more pronounced at

smaller α. Since many microarray datasets can be of this size, the bootstrap Student’s

t-interval is suggested as the preferred approach.

3.6.3 Proof of improper coverage under permutation

The poor performance of permutation-based testing can be attributed to the fact, noted

above, that a null is induced under which the local statistics are approximately identi-

cally distributed (3.20). We show in the following theorem that, for suitably correlated

Gaussian local statistics, the variance of the Wilcoxon global statistic UW is maximized

under the K = 1 null in (3.20). Since the variance of UW under the stratified null (3.22)

will be smaller, and will in fact decrease as genes become more differentially expressed,

the array permutation-based tests will tend to be conservative, as is seen in Figure 12.

The following lemma regarding the bivariate Gaussian distribution will be useful for

the theorem.

Lemma 2. For the bivariate normal distribution, the following is true for the function

f(x, y) = Φ2(x, y; ρ) − Φ(x) · Φ(y):

1. f(0, 0) is a global maximum when ρ > 0
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2. f(0, 0) is a global minimum when ρ < 0

3. f(x, y) = 0 when ρ = 0

Proof: The first derivatives of f(x, y) are

∂f

∂x
(x, y) =

∂

∂x
(Φ2(x, y; ρ) − Φ(x) · Φ(y))

= φ(x) · Φ
( y − ρx√

1 − ρ2

)
− φ(x) · Φ(y) (3.27)

∝ Φ
( y − ρx√

1 − ρ2

)
− Φ(y) (3.28)

and ∂f
∂y

has an analogous form due to symmetry. Since Φ is a strictly increasing function,

setting the derivatives equal to zero leads to the following equations

y − ρx =
√

1 − ρ2 · y

x − ρy =
√

1 − ρ2 · x (3.29)

for which {x = 0, y = 0} is the only solution when ρ 6= 0. Since (0, 0) is the only

stationary point, a second derivative test can be used to determine whether it is a global

minimum or maximum (Thomas and Finney 1992). The second derivatives can be solved

as follows

∂f

∂x2
(x, y) = φ′(x)

[
Φ
( y − ρx√

1 − ρ2

)
− Φ(y)

]
+ φ(x) · φ

( y − ρx√
1 − ρ2

)
· −ρ√

1 − ρ2

∂f

∂y2
(x, y) = φ′(y)

[
Φ
( x − ρy√

1 − ρ2

)
− Φ(x)

]
+ φ(y) · φ

( x − ρy√
1 − ρ2

)
· −ρ√

1 − ρ2

∂f

∂x∂y
(x, y) = φ(x) ·

[
φ
( y − ρx√

1 − ρ2

)
· 1√

1 − ρ2
− φ(y)

]
=

∂f

∂y∂x
(x, y) by symmetry
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At the point {x = 0, y = 0} the derivatives are equal to

∂f

∂y2
(0, 0) =

∂f

∂x2
(0, 0) =

[
0 + φ(0)2 · −ρ√

1 − ρ2

]

= φ(0)2 · −ρ√
1 − ρ2

(3.30)

∂f

∂x∂y
(0, 0) =

∂f

∂y∂x
(0, 0) = φ(0) ·

[
φ(0) · 1√

1 − ρ2
− φ(0)

]
(3.31)

and the discriminant takes the form

D(0, 0) =
∂f

∂x2
(0, 0) · ∂f

∂y2
(0, 0) − ∂f

∂x∂y
(0, 0)2

=

(
φ(0)2 · −ρ√

1 − ρ2

)2

−
(

φ(0) ·
[
φ(0) · 1√

1 − ρ2
− φ(0)

])2

= φ(0)4

(
ρ2

1 − ρ2
− (1 −

√
1 − ρ2)2

1 − ρ2

)

= φ(0)4 · 2 ·
√

1 − ρ2 − (1 − ρ2)

1 − ρ2
(3.32)

Since
√

1 − ρ2 > (1−ρ2) for all non-zero ρ ∈ (−1, 1), the discriminant is strictly positive,

proving that either a minimum or a maximum must exist. From the second derivatives

in (3.30), one can show that f(0, 0) is a minimum when ρ < 0 and a maximum when

ρ > 0. Lastly f(x, y) is exactly 0 when ρ = 0 by independence �

In order to prove Var[UW ] is a maximized when K = 1, we must place the following

restriction on the correlations among local statistics.

Definition 3. For local statistics T1, . . . , Tm with correlations {ρT
ij}, a category C ⊆

{1, . . . , m} will be called correlation dominant if for every {i, j} ∈ C and {k, l} /∈ C it is

true that ρT
ij ≥ ρT

ik and ρT
kl ≥ ρT

kj, so that all correlations within the category and within

the complement are greater than those across the two gene sets.
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Theorem 3. Let T1, . . . , Tm be random variables that follow a multivariate Gaussian dis-

tribution with means δ1, . . . , δm, unit variances and correlations {ρT
ik}. For a correlation

dominant gene category C, the variance of UW has a global maximum at δ1 = δ2 = . . . =

δm = d.

Proof: The variance of UW can be decomposed into the covariances given in (3.12) as

described in Theorem 1, but unlike (3.14), the paired differences in local statistics now

follow a non-central bivariate normal distribution with marginal means δk−δi and δl−δj.

From (3.13) each covariance term can be written as

Cov[I{Ti > Tk}, I{Tj > Tl}] = Φ2

(
δk − δi, δl − δj; ρ

)
− Φ(δk − δi) · Φ(δl − δj) (3.33)

where ρ is defined as in (3.15). We consider in turn several cases.

When i = j and k = l, ρ is proportional to 2 − 2 · ρT
ik, which is positive quantity

except when the genes are perfectly correlated which is ruled out by the definition of a

correlation dominant category. From Lemma 2, (3.33) is maximized when δi = δk. Since

this is true for all {i, k} pairs of category and complement genes, a global maximum of

the summed covariances will occur when all local statistics have the same mean.

When i = j and k 6= l, ρ is proportional to 1+ ρT
ij − ρT

jk − ρT
il and will be greater than

0 for a correlation dominant category such that a maximum occurs when δi = δk = δl.

An analogous argument holds for when i 6= j and k = l.

For i 6= j and k 6= l, either ρ will be positive if (ρT
ij + ρT

kl) > (ρT
jk + ρT

il) so that (3.33)

is maximized when δk = δi and δl = δj, or ρ will be exactly 0 if (ρT
ij + ρT

kl) = (ρT
jk + ρT

il)

and (3.33) will be constant. This inequality of summed correlations is again guaranteed

for correlation dominant categories.
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This proves a global maximum for Var[UW ] is achieved at δ1 = δ2 = . . . = δm = d

since only in this case will every covariance term in (3.12) be either maximized, or a

constant. This situation corresponds to the assumption of identically distributed local

statistics in the Class 2 null (3.20) that is the special case in the stratified null (3.22)

when K = 1 �.

Although the above theorem required that a dominance restriction be placed on the

correlation structure of local statistics. However, many for non-correlation dominant

categories with a positive average within category correlation, Var[UW ] can also be shown

numerically to be greater when K = 1 than in any K = 2 stratified null. This was

illustrated in different categories of genes and in expression data from real microarray

datasets.

3.6.4 Power under simulated alternatives

In order to assess the relative power of the bootstrap tests over array permutation,

alternative hypotheses were specified that corresponded to the criterion in (3.23), and

were induced in the randomized adenocarcinoma data. To achieve increases in DE in some

or all of the strata, a constant was added or multiplied to the gene-specific parameters

described in section 3.6.2. More precisely, if {δ0
i : i ∈ C} are the gene-specific parameters

under H0, we consider H1 to be of the form of either {δi = c + δ0
i : i ∈ C} or {δi =

c · δ0
i : i ∈ C}. In this way, power curves of each of the resampling-based tests can be

displayed by varying c. Figure 13 illustrates the effects when c is applied in an additive
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Figure 13: Average power of permutation and bootstrap based gene category
tests as a function of the scaling constant c. Results based on randomized
microarray data and real GO categories. (A) K = 5 classes, with {dk} equally
spaced between 0 and 1, and (B) K = 2 classes of genes with 1/3 differentially
expressed at d = 1 (as given by the CDF in the inset graphs). Both scenarios
exhibit more power against the alternative with the bootstrap tests.

manner for K = 2 stratum with DE and non-DE genes, and in a multiplicative manner

for an example with K = 5 stratum. The results demonstrate the improved power of the

bootstrap methods over array permutation.

3.7 Analysis of a survival microarray dataset

The breast cancer survival datasets from Chang et al. (2005) is used to illustrate the

power and utility of bootstrap-resampling as compared to array permutation. A total

of n = 295 breast cancer samples were analyzed on Agilent microarrays, and normalized
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gene expression estimates were obtained for a subset of m = 11176 genes that were

annotated to at least one of 1348 GO terms (details on normalization, filtering, and

formation of gene categories are omitted, but available from the principle investigators).

Survival times and clinical covariates were available for each array. A Wald-type statistics

from the univariate Cox proportional hazard model was used to test the association

between expression and patient outcome.

For the permutation- and bootstrap-based tests, the Wilcoxon rank-sum was the

global statistic with results obtained from 1000 permutation/bootstrap resamples of the

data. The p-values produced by the bootstrap percentile- and t-intervals were in good

agreement across the set of categories (Spearman rank correlation > 0.999), suggesting

that the distributions of resampled global statistics had roughly Gaussian tails. The per-

mutation test also showed good agreement with the bootstrap (rank correlation of 0.977

with bootstrap results), but a distinct difference in the number of categories passing

certain levels of significance was observed (Table 4). The improved power of the boot-

strap methods is apparent from the increased number of significant categories. Moreover,

we have established that the increase in significant categories is far greater than could

be induced by the slight anti-conservativeness of the bootstrap approach expected for

the large sample size. The minimal possible p-value of the permutation and bootstrap-

quantile tests are limited by the 1000 resamples that were taken of the data. The boot-

strap t-interval does not have this restriction, and 28 categories were observed to pass

the conservative Bonferroni threshold for α = 0.05. Because of the iterative nature of

the solution to the Cox-proportional hazard model, taking additional resamples of the

dataset quickly becomes computationally taxing, and would be prohibitive when trying
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Table 4: The number of significant GO categories is given for various
α levels (uncorrected for multiple testing) when tests are conducted via
the permutation, bootstrap-quantile, or bootstrap-t method.

Perm Boot-Quant Boot-t

α = 0.1 195 222 220

α = 0.05 129 157 160

α = 0.01 56 72 85

α = 0.005 36 63 73

α = 0.001 12 40 48

α = 3.7e − 5∗ -NA- -NA- 28
∗ Bonferroni cutoff

to control the FWER across such a large number of categories.

3.8 Discussion

We have used the SAFE framework as presented in Chapter 2 to describe the different

methods proposed for testing differential expression within a gene category. By stating

the Class 1 and Class 2 null hypotheses behind these tests we illustrate their shortcomings

and propose a novel bootstrap-based approach that uniquely allows for genes within

the category and complement to be correlated and have different levels of differential

expression.
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Because of the extreme anti-conservativeness we have demonstrated for the popular

gene-list methods, we feel it is important to survey their use in the literature and explore

for possible errors that have been reported from positively correlated categories. The

simulation method in Section 3.4.3 can be extended to other datasets to estimate the

FDR or FWER for a given set of rejected hypotheses.

For the newly proposed bootstrap-based tests, future work is warranted for identifying

a correction that can remove the slight anti-conservativeness seen in datasets with few

arrays. The asymptotic behavior of global test statistics should be explored in more detail

for the limiting cases of large m (which is common) and large n (which is almost never

as large as m). Furthermore, resampling-based estimates of the FWER and FDR could

be developed from the bootstrapped global statistics that could account for positively

correlated categories in a manner like the Westfall and Young and the Benjamini-Yekutieli

procedures (Benjamini and Yekutieli 2001; Westfall and Young 1993).

As a last but very important advantage to the bootstrap-based procedure, we note

that by resampling with replacement it is uniquely capable of incorporating covariate

information in a sensible manner. In permutation testing, by inducing a null that breaks

the association between the response and expression, the covariate information can no

longer relate to both variables. Yet, there may be no obvious reason to couple the

covariate to either the response or expression, and the corresponding null should be

fully recognized for either choice. Conversely, by resampling the sample information

jointly, the bootstrap allows the relationship between all three to be maintained. To

illustrate this point, we have implemented a multivariate Cox model to the breast cancer

survival dataset that includes clinical covariates previously identified to be associated
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with patient survival time. Estrogen Receptor status and tumor grade were reported

by the original authors as being significantly associated with patient survival (Chang

et al. 2005). By including the significant clinical covariates in the model, we can test

for changes in expression that are significantly associated with survival over and above

the clinical effects. For this particular example no categories were found to be more

significant than their univariate test results, but this point may be potentially important

in other experiments with complex designs and multiple covariates.

86



4 SAFE and transcription factor binding sites

4.1 Introduction

Over the past decade, genome sequencing projects and high throughput biotechnologies

have led to an overabundance of publicly available information about gene composition,

regulation, and function. These data have provided vast insight into the fundamental

processes of transcription and translation from DNA to proteins and other functional

components of cells. As the information is coalesced into structured databases that ex-

tend across genomes and species, the task of extracting biological insight from various

sources has become a “informatics” challenge requiring both proper models for the com-

plex underlying biology, valid estimation and hypothesis testing mechanisms, and the

appropriate means of computing and interpreting of the volume of results obtained from

data mining and exploratory analyses.

With the near completion of the human genome project, along with other efforts to

identify entire genomes of model organisms, the opportunity exists to search for patterns

in the nucleotide sequence that may relate to biological function. In recent years, sequence

information has been made available through databases like the UCSC Genome Bioin-

formatics Site (http://genome.ucsc.edu/). The identification of gene-coding sequences

is complicated in humans and eukaryotic organisms by the presence of introns and al-

ternative splice variants, but developed algorithms have found over 30,000 open reading



frames in the genome. While the coding regions of genes make up only a small fraction

of the entire genome (1.5%), it is known that the surrounding regions of genes are in-

volved in cellular processes that control the activation of expression through the binding

of protein complexes termed transcription factors (TFs). Experimental procedures first

allowed investigators to directly assay the binding sites of a single TF in vitro, and iden-

tify motifs through alignment procedures (Funk et al. 1992). These techniques become

both costly and inefficient when considering multiple motifs or binding information from

high throughput technologies like microarrays and the yeast-two hybrid system. Con-

sequently, computational techniques have been developed for the discovery of multiple

motifs in longer upstream regions of implicated genes (Liu et al. 2002). Further evidence

suggests that gene regulation occurs through the complex interaction of multiple TF pro-

tein complexes that have been jointly referred as “cis-regulated modules”, and several

methods have been proposed for their discovery (Gupta and Liu 2005; Thompson et al.

2004; Wasserman et al. 2000). Once identified, the TF binding sites may be deposited

into public repositories including the JASPAR (Sandelin et al. 2004) and TRANSFAC

databases (Matys et al. 2003).

4.1.1 Motif discovery literature

Over the past two decades several approaches have been proposed for finding an unknown

motif among a set of sequences that have been implicated as being co-regulated by a

transcription factor. A first method for finding motifs of a fixed length, w, utilized the

expectation maximum (EM) algorithm in finding maximum likelihood estimates from
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a mixture model (Bailey and Elkan 1994). Briefly, the sequences data is reduced to

all w-length oligomers, X1 . . .Xn, which are assumed to be distributed as one of two

product-multinomials. True motifs are parameterized in a position-specific manner: Θ =

(θ1, . . . , θw), with θi representing the frequencies of the four bases at the i-th position;

background sequences have a single vector of base frequencies for all positions, θ0. A

mixing parameter for the two states, λ, is also in the model. The complete likelihood

has the n sequences and unobserved indicators, Z1 . . . Zn, for whether the oligomer is a

motif or background.

log L(Θ, θ0, λ | X, Z) =
n∑

i=1

Zi log(λ · p(Xi | Θ) + (1 − Zi) log((1 − λ) · p(Xi | θ0)) (4.1)

In successive implementations of the EM algorithm in the software MEME, several im-

provements have been made to the model, including restricting the {Zi} such that over-

lapping motifs are excluded, and adding an additional constant to the frequency estimates

that is equivalent to adding Dirichlet prior to the multinomial parameters (Bailey and

Elkan 1994).

Concurrent to the development of MEME, Lawrence et al. (1993) proposed treating

the same situation as a missing data problem that can be solved in a Bayesian manner

through Gibbs sampling. It was also found that the model could be improved by adding

a 3rd-order Markov chain to the background parameters, θ0. Liu et al. (1995) proposed

a more general prior for the missing indicators of motif-background status with a motif

abundance ratio, β, that is similar in interpretation to the mixing parameter in MEME.

Recently, such methods have been extended to looking for multiple motifs simultaneously,

and for allowing variable widths in motifs (Jenson et al. 2004).
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While the above models search for motifs that are common patterns in a set of im-

plicated sequences, it is also important to be able to score the presence of a motif, once

identified, in a DNA sequence. The authors of the MEME algorithm also designed a

software, MAST (Bailey and Gribskov 1998), for computing p-values for both multiple

motifs and sequences that are based on the match score proposed by Staden (1990).

In the Bayesian framework, several scores can be derived from the posterior of a given

sequence (Liu et al. 2002) that take the form of an entropy (or Kullback-Leibler) distance.

4.1.2 Contributions

Here we address in detail how several models in the discovery of binding sites are adapted

to scoring upstream sequences for the presence of known motifs. By expressing this in-

formation as a posterior probability, sequence scores taken across the human genome are

used to generate functional categories of genes potentially regulated by a known TF. We

further note that the models of motif occurrences can be expanded to look for the joint

presence of TFs that may occur in cis-regulating modules. Next, a hypothesis testing

mechanism is detailed that looks for increased differential expression in microarray ex-

periments as evidence of transcription regulation. Lastly, we propose using the combined

information of upstream sequences and mRNA expression as a means of improving esti-

mates of the TF binding site. Analysis are performed on both simulated and real datasets

in order to demonstrate the validity and capability of this model-based framework.
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4.2 Models for TF binding motifs

DNA sequences are made up by four nucleotides: adenine (A), cytosine (C), guanine

(G) and thymine (T). It is observed that in the human genome, DNA sequences are

highly conserved among individuals, particularly in gene-coding regions. Because of

this uniformity, the consensus sequence of genes can be represented by strings of the 4

letters listed above with only relatively rare exceptions for polymorphisms and de novo

mutations. However, in some areas of DNA and protein sequence analysis (e.g. TF

binding sites and homologous protein domains) inherent variation is observed among a

set of implicated sequences.

When representing a transcription factor binding site, a consensus sequence is less

adequate since many similar base-pair combinations are capable of binding to a single

protein complex. As a partial solution, a more complete dictionary of 15 letters has

been defined by IUPAC for every observable subset of the 4 bases (Lathe 1986). While

this nomenclature can somewhat describe the site-specific variability of a binding motif,

it does not provide a means for representing unequal probabilities of the occurrence of

bases. To describe a binding site in a more quantitative manner, a position specific weight

matrix (PSWM) is constructed once a set of implicated oligomers have been identified

experimentally as TF binding sites and properly aligned. The matrix consists of the

frequency counts of each base at each position, and is thus 4 × w in size for a w-length

motif (Figure 14). A second popular representation of a set of aligned binding sites has

been termed a sequence logo (Schneider and Stephens 1990), which scales the frequencies

in each position by their information content and displays the motif in a bar graph using
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Figure 14: Position specific weight matrix of the motif for the p53 protein
complex based on 17 identified binding sites (Funk et al. 1992). The cor-
responding sequence logo is shown as provided from the JASPAR database

the common base letters ordered by their respective prevalence.

4.2.1 Notation

To denote the sequence and motif information, we will consider a set of m sequences

presented as S = {s1 . . . sm}. For our purposes, the sequence data can be considered to

be of equal length L . For a given sequence, s, let the notation si be the i-th nucleotide in

the sequence and s[a:b] represent the fragment from position a to b. As a basic statistical

model for the position specific weight matrix, Lawrence and Reilly (1990) originally

suggested a multinomial distribution for the observed counts at each site. If one assumes
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independence among the sites, s1 to sw

(s1, . . . , sw) ∼ ProductMultinomial(Θ) (4.2)

with Θ = (θ1, . . . , θw) such that θi = (θi,1, . . . , θi,4) represents the probabilities of observ-

ing each of the four bases at the i-th position. When a set of aligned sequences provide

a PSWM, the parameters of a known motif are given as, θi,j =
ni,j

N
where N =

∑
j nij.

In order to model the background sequence that does not contain motifs, an indepen-

dent multinomial model (IND) can be applied to each position with θ0 = (θ0,1, . . . , θ0,4).

Under the assumption that true motifs will be rare when m and L are large, θ0 can be

computed from the overall proportion of nucleotides in S. In order to capture more of

the basic structure in the non-coding regions of the genome, a higher-order Markov chain

model (MCN) can also be utilized with transition probabilities θ0, generated from all

observed oligomers of the appropriate length (Jenson et al. 2004).

In the models that have been derived in the motif discovery literature, a parameter

is also given for the motif abundance ratio describing the frequency of occurrence in the

implicated sequences. For our purposes we will define as a similar parameter β to be the

probability of a motif beginning at any randomly selected site. In the following models,

β will either be considered fixed and known, or treated in a Bayesian manner using a

prior distribution.

In scoring sequences for the presence of a known motifs, we will define several potential

alternative hypotheses to contrast against the null that no motifs are present (H0 : s is

generated entirely from θ0). In generating scores for upstream sequences from a given
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model, we will focus on either a likelihood ratio statistic,

LR(s) =
Pr(s | HA)

Pr(s | H0)
(4.3)

or a related Bayes Factor when priors are given for certain parameters. To create gene

categories from these scores, we will consider the posterior probability of the alternative

hypothesis

Pr(HA | s) =
Pr(s | HA) · Pr(HA)

Pr(s | HA) · Pr(HA) + Pr(s | H0) · Pr(H0)

=

[
1 +

1 − PA

PA
· LR(s)−1

]−1

(4.4)

which is a monotonic increasing function of LR(s) that will also depend on a model-

selection prior Pr(HA) = 1 − Pr(H0) = PA. In the following subsections, scores are

derived for three different types of models.

4.2.2 Single-site models

A basic model for the presence of a given motif in an upstream sequence can be described

as “single-site” in that the alternative hypothesis states the motif occurs exactly once in

the upstream sequence. In this case, the probability of a given sequence occurring under

the alternative becomes the sum of mutually exclusive events that each position is the
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start site of the motif.

Pr(s | HA) =

L−w+1∑

j=1

Pr(s ∩ the motif starts at position j)

=
L−w+1∑

j=1

(1 − β)j−1 · Pr(s[1:j−1] | θ0) × β · Pr(s[j:j+w−1] | Θ)

× (1 − β)L−w−j+1 · Pr(s[j+w:L] | θ0) (4.5)

With a site-independent background model, the likelihood ratio in collapses to a sum of

ratios for every w-mer in the sequence

LR(s) =

∑L−w+1
j=1 Pr(s[1:j−1] | θ0) · Pr(s[j:j+w−1] | Θ) · Pr(s[j+w:L] | θ0) · β · (1 − β)L−w

Pr(s | θ0) · (1 − β)L

=
β

(1 − β)w
·

L−w+1∑

j=1

Pr(s[j:j+w−1] | Θ)

Pr(s[j:j+w−1] | θ0)
(4.6)

For the null hypothesis that uses a 3rd-order Markov chain (MCN) for background

instead of assuming independence, (4.6) does not exactly hold because of the conditional

probabilities of the three positions just after each w-mer. In our setting, where true

motifs are rare and S is large, one can assume there is minimal difference between the

true LR and (4.6) and scores are computed accordingly.

4.2.3 Multi-site models

Based on the biological findings of repeated motifs occurring in the upstream regions of

genes (Liu et al. 1995), it is potentially more powerful to use an alternative hypothesis

that allows for multiple realizations to occur. Here we describe a “multi-site” model that

allows for anywhere from 1 to L
w

motifs to occur in an independent manner under the
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restriction of non-overlapping sites (Lawrence et al. 1993). In order to find the probability

of observing the full sequence under this alternative hypothesis, a recursive formula is

needed to cover the complete set of mutually exclusive motif occurrences. The recursive

algorithm can be stated in terms of whether the last position is considered to either be

from background or part of the known motif

Pr(s) = Pr(s[1:L−w]) · Pr(s[L−w+1:L] | Θ) · β

+ Pr(s[1:L−1]) · Pr(s[L:L] | θ0) · (1 − β) (4.7)

From this formulation, a recursive algorithm can be implemented in a forward or back-

ward manner. To compute Pr(s | HA) from (4.3), the probability of every site being

from background appears in the recursion and must be subtracted from Pr(s), yielding

the likelihood ratio

LR(s) =
Pr(s) − (1 − β)L · Pr(s | θ0)

(1 − β)L · Pr(s | θ0)
(4.8)

In this model the likelihood ratio statistic no longer reduces to a sum of ratios of w-length

sequence probabilities. For this reason, numerical underflow issues must be considered

when computing probabilities for large L and motifs with large K-L distances from back-

ground. As noted in single-site model, when incorporating the MCN background model

into the recursion scheme, sequences that occur immediately after a motif realization are

assumed to depend on the last 3 positions of the observed motif.
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4.2.4 Bayesian models

Rather than considering β to be a fixed constant based on a presumption of the overall

frequency of motifs in the promoter regions of the human genome, we proposed putting a

prior distribution on β. Since the conditional probability of s under the multi-site model

is a sum of polynomials in β (and 1 − β), a Beta distribution has both proper support

for β and yields the following marginal distribution for s.

Pr(s | HA) =

∫
Pr(s | β, HA) · π(β) dβ

=

∫ L
w∑

i=1

ai · βi · (1 − β)L−iw · beta(γ1, γ2) · βγ1−1 · (1 − β)γ2−1 dβ

=

L
w∑

i=1

ai,L · beta(γ1, γ2)

beta(i + γ1, L − iw + γ2)
(4.9)

where ai,L is the sum of the conditional probabilities where exactly i motifs are realized

in s. Each term is computed in a recursive manner similar to (4.7), but which further

indexes across the number of upstream motif occurrences in addition to position

ai,L = Pr(s | i motifs occur)

= Pr(s[1:L−w] | i − 1 motifs occur) · Pr(s[L−w+1:L] | Θ) +

Pr(s[1:L−1] | i motifs occur) · Pr(s[L:L] | θ0)

= ai−1,L−w · Pr(s[L−w+1:L] | Θ) + ai,L−1 · Pr(s[L:L] | θ0) (4.10)

Because the recursion is now applied to both the length of the sequence, and also the

number of possibly inserted motifs, the algorithm is computationally slower than the
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models for fixed, β. The conditional distribution under the null reduces to

Pr(s | H0) = Pr(s | θ0) ·
beta(γ1, γ2)

beta(γ1, L + γ2)
(4.11)

and as in the fixed multi-site model, this is computed to a proportional constant within

the recursive algorithm. Then (4.3) becomes a Bayes Factor for the two models from

which the posterior probability of HA can be determined.

The posterior distribution of β from this model can by recognized from the kernel of

the joint density as a weighted sum of Beta distributions

Pr(β | s) ∝ Pr(s | β) · π(β)

∝
L
w∑

i=0

ai · beta(γ1, γ2) · βγ1+i−1 · (1 − β)γ2+L−iw−1

so that

Pr(β | s) =

L
w∑

i=0

wi · Beta(γ1 + i, γ2 + L − iw) (4.12)

where

wi = ai ·
beta(γ1, γ2)

beta(i + γ1, L − iw + γ2)
· Pr(s)−1 (4.13)

The posterior mean of β given S can be solved directly by averaging across each sequence,

and credible sets can be identified through numerical integration or an MCMC approach.

A simulation study is used to examine the different models and their respective sen-

sitivity in different motifs. We further investigate the sensitivity of multi-site models to

the choice of fixed values β or its hyperparameters {γ1, γ2} that would correspond both

to the small values of β that would generally be expected for a transcription factor, and

also its uncertainty.
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4.3 Simulation study of motif models

In order to evaluate the different models proposed for scoring the presence of known

motifs in a set of sequences, simulated datasets were generated from the stated null

and alternative hypotheses. Background sequences (of length L = 5000) were gener-

ated from the MCN model with transition probabilities estimated from all identified

upstream sequences that were available from NCBI Build 36.1 of the human genome

(http://genome.ucsc.edu/). For every human TF in the JASPAR database, realizations

of the motif were generated from the ProductMultinomial distribution in (4.2) using the

given PSWM as Θ. Non-overlapping motifs were inserted randomly into the background

sequence for different realizations of β. Motifs were also inserted in a similar fashion to

true upstream sequences randomly selected from NCBI Build 36.1 to confirm the results

seen in simulated sequences would closely match those based on real structures of DNA.

To examine the performance of the models in Section 4.2, the scores for true back-

ground and true alternative sequences were compared using ROC curves of the true and

false positive rates for the range possible predictors. The relative performance of models

and motifs is quantified by the area under the curve (AUC). By examining performance

in this manner, the results are invariant to monotone transformations and will be iden-

tical for likelihood ratios or Bayes factors (4.3) as compared to posterior probabilities

(4.12) under any PA. Figure 15 illustrates the relative performance of both the single-

and multi-site models using ROC curves of representative motifs, and scatter plots of

AUC.
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Figure 15: Simulated results for JASPAR motifs of varying length. (A)
ROC curves for 4 representative motifs of length 6, 9, 12 and 15, scored by
the single-site (dashed) and Bayesian multi-site model. (B) AUC is seen to
increase with motif length, with the representative motifs from panel A shown
in color. Multi-site models show the greatest improvement in performance
when (C) β increases and (D) motifs are of moderate length between 6 and
12 base pairs. (E) and (F), panels B and D are are replotted against motif
entropy, demonstrating a stronger correlation to AUC (rank correlation of
0.88), and improvement in the multi-site model for motifs with a moderate
difference from background.
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These results demonstrate ability to discrimination between true null and alternatives

is correlated to motif length, but is shown to be more closely determined by the Kullback-

Leibler distance from the background model.

H(Θ, θ0) =

w∑

i=1

4∑

j=1

θi,j · log

(
θi,j

θ0,j

)
.

The improved performance of the multi-site models is demonstrated to be dependent

on the realized β, and most notable for moderately-sized motifs. In shorter motifs, the

relative abundance of close background sequences increase the false positive rate, while

in longer motifs the chance of even a single occurrence being generate from background

is so small that the distributions of scores fully discriminate.

In using ROC curves and AUC, we note that the single-site model is not penalized

by misspecifying β, since it is a scale factor for the LR (4.6). In the multi-site models,

the higher-order polynomial terms in β dominate such that β can be seen as an approx-

imate shift-effect on the log-ratios, and thus do not appreciably effect the ROC curves.

Likewise, the rank correlation is highly preserved across choice of β (r ≥ 0.97 for all TF

motifs). Despite this conservation of rank order, misspecification of β will sharply affect

the magnitude of posterior probabilities and thus the FDR of any particular choice for

predicting motif presence (e.g., Pr(HA | s) ≥ 0.5). For this reason, we favor the Bayesian

prior for β proposed in (4.9). The robustness of scores was compared for Beta priors with

modes at 1
1000

and 1
10000

, (given by γ1−1
γ1+γ2−2

), where the variance was allowed to range from

a degenerate point mass to increase to a uniform prior. We have demonstrated via simu-

lation that the posterior probabilities will be more robust under moderately informative

priors.
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4.4 TF and differential expression experiments

Having selected the Bayesian multi-site model as most appropriate for the potential

multiple occurrences of motifs and an unknown β, we apply it to the upstream regions

of known genes as a means of forming categories of genes that are potentially regulated

by known TFs. In order to look for the potential co-regulation of these categories in

gene expression data, we next derive a hypothesis testing framework that accommodates

the probabilistic measures of gene membership as defined in (4.12). To achieve this goal,

we extend the method SAFE from Chapters 2 and 3 to be a robust, resampling-based

test for regressing differential expression against the probability of gene membership.

We apply this method to two microarray datasets as examples of a exploratory and

hypothesis-driven analysis.

4.4.1 Probabilistic functional categories

With the wide varieties of biological information being accumulated about genes across

the entire human genome, it has been suggested that a more probabilistic approach to

assigning gene function is needed (Fraser and Marcotte 2004). As our understanding

of the role each gene plays in cellular biology is informed by an increasing number of

disparate experiments, it is important to recognize variability in the data, and in par-

ticular the potential for false positive and false negative results when making inferences

on a genomic level. When combining results from different experiments and technolo-

gies it is important to consider how such errors would affect the certainty of any joint

conclusion. This perspective has been realized by Troyanskaya et al. (2003) in imple-
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menting a Bayesian network to integrate several sources of inference on gene function

in Saccharomyces cerevisiae, including gene expression data from microarray studies and

protein-protein interactions from the yeast two-hybrid system. Functional categories de-

rived from the multiple sources were shown to be in agreement with Gene Ontology

annotation. We note that the collective assignment of cellular function to a set of genes

can be equivalently stated as their membership to a functional category, and thus gene

category testing in differential expression experiments can also be treated in a probabilis-

tic manner.

In Chapter 2 a nomenclature was given for representing gene categories in the analysis

of differential expression experiments. For an experimental design in which the expression

of m genes are measured, c is a vector of indicator variables of length m such that ci = 1

if the i-th gene belongs to the category, and ci = 0 otherwise. To allow for uncertainty

in a gene category, rather than using a vector of indicators where ci ∈ {0, 1} one can

allow each coefficient to take any value in the interval [0, 1] to represent the probability of

inclusion to the category. When functional categories are defined in this manner, one can

no longer describe an exact number of genes as being contained in the category. Rather,

we define the size of a category based on its expectation. Using the set notation of a

category, C, presented in Chapter 3, this quantity is given as

mc = E

[
m∑

i=1

I{i ∈ C}
]

=

m∑

i=1

Pr(i ∈ C)

=

m∑

i=1

ci (4.14)
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4.4.2 Non-parametric regression techniques

When the membership of genes to a functional category is redefined to be a continu-

ous measure, hypothesis tests can no longer be based on two-sample comparisons of the

category to its complement (see Chapter 3 for the survey of methodologies that are de-

scribed by this framework). With membership taking values in the [0, 1] interval, finding

an association between category membership and an increased amount of differential

expression becomes a regression problem. In order to be generalizable to the diverse

experimental designs that relate to differential expression, a permutation approach using

distribution-free statistics is proposed.

To place the non-parametric regression problem in the SAFE framework, consider a

local statistic, T , is chosen such that one expects a linear shift in the unknown distribution

based on category membership Pr(Ti < t | ci) = F (t − ci b) the rank-based Wilcoxon

estimate of the slope parameter b minimizes the dispersion function

D(b) =

m∑

i=1

(
Rank(εi(b)) −

m + 1

2

)
εi(b) (4.15)

where εi(b) = Ti − ci · b. To test the null hypothesis that differential expression is

unchanged by category membership, H0 : b = 0, the Wilcoxon linear score statistic

was proposed and characterized by Hajek and Sidak (1967), and is widely used in an

asymptotic Z-test as follows

Z =
(
(m + 1)2

m∑

i=1

(
ci −

mC

m

)2 )−1/2
m∑

i=1

(
ci −

mC

m

)(
Rank(Ti) −

m + 1

2

)
(4.16)

This classic statistic has been employed as an non-parametric approach to other regression

problems in genetics including quantitative trait loci (QTL) (Haley and Knott 1992;
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Kruglyak and Lander 1995; Zou et al. 2003). Alternative weights have also been proposed

for non-parametric regression but are not explored here (Puri and Sen 1985).

As noted in discussions of SAFE with hard categories, the classical tests for this

non-parametric regression statistic can not be applied to gene expression data, because

of the correlation among genes. If we state the null hypothesis as having no increase in

differential expression on average among the unknown true category members {i : i ∈ C},

hypothesis tests can be based on several resampling methods. Array permutation tests

would be appropriate for experimental designs where an induced value of no association

between the response and every gene is the null hypothesis one wants to test departures

from. In this resampling scenario, the following global statistic will be rank invariant to

(4.16), under a fixed soft category, c, that is assumed by array permutation.

U =

m∑

i=1

ci · Rank(Ti) (4.17)

and thus sufficient for obtaining an empirical p-value. As noted previously for hard cate-

gories, any FWER or FDR controlling procedures should avoid pooling before generating

empirical p-values, because the variances of (4.17) across category will depend on the un-

known correlations among gene members. Bootstrap-based tests of (4.17) can also be

conducted in manner similar to Chapter 3.6. In the case of multiple classes of differen-

tially expressed genes, the unconditional expected value of (4.17) can only be determined
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if probability of gene membership is independent from differential expression

EH0 [U ] = E

[
m∑

i=1

ci · Rank(Ti)

]

=

m∑

i=1

E[ci] · E[Rank(Ti)]

=
mC

m
·

m∑

i=1

E[Rank(Ti)]

=
mc · (m + 1)

2
(4.18)

based on the formulation in (3.25) for
∑

E[Rank(Ti)] under a K-class null. The bootstrap-

based tests are again determined by the exclusion of EH0 [U ] from standard resampling-

based confidence intervals.

We further note that by allowing {ci} to take continuous values on the interval [0, 1],

soft categories also provide a natural solution to the problem of multiple representations

of a gene on an array that was alluded to in Chapter 2. While gene enrichment tests

and the basic SAFE framework allow such genes to have more influence on the category,

one could easily down-weight the corresponding probesets (ci = 1
k
· Pr(HA | s) if a gene

occurs k times) such that each gene contributes equally to determining a category’s

behavior. A value between 1 and 1
k

could also be chosen to reflect the added certainty in

multiply-spotted genes.

Data example 1: Lung Carcinoma study

For an example of an exploratory analysis of TF gene categories and differential ex-

pression, we examined a subset of the lung carcinoma dataset from Bhattacharjee et al.

(2001), that has been previously used in a SAFE analysis of GO and Pfam categories
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(Barry et al. 2005). Data pre-processing is described in detail in Chapter 2 and resulted

in considering a filtered set of 7299 expressed genes. This analysis focuses on the sub-

set of normal (n1 = 16) and carcinoid (n2 = 20) samples. PSWM were obtained from

combining all 49 human motifs available from the JASPAR database along with 93 mo-

tifs from TRANSFAC that had a minimal length of w ≥ 6 and column totals N ≥ 50.

Posterior probabilities were calculated for every upstream sequence available using the

Bayesian multi-site model with hyperparameters (γ1 = 2, γ2 = 1000). First, the robust-

ness of SAFE to the model prior, PA, was examined by taking values across five orders

of magnitude from PA = 5e − 1 to 5e − 6. Next, significant categories are presented

for a reasonable model prior as illustration of the utility and biological interpretation of

findings.

To generate soft gene categories for the lung carcinoma dataset, REFSEQ IDs were

obtained from the annotation for the hgu95av2 Affymetrix array from Bioconductor

(http://www.bioconductor.org). When mapping the posterior probabilities to the set

of expressed probesets, two considerations must be made regarding duplication. When

probesets are linked to multiple REFSEQ IDs with upstream sequence information, the

average score is taken; conversely, when multiple probesets map to the same gene, the

probabilities are down-weighted in the manner described in section 4.4.2. In this weight-

ing scheme each gene will carry equal weight in the category, rather than each probeset.

In Figure 16A, we note that gene category size is sharply affected by the choice of PA

with the median expected category size decreasing from 1561 genes to 0.06 genes across

the five orders of magnitude over which PA varied. Despite the sensitivity of mC to the

model prior, the SAFE results are shown to be more robust. The order of significance
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Figure 16: (A) The expected category size, (B) and SAFE permutation-based
p-value is plotted against choice of model prior for five TF that remained
the most significant throughout, and also one category (“Churchill”) where
significance level was not robust. (C) Sequence logos demonstrate the close
relationship among four of the TRANSFAC motifs, and the lower K-L distance
from background in the less stable category.

of p-values was well preserved across the range of PA, as demonstrated by several of

the most significant categories plotted in Figure 16B. The TRANSFAC TF “Churchill”

is also shown as a rare instance where the SAFE results varied sharply across model

prior. The sequence logos in Figure 16C demonstrates that this motif is shorter and less

distinguishable from background in terms of K-L distance as the other motifs. Despite

the poor performance of the “Churchill” motif, overall this illustrates the robustness to

choice in model prior that results from using a regression-type global statistic for soft
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categories.

The most significant categories in this analysis appear to be several related motifs for

Sp-like TFs, reaching the minimum attainable empirical p-value for 1000 permutations

under a moderate model prior PA = 0.0005, and collectively had a Yekutieli-Benjamini

FDR estimate < 0.05. We feel that this model prior is representative of what one would

expect for the number of genes being regulated by a single TF. In examining the sequence

logos (Figure 16C), these motifs are highly conserved around a consensus sequence of

GGGGCGGGG. These findings demonstrate the capability of SAFE in finding significant

TF gene categories, but that in an exploratory analysis one must examine the sequence

logos in more detail to discern whether they constitute separate biological findings.

4.4.3 Data example 2: a leukemia and Down-syndrome study

As an second example of a SAFE analysis of TF regulated genes and differential ex-

pression, we analyzed a microarray dataset of leukemia patients with and without Down

syndrome (DS) from Bourquin et al. (2006). Sample information and raw Affymetrix

data was available for the comparison of 24 DS and 39 non-DS patients. Data was pre-

processed as described (Bourquin et al. 2006), and a gene-specific SAM analysis (Tusher

et al. 2001) was performed to reproduce the most significant gene-specific effects that

were used as predictors by the authors.

In addition to the gene-specific analysis, the authors also conducted a category test

(GSEA) for several sets of genes. The category members had been identified as homologs

to genes shown to be regulated by the GATA1 TF in a murine model (Welch et al. 2004).
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The authors identified a marginally significant increase in differential expression in one

of the categories. This dataset provides an opportunity to use soft categories of GATA1

in a more of a hypothesis-driven SAFE analysis.

From the supplemental information to Bourquin et al. (2006), we constructed our own

version of hard categories of probesets for each of the three gene sets, and also for their

union. These were compared in a SAFE analysis to soft categories based on several GATA

TF motifs available from the TRANSFAC database. As a second step, an exploratory

analysis of TRANSFAC motifs was also performed to look for more significant results,

and also potential interactions with GATA motifs. All SAFE analyses were performed

with a one-sided Student’s t-statistic relating to increased expression in Down Syndrome

patients. This corresponds to the direction of hypotheses conducted by the original

authors (albeit with a different measure).

The SAFE results are presented in Table 5. We first note that none of the permutation-

based p-values are as significant as those reported by the Kolmogorov-Smirnoff type anal-

ysis done by the original authors (Bourquin et al. 2006). However, it is unknown if this

difference stems from having dissimilar probeset annotations, the different mechanisms

applied for multiply-spotted genes, or the fact that Kolmogorov-Smirnoff statistics, un-

like the Wilcoxon rank sum, are sensitive to differences that do not necessarily relate to

increased amounts of differential expression Damian and Gorfine (2004). Despite this dif-

ference in results, we observe that the more powerful bootstrap-based versions of SAFE

yielded Z-scores and quantile-based p-values that are substantially more significant. The

bootstrap also provides enough power to reject several categories under conservative FDR

and FWER controlling procedures.
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Table 5: SAFE results for murine homologs, GATA TF and other motifs from
the TRANSFAC database.

Category Size Perm. p Boot. Z Boot. p

Geneset C: Erythroid genes 24 0.047 4.818 0.0001

Geneset A: Down-regulated 49 0.037 3.773 0.0003

Geneset B: Up-regulated 34 0.393 0.847 0.1968

A ∪ B ∪ C 103 0.021 4.882 0.0001

GATA-3 27.2 0.011 5.664 0.0001

GATA-1 20.1 0.161 1.836 0.0444

GATA-6 20.9 0.167 1.549 0.0704

GATA 33.1 0.226 1.309 0.0982

GATA-2 20.1 0.264 1.102 0.1395

p53 11.4 0.029 9.609 0.0001

Max 16.1 0.006 5.911 0.0001

E47 18.1 0.016 5.174 0.0001

cap 15.9 0.041 3.540 0.0010
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A more interesting discovery in this analysis is that a soft category based on the

“GATA-3” motif (w = 9 and N = 63), was more significant than any of the hard

categories based on the homologous gene sets. This is noteworthy because while the gene

sets represent a manually curation of laboratory findings, the soft category is derived

entirely by computational algorithms searching for patterns in DNA sequences. Taken

together, these results support the hypotheses of GATA involvement in leukemia and

Down syndrome; however, we further examined of other TRANSFAC motifs, several

of which were seen to produce equally or more significant results, including the TFs

“p53” (w = 10 and N = 98), “MAX” (w = 14 and N = 100), “E47” motifs (w = 16

and N = 100), and a total of 12 TFs passing a Benjamini-Hochberg FDR controlling

procedure for α = 0.01. These data suggest that the differences in the patient populations

may be more biologically complex than is conjectured, and serve to illustrate that caution

is needed in presuming a distinct relationship between GATA TFs and Down Syndrome

based on the gene category results found in Bourquin et al. (2006).

4.5 Extensions of TF scores and gene expression

4.5.1 Consideration of TF modules

In addition to the discovery of novel TFs in may different organisms, increasing attention

is being given to understanding their complex interactions in controlling transcription.

Model-based approaches have been developed for discovering de novo modules from sets

of implicated sequences, but the computational strategies become more complex as one

moves from yeast into higher-order eukaryotes and humans (Gupta and Liu 2005). The
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difficulties stem from needing to consider longer upstream sequences, with motifs occur-

ring as far as a few kilobases away; in addition, binding sites can be of shorter length

and with a motif having less consensus; and finally, more frequent and presumably non-

regulating repeats are observed in background sequence. In order to score upstream

sequences across the human genome, we propose adapting the single-motif models al-

ready presented into a position-independent score of multiple motifs. In this way, testing

for differential expression in jointly occurring motifs could be evidence for cis-regulation

across the conditions of the experiment.

We extend the multi-site model in (4.9) to consider an alternative hypothesis that

realizations of two (or more) motifs occur in a sequence s.

Pr(s) = Pr(s[1:L−w1]) · Pr(s[L−w1+1:L] | Θ1) · β1

+ Pr(s[1:L−w2]) · Pr(s[L−w2+1:L] | Θ2) · β2

+ Pr(s[1:L−1]) · Pr(s[L:L] | θ0) · (1 − β1 − β2) (4.19)

where Θ1 and Θ2 are derived from the PSWMs of the respective motifs. In order to

compute the conditional probability of s under the alternative hypothesis, the events of

background alone, or only one motif occurring must be subtracted as follows

Pr(s | HA) = Pr(s) − Pr(s | Θ1, θ0) − Pr(s | Θ2, θ0) + Pr(s | θ0) (4.20)

where the appropriate motif abundance ratios, β1 and β2, are used for calculating the

probabilities {Pr(s | Θi, θ0)}. In computing likelihood ratios and posterior probabilities,

it could be valid to test against a null hypothesis of only a background model, or also
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the complement set of single-motif events

Pr(s | H0) = Pr(s | θ0) or (4.21)

Pr(s | H0) = Pr(s | Θ1, θ0) + Pr(s | Θ2, θ0) − Pr(s | θ0) (4.22)

To illustrate the potential utility of these models, we return to the leukemia and

Down Syndrome dataset where several motifs were found to be significant. The joint

occurrences of the most significant motifs were scored as a preliminary experiment that

avoids the computational effort required to consider all 93
2

possible pairs among the

TRANSFAC motifs. Models with fixed abundance ratios of β1 = β2 = 1
1000

and the null

in (4.21) were run, but future consideration is warranted as to when each null model

would be appropriate. The following table gives the pairwise permutation and bootstrap

SAFE results for the considered TRANSFAC motifs.

These results demonstrate the ability of SAFE to identify potential interaction of

multiple TFs in regulating gene expression. In particular p53 and GATA-3 showed an

interesting result, both in having a larger number of joint occurrences than expected and

also a nominally significant amount of DE (Table 6). This result may be of biological

interest such that further investigation is warranted. Although it would not be necessary

for cis-regulation, if the predicted sites of the two motifs occur in a non-random manner

in the upstream sequences, this could be seen as additional evidence of a biological event.

It should be noted that one may be more interested in identifying motif interactions

where the marginal results are not significant. However, considering the L·(L−1)
2

pairs,

or the even greater number of higher order effects, becomes a computation challenge

for the long upstream sequences and whole-genome scans. For this reason we did not
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Table 6: SAFE results for select pairs of TRANSFAC TFs from the single-
motif analysis of the leukemia Down-syndrome dataset from section 4.4.3.

TF pair Size Perm. p Boot. Z Boot. p

p53 + Max 18.6 0.383 0.461 0.308

p53 + GATA-3 186.9 0.026 2.618 0.008

p53 + E47 37.5 0.110 1.865 0.041

Max + GATA-3 61.8 0.137 1.253 0.104

Max + E47 17.1 0.278 0.625 0.269

implement an exhaustive search, but note that the process can be highly parallelized

across either the number of motif pairs or the number of upstream sequences. We suggest

this framework would be very useful for any exploratory analysis that identifies multiple

significant motifs.

4.5.2 An iterative approach to updating PSWMs

Throughout this chapter, we have focused on treating PSWMs as fixed and known while

developing a hypothesis testing framework for gene expression data. Here we propose

and give a preliminary example of an algorithm for updating Θ based on the joint in-

formation of a gene’s upstream sequence and measures of differential expression from a

115



DNA microarray experiment.

The TF binding motifs from the JASPAR and TRANSFAC databases are identified

from different types of experimentation, from in vitro assays that immunoprecipitate

bound oligomers (Funk et al. 1992) to computational algorithms for finding patterns in

longer implicated sequences from a literature search or experiment (Matys et al. 2003).

With such different sources of historical data, it would be difficult to design a fully

Bayesian approach that would both allow for different variability in priors, and would

also be of a conjugate form such that posterior probabilities can be computed in a timely

manner when considering whole genomes. As a different approach, we propose an it-

erative algorithm that updates the position-specific weight matrix from initial values of

the parameters Θ(0) by sampling from either the genome-wide upstream sequences, or a

subset selected by external data (e.g. differential expression).

In the first stage for updating Θ, a motif model from section 4.2 gives the probability of

having at least one true motif based on the sequence information alone, Pr(HA | s, Θ0, θ0).

Bayes theorem can then used to get the probability of the alternative hypothesis con-

ditional on both sequence information and a local statistics as a measure of differential

expression, t.

Pr(HA | t, s, Θ(i), θ0) =

Pr(t | HA) · Pr(HA | s, Θ(i), θ0)

Pr(t | HA) · Pr(HA | s, Θ(i), θ0) + Pr(t | H0) · Pr(H0 | s, Θ(i), θ0)
(4.23)

This formulation requires specifying the distribution of local statistics under both the null

and alternative hypothesis of TF motif presence. In many basic experimental designs,

the distributions can be taken as mixtures of a central and non-central distributions of
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simple test statistics, where the mixing parameters relate to the sensitivity and specificity

of motif presence resulting in regulation and differential expression.

Once the probability of motifs is updated, sequences can be sampled based on the

posterior probability, along with the particular start sites using the following joint dis-

tribution Let the indicator Ai = 1 if a true motif starts at the i-th position of s, then the

joint distribution of start sites can be decomposed into the following marginal conditional

probabilities

Pr(A1 . . . AL−w+1 | s) = Pr(AL−w+1 | s) × Pr(AL−w | s, AL−w+1) × . . .

× Pr(A1 | s, A2 . . . AL−w+1) (4.24)

where the probability of the last position being in a true motif is

Pr(AL−w+1 = 1 | s) =
Pr(s ∩ AL−w+1 = 1)

Pr(s)

=
Pr(s[1:L−w]) · β · Pr(s[L−w+1:L] | Θ)

Pr(s)
(4.25)

and the conditional probabilities of upstream start sites take the form

Pr(Ai = 1 | s, Ai+1 . . . AL−w+1) =





0 if Ai+1 = 1 ∪ Ai+2 = 1 . . . ∪ Ai+w−1 = 1

Pr(s[1:i−1])·β·Pr(s[i:i+w−1] | Θ)

Pr(s[1:i+w−1])
otherwise

(4.26)

In this way, start sites can be sampled in a backward or forward manner from an

implicated sequence using probabilities that have already be defined in (4.7) and thus

would require no further computation once Pr(HA | s) is obtained. Algorithmically,
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the set of start sites in an implicated sequence are determined by first considering if

AL−w+1 = 1; if so, one jumps to AL−2·w+1 as the next nearest possible start site, otherwise

AL−w is the next position to be considered. An update to Θ is then obtained from the

frequency counts in the resampled PSWM. Lastly, we note that a Dirichlet prior can be

put on Θ such that the updated multinomial probabilities become the weighed sum of

frequency counts and hyperparameters (Liu et al. 2002)

To demonstrate the potential ability of this algorithm to refine motif PSWM esti-

mates, a small microarray dataset from Yoon et al. (2002) is used as evidence of TF

regulation. In the study, homologous recombination was used to knock out either one or

both copies of the p53 gene in a human cell line. A linear association is assumed between

p53 copy number and activity so that the gene-specific measure of differential expression

is a one-sided t-statistic from a simple linear regression model.

Gene expression data was preprocessed as described and mapped to REFSEQ IDs

using Bioconductor annotation package. The p53 gene (“NM 000546”) was confirmed

to be highly differentially expressed as previously published (t = 9.54, p = 0.0003).

Although severely limited by the number of unique resamples, a bootstrap-based SAFE

analysis showed a p53 motif from TRANSFAC is marginally significant (p = 0.015),

suggesting that information on differential expression might improve the estimated motif.

As a initial run of the iterative procedure, 200 updates were generated from the

starting values of the p53 PSWM from TRANSFAC (Figure 17). Sequence scores were

obtained from the Bayesian multi-site model with γ1 = 2 and γ2 = 1000 and a model prior

of PA = 0.01. To decrease the computational time, a single update of β was obtained

from 4.12 and then posterior probabilities in each update are obtained from the multi-
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site model conditional on β. Preliminary results suggest that the estimate of β remains

largely unchanged across iterations.

Posterior probabilities of regulation were obtained based on the observed t-statistic,

assuming it has a central distribution under the null, and a non-centrality parameter of

δ = 2 under the alternative. 50 implicated sequences were then sampled with replace-

ment, and an unspecified number of start sites were obtained from (4.24). Figure 17

shows a general convergence of the algorithm to a new motif. Further, the K-L distance

to the background increased during the iterations, representing that a more distinct mo-

tif was identified. Because the motif changed substantially from the starting PSWM,

consideration should be given as to whether the specific binding site is being identified.

Since this approach is dependent on the differential expression data, it will be of benefit

to verify that for any microarray experiment direct regulation by the TF factor occurs

in the most significantly DE genes.

4.6 Discussion

In this chapter, we have developed a new approach to hypothesis tests of functional

categories and gene expression data. By allowing a probabilistic measure for category

membership, SAFE can be extended to biological situations where function is less well

understood, or resulting in a more continuous measure.

To incorporate transcription factor analysis into SAFE, we derived probabilistic mea-

sures of TF regulation that are based on the presence of known motifs in the surrounding

sequences of genes. Models used for motif discovery can be readily adapted to this
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Figure 17: (A) Kullback-Leibler distance of the updated PSWM to the
starting motif, background, and the previous iteration. (B) Sequence
logos demonstrate the difference in the starting and final motif.

problem, and we note that future developments of models that better relate to the un-

derlying biology could be implemented and lead to better estimates of gene regulation.

For instance, parameters for the position of motif start sites could be incorporated if a

consistent pattern of location were to be observed. This may also be important when

addressing the multiple motifs thought to occur cis-regulated modules.

In addition, the concept of “soft categories” can allow SAFE to be extended to other

types of functional annotation, such as chromosomal location where a continuous measure

like physical or linkage map distance may provide more power to detect causal events

of differential expression that are based on a particular locus (e.g., an unknown amount
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of loss of heterozygocity). This would also provide a framework for considering multiple

and/or conflicting sources of annotation that define gene function. The implementation

of SAFE to these scenarios will be highly determined by the data structures of the

particular problem and quality of information.

Lastly, we note that the proposed use of differential expression data to improve mo-

tif estimation offers a novel mechanism that could seen by biologists as an interesting

way of combining the two sources of information into both motif discovery and better

understanding transcriptional regulation. Further work is necessary to establish the ap-

propriate manner of parameterizing the model and sampling updated motif start sites.

First, simulations can create random measures of differential expression for the true null

and alternative gene sequences that were generated in section 4.3. This would allow us

to understand the capability of the algorithm to converge on local or global maximum in

the likelihood surface of the ProductMultinomial. The effect of details like the Dirichlet

prior and sampling scheme for start sites can also be better established in the controlled

setting of simulation. In real sequence and expression data, it will be important to learn

if this approach can refine true motifs rather than converging on other known departures

from background in the sequences that possibly reflect other less interesting features of

DNA structure (e.g., single-nucleotide repeats or the TATA box for RNA polymerase

binding). Also, because one might expect that in studies involving cell culture and bio-

logical samples only a small fraction of the differential expressed genes result from direct

TF activation, it may be important to gather information from multiple experiments and

designs to be able to distinguish the genes that are directly regulated.
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