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ABSTRACT

William J. Porter III: ASPECTS OF STRONGLY CORRELATED MANY-BODY FERMI SYSTEMS
(Under the direction of Joaqúın E. Drut)

A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-

theoretic observables in systems of interacting fermions, particularly the Rényi entanglement entropies Sn,

even in many cases where the infamous sign problem does not appear. Several methods have been put forward

to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios.

This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an

essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure

in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte

Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for

studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard

model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that

näıve attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic

insights, using intuition derived from the previous method and its successes to construct a simpler, better

behaved, and more elegant algorithm. Using this method, in combination with new identities which allow

us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density ma-

trices, we compute high order Rényi entropies and perform a thorough comparison to this new algorithm’s

predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the

Rényi entropies of degree n = 2, 3, 4, and 5 of three-dimensional, strongly coupled many-fermion systems

in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit

using the algorithms detailed herein. We also detail an exact, few-body projective method which we use to

characterize the entanglement properties of the two-body sector across a broad range of attractive couplings.

In the many-body case, we determine universal scaling properties of this system, and for the two-body case,

we compute the entanglement spectrum exactly, successfully characterizing a vast range of entanglement

behavior across the BCS-BEC crossover.
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and ` = 1), and for Rényi order n = 2. Similar plots are obtained by varying, instead of the
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3.12 Rényi entanglement entropy Sn as a function of x = kFLA for n = 2, 3, 4, 5 (top to bottom).
Monte Carlo results are shown as data points with error bars. The solid lines show the result
of computing Sn using only the lowest entanglement eigenvalue λ1, i.e. the approximation Sn =
n
n−1λ1. Uncertainties appear as shaded regions around the central value. . . . . . . . . . . . . . 81
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CHAPTER 1: Computing the Second Rényi Entropy in a System of Interacting Fermions

Section 1.1: Introduction

Quantum-information and topological aspects of condensed matter physics, broadly defined in order to

include all few- and many-body quantum systems, continue to gain attention from a variety of perspectives,

with the notion of entanglement playing a key role [7, 8, 9]. Topological quantum phase transitions have

been shown to bear a direct connection to the so-called entanglement entropy in both its von Neumann and

Rényi forms, through the entanglement spectrum, and by other information-related quantities [10, 11, 12].

Thus, the computation of Rényi entanglement entropies Sn is currently of great importance to many fields

(see e.g. [13, 14, 15, 16, 17, 18, 19, 20]), and physicists must meet the challenge of doing so in interacting

systems, particularly in strongly coupled and universal regimes.

To meet this challenge, an array of Monte Carlo (MC) methods have recently been developed to compute

Sn (see e.g. [21, 22, 23, 24, 25, 26, 27, 1, 28, 29, 30, 31]). As explained below, one of the essential steps

shared accross many of the underlying formalisms is the replica trick [14], a paradigm which yields most often

an expression for the entropies Sn that naturally appears as a ratio of two partition-function-like objects.

Generally, partition functions themselves are challenging objects to compute from a numerical standpoint:

they typically involve terms that vary on vastly dissimilar numerical scales, a problem that only gets worse

with increasing system size. In the context of stochastic calculations of Sn, it is now understood that this

complication manifests itself as a signal-to-noise problem. The näıve estimation of these partition functions,

followed necessarily by the calculation of their ratio, leads to unmanageable statistical uncertainties that

grow exponentially with the volume of the (sub-)system considered (see e.g. [1, 28, 29] for an explanation).

In this chapter, we present a lattice MC approach for the calculation of the integer-order Rényi entropies

Sn. We use a specific case of one-dimensional spin-1/2 fermions governed by a Hubbard-type Hamiltonian

as an example, which allows us to compare our results with the exact numerical solution as well as with

other extant MC methods, but the technique can be generalized to arbitrary systems, including those with

gauge fields and Fermi-Bose mixtures (as long as the so-called sign problem is absent, as in any other MC

calculation; see e.g. [32, 33, 34]). To highlight the great generality of this approach, we carry out our

calculations using the hybrid Monte Carlo algorithm (HMC) [35, 36] (see [37, 38] for basic introductions to

HMC), which is a staple of lattice QCD. It is essential in non-perturbative studies of gauge theories with

1



dynamical fermions and has been used in a variety of graphene studies [39, 40, 41, 42].

Section 1.2: Formalism

We place the system on a d-dimensional spatial lattice of extent Nx. Since we are utilizing a finite lattice,

the single-particle Hilbert space is of finite extent as well, namely Nd
x . We then follow the formalism of

Ref. [1] in order to facilitate comparison.

The n-th order Rényi entanglement entropy Sn of a sub-system A of a given quantum mechanical system

is defined as

Sn =
1

1− n ln tr(ρ̂nA), (1.1)

where ρ̂A is the reduced density matrix of sub-system A (that is, after the degrees of freedom of the rest of

the system are traced out). Specifically, for a system with density matrix ρ̂, the reduced density matrix is

defined via a partial trace over the Hilbert space corresponding to the complement Ā of our sub-system as

ρ̂A = trĀρ̂. (1.2)

Further details regarding the brute-force evaluation of this partial trace will be provided in later chapters

when the few-body problem is examined in detail. We table these discussions for now.

In Ref. [1], Grover obtained an auxiliary-field path-integral form for ρ̂A. Using this form, he showed

that Sn can be computed using MC methods for a range of systems. We summarize those derivations

below. In auxiliary-field Monte Carlo methods one introduces a Hubbard-Stratonovich (auxiliary) field σ

that decouples the fermion species so that the usual density matrix ρ̂ can be written as a path integral:

ρ̂ =
e−βĤ

Z =

∫
DσP [σ] ρ̂[σ], (1.3)

in terms off a system-dependent normalized probability measure P [σ] determined by the specifics of the

Hamiltonian in question (for more detail, see [32, 33, 34]). In our derivation, the partition function is given

by Z = tr[e−βĤ ], and the operator ρ̂[σ] denotes an auxiliary density matrix corresponding to noninteracting

particles in an external field σ. Analogously, Grover proved that one may rewrite the reduced density matrix

as

ρ̂A =

∫
DσP [σ] ρ̂A[σ], (1.4)
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with

ρ̂A[σ] = CA[σ] exp

−∑
i,j

ĉ†i [ln(G−1
A [σ ]− 1)]ij ĉj

 , (1.5)

and where the functional CA[σ] is defined

CA[σ] = det(1−GA[σ ]). (1.6)

Above, we have used the restricted Green’s function [GA[σ ]]ij , which corresponds to a free single-particle

Green’s function G(i, j) in the background field σ but such that the arguments i, j only take values in the

region A (see Ref. [1] and also Ref. [43, 44, 45], where expressions for the reduced density matrix of free

systems, based on reduced Green’s functions, were obtained first).

Using the above choice of ρ̂A[σ], Grover showed that the expectation of cjc
†
i in the auxiliary free system

correctly reproduces the restricted single-particle Green’s functions, as it is required to do. Therefore, by

linearity, expectation values of observables supported only in the region A are reproduced as well. This

validates the expression on the right-hand side of Eq. (2.4).

Using this expression, taking powers of ρ̂A necessarily results in the appearance of a number of HS fields,

which we collectively denote below as {σ}. A manifestation of the replica trick [14], this approach allows

the trace of the n-th power of ρ̂A in Eq. (2.1) to be recast as a field integral over a product of fermion

determinants that depend on the collection of fields {σ}. Indeed, for a system of 2N -component fermions,

using an auxiliary-field transformation that decouples them, we obtain

exp
(
(1− n)Sn

)
=

∫
D{σ}P [{σ}]Q[{σ}], (1.7)

where the field integration measure, given by

D{σ} =

n∏
k=1

Dσk
Z , (1.8)

is over the n ”replicas” σk of the Hubbard-Stratonovich auxiliary field. We have included the normalization

Z =

∫
Dσ

2N∏
m=1

detUm[σ] (1.9)

in the integration measure to simplify the notation. The seemingly natural probability measure, given by

P [{σ}] =

n∏
k=1

2N∏
m=1

detUm[σk], (1.10)

3



factorizes completely across replicas, and it is therefore blind to correlations associated with quantum entan-

glement. This factorization is the main reason why using P [{σ}] as a MC probability leads to (seemingly)

insurmountable signal-to-noise problems, as shown in Ref. [1]; it is also why we call it näıve (although that

is by no means a judgement of Ref. [1]). In Eq. (2.10), Um[σ] is a matrix which encodes the dynamics of the

m-th component in the system, namely the kinetic energy and the form of the interaction after an auxiliary-

field decomposition; it further encodes the form of the trial ket |Ψ〉 in ground-state projective formulations

(see e.g. Ref. [32, 33, 34]), as we employ in this work. We will take the ket |Ψ〉 to be a Slater determinant.

In finite-temperature approaches, the matrix Um[σ] is obtained by evolving a complete set of single-particle

states in imaginary time.

The factor that introduces the critical contributions to entanglement measures is

Q[{σ}] =

2N∏
m=1

detMm[{σ}], (1.11)

where we abbreviate

Mm[{σ}] ≡
n∏
k=1

(
1−GA,m[σk]

) [
1 +

n∏
k=1

GA,m[σk]

1−GA,m[σk]

]
. (1.12)

In the above equation, we have written GA,m[σk], which is a restricted Green’s function, as previously defined,

but where we now indicate the fermion component m and replica field index k.

The product Q[{σ}] was identified as playing the role of an observable in Ref. [1], which is a natural

interpretation in light of Eq. (2.7), but which we will interpret differently below. Note that, for n = 2,

thankfully, no matrix inversion is required in the calculation of Q[{σ}]; for higher n, however, there is no

obvious way to avoid the inversion of 1−GA,m[σk]. We comment on this in subsequent chapters. Otherwise,

it seems this calculation would require some kind of numerical regularization technique (see Ref. [30, 31]) to

avoid singularities in GA,m[σk], whose eigenvalues can be close to zero and unity.

In zero-temperature paradigms, the extent of Um[σ] is given by the number of particles of the m-th

species present in the system. In finite-temperature approaches, the size is that of the whole single-particle

Hilbert space (i.e. the size of the lattice, as mentioned earlier). The size of GA,m[σk], on the other hand,

is always given by the number of lattice sites enclosed by the region A. Note that, separating a factor of

Zn in the denominator of Eq. (2.7), an explicit form can be identified in the numerator as the result of the

so-called replica trick [14] (namely a partition function for n copies of the system, ”glued” together in the

region A).
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Section 1.3: Our proposed method

By analogy to the right side of Eq. (2.7), we define an auxiliary parameter 0 ≤ λ ≤ 1 and introduce a

function Γ(λ; g) as

Γ(λ; g) ≡
∫
D{σ}P [{σ}] Q[{σ};λ], (1.13)

where we have augmented the dependence of Q[{σ}] on the coupling g by replacing

g → λ2g, (1.14)

which defines Q[{σ};λ]. From this definition, it follows immediately that Γ(λ; g) satisfies two pivotal con-

straints, each of which with different nontrivial physical significance: For λ = 0, we see

1

1− n ln Γ(0; g) = S(0)
n , (1.15)

where S
(0)
n is the entropy of a noninteracting system, that is, one where g → 0. To wit, at λ = 0 the

functional Q[{σ};λ] does not depend on the auxiliary fields {σ} and factors completely from the integral.

Ergo, independent of the numerical value of g, the function Γ(0; g) corresponds to the Rényi entropy of a free

system, which can be computed trivially within the present formalism, although in the prototype calculations

that follow, we make use of Grover’s original formalism for simplicity. Indeed, in the free case the lack of

fluctuation in the auxiliary field implies that there is no path integral when interactions are turned off, such

that the noninteracting result can be computed with a single Monte Carlo sample using the formalism by

Grover mentioned above. It is worth mention that the Rényi entropy of a noninteracting system has received

substantial attention in the recent few years, with specific techniques developed for their study and specific,

and interesting, results arising therefrom. A lot is known about these quantities for a variety of systems, in

particular in connection with area laws, modified area laws, and their violation [2, 3, 46, 4, 6].

For λ = 1, on the other hand, Γ(λ; g) corresponds to the Rényi entanglement entropy of the fully

interacting system:

1

1− n ln Γ(1; g) = Sn. (1.16)

Therefore, both of these reference points are physically relevant, one of them is relatively straight-forward

to compute, and obtaining the other reference point is our objective in this chapter.

Using Eq. (3.84),

∂ ln Γ

∂λ
=

∫
D{σ}P̃ [{σ};λ] Q̃[{σ};λ] (1.17)
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where

P̃ [{σ};λ] =
1

Γ(λ; g)
P [{σ}] Q[{σ};λ], (1.18)

and

Q̃[{σ};λ] =

2N∑
m=1

tr

[
M−1
m,λ[{σ}]

∂Mm,λ[{σ}]
∂λ

]
. (1.19)

It is important that any dependence on the auxiliary parameter λ appears only in the matrix Mn. It is in

this way that we include the entanglement correlations in the MC sampling algorithm, which is to be done

using P̃ [{σ};λ] as the probability measure. When considering an even number of flavors 2N , and when

the interactions are not repulsive, det2N U [σ] and Q[{σ}, λ] are real and positive semidefinite for any real

σ. This nonnegativity means that there is no sign problem, and P̃ [{σ};λ] above is useful as a normalized,

well-defined probability distribution.

More specifically, the method presented in this chapter to compute Sn is to take the free λ = 0 point as

a reference and calculate Sn by integration using

Sn = S(0)
n +

1

1− n

∫ 1

0

dλ 〈Q̃[{σ};λ]〉, (1.20)

where

〈X〉 =

∫
D{σ}P̃ [{σ};λ] X[{σ}]. (1.21)

Another way, we obtained an integral form of the interacting Rényi entanglement entropy that can be

calculated using any of a great variety of MC methods, in particular the hybrid Monte Carlo algorithm

(HMC) [35, 36]. The latter combines molecular dynamics (MD) of the auxiliary fields (defining a fictitious

auxiliary conjugate momentum independent of the auxiliary fields) with the Metropolis-type accept-reject

step. This combination enables simultaneous global updates of all n of the auxiliary fields {σ}. As is well

known in the lattice QCD community, HMC is an exceptionally efficient sampling strategy, particularly

when gauge fields are required (see e.g. [35, 36, 32, 33, 34]). The integration of the MD equations of motion

requires the calculation of the MD force, which is given by the functional derivative of the augmented measure

P̃ [{σ};λ] with respect to the fields {σ}, and can be calculated directly from Eq. (3.88).

The method described above is akin to the so-called coupling-constant integration approach of many-

body physics, particularly finite-temperature, grand-canonical formulations, but it is significantly different

in that we have strategically introduced the λ dependence only in the entanglement-sensitive determinant

Q[{σ};λ] of Eq. (2.11).

Equation (3.89) is our first main result and defines this version of the method. An essential point
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is that the expectation that appears above is taken with respect to the augmented probability measure

P̃ [{σ};λ] , which includes the correlations that account for quantum entanglement. In contrast to the näıve

MC probability P [{σ}], which corresponds to statistically independent replicas of the auxiliary field, this

measure does not display the factorization responsible for the signal-to-noise problem afflicting previous work

mentioned above.

In practice, using Eq. (3.89) requires MC calculations to evaluate 〈Q̃[{σ};λ]〉 stochastically as a function

of the parameter λ, followed by numerical integration over this parameter. We find that 〈Q̃[{σ};λ]〉 is a

surprisingly smooth function of λ that vanishes gradually at λ = 0 and displays most of its features close to

λ = 1 (further details below). We therefore carry out the numerical integration using the Gauss-Legendre

quadrature method [47] in an effort to sample it efficiently. It should also be pointed out that the stochastic

evaluation of 〈Q̃[{σ};λ]〉, for fixed subregion A, can be expected to feature roughly symmetric fluctuations

about its mean value. Therefore, after integration over the parameter λ, the statistical effects on the entropy

are reduced (as we show empirically in the Results section of this chapter).

A few comments are necessary at this point regarding the auxiliary parameter. First, we could have

performed the replacement g → λ2g everywhere, i.e. not only in Q but also in P (including its normalization

Z). This global replacement would have led to three terms in the derivative of PQ with respect to λ,

two of which would come from P (recall P is normalized) and feature different signs and a rather indirect

connection to Sn (recall P factorizes across replicas). Our approach avoids this superfluous difficulty by

focusing solely on the entanglement portion of the integrand (i.e. Q). Additionally, we could have used

a power λx of the auxiliary parameter rather than its square λ2, where x does not have to be an integer

(although it would be rather inconvenient to make it less than 1). This is indeed a possibility, and it allows

for further optimization than pursued here. In what remains of this chapter, we set x = 2, as above. Finally,

the calculations required for different values of λ are completely independent from one another with likely

unrelated probability measures governing their evaluation. These calculations can therefore be performed

wholly in parallel with essentially perfect scaling (up to the computationally negligible final data gathering

and quadrature).

Section 1.4: Relation to other methods

Our formulation is quite similar to the temperature-integration method of Ref. [21, 22, 23, 24], but it is

much closer in its formulation to the ratio trick (and similar schemes) of Refs. [25, 29]. As discussed above,
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the calculation begins from the replica trick originally introduced by Calabrese and Cardy [14], i.e.

exp((1− n)Sn) =
ZA,n
Zn , (1.22)

where ZA,n is the partition function of n replicas of the system ”glued” together across the quantum numbers

A. Usually, ZA,n and Zn can be grossly different from each other in scale, especially if Sn is large (as is usually

the case for large sub-system sizes). As a result, calculating the partition functions given above separately

(and stochastically) and attempting afterward to evaluate the ratio of the two is very likely to yield a large

statistical uncertainty resulting in a significant signal-to-noise problem. Hope of circumventing this problem

is can be derived from the use of the ratio (or increment) trick, whereby one introduces auxiliary ratios of

the partition function corresponding to systems whose configuration spaces are only marginally dissimilar.

In other words, one uses

exp((1−n)Sn) =
ZA,n
Zn =

ZA,n
ZA−1,n

ZA−1,n

ZA−2,n

· · · Z2,n

Z1,n

Z1,n

Zn , (1.23)

where the intermediate ratios ZA−i,n/ZA−i−1,n are chosen to correspond to subsystems of similar size and

shape (e.g. such that their linear dimension differs by one lattice spacing). In this way, each of the auxiliary

ratios can be expected to not differ significantly from unity, and with enough intermediate ratios, calculations

can be carried out in a stable fashion at the price of calculating a potentially large number of ratios.

In the method we detail here, the auxiliary parameter λ is analogous to the varying region size A of the

ratio trick. Using Eq. (3.89), we may write

exp
(

(1−n)(Sn − S(0)
n )
)

=

1∏
λ=0

exp
(

∆λ 〈Q̃[{σ};λ]〉
)
, (1.24)

where any discretization ∆λ of the exponent inside the product yields an acceptable (similar) telescoping

sequence of ratios as in Eq. (1.23). So long as 〈Q̃[{σ};λ]〉 is regular in λ, which we find to be the case in all

work performed, our auxiliary factors can be made to be arbitrarily close to unity at the cost of (at most)

linear scaling in computation time.

Section 1.5: Results

We test this first algorithm by calculating the second Rényi entropy S2 for a family of ten-site, one-

dimensional Hubbard models at half filling with periodic boundary conditions in space. The Hamiltonian
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operator we simulate is

Ĥ = −t
∑
s,〈ij〉

(
ĉ†i,sĉj,s + ĉ†j,sĉi,s

)
+ U

∑
i

n̂i↑n̂i↓, (1.25)

where in the above the first sum includes our two distinct fermion species s =↑, ↓ and all pairs of nearest-

neighbor sites. We implemented a symmetric (second order) Trotter-Suzuki factorization of the original

canonical Boltzmann weight, with an imaginary-time discretization parameter τ = 0.05 (in lattice units).

The full extent of the imaginary-time axis was at its largest β = 5 (that is, we had 100 imaginary-time

lattice sites). The factor in the Trotter-Suzuki decomposition that contains the interaction was addressed,

as anticipated in a previous discussion, by introducing a replica HS variable σ for each power of the reduced

density matrix ρ̂A. This insertion was accomplished by an auxiliary-field transformation. We selected

a version of this transformation based around a continuous field with a convenient, compact range (see

Ref. [32, 33, 34]).

Figure 1.1 shows the MC average 〈Q̃[{σ};λ]〉 as a function of not only the auxiliary parameter λ but

also of the subregion size LA for four values of the Hubbard coupling U/t. We emphasize that surfaces

corresponding to weak couplings demonstrate significantly less fluctuation along both axes than do their

strongly interacting analogues. This uniformity suggests that for weakly coupled systems, even at large LA,

a coarse λ discretization may yield accurate estimates of Sn. Conversely, strongly coupled systems are, not

unexpectedly, more computationally demanding.

For smaller subsystems, the majority of the deviation from the noninteracting entropy is accumulated

at large λ, on top of an already relatively small amount of variation, and this accumulation appears with

almost entirely uniform signature. Much to the contrary, for the larger subsystems, intermediate values of

λ correspond to a region of parameter space that contributes opposite-sign corrections to the entropy. This

difference yields increasing uncertainty as a function of the subsystem size due to the required cancellations

which must, for this system, guarantee that the entropy vanishes when the subregion is taken to the be the

entire system. This interesting effect is most clearly visible for the curve corresponding to the case where,

again, the subregion constitutes the entire system. In this case, S2 is zero, for several reasons, regardless of

the value of the coupling, which implies that the integral over λ must be identically zero. This vanishing

happens by a precise cancelation that must be faithfully captured by the numerical integration procedure.

Given that the features of 〈Q̃[{σ};λ]〉 are most greatly represented in 0.5 < λ < 1, we chose a Gauss-Legendre

quadrature method to carry out the numerical integral in a precise and efficient way. With Nλ = 20 points in

the integration domain [0, 1] (i.e. 40 points in the extended defining interval [−1, 1] using an even extension

of the integrand), we see that, for the parameter values used here, the systematic effects associated with λ

are contained within the statistical uncertainty, as required.
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Figure 1.1: HMC results for the source (integrand) with U/t = 0.5, 1.0, 2.0, and 4.0 (from bottom to top at
λ = 1) as functions of the auxiliary parameter λ and of the region size LA, for a system of size Nx = 10 sites.

Our experience with this method, and this system in particular, indicates that the features we have

observed in studying the source 〈Q̃[{σ};λ]〉 are quite generic: they fluctuate in amplitude with the coupling,

but their qualitative features are largely insensitive to the overall system size, and they generally behave

in a surprisingly benign way as a function of λ and the sub-system size, so long as the sampling routine

is sufficiently robust. Hence, the auxiliary parameter integration does not contribute to the scaling of the

computation time versus system size beyond a manageable prefactor. We present our results upon integrating

over λ as detailed above in the section that follows.

1.5.1: Comparison with exact diagonalization results and a look at statistical effects

In Fig. 1.2, we depict results for a system of size L = Nx`, with Nx = 10 sites and a lattice spacing of

` = 1 as in conventional Hubbard-model studies. These calculations include couplings U/t = 0.5, 1, 2, and

4, and subsystems of sizes LA = 1 − 10. We compare our results to the results given in Ref. [1], and the

agreement we find is quite good.

In order to understand the magnitude of the statistical effects, below, we demonstrate how the averages of

interest vary with the number of MC samples in Fig. 1.3. In Fig. 1.3 we see that the total number of samples

collected was well beyond what was needed in order to resolve the average: half as many would have already
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Figure 1.2: Our results for the ten-site Hubbard model with couplings of U/t = 0.5, 1.0, 2.0, and 4.0
(unbroken lines from top to bottom). Results for the noninteracting U/t = 0 case are shown using a dashed
line. Hybrid Monte Carlo results, with numerical uncertainties for 7,500 decorrelated samples, are indicated
by the center of their associated statistical error bars. Exact-diagonalization results from Ref. [1] are shown
with lines, with the exception of the U/t = 4.0 case, where the lines join the central values of our results and
are provided to guide the eye.

given exceptional results. These figures show that, by including the entanglement-sensitive factor into the

probability measure itself, our approach circumvents the devastating signal-to-noise problem mentioned in

the introduction, making the sampling procedure enormously more efficient and the calculation manageable.

Below we elaborate more explicitly on statistical effects and on this noise problem, and we include concrete

numerical examples of how it arises in calculations.

In Fig. 1.4, we illustrate the overall statistical uncertainty ∆S2 in our estimates of the entropy S2 as a

function of the number of decorrelated HMC samples Ns, for the coupling strengths and subsystem sizes we

studied above. ∆S2 was computed by using the envelope determined by the MC statistical uncertainties in

〈Q̃[{σ};λ]〉 as a function of λ. While the statistical uncertainty ∆S2 grows as expected with the sub-system

size, its familiar N
1/2
s scaling remains constant as the number of samples is increased.
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1.5.2: Comparison with näıve free-fermion decomposition method

Figure 1.5 depicts again the results for our half-filled, ten-site Hubbard model using 7,500 decorrelated

samples for each value of the parameter λ, and this time, it offers a comparison with the näıve free-fermion

decomposition method using a comparable 75,000 samples. Such an increased number of samples for the

näıve method was selected to offer a more balanced comparison with our method, as the latter technique

requires a MC calculation for each value of λ, but those calculations are independent. We used 20 λ points

but, as explained in more detail below, roughly half of the λ points require only a small number of samples

to achieve reasonable accuracy and precision.

Often, the statistical uncertainties associated with the näıve calculation do not contain the expected

values for the entropy. This disagreement is symptomatic of an ”overlap” problem, a situation where the

probability measure used bears little to no correlation with the observable of interest, as already mentioned

once above (see also Ref. [48]). This situation is the same as the signal-to-noise problem referred to in

preceding discussions.

To illustrate this issue more precisely, we show in Fig. 2.1 a histogram of Q[{σ}] [see Eq. (2.7)] for coupling

U/t = 2.0 and system size LA/L = 0.8. Even after using a logarithmic vertical scale, the distribution of

Q[{σ}] displays an extended tail that survives across numerous orders of magnitude. We find that the

distribution is approximately of the log-normal type (that is, its logarithm is approximately distributed as

a gaussian, as shown in the inset of Fig. 2.1); this situation presents a great challenge when the average of

Q[{σ}] must be determined with good precision by means of implementing the free-fermion decomposition of

Ref. [1] in its purest form. Additionally, we further expect these features to worsen quickly in larger systems,

especially in higher dimensions and at stronger couplings, as the matrices involved become more and more

ill-conditioned and the scaling of the entropy, as seen in free systems, shifts toward more and more potent

divergences of the power-law variety.

We emphasize that it is the logarithm of the average of Q[{σ}] that determines the quantities of interest,

a quantity which could then be obtained by means of the cumulant expansion; however, it is a priori entirely

unknown whether such an expansion would converge if it can even be carried out, as there is no knowledge

of to what extent the qualities of this distribution deviate from gaussianity.

The log-normality referred to above has often been associated with the HS-field representation of the

interaction. In such background fields σ, the orbitals of the trial wavefunction diffuse much like electrons in

a disordered medium, and the stronger the interaction (or the lower the temperature) the heavier the tail

becomes in the distribution of Q[{σ}]. This interesting effect was observed relatively recently in Ref. [48],

and it appears to be quite ubiquitous. It was then shown, phenomenologically, that many signal-to-noise
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problems are characterized by the heavy tail of a lognormal distribution (see also, Ref. [49]), and in some

cases this behavior has been exploited to provide physical insights.

1.5.3: Statistical behavior as a function of coupling, region size, and auxiliary parameter

In Fig. 1.7 we give the statistical distribution of our results for the λ derivative for several values of

the coupling. These distributions are in most cases approximately gaussian (that is, their tails decay faster

than linearly in a log scale), except for the strongest coupling we studied U/t = 4.0 where, not entirely

unexpectedly, the distribution becomes more asymmetric and develops extended tails relative to its weaker-

coupling analogues.

In Fig. 1.8 we show the distribution of our results for the λ derivative at fixed sub-system size and

coupling strength, but we vary λ. As stated previously, the parameterization we chose requires considerably

fewer decorrelated MC samples at lower λ than at higher λ, as the width of the distributions is much smaller

for the former than it is for the latter.

Lastly, in Fig. 1.9 we illustrate the same distribution as above, but as a function of sub-system size. As

anticipated, larger subregions are more challenging, but the overall shape of the distributions is very well

controlled: it remains close to gaussian in that its tails decay faster than linearly in a log scale, a significant

improvement over the distributions shown earlier.

Section 1.6: Summary and Conclusions

In this chapter, we have described an alternative MC approach to the calculation of the Rényi entangle-

ment entropy of many-fermion systems. A central component of this method is to compute the derivative

of the entanglement entropy with respect to an auxiliary parameter and integrate afterwards to compute

the difference between the interacting and non-interacting entropies. We have demonstrated that such a

derivative can be calculated through a MC method without the previously observed signal-to-noise issues,

as the resulting expression yields a probability measure that does not factor across replicas and accounts for

entanglement-sensitive correlations in the MC sampling procedure in an efficient, natural way. The required

numerical integration can be carried out by any of numerous well-known methods, and in the present case,

we computed the required quadratures by means of the Gauss-Legendre rule.

As a test case, we have detailed calculations for the second Rényi entanglement entropy S2 for a one-

dimensional, half-filled Hubbard Hamiltonian for several coupling strengths and compared with values ob-

tained via exact methods. Our calculations show that the statistical uncertainties are very well controlled, as

we have shown in numerous plots and histograms. Even though we have not run into numerical stability is-
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sues in our tests, we anticipate that those may indeed appear in the manifestation mentioned in Ref. [30, 31].

Our formulation is just as general as the technique proposed in Ref. [1]. Specifically, this chapter’s contents

can be generalized straightforwardly to finite-temperature algorithms as well as to relativistic systems, in

particular those with gauge fields such as QED and QCD, or any other non-Abelian SU(N) gauge theory,

systems which have seen enormous success as a result techniques utilized in this chapter.
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Figure 1.3: Second Rényi entropy (in units of the noninteracting value) as a function of the number of
samples Ns for coupling strengths U/t = 0.5, 2.0, and 4.0 shown from top to bottom. Within the first few
thousand samples, we observe that the results have stabilized comfortably to within 1-2%.
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of λ) compared with results from the näıve free-fermion decomposition method (crosses paired with dashed
error bars) with 75,000 decorrelated samples.
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Figure 1.6: The distribution of the natural observable Q[{σ}] of the näıve free-fermion decomposition method
[implemented via Eq. (2.7)] for coupling U/t = 2.0 and sub-system size LA/L = 0.8. We emphasize that the
quantity Q[{σ}] is a non-negative one. The extended tail (main plot; note logarithmic scale in vertical axis)
extends well beyond the range we have shown, and we find that it is approximately a log-normal distribution,
i.e. the quantity lnQ[{σ}] is distributed roughly as a gaussian (inset).
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Figure 1.7: A histogram showing the distribution of our results for the derivative dS2/dλ for system size
LA/L = 0.8, auxiliary parameter λ ' 0.83, and Hubbard couplings U/t = 0.5, 1.0, 2.0, 4.0. The results for
different couplings have been offset relative to their true center for display purposes, but the scale is the same
for each of them. This figure illustrates that, even though our method addresses the original signal-to-noise
issue, strong couplings remain more challenging that weak couplings for reasons common to calculations of
this type.

19



λ = 0.225

λ = 0.369

λ = 0.833

λ = 0.991

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

           

Figure 1.8: Histogram showing the statistical distribution of our results for the derivative dS2/dλ for system
size LA/L = 0.8, auxiliary parameter λ ' 0.225, 0.369, 0.833, 0.991, and coupling strength U/t = 2.0. Our
results for different coupling strengths have been offset for display purposes, but the scale remains the same
for each of them. This figure illustrates that lower values of λ require fewer decorrelated MC samples than
larger ones in order to determine 〈Q̃[{σ};λ]〉 with acceptable precision.
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Figure 1.9: A histogram showing the distribution of our results for the derivative dS2/dλ for regions of size
LA/L =0.1, 0.3, 0.5, 0.8, auxiliary parameters of λ ' 0.83, and a coupling strength of U/t = 2.0. The results
for different interaction strengths have been offset for display purposes, but the scale is the same for each of
them.
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CHAPTER 2: Higher Order Entropies and a More Stable Algorithm

Section 2.1: Introduction

In the previous chapter, we detailed an algorithm to calculate the Rényi entanglement entropies Sn of

interacting fermion models. Numerous other algorithms have been proposed during the last few years to this

effect [16, 21, 22, 24, 25, 26, 28, 29, 27]. This chapter’s method, based on Grover’s free-fermion decomposition

formalism given originally in our Ref. [1], alleviates the signal-to-noise problem present in that algorithm,

and our second method is also compatible with the hybrid Monte Carlo (HMC) workhorse [37, 38, 35, 36]

extensively utilized in the context of lattice quantum chromodynamics (QCD) and other gauge-field-based

simulations. The central point of the last chapter’s method is that, by differentiating with respect to an

auxiliary parameter λ, one may carry out a Monte Carlo (MC) calculation of dSn/dλ with a probability

measure that includes entanglement-sensitive correlations explicitly. [This circumvention was certainly not

the case in the approach of Ref. [1], where the probability measure factored completely across the multiple

auxiliary field replicas; we identified this factorization as the primary cause of this particular, and particularly

devastating, signal-to-noise problem (see discussion that follows)]. After the MC calculation is complete,

(numerical) integration with respect to the auxiliary parameter λ returns the desired Rényi entanglement

entropy relative to that of a noninteracting system (which is easily computed separately); that is, it returns

the contribution to the Rényi entropies coming from the presence of the interactions.

In the present chapter, we detail and benchmark an important improvement upon that Monte Carlo

algorithm which, while sharing the properties and central philosophy summarized above, differs from it in

two critical regards. Firstly, this chapter’s MC method takes advantage of the approximately lognormal

characteristics of the underlying statistical distributions of the canonical fermion determinants, which we

studied in some detail in the previous chapter, and which we explain in greater detail in the discussion

that follows. Additionally, and more importantly, this chapter’s algorithm is enormously simpler than its

predecessor. While in the latter method the auxiliary parameter λ scaled the coupling constant g (thereby

generating a rather involved set of terms upon functional differentiation of the fermion determinant), here

the parameter λ is coupled to the number of distinct fermion flavors Nf in a much more accessible way.

As we demonstrate in this chapter, our choice not only simplifies the formalism and implementation, but it

also highlights the central role of the logarithm of the fermion determinant in our calculation of the Rényi
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entropies Sn, and thus brings to the forefront the approximate lognormality property which was mentioned

above.

In what follows, we present our basic formalism, review our evidence for approximately lognormal dis-

tributions, and explain our method. In addition to the points mentioned above, in our computations we

have found the present method to be much more numerically stable than its predecessor in the sense that it

functions more smoothly with more lenient MC input parameters. We explain this in detail in this chapter’s

Results section.

In addition to the new, more elegant method, we demonstrate that it is possible to rewrite part of the

formalism in order to bypass the calculation of inverses of the restricted density matrix (see e.g. [28, 29]) in

the determination of Rényi entropies of order n > 2, a problem highlighted in the literature and one which

causes great difficulty in the computation of higher order entropies. To test our method, we computed the

n = 2 Rényi entropy of the attractive one-dimensional Hubbard model using the previous formalism as well

as the new formalism and we checked that we obtained identical results. In going further than the n = 2

case, we present results for the n = 2, 3, 4, . . . , 10 Rényi entropies, and we see that higher Rényi entropies

display reduced statistical uncertainty in MC calculations. Finally, we attempt an extrapolation to large

and small Rényi orders.

Section 2.2: Basic formalism

As in the previous chapter, we quickly set the stage by presenting the formalism of Grover’s method

originally put forward in Ref. [1]. The n-th Rényi entropy Sn of a sub-system A of a given model is given by

Sn =
1

1− n ln tr(ρ̂nA), (2.1)

where ρ̂A is the reduced density matrix of the sub-system A. For a system with canonical density matrix

ρ̂, the reduced density matrix is defined via a partial trace over the Hilbert space corresponding to the

complement Ā of our sub-system in the full set of quantum numbers:

ρ̂A = trĀρ̂. (2.2)

A convenient auxiliary-field path-integral form for ρ̂A, from which Sn can be computed using a number of

MC methods for a wide variety of systems, was presented originally in Ref. [1], which we briefly summarize

next for clarity and in an effort to ensure that this chapter is as self-contained as possible.

As is well known from conventional many-body formalism, the full density operator ρ̂ can be cast as a
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field integral by means of a Hubbard-Stratonovich (HS) auxiliary-field transformation:

ρ̂ =
e−βĤ

Z =

∫
DσP [σ] ρ̂[σ], (2.3)

for a normalized probability measure P [σ] determined by the details of the underlying model’s Hamiltonian

(for more detail, see below and also Ref. [32, 33, 34]). In the above expression, Z is the partition function,

and ρ̂[σ] is the density matrix of a system of noninteracting fermions in the fixed external auxiliary field σ.

One of the central advances of Ref. [1] was to demonstrate that this decomposition determines not only the

full density matrix but also the restricted one and, crucially, all associated one-body correlations. Indeed,

Ref. [1] shows that

ρ̂A =

∫
DσP [σ] ρ̂A[σ], (2.4)

where P [σ] is the same probability used in Eq. (2.3),

ρ̂A[σ] = CA[σ] exp

−∑
i,j

ĉ†i [ln(G−1
A [σ ]− 1)]ij ĉj

 , (2.5)

and

CA[σ] = det(1−GA[σ ]). (2.6)

In the above, we denote by GA[σ ] the restricted Green’s function of the free system in the external

background field σ (see below), and ĉ†, ĉ are the fermion creation and annihilation operators. The sums in

the exponent of Eq. (2.5) range over those points in the system which belong to the subsystem A.

By using the above formalism for the case of 2N -component fermions, the Rényi entropy (c.f. Eq. 2.1)

becomes

exp
(
(1− n)Sn

)
=

∫
D{σ}P [{σ}]Q[{σ}], (2.7)

where the field integration measure, given by

D{σ} =

n∏
k=1

Dσk
Z , (2.8)

is over the n ”replicas” σk of the auxiliary field which result from taking the n-th power of the path integral
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representation of ρ̂A shown above, and the normalization

Z =

∫
Dσ

2N∏
m=1

detUm[σ] (2.9)

was included in the measure. It is worth explicitly mentioning that, by separating out a factor of Zn in the

denominator of Eq. (2.7), an explicit form can be identified in the numerator as in the replica trick [14],

which corresponds to a ”replica” partition function for n copies of the system, ”glued” together in the region

A as a result of the particular structure of the matrix product and partial trace.

The näıve probability measure, namely

P [{σ}] =
n∏
k=1

2N∏
m=1

detUm[σk], (2.10)

factorizes completely across replicas, which makes it largely insensitive to entanglement-oriented correlations.

This factorization is the central reason why using P [{σ}] as the MC probability leads to signal-to-noise

problem (see Ref. [1]). In Eq. (2.10), Um[σ] encodes the dynamics of the m-th fermion species, including the

kinetic energy and the form of the interaction after a Hubbard-Stratonovich transformation. This matrix

also encodes the form of the trial state |Ψ〉 in imaginary-time-projective, ground-state approaches (see e.g.

Ref. [32, 33, 34]), a version of which we use here; in what follows, we have taken |Ψ〉 to be a Slater determinant

of single-particle orbitals. In finite-temperature approaches, Um[σ] is obtained by evolving a complete set of

single-particle states in imaginary time.

The quantity that contains the critical input to the entanglement entropy is the determinant

Q[{σ}] =

2N∏
m=1

detMm[{σ}], (2.11)

which we refer to below as the ”entanglement determinant,” and where the matrix Mm[{σ}] is given by

Mm[{σ}] ≡
n∏
k=1

(
1−GA,m[σk]

)
×
[

1 +

n∏
l=1

GA,m[σl]

1−GA,m[σl]

]
. (2.12)

The quantityQ[{σ}] assumed the role of an observable in Ref. [1], which is a natural interpretation considering

Eq. (2.7). Nevertheless, we will interpret this product differently in the discussion below. Besides the replica

fields, the new component in the determination of Sn is again the restricted Green’s function GA,m[σk]. This

quantity is the same as the free one-body density matrix G(x, x′) of the m-th fermion species in the external

potential σk, but the spatial arguments x, x′ are restricted to the region A and the operator’s size is reduced
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to match (see Ref. [1] and also Ref. [43, 44, 45], where expressions were originally derived for the reduced

density matrix of noninteracting systems, based on reduced Green’s functions).

Section 2.3: Avoiding inversion of the reduced Green’s function for n > 2

Addressed explicitly in Ref. [30, 31], for n = 2, no inversion of the difference 1 − GA,m[σk] is actually

required in the calculation of the entanglement determinant Q[{σ}], as straightforward calculation immedi-

ately confirms that the equations simplify in that case. However, for higher n it is not at all obvious how to

avoid such an inversion or if it can be avoided at all. Below, we demonstrate that this calculation can indeed

be accomplished without performing this troublesome inversion. We begin by factoring the entanglement

determinant such that

detMm[{σ}] = detLm[{σ}]detKm[{σ}], (2.13)

where Lm[{σ}] is a block diagonal matrix (one block per replica k):

Lm[{σ}] ≡ diag
[
1−GA,m[σk]

]
, (2.14)

and

Km[{σ}] ≡



1 0 0 . . . 0 −R[σn]

R[σ1] 1 0 . . .
... 0

0 R[σ2] 1 0 0 0

...
. . .

. . .
. . . 1

...

0 . . . . . . 0 R[σn−1] 1


, (2.15)

where the ones in the above are identity matrices and where we have defined

R[σk] =
GA,m[σk]

GA,m[σk]− 1
. (2.16)

The equivalence of the determinants in Eq. (2.13) can be shown in a straightforward fashion: the Lm[{σ}]

factor is easily understood, as that matrix is block diagonal and therefore its determinant reproduces the
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first r.h.s. factor in the first line of Eq. (2.12); the remaining factor relies on the identity

det



1 0 0 . . . 0 Hk

−H1 1 0 . . .
... 0

0 −H2 1 0 0 0

...
. . .

. . .
. . . 1

...

0 . . . . . . 0 −Hk−1 1


=det (1 +H1H2 . . . Hk) , (2.17)

which is valid for arbitrary block matrices Hj , is a standard result often used in many-body physics (especially

when implementing a Hubbard-Stratonovich transformation), and can be shown using so-called elementary

operations on rows and columns.

Within the determinant of Eq. (2.13), we multiply Km[σ] and Lm[σ]:

Tm[{σ}] ≡ Km[{σ}]Lm[{σ}] = 1− Gm[{σ}]B, (2.18)

where Gm[{σ}] is a block diagonal matrix defined by

Gm[{σ}] = diag
[
GA,m[σn]

]
, (2.19)

and

B ≡



1 0 0 . . . −1

1 1 0 . . . 0

0 1 1 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 1


(2.20)

where again the ones given in the above are identity matrices. Equation (2.18) proves our claim, as we may

use Tm[{σ}] in our calculations instead of Mm[{σ}], and the former contains no inverses of 1−GA,m greatly

simplifying the calculation of higher order entropies.

Summarizing, a class of approaches to calculating Sn for n > 2, based on the Hubbard-Stratonovich

representation of ρ̂A (also known as free-fermion decomposition), requires computing Mm[{σ}], which in

turn requires inverting 1−GA,m per Eq. (2.12). By arriving at Eq. (2.18), and given that

detTm[{σ}] = detMm[{σ}], (2.21)
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[Eq. (2.13) and beyond] we have demonstrated that no inversions are actually required, as Tm[{σ}] contains

no inverses and because its determinant is equivalent to the original, more computationally unstable, form.

While this is a desirable feature from a numerical point of view, it should be mentioned that, from a

computational-cost point of view, the price of not inverting 1−GA,m reappears in the fact that Tm, though

sparse, scales linearly with n in size.

For the remainder of this chapter, all calculations carried out at n = 2 use the M -approach, which is

based on Eq. (2.12) and the ’proposed method’ described below. We reproduced those results by switching

to the T -approach, which uses Eq. (2.18) (as well as the method described below), and we then proceeded

to higher n with the latter formulation.

Section 2.4: A statistical observation: lognormal distribution of the entanglement determi-
nant

In the previous chapter, we offered examples of the approximate log-normal distributions obeyed by

Q[{σ}] when sampled according to the näıve measure P [{σ}]. One specific example is reproduced here for

reference in Fig. 2.1. The fact that such statistical distributions are approximately log-normal, at least

visually, strongly suggests that one may use the cumulant expansion to determine Sn. Generally,

(1− n)Sn = ln

∫
D{σ}P [{σ}]Q[{σ}]

=

∞∑
m=1

κm[lnQ]

m!
, (2.22)

where κm[lnQ] is the m-th cumulant of lnQ, and the first two nontrivial cumulants are given by

κ1[X] = 〈X〉 (2.23)

and

κ2[X] = 〈X2〉 − 〈X〉2 (2.24)

for a given functional X[{σ}], and where the expectation value denoted here as 〈 · 〉 is taken with respect

to the natural produce measure P [{σ}]. If the distribution of lnQ were truly normal, the above series

would end after only the initial two terms, and this simplicity would provide us with an efficient means of

bypassing signal-to-noise issues in the determination of Sn via stochastic methods [48]. Unfortunately but

unsurprisingly, the statistical distribution is not exactly normal. Moreover, the cumulants beyond m = 2

more often than not show extreme sensitivity to the details of the underlying distribution (i.e. they can
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Figure 2.1: Statistical distribution of the observable Q[{σ}] of the näıve free-fermion decomposition method,
i.e. using Eq. (2.7), for a ten-site, one-dimensional Hubbard model described by Eq. (2.33), at an attractive
coupling of U/t = 2.0 and for a subsystem of size LA/L = 0.8. In our case, Q[{σ}] is a strictly non-negative
quantity. The extended tail in the main plot (note logarithmic scale in vertical axis) is approximately a
log-normal distribution [i.e. lnQ[{σ}] is roughly a normal distribution (see inset)].

fluctuate wildly across a huge range of scales), they are very difficult to determine stochastically (the signal-

to-noise problem re-emerges in a different form), and there is currently no easy way to obtain clean analytic

insight into the large-m behavior of κm. Nevertheless, this approximate log-normality does provide a path

forward, as it indicates that we may still evaluate 〈lnQ〉 to good precision with MC methods. As we will

demonstrate in the next sections, this evaluation is enough to determine Sn if we are willing to pay the price

of a one-dimensional integration on a compact domain.

Although (approximate) lognormality in the entanglement determinant seems very difficult to prove

analytically in the present case, evidence of its appearance has been found in systems as different as ultracold

atoms and relativistic gauge theories [48, 49]. Again, the underlying reason for this distribution appears to

be connected to a similarity between the motion of electrons in disordered media and lattice fermions in the

external auxiliary (gauge) field present in MC calculations.
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Section 2.5: Proposed method

Beginning from the right side of Eq. (2.7), we introduce an auxiliary variable 0 ≤ λ ≤ 1 and define a new

function Γ(λ; g), analogous to the one defined in the previous chapter, via

Γ(λ; g) ≡
∫
D{σ}P [{σ}] Qλ[{σ}]. (2.25)

At λ = 0,

ln Γ(0; g) = 0, (2.26)

while at λ = 1, Γ(λ; g) provides the full Rényi entanglement entropy:

1

1− n ln Γ(1; g) = Sn. (2.27)

From Eq. (3.84),

∂ ln Γ

∂λ
=

∫
D{σ}P̃ [{σ};λ] lnQ[{σ}] (2.28)

where

P̃ [{σ};λ] =
1

Γ(λ; g)
P [{σ}] Qλ[{σ}]. (2.29)

With an even number of species 2N and with attractive interactions, the quantities P [{σ}] and Q[{σ}]

are wholly real and strictly non-negative for all fields σ, such that there is no sign problem and such that

P̃ [{σ};λ] above is a well-defined and normalized probability measure.

As in the previous chapter, using this, we can compute Sn by taking the initial λ = 0 point as a reference

and computing the entropy from

Sn =
1

1− n

∫ 1

0

dλ 〈lnQ[{σ}]〉λ, (2.30)

where we have defined

〈X〉λ =

∫
D{σ}P̃ [{σ};λ] X[{σ}]. (2.31)

Thus, we arrive at an integral form for the fully interacting Rényi entanglement entropy that can be computed

using any MC method (see e.g. [32, 33, 34]), in particular HMC [35, 36, 37, 38].

As in the last chapter, we emphasize that the expectation values above are computed with respect to the

augmented probability measure P̃ [{σ};λ] , which communicates correlations responsible for entanglement

and differs for each value of the parameter λ. In stark contrast to the usual MC probability P [{σ}] consisting

of the usual fermion determinant, which corresponds to statistically independent copies of the Hubbard-
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Figure 2.2: Stochastic results for 〈lnQ[{σ}]〉λ with n = 2 for coupling strengths of U/t = 0.5, 1.0, and 2.0
as functions of the auxiliary parameter λ and the region size LA/L for a ten-site, one-dimensional Hubbard
model.

Stratonovich field, this admittedly more complicated statistical distribution does not exhibit the factorization

responsible for the signal-to-noise problems present in the approach as it was originally written down.

Making use of Eq. (3.89) requires a Monte Carlo method to evaluate the expectation value 〈lnQ[{σ}]〉λ as

a function of λ, followed by numerical integration over this superfluous parameter. As in the last chapter, we

see here that 〈lnQ[{σ}]〉λ is a surprisingly smooth function of λ, which is essentially linear in the present case.

It is therefore sufficient to perform the numerical integration using a uniform grid rather than a specialized

quadrature as was done above. In the chapter that follows, we will again find surprisingly linear behavior

as a function of λ and will use a uniform grid in that case as well. The stochastic evaluation of the source

〈lnQ[{σ}]〉λ, for fixed subregion A, can be expected to feature roughly symmetric fluctuations about the

mean, and as a consequence, the statistical effects on the entropy are reduced after integrating over λ as is

typical with such calculations.

Finally, we note an interesting and straightforward application of Jensen’s inequality at λ = 0. At that
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point

∂ ln Γ

∂λ

∣∣∣∣
λ=0

=

∫
D{σ}P [{σ}] lnQ[{σ}] (2.32)

≤ ln

∫
D{σ}P [{σ}] Q[{σ}] = (1− n)Sn,

which must be satisfied by our calculations. Our Monte Carlo results at λ = 0 do indeed satisfy this bound.

Section 2.6: Results

2.6.1: Second Rényi entropy

As a first test of our algorithm and in efforts to make contact with previous work [1], we begin by

showing results for the second Rényi entropy S2 for the one-dimensional, half-filled Hubbard model with

periodic boundary conditions, whose Hamiltonian operator is

Ĥ = −t
∑
s,〈ij〉

(
ĉ†i,sĉj,s + ĉ†j,sĉi,s

)
+ U

∑
i

n̂i↑n̂i↓, (2.33)

where the first sum includes species s =↑, ↓ and all pairs of adjacent lattice sites. As before, we make use

of a symmetric Trotter-Suzuki decomposition of the canonical Boltzmann weight, with an imaginary-time

discretization parameter of τ = 0.05 (given in lattice units). As described earlier, the many-body interacting

factor in the Trotter-Suzuki approximation was implemented by introducing a ”replica” auxiliary field σ for

each required power of the reduced density matrix. As in the chapter before, we implemented a Hubbard-

Stratonovich transformation of a compact continuous form [32, 33, 34], one of many known options.

We offer plots for the source 〈lnQ[{σ}]〉λ with n = 2 in Fig. 2.2. In contrast to the results depicted in the

previous chapter and as described above, the resulting expectation boasts stunningly little curvature as the

subsystem size LA is increased and is shockingly linear as a function of the auxiliary parameter λ. Even after

twice doubling the strength of the interaction, the curvature of constant-subsystem-size slices is increased

only marginally. We note that if one assumes such benign curvature is a somewhat universal feature, at least

for weakly-coupled systems, our method provides a means by which to rapidly estimate the entanglement

entropy for a large portion of parameter space at the very least yielding a qualitative picture of its behavior

as a function of the physically relevant input parameters.

We observe that this surface displays almost no torsion, its dominant features being those present even

in the noninteracting case i.e. an alternating shell-like structure as a function of the subsystem size. Moving

toward larger region sizes, we observe a combination of twisting and translation culminating in the required,
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and somewhat delicate, cancellation upon reaching the full system size. Presented with this relatively

forgiving geometry, we performed the required integration via cubic-spline interpolation. Using a uniformly

spaced lattice of size Nλ = 20 points, we determine the desired entropy to a precision limited by statistical

rather than systematic considerations demonstrating below that the statistical uncertainties themselves are

also well-controlled.

2.6.2: Comparison to exact diagonalization

Depicted in Fig. 2.3 are results for a system of size L = Nx` with a number of sites Nx = 10. For

coupling strengths U/t = 0.5, 1.0, 2.0 and 4.0 and for region sizes LA = 1, 2, . . . , 10, we find good agreement

with previous calculations in Ref. [1] and the previous chapter, and as in the former, we observe convergence

rather quickly with only O(103) decorrelated samples as can be seen in Fig. 2.4. Further, for large sample

sizes Ns, we observe that the standard error in the entropy ∆S2, computed from the envelope defined by

the MC uncertainty in the source 〈lnQ[{σ}]〉λ for at each value in (LA, λ)-space, scales asymptotically as

∆S2 ∼ 1/
√
Ns up to noninfluential corrections.

2.6.3: Results for n 6= 2

In this section, we extend the results presented in the above discussion to Rényi orders n = 3, 4, 5, . . . , 10.

To highlight the contrasting points between n = 2 and n > 2, we show in Fig. 2.5 the Rényi entropies Sn

for n = 2, 3, 4 (top to bottom) of the same 1D attractive Hubbard model, as obtained with our method and

the reformulation of the fermion determinant shown in Eq. (2.18).

As clear from the figure, increasing n leads always to lower values of Sn at fixed subsystem size LA/L

consistent with knowledge that the Rényi entropy is a nonincreasing function of its order. However, increasing

n also amplifies the fluctuations as a function of LA/L. Interestingly, the approach of our system to the

large-n regime is quite rapid, and after only the first few orders, the difference between consecutive entropies

is only marginal at best, most obviously so at weak coupling. We also observe that, as n is increased,

the statistical fluctuations that define the error bars appear to be progressively more suppressed, which is

particularly evident for the strongest coupling we studied, namely U/t = 4.0.

At the level of the auxiliary function 〈lnQ[{σ}]〉λ, we again see very predictable changes in the geometry

of this surface as a function both its arguments as shown in Fig. 2.6. At particle content and coupling

strength, increasing the Rényi order results in a tilting effect reminiscent of that seen previously with

increasing coupling, but rather than being localized away from vanishing subsystem size, the change is

much more global, affecting all subsystems in a qualitatively similar fashion and leaving each surface’s
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characteristic quasi-linearity in λ intact. Although the shell-like structure present in this function’s LA

dependence is amplified, this increased fluctuation affects the quality of the results negligibly at most, as

again, the geometry remains accessible to fairly naive quadratures.

Given the data shown above, we would be borderline negligent if we did not attempt an extrapolation

not only to the limit of infinite Rényi order S∞, but also to the von Neumann entropy, despite knowledge

of the formidable challenges presented by these extrapolations, particularly in the case of the von Neumann

entropy. The former limit provides a lower bound on all finite-order entropies, whereas the latter is of interest

to a variety of disciplines and has proven quite difficult to study. At fixed coupling and with the knowledge

that the Rényi entropy is nonincreasing in the order, we found that our results at each fixed region size and

at every studied coupling were well-characterized by simple exponential decays.

Interestingly, the relative speed of this decay alternates as a function of the region size as can be seen in

Fig. 2.7. Regions corresponding to an even number of lattice sites demonstrate a much more sudden initial

decay than do those regions comprised of an odd number of sites. This peculiar oscillation results in an

inverted shell structure for the extrapolation to n = 1, in contrast to the case where n → ∞ in which this

feature is preserved. A representative example of this procedure is shown in Fig. 2.8.

Section 2.7: Summary and Conclusions

We have presented a technique designed to compute the entanglement entropy of strongly interacting

fermions which takes advantage of an approximate log-normality property of the statistical distribution of

the canonical fermion determinants. The above approach overcomes the signal-to-noise problem of näıve

formulations, and it is very close in its central idea to the method proposed in the previous chapter: both

methods involve defining an auxiliary parameter λ, differentiating with respect to this parameter, and then

integrating it out to recover the full entropy Sn after a MC calculation. The order of the steps is important,

as the differentiation with respect to λ induces the appearance of entanglement-sensitive contributions in

what can be used as MC probability measure. Beyond those similarities, the present method has the distinct

advantages of being simultaneously simpler to formulate (algebraically as well as computationally) and of

explicitly using the approximate log-normality property. Moreover, we have found that the λ integration

step displays clearly more stable numerical behavior in the present approach than in its predecessor: it

is approximately linear in the present case and markedly not so in the original incarnation. We therefore

strongly advocate using the present algorithm over the former.

In this chapter, in addition to presenting an improved method, we have put forward a straightforward

algebraic reformulation of the equations which, while exactly equivalent to the original formalism, avoids the
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numerical burden and complication of computing inverses of nearly singular restricted Green’s functions in

the calculation of n-th order Rényi entropies for n > 2. This problem had been pointed out by us and others

(see e.g. Ref. [30, 31]) as a stumbling block, as it is perfectly possible for those matrices to be singular.

As a test case for our algorithm, we have presented results for the Rényi entanglement entropies Sn of the

half-filled, one-dimensional Hubbard model with periodic boundary conditions. The present and previous

formalisms were used for calculations at n = 2, which matched exactly. The rewritten form based on the

simpler Eq. (2.18) was then used to extend our computations to higher-order cases with n = 3, 4, . . . , 10,

allowing us to attempt extrapolations in the Rényi order in both directions.

Our results demonstrate that, with increasing Rényi order n, the value of Sn decreases as expected for

all LA/L, but the fluctuations as a function of LA/L become much more pronounced. Surprisingly, the

statistical MC fluctuations decrease as n is increased. Since the problem we set out to solve was in fact

statistical in nature, our observations indicate that calculations for large systems and in higher dimensions

will benefit from pursuing Rényi orders n > 2.
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Figure 2.3: Results for the ten-site, one-dimensional Hubbard model for coupling strengths of U/t =
0.5, 1.0, 2.0, and 4.0 for 7,500 MC samples with associated numerical uncertainties shown. Results for
U/t = 0 are depicted as a dashed line (black). For each but the largest coupling, results obtained via
exact diagonalization from Ref. [1] are indicated by solid lines, whereas for the largest coupling, we provide
a line joining the central values of our result to emphasize that its shape is consistent with results for the
former and to guide the eye.
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Figure 2.4: The second Rényi entanglement entropy S2 in units of the result for a free system plotted as
a function of the number of samples Ns for coupling strengths U/t = 0.5, 1.0, 2.0, and 4.0 demonstrating
convergence to within a few percent within the first ten thousand samples.
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Figure 2.5: Rényi entropies Sn for n = 2, 3, 4 (top to bottom) of the 1D attractive Hubbard model at half
filling, as a function of the subsystem size LA/L. In each plot, results are shown for several values of the
attractive coupling U/t.
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Figure 2.6: Stochastic results for 〈lnQ[{σ}]〉λ with n = 2, 4, 6, and 8 (top to bottom) for a coupling of
U/t = 2.0 as functions of the auxiliary parameter λ and the region size LA/L.
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Figure 2.7: Rényi entanglement entropies Sn for orders n = 2, 4, 6, and 8 (top to bottom with error bars
and colors matching those in Fig. 2.6) of the 1D attractive Hubbard model at half filling, as a function of
the subsystem size LA/L. The solid black line shows extrapolation to n = 1. The dashed black line shows
extrapolation to n→∞. Again, results are shown for a coupling strength of U/t = 2.0.
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functions of the Rényi order n as well as the region size LA/L. An extrapolation to n = 1 (the von Neumann
entropy) as well as to n→∞ are shown in solid and dashed lines respectively.

41



CHAPTER 3: The Entanglement Properties of the Resonant Fermi Gas

Section 3.1: Introduction

This is an exciting time for research in the study of ultracold atoms. The degree of control that experi-

mentalists have engineered continues to grow consistently from year to year in combination with their ability

to measure and exploit collective properties in progressively more stunning ways (see e.g. [50, 51, 52]). In-

deed, after the realization of Bose-Einstein condensates over twenty years ago [53, 54, 55], followed by Fermi

condensates in the last decade [56], the field entered an accelerated phase and rapidly achieved control of

multiple parameters such as the system’s temperature, its polarization, and and even its interaction strength

(e.g. in alkali gases via Feshbach resonances, see e.g. [57], and more recently in alkaline-earth gases via orbital

resonances, see e.g. [58, 59]), as well as exquisite tuning of designer external trapping potentials. Addition-

ally, numerous properties can be directly measured, ranging from the equation of state (see e.g. [60, 61]) to

hydrodynamic response (see e.g. [62, 63]) and, more recently, various entanglement measures [64, 65].

This sustained progress has strengthened the intersections of ultracold atoms reseach with other areas of

physics, in particular with the modern condensed matter physics and quantum information communities [66],

as well as with nuclear and particle physics fields [67, 68, 69]. Quantum simulation by fine manipulation of

nuclear spins, electronic states, and optical lattices, are now more realistic than ever before [70, 71, 72]. At

the boundary between many of those areas lies a deceptively simple non-relativistic scale-invariant quantum

system: the unitary Fermi gas, which corresponds to the limit of vanishing interaction range r0 and infinite

s-wave scattering length a, that is,

0← r0 � n−1 � a→∞ (3.1)

where n is the system’s density; this regime of parameter space corresponds to the threshold of two-body

bound-state formation.

As both an actually realized resonant atomic gas and a model for dilute neutron matter, this universal

spin-1/2 system has brought together the nuclear [73, 74, 75], atomic [76], and condensed matter physics

areas [77, 78, 79], as well as the AdS/CFT community [80, 81], due to the underlying non-relativistic

conformal invariance it displays [82]. While many properties of this quintessential many-body problem

are known and in recent years have been the focus of intense study, other fundamental properties like

entanglement and quantum-information aspects have thus far remained still unexplored.
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Quantum information concepts are increasingly being adopted as part of the modern language of quantum

many-body physics and field theory(see e.g. Refs. [7, 8, 9, 66]), in particular with regards to the character-

ization of quantum computation and topological phases of matter, but in connection also with black holes

(see e.g. [13]) and string theory (see e.g. [18]). In the couple of decades, a large effort has been made in order

to characterize the entanglement properties of low dimensional systems (especially those with spin degrees

of freedom [21, 22, 83]) at quantum phase transitions (in particular those with topological order parameters

that defy a local description) as well as systems of noninteracting fermions and bosons [2, 3, 4, 5, 6], which

present interesting challenges of their own.

In this chapter we characterize the entanglement properties of the unitary Fermi gas using non-perturbative

lattice methods. We analyze the reduced density matrix, entanglement spectrum, and associated Rényi en-

tanglement entropies of the two-body problem by implementing an exact projection technique on the lattice

and exact methods to extract spectral information from a reduced density matrix computed directly from

the two-body wavefunction of the interacting system. For the many-body problem, we make use of Monte

Carlo techniques developed in the previous chapters, based on the work of Ref. [1], to calculate the n-th

Rényi entanglement entropy for n = 2, 3, 4 and 5. We showed in those chapters that our method overcomes

the signal-to-noise problem of näıve Monte Carlo approaches. We did that using the one-dimensional Fermi-

Hubbard model as a test case, but to our knowledge no previous calculations have been attempted for the

challenging case of a three-dimensional Fermi gas, particularly a strongly interacting one.

The remainder of this chapter is organized in the following fashion: In Sec. 3.2 we offer the central

definitions in preparation for Sec. 3.3, where we detail how we implement our computations of the entan-

glement spectrum, entanglement entropies, and other quantum-information-theoretic measures in two- and

many-fermion systems. For completeness, we include in that section a discussion on how to avoid the signal-

to-noise issue that plagues entanglement-entropy calculations in the many-body case with notation in accord

with that used throughout this chapter, in some ways simplified and in some ways amended to match newly

incorporated techniques and improvements. We extend that discussion to the case of bosons in the same

section. In Sec. 3.4 we show our results for the entanglement spectrum and entropies of the two-body system

along the BCS-BEC crossover, and in Sec. 3.5 we show the Rényi entanglement entropies of many fermions

at unitarity. We present a summary and our main conclusions in Sec. 3.6. Finally, the appendices contain

more detailed explanations of our few- and many-body methods and some brief comments on systematic

effects.
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Figure 3.1: The (bipartite) entanglement entropies computed in this work correspond to partitioning the
system into a subsystem A (in coordinate space, but it can also be defined in momentum space) and its
complement in the total space Ā. In practice, the calculations are carried out on systems that live in a
periodic cubic lattice of side L, and the subsystems are defined by cubic subregions of side LA ≤ L. The
reduced density matrix ρ̂A of the open system A contains the information about entanglement between A
and Ā, and is obtained by tracing the full density matrix over the states supported by Ā, which form the
Hilbert space HĀ.

Section 3.2: Definitions: Hamiltonian, density matrices, and the entanglement entropy

The Hamiltonian operator governing the dynamics of resonant Fermi gases can be written as a sum

Ĥ = T̂ + V̂ , (3.2)

where the non-relativistic kinetic energy operator is

T̂ =
∑
s=↑,↓

∫
d3r ψ̂†s(r)

(
−∇

2

2m

)
ψ̂s(r), (3.3)

having defined ψ̂†s(r) and ψ̂s(r) are the creation and annihilation operators of particles of spin species s =↑, ↓

at location r.
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The two-body, zero-range (contact) interaction operator is given by

V̂ = −g
∫
d3r ψ̂†↑(r)ψ̂↑(r)ψ̂†↓(r)ψ̂↓(r), (3.4)

where the bare coupling g is tuned to the desired physical situation. By definition, the limit of unitarity is

achieved by requiring that the ground state of the two-body problem lies at the threshold of bound-state

formation (note that in one and two dimensions bound states form at arbitrarily small attractive coupling,

but a finite value is required in three dimensions). Because our work was carried out in a finite volume with

periodic boundary conditions, we used Lüscher’s formalism [84, 85] to renormalize, that is, to relate the bare

coupling to the scattering length in the analysis of the BCS-BEC crossover. We describe that procedure

below, when showing the results for the two-body problem.

The full, normalized density matrix of the system is

ρ̂ =
e−βĤ

Q , (3.5)

where

Q = TrH

[
e−βĤ

]
, (3.6)

is the canonical partition function, as is typical, and H is the full Hilbert space. In this chapter, we are

concerned with systems in a pure state, namely the ground state |Ξ〉, such that the full density matrix can

be written as

ρ̂ = |Ξ〉〈Ξ|. (3.7)

In both the few- and many-body systems we consider here, the zero-temperature density matrix will be

approached by a projection method we describe below.

A subsystem A and its complement Ā (in coordinate or momentum space, see Fig. 3.1) support states

that belong to Hilbert spaces HA and H
Ā

, respectively, so that the Hilbert space H of the full system (in

the absence of link degrees of freedom) can be written as a direct product space

H = HA ⊗HĀ. (3.8)

The density matrix ρ̂A of subsystem A, usually referred to as the reduced density matrix, is defined by

tracing over the degrees of freedom supported by Ā, i.e. tracing out the states in H
Ā

in order to yield an
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operator on only the remaining Hilbert space:

ρ̂A = TrH
Ā
ρ̂. (3.9)

From this definition, the characteristics of A as an open subsystem can be computed and formally

investigated using operators with support in A. Specifically, quantitative measures of entanglement between

A and Ā are given by the well-known von Neumann entanglement entropy,

SvN,A
= −TrHA [ρ̂A ln ρ̂A] , (3.10)

and by the n-th order Rényi entanglement entropy,

Sn,A =
1

1− n ln TrHA [ρ̂nA] . (3.11)

Naturally, these entropies vanish when A is the whole system, as then there is full knowledge of the state of

the system. In any other case, the entanglement entropy will be non-zero, unless the ground state factorizes

into a state supported in A and a state supported in the complement Ā. As the entanglement between A

and Ā happens across the boundary that separates those regions, it is quite intuitive to expect Sn,A to scale

extensively with the size of that intermediate boundary, i.e. proportional to the area delimiting A. This

point was the topic of many papers in the last decade or so, especially in connection with quantum phase

transitions and the scaling of entanglement measure near those quantum critical points (see e.g. [86]).

However, in recent years, it was shown rigorously that the Rényi entanglement entropy of non-interacting

fermions with a well-defined Fermi surface presents a multiplicative logarithmic violation of this assumed area

law [2, 3, 4, 5, 6]. This peculiarity was verified numerically with the aid of overlap-matrix techniques [87],

which we reproduce in Fig. 3.2, where we explicitly depict said logarithmic dependence (dashed line) as a

function of x = kFLA, where kF is the Fermi momentum (roughly the inverse inter-particle separation up

to a pure number) and LA is the linear size of the subregion A, such that

x = kFLA =
πN

2

LA
L

in 1D, (3.12)

= (2πN)1/2LA
L

in 2D, (3.13)

= (3π2N)1/3LA
L

in 3D, (3.14)

where N is the total particle number. We note that, at large enough x, finite size effects eventually emerge
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and force the entropy quickly to zero. The sub-leading oscillations were studied in detail in Ref. [88].

Resonant fermions are strongly coupled, as the regime is non-perturbative and away from any regime

with small dimensionless parameters; nevertheless, we can expect Sn,A to follow a similar trend as the non-

interacting analogue, for the following reasons. First, resonant fermions have a distinguishable Fermi surface

(note, however, that that is quickly lost as one proceeds towards the BEC side of the resonance), whose role

in the entanglement entropy has been emphasized many times (see e.g. [46]). Second, our experience with

Sn,A for the Hubbard model in other cases indicates that very strong couplings U/t are needed even in a

single spatial dimension (where quantum fluctuations are qualitatively much more discernible than in three or

more dimensions) in order for Sn,A to differ noticeably from the free result. We anticipate, therefore, similar

behavior for resonant fermions as that of the bottom panel of Fig. 3.2; the latter provides some qualitative

knowledge of where the leading logarithmic and sub-leading dependence sets in for Sn,A as a function of

x = kFLA. In fact, as we will see below, the onset of this asymptotic behavior (meaning dominated by

leading and sub-leading dependence on x) at x ' 2 − 4 is the same for unitarity as for the non-interacting

case. This similarity is stunning, as there is no obvious reason for that to be the case: had this onset

appeared at x ' 10 or greater as could very well have been the case, the calculations in this chapter would

not have been possible, as they would have required enormous lattices. Below, we return to this discussion

when presenting our many-body results.

Section 3.3: Method

In this section we detail the two approaches utilized in this chapter. We first address the unpolarized two-

particle problem, which we solved with a direct (that is, non-stochastic) projection technique on the lattice.

This problem can be solved exactly by changing to center-of-mass and relative coordinates; nevertheless,

doing so implies using a method that works only in that particular case, and we are greatly interested in

algorithms that may be used in a variety of situations (e.g. in the presence of external fields, more than

two particles, time-dependent cases, and so forth). We address thereafter the many-body problem using a

method detailed in the previous chapter, which we first presented and tested for one-dimensional systems.

Even though both methods we detail in this chapter utilize an auxiliary field transformation, the ultimate

utility of this technique is markedly different in each case. Below, we describe the part of the formalism

common to both approaches before treating in later sections the details of their deviation from common

notation and assumptions.

At a fixed chemical potential µ and specified inverse temperature β, the usual grand canonical partition
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function Z is defined as a trace over the usual Boltzmann weight via

Z = Tr
[
e−β(Ĥ−µN̂)

]
(3.15)

for Hamiltonian operator Ĥ and total particle-number operator N̂ . Rewriting the inverse temperature as an

integer number Nτ of steps, we make use of a symmetric Suzuki-Trotter decomposition with the ultimate aim

of factoring each operator into distinct one-body and two-body pieces. For the grand canonical Boltzmann

factor, we obtain

e−β(Ĥ−µN̂) =

Nτ∏
j=1

e−τK̂/2e−τV̂ e−τK̂/2 +O(τ2) (3.16)

were we have defined the modified kinetic energy operator as

K̂ = T̂ − µN̂. (3.17)

At each spatial position r and for each of the equivalent Nτ factors, we decompose the interaction via the

introduction of a Hubbard-Stratonovich auxiliary field σ which we choose to be of a continuous and compact

form [32]. More concretely for each spacetime position (r, τj), where r ∈ [0, L)3 and τj = jτ for some

1 ≤ j ≤ Nτ , we introduce

eτgn̂↑n̂↓=

∫ π

−π

dσ

2π

(
1 +B n̂↑ sinσ

)(
1 +B n̂↓ sinσ

)
(3.18)

having suppressed the spacetime dependence of the field σ and the spatial dependence of the fermionic density

operators n̂s(r) = ψ̂†s(r)ψ̂s(r) where s =↑, ↓ indicates the fermion species. Because n̂s(r) is an idempotent

operator, it follows that

eτgn̂↑n̂↓ = 1 + (eτg − 1)n̂↑n̂↓, (3.19)

which implies that the constant B satisfies the following equation:

eτg − 1 =
B2

2
. (3.20)

Gathering together the individual integration measures, we arrive at a path-integral form of the partition
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function which is accurate to quadratic order in the temporal lattice spacing, writing

Z =

∫
Dσ Tr Û [σ] +O(τ2) (3.21)

where

Û [σ] =

Nτ∏
j=1

Ûj [σ], (3.22)

and the individual factors are given by

Ûj [σ] = e−τK̂/2
∏
r

[ (
1 +B n̂↑(r) sinσ(r, τj)

) (
1 +B n̂↓(r) sinσ(r, τj)

) ]
e−τK̂/2. (3.23)

Ultimately, the temporal discretization τ will be chosen so that any artifacts of this approximation will be of

less importance than the residual statistical uncertainties, and for this reason, for all intents and purposes,

we may neglect the terms of quadratic order in τ .

As the kinetic energy operator T̂ and the number operator N̂ are already written as products of species-

specific operators, we may partition the operator Û into individual factors each of which assumes respon-

sibility for the evolution of a particular fermion species s =↑, ↓. We make this separation by defining the

operators T̂s, N̂s, and K̂s for s =↑, ↓ by

T̂s =

∫
d3r ψ̂†s(r)

(
−∇

2

2m

)
ψ̂s(r), (3.24)

N̂s =

∫
d3r ψ̂†s(r)ψ̂s(r), (3.25)

and K̂s = T̂s − µN̂s. We then write

Ûj,s[σ] = e−τK̂s/2
∏
r

(
1 +B n̂s(r) sinσ(r, τj)

)
e−τK̂s/2,

such that

Û [σ] = Û↑[σ] Û↓[σ], (3.26)

where

Ûs[σ] =

Nτ∏
j=1

Ûj,s[σ]. (3.27)
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The exponential form of each factor in the above provides (see e.g. [34])

Z =

∫
Dσ det

(
1 +U↑[σ]

)
det
(
1 +U↓[σ]

)
(3.28)

after performing the required Fock-space trace, where we have suppressed higher-order contributions in τ

(which are of order τ2), and written the matrix Us[σ] for the restriction of each of the operators Ûs[σ] to

the single-particle Hilbert space. Knowing that we are confined to that space, it follows that each of those

matrices contains an overall factor of the fugacity

z ≡ eβµ. (3.29)

We exhibit this factor explicitly in what follows and redefine the matrices Us[σ] to reflect this minor revision.

In this chapter, we exclusively treat balanced (that is, unpolarized) systems, and so we may treat the

determinants as equivalent in derivations that follow by writing

Z =

∫
Dσ det2(1 + zU [σ]) , (3.30)

and by neglecting to denote any spin degree of freedom wherever context precludes confusion.

3.3.1: Direct lattice approach to the entanglement spectrum of the two-body problem

Identifying the transfer matrix

In order to give full account of the details as well as showcase the generality of our technique, we show

the main steps here in broad strokes and leave the finer details to be covered in Appendix .1.

We first isolate the two-body sector using the above path-integral form of the partition function Z.

From the finite-temperature partition function Eq. (3.28), we may derive the conventional virial expansion

in powers of the fugacity for each spin, which is given by

Z =

∞∑
N↑,N↓=0

z
N↑
↑ z

N↓
↓ QN↑,N↓ , (3.31)

where we have identified the coefficient of the Ns-th power of the fugacity as the Ns-particle canonical

partition function QN↑,N↓ . This realization offers a convenient way of identifying the fixed particle-number

subspaces and singling them out in the full partition function.

Expanding the path-integral expression for the grand canonical partition function, we find that in terms
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of the matrix U [σ], the (1 + 1)-particle partition function is

Q1,1 =

∫
Dσ tr2U [σ]. (3.32)

The path integral in Q1,1 above can be evaluated directly in a way that elucidates the form of the two-body

transfer matrix. To that end, and in order to provide a more general derivation, we define a four-index object

from which the above squared trace may be obtained by suitable index contraction:

Rab,cd =

∫
Dσ U [σ]ac U [σ]bd. (3.33)

The same four-index object, with indices properly contracted to account for antisymmetry, can be used to

analyze the (2 + 0)-particle case.

We next explicitly write out each of the matrices U [σ] in its product form; that is, we reintroduce

Eq. (3.22) in matrix form:

U [σ] =

Nτ∏
j=1

Uj [σ]. (3.34)

Exactly N factors of the matrix U [σ] appear for each contribution to the N -body transfer matrix, and as a

result each temporal lattice point appears in the integrand exactly N times. Turning now to the individual

factors, we write each of the matrices Uj [σ] in such a way as to exhibit the factor responsible for the

interaction. More specifically, we write

Uj [σ] = TVj [σ]T , (3.35)

where the matrix elements

[T ]kk′ = e−τk
2/2δk,k′ , (3.36)

comprise the single-particle form of the kinetic energy operator defined above (in momentum space), and

the (position-space representation of the) auxiliary external potential operator has matrix elements

[
Vj [σ]

]
rr′

=
(
1 +B sinσ(r, τj)

)
δrr′ . (3.37)

At this point, all matrix elements have been written out and can be commuted as needed to carry out the

path integral. The only nontrivial results are obtained when an even number (in this N = 2 case no more

than 2) of fields σ(r, τj) appear in the integrand for the same values of (r, τj).

This unraveling of the auxiliary-field transformation may seem a convoluted or cumbersome way to

proceed, but it is useful in that it mechanically generates the correct expression for the N -body partition
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function for arbitrary particle content simply by rote differentiation of the fermion determinants. Moreover,

this calculation is accomplished without the need to deal with tedious operator algebra, and it is easily

generalized to bosons. In the two-body case, in particular, the above procedure results in

Rac,bd =
[
M

Nτ
2

]
ac,bd

, (3.38)

where we have naturally identified a transfer matrix in the two-particle subspace

[M2]ac,bd = KabKcd + (eτg − 1)Iabcd, (3.39)

and where

Kij =
∑
p

TipTpj , (3.40)

Iijkl =
∑
p

TipTpjTkpTpl. (3.41)

The form of the transfer matrix lends itself immediately to an intuitive and useful diagrammatic rep-

resentation, which we show for the two- and three-particle cases (the latter is derived in Appendix .1) in

Eqs. (3.42), (3.43) and (3.44).

[M2]ac,bd =
c

a

d

b
+ (eτg − 1)

c

a

d

b

(3.42)

[M3]abc,def =

c
b

a

f

e
d

+ (eτg − 1)

c

b

a

f

e

d

(3.43)

c

b

a

f

e

d

=

c

b

a

f

e

d

+

c

b

a

f

e

d

+

c

b

a

f

e

d

(3.44)
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Obtaining the ground state and the reduced density matrix

Having extracted the transfer matrix allows us to now design a projection method to extract the ground

state by repeated application of M2. Proposing a guess state |Ξ0〉, we project out the true two-particle

ground state |Ξ〉 via

M
Nτ
2 |Ξ0〉

Nτ→∞−−−−−→ |Ξ〉. (3.45)

In practice, we compute the position-space wavefunction ξ(x↑, x↓) = 〈x↑, x↓|Ξ〉. Wavefunction in hand, we

calculate the matrix elements of the full density matrix ρ̂ as

〈x↑, x↓| ρ̂ |x′↑, x′↓〉 = 〈x↑, x↓|Ξ〉〈Ξ|x′↑, x′↓〉 (3.46)

= ξ∗(x′↑, x
′
↓) ξ(x↑, x↓). (3.47)

From these matrix elements, the matrix elements of the reduced density matrix ρ̂A can be obtained as

well by performing a partial trace. Given two states |s〉, |s′〉 ∈ HA for the subregion A, each state being

completely specified by selecting for each degree of freedom either a position in A or in the complement Ā,

we compute the matrix element via

〈s| ρ̂A |s′〉 =
∑
a∈A

ss′

(|s〉 ⊗ |a〉)† ρ̂ (|s′〉 ⊗ |a〉), (3.48)

where, at each fixed pair of two-particle states s, s′, the sum is taken over all states |a〉 ∈ H
Ā

such that the

state |s〉 ⊗ |a〉 ∈ HA ⊗HĀ (resp. |s′〉 ⊗ |a〉 ∈ HA ⊗HĀ) is consistent with the first (resp. second) index of

the matrix element being evaluated. We have denoted this set as Ass′ . From this matrix, we compute the

entanglement spectrum σ(ĤA), that is the spectrum of the entanglement Hamiltonian defined

ρ̂A = e−ĤA , (3.49)

as well as the von Neumann and Rényi entanglement entropies.

3.3.2: Lattice Monte Carlo approach to the many-body problem

We implement the Monte Carlo version of the algorithm outlined above in order to address the many-

body system. The output of this computation is not the ground-state wavefunction, however, but rather
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the expectation value of the desired observable in a projected state. In this case, the observable is of course

the entanglement entropy. To obtain it, crucial intermediate steps are required that go beyond conventional

Monte Carlo approaches and that were detailed above in previous chapters. We outline the basic formalism

again in order to develop a notation consistent with the narrative of the present chapter, and we then proceed

to explain the additional steps required to calculate Sn,A.

Basic formalism

Starting off with a largely arbitrary many-body state |Ω0〉, we evolve the state forward in imaginary time

by an amount β by constructing

|Ω(β)〉 = e−βĤ |Ω0〉, (3.50)

In the limit of large imaginary time, we may write

|Ω(β)〉 β→∞−−−−→ |Ω〉, (3.51)

where |Ω〉 is the true interacting ground state provided that 〈Ω0|Ω〉 6= 0.

We may compute the ground-state expectation value for an operator Ô by studying the large-imaginary-

time behavior of the function

O(β) =
1

Z(β)
〈Ω(β/2)| Ô |Ω(β/2)〉, (3.52)

with the zero-temperature normalization (generating functional) defined as

Z(β) = 〈Ω(β/2)|Ω(β/2)〉 = 〈Ω0| e−βĤ |Ω0〉. (3.53)

As derived earlier in detail, we implement a symmetric factorization of the Boltzmann weight [c.f.

Eq. (3.16)] in order to separate factors depending only on the one-body kinetic-energy operator from the

significantly more involved two-body interaction-energy operator responsible for the contact interaction be-

tween the particles. After this decomposition, we again make use of an auxiliary field transformation [c.f.

Eq. (3.18)] to recast the interaction factor as an expectation value. This identity allows us to write the

ground- state estimator of Eq. (3.52) defined above in path integral form as

O(β) =
1

Z(β)

∫
Dσ Pβ [σ] Oβ [σ], (3.54)
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while simultaneously proving that

Z(β) =

∫
Dσ Pβ [σ], (3.55)

again to quadratic order in the imaginary time discretization parameter τ .

We have identified a naturally emerging probability measure Pβ [σ] calculated as

Pβ [σ] = 〈Ω0| Ûβ [σ] |Ω0〉, (3.56)

with the operator Ûβ [σ] defined as before in Eq. (3.22) (setting µ = 0 in the kinetic energy factor since

particle number is fixed in the zero-temperature formalism). The integrand then is of the form

Oβ [σ] =
〈Ω0| Ûβ/2[σ] Ô Ûβ/2[σ] |Ω0〉

〈Ω0| Ûβ [σ] |Ω0〉
. (3.57)

Taking advantage of the arbitrariness of the initial state, we choose for |Ω0〉 to be a Slater determinant for

each fermion species constructed from single-particle non-interacting plane-wave states φj for 1 ≤ j ≤ N/2

with N/2 = N↓ = N↑. With this simple assumption, we see that the probability takes the form

Pβ [σ] = det2Uβ [σ], (3.58)

with

[Uβ [σ]]kk′ = 〈φk| Ûβ [σ] |φk′〉, (3.59)

where the indices k, k′ satisfy 1 ≤ k, k′ ≤ N/2.

Path integral form of the reduced density matrix, replica fields, and the Rényi entropy

Originally, it was demonstrated by Tarun Grover in Ref. [1] that the interacting reduced density matrix

can be rewritten in terms of the fermionic creation and annihilation operators ĉ†, ĉ as a weighted average with

respect to the probability measure Pβ [σ] derived above and a collection of non-interacting density matrices

corresponding to fermions in a background field. More specifically,

ρ̂A,β =

∫
Dσ Pβ [σ] ρ̂A,β [σ], (3.60)

where

ρ̂A,β [σ] = det
(
1−GA,β [σ]

)
exp

− ∑
i,j∈A

ĉ†i

[
log
(
G−1
A,β [σ]− 1

)]
ij
ĉj

 . (3.61)
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Note that ρ̂A,β [σ] is the aforementioned reduced density matrix of a system of non-interacting fermions

in the external field σ. Analytic expressions for free reduced density matrices were first put forward in

Refs. [43, 44, 45], but it was not until more recent work in Ref. [1] that those were folded into the non-

perturbative formalism based around Eq. (3.60) and made amenable to Monte Carlo calculations.

In the above equation, GA,β [σ] is the spatial restriction of the (equal-time) one-body density matrix for

either of the two flavors to the region A computed as

GA,β [σ]rr′ =

N/2∑
a,b=1

[U−1
β [σ]]ab φ

∗
b(r, β/2)φa(r′, β/2), (3.62)

where

φa(r′, β/2) = 〈r′|Ûβ [σ]|φa〉 (3.63)

φ∗b(r, β/2) = 〈φb|Ûβ [σ]|r〉. (3.64)

We neglect to explicitly show the imaginary-time β dependence in much of what follows with the under-

standing that calculations are to be performed in the limit of β →∞. Practically, this prescription implies

performing multiple simulations for various values of the imaginary time and extrapolating thereafter.

An estimator for the n-th order Rényi entropy can be derived from this decomposed form of the reduced

density matrix. Because n factors of ρ̂A are required, an equal number of auxiliary fields will appear, the

so-called ”replica” fields, which we will abbreviate collectively as σ.

The final form (see Refs. [1, 30, 31]) is

exp ((1− n)Sn,A) = TrHA [ρnA] =
1

Zn

∫
DΣ P [σ] Q[σ], (3.65)

where (again, note the suppressed β dependence)

P [σ] = P [σ1]P [σ2] . . . P [σn], (3.66)

with the naturally appearing observable being

Q[σ] = det2W [σ], (3.67)
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with

W [σ] =

n∏
j=1

(1−GA[σj ])

[
1 +

n∏
k=1

GA[σk]

1−GA[σk]

]
. (3.68)

We have adopted a notation such that, for functionals or integrals of functionals of multiple auxiliary fields,

we write

F [σ] = F [σ1, σ2, . . . , σn], (3.69)

and ∫
DΣ F [σ] =

∫
Dσ1Dσ2 . . .Dσn F [σ], (3.70)

respectively.

Equation (3.68) emphasizes that it seems necessary to confront the challenging task of inverting 1−GA,

which can be very nearly singular, as pointed out in Ref. [1] and in previous chapters. For n=2, no inversion

is required, because the equations simplify such that

Q[σ] = det2 [(1−GA[σ1])(1−GA[σ2]) +GA[σ1]GA[σ2]] . (3.71)

Nevertheless, for higher n there is no such simplification, and therefore it is less clear how one may avoid the

problem if it may be avoided at all. We solved this problem in the previous chapter (see also [25, 28, 29, 27]);

the main point is realizing that

det W [σ] = det L[σ] det K[σ], (3.72)

where L[σ] is a block diagonal matrix (one block per replica k):

L[σ] ≡ diag [1−GA[σk]] , (3.73)

and

K[σ] ≡



1 0 0 . . . 0 −R[σn]

R[σ1] 1 0 . . .
... 0

0 R[σ2] 1 0 0 0

...
. . .

. . .
. . . 1

...

0 . . . . . . 0 R[σn−1] 1


, (3.74)

where

R[σk] =
GA[σk]

GA[σk]− 1
. (3.75)
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Within the determinant of Eq. (3.72), we multiply K[σ] and L[σ] and define

T [σ] ≡ K[σ]L[σ] = 1−D G[σ], (3.76)

where G[σ] is a block diagonal matrix defined by

G[σ] = diag [GA[σk]] , (3.77)

and

D ≡



1 0 0 . . . −1

1 1 0 . . . 0

0 1 1 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 1


. (3.78)

Equation (3.81) is the result that allows us to bypass the inversion of 1 − GA. The form of T [σ] is clearly

much simpler than that of the original estimator W [σ]. For these reasons we use T [σ] in all of the many-body

MC calculations presented here. Our improved formulation allowed us to study Rényi entropies as high as

n = 5; higher are also possible, but as we will see later and as seen in previous chapters, progressively higher

Rényi orders converge surprisingly quickly toward the large-n bound.

For completeness, we present here the simplification for the bosonic case as well (and add a subindex B

accordingly), for which

QB [σ] = det−2WB [σ], (3.79)

and

WB [σ] =

n∏
j=1

(1 +GA[σj ])

[
1−

n∏
k=1

GA[σk]

1 +GA[σk]

]
. (3.80)

The analogous strategy to avoid inversion leads here to

TB [σ] ≡ 1−DBG[σ], (3.81)

where G[σ] is a block diagonal matrix defined by

G[σ] = diag [GA[σn]] , (3.82)
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and

DB ≡



−1 0 0 . . . 1

1 −1 0 . . . 0

0 1 −1 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 −1


. (3.83)

Signal-to-noise issues and how to overcome them

The path integral form of the Rényi entropy Eq. (3.65) has a deceptively simple form, as discussed in

previous chapters: It seems quite obvious that one should naturally interpret P [σ] as the probability measure

and consider Q[σ] as an observable being averaged. This understanding, in some sense, is a trap: while Q[σ]

is critically sensitive to correlations between the replica auxiliary fields σk, the näıve measure P [σ] completely

factorizes across replicas (i.e. it is insensitive to these essential correlations). As a consequence, a Monte

Carlo implementation built on sampling sampling σ according to P [σ] will give outlandish values of Q[σ] that

fluctuate wildly and may not converge to the expected value or may require a ludicrous number of samples.

This feature is what in the lattice QCD area is often called an overlap problem (see e.g. Refs [48, 49]). The

case at hand is especially challenging in two and three dimensions, as the magnitude of the determinant

Q[σ] is expected to grow exponentially with the size of the boundary of the subregion A (see e.g. [25, 28]).

Motivated by the similarity between the numerator of Eq. (3.65) and the conventional path-integral form

of partition functions, we address the overlap problem by first differentiating with respect to a parameter,

then using Monte Carlo methods to compute that derivative, a much better behaved quantity, and finally

integrating out the auxiliary parameter at the end. We outlined this algorithm in detail in the preceding

chapter, and reproduce part of it here for completeness and notational cohesion.

We introduce a parameter 0 ≤ λ ≤ 1 by defining an auxiliary function Γ(λ; g) such that

Γ(λ; g) ≡
∫
DΣ P [σ] Qλ[σ]. (3.84)

Normalization of P [σ] implies that

ln Γ(0; g) = 0, (3.85)

while Eq. (3.65) implies

ln Γ(1; g) = (1− n)Sn,A. (3.86)
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Using Eq. (3.84),

∂ ln Γ

∂λ
=

∫
DΣ P̃ [σ;λ] lnQ[σ], (3.87)

where

P̃ [σ;λ] ≡ 1

Γ(λ; g)
P [σ] Qλ[σ] (3.88)

is a well-defined, normalized probability measure which features the usual weight P [σ] as well as incorporating

entanglement contribution Qλ[σ]. It is the latter factor that induces entanglement-specific correlations in

the sampling of σ when doing so according to the probability measure P̃ [σ;λ].

Thus, Sn,A is calculated by using vanishing λ as a reference point and computing the full entropy Sn,A

via

Sn,A =
1

1− n

∫ 1

0

dλ 〈lnQ[σ]〉λ, (3.89)

where

〈X〉λ =

∫
DΣ P̃ [σ;λ] X[σ]. (3.90)

We thus obtain an integral form of the interacting Rényi entropy that can be computed using any MC

method (see e.g. [32, 33, 34]), in particular hybrid Monte Carlo [35, 36] to tackle the evaluation of 〈lnQ[σ]〉λ
as a function of λ. In application, we observe that 〈lnQ[σ]〉λ is a remarkably smooth function of λ, as

exemplified in Fig. 3.4. It is therefore sufficient to perform the numerical integration using a uniform grid.

Section 3.4: Results: Two-body system

We solve the two-body problem by means of the ground-state-projection method outlined in a previous

section which furnishes the full two-body wavefunction on the lattice. We ensure that the continuum limit is

approached by solving the problem for several lattice sizes and by computing the renormalized coupling using

the energy spectrum and Lüscher’s formalism [84, 85]. The latter equation indicates that the relationship

between the energy eigenvalues and the scattering phase shift δ(p) is given by

p cot δ(p) =
1

πL
S (η) (3.91)

where the parameter η = pL
2π and L is the box size, such that the energy of the two-body problem is E = p2/m;

and

S (η) ≡ lim
Λ→∞

(∑
n

Θ(Λ2 − n2)

n2 − η2
− 4πΛ

)
, (3.92)
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where the sum is over all three-dimensional integer vectors, and Θ(x) is the Heaviside function. The scattering

phase shift determines the scattering parameters via

p cot δ(p) = −1

a
+

1

2
reffp

2 +O(p4), (3.93)

where δ is the scattering phase shift, a is the scattering length, and reff is the effective range.

3.4.1: Low-lying entanglement spectrum

Once the matrix elements of the reduced density matrix ρ̂A are calculated from the projected ground

state wavefunction, as shown above, we obtain the eigenvalues using standard diagonalization routines to

obtain the entanglement spectrum σ(ĤA), which is defined as the spectrum of the entanglement Hamiltonian

ĤA, where

ρ̂A = e−ĤA . (3.94)

In Fig. 3.5, we present our results for σ(ĤA) for a cubic subregion A of linear size LA/L = 0.5, for two

particles in the BCS-BEC crossover, parametrized by the dimensionless coupling (kFa)−1, where kF is the

Fermi momentum (roughly the inter-particle separation in the periodic box, as for two particles there is of

course no Fermi surface) and a is the s-wave scattering length. The latter was determined using the Lüscher

formalism outlined in the previous section.

The main features of the spectrum can be described as follows. We first note that beyond the lowest

four or five eigenvalues, indicated as as λ1 through λ5 in the bottom panel of Fig. 3.5, the multiplicity

of eigenvalues grows suddenly and dramatically, forming a quasi-continuum. Here, we focus mostly on

the lowest five eigenvalues for this reason and characterize the rest statistically in the next section. The

dependence of all λk on (kFa)−1 is rather mild and smooth as is clear from the figure, although it has a few

crisp features: there is a rather large gap between λ1 and the next eigenvalue, which implies that the Rényi

entanglement entropies are dominated by that lowest eigenvalue; there is a crossing of λ2, λ3 and λ4 on the

BEC side of the resonance; after that crossing λ2 and λ3 heal to λ5 and effectively merge into the lower edge

of the quasi-continuum part of the spectrum at large positive dimensionless coupling. The evolution of these

properties along the crossover is shown in more detail in panels a – e of Fig. 3.5.

In Fig. 3.6 we show the Schmidt gap ∆ (see Refs [89]), defined as the separation between the two largest

eigenvalues of the reduced density matrix ρ̂A, for LA/L = 0.1, 0.2, ..., 0.5, as a function of (kFa)−1. Since we

do not expect a quantum phase transition as a function of (kFa)−1, we similarly do not expect the Schmidt

gap to vanish. As a result of the eigenvalue crossing explained above, however, there exists a sharp change
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(in the sense of a discontinuous derivative) in ∆ in the BCS-BEC crossover, which takes place in the strongly

coupled region 0 < (kFa)−1 < 1. It is also evident that, because λ1 and λ4 track each other at a very nearly

constant separation, the Schmidt gap becomes constant to the right of the sharp edge in Fig. 3.6. As with

other features of this spectrum, it remains to be determined how ∆ evolves as a function of particle number,

in particular as a Fermi surface forms and Cooper pairing correlations emerge.

As mentioned above, our calculations were carried out in a periodic box. We show the corresponding

finite-size effects in Fig. 3.7, where we show the lower entanglement spectrum of the two-body system as a

function of the bare (unrenormalized) lattice coupling g. In that figure, it is clear that finite-size effects are

smallest on the BCS side of the resonance, but become considerably more important on the BEC side as

condensation sets in. This behavior is consistent with the expectation that, once a two-body bound state

forms (as the coupling is increased away from the non-interacting point), the sensitivity to lattice-spacing

effects is significantly enhanced. It is worth noting, in particular, that one may easily identify the unitary

regime just by looking at this figure: for any given eigenvalue, the data for different lattice sizes crosses

at about the same value of g; this coincidence is reminiscent of the finite-size scaling behavior of order

parameters in critical phenomena, as it is the hallmark of scale invariance at phase transitions.

The process of reducing finite-size effects, at fixed particle number, implies approaching the dilute limit,

i.e. using larger lattices. When that limit is approached, the renormalization prescription that replaces g

with the physical coupling (kFa)−1 (described above) should force the finite-size calculations to collapse to

a single, universal (in the sense of size-independent) curve. This is indeed what we find and what yields the

results of Fig. 3.5.

3.4.2: High entanglement spectrum

The entanglement spectrum σ(ĤA) above λ5, which we will refer to here as the high entanglement spec-

trum, displays a rapidly growing multiplicity of eigenvalues, as mentioned in the previous section, which we

deem best to analyze using elementary statistical methods. In Fig. 3.8, we show the eigenvalue distribution of

the high entanglement spectrum (the first quasi-continuous band that we observe) for different system sizes,

in histogram form. More importantly, we find that the mean and standard deviation of that distribution,

shown here in Fig. 3.8 (middle and bottom), are smooth functions of (kFa)−1; the mean, somewhat surpris-

ingly, diverges as the coupling is turned off. We interpret this effect as strong evidence that the high sector

of σ(ĤA) is a non-perturbative component of the entanglement Hamiltonian that is entirely due to quan-

tum fluctuations induced by the interaction. Although the two-body system has no Fermi surface, it seems

intuitive to conjecture a link between Cooper pairing and the high entanglement spectrum. Determining
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whether this is true, however, is a highly nontrivial problem that requires studying the high entanglement

spectrum in the progression from few to many particles, a problem that is likely at the edge of what is

currently possible if it is possible at all.

Our numerical calculations show a large number of eigenvalues that lie far (at least 9 to 10 orders of

magnitude) above the high entanglement spectrum. While we cannot discard that those eigenvalues are

consistent with numerical noise (they come from the lowest eigenvalues of the reduced density matrix), there

are enough of them to warrant this brief comment. Although there is a large number of such eigenvalues, their

contribution to the entanglement entropy is considerably suppressed by their incredibly small magnitude.

We continue this discussion in the sections that follow.

3.4.3: Entanglement entropy

Having computed the eigenvalues of the entanglement Hamiltonian λk ∈ σ(ĤA), the entanglement entropy

of the two-body problem is now easily determined. The von Neumann entropy is defined as

SvN,A
= −TrHA [ρ̂A ln ρ̂A] =

∑
k

λk e
−λk , (3.95)

and the n-th order Rényi entanglement entropy is given by

Sn,A =
1

1− n ln TrHA [ρ̂nA] =
1

1− n ln
∑
k

e−nλk . (3.96)

In Fig. 3.9 (top panel), we show S2 as a function of x = kFLA and the coupling (kFa)−1. Remarkably,

the trend towards the leading asymptotic behavior proportional to x2 lnx appears to set in at x ' 2 for all

couplings. This behavior is quite surprising, as there is nothing obvious that necessitates this convenient

behavior. As we will find below, we observe the same sort of behavior for the many-body Fermi gas at

resonance.

To explicitly demonstrate the effect of the high entanglement spectrum on S2, which we referred to at the

end of the previous section, we plot in Fig. 3.9 (bottom panel) the contribution ∆S2 of the first entanglement

eigenvalue to the full S2. It is clear in that plot that the contribution is at most on the order of 8% for the

parameter ranges we studied.
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Section 3.5: Results: Many-body system

By using the many-body lattice MC techniques described above (and in the previous chapter), along

with the renormalization scheme outlined above, we calculated the first few entanglement entropies of the

unitary Fermi gas, setting out to characterize its leading and sub-leading asymptotic behavior as a function

of the subregion size x = kFLA.

The results depicted below were obtained by gathering approximately 250 decorrelated auxiliary field

configurations (where a single ”auxiliary field” contains all the replicas required to determine the desired

Rényi entropy, that is, a single ”field” refers to a single value of the collection abbreviated throughout

this chapter) for each value of the auxiliary parameter λ. We used various particle numbers in the range

N = 4−400 and cubic lattice sizes ranging throughout Nx = 6−16, all with periodic boundary conditions in

space. The projection to the ground state was carried out by extrapolation to the limit of large imaginary-

time direction. The auxiliary parameter λ was discretized using only Nλ = 10 points, which we found to be

enough to capture the very mild dependence on that parameter, as explained in a previous section and as

seen previously in the preceding chapter (see also Appendix .2 for further details).

Because the particular methods we implemented require as their base a discretization of spacetime,

careful attention was paid to the ordering of the various length scales, to ensure that the thermodynamic

and continuum limit were approached successfully and efficiently. Specifically, we required the following

ordering:

kF `� 1� kFLA � kFL, (3.97)

where ` = 1 is the lattice spacing, LA is the sub-system size, and L = Nx` = Nx is the full system size. The

first condition on the left of Eq. (3.97) ensures that the continuum limit is approached; the second condition

implies that the region determined by LA must contain many particles (since the density is the only scale in

the system, this condition defines the large-LA regime); and the last condition means that LA � L, to ensure

finite-size effects are minimized. This ordering was accomplished by carefully choosing the restrictions on

LA for each given particle number N , while aiming to maintain a large N . The latter, however, requires L

to be large in order to avoid high densities where kF ' 1, which can be sensitive to lattice-spacing effects.

In addition, we set LA ≤ 0.45L as a compromise to satisfy the last inequality, a condition we derived by

studying the finite-size effects present in lattice treatments of the free gas.

Shown in Fig. 3.10 are our MC results of the second Rényi entropy S2 of the resonant Fermi gas in various

volumes of N3
x lattice points, where Nx = 6 − 16, as a function of the dimensionless parameter x = kFLA,

for cubic subsystems of side LA. The results for different volumes clearly coincide within the statistical

uncertainty, shown in colored bands, which indicates that our results are in the appropriate continuum and
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thermodynamic regimes.

The inset of Fig. 3.10 depicts S2 scaled by x2 in a semi-log plot. The fact that the trend is clearly linear

supports the assertion that x is large enough to discern the asymptotic regime, where S2/x
2 ∝ lnx. As in

the case of the non-interacting Fermi gas, mentioned in the Introduction, this onset of the asymptotic regime

appears to be at x ' 2.

3.5.1: Rényi entanglement entropies

We calculated Sn,A for the resonant Fermi gas for n = 2, 3, 4, 5, as a function of x = kFLA using the

formalism presented above for the determination of Rényi entanglement entropies for n ≥ 2. In Fig. 3.11

we display our main MC results. To interpret this data, we briefly discuss the noninteracting case. In

Refs. [2, 3, 4, 5, 6] it was demonstrated that the leading-order behavior or the entanglement entropy of

non-interacting 3D fermions as a function of x is given by

Sn,A(x) = c(n)x2 lnx+ o(x2), (3.98)

where the leading coefficient satisfies the formula

c(n) =
1 + n−1

24(2π)d−1

∫
∂Ω

∫
∂Σ

dSxdSk |n̂x · n̂k| (3.99)

and where Ω is the real-space region A scaled to unit volume with normal n̂x, Σ is the Fermi volume scaled

by the Fermi momentum with unit normal n̂k. In our present case, A is a cubic subsystem (as in Fig. 3.1)

and a spherical Fermi volume.

The free case is given in Fig. 3.11 in two useful ways. The asymptotic result at large x is shown with

crosses on the rightmost edge of the plot, carried partway into the plot (in an effort to guide the eye) with

dashed black horizontal lines for each order we computed: n = 2, 3, 4, 5 (top to bottom). With a thick red

dashed line we show the case n = 2 at finite x, as obtained from the overlap-matrix method [87].

Our results for Sn,A for the resonant Fermi gas (data points with error bands) appear to heal to the

noninteracting limit when the slow decay (see below) to a constant at large x is taken into account; this

statement holds especially in the n = 2 case where the sub-leading oscillations allow for a relatively clean

fit. Indeed, our fits for n = 2 give

S2,A(x) = ax2 lnx+ bx2, (3.100)

with a = 0.114(2) and b = 0.04(1), while Eq. (3.99) yields c(2) = 3/(8π) ' 0.119366 . . . . While our value

and the value for the free c(2) are different to within our uncertainties, they are shockingly similar (between
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3 and 6%). The sub-leading behavior is consistent with an area law ∝ x2. As n is increased, sub-leading

oscillations become increasingly important; however, they are inoffensive enough that it is still possible to

discern the asymptotic behavior at large x. For n = 3, 4, 5, oscillations notwithstanding, the results in the

large-x limit appear again to be close to the noninteracting case.

From our results for the entanglement entropies Sn as a function of n, it is possible to use the power

method to extract the lowest eigenvalue λ1 of the entanglement spectrum as a function of x. We studied

the decay of (1− n)Sn/n to a constant value which, given Eq. (3.96), we identified as −λ1. In Fig. 3.12 we

show the result of using that sole eigenvalue to approximate Sn. As expected, higher orders n emphasize

the contribution from the lowest entanglement eigenvalue (highest eigenvalue of the reduced density matrix),

which progressively dominates Sn as n increases. From the n dependence of Sn, it is also possible to study

the degeneracy of the lowest entanglement eigenstate; at large n,

(1− n)

n
Sn '

ln d1

n
− λ1 + . . . , (3.101)

where the ellipsis indicates exponentially suppressed terms, and d1 is the degeneracy associated with λ1. We

find a vanishing first term, which indicates that d1 is consistent with unity.

Section 3.6: Summary and conclusions

In this chapter, we successfully implemented two different lattice methods, one detailed in an earlier chap-

ter, to non-perturbatively characterize the entanglement properties of three-dimensional spin-1/2 fermions

in the strongly interacting, unitary regime of short interaction range and large scattering length, i.e. the

resonant limit. This region of parameter space is scale invariant (in fact, non-relativistic conformal invari-

ant) in the sense that it presents as many scales as non-interacting gases, and therefore its properties are

universal characteristics of fundamental three-dimensional quantum mechanics, i.e. in the same sense as

critical exponents that characterize phase transitions.

We computed the two-body spectrum of the entanglement Hamiltonian along the BCS-BEC crossover and

well-characterized results for the low-lying part, which displays clear features as the strength of the coupling

is varied, such as eigenvalue crossings close to the resonance point, scale invariance, and eigenvalue merging

in the BEC limit. The lowest two eigenvalues in the spectrum correspond to the largest two eigenvalues of

the reduced density matrix, which are separated by the Schmidt gap which we present. We found that this

quantity shows a sharp change at strong coupling, in the vicinity of the conformal point (kFa)−1 = 0.

We also carried out a statistical characterization of the high entanglement spectrum, which appears as
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a quasi-continuum distribution with well defined mean and standard deviation, which we mapped out along

the crossover. We found that the mean of the distribution tends to infinity in the noninteracting limit,

which indicates that that sector is due to non-perturbative effects in the entanglement Hamiltonian. In

contrast, the low-lying part of the spectrum has a finite noninteracting limit. All of the above two-body

results were obtained with non-perturbative non-stochastic methods which are easily generalizable to higher

particle numbers (as we show analytically and diagramatically for 3 particles).

In addition, we studied the Rényi entropies of degree n = 2, 3, 4, and 5 of many fermions in the unitary

limit, which we calculated using a method recently developed by us (based on an enhanced version of the

algorithm of Ref. [1]). We found that, remarkably, the large x = kFLA (i.e. subsystem size) limit for

those entanglement entropies sets in for x as low as 2.0, which allowed us to characterize the leading and

sub-leading asymptotic behavior using 2 ≤ x ≤ 10. For entropies of order n > 2, on the other hand, we

found that sub-leading oscillations are enhanced, but not enough to spoil the visualization of the asymptotic

behavior at large x.

Our experience with Monte Carlo calculations of Sn,A in 1D gave us empirical indication that the en-

tanglement properties of the unitary Fermi gas might not be too different from those of a non-interacting

gas. However, since unitarity corresponds to a strongly correlated, three-dimensional point, that intuition

could very well have been wrong. Our calculations indicate that the leading-order asymptotic behavior is

approximately consistent with that of a non-interacting system, while the sub-leading behavior is clearly

different.

The recent measurement of the second Rényi entropy of a bosonic gas in an optical lattice [64, 65] shows

that it is possible to experimentally characterize the entanglement properties of the kind of system analyzed

here. Our calculations are therefore predictions for such experiments for the case of fermions tuned to the

unitary limit.

Section .1: Exact evaluation of the path integral for finite systems

In order to illustrate the details as well as the generality of our few-body technique, we evaluate the path

integral for a four-component tensor from which each of the above traces may be obtained by suitable index

contraction.

Toward this end, we first define

Rac,bd =

∫
Dσ U [σ]ab U [σ]cd. (102)
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We first write out each of the matrices U [σ] in its product form. That is, we reintroduce the expression

U [σ] =

Nτ∏
j=1

Uj [σ]. (103)

For each individual contribution to the N -body transfer matrix, exactly N factors of the matrix U [σ]

appear, and as a result each temporal lattice point appears in the integrand exactly N times. Writing out

the integrand and grouping the components according to their associated timeslice, we obtain

Rac,bd =

∫
Dσ U [σ]ab U [σ]cd =

∫
Dσ

(
U1[σ] U2[σ] . . . UNτ [σ]

)
ab

(
U1[σ] U2[σ] . . . UNτ [σ]

)
cd

(104)

=
∑

k1,k2,...,kNτ−1

l1,l2,...,lNτ−1

∫
Dσ

(
U1[σ]ak1 U1[σ]cl1

) (
U2[σ]k1k2 U2[σ]l1l2

)
. . .

(
UNτ [σ]kNτ−1b UNτ [σ]lNτ−1d

)
(105)

=
∑

k1,k2,...,kNτ−1

l1,l2,...,lNτ−1

Nτ∏
j=1

(∫
Dσ(τj) Uj [σ]kj−1kj Uj [σ]lj−1lj

)
, (106)

where we set k0 = a, l0 = c, kNτ = b, and lNτ = d in order to match the diagrams presented above, and

used the notation

Dσ(τ) ≡
∏
r

dσ(r, τ)

2π
. (107)

Using the specific form of the individual U factors, we find

∫
Dσ(τj)Uj [σ]kj−1kjUj [σ]lj−1lj (108)

=
∑
p,q
p′,q′

∫
Dσ(τj)

(
Tkj−1pVj [σ]pqTqkj

)(
Tlj−1p′Vj [σ]p′q′Tq′lj

)
,

which using our chosen form of V becomes

=
∑
p,q
p′,q′

Tkj−1pTqkjTlj−1p′Tq′ljδpqδp′q′ ×

∫
Dσ(τj)

(
1 +A sinσ(p, τj)

) (
1 +A sinσ(p′, τj)

)
=
∑
p,q
p′,q′

Tkj−1pTqkjTlj−1p′Tq′ljδpqδp′q′
(
1 + (eτg − 1)δpp′

)
,
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where we used

∫
Dσ(τj)

(
1 +A sinσ(p, τj)

) (
1 +A sinσ(p′, τj)

)
=

(
1 + (eτg − 1)δpp′

)
. (109)

Thus, we naturally arrive at the definition

[M2]ac,bd = KabKcd + (eτg − 1)Iabcd, (110)

as the transfer matrix in the two-particle subspace, where

Kij =
∑
p

TipTpj , (111)

Iijkl =
∑
p

TipTpjTkpTpl. (112)

Indeed, this definition of M2 as a transfer matrix makes sense, because

Rac,bd =
∑

k1,k2,...,kNτ−1

l1,l2,...,lNτ−1

Nτ∏
j=1

[M2]kj−1kj ,lj−1lj , (113)

or more succinctly,

Rac,bd =
[
M

Nτ
2

]
ac,bd

. (114)

In a similar fashion, one may show without much difficulty that the transfer matrix of the three-body

problem (for distinguishable particles, i.e. no symmetrization or antisymmetrization is enforced) is

[M3]abc,def = KadKbeKcf + (eτg − 1)Jabc,def , (115)

where

Jijk,lmn = KilIjkmn +KjmIikln +KknIijlm. (116)

The pattern from this point on is clearly visible: there is one term for each ’spectator’ particle that does not

participate in the interaction, while the other two are accounted for by an interacting term governed by the

Iabcd object. One may thus infer the form of the transfer matrix for higher particle numbers and conjecture

its form for more complex interactions.
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Section .2: Auxiliary parameter dependence

In this Appendix we give a few additional examples on the surprisingly mild dependence of the entanglement-

entropy derivative 〈lnQ[σ]〉λ as other parameters are varied. In all cases, the data shown corresponds to full

three-dimensional calculations in the conformal regime.

In Fig. 13 (top) we show the variation of that derivative when the Rényi order is changed from n = 2 to

n = 5, at fixed particle number and region size. In Fig. 13 (bottom) we show how 〈lnQ[σ]〉λ changes when

the particle number is varied, at fixed Rényi order n.
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Figure 3.2: Second Rényi entropy S2 of N non-interacting fermions in d = 1, 2, and 3 dimensions (top to
bottom) as a function of x = kFLA, where A is a segment, square, and cubic region, respectively, and LA
is the corresponding linear size; kF is the Fermi momentum. The entropy S2 is scaled by the surface area
dependence, namely x and x2 in two and three dimensions, respectively. The x axis is plotted logarithmically
to show that, up to finite-size effects, the results heal to the expected asymptotic regime of linear dependence
with log10 x (dashed line). This regime sets in at x ' 2−4 across all d. Finite-size effects appear as a sudden
drop at large x.
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Figure 3.3: Depicted here is a schematic representation of the lattice that we used in our entanglement
calculations. Each horizontal lattice slice represents the three-dimensional spatial lattice where the system
lives, and the vertical stacking of the planes is meant to represent the imaginary time direction. Although the
original Hamiltonian is time-independent, the auxiliary field σ that represents the interaction is supported
by a larger spacetime lattice and induces a time dependence that disappears upon averaging over this field.
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34, 68, 104, 136, 172 fermions tuned to unitarity in a box of size L = Nx` (where Nx = 12 points and ` = 1),
and for Rényi order n = 2. Similar plots are obtained by varying, instead of the particle number, the region
size and the Rényi order. These are shown in Appendix .2.
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Figure 3.5: Bottom panel: Low-lying entanglement spectrum of the two-body problem as a function of the
dimensionless coupling (kFa)−1 in the BCS-BEC crossover regime, for a cubic subregion A of linear size
LA/L = 0.5. Top panels (a - e): Low-lying (and part of the excited) entanglement spectrum for selected
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Figure 3.7: The entanglement spectrum of the two-body problem in the BCS-BEC crossover regime as a
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4, 6, 8, 10, respectively. The subsystem size was fixed to LA/L = 0.5. The coupling corresponding to the
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which reflects the property of scale invariance characteristic of this particular system.
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and c(5) = 0.09549... .

80



0

2

4

6

8

10

12

14

2 3 4 5 6 7

n

S
n
(x

)

x

2
3
4
5
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