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“Terms swarm up to tempt me in the course of this description: Greek Orthodox,

Romanesque, flying buttress, etc. These guessing words I find junked in my brain in

deranged juxtaposition, like files randomly stuffed into cabinets by a dispirited

secretary with no notion of what, if anything, might ever be usefully retrieved. Often

all language seems this way: a monstrous compendium of embedded histories I’m

helpless to understand. I employ it the way a dog drives a car, without grasping how

the car came to exist or what makes a combustion engine possible. That is, of course,

if dogs drove cars. They don’t. Yet I go around forming sentences.”

- Chronic City, by Jonathan Lethem
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ABSTRACT
ADAM SHIELDS: Biomimetic Cilia Arrays - Fabrication, Magnetic

Actuation, and Driven Fluid Transport Phenomena.
(Under the direction of Rich Superfine.)

The cilium is one of biology’s most basic functional nanostructures, present on

nearly every cell and increasingly realized as vital to many aspects of human health. A

fundamental reason for the ubiquity of cilia is their ability to effectively interact with

fluids at the microscale, where the Reynolds number is low and thus inertia is irrelevant.

This ability makes cilia an attractive and popular candidate for an engineered biomimic

with potential applications in microfluidics and sensing. In addition, biological ciliated

systems are difficult to study for many reasons, and so I demonstrate how a functional

biomimetic system can also serve as a model platform for highly controlled studies of

biologically relevant, cilia-driven hydrodynamics.

Using the template-based microfabrication of a magnetic nanoparticle/polymer com-

posite, I fabricate arrays of magnetically actuated biomimetic cilia at the scale of their

biological analogues. I will discuss this fabrication technique and the magnetic actua-

tion of these arrays to mimic the beat of biological cilia. I also report on the nature

of the fluid flows driven by the cilia beat, and demonstrate how these cilia arrays can

simultaneously generate long-range fluid transport and mixing in distinct fluid flow

regimes. Finally, I present these results within the context of canonical hydrodynamics

problems and discuss the implications for biological systems, such as the motile cilia

recently discovered in the embryonic node.
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A note on embedded videos in this thesis

For better or worse, I believe that it is difficult to fully appreciate the work in this thesis

in a static format like the printed page. For that reason, a number of the figures in this

document contain embedded videos, which is indicated within the figure caption. The

good news is that I am confident this will enhance the experience of those who read,

or even just refer to, the electronic version. The less good news is that the embedded

videos are only viewable within Adobe Reader, a free pdf viewer which can be obtained

here. They should work on any computer which has Quicktime, which is freely available

here. For those who prefer the printed page, or have trouble with the videos, I have

made an effort to have the still image (which is overlaid on the video before it is played)

be informative and representative of the information in the video.

In addition, the inclusion of videos in the pdf has substantially increased the file

size. If necessary, a new copy of the thesis may be saved (change the filename please!)

which may disable the embedded videos and reduce the overall file size. If the reader

finds that the videos have already been disabled in their electronic version, please feel
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Chapter 1

INTRODUCTION

“Biology is not simply writing information; it is doing something about it. A

biological system can be exceedingly small. Many of the cells are very tiny, but they

are very active; they manufacture various substances; they walk around; they wiggle;

and they do all kinds of marvelous things – all on a very small scale. Also, they store

information. Consider the possibility that we too can make a thing very small which

does what we want – that we can manufacture an object that maneuvers at that level!”

- Richard Feynman, excerpt from his 1959 talk

at the American Physical Society annual meeting,

“There’s Plenty of Room at the Bottom:

An Invitation to Enter a New Field of Physics”

This classic presentation by Richard Feynman is often heralded as the beginning of

the field of nanotechnology. As one would expect during the birth of the computer age,

in 1959 Feynman’s talk focused largely on the new paradigms in manufacturing and

computing which could be brought about by ultra-miniaturization. Biology was not

the focus of this talk. However, the above quote hints at an idea that has become one

of the cornerstones of nanotechnology research in the decades since: that the amazing

biological machinery developed over more than a billion years of evolution provide

diverse examples of how engineering at the micro- and nanometer scales can help ignite

a revolution in many aspects of materials science, chemistry, and physics.



A half century since Feynman’s presentation that revolution is now well underway.

From the discovery of materials like carbon nanotubes with novel material properties

to the development of advanced tools for nanoscale imaging and manipulation, the last

two decades have witnessed such progress that we now stand at the cusp of a new age

of smart, responsive materials and products which promise paradigm shifts as dramatic

as the computer age.

As Feynman realized, biology has served as a fundamental example of exactly what

is possible when structures and materials are structured at the microscale. The in-

creasingly widespread impact of such bio-inspired technologies has resulted in the field

of ‘biomimetics’, in which fascinating and useful biological phenomena serve as mod-

els for engineered mimics which duplicate, or even improve upon, the feats of their

counterparts.

While biomimetics is becoming increasingly important in technologies across many

size scales, a number of examples of biological phenomena with technological appeal

take advantage of materials which exhibit microscopic structure. Such materials can be

endowed with properties which defy conventional experience. Broadly speaking, such

properties often arise from two sources: materials whose structure utilizes forces or

phenomena which do not exist at large scales or, secondly, composites which combine

into a single material the advantageous properties of the base materials.

In many cases, biological phenomena which depend on microscopic structure are

only appreciable when surface-to-volume ratios are large. Thus, as the absolute di-

mension of structures approaches the microscale, gravity becomes irrelevant and effects

based on Van der Waals forces, surface tension, and other forces become dominant.

Several oft-noted examples of such systems are found in geckos, the lotus leaf, and a

small lizard known as the thorny devil. Geckos possess the unique ability to reversibly

adhere the pads of their feet to essentially any surface, wet or dry, rough or smooth,

2



providing the inspiration for a new class of adhesives. The microscopic structure of

the lotus leaf causes water droplets to bead up and run off, performing a self-cleaning

function as dust and dirt are collected by the rolling water droplets. Finally, in a feat

which contrasts the abilities of the lotus leaf, by placing its foot in contact with a small

puddle or a wet patch of sand, the thorny devil can wick water along its leg, up its

back, and into its mouth, effectively drinking through its foot.

Another broad class of novel nanomaterials combine dissimilar materials into com-

posites with properties which can not be found in homogenous materials. Biology has

provided ample evidence of how high-strength, lightweight materials can be formed

from composite materials. Nacre, the material produced by the abalone to form its

shell, is a well-documented example of such a material. It is formed with a brick-

like, tiled structure of crystalline calcium carbonate, known as aragonite, with the tiles

mortared together by a soft organic matrix, and which has a fracture strength orders

of magnitude larger than monolithic aragonite. Another common type of composite is

conductive polymers based on the inclusion of conductive particles into the polymer

matrix.

The use of composite materials with engineered microscale structure is at the heart

of another broad aspect of nanotechnology, the development of responsive materials.

Such materials are often broken down by application into sensors and actuators. The

ability to manipulate objects or fluids with actuators and the ability to measure similar

types of changes with sensors are critical aspects of technology across all size scales.

While there is a sense in which these ideas contrast, the means to achieving either end

requires responsive materials, and in reality they are two sides of the same coin. More

technically, in many cases the essential difference between a sensor and an actuator is

just a switch of the input and output, for example in microphones and speakers.

In much of conventional technology, the term ‘responsive materials’ can effectively

3



be reduced to ‘moving parts’. Machines which respond to changes at the macroscale

are typically built from unresponsive materials into configurations with moving parts

that allow them to effect, or be affected by, change. As we seek to bring technology

into the microscale, it becomes progressively more important that the responsiveness

of a sensor or actuator be an intrinsic property of the material, and not solely based on

the ability to construct machines with moving parts. Such microscale technology will

often be produced in environments where fluid forces predominate.

Much of biology also takes place in a liquid, and as such biology provides inspiration

on how to effectively interact with fluids at the microscale in the form of the cilium

and flagellum. These whip-like, motile structures are evolutionary biology’s answer to

the question of how to interact with fluids at the cellular level and are thus found in an

astonishing array of biological systems. As nanotechnology becomes more widespread,

the need for efficient mechanisms for manipulating microscale fluids will become in-

creasingly important, and so cilia and flagella have become popular candidates for

engineered biomimics.

Yet, the functionality of cilia and flagella also requires moving parts! In fact, the

cilium could be considered a shining example of the use of moving parts within the cell:

the ATP driven transport of molecular motors along microtubules. The configurational

changes of these protein-based motors cause them to ‘walk’ along microtubules, the

fibers which form a dynamic network within the cell and which also serve as one of the

cell’s primary structural components. This mechanism is the foundation for the cell’s

ability to move objects from place to place within itself and thus to perform and regulate

many of its basic processes. In the cilium, sets of paired, or doublet, microtubules run

parallel to the long axis of the cilium and form its basic structural components as well

as a pathway for transport of molecular cargo through the cilium.

To the chagrin of many researchers in biomimetics, the complex internal machinery
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which drives the motion of a cilium shares a commonality with many other candidates

for biomimicry: a man-made counterpart which truly mimics the size, structure, and

function of the biological cilium is far from being technologically achievable. More

broadly, the fine-tuned dance characteristic of biochemical processes and cellular ma-

chinery are, in general, far too complex to be currently envisioned as feasible routes for

producing many biomimics.

As such, a likely method for producing a biomimetic cilium combines the two foun-

dations of engineered nanomaterials I mentioned earlier, engineered microstructure

combined with a responsive, composite material. To mimic the size of the biological

cilium and produce an array of such structures requires engineering processes capable

of producing robust, responsive structures at a scale which has not been previously

demonstrated in a man-made system. The constraints imposed by current fabrication

techniques at this scale preclude any mimic with internal machinery, and so the ma-

terial they are constructed from must combine the flexibility required to deform with

the ability to respond to an external stimulus. As I will describe in detail, the first

fundamental thrust of my thesis work was to develop a fabrication process which would

reliably produce artificial cilia at the size of the biological cilium. Briefly, the strat-

egy I have devised involves the template-based microfabrication of a polymer-magnetic

nanoparticle composite material to form free-standing arrays of magnetically actuated

cilia.

With the first artificial structures to mimic the size and function of biological cilia

in hand, the second fundamental thrust of my thesis has been to use these structures

as one of the first examples of a biomimic which can ‘close the loop’ in biomimetics

research. In many cases, the subjects of biomimicry to this point have been those who

can be poked, prodded, and looked at to a degree which makes them well understood

both theoretically and technologically. For this reason, the biology of such systems

5



is often well understood and the biomimetics research is primarily application driven.

In contrast, despite decades of theoretical and experimental work an amazing array of

functions performed by cilia are just now being discovered, and the difficulties associated

with both experimental and theoretical research have limited the understanding of cilia-

driven hydrodynamics. As such, in this thesis I seek to develop an engineered cilia mimic

which extends the bounds of state-of-the-art microfabrication and has potential for

numerous practical applications, but also provides a highly controlled model platform

for elucidating issues of fundamental importance to biological ciliated systems.

In large part, the inspiration for this second thrust is due to the association of

this work, and much of the other work I have been exposed to throughout graduate

school, under the broader umbrella of the University of North Carolina’s Virtual Lung

Project (VLP). The VLP is a highly multidisciplinary collaboration between University

of North Carolina professors in applied mathematics, physics, chemistry, biology, and

other fields, along with a number of medical doctors from the UNC Cystic Fibrosis

Center. The broad goal of the Virtual Lung Project is to seek models of airway function

and dysfunction with an accuracy that would allow for computational predictions on the

efficacies of therapeutical and pharmacological treatments. This type of effort is part

of an increasing trend across many aspects of human health to begin the modeling of

biological systems which is on par with the modeling that has been used in engineering

and manufacturing for decades. The development of biomimetic cilia is a very small

part of the broader goals of the VLP, with the idea that these artificial mimics would

provide an alternative with advantages over conventional experimentation with cell

cultures and excised tissue.
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1.1 Summary of the Thesis Work

The background work which is of relevance to this thesis is broad, but a unifying

concept is the importance of fluid dynamics at the microscale. For this reason, before

surveying the previous work in the literature I will first present an overview of several

aspects of hydrodynamics at these scales in Chapter 2. At such small scales, fluids

are inherently inertialess and thus a fascinating departure from much of our learned

intuition about how fluids behave, and so a brief overview will provide a foundation for

a deeper understanding of issues throughout the remainder of the thesis.

In Chapter 3, I will present a more detailed picture of the various fields to which

my thesis work contributes. This includes further details on biomimicry, biological

cilia, other types of responsive microstructures (some of which are competing versions

of artificial cilia), and an introduction to microfluidics, a rapidly growing technology

which requires novel strategies for control of fluids at the microscale. In the section on

biological cilia, I will describe the state of knowledge on the structure and functions of

biological cilia, especially the nature of experimental studies of cilia-driven fluid flows

in these systems. This section focuses on two biological ciliated systems: those which

line the airway epithelia in order to clear mucus and maintain airway sterility, and

embryonic nodal cilia, which are a new and fascinating example of the increasingly

widespread realization that fluid dynamics plays many critical roles in biology. I will

describe how the large majority of studies of such systems have been very coarse, with

little or no statistical analysis, largely owing to the difficulty of both in vivo and cell

culture studies of ciliated systems. The consequent dearth of meaningful data on ciliated

systems provides additional motivation for highly controlled fluid dynamics studies in

a model of biological ciliated systems.

In Chapter 4, I begin the presentation of the fabrication processes used to generate

robust biomimetic cilia arrays and the actuation of the arrays to mimic biological cilia.
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Artificial cilia have been developed with responsiveness to a number of stimuli, but

for a variety of reasons magnetic actuation has been a popular mechanism in other

microactuators, for example because permanent magnets can be used which do not

require their own power source. Our method combines a novel soft rubber-magnetic

nanoparticle composite with a template based fabrication strategy that has previously

been demonstrated only for rigid microstructures. Biological cilia are typically 250 nm

in diameter and 3−7 µm in length, and with this approach I have successfully produced

arrays in the range of diameters from 200 nm to 1 µm and lengths of either 10 or 25 µm.

The resulting free-standing structures have aspect ratios (length/height) of up to 125,

which for their softness makes these structures one of the most flexible free-standing

(and man-made) pillars of their scale in the published literature.

In the second part of Chapter 4 I move on to the actuation of these structures via

permanent magnets. I demonstrate a number of strategies that have been developed

to produce different beat shapes, several of which mimic the beat of airway and nodal

cilia. This chapter includes a static model, developed by Ben Evans, a collaborating

fellow graduate student, which was the first model in the literature to include the effect

of a magnetic gradient. I will present experimental work which demonstrated for the

first time the actuation of a flexible rod based on the forces generated magnetic field

gradient, as opposed to the more typical case in which the bending force is generated

by the direction and strength of the field itself, relative to the axis of the cilium.

This experiment also served as confirmation of the accuracy of the model in its ability

to predict such an effect, with potential applications as a magnetic switch. Broadly

speaking, the efforts of Chapter 4 extend the presentation and discussion of results

which were published as Evans and Shields et al., Nano Letters, vol. 7, no. 5, pg.

1428-1434 (2007).

Chapters 5 and 6 present my result and analysis of the fluid flows generated by the
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actuation of the cilia arrays. I describe the general types of flows seen in the system,

which include vortices around each cilium and an overall oscillation of the entire fluid

volume which is at the frequency of the cilia beat. This oscillation generates ‘epicycles’

in the motion of particles in the fluid, the shape of which reflect the path of the cilia

tips.

Many of the fluid flow results presented in these chapters revolve around my ob-

servation that in most cases the character of the fluid flow was dramatically different

below the cilia tips than above, and that the transition between these two regimes

occurs over a length of just a few microns. My analyses of these flow regimes provide

some of the most thorough experimental characterizations of cilia-driven fluid flow, es-

pecially in the layer of fluid below the cilia tips, an area which is especially difficult to

access experimentally in biological systems.

In Chapter 5 I demonstrate the first report in the literature of long-range pumping

by an artificial cilia system. I show that the cilia can generate uniform, directional

fluid flow by mimicking the beat shape of the class of cilia known as embryonic nodal

cilia. With this specific beat shape, the flow above the cilia tips changes from the

simple epicyclic oscillations just described to a superposition of the epicycles with an

overall uniform background flow. I characterize this flow regime in terms of a canonical

hydrodynamics problem, Poiseuille-Couette flow, and show that this model can also be

applied to the flow in the biological system of the embryonic node.

In Chapter 6 I focus on the flow regime below the cilia tips, and I demonstrate that

the nodal cilia beat can produce mixing in this regime which is dramatically different

from the directional transport in the pumping regime. Furthermore, mixing in ciliated

systems has not been demonstrated in any theoretical or experimental work, and so

my characterization of these flows has biological implications which I will discuss. For

example, the function of the biological nodal cilia system hinges on the ability of the
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cilia to create a flow which establishes a chemical gradient, and so the possibility of

cilia-driven mixing might have repercussions on the stability of such gradients. The

results presented in Chapters 5 and 6 are an extension of work which was recently

published as Shields et al., The Proceedings of the National Academy of Sciences, vol.

107, no. 36, pg15670-15675, 2010.
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Chapter 2

MICROSCALE

HYDRODYNAMICS

“Now, I’m going to talk about a world which, as physicists, we almost never think

about. The physicist hears about viscosity in high school when he’s repeating Millikan’s

oil drop experiment and he never hears about it again....And Reynolds number, of

course, is something for the engineers. And the low Reynolds number regime most

engineers aren’t even interested in... But I want to take you into the world of very low

Reynolds number – a world which is inhabited by the overwhelming majority of the

organisms in this room. This world is quite different from the one that we have

developed our intuitions in.”

- E.M. Purcell, “Life at Low Reynolds Number”,

from a classic talk given in honor of

Victor Weisskopf and reprinted as

Amer. J. of Phys., Vol. 45, No. 1, (1977).

A common theme throughout this thesis is the importance of fluidic phenomena,

especially at the microscale. For this reason I present in this chapter an overview of

a variety of such phenomena. Fluid dynamics is a fascinating field for many reasons.

Although our everyday experience with fluids is vast, the number and types of problems

which are fully understood on a theoretical basis are relatively few. As Purcell notes,

at the microscale fluids often behave in ways which defy our intuition, and although



there are a number of simple problems in this realm which are easily solved, systems

with only a small amount of complexity typically require computational methods. On

the other hand, at the scale of our everyday world fluids are often turbulent, a state

characterized by random fluctuations in velocity components which poses great com-

putational challenges. Thus, fluid dynamics is a field which is fundamental to a vast

array of systems across all scales, yet in many cases surprisingly little is understood

about many fluidic problems.

The fluid dynamics problem specific to this thesis is the nature of the fluid flow

around beating cilia. Cilia are microscale structures and operate within the nonintuitive

regime Purcell is describing, and so a basic understanding of how fluids work at these

scales will be critical to the remainder of this thesis. To develop this understanding I

present and discuss the governing equations of fluid dynamics, the Navier-Stokes and

continuity equations, as well as a number of canonical solutions. The models I will

describe serve several purposes. They provide basic insights into hydrodynamics, and

will also serve later in this work as simple models of the fluid flows driven by my

biomimetic cilia.

The need for such simple models is primarily due to the sparsity of experimental

data on fluid flows driven by biological cilia. A primary goal of many theoretical models

is to predict the bulk fluid flow from knowledge of a the beat of a single cilium within

the array, an idea known as coarse-graining. The lack of thorough experimental charac-

terizations of fluid flows driven by biological cilia means that accurate coarse-graining

descriptions will serve as a valuable tool for comparison with more sophisticated theo-

retical techniques.
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2.1 Fluids at Low Reynolds Number

As Purcell noted, the fluid flow regime of interest is much different from our everyday

experience. This non-intuitive regime is characterized by a low value of an important

dimensionless number known as the Reynolds number. Hydrodynamics is replete with

dimensionless ratios, which typically serve as measures of the relative importance of two

competing phenomena and are thus an important description of what types of effects

will dominate a system. The Reynolds number is a widely used dimensionless ratio

which compares inertial and viscous effects, or

Re =
inertial forces

viscous forces
. (2.1)

As Newton realized, inertia is the tendency of motion to persist in the absence of other

forces. In contrast, viscosity is the resistance of a fluid to deformation, which works to

dissipate motion and competes with inertia. In general, when Re > 1 then the motion

of fluids begins to be dominated by their momentum. When Re < 1 viscous forces

dominate inertia.

As the Reynolds number continues to decrease so that Re << 1, the ‘low Reynolds

number world’ which Purcell helped to illuminate becomes dominant. This world is

difficult for us to grasp because there is essentially no inertia, which means that objects

defy our Newtonian perception that motion should persist. In our world, we set objects

in motion (apply force) and expect them to go some distance after we let go (remove

force). In the low Reynolds number world, as soon as we let go the object stops. Any

forces from the past do not matter. Everything that matters at low Reynolds number

is what is happening in the present.

Purcell noted that very few physicists or engineers were interested in low Reynolds

number flows. To gain a sense of who is interested, the Reynolds number is typically
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defined as

Re =
ρv`

η
(2.2)

where ρ is the fluid density, η is the dynamic viscosity, and v and ` are characteristic

velocity and length scales of the system, respectively (Happel and Brenner, 1963). The

properties of the fluid are sometimes combined into the kinematic viscosity ν = η/ρ so

that the Reynolds number becomes

Re =
v`

ν
. (2.3)

If I choose the typical density and viscosity of aqueous solutions at room temperature of

η = 10−3 Pa · s and ρ = 103 kg/m3, then the Reynolds number of such aqueous solutions

is

Re =
v`

10−6 m2/s
. (2.4)

So in order to be interested in low Reynolds number you must have v` << 10−6 m2/s.

It is now clear that those interested in low Reynolds are those who are very small or

move very slowly.

Of course, this is why Purcell noted that the vast majority of organisms in the room

were interested. At the microscopic scale nearly everything happens at low Reynolds

number. For example, at cellular scales of ` ≈ 10 µm = 10 × 10−6 m, in order to

move at a Reynolds number equal to 1 an object must move with a velocity of 10 cm/s!

For a microorganism this would mean moving about 10,000 body lengths per second,

a truly difficult task.

Since Purcell’s time microbiology and nanotechnology have come to the forefront of

their respective fields, and so now those of us interested in low Reynolds number are

many more (although not, I suppose, as a percentage). The biological cilium clearly

operates at low Reynolds number, as do nearly all microscale biomimics, and the field
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of microfluidics is almost entirely within this regime as well. Purcell’s main examples

concerned the swimming of microorganisms, as swimming has been a classic example

of how low Re fluids do not work like our intuition guides us. In addition, swimming is

intimately tied to the ability to produce net fluid motion, as an organism which swims

in free space would produce fluid transport if it were fixed in place. In the next section

I turn to a more rigorous description of low Reynolds number fluid mechanics, but to

end this section and place the reader firmly within this world, another Purcell quote

about swimming at low Reynolds number is in order:

“It helps to imagine under what conditions a man would be swimming at, say, the

same Reynolds number as his own sperm. Well, you put him in a swimming pool that

is full of molasses, and then you forbid him to move any part of his body faster than

1 cm/min. Now imagine yourself in that condition: you’re under the swimming pool in

molasses, and now you can only move like the hands of a clock. If under those ground

rules you are able to move a few meters in a couple of weeks, you may qualify as a low

Reynolds number swimmer.”

2.2 The Continuity and Navier-Stokes Equations

A typical starting point for the theory of fluid mechanics from a continuum per-

spective is the conservation laws of mass and momentum. A mathematical statement

of conservation of mass can be obtained by stating that, within a finite element of fluid

fixed in space, the rate at which density changes is equal to the net rate at which mass

enters the element divided by its volume. In vector form this is

∂ρ

∂t
= −∇ · (ρ~u) (2.5)
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(Happel and Brenner, 1963). This statement also implies that the velocity field is

continuous, which is why it is often called the continuity equation. Low Reynolds

number liquids are assumed incompressible and constant density, and so the continuity

equation becomes

∇ · ~u = 0. (2.6)

Conservation of momentum is a formulation of Newton’s ~F = m~a as applied to a

fluid element. A restatement of this law in terms of momentum is that the external

force on a system is equal to the rate of change of momentum. For a fluid element,

momentum can increase within the element as well as flow in and out through its

surfaces. The external forces on the element are any fluid stresses which act upon

the surface, as well as any body forces such as gravity. Written out, this statement

of conservation of momentum is the Navier-Stokes equation in its most general form,

adapted from (Happel and Brenner, 1963):

∂(ρ~u)

∂t
+ ∇ · (ρ~u~u) = ∇ · Π + ρ~f. (2.7)

Rate of increase of

momentum per unit

volume

Rate of momentum

transport by convection

through the surface, per

unit volume

Stresses on the

surface, per unit

volume

External body force

on element, per unit

volume

The combination of this equation, which forms a set of three equations for mo-

mentum conservation in each direction, with the continuity equation forms the basic

governing equations of hydrodynamics. They form a set of four equations which can be

solved simultaneously for the four unknowns of the scalar pressure field and the three

velocity components.

As will become clear, the most important term for low Reynolds number flow is the

divergence of the total stress tensor Π. The stress tensor describes the forces which are

distributed over the surfaces of the fluid element. These forces are proportional to the
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deformation of the element as it flows, which can be separated into two tensors which

describe the element’s rotation and shear. The sum of these is called the deformation-

rate tensor. However, to proceed from the deformation of the element to the stress

tensor requires knowledge of the material itself called a constitutive equation.

By far the most common types of fluids encountered are those, like air and water,

called Newtonian fluids. These fluids obey a number of postulates, which have been

confirmed by experiment, that make them amenable to calculations. For this reason, the

vast majority of this chapter concerns itself with such fluids. However, in several ciliated

systems, and biology in general, another common class of fluids which play important

roles are viscoelastic fluids. As the name implies, the deformation of such materials

causes them to store energy just as in a stretched rubber band. Such non-Newtonian

behavior which makes theoretical treatments substantially more difficult, and very few

theoretical models on cilia-driven fluid flow have incorporated viscoelasticity, as I will

describe in more detail in Chapter 3.

Newton’s observations of the fluids which bear his name revealed their defining

characteristic, which is one of two postulates needed to pick a constitutive equation for

the stress tensor Π. Namely, Newton hypothesized in his Principia that, “The lack

of slipperiness of the parts of a fluid is, other things being equal, proportional to the

velocity with which the parts of the fluid are separated from one another” (Newton,

1687). This means that the shear stress in a fluid, the portion of the total stress which

is applied parallel to the surfaces of a fluid element, is proportional by some constant to

the velocity gradient perpendicular to the direction of the shear. The proportionality

constant in this relationship is the definition of the viscosity of a fluid. For a fluid

element under flow, the velocity gradients are elements of the deformation-rate tensor

I described above. Thus, the first postulate for a Newtonian fluid is that the viscous

stress is a linear function of the deformation-rate tensor.
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The second postulate needed for the constitutive equation is that when the fluid

element is at rest, the only stress on it is hydrostatic pressure. As opposed to shear

stresses, such hydrostatic pressures are exerted perpendicular to the surfaces of the

element. This means that the stress tensor for a Newtonian fluid can be separated into

terms which independently describe the pressure and shear stress. The constitutive

equation for a Newtonian fluid also requires two additional postulates, that the ma-

terial be isotropic and that a pure rotation of an element does not induce any shear

stresses. Finally, the derivation of the constitutive equation also utilizes the form of

the continuity equation for an incompressible fluid (equation 2.6) and the assumption

of constant viscosity to arrive at

Π = −∇p+ η∇2~u (2.8)

(Happel and Brenner, 1963).

Thus, in a Newtonian, incompressible fluid, the Navier-Stokes equation (2.7) can

be simplified to the form first derived by Navier (Navier, 1827)

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇p+ η∇2~u+ ρ~F . (2.9)

This simplified form is the starting point for understanding a great number of fluidic

problems. However, the second term on the left (~u · ∇~u), which represents convective

acceleration of the fluid (for example, as the fluid goes around an obstacle), is quadratic

in velocity and makes the equations non-linear, and thus substantially more difficult to

solve. In a number of the canonical solutions I will present, this term is zero, the reason

why they can be easily solved is that this term is identically zero to the geometry of

the problem. When this is not the case, additional assumptions can provide further

simplifications.
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The first of these assumptions, which will apply in some cases but not all, is that

∂~u/∂t is small or zero, known as steady flow, meaning that the velocity field does not

change in time. This eliminates the first term on the left, yet the troublesome non-linear

term is still present. To arrive at the second assumption, it will prove interesting to

simply compare dimensionally the two terms ρ~u ·∇~u and η∇2~u, based on characteristic

lengths and velocities of the system. The dimensions of the first would be given by ρv2/`,

while the second is ηv/`. The ratio of these two, of course, brings us back to the Reynolds

number Re = ρv /̀η. This reveals that the non-linear term in the Navier-Stokes equation

represents inertial effects, while the Laplacian of the velocity field describes viscous

effects. Thus, the assumption of low Reynolds number allows for the elimination of the

non-linear term. It also explains why I stated earlier that the divergence of the stress

tensor is the most important term of Navier-Stokes for low Reynolds number flows,

which are also often referred to as viscous flows.

If I further assume that the effects of any body forces are negligible (gravity, at

least, is rarely a significant force at the microscale), then the Navier-Stokes equation

reduces to the form

∇2~u =
1

η
∇p. (2.10)

The combination of this result with the continuity equation (∇·~u = 0) and the boundary

conditions of the problem form the equations of motion for slow, viscous flow known

as Stokes flow, or creeping flow.

It is important to note that the Stokes equations represent a significant simplifi-

cation as they are now linearized. This is important because the solutions of linear

differential equations obey the principle of superposition, which means that if (f1, p1)

and (f2, p2) are separate solutions, then (f1 + f2, p1 + p2) is also a solution. Thus,

for low Reynolds number flow, exact solutions to more complicated systems can be

built from superpositions of the solutions to simple systems. However, the individual
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systems which are superposed must share the same boundary conditions.

Such superpositions will be of relevance for the fluid flows described in Chapter 5,

and I will discuss several below. In addition, many theoretical techniques used for cilia

studies, such as slender body theory, rely on superposition techniques. These theories

are summarized below as well, but first I present several of the canonical solutions to

the Navier-Stokes equations.

2.3 Exact Solutions of the Navier-Stokes Equations

I have mentioned that the inertial term in the Navier-Stokes equations can be ig-

nored at low Reynolds number in general, but there are a few canonical solutions of

these equations which can be solved exactly without assuming low Reynolds number.

In many cases these problems are simple geometries in which, at all points, the velocity

vector is perpendicular to its gradient, and the inertial term ~u · ∇~u is identically zero.

Each of the classes of solutions I will discuss in this section, Couette flow, Poiseuille

flow, and Stokes 1st and 2nd problems, give examples of such scenarios where Navier-

Stokes may be solved exactly. Despite the simple geometries, these solutions have been

shown to be useful approximations of fluid flows in a wide array of systems, and thus

widely applicable. More pertinently, in this thesis each will be of use as a model for

various aspects of the fluid flows driven by biomimetic cilia arrays.

2.3.1 Couette Flow

Couette flow describes the flow of fluid between two boundaries in which the fluid is

driven by the motion of the boundaries. In plane Couette flow the boundaries are two

parallel plates with a lateral extent much larger than their separation h. One of the

boundaries is translated in a direction parallel to the planes, and so it is assumed that
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all the flow is along the same dimension, call it the x direction. The velocity profile

between the plates u(y) is then only a function of y. As the velocity is everywhere in

the direction of x, but only a function of y, the inertial term is zero and the continuity

equation is automatically satisfied. In addition, there is no pressure gradient and so

the Navier-Stokes equations reduce to a single differential equation.

If I assume that the top plate translates with speed u0 and the bottom plate is

stationary then the flow is the solution of the Stokes equations with boundary conditions

u(0) = 0 and u(h) = u0. The pressure gradient is zero, and so the Stokes equations

reduce to

∂2u

∂y2
= 0 (2.11)

and so

u(y) = C1y + C2 (2.12)

where C1 and C2 are constants. With the boundary conditions this gives the velocity

profile of plane Couette flow as

u(y) =
u0

h
y, (2.13)

so the velocity profile is simply linear between the boundaries, as shown in Figure 2.1.

This solution also possesses the unique quality of a constant shear stress over the

entire height, which is given by τ = η ∂u/∂y = u0/h. This solution has many practical

applications and is relevant to the case of ciliated systems, as, even though they often

line cylindrical ducts, the curvature of the ducts is usually large compared to the cilia

and so the cilia effectively act as if they are distributed on a flat plane.
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2.4 Poiseuille Flow

While in Couette flow the motion of the boundaries drives the fluid, in this second

example, Poiseuille flow (pronounced pwah-zwee), the fluid motion is pressure-driven.

In plane Poiseuille flow, the geometry is the same infinite plates as plane Couette flow,

but in this case both boundaries are stationary. The boundary conditions are then

u(0) = u(h) = 0, and as in plane Couette flow the velocity is entirely in the x direction

and only a function of y, and so the Stokes equation is given by

∂2~u

∂y2
=
∇p
η
. (2.14)

The solution of this is obtained by double integration, and using the boundary condi-

tions to solve for the constants of integration, which gives

u(y) = −∇p
η

(
y2

2
+ Ay +B

)
, B = 0, A = −h

2
. (2.15)

Thus, the velocity profile of Poiseuille flow is a parabola given by

u(y) = −∇p
2η

(y2 − hy). (2.16)

The maximum velocity is halfway between the plates at y = h/2 and is given by

umax =
∇p
8η
h2 (2.17)

while the average flow speed is obtained by integrating the profile and dividing by the

separation

uavg =
∇p
12η

h2 =
2

3
umax. (2.18)
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Figure 2.1: Click to Animate. The poster image and animations represent the
velocity fields of Couette flow, which is driven by the motion of the upper boundary, and
Poiseuille flow, which is driven by an external pressure gradient.

This last result is of some use because the volume flow rate through a channel of

arbitrary cross-sectional area A is given by Q = uavgA. Finally, the shear stress is

τ = ∇p
(
y − h

2

)
, (2.19)

a linear function which is zero at the midpoint and has extrema at the boundaries.

This reveals a general aspect of viscous flows, which is that the relative motion of fluid

and a boundary induces shear stresses which are largest near the boundary. This is

because the viscosity of the fluid tries to smear out any velocity gradients, and such

gradients are typically largest in proximity to boundaries.

A quick comparison between the plane Couette flow result and this result for plane

Poiseuille flow is of some interest because it speaks to another broad principle of low

Reynolds number flow. In Couette flow, the boundaries drive the flow and the velocity

is independent of the fluid properties. In contrast, for pressure-driven flows the velocity

does depend on the viscosity. The situation is reversed for the shear-stresses experienced

by the fluid: the shear stress in the boundary-driven flow depends on viscosity due to

the viscosities tendency to smooth velocity gradients, while in Poiseuille flow the shear

stress only depends on the pressure.
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2.5 Stokes 1st and 2nd Problems

2.5.1 Stokes 1st problem

The fluid dynamics problems known as Stokes 1st and 2nd problems also have many

applications in engineering and physics. They share a common geometry and are both

exact solutions of Navier-Stokes, but differ in their boundary conditions. The geometry

in Stokes 1st problem is the semi-infinite space defined by a single infinite plane with

a fluid above it. In Stokes 1st problem the plane and the fluid are initially at rest, but

at time t = 0 the plane instantaneously begins translating at speed U . In Stokes 2nd

problem the plane oscillates in time rather than moving with a constant velocity. Each

problem introduces time, and so the assumption of a steady flow does not apply, but

exact solutions may still be found owing to the simplicity of the geometry. Specifically,

as the plane only moves in the x direction it can be assumed that the fluid velocity is

also in x and only a function of y. There are also no pressure gradients, and so for both

problems the Navier-Stokes equation reduces to

∂u

∂t
= ν

∂2u

∂y2
(2.20)

where I have again used the kinematic viscosity ν = η/ρ. The solution to Stokes 1st

problem is obtained from the boundary condition

u(0, t) =

{
0, for t ≤ 0

U, for t > 0.
(2.21)

This can be solved exactly by similarity methods, but as Stokes 2nd problem is of much

more relevance to the discussion, I will just give the solution to Stokes 1st problem,

which is

u(y, t) = U

(
1− erf

(
y

2
√
νt

))
(2.22)
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where erf is the error function. An interesting application of this result is to ask about

what thickness of fluid above the plane is moving after a given time, which could be

called the penetration depth of the plane’s disturbance. To arrive at a clean result, a

common observation is that the fluid velocity is about 4% of the plane’s velocity when

the argument of the error function is equal to 3/2. If the penetration depth is δ, then

3/2 = δ/(2
√
νt), or

δ = 3
√
νt. (2.23)

It is worth noting that thisd result shares a similarity with the phenomenon of diffusion.

Diffusion refers to the motion of small particles in a fluid, which exhibit ‘random walks’

due to molecular collisions. While I will discuss diffusion in more depth in Chapter 6, the

penetration depth has the same form as the expected root-mean-square displacement

of diffusive particles as a function of time, which also goes as
√
t. For this reason,

the kinematic viscosity is analogous to the rate of diffusion of a particle, known as the

diffusivity, which is a property of the particle just as ν describes the basic properties

of the fluid. This is why the kinematic viscosity is sometimes conceptually thought of

as a measure of the rate at which momentum ‘diffuses’ into a fluid.

2.5.2 Stokes 2nd problem

The boundary condition on Stokes 2nd problem is an oscillation of the plane de-

scribed by

u(0, t) = U cos ωt (2.24)

where ω is the frequency of the oscillation and it is assumed that each fluid element

oscillates with the same frequency in a plane parallel to the floor. The solution can
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then be assumed to have the form

u(y, t) = Re
[
X(y)eiωt

]
(2.25)

where Re signifies the real part of the complex expression, and X(y) is the amplitude

of the fluid oscillation as a function of distance from the plane. Substituting this into

the differential equation gives

Re
[
iωX(y)eiωt

]
= νRe

[
d2X

dy2
eiωt
]

(2.26)

which can be simplified to give the 2nd order, homogenous differential equation for the

amplitude

d2X

dy2
− iω

ν
X = 0. (2.27)

Differential equations of this form, in which the second derivative of a function is equal

to some constant times the function itself, can be solved by assuming the solution

X(y) = c1e
−c2y + c3e

c4y. (2.28)

where c1 and c3 are determined by boundary conditions, and c2 and c4 are roots of

the characteristic form of the differential equation. An additional boundary condition

on this problem which I have not yet mentioned is that the fluid velocity must remain

finite as y →∞. This is not the case in the second term of the assumed solution (the

positive exponential), and so I must have c3 = 0. Substituting the rest of the assumed

solution back into the differential equation gives

d2X

dy2
= c1c

2
2e
−c2y (2.29)
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and so comparison with the original differential equation means that I must have

c2 =
√

iω/ν. Before substituting this back in, I first note that I am eventually going to

need to select the real part of the solution. Thus it will be helpful to note that, if I

assume a + ib =
√
i, square both sides, and equate the real and imaginary parts then

√
i = (1 + i)/

√
2.

The amplitude of the fluid’s oscillation is then given by

X(y) = c1e
−(1+i)

√
ω
2ν
y (2.30)

or

X(y) = c1e
−
√

ω
2ν
ye−i
√

ω
2ν . (2.31)

Substituting back into equation 2.25 gives for the velocity profile

u(y, t) = Re
[
c1e
−
√

ω
2ν
ye−i
√

ω
2ν
yeiωt

]
(2.32)

or

u(y, t) = Re
[
c1e
−
√

ω
2ν
yei(ωt−

√
ω
2ν
y)
]
. (2.33)

To take only the real part of the expression I use Euler’s formula,

reiθ = r(cosθ + isinθ), and so

u(y, t) = c1e
−
√

ω
2ν
ycos

(
ωt−

√
ω

2ν
y

)
. (2.34)

Finally, the last constant is obtained with the boundary condition at the plane,

u(0, t) = U cos nt, which simply gives c1 = U , and so the velocity profile of Stokes 2nd

problem is

u(y, t) = U e−
√

ω
2ν
ycos

(
ωt−

√
ω

2ν
y

)
. (2.35)
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This result describes a velocity which oscillates in time just as expected, with an ampli-

tude which is largest at the plane and decays exponentially as y increases. The phase

shift between the plane’s motion and the fluid is also a function of y and depends on

the properties of the fluid and the oscillation frequency.

Again I can ask about the thickness of the layer which is affected by the plane’s

motion. At a given plane, the maximum motion is when the cosine term is 1, and

another definition of the penetration depth is that it is the height at which the velocity

is decreased by a factor of 1/e2. With these two conditions the velocity profile gives

1

e2
= e−

√
ω
2ν
δ (2.36)

and so the penetration depth is

δ = 2

√
2ν

ω
. (2.37)

This result is also proportional to
√
ν, as in Stokes 1st problem, but offers the addi-

tional insight that the layer thickness is inversely proportional to the square root of the

plane’s oscillation frequency. Thus, when the frequency of a given oscillatory motion is

increased the thickness of the layer which is influenced decreases, while increasing the

viscosity of the fluid increases the coupling between the fluid and the boundary and

increases the penetration depth.

2.5.3 Modified Stokes 2nd problem

Stokes 2nd problem can be modified for the presence of an upper boundary at y = h.

The differential equation does not change, only the boundary condition. Whereas in

the assumed form of the amplitude in the semi-infinite fluid I was able to eliminate the

positive exponential, in this case that cannot be done and so the amplitude is given

by a hyperbolic sine function. Interestingly, although this is another exact solution
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Figure 2.2: Click to Animate. A comparison of Stokes 2nd problem, with no upper
boundary (eq. 2.35), and the modified form with an upper boundary (eq. 2.38). In
modified Stokes 2nd problem the fluid is fixed at the upper boundary, but the discrepancy
between the solutions is only significant if the penetration depth is sufficiently large. In
the top panel the viscosity of the fluid is set to some value η, the middle panel is 2η, and
the bottom is 4η. This demonstrates the effect of the viscosity, which is to increase the
coupling between the fluid and any boundaries, increasing the penetration depth and the
discrepancy between the solutions.

29


Stokes2nd_ModVsNormAll2.mov
Media File (video/quicktime)



of Navier-Stokes and easily derived, the solution appears to only recently have been

written down in the literature (Mitran et al., 2008). For the plane which is oscillating

with velocity U cos ωt , the velocity profile is given by

u(y, t) = Re

[
Ueiωt

sinh
[
δ0
A

(h− y)
]

sinh
[
δ0h
A

] ]
(2.38)

where I have introduced the parameters A = U/ω and δ0 = (1 + i)
√

ω/2ν. For this

solution, the real part of δ0 is related to the penetration depth of the plane’s influence.

2.6 Relevant Superpositions of Exact Solutions

Each of the problems derived above share the fact that the differential equations

to be solved were linear. As I have mentioned, this is important because it means

that the solution to problems which can be deconstructed into two or more of these

simple problems is just the sum of the individual solutions. Several such superpositional

solutions form simple models which will be of use in describing cilia-driven flows in my

system, and so I will briefly mention those here.

2.6.1 Poiseuille-Couette flow

This type of flow is in the same geometry as plane Poiseuille and plane Couette flow,

parallel plates with a separation h, and combines the boundary conditions of Couette

flow with the pressure gradient of Poiseuille flow. Although I previously derived Couette

flow (equation 2.13) with the moving boundary at the top, it will be of more relevance

to my discussion to have the moving boundary be at the bottom. This is accomplished

with the simple transformation y → h−y, which leaves Poiseuille flow the same because

it is symmetric about the midpoint separation. The solution of the combined flows is
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Figure 2.3: Family of velocity profiles of Poiseuille-Couette flow, equation 2.39, with
various pressure gradients. The velocity of the sliding plane (the floor) is set to u0 = 1
and the height is h = 1.

then called Poiseuille-Couette flow, or also general Couette flow, and given by

u(y) =
u0

h
(h− y) +

∇p
2η

(
y2 − hy

)
. (2.39)

A family of these velocity profiles is shown in Figure 2.3 for a given plane velocity u0

and a number of different pressure gradients ∇p.

In many situations of relevance the pressure gradient drives flow in the direction

opposite of the flow driven by the boundary. In this case, the net flow rate can be in

either direction, as suggested by the set of curves plotted in Figure 2.3.

Driven cavity flow

Poiseuille-Couette flow will be of relevance in Chapter 5, but is also applicable to a

number of industrial systems as the limiting solution for the flow in a ‘driven cavity’.

The geometry is a completely enclosed cavity with height h, width w, and length l.
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Just as in Couette flow, the top or bottom boundary is translated along the length

of the cavity, and the major feature is a large rotational flow. The fluid near the

translating boundary is dragged by the plane’s motion, then encounters one of the

end walls and is forced to recirculate around the boundary opposite the translating

boundary. The problem has been widely used as a computational benchmark because,

at a well-known Reynolds number, counter vortices begin to develop in the corners

of the cavity (Bye, 1966; Koseff and Street, 1984). Of most relevance to the later

discussion is that Poiseuille-Couette flow is the velocity profile of a driven cavity in

the limiting case where the length and width of the cavity are much larger than its

height (Albensoeder et al., 2001).

2.6.2 Modified Stokes 2nd problem plus Couette flow

Another example of a superposition of two exact solutions which will be of use in

Chapter 5 is a combination of modified Stokes 2nd problem with Couette flow. This

describes a geometry in which the lower boundary is translated at a constant velocity,

but with an oscillatory motion superimposed onto the constant velocity motion. Again,

the solution is just the sum of equations 2.38 and 2.13. In this case, however, it will

be useful to further generalize this problem so that the oscillatory motion is in both

dimensions within the plane such that the plane exhibits a circular oscillation. In

terms of the coordinates I have been using, the plane translates in x with constant

velocity u0, and oscillates in y and z with a given frequency ω, a maximum velocity

U in each direction, and a phase shift between y and z of π/2. For a velocity given by
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u(y, t) = uxx̂+ uz ẑ, the solution of Navier-Stokes with these boundary conditions is

ux(y, t) = Re

[
Ueiωt

sinh
[
δ0
A

(h− y)
]

sinh
[
δ0h
A

] ]
+
u0

h
(h− y) ,

uz(y, t) = Re

[
Uei(ωt−

π/2) sinh
[
δ0
A

(h− y)
]

sinh
[
δ0h
A

] ]
. (2.40)

The fluid motion in this problem is what I will define as ‘epicyclic transport’ in Chap-

ter 5, the combination of oscillatory movement with an overall constant velocity which

is reminiscent of the planetary epicycles hypothesized within the Aristotelian model of

the solar system. Such epicycles have also been observed in theoretical and experimen-

tal studies of the low Reynolds number flow driven by a single rotating rod (Bouzarth

et al., 2007).

The velocity profiles of this superposition are depicted in Figure 2.4. These also

serve as good visualizations of the flow in Stokes 2nd problem in general, as it is easy

to envision the velocity profile without the offset produced by the Couette model. In

addition, the penetration layer derived as equation 2.37 can be visually compared for

two frequencies an order of magnitude different.

To foreshadow the epicyclic transport I will present for cilia-driven flow, I present

in Figure 2.5 the displacement of a fluid element along the direction of the Couette

boundary, at a given height, for the solutions 2.40, as well as the trajectory of the fluid

element in the x− z plane.

2.7 Approximation Methods

Although I have introduced the Stokes equations, the form the Navier-Stokes equa-

tions take at low Reynolds number, each of the examples I provided in the previous

section were exact solutions of the full Navier-Stokes equations. In this section I briefly
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Figure 2.4: Click to Animate. The velocity profile of Stokes 2nd problem super-
posed with Couette flow. The constant velocity of the sliding plane offsets the oscillatory
motion so it is not about zero. The two panels compare oscillations of different frequen-
cies, demonstrating the decreased penetration depth into the fluid as the frequency is
increased. Note that, for the animation, the frequency in the bottom panel is higher,
but the motion is slowed down to correspond to the low frequency oscillation.
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Figure 2.5: Epicyclic transport of a fluid element in a model of the velocity profile of
Stokes 2nd problem superposed with Couette flow. The plane oscillates in x and z with
the same frequency and amplitude, but a π/2 phase shift so that the oscillation is circular.
The plane also moves with a constant velocity in x as in Couette flow. At a given height
y, the time-dependent motion of the fluid is a superposition of the damped oscillation
from Stokes 2nd problem with the constant velocity of Couette flow, which I will define
in Chapter 5 to be epicyclic transport.
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outline methods which do utilize the low Reynolds number assumption to arrive at

approximate solutions to Navier-Stokes. More specifically, a reformulation of Navier-

Stokes into dimensionless parameters reveals that the Reynolds number naturally arises

as a coefficient to the inertial term. Thus, the Stokes equations can be arrived at math-

ematically by taking the limit as Re→ 0.

In the following subsections I will review a few basic solutions which will be of rel-

evance later as they are the building blocks for many theoretical studies of cilia-driven

flow. These solutions borrow from ideal-fluid flow, the area of fluid mechanics which

considers fluids which do not have a viscous component. If such flows are irrotational,

then they can be described by a velocity potential φ, an analogous entity to the elec-

tric potential in electrostatics. While in two-dimensions potential flows can be easily

described by a stream function, in three-dimensions analytical solutions are restricted

to axisymmetric geometries. When this is the case, the velocity potential can be found

by separation of variables as a solution to Laplace’s equation ∇2φ = 0. Flow fields for

fundamental structures can be found in this manner, such as for sources and sinks, as

well as doublets, the fluid mechanical analogue to the electric dipole, which is formed

from a source and sink of equal strength with an infinitesimal separation. For the prob-

lems presented in this section I will not derive the solutions for the sake of brevity, but

I note that they are obtained by borrowing the solutions for the velocity potential by

finding a different physical quantity, such as the pressure, which is a scalar field that

also satisfies the Laplacian (Happel and Brenner, 1963).

2.7.1 Stokeslets and rotlets

The approximation schemes widely used for cilia models involve the fundamental

representations of a point force and a point torque on the fluid. These singularities

are referred to, respectively, as a Stokeslet and a rotlet. The Stokeslet is obtained by
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considering the scalar pressure field represented by the doublet solution. If the form

of the pressure field is taken to be p = 2cη (x/r3), then the velocity field produced by a

Stokeslet is

~u = c

(
x

r2
r̂ +

1

r
x̂

)
. (2.41)

While the velocity field has radial components, these decay faster than the velocity in

the x direction, and so the far-field flow is a uniform flow along x. In addition, the

force on the fluid generated by the Stokeslet is also in x and given by

~F = 8πcηx̂. (2.42)

Whereas the Stokeslet is the fundamental generator of force in a fluid, the solution

for a rotlet is a singularity which generates zero net force, but does produce a net torque.

It is obtained by considering a rotational flow solution of the form ~u = ~r × ∇χ. In

this case, χ forms a scalar field which satisfies the three-dimensional Laplacian. Again

taking the doublet solution the velocity field for a rotlet is obtained as

~u = B~rx

(
1

r3
x̂− 3

x

r4
r̂

)
(2.43)

and the torque exerted on the fluid is

~M = 8πBηx̂. (2.44)

The torque generated on the fluid produces streamlines which form concentric circles

on the origin.
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2.7.2 Slender body theory

Many of the most widely used modeling strategies for cilia-induced flow utilize

slender-body theory. A slender body is defined as one with a large aspect ratio, or

` � R. For suitably slender bodies, it is assumed that the influence of the body’s

motion on the fluid can be described by a line distribution of Stokeslets (equation 2.41).

The geometry of the problem is that a slender body of length 2` sits along the x1-axis

such that the Stokeslets are distributed over −` < x < `. Using Batchelor’s notation,

for a body whose position is given by ~x′ and the line density of applied force is ~F (x′),

the velocity at a point ~x is

ui(~x) =
1

8πη

∫ `

−`

[
Fi(x

′)

((x− x′)2 + r2)
1
2

+
(xi − x′i)(xj − x′j)Fj(x′)

((x− x′)2 + r2)
3
2

]
dx′ (2.45)

where r2 = x2
2 + x2

3 (Batchelor, 1970). If the slender body is in motion, and the fluid

is constrained by no-slip at the body’s surface, then this equation cannot be solved

directly. Instead, asymptotic solutions are obtained by taking the limit R/`→ 0.

For ciliated systems the necessary presence of a boundary (the cell floor) further

complicates the theory. Following Batchelor’s work, Blake constructed a solution in the

presence of a no-slip plane, which used the method of images to to ensure zero velocity

at the floor (Blake, 1970). This image system involved the Stokeslets presented above,

but also higher-order derivatives which improve the accuracy of the approximation.

This slender body theory for a cilium in the presence of a boundary was the foundation

for the majority of theoretical cilia studies which continue to this day.
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Chapter 3

PREVIOUS WORK

The two fundamental thrusts I defined in the Introduction require that this research

be highly interdisciplinary in nature. As I mentioned, although a number of publications

have demonstrated the fabrication of competing versions of artificial cilia, typically at

larger scales, in all cases the broader context in which the works are presented is entirely

technology oriented. Simply put, this is due to the fact that no other artificial cilia

system mimics the size and function of biological cilia to any great degree. Many of

these competitors have demonstrated amazing technological achievements, but their

work cannot be placed into a biological context. This provides a specific example of my

earlier claim that biomimetics research has been effectively a one-way street, in which

technology is improved by biological inspiration, but biology gains little in return.

In contrast, the development of the biomimetic cilia arrays presented in this work

provide an opportunity to significantly address issues of relevance to a broad spectrum

of fields. In this chapter I present relevant work from the literature which encompasses

technical areas such as nanotechnology and microfluidics, but also delves into cellular

and developmental biology. The presentation of this diversity of previous work will

hopefully improve the reader’s comprehension and appreciation for the results presented

in the subsequent chapters.

Biomimetics is the field that unites technology with biology, and so I begin my



survey of previously published work with a few notable examples of biomimicry which

share similarities with my biomimetic cilia arrays. These examples also provide a brief

context in which to envision some of the other potential applications of responsive mi-

croscale structures like artificial cilia. Next I motivate the cilium as a useful biomimic by

presenting the structure and functions of biological cilia. I also present an overview of

the theoretical and experimental work in regards to cilia-driven fluid flow. Finally, the

last section of this chapter discusses the technological work of relevance. This includes

the field of microfluidics, which will provide a background for the most likely applica-

tions of biomimetic cilia, as well as the previous work in responsive microstructures, of

which a number are competing versions of artificial cilia.

3.1 Biomimicry at the Microscale

One of the classic examples of biomimicry, which also exemplifies the fact that many

biomimetic projects seek to replicate structure, is the invention of Velcro in 1941 by

Swiss engineer George de Mestral. He had used a microscope to observe that the burrs

stuck to this clothes after a walk in the woods were covered in small hooks which would

grab onto loops of fiber in clothing or animal fur. Under small loads the burrs would

adhere, while under a large force the burr could be removed, inspiring his creation of

the reusable adhesive. This example demonstrates the typical course of development in

biomimetics: an interesting natural phenomenon is observed, it is studied in order to

reveal the design principles the phenomenon is based upon, and finally a commercial

product is developed which replicates the design and function.
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3.1.1 Gecko setae

Geckos possess hierarchically structured ‘hairs’, called setae, on the pads of their feet

which are remarkably suited as an adhesive (Ruibal and Ernst, 1965). In contrast to

Velcro and more conventional sticky adhesives, the adhesive properties of gecko setae

do not stem from a physical interaction. Instead, the ability of the gecko to climb

smooth, vertical walls depends on carefully designed structure at the nanoscale. The

hierarchical structure of the gecko’s setae culminates in spatulae which are 200 nm in

width, as shown in Figure 3.1. The tens of thousands of spatulae are small enough to

each come into close contact with any surface, and adhere based on the Van der Waals

interaction. At the largest scale, gecko foot pad’s are covered in overlapping lamella

which are visible to the human eye. Much smaller are the seta themselves, which cover

these lamella and are 100 µm long and 5 µm wide. Finally, each seta branches at the

tip into 100-1,000 of the spatulae.

The gecko’s ability is fascinating for a number of other reasons as well. The gecko

can move at about 1 m/s. If their setae adhere so well, how do they easily remove

their feet to move so fast? Following the trajectory of biomimetics research, fairly

recent observations revealed that the direction the gecko applies a force against the

wall determines whether the setae are strongly attached or can be easily removed. A

small force applied tangentially to the surface causes the spatulae to stretch out and

flatten against the surface, increasing the area and thus the adhesive force. When the

gecko removes this force and pulls normal to the surface the area is decreased and the

gecko can remove its foot. Another feature of the setae structure, which I will discuss

in more detail below for the lotus leaf, is that the gecko’s footpad requires no grooming

to be kept clean (Hansen and Autumn, 2005).

The adhesive properties of the gecko setae make them an attractive candidate for

a biomimetic product, and a number of groups have demonstrated artificial setae with
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uncurling and to mimic the preload procedure necessary for setal
attachment (1). Then, we pulled the foot downward until the toe
detached from the glass. Digits adhered so strongly that clean
measurements often involved peeling of the superficial layer of
skin of the lamellae, so we used contralateral digits for clean and
dirty measurements. It should be noted that clean foot force
measurements quantify the maximum force that the outer layer
of integument can withstand, not the maximum force of attach-
ment by the setae. Shear force is strongly correlated with pad
area (12), which differs among digits, so we standardized digit
measurements by pad area. Force of attachment of clean toes on
glass was measured for every digit on the left side of each animal.
To clog the toe pads, we applied 0.20 g of silica-alumina ceramic
microspheres dispersed on glass (G-200 Zeeospheres; 2.5-!m
mean radius) to each digit, resulting in saturation of the adhesive
areas. Measurements then were taken for the two right feet,
allowing a number of steps ranging from 0 until the point at
which shear force was substantially restored and increases in
force between successive trials were small (up to 18 steps). Full
strides were not used, because inducing the gecko to take a
specified number of steps without otherwise disturbing its feet
was not feasible. Digital hyperextension did not occur. Because
the measurement itself was much like a step, we gently cleaned
the soiled foot with compressed air and deionized water to
dislodge and flush away clogging microspheres. We reclogged
the same foot between successive trials instead of counting the
measurement as a step itself. After each day of experiments, the

gecko’s feet were fully rehydrated and allowed to recover for
24 h. Real-time data accurate to 6 mN were collected in
MACLAB/CHART V.3.6.5 (A. D. Instruments, Milford, MA) at 40
Hz. Data were analyzed with commercial software (STATVIEW
V5.6.1, SAS Instruments, and SUPERANOVA, Abacus Concepts,
Berkeley, CA). To obtain the toe pad areas, we scanned each
gecko’s foot on a flatbed scanner (Agfa Snapscan) and measured
areas with commercial software (CANVAS 8, ACD Systems,
Saanichton, BC, Canada).

Results and Discussion
Experimental Support for the Self-Cleaning Hypothesis. After appli-
cation of microspheres, arrays lost 59.95% (SD ! 17.45%; n !
5 arrays; 30 measurements) of shear force. Four simulated steps
on clean glass restored 51.00% (SD ! 23.64%) of this functional
loss (Fig. 2A). All arrays exhibited increasing force with increas-
ing number of pulls after contact with microspheres, indepen-
dent of force magnitude. For digits, force measured immediately
after application of microspheres was below the sensitivity of the
force sensor (F0 " 6 mN); at two steps the loss of force was still
92.99% (SD ! 3.40%; n ! 3 geckos; 133 measurements), the
value we used to represent the force of a dirty toe. After eight
simulated steps, 35.65% (SD ! 34.09%; n ! 3 geckos; 133
measurements) of this loss was recovered, although each gecko
recovered shear capacity at a different rate as indicated by the
large SD (Fig. 2B). Average recovered digit force after eight
steps was well over the force required for an animal to support

Fig. 1. Structural hierarchy of the gecko adhesive system. (A) Macrostructure: ventral view of a tokay gecko (G. gecko) climbing vertical glass. (B) Mesostructure:
ventral view of the foot, with adhesive lamellae (scansors) visible as overlapping pads. Note the clean appearance of the adhesive surface. (C) Microstructure:
proximal portion of a single lamella, with individual setae in an array visible. (D and E) Nanostructure: single seta with branched structure at upper right,
terminating in hundreds of spatular tips.

386 ! www.pnas.org"cgi"doi"10.1073"pnas.0408304102 Hansen and Autumn

Figure 3.1: From Hansen et al. (2005). The hierarchical structure of the gecko setae
provides it with impressive adhesive properties which do not rely on stickiness, and
biomimetic versions are being widely pursued.

impressive adhesive properties (Geim et al., 2003). In general, these groups have at-

tempted to replicate the hierarchical structure down to nanorods or nanoparticles of the

same size as the spatulae. Many of the fabrication strategies for these types of struc-

tures share common features with the fabrication process for biomimetic cilia which I

present in Chapter 5 , and some of the difficulties encountered are similar as well. A

general problem is that man-made, high aspect-ratio structures are prone to failure by

adhesion between neighboring nanorods. Of course it is particularly poignant that, for

gecko mimics, this failure mode is via the same Van der Waals interaction which the

designs attempt to take advantage of. This also serves as another example of the types

of challenges faced when attempting to duplicate biology, because gecko setae do not

suffer from this issue. Nor, for that matter, do biological cilia.

3.1.2 Lotus leaf

The lotus leaf shares the gecko’s ability to passively maintain a clean surface (Barthlott

and Neinhuis, 1997). This self-cleaning mechanism has already been incorporated into

a wide range of commercial products, such as stain-repellant fabrics, and improved
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methods for producing self-cleaning surfaces are currently under development for use

in hospitals and other facilities where sterility is important. The lotus leaf’s ability

stems from the fact that water droplets bead up and roll off its surface very easily. As

the beads of water roll they accumulate dust and dirt, cleaning the surface as they go.

Many types of leaves have a waxy surface which causes water to bead, but the lotus

leaf takes it a step further by incorporating microscale structure into the surface of

its leaves. This structure produces a rough surface, and this small scale roughness is

the key to the lotus leaf’s ability. Materials which have such extreme water-repellant

abilities are known as superhydrophobic. The affinity of a material for a liquid can be

measured via the contact angle, depicted in Figure 3.2, of the droplet on the surface.

Typically, the surface chemistry of a solid determines whether it is hydrophilic, water-

loving, or hydrophobic, water-fearing. But the discovery of the lotus leaf was one of

the first indications that surface topology can play just as important a role. Because of

the many potential applications of self-cleaning surfaces, a significant amount of effort

in many groups has been put into the fabrication of superhydrophobic surfaces (Lau

et al., 2003). As with the gecko, many of the fabrication processes share similarities to

the process I use for biomimetic cilia, and I have observed that, as one would expect,

the cilia surfaces I develop are also superhydrophobic.

3.2 The Amazing Cilium

Cilia and flagella are the fundamental structures with which cells and microorgan-

isms interact with their fluid environments. Cilia, especially, have been experiencing a

profound renaissance over the last decade as new functions performed by these struc-

tures continue to be discovered. One of the most surprising realizations is that a

common type of cilium plays a critical role in fundamental biochemical signaling path-

ways. Cilia dysfunction can prevent the correct function of such pathways and can
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antisoiling or antifouling surfaces, efficient heat transfer
areas, or nonbinding biopassive surfaces.
We deposited the vertically aligned carbon nanotube forest

with a plasma enhanced chemical vapor deposition (PECVD)
technique.13-15 Although a variety of different methods are
also currently available, the PECVD process is the only
technique that produces perfectly aligned, untangled (i.e.,
individually standing) carbon nanotubes whose height and
diameter can be conveniently controlled. The PECVD
process can be summarized in two main steps. First, the
formation of nickel (Ni) catalyst islands on an oxidized (20
nm) silicon substrate through the sintering of a thin (5 nm)
Ni film at 650 °C. Second, nanotube growth from these
discrete catalyst islands in a DC plasma discharge (bias-600
V) of acetylene and ammonia, using flow rates of 75 and
200 sccm, respectively, at a partial pressure of 4 Torr. The
PECVD process enables the growth of nanotubes aligned in
the vertical direction. The nanotube diameter and areal
density are controlled by the initial thickness of the Ni
catalyst layer, with a thinner film leading to narrower
nanotubes of higher density. The nanotube height is con-
trolled by the plasma deposition time (typical nanotube
growth rate is 330 nm/min). Figure 1a illustrates a typical
nanotube forest grown through this process as viewed under
scanning electron microscopy (SEM) using a Hitachi S800-
FE SEM operating at 20 kV. The sample has an areal density
of 10 MWNTs per µm2, with the vertical MWNTs having a
mean diameter of 50 nm (as-grown) and a height of 2 µm.
An array of such relatively short nanotubes is not suf-

ficiently hydrophobic on its own; on the contrary, water
droplets deposited on the surface immediately penetrate into
the forest. This is presumably due to the high surface energy
of the nanotubes, essentially a graphite material (contact

angle of 84-86°16,17), that causes the water to seep into the
voids of the forest. Further, microscopic examination of such
samples after drying reveals that the nanotubes are forced
into bundles under the surface tension effects of the
evaporating water between the nanotubes, confirming our
hypothesis. Our observation may appear contradictory with
experiments on tall carbon nanotubes grown off a substrate
where superhydrophobicity has been observed.18,19 Thus, we
investigated taller (10-15 µm) nanotube forests, and these
surfaces in the as-grown state did give an initial water contact
angle of 161°. However, the droplets are not stable and
eventually seep into the forest voids after a few minutes.
The apparent superhydrophobicity of the taller nanotubes
most likely results from secondary roughness, as there is a
larger variation in height of the taller nanotubes which was
observed through electron microscopy. The eventual penetra-
tion of the water droplets is due to the high surface energy
of the nanotube’s graphitic surface. This suggests that PTFE
functionalization is a necessary step for making a stable
superhydrophobic surface.
The PTFE coating is applied onto the forest of carbon

nanotubes through a hot filament chemical vapor deposition
(HFCVD) process.20,21 The process coats along the height
of carbon nanotubes with a sufficiently thin PTFE coating,
unlike conventional methods in which greater minimum
coating thicknesses (> 10 µm) can smooth out the surface
texture. Using an array of stainless steel filaments resistively
heated to 500 °C, hexafluoropropylene oxide (HFPO) gas is
thermally decomposed to form difluorocarbene (CF2) radi-
cals. These radicals polymerize into PTFE on the nanotube
forest substrate that is kept at room temperature. An initiator,
perfluorobutane-1-sulfonyl fluoride, is used to promote the
polymerization process. Flow rates of HFPO and the initiator
are maintained at 23 and 6 sccm, respectively, and pressure
is kept at 0.5 Torr. Figure 1b shows an SEM micrograph of
the 2 µm tall nanotube forest after being coated with PTFE.
Each individual pillar is seen to be coated uniformly and
the forest structure is preserved. Unlike the as-grown forests,
the treated forests show stable superhydrophobicity, yielding
nearly spherical water droplets on a macroscopic level when
water is deposited on the surface, as shown in Figure 1c.
The advancing and receding contact angles of the treated
forest shown here are 170° and 160°, respectively. Contact
angle measurements are performed using the sessile drop
method; the water droplets are introduced using a micro-
syringe and images are captured to measure the angle of the
liquid-solid interface.
Fourier transform infrared spectroscopy (FTIR) confirms

that our PTFE coating is essentially identical to bulk PTFE,
see Figure 2. FTIR spectra are acquired using a Thermo
Nicolet NEXUS 870 equipped with a DTGS detector at
4 cm-1 resolution. The spectrum of the as-grown carbon
nanotube forest shows no distinctive FTIR peaks. The
spectrum of the PTFE-coated forest in contrast shows strong
absorptions of the symmetric and asymmetric CF2 stretches
in the 1250-1150 cm-1 region characteristic of bulk
PTFE.22,23 Other methods, such as PECVD or laser ablation,
may yield thin fluorocarbon coatings that can also cover the

Figure 1. SEM images of carbon nanotube forests. (a) As-grown
forest prepared by PECVD with nanotube diameter of 50 nm and
a height of 2 µm, (b) PTFE-coated forest after HFCVD treatment,
and (c) an essentially spherical water droplet suspended on the
PTFE-coated forest.

B Nano Lett.

a

b c

Figure 3.2: The contact angle Θ is a measure of a surface’s affinity for water. The
surface of the lotus leaf, shown in the SEM in (b) from Barthlott et al. (1996), is rough
on multiple length scales, providing it with superhydrophobic properties and the ability
to self-clean. This self-cleaning behavior has aroused interest as an appealing feature of
a biomimic, and many studies have developed superhydrophobic surfaces by mimicking
the lotus leaf’s topology, as in the carbon nanotube ‘forest’ of (c) from Lau et al. (2003).
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therefore impact many aspects of human health. In fact, it has become apparent that

a wide spectrum of disorders, which were once considered distinct, have cilia dysfunc-

tion at their heart. Despite the cilium having been discovered in 1898, in just the last

five years recognition of their importance has inspired the term ‘ciliopathies’ to refer

more generally to the broad class of health issues caused when cilia are not present or

dysfunctional.

In order to provide an overview of the role of the cilium in biology, in this section I

will present various types of cilia and the functions they perform. In the following two

sections (3.3 and 3.4), I discuss theoretical and experimental work, respectively, on the

fluid flows driven by biological cilia.

To begin this section I will introduce the two main types of cilia, as well as a subtlety

of their classification which can sometimes lead to confusion. Generally the most precise

classification is based upon the ultrastructure of the ciliary axoneme, of which the large

majority of cilia can be broken into two categories, so-called 9+2 cilia and 9+0 cilia.

Traditionally 9+2 cilia were motile while 9+0 cilia, also known as primary cilia, were

not. Unfortunately, the embryonic nodal cilium was discovered a decade ago and is a

primary cilium which is also motile. This often leads to confusion, as the classifications

used in the literature are sometimes based purely on motility.

The more precise classification scheme of 9+0 or 9+2 cilia is based on the internal

structure of the axoneme. As I have mentioned, in both types of cilia the basic structural

supports are paired, or doublet, microtubules which extend along the length of the

cilium. Primary cilia contain 9 doublets arranged around the perimeter of the cilium,

whereas the second class of cilia have these 9 doublets plus an extra set of two singlet

microtubules which run down the center of the cilium. Thus, primary cilia are typically

termed 9+0 while the second class of cilia are 9+2. Another difference is that primary

cilia are typically found one per cell, while 9+2 cilia are found in patches which can
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flagella (see below) aswell as axonemal subunits being
transported by this machinery. The matrix may also
contain factors involved in sensory transduction via
second messenger systems.

Two additional sub-compartments of the cilium are
the tip and the basal body, located at opposite ends
of the axoneme. The tip of the ciliumcontains a special-
ized protein complex clearly visible by electron micro-
scopy [14]. Several proteins have been shown to
localize to the tips of cilia, including the microtubule
plus-end binding protein EB1 [15] and the Hedgehog
signaling protein Smoothened [16], although the func-
tion of the tip structure remains unknown. The basal
body is a modified centriole that serves as the founda-
tion upon which the cilium is constructed. The impor-
tance of the basal body/centriole for ciliary assembly
and function is highlightedby themultitudeof ciliary dis-
ease genes that encode basal body proteins (Table 1).
Cilia grow from the distal end of the basal body,
and the doublet microtubules are directly nucleated
by the microtubules found in the basal body. More-
over, the basal body appears to act as a docking site
for proteins involved in ciliary transport [17]. The junc-
tion between the cilium and the centriole-derived part
of the basal body is called the transition region, and it
differs in its ultrastructure from the rest of the centriole
[18]. In ultrastructural studies of green algae, the tran-
sition region is seen to include a star-shaped array of
fibers called stellate fibers and a co-axial cylinder
within the doublets that has a characteristic ‘H’ shape
when viewed in longitudinal sections. Neither the func-
tional purpose of these architectural features, nor their
molecular composition, is currently known.

Protein Composition of Cilia
The cilium is an enormously complicated structure,
and this complexity is mirrored in its protein composi-
tion, which is estimated from 2D-PAGE of isolated cilia
to comprise roughly 250 distinct proteins. Determining
the ‘parts list’ of such a complex structure has proven
a challenging task. Originally, genetic and biochemical
analyses, especially in the unicellular green alga Chla-
mydomonas [19], revealed several genes required for
flagellar assembly and motility. More recently, the
availability of complete genome sequences for ciliated
organisms, especially Chlamydomonas, has allowed
systematic genome-wide searches for ciliary proteins.
One genome-wide approach is mass-spectrometry-
based proteomics. Direct proteomic analysis of iso-
lated cilia/flagella has been performed in human
cells [20,21], Chlamydomonas [22], and trypanosomes
[23], as well as on isolated basal bodies [24]. A second,
complementary approach has been developed, based
on the fact that genes encoding many flagellar proteins
are upregulated during flagellar regeneration in Chla-
mydomonas [25,26]. Based on this pattern of upregu-
lation, genome-wide transcriptional profiling was used
to identify the set of genes upregulated during flagellar
regeneration in Chlamydomonas [27]. A similar strat-
egy was employed in nematodes where cell-specific
gene expression analysis has been used to identify
genes selectively expressed in ciliated sensory neu-
rons [28]. A third approach has been comparative ge-
nomics, in which BLAST homology searches between
completed genomes were used to identify genes con-
served in phyla that have cilia, but missing in phyla
lacking cilia [29,30]. These systematic approaches,

Oviduct Brain ventricle Kidney

Limb bud Node Chondrocyte
Current Biology

Figure 1. The ubiquity of cilia.

Images show just a few selected cell types
in which cilia have been reported. Oviduct
image reproduced with permission from
[1], ventricle from [149], kidney from [7],
limb bud from [5], node from [85], and
chondrocyte from [4].

Current Biology
R605

Figure 3.3: From Marshall et al. (2006). These scanning electron microscope (SEM)
images demonstrate a subset of the various systems in which biological cilia have been
identified as playing a critical role.

contain up to 100 cilia per cell (Satir and Christensen, 2007).

3.2.1 Ciliary ultrastructure

The textbook description of the cilium is typically that of the motile, mucus-clearing

cilia of the airway epithelia. There are a number of other systems in which motile cilia

perform important functions, which I will discuss below, but in general 9+2 cilia such

as those in the airways perform functions which utilize the cilia beat in order to allow

cells and microorganisms to interact with fluids. Most commonly, these interactions
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are used for motility of the entire cell or organism and to drive the transport of fluids.

Ciliary motility is generated by the action of the molecular motor axonemal dynein.

As I mentioned earlier, cytoplasmic dynein is one of the motors responsible for organelle

transport along microtubules in the cell. In order to walk along a microtubule, dynein

and other molecular motors typically have two globular heads which alternate binding

to the microtubule in order to walk along it and convey the cargo attached to the tail

of the motor. Microtubules are polar structures with ends typically termed plus and

minus ends. Dynein and another molecular motor, kinesin, form two superfamilies of

proteins of which the various types are found in various species. Dynein only moves

toward the minus-end of the microtubule, while kinesin is a plus-end directed motor.

In addition to transport within the cell, the cargo-carrying function performed by these

motors also drives intraflagellar transport (IFT), the process which is responsible for the

construction of the cilium as well as trafficking along the cilium (Satir and Christensen,

2007).

As opposed to when it is carrying cargo, to produce cilia bending axonemal dynein

walks along one doublet microtubule, while the tail is fixed to an adjacent doublet mi-

crotubule. Because the adjacent doublets are fixed at the base of the cilium this walking

motion results in a bending deformation of the cilium. Approximately 3,000 dyneins

per cilium generate the forces between doublet microtubules that produce bending, but

in general the mechanisms by which the action of each dynein are coordinated into a

stable, oscillatory motion of the cilium are not known.

Observations of dysfunctional cilia, as well as the example provided by the motile

primary cilium in the embryonic node, suggest that the ‘natural’ beat of a cilium is

helical or conical. In contrast, the more typical motile cilium typically beats with a

back-and-forth, whiplike motion in what is often called a planar beat. Thus, it is ex-

pected that the additional structural elements provided by the two singlet microtubules
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Figure 2
A schematic of a cross-section of a typical “9 + 2” eucaryotic axonemer. Reproduced from
Cooper (2000).

flagellum is a rigid structure with a corkscrew shape and is rotated by a single motor
(Berg 1975). In contrast, the eucaryotic flagellum has an elaborate internal structure,
the axoneme, that is powered by dynein molecular motors distributed regularly along
its length and circumference. Although the patterns of eucaryotic flagellar movement
are distinct from those of ciliary movement, and flagella are typically much longer
than cilia, their basic ultrastructure is identical. A schematic of a cross section of
the typical “9 + 2” axoneme is shown in Figure 2. This cross section consists of a
central pair of singlet microtubules surrounded by nine outer doublet microtubules
and encased by the cell membrane (see Murase 1992, Witman 1990 for review). The
nine outer doublets are connected by radial spokes to a sheath surrounding the central
pair. In addition, the outer doublets are connected by protein structures, named nexin
links, between adjacent pairs of doublets. The bending of the axoneme is caused by
sliding between pairs of outer doublets. Active sliding is due to the unidirectional
ATP-induced force generation of the dynein power stroke. Backward, passive sliding
is due to the active sliding of other pairs of doublets within the axoneme. The radial
spokes and central tubule couples are involved in the regulation of activity necessary
in producing effective motion (Omoto 1991). The precise nature of the spatial and
temporal control mechanisms regulating the various flagellar and ciliary beats is still
unknown (Brokaw 2001).

Considerable interest has focused on understanding how the local force production
of the dynein motors is translated into the controlled, regular beating of the global
structure. An accurate mechanical model should include an explicit representation of
the force generation and activation dynamics of the dynein molecular motors, and the
forces due to the passive structure of the microtubules, nexin links, and radial arms.
These forces should be coupled to the viscous hydrodynamics of the surrounding
fluid.
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Figure 3.4: From Fauci et al. (2006). The ultrastructure of a 9+2 cilium. The doublet
microtubules around the perimeter are connected by the inner and outer dynein arms.
Dynein generates forces between the doublets which generate cilia bending. The direction
of the planar beat of most motile cilia is the direction perpendicular to the line which
joins the centers of the singlet microtubules in the core of the axoneme.

in 9+2 cilia are responsible for this beat type. Structurally, these singlet microtubules

are coupled to the ring of doublet microtubules by radial spokes, and there are also

nexin links between adjacent doublets as depicted in Figure 3.4 (Satir and Christensen,

2007; Hirokawa, 1998).

The planar beat shape of the airway cilium is the most well-studied. Although

over one beat cycle the cilium stays roughly within a single plane, the beat itself can

be deconstructed into an ‘effective stroke’, which is typically in the direction that the

cilia drives fluid flow, and a ‘recovery stroke’ which is opposite the direction of fluid

flow (Satir and Christensen, 2007). These two parts of the beat cycle are differentiated

by changes in the contour of the cilium. During the effective stroke the cilium is

essentially straight, while in the recovery stroke the cilium bends to a larger degree such

that its tip is at a lower height than during the effective stroke. This shape change is

critical to the success of this type of cilium in driving fluid transport at low Reynolds

number, because without inertia a simple change in velocity with no associated shape

change will not produce transport.
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3.2.2 Functions of 9+2 cilia

Mucociliary clearance

The ability of the 9+2 cilium to drive fluid transport, combined with the ubiquity of

fluid environments at the microscale, is a main reason why the motile cilium performs

such a vast array of functions. The classic biological ciliated system is the process

of mucociliary clearance in the airways of many mammals. The lung itself has no

intrinsic defense against infectious and toxic agents, and so protection from these and

other contaminants is accomplished by the combined action of the cilia beat and the

rheological properties of mucus. Mucus is secreted by goblet cells in the epithelium

and forms a thin layer coating the airways which acts much like a fly trap. When

contaminants enter the airways they impact the mucus layer and adhere. The ciliary

beat then moves mucus up the airways and into the mouth, where it can be swallowed

and sterilized by digestive processes. In this way, cilia perform a crucial function by

maintaining the cleanliness and sterility of the airways.

The liquid lining the airways, known as the airway surface liquid (ASL), is actually

structured into two layers. The periciliary layer (PCL) is the bottom level of the ASL

and extends from the epithelium up to, roughly, the height of the cilia tips. The PCL

is thought to be a simple, watery liquid, in dramatic contrast to the mucus layer, which

sits on top of the PCL (and thus the cilia). The mucus layer is highly viscoelastic and

interfaces with air at its top surface. An understanding of how the cilia beat couples

to the mucus layer and produces transport is still being developed, but a conventional

picture is that during the effective stroke the tip of a cilium extends into the mucus

layer, dragging it along, while during the recovery stroke the cilium bends to move

below the mucus layer.

When the process of mucociliary clearance goes awry the effects on health can be

dramatic and often result in shortened life spans due to chronic infection and other
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disorders. One failure route is the rheological properties of the mucus itself, which

is of particular importance to the Virtual Lung Project because this is the case in

cystic fibrosis. Cystic fibrosis is a disorder characterized by the inability to properly

regulate the hydration of the mucus. In patients with cystic fibrosis this results in a

thick mucus, causing the PCL to collapse and essentially crushing the cilia such that

they can no longer beat. The mucus then ceases to be effectively cleared, leading to

chronic infection, structural remodeling of the lung, and life expectancies of 20 or 30

years (Matsui et al., 1998).

Other routes for the breakdown of mucociliary clearance involve dysfunction of the

cilia themselves. A number of mutations have been identified which can cause the cilia

to beat improperly, often in short, rigid beats which do not effectively clear mucus.

Other mutations can cause the cilia to be completely immotile or even absent entirely.

When this is the case, the breakdown in mucociliary clearance and associated symptoms

are a subset large number of potential health problems. I will return to the broader

scope of these disorders below.

Oviductal cilia

Motile, 9+2 cilia also line the epithelia of the mammalian oviduct, the fluid-filled

tube which connects the ovaries with the uterus, and along which a fertilized ovum must

be transported in order to successfully enter the uterus. The cilia beat in this system is

thought to assist ovum transport in two ways. After ovulation, the ovum must first be

able to enter the opening to the oviduct called the ostium. The oviduct can be thought

of as a tapered tube, with the ostium opening up into the narrower end, the ampula,

while the end nearest the uterus, the isthmus, is the widest end. In order to enter the

ostium, it is believed that the cilia tips actually adhere to a layer of cumulus cells in

an elastic matrix which surrounds the ovum. The cilia tips help ‘churn’ the ovum until
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its elliptical orientation allows it to enter the ostium (Talbot et al., 1999). Once in the

oviduct, cilia-driven fluid transport also assists muscular contractions in moving the

ovum further down the oviduct. In this case, cilia dysfunction can make fertilization

difficult or impossible.

Ependymal cilia

Cerebrospinal fluid (CSF) is the clear liquid which fills the ventricular spaces of the

brain and spinal cord. Two of the main functions of CSF do not require that it flow.

Namely, CSF provides buoyancy, so the brain can be heavy and soft without crushing

itself under its own weight, and protection against head impacts. However, a third

function of the fluid is that it flows through the intracranial spaces and is absorbed

back into the bloodstream, taking with it any accumulated metabolic waste from the

ventricles. The flow of CSF is driven by motile cilia which project from the ependymal

cells which line these ventricles. When CSF flow is impaired, pressure within the head

builds, potentially resulting in cerebral ischemia (deprived flow of blood to the brain)

as well as hydrocephalus (swelling of the brain), both of which can lead to a number of

cognitive impairments and death.

These traditional functions were long considered all that cilia were believed respon-

sible for in the brain. In 2006, however, it was reported that cell migration in the

ventricles follows the flow of CSF (Sawamoto et al., 2006). This was the first indication

that the vectorial information conveyed by the beat of cilia could control cellular migra-

tion. It had been previously known that newly born neurons migrated from the walls

of the lateral ventricles to the olfactory bulb. The ventricular spaces have a complex

geometry, and this migration distance is relatively long-range, so it was not known how

this migration direction was controlled. Chemorepulsion had been speculated upon,

but the study by Sawamoto et al. demonstrated with an immotile cilia mutant that

51



the migration of these new neurons was disoriented. They further demonstrated that a

chemorepellant does, in fact, play a role, but that cilia-driven CSF flow must generate

a gradient of the chemorepellant across the sub-ventricular zone. This chemical gradi-

ent is then the directional signal leading the neurons out of this zone and towards the

olfactory bulb.

Chemosensation

As I will discuss in the next subsection, many of the main functions of primary cilia

are sensory in nature. In contrast, the traditional view was that motile cilia did not

perform sensory functions. However, in 2009 the first evidence of chemosensation in

motile airway cilia was reported (Shah et al., 2009). It was observed that epithelial cells

expressed bitter taste receptors, and that these receptors were localized to cilia. Shah et

al. presented bitter compounds to the system and observed an increased concentration

of Ca2+ and a stimulated ciliary beat frequency. This suggested that the cilia not only

sensed the bitter compounds but mounted an increased defense mechanism to more

rapidly remove the potential threat.

3.2.3 Functions of 9+0 cilia

The 9+0, primary cilium is an immotile version (except in the case of nodal cilia)

and the ancient evolutionary structure from which motile cilia evolved. Virtually all

eukaryotic cells possess a single primary cilium, which was widely considered a vesti-

gial apparatus in the not-so-distant past. In actuality, the renaissance in cilia research

has been partly due to the revelation that primary cilia are integral parts of biochem-

ical signaling pathways which are critical to health. Another surprising result is that

primary cilia in the kidney have been discovered to perform a flow-sensing function.
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Ciliopathies

While motile cilia effect a physical change which can be analyzed, in many cases

studies of primary cilia must resort to the use of genetic mutants combined with re-

search into genetic disorders which stem from cilia dysfunction. The fact that genotypic

cilia mutations can have diverse and seemingly unrelated effects on phenotype is partly

to blame for the relatively long time it took researchers to recognize the importance

of cilia in human health. Historically, Kartagener’s syndrome, now known as primary

cilia dyskinesia (PCD), was one of the first hints of this fact. Patients with PCD often

suffered from impaired mucociliary clearance, which can lead to chronic sinusitus and

bronchiectasis, as well as infertility. Finally, another common symptom was that ap-

proximately 50% of those with PCD had situs inversus, a condition where the left/right

asymmetries in the human body plan were reversed from the normal body plan (e.g.

the heart tilts slightly to the left, the right lung has two lobes instead of three, the liver

is on the right, etc.).

Studies of Kartagener’s syndrome soon revealed that the cilia of those with the

disorder had either too few or no axonemal dynein. This meant that the cilia could

either not beat at all, or beat dykinetically, which resulted in renaming the syndrome

as PCD. To a degree this was not surprising considering that the chronic infections of

the respiratory system could be explained by a breakdown in mucociliary clearance.

However, it was initially difficult to explain the connection with these symptoms and

situs inversus.

This difficulty inspired a new look at the embryological process of symmetry break-

ing. I will outline this system in detail below, but this research revealed the existence

of a fluid flow driven by the embryonic nodal cilia. Thus, the last symptom of PCD

was incorporated into a model of cilia dysfunction, because without dynein these nodal

cilia are also immotile and the mechanism for determining left/right vertebrate body
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asymmetry is randomized.

This surprising link between embryo development and the action of a primary cil-

ium was partly established with studies of cilia mutants. After identifying this link,

further studies of cilia mutants revealed distinct phenotypic effects depending on the

mutation. Further inquiry demonstrated that some of these phenotypes were caused

by disruption of the hedgehog (Hh) signaling pathway, which is a widely conserved

pathway responsible for many aspects of development. Disruption of this pathway can

cause improper development of the brain, skeleton, musculature, and other systems, as

well as various cancers (Pazour and Witman, 2003; Eley et al., 2005).

In parallel with these genetic studies, medical research began to link other rare

recessive human disorders to mutations in proteins which were localized to cilia. This

confluence of evidence resulted in the creation of the term ciliopathies to refer to this

broad class of health issues which stem from ciliary defects (Badano et al., 2006). In

addition to the afflictions already mentioned, these ciliopathies can result in cystic kid-

neys, obesity, mental retardation, blindness, and many developmental malformations.

For more information, such ciliopathies were reviewed by Sharma et al. (Sharma et al.,

2008).

Primary cilia sense fluid flow in the kidney

While the biochemical signaling performed by primary cilia plays many important

roles, some of which are of relevance for the discussion in Chapter 6, the two types

of primary cilia which are of most relevance to my thesis are those which interact

with fluids. One of these is the primary cilium found on MDCK cells, a widely used

cultured cell line from the canine kidney. In 2001 it was observed that these cells

increased intracellular calcium levels if their primary cilia were deflected, either in a

fluid flow or with the tip of a pipette needle (Praetorius and Spring, 2001). This
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provided the first evidence that fluid flow based bending of a primary cilium might

activate mechanosensitive channels which cause a detectable response in the cell. When

these cilia are dysfunctional the result is polycystic kidney disease (PKD), a ciliopathy

characterized by the growth of cysts throughout the kidney which leads to swelling,

abdominal pain, and eventually kidney failure.

Embryonic nodal cilia

The primary cilia system of the most relevance to this work is that of the embryonic

node. In 1994, it was reported that motile cilia had been observed in the node of a

mouse embryo (Sulik et al., 1994). The node is a fluid-filled, recessed pit with a

membranous covering which appears in various forms on the ventral surface of all

vertebrate embryos (Essner et al., 2002). Because this report was of motile, primary

cilia it was initially met with some controversy (Bellomo et al., 1996). However, further

studies of mouse embryos performed in 1998 by Nonaka et al. confirmed the motility

of the cilia, and also reported that the cilia generated a directional fluid flow across

the node, which was consistently pointed towards what would soon develop to be the

left side of the embryo. However, this fluid flow existed before any other detectable

asymmetries, either anatomical or chemical. Thus, for the first time biologists began

to wonder if the physical mechanism of a cilia-driven fluid flow might be somehow

transduced into the left-side chemical signaling cascade which was, up to that point,

the earliest example of an asymmetric event. In this section I present an overview of

the embryonic nodal system.

Further confirmation that the cilia-driven fluid flow controlled left/right asymmetry

was demonstrated by the controllable patterning of the murine body plan with the

external application of fluid flow, after removal of the membranous covering of the

node (Nonaka et al., 2002). The next question was to determine how the fluid flow
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was transduced into a chemical signal. The ‘morphogen transport’ model was first

proposed, which suggested that the leftward flow establishes a chemical gradient across

the node which triggers the cascade. However, mutant studies had again revealed

several phenotypes which were not easily explained by this model. Thus, a competing

framework called the ‘two-cilia’ model was postulated (Tabin and Vogan, 2003), which

was based on the recent discovery of a second class of immotile cilia which were localized

to the periphery of the node (McGrath et al., 2003). It was suggested that these

immotile cilia might be mechanosensitive, as in the kidney, and produce an asymmetric

response on the left side of the node.

However, considerations of the symmetry of the flow led others to conclude that

mechanosensitive cilia on either side would feel the same force, and thus this model has

fallen out of favor to some degree (Cartwright et al., 2004). In addition, more recent

observations have bolstered the morphogen transport model, albeit in a modified form.

Specifically, a fascinating system has been observed within the node whereby lipid

vesicles are dynamically extended away from the cell surface by microvilli, released into

the leftward fluid flow, and subsequently rupture on the left side of the node (Tanaka

et al., 2005). These vesicles are loaded with morphogens such as retinoic acid (RA) and

sonic hedgehog (SHH) during formation, and the vesicles release these morphogens upon

rupture. Thus, this novel mechanism allows these ‘nodal vesicular parcels’ (NVPs),

which are roughly 500 nm to 3 µm in diameter, to establish the initial chemical gradient

on the left.

Based on this evidence, it is likely that some version of the morphogen transport

model is likely correct. However, a number of questions remain unanswered. A key

issue is how this initial gradient is sensed, and how the gradient evolves in time in

the cilia-driven fluid flow of the node. It is known that the main leftward flow drives a

counter-flow along the ceiling of the node, which occurs because the node is a completely
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enclosed structure and the net flow rate must be zero. Thus, the morphogens released

upon vesicle rupture must eventually be transported back to the right, and additionally

these small molecules diffuse relatively rapidly. It is expected that the morphogens

may have an inactivation time which allows the gradient of functional morphogens to

be maintained, however this has not been shown to be the case. If the morphogens

do become inactive after some time, then a stable gradient can only persist if the

vesicles are released repeatedly in order to replenish the supply of morphogen on the

left. Indeed, the discoverers of the NVPs reported the observation of released vesicles

being transported across the node every 5 to 15 seconds.

As I have discussed, primary cilia have been shown to be one of the cell’s fundamen-

tal sensing units, and so it has been proposed that the second population of immotile

cilia, originally posited to be mechanosensitive, may in fact be one of the primary lo-

cations for chemoreception of the gradient. However, at present the location of the

receptors has not been established (Hirokawa et al., 2009).

Another open question is the mechanism by which the NVPs are ruptured. Tanaka

et al. reported that the rupture occurred most often on the left side of the node, and

speculated that impacts with the beating cilia and/or the walls of the node caused

rupture (Tanaka et al., 2005). However, a simple argument made by Cartwright et al.

in a followup to their 2004 paper demonstrated that the impact force is not likely to

be larger than the Stokes drag which the vesicle was subjected to before release from

the microvillum (Cartwright et al., 2004), and so chemo-induced NVP rupture is now

thought to be likely.

The same study to observe the NVPs further reported that a separate signaling

pathway which requires the presence of fibroblast growth factor (FGF) is also needed

in order for the system to function (Tanaka et al., 2005). In a mutant unable to produce

FGF these vesicles were never successfully formed and embryos had randomized situs.
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A separate issue which has been largely resolved is how the nodal cilia beat generates

fluid transport. As I mentioned, the nodal cilia beat is very different from the planar

beat of the typical motile cilium. Early observations of nodal cilia showed that they

beat in a ‘conical’, or rotational beat, meaning that over each beat cycle the cilium

sweeps out the lateral surface of a cone (Nonaka et al., 2002). For reasons which will

become more clear in Chapter 5, in general this type of beat should not produce any

net transport of fluid. Furthermore, the dyskinetic beats of motile cilia can sometimes

be roughly of this shape, and such cilia are dysfunctional in these systems.

In 2004, a theoretical model was presented by Cartwright et al. which predicted that

in order to generate fluid transport this conical beat must rotate around an axis which

is tilted away from vertical (Cartwright et al., 2004). In the model, rotation around a

vertical axis only produced locally vortical motion, as would be expected from symme-

try, but the tilting of the cilia away from vertical generated directional transport above

the rotlets. This model was limited, as it did not include any boundaries and the mod-

eled elements were simply rotlets. But despite these limitations, the following year two

publications presented observational evidence of a conical beat which was tilted (Okada

et al., 2005; Nonaka et al., 2005), confirming Cartwright et al.’s prediction.

It has since been appreciated that this ‘tilted conical beat’ generates fluid transport

because of the fluid’s interaction with the floor. The movement of a fluid is increasingly

constrained as it nears the floor because of the ‘no-slip’ boundary condition, which

specifies that the local fluid must not move relative to a boundary it is directly in

contact with. Due to the tilted rotational axis, over one half of the beat cycle the

cilium is closer to the surface than during the other half of the beat. Thus, the cilium’s

motion nearer to the floor generates less fluid motion than when the cilium passes

farther from the floor. The net result of a single beat cycle is fluid transport roughly

in the direction of the motion of the cilium tip at the point when it is farthest from the
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floor.

3.3 Theoretical Work on Biological Cilia-Driven Fluid

Flows

There is quite a vast literature of theoretical treatments of biological cilia, extending

back to the original work of G.I. Taylor in 1951 (Taylor, 1951). His work initiated what

could be thought of as the first period of theoretical cilia research, which lasted through

the early 1980s. The renaissance in cilia research has now ignited a second period of

study which is expanding and refining the results of the earlier research. The models

developed in the early work on cilia can be broadly put into two groups, the envelope

model and the sublayer model. The envelope models considered a two-dimensional

sheet with transverse waves propagating through it. The sublayer models utilize the

singularity methods of slender body theory which I discussed in Chapter 2. In general,

the goals of these early researchers were twofold. First, they sought out explanations

for the general propulsive ability of cilia and flagella. Secondly, the synchronization

of flagella beating in close proximity to each other had been observed as far back as

1928, and Taylor’s 1951 paper first highlighted the possibility that this synchronization

is due to hydrodynamic forces.

The second period of cilia research began in the last decade and continues today.

The impetus for this is partly the realization of the diverse functions cilia play, but also

simply the increased availability of the computational power needed to explore more

accurate approximations of cilia-driven flow. Interestingly, the synchronization between

flagella and cilia is still an area of much research (Mitran, 2007). The basic principles

which underly cilia-driven fluid propulsion were explored in the first period of research,

but today the rising popularity of systems biology and computational medicine provide
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motivation for understanding cilia systems at a more sophisticated level.

For the purposes of this thesis, it is easiest to generalize these two periods of research

in relation to my own results. Because the early researchers were seeking to predict

swimming and fluid propulsion velocities, there results were often focused on the far-

field velocity predicted from their models. This far-field velocity was taken to be the

swimming/propulsive steady-state velocity the cilia could generate. Thus, the earlier

literature has the most relevance to the results I present in Chapter 5 , because in that

chapter I focus on the fluid flow driven by my biomimetic cilia above their tips. Thus,

I first present a few more details on the models which make similar predictions to the

results I present for this flow regime. I will follow this with a more specific discussion of

recent work which, in contrast to the earlier period, has just begun to focus on particle

motion in closer proximity to cilia. Thus, these later works are of more relevance to

the discussion in Chapter 6, where I present results on the fluid flows below the cilia

tips in my system.

Taylor’s initial development of the envelope model considered the fluid flow around

the waving sheet as a model of the propulsive ability of the flagellum. Later work by

Blake used the same model but considered the sheet as an approximation of the flow

driven by densely packed arrays of cilia. This was motivated by the metachronism

observed in cilia arrays, which was modeled by the transverse wave traveling through

the sheet (Blake, 1970). Such a model has some obvious shortcomings however, such as

the requirement of small amplitude oscillations in the sheet and the no-slip boundary

condition at the cilia tips. The sublayer models were developed in order to surmount

both of these disadvantages.

The sublayer models can be further broken down into two categories, the original

distribution of Stokeslets work pioneered by Blake et al. and an approach by Keller et

al. which he called the traction layer model. The traction layer model simplified the
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cilia by assuming the force generation was uniformly distributed in the layer below the

cilia tips, which allowed the model to incorporate unsteady effects such as metachro-

nism (Keller et al., 1975). For this reason, the singularity methods Blake developed

are also sometimes referred to as discrete techniques to contrast with the traction layer

model. Both methods had considerable success in explaining the ability of cilia to gen-

erate fluid transport (or, conversely, microorganism motility), and were able to match

experimental observations within an order of magnitude or better. This early period

of research is comprehensively reviewed by Brennen and Winet (Brennen and Winet,

1977).

The aspect of this early period which is of most relevance is the work by Liron in the

late 1970s. He extended the image system developed by Blake to a model of transport

between parallel plates. The biological system of interest was the oviduct. As the

entire duct is filled with a Newtonian liquid it is much more amenable to theoretical

work than the viscoelasticity and air-liquid interface of the mucus above airway cilia.

Most interesting was Liron’s comparison of the effect of a Stokeslet above a single

plane with the effect of the same Stokeslet between two plates. Blake’s earlier work

had demonstrated that the Stokeslet image system did produce a net flux, which partly

justified the singularity methods as a model of cilia-driven transport. In contrast,

Liron showed that when a top boundary is added, this flux necessarily becomes zero.

However, because of the addition of the top plate, Liron was able to superpose a plane

Poiseuille flow onto the flow generated by the Stokeslets, which had not been possible in

the earlier semi-infinite models. His work demonstrated that, with the top boundary in

place, in order to achieve a net flow the addition of such a Poiseuille flow was required

to counteract the return flow generated in the far-field by the Stokeslets. This work

was the first theoretical prediction of a velocity profile for cilia-driven flow in a system

bounded on top and bottom. The flow velocity just above the cilia tips initially decayed
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linearly with distance, but the final shape of the velocity profile over the entire height

depended on the strength of the added Poiseuille flow (Liron and Meyer, 1980; Liron,

1978).

3.3.1 Near-field theoretical predictions

More pertinent to my thesis work is the more recent period of research, which has

only just begun to present models which can predict the fluid flow in closer proximity

to the beating cilia. As such, this is the most likely arena in which a biomimetic cilia

model can contribute to the understanding of biological systems. Below I present the

theoretical results from several publications which describe fluid flow features which

are similar to those I have observed.

Bouzarth et al. 2007

Even among models which have worked to predict flows near cilia, not all have

contained a time-dependence. While the majority of the results in proximity to cilia

are presented in Chapter 6, in Chapter 5 I describe the small scale oscillations of cilia-

driven tracer particles which I call epicycles. To my knowledge, these epicycles have

not been reported in any experimental work with biological cilia. However, they were a

primary topic of a recent work which compared theoretical and experimental fluid flows

around a single precessing rod (Bouzarth et al., 2007). Bouzarth et al. also compared

macroscale and microscale versions of the experiment to probe the accuracy of their

model as diffusion became significant. This highlights another important shortcoming

of most cilia modeling: the difficulties associated with incorporating diffusion, which

at the microscale is a ubiquitous phenomena which may have distinct effects on cilia-

driven flows. I will discuss this issue in more depth below in reference to the work of

Smith et al. (2007).
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to a horizontal planar surface and cause a conical motion of
the rod about an approximately vertical axis. We stress that
the motion of the rod is precession and not just rotation about
one of its axes. The rods are immersed in viscous fluids
containing visible marker particles to enable optical tracking
of the fluid motion. The fluid viscosities and precession fre-
quencies are such that a Reynolds number of 0.002 was
never exceeded. The macroscopic rotational mixing experi-
ment !RMX" rods are of the order of 1 cm long and
0.2–1 mm in diameter, sharpened at one end to provide a
well defined pivot point about which to precess. A 30 cm
cubical, clear acrylic tank is filled to 11 cm with a sucrose
solution with a viscosity of 3000 cP and is capped with a
removable acrylic top. A strong permanent magnet beneath
the tank !3000 G at the cone height" is mounted on a motor-
ized turntable with an adjustable offset from the center of
rotation. The magnetic field gradient pins the point of the rod
to the bottom of the tank, while the magnetic torque of the
orbiting magnet causes the rod to precess conically. Marker
bubbles, produced in a separate beaker, are selected by sy-
ringe to have diameters typically 0.1–0.5 mm and injected
into the RMX tank in desired locations. A Nikon D1 camera
is placed in front of the tank to capture the YZ coordinates of
the markers !0.3 Hz frame rate", while a Nikon D2 camera is
placed above to capture the XY marker coordinates !1.0 Hz
frame rate". The magnet turntable is then engaged and ad-
justed so the rod precesses at a 0.15 Hz rate. A custom de-
signed video centroid tracking algorithm, developed within
the Data Tank programming environment, is used to extract
the trajectories of the markers.

IV. NANOSCALE EXPERIMENT

The nanoscale experiments are conducted using magnetic
rods and optical markers in a transparent flow cell mounted
on a three dimensional force microscope !3DFM" #16$. The
3DFM applies a dynamic magnetic field to a specimen
through a set of pole tips arranged as a hexapole with three
poles above and three poles below the plane of the precess-
ing rod. A flow cell !2 cm by 1 cm by 150 !m" comprises a
flow channel bounded by lines of vacuum grease inside
double-backed tape spacers, all sandwiched between two mi-
croscope cover slips. To provide the friction necessary to
keep the magnetic rods from slipping, the bottom cover slip
of the flow cell is spin coated with a 1–2 !m layer of
PDMS. The magnetic system including the flow cell is
placed on an inverted optical microscope where polystyrene
microbeads !Polysciences, Inc. =1.05 g/cc; Diameter
=0.932 !m" entrained in the flow are imaged in brightfield
mode at 120 Hz frame rate using a progressive scan Pulnix
CCD camera. The NA of the water immersion microscope
objective is 1.2 giving a depth of focus of 1–2 !m. Quasi-
static Z measurements are taken by manually refocusing,
with resolution limited by the depth of focus, and data read
from the control panel of the Nikon Eclipse TE2000-E. The
magnetic nanorods !approximately 200 nm diameter, 20 !m
long" consist of Ni90Fe10 alloy electrochemically grown in
porous anodized aluminum oxide membrane templates. The
rods and markers are dispersed in deionized water !1.0 cP" at

suitable densities, then introduced into the flow cell #17$. The
3DFM magnetic field is energized so as to attract the rods to
pin their lower ends to the lower cover slip and align them to
the desired cone angle. We note that achieving the desired
precession and cone geometry is in itself a challenging in-
verse problem. This setup is dynamically similar to the RMX
geometry in that the Reynolds numbers of both are negligi-
bly small #18$. The rod density is sufficiently low that well
isolated rods can be chosen, with suitably distributed beads
to measure fluid velocities. A custom designed video centroid
tracking program, Spot Tracker #19$ with approximately
15 nm resolution in X and Y, is used to extract the orbits of
the markers.

V. THEORETICAL COMPARISON

A. On the macroscale

Trajectories in this fluid flow are determined by cone ge-
ometry, rod radius, and initial position !x0 ,y0 ,z0" where cone
geometry is provided by a cone radius Rc and a cone height
Hc. These set a cone angle " and rod length L. Several
bubble trajectories from the macroscale RMX experiment are
compared to the theory presented in Sec. II. The top view of
such a comparison is shown in Fig. 1. The trajectories exhibit
two superposed motions. The slower one makes a complete
orbit about the body at a distance dependent rate. The faster
one is epicyclic, related to the precession rate of the rod, with
an observable radial amplitude, arclength, vertical fluctua-
tion, and period. The period of an epicycle is a function of
cone geometry, rod radius, and initial position. See Fig. 2
caption for radial amplitude definition. Figure 1 shows quali-
tative agreement between the radial amplitude, arclength,
and angle traveled by the epicycles. Figure 2 provides a
quantitative comparison of the radial amplitude.

B. On the microscale

A microbead trajectory from the microscale experiment is
shown in Fig. 3 and a comparison to a theoretical trajectory
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II. HYDRODYNAMIC SOLUTION

The fundamental governing equations for an incompress-
ible fluid system are given by the unsteady, nonlinear Navier-
Stokes equations. The Reynolds number Re= !U /! is a non-
dimensional number measuring the ratio of inertial forces
relative to viscous forces where ! , U, and ! are characteris-
tic length, velocity, and viscosity scales in the fluid system
under consideration. When the Reynolds number is small,
the nonlinearity in the Navier-Stokes equations can be ne-
glected.

Consider a slender body of radius r0 and length L attached
to a no-slip plane sweeping out a cone of angle " in a viscous
fluid at a rate of # such that the resulting Reynolds number is
small. For L and # finite and large fluid viscosities !, a
nondimensionalization of the Navier-Stokes equations pro-
vides that the governing equations for this motion are the
linear, steady Stokes equations !2u!x"−!p=0, ! ·u=0 with
boundary conditions depending upon the cone angle ".

In 1970, Batchelor #9$ used slender body theory to con-
struct solutions to Stokes equations for bodies of arbitrary
cross section embedded in uniform and certain linear flows.
These solutions were constructed by placing Stokeslets along
the interior centerline of the body. A Stokeslet #10$ is the
primary fundamental solution to Stokes equations and is due
to a point force of strength " applied to the flow field. In
1971, Blake #8$ constructed a Green’s function for Stokes
equations in the presence of a no-slip plane, u!z=0"=0, us-
ing the method of images. The resulting image system con-
sists of a Stokeslet along with higher order derivatives of this
singularity.

By utilizing the fundamental solution of Blake and the
slender body theory of Batchelor, we have constructed an
asymptotic solution for a slender body attached to the no-slip
plane z=0 tilted by an angle " from the positive vertical axis

sweeping out a cone. Slenderness is defined through $
=r0 /L!1. The velocity field u!x"=Rv!RTx" #11–13$ that
generates the particle trajectories shown in Fig. 1 is given as
a time-dependent rotation, R, about the vertical axis, of the
velocity field

v!x" = %
0

L &' "!s"
(x − s(

+
!x − s"#!x − s" · "!s"$

(x − s(3 )
− ' "!s"

(x − s*(
+

!x − s*"#!x − s*" · "!s"$
(x − s*(3 )

+ 2s cos "'− z"!s" + eẑ#!x − s*" · "!s"$
(x − s*(3

+
3z!x − s*"#!x − s*" · "!s"$

(x − s*(5
)*ds , !1"

where eẑ= !0,0 ,1", s= !s sin " ,0 ,s cos "", s*= !s sin " ,0 ,
−s cos "", "!s"=−# /2 log $!0,s sin " ,0". The first two
terms in Eq. !1" can be recognized as line distributions of
Stokeslets placed at s and its image s* in the lower half
space. The remaining terms are built from higher order sin-
gularities, namely, the Stokes doublet and the point-source
quadripole #8,10$. Flagellated organisms have been modeled
using slender body theory #14,15$, but unlike these studies
our model provides exact formulas which require no numeri-
cal integration to evaluate the flow.

III. MACROSCALE EXPERIMENT

We describe experiments conducted at both macro- and
microscopic scales. In both cases magnetically permeable
rods are driven by magnetic fields to pin one end of the rod

x

y

FIG. 1. !Color" Theoretical trajectories compared to bubble trajectories from a macroscale experiment. The rod base is at the origin and
the black dots are the tracked bubbles. Trajectories shown are initially at 0.61 to 0.65 cm from the floor of the tank. The rod length is
0.76 cm, the cone half-angle is 30°, the cone radius Rc=0.38 cm, the cone height Hc=0.66 cm, the rod diameter is 0.9 mm, and the rod
rotates clockwise at 9 RPM. Theoretical trajectories are computed using a fourth-order Runge-Kutta solver with 104 time steps per revolution
for ẋ=u!x , t". The theoretical trajectories use the stated cone geometry and rod radius, and initial position !x0 ,y0" in the plane provided by
the experiment. The initial vertical position is set at z0=0.625 cm for each simulated trajectory.
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Figure 3.5: From Bouzarth et al. (2007). (a) A top-view of a precessing pin in a
table-top experiment. Pathlines of video-tracked tracers are overlaid with theoretical
predictions of the motion. It is clear that the epicycle amplitude and mean velocity
decrease with distance from the pin, as shown in (b). The cylindrical units are normalized
by the radius of the circle traced out by the pin’s tip. (c) I have extracted the solid curve
prediction from (b) and fit it to a power law in order to determine that the functional
form of the decay with radial distance is as shown.
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As expected, the model presented by Bouzarth et al. did suffer from diffusive effects

which grew worse as the system evolved in time. However, their work demonstrated

an impressive match between the epicycles seen in both experiment and theory over

short times, as shown in Figure 3.5. As the single rod precessed around a vertical axis

(essentially performing the upright conical beat I mentioned earlier), tracer particles

performed slow orbits around the rod. These slow orbits were essentially a rotational

vortex around the rod. In addition, the tracers also exhibited an additional oscillation

at a much smaller scale, but which was at the frequency of the rod’s beat. These small

scale oscillations are the epicycles which I have also observed in my system. Bouzarth

et al. did not report a theoretical form for the epicycle amplitude, but in Figure 3.5

I display their results for the epicycle amplitude as a function of the radius of the

particle from the rod’s precessional axis. In order to compare my data to this result in

Chapter 5, in the same Figure I also display the data I have extracted from their plot

of the theoretical model and fit the functional form of a power law to the curve in order

to determine the decay of the amplitude with distance predicted by their numerical

computation. The result of this fit is displayed in the plot, that the epicycle amplitude

decays proportionally to 1/r1.3. The presentation of my own results with regards to the

tracer epicycles can be found in section 5.2.2.

Cartwright et al. 2004, 2007, and 2008

I have already mentioned that the work of Cartwright et al. predicted the beat

shape of embryonic nodal cilia based on an array of rotlets (equation 2.43). In addition

to the prediction that a tilted conical beat would generate a net transport, the 2004

work was another theoretical work which predicted vortical flow around a nodal cilium,

although this is of little surprise for a rotlet model. The theory was further simplified in

that it was not time-dependent, ignored diffusion, and did not include any boundaries.
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However, the 2004 work was still significant for other reasons than the prediction of

the cilia’s tilt. Despite the fact that the model did not include diffusion, this work was

the first to point out the importance of the Péclet number in the system. The Péclet

number is another dimensionless ratio which will be critical throughout the thesis,

because it is a measure of the relative rates of diffusive and advective transport, or

Pe =
advection

diffusion
=
uL

D0

(3.1)

where u and L are characteristic velocity and length scales, respectively, and D0 is the

particle diffusivity. At large Péclet numbers advection dominates and diffusive motion

can be safely ignored. On the other hand, for small Péclet numbers any advective mo-

tion is too slow to matter, and diffusion dominates. Cartwright noted for the first time

that the morphogen transport in the node was an advection-diffusion system, and so

the Péclet number would be important for determining how morphogen gradients would

be produced. Cartwright further speculated that such an advection-diffusion system

would require an inactivation time of the morphogens in order to avoid a homogenized

steady-state concentration due to diffusion.

In addition, as Cartwright was the first hydrodynamicist to weigh in on the nodal

cilia system, the 2004 work also cleared up some confusion as to the nature of the vor-

tical flows which had been qualitatively described by experimentalists (Okada et al.,

2005; Nonaka et al., 1998). These experimentalists had described complicated, vortical

paths around cilia as turbulent flow. As the reader learned in Chapter 2, turbulence

depends upon inertial effects and cannot be supported by low Reynolds number flu-

ids, and Cartwright pointed out that these complicated paths were not turbulence.

Instead, their work suggested for the first time that these particle pathlines were po-

tential evidence of chaotic advection, a dynamical systems phenomenon which can

result in chaotic particle trajectories even at low Reynolds number. I will present some
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outward flow, it must be more spatially extended. It has not yet been
seen experimentally, probably because, first, in the embryo in vitro,
to obtain access to the nodal flow, Reichert’s membrane is re-
moved, and the embryo is immersed in a much larger liquid-filled
container (4). Under these experimental conditions there is an
open rather than a closed flow in which the return flow above the
outward flow is eliminated and that below it is diminished. Second,
the passive tracers are injected into the flow above and not below
the cilia, so they experience only the outward flow.

Morphogen Model
How is the information on the symmetry broken by the nodal flow
transmitted to the embryo? The Inv mutant mice mentioned earlier
provide an important clue to the mechanism. Although the nodal
flow in these animals is still leftward, albeit slower than normal, they
all have situs inversus. A mechanism must be sought that would lead
Inv mice to have opposite chirality. Two means have been proposed
for how information may be extracted from the nodal flow:
chemosensing and mechanosensing. On one hand, it has been
suggested that the nodal fluid may be carrying a morphogen, a
signaling molecule, probably a protein, that is released into the flow,
and whose concentration is detected by chemoreceptors within the
node (4). On the other hand, very recent experimental work has

shown that two populations of monocilia appear to exist in the node,
and it speculated that the second population may be nonrotating
mechanoreceptors (16). In this section we treat the morphogen
hypothesis and develop a model for morphogen transport and
mixing in the node compatible with the observations and with the
physics. In Discussion we examine why mechanosensing is unlikely
to be the mechanism operating in the node.

The morphogen hypothesis proposes that a difference in mor-
phogen concentration detected by receptors placed on both the left
and right sides of the node should be the factor that determines the
chirality of the left–right axis. This hypothesis implies that the
concentration of active morphogen should reach a steady state that
in normal embryos is higher on one side of the node, and in Inv
embryos is higher on the other. To see how this might come about,
we have to comprehend how a morphogen would be transported
and mixed by the nodal flow. Mixing in the creeping flow in the
node is very different from what we are more accustomed to seeing
at higher Reynolds numbers; for example, when we stir milk into
our tea or coffee. In particular, turbulent mixing plays no role here;
for no turbulence occurs at low Reynolds numbers. We emphasize
this, because some articles on nodal flow have described the slow
vortical flow in the Inv mouse as turbulent; it is not. What is seen
in the node is always laminar flow, and the complex particle paths

Fig. 2. (a) Vortical flow structure produced by a single rotlet. (b) Rectangular array of rotlets with axes vertical, showing cellular structure of vortices with a
general circulation only occurring at the edges. (c) Triangular array of rotlets with axes vertical, to correspond more closely with the shape of the node. As in
b, a general circulation occurs only at the edges. (d) Result of tilting the rotlet axes: array of tilted rotlets with tilt angle ! ! 24°, showing directional flow above
and below the array.

7236 ! www.pnas.org"cgi"doi"10.1073"pnas.0402001101 Cartwright et al.

Figure 3.6: From Cartwright et al. (2004). (a) The vortical streamlines around a single
rotlet are displayed. The vertical black line represents the rotational axis of the rotlet,
which itself is represented by a small sphere at the midpoint of the black line. (b) An
array of rotlets rotating around a vertical axis produce local vortices. In addition, some
particles move around the array, but always return. (c) Demonstration that the shape
of the array, which is more triangular in this case, does not change the overall effects of
the flow. (d) This represents Cartwright’s prediction that a tilt of the cilium’s rotation
axis away from vertical would result in a net transport of fluid above the cilia tips. In
this model, which did not include any boundaries, there was an equal and opposite flow
below the rotlets.
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cilia, would make it difficult to observe
even under ideal in vivo conditions,
not to mention under the conditions
usual in vitro experiments. Hence the
lower recirculatory flow will be ob-
servable only in shallower nodes.

Experimental verification of the
precise global structure of the nodal

flow is still incomplete. Despite the
impressive advances produced by the
powerful experimental techniques
that have been recently developed to
visualize directly both the nodal flow
and the ciliary motion, some of these
are deeply invasive in a functional
sense. While a murine node in vivo is

basically a closed chamber, in experi-
ments conducted with mice Reichert’s
membrane is removed for visualiza-
tion purposes; a maneuver that, as we
discussed above, produces a radical
modification of the flow from its in
vivo conditions unless the chamber is
carefully resealed. For the transpar-

Fig. 5. a,b: Numerical simulations depicting the steady-state concentration of a morphogen with a finite lifetime within the node for wild-type (a) and
Inv (b) mice. The color scale is as for a rainbow, with red the highest concentration, and violet the lowest. c,d: Graphs of the concentration of
morphogen at the floor of the node in the above simulations with wild-type (c) and Inv (d) mice (arbitrary units).

Fig. 4. Dependence of the lower recirculatory vortex on the ratio between cilia length and node depth l/d. a: Leftward velocity in a vertical cross
section of the node showing the presence of two return flows for different values of l/d. The position of the maximum lower return flow is marked by
dots. b: Strength of the lower recirculatory vortex as a function of l/d.

FLUID DYNAMICS OF LEFT–RIGHT PATTERNING 3483

Figure 3.7: From Cartwright et al. (2008). (a) A family of velocity profiles for different
values of the relative height of the upper boundary and the cilia tips, showing that the
return flow only becomes pronounced when the cilia height is within a few factors of the
boundary height. (b) The strength of the return flow as a function of the relative heights.

preliminary evidence for limited chaotic advection in my biomimetic cilia samples in

section 6.3.2, and I will more thoroughly explain the phenomenon in that section. But

it is important to note that Cartwright’s speculation as to the existence of chaos around

nodal cilia will be echoed by other theoretical works below. However, as of yet there

has been no theoretical or experimental demonstration in the literature that cilia can

generate chaotic advection.

The 2007 work of Cartwright et al. was mentioned earlier, as it published the

argument that NVP rupture could not be caused by direct impact with a cilium. The

other main topic of this work was a theoretical comparison of the expected in vivo

flow with the experimental work, which for accessibility had required the removal of

the membranous covering of the node. Specifically, in this work a more elaborate

model included an upper boundary. This allowed Cartwright to address the existence

of a recirculatory flow along the ceiling of the node, which must be present in vivo and

should be dramatically reduced after removal of the membrane during experimentation.

As I will show, the results in Chapter 5 demonstrate a recirculatory flow driven by

biomimetic cilia which matches well the in vivo analysis of Cartwright.
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The final work I will discuss by Cartwright et al. is the 2008 review of the fluid

dynamics of the nodal system. Despite being a review, it did present a small amount

of new theoretical work which followed up on a minor controversy which Cartwright’s

earlier work had ignited. The time-independent models used in these earlier works had

predicted that a second recirculatory flow should exist along the floor of the node. Work

I will outline below by Smith et al. used time-dependent singularity methods which

did not show a floor recirculation. This work suggested that Cartwright’s prediction

was due to the time-independence of his model. However, Smith et al. did not have an

upper boundary in their model. Thus, Cartwright addressed this issue in his 2008 work

by claiming that the upper boundary dictated that this floor recirculation be present

regardless of any time-dependence in the model. Figure 3.7 displays a family of velocity

profiles from Cartwright (2008), demonstrating their prediction that the strength of the

floor recirculation was a function of the height of the node relative to the height of the

cilia tips. While this velocity profile shares features with results I present in Chapter 5,

in neither my system or any other biological experiment to date has there been a report

of the observation of the floor recirculation. My data suggests that Smith et al. are

correct that the complex trajectories of particles below the cilia tips will overwhelm any

average recirculatory flow and make it difficult or impossible to discern, if it is actually

present.

Smith, Blake, and Gaffney 2007 and 2008

John Blake, who first solved Batchelor’s slender body theory for a cilium and a

boundary via the method of images in 1971, has recently extended some of the early pe-

riod of research with further reports of relevance to the airway and the nodal flow (Smith

et al., 2007; Smith et al., 2008). The recent work concerning the airway has been an at-

tempt to resolve a discrepancy between experiment and theoretical work. This discrep-
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ancy will be important to the discussion of the results in Chapter 6 and the biological

implications of my work. For that reason I will take this opportunity to introduce one

of the fundamental questions which I will address: what is the nature of any potential

mixing flows which would be driven by beating cilia?

The discrepancy which I have alluded to began with experimental reports (by col-

leagues in the Virtual Lung Project) which showed that fluid flow tracers, in the form

of patches of fluorescent dye, were transported equally in both the PCL below the cilia

tips and the mucus layer above (Matsui et al., 1998). This ‘co-transport’ phenomenon

was very different from the velocity profiles which had been typically predicted by the-

oretical results, as shown in Figure 3.8 from Smith et al. (2007). The work by Smith

et al., as well as an unpublished computation performed by Sorin Mitran of the Vir-

tual Lung project (which can be found here), were some of the first models to include

diffusive effects. These models suggested that the tracers used in the experiment were

not faithfully following the velocity field due to diffusion, causing at least some part of

the discrepancy with theory.

However, the detailed work by Smith et al. in 2007 required a series of further

modifications in order to fully bring the theoretical predictions into alignment with the

co-transport observations. First, diffusive enhancements between the mucus and PCL

were assumed. Matsui et al. had reported that the dextran dyes used their experiments

had diffusivities of 160 µm2/s in the PCL and 3.6 µm2/s in the mucus layer. Thus, the

initial proposal was that once dye diffused from the faster-moving mucus into the PCL,

it more rapidly spread out and made it appear that the PCL had been co-transported.

This first proposal decreased, but did not eliminate the discrepancy. Further im-

provements were made by combining features of discrete methods and the traction layer

model. The discrete methods were shown to predict that, in the upper portion of the

PCL, shear-flow driven by the transport of the overlying mucus dominated any back-
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BA

Mucus

PCL

Fluid velocity

Fig. 1 A—a simplified representation of the cotransport phenomenon found by Matsui et al.
(1998). B—a schematic of the observed profile of Matsui et al. (1998).
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Fig. 2 Comparing the velocity profiles predicted by theory (typified by A), shear driven (plane
Couette) flow (B) and those apparently found by experiment (C)—redrawn from Matsui et al.
(1998). Graph (D) shows a mean profile from the model of Smith et al. (2006b).

estimate the diffusion coefficients of dextran in mucus and PCL: 3.6 µm2 s−1 and
160 µm2 s−1 respectively. Diffusion coefficients were measured in non cilio-active
cultures, and so represent spreading of tracer due to diffusion only and not due to
transport by cilia.

At first sight the results of Matsui et al. (1998) appear to show that tracer parti-
cles in the PCL are advected along at the same speed as tracer particles in the mu-
cous layer, implying that the fluid velocity in both layers is approximately equal.
However, diffusion of tracer between the two layers must also be taken into ac-
count: in Blake and Gaffney (2001) it was shown that even if fluid transport in the
PCL is two orders of magnitude smaller than in the mucous layer, tracer trans-
port in the PCL may be at least half that in the mucous layer. This is essentially
the phenomenon known as ‘Taylor Disperson’ (Taylor, 1953). Further simulation
using various steady advection profiles by the UNC Virtual Lung Group (Mitran,
2004) confirms this, together with showing the effect of the varying the diffusion
coefficient in the PCL.

A measure of the relative effect of advective and diffusive transport is the Peclet
number UL/D, where U, L and D are typical values for velocity, length and the
diffusion coefficient. Since transport is approximately 40 µm/s and each layer is
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Fig. 10 Adjusted diffusion profile D2(z). Mean horizontal velocity u versus height above epithe-
lium from Smith et al. (2006b).

simulation with the oscillatory velocity field of Smith et al. (2006b) and diffusion
profile D1(z).

The inclusion of oscillations has brought us considerably closer to the experi-
mentally observed results. In the following sections we examine other effects which
increase mixing further.

7.2. Altering the diffusion profile

The diffusion profile D1 chosen for the above simulations decreased abruptly from
160 µm2/s to 3.6 µm2/s at the mucus-PCL interface y = h. However, it is likely
that vertical mixing due to penetration of the mucous layer by cilia, which was not
a feature of the Smith et al. model, may substantially enhance vertical ‘diffusion’.
A simple phenomenological model of this advective mixing is to increase the diffu-
sion coefficient in this region by moving the transition in D(z) further up into the
mucous layer, and smoothing the transition, so that

D2(z) = 1
2

(
(DP − DM) tanh

(
20

[
L− z

L

])
+ DP + DM

)
. (8)

The velocity profile and diffusion profile D2(z) are shown in Fig. 10. The results
of 20 s simulation are shown in Table 4 and Fig. 13, middle graph. The pulses
separate by just 35.9 µm after 20 s, a 10.7% ratio compared with the 17.6% ratio
observed for D1.

7.3. Mean profile of Fulford and Blake (1986) with oscillations

As discussed in Section 3, although the Smith et al. model produces a mean profile
superficially very similar to the results of Fulford and Blake (1986), the earlier
model predicted significant fluid transport in the upper part of the PCL, likely due
to the fact that the cilia bend closer to the epithelium during the recovery stroke
and so do not resist the flow of fluid. Recent detailed modelling of the flow in the
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Fig. 6 A—mean horizontal velocity u versus height above epithelium from Smith et al. (2006b).
B—diffusion profile D1(z).

has the disadvantages of being only first order accurate and introducing numerical
diffusion. Since additional diffusion would have the effect of reducing the sepa-
ration between the tracer pulses in the mucus and PCL, this could produce mis-
leading results. Instead we shall use the QUICK discretisation (Leonard, 1979).
For 1D problems, QUICK is stable, formally third-order accurate, conservative
and does not introduce numerical diffusion. The scheme does not have these for-
mal properties in 2D, but our results show greatly improved spatial convergence
and very acceptably accurate conservation of c. Implementation is very straightfor-
ward, since at each timestep it is necessary to solve a set of pentadiagonal matrix
equations, which can be done with comparable efficiency to tridiagonal system.

To compare and interpret the results of different simulations quantitatively, we
calculate the distance moved by the centroid of the tracer pulse at different levels
in the fluid:

d(z, t) :=
∫ ∞

x=−∞ xc(x, z, t) dx
∫ ∞

x=−∞ c(x, z, t) dx
. (7)

We then define the transport ratio r(t) = d(H, t)/d(0, t), the ratio of the tracer
transport at the top of the mucous layer to the bottom of the PCL. Due to the fact
that vertical diffusion acts on a timescale of up to 12 s, it is expected that r(t) will
not ‘converge’ to a final value until a simulation has been performed for a similar
time period. Cotransport over the timescale of the experiment will be represented
ideally by r(t) ∼ 1 for t = 20 s.

6. Steady transport results

6.1. Steady profile of Smith et al. (2006b)

We begin by presenting results for the steady velocity u = (u(z), 0) field shown
in Fig. 6(B), and for the diffusion profile D1(z), shown in Fig. 6(A). The velocity

Theoretical Velocity Profile Original Diffusion Profile Modified Diffusion Profile

Figure 3.8: From Smith et al. (2007). Top row - Possible airway cilia-driven velocity
profiles: A is typical of that predicted by theory, B is expected if the mucus drives Couette
flow in the PCL, and C is that observed in experimental work by Matsui et al. D is the
velocity profile from Smith et al.’s own work. Bottom row - The original theoretical
profile is partly reconciled with the experimental profile by including enhanced vertical
diffusion between the PCL and the mucus, which is assumed to occur because of the
interaction of the cilia tips with the mucus layer.
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Fig. 11 Particle transport to the ‘left’ by three in-phase posterior-tilted clockwise rotating nodal
cilia: Initial particle positions are (−2.9, 0.15, 0.2), (−2.7, 0.35, 0.2) and (−2.5, 0.55, 0.2). Axes
scaled with respect to cilium length 3 µm. Cilium radius is 0.1 µm. Time duration is 240 peri-
ods/24 s.

Recent data (Okada et al., 2005) suggest that the leftward flow in the mouse has
velocity approximately 1–3 µm/s. Artifically reversing the flow reverses situs in the
resulting embryo (Nonaka et al., 2002), so that, for example, the heart develops on
the right rather than the left side. Mutant mouse embryos without cilia develop
with random placement of internal organs (Nonaka et al., 1998), and humans with
immotile cilia syndrome, which is associated with defective cilia often have situs in-
versus (Kosaki and Casey, 1998). The ‘nodal flow’ has, therefore, been implicated
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Fig. 12 Particle trapping and escape; the effect of phase difference: initial particle positions are
(−1.5, 1, z), where z = 0.3, 0.6, 0.9, 1.2. There is a vortex region that traps the particles starting
at z = 0.3, 0.6 in approximately circular paths. The particle starting at z = 0.9 makes one or two
complete circuits of the cilium before escaping, whereupon another cilium draws it to the ‘left.’
Compare with the ‘circling and escape’ behaviour observed by Nonaka et al. (1998). The particle
starting at z = 1.2 above the cilium tip is immediately transported to the ‘left’—it is not drawn
into any rotational path. In the left-hand graph, the cilia are in phase, and the particle starting
at z = 0.9 makes two complete circuits before escaping the cilium. In the right-hand graph, the
cilia are out of phase, with initial positions of the cilia being shown by the continuous lines. The
particle starting at z = 0.9 now follows a slower and more elongated path. On the second circuit, it
escapes via a similar trajectory. Also, note that the particle starting at z = 1.2 moves a very similar
distance for both arrays, suggesting that phase difference may not be a critical determinant of
efficient transport. Axes scaled with respect to cilium length 3 µm. Cilium radius is 0.1 µm. Time
duration is 90 periods/9 s.

Figure 3.9: From Smith et al. (2007). Their model incorporated time-dependence and
diffusion. These tracks depict the trapping-and-escape behavior discussed in the text,
in which particles are temporarily confined to the local vortex around a cilium before
escaping.

wards flow a cilium would generate during its recovery stroke. This was combined with

a feature of the traction layer, which was the ability to predict the effect of oscillations

in the fluid due to the cilia beat. These two effects were enough to bring the theoretical

predictions within a few percent of the experimental observations. Thus, Smith et al.

reported that the mean transport in the PCL need only be 50% of that in the mucus,

and that these additional effects would make it appear in experiments as though the

PCL was being co-transported.

These theoretical works highlight the fact that the detailed motion of the fluid gener-

ated in close proximity to the cilia can be important for the basic transport phenomena

in a ciliated system. However, the effects predicted by Smith et al. have not been de-

scribed in an experimental cilia system. This highlights the importance of the results

I will present in Chapter 6, which will speak to the notion of an enhanced diffusivity

below the cilia tips.

Smith et al.’s work in 2007 in the Bulletin of Mathematical Biology also presented

results on the embryonic nodal system using the same singularity methods which had

been applied to the airway. In particular, this was the first work to calculate individual

tracer pathlines in the fluid flows near the nodal cilia beat. These pathlines exhibited
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the epicycles reported by Bouzarth et al., and also showed vortical features in the im-

mediate vicinity of a cilium. More specifically, this was the first theoretical description

of the circling-and-escape behavior Nonaka et al. had described for experimental parti-

cle trajectories (Nonaka et al., 1998). Such trajectories were characterized by initially

vortical motion in which the tracer was essentially ‘trapped’ by the cilium. After a few

orbits around the vortex particles escaped, typically entering the leftward flow above

the tips. The theoretical trajectories which demonstrate such behavior are displayed

in Figure 3.9.

3.4 Experimental work on fluid flows within the

embryonic node

I have mentioned the experimental work on ciliated systems in a number of places

above. Here I focus in more detail on the data presented for nodal cilia systems,

where appropriate, in order to emphasize the lack of thorough characterization of cilia

driven flows in the experimental literature. This lack is especially pronounced in close

proximity to beating cilia. I have mentioned that early reports qualitatively described

vortical flow around single cilium. In addition, these early works quoted mean flow

speeds of 10 µm/s or greater, which have been refined downward in more recent work.

Beyond these numbers, the experimental data on the nodal flow comes from two

other sources. In Okada et al. (Okada et al., 2005), a comparison between species

was made and the average cilia beat frequencies and flow velocities were reported for

embryos of the mouse, rabbit, and medakafish. In addition, Okada et al. published

a velocity profile for the mouse nodal flow which consisted of three data points. All

of these values are displayed in Table 3.1, and will appear again in Chapter 5 when I

compare this data to my own results.
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Nodal Flow Data from Okada et al. (2005)

Species Height (µm) Velocity (µm/s) Beat Frequency (Hz)

Mouse 4 4± 2 11± 3
11 0± 1
19 −2± 1

Rabbit 4 1.3± 0.4 7± 2
Medakafish 4 7± 3 43± 3

Table 3.1: Nodal flow velocity data from Okada et al. (2005). The three data points
from the mouse are the only experimental results for a velocity profile in the node. The
comparison between species also reveals a clear correlation between beat frequency and
flow velocity at the cilia tips.

The most recent experimental work to present data on the nodal flow was performed

by Supatto et al. in 2008. In order to track the nodal flow with minimal disturbance

to the in vivo condition, they demonstrated a novel technique whereby a small number

of cells on the nodal wall were laser ablated. These cells, which had previously been

fluorescent labeled, were lysed by a femtosecond laser pulse and fluorescent debris from

the ablated cells entered into the node and could be used as tracers of the flow.

The data presented by Supatto et al. is displayed in its entirety in Figure 3.10.

Although their method for in vivo imaging is impressive, it is unfortunate that the

claims made in the text of the paper are not well supported by the presented data.

The properties of the global flow are indicated by several hundred particle tracks which

orbit around the node. The next displayed data set is one of the few presentations

of fluid flow data in close proximity to a cilium, again indicating with vector fields

the vortical flow which had been observed by previous experimentalists. It is clear,

however, that the limited duration and spatial extent of these paths limits the ability

to fully characterize the fluid flow.

Finally, Supatto et al. claimed in the text of their paper that their observations

had revealed the presence of chaotic advection, and that this report was the first report

of such a flow driven by cilia. However, I emphasize that the only data presented for
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c

generate the optimal directional flow (15). Considering the
direction of the directional flow measured inside the vesicle
(Fig. 2), the dorsal tilt is in accordance with the theoretical
model (12). Furthermore, the counterclockwise rotation
(view from the tip of the cilium) of the trapped particles
corroborates previous observations on the rotation direction
of the cilium (13,14).
In conclusion, the good agreement between our experi-

mental observations and the features recently predicted by
numerical simulations confirms that this approach can reveal
characteristics of ciliary hydrodynamics, and argues favor-
ably for the noninvasiveness of this approach. Such detailed
descriptions of cilia-driven fluid movement will be valuable
in unraveling the relationships between flow and signal

transduction crucial for maintaining the asymmetry of the
embryo. Finally, this approach opens new opportunities for
investigating microscopic flow in living tissues.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this
article, visit www.biophysj.org.
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FIGURE 3 Velocity vector map around a single cilium extracted
from3Dparticle tracking(100 tracks). (A)Dorsalviewof thevelocity
field surrounding a beating cilium on the right side of the vesicle
(blackbox inB, samevesicleas inFig.2A) andshowinga transition
between directional and vortical flow close to the cell surface. The
gray volume represents the cell surface and the blue volume the
cilium position. (C) Posterior view showing the 30! dorsal tilt of
the beating axis. The vectormap corresponds to the accumulation
of instantaneous particle velocities recorded at different time
points. The color of the arrowsencodes for the normof the velocity
vectors. d, dorsal; v, ventral; a, anterior; p, posterior; l, left; and r,
right. The axis scales and position are kept as in Fig. 2 A.
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right axis specification in the manipulated embryos. We found
that the vesicle morphology remained the same after ablation
(Fig. 1, E and F) and that no left-right defects resulted (N¼ 8).
After seeding the fluid with fluorescent particles, we inves-

tigated the 3D motion of the flow within the cavity. Particles
were imaged in 3D after ablation using a fast confocal
microscope at 44 frames per second (four z-stacks per second)
and tracked in 3D using image processing (see the Supple-
mentary Material, Data S1). The particles located 10mm away
from the vesicle surface exhibited a circular motion following
a counterclockwise rotation (dorsal view) around the dorso-
ventral axis (Fig. 2; Movie S2 and Movie S3), confirming
previous observations (8,9). The time-independent feature of
this flow is demonstrated in Fig. 2 A bymerging particle tracks
recorded during different time windows. The maximum speeds
ranged up to 10–50mm/s, leading the particles to perform a full
vesicle revolution every 15 s. Assuming that the viscosity
within the vesicle is close to the viscosity of pure water, the
corresponding Reynolds number is on the order of 10"3.
Understanding how the directional flow is generated within

theKV requires knowledge of the spatial position, the direction

of rotation, and the tilt of the beating cilia. Yet, the direct
fluorescence imaging in 3Dof these cilia is challenging because
they beat fast (;25 Hz (9)) and are localized deep below the
tissue surface. Fortunately, the particles traveling near the
envelope of a beating cilium can be trapped in a vortical flow
with the same rotation direction, but with a significantly slower
speed, as predicted by simulations (10). Fast confocal micros-
copy (11) was sufficient to image the trajectories of these
particles and indirectly probe cilia characteristics. Indeed,
particles trapped in vortical flows were observed close to the
cell surface and localized to a potential beating cilium (Movie
S4). Particle tracking revealed a transition between the
directional flow (.10 mm) and the vortical flow closer to the
surface (,10mm, Fig. 3A, Movie S5). The presence of chaotic
advection generated around the envelope of the cilium was
observed by following the quick divergence of nearby particle
tracks (Fig. 1 in the Supplementary Material (Data S1), see
legend for details; Movie S6). In the context of Stokes flow at
low Reynolds number, this chaotic behavior is an original
characteristic predicted by previous simulations (10).
Directional flow can be driven by cilia with an axis of

rotation tilted in a plane perpendicular to the flow (12–14).
To define the rotation axis of the observed cilium, we iden-
tified the main direction of the volume around which the
particles spin. Its surface was manually reconstructed by
drawing the boundary of the space wherein no particles were
detected (blue surface in Fig. 3; Supplementary Material Fig.
1 (Data S1); and Movie S5 and Movie S6). The axis exhibits
a 30! angle tilt toward the dorsal direction (Fig. 3 C). This
angle is close to the 35! value anticipated by simulations to

FIGURE 1 Femtosecond laser ablation procedure for flow
fluorescent seeding. (A) Side view of a zebrafish embryo at the
stage of ablation. The box outlines the location of the KV. (B)
Schematic view of the KV before the ablation (dorsal view). (C)
Magnified region of the KV corresponding to the boxed region in
B during the ablation step, showing the laser excitation in the
tissue. (D) Two views, in x-z (D1) and in x-y (D2), showing the 3D-
confined ablation (green, <5 mm in each direction) generated 70
mm deep inside a dye-loaded embryo. The green fluorescence is
generated as a result of the laser ablation. (E) Results of the
ablation when performed on the cells lining the KV (gray arrows),
raw images (E1 and E2), depicting the cells before (E1) and after
ablation (E2 andE3). The drawing (E3) illustrates the flow seeding
after laser ablation. (F) Fast confocal microscopy allows imaging
of the fluorescent microdebris (white arrowhead) seeding the
flow. Black and white scale bars 50 mm and 10 mm, respectively.

FIGURE 2 Kupffer’s vesicle flow extracted from fluorescence
data. (A) Particle tracks (N5 266) indicating the fluid streamlines
of the steady-state flow within the KV. The three different track
colors correspond to the superposition of tracks obtained at
different time windows (33 15 s over a 45-s period) showing that
tracks align over time, indicating a steady state. The particles
exhibit a circular motion around the dorso-ventral direction. (B)
Schematic display of the spatial orientation (antero-posterior,
dorso-ventral, and left-right axis are represented in green, blue,
and red, respectively) of the vesicle (red sphere). The black
arrows indicate the counterclockwise rotation of the flow (when
viewed from the dorsal side). d, dorsal; v, ventral; a, anterior; p,
posterior, l, left; and r, right.
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Figure 3.10: From Supatto et al. (2008). These panels display the best data currently
in the literature for fluid flows in close proximity to a cilium. (a) Particle tracks in the
entire node. (b) The velocity field around a single cilium (the shaded blue region). This
identification of the vortical flow matches previous observations, and the transition to
directional flow was noted, but it is again data limited to an area by just one cilium. (c)
and (d) The entirety of the data in support of the claim that they had observed chaotic
advection. In (c), the pathlines of two sets of three particles (one set near the cilium
and one far from the cilium) are displayed, with the initial positions represented by the
red dots and final positions by the blue. They claim that the average divergence in time
shown in (d) of the three tracers near the cilium reveals the chaotic nature of the flow,
but there they did not perform any characterization of chaotic advection with a metric
such as the Lyapunov exponent.
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such a claim is shown in Figure 3.10, some of which was only published within the

supplemental information of their work. The figure shows that their observations were

of three particles below the cilia tips which separated in time, with a control set of

three above the cilia tips which did not separate. As I will discuss in Chapter 6, the

characterization of chaotic advection is complicated and depends, at a minimum, on

the rate at which nearby objects are separated in a flow, and so the evidence presented

is clearly insufficient grounds for such a claim.

3.5 Microfluidics

As I have mentioned, a number of the potential applications of a functional biomimetic

cilia system lie within the field of microfluidics, a technology based on the flow of liquids

through microscopic channels (Gravesen et al., 1993; Squires and Quake, 2005). The

overarching goal of this field is to do for chemistry and biology what the integrated

circuit did for computing, that is, to build a ‘lab-on-a-chip’. Such devices, sometimes

more formally called micro-total analytical systems, would seek to miniaturize many

aspects of bench-top lab work in diverse areas of biology and chemistry. Specifically,

the multiplexed analysis of biological specimens and rapid, easily tunable chemical syn-

thesis are broad goals in the field. The motivation for such devices are many, but two

obvious reasons are that they are cheap to mass produce, due to the small amount of

materials required to fabricate them, and the volumes of analytes are small due to the

microscopic channels.

In addition, a variety of fluidic phenomena which exist at the microscale, some of

which I have already introduced, provide means for performing tasks which cannot be

easily accomplished at the macroscale. For instance, the surface tension of liquids can

dominate fluid forces to such an extent that fluids will wick into microscopic channels,

allowing surface chemistry to dictate fluid flow. Another use of surface tension which
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has rapidly increased in popularity in the last 5 years is droplet-based microfluidics, in

which individual droplets are generated and segregated within the channel (He et al.,

2005).

However, one universal aspect of microfluidic channels is the small scales and charac-

teristic velocities, which means that these systems must operate within the low Reynolds

number regime. While this provides some benefits, it also imposes constraints which

require novel solutions to perform many types of common tasks. Specifically, I have

discussed how fluid transport cannot be generated through many intuitive means, and

the turbulent flow which often causes rapid macroscale mixing is absent. A large num-

ber of strategies for mixing within microfluidic channels have been proposed, based

on passive and active schemes which each use various phenomena to generate mix-

ing (Pamme, 2006). Furthermore, controllable pumping over short distances and in

arbitrary directions may be an advantage of microfluidic pumping systems. As cilia

are the design which natural has developed for the task of manipulating fluids at the

microscale, an artificial structure which mimics cilia has been widely envisioned as an

appealing device for producing these sorts of fluid motions.

3.6 Artificial Cilia On the Rise

The rapid development of microfluidic technology demands creative methods for

manipulating fluids at the microscale, and the cilium is a nearly universal method

with which biology performs such tasks. In addition, micro- and nanoscale sensors

and actuators of many kinds have potential applications throughout nanotechnology.

As such, just the last few years has seen a dramatic rise in the number of researchers

investigating both experimental and theoretical aspects of artificial cilia and cilia-driven

fluid flow. In this section I present brief overviews of alternative strategies for generating

artificial cilia which have been recently demonstrated in the literature. Briefly, however,
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I reference a few advantages and important differences which the biomimetic cilia arrays

I have developed have with these other works, which will be discussed in more detail

in Chapter 4.

There are assuredly more efficient ways to rapidly move fluids if the required dimen-

sions of a pumping apparatus are not small. Many of the systems I describe below have

at least one dimension which is in the hundreds of microns, and a few of these have

demonstrated such pumping and mixing which is more rapid than that I will demon-

strate. Of course, this is largely a matter of scale. Structures with larger characteristic

lengths will, in general, produce larger characteristic velocities for a similarly scaled

motion of the actuator. Several of these systems have been branded as artificial cilia,

and that term has essentially come to mean a structure which manipulates fluids, more

or less regardless of scale and shape.

This question of scale may have implications in the other direction as well. I have

mentioned that diffusive motion can dominate driven advection if the advection is slow

enough, as determined by the Péclet number. Thus, for an actuator to produce ad-

vective transport it must be large enough (or move rapidly enough) in order for its

actuation to produce characteristic velocities large enough to dominate diffusion. I

point this out in order to mention the possibility that the scale of biological cilia ap-

proaches the minimum size at which it is feasible to have advective transport dominate

diffusion, a notion which I do not believe has been discussed in the literature. If this

were indeed the case, then an artificial cilium at the size of its biological analogue may

be, in some sense, as small as a mechanical pump (one which works from within the

fluid and operates at reasonable frequencies) can be.

Based on these issues of scale, I emphasize the fact that I refer to my own system as

biomimetic, rather than just artificial, cilia. This important distinction represents the

fact that these biomimetic cilia arrays are the only demonstrated example of responsive
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structures at the dimensions of biological cilia, in arbitrarily large arrays of cilia as

seen in biological systems. Furthermore, of the publications mentioned below, the

minority have actually demonstrated the controlled ability to manipulate fluids, as

most of the papers are only reports of fabrication processes. It is the combination

of these facts which allows me the unique opportunity to discuss experimental results

in my biomimetic cilia systems within the context of biology, one of the fundamental

thrusts I defined in the Introduction.

Aside from scale, the fabrication process I present in Chapter 4 has a number of

other advantages over the other works I will describe below. The template based process

I use does not require photolithography, a multi-step process which defines structures

at the microscale based on the masked exposure of a photoresponsive material. Pho-

tolithographic processes, especially as the size of patterned features approaches 1 µm,

can require expensive equipment and materials and is time-consuming, as often one

must continually generate new devices either from a master which gradually wears out,

or from scratch. In contrast, the template based approach can be done with inexpen-

sive, commercially available components and requires several days to make the polymer

composite, but only an afternoon to make a handful of samples. Secondly, the templates

themselves are commercially available and so the ability to adjust parameters such as

cilia diameter, length, and average density is straightforward. Lastly, the flexible mag-

netic/polymer composite used for biomimetic cilia is relatively easy to produce, and

magnetic actuation in general is appealing for a number of reasons. These issues will

be discussed in greater detail in Chapter 4, and so for now I turn to brief descriptions

of a number of relevant works in the literature.

The following are presented in chronological order in order to portray the develop-

ment of the field over time, as essentially all the work I will describe occurred in the last

decade. It is worth noting that, upon the publication of the fabrication and magnetic
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actuation of our biomimetic cilia in Nano Letters in 2007, approximately three publi-

cations had produced engineered structures which could be classified as artificial cilia.

In contrast, in the most recent count a total of around 8-9 publications have presented

artificial cilia or engineered structures derived for the same purpose. I present more

details below, but Table 3.2 lists the most relevant of these processes and the critical

dimensions and actuation strategies for a more direct comparison with my system.

Actuators and Artificial Cilia

Author Year Structure Actuation Dimensions (µm) Fluid flow?

Tabata 2002 Gel pillars BZ oscillation 150× 100 no
Singh 2005 linked-bead magnetic 0.8× 25− 75 no

Darnton 2004, 2008 bacterial ATP 0.2× 15 mixing/pumping
Evans 2007 biomimetic magnetic 0.2− 1× 10, 25 no

Toonder 2008 paddles electrostatic 100× 20× 1 mixing/pumping
Sidorenko 2008 hydrogel swelling 0.2× 5− 8 no

Fahrni 2009 paddles magnetic 300× 100× 15 vortical
Oh 2009 paddles stage oscillation 400× 75× 10 oscillatory

van Oosten 2009 liq. crystal optical 1, 000× 200 no
Vilfan 2009 linked-bead magnetic 30× 5 pumping

Table 3.2: Artificial cilia and related actuators which have been presented in the liter-
ature. Note that Evans et al. is the Nano Letters publication in which the biomimetic
cilia fabrication and actuation methods presented in this thesis were reported.

3.6.1 Tabata et al. 2002

This work was based on the ability of some gels to spontaneously self-oscillate

based on a chemical process known as the Belousov-Zhabotinsky reaction. This reaction

causes alternating swelling and deswelling of the material which propagates through the

gel in a wave. Low-aspect ratio pillars were molded at a height of around 150 µm, and as

the wave propagated through the gel it induced small deflections in the pillars (Tabata

et al., 2002).
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3.6.2 Singh et al. 2005

This work exemplifies a class of publications which have developed various types

of microdevices based on linking magnetic microbeads together into chains. In the

presence of a magnetizing field, the dipole induced in each magnetic bead is aligned

with the magnetic field direction. Nearby beads begin to attract each other, and because

nearby dipoles have a preference for aligning head-to-tail, the beads are formed into

chains. These chains are also aligned with the field, and so in solution the rotation

of the magnetic field causes the rotation of the chains. Typically the beads are small

enough to be superparamagnetic, and so removal of the magnetic field allows thermal

effects to break apart the chain.

In the work of Singh et al., they demonstrated the ability to covalently link the

beads to each other to form permanent chains, and then the chains were tethered to

a glass slide within a microfluidics channel. The average length of the chains, which

can be difficult to control when free in solution, was determined in this case by the

the height of the channel. Once linked, changes in the external magnetic field causes

deflections of the tethered chains (Singh et al., 2005).

3.6.3 Darton et al. 2004 and Breuer et al. 2008

Darnton and Breuer et al. demonstrated the development of ‘bacterial carpets’.

Flagellated bacteria were introduced into a channel and bonded to a glass slide, with

their flagella sticking up into the fluid. In their 2004 work the group demonstrated

that these beating flagella induced flows which appeared as an effective diffusivity, and

showed that the effect decayed with distance above the flagella. The 2008 follow-up

demonstrated that, by reducing the height of the channel to less than the length of the

flagella, the flagella would be forced to beat in a direction which caused pumping down

the length of the channel. One difficulty with each of these types of devices is that the
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performance of the bacteria decreased over time as the replenishment of nutrients and

removal of metabolic waste were not fast enough to keep the specimens viable (Darnton

et al., 2004; Kim and Breuer, 2008).

3.6.4 Sidorenko et al. 2008

This novel actuator was based on the deflection of silicon nanorod arrays by the

reversible swelling of a hydrogel layer at the base of the rods. Hydrogels are loosely

cross-linked materials which can be mostly composed of water. They demonstrated

actuation with two processes, one in which the nanorods were cantilevered and a second

in which the tips of loose rods were embedded in the hydrogel. In both cases, sequences

of dehydration and rehydration of the gel caused swelling and deswelling, which in turn

caused deflections of the rods into striking, repeatable patterns (Sidorenko et al., 2007).

3.6.5 den Toonder 2008 and Fahrni 2009

These two publications represent a competing version of artificial cilia which is based

on paddles 100−200 µm wide and about 1 µm thick. Den Toonder et al. demonstrated

pumping and mixing in a microfluidics channel with arrays of bilayered paddles pro-

duced with photolithography. A thin conducting chromium layer was deposited onto

a polymer paddle, and mechanical stress between the two layers caused the paddles

to curl up. Once curled, an electrostatic potential was applied between the paddles

and a backgate, inducing a charge in the thin chromium layer and forcing the paddle

to unroll. The oscillatory motion of these paddles generated fast pumping and mixing

because of their large size and rapid oscillation frequencies. However, it was noted

that the underlying reason for the fluid flow was that the paddle motion was actually

rapid enough for inertial forces to play a role, as the paddle motion would not generate

flow at low Reynolds number. Because the unrolling of the paddle was slightly faster
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than the rolling motion, the extra inertia generated net transport (Toonder et al., 2008;

Baltussen et al., 2009).

Fahrni et al. (2009) demonstrated an analogous device at a slightly larger scale, but

which was based on a magnetic/polymer composite. Paddle deflections were generated

with external magnetic fields, and torsional motion of the paddles could be generated

because the paddles were large enough to retain a remanent magnetization. It was

demonstrated that this torsional motion could be used to produce vortical fluid motion

around the paddle (Fahrni et al., 2009).

3.6.6 Oh et al. 2009

This device consisted of an array of polymeric rods which were each 400 µm in

length. When placed onto a piezo-electric stage and within a fluid, the oscillatory

motion of the stage generated a small amplitude oscillation of the tips of the rods. Near

the body of the rods the fluid motion was oscillatory, but closer to the tips where the

amplitude of the rod’s motion was larger a slow upward fluid motion was observed (Oh

et al., 2009).

3.6.7 van Oosten et al. 2009

This work was the first to demonstrate an artificial cilia system based on optical

actuation. The device was built from liquid crystalline materials which could be inkjet

printed at dimensions of about 200 µm wide and 1 mm long. Liquid crystals are poly-

mers which can flow like a liquid but retain some degree of molecular orientation like

a crystalline solid. The inclusion of an azobenzene unit into the polymer allows it to

respond to irradiation by light. The light induces a change in the azobenzene which

decreases the order of the liquid crystal, and the material responds by a shape defor-

mation. In addition, they demonstrated cilia composed of multiple stacked polymeric
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layers with photoresponsiveness at different wavelengths, allowing them to produce

more complex bend shapes with multiple light sources operating independently (van

Oosten et al., 2009).

3.6.8 Vilfan et al. 2009

Using an optical trap to assemble linked bead structures, Vilfan et al. demonstrated

the bead-by-bead production of an array of nine cilia which were 30 µm in length by

5 µm in diameter. An external magnetic field was applied which caused the cilia to

perform a beat similar to the tilted conical beat of nodal cilia, and they reported on

the transport of four tracer particles in the flow. The extent of the flow was only over

the roughly 60 µm width of the array. Although it was not discussed in the text, the

four tracer pathlines, which I have displayed in Figure 3.11, also exhibited epicyclical

motion similar to that I observe. In addition, the velocity profile above the cilia tips

was reported for several different beat shapes and is also displayed in Figure 3.11. I

note that this velocity profile will turn out to be quite different from that I will report

on in Chapter 5, which I expect is a result of the small overall dimensions of their

array (Vilfan et al., 2009).
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Fig. 1. Artificial cilia were assembled in an external magnetic field. (A) Detail
of the experimental setup, which was used for creating and manipulating
artificial cilia. Three orthogonal pairs of coils that generated a homogeneous
magnetic field of arbitrary direction and varying magnitude were integrated
into an optical microscope (not shown) equipped with optical tweezers. (B)
Artificial cilia were made by assembling superparamagnetic colloidal parti-
cles into chains that were held together and attached to the nickel anchoring
points only by the magnetic field. The external field was also used to rotate
the cilia along a tilted conical path with the angular frequency ω = ϕ/t and
the conical motion resulted in the generation of fluid flow. Tilt angle of the
cone ϑ was chosen to be equal to the semi-cone angle ψ. By varying the angle,
we were able to change the pumping performance of the artificial cilia.

sustaining fluid flow in the sample [see supporting information (SI)
Movie S1 for assembled cilia and Movie S2 for the self-assembled
cilia]. The simplest yet effective example of asymmetric nonreci-
procal motion is a tilted conical path (15). We chose the tilt angle
of the cone’s symmetry axis ϑ to be equal to the semi-cone angle
ψ, so that at one point in each cycle cilia reached vertical posi-
tion (Fig. 1B). Theoretical calculations of the motion based on
the resistive force approximation show that the pumping velocity
is proportional to ωL3 sin2 ψ sin ϑ, with L being the length of a cil-
ium and ω the angular velocity of rotation, yielding the maximum
velocity for ψ ≈ 55◦ and ϑ ≈ 35◦ (16).

Pumping Velocity Profile. To monitor the generated flow in the
fluid, we introduced non-magnetic silica spheres into the sample
as tracer particles. The tracers were much smaller than the beads
that formed artificial cilia and their sedimentation was negligible
during the course of the experiment. We were able to follow the
tracer particles at a given height h above the ciliated surface and
obtain a pumping velocity profile simply by shifting the focal plane
of the microscope.

Fig. 2. Assembly of artificial cilia. (A) Superparamagnetic beads were indi-
vidually trapped by optical tweezers and assembled into chains. They were
anchored to the surface via nickel anchoring sites. (B) The beads self-
assembled into chains in an external magnetic field. Rectangular trenches in
a photoresist layer guided the self-assembly process of chain formation and
ensured that all chains had approximately the same length and width. The
trenches measured 45 µm × 5 µm and had a depth of 5 µm. The bead diam-
eter was 2a = 4.4 µm. Micron-sized non-magnetic spheres, which are visible
in both figures, were added to the system as tracer particles to visualize the
generated flow and measure its velocity.

Fig. 3. Visualization of the fluid flow generated by the artificial cilia. (A)
Paths of four tracer particles (diameter 1 µm) at the height h = 40 µm. The
cilia with length L = 31 µm were rotated in a conical manner at the fre-
quency of 1 Hz and the cone tilt angle ϑ = 30◦. The pumping direction was
chosen to deviate by α = 30◦ from the direction of the square array of cilia
anchoring points. (B) Paths of tracer particles shown in A projected onto the
chosen pumping direction. The net flow velocity is obtained from a linear fit
to the obtained data. The average velocity was 3.3 ± 0.2 µm/s. An offset in
the coordinate was added for clarity.

The paths of some tracers are shown in Fig. 3A for h = 40 µm
and the cilium length 31 µm (see also Movie S3). One clearly sees
a net migration of the particles in the direction that corresponds
to the direction of motion of the cilia when in upright position. In
addition, tracers exhibit circular motion that directly follows the
circular motion of the cilia. We obtain a net migration velocity by
projecting the particle traces to the pumping direction (Fig. 3B).
For the example shown, the L = 31 µm long cilia generated a
flow velocity of v = 3.3 ± 0.2 µm/s for h = 40 µm, ϑ = 30◦, and
frequency of rotation 1 Hz.

The net migration velocity of the tracer particles depends
strongly on the height h above the ciliated surface (Fig. 4A).
It reaches its maximum value just above the cilia (h = L) and
decreases with increasing height. We were able to detect the fluid
flow approximately 100 µm above the surface. For larger heights
h, the motion of tracer particles was dominated by the Brown-
ian motion and the influence of cilia was negligible. An important
parameter in the pumping performance of the ciliated surface is
the cone tilt angle ϑ. Consistent with the theoretical predictions,
the net pumping velocity was zero if there was no tilt, as in this case
no asymmetry was introduced into the system. The magnitude of
the flow velocity increased approximately proportionally to sin3 ϑ,
which is in very good agreement with the theoretical predictions
by Smith et al. (16).

Numerical Model. We carried out a numerical simulation of the
system of artificial cilia that would corroborate the experimental
results. Our numerical model assumed exactly the same conditions
as in the experiment: this includes the same sample geometry,
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Fig. 1. Artificial cilia were assembled in an external magnetic field. (A) Detail
of the experimental setup, which was used for creating and manipulating
artificial cilia. Three orthogonal pairs of coils that generated a homogeneous
magnetic field of arbitrary direction and varying magnitude were integrated
into an optical microscope (not shown) equipped with optical tweezers. (B)
Artificial cilia were made by assembling superparamagnetic colloidal parti-
cles into chains that were held together and attached to the nickel anchoring
points only by the magnetic field. The external field was also used to rotate
the cilia along a tilted conical path with the angular frequency ω = ϕ/t and
the conical motion resulted in the generation of fluid flow. Tilt angle of the
cone ϑ was chosen to be equal to the semi-cone angle ψ. By varying the angle,
we were able to change the pumping performance of the artificial cilia.

sustaining fluid flow in the sample [see supporting information (SI)
Movie S1 for assembled cilia and Movie S2 for the self-assembled
cilia]. The simplest yet effective example of asymmetric nonreci-
procal motion is a tilted conical path (15). We chose the tilt angle
of the cone’s symmetry axis ϑ to be equal to the semi-cone angle
ψ, so that at one point in each cycle cilia reached vertical posi-
tion (Fig. 1B). Theoretical calculations of the motion based on
the resistive force approximation show that the pumping velocity
is proportional to ωL3 sin2 ψ sin ϑ, with L being the length of a cil-
ium and ω the angular velocity of rotation, yielding the maximum
velocity for ψ ≈ 55◦ and ϑ ≈ 35◦ (16).

Pumping Velocity Profile. To monitor the generated flow in the
fluid, we introduced non-magnetic silica spheres into the sample
as tracer particles. The tracers were much smaller than the beads
that formed artificial cilia and their sedimentation was negligible
during the course of the experiment. We were able to follow the
tracer particles at a given height h above the ciliated surface and
obtain a pumping velocity profile simply by shifting the focal plane
of the microscope.

Fig. 2. Assembly of artificial cilia. (A) Superparamagnetic beads were indi-
vidually trapped by optical tweezers and assembled into chains. They were
anchored to the surface via nickel anchoring sites. (B) The beads self-
assembled into chains in an external magnetic field. Rectangular trenches in
a photoresist layer guided the self-assembly process of chain formation and
ensured that all chains had approximately the same length and width. The
trenches measured 45 µm × 5 µm and had a depth of 5 µm. The bead diam-
eter was 2a = 4.4 µm. Micron-sized non-magnetic spheres, which are visible
in both figures, were added to the system as tracer particles to visualize the
generated flow and measure its velocity.

Fig. 3. Visualization of the fluid flow generated by the artificial cilia. (A)
Paths of four tracer particles (diameter 1 µm) at the height h = 40 µm. The
cilia with length L = 31 µm were rotated in a conical manner at the fre-
quency of 1 Hz and the cone tilt angle ϑ = 30◦. The pumping direction was
chosen to deviate by α = 30◦ from the direction of the square array of cilia
anchoring points. (B) Paths of tracer particles shown in A projected onto the
chosen pumping direction. The net flow velocity is obtained from a linear fit
to the obtained data. The average velocity was 3.3 ± 0.2 µm/s. An offset in
the coordinate was added for clarity.

The paths of some tracers are shown in Fig. 3A for h = 40 µm
and the cilium length 31 µm (see also Movie S3). One clearly sees
a net migration of the particles in the direction that corresponds
to the direction of motion of the cilia when in upright position. In
addition, tracers exhibit circular motion that directly follows the
circular motion of the cilia. We obtain a net migration velocity by
projecting the particle traces to the pumping direction (Fig. 3B).
For the example shown, the L = 31 µm long cilia generated a
flow velocity of v = 3.3 ± 0.2 µm/s for h = 40 µm, ϑ = 30◦, and
frequency of rotation 1 Hz.

The net migration velocity of the tracer particles depends
strongly on the height h above the ciliated surface (Fig. 4A).
It reaches its maximum value just above the cilia (h = L) and
decreases with increasing height. We were able to detect the fluid
flow approximately 100 µm above the surface. For larger heights
h, the motion of tracer particles was dominated by the Brown-
ian motion and the influence of cilia was negligible. An important
parameter in the pumping performance of the ciliated surface is
the cone tilt angle ϑ. Consistent with the theoretical predictions,
the net pumping velocity was zero if there was no tilt, as in this case
no asymmetry was introduced into the system. The magnitude of
the flow velocity increased approximately proportionally to sin3 ϑ,
which is in very good agreement with the theoretical predictions
by Smith et al. (16).

Numerical Model. We carried out a numerical simulation of the
system of artificial cilia that would corroborate the experimental
results. Our numerical model assumed exactly the same conditions
as in the experiment: this includes the same sample geometry,
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Fig. 1. Artificial cilia were assembled in an external magnetic field. (A) Detail
of the experimental setup, which was used for creating and manipulating
artificial cilia. Three orthogonal pairs of coils that generated a homogeneous
magnetic field of arbitrary direction and varying magnitude were integrated
into an optical microscope (not shown) equipped with optical tweezers. (B)
Artificial cilia were made by assembling superparamagnetic colloidal parti-
cles into chains that were held together and attached to the nickel anchoring
points only by the magnetic field. The external field was also used to rotate
the cilia along a tilted conical path with the angular frequency ω = ϕ/t and
the conical motion resulted in the generation of fluid flow. Tilt angle of the
cone ϑ was chosen to be equal to the semi-cone angle ψ. By varying the angle,
we were able to change the pumping performance of the artificial cilia.

sustaining fluid flow in the sample [see supporting information (SI)
Movie S1 for assembled cilia and Movie S2 for the self-assembled
cilia]. The simplest yet effective example of asymmetric nonreci-
procal motion is a tilted conical path (15). We chose the tilt angle
of the cone’s symmetry axis ϑ to be equal to the semi-cone angle
ψ, so that at one point in each cycle cilia reached vertical posi-
tion (Fig. 1B). Theoretical calculations of the motion based on
the resistive force approximation show that the pumping velocity
is proportional to ωL3 sin2 ψ sin ϑ, with L being the length of a cil-
ium and ω the angular velocity of rotation, yielding the maximum
velocity for ψ ≈ 55◦ and ϑ ≈ 35◦ (16).

Pumping Velocity Profile. To monitor the generated flow in the
fluid, we introduced non-magnetic silica spheres into the sample
as tracer particles. The tracers were much smaller than the beads
that formed artificial cilia and their sedimentation was negligible
during the course of the experiment. We were able to follow the
tracer particles at a given height h above the ciliated surface and
obtain a pumping velocity profile simply by shifting the focal plane
of the microscope.

Fig. 2. Assembly of artificial cilia. (A) Superparamagnetic beads were indi-
vidually trapped by optical tweezers and assembled into chains. They were
anchored to the surface via nickel anchoring sites. (B) The beads self-
assembled into chains in an external magnetic field. Rectangular trenches in
a photoresist layer guided the self-assembly process of chain formation and
ensured that all chains had approximately the same length and width. The
trenches measured 45 µm × 5 µm and had a depth of 5 µm. The bead diam-
eter was 2a = 4.4 µm. Micron-sized non-magnetic spheres, which are visible
in both figures, were added to the system as tracer particles to visualize the
generated flow and measure its velocity.

Fig. 3. Visualization of the fluid flow generated by the artificial cilia. (A)
Paths of four tracer particles (diameter 1 µm) at the height h = 40 µm. The
cilia with length L = 31 µm were rotated in a conical manner at the fre-
quency of 1 Hz and the cone tilt angle ϑ = 30◦. The pumping direction was
chosen to deviate by α = 30◦ from the direction of the square array of cilia
anchoring points. (B) Paths of tracer particles shown in A projected onto the
chosen pumping direction. The net flow velocity is obtained from a linear fit
to the obtained data. The average velocity was 3.3 ± 0.2 µm/s. An offset in
the coordinate was added for clarity.

The paths of some tracers are shown in Fig. 3A for h = 40 µm
and the cilium length 31 µm (see also Movie S3). One clearly sees
a net migration of the particles in the direction that corresponds
to the direction of motion of the cilia when in upright position. In
addition, tracers exhibit circular motion that directly follows the
circular motion of the cilia. We obtain a net migration velocity by
projecting the particle traces to the pumping direction (Fig. 3B).
For the example shown, the L = 31 µm long cilia generated a
flow velocity of v = 3.3 ± 0.2 µm/s for h = 40 µm, ϑ = 30◦, and
frequency of rotation 1 Hz.

The net migration velocity of the tracer particles depends
strongly on the height h above the ciliated surface (Fig. 4A).
It reaches its maximum value just above the cilia (h = L) and
decreases with increasing height. We were able to detect the fluid
flow approximately 100 µm above the surface. For larger heights
h, the motion of tracer particles was dominated by the Brown-
ian motion and the influence of cilia was negligible. An important
parameter in the pumping performance of the ciliated surface is
the cone tilt angle ϑ. Consistent with the theoretical predictions,
the net pumping velocity was zero if there was no tilt, as in this case
no asymmetry was introduced into the system. The magnitude of
the flow velocity increased approximately proportionally to sin3 ϑ,
which is in very good agreement with the theoretical predictions
by Smith et al. (16).

Numerical Model. We carried out a numerical simulation of the
system of artificial cilia that would corroborate the experimental
results. Our numerical model assumed exactly the same conditions
as in the experiment: this includes the same sample geometry,
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Fig. 4. Induced flow velocity depends on the height h above the ciliated
surface. (A) Flow velocity generated by rotating cilia as a function of h for
different tilt angles (rotation frequency was 0.5 Hz). Experimental data (sym-
bols), and data obtained by a numerical simulation (lines): ϑ = 20◦ (• and solid
line), ϑ = 30◦ (! and dashed line), ϑ = 40◦ (" and dotted line). One should
note that there were no free parameters in the simulation. (B) Schematic view
of the numerical simulation that was done for exactly the same configura-
tion as in the experiment and for the same parameter values. Tracer particles
were randomly distributed through the sample and their average velocity
was calculated. The arrow denotes the direction of the external magnetic
field.

the same parameter values, e.g. the bead size and density, cilia
length, separation between the cilia, bead magnetization and the
external magnetic field density. Each bead was subject to gravi-
tational, buoyant, magnetic, contact, and constraint forces. Based
on the Stokes hydrodynamics, we calculated the mobility matrix
for a group of particles in the presence of a solid boundary. This
allowed us to determine the particle velocities at any time.

The fluid velocity was then obtained by extending the mobility
matrix to include the tracer particles, which were subject to viscous
forces only. A schematic view of the simulated system is shown in
Fig. 4B and the animation of the system in Movies S4–S6. As in the
experiment, we followed the tracer particles and calculated their
average velocity at a given height h above the ciliated surface in
order to obtain the pumping velocity profile. While the velocity
field between the cilia, i.e. for h < L, was vortical, it changed
into a homogeneous flowing layer for larger elevations above the
surface. The obtained data are shown in Fig. 4A as lines.

If one compares the experimentally obtained data with the
results from the numerical simulation, a very good agreement is
found. One should note that the simulation was not a fit to the
experimental data but rather an independent calculation with no
free parameters. The observed minor discrepancy likely results
from inhomogeneities in the velocity profile and from the uncon-
trolled background flow.

In summary, we have created ordered arrays of self-assembled
artificial cilia and demonstrated that they can be used to gen-
erate fluid flow in a microfluidic chamber. Both the assembly
of beads into chains and their attachment to the surface are

Table 1. Parameters used in the numerical simulation

N Number of magnetic beads 63
a Bead radius 2.2 µm
η Water viscosity 0.001 Pa s
χ Magnetic susceptibility of beads 1.63
ρ Mass density of beads 1, 600 kg m−3

d Ciliary array lattice size 28 µm
B Magnetic field amplitude 1.8 mT
α Pumping direction 30◦

ω/2π Rotation frequency 0.5 Hz

driven by induced magnetic forces, thus enabling disassembly—
or reassembly—of the cilia during the experiment. Although the
synchronized tilted conical motion of the artificial cilia in our sys-
tem is very simplified in contrast to the beating pattern of real
cilia, we have demonstrated that the pumping ability of such arti-
ficial ciliated surface is effective and thus suitable for microfluidic
applications.

Materials and Techniques
Experimental Setup. An experimental setup that allowed precise control
over the magnetic field was built around an inverted optical microscope
(Zeiss, Axiovert 200M, Achroplan 63/0.9W objective) equipped with optical
tweezers (17, 18). For tweezing Nd:YAG laser (Coherent, Compass 2500MN)
was steered by acousto-optic deflectors (A.A. Opto-electronic, DTSXY-250-
1064-002) and a beam steering controller (Aresis, BSC-160). Three orthogonal
pairs of water-cooled nearly Helmholtz coils were used to generate a homo-
geneous magnetic field within the sample. The currents through the coils
were individually regulated by a six-channel current source, which enabled
us to generate a homogeneous magnetic field of arbitrary direction and vary-
ing magnitude (Fig. 1A). The typical magnetic field used in the experiments
was 1.8 mT.

To ensure interaction via the external magnetic field, we used monodis-
perse superparamagnetic beads (Dynabeads Epoxy M-450, Dynal Biotech,
diameter 4.4 µm; coated with SDS (sodium dodecyl sulfate), 5 mg/ml, 5 hrs
in ultrasonic bath) (19). In order to create an array of colloidal chains that
would resemble a ciliated surface, the bottom ends of the bead chains were
anchored to the glass surface by an array of ferromagnetic nickel dots via
magnetic attraction (Fig. 1B). We used standard microscope glass slides that
were coated with a 500-nm-thick nickel layer by sputtering and etched to
create nickel anchoring sites that were 5 µm in diameter and arranged in a
square lattice with 28 µm between nearest neighbors.

The tracer particles were nonmagnetic silica spheres (Bangs Laborato-
ries, diameter 1 µm). Their movement was recorded with a CMOS camera
(PixeLINK, PL-A741) and analyzed off-line using a custom-written particle
tracking software to obtain their trajectories.

Guided Self-Assembly of Artificial Cilia. In order to guide the self-
assembly process and to control the cilia length, we fabricated trenches in
a 5-µm-thick layer of photoresist SU-8 2025 (Microchem, standard coating
procedure, adhesion promoter TI Prime, Microchemicals GmbH). Direct illumi-
nation of the structures on the photoresist was done with a UV laser (Omikron
Laserage GmbH, Bluephoton LDM375.20.CWA.L, 375 nm). The laser beam
was steered by acousto-optic deflectors (A.A. Opto-electronic, DTSXY-400-
405) controlled by a beam steering controller (Aresis, BSC-160) and focused
by Zeiss LD Plan-neofluar 20x/0.4 Korr objective.

Depth and width of the trenches were 5 µm, i.e. slightly larger than the
diameter of the beads, so that a single chain was formed in each trench when
the beads were left to sediment. The trench that was 45 µm long determined
the length of an individual cilium, although some of the trenches did not fill
up completely. The position of the trenches corresponded to the position of
the nickel dots, so that one end of each trench had one anchoring point. Glass
plates with structured photoresist were coated with BSA (bovine serum albu-
min, Sigma-Aldrich, 10 mg/ml in ultrapure water) to prevent adhesion of the
spheres. We used 200-µm spacers to ensure uniform separation between the
glass slide and a coverslip, and the cell was sealed to prevent the evaporation
of the fluid.

Numerical Simulation. We numerically simulated the dynamics of N beads
with radii a. All model parameters are listed in Table 1. We denote the position
coordinates of bead j with xj . The vector rjk = xk − xj denotes the distance
vector between beads j and k, rjk = |rjk | the distance between them and
r̂jk = rjk/rjk the unit vector pointing from bead j to bead k. Each bead is sub-
ject to the gravitational, magnetic, contact and constraint force that can be
expressed as

Fj = −mgêz +
∑

k #=j

Fmagnetic
kj +

∑

k #=j

Fcontact
kj r̂kj + Fconstraint

j . [1]
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c d

Figure 3.11: From Vilfan et al. (2009). Through the directed assembly of an array of
nine linked-bead cilia, Vilfan et al. demonstrated short-range transport of four tracers
over the width of the array, as shown in (b). (c) The radial displacement of the four
tracers as a function of time, clearly showing small oscillations as well as an overall
constant velocity represented by the linear fits. (d) Velocity profiles for several different
beat shapes. The curvature in these velocity profiles does not match the results I will
present later for long-range flow over large arrays of cilia.
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Chapter 4

FABRICATION AND MAGNETIC

ACTUATION

“Among those whom I could never persuade to rank themselves with idlers, and

who speak with indignation of my morning sleeps and nocturnal rambles, one

passes the day in catching spiders, that he may count their eyes with a

microscope; another exhibits the dust of a marigold separated from the flower

with a dexterity worthy of Leuwenhoweck himself. Some turn the wheel of

electricity; some suspend rings to a lodestone, and find that what they did

yesterday they can do again today. Some register the changes of the wind, and

die fully convinced that the wind is changeable. There are men yet more

profound, who have heard that two colorless liquors may produce a color by

union, and that two cold bodies will grow hot if they are mingled: they mingle

them, and produce the effect expected, say it is strange, and mingle them again.”

- Samuel Johnson

From A Dictionary of Thoughts,

Tryon Edwards, (1908), pg. 243.

Many scientists will recognize the mentality, possibly with a cringe, which Samuel

Johnson describes in this quote. It is understandable how an outside observer would

find mundane the repetitious nature of science (as often even scientists do), yet the

repeatability of experimental work is so fundamental that science would cease to be



science without it. However, in the world of nanotechnology the reproducibility of an

experiment is not to be taken for granted. Repeating experiments at these scales can

often be difficult, largely for the obvious reason that researchers are building and char-

acterizing systems at scales many orders of magnitude smaller than the tools humans

have traditionally been accustomed to.

For these reasons, the bulk of my work in the early stages of this thesis research

focused on the development of robust, reliable methods for producing biomimetic cilia.

Two desirable properties of such fragile microscale samples are, to an unfortunate de-

gree, mutually exclusive. In order to be a responsive structure, the cilia must be flexible

enough to be deformable under a reasonable application of force. Robust fabrication

methods, on the other hand, are much easier to develop for structures with low de-

formability. Thus, the development of these methods was initially a great challenge.

In the first part of this chapter I will describe the fabrication procedure which I have

developed for producing biomimetic cilia arrays, as well as a number of issues which I

have encountered and solved which are of use to the broader community as fundamental

technologies for producing responsive microscale structures.

In the second part of this chapter I turn to the magnetic actuation of biomimetic cilia

arrays with external permanent magnets. As structures engineered to be biomimetic

cilia, a primary goal of this research was to mimic the beat shapes of biological cilia. Ac-

curate mimicry of these beats requires magnetic geometries which maximize the applied

force on a cilium in order to generate comparable deflections. However, the primary

experiments of interest with these samples requires high magnification microscopy, in

order to perform video-tracking of tracer particles in the flow. Thus, the actuation

strategies I needed to devise must combine high magnetic forces with accessibility,

another challenge which I will describe in this chapter.
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Finally, controlled experiments in a well-defined magnetic field allowed for my work

to confirm the accuracy of a novel energy minimization model developed by a colleague.

This model predicts cilium bending in a prescribed magnetic field, and predicted for the

first time the effect of a magnetic gradient on a cantilevered, flexible magnetic rod. One

of the experiments I will describe in detail in this chapter confirmed the accuracy of this

description, and also served as the first experimental demonstration of the actuation of

such structures due to a magnetic gradient.

4.1 Magnetic Composite Materials

In the early years of the development of biomimetic cilia arrays within our lab, the

primary role I played was to take a magnetic composite material and fabricate arrays

of flexible rods which could be actuated with permanent magnets. As I discussed in

the previous chapter, our successful demonstration of these structures at the scale of

biological cilia would prove to be the first report of a true biomimetic cilium in the

literature (Evans et al., 2007). However, the production of the magnetic composite and

the basic idea on how to fabricate the cilia were developed by Lloyd Carroll, a post-doc

in the lab, and Ben Evans, a fellow graduate student. The material they developed,

which we refer to as FFPDMS, is the material which has formed the biomimetic cilia

with which the rest of the results in this thesis were taken and which I will describe

below. The full description of this material as well as a great deal of work on means for

the surface functionalization of such materials can be found in Ben Evans’ thesis (Evans,

2008). I briefly note, however, that the graduate student who succeeded Ben, Briana

Fiser, has also worked on alternative materials with advantages over FFPDMS. One

of these is the first development of a core-shell cilia actuator, which are arrays of

flexible rods with some portion of the top of the rods encased in a shell of nickel.

This type of biomimetic cilium contains a greater volume of magnetic material and
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can thus be actuated with larger forces and deflection amplitudes. Such improvements

may be critical to future biomimetic cilia research with viscoelastic fluids which mimic

the airway mucus, but are much more viscous and thus impose increased drag on the

motion of an actuator.

In all cases, a successful biomimetic cilium requires a combination of flexibility and

the ability to respond to a an external stimulus with a deformation. The degree to

which these two properties are found in a structure determines its responsiveness. A

high degree of response is difficult to find in a homogeneous material. As such, nearly

all the examples of cilia-like actuators in the literature involve composite materials. For

example, even the linked-magnetic beads depend on the length of the covalent linkers

between them to determine their flexibility (Singh et al., 2005), and the liquid crystal

artificial cilia are severely limited in the types of motion they can exhibit without being

formed into composites of two polymers (van Oosten et al., 2009).

The composite which has been primarily pursued in our lab is a dispersion of mag-

netic nanoparticles into a flexible polymer. Many types of nanoparticle-based compos-

ites have been demonstrated in the literature, and in nearly all cases a major difficulty

is to prevent the formation of large aggregates of particles. To produce a material

which is homogenous at nanometric length scales requires even more care. The mag-

netic composite paddles of Fahrni et al. are large enough that aggregates were not a

major problem, although they do report that their technology is not currently scalable

due to this issue. In the case of a biomimetic cilium, relatively homogenous composites

are a prerequisite because the final structures will be smaller than 1 µm in diameter.

These issues have been overcome in our lab by the development of a composite of iron

oxide nanoparticles dispersed into polydimethylsiloxane (PDMS), a silicone elastomer

which is widely used in the microfluidics community. The iron oxide nanoparticles were

produced by the co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2)
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into a ferrofluid, a stable aqueous suspension of the nanoparticles with fascinating liquid

and magnetic properties. In order to mix this with the PDMS pre-polymer, which is

hydrophobic, requires that the ferrofluid be converted to an organic solution. This is

done by transferring the nanoparticles to an oil phase, repeated sedimentation with

a magnet and rinsing with ethanol, and then resuspending the nanoparticles into an

organic solvent.

The dispersal of the ferrofluid into PDMS results in the composite material we

call FFPDMS. To properly disperse the particles, the ferrofluid and pre-polymer are

each diluted in toluene and a small amount of hexadecane, then combined over an

hour or more under ultrasonication. The excess toluene, which is more volatile than

the hexadecane, is evaporated away to leave behind a dark, pasty suspension of the

nanoparticles in the PDMS pre-polymer. The small amount of hexadecane remains

to keep the suspension stabilized and prevent it from drying out. This method has

successfully produced a nicely homogenous, composite material with a magnetic loading

of up to 5% by weight. For the full details of the development and characterization of

FFPDMS and other alternative magnetic-polymer composites I again refer the reader

to Ben Evans’ thesis (Evans, 2008).

4.2 Template Fabrication

The basic template fabrication process for biomimetic cilia proceeds as depicted in

Figure 4.1. The templates which I use are purchased commercially from it4ip, a Belgian

company which produces custom orders of polycarbonate track-etched (PCTE) mem-

branes. PCTE membranes are conventionally used as filters in purification systems.

As such, most commerciallly available filters seek to provide a constant flow rate in

filters with varying pore diameters. For this reason, other PCTE suppliers, such as

Whatman, maintain roughly equal flow rates by increasing the density of pores as the
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pore diameter is decreased. For sub-micron pores, this density increase results in a

meshwork of pores which are interconnected in many places, which would produce a

network of fibers if templated. In addition, the pores in many PCTE membranes are

oriented haphazardly. In contrast, a good template for my purposes should be at a

density which minimizes the number of pores which intersect with each other, and with

pores which are oriented perpendicularly to the membrane surface. These conditions

are met by another commonly used type of nanorod template, anodized alumina ox-

ide (AAO) templates, but it is only possible to produce pores in AAO at higher pore

densities than I have had success with in PCTE membranes.

One of the key developments in the fabrication process for biomimetic cilia was

when our lab became aware of the PCTE membranes which could be custom ordered

from Belgium. Prior to this, our method had been restricted to pores at a low density to

avoid interconnected pores, which from Whatman necessarily meant pore diameters of

2 µm or larger. The resulting fat, stubby structures were poorly responsive, although

I was able to actuate these structures by driving an external fluid flow across the

array. The PCTE templates from it4ip could be ordered with custom pore diameter,

custom membrane thickness (which translates to cilium length), average pore density,

and nicely parallel pores oriented at any angle relative to the membrane surface.

I briefly note that I will refer to the average cilia density of my samples throughout

this thesis. The manufacturing process for track-etched membranes is to expose the

solid membrane to a source of ionized atoms. As the ions pass through the membrane,

they leave a very narrow track behind in which the membrane material has been de-

graded by the passage of the ion. In the conventional manufacturing method (used by

Whatman and others), this irradiation is by a nondirectional source and so the parti-

cle tracks are randomly positioned and randomly oriented. In the custom membranes,

the tracks are generated by placing a solid polycarbonate membrane in the path of
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a particle accelerator’s beamline, and so the source is highly directional. This means

the tracks can be oriented as desired relative to the surface of the membrane. The

pores are then parallel to each other, but the position of the pores is still randomly

distributed, and so the average density is all that can be defined. While there are

numerous practical reasons why a regular array of cilia would be useful, I note that the

random array likely makes for a more appropriate comparison with biological systems.

However, adhesion issues between nearby cilia have thus far prevented me from even

approaching the nominal density of cilia in the airway. Nodal cilia, as they are primary

cilia, are found one per cell and are thus at a much lower density which roughly matches

the average density in my biomimetic samples.

Another important period in the development of the fabrication process was my

discovery that the pore diameters could be further customized after receiving the mem-

branes from the manufacturer, allowing me to easily tune the diameter of the cilia in

my arrays. This parameter space was important to explore because the robustness of

the process and the fragility of each cilium is highly dependent on its flexural rigidity,

which goes as the diameter to the fourth power. As I discussed, the inverse of this

relationship also determines the responsiveness, and so smaller diameter rods are more

susceptible to destructive forces, but will be more responsive to a magnetic force if they

can be successfully fabricated at that diameter. Thus, it was important to determine

an optimal parameter space which would provide the necessary responsiveness while

maximizing the robustness of the process.

The pores are originally formed from the ion tracks when the manufacturer exposes

the membrane to a mild etchant, typically 4M sodium hydroxide. The ion’s track is

etched at a significantly larger rate than the bulk, and so when placed into the etchant,

the pores are etched to larger diameters with little change in the membrane thickness.

This process is how the original pore diameters are defined by the manufacturer, but
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in our lab I demonstrated that the diameters could be predictably enlarged by further

etching after being purchased. Thus, I typically ordered PCTE membranes with pores

of 200 nm diameter, and etched the pores further to make larger cilia.

Once a template has been selected, impregnation of the pores with FFPDMS is

accomplished simply by dipping the membrane into the FFPDMS. Although the mate-

rial is quite homogenous, to avoid any potential aggregates I typically ground a small

amount of the FFPDMS with a mortar-and-pestle prior to dipping the membrane into

the composite solution. After filling the membrane a critical step is to gently, but thor-

oughly clean any excess FFPDMS from the surfaces of the membrane. Without this

key step, the cilia are unlikely to be well bound to the substrate layer, and microscope

optics are severely deteriorated by any thin film of the dark FFPDMS. Finally, excess

FFPDMS chunks can float around in the liquid in which the cilia are beating, and the

actuating magnet can move these chunks in ways which move the fluid dramatically,

overcoming any effect of the cilia. Furthermore these chunks can actually collide with

the cilia and flatten them or shear them off the surface.

Another important note is that the FFPDMS solution does not contain the platinum-

based catalyst required for PDMS crosslinking. Before placing the membrane within

the well, the membrane is therefore dipped into a small amount of regular PDMS

pre-polymer which has been already been mixed with the catalyst. It has been my

assumption that the catalyst can then diffuse into each cilium to allow for crosslinking,

and I have seen no evidence that this is not the case.

The membrane, encased in the regular PDMS, is then placed into a well which is

also formed from PDMS, and which will later allow the fluidic chamber to be enclosed.

This seals the sample to ensure that the cilia do not dry out, as well as to minimize fluid

flow due to other sources besides the cilia beat, such as evaporative drift. The entire

sample is then placed into a convection oven at 80◦ in order to crosslink the PDMS
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Figure 4.1: The basic procedural steps for the template fabrication method I use
to generate biomimetic cilia. The FFPDMS composite is introduced into the pores
of a polycarbonate track-etched membrane, the membrane is placed onto a substrate
within a PDMS well, and the PDMS is heat cured in a convection oven. After curing,
peeling the top layer of PDMS exposes the polycarbonate membrane, which is dissolved
with dichloromethane to release the array. The thermally evaporated gold in panel (B)
provides a reflective surface, one which is integrated into the sample, and which allows
for imaging with a reflectance microscope. The ability to generate large magnetic forces,
and thus large cilia deflections, requires magnets in close proximity to the array, and the
integration of the reflective surface into the sample is one of the means by which the
total sample thickness was minimized to facilitate both large magnetic forces and close
approach of a microscope objective from opposing sides of the sample.
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into an elastomer. Although PDMS by itself will cure within one hour, in a few cases I

have seen evidence that the composite may take longer to cure, and so I typically leave

samples in the oven overnight to ensure full crosslinking.

The crosslinked cilia samples are then ready to be freed from the membrane, which

is done by dissolution in dichloromethane (DCM). This step is conceptually simple as

the polycarbonate is susceptible to dissolution by a number of organic solvents. In

truth, the ability to dissolve the membrane without significantly damaging the sample

required months of iterations of the fabrication process, and while there were early

indications that sub-micron diameter cilia would, in fact, be possible to actuate, the

experimental repeatability disdained by Samuel Johnson was initially a major problem.

For that reason, I momentarily digress with some specifics of the development of a

robust fabrication process.

4.2.1 The key to a robust fabrication process

In collaboration with Ben Evans, I pursued multiple routes for dissolving the poly-

carbonate membrane in order to release the cilia array, which I will describe momen-

tarily. First I note what eventually became the simple key to reproducibly fabricating

biomimetic cilia. Our early thoughts had been that, because the cilia were so fragile,

we needed to dissolve the membrane in a manner as gentle as possible. As it turns out,

this approach is, in some sense, precisely wrong. As the membrane begins to dissolve it

becomes like wet toilet paper. It loses its structural integrity, breaks apart into chunks,

and eventually is washed away and completely dissolved. What became the key to

fabricating cilia was to make this process happen as quickly as possible.

The first artificial cilia which I generated were fabricated within a microfluidics

channel. These were, as I have mentioned, cilia fabricated within Whatman templates

which were restricted to diameters of 2 µm. These structures were truly pillars and not
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cilia, and it was relatively straightforward to dissolve the membrane simply by flowing

a solvent through the channel (at that time I used toluene). The microfluidics channel

also allowed me to easily observe the sample under the microscope while the membrane

was being dissolved, and the pillars could be deflected by application of a fast fluid

flow. I note that this is a proof-of-concept of the idea that artificial cilia could act

as a flow sensor which provides highly local information about fluid velocity, without

the need to add tracer particles into the fluid. It was at this same time that it was

becoming clear that renal cilia were performing a critical flow sensing function in the

kidney. However, on only a very few occasions did we observe actuation of a pillar in

an applied magnetic field, and those few cilia were typically suspected of being loosely

bound to the substrate.

The issue of responsiveness to a magnetic field was resolved with the discovery of the

custom polycarbonate membranes. I had observed that the 2 µm pillars were indeed

magnetic when they were loose in solution, and the smaller diameters would affect

the stiffness of the cilia much more than the reduction in volume and corresponding

reduction in applied magnetic force. However, upon receiving the new templates it was

quickly realized that these smaller cilia were much more susceptible to collapse and

shearing off of the surface by the forces generated as the membrane was dissolved.

An alternative to fabrication within a microfluidics channel is the procedure which

I have already described and is depicted in Figure 4.1. The cilia are built within a well,

and the membrane is dissolved in a vial of DCM heated near to its boiling point. This

method causes the membrane to be rapidly dissolved for two reasons, most obviously

because of the added thermal energy of the heated solution. However, the other reason

is implied by the Reynolds number. In the microfluidics channel the Reynolds number

is very small, and so the flow of fluid which is dissolving the membrane is laminar.

This dramatically increases the time it takes for the membrane to dissolve, giving any
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sloshing of the partially dissolved membrane all the more time to wreak havoc on the

cilia. In contrast, the vial is easily large enough to support turbulence if the solution

is gently mixed. This leads to faster dissolution times, and, when proper care is taken,

correspondingly more reliable sample fabrication.

The successful development of this fabrication scheme allowed me to produce arrays

of biomimetic cilia which were the first cantilevered nanorod arrays in the literature to

approach the size of biological cilia with a material flexible enough to be actuated. A

number of electron micrographs of these structures are shown in Figure 4.2, along with

a single image of biological cilia for comparison.

4.2.2 Minimizing sample thickness

With practice, this fabrication procedure is a fairly straightforward means for pro-

ducing biomimetic cilia. Another challenge which I have alluded to was the need to

make the samples as thin as possible. This was necessary for two different accessibility

reasons. First, I must be able to apply large magnetic forces to the cilia, which gen-

erally means that I want to place a magnet as close as possible to the array. Second,

I must simultaneously be able to image the array with a microscope objective of at

least 50x magnification. Without specialized objectives, such magnifications typically

require that the desired focal plane be within a few hundred microns of the top of the

objective. Thus, I needed to be able to get close to the cilia array from both directions

simultaneously, which requires that the entire sample thickness be minimized.

The first approach for doing this is simply to utilize reflectance microscopy, in which

the optical path passes through the sample as normal, but is then reflected, traverses

the sample again, and is guided to the camera/eyepiece. This allows a magnet to be

placed directly on the opposite side of the sample from the objective, blocking what

would be the optical path of a transmission microscope.
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Biological cilia

Figure 4.2: A collection of scanning electron micrographs of biomimetic cilia, except
in the lower right, which shows biological cilia from the airway for comparison (courtesy
of Jerome Carpenter). The biomimetic cilia are each in the range of 700 nm − 1 µm.
I have fabricated and actuated cilia down to 200 nm in diameter, but smaller diameter
cilia are much less likely to survive the critical point drying process required to dry the
sample before imaging.
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The second primary development of relevance to this issue was the realization of how

to minimize the thickness of the substrate layer of PDMS below the cilia. I have not

described it, but in my early efforts I took advantage of a useful property of PDMS in

order to build the cilia on a substrate. This property is simply that when PDMS cures

in contact with another already-cured block of PDMS, the two form a monolith with no

discernible boundary. Thus, the first samples were made by dipping the membrane into

uncured PDMS and placing this onto a previously cured thin film of PDMS, which is

itself bound to a glass slide. The PCTE membrane and uncured PDMS surrounding it

would then bond to the thin film as the cilia array was cured. The entire sample would

then be placed into a larger well, which was sealed after dissolving the membrane.

A simple improvement to this original strategy was made by cutting out the center

of the thin film of PDMS, and to actually use the cut-out region of this substrate layer

as the fluidic chamber. In this case, when the PDMS-dipped membrane is placed into

the well, it is placed directly on the glass slide in the center of the well. I then carefully

ensure that the uncured PDMS spreads across the floor of the well until it contacts the

walls of the well, so that this extremely thin layer will bond to the well and hold the

entire sample down onto the glass. If this is not done then the membrane will release

from the glass when it is dissolved. This key step means that the entire sample thickness

is equivalent to the thickness of the well plus two glass coverslips, which allowed me to

fabricate samples with a total thickness of about half a millimeter.

4.2.3 Ground and lateral collapse of high-aspect ratio struc-

tures

As I have mentioned, the fragility of the cilia is one of the main difficulties in reliably

fabricating arrays. Nearly all microscale, high-aspect ratio structures suffer from such

difficulties, and so several models for the collapse of high-aspect ratio structures have
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Figure 4.3: The actuation setup used to simultaneously image in reflection mode and
apply large magnetic forces.

been published to better understand the mechanisms of collapse. When such structures

collapse they can do so through one of two means. Ground collapse is, as it sounds, the

collapse of a structure until it contacts and sticks to the substrate. Similarly, lateral

collapse is the term used for the adhesion between neighboring structures which are not

completely ground collapsed. The reason for both types of collapse is that the elastic

forces which would try to upright a bent rod are dominated by surface adhesive forces.

The strength of these adhesive forces depends on the surface energy of the material

and its affinity for the liquid environment. PDMS is somewhat hydrophobic, and so

when placed into water the PDMS surface energy can be minimized if it is in contact

with another PDMS surface, rather than with water. Thus, when two cilia touch or

one cilium touches the ground, these adhesive forces can be stronger than the elastic

forces within the cilium, and so the collapsed state is thus stable.

These models can be made quantitative by balancing the two forces as demonstrated

by Roca-Cusachs et al. (Roca-Cusachs et al., 2005). The models are described in
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terms of the critical aspect ratio at which structures become unstable and are prone to

collapse. For lateral collapse the critical aspect ratio is
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where L is the cilium length, d is diameter, ν is Poisson’s ratio, s is the lateral distance

between structures, E is the Young’s modulus, and W is the work of adhesion of

the material to itself. Using approximate values for the material properties of PDMS

reveals that the critical aspect ratio for lateral collapse, the collapse which occurs most

easily, is on the order of L/d = 10 (Evans, 2008). The fabrication method I discussed

allows for structures to be produced and actuated with aspect ratios of up to 125. This

points out the reason for the care needed during fabrication, as it means that the cilia

I typically fabricate are not stable. If they come into contact with each other they

are likely to stick, and so the fabrication process must avoid contact between cilia.

The lower left panel of Figure 4.2 portrays an excellent example of the type of lateral

collapse which is typical. In Figure 4.4 I display several more SEM images which feature

more spectacular versions of cilia collapse, and which also emphasize the flexibility and

corresponding fragility of these structures.

4.2.4 Fabrication of cilia within a fluidic cell

The fluidic experiments which I discuss in Chapters 5 and 6 require a well-controlled

fluidic cell with a known geometry in order to properly interpret the results. In all

experiments I completely enclosed the fluidic cell by placing a glass coverslip over the
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Figure 4.4: Examples of extreme collapse events. In the top row, the 200 nm diameter
cilia have collapse into bundles which collapsed into larger bundles, demonstrating an
interesting hierarchical structure. In the bottom row the cilia are essentially ground
collapsed, but these two images also emphasize the flexibility of these structures.
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well and sealing it with an optical adhesive, mainly to prevent any evaporative drift of

the tracer particles in the fluid. In addition, care was always taken to prevent bubbles

within the fluidic cell, since these also allow fluid to evaporate into the bubble, as well as

changing the nature of the cell’s geometry due to the presence of an air-liquid interface.

The shape of the well was carefully designed into a rectangular prism. The width

of the well was typically on the order of 1 mm, and the height of the fluidic cell was

typically 200 − 300 µm. This means that the width is significantly larger than the

height, and so cilia-driven fluid flows could be measured at distances from the lateral

walls which were larger than the height. This ensures that wall effects are minimized,

and my observations have been that the flow field is largely constant over the width of

the flow cell.

4.3 Magnetic Actuation

In this section I turn to the magnetic actuation of biomimetic cilia arrays. As I

described in the last section, the development of the fabrication process required a

large number of iterations. In the early days of the struggle there were many times

that only a single cilium, or maybe a few, would respond to a magnetic field with a

slight twitch. While these were initially exciting successes, it took some time before the

combination of robust fabrication and effective actuation schemes produced actuation of

respectable arrays of cilia. A prime example of cilia actuation is animated in Figure 4.5.

The poster image for this animation introduces the method I will use several times in

this thesis to display cilia motion in a still image, which is to generate a minimum

intensity projection of a single beat cycle from the video. This projection is a single

image which superimposes the cilia positions at multiple time steps onto a single frame,

revealing the shape of the beat.

To outline this section, I begin with an overview of the types of magnetic forces
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Figure 4.5: Click to Animate. The magnetic actuation of a typical biomimetic cilia
array mimicking the tilted conical beat of embryonic nodal cilia (the cilia in the image
are tilted towards the left). The poster image is a minimum intensity projection over a
single beat cycle, revealing the position of each cilium as a function of time in a single
composite image.
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which can be applied to a magnetic rod, and summarize an energy minimization model

which Ben Evans developed to predict cilia bending in a known magnetic field and

field gradient. Next I turn to a description of an experiment I devised in order to test

the predictions of the model. Finally, I will describe strategies for mimicking the beat

shape of various types of biological cilia.

4.3.1 Magnetic forces and an energy minimization model

Magnetic forces are appealing for actuation at the microscale because they are easy

to generate via electromagnets or permanent magnets, which are especially advanta-

geous as they require no power to generate the field. In addition, magnets are cheap

and easily available, and the effects are long range so that the magnet need not be

integrated into the sample. Magnetic forces also offer a level of complexity which can

give rise to novel and useful types of movement based on the fact that there are two

basic mechanisms by which magnetic fields generate force. This is because, as opposed

to scalar fields like the gravitational force, magnetic fields are vector fields and have

both a direction and a magnitude.

The magnetic force which we are most intuitively familiar with is the attraction and

repulsion of two ferromagnets based on whether the magnets are lined north pole to

south or vice versa. This force is actually an effect of the way the magnetic field changes

through space, or the gradient of the magnetic field. At the microscale it is difficult

for objects to retain a magnetization due to the randomization of magnetic dipoles

caused by thermal effects. Thus, at these scales objects are not typically ferromagnetic

and a repulsive force is rare. Instead, superparamagnetic objects are magnetized by

an external field, and the magnetic field can then induce both a torque and force on a

magnetic dipole.
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The torque on the dipole is given by

~N = ~m× ~B (4.3)

where ~m is the induced dipole moment and ~B is the magnetic field. This equation

implies that the torque acts to align the dipole with the field, since the cross product

gives zero if the two vectors are parallel. Thus, induced dipoles will align with field lines

in the absence of another force. However, the dipole also experiences a force which is

determined by the gradient of the magnetic field, not its direction, as I just described.

This force is given by

~F = ∇(~m · ~B), (4.4)

and the dipole will thus move to a local maximum in the magnetic gradient. As

the gradient is typically maximized near the edges of a permanent magnet (or more

specifically, places where the magnetic field direction changes rapidly), the effect of the

gradient on an induced dipole is nearly always to attract it towards the magnet. Thus,

the magnetic field induces the dipole moment, but once induced, the field can only

work to rotate the dipole, while the magnetic gradient can pull on it.

Thus far I have limited the discussion to a single dipole. In the case of rod-like

structures like cilia there are additional effects which must be considered. Specifically,

when two induced dipoles are nearby each other the dipoles can interact with each other

as well. As each creates its own magnetic field, the torque and force are minimized

when the dipoles are aligned head-to-tail with each other. In an object with some

aspect ratio, the interactions between dipoles are minimized if the dipoles try to line

up head-to-tail along the long axis of the rod. Thus, a torque on the rod is induced if

there is a discrepancy between the long-axis of the rod and the direction of the local

magnetic field. The dipoles will attempt to align head-to-tail, but also try to align with
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the magnetic field, and the combination produces a torque on the rod which results in

a deflection. This deflection reduces the misalignment between the long-axis of the rod

and the magnetic field direction.

I have considered only magnetic effects which would seek to actuate a cilium. Elastic

forces within the cilium would then work to minimize the deformations caused by the

magnetic forces. Based on these effects, Ben Evans developed a quasi-static energy

minimization model which can predict the amplitude of deflection of a cilium in a

known field and field gradient (Evans, 2008). Prior to the publication of this model in

the literature, a number of other magnetic actuators had inspired early models which

only incorporated the effect of the magnetic field to deflect a magnetic rod. Generally

this is because the effects of a gradient to pull on a dipole are relatively small unless in an

area of exceptionally large gradient, and so no experimental systems had demonstrated

gradient bending and it was not necessary in the models.

As the fabrication process I developed was successful in producing some of the most

responsive microscale structures in the literature, it was conceivable that our system

could respond to the gradient and so Ben developed a new model which took this

effect into account for the first time. To summarize this model, it broke the internal

energy of a cilium into three parts: the elastic energy, a ‘field energy’, and a ‘gradient

energy’. The field energy is the component of the internal energy which is generated

by application of a field, and refers to the competition between the internal dipole’s

desire to line up with both the field direction and the long axis of the rod. The gradient

energy is the effect of the magnetic gradient which pulls the center-of-mass of the object

towards the magnet. Using the angle definitions shown in Figure 4.6, Ben showed that

the total energy of the rod is given by

UT =
π

2

Er4

L
φ2 − µ0

4

m2

V
cos2 (ψ − φ)− 1

2
m∇BLcos (ψ′ − φ) (4.5)
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Figure 4.6: The definitions of the angles used in the energy minimization model of
equation 4.5 between the rod, the magnetic moment m, the magnetic field direction B,
and the magnetic gradient ∇B.

where V is the volume and the magnetic moment m is generally a function of the

applied field strength B. The first term here is the elastic energy, the second is the

field energy, and the third is the gradient energy. The rod position φ which minimizes

UT is the predicted deflection of the rod based on the properties of the material, the

dimensions of the rod, and the magnetic field and field gradient.

As the third term, the gradient energy, is only dependent on the magnitude of the

gradient and the properties of the cilium, it is the effect described by this term which

has not been included in any previous models. In order to test the effect of the gradient

it is necessary to prescribe a magnetic field which has an area of large magnetic gradient

in which to place the cilia array. Furthermore, as the field bending cannot be separated

from the gradient bending, the geometry of the field must be such that the field bending

and gradient bending drive the cilium in opposite directions so as to be able to discern

the two effects.

Fortunately, a magnetic field with this shape is trivial to generate as it is precisely

the field which emanates from the pole of a magnet, as depicted in Figure 4.8a. At
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points sufficiently close to the pole of such a magnet, the magnetic field direction always

points away from the pole, while the direction of the gradient is always pointed towards

the pole. Passing this type of magnet below a cilia sample should then allow me to

determine which effect dominates, based on the direction the cilium is deflected. Of

course, it is also important that the magnitude of the gradient be large enough to

dominate. As I mentioned, magnetic gradients are typically large near edges, and so

the conventional way to generate large gradients is to make sharp points towards which

the field lines rapidly converge. It is for this reason that I chose to use the sharp-tipped

magnet in Figure 4.8a, which was built from a machined piece of of iron placed onto

a cylindrical magnet. All the permanent magnets used in this and other experiments

were rare-earth, neodymium-iron-boride magnets obtained from K&J Magnetics.

The results of this experiment to test the effects of a gradient are displayed in

the animation in Figure 4.7 and quantified in Figure 4.8. The agreement between the

predictions of the model and the measured cilia deflections is confirmation that the

model accounts for the effect of the magnetic gradient which had not been previously

considered. In addition, the experimental demonstration of gradient-induced bending

of a cantilevered microstructure was the first in the literature. The rapid switching

of the cilia caused by the sudden dominance of the gradient over the field could be a

means for using the cilia as a type of magnetic switch or gradient sensor. Finally, I note

that while this model can account for novel features which have not been previously

predicted, it is not able to predict the shape of a bent cilium in a magnetic field as it

assumes the rod remains straight. For a more precise model which discretizes a cilium

into sections, each of which can independently attempt to minimize its total energy,

see Ben’s thesis (Evans, 2008).
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Figure 4.7: Click to Animate. A magnet which induces gradient and field bending
in opposite directions is passed below a cilia sample at two constant heights (also see
Fig. 4.8). At left, when the magnet is held at a constant distance of 1.5 mm below
the cilia the deflection is a smooth, monotonic change in deflection angle (open circles
below). In contrast, moving the magnet closer (to 0.4 mm separation) places the array in
a magnetic gradient strong enough to overcome the field bending effect, which results in a
rapid switching of the actuation direction. This was the first experimental demonstration
of the gradient-induced bending of a cantilevered microscale structure in the literature.

Figure 4.8: The experimental data demonstrating gradient-induced cilia bending. The
magnet depicted in (A) is passed below the sample at a constant separation z, and the
field geometry means that gradient bending and field bending are in opposite directions.
(C) When the magnet is far from the sample the bending is purely field bending and
the cilium always points away from the magnet. (D) In contrast, when the magnet is
moved much closer the gradient energy grows larger than the field energy, and the cilia
deflection rapidly switches towards pointing at the magnet. When the magnet moves
past the sample the deflection reverts to the same behavior as field bending. In (C) and
(D) the solid curves are predictions from the model (equation 4.5) and the open circles
are measured deflections from the animations shown in Figure 4.7. This phenomenon
could be used as a rapid means of switching the cilia beat with a small change in magnet
configuration and positioning.
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4.3.2 Mimicking the beat of biological cilia

While the previous section demonstrated a novel bending mechanism, the magnetic

field geometry used for that experiment is poorly suited for most practical circum-

stances. Gradient bending requires very large gradients, which in general can only be

found very close to a magnet edge. Thus, with permanent magnets it is difficult to

produce stable, predictable beat shapes with a gradient. On a related note, the field

bending produced by this same magnet is also non-ideal. For field bending, the field

energy term in equation 4.5 is a function of the magnetic moment of the cilium (which is

a function of field strength) and of the relative orientation of the field direction and the

long axis of the cilium. As this orientational relationship is a cosine, the field-bending

energy is minimized when the cilium aligns with the field. Inversely, then, the maxi-

mum force is applied when the two orientations are perpendicular. Thus, to maximize

deflections a general design principle is that the field strength should be large enough to

saturate the magnetization of the cilium while simultaneously the field direction should

point perpendicular to the cilia (or parallel to the sample floor).

The magnetic field direction near a magnet’s pole is essentially normal to the mag-

net’s surface, and so in general to get the pole of a magnet very close to the array (large

field strengths) means that the force generated will be zero, because the field direction

is parallel to the undeflected cilium. Thus, I typically configure actuating magnets

such that the dipole is oriented parallel to the sample floor in order to maximize cilia

bending.

With this in mind, I outline the strategies I have developed for mimicking the two

main classes of motile cilia. I remind the reader that airway epithelia cilia, and most

other motile, 9 + 2 cilia, are believed to oscillate largely within a single plane and

therefore execute a planar beat. Nodal cilia, in contrast, perform a rotational beat

around a tilted axis.
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The planar nature of the airway cilia beat is easily duplicated. While one way to

generate this beat is with a simple one-dimensional oscillation of a magnet, in principle

this is slightly more difficult to generate than a rotational motion, which is easily

generated by connecting magnets to the pivot of a variable frequency motor. To get a

planar beat, then, a magnet must be placed onto a radial arm which extends out from

the axis of rotation of the motor. When this is the case, even though the magnet path

is circular, in the vicinity of the cilia sample (which is only about 1 mm on a side) the

magnet path looks approximately linear. By placing a set of magnets onto radial arms

a significant cilia beat frequency can be generated with a relatively slow motor speed.

In addition, this type of actuation can also produce what Ben Evans referred to as a

‘snap-beat’. In this configuration, even for a constant rate of rotation of the magnet,

the cilia beat cycle is two phased and consists of a fast stroke (the snap-beat) and a

slow stroke. To some degree this biphasic behavior mimics the effective and recovery

strokes of biological cilia. However, as I have mentioned the two phase beat of airway

cilia is accompanied by significant differences in the contour of the cilium, as well as a

velocity difference.

Furthermore, as I discussed in Chapter 2, any variations in the rate of motion of a

biomimetic cilium over its beat cycle will have no effect on transport at low Reynolds

number because of the lack of inertia. The fast stroke moves the fluid faster, but it does

not move it any farther than the slower recovery stroke moves the fluid in the opposite

direction. Thus, even though this beat is an approximation of the airway beat, it will

not produce fluid transport, only oscillations of the fluid. However, this may not be true

in a viscoelastic fluid. The elasticity of such a complex fluid introduces characteristic

time scales to the problem which are not present in a Newtonian fluid. Thus, future

work with biomimetic cilia could focus on whether a biphasic beat which is spatially

symmetric can produce fluid flow when the elasticity of the fluid plays a role.
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Figure 4.9: Click to Animate. A comparison of the beat of nodal cilia (at bottom,
from Okada et al. 2005) with the tilted conical beat of biomimetic cilia (at top). The
tilt away from vertical is evidenced by the fact that each cilium’s tip moves in an ellipse
which is offset from the base of the cilium.

With this in mind, the question becomes: how can I generate fluid transport with

a cilium which cannot change its shape over a beat cycle? The answer, of course,

is in the beat of embryonic nodal cilia. As I have explained, these cilia are able to

generate a net transport of fluid with a rotational motion which does not require shape

changes. More specifically, the nodal cilium takes advantage of the presence of the

lower boundary in order to generate an asymmetric flow with a spatially symmetric

motion. A rotational beat of the biomimetic cilia is relatively easy to generate, as it

can be done simply by placing a magnet, in the configuration I have specified (where

the dipole is parallel to the surface), directly above the cilia array and rotating the
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Figure 4.10: In order to mimic the tilted conical beat of nodal cilia I rotate a magnet
above the sample. A rotation of the magnet around an axis which is directly above a
cilium generates rotational actuation around a vertical axis, while a small offset of the
magnet’s rotational axis causes the cilium to tilt away from vertical.

magnet. If the rotational axis of the magnet were perfectly aligned with a cilium, all

other things being constant the cilium will perform a rotational beat which precesses

around a vertical axis. As Cartwright demonstrated, this beat will only produce vortical

motion and no transport (Cartwright et al., 2004). However, a tilt of the rotational axis

can be generated in my biomimetic samples by a subtle lateral offset of the rotational

axis of the motor from the cilium. If the offset is too large the cilia will not execute a

clean rotational beat, but if the offset is small enough the beat remains rotational but

is tilted away from vertical. In Chapter 5 I will address the effect of this tilt on fluid

transport.

4.3.3 Characterizing the tilted conical beat

To conclude this chapter I present some details on the characterization of the tilted

conical beat which I will use to compare the fluid transport in my system with the

transport driven by nodal cilia in the next chapter. For the parameterization of the

tilted conical beat I use the same notation as in the biological system (Okada et al.,

2005). As seen in Figure 4.11, the angle between the vertical and the axis of rotation of

the cilium is the tilt angle Θ, and the amplitude of the cilium’s motion is determined

by the half cone angle Ψ. A third parameter is Φ, an azimuthal angle which determines
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the direction of tilt, and thus the direction of fluid transport. As the tilt direction in

my system is controlled by the direction the magnet is offset from the sample, Φ can

be controlled arbitrarily in my system.

In both my system and the embryonic node, the video data obtained by microscopy

of a cilium’s movement is a two-dimensional projection of its true three-dimensional

motion. In the biological system it has been assumed that the nodal cilia tips sweep out

a circle, which appears as an ellipse in the projected image, as shown in Figure 4.11a.

With this assumption, and measurements of the average nodal cilium length by SEM,

the motion is fit to an equation which describes the surface of a cone and the beat

parameters are extracted.

In the case of biomimetic cilia, it is highly likely that the cilia tips sweep out an

actual ellipse, rather than a circle, and so I have not made this same assumption of

circularity. Instead I have calculated the beat parameters based on the method I display

in Figure 4.11b-d. I begin by generating a minimum intensity projection of a single

beat cycle of the array. From this image I choose a representative selection of cilia

performing a recognizable tilted conical beat in order to measure the parameters of

each and average the results. Next I select the tip of each cilium in each frame of the

projection and fit an ellipse to these points. I trace the length of the cilium from multiple

frames and identify the location of the cilium’s base, and define the tilt direction as

the vector which points from the base through the minor axis of the ellipse. Along this

vector, I then measure the projected distance from the base to the nearest and furthest

extent of the ellipse. These two distances are labeled d1 and d2 in Figure 4.11d.

The measurement of those distances then easily gives the angles Θ1 and Θ2 by

Θn = sin−1 (dn/L) where L is the cilium length. The tilt angle is simply the average of
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Figure 4.11: At left is an image from Okada et al. (2005) showing their measurement
of the tip position of two nodal cilia. The three images at right demonstrate the method
I used for finding the tilted conical beat parameters, the tilt angle Θ and half-cone angle
Ψ. A minimum intensity projection of a single beat cycle is generated, and the position
of the tip at each time point is recorded, along with the inferred position of the cilium’s
base. Defining the tilt direction as the direction which is parallel to the minor-axis of the
ellipse, then d1 and d2 are the nearest and farthest distance, respectively, from the base
to the ellipse along the tilt direction. From d1 and d2 the beat parameters are calculated
as shown in equation 4.6.

these two angles, and the half cone angle is half their difference. In other words, I have
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Chapter 5

DIRECTED FLUID TRANSPORT

“One special kind of swimming motion is what I call a reciprocal motion. That is to

say, I change my body into a certain shape and then I go back to the original shape

by going through the sequence in reverse. At low Reynolds number, everything

reverses just fine. Time, in fact, makes no difference – only configuration.”

- E.M. Purcell, “Life at Low Reynolds Number”

As Purcell says, to properly imagine yourself as a swimming organism in the mi-

croscopic world you must enter a configuration space. At the root of our own world is

time, so thoroughly ingrained in ourselves that we do things quickly when they need

to be done quickly, and move slowly when we must move slowly. We swim by moving

our arms back and forth or kicking our feet, and wave a foul smell away simply by

oscillating our hands in front of our faces. For microscopic things, which typically live

in fluids and operate at a low Reynolds number, such strange movements are futile.

They live in a configuration space, where only the sequence of your motions matters,

not their speed. Time makes no difference.

The scallop is in trouble at low Reynolds number, Purcell quips, because to swim

he just opens his shell slowly and closes it fast to rapidly expel water, with the extra

momentum imparted to the fluid during the fast motion resulting in a thrust on the

scallop. But at low Reynolds number there is no momentum, and only the sequence



matters. Because the scallop only has one hinge, one degree of freedom in configuration

space, it will forever perform a ‘reciprocal motion’, never going anywhere. This is the

world inhabited by cilia, both biomimetic and biological. To ‘swim’, or rather, since

they are attached to a surface, propel a net transport of fluid, they must perform a

non-reciprocal motion. As I have discussed, different varieties of biological cilia do this

in different ways, and I will mimic the beat of embryonic nodal cilia in order to propel

fluid transport with my biomimetic arrays.

I begin this chapter with a brief overview of the fluid flows driven by my biomimetic

cilia arrays, the detailed discussion of which forms the bulk of the remaining results

presented in this thesis. I have succeeded in demonstrating the first realization of

long-range fluid flow with an artificial cilia system by mimicking the beat pattern of

embryonic nodal cilia. The form of this long-range transport of tracer particles is what

I refer to as ‘epicyclic transport’, a superposition of a small-scale oscillatory motion, at

the frequency of the cilia beat, and a roughly constant velocity, unidirectional motion.

In my fluidic cell, this primary transport occurs in a layer extending from the cilia

tips to some height, at which point the transport slows and eventually turns in the

opposite direction of the main transport. This upper layer of opposing flow extends to

the upper boundary of the sample, and is an expected recirculation of fluid due to the

main transport layer and the enclosed nature of the flow cell.

Most significantly, I have observed that this transport layer, which is above the cilia

tips, exists simultaneously with a layer of fluid flow below the cilia tips whose motion is

drastically different. These regimes are depicted schematically in Fig. 5.1 and videos of

the particle motion are shown in Fig. 5.2. Below the cilia tips, particle motion is more

rapid, on average, but with significantly more heterogeneity. Furthermore, as opposed

to the transport layer, below the tips particle motion is essentially non-directional.

Thus, the overall flow in the system contains two distinct regimes with a separation
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Figure 5.1: Schematic of fluid flow regimes in biomimetic-cilia driven transport. The
tilted conical beat of nodal cilia drives simultaneous, spatially segregated flow regimes
of unidirectional transport, above the cilia tips, and non-directional, heterogeneous flow
below the tips.

at the height of the cilia tips, a unidirectional transport regime and a heterogeneous,

non-directional regime.

In the remainder of this chapter I will discuss and analyze the directed transport

regime above the cilia tips, including the recirculatory flow. The characterization of

the fluid flow regime below the cilia tips is the focus of Chapter 6.

5.1 Transport at Low Reynolds Number

As discussed earlier, the lack of inertial motion in low Reynolds number fluids im-

poses non-intuitive constraints on the types of motions that will produce a net transport

of fluid. Oscillatory motions that are, as Purcell says, purely reciprocal in space, or

following the same path forward and backward along the same path in configuration

space, will not produce net fluid transport no matter a difference in speed between

the forward and backward motion. This notion of a configuration space is a way of
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Figure 5.2: Click to Animate. Motion of fluorescent tracers in the fluid flow regimes
below the cilia tips (left) and above (right), represented in the poster image by maximum
intensity projections of the tracer motion.

thinking about the sequence of motions rather than the speed at which they happen,

which is more intuitive for us. A reciprocal motion is one in which the sequence of

motions is the same forward and backward. Note the difference between this and time

reversibility. For a process reversible in time, a movie played of the process looks the

same whether the movie is run in forward or reverse. If the speed of the object changes

in time, then the movie does not look the same run backwards. However, the sequence

of the motions is the same forward and backward, and just a change in speed is not

enough to make for a non-reciprocal motion.

As an example, Purcell points out with his ‘Scallop Theorem’ that at low Reynolds

number the scallop is in big trouble. It normally swims by opening its shell slowly

and closing it fast. In normal fluids this change in speed means that the scallop gains

more thrust, or imparts more momentum to the fluid, in one direction (from closing his

shell quickly), than the thrust generated in the opposing direction by opening his shell

slowly. The scallop’s problem is that it only has one hinge, or one degree of freedom in

configuration space. So the scallop can never produce a non-reciprocal motion.

Flagella overcome this problem by simply turning in a single direction like a corkscrew,
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so that they never have to go backward in configuration space. Their configuration

space is one-dimensional (the angle the flagellum has swept through) but because it

never goes backwards it does not perform a reciprocal motion. Motile, 9+2 cilia perform

an oscillatory beat pattern with motion that is essentially confined to a single plane.

As I have mentioned, this planar beat pattern will only produce low Reynolds number

transport if the shape or contour of the cilium changes over the beat, as otherwise it

is a reciprocal motion and will only result in oscillatory motion of the fluid. Biological

cilia produce the necessary deformation in the axoneme with internal machinery in the

form of axonemal dynein, the approximately 3,000 molecular motors per cilium which

somehow coordinate their motion to produce drastic shape changes between the power

and recovery strokes of a cilium.

It is clear that with my biomimetic cilia, which of course lack this internal machinery,

that I will be unable to generate a complex shape change. I demonstrated a planar beat

in the previous chapter, but without the ability to change shape this motion does not

produce transport, only an oscillation of the fluid. I note that, even if the planar beat

is adjusted so that the oscillation is about an axis away from vertical (as with nodal

cilia, but still in a plane), the sequence of motions is the same in forward or reverse,

and in this case the plane does not break any symmetry which would allow the motion

to produce transport.

However, it is possible that such a motion can induce flow by taking into account

drag on the cilium, as differential drag forces due to a change in speed can cause

differences in shape which could result in flow. This is based on another dimensionless

ratio known as the sperm number, a ratio of the stiffness of a body to the drag it

experiences. Interestingly, recent work suggests that over a specific range of sperm

numbers, a tilted planar beat should be able to generate directional transport at one

end of this range, while at the other end of the range the same motion will produce
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transport in the opposing direction (Alexeev et al., 2008). One way to change the

sperm number is simply by adjusting the beat frequency of a cilium. Thus, the tilted

planar beat would be an interesting avenue for further pursuit, as it might be a means of

controlling the flow direction simply by adjusting the beat frequency of the biomimetic

cilia.

The discovery twelve years ago of a new class of primary, 9+0 cilia, which were

the first discovery of motile primary cilia, has served as an inspiration for producing

fluid transport with my artificial system with a beat that can be easily generated. As

discussed in Chapter 3, these 9+0, nodal cilia were discovered on the ventral surface of

a mouse embry within a fluid-filled cavity known as the embryonic node (Sulik et al.,

1994). In free space, a rotational beat will not produce low Reynolds number transport

as it is, like the planar beat, a reciprocal motion. However, in 2004 Cartwright et

al. predicted that the nodal cilia were beating such that the cone swept out during

a rotation is tilted away from vertical, with respect to the cell floor. The interaction

of the fluid with the floor allows this ‘tilted conical beat’, depicted in Figure 5.3, to

produce net fluid transport. Most importantly for my system, this directed transport

does not depend on any type of structural deformation of the cilium.

5.2 Directed Transport with the Tilted Conical Beat

In order to obtain cilia-driven fluid flow data, the cilia array was integrated into a

fluid cell with known boundary conditions as I described in the last chapter. Before

sealing the fluidic cell a solution of fluorescent tracer particles was introduced in order

to serve as passive tracers of the fluid motion. These tracers were typically 500 nm

or 1 µm in diameter, and were diluted into a solution of buffer at concentrations of

approximately 1:500 of the stock solution.

After sealing the fluidic cell, the sample was placed onto the microscope stage and
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Figure 5.3: The tilted conical beat and corresponding direction of fluid transport due
to the fluid’s interaction with the floor. The cilium is tilted along the x-axis. When the
cilium is nearer the boundary, the volume of fluid entrained by the cilium is decreased
relative to the ‘power stroke’, when the cilium tip is farthest from the floor. Thus, the
net effect on the fluid is a unidirectional transport at an angle 90◦ from the tilt direction.
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subjected to magnetic fields rotating at frequencies of 1 − 30 Hz. Video data was

obtained using a Pulnix TM6710 camera operated at 30 or 120 frames per second. The

particle trajectories were then tracked with either Video Spot Tracker, freely available

software developed by computer science colleagues in our lab, or with ImageJ’s Manual

Tracking plugin.

5.2.1 Generating a tilted conical beat

In Chapter 4 I described the production of a conical beat with a simple actuating

magnet geometry, consisting of a single bar magnet positioned above the cilia sample

with the magnet’s dipole oriented perpendicular to the upright cilia. Rotating the

magnet such that its rotation axis is directly above the cilia sample produces a conical

cilia beat. In order to tilt this conical beat away from vertical the actuating magnet

is adjusted such that the rotational axis of the magnet is offset from the cilia sample

by a few millimeters (Figure 5.4). The magnitude of the beat, parameterized by the

half-cone angle Ψ, is controlled by the strength of the magnetic force, which in my

system is equivalent to the separation distance between the sample and the magnet.

Magnet
Offset

Cilia array

Objective

NS Magnet NS Magnet NS

B B

Offset

a b

Flow cell

Figure 5.4: An offset of the magnet’s rotational axis from the cilia array produces a
tilted conical beat, as I also described in Chapter 4.
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Figure 5.5: (a) A minimum intensity time lapse projection of one beat of a single
cilium executing the tilted conical beat. The direction of the magnet’s offset controls
the tilt direction, and thus the fluid transport direction. (b) The tilted conical beat is
parameterized by a tilt angle Θ and half-cone angle Ψ. The magnitude of the magnet’s
offset controls Θ and the applied magnetic force determines Ψ.

5.2.2 Mimicking the nodal beat produces epicyclic transport

By mimicking this nodal cilia beat pattern, my system has achieved the first demon-

stration of long-range fluid transport with an artificial cilia system. The tracer motion

due to the tilted conical beat has two characteristic time scales. At the frequency of the

cilia beat, each tracer performs an epicycle due to the coupling between the fluid and

the cilia surfaces, as I discussed for the work of Bouzarth et al. in Chapter 3 (Bouzarth

et al., 2007). As the cilia beat patterns are forced into synchrony by the magnetic

field lines (as opposed to airway cilia, which exhibit coordinated, but not synchronous,

beats), the tracers consistently exhibit these epicycles even at heights many multiples

of the cilia length. Some form of these epicycles exist for any beat, planar or rotational,

regardless of tilt. However, due to the tilted conical beat the epicycles are superimposed

on a longer time scale motion, which is unidirectional transport. Figure 5.6(a-b) dis-

plays the pathline and radial displacement of a single tracer particle exhibiting epicyclic

transport. In (a), each epicycle is differently colored to make them clearly distinguish-

able, while the net displacement of approximately 5 µm in (a) and (b) reflects the

directed transport due to the tilted conical beat. In 5.6(c), two pathlines display a
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(a) Tracer motion is epicyclic transport.
Each epicycle of the tracer is represented
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flects a single beat of the cilia array, and
the overall transport (in the vertical di-
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(b) Radial displacement of the tracer in (a) vs. time,
demonstrating that the oscillatory, epicyclic tracer
motion is superimposed on directional transport at
roughly constant velocity. The colors correspond to
each epicycle in (a).
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(c) Pathlines over 2 seconds of two nearby tracers exhibiting
epicyclic transport. The tracer path pictured in (a) is a portion
of the trajectory on the right.

Figure 5.6: Displays of the biomimetic cilia-driven epicyclic transport of a single tracer
(a-b), and a broader view of the transport of two nearby tracers (c).
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wider view of the epicyclic transport.

Epicycle amplitudes and velocities vs. height

Based upon my description of Stokes 2nd problem in Chapter 2, it would be interest-

ing to inquire as to whether the oscillatory nature of these epicycles can be understood

within the context of the oscillatory motion of a continuous boundary. A group of

researchers within the Virtual Lung Project have constructed a device for measuring

the rheological properties of a viscoelastic material which is based upon the idea of

Stokes 2nd problem, and the authors appreciated that the oscillatory nature of cilia

might have a similar type of effect on mucus (Mitran et al., 2008). However, to my

knowledge no theoretical or experimental work has shown that cilia actually generate

fluid motion which can be explained within Stokes 2nd problem.

In the case of my data, the oscillatory motion of a tracer is superposed onto the

directional transport. It is for this reason that I gave the solution for the superposition

of the modified form of Stokes 2nd problem with Couette flow in Chapter 2. To repeat,

the velocity profile of such a flow, when the boundary oscillates as u(t) = U cos ωt and

simultaneously translates at speed u0, would be given by

u(y, t) = Re

[
Ueiωt

sinh
[
δ0
A

(h− y)
]

sinh
[
δ0h
A

] ]
+
u0

h
(h− y) (5.1)

where A = U/ω, δ0 = (1 + i)
√

ω/2ν, h is the distance between boundaries, and u0 is the

velocity of the translating plane which drives Couette flow.

There are two behaviors I would like to match with the Stokes 2nd problem model.

The first is the radial displacement of a tracer, which in the model is a combination of

the effects from the boundaries oscillatory and translational motion. To compare the

model with an experimental tracer’s motion, I first measured the velocity of a tracer

at the height of the cilia tips and defined this velocity as the Couette flow velocity u0.
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I must also obtain the cilia beat frequency. This can done, among other ways, by

measuring the average epicycle amplitude of an ensemble of tracers, and calculating

the frequency of the cilia beat/tracer oscillation based on the frame rate and epicycle

amplitude. I momentarily digress to describe the method I use to measure epicycle

amplitudes, which is shown in Figure 5.7. I define the epicycle amplitude as the distance

between adjacent extrema in the radial displacement. Due to the net transport, the

displacement from minima to maxima is, on average, slightly larger than vice versa.

The mean epicycle amplitude is then the average of the amplitudes of each tracer at a

given height.

Finally, I must measure the height of the experimental fluidic cell, which is straight-

forward using a micrometer on the focus knob of the microscope, and I must have a

measure of the maximum oscillatory velocity of the plane U . As a first estimate, I might

assume that this is the same as the tip speed of the cilium, which is easily obtained

from the beat parameter measurements I described in Chapter 4. In this case, I do

assume the tip beats out a circular path, and so the tip speed is only a function of the

half-cone angle Ψ and is utip = LsinΨ where L is the cilium length.

This provides all the information necessary to compare the model with an experi-

mental track. However, in order to get a good match between the epicycle amplitude

at the height of the cilia tips and the epicycle amplitude in Stokes 2nd problem, I must

make one assumption. I must assume that the interaction of the cilia with the fluid

at the height of their tips is, on average, reduced by about a factor of 2 with what

would be expected at the no-slip surface of the cilium. This assumption is supported

by evidence from cilia on the surface of protozoans, where it has been observed that

particle velocities near to cilia are about 2-3 times decreased from the velocity of the

cilium (Sleigh and Aiello, 1972).

I have assumed that U , the maximum oscillatory velocity, is equal to utip/1.5, where
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the factor of 1.5 is chosen to give an approximate match with the experimental tracer

epicycle. The particle path which is described by the velocity time course of equation 5.1

can then be calculated. In Figure 5.7b I compare the radial displacement from the

model with that of a single experimental tracer. It is clear that the frequencies are

slightly mismatched, but the basic motion is well-described. Of course, I have somewhat

arbitrarily reduced U to match the epicycle amplitude, but this factor is close to that

reported in the literature, and even without it the predicted epicycle amplitude is just

50% larger than measured in the experiment. This suggests that a version of modified

Stokes 2nd problem in which the oscillatory velocity of the plane is reduced by an ad

hoc factor is a good model for tracer motion above a field of cilia executing the tilted

conical beat.

The second behavior which should be considered within modified Stokes 2nd prob-

lem is the decay of the epicycle amplitude with height. By integrating the velocity

profile in equation 5.1 with respect to time the displacement is easily obtained The

epicycle amplitude itself is not a function of time, and so the amplitude of the oscilla-

tory motion which Stokes 2nd problem predicts is

|x(y)| = Re

[
U

ω

sinh
[
δ0
A

(h− y)
]

sinh
[
δ0h
A

] ]
. (5.2)

Again, however, a quick comparison with the experimental data make it clear that this

prediction does not decay fast enough to match. I must introduce another ad hoc factor

which somehow conveys the fact that the ‘plane’ is not as well coupled to the fluid as

would be expected in Stokes 2nd problem. Of course, in my experiment there is no

plane at all. At the height of the cilia tips, each cilium rotates and sweeps out some

area, but the sum of all of these areas still does not equal the area of the entire plane.

Thus, I argue that, conceptually, the fluid can be thought of as having been decoupled

from the plane by a factor approximately equal to the fraction of the plane which the
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Figure 5.7: (a) To measure the amplitude of cilia-driven epicycles I plot the radial
displacements over time, identify the local maxima and minima, and define the epicycle
amplitude as the average displacement between adjacent extrema. In (b) I have taken
the radial displacement of a tracer at z = 25 µm and plotted the radial displacement of
a simulated track from the Stokes 2nd problem velocity profile. As described in the text,
to achieve a decent match with the epicycle amplitude required me to assume that the
interaction with the cilia has dropped off by a factor of 1.5 even at the same height as
the cilia tips. (c) Finally, by assuming that a similar decrease in effective viscosity can
account for the fact that the cilia do not form a continuous plane, I plot the amplitude
epicycle vs. height and compare it to the amplitude from Stokes 2nd problem for two
different cilia beat frequencies (red, 12 Hz and blue, 33 Hz). The solid curves are the
predictions from equation 5.2 with the actual viscosity, and the dotted lines are from
assuming a decreased effective viscosity. This behavior suggests that the cilia-driven
motion can be thought of as Stokes 2nd problem in which the interaction strength is
reduced by roughly the area fraction described in Figure 5.8.
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Figure 5.8: To measure what area of the plane at the height of cilia tips is encompassed
by the motion of the cilia tips over a beat cycle, I first obtained the minimum intensity
projection over many beat cycles, so that the area the cilia cover is much darker than
the background. However, the illumination is not flat (uniform across the field-of-view),
and so I convolve the MIP and divide the original by the convolved image to flatten the
illumination. Finally, the image is thresholded, which is displayed at right, and the area
which is black is calculated as a fraction of the total.

cilia tips encompass over their beat cycle. I display in Figure 5.8 the method I use to

measure this area fraction, and for this experiment it is very close to 50% of the total

area of the video frame.

Thus, I make the additional ad hoc assumption that the decoupling of the ‘plane’ at

the height of the cilia tips from the fluid can be accomplished by an effective viscosity

which is reduced by the area fraction. In Figure 5.7c I also display the experimental

epicycle amplitudes as a function of height, comparing the predicted amplitude from

Stokes 2nd problem with and without this decoupling factor. Using the area fraction

as a measure of the reduction in the effective viscosity of the fluid clearly gives a much

better estimate of the rate of decay of the epicycle amplitude with height.

To conclude this section, I have shown for the first time that Stokes 2nd problem can

be applied as a model for understanding particle transport above an array of oscillating

cilia. I have been forced to make two ad hoc assumptions, but I now note that in

reality these two assumptions are the same conceptually, but applied to two separate

phenomenon in the model. Both assumptions are that the cilia interaction with the

fluid is reduced by about a factor of 2 from what one would expect for a flat plane.
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This assumption must be applied to the cilia tip velocity in order to achieve the correct

amplitude at the height of the cilia tips, and then it must be applied again as an

effective viscosity in order to describe the fact that the modeled plane only interacts

with the fluid over a fraction of its total area.

5.2.3 Cilia-driven, long-range, directed fluid transport

Over longer time scales than the epicycle period, the tilted conical beat drives long-

range, directed fluid transport. In this section I will describe this directed transport at

the height of the cilia tips, before turning to a description of the flow over the entire

height of the flow cell. At the cilia tips I define the average fluid velocity as u0. This

average velocity is relatively constant over the entire cilia array and is typically on the

order of 5− 10 µm/s, much slower than the short time scale speeds around an epicycle

of about 150 µm/s (as in Figure 5.7).

Figure 5.9 shows a sequence of maximum intensity projections of fluorescent tracer

motion at the height of the cilia tips, up to a duration of about 20 seconds. The

directional transport is clear, and the epicycles are also visible. This tracer motion is

the raw video data which I tracked to produce the results in Figure 5.10. The first two

panels (a-b) are the average tracer velocities along each component of the video frame,

demonstrating that the mean transport is entirely along the y-direction. In panel (c),

I plot the pathlines of those tracers which were tracked from this data set, with the

local color of the pathline mapped to the tracer velocity averaged over a 0.25 s window.

Panel (d) shows the distribution of velocities, in the transport direction, for the tracers

in (c), as well as for diffusive tracers tracked while the cilia were motionless.

I will discuss the process of diffusion in more depth in Chapter 6, but I briefly

note that the probability distribution of tracer velocities for diffusive motion should

be zero mean and Gaussian, as it appears to be, with a standard deviation which
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a b

c d

Figure 5.9: Montage of maximum intensity projections, of increasing durations in time,
of the directed transport of fluorescent tracers at the height of the cilia tips. The overall
directionality, towards the bottom of the video frame, is clearly evident. The larger,
blurry circles are slightly out-of-focus light from beads which are stuck to individual
cilia.

132



−10 0 10 20 300

10

20

30

Velocity (µm/s)

Pe
rc

en
t

Distribution of Tracer Velocities

 

 

Diffusion
Directed Transport

Tracer Pathlines, Velocity Mapped to Color

 

 

10 µm10 µm0

Av
er

ag
e 

Ve
lo

ci
ty

 (µ
m

/s
)

4 

9 

13

18

22

27

0 10 20 30 40−5

0

5

10

15

20

Time (s)

A
vg

. X
 V

el
oc

ity
 ( µ

m
/s

)

Avg. Tracer X Velocities vs. Time

0 10 20 30 40−5

0

5

10

15

20

Time (s)

A
vg

. Y
 V

el
oc

ity
 ( µ

m
/s

)

Avg. Tracer Y Velocities vs. Time
a b

c d

Figure 5.10: Analysis of tracer velocities for those tracers shown in Fig. 5.9. (a) Tracer
x velocities vs time, showing the lack of any significant motion in the x direction. (b)
Tracer y velocities vs. time, demonstrating the directionality and variation of the tracer
motion. In (a-b), each colored line is a single tracer, and the solid bar of the same color
is that tracer’s average velocity over the time it was tracked. (c) Pathlines of video-
tracked tracer particles with the local average velocity, over a 0.25 s window, mapped
to color. (d) Probability distributions of the component of the tracer velocities in the
transport direction as a percentage of the total counts in (b). The green dots show the
distribution of the cilia-driven tracer velocities shown in (b). In comparison, the blue
points are for diffusing particles, tracked while the cilia were turned off. The solid curves
are fits to a skew normal distribution, as described in the text. From the fit, the mean
of the transport velocity is 7 ± 5 µm/s (s.d.) and the skewness is 0.4. As expected, the
distribution for the diffusive tracers is mean zero and has no skew.
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reflects the diffusivity of the particles. In contrast, the distribution of the cilia-driven

tracers in the directional transport is clearly non-Gaussian. At first glance, there is no

obvious reason why the velocity distribution above the tips should not be Gaussian,

but it is clearly skewed to the right. I attribute this skew to the manner with which

I generate the tilted conical beat (by offsetting the magnet’s rotational axis). This

setup leads to a non-constant angular velocity of the cilium over a single beat cycle,

and this non-constant velocity produces probability distributions which are skewed in

the direction of fluid transport. Although the magnet’s rotation itself is at a constant

angular velocity, the offset means that when the magnet passes directly over the cilia

sample, the cilium’s deflection changes more rapidly than when the magnet is further

from the sample. This change in angular velocity can be seen in the minimum intensity

projection in Figure 5.5 as a difference in the spacing of the cilium’s position between

frames, as well as in the animation in Figure 5.12. However, I emphasize that, as the

reader learned in Chapter 2, the low Reynolds number of the system means that this

change in angular velocity is not the reason for the directed transport.

This non-constant angular velocity also leads to velocity distributions whose char-

acteristics change based on the duration of the averaging window used to calculate the

tracer velocities. This behavior is displayed in Figure 5.11 for multiple distributions

from the same dataset, but with differing averaging times. Over a small averaging time

window, the rapidity of the cilia beat during its effective stroke means that a majority

of the data points of a tracer’s velocity time course correspond to the recovery stroke,

when the cilium moves more slowly. Thus, the velocity distribution over short time

scales has a negative mean, even though the tracer’s long-time average velocity is in

the positive direction. Increasing the duration of the averaging window adjusts the

mean of the distribution until, above about 0.25 seconds, it reflects the properties of

the bulk flow rather than the properties of the tracer oscillation.
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Figure 5.11: The velocity distributions above the cilia tips have a mean which depends
on the averaging time used to calculate the tracer velocities. This is due to the non-
constant angular velocity of the cilia beat, which means that at short time scales the
majority of the counts correspond to the parts of the tracer oscillation in which it is
moving in the negative direction. At longer time scales the average motion becomes that
of the directed transport, in the positive direction.
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Because the non-constant angular velocity of the cilia tips produces tracer velocity

distributions above the tips which are not symmetric about the mean I have fit this

distribution to a more general form of a Gaussian which incorporates skew, the so-

called skew normal distribution. From the fit I compute that the mean of the fitted

distribution is 7 µm/s and it’s skewness is 0.4.

The Skew Normal Distribution. The probability density function (PDF) for a normally
distributed variable x is a Gaussian given by

φ(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , (5.3)

with mean µ and standard deviation σ. The cumulative distribution function (CDF), which
represents the probability of a value being less than some value x, is given for the normal
distribution by

Φ(x) =
∫ x

−∞
φ(t)dt =

1
2

[
1 + erf

(
x√
2

)]
(5.4)

where erf is the error function.
A Gaussian distribution is symmetric about the mean, or equivalently does not have any

skew. A skew normal PDF with parameter α can be constructed from the normal PDF and
CDF and is given by

f(x) = 2φ(x)Φ(αx). (5.5)

where we take x→ (x− δ)/γ. This substitution provides the location and width parameters
δ and γ, respectively. The statistics of the skew normal distribution are then given by the
following, using the parameter ξ = α/

√
1 + α2:

mean = δ + γξ

√
2
π
,

variance = γ2

(
1− 2ξ2

π

)
, (5.6)

skew = 2(π − 3)
(ξ2/π)3

(1− 2ξ2/π)3/2
.

For a skewless distribution α = ξ = 0, and the distribution is equivalent to a Gaussian with
mean δ = µ and γ = σ (Azzalini, 1985).

5.2.4 Directionality of epicyclic transport

The direction the cilia are tilted, and thus the direction of fluid transport, is deter-

mined by the relative positioning of the magnet and the cilia sample, as described in
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the caption to Figure 5.5. This correspondence is also demonstrated in Figures 5.12

and 5.13. Figure 5.12(a) displays a minimum intensity projection of cilia in a 50x

field-of-view. Despite the random nature of the array, and the differences in the beat of

individual cilia, a number of cilia can easily be identified as being tilted towards the top

of the image. As these cilia are actuated with a counter-clockwise rotation, the fluid

flow due to the tilted conical beat should be approximately rightward. The maximum

intensity projection of fluorescent tracer motion in (b) shows that this indeed is the

case.

Thus, by repositioning the actuating magnet I can generate fluid transport in any

in-plane direction. This control over directionality is a novel ability of cilia as a microp-

ump, as with any traditional pump which operates externally to the fluidic system the

flow direction is essentially fixed. In addition, the direction of transport can rapidly

be switched 180◦ simply by reversing the rotation of the actuating magnet, as demon-

strated in Figure 5.13. These results highlight the unique ability of biomimetic cilia to

function as a novel device for micropumping, as well as other applications such as the

precise micropositioning of objects (Suh et al., 1997).

5.2.5 Transport velocity vs. cilia beat frequency

I can also easily control the velocity of the transport by adjusting the frequency of

the cilia beat. Figure 5.14 displays the cilia-driven fluid velocity u0, at the height of

the cilia tips, as a function of beat frequency for three combinations of tilt angle Θ and

half-cone angle Ψ, clearly exhibiting a linear relationship. This control over the velocity

would, in an open-ended channel, provide an easy means for adjusting flow rates in a

microfluidic pumping context. This linear relationship with beat frequency will also be

of interest below.

In addition, Figure 5.14 displays a comparison of biological measurements of the
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Figure 5.12: Fluid flow directionality is controlled by cilia tilt direction. (a) A minimum
intensity time lapse projection of a single rotation of a cilia array. Heterogeneity in the
cilia beat patterns is evident, but many cilia have an obvious tilt towards the top of the
image. (b) A maximum intensity projection of fluorescent bead motion over the array in
(a). The cilia in (a) are rotating in the counter-clockwise direction as viewed from above,
producing a net motion of fluid towards the right.
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Figure 5.13: Switching fluid transport direction by reversing the cilia beat. Initially
the biomimetic cilia are driving fluid transport in a given direction. At t = 6 s the cilia
are turned off and the transport ceases. At t = 14 s the magnet rotation is reversed,
resulting in fluid transport in the opposite direction. At the end the cilia are switched
back to their initial beat.
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Figure 5.14: Average transport velocity vs. cilia beat frequency in a plane just above
the cilia tips for three different tilted conical beats. The beat is described by the tilt
angle Θ and half-cone angle Ψ. Least-squares fits demonstrate the linear relationship
between velocity and cilia beat frequency.

fluid flow in the embryos of mouse, rabbit, and medakafish with my own data (Okada

et al., 2005). These biological species have also demonstrated a correlation between fluid

velocity and cilia beat frequency. I note that it should not necessarily be expected that

a direct comparison between my data and the biological flow data should match, as the

differences, such as cilium length, suggest that the velocities should not be equivalent.

However, both sets of data show a similar linear trend in velocity vs. beat frequency,

and it is encouraging that my cilia are able to generate flow speeds with characteristic

velocities at the same scale as in biology. Finally, I note Okada et al.’s fascinating

report that the variation in speeds in each species is accompanied by a difference in

node size of the three vertebrates. Remarkably, the ratio of the fluid velocity to the

node size is equivalent among each species, suggesting that the Péclet number is a

conserved quantity in the node.
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5.2.6 Velocity flow profile

Recall that the fluidic cell in my experiments is roughly a rectangular prism, with

the floor covered by cilia. At low magnification, I have observed that in a plane near

the cilia tips the flow velocity is relatively constant in magnitude and direction over

the entire array (except, for example, where there are major defects in the array, as

shown in Figure 5.15). As the cell is completely enclosed, it is clear that this driven

flow must force a recirculation of fluid elsewhere in the cell such that the net flux,

across planes perpendicular to the transport direction, is zero. Thus, the flow is clearly

three-dimensional and will vary across the cell, particularly near the boundaries.

400 μm
Figure 5.15: A low magnification maximum intensity projection of fluorescent tracers in
long-range, cilia driven flow over 9 seconds. The single merged image is stitched together
from crops of three adjacent fields of view at 10x magnification, and demonstrates the
relatively constant flow over hundreds of microns. The rotational motion near the center
of the image signals a patch where a number of cilia did not survive fabrication. As the
fluid enters the void it temporarily moves in the opposing direction before rejoining the
main transport.

However, for now I will only consider the velocity profile u(z) in the vertical direc-
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tion, at a region of interest near the center of the array. I define the transport direction

as the y-axis and assume that this velocity profile is constant across the cell along the

x-axis, essentially ignoring for the moment the effect of the lateral walls on the fluid

flow. Such an assumption is increasingly valid for w > h, and the dimensions of a

typical fluidic cell in my experiments are h = 200 µm and at least w = 1 mm.

To measure the velocity profile I took 40 second videos of fluorescent tracer motion

at a number of horizontal planes above and below the cilia tips. As controls, in each

video I turned off the cilia at t = 30 s to observe the Brownian motion of the tracers

with the cilia motionless (aside from the cilia’s own thermal motion, which is typically

small). In all experiments, extreme care is taken with sealing the fluidic cell to prevent

evaporative currents or other sources of drift.

In Figure 5.16 I display maximum intensity projections of tracer motion at selected

planes at or above the cilia tips over 30 seconds (recall that in Chapter 6 I will compare

this transport with the flow below the cilia tips). As previously mentioned, the fluid

flow has a maximum average velocity at the height of the cilia tips, as represented

in the projections by longer particle trajectories. I also observe a slow recirculation of

fluid, moving in the opposite direction as the main transport, near the chamber’s upper

boundary due to the enclosed nature of the flow cell, as expected. This recirculation

has also been reported in the enclosed nodal pit (Okada et al., 2005; Nonaka et al.,

2002). Finally, in the transition from bulk transport to recirculation the tracer particles

actually move perpendicular to the transport direction, but slowly, and are actually

moving in the vertical direction as well, as they rapidly go out of focus and join one of

the two more rapid flows.

Video-tracking of a subset of the particles and calculating the average velocity, in

the transport direction, allows me to construct a velocity profile, with results displayed

in Figure 5.17. The main features described above are apparent in the profile. Also
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Figure 5.16: Maximum intensity projections of 30 seconds of fluorescent tracer motion.
The first panel is Brownian motion, with the cilia turned off, and the other panels are
cilia-driven flow at various heights above the cilia tips. The main transport is towards
the bottom of the image. At z = 80 µm the main transport is transitioning to the
recirculatory flow, and the tracers at this height actually move laterally, briefly, before
going out of focus and joining either the main transport or the recirculatory flow. At
z = 120 µm the flow is moving upwards, opposite the main transport direction. Finally,
near the upper boundary the transport is very slow due to the no-slip condition, and the
particle motion looks essentially diffusive.
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note that the average velocity decays rapidly below the cilia tips. While the speeds

are most rapid in this regime, the motion lacks an overall directionality and so the

average velocity is very small. Above the cilia tips the average velocity decays much

more slowly, until reaching the transition where it becomes the recirculatory flow.

As this velocity profile represents the contribution of a large number of cilia, it is

essentially a measurement of the coarse-grained behavior of an array of cilia. To gain

insight into the nature of the profile I compared it to one of the superpositional solutions

to the Navier-Stokes equations which I discussed in Chapter 2, Poiseuille-Couette (PC)

flow, and found excellent agreement. This remarkable result, which is the first closed-

form, analytical solution to show agreement with a cilia-driven flow profile (artificial

or biological), demonstrates that the collective beating of thousands of cilia behaves

coarsely as a simple superposition of shear- and pressure-driven fluid flow.

Velocity profile is Poiseuille-Couette flow

In Figure 5.17 the solid blue curve was obtained as a least-squares fit of the biomimetic

cilia-driven velocity profile. I consider only the portion of the velocity profile between

the cilia tips (z’ = 0) and the upper boundary (z’ = h), to equation 2.39. This fit sug-

gests that the collective motion of thousands of cilia generates a velocity profile that

can be simply conceptualized as the sum of an effective shear-stress produced at the

cilia tips (Couette flow) and an opposing induced pressure gradient generated by the

interaction of the fluid with the closed flow cell boundaries (Poiseuille flow). Similarly,

Liron recognized that his Stokeslet solutions between parallel plates were not unique,

because a pressure-driven flow could be added to the profile without loss of general-

ity (Liron, 1978). Thus, Liron solved for a velocity field due to the Stokeslets, but then

included an ad hoc Poiseuille flow which gives a family of possible velocity profiles, some

of which are qualitatively similar to Figure 5.17 (Liron, 1978). Similarly, Cartwright et
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Figure 5.17: The velocity flow profile of biomimetic cilia-driven fluid transport. The
points are the tracers’ average velocity data in a plane for various heights above the flow
cell floor. The solid curve is a least-squares fit to the PC flow profile of equation 2.39
with fit parameters u0 = 8.7 µm

s and ∇p = 1.05 Pa
m . The maximum average velocity

occurs just above the cilia tips, analogous to the velocity u0 of the sliding plane in PC
flow. Near the top of the fluid chamber we observed a recirculatory flow as expected due
to the enclosed nature of the chamber. Inset: Mouse nodal flow velocity data at three
heights taken from Okada et al. (2005) (and also plotted in Figure 5.14) and a fit to the
PC flow profile with u0 = 4 µm

s and ∇p = 79 Pa
m . I attribute the large difference in the

pressure gradients between each fit to be due to the overall size of my fluidic cell, which
is about an order of magnitude larger than the node.
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al. have reported on a computational simulation of the node and calculated a velocity

profile that has certain features which qualitatively match the profile in my biomimetic

system (Cartwright et al., 2008). However, I stress that neither of these solutions were

analytical descriptions of the flow.

I also compare this model with limited biological measurements taken in a mouse

embryo. Okada et al. (2005) reported the mouse nodal flow velocity at three heights

above the node floor (Okada et al., 2005). In the inset in Figure 5.17 I plot these three

data points along with a least-squares fit to equation 2.39, demonstrating that the

time-averaged velocity profile in the embryonic node is also consistent with the PC flow

model. This is the first wholly analytical solution to be identified which is consistent

with the fluid flow in the embryonic node, or more generally, in any biological ciliated

system. It is also the first report of any correspondence between the fluid flow in an

artificial and biological ciliated system.

Recirculatory flows

I note that integrating either fit to equation 2.39 over the height fails to give zero

net flux as should be expected for a closed geometry. Previous work by Liron has

demonstrated that this behavior can be due to a portion of the return flow which is

recirculated around the periphery of the system (Liron and Meyer, 1980). This is likely

the explanation in my system as well, as such a peripheral recirculation can also be

seen in the embryonic node in supplemental videos from Okada et al. (2005) (Okada

et al., 2005).

There has also been some discussion and controversy about the existence of a sec-

ondary recirculation along the floor of the embryonic node. As mentioned above,

Cartwright et al.’s simulation of the node largely matched my velocity profile. But it

also predicted this secondary floor recirculatory flow (Cartwright et al., 2007), which is
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much different from Figure 5.17 in the region below the cilia tips. However, Cartwright’s

most recent work further predicts that the velocity of this floor recirculation is sensitive

to the ratio of the cilia length to the node depth (Cartwright et al., 2008). In both the

node and my system this ratio is on the order of 0.1, and Cartwright’s model predicts a

small velocity which, in reality, is likely dominated by the rapid, complex fluid motion

below the cilia tips. While Cartwright et al.’s simulations are time-independent, other

work by Smith et al (2007), which is time-dependent, supports this notion. Thus, it is

expected that in the embryonic node there is no detectable floor recirculation as well.

5.3 Volume Flow Rate of an Array of Cilia

The volumetric flow rate driven by a collection of cilia is an important measure for

biological cilia, as well as a critical measure of pumping performance in the context

of a microfluidic device. This bulk flow rate is the cumulative result of fluid flow

generated by each cilium, but in general it will not be a simple sum of their individual

contributions. This is because the cilia interact with each other in ways that are difficult

to predict because the theoretical solutions for a single cilium cannot be simply added

together, due to the fact that the no-slip condition on each cilium cannot be satisfied

simultaneously. Thus, another critical goal for the coarse-graining of cilia-driven fluid

flows is the ability to predict the bulk flow from knowledge of the ciliary beat shape.

However, theoretical analyses are severely limited in their ability to predict the

interactions of neighboring cilia and it is therefore difficult to predict bulk flow rates

from knowledge of the beat shape of individual cilia, especially at high cilia densities.

The ability to make such predictions would be another invaluable tool for understanding

the coarse-graining of cilia-driven fluid flow. For the case of the tilted conical beat of

nodal cilia, a recently published result uses resistive force theory to derive the volume

flow rate as a function of the cilia beat parameters.
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Resistive Force Theory. Developed by Gray and Hancock (Gray and Hancock, 1955),
resistive force theory is an approximate form of slender body theory, which considers a
cilium as a distribution of point forces, or Stokeslets, along the cilium’s centerline. For a
slender body of length L parameterized by X(s, t), where s is the arc length with 0 ≤ s ≤ L,
resistive force theory gives the force density as

fj = CT

[
CN
CT

δjk −
(
CN
CT
− 1
)
∂Xj

∂s

∂Xk

∂s

]
∂Xk

∂t
(5.7)

where δjk is the Kronecker Delta and I have used the summation convention. The parameters
CN and CT are the resistance coefficients for normal and tangential motion, respectively.
For the tilted conical beat, Smith et al. recently used this approximation to derive the
volume flow rate per cilium (Smith et al., 2008). Using the tilt angle Θ, half-cone angle Ψ,
and the angular beat frequency ω, they give the parameterization of the beat

X1 = ssinΨcosωt,
X2 = −ssinΨsinωtcosΘ− scosΨsinΘ, (5.8)
X3 = −ssinΨsinωtsinΘ + scosΨcosΘ.

Using their axes definitions the transport is in the x1 direction, and so the force distribution
is given as

f1 = CT

[
CN
CT

∂X1

∂t
−
(
CN
CT
− 1
)(

∂X1

∂s

∂X1

∂t
+
∂X2

∂s

∂X2

∂t
+
∂X3

∂s

∂X3

∂t
+
)]

. (5.9)

Performing the partial derivatives gives the simple result

f1 = −CNωssinΨsinωt. (5.10)

Returning to slender body theory, the volume flow rate at time t is given as∫ L

0

X3(s, t)
πη

f1(s, t)ds (5.11)

and so the mean volume flow rate is this result, integrated over one beat cycle and divided
by the beat cycle period T = 2π/ω, or

Q̃ =
CNωL

3

6πη
sin2ΨsinΘ (5.12)

5.3.1 Theoretical flow rate for a biomimetic cilium

To evaluate the volume flow rate for a single cilium from resistive force theory

(eq. 5.12) I need only calculate the normal resistance coefficient CN , as the other pa-

rameters are either known or can be measured from video of the cilia actuation. There
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are various methods in the literature for calculating CN . Smith et al. use the result

CN =
8πη

1 + 2 ln
(

2q
a

) (5.13)

where a is the diameter and q is a length parameter of order O(a
√

L/a) (Smith et al.,

2008). For a typical biomimetic cilium I have a = 0.75 µm and L = 25 µm for q = 4.3,

which gives CN = 1.36πη. Substituting this into equation 5.12 gives the theoretical

volume flow rate for my typical biomimetic cilium as

Q̃ = 0.23ωL3sin2ΨsinΘ. (5.14)

The average beat parameters of the cilia driving the velocity profile of Figure 5.17 were

Θ = 7.1± 0.6◦, Ψ = 6.3± 0.6◦, and ω = 2π(34± 3 Hz), which gives

Q̃ = 1.3± 0.4 pL/s per cilium.

Lastly, I note an interesting aspect of equation 5.14, that the volume flow rate a cilium

can produce with a given beat shape does not depend on the fluid viscosity. This

is another reflection of low Reynolds number fluid flow: the motion of the fluid only

depends upon the motion of the surfaces in the fluid.

5.3.2 Validity of theoretical flow rate

This result is reasonable, considering that, for these 25 µm tall cilia beating at

34 Hz, 1.3 pL/s is equivalent to each cilium transporting a volume equal to a cube

11 µm on a side per second. However, it is important to note that the derivation of this

result assumes the cilium is beating in a semi-infinite space, with no upper boundary.

In fact, as in the case of a single Stokeslet, once an upper boundary is present, and the
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cilium is no longer in a semi-infinite space, the volume flow rate predicted by slender

body theory becomes zero (Liron, 1978). However, in that case particle pathlines can

still move significant distances away from the cilium before returning. Thus, for an

array of cilia where particles can be transported from cilium to cilium, each cilium can

effectively produce a non-zero volume flow rate even with an upper boundary present.

Even with a non-zero flow rate per cilium, however, the volume flow rate per cilium

which is achieved in reality will likely not be as large as the prediction of equation 5.14

due to the increased resistance due to the presence of the upper and lateral boundaries,

which are not accounted for in the theory. On this line of reasoning, in what follows I

will define this result as the maximum flow rate a cilium could produce in a system of

negligible resistance, or Qmax ≡ Q̃.

5.3.3 Experimental volume flow rate

Experimentally, I can measure the volume flow rate produced by the entire system

by noting that for flow in a cell whose width w is larger than its height h (as is the case in

both the mouse node and my flow cell) the total volume flow rate can be approximated

as

Q ≈ w

∫ h

0

|u(z′)|dz′ (5.15)

where u(z′) is the velocity flow profile. Note that I use |u(z′)| because both the primary

flow and the recirculation are attributed to the motion of the cilia array. Performing

the integration on the velocity profile of Figure. 5.17 gives an experimental value of

Qtotal = 460± 50 pL/s.

How should this measurement, which is the summed contribution of the entire array,

be compared to the theoretical prediction for a single cilium? To do this generally would

require knowledge of the interactions between neighboring cilia. It is clear that such

interactions will affect the contribution each cilium makes to the bulk flow, and there
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is much ongoing work on the study of these cilia-cilia interactions (Mitran, 2007).

In the following subsection, I will use an analogy between classical pumps and cilia

in order to arrive at theoretical limits on the bulk flow rate. These limits encompass my

experimental measurement and are considered for the opposing cases of non-interacting

and strongly-interacting cilia.

5.3.4 Cilia as classical pumps

A classical example of a pump is the centrifugal pump, which is essentially a rotating

impeller that draws liquid into its center and spins it radially outward to continually

increase its velocity. At the periphery of the pump housing the water exits the impeller

cavity and rapidly slows down, which by Bernoulli’s principle increases its pressure,

driving fluid flow through the system. The performance of such pumps is governed by

the affinity laws, which, based on the characteristics of the pump and the nature of the

fluidic system, allows one to perform an operating point analysis to determine the flow

rate of the pump. For multiple pumps, which must be configured in either series or

parallel with the first, the operating point of the new system can now be determined

simply by knowing the number of pumps which are added in each configuration. By

considering a single cilium as such a pump, I can place theoretical limits on the volume

flow rate of the experimental system. Interestingly, I note that this impeller-driven

fluid flow is remarkably similar to fluid flow I have observed in the vortex around a

single cilium, as I will discuss in more depth in Chapter 6 (see Figure 6.1).

Characteristic curves of the pump and the system

In order to perform an operating point analysis I must know the characteristic

curves of the pump and the characteristic curve which defines the losses in the system.

The affinity laws provide the definition of the characteristic curve of the pump. For a
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pump operating at speed f , these laws give the following relationships for the volume

flow rate per pump Q̃ and the pressure head generated by the pump ∆P :

Q̃ ∝ f and ∆P ∝ f 2 (5.16)

Combining these two laws gives the characteristic ‘pump curve’

∆P ∝ Q̃2 (5.17)

which describes the performance of the pump. The actual pump curve can be defined

by two parameters, the system back pressure at which the pump is no longer capable

of producing net flow, ∆P0, and the maximum flow rate the pump could achieve in a

system with zero resistance, Qmax. Then the pump curve is

∆P = − ∆P0

Q2
max

Q2 + ∆P0 (5.18)

or

∆P = − ∆P0

Q2
max

(Q2 −Q2
max). (5.19)

Next, I need to determine the system curve for a fluidic channel. If I assume that

the large majority of the losses in the system are due to friction with the channel walls,

then the system is described by the Darcy-Weisbach equation

∆P = ff
L

DH

ρv2
avg

2
(5.20)

where ff is the Darcy friction factor, L is the channel length, DH is the hydraulic

diameter of the channel, ρ is the fluid density, and vavg is the average velocity of the

fluid (Happel and Brenner, 1963). Thus, in general the system curve will be quadratic
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in the velocity of the fluid.

However, in low Reynolds number Stokes flow, the Darcy friction factor is inversely

related to the the Reynolds number Re = ρvavgDH
η

, and proportional to some geometric

factor g which depends on the channel cross section, so I can write ff = g
Re

. Substituting

this Stokes flow result into the Darcy-Weisbach equation I get

∆P =
gρ

2Re

L

DH

v2
avg =

gηL

2D2
H

vavg (5.21)

Finally, to obtain the system curve I need to know vavg in terms of the volume flow rate

Q. In any channel the volume flow rate is simply the average velocity multiplied by

the cross-sectional area A, or Q = Avavg. Solving for vavg and substituting the result

into equation 5.21 I arrive at the Hagen-Poiseuille equation

∆P =
gηL

2AD2
H

Q. (5.22)

Thus, while the Darcy-Weisbach equation goes as v2
avg (or Q2), at low Reynolds number

the system curve becomes linear in Q. I also note that the Hagen-Poiseuille equation

is the fluidic analog of Ohm’s law, with ∆P analogous to the voltage, Q the current,

and a resistance R determined by the fluid and channel geometry. Thus, I can write

the system curve as

∆P = RQ, R ≡ gηL

2AD2
H

. (5.23)
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Figure 5.18: The operating point of a single pump, determined by the intersection of
the pump curve and the system curve.

System curve for rectangular channel. In microfluidics, channel cross-sections are
typically rectangular due to the use of photolithography for defining channel features. For
a rectangular channel of height h and width w, the hydraulic diameter is DH = 2hw

h+w and
the cross-sectional area is A = hw. There are a number of methods for determining the
friction factor for a rectangular channel. Shah and London (Shah and London, 1978) use a
series in the channel aspect ratio α = h/w (α < 1)

ff =
g

Re
, g = 24∗(1− 1.3553α+ 1.9467α2 − 1.7012α3 + 0.9564α4). (5.24)

In a typical experiment I have w = 1000 µm and h = 225 µm, giving α = 0.225 and
g = 24∗0.7767.
Thus, for my typical rectangular channel the Hagen-Poiseuille equation (5.22) is

∆P =
2.33ηL(h+ w)2

h3w3
Q. (5.25)

and I will define the rectangular channel system curve as

∆P = RQ, R =
2.33ηL(h+ w)2

h3w3
. (5.26)
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Operating point of a system of pumps

Knowledge of the pump and system curves is sufficient to determine the operating

point, which is the intersection of the two characteristic curves

RQOP = − ∆P0

Q2
max

(Q2
OP −Q2

max) (5.27)

as pictured in Figure 5.18. The solution of this (I am interested only in the positive

root) gives the operating point

QOP =
Q2
maxR

2∆P0

(
−1 +

√
1 +

4∆P 2
0

Q2
maxR

2

)
, ∆POP = RQOP . (5.28)

I have derived this, thus far, for a single pump. What is the effect on the system for

including additional pumps in series or parallel? For pumps in parallel, there is no effect

on ∆P0, the maximum pressure head the pumps can overcome. However, each pump

transports distinct volumes of fluid and so the maximum possible flow rate becomes

Qtotal
max = npQmax, where np is the number of pumps added in parallel. Conversely,

for pumps configured in series, which sequentially transport identical fluid volumes,

there is no effect on Qtotal
max , while each pump in series does increase the total pressure

generated such that ∆P0 → ns∆P0. These characteristics of pumps in parallel and

series are depicted generically in Figure 5.19. Thus, for a system of pumps I can use

these substitutions to get the new operating point

QOP =
n2
pQ

2
maxR

2ns∆P0

(
−1 +

√
1 +

4n2
s∆P

2
0

n2
pQ

2
maxR

2

)
, ∆POP = RQOP . (5.29)
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Theoretical limits on volume flow rate

To evaluate the operating point of the system, the parameters which govern the

pump performance, Qmax and ∆P0, must be known, as well as the system resistance

R. As previously mentioned, as the resistive force theory derivation of the volume flow

rate per nodal cilium (eq. 5.14) was performed in a semi-infinite space, I will define this

result as the maximum flow rate a single cilium can obtain, or Qmax = 1.3 ± 0.4 pL/s.

However, there is no clear way to evaluate ∆P0 for a nodal cilium, and so in general

I cannot actually predict the operating point of the system. By itself, the knowledge

of Qmax is only enough to specify theoretical limits on the total volume flow rate. The

calculation of these limits then becomes a counting problem, which is to say that I need

only specify the number of cilia which can effectively be taken as beating in parallel.

As mentioned, the fluidic interactions between nearby cilia are not well understood.

To specify these limits I will consider the extremes of cilia-cilia interactions, namely

non- and strongly-interacting cilia. As this is Stokes flow, in the absence of interactions

between cilia the flow field is simply a superposition of the flow field around each cilium.

In this case, I would expect that the total volume flow rate would be the linear sum

of each cilium’s contribution, or Qtotal
max = NQmax. This statement is the equivalent of a
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Figure 5.19: Characteristic curves of systems of pumps in series or parallel.
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sparse array of cilia in the experiment, and each cilium is treated as effectively in parallel

with the others such that np = N . For my velocity profile experiment I have N ≈ 3, 000,

and so non-interacting cilia give an upper limit on the total, maximum possible flow

rate of Qtotal
max = 3, 900 pL/s. This upper bound is well above the experimental value of

460 pL/s, however as I have said the actual operating point of the model would further

depend on losses in the system and the pump parameter ∆P0.

In contrast, for strongly-interacting cilia I assume that only cilia arrayed across

the width of the fluid cell, perpendicular to the transport direction, would behave as

classical pumps in parallel. The rest of the cilia, arrayed down the channel, would then

act as pumps in series, each of which would make no contribution to Qtotal
max . In the

velocity profile experiment I have np ≈ 55, giving a lower bound of Qtotal
max = 72 pL/s.

Thus, my experimental value falls within upper and lower bounds considered for

non- and strongly-interacting cilia treated as classical pumps. In the case of the lower

bound, the analogy with classical pumps predicts a value that significantly underesti-

mates Qtotal
max . I note that this discrepancy implies that cilia arrayed down the length of

the channel are actually able to make an effective contribution to Qtotal
max , in violation

of my assumption that they behave as classical pumps. However, this implication is

interesting because it suggests the possibility that future experiments performed by

varying the number of cilia in an open-ended channel could shed further light on the

effective interactions between beating cilia in an array.
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Chapter 6

ENHANCED DIFFUSION AND

MIXING

“It is possible that the motions to be discussed here are identical with the so-called

‘Brownian molecular motion’; however, the data available to me on the latter are

so imprecise that I could not form a definite opinion on this matter. If it is really

possible to observe the motion to be discussed here, along with the laws it is

expected to obey, then classical thermodynamics can no longer be viewed as

strictly valid even for microscopically distinguishable spaces, and an exact

determination of the real sizes of atoms becomes possible.”

- A. Einstein, “On the Movement of Small Particles in

Stationary Liquids Required by the

Molecular-Kinetic Theory of Heat”

Annalen der Physik 17, (1905)

In addition to the work quoted above, Einstein’s work in his annus mirabilis also

included special relativity and an explanation of the photoelectric effect, for which

he was awarded the 1921 Nobel Prize in Physics. While in the public perception

relativity theory is generally perceived as his crowning achievement, none of his work

can compare to the above in terms of elucidating a fundamental aspect of reality: what

is the world made of? While relativity and the quantum are of the utmost importance

in modern physics and technology, for the average person they have little bearing on



the individual’s conception of the everyday world around them, and many people are

not even aware of the basic concepts behind either theory. Conversely, the composition

of matter has aroused the interest of great thinkers for all of recorded history, from the

Greeks’ átomos to the corpuscles of Newton to Thomson’s discovery of the electron,

and today most people are likely to be aware of the notion that their world is made up

of atoms.

Einstein’s key recognition was that the statistics of stochastic events, which for

over 100 years had been described by a diffusion coefficient, had an equivalence with

the physical process of random thermal motion of microscopic particles, which we now

simply know as ‘diffusion’ (Narasimhan, 2009). Despite the apparent obviousness (in

hindsight) of this connection, the equivalence of abstract mathematics with a physical

process was novel and another indication of Einstein’s genius. Over the century since

1905, diffusion and related topics have remained areas of scientific study, largely due

to the increasing recognition of the role of fluid mechanics and transport phenomena

in microscale biological processes.

Diffusion, which more simply refers to ‘spreading’, is useful at the molecular and

cellular levels because it provides a means of particle transport without any additional

input of energy. This transport is essential for processes such as biochemical signaling,

chemosensation, and reaction-diffusion systems. Conversely, other processes, such as

chemotaxis, rely on the existence of chemical gradients, the stability of which must

compete with diffusion’s tendency to eliminate gradients.

Because diffusion can homogenize concentration gradients, it is one means of pro-

ducing fluidic mixing. Colloquially, mixing is often synonymous with stirring because

in the macroscopic world we almost always rely on stirring processes to induce mixing.

However, a number of classical works in fluid dynamics emphasize the important dis-

tinction between ‘mixing’ and ‘stirring’ (Ottino, 1990). Given two separate fluids with
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some initial interfacial area, an efficient means of stirring, or ‘stirring protocol’, will

repeatedly stretch and fold the two fluids into one another, typically producing a stri-

ated solution with a greatly increased interfacial area between the two fluids. However,

in the absence of diffusion this is all stirring can ever accomplish. Further stirring will

produce ever thinner striations, but the two fluids will never actually mix together. Of

course, this entire discussion hinges on the definition of ‘fully-mixed’, which is largely a

question of resolution. In general, there are not standard definitions of what it means

to be mixed, and measures of mixing in experimental systems are typically defined

in a way which is specific to the experiment. As an example, one measure that has

been widely used it the ‘interface stretch exponent’ χ (Biswal and Gast, 2004), which

measures the exponential rate at which striations are stretched such that the thickness

of the striation is given by

s(t) = s0e
−ξt (6.1)

where s0 is some initial lamellar thickness.

Regardless of what it means to be fully-mixed, classical treatments argue that, at

some level of resolution, diffusion is a necessary process to produce a truly homogenized

fluid. Diffusion is one mechanism which can allow advected particles to move off of

fluid streamlines. Thus, during a stirring protocol, diffusion will actually allow for the

striations to merge and become mixed. Stirring decreases the time needed to mix a fluid

because the increase in interfacial area implies a decreased distance between interfaces,

and thus a decreased time required for diffusion to merge the fluids. Thus, stirring

and mixing, although related, are actually two separate processes with an important

distinction. In section 6.3.2, I will present a newer concept called ‘chaotic advection’, a

dynamical systems phenomenon which has been suggested to allow for complete fluidic

mixing even without the aid of diffusion.

Thus, the understanding of many biological fluid-mediated processes, and by exten-
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sion the cellular systems which rely on these processes, requires an understanding of

how stirring and diffusive processes interact to produce particle transport. In systems

with motile cilia, the fluid-driven by the cilia motion creates stirring and results in the

advective motion of the particles. Many of these systems also rely on fluid-mediated

processes which may be affected by cilia-driven advection. As I discussed in Chap-

ter 3, experimental studies of biological ciliated systems are time-consuming and often

difficult to interpret due to the large number of complications with both in vivo and

in vitro studies. For such reasons, to date there is very little experimental data on

the detailed motions of cilia-driven particles. Furthermore, theoretical studies of cili-

ated systems rarely incorporate diffusion because of the added theoretical complexity,

instead assuming that advective transport is sufficiently strong to dominate diffusion.

In this chapter, I will continue the discussion of my observations and analysis of

driven particle motion in my biomimetic cilia arrays, focusing on the nature of the

fluid flow in the flow regime below the cilia tips. I will present two frameworks for

the quantitative analysis of these flows, none of which has been applied to cilia-driven

fluid flow in the past. It is important for me to clarify that these two frameworks

are alternative descriptions of the same phenomena, with some similarities and some

differences. Thus, they provide different interpretations of the fluid flow, each of which

may be a useful descriptions in appropriate circumstances.

The first framework I describe is that the biomimetic cilia drive a fluid flow below

their tips in which the dispersion of advected particles can be approximated as an

enhanced diffusion process. This means that particles in this flow may be mixed at a

rate which scales in time like a diffusive process, but the rate itself is enhanced over that

which would be expected from the intrinsic diffusivity of the particle. This analysis

is the simpler of the two frameworks in terms of interpretation, but still provides a

substantially more thorough characterization of fluid flow in proximity to a cilia-like
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structures than exists in the literature. These statistical results also form the first

experimental quantification of the potential for significant mixing in ciliated systems.

The second framework I will describe is more abstract than the first, but provides

a richer sense of the possible phenomena which may be present in cilia-driven flows.

Broadly speaking, these phenomena fall under the umbrella of anomalous transport,

which has also been referred to as strange kinetics. These terms describe dynamical

systems in which the transport properties exhibit non-Gaussian statistics, and the

phenomena which are encompassed by these terms include chaotic advection and Lévy

flights. As I discussed in Chapter 3, chaotic advection has been speculated upon in

theoretical treatments (Smith et al., 2007; Fauci and Dillon, 2006), and the single

experimental work to address the issue did not support their claims with appropriate

evidence (Supatto et al., 2008).

Finally, I note that, in addition to the biological implications, the presence of mixing

within our artificial cilia system may also be of use in a microfluidics setting. As I

have noted, low Reynolds number fluids cannot support turbulent fluid motion. This

restriction means that mixing is often diffusive, requiring long time scales. For many

microfluidic applications, such slow mixing is the determining factor in how rapidly fluid

can be moved through a channel, and thus how long a given experiment will take. For

example, microarray biosensors have demonstrated pathogen and toxin detection with

volumes of fluid and processing times orders of magnitude smaller than conventional

techniques. However, at the low Reynolds number of these devices, current processing

times are restricted by the fact that reactions require diffusive transport in order to

bring reagent and analyte together. Thus, cilia-driven fluid flows could have possible

applications as a magnetically driven micromixer.
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6.1 Cilia-Driven Flow: Comparing Flow Regimes

In the introduction to Chapter 5, I described how the cilia-driven particle motion

in my fluidic system exhibits distinct flow regimes separated by a plane at the height

of the cilia tips. The focus of that chapter was on the directional flow regime above

the cilia tips. In that regime, particle motion was highly directional over long ranges,

and fairly uniform in average velocity. In this chapter, I turn my focus to the fluid flow

regime below the cilia tips. Broadly speaking, the flow field below the cilia tips behaves

as an array of vortices, one vortex per beating cilium. Because the cilia are randomly

distributed, the interactions between these vortices gives rise to rich particle motion

which has not been documented in the literature. Figure 6.1 exemplifies the vortical

flow I have observed around each cilium, and shows an ‘orbit-and-escape’ behavior

which I have observed to be typical, and which will be of further relevance to my

discussion of anomalous transport in a moment.

Figure 6.1: Click to Animate. The vortical flow around a single cilium. New tracers
repeatedly come under the influence of the vortex, perform some number of revolutions
around the cilium, and eventually escape off the left side of the video frame. These types
of vortices make the flow below the cilia tips much different from that above.

As with the directed fluid transport, the results presented in this chapter were

generated by cilia executing the tilted conical beat of embryonic nodal cilia (Fig-
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ure 5.3). However, my observation has been that in all circumstances the actuation of

a biomimetic cilium induces a local flow around the cilium which is complex and essen-

tially vortical. Even if the beat shape appears planar, like that of cilia in the airway

epithelia, particles still orbit the cilium in local vortices, albeit vortices which appear

much more irregular and disordered than the rotational beat. This is displayed by the

animation in Figure 6.2, which is unfortunately of poor optical quality and slightly

difficult to interpret. However, close inspection shows that the cilia beat is roughly pla-

nar, and the particle motion is complex and looks much like the flows I’ve discussed for

the tilted beat. This behavior is likely a result of small deviations from a planar beat,

in essence because a perfectly planar beat would be difficult or impossible to achieve.

As such, it is my expectation that approximately vortical flow around a beating cilium

is a general feature whose existence is largely independent of beat shape. Theoretical

treatments of nodal cilia have shown clear vortices, but the strong interactions between

airway cilia have prevented any significant modeling of particle pathlines nearby airway

cilia, and so I am not aware of a prediction of vortices around airway cilia within the

literature.

Figure 6.2: Click to Animate: This is, unfortunately, a rather low optical quality
movie of the complex flows around cilia executing the planar beat of airway cilia. The
vortices around a cilium are present, but much more irregular.
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Figure 6.3: Click to Animate. Flow below the cilia tips. At left, poster image
displays maximum intensity projection of tracer motion, while movie displays same data
played at 4x real time. At right, trajectories of video-tracked particles in the flow.

6.1.1 Flow Below Tips is Rapid and Non-Directional

A broader view of the cilia-driven fluid flow, in the regime below the cilia tips,

reveals that particles move as if they were being driven by an array of vortices. In my

samples, cilia are distributed at random due to the nuclear track etching process which

is used to manufacture the polycarbonate templates. Thus, the array of vortices, one

per cilium, are distributed at random as well. As I demonstrated in Figure 6.1, particles

can be transiently trapped within such vortices, performing a number of orbits before

escaping. After escape from a given vortex, particles typically move rapidly, but with

no predictable directionality as I demonstrated for the flow above the cilia tips. These

escaped particles will sometimes be caught up in another nearby vortex, while other

times they will move through the vortex array without being trapped before exiting

the microscope field of view. Figures 6.3 and 6.4 display this type of motion.

To compare the flow below the cilia tips with the uniform, directional transport

above the cilia tips discussed in Chapter 5, Figures 6.5 and 6.6 display comparative

analyses of the velocities of video-tracked tracer particles in each flow regime. Figure 6.5

shows trajectories of these tracers with the local average velocity mapped to color,
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a b

c d

Figure 6.4: Montage of maximum intensity projections of increasing duration, repre-
senting cilia-driven tracer motion below the cilia tips. In this regime the flow is very
different from the directed transport described in Chapter 5, as particles move haphaz-
ardly between the vortices associated with each cilium.
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where a sliding average is performed over a 0.25 second time window. Panel (c) serves

as a control, displaying the intrinsic diffusive motion of the tracers when the cilia are

motionless.

In Figure 6.6a-b the velocity time courses are plotted for the same tracers whose

trajectories are shown in Figure 6.5a-b. The plotted velocities are in the direction of

fluid transport above the tips, as defined in Figure 6.5a. For each plot, at approximately

t = 30 seconds the cilia beat is turned off, allowing the tracers to revert to their intrinsic

diffusive motion, which serves as an additional control to ensure there is no fluid motion

due to evaporative drift. Lastly, Figure 6.6c plots the statistical distribution of the

average velocity time courses, including the diffusive motion shown in Figure 6.5c.

Taken together, the panels of Figures 6.5 and 6.6 highlight the dramatic differences

in the velocity field between the flow regimes above and below the cilia tips. The

tracer trajectories demonstrate the distinct difference in directionality between the two

regimes, while the velocity map and velocity time courses reflect the homogeneity of the

flow above the tips and the heterogeneity below. This difference is especially evident in

the fluctuations in velocity seen in the velocity time courses. As the averaging window

used is 0.25 sec and the cilia beat is roughly 30 Hz, these velocity fluctuations are

reflective of inhomogeneities in the velocity field rather than changes over the tracer

epicycles. Aside from the fluctuations in velocity as a function of time, the ensemble

average (over all tracers at all times prior to the cilia being turned off) of the flow below

the cilia tips is very close to zero with a large standard deviation, while above the tips

the highly directional flow results in a non-zero average velocity with a much tighter

standard deviation.

To statistically compare the velocity of tracers in each regime and for the diffusive

control, I plot the distributions of average velocities in Figure 6.6c. These velocity

distributions are the likelihood of a given average velocity over the 0.25 s averaging
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Figure 6.5: A comparison of tracer pathlines in each flow regime as well as for the
tracer’s intrinsic diffusive motion with the cilia turned off. The tracer pathlines are
plotted over a 0.25 s averaging window with the average velocity at that position mapped
to color. Each velocity map is scaled to the maximum velocity below the cilia tips in
order to compare the heterogeneity of the flow below the tips with that above. Also see
Figure 6.6.
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Figure 6.6: (a-b) Comparing tracer velocities (one tracer per color) as functions of
time, above (z = 30 µm) and below (z = 15 µm) the cilia tips, along the axis of
the directed transport as shown in Fig. 6.5a. The cilia beat is switched off at roughly
t = 30 s, allowing the tracers to revert to their intrinsic diffusive motion. The colored,
solid horizontal bars are the corresponding tracer’s average velocity over the duration of
its tracked motion. The directionality and well-defined ensemble average velocity above
the cilia tips is dramatically contrasted by the heterogeneity and lack of an average
directionality in the tracer motion below the cilia tips. (c) The probability distributions
of the average velocities in (a-b), prior to the cilia turning off, as well as for the diffusive
motion shown in Fig. 6.5c. The solid curves are fits to a skew normal distribution, with
the distribution means, standard deviations, and skews given in Table 6.1. However, I
note that in the anomalous transport section I will demonstrate that the flow below the
cilia tips can be fit to a more general class of distribution than I have used here.
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Velocity Distributions: Skew Normal Fit Statistics

Fluid Flow Regime Mean (µm/s) Standard Deviation (µm/s) Skew

Above Tips 6.9 5.2 0.5
Below Tips 1.7 9.7 0.2
Diffusion 0.1 2.2 0.0

Table 6.1: Statistics for the distributions in Figure 6.6c, as fit to equation 5.5. Below
the cilia tips the fluid flow is essentially mean zero with a large standard deviation,
reflective of the heterogeneity of the flow in this regime.

time, or lag time, for all tracers over their entire trajectory (while the cilia are beating).

The total number of counts for the distributions exceed 1000 each. As mentioned,

this quantity of statistically analyzed flow data is substantially larger than previously

published analyses of cilia-driven flow in biological systems.

Einstein showed in his 1905 work that Brownian, diffusive motion of an ensemble of

particles along a single dimension ~x should behave as a collection of random walks such

that the average particle displacement was 〈x〉 = 0, while the probability of a given

position along x as a function of lag time τ should be given by a Gaussian distribution

with mean µ = 0, and a standard deviation σ =
√

2D0τ where D0 is the diffusivity.

This means that the distribution of particle velocities, in a diffusive process, is expected

to have a width given by σ =
√

2D0/τ.

As I explained in Chapter 6, the velocity distributions are potentially skewed about

their means because of a non-constant angular velocity in the cilia’s tilted conical beat.

In that chapter I used the skew normal distribution to fit this data, with the fits

displayed as the solid curves in panel (c). From these fits I can compute the mean,

standard deviation, and skew of each distribution using equations 5.6 with the results

displayed in table 6.1.

As expected for the control data, the diffusive particle motion is mean zero, has

no skew, and has a standard deviation of σ = 2.2 µm/s, which implies a diffusivity of

D0 = σ2τ/2 = 0.6 µm2/s, about 30% different from its expected value of 0.45 µm2/s. The
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flow above the cilia tips does have some skew and a clearly non-zero mean, reflecting

the directional transport, as I discussed in Chapter 5.

The velocity distribution for the flow regime below the cilia tips is clearly much

wider than either the control data or the flow above the cilia tips, demonstrating a

significant heterogeneity in the velocity field. Although particles are seen to regularly

achieve velocities of ±20−30 µm/s, the flow is essentially mean zero, demonstrating that

just 10 µm below the cilia tips the directionality of the large scale flow has been lost.

The distribution below the tips retains a small amount of skew, but otherwise I note

that the distribution appears much like the diffusive velocity distribution, but with a

substantially larger standard deviation. As I mentioned for the first framework I will

use to characterize this data, this suggests that the flow below the tips appears like

a diffusive process with a particle diffusivity that is enhanced relative to its expected,

intrinsic diffusivity. Just with the diffusive data, if the flow below the tips is considered

to be diffusive, then the standard deviation of σ = 9.7 µm/s implies a diffusivity D0 =

11.7 µm2/s, and enhancement of 26 with respect to the expected diffusivity. This simple

estimate will prove to be fairly consistent with a more robust method for determining

the effective diffusivity which I describe below.

To this point, the data I have shown in the flow regime below the cilia tips has

been at a single height, z = 15 µm. The tracer motion is qualitatively similar at

other heights below the tips, except for very near the tips in the transition region

to the directional flow regime. For completeness, Figures 6.7 and 6.8 display tracer

pathlines and velocity time courses, respectively, at a number of other heights below

the cilia tips. The tracer pathlines highlight the dramatic transition from the non-

directional flow over z = 0 − 15 µm to the uniform directionality at z = 25 µm.

The tracers at z = 20 µm represent the transition zone, where tracers typically begin

following tortuous trajectories, but are soon caught up in the directional flow and begin
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moving towards the top of the video frame. The velocity time courses also emphasize

this transition, as below z = 20 µm the lack of directionality is evident, with large

fluctuations in velocity which stem from the heterogeneity in the velocity field. At

z = 20 µm a trend in the average velocity away from zero begins to be seen, while at

the height of the tips the directional flow has set in.

6.2 Flow Below the Cilia Tips is Effectively Diffu-

sive

A fundamental aspect of any process whereby mass is transported in a fluid is to

understand how the displacement scales with time. Of course, the shortest distance

between two points is a straight line, which is the simple way of saying that the most

rapid means to transport a fluid element from one point to another is with a constant

velocity, at least in the absence of turbulence. This type of constant velocity transport,

or ballistic motion, is the result obtained by the double integration of Newton’s Second

Law in a system with zero net force, giving the familiar r = vt. Thus, as we are well

aware, under ballistic motion the net displacement of an object simply scales linearly

with time with a rate given by the constant velocity.

Diffusive processes, on the other hand, produce zero average displacement on the

whole, but do generate an root-mean-square (rms) displacement which Einstein derived

to be given by 〈r〉 =
√

2dD0t where d is the Euclidian dimension and D0 is the mass

diffusivity (Einstein, 1905). Thus, the expected displacement of an object exhibiting

diffusive motion scales with the square root of time, much slower than ballistic motion.

To evaluate the temporal evolution of transport in a given fluid flow a widely used
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z = 1 μm z = 5 μm

z = 10 μm z = 15 μm

z = 20 μm z = 25 μm

20 μm

a b

c d

e f

Figure 6.7: Pathlines of cilia-driven tracers in the flow regime below the tips, at various
heights between the floor and the height of the tips. The crosses mark the start of each
trajectory. Note the scale bar in (b); the width of each video frame is 160 µm. A number
of vortices around beating cilia are evident. At z = 20 µm the flow begins to transition
to the directional transport discussed in Chapter 5, as tracers which initially followed
complicated paths are caught up in the transport and driven out of the video frame.
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Figure 6.8: A comparison of the time courses of tracer velocities (in the direction of the
transport above the tips) for various heights in the flow regime below the tips. The lack
of a directionality is evident until the transition region from z = 20 − 25 µm, while the
velocity fluctuations which imply heterogeneity in the velocity field are most dramatic
near the midpoint of the cilia height, at z = 10 and 15 µm.
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metric is the mean square displacement (MSD) as a function of lag time τ :

〈r2〉 = cτκ. (6.2)

This general form reduces to ballistic motion if κ = 2, in which case c = v2, and reduces

to diffusive motion if κ = 1, in which case c = 2dD0. In addition, phenomena which

inhibit diffusion can lead to 0 < κ < 1, which is referred to as sub-diffusive motion,

while in some cases, such as turbulent flow, processes termed super-diffusive can lead

to 2 < κ ≤ 3.

Briefly I note the important distinction between the use of a lag time τ rather than

the absolute time t. While the MSD as a function of time t behaves the same as using

a lag time τ , the use of τ treats every point in space as if it were the initial location

and calculates the displacement from that point for different lag times. Thus, on a

plot of MSD vs. τ , each data point is a property of the entire trajectory rather than a

representation of any specific moment in absolute time. Typically, MSDs are displayed

on a log-log scale such that the form of equation 6.2 becomes log[〈r2〉] = κlog(τ)+log(c).

Thus, for an isotemporal transport process the slope of the MSD is constant and equal

to κ, while the y-intercept of the curve is a function of the rate of transport c.

To understand the temporal scaling of the fluid flow driven by my biomimetic cilia

arrays the MSD is advantageous because it will easily discriminate between the constant

average velocity motion above the cilia tips and the complex, non-directional flows

below the tips. However, the conventional MSD is a measure of how rapidly in time an

object moves away from its initial location. To address the issue of mixing in biological

ciliated systems, a more useful measure is the scaling law with which objects move

away from each other.

For this reason, in the following analysis I have utilized a technique known as relative

dispersion, which is a metric of how the position of one object changes with lag time
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relative to other moving objects (Artale et al., 1997; LaCasce and Bower, 2000; Babiano

et al., 1990). Conceptually, relative dispersion treats the time course of the separation

of two objects as though it were itself a single object. To provide a sense of these

‘separation trajectories’ Figure 6.9 compares them with the original tracer pathlines for

a single height in each flow regime. Note that n original trajectories leads to
`
n2 − n /́2

separation trajectories. It is immediately clear that the highly directional motion above

the cilia tips is strongly suppressed in the separation trajectories, while below the cilia

tips the trajectories retain the complexity of the originals.

Relative dispersion, which has been most often used to measure atmospheric and

oceanographic tracer transport, still utilizes the MSD to investigate the temporal scal-

ing of the process. However, instead of operating on the displacement x(t) of an in-

dividual object the MSD is calculated for the separation between particles R(t) =

r(2)(t)− r(1)(t). As I demonstrated above, in a highly directional, uniform velocity field

the particle motion does not lead to an increased separation between particles. In other

words, if the flow is truly uniform, then the observation of any increased separation of

between particles will be the result of their intrinsic diffusive motion as represented by

their relative diffusivity DR
0 . Quickly I note that relative dispersion is not the same

technique as two-point microrheology, a similar analysis which looks for correlations in

the motion of pairs of particles which are coupled together by a viscoelastic fluid, such

as the cellular cytoplasm. In my case, the goal of the relative dispersion calculation is

actually to remove correlations due to uniform advection.

Figure 6.10 compares the slopes of linear regressions of the absolute MSD with the

MSD of the relative motion of the same tracers for the two fluid flow regimes. This

comparison provides a sense of the effect of the relative dispersion calculation. The

absolute MSDs are as expected: below the cilia tips the complex nature of the tracer

trajectories leads to a temporal scaling which is between ballistic and diffusive, while
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Figure 6.9: A comparison of the original (absolute) particle trajectories with the ‘sep-
aration trajectories’, in which the separations between all particle pairs are treated as if
they were also trajectories. In the flow regime below the cilia tips the relative trajectories
appear similar to their absolute counterparts, whereas above the cilia tips the directional
fluid flow is absent in the relative separations due to the uniformity of the flow.
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above the cilia tips the uniform directionality and relatively constant tracer speeds

result in a slope which is nearly ballistic. In contrast, for both flow regimes the relative

MSD has a slope of nearly κ = 1. This implies that, although the tracer motion is

cilia-driven and thus largely advective, in both regimes the temporal scaling of the

separation of particles evolves diffusively. This analysis provides the first evidence that

cilia-driven advection can lead to tracer transport which is effectively diffusive. The

importance of this observation is that it implies that beating cilia have the potential to

generate fluidic mixing by enhancing the rate at which particles spread from each other.

However, whether cilia will actually enhance mixing of a species depends on the rate

of cilia-driven transport as embodied in the y-intercept of the linear fits to the MSD,

as well as the size of the particles (which will affect their rate of intrinsic diffusion). I

will return to this discussion briefly.

First I note that, while the primary focus of Figure 6.10 is in the slope, and thus the

temporal scaling of the cilia-driven flow, a brief comparison of the effects of the relative

dispersion calculation on the y-intercept of the MSDs should also be noted. It has been

shown that the difference between the absolute and relative transport rate, which I

will now define as the effective diffusivities Deff and DR
eff , respectively, is a function of

spatiotemporal correlations between tracers (Babiano et al., 1990). Specifically, in the

absence of correlations the relative diffusivity is simply double the absolute diffusivity,

or DR
eff = 2Deff . The presence of correlations has the effect of reducing DR

eff . In

Figure 6.10 the relative dispersion calculation has opposing effects on the y-intercept.

Below the cilia tips the y-intercept of the relative motion is precisely double that of the

absolute motion. In contrast, above the cilia tips the relative motion has a y-intercept

which is significantly less than the absolute motion. This demonstrates the large degree

of correlation between tracer motion above the tips and a lack of correlated motion in

the flow regime below the tips.
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will return to this discussion briefly.

First I note that, while the primary focus of Figure 6.10 is in the slope, and thus

the temporal scaling of the cilia-driven flow, a brief comparison of the effects of the

relative dispersion calculation on the y-intercept of the MSDs should also be noted.

It has been shown that the difference between the absolute and relative transport

rate, which I will now define as the effective diffusivities Deff and DR
eff , respectively,

is a function of spatiotemporal correlations between tracers (?). Specifically, in the

absence of correlations the relative diffusivity is simply double the absolute diffusivity,

or DR
eff = 2Deff . The presence of correlations has the effect of reducing DR

eff . In

Figure 6.10 the relative dispersion calculation has opposing effects on the y-intercept.

Below the cilia tips the y-intercept of the relative motion is precisely double that of the

absolute motion. In contrast, above the cilia tips the relative motion has a y-intercept

which is significantly less than the absolute motion. This demonstrates the large degree

of correlation between tracer motion above the tips and a lack of correlated motion in

the flow regime below the tips.

To address the rate of the effectively diffusive transport driven by the cilia in my

system I performed the relative dispersion calculation on video-tracked tracers at vari-

ous heights above the sample floor. As with the tracer motion shown for the two heights

Slope of Relative vs. Absolute MSDs in Each Flow Regime

Fluid Flow Regime MSD Type MSD Slope (κ)

Below Tips Absolute 1.3± 0.1
Below Tips Relative 1.1± 0.2
Above Tips Absolute 1.86± 0.07
Above Tips Relative 1.07± 0.08

Table 6.2: The value of the slope (κ) of the fits in Figure 6.10 above reveals the temporal
scaling of the MSD. In each flow regime the motion is advective, and if it were constant
velocity would have a slope of 2. However, considering the relative separation between
pairs gives MSDs which scale with a slope of 1, representing a diffusive scaling.
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Figure 6.10: A comparison of the relative and absolute mean-square displacement
(MSD) of ensembles of tracer particles in each flow regime on a log-log scale. The
slope of the MSD characterizes the temporal scaling of the transport, with a slope of
1 indicating that the transport scales diffusively. The slopes of the linear fits are given
below in the table. For each flow regime, the absolute MSDs reflect a process which is
at least partly advective (slopes are greater than 1). However, the relative MSDs each
have a slope of nearly 1, indicating that the relative dispersion of the particles scales
diffusively. Note that in some cases the linear fits do not include the large τ data points,
which due to statistical limitations are more prone to experimental artifacts.
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Figure 6.11: The slopes of the relative MSDs at each height above the sample floor,
as calculated from linear fits to the log of the MSDs as in Figure 6.10. For each height
the slope is approximately 1, indicating that in each flow regime the relative dispersion
scales diffusively. Very close to the floor the slopes are slightly elevated due to the slow
speeds (and thus the smaller displacements) of the tracers.
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To address the rate of the effectively diffusive transport driven by the cilia in my

system I performed the relative dispersion calculation on video-tracked tracers at vari-

ous heights above the sample floor. As with the tracer motion shown for the two heights

in Figure 6.10, the slope of the relative MSDs is approximately κ = 1 at all heights

above the floor, demonstrating that the separation of particles evolves diffusively at all

heights. The measured slopes are displayed in Figure 6.11 along with error bars which

are calculated from the confidence intervals of the linear fits. In almost all cases the

slope of 1 expected for a diffusive process is within the error bars. Below the cilia tips

the slopes are slightly elevated above 1, which is a result of the fact that at small lag

times the motion does evolve advectively. The farther a given tracer is advected by

the cilia, the more the slope moves toward 1 because the tracer samples the flow field

of an increasing number of cilia, which allows the longer time scale motion to appear

effectively diffusive. Very near the floor the slopes are not equal to 1, within error bars,

because the tracer motion is relatively slow and thus the duration of tracks does not

allow the effective diffusivity to become as apparent as those tracers which move more

rapidly, and thus cover more area.

The fact that the majority of these slopes are approximately 1 justifies my definition

of the rate of transport as an effective relative diffusivity, DR
eff . Figure 6.12 displays

DR
eff , which is obtained from the y-intercept of the linear fits to the relative MSD, at

various heights above the floor. As I previously demonstrated, above the cilia tips the

tracer dispersion is precisely that expected for the intrinsic diffusive motion of the trac-

ers. In contrast, below the cilia tips the cilia beat produces a significant enhancement

relative to this intrinsic motion, up to a factor of approximately 25.
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Figure 6.12: The effective relative diffusivity and enhancement as a function of height
above the sample floor. The biomimetic cilia motion produces up to a factor of 25
enhancement with respect to the expected relative diffusivity of 1.8 µm2

s (horizontal ma-
genta line). Above the cilia tips (above the vertical dotted line), the relative diffusivity
rapidly decays back to the expected value. As a check, the expected relative diffusiv-
ity was accurately obtained for diffusing tracers with the biomimetic cilia turned off.
Note that vertical error bars are not shown, but are equal to the depth of focus of the
microscope, which is on the order of 3 µm.
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6.2.1 Size-dependence of the mixing enhancment

As I discussed earlier, a fundamental mechanism to produce fluid mixing is through

the spread of a concentrated species due to diffusion. Thus, the enhancement demon-

strated in Figure 6.12 implies that the cilia beat in my system produces an equivalent

enhancement in the mixing rates of the tracers used in the experiment. However, it

is important to note that this enhancement is a function of size. To explore this rela-

tionship I assume that DR
eff is independent of particle size, or equivalently that it is

solely a property of the velocity field. Under this assumption, the degree to which the

cilia beat enhances mixing is simply the ratio of DR
eff to DR

0 . Using the Stokes-Einstein

equation for a spherical particle (recall that DR
0 = 2D0), the ‘enhancement factor’ for

motion in two-dimensions is then given by

Ef =
3πDR

effηa

kT
. (6.3)

This enhancement factor is essentially a definition of an alternate form of the Péclet

number, the dimensionless ratio of advective to diffusive transport which is a critical

measure of the fluid flow in systems, like the embryonic node, which depend on the

establishment of chemical gradients. Thus, if the enhancement is above 1 than the

cilia-driven, effective diffusivity will dominate transport, while if the enhancement is

less than 1 than the intrinsic diffusive motion is too fast for the particle transport to

be significantly affected by the cilia beat. This enhancement factor is displayed as a

function of particle size in Figure 6.13, demonstrating that the velocity fields generated

in my system will only enhance diffusive mixing down to particle sizes of roughly 10 nm.

This size limit will be important for the biological implications of cilia generated mixing,

as I discuss below. In a biological system a large number of variables, such as cilia beat

shape, beat frequency, cilia density, and fluid rheology, will have an affect on this size
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Figure 6.13: The enhancement factor of the cilia-generated mixing below the tips, as
calculated from equation 6.3. For smaller particles, their intrinsic diffusive motion begins
to dominate the cilia-generated effective diffusivity. Below about 10 nm the intrinsic
diffusivity is faster than the cilia-driven flow, and so mixing will no longer be enhanced
by the cilia beat.

limit and so it is difficult to predict where this limit lies for biological systems. However,

in a study of tracer motion above a field of surface-adhered flagellated bacteria, which

exhibited mixing but no net transport, a similar size limit for flagella-driven mixing

has been observed (Darnton et al., 2004). On the other hand, airway cilia are around

100 times more densely arrayed than in my samples, and so the enhancement could be

more significant in that case.

6.3 Strange Kinetics: Lévy Flights and Chaotic Ad-

vection

The framework of describing cilia-driven fluid flow below the cilia tips by an effective

diffusivity is useful because it is immediately possible to infer how particles of different

sizes will ultimately be transported. However, it is not an exclusive framework with

183



which to describe the particle motion. In this section I turn to a discussion of two other

phenomena which are potentially occurring in cilia-driven fluids flows. These alterna-

tive descriptions of the tracer motion are somewhat more abstract than the effective

diffusivity, but are also a much richer description of behavior in a dynamical system.

Neither phenomena has been previously observed in any ciliated system, biological or

otherwise.

While these two phenomena are distinct, the types of dynamical processes which

can generate these behaviors share common elements. Specifically, they can both be

generated by random processes which have characteristics which are non-Gaussian. The

study of such random variables was begun by Paul Lévy in the 1920s and 1930s, among

others, as an extension of the central-limit theorem to non-Gaussian processes, with

applications from economics to game theory. The development of probability theory

around this time is (rather humorously) reviewed by Le Cam (Le Cam, 1986). The pro-

cesses of interest were those which were scale-invariant. A trajectory in a scale-invariant

process has features at many scales, but the behavior looks self-similar regardless of the

scale. Diffusion is a self-similar process which is often referred to as a random walk.

However, diffusion obeys Gaussian statistics and this type of random walk possesses a

characteristic scale determined by the diffusivity (and thus the standard deviation of

the Gaussian distribution which describes the process). In contrast, an example of a

scale-invariant random walk is one in which the distribution has an infinite variance.

In statistics this means that the second moment of the distribution is an integral which

diverges to infinity. The conventional understanding of the standard deviation (which

is the square root of the variance) as the error expected for a measurement makes an

infinite variance difficult to grasp. For this reason, in the box below I reproduce an

explanation of the St. Petersburg paradox from Shlesinger et al. (1993) to provide an

example of a process with infinite variance.
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The St. Petersburg Paradox. “This classic paradox provides us with a beautiful exam-
ple of a kind of scaling. The problem involves a game of chance. The game is to flip a coin
until a head appears. There is a probability of 1/2 that this occurs on the first flip, and a
probability of 1/2n that the first head appears on the nth flip. Suppose you win 2n coins if
n− 1 tails occur before the first head. Then your expected winnings are

(1× 1/2) + (2× 1/4) +· · ·+ (2n
/2n+1) +· · · =∞ (6.4)

... The question is how many coins a player has to risk (the ante) to play. Ideally, in a fair
game, the ante should be to equal the expected winnings. The banker requires the player
to ante an infinite number of coins because this is his expected loss. The player, however,
favours a small ante because he will only win one coin half of the time, two coins or fewer
with probability 3/4, four coins or fewer with probability 7/8, and so on. The two parties
cannot come to an agreement because they are trying to determine a characteristic scale
from a distribution which does not possess one. An infinite number of possible scales of
winning (in powers of two) enter, but no scale is dominant. The discovery of this paradox
was to cast doubt on the firm mathematical foundations of probability theory. Today, we see
this paradox as a rich example of scaling with all its inherent exponents, fractal dimensions,
and renormalization scaling properties.” (Shlesinger et al., 1993)

Fluid dynamics problems are a particularly interesting version of dynamical systems

because of the fact that the two-dimensional position of an advected particle is one of

the few examples were phase space and real space are equivalent. Given a 2D velocity

field, everything there is to know about a particle can be determined by its position.

In a phase space, structures which are often responsible for anomalous transport are

those which Shlesinger calls ‘sticky’, meaning that they are locations in phase space

in which it is likely for a particle to become trapped for some amount of time before

escaping. This, of course, sounds very much like the descriptions I have given of the

vortical trapping-and-escape of particles around a cilium, and so it is my speculation

that this collection of vortices around each cilium generates particle transport which

has anomalous statistical properties.
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6.3.1 Lévy Flights

To begin I will demonstrate that the tracer motion below the cilia tips exhibit char-

acteristics of Lévy flights, a type of random walk which is different from the Brownian

motion of diffusion. A Lévy flight is simply defined as a random walk in which the size

of the steps (or equivalently the velocities at each step) trends towards a distribution

with infinite variance. The search for distributions with such characteristics led to the

development of the Lévy skew-alpha stable distribution, or just the stable distribution.

This distribution is embodied by the four parameters α, β, γ, and δ. These parameters

determine, respectively, the rate of decay of the distribution tails, the skewness, the

scale (or width), and the location. The distribution function for a stable distribution

is not analytically expressible, and forms a family of distributions with special cases

which are more familiar. Specifically, a Gaussian distribution is equivalent to a stable

distribution which has the parameter α equal to 2 as well as β = 0. The parameter α

is restricted to be in the range 1/2 ≤ α ≤ 2. Most importantly, for any α < 2 the stable

distribution has infinite variance, and so such a process is scale-invariant and can be

called a Lévy flight (Shlesinger et al., 1993).

Stable distributions with infinite variance (α < 2) are also known as ‘heavy-tailed’

distributions. Heavy-tailed distributions have larger probabilities for events to occur at

the largest values in the distribution. Thus, a Lévy flight has rare, but large excursions

from the small steps which are much more likely. In contrast, the peak of the distri-

bution in a Gaussian process can be wider, but the tails of the Gaussian decay much

faster and so diffusive random walks to do not exhibit these large excursions from the

mean. In nature, Lévy flights have been observed in systems in which an organism is

hunting. Whether it be a bacterium’s search for nutrients or a child’s search for a good

hiding spot to play hide-and-seek, the motion consists initially of small steps (as the

child, for example, looks around the local area for a good spot), and then occasional
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large excursions (as the child runs to a new area to search for a better spot). Bacteria

do this in their hunt for nutrients in order to outrun the effects of diffusion. In other

words, if bacteria did not perform Lévy flights then there would be little reason to

move at all, because without the large excursions the bacterium cannot move faster

than diffusion (Berg and Anderson, 1973).

I have previously displayed the velocity distribution of the tracer motion below the

cilia tips, and in that case I fit a skew normal distribution to the data. However, I

now make it clear that this skew normal distribution was really a subset of the stable

distribution, with some skew, and with α = 2. However, the astute reader will notice

that this fit was not a good match for the tails of the distribution. If the skew is fixed

to be zero, then the normal distribution does an even poorer job of describing the data.

In Figure 6.14 I reinforce this notion by plotting a number of velocity distributions

with Gaussian and stable distributions fits to the data. I have plotted two methods of

matching a Gaussian (see caption), and neither fits the data. One method does not

match either the tails or the peak, whereas the second method fits the peak relatively

well, but indicates that the data is heavier-tailed than a Gaussian, an indication that the

particles are undergoing Lévy flights. Finally, another separate method is to only look

at the distribution’s tail asymptotics, as shown in Figure 6.14c. For the family of stable

distributions with α < 2 the rate of decay of the tail should go as x−(1+α) (Shlesinger

et al., 1993).

The long excursions exhibited by a Lévy flight increase the rate at which a species

can explore a given area, which for a passive species is essentially analogous to an

increase in mixing rates. In other words, if biological cilia were to generate particle

motion which was a Lévy flight, then this particle motion would rapidly explore an area

of the environment that would take it much longer to reach by its intrinsic diffusive

motion. As I will discuss, this could have implications for how biochemical signaling
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Figure 6.14: Velocity distributions of the cilia-driven flow exhibit non-Gaussian statis-
tics. In (a) I plot several ways to fit a Gaussian to the distribution. The solid magenta
line is the Gaussian distribution which has the same mean and standard deviation as
the velocity dataset. In contrast, the dotted magenta line is a true fit to the histogram
itself. Both examples show how the velocity distribution is non-Gaussian, and a stable
distribution fit with α = 1.39 matches the data well. Another method for determining α
is the asymptotics of the tails of the distribution, as identified in (B) (I define the tails
to be the point where the probability drops by a factor of 10 from the maximum). In (c)
I have taken both tails and fit them to a power law to determine α separately for each
tail. In each case, α is less than two, indicating the velocity distributions are infinite
variance and thus the particle trajectories are Lévy flights.
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processes might have evolved within ciliated systems.

6.3.2 Chaotic Advection

At the beginning of this chapter I described the importance difference between

stirring and mixing. Stirring produces stretching and folding of a fluid element, which

can dramatically increase the interfacial area between two unmixed fluids. In the

presence of diffusion this increase in interfacial area allows a fully mixed state to be

obtained much more rapidly. At large Reynolds numbers the onset of turbulence allows

stirring processes to generate well-mixed states at all but the smallest scales, but in

laminar flow it was long thought that diffusion would be required to produce full mixing.

However, in the last 25 years a new appreciation has developed for the existence

of rich chaotic behavior even in low Reynolds number fluids. This behavior, known as

chaotic advection or Lagrangian chaos, is a phenomenon whereby relatively simple Eu-

lerian velocity fields can produce particle pathlines which are inherently unpredictable

and, thus, chaotic. Although initially controversial, chaotic advection was established

in the 1980s as an application of dynamical systems and has since been well validated

by theory and experiment (Aref and Balachandar, 1986; Ottino, 1990).

As I mentioned in Chapter 3, a hallmark of chaos is the rapid divergence of closely

spaced particles. Mathematically, chaotic advection requires that an infinitesimally

small separation between particles grow at an exponential rate for a sufficiently long

time. This exponential rate is defined as the Lyapunov exponent

λ = lim
x0→0

1

t
ln

(
x(t)

x0

)
(6.5)

where x0 is the initial separation. More recently, however, the increasingly widespread

use of the Lyapunov exponent as a measure of dispersion in theoretical and experimental
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systems has inspired several more practical forms such as the finite-size Lyapunov

exponent (FSLE) and the finite-time Lyapunov exponent (Kleinfelter et al., 2005).

Another method for treatments of chaotic advection uses the coincidence of phase

space and real space in order to analyze chaotic motion via Poincaré maps. This type

of map describes the equations of motion of a set of particles which are seeded at

initial points within the velocity field. At discrete time intervals each particle’s current

position is mapped to a new position, and many iterations of this produces a map of

locations in phase space which were visited by a particle. In regions where the flow

is not chaotic these mappings are well-behaved and dots can be easily connected to

reveal the streamlines of the flow. In contrast, in other regions these mappings produce

a series of positions which are stochastic and thus chaotic. These stochastic areas

are often bounded by well-behaved streamlines and are thus known as ‘chaotic seas’

(Shlesinger et al., 1993).

The same types of phase space topologies which give rise to Lévy flights can also

produce chaotic advection. Specifically, Poincaré maps reveal that the areas of phase

space which can trap particles are often adjacent to chaotic seas. This implies that, in

close proximity to an area where trapping occurs, particle motion can be chaotic as the

particle traverses the local phase space.

The initial resistance to the notion of chaos at low Reynolds number stems from

the more common connection between chaotic motion and turbulent flow. As turbu-

lence cannot be supported by a low Reynolds number fluid the presence of chaos in

a laminar flow was initially met with controversy. However, simple experiments have

demonstrated that it can actually be difficult to prevent at least a degree of chaotic

motion from occurring in a time-dependent, low Reynolds number flow, even if the

time-dependence is simply periodic.

In addition, relatively recent theoretical work has begun to identify chaos within
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Figure 6.15: A hallmark of chaotic advection is the exponential growth of the separation
between pairs of particles. Below the cilia tips I regularly observe such phenomena, but
it can be difficult to find pairs which can both be tracked for a significant duration after
they begin to separate. In the absence of such data, it is difficult to call a behavior
chaotic. However, I note that the average separation of the three particles below the cilia
tips does indeed give a finite-time Lyapunov exponent which appears to be approaching
a non-zero value as time increases.

the low Reynolds number flows generated by flagella. As the velocity field around a

cilium is certainly time-dependent, it would thus come as some surprise if cilia were not

capable of generating chaotic motion. However, up to now chaos has not been observed

in any ciliated system. Of course, the extent to which the cilia beat can generate chaos

will be strongly-dependent on the interactions between neighboring cilia.

For these reasons, I believe that it is highly likely that cilia generate at least transient

chaotic behavior, and yet I want to be clear that I am not claiming to have successfully

identified chaos in my ciliated systems. In Figure 6.15 I present data analogous to that

of Supatto et al., in that it shows the relatively rapid divergence of nearby tracers.

Furthermore, this divergence does in fact give rise to a finite-time Lyapunov exponent

which is non-zero. However, this by itself is not sufficient proof that the flows are
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chaotic (although it is already more rigorous than the data presented to support the

claims made by Supatto et al.). Instead I display these results as indications of possible

future experiments, as providing the first measurement of chaotic particle motion in a

ciliated system would be another excellent example of the utility of a biomimetic cilia

model. In order to do this would likely require a large number of such initially closely

spaced pairs to be found, as one of the main difficulties in quantifying the chaotic

behavior is that it can be difficult or impossible to follow any single particle for a long

duration in the complicated flows below the cilia tips.

6.4 Implications for Biology

To conclude this thesis, I end this chapter by reviewing the results I have presented

and reiterating the implications of these results for biological ciliated systems. From

a technological point of view, artificial cilia have great promise as responsive nanos-

tructures for manufacturing, sensing, self-cleaning, and myriad other arenas where mi-

croscale manipulation will be required. As I have tried to make clear, however, in some

sense the most interesting application of a truly biomimetic cilium is to attempt to

illuminate issues of relevance for biological systems.

As these biological systems can be difficult to study, the observations and analyses

I have presented constitute some of the most detailed characterizations of cilia-driven

fluid flows in the literature. The discovery of the embryonic node has proven to be a

fertile ground for biomimetic cilia to explore. This system plays a critically important

role in embryological development, and yet little is known about its detailed workings

because of the novelty of the system and the difficulty of experimentation. It has been

appreciated that in order to transduce the physical fluid flow which the cilia drive

into asymmetric chemical expression the node must properly balance the advective and

diffusive transport of the various species in the nodal fluid. Biological experiments
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have been almost exclusively focused on the fluid flow above the cilia tips, in which the

uniform directionality produces a morphogen gradient. My results highlight additional

challenges faced by such a system, namely that the cilia can drive mixing flows below

their tips which could affect the evolution or establishment of a gradient.

One of these main challenges is represented by the Péclet number, which determines

whether the cilia-driven transport is rapid enough to overcome the diffusive transport

that will work to homogenize any molecular gradients. My results show that below the

cilia tips the flow lacks any directionality. Thus, in order to achieve the initial gradient

the morphogens must be able to reach the flow regime above the cilia tips and then be

transported at Pe > 1.

I have previously described how sheathed lipid vesicles are loaded with morphogens,

dynamically extended from the cellular surface by microvilli, and released into the flow

above the tips. After crossing the node the NVPs rupture to release their signaling

cargo. This release generates the initial asymmetric gradient which is transduced into

the left-side signaling cascade. This mechanism addresses both of the initial challenges

which are imposed by the mixing regime below the cilia tips. The extension of the

microvilli into the flow above the tips allows the NVPs to avoid any mixing regime,

while the transportation of the signaling molecules within the much larger vesicle allows

them to cross the node at a higher Péclet number. Thus, the rapid diffusive motion

of the molecules do not affect the distribution of morphogens until after the rupture of

the NVP.

The healthy functioning of this mechanism poses another challenge to the system.

At the time of the discovery of the NVPS, it was also shown that the proper formation

the NVPs and their release from the microvilli required fibroblast growth factor (FGF)

signaling. In contrast to the morphogens for left-side signaling, it is likely that the FGF

signaling efficiency is increased by a uniform distribution of FGF across the nodal floor.
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In this case, it may be that cilia-generated mixing of the FGF may serve to increase

the efficiency of this signaling process.

To reiterate, I am thus suggesting the possibility that signaling processes in cil-

iated systems could take advantage of the differential affects of cilia-driven flows on

morphogens of different sizes. If cilia drive an effectively diffusive flow, then there is

some critical particle size below which the advective flow is unimportant. Above this

size, however, cilia-driven flow could enhance mixing and increase reaction rates, thus

facilitating the signaling process. In the node this might allow FGF to be mixed by

cilia, while smaller morphogens persist in any established gradient until their intrinsic

diffusive motion has had time to homogenize the solution. In the airways, such a system

might affect the way in which the system maintains the airway surface liquid. For ex-

ample, blobs of mucus are released from goblet cells and must somehow join the mucus

layer above the cilia. These mucus blobs are large enough to be mixed in a cilia-driven

flow, and so the transport and distribution of these objects might be determined by

cilia. Finally, chemical gradients have also been shown to be important in oviductal

and ependymal cilia systems, and these systems are even more poorly characterized

than the airway or nodal cilia. In any of these organs it is possible that cilia-driven

mixing has been harnessed in some way which assists the system in its functionality.

Conversely, as with the dynamic launching of the NVPs from microvilli, ciliated sys-

tems may have had to evolve mechanisms which ensured that cilia-driven mixing was

not detrimental to function.

Another nodal cilia issue which has been speculated upon is the intriguing possibility

that sensors on the cilia themselves, either the motile or the immotile class, participate

in the left-side signaling cascade (Cartwright et al., 2007; Hirokawa et al., 2009). This

idea is bolstered by increasing evidence that cilia play a chemosensory role in other

biological systems, such as in the airways were taste receptors have been found on the
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ciliary membrane (Shah et al., 2009). Despite the fact that my results suggest that

the intrinsic diffusive motion of small molecules is likely to dominate their transport

within the node, it is possible that localizing the sensory mechanism on the surface of

cilia compensates for hydrodynamic effects within this regime.

Specifically, as diffusive motion can be significantly inhibited by the presence of

a no-slip boundary, the stirring generated by the cilia could counteract the effects of

the surface to slow down the chemosensory process. Sensors on the cilia themselves

would reduce the surface inhibition of the molecules diffusive motion simply by being

elevated above the planar surface, and the motion of the cilium relative to the fluid

might increase the exposure of receptors on the cilium to morphogens in the solution.

These examples highlight the exciting future for biomimetic cilia system and re-

sponsive microstructures in general. With a robust, well-developed fabrication process,

methodologies for mimicking the beat of biological cilia, and protocols, analysis tech-

niques, and theoretical benchmarks for characterizing cilia-driven fluid flows, the work

I have presented in this thesis will hopefully be of interest to the diverse audience for

which it was written. My experience in the world of biomimetics, one of the increasing

number of fields which requires a highly interdisciplinary, collaborative approach, has

been entirely positive. I have enjoyed the struggles and the successes associated with

building responsive structures at the nanometer scale, and look forward to both my own

next challenge as well as the next generation of exciting results which will be obtained

with biomimetic cilia. Finally, I implore all those who would come after me to remem-

ber a rule which describes many aspects of nanotechnology, but more importantly is

my cardinal rule for successfully fabricating biomimetic cilia: you are only as good as

your best pair of tweezers.
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