
Abstract

The purpose of this report is to provide a detailed description of a database
management system that operates on an IBM PC, and was designed to help mod¬
elers choose appropriate smog chamber runs for mechanism testings. In addition,
this report desctribes the outlines for a prospective expert system.

This report covers:

• a brief discussion of model developing and testing;
• recisons for choosing Turbo Prolog as the implementing language for the sys¬

tem;

• a detailed description of the database fields and underlying organizing princi¬
ples;

• an overview of the data set;

• a brief introduction to the structure of Turbo Prolog;
• an overall structure of the database management system;
• an introduction to the hierarchical structure of predicates in the system;
• detailed explanations of selected predicates defined in the source program.
• a discussion of the long-term goal of this project involving the incorporation of

the database management system into an expert system capable of:
a) choosing appropriate runs to test the mechanisms;
b) carrying out automatic model evaluations by making inferences from the

sets of testing results;

c) explaining the rules it used in the process of model evaluations at different
levels of details;

d) acquiring new knowledge from the domain expert through an intelligent
editor.

A user's guide to the database management system, a hierarchy of predicates
defined in the system, the source codes, and a sample output will also be provided
in the appendices.

NEATPAGEINFO:id=1461FCB2-1757-41EB-8BD0-2C6EAD01DD76



Acknowledgements
I wish to acknowledge and thank my advisor, Dr. Harvey Jeffries, for his support

and guidance throughout my studies at the UNC. Although the work described in
this report is my own, the inspirations which started it all came from Dr. Jeffries.

I also wish to thank Dr. Miller and Dr. Flynn for their help reading the report
and their comments and criticisms.

Some of the tables and plots were provided by Dr. Kenneth Sexton. The origi¬
nal experimental conditions database were prepared by Dr. Sexton and Mr. Jeffry
Arnold. Thanks to both of them. I would also like to thank Ms. Terry Kale for
helps she offered to me.

Finally, a special thank should go to my wife, Lai-Choi, for her encouragement.

lU

NEATPAGEINFO:id=4E16DA04-3F5C-49A5-948E-842CF5BAE6B2



Contents

1 Introduction 1

Model Development and Testing.................. 1
Model Development....................... 1
Model Testing......................... 2
Explanations vs Predictions.................... 3

A Hierarchical Approach..................... 5

Need for Experimental Conditions Database............. 5

Computer Language: Turbo Prolog................. 5
Areas of Application....................... 9
Declarative vs Procedural..................... 9
Logical Database........................ 10
Knowledge Base and Expert System................. 10
Why Turbo Prolog?....................... 11

Previous Work       ......................... 12

Structure of This Report..................... 12

2 Database Records 18

Date of Run      .......................... 18

Class of Run.......................... 18

Dilution............................ 20

Injection...........................    . 20

Hydrocarbon Type........................ 21

iv

NEATPAGEINFO:id=EF4A34E2-20C1-4AE2-8619-C3608FD3FFD4



Processing Status........................ 21

Project............................. 24

Series............................. 24

Rank       ............................. 26

Concentrations and HC Species/Mixture Identifications........ 26

HC Instrument......................... 27

Quality of Run      ......................... 27

Sunlight............................ 27

3 Overview of Data Set 28

Period Covered, Distribution      ................... 28

Compoiinds and Mixtures Used.................. 30

Experimental Series....................... 33

Quality, Rank, Processing Status, Sunlight.............. 34

4 Overview of OSCECIS 37

Sample Turbo Prolog Program................... 37

Overall Organization of OSCECIS................. 39
Tutorial............................ 40
Access to DOS Commands..................... 40
Editor............................ 40
Loading and Saving Database.................... 41
Viewing the Database Codes.................... 42
Diagnosing the Database       ..................... 42
Miscellaneous.......................... 43

v

NEATPAGEINFO:id=86035A66-403F-41AB-B80F-34AC979C5A51



Querying the Database...................... 44
Step 1: Query Posing....................... 44
Step 2: Templates Collecting and Records Searching      ........... 46
Step 3: Printing Results...................... 47
Overall Picture......................... 48

Updating the Database...................... 50
Display Record......................... 50
Delete Record......................... 50
Insert Record.......................... 50

Modify Record......................... 53
Overall Picture......................... 54

5 Components of OSCECIS 57

More About Turbo Prolog..................... 57

Hierarchy of Predicates...................... 59

Description of Selected Predicates     ................. 60

Searching........................... 60
Printing Results......................... 65

6 Future Work 70

What Is Next?      ......................... 70

Features of Expert Systems.................... 70

Basic Components of Expert Systems................ 71

The Knowledge Base....................... 71
The Inference Engine....................... 73
Justification / Explanation..................... 73
Knowledge Acquisition...................... 73

Outline of Future Work...................... 74

Long-Term Goal       ........................ 74
System Configuration....................... 74
Implementation of ASKME      .................... 77

vi

NEATPAGEINFO:id=CDFED377-581E-48C8-A4FA-5CB7E1E0C6F5



Closing Remarks......................... 79

References 80

A    User's Guide to OSCECIS 82

System Requirements....................... 82

Files Needed.......................... 82

Getting Started......................... 83

Important Notes......................... 83

Querying the Database...................... 83

Selecting Output Devices and Forms................ 84

Viewing the Database Codes.................... 84

Updating the Database...................... 84

Saving Database on File       ..................... 85

Diagnosing the Database..................... 85

Miscellaneous.......................... 85

Access to DOS Commands      .................... 86

Editor........................... 86

B    Hierarchy of Predicates 88

C    Program Listings 97

D    Sample Outputs 133

vii

NEATPAGEINFO:id=B4A97FDE-A789-42D6-93D7-0BF0AA8A37F0



Tables

1.  Example Segmented Data File      .................... 13
1. cont. Example Segmented Data File.................. 14
1. cont. Example Segmented Data File.................. 15
2. Composition of HC Mixtures..................... 22
S.   Composition of HC Mixtures..................... 23
4. Series Codes Used in the Experimental Conditions Database      ......... 25
5. General Run Rankings....................... 26
6. Distribution of Experiments by Year.................. 28
7. Distribution of Experiments by Month      ................. 29
8. Distribution of Ebcperiments by Project................. 30
9. Distribution of Ebcperiments by Class.................. 30
10. Distribution of Experiments by Dilution and Injection Conditions........ 30
11. Distribution of Ebcperiments by HC Type      ................ 31
12. Number of Chamber Sides Containing Species............... 31
IS. Distribution of Experiments by Series.................. 33
14. Distribution of Experiments by Quality................. 34
15. Distribution of Experiments by Rank.................. 35
16. Distribution of Ebcperiments by Processing Status      ............. 35
17. Distribution of Ebcperiments by Sunlight................. 36
18. Examples of Matched Structures.................... 58
19. Examples of Unmatched Structures................... 58

viu

NEATPAGEINFO:id=65555698-720E-4410-899F-E590FC9FA857



Figures

1. Schematic Diagram Illustrating the Process of Model Development and Test¬
ing............................... 4

2. Hierarchy of Species in Photochemical Mechanisms.............. 6
S.  Hierjirchy of Experimental Conditions       ................. 7
4. Chamber Runs as Examples of Hierarchical Experimental Conditions...... 8
5. An Example Plot......................... 16
6. Structure of a Datab<ise Record.................... 19
7. Main Menu of OSCECIS       ...................... 41
8. Menu for Viewing the Database Codes      ................. 43
9. Menu for Four Query Types..................... 45
10. Menu for Eight Output Choices.................... 48
11. Grouping of Runs in solution Templates................. 49
12. Flows of Four Query Types in OSCEIS................. 51
12.  Flows of Four Query Types in OSCEIS, cont................ 52
18.  Menu for Updating Database..................... 53
14. Flows of Four Updating Database Choices in OSCECIS........... 55
14. Flows of Four Updating Database Choices in OSCECIS, cont.......... 56
16.  Four Basic Components of a Typical Expert System............. 72
16. Configuration of ASKME...................... 75

IX

NEATPAGEINFO:id=9F21D264-B6A2-4F26-9678-C354CDEAEE56



1

Introduction

This report provides a detailed description of a database management system called
OSCECIS (Outdoor Smog Chamber Experimental Conditions Information System).
The system was written in Turbo Prolog, a fifth generation computer language based
on a subset of predicate logic known as Horn clauses.^'^'* For the time being, OSCEr-
CIS stands alone as a helping tool whose main function is to provide easy access to
the experimental conditions database for the smog chamber experiments conducted
in the Outdoor Smog Chamber of the University of North Carolina at Chapel Hill
over the past ten years. In the long run, OSCECIS will be incorporated into an
expert system capable of assisting the photochemical kinetics model developers in
testing their models, as well as carrying out automatic model evaluations.

Model Development and Testing

One of the objectives of conducting smog chamber experiments is to collect reliable
data to test photochemical kinetics models which simulate the photochemical re¬
actions taking place in the lower atmosphere. Photochemical kinetics models are
the major component in methods for computing control requirements for organic
emissions needed to meet Federal Air Quality Standard for ozone.''

Model Development

Although the past fifteen years of model development saw many breakthroughs in
photochemistry, the photochemical processes of the lower atmosphere are still not
completely known. Today, photochemical reactions taking place in the troposphere
fall into three categories according to the degree to which they are understood:

1) well-known accepted reactions;

2) reasonably understood reactions; and

NEATPAGEINFO:id=D16BBDE1-74BC-4E7C-83F6-DEDCC2BED1CA



Introduction___________________________________________________________________________________Model Tegting

3) partially understood reactions.

The incomplete knowledge of photochemical reactions makes it necessary for mod¬
elers to speculate about choices in a range of uncertainty.

What complicates the model development even more is that photochemistry is
not the only factor affecting the smog formation. Meteorological conditions also play
a crucial role in the process. Because multi-cell simulations of smog formation with
reasonable meteorological information still demand too much computer memory
and time, most models today are restricted to single-cell simulations with minimum
meteorological input.

The complexity of photochemistry and meteorology of the lower atmosphere
requires that mathematical models be simpler than the actual atmospheric chem¬
istry. This simplification is achieved by three processes: generalization, deletion,
and distortion.

The generalization process involves using a single representation (called "lump¬
ing" ) for similar aspects of the process being modeled to reduce the number of items
that must be included in the model. The deletion process involves omission of some
aspects of the process judged to be unimportant. The distortion process involves
changing from exact model representation in some way to an inexact or incorrect
representation, for example, treating two consecutive processes as a single step.
Each of these simplification processes may be used intentionally or unintentionally
by the modelers.*

The three simplification processes involve subjective judgements of individual
model development groups as to what reaction is more important than the other,
what species need to be combined or deleted, what reaction rates are to be used etc.
As such, different modelers may produce different descriptions even though the real
world situation they are describing is identical and they are using the same kinetics
database.

Model Testing

To test the "appropriateness"of the descriptions, smog chamber experiments which
vary in concentrations of nitrogen oxides (NOx) and hydrocarbons (HCs) as well
as other initial conditions were conducted and data were collected. These data
provide the ground for comparisons between the experimental outcomes and model
predictions as well as for comparisons between different models.

NEATPAGEINFO:id=77CB0010-5496-4FF3-9672-239A6177BECE



Explanations vs Predictions______________________________________________________________________Introduction

Because the condition of a given chamber experiment represents only a tiny
fraction of the countless combinations of conditions in the real world, a good fit
between even a large set of experimental data and model predictions does not guar¬
antee a good fit between model predictions and data collected from the real world.
On the other hand, it is quite safe to say that a model showing poor fit to chamber
data is not likely to be an accurate representation of the real world.

But why don't we use the data collected from the real world to test the model
instead? Jeffries* argued against this approach by considering five factors:

• The meteorological factors are so influential in atmospheric concentration
that it is hard to isolate the chemical factors.

• The atmospheric hydrocarbon mixture is too complex and various compo¬
nents of the chemical mechanism can only be tested in isolation.

• The large number of possible combinations of conditions in the urban-like
simulations suggests that extremes in conditions may be the most feasible
method of covering the range of conditions needed.

• When mechanisms fail in the comparison, "debugging"experiments are needed
to assist in understanding why they failed; these types of experiments remove
some of the complexity of the urban-like simulation to make the cause and
effect relation clearer.

• Whitten's strategy of "bottom-up" construction (to be discussed very soon)
and testing of complex mechanisms requires a series of conditions to avoid
the ambiguity of oifsetting errors and to increase the degree of understanding
of the workings of the complex description being constructed.

Figure 1 shows a schematic diagram illustrating the processes of model develop¬
ment and model testing. The arrows marked by "G,D,D"represent steps in which
generalization, deletion, and distortion are likely to take place.

Explanations vs Predictions

Besides giving an explanation of the process of smog formation, a good model
should also be able to provide predictions. While a great amount of knowledge
h«LS accumulated during the past fifteen years of model development, the knowledge
of photochemical reactions in troposphere is still far from complete. Every now
and then a new reaction rate would be determined or a new species found to have
played a role in a previously obscure reaction. The business of model development
thus involves not only the task of striking for a balance between model explanation
and model prediction but also the ta^k of incorporating into the model the newly

NEATPAGEINFO:id=685C6FEE-07AC-41C4-A7E6-80739338CDD4



Real

World

Exper
Design

G. D. D

Exper
Design

Smog
Chamber

Hypothesis
Exper. Fits

Kinelicg
G, D. D G, D, DExplicit

Mechanism

G, D, D G, D, D

Initial

Condition

s—i
a
0

Chamber

Data

Compressed
Mechanism

Simu alion
Program

Data vs Model

Prediction

Figure 1. Schematic Diagram Illustrating the Process of Model De¬
velopment and Testing.

NEATPAGEINFO:id=C62BD254-AFFB-478F-877B-077BAE4D83C0



Need for Experimental Conditions Database_______________________________________________________Introduction

discovered facts v*rhich may readily tilt the balance painstakingly maintained in an
earlier time. This is one reason why despite fifteen years of continuous efforts, no
model developed so far has been found to be totally satisfactory.

A Hierarchical Approach

The formidable task of model development can be made easier if the modelers
follow a concept of hierarchy of chemical species to test their models. The concept
of hierarchy of chemical species was first described by Whitten.^ It is based on
the number of HC/NOx system in which the species occur, with the most ubiquitous
species occupying the lowest levels. Figure 2 is a modified version of Whitten's
schematic diagram by Jeffries.* According to this concept, the models should be
tested in a "bottom-up" fashion beginning from the bottom box in the diagram.

The hierarchical approach is very important in the sense that it not only helps
establish the cause-and-effect in the mechanisms of a model but also suggests that
a complex mechanism should not be constructed in one operation but in a stepwise
fashion. ^

The "bottom-up" approach is also applicable to the design of chamber experi¬
ments. That is, the experimenter begins with the simplest set of conditions that the
mechanism is designed to simulate and increase the complexity of the experimental
system one factor at a time. To produce data which simulate the urban environment
more closely, Jeffries et al. further extend the concept of hierarchy to experimen¬
tal conditions with different combinations of dilution and injection processes. The
hierarchy begins with No Dilution / Initial Injection as the simplest condition and
ends in Large Dilution / Continuous Injection as the most complicated condition.
Figure 3 is a detailed diagram of this hierarchy produced by Jeffries tt al. Figure 4
is an illustration of the concept using three chamber experiments.

Need for Experimental Conditions Database

As the knowledge of photochemistry grows, so do the models and the database for
testing the models. A direct result of the growth of database is the increase in
its physical size and complexity of experimental conditions. The database of the
UNC smog chamber experiments hats grown to such a point that a separate data¬
base containing merely experimental conditions need to be created for easy access
to individual experiment or groups of experiment sharing certain combination of
experimental conditions. This report deals primarily with this experimental con¬
ditions database, so called to separate it from the "main" database containing the
experimental outcomes.

NEATPAGEINFO:id=28D76CAC-995A-454E-B927-849DEB31385F



PARAFFINS

r  Ethylene

ͣ  Methane

OLEFINS

Ketones

AROMATICS

ROHO (Rt^H)    - Dicarbonyls

RC(0)00N02

HCHO HCO

CO

NO NO2 NOi N2O5
HONO HNOj HO- HOj H2O2

Hydrocarboxui

(figher Garbonylfl

PAN Compounds

Formaldehyde

Inorganics
Lowest Level

Figure 2. Hierarchy of Species in Photochemical Mechanisms

NEATPAGEINFO:id=5D78AB8E-1C54-443E-82B9-776F3580E1BD



Operating
Conditions

Injection
Beginning —
Experiment

No

Dilution

Single
J   HC
LHC
Mixture-c

Simple

Complex

Large    .
Dilution

No
Enirainment-[.

Single
HC

HC
Mixture<

Simple

Complex

pSingle
— Entrainment —   ^^

[_HC
Mixture-c

Simple

Complex

Injection

During  ----
Experiment

No     _
Dilution

Only HC
Dynamic

HC&NOx

Dynamic

Single
_J   HC

Mixturee-C
_.     ,      r Constant
Simple—L Varying

Constant

Complex-L Varying

^,
Single
HC

HC
MixtureͣtC

Constant

Simple—L Varying
Constant^       ,     rV'Onsiani

Complex-L Varying

Large
'Dilution

No

Entrainment      I up

^Single
HC

Constant
Varyi

MixturTL Complex-C^°"/y^„gireL

„.     .      r Constant
Simple—L Varying

Constant

— Entrainment

Single
__Thc
"LiHC

MixturereL

Constant

Complex-L Varying

„.     ,      rConstan'
Simple—L Varying

Constant

Figure 3.    Hierarchy of Experimental Conditions to Simulate the
Urban Environment

NEATPAGEINFO:id=7CE7B26A-DD1F-4A1A-AD67-586329FFBCB8



NO DILUTION LARGE DILUTION

'•'cr- 1 ' 1 ' i    1 '  i  •  1     1 ' 1  ' ͣ  '  1 ' 1 ' ! ' 1
).3 — June  27,   1963 -j

g:».8 - ͣj
t^*.? L J
O - 4

i.i r •A

S».! L 0i .-•••"•-• ͣ'........ -!
Z • -i

t.4 — ,' H

o..a -

NO NO,
/ ͣ' -^

t.2 —— ------,,-----''•^... —J

*.l ,_

•...••' ͣ'' ͣ    ""----.-......PAN _]

ft   A > ͣ 1 ---l  ,  1 ,   !    ,>-u\ .1,1.1.1,1,1 1 1
S       «      7       a       i     U     It     12     13     U     tS     l(     17     18     1«

HO UA 3     e 9 T

l.O

£
.£

ft
O

O
K

0.J
o

o
z C«.3

Z

' ͣ| ' I ' I ' I ' I ' . ' I ' I ' I—m   n
July  29,   1935

HOURS     E ) T

O
H

.£

«

-p'  1

June   14,   1983
T

g:..a
-

-

fll.7
o -

0, ,-•-•
-

2S

r

ͣit
.— V

NO,     / ͣͣ'
_.......-   -n."-.....---------          PAN

1 v::i;,.,ci:'.../  ,1,1. 7T"i~" i 1   ,   1

-

s < 7 i      >     1«     U     12     13     14     19     U
NOU R 2    C D T

17     l« 1» ͣ

1.0

*.)
£ .£
Q. C).i
O. a.

M ro i.7
O o

4.<
^ •t

OJ CM
O 9.1

*- ^L.

� .4
^ •k

O O t I
z z

«.2

t.l

«.«

I I I 1 ' i I I I 1 '1 ' I ' I ' I II    11

June 27,   1983

H 0 U it S     ED

Figure 4. Outdoor smog chamber runs as examples of hierarchial experimen¬
tal Conditions. NO, concentration approximately 0.25 ppm, HC concentration ap¬
proximately 2.6 ppmC of propylene/n-butane/toluene mixture. Large dilution means
that 20% of initial mass is left after 10 hours of dilution (equilivalent to mix¬
ing height rise from 250-m to 1250-m).

£

O

(VI
O

O

O
H

O   O

a

NEATPAGEINFO:id=66CFB7E0-14A0-4136-B321-87A92F0C2F76



Declarative vs Procedural_________________________________________________________________________Introduction

Computer Language: Turbo Prolog
Turbo Prolog, a new version of Prolog programming language, was chosen as the
implementing language for OSCECIS after careful considerations of its several dis¬
tinctive features. The following sections will cover some features of Prolog language
in general, followed by specific features of Turbo Prolog.

Areas of Application
Prolog is a relatively new programming language, which has gained worldwide pop¬
ularity since its first release in 1972 by Alain Colmerauer at the University of Mar¬
seilles, France. In 1983, Prolog was chosen as the fundamental system language for
the ambitious Japanese national project involving the design and production of fifth
generation computers. Today, Prolog is a major contender to the older language
Lisp for applications of symbolic computation ranging from relational database,
mathematical logic and abstract problem solving to many areas of artificial intelli¬
gence such as natural language processing, robotics and expert systems. Although
both Lisp and Prolog have efficient way of handling recursive structures, the power¬
ful pattern-recognition facility of Prolog dwarfs the relatively primitive and limited
pattern-matching capability of Lisp, not to mention the much cleaner syntax of
Prolog. On the other hand, early versions of Prolog tended to make much severe
demands on the computer memory than Lisp did, though we will see how Turbo
Prolog solves this problem to a great extent in a latter section.

Declarative vs Procedural

One major difference between Prolog and conventional high level languages such
as Pascal and PL/l is that the former allows declarative descriptions of problems
whereas the latter are strictly procedural. In a declarative language, the program¬
mer supplies to the computer a set of assertions about entities and their relations
without giving execution details. The Prolog system derives procedural meaning
automatically from the syntax of the declarative language and carries out required
executions. In a procedural language, the programmer supplies stepwise execution
details to the computer which, in turn, follows the pre-programmed steps closely
to obtain desired answers. In brief, a declarative language tells what, whereas a
procedural language tells how.

By virtue of the declarative nature of the Prolog language, a program for a
given application typically requires ten times fewer program lines with Prolog than
with Pascal or PL/1. This helps decrease the time and cost of software development
tremendously.

NEATPAGEINFO:id=D419F23C-AD8B-4337-A167-4F55D48CA6A4



Introduction________________________________________________________________________________Logical Databage

Another advantage associated with the declarative nature of Prolog is that it
can solve that class of problems having an undeterministic nature; that is, the class
of problems which can not be pre-programmed stepwise because the problem space
is too large to be handled by a computer or involves combinatorial explosion.

Logical Database

As mentioned at the beginning of this report, Prolog is founded on a subset of
predicate logic called Horn clauses. Predicate logic is a formalism that is a natural
and powerful representation language marred only by its perceived computational
ineflBciency.* By restricting its foundations to Horn clauses, Prolog loses some degree
of expressiveness, but gains a great deal in computational efficiency.®-^" More details
about Horn clauses will be given in Chapter 4.

The structure of Prolog and its strong pattern-recognition facility make it espe¬
cially suitable for implementing database systems. Database systems implemented
in other languages usually require different representations for the database, the
query language and the host unit where searching and other data manipulation
mechanisms reside. For example, a typical database management system may have
the following characteristics: its database may be in the form of a text file, its host
unit may be written in a high level language such as Pascal, and its query language
may take the form of certain linguistic structures limited only by the imagination
of the designer. In Prolog, however, the database, the query language and the host
unit all share the same structure. Moreover, the expressiveness inherited from the
predicate logic by Prolog provides for free a query language which is natural and
very close to human language.

Knowledge Base and Expert System

One of the goals of building a database is to collect facts against which hypotheses,
theories or models can be matched. The process of these testing activities involves
complex mental exercises which call upon great perseverances and ingenuities on
the paxt of the researchers. While the human intelligence is indispensable in this
process, artificial intelligence represented in the computer may be a highly desirable
helping tool which can take over some of the chores of reasoning details and leave
the more subtle aspects of the problems to the researchers.

The structure of Prolog makes it especially suitable for knowledge representa¬
tions upon which a knowledge base can be built. The major difference between a
database and a knowledge base is that the objects of the former are data, whereas
the objects of the latter are entities, their relations, and rules describing these re¬
lations.   The knowledge baise, together with a knowledge acquisition facility, an

10

NEATPAGEINFO:id=73CE17C1-7D28-462C-9259-E72E9B34CAAA



Why Turbo Prolog?______________________________________________________________________________Introduction

inference mechanism, and an explanatory interfax:e, constitutes an expert system
which, if successfully implemented, can perform the tasks of a given domain at an
expert's level.

The Prolog language provides a bridge between a database and a knowledge
base by virtue of its unique language structure. The knowledge base can be built
in an incremental fashion without changing the structure of the original database
system (there is only one language structure anyway). This will result in a great
saving of efforts and time. Unless the database designer is very sure that his or
her database is not going to involve in any form of complex reasoning or that there
is never a need to develop the database into a knowledge base, Prolog should be
seriously considered as a candidate for the implementing language.

Why Turbo Prolog?
As a latest implementation of Prolog language, Turbo Prolog retains all the major
advantages of Prolog language discussed in previous sections while at the same time
adding to it many desirable new features. Some of them are summarized below.

1. Turbo Prolog is a full-fledged compiler which can produce stajid-alone pro¬
grams for the IBM PC and compatibles. Older versions of Prolog are mostly
interpreters. The differences between an interpreter and a compiler are: In¬
terpreter accepts a source program, translates it into some intermediate data
structure, and then executes the algorithm by carrying out each operation
given in the intermediate structure. An interpreter is considerably less effi¬
cient than a compiler because it has to carry out the translation "ritual" every
time it executes the program. A compiler performs translation step once and
the output (an execution file) can be executed many times without overhead.
It demands fairly heavy computer resources while compiling, but when exe¬
cuting, only those resources needed by the executing program are required.^^
A compiled Turbo Prolog program is more conservative in its memory re¬
quirements than an equivalent interpreted program of any earlier version of
Prolog while, at the same time, it executes at a much faster speed.

2. Turbo Prolog has a typed structure in much the same way that Pascal does.
The typed structure not only makes debugging a much easier job but also
reduces the space requirements of the Prolog language.

3. Unlike earlier implementations of Prolog which allow only integer in mathe¬
matical operations, Turbo Prolog allows both integer and real operations and
functions as well as bit-wise operations for control and robotics applications.

4. Turbo Prolog provides a comprehensive, fully modular program development
environment. A program can be broken up and compiled in separate modules

11

NEATPAGEINFO:id=32FF18D9-FED3-4E96-AE0A-D1BE2950A204



Introduction___________________________________________________________________________________Previoug Work

which are linked together in a later stage. This feature is highly desirable for
developing huge programs. Moreover, the Turbo Prolog development group
is currently putting their efforts in developing an interface between Turbo
Prolog and Turbo Pascal, an exciting feature which will enhance the powers
of the two already powerful languages even more.

5. Turbo Prolog allows a full control of window facility which contain mixed
text and graphics. It also allows an easy access to the memory and I/O ports.
These tools will be especially useful for creating user-friendly programs.

The features discussed in this and earlier sections suit our purposes of develop¬
ing the OSCECIS well. As mentioned earlier, OSCECIS is a first step towards an
ultimate goal of developing an expert system capable of assisting the modelers in
testing their models as well as carrying out automatic model evaluations based on
the given sets of testing results. The suitability of Prolog as an expert system devel¬
oping language has been proven by many successful applications.^^ The additional
features of Turbo Prolog can only enhance this suitability.

Previous Work

The experimental conditions database is extracted from the main database con¬
taining the experimental outcomes and complete documentation of the UNC smog
chamber experiments. Table 1 shows an example Segmented Data File (SegFile)
for the run conducted in October 4, 1983. A SegFile contains complete information
of a fully processed run in the main database. The data in a given SegFile can be
used to generate plots such as those shown in Figure 5.

The organizing principles of the experimental conditions database has been
discussed in the 1985 UNC report entitled "Outdoor Smog Chamber Experiments
to Test Photochemical Models: Pheuse IV ' which also contains a complete index to
all pre-1984 chamber experiments and suggestions on run selection for model testing.
The OSCECIS follows these organizing principles closely with only a slight change
in run series and rankings and an addition of a new field containing information of
percentage of sun light.

Structure of This Report
In Chapter 2, we will outline the organizing principles of the experimental condition
database while describing each of its fields. An overview of the data set will be given
in Chapter 3. In Chapter 4, a brief introduction of the structure of Turbo Prolog will
be given, followed by the discussion of the overall structure of OSCECIS. Chapter 5

12

NEATPAGEINFO:id=37B7A312-FEA6-4649-9D76-653EDA578227



Structure of This Report_____________________________________________ Introduction

Table 1. Example Segmented Data File

GENERAL DOCUHENTATIOI!

RUNDATE: OCTOBER 04, 1983

RUNTYPE: AUTO

RUN DESCRIPTION: COMPARISON OF REACTIVITY OF EXHAUST

FROM DIRECT INJECTION FROM DODGE CHARGER IN HIGH IDLE

*ITH SYNTHETIC AUTOEXHAUST.

RESULTS: TWO SYSTEMS RESULTED IN SIMILAR REACTIVITY

INITIAL CONDITIONS: BLUE RED

DODGE CHARGER 0.0 2.587

SYNTHETIC EXHAUST NMHC 2.190 0.0

HO 0.214 0.21S

H02 0.037 0.039

88888

O4-0CT-83 GENERATED Oil  19-MAR-84

SY:OC043K.C1G      .CIG

PICKED DATA ENTERED BY JEFFREY HOFFIIER

CALIBRATION FACTORS APPLIED BY CHARLES

TOLUENE 2.912000E-01   PPHC/IN      2    KGS
ETHYLENE 9.020000E-02   PPMC.IN      2    KGS

NAME ABBREVIATIONS - SAME ORDER AS Ii: DATA

TOLUENE  IS TOLUENE MAX A:   1.5610 MAX CON:  0.4546
ETHYLENE IS ETHYLEIIE MAX A:   4.9164 WAX CON:  0.4435

13

NEATPAGEINFO:id=96CB772C-0FE1-40BC-AE7B-65221AC1CCB0



Introduction Structure of This Report

GE!:ERATED OI:   13-MAR-84

Table 1. cont. Example Segmented Data File
88888

04-0CT-83

SY:0C043K.C2G .C2G

PICKED DATA EIJTERED BY JEFFREY HOFFI.'ER

CALIBRATIOI! FACTORS APPLIED BY  JEFFREY HOFFIIER

ETHAIJE 1.498000E-01 PPMC/Ii:

PROPYLEIIE 7.307000E-01        PPHC/III

KGS

KGS

IJAME ABBREVIATIOIIS -   SAME ORDER AS  II! DATA

ETHANE IS ETHAWE MAX A:

PROPYLEIIE IS PROPYLEIIE MAX A:

0.2014  MAX CON:       0.0302

0.1311 MAX COIJ:       0.09&8

88888

88888

USER D0CUI.!E1.'TATI0II FOR RUN 831004

EI;DI1.'G     BEGIIinillG OFFS

GAii; OFFSET

E!;di:!g

CALIBRATIOi: FACTORS USED:

SPECIE

TIME    INTERVAL BEGINNING   GAIi;

GAIN      SLOPE

HR       HR HR-1

03G

2.500   15.500      1.01380  0.00000  1.01380  0.00000  0.00000  0.00000

18.000    6.000      0.00000  0.00000  0.00000 -9.99999  0.00000 -9.99999

SLOPE   OFFSET

HR-1

END OF PROGRAM DOCUMENTATION

99999

YYHMDDHHHI.! U   S 03G NOG

LTMP TSR UV

8310040500 1  7R 0.0008 0.0864

58.6810 -0.0046 -0.2439

8310040504 1  3B 0.0196 -0.0022

21.6880 •o.ooea -0.2439

14

NOXG N02G DPG CTHP

0.1138   0.0237  50.0450  56.8300

-0.0007   0.0001  56.6496  -60.5560

NEATPAGEINFO:id=784EDCA5-DCF8-4503-92CC-E3F560C861DB



Structure of This Report Introduction

Table 1. cont. Example Segmented Data File

8310041704 1       3B 0.5787        -0.0012 0.0513 0.0507       72.7266     -60.5120
20.5120 0.1592       11.7073

8310041708 1       7R 0.5508       -0.0013 0.0578 0.0573       64.7658       83.3620
81.3040 0.1376       10.2439

99999

YYMMDDHHMH USER SIDE GEIIERATED 01.'   19-MAR-84

2.4.4  TRI  TOLUEIIE      ETHYLEtlE    II-BUTA!IE    TRAI.'S-2-B ISOPEIITAIJ tl-PEIITAI.'E ACETYLEtlE
8310040625 IB.

0.2266 0.4546 0.4435 0.0877 0.0366 0.1339 0.0000 0.0905
8310040655        1 R

0.1868 0.2580 0.2248  -999.0000        0.0459 0.1195 0.0634 0.2332

8310041455        1 R

0.1439 0.1573 0.0890  -999.0000 0.0000 0.0828

8310041525 1 B

0.1821 0.2514 0.1300 0.0688 0.0000 0.0921

99999

YYMWDDHHMH USER SIDE GEIIERATED Oi:  13-MAR-84

ETHYLEIIE    ETHAIIE        PROPYLENE

8310040625 1 B

0.4522 0.0093        0.0952

8310040655 1 R

0.4097 0.0238        0.09S8

0.0340        0.167:

0.0000 O.OOOi

8310041525 1        B

0.1603 0.0086         0.0000

8310041555 1         R

0.2675 0.0260 0.0000

99999

15

NEATPAGEINFO:id=AB59C8BC-66DE-43E1-B9A3-FBD7E2068F06



1.0

0.9

£   0.8
a

^  0.7
m

-S   0.6

°   0.6
c
v>

g> 0.4
2 0.3

0.2 -

0.1 -

0.0

I   '   I   '   I   M   '   I   I   I   '   I   I   I   M   M   I T

NO

August 5, 1984

i_I_L

1.0

- 0.9

- 0.8

- 0.7
03      -

0.6   I
-H 0.5   «®

0.4   I
0.3

0.2

0.1

10    11    12    13    14    16    16    17    18    19

HOURS,   EOT

0.0

2.0

I
15

c
o
'Jp

-10

05     -

0.0

^

W

7      8      9    10    11     12    13    14    15    16    17    18

H O U R S,   E D T

Figure 5.    An Example Plot
Top: (SoUd) 0.91 pjanC SYNAUTO, no MeOH, 0.01 ppm HCHO;

(Dashed) 1.32 ppmC SYNAUTO, no MeOH, 0.02 ppm HCHC^
Bottom: RED chamber air temperature (top solid line, T);

RED (solid line) and BLUE (dashed line) chambq- dewpoint (°F);
ambient total solar radaiation (solid line, cal-cm~ -«ec~ ):
ambient ultraviolet radiation (dashed line,mcal-cm~ -sec' ).

16

NEATPAGEINFO:id=61E4F92C-B400-4C71-848D-C8F1B7B9BCD4



structure of This Report ________ ____________________________________________________Introduction

gives detailed explanations of selected predicates defined in OSCECIS. Chapter 6
discusses the long-term goal of this project: the development of an expert system
into which the OSCECIS will ultimately be incorporated. Appendix A contains
the user's guide to the system. Appendix B contains the hierarchical structure of
predicates defined in the system. Appendix C lists the source program. Appendix
D shows a sample output of the system.

17

NEATPAGEINFO:id=7C531042-F82A-4208-9BE1-265DE75563E2



2

Database Records

This chapter covers a detailed description of the fields of the database records.
The organizing principles of the database have been described in the 1985 UNC
report "Outdoor Smog Experiments to Test Photochemical Models: Phase IF .^ In
the process of explaining the organizations of the database fields, some organizing
principles will be reiterated but not covered in full details.

Each record in the database is comiposed of 27 fields. For reasons which will be
made clear in chapter 4, each record is physically broken up into two portions. The
first portion contains mainly codes of experimental conditions, whereas the second
portion contains mainly concentrations and identifications of nitrogen oxides (NOx)
and hydrocarbons (HCs) for a given experiment in the two sides of the smog chamber.
Figure 6 is a schematic diagram of the structure of a single record in the database.
Each box in the record encloses the name of the corresponding field. Detailed
description of each field follows.

Date of Run

This is the principal key for each record. It consists of a character string of length
six in the form "yymmdd", where y's are the last two digits of the year in which
the run was conducted, mm is the month and dd is the day. For example, the run
date "770518" uniquely identifies the run conducted in May 18, 1977.

Class of Run

This field classifies the experiments conducted in the chambers into two basic types:
Characterization runs and Organic/NOx runs. Physically, this field is composed of a
character string of length one.

NEATPAGEINFO:id=87C62939-E220-48D1-9EF3-6D7E6B339868



First Portion: Experimental Conditions

Run Class

of

Dilu¬ Injec¬ HC Proj Pc

Series Rank

Date Run tion tion type type status

Second Portion: Concentrations and Identifications of HCs

———Red Side Info                     i '   Blue Side Info---------------

Run Red Isl 1st 2nd 2nd 3rd 3rd Blue 1st 1st 2nd 2nd 3rd 3rd HC Quality Sun

NOx HC HC HC HC HC HC NOx HC HC HC HC HC HC Instru¬ of

Date Con Con ID Con ID Con ID Con Con ID Con ID Con ID ment Run light

Figure 6. Schematic Diagram of the Structure of a Single Bjecwrd

NEATPAGEINFO:id=B42FE046-8B95-44C8-9552-2781E458FD80



Database Records__________________________________________________________________________________   Dilution

Characterization runs address unique aspects of the UNC chamber performance.
They are designed to provide chamber-specific data such ais the magnitude of 03
produced by rural background air, magnitude of NOx emissions from the chamber
walls, photolysis rate of aldehydes etc. The following codes designate the Charac¬
terization runs:

• C - Characterization experiment.

• D - Characterization experiment, second day.

Organic / NOx runs are designed to test the chemical aspect of a mechanism.
For instance, a run of this type may contain propylene in one side of the chamber
and ethylene / acetaldehyde in the other side of the chamber in order to test whether
a mechanism can adequately describe the chemical transformations of both sides.
The Organic / NOx runs and their corresponding codes are shown below:

• O - One day organic NOx experiment.

• T - Two day organic NOx experiment, first day.

• S - Two day organic NOx experiment, second day.

Dilution

This field identifies two types of chamber experiments: runs with dilution rates
controlled at about 1 dilution rates which are used to approximate various patterns
of mixing height rises. The following codes designate the two types of dilution:

• N - Normal dilution (about 1 %  / hour).
• L - Large dilution (about 5-fold dilution in 10 hours).

Injection

This field is similar to the previous field. It classifies runs into various injection
levels of reactants. The following codes designate the five injection levels:

• I - All reactants injected before sunrise.

• H - HC injected during experiment, NOx injected before sunrise.

• N - NOx injected during experiment, HC injected before sunrise.

• B - Both HC and NOx injected during experiment.

• C - Combination of injection different from above.

NEATPAGEINFO:id=C0297962-EA32-4ECC-BC8E-D9752D7B6488



Hydrocarbon Type__________________________________________________________________________Database Records

By varying the two attributes of Dilution and Injection, a hierarchy of experi¬
mental conditions can be developed to simulate the urban environment in a progres¬
sive manner. The hierarchy begins with No Dilution / Initial Injection combination
at the lowest level and ends with Large Dilution / Continuous Injection combina¬
tion at the highest level. Table 2 shows the four basic combinations of Dilution and
Injection.

Hydrocarbon Type

The field is designed to give a summary of the relationship of the hydrocarbon
species or mixtures in both sides of a given side-by-side chamber experiment. It
consists of a character string of length two. There are two basic types associated
with this attribute of the database. The first type consists of runs with a single
species on each side of the chamber. The following codes designate HC class of
species of this type:

• lA - aldehyde on each side;

• lO - olefin on each side;

• IP - parafiin on ejich side;

• IR - aromatic on each side;

• lU - olefin one side, aldehyde other side;

• IV - olefin one side, parafiin other side;

• IW - olefin one side, aromatic other side;

• IX - some other combination.

The second type consists of runs with mixture on at least one side of the cham¬
ber. The following codes designate HC class of species of this type:

• MB - simple mixture of two or three species;

• MC - named mixture or mixture of named mixtures;

• MV - mixture with time varying composition.

A simple mixture has two or three species. A named mixture or mixture of
named mixtures has at least four species and can have several hundred {e.g. auto
exhaust). Table 2 and Table 3 give the named mixtures used in the UNC experi¬
ments.

21

NEATPAGEINFO:id=AAF34202-07FC-48D0-B929-8B8DA1CF9421



Table 2 • Compoaition of Hydrocarbon MixtnrM ntcd la UNC Smog Chamber Ibeparlmemto.
o

Compound SDv4MtXl     SIKOvflXI    UNCMIX    StMARO    COMARO    AUTO-O    ATTTO-IA    AUTO-lB        P/B    P/B/T    BASMIX

kutant 0.1003 0.4t3« Oi)3«l 0.0301 0.7tU 0JISS3 0.3140

ptntutt 0.3IU 0.3ttO 0.3S3I 0.13tS

Uoptnttnt O.l'tt't 0J>W6 aMlt »Mlt

J-mtthylptntutt O.OSM

},4-(Um«th)'lp«iitui( 0.0St4

],2,4-lrim<thylptnUa( 0.1301 0.1131 0.1131

•tkyltnt 0.1131 0.1150 0.11(7 0.1000 0.3301 0.3301 O.OOfiO

propylcnt O.IIM O.0S34 0.3300 0.0111 O.OtlO 0.3M7 O.KM 0.0«13

l-butcn< 0.03S4 OitlOt O.OltO

Iruii-l-buUot 0J>1«« 0.01»1

cii-}-bul«n« 0.0313

K 2-authyl-l-but(n« 0.0317
t>9 ]-m<(hyl-2-buUn<

b«nicii«

0.0317

OMU 0.0831

toluint 0.4««l 0.3403 OJOOO OJIIS 0.31 It 0.3000 0.3000

m'i)rl«a( 0JS80 0.US3 0.3000

a-iyl<n( OjOISI 0.01(1

t,l,4-lruii«thylb«nicn* 0.1331 0.3S03 0.1350 0i>SI1 0.0S«4

n-propylbcni<at 0.1371

itc-butylbtnicnt 0.U33

fonnUdchydc Oinoo ojnoo

kc«t^d<hyd«
CO AUTO'

total pu-aSln 0.71M o.«tso 0.7077 0.0000 0.0000 0.0S&0 0.3031 0.3031 0.7IU 0.i3t3 0.4103

total olc&n O.ltlt O.ltSO 0.2923 0.0000 0.0000 O.«300 OJlftt 0.31M 0.3337 0.1 til 0.1St3

total aromatic 0.0000 0.0000 0.0000 1.0000 1.0000 04360 0.1731 0.1731 0.0000 0.1000 0.1000

|CO).yMt.ii. matcbtd t« |CO|„4,,i.

9B
•<
a

3

or
o
a

NEATPAGEINFO:id=784F7AC9-23D6-4720-AA35-CFC27DA4AC9E



a

a

3

cr
o
a

Table S.   Compoiitlon of Hydrocarbon MixtnxM mad ia UNC Smog Chamber Bxperimanta. "^

Oompoiind______________TOLXYL-KflXl    TOUXYL-MIXJ    TOL-XYL>MIXt    TOL-TMB-XYM    ISO./»A»TMPBW1ANE8    DODOEMIX II
biituii »*U»
pcnluit
iioptnluii 0.8000
3-iD«tl\]rlpcn(u>i
3,4-diinclkylf cnUni
3,2,4-lruntlhylpcnUni 0.6000

tlliyltnt OiMlS
propyltnt 0.0SIO
l-bultn<
truii-]-bulcn< 0X49B

1^ cii-l-bnunt
W 2nMlhyl-lbul«n«

2-mcthyl-3-butcn<

tolucDi CftOOO                     O.Mtt                     O.M««                       0.4}U
mxyltnt O.iOOO                     O.SStI                     O.I««7                       0.3t72
o-xyltnt 0.1A«7                        0.1»t4
l,2,4-lriinelhylbtnicii( 0.1331
n-propylbtnttnt
•tc-butylbcatcnc

fornuMthyiie OXHI
actttldthydt 0.00tt
CO______________________________________________________________________________________________________«-__________»_______
toUl pkr>rin 0.0000 0.0000 O.OOOO OilOOO 1.0000 0.t44t
loul olc&ji 0.0000 0.0000 O.OOOO OMOO 0.0000 O.ltSS
lot^ ifonuUc 1.0000 1.0000 l.OOOO IMOO 0.0000 O.lSSt

f

NEATPAGEINFO:id=388B81EE-1EDF-4CF8-BFF9-DC5C369FA3F1



Databaae Records___________________________________________________________________________Procesaing Status

Processing Status

This field is composed of a character string of length one representing the processing
status of a run. The suitability of a run for mechanism testing depends on feictors
such as sunlight or whether there are instrument problems associated with the
particular run. As such, not all runs are worth processing. In addition, runs
are assigned a priority for processing based on factors such as the experimental
conditions or the extent to which the run conditions provided unique information.
Five types of existing processing status and their corresponding codes follow:

• S - A fully processed and documented run, available for distribution on
magnetic media.

• P - A partially processed run, currently being processed, available in graph¬
ical form with estimated initial conditions of ca. ±20 %.

• L - A partially processed run of low priority, available in graphical form for
raw data with target initial conditions of ca. ±20 % for NOx and HCs. This
type of run may never be fully processed.

• N - Not to be processed, not available.

• U - Unprocessed run; a processible run but no processing has occurred.

Project

Four projects using the UNC Outdoor Smog Chamber have contributed data for
model testing as well as for the experimental conditions database. The codes iden¬
tifying the project types were declared as character strings of length two. They
are:

• ET - Experiments to test explicit mechanisms for aldehydes, olefins, paraf¬
fins, and simple two-component of mixtures.

• RE - The reactivity grant project, primarily dealing with mixtures and
changes in mixture composition.

• AU - The automobile exhaust smog chamber project, dealing with the rela¬
tive reactivity of exhaust from two vehicle, with two g£isolines.

• ME - Methanol exhaust project, dealing with the relative reactivity of ex¬
haust from vehicle with methanol additive fuel.

Series

Series type was designed to put individual runs into meaningful groups or sequences

24

NEATPAGEINFO:id=D92E71EF-9F3A-43E4-9CD6-C7E8A2F14753



Serieg______________________________________________________________________________________Databzise Records

SO as to aid modelers in choosing appropriate runs for model testings. Table 4
contains the forty series types set up for this purpose. Note that the leading zeros
for those series codes smaller than 10 can not be omitted since the database field
containing the series type is a character string of length two instead of an integer.

Table   4. Series Codes Used in the Experimental Conditions Database

Code Series Name

01 Characterization; Background
02 Characterization; NOx oxid. NO only
03 Characterization; NOx oxid. CO added
04 Characterization; 03 decay
05 Characterization; N02/03,dark
06 Characterization; Aid. added
07 Matched propylene
08 Matched mixture
09 Matched other

10 Replicate propylene
11 Replicate other
12 Aldehyde development
13 Olefin development
14 Paraffin development
15 Aromatic development
16 HC type transition
17 Terpene development
18 Reactivity comparison
19 Single to Simple
20 Simple Comp. change
21 Complex Comp. change
22 Simple to Complex
23 Substitution, UNCMIX
24 Substitution, P/B
25 Substitution, SIMMIX
26 Substitution, Other
27 Addition, one species
28 Addition, CO
29 Addition, Aldehyde
30 Addition, Other

25

NEATPAGEINFO:id=2AC60BBC-84EF-4260-9796-3BDA0C0D9C06



Databaac Records_______________________________________________________________________________________Rank

31 AutoExhaust
32 EKMA test
33 Delta HC

34 Delta NOx

35 Static to dynamic
36 Temperature effects
37 Water effects

38 Solar effects

39 Ketone development
40 All N02

Rank

Unlike all the fields mentioned earlier, this field is composed of an integer instead
of a char£u:ter string. The purpose of ranking runs is to aid in selecting runs from
the database for model testing. Runs are ranked into various categories as shown
in Table 5.

Table   5. General Run Rankings

Rank Range Category

1 Best in HC type
2-10 Best of kind

11-50 Satisfactory
51-100 Supporting
101-500 Some problems
501- Not for modeling

The assignment of the rank number to a run is a result of a subjective judgement
based on overall quality of the run, weather conditions, and HC instruments used.

Concentrations and HC Species/Mixture Identifications
This section discusses a collection of fields whkh contain information on NOx and
HC concentrations, and HC species/mixture identifications. The fields are marked
by "Red Side Info" and "Blue Side Info" in Figure 6. A quick examination of Figure

26

NEATPAGEINFO:id=45F79F27-1BAD-4DCC-81E2-637AE065C967



Sunlight ________________________________Databage Racordi

6 reveab that the "Red Side Info" and "Blue Side Info" share a comnaon structure.

For simplicity, the structure of the "Red Side Info" will only be discussed since the
discussion applies abo to the "Blue Side Info".

The first field of the "Red Side Info" contains the NOx concentration in ppm.
The second, fourth and sixth fields of the "Red Side Info" contain concentrations,
in ppmC, of the first, second and third HC species/m^bcture respectively. The third,
fifth and seventh fields of the "Red Side Info" contain identifications of the first,
second and third HC species/mixture respectively. When there is less than three
HC species/mixtures , the field corresponding to the empty HC species/mixtiire
will be given a value zero. As a rule, these fields are filled up in left to right order.

All fields containing concentrations are of real type whereas all fields containing
HC identifications are of integer type.

HC Instrument

This field contains the number of HC instrument used in a particulsu* experiment.
The information in this field will be used to judge the quality of the run and to
assign a rank to the particular run. This field is of integer type.

Quality of Run

The major determining factors in the quality of a run are weather conditions such
as sunlight, cloudiness and haze condition as well as the number and performance
of the analytical instruments. Details of grading techniques has been covered in
the 1982 final report "Outdoor Smog Chamber Experiments to Test Photochemical
Models".^^ Experiments are rated on a scale of 0 to 9 (highest). This field is of
integer type.

Sunlight

This field contains information on the percent of possible solar radiation received
for the day. The percent solar radiation is a function of cloud cover of the day. This
field is of integer type.

27

NEATPAGEINFO:id=3C7AB3DD-67B1-4142-9C34-89521F6901A8



3

Overview of Data Set

This chapter provides a general view of the data set by presenting the distributions
of chamber runs according to different database attributes discussed in the previous
chapter. A chapter with similar goal has been given in the 1985 UNC report.* Since
the publication of the report, however, eighty seven new runs have been added to
the database. Not only these new runs brought the total number of runs in the
database from 345 to 432, but they also made the information contained in the old
report obsolete. This chapter updates the distributions information of the database
and, at the same time, serves as a supplement to the discussions in the previous
chapter.

Period Covered, Distribution
Table 6 shows the distribution of experiments by year. Runs conducted in 1977-
80 period were discussed in an earlier report.^* The number of runs listed for
these years only included those experiments that have been fully processed. Runs
conducted in 1984-86 period have not been covered in any earlier report.

Table 6. Distribution of Experiments by Year

Year Runs

'77 18
'78 45
'79 28
'80 23
'81 67

NEATPAGEINFO:id=97C41684-8020-4197-9E98-8AE19C7DA638



Period Covered, Distribution Overview of Data Set

'82 90
'83 74
'84 52
'85 19
'86 16

Table 7 shows the distribution of experiments by month. It can be seen that
experiments were performed mainly in the summer months when sunlight is abun¬
dant. Experiments conducted in non-summer months were primarily designed to
provide data on temperature and solar effects.

Table   7. Distribution of Experiments by Month

Month        Runs

Jan 3
Feb 1
Mar 2

Apr 1

May 4
Jun 65
Jul 91

Aug 97

Sep 73
Oct 69
Nov 23
Dec 3

Table 8 gives the distribution of runs by project. Experiments conducted in
1984-86 period contributed 40 runs to the "ET" type project and 47 runs to the
Methanol Exhaust project.

29

NEATPAGEINFO:id=052A1BF9-0F9F-4495-AD39-1D110192D714



Overview of Data Set Period Covered, Distribution

Code

Table 8. Distribution of Experiments by Project
Project Runs

ET Exp. Test Photo. Mech. 1978-80 114

ET Exp. Test Photo. Mech. 1981-83 128

ET Exp. Test Photo. Mech. 1984-86 40

RE HC Reactivity 69

AU Automobile Exhaust 34

ME Methzmol Exhaust 47

The distribution of experiments by class is shown in Table 9. As can be seen,
the majority of the runs are of "One day, regular" type.

Table   9. Distribution of Experiments by Class
Code Class Rims

C

D

0

T

S

Characterization 48

Second day,  char 12
One day. regular 364
Two day,  regular 5
Second day,  reg. 3

Table 10 presents the breakdown of the runs by dilution and injection conditions.
The characters enclosed in parenthesis are codes for the corresponding types.

Table   10. Distribution of Ebcperiments by Dilution and Injection Conditions

Dilution Injection Rims

Normal (N) Initial Only (I) 414

HC Continuous (H) 6

NOx Continuous (N) 0

HC tc  NOx Continuous (B) 7

Other Combination (C) 1

Large (D) Initial Only (I) 2

HC Continuous (H) 0

NOx Continuous (N) 0

HC b  NOx Continuous (B) 0

Other Combination (C) 3

30

NEATPAGEINFO:id=951CA2E8-785A-49CC-A912-09E156E132FB



CompoundB and Mixtures Used___________________________________________________________Overview of Data Set

Compounds and Mixtures Used

A summary of experiments by the HC type is shown in Table 11 . "Single, olefins"
and "Mixture, complex" are by far the two predominant types of run.

Table   11. Distribution of Experiments by HC Type

Code HC T3rpe Runs

lA Single, aldehyde 49

10 Single, olefins 103

IP Single, paraffins 13

IR Single, aromatics 11

lU Single, ole vs aid 16

IV Single, ole vs par 2

IW Single, ole vs aro 3

IX Single. other 14

MB Mixture. simple 37

MC Mixture, complex 131

MV Mixture, varying 3

B Background air 41

S One side 4

Table 12 Number of Chamber Sides Containing Species lists all the species and
the mixtures used in the experiments. The number given in the table is the number
of chamber sides in which the species or mixture appreared.

Table 12. Number of Chamber Sides Containing Species

Sides Runs

54 ETHYLENE
204 PROPYLENE
2 PROPANE
9 1-BUTENE

31

NEATPAGEINFO:id=AA083EB9-CB60-4326-A8CB-830FBB374CEC



Overview of Data Set Compounds and Mixtures Used

40 N-BUTANE

7 TRANS-2-BUTENE
1 ISOPENTANE
1 N-PENTANE
3 2,3-DIMETHYLBUTANE
1 BENZENE

50 TOLUENE
2 N-OCTANE
5 ETHYLBENZENE

28 M-XYLENE
14 O-XYLENE
5 N-PROPYLBENZENE
6 1,2,4-TRIMETHYLBENZENE
1 2,2,4-TRIMETHYLPENTANE
1 M-ETHYLTOLUENE

22 ISOPRENE
9 A-PINENE
78 FORMALDEHYDE
4 METHACROLEIN
4 METHYLVINYLKETONE

62 ACETALDEHYDE
3 ACETONE
3 BENZALDEHYDE
5 METHYL ETHYL KETONE
2 PROPIONALDEHYDE
9 BIACETYL
8 METHYLGLYOXAL
1 METHYLBENZYLQUINONE
1 N-PROPYLNITRATE
4 N-BUTYLNITRATE
4 3-PENTANONE
1 GYLYCOALDEHYDE
1 ACETONITRILE

12 METHANOL
7 03

41 CO

8 H202
5 N20

24 SYNTHETIC AUTO EXHAUST
31 '72 DODGE AUTO EXHAUST DIRECT

32

NEATPAGEINFO:id=6C350EF4-683D-438C-9FB2-FE02B46A31AD



Experimental Series Overview of Data Set

7 '72 DODGE AUTO EXHAUST CRYO

18 '79 VOLARE AUTO EXHAUST DIRECT

2 SYNTHETIC AUTO EXHAUST 0

3 SYNTHETIC AUTO EXHAUST lA

2 SYNTHETIC AUTO EXHAUST IB

18 SYNURBAN

4 SYNAUT084

2 HIMWAUTO

6

2

2

2

4

TOL/XYL/MIXl
T0L/XYL/MIX2
TOL/XYL/MIX3
TOL/TMB/XYLS

ISO-/2,2,4-TM-PENTANES
111 UNCMEK

9 SIMMIXl

11 COMARO

24 SIMARO

15

20
BUTANE/PROPYLENE

SIMMIX2

13 AROMATIC MIX

4 DODGEMIXn

28 TWODAYCON'T
56 BACKGROUND

Experimental Series

The distribution of runs by series is given in Table 13 .   The series are grouped
according to properties designated by the first word of the name of each series.

Table   13. Distribution of Experiments by Series

Code Name Runs

01 Char;  Background 12
02 Char:   NO oxid.   NO only 7
03 Char:   NO oxid.  CO added 11

04 Char;   03 decay 9
05 Char;   N02/03.  dark 4
06 Char;  Aid.  added 8

33

NEATPAGEINFO:id=FC288DA1-2732-44F6-9153-EBB45609A58E



Overview of Data Set Qua

07 Matched propylene 39

08 Matched mixture 13

09 Matched other 25

18 Reactivity Comparison 149

23 Substitution. UNCMIX 12

24 Substitution. P/B 5

25 Substitution. SIMMIX 2

26 Substitution. Other 17

27 Addition, one species 3

28 Addition. CO 14

29 Addition. Aid 5

30 Addition, Other 6

33 Delta HC 60

34 Delta NOx 8

35 Static to dynamic 18

Quality, Rank, Processing Status, Sunlight

Quality, Rank, Processing Status, Sunlight

The distribution of runs by quality is shown in Table 14. It can be seen that the
majority of the runs are of resonably good qualities.

Table 14. Distribution of Experiments by Quality

Quality Runs

9 80

8 116

7 96

6 34

5 66

4 18

3 12

2 7

1 2

0 1

34

NEATPAGEINFO:id=61178331-A012-4AC1-99CF-BD573CE95573



Quality, Rank, Processing Statua, Sunlight_________________________________________________Overview of Data Set

Table 15 gives the distribution of runs by rank. The distribution of runs by
rank is pretty close in shape to that by quality. This is because quality of run is a
major factor influencing the assignment of rank to a run.

Table 15. Distribution of Experiments by Rank

Category of Rank Runs

Best in HC type 10

Best of kind 167

Satisfactory 173

Supporting 42

Some Problems 22

Not for modeling 18

The distribution of runs by processing status is given in Table 16. Note the
distinction between "Not to be processed" runs and "Unprocessed" runs. The
former are runs which have been judged to be unsuitable for model testing, whereas
the latter are runs which have not been processed but are suitable for model testing.

Table 16. Distribution of Experiments by Processing Status

Code Processing Status Rims

S Fully processed;   segfile 201
P Partially processed 56
L Partially processed;   low priority 45
N Not to be processed 20
U Unprocessed run 110

Table 17 shows the distribution of runs by percent sunlight. Since most of
the runs were conducted during summer months when sunlight is abundant, the
distribution of runs by sunlight skews towards the higher percentage.

35

NEATPAGEINFO:id=22BE60FA-96B4-4D42-A481-9C93F7BE7965



Overview of Data Set_________________________________________________Quality, Rank, Processing Status, Sunlight

Table 17. Distribution of Experiments by Sunlight

Sunlight Runs

0- 10 31
11-20 13
21-30 15
31- 40 19
41-50 28
51-60 30
61-70 44
71-80 54
81-90 90

91- 100 108

36

NEATPAGEINFO:id=528F3DA4-462E-48FA-A323-96ED664D31C2



4

Overview of OSCECIS

We have discussed the features of the experimental conditions databases in Chap¬
ter 2 and 3. In this chapter and next, we will look at the Turbo Prolog program,
OSCECIS, that handles the database. This chapter begins with an introduction
to the three basic sections of a typical Turbo Prolog program. It then provides an
overview of OSCECIS by presenting some of its special features and the principles
underlying its design. The materials covered in this chapter lay the ground for the
detailed discussions of the components of OSCECIS in next chapter.

Sample Turbo Prolog Program
To provide some common language for our disciissions in this and latter chapters,
it is desirable to look at a simple Turbo Prolog program at this point.

A sample Turbo Prolog program is shown below. The numbers preceding the
lines are for reference purposes. They are not part of the program. The wordings
enclosed between "'/*'"diud "*/''are conmients.

Lines 2, 7, and 12 in the example contain kejrwords which prefaced the three
basic sections found in a typical Turbo Prolog program.

1 /* Sample Turbo Prolog Program */
2 DOMAINS

3 person, author = symbol
4 title = string
5 publication = book(author, title)
6

NEATPAGEINFO:id=5B056973-37FC-402D-8738-F6FCE1B52722



Overview of OSCECIS     __________________________________________________ Sample Turbo Prolog Program

7 PREDICATES

8 father(person,  person)
9 reads(person, publication)
10 grandfather(person,person)
11
12 CLAUSES
13 father(torn,bob).
14 father(bob.george).
15 father(george,bill).
16 reads (torn,  book (knuth,''The Art of Programming")).
17 reads (bob,  book(dicken8,   "The Tale of Two Cities")).
18 reads (george.  book(tol8toy.   "War and Peace")).
19

20 grandfather(X.Z)   :- /* The grandfather of X is Z if  */
21 father(X.Y). /* the father of X is Y and */
22 father(Y.Z). /* the father of Y is Z */

The DOMAINS section is a mirror image of the TYPE section in a Pascal
program. In the example, line 3 declares two domains, person and author, which
consists of elements from the standard domain type symbol. Line 4 declares a
domain, title, which consists of elements from the standard domain type string.
Other staindard domain types available are integer, real, a.ndchar. Line 5 declares
a compound domain, publication, which consists of elements from the structured
domain type, book(author, publication), defined by the user.

The PREDICATES section corresponds to the VAR section in a Pascal program
but with a major distinction: It declares the relations known to exist between the
objects in the program through the predicates which take the forms:

predname
or

predname (domainl ,domain2.....domainN)

where predname stands for predicate name and domainl,...,domainN stand for stan¬
dard type or user-defined domains. Lines 8, 9, and 10 contain examples of predicate
declarations.

The CLAUSES section corresponds to the program body in a Pascal program.
The section contains facts and rules describing the relations declared in the PRED¬
ICATES section. In the example, line 13 through line 18 contain 6 assertions which

38

NEATPAGEINFO:id=EF9F7B78-0454-42CD-8245-370315FFFFEC



Sample Turbo Prolog Program _____________________________________________________Overview of OSCECIS

are called facts. Line 20 through line 22 contain a different type of assertion called
a rule.

In this report, we will use the word predicate (and avoid using the word clause)
to refer collectively to both facts and rules in a Turbo Prolog program. When a
distinction between facts and rules is necessary, we will use the words "facts" and
"rules" directly.

The only rule in the sample program is an example of Horn clauses which take
the form:

A    if    Bl and B2 and  ...  Bn.

where A is the head of the rule and Bl and B2 and ... Bn is the tail.

In contrast to a Horn clause, a non-Horn clause takes the form:

Al or A2 or  ...  Am    if    Bl and B2   ...  Bn.

Note that a non-Horn clause contains at least two heads separated by a logical or.
Although a non-Horn clause can always be converted to a logically equivalent Horn
clause by mioving the extra heads to the tail while negating them, the conversion is
not unique in the sense that there is more than one way to choose the it heads to
be moved over. This is the major reason why a language based on non-Horn clauses
is inefficient in terms of computation time, although this type of language is more
expressive than Prolog. As an example, the following non-Horn clause:

Al or A2    if    Bl  and B2 and  ...  Bn.

can be converted into either of the following two Horn clauses:

Al    if    not(A2)  and Bl and B2 and  ...  Bn.
or

A2    if    not(Al)  and Bl and 82 and  ...   Bn.

as a result of two possible ways to bring the heads to the tail portion.

39

NEATPAGEINFO:id=552B1DB5-998B-4064-AB39-60AD303C213F



Overview of OSCECIS_______________________________________________________Overall Organitation of OSCECIS

Overall Organization of OSCECIS

The main objective of developing OSCECIS is to make the information contained
in the database easily accessible. To achieve this end, the window facility of Turbo
Prolog was used extensively to produce a series of menus. An interactive session
with OSCECIS is almost equivalent to choosing appropriate panels from a series of
pop-up menus. Whenever the user makes a mistake, he or she can easily back up
by striking the Esc key as many times as necessary without causing any adverse
side effect or even a failure to the system. Other handy facilities that OSCECIS
provides are: access to the DOS commands, access to an editor, an online tutorial
containing instructions on how to use the system, database updating f2M:ilities, a
database diagnosing tool, and access to the eight types of codes use in the database.
These features, together with the ease with which the users can get information out
of the database, make OSCECIS a user-friendly system.

Figure 7 shows the main menu of OSCECIS. The panels in the box contain the
ten options available in the system. In this section, we will discuss in detail the
options which are comparatively simpler than the two particular options, "Query
the database" and "Update the database". The last two options constitute the core
of OSCECIS and are fairly complicated. They will be discussed separately in the
next two sections.

Tutorial

The online tutorial is stored on a text file. It is invoked by choosing the "Tutorial"
panel in the main menu of OSCECIS. The content of the tutorial can be inspected
(but not altered) using cursor control keys {e.g. arrow keys to move one position at
a time, Home to move to the first position of a line etc.), screen control keys (e.g.
PgUp to go up one page of screen), or function keys {e.g. F2 to go to a line, FS to
search for a chara<:ter string). In addition, the window which displays the tutorial
can be resized by following the instructions shown in the highlighted area below the
window. These nice facilities are provided for free with a simple call to a built-in
predicate, display, of Turbo Prolog.

Access to DOS Commands

This option is activated by choosing the "DOS commands" panel in the main menu.
The OSCECIS will be suspended under this option to allow access to the system
commands. To go back to OSCECIS, simply type EXIT to the DOS prompt.

40

NEATPAGEINFO:id=7183FF2B-C52E-4AD7-B1F4-D3F33ED09C6B



Loading and Saving Database Overview of OSCECIS

Main Menu
Tutorial
DOS commands
Editor
Load the database
Save the database on file
View the database codes
Diagnose the database
Update the database
Query the database
Miscellaneous

Figure 7. Main Menu of OSCECIS

Editor

The editor is accessible by choosing the "Editor" panel in the main menu. Besides
text entering, the editor allows uses of cursor control keys to move around the
window while editing. Many function keys can also be used to Jwrhieve certain
functions such as copying, searching, or moving text strings. A second editor can
also be brought to the currently active editor window to achieve viewing or copying
of text from other files. An online help on the use of the editor is also available
by choosing the Fl key from within the editor. A summary of the functions of the
editor is given in Appendix A.

Loading and Saving Database
Before querying can take place, the user should load the database to OSCECIS
by choosing the "Load the database" panel in the main menu. When the option
is taken, OSCECIS will call a built-in Prolog predicate, consult, which will load
three files, ec.cod, ec.dbl, and ec.db2, to the system. The first file contains mainly
codes and corresponding attribute names used in the database.   The second file

41

NEATPAGEINFO:id=6B9E516B-5197-4898-AFED-F1F1AFBFA43C



Overview of OSCECIS________________________________________________________        Viewing the Database Codea

contains the experimental conditions of each run in the database. The third file
contains mainly concentrations of NOx, and identifications and concentrations of
HC species/mixtures used in the two sides of the chamber for each run in the
database. A review of Figure 6 is helpful at this point. The reasons for breaking up
the run records into two files are primarily due to the considerations of execution
efficiency and of the limitation imposed by the Turbo Prolog system on the size of
a file to 64 kilobytes. We will come back to these in next section.

The "Save the database" option should be invoked whenever the user wants the
changes made to the database to be saved. When the option is selected, the updated
copy of the database will be saved to files ee.dbl and ec.dbS, and the old database
will be moved to files ecdb.dbl and ecdb.dbS respectively.

The users are allowed to choose the "Load the database" panel only once in the
entire interactive session. The "Save the database on file" option, on the other hand,
may be selected as many times as necessary in a session.

Viewing the Database Codes

The codes and corresponding attribute names in the file ec.cod mentioned previously
can be viewed by choosing the "View the database codes" panel in the main menu.

When the panel is selected, a menu containing eight options for viewing the
database codes as shown in Figure 8 will appear. The first two types of codes,
species and series codes, are especially useful in the process of querying the database.
Since the first two types of codes can not fit into a screen, two separate text files,
ec.spe and ec.ser, were created to contain the respective codes and names. The
species codes are arranged in increasing order of species names whereas the series
codes are arrajiged in increasing order of the codes. When either type of codes is
chosen for viewing, OSCECIS will display the contents of the chosen type of codes
in the same way it does to display the text file containing the tutorial. The users
can inspect the codes and corresponding names the way they inspect the tutorial
file by using either cursor or screen control keys, or other function keys.

The remaining six types of codes are all relatively short. Upon request, the
codes and names of each type will be extracted from the ec.cod file and printed on
the currently active window. Since the codes can be inspected by just a glance,
neither cursor control key nor screen control key is needed.

42

NEATPAGEINFO:id=B48E1A9C-CC92-48F1-B58C-5AEBD1DEB916



Miscellaneous Overview of OSCECIS

-------Viewing Codes-------
Species codes
Series Codes

HC Type Codes
Class Codes

Dilution Codes

Injection Codes
Project Codes
Processing Status Codes

Figure 8. Menu for Viewing the Database Codes

Diagnosing the Database

To check the possible errors in the database, the "Diagnose the database" panel
should be chosen. Upon being activated, OSCECIS will collect the eight types of
codes from the file ec.cod and put them into eight different lists. It then picks
up eaich record (recall that each record is divided into two parts) and examines
the fields against the lists. Whenever a certain field contains a code which can
not be found in the corresponding list, a message will be generated, telling which
field of which record is possibly in error. The word "possibly" was used in the last
sentence because the error may be due to the codes in the ec.cod file instead. This
happens when new species or new conditions was used in the new experiments but
their corresponding codes have not been added to the ec.cod file by the time when
the interactive session is taking place. This option can, thus, help maintain the
consistency among various database files.

Miscellaneous

The miscellaneous option gives the users a chance to look at the distributions of

43

NEATPAGEINFO:id=D26C6CF2-1294-4F3D-9A3E-450F0CBA5166



ͣ^i^'^r'-

Overview of OSCECIS__________________________________________________________________Querying the Database

species or series types used in the database. Although the distribution of individual
species or series types can be obtained through querying the database, the numbers
of species (over 200) and series types (40) available in the database make individual
queries of each type a tedious task. This option provides an easy way to look at
the two distributions. The information obtained through this option is especially
useful for the experimenters in planning new chamber runs. The results obtained
through this option can be either sent to screen, line printer, or text file. Table 12
shows the number of chamber sides containing species obtained by this option.

Querying the Database
The "Query the database" option constitutes the core of OSCECIS. Figure 9 shows
the four basic query types available.

The first type, query by species, allows a quick way to query the database. The
users are only asked to provide one to three species codes for the species of interest.

The second type, query by series, is similar to the first type except that the
users are asked to provide a single series code instead.

The third type, query by dates, allows the users to search for any number of
records by the keys (run dates). Alternatively, the users can search for runs within
any period of time by supplying two dates, in chronological order, to the system.
Records containing experiments in a given month of different years can also be
retrieved easily using this option.

The last type of query, detailed query, is quite involved. Under this option, a
series of menus corresponding to relevant fields in the database will be displayed.
The users response by choosing appropriate panel from each menu until they run
through the whole series of menus. Their responses to the menus determine what
records will be retrieved from the database.

Despite all the differences among the query types, all queries undergo three
basic steps illustrated in the following sections.

Step 1: Query Posing

In this step, the users are expected to response to each pof>-up menu by choosing
appropriate panel using arrow and return keys, or they will be asked to enter codes
or numbers depending on what types of query they chose and what choices they
made in earlier menus. The responses from the users will be entered to the database

44

NEATPAGEINFO:id=8AF862D7-76EA-4EFD-ABF5-61E28D622A5D



Step 1: Query Posing Overview of OSCECIS

— Query Type —

Query By Species

Query By Series

Query By Dates

Detailed Query

Figure 9. Menu for Four Query Types

and remain there for the duration of each query. These responses are organized into
three types of templates.

The first type of templates, which we will call w-templates, contain the species
IDs associated with the HC species/mixtures ID's in the second part of the record.
The w-templates take the form:

w(IDTYPE)

where IDTYPE is a compound domain which consists of elements from the struc¬
tured domain type, specID(STRING,INTEGER).

The second type of templates, which we will call x-templates, contain responses
associated with the fields in the first part (except run date and rank) of ejich record
in the database (see 6). The x-templates take the form:

x(EXPCOND)

where EXPCOND is a compound domain which consists of elements from the
structured domain type, class(STRING), dilute(STRING), inject(STRING), hc-
type(STRING), proj(STRING), proces(STRING), and series(STRING).

45

NEATPAGEINFO:id=C13B6E27-DF06-4293-9EB0-0EE451752E1E



Overview of OSCECIS_______________________________________Step 2: Templates Collecting and Records Searching

The third type of templates, which we will call y-templates, contain responses
associated with the fields in the second part of each database record as well as
responses associated with the last field, rank, from the first part of the record. The
y-templates take the form:

y(RELATION)

where RELATION is a compound domain which consists of elements from the struc¬
tured domain type, eq(STRING,TYPE), lt(STRING,TYPE), gt(STRING,TYPE),
and range(STRING,TYPE,TYPE). The TYPE is itself a compound domain which
consists of elements from the structured domain type, r(REAL) and i{INTEGER).

In brief, the w-templates have to do with the ID fields in the records. The
x-templates have to do with the database fields declared as character strings. The
y-templates have to do with the database fields declared as either real or integer
types.

Step 2: Templates Collecting and Records Searching

The appearance of the message "Searching... please wait" on the screen marks the
beginning of this step. Different searching strategies are used for different types of
query.

For the first query type, query by species, only the y-templates containing the
species codes are collected and used to match the fields containing the HC ID's of
each record in the database.

The second query type, query by series, activates only the collection of the
single x-template containing the requested series code which is, subsequently, used
to match the series field of each record in the database.

For the third query type, no template collection activity takes place since the
requested dates are passed directly to the searching mechanism which matches the
key (run date) of each record against the dates passed to it.

The last query type, detailed query, activates, in this step, the searching mech¬
anism to carry out a series of actions according to the algorithm outlined below:

a) collect all the templates available;

46

NEATPAGEINFO:id=305C58DA-14F0-485F-8728-E664ED1AB607



step 3: Printing Regults_________________________________________________________Overview of OSCECIS

b) if species IDs are specified by the user, go and search the second part of each
database record for the species with the same ID's and their corresponding
concentrations (if the users also place a restriction on it);

c) if restrictions are also placed on other fields in the second part of the records
(i.e. NOx, number of HC instruments used, quality of run, and sunlight), the
runs found in b above should also satisfy these restrictions; otherwise reject
the runs;

d) if the users place further restrictions on the first part of the database records
(i.e. class, dilution, injection, HC type, processing status, series, and rank),
the runs found in c above should also satisfy these restrictions; otherwise,
reject the runs.

After the searching step, the successfully matched records will be sent to solution
templates, called z-templates, for outputting purposes. The time taken to search
for matched records will also be shown on the screen. We will explore the searching
mechanism in greater depth in next chapter.

Step 3: Printing Results

The appearance of the "Output device" menu on the screen signals the readiness of
OSCECIS to output the results. The users can choose to send the outputs to either
screen, line printer or file. When the output device is chosen, another menu will
appear which shows the eight choices of arranging the outputs for the given query.
In brief, for each query, there are three choices of output device; for each output
device, there are eight ways to arrange the output information. The users are free
to choose any combination of output device and form. Multiple copies of output to
any device are also allowed.

The eight output choices available are shown in Figure 10. "Simple output (date
only)''will display the run dates grouped by years. The total counts of runs for the
given query is also shown. Other output choices display the contents, according to
a fixed format, of each run grouped by the particular choice. Subtotal of runs is
also shown for each grouping of runs. Appendix D contains the sample outputs of
the ethylene runs grouped by series and by HC type.

The solution templates, z-templates, contain the first portion of each success¬
fully matched run record. Ejw;h z-template was declared as a compound structure
which takes the form:

2(ec(Date,Class,Dilute.Inj ect,HCtype.Proj.PcSt,Ser,Rank))

47

NEATPAGEINFO:id=A49C2FBD-E4F1-44CD-B21B-138A7213FE03



Overview of OSCECIS Step 3: Printing Results

-----Output Menu -------
Simple output (date only)
Grouped by class

Grouped by dilution type

Grouped by injection type

Grouped by HC type

Grouped by project type

Grouped by processing status

Grouped by series

Figure 10. Menu for Eight Output Choices

Note that the inner structure is essentially the first portion of a database record
(see Figure 6).

The attributes of the fields in the inner structure of the z-templates are used to
group the outputs according to the following steps:

a) The attributes of the given field corresponding to the output choice {e.g.
the Class field corresponds to the "Grouped by Class" option, the Dilute
field corresponds to the "Grouped by dilution type" option and so on) are
collected in a list.

b) The duplicated elements in the list are trimmed so that the new list contains
essentially a set of the unique attributes of the given field in the z-templates.

c) The elements in the trimmed list are then used to group the runs in the
z-templates.

Figure 11 shows an example of the steps taken when the "Grouped by series"
option was chosen. We will examine these steps in greater detail in next chapter.

48

NEATPAGEINFO:id=5C54DC02-B6B6-4EC3-ABF0-175FD859CB4F



Solution   Templates

z(ec ( "770603". "0". "N",  "1",

z { ec ("790731". "0", "N". "1".

z(ec ( "790802". "0". "N". "I".

"MB".

"lU"

"lU"

"ET".

"ET",

"ET".

"S".

"S".

"S".

'29' .  10 ))
51   ))

6   ))

18"

'18"

Step a.

Step b.

Step c.

[ "29". "18". "18" ]

[ "29",  "IB" ]

<----- Original list

Trimmed list

Formatted output ordered by series:

Date       CDI HC  Ser  Proj  Q I P  Sun       Rank

>»» For the Series type of 29 Addition. Aldehyde «<«

03-Iun-77 ONI MB  29       ET  7 0 S    95    Best of kind

Red  Side     0.351   NOx    1.68        PPROPYLENE

0.50

Blue Side    0.345  NOx    1.69

Number of runs of this series is 1

FORMALDEHYDE

PROPYLENE

»>» For the Series type of 18 Reactivity Comparison <««

31-Jul-79  ONI   lU  18       ET  7 0 S    77    Supporting

Red Side      0.513    NOx   1-69       FORMALDEHYDE

Blue Side    0.513    NOx   5.13

02-Aug-79  ONI   lU   18     ET  7 0 S    51

Red Side      0.205    NOx    1.49

ͣ Blue Side   0.205    NOx     1.01

Number of runs of this series is 2

PROPYLENE

Best of kind

PROPYLENE

FORMALDEHYDE

Figure 11.    Steps of Grouping of Runs in Solution Templates by
Series

49

NEATPAGEINFO:id=5BFEB133-B926-469E-ADE6-F04461EBB628



Overview of OSCECIS_________________________________________________________________________Overall Picture

Overall Picture

Figure 12 contains the schematic diagram which summarizes the processes of the
four types of query available in OSCECIS. The boxes enclosing "Enter" as the first
word of their statements require the users to key in either codes, real numbers, or
integers. The boxes enclosing "Assert" as the first word of their statements require
the users to choose the panels of interest by using arrow and return keys.

Updating the Database

The "Update the database" option allows the users to manipulate the records in the
database. Figure 13 shows the four basic options available in OSCECIS.

Display Record

The first option, display record, allows the display of the content of a database
record identified by the run date provided by the user. The "content" refers to the
actual attribute of each field in the record as it appezo^ in the database. For
example, the HC species formaldehyde is represented by its code 139 in the data¬
base. The "Display record"option will display the code 139 instead of the species
name "FORMALDEHYDE". The meanings of the codes can be easily found out
by returning to the main menu and choosing the "View the database codes" option.
When the record with the date supplied by the user is not found, a warning message
will be given.

Delete Record

Choosing this option will result in the deletion of the record with the given run
date from the database, since this option can be destructive, the users are asked
to confirm the deletion after they have typed in the run date. The absence of
the to-be-deleted-record in the database will not cause any warning message to be
displayed because, in this case, the option will not produce any destructive effect
anyway.

Insert Record

The "Insert record" option will insert into the database a record with the run date
given by the user. If a record identified by the given run date already existed in the
database, a warning message will be issued and the insertion aborted. Otherwise,
the user will be asked to enter the attributes of all the fields in the record through
answering a series of questions and through choosing relevant panels in a series of
pop-up menus. If the user makes a mistake in this process [e.g. enter an alphabetic

50

NEATPAGEINFO:id=08C4F98C-CEBC-4B89-9C6D-408B5095CE8B



[—Query Type —|
Query By Species
Query By Series
Query By Dales -|-|
Detailed Query -|

- # Species —,
Any
One Species/Mix
Two Species/Mix
Three Species/Mix

Put all records
into z-lcmplaleg

Enter Species
1 D

Output all
records

Find records
with the spe.

Put matched
records into
z-templates

rSeries Code
Any
Specific_____-L

Put all records
into z-templates

Enter Series
Code

Output all
records

Find records
with the ser.

Put matched
records into
z-templates

-Query by Dale(s)—|
Any
Date(s)
Month
From dl to dg

Put all records
into z-templates

Output all
records

Enter date(s) Find records
with date(9)
Find records,
with monthEnter month

Enter 2 dates
Find records
with 2 dates

Put matched
records into
z-templates

p # Species —|
Any
One Species/Mix
Two Species/Mix
Three Species/Mix

Enter

Spe.
1D(3)

[—Red Side NOx-
Any
Equals
Less than
Greater than
Range________

Enter

Spe. -
ID(s)

p Blue Side NOx-
*.  Any

Equals
Less than
Greater than    -
Range________

OulpuL
matched
records

Output
matched
records

Output
matched
records

(next page)

Enter

Spe.    \-
lD(s)

Figure 12. Flows of Four Query Types in OSCEIS

NEATPAGEINFO:id=115ED770-3316-4D7E-ABC1-44404351CF25



X l>,  w

r^ CO '^    «aO
ks.   ?    S,   W   «*    5
I   •<   H   >J O «

5 js ^ a>   Jo   c

.^^^  ^ >^
•*-> e
>-• f" a> 1
V w a.
m o >>

ͣ^jt 1to X3
-< o

1

c
«

B     O*   Q)   Wi   03
I   <   M >J o Oi

-------------1

1 •*•> c
^ ?> 4)
(U CO c^
M
(0 ^^     1•< o

M  W

IPP
'*' C
^ q> a>
0) «Q o.
CO o >>

-<
J3
O

•*i

1

to »-i^   r

(T C   3 «0 «

CO
V <o

o
o o

2     -Sfi-C ^o

CO m
Q)        CO   O^

V a>

CO   <o
CO    0)

o
CO

o
CO

o

ͣ»J ^-^
fc- OT3
«*" C
C^Qj O

O CO V

CO o c

t> —<    CO

as «g p

^, O    Q>
ti o - ͨJ
3 a>   I

^

or
u

I

I

g

s
M

NEATPAGEINFO:id=93B74709-AB06-4C44-80F9-9DB154827DA3



^.,L^^_.../ Jjgw-

Modify Record Overview of OSCECIS

Update Database

Display record
Delete record

Insert record

Modify record

Figure 13. Menu for Updating Database

character to where a numeric value is expected), the insertion will be aborted. At
the end of question answering and panel choosing, the user will be asked to confirm
whether his or her inputs are correct, ff the answer is positive, the new record will
be inserted into the database.

Modify Record

The "Modify record" option allows the user to modify the attributes of any fields of
any chosen database record. The user begins with typing in the run date. The
system responses with checking the database to see whether a record with the given
date already existed. If no such record exists in the database, a warning message
will be issued and no modification will take place. Otherwise, the user will be
prompted by a series of pop-up menus corresponding to each field of the record of
interest. The first panel,"Not to be modified", in the menus should be chosen if the
user does not want the attribute of the corresponding field to be changed. If the "To
be modified" panel is chosen, a box will be displayed and the user will be asked to
enter the new attribute for the corresponding field.

For those fields having only a few attributes (i.e. Clziss, Dilution, Injection,
HC Type, Project Code, and Processing Status), the relevant attributes will be
displayed in the panels of the respective menu and the user can choose the new
attribute for the given field directly from the menu. Again, after the user has run

53

NEATPAGEINFO:id=3A95136D-0FF2-4B60-950F-CC9FDCE08E3D



Overview of OSCECIS_________________________________________________________________________Overall Picture

through the series of menus, he or she will be asked to confirm whether the inputs
are correct. A positive response will cause the old record to be deleted from and
the new record with modified fields to be inserted in the database.

Overall Picture

Figure 14 shows the schematic diagram summarizing the flows of the options of
updating the database.

54

NEATPAGEINFO:id=32CAAD5C-021E-4BC2-8F46-0898D285B314



Overall Picture Overview of OSCECIS

(-Update Dbase-f
Display record
Delete record

Insert record

Modify record

t
(next page)

Display       J

Deletion     j

Enter Enter
Red

IstHC

ID

Enter
Blue

3rd HC
Con

Enter
Blue

3rdHC
ID

Enter

|HC
Instru¬
ment

Enter

Overall

Quality

Enter
Red

1st HC

Con

Enter
Red

2ndHC

I D

Enter
Blue

2nd HC
Con

Enter
Blue

2nd HC

1 D

EnterEnter Enter

3rd HC 3rd HC2nd HC

Enter EnterEnter

IstHC1st HC

Enter

Rank

Enter

Sun-

r- Class Type  —,

Charac. Exp
Char;2nd day
Regular^ne day
^egular.two day
2nd day of 2 dy

ͨC Error )

^ Assert
Chosen

Type

( Error X-
r HCTyge _-T^

Assert

Chosen

Type

Aldehyde
Olefin

Varying mix

( Error >»-
-   ln)ectijon_--]^

Assert

Chosen

Type

All initial

HC during
NOx during
Both during
Other comb

««—
p    Dilution   —j

. Error )

Normal dilu

Large dilu
Assert

Chosen

1 Type

^—

r- Class Type  —•

Charac. Exp
Char^nd day
Regular.one day
Regular.two day
2nd day of 2 dy

-»( Error )

Assert

Chosen |—'
Type

f- Class Type  —,

Charac. Exp
Char^nd day
Regular.one day
tegular,t>'o day
2nd day of 2 dy

-»( Error )

^ Assert
Chosen

Type

r
Enter

Series

Code

•-W Insert
Record

Figure 14. Flows of Four Updating Database Choices in OSCECIS
55

NEATPAGEINFO:id=BA488408-58AF-419D-AB05-C03182129134



conl.
------ ͨ rRed NOx Con-

Nol to be mod.

To be modified Enter I   Inew     —Inew
con.

Enter
new
con.

r Red 3rd EC ID _,
Not to be mod.

To be modified

rRed 3rd HC Conr-i

Not to be mod.

To be modified Enter lJ
new
con.

Enter
new
con.

r^lue 2ad HC Coft-

Not to be mod.

To be modified

r Blue 3rd HC ID-
Not to be mod.

To be modified Enter
new
con.

lT

Enter
new
con.

- % Sunlight —I
Not to be mod.

To be modified

Class
Not to be mod.

Charac. Exp.
Char.^nd day
Regular.one day}-^
Regular.two day
2nd day of 2 dy

r Red 1st HC ID—i

Not to be mod.

To be modified Enter I   Inew     —Inew
con.

Enter
new
con.

f-Red 2ad HC Co
Not to be mod.

To be modified

r Blue NOx Coa —
Not to be mod.

To be modified
Enter
new
con.

Ij Enter
new
con.

rfllue 2ad HC ID —i
Not to be mod.

To be modified

rBlue 3rd HC Ca—i

Not to be mod.

To be modified Enterll
new
con.

Enter
new
con.

Rank

Not to be mod.

To be modified

Assert

Chosen-I—'
Type

-   Dilution    -,
Not to be mod

Normal Dilu.

Large Dilution
Assert
Chosen

Type

rRed Ist HC Con-,
Not to be mod.

To be modified
Enter
new
con.

I    I Enter
new
con.

-Red 2nd HC ID-j^J
Not to be mod.

To be modified

lT
r Blue 1st HC ID —

Not to be mod.

To be modified
Enter
new
con.

Ij Enter
new
con.

r^lue 1st HC Coa—I
Not to be mod.

To be modified

p # HC lastrumt —,
Not to be mod.

To be modified Enter
new
con.

TjEnter
new
con.

-Overall Qual—i
Not to be mod.

To be modified

.|-   Injection   _,
Not to be mod
All initial
HC during
NOx during
Both during
Other comb.

Assert
Chosen

Type

Assert

Chosen

Type

-Proces status—I
Not to be mod.
Fully processed
Partially proce.
Part.proc, low
Not to be proc.
Unprocessed

- Project Type—I
Not to be mod.

Assert

Chosen

Type

-«f-Test Pho. Model

Reactivity
Auto exhaust

Methanol exh

Assert

Chosen

Type

p   HC Type    -
Not to be mod.

Aldehyde
Olefin

Varying mix.

r   Series   —i
Not to be mod.

To be modified
Enter
new
con.

lT
r   Retract
Old Record

Insert
New Record

Figure 14.    cont.
OSCECIS

Flows of Four Updating Database Choices in

56

NEATPAGEINFO:id=722133F2-FD6E-47CB-9331-4DE859A5028A



5

Components of OSCECIS

This chapter begins with a brief introduction to the pattern-matching facilities of
Prolog language by citing several examples of matched and unmatched patterns. It
then proceeds to introduce the hierarchy of predicates in OSCECIS as a supplement
to the discussions in previous chapter. Finally, a detailed description of selected
components of OSCECIS will be presented with a goal to provide some insight on
how the system works. A knowledge of Prolog is helpful but not required.

More About Turbo Prolog

To make our later discussions easier, we will pick up some terminologies while
looking at some representations commonly found in a Turbo Prolog program.

As mentioned in Chapter 4, a predicate in Prolog language can take the form
of either a predicate name or a predicate name followed by a pair of parentheses
containing one or more arguments. Throughout this chapter, we will use the word
"parameter(s)'' to refer to the argument(s) in the parentheses. Each parameter can
take the explicit form of any domain type (including standard domain types) as
declared in the domain declaration section of the particular program or it can be
a variable. Any terms starting with a capital letter in the CLAUSES section of
a Turbo Prolog program is a variable. A variable matches a structure according
to unification algorithm discussed in many textbooks on formal logic or logic pro¬
gramming.^* The discussion of the unification algorithm is out of the scope of this
report. However, to suit our needs, we will present some examples of matched and
unmatched structures involving variables.

Table 18 shows six examples of matched structures.

NEATPAGEINFO:id=4C554FDD-00EC-4826-9CFC-39FFAD2053DE



Component* of OSCECIS More About Turbo Prolog

Table 18. Examples of Matched Structures

Structure  1 Structure 2 Variable Type

1. X

2. p(X)
3. I a

4. List

- 3

5. eq(Labl,r(B))

6.  ec(cl(A),A)

any structure
p(a).  p(b)....
[ a,  b.  c.  d,  e 3

[eqa.r(B))|_]

X is of any type
X is of symbol type
Both structures are

lists of symbols
List was declared

as having struc¬
ture 2

eq("HCconl".r(0.1)) Labi is of string
type;
B is of real type

ec(cl(''O*•).•*0'*)        A is of string type

The underscores (_) in Table 18 represent anonymous variables. The structures
which begin and end with brackets are called lists. The first structure on line 3 of
18is a short-hzuid representation of the second structure on the same line (they are
both lists). The symbol "a" in the first structure on line 3 is called the head of the
list and it matches the first element of the second structure. The underscore in the
first structure of line 3 is called the taii of the list and it binds to the tail of the

second structure {i.e. "_" binds to "(b, c, d, e]" ). The list structure is one of the
most powerful features of Prolog language.

Table 19 shows five examples of unmatched structures.

Table 19. Examples of Unmatched Structures

Structure  1 Structure 2 Variable Type

1. p(a)
2. [a   I   _]

3. [lt(L.r(B))|J

4. [eq("Cl".i(5))|_3
5. ec(cl(A).A)

p(b)
[b.  c. d.  e]

[eq(L.r(B))|_] B's are of  real type
[eqC-C2".i(5))|_]
ec(cl("0")."T")  A is of string type

The structures on line 1 do not match because the two symbols, a and b, do
not. On line 2, the head of the first list does not match the head of the second
list. The heads of the two lists on line 3 do not match because they are of different

58

NEATPAGEINFO:id=B95D5B80-C171-4AFC-8473-2CDB44063B52



Hierarchy of Predicates______________________________________________________________Componenta of OSCECIS

types of predicates. On line 4, the string "Cl" in the first list does not match the
string "02" in the second list although the two lists are of same structure. The
structures on line 5 do not match because the two strings, "O" and "T", of the
second structure are not the same.

Hierarchy of Predicates

All the predicates defined in OSCECIS can be arranged in a hierarchy according
to what predicates they call and by what predicates they are called. Appendix
B contains the hierarchy constructed according to this criterion. The hierarchy is
presented in four blocks: main block, print block, menu block, and writeformat
block.

The vertical lines represent the levels in the hierarchy. The predicates having
fewer lines to the left of them are at a level higher than those having more lines.
Accordingly, the predicate "mainmenu" occupies the top level of the hierarchy. Each
pair of brackets encloses the name of the block referred to at that particular location.
Each pair of parentheses encloses the parameter(s) of the predicate preceding it.

To explain the relationship of calling and called predicates, we define a calling
block of a given predicate in the structure as the block whose height spans from
the predicate of interest down until another predicate at the same or higher level is
reached, and whose width encloses the whole structure to the right of the predicate
of interest. For example, the calling block of mainmenu is the entire hierarchical
structure in Appendix B. As another example, the calling block of the predicate
menu is the entire menu block. As yet another example, the calling block of the
predicate e<i is the predicate itself.

In the hierarchical structure, a predicate calls only those predicate(s) at the
next lower level in the calling block. For example, the predicate mew calls only the
predicates repeat, menu, and viewl. As another example, the predicate viewhc calls
the built-in predicate/a»7.

In Appendix B, only defined predicates are entered into the structure; database
and built-in predicates (except the fail predicate) are not shown. In the structure,
those predicates which call themselves are recursive in nature. Likewise, a predicate
which calls another predicate which calls back the first predicate is also recursive.
The iterative predicates are those which call the defined predicate repeat or the
built-in predicate fail.

59

NEATPAGEINFO:id=45B8C393-BBB1-4819-AA51-55C8FD29EBB4



ComponentB of OSCECIS_____________________________________________________Description of Selected Predicates

Although the hierarchy of predicates does not cover every aspect of the source
program of OSCECIS, it holds the key to the understanding of the actual program.
The reader is encouraged to at least take a glance at this construction in Appendix
B before moving on to next section.

Description of Selected Predicates
A quick glance at the hierarchy of OSCECIS reveals that a detailed description of
every predicate defined in the program will probably make the size of this report
unbearable. As such, we will concentrate only on two groups of predicates which
perform the tasks of searching and printing in the system.

Searching

Different query types adopt different searching strategies. We will investigate the
searching strategy used in the most complicated query type, detailed query, by
examining the predicates involved.

We assumed that the user has gone through the query posing step and the
relevant w-, x- and y-templates have been inserted into the database (see section
"Querying the Database" in Chapter 4). At this point, the predicate detailfind will
be called. In the program, the only parameter of the predicate detailfind takes four
values (O to 3). The value passed to the parameter when detailfind is called depends
on how many species ID's were specified by the user in the earlier step (remember
that the user can specify 0 to 3 species when the "Detailed Query" option is chosen).
For simplicity, we assume that the user has entered three species ID's in the query
posing step and that the system has put the ID's in w-templates accordingly. As a
result, the clause detailfind(S) as shown below is activated. Note that the numbers
preceding the lines are for reference purposes. They are not part of the program.

1 detailfindO):-
2 w(specID("lsf MDl)).
3 w(specID("2nd".ID2)).
4 w(specIDC-3rd-MD3)).
B findalKTerm.xderm) .Lis) .
6        findalKRel.  y(Rel) .List) .

60

NEATPAGEINFO:id=F02BAB97-13B5-4BEE-A089-D66C3B98D072



Searching Components of OSCECIS

7 rb(Date.RN.Rcl.Rl.Rc2.R2,Rc3.R3,
BN.Bel.Bl.Bc2.B2.Bc3,B3.IS.QA.su).

8 checkRB(List."HCconl".IDl.Rcl.Rl.Rc2.R2.Rc3.R3.
Bcl.Bl.Bc2.B2.Bc3.B3).

9 checkRB(Li8t."HCcon2".ID2.Rcl.Rl.Rc2.R2.Rc3.R3.
Bcl.Bl.Bc2.B2.Bc3.B3).

10 checkRB(List.'*HCcon3",ID3.Rcl.Rl,Rc2.R2.Rc3.R3.
Bcl.Bl.Bc2.B2.Bc3.B3).

11 rel_r(Li8t."redN0x**.   RN) .
12 rel_r(Li8t."blueN0x".BN).
13 rel_i(Li8t."hcin8f'.  IS).
14 rel_iai8t."qual".      QA).
15 rel_iai8t."sun".        SU).
16 ec(Date.Cl,Di,In,HC.Pj.Pc.Se,Rk).
17 checkECais.Cl.Di.In.HC.Pj.Pc.Se).
18 rel_i(Li8t,"rank".    Rk),

19 a88ert(z(ec(Date,C1,Di.In.HC.Pj.Pc.Se.Rk))).fail.
20 detailfind(_) .

Lines 2 to 4 contain statements whose job is to match the w-templates containing
the three species ID's asserted to the databjuse in the earlier step. The ID's of the
first, second, and third species are bound to IDl, ID2, and IDS respectively. Line 5
contains a call to the built- in predicate findall which collects the inner structures
of all the x-templates and put them into a list bound to the third parameter Lis.
Similarly, line 6 contains a call to findall which collects the inner structures of all
the y-templates and put them into a list bound to the third parameter List. Up to
this point, all the templates have been collected and the system is ready to match
the elements in the templates to the fields in the database records.

The statement on line 7 achieves the effect of fetching in, one in each cycle, the
second part of database records, beginning from the first record in the database.
The fields in the record being fetched in will bind to the corresponding variables on
line 7. We will call this newly fetched record the current rb (for red and blue sides)
record.

Lines 8 through 10 contain three calls to the predicate checkRB with different
HC ID's (IDl, ID2, IDS), HC concentration labels ("HCconl", "HCcon2'', "HC-
conS") and other 12 parameters bound to the HC ID's and HC concentrations of
the current rb record. The checkRB predicate was defined as follows:

61

NEATPAGEINFO:id=9CE4A16F-CA97-49F7-96A8-67B441CB6075



ComponenU of OSCECIS______________________________________________________________________ Searching

21 checkRB(Li8t.Spe.ID.Rcl.Rl.Rc2.R2.Rc3.R3. Bcl.Bl.Bc2.B2.Bc3.B3)
22 ID=R1, rel_r(Li8t,Spe,Rcl),
23 ID=B1. rel_r(LiBt.Spe.Bcl).
24 ID=R2. rel_r(Li8t.Spe.Rc2) .
25 ID=B2. rel_r(List.Spe.Bc2).
26 ID=R3, rel_r(List.Spe.Rc3).
27 ID=B3, rel_r(Li8t.Spe.Bc3).

or

or

or

or

or

The first task of checkRB is to find out whether there is a match between the

parameter ID and any one of the six parameters, Rl, R2, R3, Bl, B2, B3, which
bind to the six fields containing HC ID's from the current rb record, ff such a
match is not found, the predicate checkRB fails and the control is returned to the
calling predicate detailfind. If such a match is found, the first statement on one of
the lines numbered fromi 22 to 27 will be satisfied and the second statement on the

same line will be activated. Note the regular patterns among the parameters of the
clause checkRB. The first character of each parameter designates the chamber side
where the HC is found ("R" for Red side and "B" for Blue side). The last character
of each parameter designates the ordering of the HC in each side of the chamber
(up to 3 species are allowed). Each parameter having "c" as its middle character
binds to the concentration of the HC having same first and last characters {e.g.Rcl
binds to the concentration of the HC bound to Rl).

The second task of checkRB is to check, by calling the support predicate reLr,
the concentration of the successfully matched HC against the restriction, if any,
placed by the user on this HC. The predicate reLr was defined as follows:

28 rel_r([]._._):-!.

29 rel_r([eq( Label.r(B) )I _]. Label. A)
30 rel_r([lt( Label.r(B) ) I _]. Label. A)

31 rel_r([gt( Label.r(B) ) I J . Label. A)
32 rel_r([range( Label.r(B). r(C) ) I J. Label.

B<=   A,   A <=   C.
33 rel_r([_|   T] .  Label.  A)   :- rel_r(T.  Label.  A).

The first parameter binds to a list of elements from the domain RELATION
(see section "Query Posing" in Chapter 4). The second parameter binds to a label
identifying the database field of interest. The third parameter binds to the value of
the database field of interest.

If the user never places restriction on any one of the fields associated with HC
or NOx concentrations, number of HC instrument used, quality of run, sunlight,

62

A= B.

k< B.

ky B.

A) :-   !

NEATPAGEINFO:id=BC956AFD-52C0-4F83-A9AE-709C7DBFDC11



Searching Components of OSCECIS

and rank, the y-template will not exist and the first parameter, "List", of checkRB
which is supposed to contain the inner structure of y-templates will be empty. In
this case, line 28 is satisfied and predicate reLr will return a "true" to the calling
predicate checkRB.

If the user places at least a restriction on at leaist one of the fields mentioned
above, the y-template(s) will exist and the first parameter. List, of checkRB will
contain the inner structure(s) of y- template(s). Consider two cases. Case 1. The
restriction pl3w;ed on a field is in the first position of the list, which is the first
parameter of reLr, and the field, identified by the variable "Label", is currently
being examined. In this case, the two labels in the heads of one of the clauses on
line 29 through line 32 will be matched. The success or failure of the clause is then
determined by whether its tail is true or false, ff the field of interest satisfies the
restriction placed on it, the tail will be true. Otherwise, the tail will be false. The
cut, "!", in the tail of a given clause prevents the Prolog from exploring further
on other clauses with the same predicate name. Case 2. The restriction placed
on a field is not in the first position of the list of reLr and the field is currently
being examined. In this case, the clause on line 33 will be matched. The tail of the
clause contains a recursive call to the predicate reLr itself with the tail portion of
the original list as its first parameter. This procedure repeats until the condition
of case 1 above becomes true (t.e. until the restriction placed on the field currently
being examined is in the first position of the list). The success or failure of the clause
on line 33 depends on the subsequent recursive call which ultimately depends on
the success or failure of one of the clauses on line 29 through line 32.

If the user places restrictions on some fields other than the field currently be¬
ing examined, clauses on line 29 through line 32 will never have a match and be
executed. The first clause that matches is the one on line 33, which calls back the
predicate reLr with the tail portion of the original list as its first parameter until the
list becomes empty and the clause on line 28 is successfully matched. In this case,
the call to the predicate reLr will always be successful because, if no restriction is
plsiced on the field, any value in the field of interest is acceptable.

The success or failure of the predicate rel_r determines the success or failure of
the calling predicate checkRB which, in turn, determines the flows of the predicate
detailfind on which we will now focus.

If any of the calls on line 8 through 10 fails, the system will backtrack to the
statement on line 7 and pick up the next record in the database. The fields in
the new record will bind to the parameters in the statement and another cycle

63

NEATPAGEINFO:id=C88D49CB-9232-4270-8198-FCC432E25307



Components of OSCECIS____________________________________________________________________________Searching

of callings to eheckRB begins. If the three calls to checkRB are successful, two
calls to the predicate reLr and three calls to the predicate reLi will take place on
line 11 through line 15. The reLr examines the restrictions placed on the fields
corresponding to red side NOx concentration and blue side NOx concentration,
whereas the relJ examines the restrictions placed on the fields related to the number
of HC instruments used, quality of run, and sunlight. The predicate reLi is almost
identical to the predicate reLr ( by replacing all the r's on line 28 through line 33, we
get the definition of the predicate reLt). The only different between reLr and reLi
is that the former examines the relationship between the fields declared as real type
and the corresponding real values placed by the user, whereas the latter examines
the relationship between the fields declared as integer tyi>e and the corresponding
integer values placed by the user. If any of these call fails, the system will backtrack
to line 7. Otherwise, line 16 will be activated.

Line 16 achieves the effect of fetching in the first portion of the database record
whose second portion has been successfully matched so far (notice that the two
portions are linked by the variable Date). The fields of the first portion of the
database record bind to the corresponding variables on line 16. We will call this
portion of the database record the current ec (for experimental conditions) record.

Line 17, which contains a call to the predicate checkEC, is activated subse¬
quently. The task of checkEC is to match the experimental conditions placed by
the user against that in the current ec record. The checkEC predicate was defined
as follows:

34 checkECCC],_____._______).

35 CheckEC([class(A)IT].     A.B.C.D.E.F.W)   :-
checkECCT.A.B.C.D.E.F.W).

36 CheckEC([dilute(B)IT],   A.B.C.D.E.F.W)   :-
checkECCT.A.B.C.D.E.F.W).

37 CheckEC([inject(C)IT].  A.B.C.D.E.F.W)   :-
checkECCT.A.B.C.D.E.F.W).

38 checkECC[hctypeCD)|T].   A.B.C.D.E.F.W)   :-
CheckECCT.A.B.C.D.E.F.W).

39 checkECC[projCE)|T].       A.B.C.D.E.F.W)   :-
CheckECCT.A.B.C.D.E.F.W).

40 checkECC[procesCF)|T].   A.B.C.D.E.F.W)   :-
CheckECCT.A.B.C.D.E.F.W).

41 checkECC[seriesCW)|T].   A.B.C.D.E.F.W)   :-
checkECCT.A.B.C.D.E.F.W).

64

NEATPAGEINFO:id=9183E85B-06E5-4E00-89A3-51AE46AFB57E



Searching Components of OSCECIS

The first parameter binds to a list of elements from the domain EXPCOND
(see section "Query Posing" in Chapter 4). The remaining seven parameters bind
to all the fields (except run date) of the current ec record.

If the user places no restriction on any experimental condition, the x- template
will not exist and the first parameter, Lis, of checkEC (on line 17) which is supposed
to contain the inner structure of x- template will be empty. As a result, the clause
on line 34 is satisfied and a "true" is returned.

If the user places at least a restriction on at least one of the experimental
conditions, the x-template(s) will exist and the first parameter, Lis, of checkEC on
line 17 will contain the inner structure of x-template(s). If a restriction placed on
a given field is satisfied by the attribute of the field of the current ec record, one
of the heads of the clauses on line 35 through line 41 will be successfully matched
and its tail, which contains a recursive call to checkEC with the tail portion of the
original list as its first parameter, will be activated. The recursive calls to checkEC
continue until either line 34 is matched or no clause on lines 34 through 41 can be
successfully matched. The former case happens when the corresponding fields of
the current ec record satisfy all the restrictions placed by the user. A "true" will be
returned. The latter case happens when a single field of the current ec record can
not satisfy the restriction placed by the user to the field, A "false" will be returned
in this case.

We will again focus on the predicate detailfind now. If the predicate checkEC
returns a "false" to line 17, the system will backtrack to the statement on line 7.
Otherwise, a call to rcLr will take place on line 18 to check the possible restriction
placed on the last field, rank, of the current ec record. A failure of the call on line
18 will cause the system to backtrack, whereas a success of the call will cause the
statements on the line 19 to be executed.

Being able to reach line 19 marks the "triumph" of the currently active database
record. There are two statements on this line. The first statement is a call to the
built-in predicate assert which puts the current ec record into the solution template.
The second statement is a call to the built-in predicate fail which, as its name
suggests, always fails and forces backtracking to previous statements. The system
will eventually backtrack to line 7, where another fetching cycle begins.

The executions described so far repeat until the end of the database file is
rezw:hed. Line 20 is subsequently activated. The clause on the line will always
succeed and, thus, completes the searching step.

65

NEATPAGEINFO:id=B0649AE1-3F3A-4F2C-B09A-D51C502F68F4



Componentg of OSCECIS_____________________________________________________________________Printing Resultg

Printing Results

As pointed out in Chapter 4, there are three choices of output devices available
for each query and eight choices of output forms available for each output device.
We will investigate the strategies used in printing the results of a given query by
examining the relevant predicates.

For simplicity, we aussume that the solutions for a given query have been put
into the z-templates and the user has chosen the desired output device. We will
focus only on the "Ordered by series" option because it is similar to the remaining
options available in the "Output menu" (except for the "Simple output" option
which is much simpler then any other options).

As soon as the "Ordered by series" panel is chosen, the predicate printBySeries
as defined below will be activated.

42 printBySeries :-
43 findall(Serie8,z(ec(_,_,_,_._,_,_,Series,-)),L),
44 unika.Ll).
45 heading,
46 printSeriesCLl).

Line 43 contains a call to the built-in predicate findall which collects the series
codes in all of the z-templates and put them into L which is a list. Line 44 contains
a call to the predicate unik which throws away all the duplicated elements in list
L and returns a trimmed list with unique elements to Ll. Line 45 is a call to
the predicate heading which prints the heading of the formatted output as shown
in Appendix D. Line 46 is a call to the support predicate printSeries defined as
follows:

47 printSeries([]).
48 printSeries([SjSI]) :-
49 check_8er(S.Series).
50 write(" »»> For the Series type of ". S. Series.

*• ««< \n ••).
51 writeformatC'series'• ,S) .
52 findall(X.2(ec(X__________S.J) .List) .
53 listlenCList.Num),
54 writeC' of runs of this series is '',NuBi),nl,
55 printSeries(SI).

66

NEATPAGEINFO:id=E789A31C-B46B-4644-B35D-CC2643C3CC31



Printing Results Components of OSCECIS

If the list passed to the printSeries is empty, line 47 will be satisfied and the
control will be returned to the calling predicate on line 46. Otherwise, line 48 will be
matched and the statements on line 49 through line 55 will be activated in sequence.

Line 49 contains a call to the predicate "check.ser" which checks whether the
series with code bound to S is in the file ec.cod. If so, the corresponding series name
will be bound to the variable Series. Otherwise, the string " NEW SERIES!!!" will
be returned as a warning to the possible inconsistency in the database. Line 50
prints the heading of the beginning of the current series which includes series code
and series name from previous statement.

Line 51 contains a call to the predicate writeformat whose task is to print out
all the runs having the current field attribute, in this case the series code bound to
S, in the z-templates. The writeformat was defined as:

56    writeformat(Label.   Field)   :-
67        ec_field(Label.Field.

Date.Class.Dilute.Inj ect.HC,Proj.Status,Ser.Rank),
58 rb(Date.

RedNOx.RHCconl.RHCcodel,RHCcon2.
RHCcode2,RHCconS,RHCcodeS,
BlueNOx.BHCconl.BHCcodel.BHCcon2,
BHCcode2.BHCconS.BHCcodeS.
HCinst,Qual,Sun).nl,

59 code_date(Date.Datei).
60 code_rank(Rank.Rankl).

61 writeCDatel." " .Class. Dilute. Inject. "  ".HC.
"  ".Ser,"    ".Proj,"  ".Qual."  ",
HCinst."  ".Status."    ".Sun."
Rankl).nl.

62 writerb("Red Side" .RedNOx.RHCconl .RHCcodel) .
63 writehc(RHCcon2.RHCcode2),
64 writehc(RHCcon3.RHCcode3),
65 writerb("Blue Side" .BlueNOx.BHCconl .BHCcodel) .
66 writehc(BHCcon2.BHCcode2).
67 writehc(BHCcon3.BHCcode3).fail.
68 writeformat(_._) .

Line 57 contains a call to the predicate ec-field defined as follows:

67

NEATPAGEINFO:id=3DCF27F1-9244-4125-BCBD-6BEC95FAAE4D



Components of OSCECIS______________^__________________________________________________Printing Results

69 ec_fieldC'class".  A.  X.A.B.C.D.E.F.G.R)   :-
z(ec(X.A.B.C.D.E.F.G.R)).

70 ec_fieldCdilute".B.   X.A.B.C.D.E.F.G.R)   :-
z(ec(X.A.B.C.D.E.F.G.R)).

71 ecjfieldC'injecf'.C.  X.A.B.C.D.E.F.G.R)   :-
z(ec(X.A.B.C.D.E.F.G.R)).

72 ec_field("hctype".D.   X.A.B.C.D.E.F.G.R)   :-
2(ec(X.A.B.C.D.E.F.G.R)).

73 ec_field("proj".    E.  X.A.B.C.D.E.F.G.R)   :-
2(ec(X.A.B.C.D.E.F.G.R)).

74 ec_fieldCstatus".F,   X.A.B.C.D.E.F.G.R)   :-
2(ec(X.A.B.C.D.E.F.G.R)).

75 ec_fieldCseries".G.  X.A.B.C.D.E.F.G.R)   :-
z(ec(X.A.B.C.D.E.F.G.R)).

When ec^field is called with its first parameter bound to "series" and its second
parameter bound to the current series code (both passed from the parameters on
line 51), the clause on line 75 will have a match and its tail will pick up the first
available run with the current series code (now bound to variable "G") in the z-
template. All the fields in the run just picked up from the z-template are then
passed, via the remaining parameters in the head of the clause on line 75, to the
statement on line 57.

On line 58, the second portion of the run, identified by the same run date as the
portion just picked up from the z-template, will be fetched in from the database.

Lines 59 and 60 convert the run date and rank to more readable forms. Line
61 through line 67 contain calls to predicates writerb and writehc which, together,
print out the fields of the run according to a fixed format as shown in Appendix D.

The last statement on line 67 is a call to the built-in predicate fail which forces
the system to backtrack to line 57 where another call to ec^field takes place. Line
75 is again matched and its tail will, at this time, pick up the next available run
with the current series code in the z-template. The cycle repeats until no more run
with the same current series code can be found in the z-templates. At that point
the call to ec^field on line 57 will fail. Line 68 is subsequently reached and the
control returns to line 51.

Line 52 contains a call to findall which collects the dates (bound to X) of all
the runs with the current series code (bound to S) in the z-templates and put them

68

NEATPAGEINFO:id=7F6877B4-4CBA-4817-82B4-FE52CEA6A91B



Printing Reaults_____________________________________________________________________Components of OSCECIS

into List. The predicate listlen on line 53 counts the number of elements in List
and returns the number to Num. Line 54 prints out the counts of the runs having
the current series code.

Line 55 is subsequently activated. It contains a recursive call to printSeries
with the tail portion of the list on line 48. The execution cycle repeats until the list
becomes empty. Line 47 is subsequently satisfied and the control returns to line 46
where the whole sequence of printing results comes to an end.

69

NEATPAGEINFO:id=EE498259-83A1-4D40-B253-645A10E3E4D3



6

Future Work

We have pointed out in Chapter One that OSCECIS will ultimately be incorporated
into an expert system capable of assisting the photochemical kinetics model devel¬
opers in testing their models, as well as carrying out automatic model evaluations.
In this chapter, we will discuss the plan for the future work along this line.

What Is Next?

Judging by the ease with which the users can query the database, the short searching
time, the tolerance of errors made by the user in the interactive session, and other
handy helping tools, we are quite confident to say that OSCECIS has achieved its
goal as a database management system for the experimental conditions database.

However, with the power that the implementing language. Turbo Prolog, pos¬
sesses, one may, quite naturally, ask: Can the system do better? Is it possible to
write a program which can automatically choose the best runs for model testing?
How about model evaluations? Can a program make inferences from a set of testing
results and tell the strengths and weaknesses of a given model? Is it possible to have
a program which incorporates all the above features and behaves like an expert in
the field of photochemical reactions modeling?

These are the questions to be addressed as we discuss the long-term goals of this
project. It turns out that the points raised in the above questions fall well within
the scope of an expert system we are planning to develop. But what is, in the first
place, an expert system?

Features of Expert Systems

Any attempt to clarify the meaning of the term "expert system" is bound to elicit
a long list of terms to be clarified in turn.   To avoid being carried away, we will

NEATPAGEINFO:id=4A3A887E-68B2-4130-8D40-502A5B22BBB8



The Knowledge Bage_____________________________________________________________________________Future Work

be satisfied with the definition that an expert system is a software package which
can perform the tasks of a specific doniain at an expert's level. The word "specific"
can never be over emphasized since it holds the key to the success of many expert
systems.

Early artificial intelligent programs tended to be too broad in scope and conse¬
quently could solve only "toy" problems given the limitations of computer resources.
It is not until the late 1960's that the importance of domain expert's knowledge to
the performance of intelligent programs was appreciated. The recognition of this
key factor finally brought about the first batch of commercial products of artificial
intelligence which totally changed the image of AI approach as being only able to
deal with "toy" problems. A new field known as expert system was bom.

The following list was adapted from Forsyth.^^ It outlines the distinctive fea¬
tures found in many expert systems and is a good starting point to know what an
expert system is:

1. An expert system is limited to a specific domain of expertise.
2. It can reason with uncertain data.

3. It can explain its chain of reasoning in a comprehensive way.

4. Facts and inference engine are clearly separated.

5. It is designed to grow incrementally.

6. It is typically rule-based.

7. It delivers advice as its output - not tables or figures, nor pretty video screens,
but sound advice.

Basic Components of Expert Systems

Figure 15 shows a schematic diagram of four basic components of an expert system.
Not all existing expert systems possess all the four components; but the majority
of them do.

The Knowledge Base

The knowledge base constitutes the core of an expert system. The major difference
between a database and a knowledge base is that the objects of the former are data,
whereas the objects of the latter are entities and the rules describing the relations
between the entities. Another difference between database and knowledge base is
that the database system is passive in the sense that a piece of information is either
present or absent in the database, and very little can be done about the missing

71

NEATPAGEINFO:id=25EF627D-2F21-4998-9718-C8251FA17698



Future Work
The Knowledge Baae

Knowledge

Acquisition

Tool

Domain       Knowledge

Expert Engineer        Publications Database

E Q^

Knowledge

Acquisition

;

Knowledge
Base

J
Inference

Engine

I
Justification

Explanation

User

Figure 15. Four Basic Components of a Typical Expert System,

72

NEATPAGEINFO:id=5198B6F1-CFC0-4113-BEBB-E7BEBFEBA71D



Knowledge Acquisition___________________________________________________________________Future Work

information, whereas the knowledge base system actively tries to fill in the missing
information among the entities by applying the relevant rules to them.

Although the production rules, with their IF-THEN format, have been a favorite
means of developing knowledge base for sonne time, other tools such as semantic nets
and predicate calculus have also been used. Recently, Prolog has become popular
as a powerful knowledge representation language.

The Inference Engine

The inference engine makes use of the rules in the knowledge base and the informa¬
tion provided by the user to find the objects which satisfy the constraints. There
are basically three ways by which the inference engines are constructed: forward-
chaining, backward-chaining, and rule- value method.

Forward-chaining involves reasoning from data to hypothesis, whereas backward-
chaining starts with a hypothesis and attempts to find data to prove or disprove
the hypothesis. The rule-value method is generally an improved backward-chaining
method. It requests the information that will remove the most uncertainty from the
system. ^'^ The rule-value method is theoretically better than the first two methods,
however, it is more difiicult to implement.

Justification / Explanation
A distinctive feature of an expert system is its ability to justify or explain to the user
the actions it takes. It answers questions about why some conclusion was reached
and why some alternative was rejected. Michie and others^* have warned that the
justification facility should not be regarded as an optional extra. It is now generally
agreed that an expert system which can not explain its chain of reasoning to the
user is unsatisfactory, even if it performs better than a human expert^^.

Knowledge Acquisition

The procedure of extrax;ting knowledge from an expert and transforming it into
computer readable form is called knowledge acquisition.^^ Traditionally, the pro¬
cess of knowledge acquisition involves intensive interactions between the knowledge
engineer (programmer) and the domain expert over a long period of time. The
interactions may taJce the forms of interview, discussion of domain expert's publica¬
tions, or even taking classes from the expert. Knowledge acquisition has long been
described as the bottleneck of expert system building because it is an extremely
time consuming process.

73

NEATPAGEINFO:id=C08AA1B3-D623-4785-B704-33E9149FEA57



Future Work___________________________________________________________________________Outline of Future Work

To ease the task of knowledge acquisition, many attempts were made to shift
parts of the responsibility from human to computer by teaching computer to learn
concepts and rules. This line of research is known as machine learning. Although
this approach looks promising, it is very much in the initial stage and many works
remain to be done before it can contribute much to the task of knowledge acquisition
in expert system building.

An alternative to the above approach is to develop intelligent editing program
which understands the structures of the rules in the knowledge base and helps main¬
tain the consistency of the rules in the knowledge base. The expert can interact with
the program instead of knowledge engineer. When the knowledge base grows in size
with time, the intelligent editing program will become more and more important.

Outline of Future Work

Long-Term Goal

My long-term goal is to develop an expert system capable of:
a) selecting appropriate chamber runs to test photochemical kinetics models;
b) carrying out automatic model evaluations by making inferences from the sets

of testing results;

c) explaining the rules it used in the process of model evaluations at different
levels of details;

d) acquiring new knowledge from the domain expert through an intelligent ed¬
itor.

System Configuration

Figure 16 shows the configuration of the prospective expert system which is tenta¬
tively called ASKME for Atmospheric Simulation Kinetics Model Expert. The loop
in the figure represents the cycle of testing of one chamber run.

Selecting Runs

Each testing cycle begins with the selection of the appropriate run from the experi¬
mental conditions database. The criteria used to judge the degree of "appropriate¬
ness" are the results of previous testing (including results from previous interactive
session, if any), the availability, quality, and rank of the particular type of runs in the
experimental conditions database, and the conditions contained in the knowledge
base for run sequence.

74

NEATPAGEINFO:id=BE653E9E-FDAA-46EC-AC68-1B4D9A90AF6B



Syatem Configuration Future Work

Results of

previous testings
(history file)

OSC E CIS <—t>-

c—                               "^

Database

i ^
Selecting
a run

for test

•4-------

Knowledge
base

for run sequence-
Isl -----------------------
version 1          Higher \ ^               i

•    V*b. r

Explain why
certain run
was chosen

PC-PK SS

\

<;., Jf ^
Justification

Explanationi     i
Obtaining

test results

Justifying the
analysis results
at different

levels of details

X^'^^'
1 N.

"

Analyzing
test results

<----
Knowledge base

for run

analysis

<-----

up¬
date

Intelligent
editing
program

1 \
Recording test
&  analysis

results

Results of all

previous testings
(test history)

,,   Exit

Saving all the
results into

history file

Figure 16. Configuration of ASKME (Atmospheric Simulation   Ki¬
netics Model Expert).

75

NEATPAGEINFO:id=7DBD2BC2-C37C-4849-AD7A-5EE684113B74



Future Work System Configuration

A prototype has been built to test the feasibility of automatic selection of runs
by the computer. The prototype incorporates the searching mechanism of OSCECIS
and a small knowledge bcise containing 12 rules of test sequence. It requests the
user to enter a set of test results for the two sides of the chosen chamber run and
suggest the next run to be tested. Although the knowledge base is extremely small
and the test results are in highly simplified forms, the performance of the system
in selecting runs for testing is encouraging. An ability to justify run selections will
be added to the system in the future.

Obtaining Test Results

The simulation of chamber runs will be carried out by the software package PC-
PKSS developed by Jeffries.*^ The inputs to the PC-PKSS are the photochemical
mechanism to be tested, as well as initial and time dependent conditions. The
outputs are concentrations of species as a function of time. Both the outputs of
PC-PKSS and the chamber data of the pcirticular run are then imported to a Lotus
spreadsheet which facilitates the plotting of the data from the two sources (mecha¬
nism prediction and chamber data) for comparison purposes.

In the first version of our future system, the user is expected to run the sim¬
ulation on a separate personal computer and then answers the questions posed by
the expert system after examining the profiles of the plots of chamber data versus
mechanism predictions. In the long run, PC- PKSS is likely to be connected to
ASKME and thus allows full automation of model evaluations.

Knowledge Base

The knowledge base of ASKME will be divided into two portions. One portion will
contain the information of the preferred test sequence and explanations of each run
type in the sequence. The preferred test sequence, which founds its basis on the
hierarchy of HC species proposed by Whitten, will be constructed in consultation
with the domain expert.

Another portion of the knowledge base is devoted to the rules and heuristics
(rules of thumb) used by the domain expert in the process of mechanism evalua¬
tion. In the process of automatic mechanism testing, the inference engine built into
the system will make use of the rules and the previous test results and form its
"opinions" about the qualities of the mechanism.

Analyzing Test Results

Upon obtaining the results of the particular run, the system will carry out a series
76

NEATPAGEINFO:id=FC0D94F9-E161-40E1-858A-31B2F3A8DEFB



Implementation of ASKME_______________________________________________________________________Future Work

of analyses based on the knowledge stored in the knowledge base and the results of
all previous testings. The results of the particular test and analysis will be stored
temporarily in the memory and become part of the test history. If this new piece
of information makes any previous test result obsolete, the old information will be
modified automatically.

JustiGcation / Explanation

During each testing cycle, the users can ask the system to justify its chains of
reasoning in the process of test results analysis or to explain why certain run is
chosen for testing purposes. Different portion of the knowledge base will be referred
to when either of the above two types of justification/explanation actions is being
carried out. The justification of test results analysis will be given at different levels
of details. The user can choose to look at one or more levels of justifications in each
cycle of testing to have a good grip of how the system reveals the strengths and
weaknesses of the mechanism being tested.

History File

As the system goes through each cycle of testing, it accumulates more and more
information about the nature of the mechanism (In other words, it learns!) After
each testing cycle, the user can choose to go on to next testing cycle or leave the
interactive session. If the latter choice is made, the testing information accumulated
so far will be saved into a history file. The history file is a regular text file which
can be loaded to the system in next interactive session when the testing continues.

Implementation of ASKME

I have examined the configuration of the prospective expert system ASKME. In
this section, I will discuss some implementation issues.

Implementing Inference Engine

Bax;kward-chaining inference engine will be implemented in the system to carry
out the desired reasoning tasks. One reason for this choice is that it is easier to
implement backward-chaining inference engine in Turbo Prolog.^^ Another more
important reason is that the hypothesis-driven method supported by this type of
inference engine seems to work well with our system design in which the knowledge
of a particular mechanism accumulates as the system goes through more and more
testing cycles. However, this argument is subjected to justification; that is, we will
built another prototype to verify this point.

77

NEATPAGEINFO:id=53B9A305-CD9C-4268-BCD2-E57D6F1C64B9



Future Work Implementation of ASKME

Knowledge Base and Knowledge Acquisition
I am presently at the initial stage of building the knowledge base. As mentioned
previously, the knowledge base will be divided into two portions: one for selecting
runs and the other for analyzing test results. I have built a small knowledge base
for run selections and attached it to a prototype (also mentioned earlier) to test the
feasibility of automatic selection of runs by the computer. The results of the test
suggested that not only automatic selection of runs is feasible, but it can also be
very efficient if the knowledge base is carefully constructed.

Although the structure of the knowledge base for run selections developed so
far seems to work well, it lacks the explanatory capabilities. I will modify the
structure of this part of knowledge base in the future to acconmiodate explanatory
capabilities.

The other portion of the knowledge base contains the knowledge for analyzing
the test results. This portion of the knowledge base will be constructed initially
with the help of the domain expert. Later, an intelligent editor, which can recognize
the structures of the knowledge base and check the consistency of the rules in the
knowledge base, will be built to help maintain and modify the knowledge base.

The knowledge base of ASKME will be kept in a text file in much the same way
as the database of OSCECIS. In the design of ASKME, the knowledge base and the
inference engine will be clearly separated. This separation is crucial in the sense
that it facilitates the frequent modifications needed for the knowledge base without
having to re-run or re-code the source program.

The effective interaction between the expert system programmer and the domain
expert plays an important role in the initial stage of knowledge base construction.
I.e., knowledge acquisition. Three factors result in an advantage for me in this task.
They are:

1. The expert system programmer happens to be the domain expert's student.
The programmer actually "goes down the field" and learns the trade of model
testing. This situation makes it especially conducive for the transformation
of the expert's knowledge into a form understandable by the machine.

2. The domain expert happens to be very articulate. This quality helps the
expert system programmer learn the new concepts and "catch" the expert's
rules of thumb.

3. The domain expert is also a very knowledgeable computer scientist. This
aspect will help reduce the information mismatch between the human and

78

NEATPAGEINFO:id=EDC89559-69D0-4BA4-90FF-E12EE47DA6CD



Closing Remarks_________________________________________________________________________________Future Work

the computer to a great extent. The task of knowledge acquisition can thus
be made a little easier.

Closing Remarks

We have presented the outline of our prospective expert system and discussed some
implementation issues. As we know, building an expert system can be very time
consuming. The justification of building an expert thus rely partially on whether
the time and eflForts spent in developing it can be paid off.

I have pointed out in Chapter One that the development of a photochemical
model is very painstaking and involves a great deal of complex reasoning and sub¬
jective judgement. However, some regularities can also be observed in this process,
especially if the hierarchical approach is used. It is these regularities which lead
us to believe that an automatic model evaluation can ultimately be achieved by a
computer. The complexity of model development mandates the use of artificial in¬
telligent techniques in implementing such a computer system. Taking into account
the factors involved in the business of model development, I strongly believe that if
an expert system devoted to automatic model evaluation can be successfully imple¬
mented, it will certainly speed up the process of model development tremendously.

79

NEATPAGEINFO:id=E62EB8EF-8360-49BA-A25F-719CD903FCB7



References

1 Kowalski, R. (1979). Logic for Problem Solving, North Holland, NY.

2 Clocksin, W. F., & Mellish, C. S. (1981). Programming in Prolog, Springer-Verlag, NY.

8       Borland International, (1986). Turbo Prolog, Scotts Valley, CA. ^

4 FVeas, W. P., Martinez, E. L., Meyer, E. L., Possiel, N. C, Sennet, D. H., k Summer-
hays, J. E., (1978). "Procedures for quantifying Relationships Between Photochemical Ox¬
idants and Precursors: Supporting Documentation" EPA-450/2-77-021b, U.S.Environmental
Protection Agency, Research IViangle Park, North Carolina.

5 Jefibies, H. E., Sexton, K. G. (1985). "Outdoor Smog Chamber Experiments To Test
Photochemical Models: Phase IF, Final Report (EPA/6d0/S3-85/029), Environmental
Protection Agency, Research Triangle Park, N.C.; NTIS No. PB 85-191 542 / AS.

6 Whitten, G. T. (1983). "The Chemistry <rf Smog Formation: A Review of Current Knowl-
edge", Environmental Internationid     \Q, 447-463.

7 Jeffries, H. E., & Arnold, J. (1986). "The Science of Photochemical Reaction Mechanism
Development and Evaluation", Department of Environmental Sciences and Engineering,
University of North Carolina, Chapel Hill, NC.

8 Feigenbaum, E. A., Barr, A. (1982). Handbook of Artificial Intelligence, William Kauf-
mann Inc., CA.

9 Pua, K. E. (1984). "Translating Annotated Predicate Calculus to Prolog", ISG 84-1 File
No. UIUCDCS-F-84-918, Department of Computer Science, University of Illinois at Ur-
bana Champ<iign, Urbana, IL.

10 Pua, K. E. (1984). "An Annotated Predicate Calculus Inference System (APCIS)", ISG
84-8 File No. UIUCDCS-F-84-928, Department of Computer Science, University of Illinois
at Urbana Champaign, Urbana, IL.

11 Barrett, W. A., Couch, J. D. (1979). Compiler Construction: Theory and Practice, Sci¬
ence Research Asso. Inc., Chicago, IL.

12 Waterman, D. A. (1985). A Guide to Expert Systems, Addison- Wesley, Reading, MA.

IS       Jeffries, H. E, Kamens, R. M., Sexton, K. G. & Gerhardt, A. A. (1982). "Outdoor Smog
Chamber Experiments to Test Photochemical Models", EPA-600/3-83-016a, U.S. Environ¬
mental Protection Agency, Rese2irch Triangle Park, NC.

14       Jeffries, H.E., Kamens, R.M., Sexton, K.G., & Gerhardt, A.A. (1982). "Outdoor Smog
Chamber Experiments To Test Photochemical Models", EPA-6O0/3-83-016a, U.S. Environ¬
mental Protection Agency, Resezirch IViangle Park, NC.

NEATPAGEINFO:id=AF3B642C-B224-44A7-8D63-933043B06656



References

15 Lloyd, J. W. (1984). Foundations of Logic Programming, Springer-Verlag, Berlin.

16 Forsyth, R. ed. (1984). Expert Systems: Principles and case Studies, Chapman and Hall,
London.

17 Nayer, C. (1983). Build Your Own Expert System, Sigma Technical Press / John Wiley,
Chichester.

18 Michie, D. ed. (1982). it Introductory Readings in Expert Systems, Gordon and Breach,
NY.

19 it Hayes-Roth, F., Waterman, D. A., k Lenat, D. B. eds. (1983). it Building Expert Sys¬
tems, Addison-Wesley, Reading, MA.

20 Jeffries, H. E. (1987). "User's Guide to Photochemical Kinetics Simulation System",
Department of Environmental Sciences and Engineering, University of North Carolina,
Chapel Hill, NC.

21 Schildt, H. (1987). Advanced Turbo Prolog, McGraw HiU, Berkeley, CA.

81

NEATPAGEINFO:id=21B2189B-5074-451A-9F49-10075BBD0D0E



A

User's Guide to OSCECIS

OSCECIS was designed to provide easy access to the smog chamber runs conducted
in the UNC Outdoor Smog Chamber for testings of photochemical kinetics models.

The following facilities are available in the system:

1. Accepting query through pop-up menus
2. Displaying output in various forms
3. Updating database
4. Diagnosing database
5. Viewing the database codes
6. Saving updated database
7. Access to DOS commands
8. Access to an editor

System Requirements
OSCECIS requires an IBM PC/XT/AT or compatible computer with at least onefloppy disk drive and a minimum of 320 kilobytes of memory. A line printer is alsorequired if the users choose to produce hard copies of the outputs.
Files Needed

The following files should be in the default directory in order to interact with the
system successfully.

NEATPAGEINFO:id=5DF11272-6521-426E-9A2B-DA99026334CC



Querying the Database______________________________________________________________User's Guide to OSCECIS
08ceci8.exe -- execution file
ec.tut -- tutorial
ec.spe -- species codes
ec.ser — series codes
ec.cod — codes for database fields
ec.dbl -- database   (exper.   conditions)
ec.db2 — database  (HC and NOx con.)

The foUwowing file should be in the default directory if the user wants to invoke
the help option from within the editor provided by the system:

prolog.hip    —    help infonuation

Getting Started

Type "oscecis" (without quotes) to the DOS prompt and hit return.

Important Notes

1. The database should be loaded before any querying could take place. Choose
the "Load the database" panel in the main menu and hit the return key. It
takes approximately 12 seconds to load the database on an IBM AT and
approximately 50 seconds to load it on an IBM PC.

2. When you make a mistake, hit the Esc key as many times as necessary until
the main menu appears again.

3. Choose the "Any" panel in any given menu whenever the the menu is irrel¬
evant to your query.

4. Before choosing the "Line printer" panel in the "Output device" menu, make
sure the printer is "on".

5. While in the "Update the database" mode, it is a good practice to check the
existence of a record before inserting or deleting it.

Querying the Database
To query the database, choose the "Query the database" panel in the main menu.
Four options are available under this mode.

83

NEATPAGEINFO:id=4962E7E2-CB6E-4360-B52B-99C5D6F11B11



User's Guide to OSCECIS _________________________________________________Selecting Output Devices and Forms

1. Query by species. This option allows a quick way to query the database.
The users are only asked to provide the species code(s) for the species of
interest.

2. Query by series. This option is similar to the above option except that the
users provide series code instead.

3. Query by date. By choosing the ''Date(s)'' panel in the "Query By Date(s)''
menu,the users can enter a series of run dates of the form "yymmdd" and ask
the system to display the details of the runs with proper choice of output
forms {see next section). Alternatively, by choosing the "From datel to
date2" panel in the "Date(s)'' menu, the users can query the database for
all the runs bounded by the two dates, in chronological order, provided by
the users. The users can also search for runs conducted in a given month of
different years by choosing the "Month" panel in the menu.

4. Detailed query. This option constitutes the core of the query system. A series
of menus corresponding to relevant fields in the database will be displayed.
The "Any" panel should be chosen whenever a given menu is irrelevant to
the query.

Selecting Output Devices and Forms
After the query has been executed sucessfully, the "Output device" menu will be
displayed automatically. For each query, there are three choices of output device
and for each output device there are eight ways to arrange the output information.
The users are free to choose any combination of output devices and output forms.
Multiple copies of outputs to any device are also allowed.

Before choosing the "Line printer" device, the printer should be set to "on".

Viewing the Database Codes
To view the eight types of codes in the database, choose the "View the database
codes" panel in the main menu. The first two types of codes, species codes and
series codes, are especially useful in the query. The species codes are arranged in
increasing order of species names whereas the series codes are arranged in increasing
order of the codes. Note that the leading zeros for those series codes smaller than
"10" can not be omitted. Searching as well as sreen controlling facilities are alsoavailable for species and series codes.

84

NEATPAGEINFO:id=0438EB87-D672-4C6E-B6D2-04AFD9C46388



Diagnogjng the Database____________________________________________________________UBer's Guide to OSCECIS

Updating the Database

To update the databsise, choose the "Update the database" panel in the main menu.
Four choices are available under this mode.

1. "Display record" will display the content of a record identified by the run
date. When the record with the given run date is not found, a warning
message will be given.

2. "Delete record" will delete from the database a record with the given run
date. The absence of the to-be-deleted-record will not cause any warning
message to be displayed.

3. "Insert record" will insert into the database a record with the given run
date. If a record identified by the run date already existed in the database, a
warning message would be given. Otherwise, the user will be asked to enter
the content of the record through answering a series of questions. The record
is then inserted into the database. If the usermakes a mistake in this process
(e.g. enter an alphabetic character to where a numeric value is expected),
the insertion will be aborted.

4. "Modify record" first checks if a record with the given run date is in the
database. If it is not, a warning message will be issued. Otherwise, the user
will be prompted by a series of pop-up menus corresponding to each field of
the record of interest. Choose "Not to be modified" panel if you do not want
the value of a corresponding field to be chjinged.

It is a good practice to check the existence of a record before inserting or deleting
it.

Saving Database on File

To save the updated database on file, choose the "Save database on file" panel in the
main menu. The updated database will be saved on the files tc.dbl (experimental
conditions) and ec.dbS (HC and NOx concentrations) and the old copies of the
database will be moved to the files ecdb.dbl and ecdb.dbS respectively.

Diagnosing the Database

To find out the possible error in the database, choose the "Diagnose the database"
panel in the main menu. The results of the diagnoses can be either directed to the
screen or the line printer. Those potnential "pathologic" records will be pointed
out together with the suspected field(s) where the error(s) might have occurred.

85

NEATPAGEINFO:id=2130EF0B-87D7-4EEE-A93C-F9C81C7C79AB



User's Guide to OSCECIS_______________________________________________________________________Miscellaneous

Miscellaneous

This option allows the users to look at the two distributions of all species or all
series types used in the database. The users can choose to send the outputs to either
screen, line printer, or file. To look at the distribution of series types, choose the
"Number of Runs Containing Series" panel in the "Miscellaneous" menu (appearing
after the "Output device" menu). To look at the distribution of species types, choose
the "Number of Chamber sides Containing Species" panel in the "Miscellaneous"
menu.

Access to DOS Commands

Choosing the "DOS commands" panel in the main menu will allow the users to
suspend OSCECIS temporarily and gain access to the DOS conmiands. To go bax;k
to OSCECIS, type EXIT to the DOS prompt.

Editor

The editor is pretty much WORDSTAR-like. It is accessible by choosing the "Ed¬
itor" panel in the main menu. Besides text editing, the editor supports external
text viewing and copying. The latter facility can be used to load any existing file
into the editor for text processings.

A quick reference to the functions of the editor follows:

Cursor Movement Commands

Character left LeftArrow or Ctrl-S

Character right RightArrow or Ctrl-D
Word left Ctrl-LeftArrow or Ctrl-A

Word right Ctrl-RightArrow or Ctrl-F
Line up UpArrow or Ctrl-E
Line down DownArrow or Ctrl-X

Page up PgUp or Ctrl-R
Page down PgDn or Ctrl-C
Beginning of line Home or Ctrl-Q-S

End of line End or Ctrl-Q-D
Top of file Ctrl-Home or Ctrl-Q-R
End of file Ctrl-End or Ctrl-Q-C
Beginning of block Crtl-Q-B
End of block Crtl-Q-K

86

NEATPAGEINFO:id=BC938909-493B-4F32-AFD6-58BD4BB4E2A7



Editor User's Guide to OSCECIS

Insert and Delete Commands

Insert mode on/off
Delete left chracter

Delete char under cursor

Delete right word
Insert line

Delete line

Delete to end of line

Ins or Ctrl-V

LeftArrow

Del

Alt-RightArrow
Ctrl-N

Ctrl-Y

Ctrl-Q-Y

Block Commetnds

Mark block begin
Mark block end

Copy block
Repeat the last copy
Move block

Delete block

Read block from disk

Hide/display block

Ctrl-K-B

Ctrl-K-K

F5 or Ctrl-K-C

Shift-F5

F6 or Ctrl-K-V

F7 or Ctrl-K-Y

F9 or Ctrl-K-R

Ctrl-K-H

Miscellaneous Commemds

Call the auxilliary editor F8
Go to line

Which line number

End Edit

Auto indent

Find

Repeat last find
Find and replace
Repeat last find and repl

F2

Shift-F2

Esc or FIO

Ctrl-Q-I

F3 or Ctrl-Q-F
Shift-F3 or Ctrl-L

F4 or Ctrl-q-A
Shift-F4  or Ctrl-L

87

NEATPAGEINFO:id=1CBB350D-3A70-4C01-A418-283EA4020D92



B

Hierarchy of Predicates

All the predicates defined in OSCECIS can be arranged in a hierarchy according to
what predicates they called and by what predicates they are called. This appendix
contains the hierarchy constructed according to this criterion. The hierarchy is
presented in four blocks: main block, print block, menu block, and writeformat
block.

Only defined predicates are entered into the structure; database and built-in
predicates (except the fail predicate) are not shown. In the structure, those pred¬
icates which call themselves are recursive in nature. Likewise, a predicate which
calls another predicate which calls back the first predicate is also recursive. The
iterative predicates are those which call the defined predicate repeat or the built-in
predicate fail.

Although the hierarchy does not cover every aspect of the source program listed
in Appendix C, it holds the key to the understanding of the program.

NEATPAGEINFO:id=F4333A7F-66C1-48CC-8F46-8F840B6FA76F



MAIN BLOCK

mainmenu

repeat
I repeat

[ MENU BLOCK ]
proces(integer)

ed(string)
view

repeat
I repeat

[ MENU BLOCK ]
viewl(integer)

I viewhc
I   I fail
I viewclass
I   I fail
I viewdllute
I   I fail
I vlewinject
I   I fail
I viewproj
I   I fail
I viewstatus
I   I fail

diagnose
repeat

I repeat
[ MENU BLOCK ]
diagnosel(integer)

I diag
diag_ec(string,string,string,lists)

I member(string,lists)
I   I member(string, lists)

diag_rb(string,string,string,listi)
I memberi(integer,listi)

I   I   I   I member!(integer,listi)
I   I fail

updatedb
repeat

I repeat
[ MENU BLOCK ]
updatel(integer)

I displays(string)
I inserts(string)

i_conc(string,string)
I drawbox(string)
I removebox

i_hcID(string,string)
I drawbox(string)

89

NEATPAGEINFO:id=CC9433F5-D8B5-471C-A87D-9A5A11CE348F



I removebox
i_other(string,string)

I drawbox(string)
I removebox

classes(string)
I [ MENU BLOCK ]
I index(lists,integer,str
I   I index(lists,integer

dilutes(string)
I [ MENU BLOCK ]
I lndex(lists,integer,str
I   I index(lists,integer

injects(string)
I [ MENU BLOCK ]
I index(lists,integer,str
I   I index(lists,integer

hctype(string)
I [ MENU BLOCK ]
I index(lists,integer,str
I   I index(lists,integer

proj code(string)
I [ MENU BLOCK ]
I index(lists,integer,str
I   I index(lists,integer

pcstatus(string)
I [ MENU BLOCK ]
I index(lists,integer,str
I   I index(lists,integer

i_series
I drawbox(string)
I removebox

modify(string)
m_conc(string,string)

I mmenu(string,integer)
I   I [ MENU BLOCK ]
I drawbox(string)
I removebox

m_hcID(string,string)
I mmenu(string,integer)
I   I [ MENU BLOCK ]
I drawbox(string)
I removebox

m_other(string,string)
I mmenu(string,integer)
I   I [ MENU BLOCK ]
I drawbox(string)
I removebox

classes(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

dilutes(string)

ing)
, string)

ing)
,string)

ing)
.string)

ing)
,string)

ing)
,string)

ing)
,string)

90

NEATPAGEINFO:id=7A29693B-FD12-4E22-BAEE-DE80DD14BB74



I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

injects(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

hctype(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

projcode(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

pcstatus(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

in_series
I imnenu(string,integer)
I   I [ MENU BLOCK ]
I drawbox(string)
I removebox

clear_facts
query

queryl(integer)
qmenu(integer)

I [ MENU BLOCK ]
qSpeci(integer)

specID(string)
querySpeci(integer)

I specifind(integer)
I   I checkRB(rellist,string,....)
I   I   I rel_r(rellist,string,real)
I   I   I   I rel_r(rellist,string,real)
I   I fail
I [ PRINT BLOCK ]

qDtail(integer)
specID(string)
queryDetail(integer)

I con(string,string)
I   I repeat
I   I   I repeat
I   I relmenu(string,integer)
I   I   I [ MENU BLOCK ]
I   I   I drawbox(string)
I   I   I   I relreal(string,integer)
I   I   I removebox
I others(string,string)
I   I repeat
I   I   I repeat

91

NEATPAGEINFO:id=1AC0D690-931A-470A-A271-0405B75FF3FA



I relmenu(string,integer)
I   I [ MENU BLOCK ]
I   I drawbox(string)
I   I   I relint(string,integer)
I   I removebox

classes(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
j   I index(lists,integer,string)

dilutes(s tring)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

injects(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

hctjrpe (string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer,string)

projcode(string)
I [ MENU BLOCK ]
I lndex(lists,integer,string)
I   I index(lists,integer,string)

pcstatus(string)
I [ MENU BLOCK ]
I index(lists,integer,string)
I   I index(lists,integer(String)

series

I [ MENU BLOCK ]
I seriesl(integer)
I   I drawbox(string)
I   I removebox

detailfind(integer)
I rel_r(rellist,string,real)
I   I rel_r(rellist,string,real)
I rel_i(rellist,string,integer)
I   I rel_i(rellist,string,integer)
I checkRB(rellist,string,...)
I   I rel_r(rellist,string,real)
I   I   I rel_r(relllst,string,real)
I checkEC(cmplist,string,...)
I   I checkEC(cniplist,string, ...)
I fail

[ PRINT BLOCK ]
querySeries

series
[ MENU BLOCK ]
seriesl(integer)

I drawbox(string)
removebox

92

NEATPAGEINFO:id=CACEE422-C971-44F5-8B90-8960C048159D



I   I seriesfind
I   I   I checkEC(cmpllst,string, ... )
I   I   I   I checkEC(cmpllst,string,
I   I   I fail
I   I [ PRINT BLOCK ]
I queryDate
I   I [ MENU BLOCK ]
I   I qdate(integer)

clear_ans
readdate(string)

I   j   I   I readdate(string)
I   I   I drawbox(string)
I   I   I removebox

inonthfind(string)
fail

I   I   I datefind(string,string)
I fail

[ PRINT BLOCK ]
miscellaneous

repeat
I repeat

[ MENU BLOCK ]
miscell(integer)

] misc
I

savedbl
savedb2

repeat
I repeat

[ MENU BLOCK ]
miscl(integer)

headser
seriesCount

I ser(string,string)
I   I countSer(integer)
I   I   I counts(integer,...)
I   I   I fail
I   I writeSer(string)
I fail

headspe
speciesCount

I sides(integer,string)
countSide(integer)

I countUp(integer,...
I   I   I   I ckSide(integer,

I writeSide(string)
I fail

I fail

)

93

NEATPAGEINFO:id=112C5A15-F39B-41BB-B096-5528C7FB7511



PRINT BLOCK

print
repeat

I repeat
[ MENU BLOCK ]
printO(integer)

clear_ans
I fail

pmenu
repeat

I repeat
[ MENU BLOCK ]
pauses(integer)
printl(integer)

printsimple
I split(string,string,lists,lists)
I   I split(string,string,lists,lists)
I writesol(lists)
I   I writesol(lists)
I listlen(lists,integer)
I   I listlen(lists,integer)

printByClass
I unik(lists,lists)
I   I unik(lists,lists)
I heading
I printClass{lists)
I   I check_class(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printClass(lists)

printByDilution
I unik(lists,lists)
I   I unik(lists,lists)
I heading
I printDilute(lists)
I   I check_dilute(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printDilute(lists)

printBylnj ection
I unik(lists,lists)
I   I unik(lists,lists)
I heading
(   printlnject(lists)
I       I   check_inject(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)

94

NEATPAGEINFO:id=26F93DD4-9ED2-46B2-BCD0-0D83D0578A9F



I   I   I llstlen(llsts,Integer)
(   I printlnject(lists)

printByHCtype
I unlk(lists,lists)
I   I unlk(lists,lists)
I heading
I printHC(lists)
I   I check_hc(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printHC(lists)

printByProj
I unik(lists,lists)
I   I unik(lists,lists)
I heading
I printProj(lists)
I   I check_proj(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printProj(lists)

pr intByS tatus
I unik(lists,lists)
I   I unik(lists,lists)
I heading
I printStatus(lists)
I   I check_status(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printStatus(lists)

printBySeries
I unik(lists,lists)
I   I unik(lists,lists)
I heading
I printSeries(lists)
I   I check_ser(string,string)
I   I [ WRITEFORMAT BLOCK ]
I   I listlen(lists,integer)
I   I   I listlen(lists,integer)
I   I printSeries(lists)

95

NEATPAGEINFO:id=E82F84D9-DCC6-4BE1-BDC0-9D82D0AB8129



MENU BLOCK

menu(row,col,string,lists,integer)
maxlen(lists,integer,integer)

I maxlen(lists,integer,integer)
listlen(lists,integer)

I listlen(lists,integer)
writelist(integer,integer,lists)

I wrltelist(integer,integer,lists)
menul(row,lists,row,integer,integer)

I readkey(key)
I   I readkeyl(key,char,integer)
I   I   I readkey2(key,integer)
I   I menu2(row,lists,row,integer,integer,key)
I   I   j menul(row,lists,row,integer,integer)

WRITEFORMAT BLOCK

writefonnat(string,string)
ec_field(string.....integer)
code_date(string,string)
writerb(string,real,real,integer)
writehc(real,integer)
fail

96

NEATPAGEINFO:id=80F0C0E3-409E-4676-AA07-44C2D134BF37



c

Program Listings

The source program of OSCECIS was saved in four text files. The first file,
ecdef87.pro, contains the global definitions and database declarations. The second
file, ec87a.pro, contains help predicates, predicates for creating menus, top level of
the control portion of the program, predicates for viewing the database codes, Jind
miscellaneous facilities. The third file, ec87b.pro, contains predicates for reading the
queries and for searching mechanisms. The last file, ec27c.pro, contains predicates
for printing solutions and updating database.

NEATPAGEINFO:id=0141DF0C-B217-4C1D-952E-621361877245



/*-------------------..........--------------*/
/* OSCECIS ECDEF27.PRO */
/* Version 1 March 8, 87 */
/* Copyright (C)   Kah-Eng Pua */
/*----.....----............---*/
GLOBAL DOMAINS

ROW.COL.LEN - INTEGER
FILE    - OUTF

LISTS    - STRING*

LISTI   - INTEGER*

EXPCOND - class(STRING);  dilute(STRING); inject(STRING);
hctype(STRING); proj(STRING);  proces(STRING);
series(STRING)

TYPE    - r(REAL); i(INTEGER)
RELATION - eq(STRING,TYPE); It(STRING,TYPE); gt(STRING,TYPE);

range(STRING,TYPE,TYPE)
IDTYPE  - specID(STRING,INTEGER)
CMPLIST - CMPTERM*

RELLIST - RELATION*

SOLUTION - ec(STRING,STRING,STRING,STRING,STRING,STRING,STRING,STRING,
INTEGER)

DATABASE

code_month(STRING,STRING)
code_class(STRING,STRING)
code_hc(STRING,STRING)
code_dilute(STRING,STRING)
code_inj ect(STRING,STRING)
code_proj(STRING,STRING)
code_status(STRING,STRING)
code_series(STRING,STRING)
code_spec(INTEGER,STRING)

/* ec(Date,Class,Dilution,Injection,HCtype.Proj.PcStat,Series.Rank)  */
ec(STRING,STRING,STRING,STRING,STRING,STRING,STRING.STRING,INTEGER)

/* rb(Date,redNOx,HCconl,HCcodel,HCcon2,HCcode2,HCcon3,HCcodeS,     */
rb(STRING,REAL,REAL,INTEGER,REAL,INTEGER.REAL.INTEGER.

/* blueNOx,HCconl.HCcodel.HCcon2,HCcode2,HCcon3,HCcode3,   */
REAL,REAL,INTEGER,REAL,INTEGER,REAL.INTEGER,

/* HCinstrument.QualityOfRun.SunLight) */
INTEGER,INTEGER.INTEGER)

w(IDTYPE)
x(EXPCOND)
y(RELATION)
z(SOLUTION)
counter_i(INTEGER,INTEGER)
counter_s(INTEGER,STRING)
dbload

98

NEATPAGEINFO:id=C2252764-D3C0-4B99-AC2B-CD6A7147D631



GLOBAL PREDICATES

print
query
updatedb
clear_facts
clearans

repeat
yes(CHAR)-(l)
pauses(INTEGER)-(l)
menu(ROW,COL,STRING,LISTS,INTEGER)-(i.i.i.i.o)
unik(LISTS,LISTS)-(i,o) /* Eliminate duplicates in a string list */
index(LISTS,INTEGER,STRING)-(i.i.o) /* Select an element from a list */
listlen(LISTS,INTEGER)-(i,o)       /* Find the length of a list */
member(STRING,LISTS)-(l,i) /* Membership of a list */
classes(STRING)-(i)
dilutes(STRING)-(i)
injects(STRING)-(i)
hctype(STRING)-(i)
projcode(STRING)-(i)
pcstatus(STRING)-(i)
drawbox(STRING)-(i)
removebox

diagnose

99

NEATPAGEINFO:id=672A7016-67EE-458A-8C7C-CEBA99EDA5AF



/*...............................*/
/* OSCECIS EC27A.PRO */
/* Version 1 March 8, 87 */
/* Copyright (C) Kah-Eng Pua */
/*......-----------------------*/
CODE-1500
PROJECT "ECPROJ27.PRJ"
INCLUDE "ECDEF27.PRO"

/*.........-----.......----......*/
/*     HELP PREDICATES */
/*...............................*/
PREDICATES

maxlen(LISTS,INTEGER,INTEGER)/* Find the length of the longest string */
writelist(INTEGER,INTEGER,LISTS)/* Used by the menu predicate */
ed(STRING)      /* Save edited text in file */
savedbl /* Save database on file */
savedb2 /* Save database on file */

CLAUSES

index([X|_],l.X):- !.
index([_|L],N,X):- N>l,Nl-N-l,index(L,Nl,X).

unik([],[]).
unik([H|T],L):- member(H,T),!,unik(T,L).
unik([H|T],[H|L]):-unik(T,L).

maxlenC[H|T],MAX,MAX1):-
str_len(H,LEN),
LEN>MAX,!,
maxlen(T,LEN,MAXl).

niaxlen([_|T] ,MAX,MAX1):-maxlen(T,MAX,MAXl) .
maxlen([],LEN,LEN).

listlen([],0).
listlen([_|T],N):-

listlen(T,X),
N-X+1.

writelist(_,_,[]).
writelist(LI,ANTKOL,[H|T]):-field_str(LI,0,ANTKOL,H),

LIl-LI+l,writelist(LIl,ANTKOL,T).

repeat,   repeat:-repeat.

member(X,[X|_]).
niember(X, [_|T])   :-  member(X,T) .

clear_facts :- retract(w(_)), fail.
clear_facts :- retract(x(_)), fail.
clear_facts :- retract(y(_)), fail.
clear facts.

100

NEATPAGEINFO:id=60A4B264-06E7-4564-990B-852B93AA2A66



clear_ans :- retract(z(_)).fail,
clearans.

drawbox(Heading) :-
shiftwindow(20),
makewindow(3,7,7.Heading,14,30,4,46).

removebox :-

removewindow,
shiftwindow(22),
shiftwindow(2).

yes('y'). yes('Y').

pauses(0) : - ! .
pauses(_) :- readchar(_).

ed("") :- !.
ed(L) :-

write("Save old text? (y/n) "),readchar(Yn),yes(Yn) .!,
write("Name of file : ").readln(N).
openwrite(outf.N).writedevice(outf).write(L).closefile(outf).

ed(_).

savedbl:-

ec(Date,A.B.C.D,E,F.Se.Rk).
write("ec(",Date,".",A,",'',B,".".C,".".

D.".",E.".".F.",",Se.",".Rk.")"),fail.
savedbl.

savedb2:-

rb(X.G.H,I.J.K,L,M,N,O.P.Q.R,S,T.U,V,SU).
write("rb(",X,".''),
writef("%5.3,%4.2.%3.%4.2.%3,%4.2,%3,%5.3,%4.2.%3.%4.2,%3,%4.2,%3,

%1,%1.%3".  G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.SU).
write(")").fail.

savedb2.

/*—.........-...................V
/*      READING THE KEYBORD       */
/*-------------------------------*/
DOMAINS

KEY — cr ; esc ; break ; tab ; btab ; del ; bdel ; ins ;
end ; home ; ftast(INTEGER) ; up ; down ; left ; right ;
ctrlleft; ctrlright; ctrlend; ctrlhome; pgup; pgdn;
chr(CHAR) ; otherspec

PREDICATES

readkey(KEY)
readkeyl(KEY,CHAR,INTEGER)
readkey2(KEY.INTEGER)

101

NEATPAGEINFO:id=D4A05638-61CB-4DD3-84FF-167FD042AA1A



CLAUSES

readkey(KEY):-readchar(T),char_int(T,VAL),readkeyl(KEY,T,VAL).

readkeyl(KEY,_,0):-!,readchar(T),char_int(T,VAL),readkey2(KEY,VAL)
readkeyl(cr,_,13):-!.
readkeyl(esc,_,27):-!.
readkeyl(chr(T),T,_) .

readkey2(up,72):-!.
readkey2(down,80):-!.
readkey2(ftast(N),VAL):-VAL>58,VAL<70,N-VAL-58,!.
readkey2(otherspec,_).

/*..........................................*/
/* MENU */
/* Implements a popup-menu */
/* menu(Line,Collum,ListOfChoices,ChoiceNr) */
/* The following keys can be used: */
/*   arrows up and down: select choice */
/*   cr and FIO: activate choice */
/*   Esc: abort */
/*------------------.....--------........*/

PREDICATES

menul(ROW,LISTS,ROW,INTEGER,INTEGER)
menu2(ROW,LISTS,ROW,INTEGER,INTEGER,KEY)

CLAUSES

menu(LI,KOL.TXT,LIST,CHOICE):-
shiftwindow(21),
maxlen(LIST,0,ANTKOL),
listlen(LIST,LEN),ANTLI-LEN,LEN>0,
HHl-ANTLI+2,HH2-ANTKOL+2,
makewindow(3,7,7,TXT,LI,KOL,HHl,HH2),
HH3-ANTK0L,
wrltelist(0,HH3,LIST),cursor(0,0),
menul(0,LIST,ANTLI,ANTKOL,CH),
CHOICE-1+CH,
removewindow,
shiftwindow(22),
shiftwindow(2).

menul(LI,LIST,MAXLI,ANTKOL,CHOICE):-
field_attr(LI,0,ANTKOL,112).
cursor(LI,0),
readkey(KEY),
menu2(LI,LIST,MAXLI,ANTKOL,CHOICE,KEY).

102

NEATPAGEINFO:id=32FA1BFF-1BA6-424A-98E8-1CDC3BE5CC38



menu2(_,_,_,_,-l.esc):-!.
menu2(LI,_,_,_,CH,ftast(10)):-!,CH=LI.
menu2(LI,_,_,_,CH,cr):-!,CH-LI.
menu2(LI,LIST,MAXLI.ANTKOL,CHOICE,up):-

LI>0,!,
field_attr(LI,0,ANTKOL,7),
LIl-LI-1,
menul(LIl,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,LIST,MAXLI.ANTKOL,CHOICE,down):-
LKMAXLI-1,!,
field_attr(LI,0,ANTKOL,7),
LIl-LI+1,
menul(LIl,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,LIST,MAXLI,ANTKOL,CHOICE,_):-
menul(LI,LIST,MAXLI,ANTKOL.CHOICE).

/*--------.........................*/
/*          MAIN MENU */
/*--------------------------.....*/
PREDICATES
mainmenu

proces(INTEGER)
view

miscellaneous

GOAL

makewindow(2,7,7."",0,0,24.80),
cursor(4,28),
write("« 0 S C E C I S »"),
cursor(6,6) ,
write("Outdoor Smog Chamber Experimental Conditions Information System"),
cursor(12,32).
write("Kah-Eng Pua"),
cursor(15,28).
write("Copyright (C) 1986").
write("       Department of Environmental Sciences and Engineering"),
write(" School of Public Health").
write(" University of North Carolina at Chapel Hill").
makewindow(19,112,0."",24.0,1.80).
write(" Press Any Key").
readchar(_),
removewindow,removewindow,

makewindow(19.112,0,"".24,0,1,80).
write("  Ctrl S: Stop output   Any key to display menu").
makewindow(20,112.0,"",24.0,1,80) ,
write(" Enter desired number or character(s) after the prompt.").
makewindow(21,112,0,"",24.0,1,80),

103

NEATPAGEINFO:id=CE511E95-AB89-4511-B196-8869074CC64D



write("Esc: Quit this menu   Use arrow keys to select and "),
write("hit RETURN to activate."),
makewindow(22,112,0,"",24,0,1,80),
write("Esc: Quit    F8: Last line   Ctrl S: Stop output  "),
write(" End: End of line"),
makewindow(2,7,7," O S C E C I S ",0,0,24,80),
mainmenu,
removewindow, removewindow, removewindow, removewindow, removewindow.

CLAUSES

mainmenu:-

repeat,
clearwindow,
menu(7,49,"Main Menu",

[ "Tutorial",
"Dos commands",
"Editor",
n n

"Load the database",
"Save database on file",
II n

I

"View the database codes",
n tt

t

"Diagnose the database",
"Update the database",
"Query the database",
n tt

f

"Miscellaneous"

],CHOICE),
proces(CHOICE),
CHOICE-0,!.

proces(0):-write("Are you sure you want to quit? (y/n) "),
readchar(T),yes(T).

proces(1):-file_str("ec.tut",TXT),display(TXT).clearwindow,!.
proces(l):-write("» ec.tut not in default directory. Press any key."),

readchar(_).
proces(2):-makewindow(3,7,0,"",0,0,25,80),

write("Type EXIT to return"),system(""),!,removewindow.
proces(2):-write("» coramand.com not accessible. Press any key"),

readchar(_).removewindow.
proces(3):-makewindow(3.7.112,"".5,2.19.75),edit("".L).

removewindow.ed(L).
proces(4).
proces(5):-dbload.!.write("The database hase been loaded!").beep.
proces(5):-write("Loading database... please wait").

consult("ec.cod"),consult("ec.dbl").consult("ec.db2").
assert(dbload).beep.!.

proces(5):-write("» Databases missing or in error. Press any key.").
readchar( ).

104

NEATPAGEINFO:id=99FD200D-B485-4C12-A9BB-9242FA6F9CE4



proces(6):-deleteflie("ecdb.dbl"),renamefile("ec.dbl","ecdb.dbl"),
deletefile("ec.dbl"),
write("Saving database... please wait"),
openwrite(outf,"ec.dbl"),writedevice(outf).savedbl,
closefile(outf),
deletefile("ecdb.db2"),renamefile("ec.db2","ecdb.db2"),
deletefile("ec.db2"),
openwrite(outf,"ec.db2"),writedevice(outf),savedb2,
closefile(outf).

proces(7).
proces(8):-view.
proces(9) .
proces(10)
proces(ll)
proces(12)
proces(13)
proces(14)

- diagnose.
- updatedb.
- clear_facts,query.

- miscellaneous.

/*--------------------*/
/*   VIEWING CODES    */
/*--------------------*/
PREDICATES

viewl(INTEGER)
viewhc

viewclass

viewdilute

viewinject
viewproj
viewstatus

CLAUSES

view :-

repeat,
menu(14,55,"Viewing Codes",

[ "Species Codes",
"Series Codes",
"HC Type Codes",
"Class Codes",
"Dilution Codes",
"Injection Codes",
"Project Codes",
"Processing Status Codes"

],CHOICE),
clearwindow,
viewl(CHOICE),
CHOICE=0,!.

viewl(0).

viewl(l):-file_str("ec.spe",TXT),display(TXT),!.
vlewl(l):-write("» ec.spe not in default directory, press any key."),

readchar(_).

105

NEATPAGEINFO:id=E05FE731-808C-4763-953F-B20D727B4FC5



viewl(2)
viewl(2)

viewl(3)
viewl(4)
viewl(5)
viewl(6):
viewl(7)
viewl(8);

-file_str("ec.
-write ("» ec.
readchar(_).
-write(" Code
-write(" Code
-write(" Code
-write(" Code
-write(" Code
-write(" Code

•ser",TXT).display(TXT),!.
,ser not in default directory. press any key."),

viewhc:-

code_hc(Cod,Spe),
write("  ",Cod,"

viewhc.

HC Type"),nl,viewhc.
Class Type"),nl,viewclass.
Dilution Type"),nl,viewdilute.
Injection Type"),nl,viewinject.
Project Type"),nl,vlewproJ.
Processing Status"),nl,viewstatus.

",Spe),nl,fail.

viewclass:-

code_class(Cod,Spe),
write("  ",Cod,"   ",Spe).nl.fail.

viewclass.

viewdilute:-

code_dilute(Cod,Spe),
write("  ",Cod,"   ",Spe),nl.fail.

viewdilute.

viewinject:-
code_inject(Cod,Spe),
write("  ",Cod,"   ",Spe),nl,fail.

viewinject.

viewproj:-
codeproj(Cod,Spe),
write("  ".Cod,"    ",Spe).nl.fail.

viewproj.

viewstatus:-

code_status(Cod,Spe),
write("  ",Cod,"   ",Spe).nl.fail.

viewstatus.

/*--------------.......*/
/*  DIAGNOSING DATABASE */
/*......---........----*/
PREDICATES

diag
diagnosel(INTEGER)
diag_ec(STRING,STRING,STRING,LISTS)
diag_rb(STRING,STRING.INTEGER,LISTI)
memberi(INTEGER.LISTI)

106

NEATPAGEINFO:id=D625804E-D01E-43D7-B889-337F95E908BB



CLAUSES

diagnose:-
repeat,

menu(20,63,"Output device",
[ " Screen",
" Line Printer  "

],CHOICE),
diagnosel(CHOICE),
CHOICE-0,!.

diagnosel(O).
diagnosel(1) :- diag.
diagnosel(2) :- writedevice(printer),diag,writedevice(screen)

diag:-
write("Diagnosing database..."),
findall(Cla,code_class(Cla,_),Lclas),
findall(Dil,code_dilute(Dil,_).Ldilu),
findall(Inj,code_inject(Inj,_),Linj),
findall(HCt,code_hc(HCt,_),Lhc),
findall(Pro,code_proj(Pro,_),Lproj),
findall(Sta,code_status(Sta,_),Lsta),
findall(Ser,code_series(Ser,_),Lser),
findall(Spe,code_spec(Spe,_),Lspe),
ec(Date,A,B,C,D,E,F,W,_),
diag_ec(Date," 2nd field
diag_ec(Date," 3rd field
diag_ec(Date," 4th field
diag_ec(Date," 5th field
diag_ec(Date," 6th field
diag_ec(Date," 7th field
diag_ec(Date," 8th field
rb(Date,_,_,I,_,K,_,M,_,_,P,_,R,_,T,_,_,_),
diag_rb(Date," 4th",I,Lspe),
diag_rb(Date," 6th",K,Lspe),
diag_rb(Date," 8th".M.Lspe),
diag_rb(Date,"11th",P,Lspe),
diag_rb(Date,"13th",R,Lspe),
diag_rb(Date,"15th",T.Lspe).fail,

diag:-write("Done.").

diag_ec(_,_,Code,List) :-
member(Code,List),!.

diag_ec(Date,Field,Code,_):-
write("Run ",Date," * ec * ".Field,Code),nl.

Class ti

,A,Lclas),
Dilute It

,B,Ldilu),
Inject

II

,C,Linj),
HCtype

n

.D,Lhc).
Project

n

,E,Lproj),
Status II

,F,Lsta),
Series If

,W,Lser),

diag_rb(_,_,Code,List): -
member!(Code,List),!.

diag_rb(Date,Field,Code,): -
write("Run ",Date," * rb * ".Field," field Species : ",Code),nl.

memberi(X,[X|_])
memberi(X,[_|T]) memberi(X,T).

107

NEATPAGEINFO:id=8EC79E3A-4030-4BD2-8ED3-16F8DE81F7EC



/*......................V
/*   MISCELLANEOUS    */
/*-----........-.......V
PREDICATES

miscell(INTEGER)
misc

miscl(INTEGER)

headspe
speciesCount
s ides(INTEGER,STRING)
countside(INTEGER)
countUp(INTEGER,INTEGER,INTEGER,INTEGER)
ckSide(INTEGER,INTEGER,INTEGER,INTEGER)
writeSer(STRING)

headser

seriesCount

ser(STRING,STRING)
countSer(STRING)
counts

writeSide(STRING)

CLAUSES

miscellaneous:-

repeat,
menu(19,63,"Output device",

[ " Screen",
" Line Printer  ",
" File"

],CHOICE),
miscell(CHOICE),
CHOICE-0.!.

miscell(O).
miscell(l)
miscell(2)
miscell(3)

- misc.

- writedevice(printer),misc,writedevice(screen).
- write("Name of your file: "),readln(Name),

openwrite(outf.Name).writedevice(outf).misc.closefile(outf)

misc:-

repeat,
menu(20,36." Miscellaneous ",

[ "Number of Runs Containing Series",
"Number of Chamber Sides Containing Species"

],CHOICE),
shiftwindow(19),
shiftwindow(2),
clearwindow.
miscl(CHOICE),
pauses(CHOICE),
CHOICE-0,!.

108

NEATPAGEINFO:id=16F8A6D5-2015-4894-A4FA-3B970D32D8C4



miscl(O).
miscl(l):- headser.seriesCount.
miscl(2):- headspe.speciesCount.

headser:-
write("Number of Runs Containing Series"),
write ("  Runs    Code    Series  ---    ---    .......").

seriesCount:-

code_series(Code,Ser),
ser(Code,Ser),fail.

seriesCount.

ser("00",_):-!.
ser(Code,Spe);-

assert(counter_s(0,Code)) ,
countSer(Code),
writeSer(Spe),!.

countSer(Code):-
ec(_,_,_,_,_,_,_,Code,_),
counts,fail.

countSer(_).

counts:-

retract(counter_s(Count,Code)),
Countl—Count+1,
assert(counter_s(Countl,Code)), ! .

counts.

writeSer(_):-
retract(counter_s(0,_)),!.

writeSer(S):-
retract(counter_s(Count,Code)),
writef("   %3      %2     ".Count,Code),
write(S),nl.

headspe:-
write("Number of Chamber Sides Containing Species"),
write ("  Sides   Code   Species  .....    ---    .......")

speciesCount:-
code_spec(Code,Spe),
sides(Code,Spe).fail.

speciesCount.

109

NEATPAGEINFO:id=6A431889-C86F-4B1E-AB5D-2D29EC4DF374



sides(0,_):-!.
sides(Code,Spe):-
assert(counter_i(0,Code)),
countside(Code),

writeSide(Spe),!.

countside(Code): -

rb(_,_,_, I,_,K,_,M,_,_,P,_,R,_,T,_,_,_),
countUp(Code,I,K,M),
countUp(Code,P,R,T),fail.

countside(_).

countUp(Code,A,B,C):-
ckSide(Code,A,B,C),

retract(counter_l(Count,Code)),
Countl—Count+1,

assert(counter_i(Countl,Code)),!.
countUp(_,_,_,_).

ckSide(Code,A,B,C):-
Code-A or Code-B or Code-C.

writeSide(_):-
retract(counter_i(0,_)),!.

writeSide(S):-

retract(counter_i(Count,Code)),
writef("   %3      %3     ".Count,Code),
write(S),nl.

110

NEATPAGEINFO:id=2A335B76-5E75-4C26-A538-2DB26F5C0237



/*...............................*/
/* OSCECIS EC27B.PRO */
/* Version 1 March 8, 87 */
/*  Copyright (C)   Kah-Eng Pua */
/*..............--........------*/
CODE - 1200

PROJECT "ECPROJ27.PRJ"

INCLUDE "ECDEF27.PRO"

/*.................------*/
/*   READING QUERIES    */
/*.......--.......------*/
PREDICATES

relmenu(STRING,INTEGER)
qmeTiu( INTEGER)

CLAUSES

relmenu(Title,CHOICE) :-
menu(8,35,Title,

[ " Any
" Equals",
" Less than",
" Greater than",
" Range"
],CHOICE).

qmenu(CHOICE) :-
menu(9,45,"# Species",

[ "Any",
"One Species / Mixture",
"Two Species / Mixtures",
"Three Species / Mixtures"

],CHOICE).

PREDICATES

queryl(INTEGER)
readdate(STRING)
qSpeci(INTEGER)
qDtaiK INTEGER)
querySpeci(INTEGER)
querySeries
queryDate
queryDetail(INTEGER)
qdate(INTEGER)
specID(STRING)
con(STRING,STRING)
others(STRING,STRING)
series

seriesl(INTEGER)

relreal(STRING,INTEGER)
re1int(STRING,INTEGER)

111

NEATPAGEINFO:id=5925B188-9C88-4234-8833-AC4FE2A8967F



speciflnd(INTEGER)
detailfind(INTEGER)
seriesfind

datefind(STRING,STRING)
monthfind(STRING)

CLAUSES

query :-
menu(9,50,"Query Type",

[ "Query By Species",
"Query By Series",
"Query By Dates",
"Detailed Query"

].CHOICE),
queryl(CHOICE).

queryl(O).
queryl(l)
queryl(2)
queryl(3)
queryl(4)

qSpeci(O).
qSpeci(l)
qSpeci(2)
qSpeci(3)
qSpeci(4)

qDtail(O)
qDtail(l)
qDtail(2)

specID(
queryDe

qDtail(3)
specID(
specID(
queryDe

qDtail(4)
specID(
specID(
specID(
queryDe

- qmenu(CHOICE).qSpeci(CHOICE)
- querySeries.
- queryDate.
- qmenu(CHOICE).qDtail(CHOICE)

- querySpeci(O).
- specID("lst"),querySpeci(l) .
- specID("lst"),specID("2nd"),querySpeci(2).
- specID("lst"),specID("2nd"),specID("3rd"),querySpeci(3)

:- queryDetail(O).

"1st"),con("lst Spec
tail(l).

"lst"),con("lst Spec
"2nd"),con("2nd Spec
tail(2).

"lst"),con("lst Spec
"2nd"),con("2nd Spec
"3rd"),con("3rd Spec
tail(3).

/ Mix Concentration","HCconl"),

/ Mix Concentration","HCconl"),
/ Mix Concentration","HCcon2"),

/ Mix Concentration","HCconl"),
/ Mix Concentration","HCcon2"),
/ Mix Concentration","HCcon3"),

querySpeci(Num) :-
write("Searching..."),
time(0,0,0,0),
specif ind(Ntiin) ,
time(_,_,S,H),
write("Time : ",S," Sec and ",H," hundredths"),
print.

112

NEATPAGEINFO:id=BF805057-4EA7-4B5A-8BA5-B0005481F165



querySeries : -
series,
write("Searching. . . ") ,
time(0,0,0,0),
seriesfind,
time(_,_,S,H),
write("Time : ",S," Sec and ",H," hundredths"),
print.

queryDate:-
menu(10,50," Query by Date(s) ",

[ " Any",
" Date(s)",
" Month",
" From datel to date2 "

],CHOICE),
qdate(CHOICE),
print.

qdate(O):-write("Clearing memory...please wait"),clear_ans.
qdate(l):- ec(Date,A,B,C,D,E,F,W,Rk),

assert(z(ec(Date,A,B,C,D,E,F,W,Rk))),fail.
qdate(1).
qdate(2):-

write("Enter as many date(s)   as  applicable.   "),
write("Keep each date[yymmdd]   on separate  line."),
write("StrLke <retum> twice to execute."),
readln(Date),readdate(Date).

qdate(3):-
drawbox(""),
write(" Month [2 chars] : "),readln(M),
removebox,
monthfind(M) .

qdate(4):-
drawbox(" Date(s) "),
write("Range from [jrymmdd] : ") ,readln(Dl) ,
write("       to [yymmdd] : "),readln(D2),
removebox,
datefind(Dl,D2).

readdate(""):-! .
readdate(Date):-

ec(Date,A,B,C,D,E,F,W,Rk),!,
assert(z(ec(Date,A,B,C,D,E,F,W,Rk))),readln(Dl),readdate(Dl)

readdate(Date):-
write("Run with date ".Date," not in database. Retry."),
readln(Dl),readdate(Dl).

113

NEATPAGEINFO:id=D132DFF1-8C7F-4801-837F-3B5DF86F7431



queryDetail(Num) :-
con("Red Side NOx","redNOx"),
con("Blue Side NOx","blueNOx"),
others("# of HC instruments used","hcinst"),
others("Overall Quality","qual"),
others("Rank","rank"),
others("Sun Light %","sun"),
classes(" Any"),
dilutes(" Any"),
injects(" Any"),
hctype(" Any"),
projcode(" Any"),
pcstatus(" Any"),
series,
write("Searching...please wait"),
time(0,0,0,0),
detailfind(Num),
time(_,_,S,H),
write("Time : ".S," Sec and ",H," hundredths"),
print.

specID(S) :-
repeat,
drawbox(""),
write(S," Species / Mixture ID Number : "),
readint(X),!,assert(w(specID(S,X))),
removebox.

classes(S) :-
findall(Class,code_class(_,Class),L),
menu(8,30,"Class Types",[S|L].CHOICE),
findall(Code,code_class(Code,_),L1),
CH-CHOICE-1,
index(LI,CH.Codel),
assert(x(class(Codel))),!.

classes(_).

dilutes(S) :-
findall(Dilute,code_dilute(_,Dilute),L),
menu(8,40,"Dilution Types",[S|L],CHOICE),
findall(Code,code_dilute(Code,_),L1),
CH-CHOICE-1,
index(LI,CH,Code1),
assert(x(dilute(Codel))),!.

dilutes(_).

injects(S)   :-
findall(Inject,code_inject(_,Inject),L),
menu(8,36,"Injection Types",[S|L],CHOICE),
findall(Code,code_inject(Code,_),L1),
CH-CHOICE-1,

114

NEATPAGEINFO:id=99C4B977-270B-4765-839E-15D58D6A5BD2



index(Ll,CH,Codel),
assert(x(inject(Codel))) . ! .

injects(_).

hctype(S)   :-
findall(HC.codeJic(_.HC),L).
menu(8.38,"HC Types",[S|L].CHOICE).
findall(Code,code_hc(Code,_),L1),
CH-CHOICE-1,
index(LI,CH,Code1),
assert(x(hctype(Codel))),! .

hctype(_).

projcode(S)   :-
findall(Proj,code_proj(_,Proj),L),
menu(8,36,"Project Types",[SIL].CHOICE),
findall(Code,code_proj(Code._),LI),
CH-CHOICE-1.
index(Ll,CH,Codel),
assert(x(proj(Codel))),!.

proj code(_).

pcstatus(S) :-
findall(PS,code_status(_,PS).L).
menu(8,36,"Processing Status",[S|L].CHOICE).
findall(Code.code_status(Code,_),L1),
CH-CHOICE-1,
index(LI,CH.Codel),
assert(x(proces(Codel))),!.

pcstatus(_).

series :-

menu(8,45,"Series Code",
[ " Any",
" Specifcic

].CHOICE),
seriesl(CHOICE).

seriesl(O).
seriesl(l).
seriesl(2) :-

drawbox(""),
write("Series Code [2 chars] : "),
readln(X),assert(x(series(X))) .
removebox.

CLAUSES

con(Sl,S2) :-
relmenu(SI,CHOICE),
repeat,
drawbox(Sl),

115

NEATPAGEINFO:id=0E4CE86E-5201-4C23-9A56-2D7800F6E21A



relreal(S2,CHOICE), ! ,
removebox.

others(Sl,S2) :-
relmenu(SI,CHOICE),
repeat,
drawbox(Sl),
relint(S2,CHOICE) , ! ,
removebox.

relreal(_,0).
relreal(_,l).
relreal(String,2) :- write("Equals [ppm] : "),readreal(X),

assert(y(eq(String,r(X)))) .
relreal(String,3) :- vn:ite("Less than [ppm] : "),readreal(X),

assert(y(lt(String,r(X)))).
relreal(String,4) :- write("Greater than [ppm] : "),readreal(X),

assert(y(gt(String,r(X)))).
relreal(String,5) :- write("Range from [ppm] : "),readreal(X),

write("      to [ppm] : "),readreal(Y),
assert(y(range(String,r(X),r(Y)))).

relint(_,0).
relint(_,l).
relint(String,2) :- write("Eqtials [integer] : "),readint(X),

assert(y(eq(String,i(X)))).
relint(String,3) :- write("Less than [integer] : "),readint(X),

assert(y(lt(String,i(X)))).
relint(String,4) :- write("Greater than [integer] : "),readint(X),

assert(y(gt(String,i(X)))).
relint(String,5) :- write("Range from [integer] : "),readint(X),

write("      to [integer] : "),readint(Y),
assert(y(range(String,i(X),i(Y)))).

/*............-----.............*/
/*     FINDING ANSWERS */
/*----...........................*/
PREDICATES

checkEC(CMPLIST,STRING,STRING,STRING,STRING,STRING,STRING,STRING)
rel_r(RELLIST,STRING,REAL)
rel_i(RELLIST,STRING,INTEGER)
checkRB(RELLIST,STRING,INTEGER,

REAL,INTEGER,REAL,INTEGER,REAL.INTEGER,
REAL,INTEGER,REAL,INTEGER,REAL,INTEGER)

CLAUSES

specifind(O) :-
ec(X,A,B,C,D,E,F,W,Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

specifind(O).

116

NEATPAGEINFO:id=38292282-A22B-419A-9FE0-035A37632607



specifind(l) :-
w(specID("lst",ID)),
rb(X,_,H,I,J,K.L,M,_,0,P.Q,R.S,T,_,_,_),
checkRB([],"HCconl",1D,H,I,J,K,L,M,0,P,Q,R,S,T),
ec(X,A,B.C,D,E,F,W,Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

specifind(l).
specifind(2) :-
w(specID("lst",ID1)),
w(specID("2nd",ID2)),
rb(X,_,H,I,J,K,L,M,_,O.P,Q,R,S.T,_,_,_),
checkRB([]."HCconl",IDl,H,I,J,K,L,M,0,P,Q,R,S,T),
checkRB([] , •'HCcon2" ,ID2,H,I,J,K,L,M,0,P,Q,R,S ,T) ,
ec(X,A,B,C,D,E,F,W,Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

specifind(2).
specifind(3) :-
w(specID("lst",IDl)),
w(specID("2nd",ID2)),
w(specID("3rd",ID3)),
rb(X,_.H,I,J,K,L,M,_,0,P,Q.R.S.T,_,_,_),
checkRB([],"HCconl",IDl,H,I,J,K,L,M,0,P,Q,R,S,T),
checkRB([],"HCcon2",ID2,H,I,J,K,L,M,0,P,Q,R,S,T),
checkRB([] ,*'HCcon3",ID3,H,I,J,K,L,M,0,P,Q,R,S,T) ,
ec(X,A.B,C,D,E,F,W,Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

specifind(3).

detailfind(O) :-
findall(Tenn,x(Term),Lis),
findall(Rel,y(Rel).List),
rb(X,G,_,_,_,_,_,_,N,_,_._,_,_,_,U,V,SU),
rel_r(List,"redNOx", G),
rel_r(List,"blueNOx",N),
rel_i(List,"hcinst", U),
rel_i(List,"qual",  V),
rel_i(List,"sun",   SU),
ec(X,A,B,C,D,E,F,W,Rk),
checkEC(Lis,A,B,C,D,E,F,W),
rel_i(List,"rank",Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

detailfind(O).
detailfind(l) :-
w(specID("lst",ID)),
findall(Tenn,x(Term),Lis),
findall(Rel,y(Rel).List) ,
rb(X,G,H.I,J,K,L,M,N,0,P,Q.R,S,T,U.V,SU).
checkRB(List."HCconl".ID.H.I,J.K,L,M,0,P.Q,R,S,T),
rel_r(List,"redNOx", G).
rel_r(List,"blueNOx",N).
rel_i(List."hcinst". U).

117

NEATPAGEINFO:id=22ED3640-AE95-4526-836D-2F8F9BFFA1CD



rel_i(List,"qual",  V),
reli(List,"sun",   SU),
ec(X,A,B,C,D,E,F,W,Rk),
checkEC(Lis,A,B,C,D,E,F,W),
rel_i(List,"rank",Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

detailfind(l).
detailfind(2) :-
w(specID("lst",IDl)),
w(specID("2nd",ID2)),
findall(Term,x(Terni) ,Lis) ,
findall(Rel,y(Rel).List),
rb(X,G,H,I,J,K,L,M,N,0,P,Q.R,S,T,U,V,SU),
checkRB(List,"HCconl",IDl,H,I,J,K,L,M,0,P,Q,R,S,T),
checkRB(List,"HCcon2",ID2,H,I,J,K,L,M,0,P,Q,R,S,T),
rel_r(List,"redNOx", G),
rel_r(List,"blueNOx",N),
rel_i(List,"hcinst", U),
rel_i(List,"qual",  V),
rel_i(List,"sun",   SU),
ec(X,A,B,C,D,E,F,W,Rk),
checkEC(Lis,A,B,C,D,E,F,W),
rel_i(List,"rank",Rk),
assert(z(ec(X,A,B,C,D,E,F,W,Rk))),fail.

detailfind(2).
detailfind(3) :-
w(specID("1st",IDl)),
w(specID("2nd",ID2)),
w(specID("3rd",ID3)),
findall(Tenii,x(Tenn) ,Lis),
findall(Rel,y(Rel).List).
rb(X.G,H.I,J,K,L,M,N.O.P.Q.R.S,T.U.V,SU).
checkRB(List,"HCconl".IDl,H,I,J,K,L.M.O,P,Q,R,S,T),
checkRB(List,"HCcon2",ID2,H,I.J.K.L.M.O.P,Q,R,S,T).
checkRB(List."HCcon3".ID3.H.I.J.K,L.M,O.P.Q.R.S.T).
rel_r(List."redNOx". G).
rel_r(List."blueNOx".N).
rel_i(List,"hcinst", U),
rel_i(List,"qual".  V),
rel_i(List."sun",   SU).
ec(X.A.B,C.D.E.F,W.Rk),
checkEC(Lis.A.B,C.D.E,F,W),
rel_i(List,"rank",Rk).
assert(z(ec(X,A,B,G,D,E,F,W,Rk))).fail.

detailfind(3).

datefind(Dl.D2):-
ec(Date,A.B.C,D,E.F.W,Rk),
Date>-Dl.Date<-D2,
assert(2(ec(Date.A,B,C,D,E,F,W,Rk))).fail.

date£ind(_._).

118

NEATPAGEINFO:id=AEF79279-2896-4F51-9477-AB3496556CF4



monthfInd(M):-
ec(Date,A,B,C,D,E,F,W,Rk),
frontstr(2,Date,_,MMDD),
frontstr(2,MMDD,MM,_),
M—MM,

assert(z(ec(Date,A,B,C,D,E,F,W,Rk))),fail,

monthfind(_).

seriesfind :-

ec(X,A,B,C,D,E,F,W,Rk),
findall(Se,x(Se),Lis),
checkEC(Lis,A,B,C,D,E,F,W),
assert(2(ec(X,A,B,C,D,E,F,W,Rk))),fail.

serlesflnd.

checkRB(List,Spe,ID,Rcl,Rl,Rc2,R2,Rc3,R3,Bel,Bl,Be2,B2,Bc3,B3)
ID-Rl,rel_r(List,Spe,Rcl),! or
ID-Bl,rel_r(List,Spe,Bcl),! or
ID-R2,relr(List,Spe,Rc2),! or
ID-B2,relr(List,Spe,Bc2),! or
ID-R3,rel_r(LIst,Spe,Rc3).! or
ID-B3,rel_r(List,Spe,Bc3).

rel _^(l
rel r(i
rel r(f
rel

rel"
_r(I

rel__r( [

rel i(r
rel i( [
rel i([
rel

rel"
rel'

i([

"i([

. I

eq(Label,r(B))|_].Label,A)
lt(Label,r(B))|_],Label,A)
gt(Label,r(B))|_],Label,A)
range(Label,r(B),r(C))|_],Label,A)
_|T],Label,A) :- rel_r(T,Label,A).

- !,A-B.

- !,A<B.

- !,A>B.
!,B<-A.A<-C.

- I

eq(Label,i(B))|_],Label,A) :- !,A-B.
lt(Label,i(B))|_],Label,A) :- !,A<B.
gt(Label,i(B))|_],Label,A) :- !,A>B.
range(Label,i(B),i(C))I_],Label,A) :- !,B<-A,A<-C.
_|T],Label,A) :- rel_i(T,Label,A).

checkEC([],_,_,_,_,_,_,_)•
checkEC([class(A)|T], A,B,C,D,E,F,W)
checkEC([dilute(B)|T],A,B,C,D,E,F,W)
checkEC([inject(C)|T],A,B,C,D,E,F,W)
checkEC([hctype(D)|T],A,B,C,D,E,F,W)
checkEC([proj(E)|T], A,B,C,D,E,F,W)
checkEC([proces(F)|T],A,B,C,D,E,F,W)
checkEC([series(W)|T],A,B,C,D,E,F,W)

- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)
- checkEC(T,A,B,C,D,E,F,W)

119

NEATPAGEINFO:id=4194897A-5C68-4C5B-9227-4C3380A53647



/*...............................V
/* OSCECIS EC27C.PRO */
/* Version 1 March 8, 87 */
/* Copyright (C)  Kah-Eng Pua */
/*..........-........------.....*/
CODE - 1750
PROJECT "ECPROJ27.PRJ"
INCLUDE "ECDEF27.PRO"

/*............................*/
/*  PRINTING SOLUTIONS      */
/*.....-......................*/
PREDICATES

split(STRING,STRING,LISTS.LISTS)
pmenu
printo(INTEGER)
printl(INTEGER)
printsimple
printByClass
printClass(LISTS)
printByDilution
printDilute(LISTS)
printBylnj ection
printlnject(LISTS)
printByHCtype
printHC(LISTS)
printByProj
printProj(LISTS)
p r intBy S tatus
printStatus(LISTS)
printBySeries
printSeries(LISTS)

heading
writeformat(STRING,STRING)
writehc(REAL,INTEGER)
writerb(STRING,REAL,REAL,INTEGER)
ec_field(STRING,STRING,STRING,STRING,STRING,STRING,STRING,

STRING,STRING,STRING,INTEGER)
code_date(STRING,STRING)
code_rank(INTEGER,STRING)
writesol(LISTS)
write_sol(LISTS,INTEGER)

check_class(STRING,STRING)   /* Checking database consistency */
check_dilute(STRING,STRING)
check_inj ect(STRING,STRING)
check_hc(STRING,STRING)
check_proj(STRING,STRING)
check_status(STRING,STRING)
check_ser(STRING,STRING)

120

NEATPAGEINFO:id=75AE050D-6174-4CE3-B201-EA7919E42FED



CLAUSES

split(L,H,[A|X],[A|Y]) :- L<-A,A< H,!,split(L,H,X,Y)
split(L,H,[_|X],Y) :- split(L,H,X,Y).
split(_._,[],[]).

print :-
repeat,
menu(19,63,"Output device",

[ " Screen",
" Line Printer  " ,
" File"

],CHOICE),
printO(CHOICE),
CHOICE-0,!.

printO(O)
printO(l)
print0(2)
printO(3)

- write("Clearing memory... please wait"),clear_ans.
- pmenu.
- writedevice(printer),pmenu,writedevice(screen).
- write("Name of your output file : "),readln(Name),

openwrite(outf.Name),writedevice(outf),pmenu,closefile(outf).

pmenu :-
repeat,
menu(14,50,"Output menu",

[ "Simple output (date only)",
"Grouped by class".
"Grouped by dilution type",
"Grouped by injection type",
"Grouped by HC type".
"Grouped by project type",
"Grouped by processing status",
"Grouped by series"

],CHOICE),
shiftwindow(19),
shiftwindow(2),
clearwindow,
printl(CHOICE),
pauses(CHOICE),
CHOICE-0,!.

printl(O).
printl(l)
printl(2)
printl(3)
printl(4)
printl(5)
printl(6)
printl(7)
printl(8)

- printSimple.
- printByClass.
- printByDilution.
- printByInjection.
- p r intByHC tjrp e.
- printByProj.
- printByStatus.
- printBySeries.

121

NEATPAGEINFO:id=C1691D48-AAB1-4865-8383-B8844A25C578



printSimple :-
findall(Date,z(ec(Date,_,_,_,_,_,_,_,_)),L),
write (">»» Date of Run <««"),
split("000000","780000",L,LI)

"790000",L,L2)
"800000".L,L3)
"810000",L,L4)
"820000",L,L5),
"830000",L,L6)
"840000",L,L7)
"850000",L,L8)
"860000",L,L9)
"999999",L,L10),

split("780000"
split("790000"
split("800000"
split("810000"
split("820000"
split("830000"
split("840000"
split("850000"
split("860000"
writesol(Ll)
writesol(L2)
writesol(L3)
writesol(L4)
writesol(L5)
writesol(L6)
writesol(L7)
writesol(L8)
writesol(L9)
writesol(LlO),
listlen(L,Leng),
write("Total number of runs ",Leng),nl.

printByClass :-
findall(Class,z(ec(_,Class,_,_,_,_,_,_,_)),L),
unik(L,Ll),
heading,
printClass(Ll).

printClass([]).
printClass([C|Cl]) :-

check_class(C,Class),
write("»>» For the Class tjrpe of ",C,Class," <««"),
writeformat("class",C),
findall(X,z(ec(X,C,_,_._,_,_,_,_)).List),
listlen(List,Nuni) ,
write("Niomber of runs of this class is ".Num).nl.
printClass(Cl).

printByDilution :-
findall(Dilute.z(ec(_._.Dilute._._._,_._,_)),L),
unik(L,Ll),
heading,
printDilute(Ll).

122

NEATPAGEINFO:id=9AE6E43D-E3BB-4F19-8782-8665C3D1DD73



printDilute([]).
printDilute([D|Dl]) :-

check_dilute(D,Dilute),
write("»»> For the Dilution type of ",D,Dilute," <««"),
writeformat("dilute".D),
findall(X,z(ec(X,_,D._,_,_,_._,_)),List),
listlen(List,Nuni) ,
write("Number of runs  of this  dilution type  is   ",Num),nl,
printDilute(Dl).

printBylnjection  :-
findall(Inject,z(ec(_,_,_,Inject,_,_,_,_,_)),L),
unik(L,Ll),
heading,
printlnject(Ll).

printlnject([]) .
printlnject([l|ll])   :-

check_inj ect(I,Inj ect),
write (">»» For the  Injection type of ", I, Inj ect," <««"),
writeformat("inject",I),
findall(X,z(ec(X,_,_,I,_,_,_,_,_)),List),
listlen(List,Num),
write("Number of runs of this  injection type  is  ",Num),nl,
printlnject(ll).

printByHCtype   :-
findalKHC,z(ec(_,_,_._,HC,_,_,_,_)) ,L) ,
unik(L,Ll),
heading,
printHC(Ll).

printHC([]).
printHC([HC|HCl])   :-

check_hc(HC,HCtype),
write(">»» For the HC type of " ,HC,HCtype, " <««"),
writeformat("hctype",HC),
findall(X,z(ec(X,_,_,_,HC,_,_,_,_)).List),
listlen(List,Nuin) ,
write("Number of runs of  this  HC  type  is   ",Num),nl,
printHC(HCl).

printByProj :-
findall(Proj,z(ec(_,_,_,_,_,Proj,_,_,_)),L),
unik(L,Ll),
heading,
printProj(Ll).

123

NEATPAGEINFO:id=89539041-70A0-47B1-A555-95061490883A



printProj([]).
printProj([P|Pl]) :-

check_proj(P,Proj),
write("»»> For the Project type of ",P,Proj," <««"),
writeformat("proj",P),
findall(X,z(ec(X,_,_,_,_,P,_,_,_)),List),
listlen(List,Nuiii) ,
write ("Number  of  runs  of  this  project  type   is   ",Nuni),nl,
printProj(PI).

printByStatus :-
findall(Status,z(ec(_,_,_,_,_,_,Status,_,_)),L),
unik(L,Ll),
heading,
printStatus(Ll).

printStatus([]).
printStatus([S|Sl]) :-

check_status(S,Status),
write("»» For the Processing status of ",S,Status," ««"),
writeformat("status",S),
findall(X,z(ec(X,_,_,_,_,_,S,_,_)),List).
listlen(List,Num),
write("Number of runs of this processing status is ",N\im),nl,
printStatus(Sl).

printBySeries :-
findall(Series,z(ec(_,_,_,_,_,_,_,Series,_)),L),
unik(L,Ll),
heading,
printSeries(Ll).

printSeries([]) .
printSeries([S|Sl]) :-

check_ser(S,Series),
write("»»> For the Series type of ",S,Series," <««"),
writeformat("series",S) ,
findall(X,z(ec(X,_,_,_,_,_,_,S,_)).List),
listlen(List,N\im) .
write("Number of runs of this series is ".Num),nl.
printSeries(Sl).

heading:-
write("------------------------------........-........"),
write("  Date  GDI HC Ser  Proj Q I P  Sun  Rank"),
write("---........-.....................................")•

writefonnat(Label,Field) :-
ec_field(Label,Field,Date,Class,Dilute,Inj ect.HC,Proj,Status.Ser,

Rank),

124

NEATPAGEINFO:id=D6DF2B7D-663D-4954-A1CE-78B950307BE2



rb(Date,RedNOx,RHCconl,RHCcodel,RHCcon2,RHCcode2,RHCcon3,RHCcode3,
BlueNOx,BHCconl,BHCcodel,BHCcon2, BHCcode2,BHCconS,BHCcodeS,
HCinst,Qual,Sun),nl,

code_date(Date,Datel),
code_rank(Rank,Rankl),
write(Datel," ".Class,Dilute,Inject," ",HC,"  ",Ser,"

Proj,"  ",Qual," ",HCinst," ",Status,"   ",Sun,"
Rankl),nl,

writerb("Red Side".RedNOx,RHCconl,RHCcodel),
writehc(RHCcon2,RHCcode2),
writehc(RHCcon3.RHCcode3),
writerb("Blue Side".BlueNOx,BHCconl,BHCcodel),
writehc(BHCcon2.BHCcode2).
writehc(BHCconS,BHCcode3),nl,fail.

writeformat(_,_).

writehc(_,0) :- !.
writehc(Con,Code) :- nl,

code_spec(Code.Codel), ! ,
writef("%40.2f  ",Con),
write(Codel).

writehc(Con.Code) :-
writef("%40.2f  ",Con),
write(" NEW SPECIES ".Code," !!!").

writerb(_,_._,0) :- !.
writerb(Side.NOx,Con,Code) :

code_spec(Code.Codel).!,
write(" ".Side).
writef("%8.3f NOx %6.2f
write(Codel).

writerb(Side.NOx,Con.Code): -
write(" ".Side).
writef("%8.3f NOx %6.2f

- nl.

",NOx,Con),

",NOx,Con),
write(" NEW SPECIES ",Code," !!!").

ec_£ield("class" ,A, X,A,B,C,D,E,F,G,R)
ec_field("dilute",B, X,A,B,C,D,E,F,G,R)
ec_field("inject",C. X,A.B.C,D,E,F,G,R)
ec_field("hctype",D, X,A,B,C,D,E,F,G,R)
ec_field("proj"  ,E, X,A,B,C,D,E,F,G,R)
ec_field("status",F, X,A,B.C,D,E.F,G,R)
ec_field("series",G, X,A,B,C,D,E,F,G,R)

code_date(Date,NewDate) :-
frontstr(2,Date,YY,MMDD),
frontstr(2,MMDD,MM,DD),
code_month(MM,NewM).
concat(DD,"-",Cl),
concat(Cl,NewM.C2),
concat(C2."-".C3).
concat(C3.YY,NewDate).

z(ec(X,A,B,C,D,E.F,G,R))
z(ec(X,A,B,C.D,E,F,G,R))
z(ec(X.A.B,C,D,E,F,G,R))
z(ec(X,A,B,C,D,E,F,G,R))
z(ec(X,A,B,C,D,E,F,G,R))
z(ec(X.A,B,C,D,E.F,G,R))
z(ec(X,A,B,C,D.E,F,G,R))

125

NEATPAGEINFO:id=D352AF8C-C410-4E89-BB32-D781E9151A1C



code_rank(l,"Best in HC type")
code_rank(I,"Best of kind")
code_rank(I,"Sastisfactory")
code_rank(I,"Supporting")
code_rank(I,"Some  Problems")
code_rank(_,"Not for modeling")

KI, Kll, ! .
10<I,I<51,!.
50<I,I<101,!

100<I, K501, !

/* Checking database consistency */

check_class(C,Class):-
code_class(C,Class),! .

check_class(_," NEW CLASS !!!").

check_dilute(D,Dilute):-
code_dilute(D,Dilute),!.

check_dilute(_." NEW DILUTION TYPE!!!").

check_inject(I,Inject):-
code_inject(I.Inject),!.

check_inject(_," NEW INJECTION TYPE!!!").

check_hc(HC,HCtype):-
code_hc(HC,HCtype),!.

check_hc(_,"  NEW HC TYPE!!!").

check_proj(P,Proj):-
code_proj(P.Proj),!.

check_proj(_," NEW PROJECT!!!").

check_s tatus(S,S tatus):-
code_status(S,Status),!.

check_status(_," NEW STATUS I!!").

check_ser(S,Series):-
code_series(S,Series),!.

check_ser(_," NEW SERIES!!!").

writesol([]):-!.
writesol(L) :-nl,write_sol(L,0).

write_sol([],_):-nl.
write_sol([H|T],10) :- !,write(H," "),nl,write_sol(T,0) .
write_sol([H|T], N) :- write(H," "),N1"N+1,write_sol(T,Nl)

/*-------...........-----*/
/*   UPDATING DATABASE   */
/*............-.....------*/
PREDICATES

updateK INTEGER)
displays(STRING)
inserts(STRING)

126

NEATPAGEINFO:id=BAD0C917-CFCC-4A20-B7E2-2858F5A97973



insertRec(STRING)
modify(STRING)
modifyRec(STRING)

l_hcID(STRING,STRING)
i_conc(STRING,STRING)
i_other(STRING,STRING)
i_series
in_hcID ( STRING, STRING)
in_conc ( STRING, STRING)
in_other ( STRING, STRING)
in_series

imenu(STRING,INTEGER)
yr(STRING,REAL,REAL)
yi(STRING,INTEGER,INTEGER)
mw(STRING,INTEGER,INTEGER)
mx(STRING,STRING,STRING)

CLAUSES

updatedb :-
repeat,
menu(l,59,"Update Database",

[ " Display record  ",
" Delete record",
" Insert record",
" Modify record"

],CHOICE),
updatel(CHOICE),
pauses(CHOICE),
CHOICE-0,!.

updatel(O).
updatel(1) :-

write ("Displaying. ............"),
write("Enter Date of Run [yymmdd] : "),readln(Date),
displays(Date).

updatel(2) :-
write("Deleting. ........--"),
write("Enter Date of Run [jrymmdd] : ") ,readln(Date) ,
write("Are you sure you want to delete this record? (y/n) ")
readchar(YN),yes(YN),
write("Run with date ".Date," has been deleted."),
retract(ec(Date,_,_,_,_,_,_,_,_)),
retract(rb(Date,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_)).

updatel(3) :-
clearfacts,
write("Inserting. ........--"),
write("Enter Date of Run [yymmdd] : "),readln(Date),
inserts(Date).

127

NEATPAGEINFO:id=72F3A1AB-D627-413C-9701-42AAFA509C43



updatel(4) :-
clear_facts,
write ("Modifying. ...........") ,
write("Enter Date of Run  [yynimdd]   :   ") ,readln(Date) ,
modify(Date) .

displays(Date) :-
ec(Date,A,B,C,D,E,F,Wl,W2) , ! ,
rb(Date,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,SU),
writef("Date  -%-6 Class -%-6 Dilution   -%-6 Injection-%-2",

Date,A,B,C),
writef("HC Type-%-6 Project-%-6 Proce Status-%-6 Series  -%-2",

D.E.F.Wl),
writef("HC Inst-%-6 Quality-%-6 Rank of Run -%-6 Sun Light-%-2",

U,V,W2,SU),
writef("Red NOx-%-8.3f Red Con 1 -%-8.2f Red HC 1 - %-2",G.H.I),
writef(" Red Con 2 - %-8.2f Red HC 2 - %-2",J,K).
writef(" Red Con 3 - %-8.2f Red HC 3 - %-2".L,M),
writef("Blue NOx-%-8.3f Blue Con l-%-8.2f Blue HC l-%-2",N,0,P),
writef(" Blue Con 2 - %-8.2f Blue HC 2 - %-2",Q,R),
writef(" Blue Con 3 - %-8.2f Blue HC 3 - %-2",S,T).

displays(_) :- write("Warning: Record not in database.").

inserts(D) :-
ec^u,_,_._._._._,_,_),•,
write("Warning : Record with same date already in database."),

inserts(Date) :-
i_conc("Red Side NOx Concentration","RO"),
i_hcID("Red Side 1st HC ID nxomber" , "Rl") ,
i_conc("Red Side 1st HC Concentration"."Rl").
i_hcID("Red Side 2nd HC ID number","R2"),
i_conc("Red Side 2nd HC Concentration","R2"),
i_hcID("Red Side 3rd HC ID number","R3"),
i_conc("Red Side 3rd HC Concentration","R3"),
i_conc("Blue Side NOx Concentration","BO"),
i_hclD("Blue Side 1st HC ID number","Bl"),
i_conc("Blue Side 1st HC Concentration","Bl"),
i_hcID("Blue Side 2nd HC ID number","B2"),
i_conc("Blue Side 2nd HC Concentration","B2"),
i_hcID("Blue Side 3rd HC ID number","B3"),
i_conc("Blue Side 3rd HC Concentration","B3"),
i_other("Niimber of HC instruments" , "hcinst") ,
i_other("Overall quality","qual"),
i_other("Rank"."rank"),
i_other("Sun Light %","sun"),
classes(""),
dilutes(""),
inj ects(""),
hctype(""),
projcode(""),
pcstatus(""),

128

NEATPAGEINFO:id=2975C234-2F15-45C9-B43E-7BE0C7C1DF1E



i_series,
write("Are your inputs correct? (y/n) "),
readchar(Yn),yes(Yn),
insertRec(Date),
write("Run with date ".Date," has been inserted.").

insertRec(Date) :-
y(eq("RO",r(RO))),w(specID("Rl",Il)),
w(specID("R2",12)),w(specID("R3",13)),
y(eq("Rl".r(Rl))),y(eq("R2",r(R2))),
y(eq("R3".r(R3))),
y(eq("B0",r(B0))),w(specID("Bl",I4)),
w(specID("B2'',I5)),w(specID("B3",I6)),
y(eq("Bl",r(Bl))),y(eq("B2",r(B2))).
y(eq("B3".r(B3))),
y(eq("hcinst",i(HC))),
y(eq("qual".i(QL))).
y(eq("rank".i(RK))).
y(eq("sun",i(SU))),
assert(rb(Date,RO,Rl,II,R2,12,R3,13,BO,Bl,14,B2,15,B3,16,HC,QL,SU)),
x(class(CT)),x(dilute(DT)),
x(inject(IT)) ,x(hct3rpe(HT)) ,
x(proj(PT)),x(proces(PS)),
x(series(ST)),
assert(ec(Date,CT,DT,IT,HT,PT,PS,ST,RK)).

modify(Date) :-
ec(Date,_,_,_,_,_,_,_,_),!,
m_conc("Red Side NOx Concentration","RO"),
m_hcID("Red Side 1st HC ID number","Rl"),
m_conc("Red Side 1st HC Concentration","Rl"),
m_hcID("Red Side 2nd HC ID number","R2"),
m_conc("Red Side 2nd HC Concentration","R2"),
m_hcID("Red Side 3rd HC ID number","R3"),
m_conc("Red Side 3rd HC Concentration","R3"),
m_conc("Blue Side NOx Concentration","BO"),
m_hcID("Blue Side 1st HC ID number","Bl"),
m_conc("Blue Side 1st HC Concentration","Bl"),
m_hcID("Blue Side 2nd HC ID number","B2"),
m_conc("Blue Side 2nd HC Concentration","B2"),
m_hcID("Blue Side 3rd HC ID number","B3"),
m_conc("Blue Side 3rd HC Concentration","B3"),
m_other("Number of HC instruments","heinst"),
m_other("Overall quality","qual"),
m_other("Rank","rank"),
m_other("Sun Light %","sun"),
classes(" Not to be modified"),
dilutes(" Not to be modified"),
injects(" Not to be modified"),
hct3rpe(" Not to be modified"),
projcode(" Not to be modified"),

129

NEATPAGEINFO:id=741AB1B5-3466-43B7-A435-BCC4BAE42289



pcstatus(" Not to be modified"),
m_series,
write("Are your inputs correct? (y/n) "),
readchar(Yn),yes(yn),
modifyRec(Date),
write("Record with date ",Date," has been modified."),

modify(_) :- write("Warning: Record not in database.").

modifyRec(Date) :-
retract(ec(Date,Cl,Di,In,Ht,Pj,St,Se,Rk)),
nix( "class", CI, Cll), mx( "dilute" ,Di, Dil) , mx("inject" ,In,Inl) ,
mx("hctype",Ht,Htl),mx("proj",Pj,Pjl),  mx("status",St,Stl),
mx("series",Se,Sel),
yi("rank",RK,RKn),
assert(ec(Date,Cll,Dil,Inl,Htl,PJ1,Stl,Sel,Rkn)),
retract(rb(Date,R0,Rl,Il,R2,I2,R3,I3,B0,Bl,I4,B2,I5,B3,I6,HC,QL,SU)),
yr("RO",RO,ROn),
yr("Rl",Rl,Rln), mw("Rl",Il,Iln),
yr("R2",R2,R2n), mw("R2",I2,I2n),
yr("R3",R3,R3n), mw("R3",I3,I3n),
yr("BO",BO,BOn),
yr("Bl",Bl,Bln), mw("Bl",I4,I4n),
yr("B2",B2,B2n), mw("B2",I5,I5n),
yr("B3",B3,B3n), mw("B3",I6,I6n),
yi("hcinst",HC,HCn),
yi("qual",QL,QLn),
yi("sun",SU,SUn),
assert(rb(Date,ROn,Rln,Iln,R2n,I2n,R3n,I3n,

B0n,Bln,I4n,B2n,I5n,B3n,I6n,HCn,QLn,SUn)),!.

CLAUSES

imenu(Title,CHOICE) :-
menu(12,35,Title,

["      Not to be modified
"      To be modified"
],CHOICE).

i_hcID(Sl,N) :-
drawbox(""),
write(Sl," [integer] : "),readint(X),
assert(w(specID(N,X))),
removebox.

i_conc(Sl,S2) :-
drawbox(""),
write(SI," [ppmC] : "),readreal(X),
assert(y(eq(S2,r(X)))).
removebox. --.

130

NEATPAGEINFO:id=49C95B65-79D7-4D9C-8C49-B3D4C2E9F884



i_other(Sl,S2) :-
drawbox(""),
write(SI," [integer] : "),readint(X),
assert(y(eq(S2.i(X)))),
removebox.

i_series:-
drawbox(""),
write("Series Code [2 chars] : "),readln(X).
assert(x(series(X))),
removebox.

m_hcID(Sl,N) :-
imenu(Sl,CHOICE),CHOICE > 1,!,
drawbox(""),
write(Sl," [integer] : "),readint(X),
assert(w(specID(N,X))),
removebox.

m_hcID(_,_) .

m_conc(Sl,S2) :-
imenu(Sl,CHOICE),CHOICE > 1,!,
drawbox(""),
write(SI," [ppmC] : "),readreal(X),
assert(y(eq(S2,r(X)))),
removebox,

m_conc(_,_).

m_other(Sl,S2) :-
imenu(SI,CHOICE),CHOICE > 1,!,
drawbox(""),
write(Sl," [integer] : "),readint(X),
assert(y(eq(S2,i(X)))).
removebox.

m_other(_,_).

m_series:-
imenu("Series Code".CHOICE).CHOICE > 1,!,
drawbox("").
write("Series Code [2 chars] : ").readln(X),
assert(x(series(X))),
removebox.

m_series.

yr(S,_,New) :- y(eq(S,r(New))).!.
yr(_,01d.01d).

yi(S._,New) :- y(eq(S,i(New))),!.
yi(_,01d,01d).

mw(S,_,New) :- w(specID(S.New)),!.
mw(_,01d,01d).

131

NEATPAGEINFO:id=76A48BA4-511F-4971-832A-C8F387E9CA3F



mx("class", _,New)
mx("dilute",_,New)
mx("inject",_,New)
mx("hctype",_,New)
nix("proj", _,New)
mx("status",_,New)
nix("series" ,_,New)
mx(_,01d,01d).

x(class(New)),!
x(dilute(New)),

x(inject(New)),
x(hctype(New)),
x(proj(New)),!.
x(proces(New)),!
x(series(New)),!

132

NEATPAGEINFO:id=5272A6D2-9EE7-49C3-8B6B-6C508D0C0546



D

Sample Outputs

This appendix contains sample outputs of ethylene runs in the experimental condi¬
tions database. One way to query ethylene runs is to choose the "Query By Species"
panel in the "Query Type" menu of OSCECIS, followed by entering the species code
(2) of ethylene to the system.

The first part of the outputs was obtained by the "Simple output (date only)"
option in the "Output Menu", whereas the latter two parts were obtained by choos¬
ing "Grouped by series" and "Grouped by HC type" options respectively.

NEATPAGEINFO:id=15A8AB89-5BB7-4174-A927-D6BD17AAE5E6



>»» Date of Run «<«

771018 771112 771119 771120

780110 780616 780701 780730 780806 780815 780821 780823 780914 780915 780918
780919 780921 781003 781012 781018 781025 781107

790804 790805 790816 790907

800708 800801 800814 800826

810708 810930

830916 831015

841005 841011 841012

860704 860709 860712 860713 860716

Total number of runs 42

134

NEATPAGEINFO:id=85156267-518C-411D-A1BA-DC03AA095E2A



Date GDI HC  Ser  Proj Q I P  Sun  Rank

>»» For the Series type of 09 Matched other <««

23-Aug-78 ONI 10 09    ET 8 0 S  97  Best of kind
Red Side  0.507 NOx   2.93   ETHYLENE
Blue Side  0.521 NOx   2.97   ETHYLENE

Number of runs of this series is 1

>»» For the Series type of 08 Matched mixture <««

07-Sep-79 ONI MB 08    ET 5 0 S 33 Best of kind

Red Side  0.547 NOx 0.09
1.25

ETHYT.ENE
FORMALDEHYDE

Blue Side  0.549 NOx 0.06

1.25
ETHYLENE

FORMALDEHYDE

Ol-Aug-80 ONI MB 08    ET 9 0 S 73 Best of kind

Red Side  0.533 NOx 0.48
0.23

ETHYLENE

TRANS-2-BUTENE

Blue Side  0.551 NOx 0.46

0.23

ETHYT.ENE

TRANS-2-BUTENE

14-Aug-80 ONI MB 08    ET 6 0 s 74 Sastisfactory

Red Side  0.470 NOx 0.91
0.29

ETHYLENE

TRANS-2-BUTENE

Blue Side  0.466 NOx 0.95
0.32

ETHYLENE
TRANS-2-BUTENE

Number of runs of this series is 3

»>» For the Series type of 34 Delta NOx ««<

15-Sep-78 ONI lU 34    ET 3 0 s 53 Supporting

Red Side  0.526 NOx   2.98
Blue Side  0.268 NOx   2.00

ETHYLENE
FORMALDEHYDE

135

NEATPAGEINFO:id=BB3D8D13-F88D-473A-81C0-D47CE0436C26



04-Jul-86 ONI 10  34 ET  SOP 0 Best of kind

Red Side
Blue Side

0.150 NOx
0.310 NOx

1.77
1.88

ETHYLENE
ETHYLENE

Number of

>»» For

18-Oct-77 ONI 10  33

runs of this series is 2

the Series type of 33 Delta HC <««

Red Side

Blue Side

08-Jul-80 ONI 10 33

Red Side
Blue Side

26-Aug-80 ONI 10 33

Red Side
Blue Side

05-Oct-84 ONI 10 33

Red Side
Blue Side

09-Jul-86 ONI 10 33

Red Side

Blue Side

ET 6 0 S  92

0.494 NOx   3.84
0.484 NOx   1.88

Best of kind

ETHYLENE

ETHYLENE

ET  5 0 S  32  Best of kind

0.754 NOx 2.10
0.754 NOx 3.23

ET SOS 100

0.472 NOx 1.99
0.464 NOx 1.00

ETHYLENE
ETHYLENE

Best of kind

ETHYLENE

ETHYLENE

ET 9 5 U  70  Best of kind

0.365 NOx 3.13
0.370 NOx 1.80

ET 5 0 P 0

0.350 NOx 1.00
0.350 NOx 2.00

ETHYLENE
ETHYLENE

Sastisfactory

ETHYLENE

ETHYLENE

Number of runs of this series is 5

»>» For the Series type of 18 Reactivity Comparison «<«

12-NOV-77 ONI lU 18    ET 6 0 S  83  Sastisfactory

Red Side 0 503 NOx 2.00 ETHYLENE

Blue Side 0 471 NOx 1.72 ACETALDEHYDE

19-NOV-77 ONI lU  18 ET 7 0S 99 Sastisfactory

Red Side 0 451 NOx 3.78 ETHYLENE

Blue Side 0 832 NOx 3.82 ACETALDEHYDE

136

NEATPAGEINFO:id=EBE44079-E796-4E85-8A07-118EA5FF6591



20-NOV-77 ONI lU 18 ET 8 0S 100 Sastisfactory

Red Side  0.446 NOx   4.37   ETHYLENE
Blue Side  0.881 NOx   3.92   ACETALDEHYDE

lO-Jan-78 ONI 10 18 ET 8 0S 100 Sastisfactory

Red  Side 0.462 NOx 3.25 PROPYLENE

Blue Side 0.482 NOx 4.35 ETHYLENE

16-Jun-78 ONI 10 18

Red Side

Blue Side

ET  7 0 S  91  Sastisfactory

0.634
0.640

NOx

NOx

3.95
2.00

ETHYLENE

PROPYLENE

Ol-Jul-78 ONI 10 18 ET 7 0 S  83  Best of kind

Red Side 0.887 NOx 1.45 ETHYLENE

Blue Side 0.935 NOx 1.51 PROPYLENE

30-Jul-78 ONI 10 18 ET 6 0 S 82 Sastisfactory

Red Side 0.474 NOx 1.32 ETHYLENE

Blue Side 0.483 NOx 1.25 PROPYLENE

06-Aug-78 ONI 10 18    ET 4 0 S

Red Side  0.561 NOx
Blue Side  0.569 NOx

57  Some Problems

1.69   PROPYLENE
2.59   ETHYLENE

15-Aug-78 ONI 10 18 ET 7 0 S 87 Best of kind

Red Side 0.543 NOx 1.45 PROPYLENE

Blue Side 0.563 NOx 1.58 ETHYLENE

21-Aug-78 ONI 10  18

Red Side

Blue Side

ET 9 0S   100  Sastisfactory

0.978 NOx   1.39   ETHYLENE
0.981 NOx   1.28   PROPYLENE

14-Sep-78 ONI IW 18 ET 5 0 S   71  Sastisfactory

18-Sep-

Red Side 0 292 NOx 2.24 TOLUENE

Blue Side 0 294 NOx 0.97 ETHYLENE

ONI IW 18 ET 5 0 S 91 Supporting

Red  Side 0 503 NOx 2.98 ETHYLENE

Blue Side 0 496 NOx 4.21 TOLUENE

137

NEATPAGEINFO:id=B03C7346-84B1-4594-88E4-C91AC1A2406B



19 -Sep -78 GNI lU 18 ET 7 0 S 91 Supporting

Red Side 0.688 NOx 1.88 ETHYLENE

Blue Side 0.690 NOx 2.00 FORMALDEHYDE

21 -Sep--78 ONI lU 18 ET 5 0 S 90 Supporting

Red Side 0.258 NOx 1.93 ETHYLENE

Blue Side 0.257 NOx 1.97 FORMALDEHYDE

03 -Oct- 78 ONI MB 18 ET 6 0 S 49 Sastisfactory

Red Side 0.497 NOx 0.98 ETHYT.ENE

Blue Side 0.492 NOx 0.14
1.36

N-BUTANE
PROPYLENE

12 -Oct- 78 ONI MB 18 ET 9 0 S 92 Sastisfactory

Red Side 0.479 NOx 0.20
1.26

ETHYT,ENE
ACETALDEHYDE

Blue Side 0.479 NOx 1.33 PRGPYT,ENE

18 -Get- 78 GNI 10 18 ET 9 0 S 83 Sastisfactory

Red Side 0.456 NOx 3.12 ETHYLENE

Blue Side 0.456 NOx 1.52 PROPYLENE

25 -Get- ͣ78 GNI MB 18 ET 9 0 S 100 Sastisfactory

Red Side 0.444 NOx 0.20
1.16

ETHYLENE

ACETALDEHYDE

Blue Side 0.442 NOx 1.22 PROPYLENE

07 -Nov- 78 ONI 10 18 ET 5 0 S 64 Sastisfactory

Red Side 0.441 NOx 1.37 PROPYLENE

Blue Side 0.441 NOx 2.67 ETHYLENE

04-Aug-79 ONI  lU    18 ET    6  0  S       59       Sastisfactory

Red Side 0 227 NOx 0.88 ETHYLENE

Blue Side 0 230 NOx 0.56 FORMALDEHYDE

ONI lU 18 ET 5 0 S 14 Best of kind

Red Side 0 638 NOx 4.11 ETHYLENE

Blue Side 0 539 NOx 1.20 FORMALDEHYDE

138

NEATPAGEINFO:id=F05A32AB-AE9F-4C2C-8F55-6359224D6254



16 -Aug -79 ONI MB  18 ET 9 0 S 97 Best of kind

Red Side 0.443 NOx 1.42 PROPYLENE

Blue Side 0.436 NOx 0.17
1.30

ETHYLENE
ACETALDEHYDE

08 -Jul- 81 ONI 10  18 ET 7 4 L 76 Sastisfactory

Red  Side 0.500 NOx 2.00 ISOPRENE

Blue Side 0.500 NOx 2.00 ETHYT.ENE

30 ͣSep- 81 ONI MC  18 RE 8 5 L 94 Best of kind

Red Side 0.300 NOx 1.40
0.60

UNCMIX
SIMARO

Blue Side 0.300 NOx 0.17
0.13
0.10

BUTANE/PROPYLENE
ETHYLENE
TRANS-2-BUTENE

16--Sep- 83 ONI MB 18 RE 5 7 P 72 Best of kind

Red Side 0.228 NOx 0.43
1.57
1.00

ETHYT.ENE

1-BUTENE
PROPYT.ENE

Blue Side 0.208 NOx 0.84
1.02
1.04

ETHYLENE
1-BUTENE
PROPYLENE

15-•Oct- 83 ONI MB  18 RE 8 5 P 76 Best of kind

Red Side 0.481 NOx 1.13
0.44
1.60

PROPYLENE

ETHYLENE
1-BUTENE

Blue Side 0.497 NOx 1.00
0.88

1.10

PROPYLENE
ETHYLENE

1-BUTENE

11--Oct- 84 ONI 10  18 ET 9 5 U 80 Sastisfactory

Red Side 0.351 NOx 2.86 ETHYLENE

Blue Side 0.354 NOx 2.25 PROPYLENE

12-0ct-84 ONI 10  18    ET  9 5 U  80  Sastisfactory

Red Side  0.710 NOx   2.68   ETHYLENE
Blue Side  0.682 NOx   1.96   PROPYLENE

139

NEATPAGEINFO:id=8AB9F893-1685-4273-9764-8E9912D0C2C5



12-Jul-86 ONI 10  18 ET 5 0 U  0  Sastisfactory

Red  Side 0.350 NOx 2.00    ETHYLENE
Blue Side 0.350 NOx 1.00    PROPYLENE

13-Jul-86 ONI 10  18 ET 5 0 P  0  Best of kind

Red Side 0.350 NOx 0.50 PROPYLENE

Blue Side 0.350 NOx 1.00 ETHYLENE

16-Jul-86 ONI lU 18    ET  5 0 U  0  Sastisfactory

Red Side 0.350 NOx 2.00 ETHYLENE

Blue Side 0.350 NOx 1.00 FORMALDEHYDE

Nvunber of runs of this series is 31

140

NEATPAGEINFO:id=E3E03800-EAEB-4917-B6A2-C4BA92932932



Date  CDI HC  Ser  Proj Q I P  Sun  Rank

>»» For

14-Sep-78

the HC type of IW Single, ole vs aro <««

ONI IW 18    ET 5 0 S  71  Sastisfactory

Red Side
Blue Side

0.292 NOx
0.294 NOx

2.24
0.97

TOLUENE

ETHYLENE

18-Sep-78 ONI IW 18 ET SOS  91  Supporting

Red Side
Blue Side

0.503 NOx
0.496 NOx

2.98
4.21

ETHYLENE
TOLUENE

Number of

>»» For

30-Sep-81

runs of this HC type is 2

the HC type of MC Mixture, complex <««

ONI MC 18    RE 8 5 L

Red Side  0.300 NOx

Blue Side  0.300 NOx

94  Best of kind

1.40 UNCMIX

0.60 SIMARO

0.17 BUTANE/PROPYLENE
0.13 ETHYLENE

0.10 TRANS-2-BUTENE

Niomber of runs of this HC type is 1

>»» For the HC type of MB Mixture , simple <««

03-Oct-78 ONI MB 18 ET 6 0 S 49 Sastisfactory

Red Side 0.497 NOx 0.98 ETHYLENE

Blue Side 0.492 NOx 0.14
1.36

N-BUTANE

PROPYLENE

12-Oct-78 ONI MB 18 ET 9 0 S 92 Sastisfactory

Red Side 0.479 NOx 0.20

1.26

ETHYT.ENE

ACETALDEHYDE

Blue Side 0.479 NOx 1.33 PROPYLENE

25-Oct-78 ONI MB 18 ET 9 0 S 100 Sastisfactory

Red Side 0.444 NOx 0.20
1.16

ETHYT.ENE
ACETALDEHYDE

Blue Side 0.442 NOx 1.22 PROPYLENE

141

NEATPAGEINFO:id=404224DF-3BDD-48C6-9FBF-46C70F2FAA32



16-Aug-79 ONI MB  18 ET  9 0 S   97  Best of kind

Red Side  0.443 NOx
Blue Side  0.436 NOx

07-Sep-79 ONI MB 08 ET 5 0 S

Red Side 0.547 NOx

Blue Side 0.549 NOx

Ol-Aug-80 ONI MB 08 ET 9 0 S

Red Side 0.533 NOx

Blue Side 0.551 NOx

14-Aug-80 ONI MB 08 ET 6 0 S

Red Side 0.470 NOx

Blue Side 0.466 NOx

16-Sep-83 ONI MB 18 RE 5 7 P

Red Side 0.228 NOx

Blue Side 0.208 NOx

15-Oct-83 ONI MB 18 RE 8 5 P

Red Side 0.481 NOx

Blue Side 0.497 NOx

Number of runs of this HC t)rpe is 9

1.42    PROPYLENE
0.17    ETHYLENE
1.30   ACETALDEHYDE

33 Best of kind

0 09 ETHYLENE

1 25 FORMALDEHYDE
0 06 ETHYLENE

1 25 FORMALDEHYDE

73 Best of kind

0.48 ETHYLENE
0.23 TRANS-2-BUTENE
0.46 ETHYLENE
0.23 TRANS-2-BUTENE

74 Sastisfactory

0.91 ETHYLENE

0.29 TRANS-2-BUTENE

0.95 ETHYLENE

0.32 TRANS-2-BUTENE

72 Best of kind

0.43 ETHYLENE

1.57 1-BUTENE

1.00 PROPYLENE

0.84 ETHYLENE

1.02 1-BUTENE

1.04 PROPYLENE

76 Best of kind

1 13 PROPYLENE

0 44 ETHYLENE

1 60 1-BUTENE

1 00 PROPYLENE

0 88 ETHYLENE

1 10 1-BUTENE

142

NEATPAGEINFO:id=4FACF39B-154A-493B-9129-F0CA68243743



ET  SOS

»>» For the HC type of 10 Single,

18-0ct-77 ONI 10 33    ET 6 0 S

Red Side 0.494 NOx
Blue Side 0.484 NOx

10-Jan-78 ONI 10  18

Red Side 0.462 NOx
Blue Side 0.482 NOx

16-Jun-78 ONI 10 18

Red Side 0.634 NOx   3.95
Blue Side 0.640 NOx   2.00

Ol-Jul-78 ONI 10 18

Red Side 0.887 NOx   1.45
Blue Side 0.935 NOx   1.51

30-Jul-78 ONI 10 18

Red Side 0.474 NOx   1.32
Blue Side 0.483 NOx   1.25

06-Aug-78 ONI 10 18

Red Side 0.561 NOx   1.69
Blue Side 0.569 NOx   2.59

15-Aug-78 ONI 10 18

Red Side 0.543 NOx   1.45
Blue Side 0.563 NOx   1.58

21-Aug-78 ONI 10 18

Red Side 0.978 NOx   1.39
Blue Side 0.981 NOx   1.28

23-Aug-78 ONI 10 09

Red Side 0.507 NOx   2.93
Blue Side 0.521 NOx   2.97

18-Oct-78 ONI 10  18

Red Side 0.456 NOx   3.12
Blue Side 0.456 NOx   1.52

olefins «<«

92 Best of kind

3.84   ETHYLENE
1.88    ETHYLENE

100   Sastisfactory

3.25   PROPYLENE
4.35   ETHYLENE

ET 7 0 S  91  Sastisfactory

ETHYLENE

PROPYLENE

ET 7 0 S  83  Best of kind

ETHYLENE

PROPYLENE

ET 6 0 S  82  Sastisfactory

ETHYLENE

PROPYLENE

ET 4 0 S  57  Some Problems

PROPYLENE

ETHYLENE

ET 7 0 S  87  Best of kind

PROPYLENE

ETHYLENE

ET 9 0S  100  Sastisfactory

ETHYLENE

PROPYLENE

ET 8 0 S  97  Best of kind

ETHYLENE

ETHYLENE

ET 9 0 S  83  Sastisfactory

ETHYLENE

PROPYLENE

143

NEATPAGEINFO:id=89D4AED6-CC07-489F-A171-B7DB13775CCB



07-NOV-78 ONI 10 18 ET 5 0 S  64  Sastisfactory

Red Side
Blue Side

08-Jul-80 ONI 10  33

0.441
0.441

NOx

NOx

ET  SOS

1.37
2.67

32

PROPYLENE
ETHYLENE

Best of kind

Red  Side

Blue Side

26-Aug-80 ONI 10 33

Red Side
Blue Side

08-Jul-81 ONI 10 18

Red Side
Blue Side

0.754

0.754

NOx

NOx

ET 8 0S

0.472
0.464

NOx

NOx

2.10

3.23
ETHYLENE

ETHYLENE

100  Best of kind

1.99   ETHYLENE
1.00   ETHYLENE

ET 7 4 L  76  Sastisfactory

0.500
0.500

NOx

NOx

2.00
2.00

ISOPRENE

ETHYLENE

05-Oct-84 ONI 10 33 ET 9 5 U 70 Best of kind

Red Side 0.365 NOx 3.13 ETHYLENE

Blue Side 0.370 NOx 1.80 ETHYLENE

ll-Oct-84 ONI 10 18 ET 9 5 U  80  Sastisfactory

Red Side 0.351 NOx 2.86 ETHYLENE

Blue Side 0.354 NOx 2.25 PROPYLENE

12-Oct-84 ONI 10 18 ET 9 5 U 80 Sastisfactory

Red Side 0.710 NOx 2.68 ETHYLENE

Blue Side 0.682 NOx 1.96 PROPYLENE

04-Jul-86 ONI 10 34 ET 5 0 P Best of kind

09-Jul-8

Red Side 0 150 NOx 1.77 ETHYLENE

Blue Side 0 310 NOx 1.88 ETHYLENE

6 ONI 10  33 ET 5 0 P 0 Sastisfacto

Red Side 0 350 NOx 1.00 ETHYLENE

Blue Side 0 350 NOx 2.00 ETHYLENE

12-Jul-86 ONI 10 18 ET 5 0 U  0  Sastisfactory

Red Side 0.350 NOx 2.00 ETHYLENE

Blue Side 0.350 NOx 1.00 PROPYLENE

144

NEATPAGEINFO:id=F36F69F2-9065-49CA-881E-FA333A22014A



13-Jul--86 ONI 10 18 ET 5 0 P 0 Best of kind

Red Side 0.350 NOx 0.50 PROPYLENE

Blue Side 0.350 NOx 1.00 ETHYLENE

Number of runs of this HC type is; 21

>»» ]j'or the HC type of lU Single, ole vs aid <««

12 -Nov.-77 ONI lU 18 ET 6 0 S 83 Sastisfactory

Red Side 0.503 NOx 2.00 ETHYT.KNE

Blue Side 0.471 NOx 1.72 ACETALDEHYDE

19-Nov--77 ONI lU 18 ET 7 0 S 99 Sastisfactory

Red Side 0.451 NOx 3.78 ETHYLENE

Blue Side 0.832 NOx 3.82 ACETALDEHYDE

20-Nov--77 ONI lU 18 ET 8 0 S 100 Sastisfactory

Red Side 0.446 NOx 4.37 ETHYLENE

Blue Side 0.881 NOx 3.92 ACETALDEHYDE

15-Sep-ͣ78 ONI lU 34 ET 3 0 S 53 Supporting

Red Side 0.526 NOx 2.98 ETHYLENE

Blue Side 0.268 NOx 2.00 FORMALDEHYDE

19-Sep-ͣ78 ONI lU 18 ET 7 0 S 91 Supporting

Red Side 0.688 NOx 1.88 ETHYLENE

Blue Side 0.690 NOx 2.00 FORMALDEHYDE

21-Sep-ͣ78 ONI lU 18 ET 5 0 S 90 Supporting

Red Side 0.258 NOx 1.93 ETHYLENE

Blue Side 0.257 NOx 1.97 FORMALDEHYDE

04-Aug- 79 ONI lU  18 ET 6 0 S 59 Sastisfactory

Red Side 0.227 NOx 0.88 ETHYLENE

Blue Side 0.230 NOx 0.56 FORMALDEHYDE

05-Aug- 79 ONI lU 18 ET 5 0 S 14 Best of kind

Red  Side 0.638 NOx 4.11 ETHYLENE

Blue Side 0.539 NOx 1.20 FORMALDEHYDE

145

NEATPAGEINFO:id=33F4326A-CED8-4CD3-8DFB-C5FD17BC7EE6



•B^^pp«B^<r-TT5^p?.'..

16-Jul-86 ONI lU  18    ET  5 0 U  0  Sastisfactory

Red Side 0.350 NOx 2.00 ETHYLENE

Blue Side 0.350 NOx 1.00 FORMALDEHYDE

Number of runs of this HC type is 9

146

NEATPAGEINFO:id=01A8CC75-1B33-41F5-916F-8B3E1A1C341A


