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ABSTRACT 
 

JONATHAN TABB SULLIVAN: The Role of the Mycobacterium tuberculosis SecA2 
Protein Export Pathway in Virulence 

(Under the direction of Miriam Braunstein) 

 

 Mycobacterium tuberculosis is an intracellular bacterial pathogen that replicates 

in macrophages in the lung of the host. The ability to replicate in these cells of the 

immune system is critical to the virulence of this important pathogen. M. tuberculosis is 

thought to maintain a hospitable niche in the host through several mechanisms.  M. 

tuberculosis suppresses the host innate immune response by dampening cytokine 

secretion and production of reactive nitrogen and oxygen species that can be toxic to 

bacteria.  Additionally, M. tuberculosis manipulates macrophages by arresting the normal 

process of phagosome maturation into acidified and hydrolytic phagolysosomes.  The 

process of each of these immunosuppressive functions by M. tuberculosis is not fully 

understood. Other intracellular pathogens that control the host immune response use 

specialized protein export systems to deliver effectors to the host cell.  In M. tuberculosis, 

the accessory SecA2 system is a specialized protein export system that is required for 

intracellular growth in macrophages.  However, we do not understand the role of SecA2 

in promoting growth in macrophages. The SecA2 system has a role in dampening the 

host cytokine and reactive nitrogen response. However, we show that the role of SecA2 

in dampening these inflammatory responses cannot explain the intracellular growth 

defect. In this study we discovered that SecA2 is also required for blocking phagosome 
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maturation. We showed that inhibitors of phagosome acidification rescued the 

intracellular growth defect of the ΔsecA2 mutant, which demonstrated that the 

phagosome maturation arrest defect of the ΔsecA2 mutant is responsible for the 

intracellular growth defect.  Our data suggests there are effectors of phagosome 

maturation that are exported into the host environment by the accessory SecA2 system.  

Thus, we tested a set of putative effectors of M. tuberculosis phagosome maturation for 

SecA2 dependent export. We found that the level of one of these proteins, the secreted 

acid phosphatase (SapM), was reduced in the ∆secA2 mutant. The research presented in 

this thesis establishes a role for SecA2 in promoting M. tuberculosis growth in 

macrophages. Additionally, we demonstrate an important causal link between phagosome 

maturation and arrest of M. tuberculosis intracellular replication. 
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CHAPTER I 
 

 
INTRODUCTION  

 
 

 Robert Koch described Mycobacterium tuberculosis as the bacterium that causes 

tuberculosis (TB) in 1882. Despite having been known as the causative agent of TB for 

over 100 years, M. tuberculosis currently infects approximately one-third of the world’s 

population and TB is estimated to kill nearly two million people each year (107). Neither 

universally effective vaccines (33), nor fast-acting sterilizing drugs exist to treat TB. 

Additionally, M. tuberculosis is quickly evolving resistance mechanisms to the current 

drugs in use to treat infection. Taken together these factors create a need for new drugs 

and vaccines to combat TB. Research into the virulence mechanisms of M. tuberculosis 

will facilitate efforts to identify novel drug targets and vaccine strategies.   

 

1.1- Challenges and limitations of current TB drugs and vaccines 

M. tuberculosis has a variety of intrinsic drug resistance characteristics that make 

it difficult to treat with our current array of antibiotics. Antibiotics that have a 

cytoplasmic target in M. tuberculosis are impeded by a very hydrophobic cell envelope 

that limits drug entry, and the existence of efflux pumps that can keep cytoplasmic drug 

levels low by pumping drugs out of the cytoplasm (25, 43). β-lactam antibiotics that 

target extracellular enzymes are also inefficient due to the M. tuberculosis β-lactamase 

BlaC (47). Further, because the current TB drugs work on replicating bacteria, the drugs 
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in use are hindered by the unusually slow replication rate of M. tuberculosis, which 

necessitates long treatment times. 

In addition to the inherent drug resistance capabilities of M. tuberculosis, this 

bacterial pathogen is quickly evolving resistance mechanisms to the current drugs used to 

treat TB infection. Strains that have developed drug resistance to current TB therapies are 

termed Multi Drug Resistant (MDR) or Extensively Drug Resistant (XDR) TB. The 

World Health Organization defines MDR strains as strains that are resistant to both of the 

first-line drugs rifampin and isoniazid. XDR strains are defined as having MDR 

resistance plus resistance to at least two second-line drugs.  

An effective vaccine would supplant the need for drugs to treat M. tuberculosis. 

Currently, there is a live attenuated vaccine strain for TB, M. bovis Bacille Calmette-

Guerin (BCG), that is used in most of the world. The BCG vaccine was introduced in the 

1920’s, but subsequent studies have shown huge discrepancies in the vaccine’s efficacy, 

from as high as 80% protection against TB in England to 0% protection in a study 

conducted in India (33). Due to its questionable efficacy and the complications it presents 

to the diagnostic TB skin test, the BCG vaccine is not used in the United States. The 

current status of drugs and vaccines against TB are insufficient to deal with the emerging 

drug-resistant strains. Studies of the virulence of M. tuberculosis could lead to new drug 

and vaccine strategies capable of reducing the impact of drug-resistant TB. 

 

1.2- Route of M. tuberculosis infection 

The development of new drugs and vaccines for TB is particularly important because TB 

is a serious disease that causes substantial human mortality and is easily spread among 
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the human population. M. tuberculosis resides in the lungs of infected individuals. A 

person with active TB disease can aerosolize infectious bacteria by coughing, sneezing or 

even talking. When an uninfected individual inhales M. tuberculosis, the bacteria travel 

to the bronchioles and alveolar sacs within the lungs. In these spaces  M. tuberculosis is 

phagocytosed by resident alveolar macrophages and contained within the macrophage in 

a membrane bound compartment called a phagosome (34). Macrophages generally 

destroy bacteria through the phagocytic pathway by creating a hydrolytic, antimicrobial, 

and degradative environment within the phagosome.  The formation of this degradative 

phagosomal compartment is a multi-step process termed phagosome maturation (34). M. 

tuberculosis has the amazing ability to survive and even replicate after its uptake by 

macrophages. Once in macrophages, M. tuberculosis prevents phagosome maturation 

from occurring normally, which results in M. tuberculosis residing in a more hospitable 

phagosomal compartment. This early phase of bacterial replication in host phagosomes is 

referred to as primary infection. 

It is generally believed that the ability of M. tuberculosis to survive and replicate 

during primary infection depends on the pathogen blocking the normal process of 

phagosome maturation of macrophages (4, 82, 102). There are, however, additional 

effects of M. tuberculosis on the host that could be critical to the success of this pathogen 

during primary infection. Apoptotic cell death can control replication of intracellular M. 

tuberculosis (67, 73). M. tuberculosis is able to reduce apoptotic cell death in favor of 

necrotic cell death, which promotes cell-to-cell spread of the bacteria (67). M. 

tuberculosis also dampens the inflammatory response by repressing macrophage 

production of cytokines. This dampening of the cytokine response affects recruitment of 
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immune cells that could help clear infection, potentially contributing to the ability of M. 

tuberculosis to replicate during primary infection. Because some of the cytokines whose 

levels are dampened by M. tuberculosis are able to activate macrophages to control 

bacillary growth, this modulation of the immune response could also be important for 

facilitating intracellular replication of the bacterium.  

Eventually during infection, an immunocompetent host will develop a TH1-

skewed adaptive immune response to M. tuberculosis. When the TH1 response is fully 

developed the growth of the bacteria is arrested and the next phase of TB infection 

begins. Growth is arrested by an influx of antigen specific T-cells that produce gamma 

interferon (IFN-γ), which activates the infected macrophages to a point where they can 

arrest M. tuberculosis replication (36). Notably, M. tuberculosis can persist in this state; 

this phase of infection is called latency.  During latency M. tuberculosis replicates very 

slowly and maintains homeostasis (44). M. tuberculosis can emerge from latency through 

reactivation if the host immune system is adversely affected such that the adaptive 

response is dampened. Some of the more common causes of immune repression that lead 

to reactivation of TB disease are HIV, immunosuppressive treatments, or aging. 

Reactivation of a latent M. tuberculosis infection leads to active bacterial 

replication, wasting disease and eventually death of the infected person. This phase of 

infection is called secondary infection.  

The research in this thesis is directed at understanding the primary phase of M. 

tuberculosis infection, with the goal of helping to understand the virulence mechanisms 

of M. tuberculosis that enable replication in macrophages. In particular we studied the 

SecA2 protein export pathway, which was shown previously to be required for growth in 
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macrophages (60).  We set out to understand the role of SecA2 in virulence as a way to 

learn more about TB pathogenesis during this important phase of infection.  

Other intracellular bacterial pathogens that carve out a niche within macrophage 

phagosomes, such as Salmonella and Legionella, use specialized secretion systems to 

deliver effectors to the host cell (42, 50). Some of the effectors they deliver are involved 

in trafficking and control of the environment within the phagosome. M. tuberculosis is 

known to have two types of specialized secretion systems: ESX systems and the SecA2 

system. One of the five ESX systems, the ESX-1 system, has been shown to have 

functions in promoting growth in macrophages and in the process of phagosome 

maturation arrest. The SecA2 system is also known to promote growth in macrophages 

(12, 60). Here, we further characterize the role of the SecA2 system in virulence, and find 

that it also has a role in phagosome maturation arrest. It has long been thought that the 

ability to block phagosome maturation is a keystone to M. tuberculosis pathogenesis (4). 

However, it has not been firmly established that a failure to block phagosome maturation 

prevents M. tuberculosis growth.  Through the course of studying the role of the SecA2 

system in promoting growth of M. tuberculosis in macrophages, we demonstrate in this 

thesis that phagosome maturation arrest is necessary for intracellular M. tuberculosis 

replication and that the failure to properly block phagosome maturation can inhibit M. 

tuberculosis growth. 

 

1.3- Macrophages as a host defense against infection 

 As an intracellular pathogen, M. tuberculosis requires a host cell to grow in vivo. 

Upon inhalation, the first productive contact between M. tuberculosis and the host is 



 6 

alveolar macrophages. In the lung, alveolar macrophages that reside in the bronchioles 

and alveolar sacs are the first line of defense of the immune system. Alveolar 

macrophages have the important job of detecting, consuming, degrading, and presenting 

antigens of bacteria and fungi to the immune system (31). Macrophages also have the 

capacity to clear apoptotic cells and inert particles. 

 Resident alveolar macrophages readily destroy foreign organisms such as 

bacteria; they do this through the process of phagocytosis and phagosome maturation (34, 

58). Phagocytosis is the term used to describe host cell engulfment of particles greater 

than 0.5µm in size.  Once phagocytosed, a foreign body resides in a membrane-encased 

compartment called a phagosome.  Phagosome maturation is the subsequent process 

through which the phagosome is converted to an acidic, hydrolytic compartment in order 

to degrade the contents of the phagosomal lumen. The process of phagosome maturation 

is driven by sequential fusion events with endosomes and lysosomes that deliver 

hydrolytic enzymes and the vacuolar H+-ATPase (V-ATPase), which drives acidification 

of the phagosome (35). 

 When containment or destruction via phagocytosis and phagosome maturation 

fails, macrophages can undergo apoptosis to prevent spread of intracellular bacteria. By 

containing the bacteria in an apoptotic body the macrophage can recruit other phagocytes, 

and induce phagocytosis and destruction of the apoptotic corpse. Because the bacteria are 

now contained in an apoptotic body the potential for them to interact with and affect the 

recruited phagocyte is diminished compared to direct phagocytosis of the bacteria.  
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1.4- Macrophage phagocytosis  

Phagocytosis can lead to varied outcomes that depend on mode of entry and cargo 

of the initial phagosome (34). Phagocytosis begins with recognition of the particle to be 

consumed. This recognition is performed by surface receptors on the phagocyte (Figure 

1-1). In addition to the receptors that are required for phagocytosis of bacteria, e.g. 

complement receptors, Fcγ receptor, mannose receptor, and scavenger receptors (34) 

phagocytes also sample their load with Toll-like receptors (TLRs) to determine what they 

are consuming (1).  

 Once a foreign body is recognized by receptors it is internalized through an actin 

dependent process. While the specific proteins vary depending on the receptor, the 

mechanism of phagosome formation and engulfment through each receptor is similar 

(Figure 1-1) and involves signaling Rho family GTPases that recruit actin nucleation 

factors (70, 109). Actin polymerization and branching, through the recruitment of 

Wiscott-Aldrich syndrome protein (WASP) and actin-related protein 2/3 (Arp2/3) then 

drives the creation of the phagocytic cup, which is the initial membrane extrusion of 

pseudopodia used to surround the target. Phagocytosis, especially of larger particles, 

requires extra membrane that is supplied by recycling endosomes, late endosomes and the 

endoplasmic reticulum; the extra membrane is required to protrude pseudopodia for 

surrounding the target. Myosin motors are also recruited to nascent phagosomes, and are 

required for the extrusion of pseudopodia and contraction of the phagocytic cup into the 

phagocyte (3, 23, 74). Other factors such as phosphatidylinositol (PI) kinases are 

recruited to the phagocytic cup, phosphorylate PI and are required for timing actin 
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Figure 1-1. B
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polymerization and depolymerization (34). Coronin is a protein required for efficient 

phagocytosis in the amoeba Dictyostelium discoidium (64). Mammalian Coronin 1A also 

localizes to the nascent phagosome in phagocytic cells, but mammalian Coronin is 

apparently expendable in phagocytosis, although it may play an alternate role in 

phagosome maturation (52).  

 While the processes between phagocytosis through different receptors are 

synonymous, it is likely that the final composition of the mature phagosome and/or the 

kinetics of maturation depend on what route the target entered the cell (2).  

 

1.5- Phagosome maturation 

While many of the details are yet to be elucidated, there is a basic framework for 

how phagosome maturation progresses. The kinetics, pathway of maturation, and final 

phagosome composition depend on the cargo to be destroyed. For example, even though 

both types of loads get degraded in the phagolysosome, bacterial loads lead to efficient 

MHC-II peptide loading, whereas peptides from apoptotic cells do not get loaded into 

MHC-II (58). The different outcomes result in inflammation and antigen presentation for 

bacterial loads, whereas apoptotic “self” loads lead to anti-inflammatory phagocytosis 

without antigen presentation.  

After engulfment of the phagocytic load, the Rab GTPase Rab5 is quickly 

recruited to the phagosome (103). This Rab5+ compartment acidifies slightly from pH 7 

to a pH of about 6.1-6.5 and is referred to as a sorting endosome. The sorting endosome 

is called such because it has multiple potential outcomes. The sorting endosome can enter 

the recycling endosome network and be exocytosed.  Alternatively, the sorting endosome 
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can enter the trans-golgi network where proteins are sorted for secretion, surface 

localization, or inclusion in endosomal or lysosomal compartments (34).  The final 

possibility is that the sorting endosome can traffic to a mature phagolysosome.  As it is 

the most relevant to this thesis, we will limit our discussion of these various outcomes to 

that of phagoslysosome maturation.  

For phagolysosome maturation, active (i.e. GTP bound) Rab5 goes on to recruit 

Vps34, a phosphotydlinositol 3-kinase (PI3K) that coats the phagosomal membrane with 

phosphotydlinositol 3-phosphate (PI(3)P). The PI(3)P on the phagosomal membrane in 

turn recruits proteins containing FYVE domains, including the early endosome antigen 1 

(EEA1). Antibodies against EEA1 microinjected into macrophages block phagosome 

maturation, suggesting a role for EEA1 in the maturation process (40). EEA1 is thought 

to be involved in orchestrating fusion events between the early phagosome and endocytic 

vesicles, but its exact role in maturation is not known (34).  

An additional role for Rab5 is the recruitment of another Rab GTPase, Rab7, to 

the maturing phagosome. In model bead and apoptotic corpse phagosomes, Rab7 

recruitment requires active Rab5 and it occurs efficiently without PI3K activity (57, 103). 

Thus, there appears to be a Rab5 dependent mechanism, other than promoting PI(3)P 

deposition, that is required for Rab7 recruitment to the phagosome. Indeed, in the 

maturation of phagosomes containing apoptotic corpses active Rab5 recruits active (i.e. 

GTP bound) Rab7 through the Mon1a-Ccz1 protein complex (57). However, it is not yet 

known whether Rab7 recruitment is through the same mechanism on bacteria-containing 

phagosomes. 



 11 

Active Rab7 in turn interacts with Rab7 Interacting Lysosomal Protein (RILP) 

(17). RILP acts as a scaffold to link Rab7 to Dynamin/Dynactin, which are motor 

proteins that move along tubulin (54). This interaction suggests a model where activated 

Rab7 links the phagosome to the tubulin network in order to drive the phagosome 

movement toward lysosomes for fusion events to occur. Lysosomes are the terminal 

compartment to fuse with phagosomes during the maturation process, once fused to the 

phagosome the combined compartment is referred to as the phagolysosome (35). 

Lysosomes are vacuoles that contain high concentrations of hydrolytic enzymes and 

maintain a very low pH (~4.5) via a high concentration of V-ATPase in their membrane. 

It should be noted that while lysosomes deliver a large quantity of V-ATPase to the 

phagosome, V-ATPase is also delivered to the phagosome throughout the process of 

maturation (34). Lysosomal fusion is thought to be orchestrated by the multi-protein 

homotypic fusion and vacuole sorting (HOPS) complex, which assembles on the 

phagosomal membrane and is directly involved in activating lysosome fusion events (29). 

Toll-like receptors (TLRs) may play a role in fast-tracking phagosomes for 

maturation (5, 10), suggesting an attractive model for how the load is recognized and 

directed by the phagocyte. However, there is some debate and further research will be 

required to tease out the function of TLRs in driving phagosome maturation (108). 

 

1.6- M. tuberculosis phagosomes 

For most bacteria, macrophage phagocytosis results in trafficking to highly 

destructive phagolysosomes where the bacterial cell is destroyed. Once degraded, 

bacterial antigens can be loaded into MHC and presented on the surface of the 
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macrophage (34). For intracellular bacterial pathogens to survive phagocytosis they need 

to have a mechanism to either withstand the phagolysosome environment or a way to 

redirect the trafficking of the phagosome to avoid the compartment altogether.  

 Over the years it has been shown by many different groups and readouts that in 

non-activated macrophages M. tuberculosis avoids trafficking to mature phagolysosomes 

(4). The different approaches used to demonstrate blockage of phagosome-lysosome 

fusion by M. tuberculosis include electron microscopy, fluorescent dextran trafficking, 

and staining for markers of lysosomal fusion such as lysosome associated membrane 

protein-1 (LAMP-1), CD-63, and lysobisphosphatidic acid (LBPA) (4, 61, 62). Further, 

LysoTracker and ratiometric fluorescent dyes have been used to demonstrate M. 

tuberculosis blockage of phagosome acidification (77, 93, 95). However, the mechanism 

employed by M. tuberculosis to avoid phagosome maturation remains elusive. Numerous 

putative M. tuberculosis effectors of phagosome maturation, both lipid and protein, have 

been identified through direct testing and mutant screens (15, 26, 41, 49, 56, 62, 77, 95, 

98-100, 104). However, the mode of action for nearly all of these putative effectors 

remains unknown. What appears to be true from these studies is that the process is likely 

to be multi-factorial and complex and that M. tuberculosis has effectors that disrupt 

phagosome maturation from the beginning (phagocytosis) to the end (lysosomal fusion) 

of the process.  

 

1.7- M. tuberculosis phagocytosis 

 Macrophages recognize M. tuberculosis through several receptors including the 

complement receptors CR1 and CR3, mannose receptor (MR), and scavenger receptors 
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(30). There is evidence that the initial event allowing M. tuberculosis to control 

intracellular trafficking occurs at the step of recognition by a macrophage receptor (55).  

M. tuberculosis can be directly recognized by complement receptor CR3 on the 

macrophage by a complement independent mechanism. This recognition, in the absence 

of the C3b component of complement, occurs at one of two binding sites on CR3 (24). 

Binding at both CR3 sites is required for activation of some antimicrobial activities of 

natural-killer cells and neutrophils (101). Thus, M. tuberculosis may be affecting the host 

cell response early on by limiting binding to one site on the CR3 receptor.  

M. tuberculosis can also be recognized by the host cell through the MR, which 

recognizes the M. tuberculosis surface glycolipid mannose capped lipoarabinomannan 

Man-LAM (87-89).  When MR recognition of ManLAM-coated beads or M. tuberculosis 

is blocked by preincubation with mannan or anti-MR antibody, phagosome maturation 

kinetics are faster. Similarly, when beads or M. tuberculosis are shuttled through the Fcγ 

receptor instead of MR by IgG opsonization, phagosome maturation kinetics are faster.  

These experiments suggest that M. tuberculosis may selectively enter through the MR-

mediated phagocytosis in order to delay phagosome maturation. However, the 

experiments testing the kinetics of phagosome maturation in these different conditions 

were very short, two hours post phagocytosis for bead experiments and 30 minutes post 

phagocytosis for bacteria assays, which is of questionable relevance in a long-term 

chronic infection such as TB (55). This data suggests an important role for receptor 

selection in the early kinetics of phagosome maturation arrest.  
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1.8- M. tuberculosis phagosome maturation 

 Once in a macrophage, the M. tuberculosis-containing phagosome stalls at a 

slightly acidic Rab5+ compartment similar to a sorting endosome. The M. tuberculosis-

containing phagosome is slightly more acidic than a nascent phagosome at a pH of ~6.4 

like a sorting endosome instead of pH 7.0, but far from the pH of a mature 

phagolysosome ~4.5 (82).  Rab5 is an example of a protein that is recruited normally to 

the M. tuberculosis-containing phagosome but is retained, which is unusual.  Not only 

does the M. tuberculosis-containing phagosome retain Rab5 (102), interestingly, it also 

remains accessible to surface transferrin receptor (20), indicating continued interaction 

with recycling endosomes that shuttle cargo between sorting endosomes and the cell 

membrane (35).  

Another example of an abnormally retained protein is Coronin-1A, which is 

recruited normally to M. tuberculosis-containing phagosomes but is retained on the 

surface of a M. tuberculosis-containing phagosome after the phagosome is sealed (32). 

This is unique to M. tuberculosis-containing phagosomes; Coronin-1A is usually released 

from phagosomes after sealing. 

 Model phagosomes quickly build up PI(3)P on the phagosomal surface as part of 

the maturation process. Vps34 is the PI3K that is responsible for the build up of PI(3)P 

on the phagosome. Vps34 is recruited to the phagosome by active Rab5, thus localization 

of Rab5 at the phagosome is required for PI(3)P deposition. However, even though Rab5 

is retained on M. tuberculosis and M. bovis BCG-containing phagosomes, mycobacteria 

clear PI(3)P from the phagosomal surface as shown by studies with BCG-containing 

phagosomes (99).  This effect is important because PI(3)P is required for phagosome 



 15 

maturation through the recruitment of EEA-1, which is thought to orchestrate phagosome 

fusion events with endocytic vesicles. 

 A notable protein that is excluded from the M. tuberculosis-containing 

phagosomes is Rab7 (102).  The absence of Rab7 is significant in that without Rab7, 

RILP recruitment and thus phagosome-lysosome fusion are blocked. By blocking 

lysosomal fusion, M. tuberculosis resists delivery of hydrolytic activity that could be 

damaging to the bacterial cell or restrict growth.  

     

1.9- M. tuberculosis effectors of phagosome maturation arrest 

Exactly how M. tuberculosis arrests phagosome maturation is unclear. What is 

clear from studies of the phenomenon is that it is a complex process that seemingly 

involves a wide range of protein and lipid effectors. Phagosome maturation arrest by M. 

tuberculosis likely includes, but is probably not limited to, selecting specific phagocytic 

receptors used for uptake (55), interfering with PI(3)P signaling on the phagosomal 

surface (40, 98, 99), deactivating Rab GTPases or preventing their acquisition (96), and 

retaining Coronin-1A on the phagosomal membrane (52).  

A small subset of M. tuberculosis protein and lipid molecules have been directly 

tested for their ability to impact phagosome maturation and signaling. Interestingly, some 

of these directly tested effectors may also have essential functions in the bacteria 

unrelated to their proposed moonlighting role in phagosome maturation arrest (26, 104). 

Below we review the list of candidate M. tuberculosis molecules implicated in 

phagosome maturation arrest.  These candidate effectors are presented in order of the 

steps in phagosome maturation in which they are proposed to act.  
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 The following sections describe several experiments involving multiple 

techniques and experimental settings. One of the more common experimental approaches 

used is to compare model phagosomes where the phagocytic particle is a latex bead to 

phagosomes with latex beads coated with a M. tuberculosis molecule to assess the impact 

of that molecule on the phagosome maturation process. Other experiments use 

Escherichia coli or non-pathogenic M. smegmatis as the phagocytic particle, which traffic 

to a mature phagosome after phagocytosis. In these latter experiments, a candidate M. 

tuberculosis effector is ectopically expressed by M. smegmatis or the host cell to assess 

its potential to affect phagosome maturation.  In addition, some experiments utilize M. 

bovis BCG as a surrogate for M. tuberculosis.  Like M. tuberculosis, BCG is able to block 

phagosome maturation, but has the benefit of being non-pathogenic, so it can be used in a 

BSL-2 laboratory.  

 

Mannose-capped lipoarabinomannan (ManLAM) 
 

ManLAM is a surface localized glycolipid of M. tuberculosis.  ManLAM is 

reported in two separate studies to influence phagosome maturation. Phagosomes 

containing ManLAM-coated beads have reduced phagosome-lysosome fusion at early 

time points in phagocytosis assays compared to unconjugated beads, human serum 

albumin-coated beads, or M. smegmatis LAM-coated beads (41, 55). It is possible that 

ManLAM affects phagosome maturation via receptor selection. The reduction in 

phagosome maturation depends on the mannose cap that causes recognition of the 

molecule by the mannose receptor on phagocytes (55). Consistent with these results, M. 

tuberculosis containing phagosomes more readily fuse with lysosomes when 
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phagocytosis through the MR is blocked by preincubation of macrophages with excess 

mannan prior to infection (55). In fact, phagosome maturation occurs more quickly when 

M. tuberculosis or ManLAM coated beads uptake is skewed to phagocytosis through 

receptors other than the mannose receptor, such as the Fcγ receptor via opsonization with 

IgG. Kang et al. conclude that the effect of ManLAM on phagosome maturation is caused 

by skewing uptake of the bacteria through the MR (55).  

   

Phosphotidylinosotol mannoside (PIM) 
 
 PIM is another surface localized glycolipid of M. tuberculosis. PIM is 

additionally reported to be released by M. tuberculosis and to traffic out of the 

phagosome (8). Compared to uncoated beads, phagosomes containing beads coated with 

PIM acidify less and accumulate transferrin receptor, a hallmark of M. tuberculosis-

containing phagosomes. However, in vitro fusion assays show that PIM does not block 

late endosomal fusion events but rather, stimulates fusion of early endosomes with 

recycling endosomes. The interaction of M. tuberculosis-containing phagosomes with 

recycling endosomes is thought to be important for delivering nutrients to the bacteria 

(100). The data suggests that the role of PIM is to maintain a productive interaction with 

recycling endosomes as opposed to preventing interactions with late endosomes. 

  

Lipoamide dehydrogenase (LpdC) 
 
 LpdC is an essential protein in M. tuberculosis probably due to its predicted 

metabolic function as part of the pyruvate dehydrogenase complex that converts pyruvate 

into acetyl-CoA (85). Surprisingly, despite the need for this protein to be cytoplasmic in 
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order to carry out its predicted essential function and the lack of an N-terminal signal 

sequence for export on LpdC, this protein is reported to be secreted by M. tuberculosis 

(65).  

 The unexpected connection between LpdC and phagosome maturation came when 

LpdC was pulled down by immunoprecipitation from BCG infected macrophages with 

antibodies to Coronin 1A (26). As discussed earlier M. tuberculosis-containing 

phagosomes retain Coronin 1A long after it would be released from a model phagosome. 

Compared to wild type J774 macrophages, in J774 macrophages depleted for Coronin 1A 

through siRNA, BCG-containing phagosomes localize more with LAMP-1, which is a 

marker of late endosomes and lysosomes (52).  Thus, the retention of Coronin on 

mycobacteria-containing phagosomes contributes to phagosome maturation arrest. In the 

amoeba Dictyostelium discoideum, Coronin is known for its function in actin remodeling 

for phagocytosis and cell motility; however, the function of Coronin on M. tuberculosis 

phagosomes in macrophages appears to be independent of actin remodeling. Instead, it is 

reported that Coronin retention on the M. tuberculosis phagosome activates calcineurin, 

which in turn creates a calcium flux that interferes with proper phagosome maturation 

(53).  

 LpdC is shown to bind Coronin 1A in a cholesterol dependent manner, and to 

maintain Coronin 1A at the phagosomal membrane. While the lpdC gene is essential and 

cannot be deleted, when the M. tuberculosis lpdC gene is introduced into M. smegmatis it 

imparts M. smegmatis with the ability to retain Coronin-1 on the phagosome. However, 

the study did not determine if M. tuberculosis LpdC imparted the ability to arrest 

phagosome maturation. This recombinant M. smegmatis does show increased 
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intracellular survival in a short macrophage infection (26). These data suggest that the 

predicted metabolic enzyme LpdC is moonlighting as a phagosome maturation arrest 

effector in M. tuberculosis.  

 

Secreted acid-phosphatase (SapM) 
 
 SapM is a secreted M. tuberculosis acid-phosphatase with activity over a wide 

range of pH (5.5 to 8.0) (84). SapM contains a standard N-terminal Sec signal peptide, 

indicating it is likely secreted through the general secretion (Sec) machinery (84).  

 SapM has phosphatase activity on PI(3)P in vitro (99). As mentioned above, 

PI(3)P is an important signaling molecule on the surface of the phagosome and it is 

required for efficient phagosome maturation. Indeed, in experiments where SapM activity 

was inhibited in BCG infected macrophages, PI(3)P was acquired more quickly on the 

phagosomal membrane than in untreated cells, suggesting that SapM does have a role in 

preventing or slowing phagosome maturation (99). However, this experiment used 

molybdate to inhibit SapM, which is a broad inhibitor of phosphatases and likely has 

pleiotropic effects. Further study is still required to clarify the importance of SapM in 

phagosome maturation arrest.   

 

Nucleoside diphosphate kinase (NdkA) 
 
 NdkA is like LpdC in being another M. tuberculosis protein that is predicted to 

have a metabolic function in the bacterial cytosol, in this case phosphorylating nucleoside 

diphosphates (NDPs) to create nucleoside triphosphates (NTPs). The experiments of Sun 

et al. argue for an additional function of NdkA in blocking phagosome maturation (96). It 
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is worthwhile to point out, however, that standard Ndk activity has not been 

demonstrated with NdkA. Instead, Ndk activity has been demonstrated for the M. 

tuberculosis adenylate kinase (Adk) protein. The M. tuberculosis NdkA protein has been 

shown to have phosphatase activity against GTP producing GDP (96). Rab5 and Rab7 are 

important host proteins for phagosome maturation and both require GTP for activity. 

When bound to GDP, Rab5 and Rab7 are inactive. M. tuberculosis NdkA has been shown 

to act on GTP that is bound to Rab5 or Rab7, suggesting it could act directly on the GTP-

bound forms in vivo (96). 

 Despite lacking a signal sequence NdkA is reported to be secreted by M. 

tuberculosis and BCG grown in culture. Compared to wild type, a BCG strain depleted of 

NdkA by an antisense knock-down method is enriched in mature phagosomes four hours 

post-infection, indicating that NdkA plays a role in preventing phagosome maturation. 

The same BCG knockdown strain has decreased survival in macrophages compared to 

wild type indicating an important role for NdkA for the bacteria during intracellular life 

(96). 

 

Protein kinase G (PknG) 
 
 PknG is a protein kinase that has been shown to phosphorylate serine residues on 

a peptide substrate in vitro (59). Based on results from testing a M. tuberculosis pknG 

mutant in a mouse model, PknG is clearly important for M. tuberculosis infection (22).  

However, the specific function of PknG is controversial as a result of two contrasting 

studies.   One study reports PknG to function in blocking phagosome maturation through 

an unknown process (104). PknG is found to be secreted at low levels (22), and even 
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detected in the cytoplasm of BCG infected host cells (104).  The secreted nature of PknG 

is consistent with the protein being an effector secreted into the host cytoplasm. 

Additionally, M. smegmatis engineered to express M. tuberculosis PknG acquires the 

ability to block phagosome-lysosome fusion, as evidenced by decreased LAMP-1 

localization to phagosomes containing the PknG expressing recombinant strain compared 

to wild type M. smegmatis. Additionally, compared to BCG expressing wild type PknG, 

BCG carrying a kinase dead allele of PknG was found more readily in LAMP-1 positive 

phagosomes, indicating an important role for PknG and its kinase activity in blocking 

phagosome maturation (104).   In contrast to these above data, a second study, which 

used a pknG mutant of M. tuberculosis suggests a completely different role for PknG 

during infection. M. tuberculosis pknG mutants are slow growing and levels of glutamine 

and glutamate build up in the mutant, suggesting a role for PknG in amino acid 

metabolism (22).  

 

Protein tyrosine phosphatase (PtpA) 
 
 PtpA is a tyrosine phosphatase of M. tuberculosis that is proposed to act on host 

phosphorylation signaling cascades. Separate studies report roles for M. tuberculosis 

PtpA in either phagocytosis or phagosome maturation arrest. One study found that 

ectopic expression of PtpA in Raw264.7 cells repressed phagocytosis of M. tuberculosis 

and zymosan. Zymosan is yeast cell wall particles often used as model phagocytic targets 

(18). 

 In a second study of PtpA, the phosphatase was shown to dephosphorylate the 

vacuolar protein sorting-associated protein 33B (VPS33B). VPS33B is a component of 
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the multi-protein homotypic fusion and vacuole sorting (HOPS) complex. The HOPS 

complex assembles on the phagosomal membrane and is directly involved in activating 

lysosome fusion events (29). In an in vitro vesicle fusion assay, addition of active PtpA 

and VPS33B together, but not individually, reduced fusion events (6), suggesting that 

PtpA activity on VPS33B is important for blocking vesicle fusion.  

In a third study of PtpA, a connection between PtpA and V-ATPase was 

identified.  Lysosomes maintain a high concentration of V-ATPase in their membranes. 

When expressed ectopically by the host cell PtpA binds to the H subunit of V-ATPase 

and prevents lysosome fusion with E. coli-containing phagosomes. This block in 

phagosome-lysosome fusion requires both binding to V-ATPase and the phosphatase 

activity of PtpA (106). PtpA appears to be involved in blocking the final step of 

phagosome maturation, phagosome-lysosome fusion, and thus protects the bacteria from 

destruction by the hydrolytic mature phagolysosome. Interestingly, PtpA appears to affect 

phagosome maturation and survival in human cell lines, but not in mice, suggesting a 

host specific effect of PtpA (6, 45, 106).  

 

Other candidate effectors of M. tuberculosis phagosome maturation arrest 
 
 Four independent transposon mutant screens of M. tuberculosis and M. bovis 

BCG have produced lists of genes that when mutated result in failure to prevent 

phagosome maturation.  However, there is strikingly little overlap between the genes 

identified in the various phagosome maturation mutant screens (15, 62, 77, 95). The 

differences between these screens remain to be resolved but they may lie in the different 

mycobacterial strains, cell lines, or readouts of phagosome maturation used.  



 23 

From two of the screens for effectors of phagosome maturation, components of 

the ESX-1 specialized secretion system have been shown to be required for phagosome 

maturation arrest (14, 62). ESX-1 has long been known to be required for virulence, but 

how ESX-1 is involved in virulence remains unknown. Phagosome maturation arrest may 

be part of the ESX-1 system’s role in virulence. Lipid metabolic genes are another 

category of commonly identified genes in these screens, possibly due to the role of LAM, 

PIM and potentially other lipids in phagosomal trafficking. Interestingly, three of the four 

screens picked up genes directly involved in the molybdopterin biosynthetic pathway. 

Molybdopterin is an enzyme cofactor that is used by bacteria in carbon, nitrogen, and 

sulfur metabolism. M. tuberculosis and M. bovis have an expanded set of molybdopterin 

biosynthetic genes compared to M. smegmatis suggesting potential importance in 

virulence (105). It is possible that there is an effector of phagosome maturation that uses 

molybdopterin as a cofactor. In addition to a role in phagosome maturation arrest, 

molybdopterin biosynthetic genes have elsewhere been implicated in virulence in diverse 

animal models such as: monkeys, mice, and human cell lines (16, 28, 83).  

 

1.10- M. tuberculosis modulation of other innate immune responses 

M. tuberculosis inhibition of host cell apoptosis 
 
 Another mechanism M. tuberculosis employs to promote replication in 

macrophages is to avoid host-protective apoptosis.  This effect skews host cell death 

toward necrosis, which has the effect of promoting cell-to-cell spread of M. tuberculosis. 
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Further, apoptosis is shown to be a mechanism macrophages can use to kill or contain 

mycobacteria (27, 39, 67). These studies demonstrate a correlation between apoptosis and 

reduced intracellular replication or even killing of mycobacteria. In addition to the innate 

role of apoptosis in clearing bacterial infection, increased apoptosis can help establish a 

more robust adaptive immune response by antigen presentation via apoptotic corpses 

leading to better control of M. tuberculosis (48).  

There are a few proposed mechanisms for how M. tuberculosis limits host cell 

apoptosis. One mechanism involves blocking apoptosis caused by the extrinsic pathway. 

The extrinsic pathway refers to apoptosis caused by a signal external to the dying cell. 

TNF-α is a potent signal for initiating the extrinsic pathway. One study shows that M. 

tuberculosis infected macrophages increase secretion of TNF-α receptor2 (TNFR2), as a 

result of increased IL-10 production, which titrates up active TNF-α and prevents 

apoptosis induction through the extrinsic pathway (7). A second way M. tuberculosis 

inhibits apoptosis is through repression of reactive oxygen species (ROS). ROS are 

potent regulators of apoptosis through both the extrinsic and intrinsic pathways (92). One 

study shows that the M. tuberculosis NADPH dehydrogenase NuoG prevents TNF-α 

mediated (extrinsic) apoptosis by reducing the ROS response to infection (66).  

 

M. tuberculosis inhibition of host cell inflammatory response 
 
 Another hallmark of M. tuberculosis infection is the dampening of the innate 

immune response. Macrophages have many receptors such as Toll-like receptors that 

detect pathogens and signal the cell to respond accordingly. In general, responding to a 
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bacterial pathogen means a robust cytokine response that signals there is danger, causes 

macrophage activation and coordination of the adaptive immune response.  

 Macrophages infected with M. tuberculosis do mount an innate immune response 

(9). However, that immune response is dampened by live M. tuberculosis, and some 

purified components of the bacteria on their own have the ability to dampen the response 

(38, 68, 71, 72, 75). This effect is important because some of the cytokines influenced by 

M. tuberculosis, specifically TNF-α, IL-6 and RNI, have the ability to control M. 

tuberculosis intracellular replication and activate macrophages. Thus, this dampening of 

cytokine responses could be important to limiting macrophage activation and control of 

M. tuberculosis.  Additionally, because the adaptive immune response is coordinated by 

signals from the innate response, dampening of the innate response can limit the scale 

and effectiveness of the adaptive response so as to make long-term persistence of M. 

tuberculosis possible (9). 

 

1.11- Protein export systems and their role in virulence 

 To facilitate their interactions with the host, bacterial effectors are most 

commonly proteins or lipids that are exported to the bacterial cell surface or released into 

the host environment. In order for proteins to move from their site of synthesis in the 

cytoplasm to the cell wall and beyond, protein export systems are required.  

 

Conserved protein export  
 
One protein export system that is found in all bacteria, is the general Sec protein export 

pathway. This system is used for the bulk of protein export in bacteria and is essential to 
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bacterial life. Preproteins, which contain a N-terminal Sec signal peptide, are exported 

across the cytoplasmic membrane in an unfolded state by the Sec system. Once exported, 

the signal peptide is cleaved and the protein folds into its mature form.  

A central component of the Sec system is the SecYEG integral membrane 

translocon, which serves as the pore through which exported proteins travel across the 

cytoplasmic membrane. In addition to the YEG pore, the SecA ATPase is essential for 

targeting cytoplasmic preproteins to the translocon, and then supplying the energy to 

push the protein through the pore (reviewed in (69, 76)). 

 

Specialized protein export  
 
 The general Sec pathway is important for exporting a wide range of proteins, 

including virulence factors.   However, bacterial pathogens often additionally employ 

specialized secretion systems for the purpose of delivering virulence factors into a host 

cell. Some specialized secretion systems offer mechanisms to deliver proteins directly to 

the host cell cytoplasm making them ideal for effector delivery. Good examples of these 

types of specialized secretion systems are the Type III secretion systems (T3SS) found in 

many pathogens including Salmonella, Pseudomonas, Shigella, and Yersinia (42); and 

the Type IV secretion system used by Legionella (19). Notably, some T3SS and T4SS 

systems are used to affect phagocytosis and phagosome trafficking (42, 50). 

 

M. tuberculosis specialized protein export 
 
 The M. tuberculosis genome is known to encode two types of specialized 

secretion systems: the ESX systems and the SecA2 system (21). In M. tuberculosis, there 
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are five homologous ESX secretion systems (ESX1-5). ESX-1 is important for virulence. 

The ESX-1 system is deleted from the genome of M. bovis BCG, which accounts for 

some of the attenuation of virulence of the BCG vaccine strain (78). In M. tuberculosis, 

ESX-1 protein export is required for virulence in macrophages and mice (37, 46, 94).  

Further, the ESX-1 system is shown to be important for blocking phagosome maturation 

(15, 62), and dampening of the inflammatory response to M. tuberculosis (63, 94). 

However, at this point, neither the mechanism through which ESX-1 performs these 

virulence functions, nor the responsible secreted proteins are known. There are four other 

ESX systems in M. tuberculosis. ESX2-5 are homologous to the ESX-1 system, but are 

predicted to be expendable in virulence (80, 86). 

 The other known specialized secretion system in M. tuberculosis is the SecA2 

accessory Sec pathway (11). Mycobacteria and some Gram-positive bacteria are unique 

in that they have two copies of secA (81). The two gene products are termed SecA1 and 

SecA2.  Each SecA has unique functions. In mycobacteria SecA1 performs the bulk of 

protein export for the cell as part of the general Sec pathway described above; thus, 

SecA1 is essential. In contrast, SecA2 is required for the export of a small subset of 

proteins, and is dispensable for in vitro growth (11).  

 Central to this thesis is the fact that the SecA2 protein export pathway is required 

for full virulence of M. tuberculosis (12, 60). A M. tuberculosis deletion mutant of the 

secA2 gene termed ΔsecA2 is defective for growth in macrophages and in mice (12, 60). 

The thrust of this thesis is to understand the cause of the virulence defect in the ΔsecA2 

mutant and elucidate the role of the SecA2 protein export pathway in M. tuberculosis 
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virulence. To this end, we followed up on phenotypes of the ΔsecA2 mutant in 

macrophages that could possibly account for the role of the SecA2 system in virulence.  

 

The ΔsecA2 mutant induces an increased inflammatory response in infected macrophages 

compared to wild type M. tuberculosis.  In response to infection with the ΔsecA2 mutant, 

macrophages secrete more TNF-α, IL-6, and reactive nitrogen intermediates (RNI) (60). 

These three host molecules are stimulated by M. tuberculosis through the TLR-2/MyD88 

system (13, 51, 79, 90, 91, 97).  Furthermore, TNF-α, IL-6, and RNI are all established as 

being essential for controlling M. tuberculosis replication in the host.  Thus, in Chapter 

Two we explored the possibility that the role of the SecA2 system in virulence is to limit 

protective cytokine responses.  Our results indicated that in the context of macrophages 

and mice, neither MyD88 responses nor TNF-α can account for the ΔsecA2 mutant 

intracellular growth defect. 

 

Second, the ΔsecA2 mutant of M. tuberculosis induces more apoptosis than wild type M. 

tuberculosis in infected macrophages (48).  As mentioned above, M. tuberculosis 

inhibition of apoptosis could promote intracellular replication of the bacillus. Therefore, 

in Chapter Three we examined the role of the increased apoptosis observed with the 

ΔsecA2 mutant to determine if it accounts for the ΔsecA2 mutant intracellular growth 

phenotype. Our results indicate that an effect on apoptosis is also insufficient to explain 

the intracellular replication phenotype of the ΔsecA2 mutant.  Also in Chapter Three we 

tested a role for SecA2 in phagosome maturation arrest and demonstrate for the first time 

that the SecA2 system is required for M. tuberculosis blocking phagosome maturation. 
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The ΔsecA2 mutant resides in phagosomes that are more acidic than phagosomes 

containing wild-type M. tuberculosis. Additionally, the ΔsecA2 mutant-containing 

phagosome show signs of fusion with lysosomes, which wild type M. tuberculosis 

avoids. Finally, by chemically blocking the acidification of the ΔsecA2 mutant-containing 

phagosome we were able to effectively rescue its intracellular growth phenotype. This 

data indicates that the SecA2 export pathway promotes M. tuberculosis replication in 

macrophages by blocking phagosome maturation.   

 

The data presented in Chapter Three suggests that SecA2 is involved in secreting one or 

more effectors of phagosome maturation.  Therefore, in Chapter Four we tested a set of 

candidate effectors of phagosome maturation arrest for evidence of secretion by the 

SecA2 system. We found that SecA2 has an effect on the levels of SapM, a putative 

effector of PI(3)P on the surface of phagosomes.  This intriguing result opens up new 

questions for future research. Can the effect of the SecA2 system on SapM explain the 

role of the SecA2 system in macrophages?  How does SecA2 influence SapM levels?  

This thesis provides a better understanding of how SecA2 promotes M. 

tuberculosis growth in macrophages. Additionally, it demonstrates the importance of 

phagosome maturation arrest for M. tuberculosis virulence.  It is likely that M. 

tuberculosis secretes multiple effectors of phagosome maturation. The phagosome 

maturation phenotype of the ΔsecA2 mutant we show in this thesis indicates there is 

either a single critical effector or multiple effectors that depend on the SecA2 protein 

export pathway. Future studies will continue to work towards identifying the SecA2-

dependent effectors of phagosome maturation arrest, achieving two goals: understanding 
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the role of the SecA2 system in virulence and identifying substrates of the SecA2 protein 

export pathway.  
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CHAPTER II 
 
 
 
 

EXAMINING THE ROLE OF THE INCREASED INFLAMMATORY RESPONSE TO 
THE ∆SECA2 MUTANT OF MYCOBACTERIUM TUBERCULOSIS 1 

  
 
 

2.1- Introduction 

Resident alveolar macrophages are often the first immune cells encountered by 

bacteria that get inhaled into the lung. These macrophages are well equipped to consume 

and digest most bacteria that land in the alveolar spaces of the lung.   However, during 

pulmonary infection, Mycobacterium tuberculosis replicates within these macrophages in 

the lung. In the case of M. tuberculosis infection, it is thought that the bacteria can 

survive and replicate inside macrophages because primary macrophage innate immune 

responses are blocked or dampened by the pathogen (10).  

Macrophages have many receptors such as Toll-like receptors (TLRs) that detect 

pathogens and signal the cell to respond accordingly. In general, responding to a bacterial 

pathogen means a robust cytokine response that signals there is danger, causes 

macrophage activation and coordination of the adaptive immune response. While 

macrophages infected with M. tuberculosis do mount an innate immune response (2), the 

degree of the response is dampened by live M. tuberculosis and even some purified 

components of the bacteria (8, 17-20). The effect of M. tuberculosis on the immune 

                                                
1 Authored by: Jonathan Tabb Sullivan, Ellen F. Young, and Miriam Braunstein 
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response is likely to be important because some of the regulated immunomodulatory 

molecules, specifically TNF-α, IL-6 and reactive nitrogen intermediates (RNI) can 

control M. tuberculosis intracellular replication and induce killing of bacteria in 

macrophages (4, 6). Additionally, dampening of the innate response can affect the 

adaptive response so as to make long-term persistence possible (2). 

TNF-α, IL-6 and RNI are all shown to contribute to the production of a successful 

host response to M. tuberculosis infection in a low dose aerosol mouse model of infection 

(7, 15, 16). In mice defective for TNF-α, IL-6 or RNI M. tuberculosis reaches a higher 

bacterial burden in the lung and the mice die from infection in 40 days as compared to 

~200 days in wild-type C57BL/6 mice (7, 15, 16). The host adapter molecule MyD88 is 

required for TLR signaling responses to M. tuberculosis that include TNF-α, IL-6, and 

RNI responses (reviewed in (11, 12, 21)). Like the mice deficient for TNF-α, IL-6 or 

RNI, in mice lacking MyD88 M. tuberculosis replication during the primary phase of 

infection is unchecked (7, 15, 16, 22) and mice succumb to the infection within 40 days 

of exposure to a low dose (100-200 cfu) of bacteria in the lung.  

 The SecA2 accessory protein export pathway is important for virulence in M. 

tuberculosis (3, 13). A ∆secA2 mutant of M. tuberculosis, which carries an in-frame 

unmarked deletion of the secA2 gene, is defective for growth in cultured primary bone 

marrow derived macrophages and during the acute phase of mouse infection (3, 13). 

During the acute phase of infection, M. tuberculosis replicates in macrophages, which 

links the macrophage growth defect and the in vivo growth defect. In order to understand 

the role of the SecA2 export pathway in M. tuberculosis in macrophages, we previously 

analyzed macrophage responses to infection with the ∆secA2 mutant. Bone marrow-
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derived macrophages infected with the ∆secA2 mutant, compared to the wild type H37Rv 

strain of M. tuberculosis, produce higher levels of TNF-α, IL-6 and RNI indicating a role 

for the SecA2 pathway in dampening the immune response (13). Because all these 

immunomodulatory molecules upregulated in ∆secA2 mutant infected macrophages are 

controlled by MyD88 we proposed that the increased inflammatory response elicited by 

the mutant would depend on MyD88. We also hypothesized that intracellular replication 

of the ∆secA2 mutant was inhibited as a result of increased macrophage production of 

inflammatory cytokines leading to more highly activated macrophages.  In this chapter 

we explored further the role of the increased inflammatory response to the ∆secA2 mutant 

of M. tuberculosis. 

 

2.2- Results 

MyD88 is required for the inflammatory response of macrophages to infection with 
the ∆secA2 mutant.  
 
 M. tuberculosis elicits an innate immune response through TLRs 2, 4, and 9. 

These TLRs signal through the adapter molecule MyD88, although TLR-4 also has a 

MyD88-independent pathway. The ∆secA2 mutant of M. tuberculosis elicits a more 

robust macrophage response than H37Rv, as shown by increased TNF-α, IL-6 and RNI 

production. Because MyD88 is required to induce all three of these immunomodulatory 

molecules in responses to M. tuberculosis, we tested whether the more robust response to 

the ∆secA2 mutant was MyD88 dependent. Because SecA2 has previously been 

demonstrated to export two lipoproteins of M. smegmatis (9), we also tested the role of 

TLR-2 in the inflammatory response.  TLR- recognizes exported lipoprotein agonists. 
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To determine if the increased macrophage response to the ∆secA2 mutant is 

MyD88-dependent, we compared TNF-α and IL-6 levels in supernatants from bone 

marrow macrophages prepared from C57BL/6 or MyD88 deficient (MyD88-/-) mice that 

were infected with H37Rv or the ∆secA2 mutant. In response to infection with H37Rv or 

the ∆secA2 mutant, MyD88-/- macrophages did not produce detectable levels of TNF-α or 

IL-6 (Figure 2-1A). This result indicates that MyD88 is absolutely required for the TNF-

α and IL-6 response to both H37Rv and the ∆secA2 mutant.  Further, this result indicates 

that the more robust response elicited by the ∆secA2 mutant depends on the MyD88 

pathway.  

To determine if TLR-2 is also required for this cytokine response, macrophages 

from TLR-2-/- mice were infected with H37Rv or the ∆secA2 mutant and the level of 

secreted TNF-α was assayed.  Although considerably reduced from what is seen with 

C57BL/6 macrophages, TNF-α secretion was detected from infected TLR-2-/- 

macrophages. Interestingly, 2-fold more TNF-α was produced by TLR-2-/- macrophages 

infected with the ∆secA2 mutant in comparison to H37Rv, which is similar to the 2-fold 

difference in TNF-α levels induced by the same strains with C57BL/6 macrophages 

(Figure 2-1B).  From these experiments, we conclude that TLR-2 signaling occurs in 

response to the ∆secA2 mutant; however, the increased inflammatory response to the 

∆secA2 mutant is not TLR-2 dependent. While these data rule out increased TLR-2 

signaling as the source of the increased inflammatory response to the ∆secA2 mutant, 

they does not rule out the possibility of there being increased signaling through other 

TLRs.  
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Increased TNF-α  does not explain the ∆secA2 mutant growth defect. 
 
Based on our past data showing increased TNF-α production by macrophages infected 

with the ∆secA2 mutant, we hypothesized that the higher levels of TNF-α could be 

responsible for the intracellular growth defect of the ∆secA2 mutant. TNF-α is a pro-

inflammatory cytokine with effects that include activation of antimicrobial activity in 

macrophages and host cell apoptosis.  TNF-α is shown to have a crucial role in 

controlling replication of M. tuberculosis in mice (7). Additionally, TNF-α can work 

synergistically with another mediator (e.g. interferon gamma) to arrest M. tuberculosis 

intracellular replication in cultured macrophages (4, 6). Thus, the higher levels of TNF-α 

elicited by the ∆secA2 mutant could act to control M. tuberculosis replication.  

To determine if the higher TNF-α levels are responsible for the intracellular 

growth defect of the ∆secA2 mutant, we compared bacterial replication in macrophages 

from TNF-α-/- and C57BL/6 mice infected with H37Rv or ∆secA2 mutant M. 

tuberculosis.  If the increased level of TNF-α observed in ∆secA2 mutant infected 

macrophages is the cause of the intracellular growth phenotype, removing TNF-α from 

macrophages should abrogate the ∆secA2 mutant growth phenotype.  These experiments 

demonstrated the ∆secA2 mutant growth defect is not recovered in TNF-α-/- macrophages 

when compared to C57BL/6 macrophages (Figure 2-2A).  Thus, elevated levels of TNF-

α do not explain the ∆secA2 mutant intracellular growth defect.  
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A MyD88 dependent response to the ∆secA2 mutant does not explain the growth 
defect.  
 

As another way to determine if the more robust innate response to the ∆secA2 

mutant is responsible for the mutant’s attenuation, we infected macrophages from 

MyD88-/- mice.  As mentioned above, our prior studies identified three 

immunomodulatory molecules that are increased in macrophages infected with the 

∆secA2 mutant and all are known to be under the control of MyD88.   Further, we 

showed MyD88-/- macrophages fail to produce detectable levels of TNF-α and IL-6 in 

response to M. tuberculosis (Figure 2-1).  However, the central role of MyD88 in TLR 

and IL-1β signaling makes MyD88-/- mice more broadly defective in innate immune 

response signaling.  Therefore, if the ∆secA2 mutant elicits more MyD88-dependent 

signaling in macrophages then there may be MyD88-dependent factors, other than TNF-

α, that are responsible for the intracellular growth phenotype of the ∆secA2 mutant.  To 

test this possibility we infected macrophages from MyD88-/- mice.  If the ∆secA2 mutant 

intracellular growth defect is due to a more robust MyD88-dependent response to M. 

tuberculosis, then the ∆secA2 mutant phenotype should be abrogated and the mutant 

should behave like H37Rv in MyD88-/- macrophages.   

 Like in the TNF-α-/- macrophages, the ∆secA2 mutant remained defective for 

growth in MyD88-/- macrophages when compared to H37Rv (Figure 2-2B). These data 

indicate that, at least on its own, a MyD88-dependent inflammatory response to the 

∆secA2 mutant is not responsible for the intracellular growth defect.  
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The ∆secA2 mutant is attenuated in mice even in the absence of TNF-α  or MyD88. 
 
The above experiments were performed with cultured macrophages in a single cell 

system.  We tested the importance of TNF-α and MyD88-dependent immune responses 

to phenotypes of the ∆secA2 mutant in a whole animal in vivo model of infection. In this 

model, mice are infected with approximately 200 cfu/lung using a whole body aerosol 

delivery system (Madison Aerosol Chamber). Over time, we monitored bacterial burden 

in the lungs of infected mice to determine rate of bacterial growth in the lung. In this 

model, H37Rv grows from ~200cfu/lung to ~1 x 107 cfu/lung during the first three weeks 

of infection. The initial growth phase is followed by a persistence phase in which an 

antigen specific TH1 response causes the lung burden to plateau and maintain 

homeostasis for the remainder of the infection. The ∆secA2 mutant has a growth defect 

during the first three weeks and reaches a lower final burden of ~1 x 106 cfu/lung (3). At 

three weeks, post-infection the ∆secA2 mutant still enters a persistence phase and the 

lung burden maintains homeostasis through the rest of the infection.  

To determine if TNF-α and MyD88 are involved in the ∆secA2 mutant’s 

attenuation in vivo, we infected C57BL/6, TNF-α-/-, or MyD88-/- mice with H37Rv or the 

∆secA2 mutant. If the ∆secA2 mutant is defective for growth in mice because it fails to 

repress TNF-α or MyD88-dependent immune responses, then infection of mice lacking 

these regulatory molecules will abrogate the attenuated phenotype.  Both TNF-α-/- and 

MyD88-/- mice are highly susceptible to M. tuberculosis infection (7, 22). When infected 
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Figure 2-2. The ∆secA2 mutant remains attenuated in macrophages 
lacking TNF-α  or MyD88. A. C57BL/6 or TNF-α-/- macrophages infected 
with wild type or the ∆secA2 mutant and monitored for intracellular 
replication over five days. Shown is a representative experiment of three. 
Points are means of triplicate wells +/- SD. *p ≤ 0.05 as determined by 
Student’s t test. C. C57BL/6 or MyD88-/- macrophages infected with wild 
type or the ∆secA2 mutant and monitored for intracellular replication over 
five days. Shown is a representative experiment of three. Points are means 
of triplicate wells +/- SD. *p ≤ 0.05 as determined by Student’s t test. 
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with M. tuberculosis, compared to C57BL/6, both TNF-α-/- and the MyD88-/- strains of 

mice have 10-100 fold higher lung burdens at the three-week time point. This is due to 

the failure to establish TH1 control of the infection as normally occurs by the three-week 

timepoint, and both mouse strains succumb to infection within 40 days of exposure as 

opposed to the 200 day timepoint.  

 We infected TNF-α-/- or MyD88-/- mice with wild type or the ∆secA2 mutant of M. 

tuberculosis. We then assayed bacterial burden in the lungs of mice over a three-week 

period. The experiments demonstrated that even in TNF-α-/- or MyD88-/- animals, the 

∆secA2 mutant exhibited a replication defect compared to H37Rv (Figure 2-3). These 

data do not support a role for TNF-α or MyD88 in the ∆secA2 mutant in vivo growth 

defect.  These results also reinforce the results from testing the strains in macrophages.   

 

2.3- Discussion 

 The ∆secA2 mutant has an intracellular growth defect, and elicits an increased 

inflammatory response from macrophages compared to H37Rv. In this study we tested 

whether the increased inflammatory response to the ∆secA2 mutant is the cause of the 

mutant’s intracellular growth defect. Using macrophages derived from TNF-α-/- and 

MyD88-/- mice and the mice themselves, we determined if elevated MyD88-dependent 

responses, or TNF-α in particular, account for the ∆secA2 mutant intracellular and in vivo 

growth defects.   
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Figure 2-3. The ∆secA2 mutant remains attenuated in mice lacking 
TNF-α or MyD88. A. Lung burden of C57BL/6 or TNF-α-/- mice infected 
via aerosol with H37Rv or ∆secA2 mutant M. tuberculosis. Points 
represent mean lung burden from four animals +/- SD. *p ≤ 0.05 
compared to H37Rv by Student’s t test. B. Lung burden of C57BL/6 or 
MyD88-/- mice infected via aerosol with H37Rv or ∆secA2 mutant M. 
tuberculosis. Points represent mean lung burden from four animals +/- 
SD. *p ≤ 0. 05 compared to H37Rv by Student’s t test.  
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First, we showed that the ∆secA2 mutant did not elicit a detectable TNF-α or IL-6 

response in MyD88-/- macrophages.  This result reinforces past reports of MyD88 being 

required to elicit these responses to M. tuberculosis.  In addition, our results showed that 

MyD88 is essential for the ∆secA2 mutant response.  We further showed that in TLR-2-/- 

macrophages the TNF-α response was reduced to both H37Rv and the ∆secA2 mutant 

when compared to C57BL/6 macrophages, but that there was still a significant difference 

in TNF-α elicited by the ∆secA2 mutant versus H37Rv.   Thus, we conclude that the 

cause of the increased inflammatory response to the ∆secA2 mutant is TLR-2 

independent, although TLR-2 does amplify the amount of TNF-α produced in response to 

both H37Rv and the ∆secA2 mutant. Recently, a hip1 mutant of M. tuberculosis was 

reported to induce more robust MyD88-dependent responses by macrophages.  However, 

in the case of hip1, it appears that the more robust immune response observed with the 

mutant is TLR-2 dependent, suggesting the mutant elicits increased TLR2 signaling to 

achieve this effect.  

In assessing the significance of the increased immune responses of ∆secA2 mutant 

infected macrophages, we found that the ∆secA2 mutant has an intracellular growth 

defect even in macrophages derived from MyD88-/- and TNF-α-/- mice. These 

macrophage experiments revealed that TNF-α and MyD88 are not required to control the 

intracellular growth of the ∆secA2 mutant. However, it is important to point out that we 

do not know the scope of the increased inflammatory response and there may still be 

important MyD88-independent factors. With this caveat in mind we can only rule out 

MyD88-dependent inflammation in the ∆secA2 mutant growth defect. 
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In addition to the macrophage growth assays we performed mouse infections in 

TNF-α-/- and MyD88-/- mice. The growth of the ∆secA2 mutant in these mice 

recapitulated the macrophage results that showed that the ∆secA2 mutant phenotype was 

not rescued in either the TNF-α-/- of MyD88-/- mice. Thus, we conclude that there must be 

other factors besides dampening MyD88 responses that the SecA2 system is doing to 

promote growth in macrophages and mice. 

 Earlier, our laboratory had obtained preliminary data from testing the ∆secA2 

mutant in MyD88-/- and TNF-α-/- macrophages that led to the opposite conclusions 

(unpublished results).  In these earlier studies, the mutant phenotype of the ∆secA2 

mutant was not maintained but rescued in MyD88-/- and TNF-α-/- macrophages (14).  We 

believe the most likely explanation for the discrepancy in results is that different batches 

of L-929 cell conditioned media (LCM) were used to differentiate bone marrow cells into 

macrophages in the different experiments.  LCM contains granulocyte monocyte-colony 

stimulating factor (GM-CSF) (5), an important component in stimulating hematopoietic 

stem cells to differentiate into macrophages.  However, LCM is media recovered from 

cells grown in culture and it contains many secreted factors. The composition of LCM 

can vary batch to batch, and different batches could affect bone marrow differentiation 

differently. We do, in fact, see differences in the number of adherent macrophages 

recovered from bone marrow flushed from a femur with different batches of LCM.  The 

batch-to-batch variability could also be influencing the activation status of macrophages 

such that they are more or less sensitive to inflammatory cytokines, which could have 

influenced our experiments. Most importantly, for the macrophage data presented in this 

chapter the results are entirely consistent with the results of testing the mutant in the more 
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relevant whole animal model of infection.  In our studies presented here the absence of 

TNF-α or MyD88 did not influence growth of the ∆secA2 mutant in either cultured bone 

marrow macrophages or murine infection.  These results indicate there must be another 

role for the SecA2 system, besides regulating MyD88 responses, in promoting 

intracellular growth.  

 

 

2.4- Materials and Methods 

Bacterial strains and growth conditions 
 
 In this study we used Mycobacterium tuberculosis wild type strain H37Rv, and 

the ∆secA2 mutant (mc23112) generated in the H37Rv background (3). M. tuberculosis 

strains were cultured in liquid Middlebrook 7H9 media or solid 7H10 supplemented with 

0.05% Tween 80, 0.5% glycerol, 1× albumin dextrose saline (ADS). For plating organ 

homogenates from murine infections, cyclohexamide (10µg/ml) was incorporated into 

7H10 agar to inhibit fungal growth.  

 

Animals 
 
 C57BL/6 mice acquired from Charles River Labs were used in aerosol infections 

and for bone marrow-derived macrophages. MyD88-/- mice on the C57BL/6 background 

(1) were acquired from Dr. Shizuo Akira (WPI Immunology Frontier Research Center, 

Research Institute for Microbial Diseases, Osaka University, Osaka Japan). TNF-α-/- mice 

on the C57BL/6 background were acquired from Dr. Jonathon D. Sedgwick (SP 

Biopharma, Palo Alto, CA). TLR2-/- mice on the C57BL/6 background were acquired 
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from Dr. Carsten Kirsching (Institute of Medical Microbiology, Immunology and 

Hygiene, Technical University Munich, Munich, Germany). All mice were housed in 

sterile caging and provided sterile food and water. All animal protocols were followed 

strictly as approved by the UNC Institutional Animal Care and Use Committee (IACUC). 

 

Aerosol infection and necropsy 
 
 Aerosol infection of mice was performed using a Madison aerosol chamber. Mice 

were exposed to an aerosol generated from M. tuberculosis that was grown to log-phase 

and washed once and resuspended in PBS containing 0.05% Tween 80 at a concentration 

of 1.2 × 107 colony forming units (cfu)/ml. The mice were exposed to aerosols for 15 

minutes with a 20-minute purge to clear the chamber resulting in an approximate dose of 

200 cfu/lung. At various time points mice were euthanized, their lungs homogenized and 

plated for cfu on 7H10 agar to enumerate lung burden.  

 

Making L-929 conditioned media (LCM) 
 

L-929 conditioned media is made by first recovering the L-929 cells from liquid 

nitrogen stocks. A 2 ml aliquot of frozen L-929 cells is thawed as quickly as possible, and 

immediately added to 10 ml of prewarmed complete Dulbecco modified Eagle medium 

(DMEM; Sigma). “Complete” DMEM contains 10% fetal bovine serum (FBS; Gibco), 

2mM L-glutamine, and 1× nonessential amino acids. The cells are then centrifuged at 200 

× g for 5 minutes to pellet cells. The supernatant is decanted and cell pellet resuspended 

in 10 ml complete DMEM to wash. The L-929 cells are then centrifuged at 200 × g for 10 

minutes to pellet cells and wash a second time to remove residual DMSO from the 
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freezing media. After 2 washes the cells are resuspended in 4 ml prewarmed complete 

DMEM and plated in one well of a 6-well tissue culture dish and incubated at 37°C and 

5% CO2. After 24 hours nonadherent cells were washed away and fresh complete DMEM 

added to the well. When the cells grew to confluency, they were lifted from the well with 

1× trypsin-EDTA at 37°C for ten minutes, then washed twice in warm DMEM to remove 

trypsin-EDTA. The cells were split into multiple wells of a 6-well tissue culture dish and 

grown again to confluency. At confluency the cells are again lifted with trypsin-EDTA as 

before, and resuspended at 5 × 103 cells/ml of complete DMEM. The resuspended cells 

were plated with 25 ml on 100 mm × 20 mm tissue culture treated dishes, and incubated 

at 37°C and 5% CO2. The cells were grown until just past confluency (~6-7 days), i.e. the 

monolayer has a cobblestone appearance due to cells starting to round up because of 

crowding. The supernatant is collected, filtered through a 0.22 µm filter, and aliquoted 

for freezing at -80°C. 

 We tested all batches of LCM for mycoplasma contamination by PCR using the 

MycoAlert test kit (Lonza). Using fluorescence activated cell sorting (FACS) we looked 

at surface markers (CD11b, CD11c, MHC-I, MHC-II, and F4/80) to determine the purity 

of our macrophage population i.e. to determine what percent of adherent cells were 

macrophages. After selecting for the adherent population of cells we stained the 

macrophage population with fluorescently conjugated FACS antibodies. Fluorescently 

conjugated antibodies were acquired from eBioscience. FACS was performed on a CyAn 

ADP LX 9 color flow cytometer (Dako) at the UNC FACS core facility. The data were 

analyzed using Summit version 4.3 (Dako). We found that higher concentrations of LCM 

produced higher numbers of adherent cells, so we tested each batch of LCM to determine 
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the best concentration that would produce 3.0 x 107 macrophages from two femurs. For 

all LCM batches tested, >95% of the adherent cells cultured tested positive for 

macrophage surface markers, which were CD11bhigh, CD11clow, MHC-I+, MHC-II+, and 

F4/80high. At lower concentrations of LCM the number of adherent cells was lower, but 

the percentage of macrophages in the adherent population did not change. Even with 

these quality controls, we believe there remains batch-to-batch variation in LCM that can 

affect the outcome of experiments with cultured macrophages. 

 

Macrophage infections 
 
 For bone marrow-derived macrophages, mice were euthanized by CO2 

asphyxiation and cervical dislocation. Femurs were extracted and flushed with complete 

DMEM. Bone marrow cells were washed and resuspended and plated in complete 

DMEM containing 20% L-929 cell conditioned media (LCM). After six days at 37°C, 

5% CO2, the cells were lifted off the plates using cold PBS EDTA 5mM and scraping. 

The cells were then washed twice and resuspended at a concentration of 1 × 106 

macrophages/ml in complete DMEM containing 10% LCM. Macrophages were then 

seeded at 2 × 105 macrophages/well in eight-well chambered slide or chambered cover 

slips for microscopy experiments. 

 After resting 24 hours the macrophages were infected with M. tuberculosis culture 

grown to log-phase, and washed once with PBS containing 0.05% Tween 80 and diluted 

in warm complete DMEM. Macrophages were infected at an MOI of 1.0 or 0.2. After a 

four-hour incubation at 37°C for bacterial uptake, infected macrophages were washed 
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three times with pre-warmed complete DMEM. Macrophages were lysed at various time 

points and lysates were plated for cfu.  

 

Enzyme-linked immunosorbent assay (ELISA) 
 

ELISAs for TNF-α and IL-6 were performed using OptEIA II ELISA (Becton 

Dickinson). Murine bone marrow macrophages were infected at an MOI of 1.0 with 

H37Rv or ΔsecA2 and incubated for four hours at 37°C and 5% CO2, after which the 

extracellular bacteria were washed off with pre-warmed DMEM. The macrophages were 

then let incubate for 24 hours at 37°C and 5% CO2. Then, the supernatants were collected 

and double filtered with 0.22 µm filters. For the ELISA, samples were loaded undiluted 

and at a 1:5 dilution. ELISAs were run as per the kit instructions. 
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CHAPTER III 
 
 
 
 

THE MYCOBACTERIUM TUBERCULOSIS SECA2 SYSTEM SUBVERTS 
PHAGOSOME MATURATION TO PROMOTE GROWTH IN 

MACROPHAGES1 

 
 

 
 

 

3.1- Introduction 

Mycobacterium tuberculosis infects about one-third of the world population and, as the 

infectious agent of tuberculosis, causes almost two million deaths per year (69). With the 

emergence of drug-resistant strains of M. tuberculosis current treatments may soon 

become obsolete, fueling the need for new drugs and more effective vaccines to combat 

the disease.  A better understanding of M. tuberculosis pathogenesis will facilitate efforts 

to develop new tuberculosis control measures.  

Inside the host, M. tuberculosis survives in a unique intracellular niche within 

macrophage phagosomes.  Following its phagocytosis by non-activated macrophages, M. 

tuberculosis arrests the normal process of phagosome maturation.  As a result, M. 

tuberculosis resides in a phagosome that fails to acidify or fuse with late endosomes and 

lysosomes that supply hydrolytic enzymes and antimicrobial peptides (2, 52). This M. 

                                                
1 Adapted for this dissertation from: Sullivan, J. T., Young, E. F., McCann, J. R., & 
Braunstein, M. (2012). The Mycobacterium tuberculosis SecA2 System Subverts 
Phagosome Maturation to Promote Growth in Macrophages. Infect Immun. 
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tuberculosis phagosome resembles an early recycling endosome that is accessible to 

transferrin and maintains a pH of ~6.4 (46). M. tuberculosis containing phagosomes are 

further distinguished by diminished accumulation of vacuolar ATPase (V-ATPase), 

phosphatidylinositol-3-phosphate [PI(3)P], and activated Rab7, which normally 

accumulate on maturing phagosomes (54, 57, 62, 63, 65). While the ability of M. 

tuberculosis to block phagosome maturation is widely thought to play an important role 

in promoting M. tuberculosis intracellular growth, there are few experiments that directly 

address a causal relationship between phagosome maturation arrest and intracellular 

growth. Furthermore, the mechanism M. tuberculosis uses to prevent phagosomes from 

maturing into acidic hydrolytic compartments is not well understood, but appears to be a 

multi-factorial process involving both protein and lipid effectors (3, 8, 14, 21, 36, 46, 56, 

59, 63, 67).  

M. tuberculosis effectors that alter phagosome trafficking will likely be molecules 

that are exported by the bacillus (either secreted or surface localized) and positioned to 

interact with host cell processes. With the intracellular pathogens Legionella and 

Salmonella, specialized secretion systems are used to deliver effectors of phagosome 

trafficking (9, 13).  M. tuberculosis has two types of specialized protein export systems: 

the ESX systems and accessory SecA2 system (16).  The ESX-1 secretion system has 

previously been shown to block phagosome maturation in M. tuberculosis infected 

macrophages (8, 36). Here, we investigated the accessory SecA2 protein export system of 

M. tuberculosis and its role in virulence and phagosome maturation arrest. Mycobacteria 

are unusual in having two distinct SecA ATPase proteins (SecA1 and SecA2) (27, 51).  

SecA2 is an accessory SecA that is required for exporting a small subset of proteins out 



 66 

of the cytoplasm.  SecA1, as the housekeeping SecA, is essential and functions in the 

general Sec pathway that is used for the majority of protein export that occurs in 

mycobacteria.   

The M. tuberculosis SecA2 system is important for virulence (6, 33). A ΔsecA2 

mutant of M. tuberculosis is attenuated for growth in macrophages and in a mouse model 

of infection.  A possible explanation for the function of the M. tuberculosis SecA2 system 

in pathogenesis might be to modulate host innate immune responses.  Macrophages 

infected with the ΔsecA2 mutant produce higher levels of the proinflammatory cytokines 

TNF-α and IL-6 and increased levels of reactive nitrogen intermediates (RNI).  These 

immunomodulatory factors have roles in controlling M. tuberculosis during host infection 

(19, 34, 38) and they are induced by M. tuberculosis through MyD88-dependent 

signaling pathways (Reviewed in (29)).  Macrophages infected with the ΔsecA2 mutant 

also exhibit higher levels of apoptosis, which is attributed to defective SodA secretion by 

the ΔsecA2 mutant (25).  

Here we studied the ΔsecA2 mutant to take a closer look at the role of SecA2 during 

M. tuberculosis growth in macrophages. We examined the role of apoptosis and increased 

MyD88-dependent inflammatory responses in controlling growth of the ΔsecA2 mutant in 

macrophages.   While these macrophage responses did not appear to explain the role of 

SecA2 in promoting intracellular growth, we did discover an important role for SecA2 in 

blocking phagosome maturation.  We go on to show that SecA2 dependent phagosome 

maturation arrest is required for the growth of M. tuberculosis in macrophages.  
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3.2- Results 

Increased apoptosis does not account for the intracellular growth defect of the M. 
tuberculosis ΔsecA2 mutant.  
 

The ability of M. tuberculosis to inhibit host cell apoptosis could be important for 

intracellular growth of the bacillus (41, 44).  The ΔsecA2 mutant has a proapoptotic 

phenotype, which has been attributed to defective SodA secretion (25). Given this 

phenotype of the ΔsecA2 mutant, we set out to test if increased apoptosis accounts for the 

growth defect of the mutant in macrophages.  To test this possibility we took advantage 

of a plasmid expressing an extra copy of SodA, termed αSodA.  Unlike the endogenous 

M. tuberculosis SodA that lacks an obvious signal sequence for export, αSodA has a Sec 

signal sequence fused to the N-terminus of the enzyme (25).  When αSodA is expressed 

by the ΔsecA2 mutant (ΔsecA2-αsodA) it restores the ability of the ΔsecA2 mutant to 

release SodA activity into culture media and it reverses the proapoptotic phenotype of the 

mutant (25).  It is worthwhile to mention that the details of αSodA release, particularly 

whether it is secreted by the Sec pathway, remain to be worked out.  Nonetheless, 

because αSodA suppresses the propapoptotic phenotype of the ΔsecA2 mutant, we could 

test the ΔsecA2-αsodA strain for growth in murine bone marrow-derived macrophages as 

a way to determine if altered apoptosis is responsible for the intracellular growth 

phenotype of the ΔsecA2 mutant.  In these experiments, both the ΔsecA2 mutant and the 

ΔsecA2-αsodA strain failed to grow in macrophages while the parental H37Rv strain and 

the complemented ΔsecA2 mutant strain grew approximately 10 fold over 5 days (Figure 

3-1A).  These results demonstrated that the ΔsecA2 mutant remains defective for 

intracellular growth even if the enhanced apoptosis phenotype is suppressed.   
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 We similarly tested the role of apoptosis in the attenuated phenotype of the 

ΔsecA2 mutant in mice.  C57BL/6 mice were infected via the aerosol route with the 

ΔsecA2-αsodA strain and in vivo growth and persistence of this strain was compared to 

that seen with murine infection with the ΔsecA2 mutant and H37Rv.  Here too, the 

attenuated phenotype of the secA2 mutant was not suppressed by αSodA expression. In 

fact, in mice αSodA expression by the ΔsecA2 mutant actually exacerbated the in vivo 

growth defect (Figure 3-1B).  Taken together, these results indicated that increased 

apoptosis and the defect in SodA secretion are, at least on their own, unable to explain the 

attenuated phenotypes of the ΔsecA2 mutant in macrophages or mice.  Thus, there must 

exist another role for the SecA2 system in M. tuberculosis virulence.   

  

The ΔsecA2 mutant resides in acidified phagosomes. 
 

The ability of M. tuberculosis to interfere with phagosome maturation is another 

property of the bacillus proposed to be important to intracellular growth (47, 52, 66).  

Because secreted and surface localized proteins of M. tuberculosis are good candidates 

for being involved in phagosome maturation arrest, we tested the potential for the SecA2 

export system to influence phagosome maturation.  Murine bone marrow-derived 

macrophages were infected with H37Rv, the ΔsecA2 mutant or complemented strain and 

we scored the bacilli for co-localization with markers of phagosome maturation using 

widefield fluorescence microscopy. 
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Figure 3-1. Reversal of the ΔsecA2 mutant apoptosis phenotype does 
not rescue growth in macrophages or mice. A. Non-activated bone 
marrow-derived macrophages (BMDM) were infected with H37Rv, ΔsecA2, 
ΔsecA2 + psecA2 (complemented strain), or ΔsecA2 + α-sodA strains of M. 
tuberculosis and intracellular replication monitored as described. The data 
shown is plotted in linear scale and is representative of two experiments, 
points represent means of triplicate wells and error bars represent SD, * p< 
0.05 by student’s t test. B. Lung and spleen burden in mice infected through 
aerosol route at an initial dose of ~200 cfu/lung with H37Rv, ΔsecA2, or the 
ΔsecA2 + α-sodA strain. We determined cfu counts by plating lung or spleen 
homogenates at various time points for viable bacteria. Data shown is a single 
experiment, bars represent mean organ burden from four mice and error bars 
represent SD, * p< 0.05 by Student’s t test. 
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 To detect bacilli in macrophages we took advantage of the recently described 

autofluorescence of mycobacteria (45).  Using scanning spectrophotometry, we first 

experimentally determined the optimal peak excitation and emission wavelengths (415nm 

and 470nm, respectively) for autofluorescence of paraformaldehyde fixed M. 

tuberculosis.  These wavelengths can be detected by fluorescence microscopy using a 

standard CFP filter set.  To validate the use of autofluorescence to localize M. 

tuberculosis, we evaluated a series of GFP expressing wild-type and mutant M. 

tuberculosis strains and compared GFP and autofluorescence signals. GFP expression is 

commonly used to visualize M. tuberculosis in macrophages (65, 70).  All GFP positive 

cells were visible by autofluorescence (Figure 3-2); this was also true with bacilli in 

macrophages (data not shown).   

It is well-established that in non-activated macrophages, wild-type M. tuberculosis is 

primarily found in non-acidified phagosomes (46, 52, 54, 66).  To assess acidification of 

phagosomes containing the ΔsecA2 mutant we used LysoTracker Red (Invitrogen), which 

is an acidotropic dye frequently employed in studies of phagosome maturation (66, 70).  

By measuring co-localization of LysoTracker and M. tuberculosis autofluorescence 

signals, the parental H37Rv strain was found to largely avoid phagosome acidification, as 

reported previously (46, 54).  In comparison, we detected the ΔsecA2 mutant in a 

significantly higher percentage of acidified phagosomes and this phenotype was reversed 

in the complemented strain (Figure 3-3A).  
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Figure 3-2. M. tuberculosis autofluorescence can be used to identify 
bacilli by microscopy. M. tuberculosis strains used in this study carrying a 
GFP expression plasmid were grown to mid-log phase and fixed in 4% 
paraformaldehyde in PBS. Fixed bacteria were loaded into the well of a 
chambered cover slip and visualized in the CFP and GFP channels on a 
widefield fluorescence microscope. Autofluorescence in the CFP channel is 
compared to GFP fluorescence in strains expressing GFP from a plasmid. The 
overlap is demonstrated in the merged images where yellow color indicates a 
positive correlation. 
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Experiments with GFP expressing versions of these strains, where GFP was used to 

localize the bacilli, gave the same results as obtained by scoring autofluorescence (data 

not shown).  The ΔsecA2 mutant’s association with acidified phagosomes was evident as 

early as one-hour post infection (Figure 3-3A). 

 We compared the phagosome acidification phenotype of the ΔsecA2 mutant to 

that of a mutant defective for ESX-1 secretion (ΔeccD1).   As reported previously for esx-

1 mutants, the ΔeccD1 mutant exhibited a higher association with LysoTracker positive 

phagosomes in comparison to H37Rv (Figure 3-3B) (8).  The esx-1 mutant phenotype 

was repeatedly less dramatic than the ΔsecA2 mutant phenotype. This finding that both a 

ΔsecA2 mutant and esx-1 mutants are associated with increased phagosome acidification 

joins a list of other similarities reported for these mutants (20, 24, 28, 33, 37, 55). This 

raised the possibility that the SecA2 and ESX-1 systems might work together to export 

critical effector proteins of phagosome maturation.  To test this possibility, we assayed 

phagosome acidification of a M. bovis BCG ΔsecA2 mutant.  BCG lacks ESX-1 because 

the chromosomal locus encoding the system is deleted (49).  As was the case in M. 

tuberculosis, a BCG ΔsecA2 mutant exhibited a higher association with LysoTracker 

positive phagosomes than the parental BCG Pasteur strain (Figure 3-3C). This result 

indicated that the role(s) of the SecA2 system in arresting phagosome maturation is 

independent of the ESX-1 system. 
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Figure 3-3. Compared to H37Rv, the ΔsecA2 mutant is enriched in 
LysoTracker positive phagosomes. Non-activated BMDMs were infected 
with A. H37Rv, the ΔsecA2 mutant or complemented strain, B. H37Rv, 
ΔsecA2, or ΔeccD1, or C. BCG Pasteur or a ΔsecA2 mutant on the BCG 
Pasteur background. At indicated times the slides were stained with 
LysoTracker and scored for LysoTracker positive phagosomes as 
described above. Also shown, sample microscopy images from the 
experiment in panel A (LT = LysoTracker). Shown are representative 
experiments of at least three independent experiments. Bars represent 
mean percentage of bacteria-containing phagosomes that stain positive for 
LysoTracker; error bars represent SD of three replicate wells, each well 
having >100 phagosomes scored. *p≤0.05 by Student’s t test when 
compared to WT. 
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The localization of the ΔsecA2 mutant to acidified phagosomes is not a general 
property of M. tuberculosis mutants with intracellular growth defects.  
 

Increased association of the ΔsecA2 mutant with acidified phagosomes could 

result from an inability to carry out a role in blocking phagosome acidification, such as 

failure to secrete an inhibitor of phagosome maturation.  Alternatively, the ΔsecA2 

mutant could be delivered to acidified phagosomes as a secondary consequence of a 

failure to grow in macrophages.  In considering the second possibility, we asked whether 

unrelated mutants that fail to replicate in macrophages are also found in acidified 

phagosomes.  For this reason, we investigated the acidification status of phagosomes 

containing the M. tuberculosis leucine auxotroph (ΔleuD).  The ΔleuD mutant is a 

metabolic mutant that fails to synthesize leucine and fails to grow in macrophages (26).   

Unlike the ΔsecA2 mutant, the ΔleuD mutant resembled H37Rv in its association with 

non-acidified phagosomes, even 72 hours post infection, indicating that this mutant 

maintained the ability to block phagosome acidification (Figure 3-4A). We additionally 

screened for phagosome acidification defects of M. tuberculosis transposon mutants 

recently identified as being defective for intracellular growth (40). Transposon mutants in 

rv0199, mce1A, or mce2F also resembled H37Rv in ability to block phagosome 

acidification (Figure 3-4B). These data indicated that localization to acidified 

phagosomes, as assessed by LysoTracker staining, is not true for all M. tuberculosis 

mutants that are defective for intracellular growth.  Along with the finding that the 

ΔsecA2 mutant is observed in acidified phagosomes quickly (1hr) post-infection (Figure 

3-3, 3-4A), these results argue for a specific role for the SecA2 system in blocking 

phagosome acidification. 
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Figure 3-4. Not all M. tuberculosis mutants with intracellular growth 
defects are enriched in LysoTracker positive phagosomes. Non-
activated BMDMs were infected with A. H37Rv, ΔsecA2 or ΔleuD B. 
H37Rv, ΔsecA2 , mce1A::tn, mce2F::tn or rv0199::tn. At indicated times 
the slides were stained with LysoTracker and scored for LysoTracker 
positive phagosomes as described above. Shown are representative 
experiments of at least three independent experiments. Bars represent 
mean percentage of bacteria-containing phagosomes that stain positive for 
LysoTracker; error bars represent SD of three replicate wells. *p≤0.05 by 
student’s t test when compared to H37Rv. 
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Other markers of maturation are associated with phagosomes containing the 
ΔsecA2 mutant.  
 

Vacuolar ATPase (V-ATPase) is a molecular motor that drives a proton gradient 

across membranes.  V-ATPases are used by eukaryotic cells to acidify vacuoles. It is 

reported that M. tuberculosis phagosomes do not acidify, at least in part, because V-

ATPase is either prevented from associating with or quickly degraded from the 

phagosome (54, 57). We wanted to determine if the higher association of the ΔsecA2 

mutant with acidified phagosomes correlates with higher V-ATPase association.  

Macrophages infected with the ΔsecA2 mutant, H37Rv, or complemented strain were 

immunostained with antibodies to murine V-ATPase and co-localization was scored.   

We found a significantly higher percentage of phagosomes containing the ΔsecA2 mutant 

stained positive for V-ATPase than phagosomes containing H37Rv or the complemented 

strain (Figure 3-5A).  The increased association with V-ATPase positive phagosomes 

seen with the ΔsecA2 mutant was equivalent to that seen with the ΔeccD1 mutant. 

Phagosome acidification is a relatively early step in phagosome maturation (17).  To 

further characterize the ΔsecA2 mutant containing phagosome for evidence of 

phagosome/lysosome fusion, we immunostained infected macrophages for markers of 

late-endosomal/lysosomal fusion (CD63 and Rab7). Wild-type M. tuberculosis is 

reported to prevent phagosomes from maturing to a CD63 and Rab7 positive state (12, 

31, 65). In comparison to phagosomes containing H37Rv or the complemented strain, a 

higher percentage of ΔsecA2 mutant-containing phagosomes stained positive for CD63 

and Rab7.  Once again, the phenotype of the ΔsecA2 mutant was similar to that of the 

ΔeccD1 mutant (Figure 3-5B, C).
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Figure 3-5. Compared to H37Rv, the ΔsecA2 mutant is enriched in 
phagosomes positive for late endocytic/lysosomal markers. Non-
activated BMDMs were infected with H37Rv, ΔsecA2, complemented ΔsecA2, 
or the ΔeccD1 mutant for 24 hours and immunofluorescently stained for 
markers of phagosome maturation as described above. A. V-ATPase, B. 
CD63 and C. Rab7. A representative experiment of three independent 
experiments is shown. Bars represent mean percentage of bacteria-containing 
phagosomes that stain positive for marker; error bars represent SD of three 
replicate wells, each well having >100 phagosomes scored. *p≤0.05 by 
Student’s t test compared to H37Rv. Representative microscopy images for 
each set of markers are shown. 
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Together, these results indicated that phagosomes containing the ΔsecA2 mutant have a 

higher association with V-ATPase, which could account for the observed higher percent 

acidification detected with LysoTracker.  The ΔsecA2 mutant-containing phagosomes 

also have a higher association with markers indicative of late endosomal/lysosomal 

fusion indicating a defect in later stages of phagosome maturation arrest as well (Figure 

3-5B, C).  

 

MyD88 signaling is not responsible for the altered phagosome maturation or 
intracellular growth phenotypes of the ΔsecA2 mutant.  
 

We previously reported that during macrophage infection the ΔsecA2 mutant 

induces higher levels of TNF-α, IL-6, and RNI in comparison to infection with H37Rv 

(33). All three of these immunomodulatory molecules are induced by M. tuberculosis 

through TLR and MyD88 pathways (7, 32, 50).  Because TLR and MyD88 signaling are 

implicated in driving phagosome maturation events (4, 71), we considered the possibility 

that increased signaling through these pathways was responsible for the trafficking 

defects of the ΔsecA2 mutant.  To address the significance of MyD88-dependent 

responses to ΔsecA2 mutant phenotypes in macrophages, we tested the ΔsecA2 mutant 

and H37Rv in parallel infections of primary MyD88 deficient macrophages (MyD88-/-) 

and C57BL/6 macrophages. As reported by others, MyD88-/- macrophages showed a 

significant decrease in level of secreted TNF-α and IL-6 in response to M. tuberculosis 

infection (22, 60). The TNF-α and IL-6 levels from H37Rv or ΔsecA2 mutant infected 

MyD88-/- macrophages were the same and equivalent to the levels produced by 

uninfected macrophages (data not shown).   
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 As in C57BL/6 macrophages, ΔsecA2 mutant-containing phagosomes in MyD88-/- 

macrophages stained positive more than H37Rv-containing phagosomes with 

LysoTracker, V-ATPase, CD63, and Rab7. The difference between the ΔsecA2 mutant 

and H37Rv phagosomes in MyD88-/- macrophages was equivalent to that seen in 

C57BL/6 macrophages (Figure 3-6A).  We also tested the ΔsecA2 mutant for growth in 

MyD88-/- macrophages.  In MyD88-/- macrophages the ΔsecA2 mutant was as defective 

for intracellular growth as is seen in C57BL/6 macrophages (Figure 3-6B).  Aerosol 

infection of MyD88-/- mice with the secA2 mutant also showed that the absence of 

MyD88-/- had no effect on the in vivo growth defect of the ΔsecA2 mutant in mice at early 

time points (data not shown).  Thus, the explanation for the intracellular trafficking and 

growth defects of the ΔsecA2 mutant appears to be unrelated to MyD88-signaling.  

 

Phagosome acidification is necessary for the intracellular growth phenotype of the 
ΔsecA2 mutant.  
 

There are other M. tuberculosis mutants reported to have defects in blocking 

phagosome maturation (8, 31, 36, 46, 56, 67). In the majority of cases, phagosome 

maturation arrest mutants are also defective for intracellular growth (for example, esx-1 

mutants).  However, with the exception of a few studies (23, 30, 68), the causal 

relationship between localization to a more mature phagosome and inhibition of growth 

remains largely untested.  With the goal of determining if the phagosome maturation 

arrest defect of the ΔsecA2 mutant is responsible for the growth defect in macrophages, 

we used macrolide antibiotic V-ATPase inhibitors (bafilomycin A1 and concanamycin A) 

(15) to block acidification of ΔsecA2 mutant containing phagosomes and asked if this 

treatment rescued growth of the mutant.  
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Figure 3-6. MyD88 has no effect on ΔsecA2 mutant phagosome 
trafficking or intracellular growth. A. Non-activated BMDMs derived from 
C57BL/6 or MyD88-/- mice were infected with H37Rv or the ΔsecA2 mutant. 
At 24 hours post infection the slides were stained with LysoTracker or 
antibodies to CD63, Rab7 or V-ATPase and scored for marker positive 
bacteria-containing phagosomes as described above. Bars represent mean 
percentage of bacteria-containing phagosomes that stain positive for 
marker; error bars represent SD of three replicate wells. There are no 
significant differences between C57BL/6 and MyD88-/- macrophages when 
infected with the ΔsecA2 mutant. B. Non-activated BMDMs from C57BL/6 
(open symbols) or MyD88-/- (closed symbols) mice were infected with 
H37Rv or the ΔsecA2 mutant and intracellular replication monitored as 
described. The data shown is plotted in linear scale and is a representative 
experiment of three, points are mean of three replicate wells, error bars 
represent SD. *p≤0.05 by student’s t test compared to H37Rv.  
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To minimize pleiotropic effects of the inhibitors on macrophages, we experimentally 

determined a minimum concentration of each inhibitor (10nM Bafilomycin A1 and 5nM 

Concanamycin A) required to prevent acidification of the ΔsecA2 mutant containing 

phagosomes, as measured by LysoTracker co-localization at 24 hours post infection 

(Figure 3-7A). These concentrations had no detectable effect on macrophage viability 

over the course of a five-day infection (data not shown).   In contrast to untreated 

macrophages, the ΔsecA2 mutant and H37Rv grew equally well in macrophages treated 

with 10nM bafilomycin A1 (Figure 3-7B).  While bafilomycin treatment increased 

growth of both H37Rv and the ΔsecA2 mutant in macrophages over 5 days (Figure 3-7B), 

the effect of bafilomycin was small and not significant for H37Rv but significantly 

greater for the ΔsecA2 mutant (Figure 3-7C).  

To establish the specificity of this rescue, we also tested the effect of bafilomycin 

on intracellular growth of the ΔleuD mutant, which is not localized to acidified 

phagosomes (Figure 3-4A).  Bafilomycin A1 treatment of the ΔleuD mutant did not 

rescue growth to the level of H37Rv in bafilomycin treated macrophages (Figure 3-7B, 

C).  Experiments with 5nM concanamycin A showed the same effect of rescuing the 

intracellular growth defect of the ΔsecA2 mutant.  Growth of the ΔsecA2 mutant was 

equivalent to that of H37Rv in concanamycin A treated macrophages (Figure 3-7D, E).  

Together, these results indicated the importance of phagosome acidification for inhibiting 

intracellular growth of the ΔsecA2 mutant.  Our data further argues that phagosome 

maturation can result in inhibition of M. tuberculosis intracellular replication. 
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Figure 3-7. Growth of the ΔsecA2 mutant is inhibited by phagosome 
acidification. A. LysoTracker positive phagosomes in BMDMs infected with 
H37Rv or ΔsecA2 mutant and treated with bafilomycin A1 or concanamycin A. 
Shown are the lowest inhibitor concentrations that bring ΔsecA2 LysoTracker 
positive phagosomes to H37Rv levels, ND = not determined. B. Non-activated 
BMDMs treated with bafilomycin A1 or vehicle control (DMSO) were infected 
with H37Rv, ΔsecA2 or ΔleuD and intracellular replication monitored as 
described. Shown is a representative experiment of four independent 
experiments. Bars represent mean fold growth over five days of three replicate 
wells +SD. * p<0.05 by Student’s t test. C. Data from the above experiment (7B) 
combined with three independent experiments to show the fold effect of 
bafilomycin A1 on intracellular growth compared to untreated macrophages. 
Bars represent mean fold effect of bafilomycin A1 in four individual experiments 
+SEM, *p<0.05 by Student’s t test compared to H37Rv. D and E, as in B and C, 
with concanamycin A or DMSO. D. Shown is a representative experiment of 
three experiments. E. Bars represent mean fold effect of concanamycin in three 
experiments +SEM, *p<0.05 by Student’s t test compared to H37Rv.  
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3.3- Discussion 

The function of the accessory SecA2 export system in promoting growth in 

macrophages has remained elusive.  Previously, we tested if the role of the SecA2 system 

is to protect against the oxidative or nitrosative stresses produced by macrophages during 

infection (33).   These past studies showed that even in the absence of these reactive 

radical stresses the ΔsecA2 mutant remains attenuated in macrophages.  Thus, the SecA2 

system must have other roles in promoting M. tuberculosis growth in macrophages.  In 

this study, we considered alternate explanations.  We tested if the inhibition of 

macrophage apoptosis mediated by the SecA2 system is what promotes M. tuberculosis 

growth in macrophages.  Our results from testing the ΔsecA2-αsodA strain do not support 

this possibility.  While expression of the αsodA construct in the ΔsecA2 mutant 

suppresses the proapoptotic phenotype, the strain remained defective for intracellular 

growth (Figure 3-1A).  It is worthwhile to note that our results do not rule out other 

important roles of the apoptosis phenotype of the M. tuberculosis ΔsecA2 mutant as 

reported elsewhere, such as enabling enhanced adaptive immune responses and increased 

protective immunity in vaccination studies (25). 

  In considering other explanations for the function of the SecA2 system in 

macrophages we tested the ΔsecA2 mutant for the ability to arrest phagosome maturation.  

Our results showed the ΔsecA2 mutant to be defective in phagosome maturation arrest, as 

the mutant was more readily trafficked to a more mature phagosome than the parental 

H37Rv strain.  This defect was evident quickly after infection (1hr), and not exhibited by 

other mutants with intracellular growth defects even at later times post-infection (72 hr).   
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Additionally, we showed that treating macrophages with inhibitors of the V-ATPase 

prevented acidification of phagosomes and rescued the intracellular growth defect of the 

ΔsecA2 mutant.  From these results, we conclude that the accessory SecA2 export system 

has a specific role in blocking phagosome acidification and that the intracellular growth 

defect of the ΔsecA2 mutant is directly related to its defect in blocking phagosome 

maturation.  

 Correlations exist between phagosome maturation and M. tuberculosis growth 

arrest (8, 35, 46, 56), and the ability of M. tuberculosis to arrest phagosome maturation is 

generally assumed to be critical for pathogenesis and for growth in macrophages.  Yet, 

there are a few examples of mutants that are able to grow even though they reside in 

more mature phagosomes (8, 36, 46), which raises the possibility that phagosome 

maturation arrest is not essential for M. tuberculosis intracellular growth.  Our results 

showing both bafilomycin A1 and concanamycin A rescue the ΔsecA2 mutant 

intracellular growth defect are significant in demonstrating the ability of V-ATPase 

mediated phagosome acidification to control M. tuberculosis growth. This argues that the 

avoidance of phagosome acidification by virulent M. tuberculosis is necessary for 

intracellular growth.  In addition to rescuing growth of the ΔsecA2 mutant, bafilomycin 

and concanamycin treatment also modestly increased the replication efficiency of 

H37Rv.  This effect on H37Rv is most likely due to the inhibitors further decreasing the 

percentage of H37Rv associated with acidified phagosomes (Figure 3-7).  A similar result 

was reported by Welin et al. with H37Rv infection of bafilomycin treated human 

monocyte derived macrophages (68).   



 85 

How might phagosome acidification control M. tuberculosis infection? Although 

low pH can render media components toxic to M. tuberculosis, which complicates 

assessing growth at acid pH (61), M. tuberculosis replication is reported to be sensitive to 

low pH (48).  Therefore, it is possible that phagosome acidification is directly responsible 

for the growth inhibition of the ΔsecA2 mutant in macrophages.  Alternatively, the acidic 

environment may be activating the pH sensitive lysosomal hydrolases (52) and thereby 

limiting replication.  A final possibility is that the acidification of the phagosome is 

driving downstream fusion events that produce the growth restricting environment (11, 

58).  

 Because metabolically inactive bacteria are more readily found in acidified 

phagosomes (35), it has been suggested that mutants impaired in any aspect of growth or 

metabolic activity may be found in mature phagosomes as a secondary consequence of 

those defects, as opposed to a direct effect on phagosome maturation (47).  Because we 

observed the ΔsecA2 mutant in more mature phagosomes at early times post-infection 

and because V-ATPase inhibitors rescued the growth defect, we think it unlikely that 

general growth or metabolic defects account for the ΔsecA2 mutant phenotype.  

Moreover, we tested the leucine auxotroph (ΔleuD) of M. tuberculosis as an example of a 

mutant severely compromised in metabolic activity.  The ΔleuD mutant requires leucine 

supplementation to grow in liquid media and the mutant does not grow in macrophages, 

presumably due to a failure to acquire leucine from the intracellular environment (26).  

Somewhat surprisingly, the ΔleuD mutant behaved like H37Rv and maintained its ability 

to avoid phagosome acidification, even at the latest (72hr) time point.  Although the 

precise level of metabolic activity of the ΔleuD mutant in macrophages is not known, this 
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result suggests that general growth or metabolic defects do not necessarily lead to a 

breakdown in phagosome maturation arrest. 

 What is currently known about the process of phagosome maturation arrest by M. 

tuberculosis suggests it is a complex process involving several effectors. It seems likely 

that M. tuberculosis has multiple effectors targeting a minimum of two parallel pathways 

that are critical to phagosome maturation: PI(3)P accumulation/signaling and Rab7 

accumulation/activation (10, 47, 62). The phagosome maturation defect of the ΔsecA2 

mutant may be due to a defect in the secretion of such effectors. Several M. tuberculosis 

secreted proteins (i.e. LpdC, NdkA, PknG, PtpA, and SapM) affect phagosome 

maturation or pathways thought to be critical for phagosome maturation (3, 14, 59, 63, 

67).  This list of possible effectors is likely incomplete, however, as mutant screens to 

find effectors of phagosome maturation suggest the existence of a much broader set of 

proteins involved in arresting phagosome maturation (8, 36, 46, 56).  There are also M. 

tuberculosis surface lipids (lipoarabinomannan, phosphotidylinositol mannoside, and 

tetra-acylated sulfoglycolipid) (8, 21, 64) reported to affect phagosome maturation. The 

SecA2 system could be involved in surface lipid production or localization by exporting 

lipid synthesis or export machinery.   

 An alternate way that the SecA2 system could promote phagosome maturation 

arrest would be to limit macrophage responses that drive downstream phagosome 

maturation events.  With this idea in mind we considered the possibility that the more 

robust MyD88-dependent responses elicited by the ΔsecA2 mutant (33) might be 

responsible for the altered trafficking of the ΔsecA2 mutant.  Although our experiments 

with MyD88-/- macrophages revealed this not to be the case, it only excludes altered 
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phagosome trafficking as a downstream event of MyD88 signaling.  Macrophages can 

detect M. tuberculosis through MyD88-independent intracellular receptors such as the 

NLR family of receptors and the inflammasome, which could also drive phagosome 

maturation (39). 

The microscopy experiments performed in the course of this work are the first to 

take advantage of the autofluorescence of mycobacteria to co-localize intracellular bacilli 

with phagosomal markers.  Previously, either exogenous fluorescent proteins (GFP, RFP) 

or fluorescent dyes have been used to track mycobacteria in similar experiments (54, 56). 

While GFP fluorescence has the advantage over autofluorescence of being brighter and 

longer-lasting, it has the disadvantage of requiring the construction of strains that express 

exogenous genetic elements and there is the potential for GFP expression itself to 

influence virulence (42).  The use of dyes to surface label the bacilli have a similar 

disadvantage in introducing an experimental variable that could possibly alter the course 

of infection (54).   

The work presented here not only provides a better understanding of how SecA2 

promotes M. tuberculosis growth in macrophages, but it also demonstrates the 

importance of phagosome maturation arrest for M. tuberculosis.  It seems likely that M. 

tuberculosis has multiple effectors of phagosome maturation arrest.  As is the case in the 

Type IV secretion system of Legionella pneumophila, this may mean there is substantial 

effector redundancy (43).  The phagosome maturation phenotype of the ΔsecA2 mutant 

indicates there is a single critical effector or multiple effectors that depend on the SecA2 

export pathway. Future studies will seek to identify such SecA2-dependent effectors of 

phagosome maturation arrest.  
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3.4- Materials and Methods 

Bacterial strains and growth conditions 
 
 In this study we used Mycobacterium tuberculosis strains listed in Table 1. M. 

tuberculosis strains were cultured in liquid Middlebrook 7H9 media or solid 7H10 

supplemented with 0.05% Tween 80, 0.5% glycerol, 1× albumin dextrose saline (ADS), 

and appropriate drugs kanamycin (20µg/ml) or hygromycin (50µg/ml).  For plating organ 

homogenates from murine infections, cyclohexamide (10µg/ml) was incorporated into 

7H10 agar to inhibit fungal growth.  For experiments with the ΔleuD mutant all media 

was additionally supplemented with 50µg/ml L-leucine.  

 

Mutant construction  
 

The M. tuberculosis ΔeccD1 null mutant was constructed by specialized 

transduction using an allelic exchange construct delivered by the temperature-sensitive 

mycobacteriophage phAE159, as described previously (5).   The allelic exchange 

construct was constructed by amplifying flanking regions of eccD1 (rv3877) by PCR 

from M. tuberculosis genomic DNA.  An 833 bp upstream flanking sequence (ending at 

the second codon of eccD1) and an 821 bp downstream flanking sequence (starting at the 

fifth codon from the stop) were amplified and individually cloned into the pCR 2.1 

cloning vector (Invitrogen).  These flanking sequences were then sequentially cloned into 

pJSC284 to create plasmid pKO-3877, which has the hygromycin (hyg) cassette marking 

the deletion and positioned between the two flanking sequences.  PacI digested pKO-

3877 was then ligated to PacI cut phAE159 and in vitro packaged (Stratagene) into 
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lambda phage particles that were recovered by transduction in E. coli.  The resulting 

recombinant mycobacteriophage was then used to transduce H37Rv at the non-

permissive temperature of 39°C for 4 hours.  Transduced cells were pelleted, resuspended 

in 7H9 media with 0.1% Tween 80, and plated on 7H10 agar with hygromycin. 

Hygromycin-resistant colonies obtained at 3 weeks were screened for allelic exchange by 

Southern blotting to confirm deletion of eccD1. 

The ΔsecA2 null mutant in BCG Pasteur was constructed as previously reported 

for BCG Tice and H37Rv strains using a two-step allelic exchange method (6, 53).  

 

Antibodies and reagents 
 
 Antibodies to mammalian markers (CD63, Rab7 and V-ATPase B1/B2) and 

fluorophore conjugated secondary antibodies were acquired from Santa Cruz 

Biotechnology. The α-SodA construct (pMV3α-sod) was a kind gift of Dr. William 

Jacobs Jr. (Albert Einstein College of Medicine, Bronx NY) (25). Bafilomycin A1 

(Sigma) and concanamycin A (Santa Cruz) were stocked at 1000× in DMSO. 

 

Animals 
 
 C57BL/6 mice acquired from Charles River Labs were used in aerosol infections 

and for bone marrow-derived macrophages. MyD88-/- mice on the C57BL/6 background 

(1) were acquired from Dr. Shizuo Akira (WPI Immunology Frontier Research Center, 

Research Institute for Microbial Diseases, Osaka University, Osaka Japan). All mice 

were housed in sterile caging and provided sterile food and water. All animal protocols 



 90 

were followed strictly as approved by the UNC Institutional Animal Care and Use 

Committee (IACUC). 

 

Aerosol infection and necropsy 
 
 Aerosol infection of mice was performed using a Madison aerosol chamber. 

Briefly, mice were exposed to a whole body aerosol generated from M. tuberculosis that 

was grown to log-phase and washed once and resuspended in PBS containing 0.05% 

Tween 80 at a concentration of 1.2 × 107 colony forming units (cfu)/ml. The mice were 

exposed to aerosols for 15 minutes with a 20-minute purge to clear the chamber resulting 

in an approximate dose of 200 cfu/lung. At various time points mice were euthanized, 

their lungs and spleens homogenized and plated for cfu on 7H10 agar.  

 

Macrophage infections 
 
 Bone marrow-derived macrophages were made as follows.  Mice were euthanized 

by CO2 asphyxiation and cervical dislocation. Femurs were removed and bone marrow 

flushed out with supplemented Dulbecco modified Eagle medium (DMEM; Sigma). 

DMEM was supplemented with 10% fetal bovine serum (FBS; Gibco), 2mM L-

glutamine, and 1× nonessential amino acids (complete DMEM). Bone marrow cells were 

washed once and resuspended and plated in complete DMEM containing 20% L-929 cell 

conditioned media (LCM). After six days at 37°C, 5% CO2, the cells were lifted off the 

plates using cold PBS EDTA 5mM and scraping. The cells were then washed twice and 

resuspended at a concentration of 1 × 106 macrophages/ml in complete DMEM 
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containing 10% LCM. Macrophages were then seeded at 2 × 105 macrophages/well in 

eight-well chambered slide or chambered cover slips for microscopy experiments. 

 After resting 24-48 hours the macrophages were infected with M. tuberculosis 

culture grown to log-phase, and washed once with PBS containing 0.05% Tween 80 and 

diluted in warm complete DMEM. Macrophages were infected at an MOI of 1.0 for 

microscopy or 0.2 for intracellular growth assays. After a four-hour incubation at 37°C 

for bacterial uptake, infected macrophages were washed three times with pre-warmed 

complete DMEM. The zero hour time point of these experiments represents the time after 

the washes were complete. For kinetic growth assays macrophages were lysed at various 

time points and lysates were plated for cfu.  For microscopy, cover slips were taken at 

various time points and fixed for at least one hour in 4% paraformaldehyde (PFA) in PBS 

pH 7.4.  For experiments using bafilomycin A1 (Sigma) or concanamycin A (Santa Cruz) 

the inhibitors or equivalent vehicle control were added to the macrophages 30 minutes 

prior to infection. Inhibitors were maintained throughout the five-day infection. 

 

Macrophage staining and microscopy 
 
 To stain with LysoTracker, media was replaced with prewarmed DMEM +100nM 

LysoTracker Red DND99 (Invitrogen) and returned to 37°C 5% CO2 for one hour.  For 

immunofluorescence, media was aspirated from the wells at the endpoint of infection and 

cover slips were submerged in 4% PFA for at least one hour.  To stain for 

immunofluorescence, fixed macrophages in chambered cover slips were submerged in 

PBS to remove residual PFA.  Cells were then permeabilized with 0.1% Triton-X 100 in 

PBS for 5 minutes at room temperature, washed in PBS and blocked in PBS + 10% 
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serum from the same source as the secondary antibody. Primary antibodies were used at a 

1:100 dilution in PBS + 3% serum and incubated overnight at 4°C. After extensive 

washing in PBS, secondary antibodies conjugated to fluorophores were used at 1:100 in 

PBS + 3% serum and incubated at room temperature for one hour. After secondary 

antibodies were washed away, Fluormount-G (Southern Biotech) was added to each well. 

As an important control, we showed that normal rabbit IgG and secondary antibody alone 

did not stain M. tuberculosis containing phagosomes. 

 Widefield fluorescence microscopy was performed using an Olympus IX-81 

controlled by the Volocity software package. All images were taken using a 40× oil-

immersion objective. A minimum of five fields per well was captured and bacteria were 

scored for phagosomal markers, amounting to a minimum of 100 bacteria-containing 

phagosomes scored per well. For each experimental group three replicate wells were 

scored per experiment. 

 Mycobacterial autofluorescence was visualized using a CFP filter cube (Semroc) 

with an excitation band of 426-450nm and emission band of 467-600nm.  A 3% 

transmission, neutral density filter was used and minimal time was spent focusing in the 

CFP channel to protect the autofluorescence from photobleaching. 

 

Table 3-1. Mycobacteria strains used 

Strain Description Reference 
M. tuberculosis   

H37Rv Wild-type Trudeau Institute 
mc23112 H37Rv ΔsecA2 (6) 
MBTB74 H37Rv ΔsecA2, attB::secA2 This study 
MBTB109 H37Rv ΔsecA2, attB::αsodA (25), This study 
mc23032 H37Rv ΔleuD (26) 
MBTB3 H37Rv ΔeccD1 This study 
PM638 H37Rv ΔblaC (18) 
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MBTB204 PM638, mce1A::tn (40) 
MBTB156 PM638, mce2F::tn (40) 
MBTB183 PM638, rv0199::tn (40) 
MBTB157 H37Rv, gfp This study 
MBTB158 mc23112, gfp This study 
MBTB159 MBTB74, gfp This study 
MBTB390 mc23032, gfp This study 

M. bovis BCG   
BCG Pasteur Wild-type Staten Serum Institut 
MB544 BCG Pasteur ΔsecA2 This Study 
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CHAPTER IV 
 
 
 

 
TESTING A ROLE FOR THE ACCESSORY SECA2 SYSTEM IN EXPORTING 

MYCOBACTERIUM TUBERCULOSIS EFFECTORS OF PHAGOSOME 
MATURATION1 

 
 
 

 
 

4.1- Introduction 

 Mycobacterium tuberculosis, the causative agent of tuberculosis disease, 

primarily resides in macrophages during infection of a host (21). After being engulfed by 

macrophages through receptor-mediated phagocytosis (12), M. tuberculosis has the 

remarkable ability to survive and grow in the normally hostile environment of 

macrophages. M. tuberculosis manipulates phagosome trafficking to prevent acidification 

and phagosome maturation (19, 20). By preventing the process of phagosome maturation 

it is thought that M. tuberculosis creates an intracellular niche amenable to bacterial 

replication.  

 While it is a well-established fact that M. tuberculosis blocks phagosome 

maturation in macrophages (1, 9, 20, 24), the process by which M. tuberculosis achieves 

this is not yet clear. Through multiple genetic screens and direct tests of potential 

effectors there is an extensive list of genes, proteins and lipids that could play some role 

                                                
1 Authored by: Jonathan Tabb Sullivan, Ellen F. Young, Meghan E. Feltcher, and Miriam 
Braunstein 



 102 

in blocking phagosome maturation(2, 6, 11, 13, 15, 17, 18, 23, 26-28). Interestingly, there 

is minimal overlap of the factors identified by these various approaches. The list of 

potential M. tuberculosis molecules involved in phagosome maturation arrest suggests a 

complex process that probably involves multiple molecules working in tandem. As 

presented in chapter 3, the accessory SecA2 protein export system of M. tuberculosis is 

required for phagosome maturation arrest during macrophage infection (25).  However, 

the role of the SecA2 system in blocking phagosome maturation remains to be defined. 

Because SecA2 is a cytoplasmic protein required for the export of a specific subset of 

proteins (4, 14), we hypothesize that one or more effectors of phagosome maturation are 

proteins exported by the SecA2 system.   

 In this chapter, we assay a set of potential effectors of phagosome maturation 

arrest (2, 7, 11, 26-28) for evidence of export by the SecA2 pathway. More specifically, 

we tested proteins reported to have roles in blocking phagosome maturation (LpdC, 

NdkA, PtpA and SapM) for SecA2 dependent export. As reviewed in chapter 1, these 

putative effectors of phagosome maturation arrest are implicated in diverse roles in 

blocking the process. LpdC is proposed to block phagosome maturation by retaining 

Coronin 1A at the phagosomeal membrane (11). NdkA, is proposed to interfere with GTP 

association with Rab GTPases on the phagosomal membrane, which are required for 

phagosome maturation (26). PtpA is shown to interfere with phagosome-lysosome fusion, 

via association with the V-ATPase and dephosphorylation of the Vps33B component of 

the HOPS complex (29). SapM is proposed to interfere with PI(3)P signaling by 

dephosphorylating PI(3)P at the phagosomal membrane (27).  
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4.2- Results 

LpdC and NdkA are SecA2 independent. 
 
 To determine if specific M. tuberculosis proteins reported to effect phagosome 

maturation are exported in a SecA2 dependent manner, we used western blot analysis to 

compare the amount of proteins secreted into culture media (culture filtrates – CF) by the 

∆secA2 mutant and H37Rv strains of M. tuberculosis.  Concentrated short-term culture 

filtrates were generated in the following manner.  Individual strains were grown to an 

OD600 of ~1 in 7H9 Middlebrook media. The cultures were then washed and transferred 

to Sauton media in triplicate samples at an OD600 of 0.3. The 50 ml Sauton cultures were 

incubated in roller-bottles for 24 hours at 37°C then the cells were pelleted and the 

supernatant collected, filtered to remove cells and concentrated to generate the culture 

filtrate (CF) fraction. The cell pellets from the same cultures were fixed overnight in 10% 

formalin and later used to generate the whole-cell lysate (WCL) fractions. Using 

antibodies raised against an LpdC peptide or full-length M. tuberculosis NdkA we 

detected both LpdC and NdkA as secreted into culture filtrates by M. tuberculosis. As a 

lysis control, CF samples were shown to be devoid of the cytoplasmic SecA1 protein by 

western blot analysis (data not shown). However, for both LpdC and NdkA comparable 

protein levels were observed in culture filtrates from H37Rv and the ∆secA2 mutant 

(Figure 4-1). Thus, the accessory SecA2 system does not appear to be involved in the 

export of these proteins.  

 With the same culture filtrates we also probed for the presence of PtpA using an 

anti-PtpA antibody.  Even though in the whole cell lysate the PtpA antisera bound several 

proteins, a band of the predicted size of PtpA and the same size as purified PtpA protein 



 104 

was visible in the whole cell lysate.  However, in the culture filtrate we were unable to 

detect any protein of the expected size of PtpA (Figure 4-1). Our inability to detect PtpA 

in the culture filtrate precludes us from drawing any conclusion about the possibility of 

PtpA export being SecA2-dependent.  

 

SapM protein levels are SecA2-dependent.  
  

We also evaluated the secretion of SapM, which is a phosphatase proposed to be 

an effector of phagosome maturation. SapM is shown to cleave the phosphate, 

preferentially off of phosphotydlinositol 3-phosphate (PI(3)P) (22, 27). Because PI(3)P is 

an important signaling molecule on the surface of the phagosome, that is required for 

phagosome maturation, SapM is proposed to influence phagosome maturation by 

reducing PI(3)P levels on the phagosome (27).  

Western blot analysis with SapM antibody recognized a single band of the predicted size 

(30 kD) in both the whole cell lysate and the culture filtrate fractions of M. tuberculosis. 

The level of SapM protein was reproducibly less in the culture filtrates of the ΔsecA2 

mutant compared to H37Rv, and, the level of SapM protein was also reduced in the cell-

associated fraction (WCL) of the ∆secA2 mutant. Importantly, the SapM phenotype was 

complemented in trans by adding back a copy of secA2 on a plasmid (Figure 4-2A). By 

looking at cell fractions on a Western blot, we found that the cell-associated SapM was 

almost entirely in the cytoplasm as opposed to the cell wall or membrane (Data not 

shown). 
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Figure 4-1. Secretion of NdkA and LpdC is independent of SecA2. 
Western blot analysis from whole cell lysates and concentrated culture 
filtrates prepared from the wild type H37Rv and ∆secA2 mutant strains 
of M. tuberculosis. NdkA and LpdC are detected in both wild type and 
∆secA2 mutant culture filtrates at comparable levels. PtpA was not 
detected in culture filtrates. A band that ran at the size of a PtpA 
positive control was present in the whole-cell lysate, but absent in the 
culture-filtrate fraction. WCL lanes were loaded with equal protein, 1-5 
µg protein depending on available material, CF lanes were loaded for 
cellular equivalents between strains. 
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 The reduced cytoplasmic SapM levels where we found lower levels of SapM 

were detected in independent samples prepared from the ∆secA2 mutant grown in 

different culture conditions, including media that was designed to mimic the environment 

of the phagosome (figure 4-2B).  The difference in WCL associated SapM was 

quantitated and found statistically significant by densitometry of Western blots (Figure 4-

2B).  

Using a previously reported phosphatase assay designed to filter out background 

phosphatase activity in order to quantify SapM activity of M. tuberculosis derived 

samples, we assessed SapM activity in culture filtrates (22). To filter out background 

phosphatase activity, the assay uses tartrate in all reaction buffers. Tartrate is an inhibitor 

of some phosphatases, but SapM activity is unaffected by tartrate (22). Using this assay, 

we measured phosphatase activity in culture filtrates of the ∆secA2 mutant compared to 

H37Rv and the complemented strain. We loaded equal total CF protein to each assay as 

determined by BCA assay. We found significantly less phosphatase activity in the 

supernatant of the ΔsecA2 mutant compared to H37Rv and the complemented strain 

(Figure4-2C).  The phosphatase activity we assayed in these reactions was tartrate 

resistant and molybdate sensitive (data not shown), which is characteristic of SapM (27). 

The results from this phosphatase assay are consistent with our western blots.  However, 

it should be noted that the assay used here may not be exclusive for SapM.  The 

phosphatase assay we used could detect any other tartrate resistant molybdate sensitive 

phosphatases that may be present in M. tuberculosis culture filtrates. 

Taken together, our results show an effect of SecA2 on SapM protein levels and a 

reduction in phosphatase activity that is consistent with less secreted SapM. In the 
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presence of a secretion defect one might expect to see the levels in the whole cell lysate 

be unaffected or accumulate. However, because SapM levels were reduced in the whole 

cell lysate as well as in culture filtrates it is not immediately clear if this difference 

reflects a role for SecA2 in SapM secretion.  

 To further characterize the relationship between lower SapM levels and the 

∆secA2 mutation, we tested if sapM transcript levels were also reduced in the ΔsecA2 

mutant of M. tuberculosis.  Using quantitative RT-PCR we measured the transcript levels 

of sapM relative to the rpoB gene, and found levels of sapM transcript to be equal 

between H37Rv and the ∆secA2 mutant (Figure 4-2D). The rpoB gene encodes the Beta 

subunit of RNA polymerase, which works as an internal control for total RNA because it 

should have constant transcript levels between strains. This data rules out the possibility 

that lower levels of SapM protein were the result of altered sapM transcription in the 

∆secA2 mutant.   

 

4.3- Discussion 

 In this chapter, we began the process of determining which effectors of 

phagosome maturation arrest are SecA2-dependent. In these initial experiments we 

obtained antibodies from other investigators to test putative effectors of phagosome 

maturation arrest for evidence of export by the accessory SecA2 system.  

We compared culture filtrates from H37Rv and the ∆secA2 mutant for LpdC and NdkA 

localization. The antibodies we used reacted with a single protein band of the proper size 

on the western blots. In these experiments, the levels of LpdC and NdkA were 

comparable in cultures filtrates of H37Rv and the ∆secA2 mutant. Thus, SecA2 appears 
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to have no role in the export of LpdC or NdkA. We also attempted to monitor PtpA 

secretion by the two strains.  While the antibody did identify PtpA protein in the whole 

cell lysate, we could not detect PtpA in culture filtrates of either H37Rv or the ∆secA2 

mutant.  This negative result of testing for PtpA secretion prevents us from drawing any 

conclusions about the potential for the SecA2 system to be exporting this effector.  Even 

though PtpA is demonstrated to be secreted by M. tuberculosis growing in host cells it is 

likely that the proteins is not highly expressed by in vitro grown M. tuberculosis (2).  In 

order to monitor the secretion of PtpA we will need to test M. tuberculosis strains 

engineered to express the protein from a constitutive promoter.  

When we tested for SapM secretion, we found that that the SecA2 system affects 

the levels of SapM protein in both the culture filtrate and whole cell lysate.  This reduced 

SapM phenotype was reversed when the ∆secA2 mutant was complemented in trans, 

which demonstrates this phenotype is attributable to the lack of SecA2.  Furthermore, 

phosphatase assays designed to monitor SapM activity in culture filtrates were consistent 

with the western blotting results.   

The relationship between SecA2 and SapM remains to be clarified. Quantitative RT-PCR 

data argues against the possibility of SecA2 indirectly affecting transcription of the sapM 

gene. Like the two known SecA2 substrates in M. smegmatis, sapM encodes a N-terminal 

Sec signal peptide. One possibility is that SecA2 is required for SapM export and the 

resulting defect in SapM export that occurs in the ∆secA2 mutant results in degradation of 

the non-exported protein. 
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Figure 4-2. SapM levels are reduced in the ∆secA2 mutant. A. Western blot 
for SapM, shown is a representative of triplicate whole cell lysate samples 
from H37Rv, the ∆secA2 mutant, and complemented strain that were grown in 
7H9 and Sauton media. B. Whole cell lysates from bacteria cultured in low pH 
7H9 with propianate, quantitated by densitometry. Bars represent mean of 
independent triplicate samples +SD, *p≤0.05 by Student’s t test. C. 
Phosphatase assay of concentrated supernatants, data is normalized to 
H37Rv as 100% activity. Strains were grown in 7H9 and Sauton media. Bars 
represent mean of independent triplicate samples +SD. *p≤0.05 by Student’s t 
test. D. Real-time PCR data comparing transcript levels from H37Rv to the 
∆secA2 mutant. Strains were grown in 7H9 media. Bars represent mean of 
triplicate samples +SD. 
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There is precedent for non-exported proteins in the cytoplasm being degraded 

when their cognate export system is absent (8, 10).  Thus, it is possible that the reduced 

level of SapM in the ∆secA2 mutant is due to an export defect resulting in less protein 

secreted into culture media and degradation of the non-exported protein that accumulates 

in the cytoplasm.  Another possibility is that the impact of SecA2 on SapM protein may 

be independent of a role in export and more simply be to stabilize the protein in the 

cytoplasm.  In this case in the ∆secA2 mutant there would be less protein in the 

cytoplasm available for secretion. To determine if SecA2 is involved in the process of 

SapM secretion we plan to employ more sensitive pulse-chase protocols that have 

previously been used to study protein secretion (8). 

While our data shows the ∆secA2 mutant to secrete less SapM, we also do not yet 

know if the reduction in SapM alone can account for the ∆secA2 mutant defect in 

arresting phagosome maturation. While we do see a difference in SapM levels between 

H37Rv and the ∆secA2 mutant, the difference is a modest one. One approach we plan to 

take to address this question is to overexpress SapM in the ∆secA2 mutant and see if this 

rescues the phagosome maturation phenotype observed in the absence of the SecA2 

system. If SapM overexpression can overcome the difference in phagosome maturation 

and intracellular growth between H37Rv and the ∆secA2 mutant, it would argue that the 

defect in SapM secretion is the cause of the ∆secA2 mutant growth defect. However, the 

M. tuberculosis process of blocking phagosome maturation is likely to be complex with 

potentially redundant effectors. Therefore, if SapM overexpression does not rescue the 

∆secA2 mutant growth defect, it could be because multiple effectors of phagosome 
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maturation, including SapM, are exported by the SecA2 system.  In the mean time, 

continuing efforts in our laboratory are underway to identify additional SecA2 dependent 

exported proteins that may be effectors of phagosome maturation.   

 

 

4.4- Materials and Methods 

Bacterial strains and growth conditions 
 
 In this study we used Mycobacterium tuberculosis wild type strain H37Rv, and 

the ∆secA2 mutant (mc23112) generated in the H37Rv background (5). M. tuberculosis 

strains were cultured in liquid Middlebrook 7H9 media supplemented with 0.05% Tween 

80, 0.5% glycerol, 1× albumin dextrose saline (ADS). Sauton media used for preparation 

of culture filtrates contains the following in one liter of media: 4 g DL-asparagine, 2 g 

sodium citrate, 0.5 g K2HPO4, 0.5 g MgSO4-7H2O, 50 mg ferric ammonium citrate, and 

48 ml glycerol. The final media is pH adjusted to 7.4 and filter sterilized through a 0.22 

µm filter. Media used to mimic phagosomal conditions was 7H9 with 

0.1% glycerol, 1mM proprionic acid, 0.1% tyloxapol, 0.1M MES (buffer), 0.5% BSA, 

and is pH adjusted to 6.5. 

 

Culture filtrates and phosphatase assay  
 

For culture filtrate collection, cultures at log-phase growth in 7H9 were washed in 

Sauton media, and added to 50ml Sauton media in roller bottles at an OD600 of 0.2-0.3. 

Cultures were incubated at 37°C for 24 hours. Then the entire 50 ml culture was 

centrifuged at 4000 rpm in a Sorvall Legend RT centrifuge. The supernatants were 
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collected and double filtered with a 0.2µm filter. Culture Filtrate proteins were 

concentrated 100 fold using 15 ml capacity 10,000 MW cut off centrifuge filters 

(Centricon). Samples were centrifuged at 3,000 rpm and sample was added until the 

entire 50 ml was concentrated to < 500 µl. The bacterial pellet from the culture was fixed 

in 10% formalin overnight and later used to prepare whole cell lysates by bead beating in 

protein extraction buffer (3, 14). SapM activity was assayed as described previously (22). 

Protein concentration was assayed using a BCA assay (Pierce) and equal concentration of 

CFP protein (3-5 µg depending on available material) was added to each assay. In a 96 

well plate 10x buffer of 1M Tris base pH 6.8 with 20 mM sodium tartrate to inhibit 

background phasphatase activity was added to each assay and 50mM p-nitrophenyl 

phosphate (pNPP) samples were brought to 200 µl total volume.  In samples with 

molybdate, 1 mM sodium molybdate was added to the sample prior to adding CF protein. 

The plate was incubated at 37°C in a TECAN automated plate reader, and the absorbance 

at 405nm was measured every minute for two hours. Phosphatase activity cleaves pNPP, 

which creates a color change and an increase of OD405 absorbance. Over the linear portion 

of the kinetic assay we calculated the rate of pNPP conversion by calculating the slope of 

the line generated by plotting OD405 in the y-axis and time in the x-axis. These slopes 

were then normalized to the H37Rv rate of change, which we set to 100%.  

 

Western blotting 
 

Equal amounts of protein samples from whole cell lysates (1-5µg depending on 

available material) or concentrated culture filtrates (cell equivalents between strains) 

were run on a 12% SDS-PAGE gel, and then transferred to nitrocellulose membranes. 
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After transfer, the membranes were blotted with primary antibodies. Antibodies to M. 

tuberculosis proteins were kind gifts of Dr. Vojo Deretic, University of New Mexico 

(SapM), Dr. Zakaria Hmama, University of British Columbia (LpdC and NdkA), and Dr. 

Yossef Av-Gay, University of British Columbia (PknG and PtpA). Antibodies were used 

at the following dilutions (SapM 1:2000, LpdC 1:2,000, NdkA 1:2,000, PknG 1:1,000 

and PtpA 1:10,000) Secondary antibodies were either conjugated to horseradish 

peroxidase or alkaline phosphatase. Blots were then developed using a horseradish 

peroxidase or alkaline phosphatase substrate.  Blots were visualized with direct film 

exposure or a phosphoimager. For quantitative westerns, fluorescence was quantified 

using a phosphorimager and ImageQuant 5.2 (Molecular Dynamics). 

 

Quantitative real time PCR 
 

Quantitative real-time PCR (qRT-PCR) was run on RNA samples previously 

prepared for microarray analysis. Bacteria were grown in roller bottles using 7H9 with 

Tween-80 and ADS.  mRNA was prepared by Meghan Feltcher and cleaned up using a 

DNA-Free RNA kit (Zymo). Prior to clean-up RNA extraction was performed as follows: 

Bacterial culture is lysed in chloroform/methanol 3:1 mix. An equal volume of TRIzol 

reagent (Invitrogen) is used to separate protein and lipids from the nucleic acids. After 

thorough mixing of TRIzol and M. tuberculosis lysate, samples were centrifuged and the 

aqueous layer transferred to a fresh tube. Then an equal volume of isopropanol was added 

to the tube to precipitate nucleic acids overnight at -20°C. The nucleic acids were then 

pelleted by centrifugation and the pellet washed with 70% ethanol. After washing the 

nucleic acids were resuspended in H2O and treated with DNAse. Primers were designed 
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to sapM (ATCGTTGCTGGCCTCATGG and AGGGAGCCGACTTGTTACC) and to M. 

tuberculosis rpoB (ACAGAAGCTAGTCCTAGTC and 

ACCGATCAGCCACTCGAAC), which was used as a normalization control as done 

previously (16). Primers were tested on M. tuberculosis DNA to be sure that only one 

product was produced. qRT-PCR reaction was run using a SensiMix Syber and 

Fluorescein One-Step kit (Bioline). mRNA template was loaded at 48 ng/20 µl reaction. 

Reactions were run on an iCycler (BioRad).  
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CHAPTER V 
 
 
 
 

 DISCUSSION 
 

 Mycobacterium tuberculosis infects about one-third of the world’s population and 

causes a substantial amount of mortality worldwide (39). Currently, the vaccine to 

prevent M. tuberculosis infection is questionable at best (11), and drug regiments are 

extended and difficult to administer effectively, especially in developing nations where 

tuberculosis is endemic. Moreover, with the emergence of strains of M. tuberculosis that 

are resistant to first-line and second-line drugs, the need for new treatments and vaccines 

to prevent the spread of this bacterial pathogen is urgent. A better understanding of the 

pathogenesis of M. tuberculosis should help to develop new strategies for targeting 

tuberculosis with drugs, or for eliciting protective immunity with improved vaccines.  

The research presented in this thesis focuses on the role of secreted proteins and 

the SecA2 protein export pathway in M. tuberculosis pathogenesis.  In this research we 

used a ∆secA2 deletion mutant strain of M. tuberculosis to dissect the role of the SecA2 

protein export pathway in our macrophage and mouse infection models.  Going into the 

project we already knew that the SecA2 protein export pathway had a role in virulence 

from data showing that the ∆secA2 mutant is defective for growth in macrophages and 

mice (2, 19). However, we did not know the cause of this intracellular growth defect.  
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Thus, we do not know the role SecA2 plays in virulence. The ∆secA2 mutant does not 

have a growth defect in vitro, ruling out a general slow growth phenotype(2).  

At the start of this research, there were three reported phenotypes for ∆secA2 

mutant infected macrophages that could possibly explain its intracellular growth defect. 

First, macrophages infected with the ∆secA2 mutant produce increased levels of reactive 

nitrogen intermediates (RNI). Second, the ∆secA2 mutant induces higher levels of 

proinflammatory cytokines by infected macrophages(19). Third, the ∆secA2 mutant 

induces more apoptosis than wild type M. tuberculosis in infected macrophages(16).  

 

Increased macrophage production of RNI does not explain the ∆secA2 mutant 
intracellular defect. 
 

Previous data from our laboratory ruled out a failure to resist either RNI or 

reactive oxygen species (ROS) as the sole cause of the ∆secA2 mutant growth defect. 

Specifically, it was shown that the ∆secA2 mutant remains attenuated for growth in 

macrophages that fail to produce RNI (NOS2-/-) or ROS (gp91phox-/- or p47phox-/-)(19).  

While these past results do not completely rule out a role for SecA2 in protecting against 

or limiting reactive radical stresses, these results do indicate the existence of another role 

for SecA2 in promoting intracellular growth. 

 

The increased inflammatory response elicited by the ∆secA2 mutant is not sufficient 
to explain the intracellular growth defect. 
 
 Compared to H37Rv, the M. tuberculosis ΔsecA2 mutant induces an increased 

inflammatory response in infected macrophages as shown by higher levels of TNF-α, IL-

6 and RNI. TNF-α, IL-6 and RNI all play important roles in controlling M. tuberculosis 
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replication in macrophages and mice (5, 12, 13, 20, 22).  Therefore, we hypothesized that 

the increased inflammatory response elicited by the ΔsecA2 mutant may be responsible 

for controlling the intracellular replication of the mutant. In Chapters two and three of 

this thesis we tested this possibility by eliminating components of the inflammatory 

response and asking if this rescued the mutant phenotype. Our results indicate that the 

increased inflammatory response to the ∆secA2 mutant is not sufficient to explain the 

intracellular growth defect. Specifically, we worked with mice and macrophages deficient 

in the production of TNF-α. TNF-α has been shown to be important for activating 

macrophages synergistically with interferon gamma, thus increasing the antimicrobial 

capacity of macrophages and allowing them to contain M. tuberculosis replication (12). 

We also tested whether a broader inflammatory response to M. tuberculosis is important 

for controlling the ΔsecA2 mutant using mice and macrophages lacking the adaptor 

protein MyD88. MyD88 has been shown to be involved through Toll-like receptor (TLR) 

signaling for production of TNF-α, IL-6 and RNI in response to M. tuberculosis (3, 15, 

18, 25, 28, 34, 35, 37). However, when the ∆secA2 mutant was tested in the TNF-α-/- or 

the MyD88-/- mice and macrophages the mutant remained attenuated for growth. Thus, 

while both TNF-α and MyD88 are important for controlling M. tuberculosis infection, 

neither appears to be necessary for the ΔsecA2 mutant growth defect. Our results argue 

that the role of the SecA2 system in promoting intracellular growth in macrophages can 

not simply be to dampen the macrophage inflammatory cytokine response to M. 

tuberculosis.  
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The pro-apoptotic phenotype elicited by the ∆secA2 mutant is unable to explain the 
intracellular growth defect. 
 
 The ∆secA2 mutant also induces higher levels of apoptosis of infected 

macrophages than wild type M. tuberculosis(16). This difference in apoptosis is 

attributed to the defect in SodA secretion reported for the ∆secA2 mutant (16). Because 

apoptosis has been demonstrated to control and even kill multiple mycobacterial species 

including M. tuberculosis (8, 14, 24), we were interested in testing whether increased 

apoptosis exhibited by ∆secA2 mutant infected macrophages was responsible for the 

growth defect of the ∆secA2 mutant. To test the role of apoptosis in the ∆secA2 mutant 

phenotype, we took advantage of a plasmid expressing an extra copy of SodA, termed 

αSodA.  When αSodA is expressed by the ΔsecA2 mutant, the apoptosis phenotype of 

the ΔsecA2 mutant is reversed. We tested the same ∆secA2 mutant strain expressing 

αSodA for growth in macrophages and mice to assess the role of apoptosis in the ∆secA2 

mutant growth defect. As shown in chapter three, even though this construct rescues the 

apoptosis phenotype it does not rescue either the macrophage or the mouse growth defect 

of the ∆secA2 mutant. In fact, expression of αSodA in the ∆secA2 mutant exacerbated 

the virulence defect of the mutant in a mouse. We conclude from these results that the 

pro-apoptotic phenotype of the ∆secA2 mutant is not responsible for the growth defect, 

either in mice or macrophages.   

 Our observation that the ∆secA2 mutant expressing αSodA exhibited a more 

severe attenuated phenotype than the ∆secA2 mutant in mice was unexpected. One 

possibility is that overexpression of SodA succeeds in converting superoxide to peroxide 

but that the catalase KatG, which has been shown to be SecA2 dependent for export, is 
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not able to complete the detoxification and the bacteria is left in a environment that is 

more toxic due to high levels of peroxide. Another possibility is that ROS levels, which 

are important signals for the immune response (10), are deregulated by overexpression of 

SodA. The deregulated levels of ROS could lead to a more robust immune response, 

which could be acting to suppress the growth of the bacteria.  

 The ∆secA2 mutant has also been shown induce a more robust cytotoxic T-cell 

response than H37Rv in murine infection. This adaptive immune response to the ∆secA2 

mutant is thought to be caused by the pro-apoptotic phenotype of the mutant in infected 

macrophages (16). The more robust T-cell response makes the ΔsecA2 mutation an 

attractive addition to a live attenuated M. tuberculosis vaccine strain. In this thesis, we 

tested the possibility that the pro-apoptotic phenotype of the ∆secA2 mutant was 

responsible for the intracellular growth defect. In these experiments we ruled out the pro-

apoptotic phenotype being responsible, at least on its own, for the intracellular growth 

defect of the mutant. However, our data does not preclude the hypothesis that the ∆secA2 

mutant induces a more robust T-cell immune response via increased apoptosis. Our data 

does, however, separate two distinct functions for SecA2: a role in suppressing apoptosis 

and a role promoting intracellular growth.  

Thus, the results of testing the significance of the three reported macrophage 

phenotypes of the ΔsecA2 mutant, (increased RNI, increased inflammatory cytokine 

response, and increased apoptosis) failed to uncover the specific role for SecA2 in 

promoting growth in macrophages and mice.  These results led us to consider other 

possibilities to explain the function of the SecA2 system in promoting intracellular 

growth, such as a role in modifying the normal process of phagosome maturation.    
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The ∆secA2 mutant traffics to a more mature phagosome than does wild type M. 
tuberculosis.  
 

It has long been known that M. tuberculosis prevents phagosome maturation(1), 

and blocking phagosome maturation has been considered an integral part of M. 

tuberculosis virulence. Because exported proteins are implicated in the process of M. 

tuberculosis phagosome maturation arrest, we tested the possibility that the accessory 

SecA2 protein export system is important for blocking phagosome maturation. Our data 

in chapter three shows the ∆secA2 mutant to be defective in the process of phagosome 

maturation arrest. Compared to H37Rv, the ΔsecA2 mutant resides in a phagosome that is 

more acidic and stains positive for surface markers of phagosome maturation V-ATPase, 

CD63, and Rab7. However, while these markers indicate phagosome maturation it should 

be pointed out that they are not unique to the fused phagolysosome. Thus, we do not 

know if the ΔsecA2 mutant ends up in a terminally fused phagolysosome. Other assays, 

such as fluorescent dextran fusion assays or electron microscopy, which we have not 

managed to successfully use in our system, would be required to define phagosome-

lysosome fusion of ΔsecA2 mutant containing phagosomes. 

It has been speculated that any M. tuberculosis mutant that fails to grow or is 

metabolically inactive in a macrophage, will eventually traffic to a more mature 

phagosome(21, 27).  This raised the possibility that the ΔsecA2 mutant is in an acidified 

phagosome as a secondary consequence of a failure to grow in macrophages, as opposed 

to being the cause of the mutant intracellular growth defect.  To test whether all 

intracellular growth defects of M. tuberculosis mutants lead to localization in a mature 

phagosome, we examined phagosome acidification of five other mutants with 
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intracellular growth defects, including the leucine auxotroph ∆leuD mutant (17, 23). 

Despite having intracellular growth defects, four out of the five mutants tested behaved 

like wild type in maintaining the ability to block phagosome maturation at 24 hours post 

infection. In fact, the ∆leuD mutant still blocked phagosome acidification out to 72 hours 

post infection. The fifth mutant tested, an esx-1 mutant, was chosen as a positive control 

for a mutant known to have a defect in blocking phagosome maturation(4, 21, 40), and 

our results agreed with previous findings that the esx-1 mutant resides in a more acidic 

phagosome with surface markers of phagosome maturation in comparison to H37Rv.  

Our finding that four individual M. tuberculosis mutant strains with defects in 

intracellular growth maintained a phagosome maturation block argues against the 

possibility that any intracellular growth defect results in phagosome maturation. This left 

us with the other possibility that the phagosome maturation that occurs with the ∆secA2 

mutant is due to a specific defect in exporting an effector protein involved in the process 

and that the failure to block phagosome maturation is the cause of the intracellular growth 

phenotype. 

 

Increased phagosome maturation leads to the ∆secA2 mutant growth arrest.  
 

While blocking phagosome maturation has long been considered integral to M. 

tuberculosis intracellular survival and growth(30), surprisingly few experiments have 

directly tested whether phagosome acidification and maturation directly affect M. 

tuberculosis intracellular replication. From previous research performed in numerous 

laboratories, a strong correlation exists between mutants that fail to block phagosome 

maturation and mutants that have intracellular growth defects (4, 21, 26, 36). However, 
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the causal nature of the relationship between failure to block phagosome maturation and 

intracellular growth inhibition had not been defined. In addition, there are a few reports 

of M. tuberculosis mutants that fail to block phagosome maturation but grow normally in 

macrophages. These exceptions raise the question about the need to block phagosome 

maturation to allow intracellular growth. 

The ∆secA2 mutant provided us with the opportunity to test if failure to block 

phagosome maturation could, in fact, be growth inhibitory.  To answer the question of 

whether phagosome maturation controls the ∆secA2 mutant’s intracellular replication, we 

utilized chemical inhibitors of phagosome maturation. Specifically, bafilomycin A1 and 

concanamycin A are inhibitors of the vacuolar ATPase (V-ATPase) the protein pump that 

is responsible for acidifying the phagosome(9). Treatment of infected macrophages with 

these inhibitors rescued the ∆secA2 mutant from an acidified phagosome, and rescued the 

∆secA2 mutant growth defect. The inhibitors also had a mild positive effect on 

intracellular replication of H37Rv, which makes sense because a fraction of wild type M. 

tuberculosis is found in acidified phagosomes. Importantly, treatment with the inhibitors 

did not rescue intracellular growth defect of the ∆leuD mutant, which remains in a neutral 

phagosome, indicating the effect of these inhibitors was specific for the ∆secA2 mutant.   

In addition to showing the ∆secA2 mutant growth phenotype in macrophages is 

attributable to its defect in blocking phagosome maturation, these experiments make a 

larger statement about the importance of M. tuberculosis avoiding phagosome 

maturation.  Our experiments demonstrated a causal relationship between phagosome 

maturation and M. tuberculosis growth arrest.  
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SecA2 dependent effectors of phagosome maturation 
 

The ΔsecA2 mutant fails to block phagosome maturation compared to H37Rv. 

Because the failure to block phagosome maturation appears to be specific to the lack of 

the SecA2 export pathway, we hypothesize that one or more effectors of phagosome 

maturation depend on SecA2 for export. As a starting point to identify such effectors, we 

looked for SecA2 dependent export of a set of putative protein effectors of phagosome 

maturation. As reported in chapter four, one of the proteins tested, the secreted 

phosphatase SapM, was present at reduced levels in the ∆secA2 mutant.  Less SapM was 

detected in culture filtrates prepared from the ∆secA2 mutant. In addition, we found less 

cell associated SapM, indicating that decreased SapM levels may be a result of decreased 

cytoplasmic stability. One possibility is that cytoplasmic stability is reduced in the 

∆secA2 mutant independent of an export defect. The other possibility, for which there is 

precedent, is that cytoplasmic stability is compromised as a result of an export defect (6, 

7). More research will be required to elucidate the role of SecA2 in SapM export. 

SapM is shown to cleave phosphates from phosphatydlinositol-3-phosphate, an 

important signaling molecule required for phagosome-lysosome fusion(38). Thus, SapM 

is potentially a SecA2 dependent effector of phagosome maturation. However, 

phosphatase levels were only mildly reduced in the ∆secA2 mutant secreted fraction. 

Additionally, the published study linking SapM and phagosome maturation arrest did not 

go as far as showing a direct role of SapM in phagosome maturation arrest(38). For 

example, it has yet to be shown that a sapM mutant is defective for blocking phagosome 
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maturation. The current data only shows that SapM preferably dephosphorylates PI(3)P, 

it does not directly show that this activity leads to phagosome maturation arrest (38).  

Further studies of the SecA2 exported proteome and dissection of the role of 

SapM in phagosome maturation are required to better understand the role of SecA2 in 

phagosome maturation arrest. The current list of putative effectors of phagosome 

maturation is long and there are probably effectors with redundant functions. Thus, there 

may be more than one effector exported by the SecA2 system. To identify other SecA2 

dependent exported proteins it may be necessary to use large-scale proteomic methods. 

Previous studies have employed 2D gel electrophoresis methods to discover SecA2 

dependent exported proteins, and the limitations of these studies have been reached. More 

sensitive quantitative mass spectrometry is an alternative approach that should be 

considered for discovering new SecA2 dependent exported proteins.  

As an alternative approach, for identifying SecA2 dependent effectors of 

phagosome maturation, we have also considered a genetic screen based on TraSH 

analysis (29, 31-33). TraSH is a transposon based genetic method used to determine 

genes that are required for pathogen survival in a particular environment. Using TraSH, 

we would compare the genes required to replicate in a macrophage to the genes required 

to replicate in a macrophage treated with bafilomycin A1. Because the ΔsecA2 mutant is 

specifically rescued in macrophages by addition of bafilomycin A1 or concanamycin A, 

TraSH analysis could be used to find similarly rescuable mutants in macrophages. 

Mutants that can be rescued like the ΔsecA2 mutant with bafilomycin A1, would be 

considered candidate SecA2 dependent effectors of phagosome maturation. 
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Conclusion 
 

The SecA2 system has an impact on multiple components of the innate immune 

response, such as cytokines, apoptosis, and here we show phagosome maturation. We 

have shown in this thesis that the SecA2 protein export pathway is required for blocking 

phagosome maturation. Furthermore, blocking phagosome maturation is required for M. 

tuberculosis intracellular replication (Figure 5-1). While a role in exporting the SapM 

phosphatase may prove to be the important contribution of the SecA2 system to 

phagosome maturation arrest, we have yet to prove this to be the case. It is certainly 

possible that there are additional effectors of phagosome maturation arrest that are 

controlled by the SecA2 system. This work shows a direct causal link between 

phagosome maturation and M. tuberculosis growth arrest reasserting phagosome 

maturation arrest as a critical step in virulence. Further, we have opened up a new avenue 

for discovering effectors of phagosome maturation by finding SecA2 exported proteins.  
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Figure 5-1. The accessory SecA2 protein export system promotes 
growth in macrophages by blocking phagosome maturation. In this 
model SecA2 is required for export of one or more effectors of phagosome 
maturation SapM as one potential effector and the question mark indicates 
other possible effectors. Without secA2 the effectors are not properly 
localized to prevent phagosome maturation and the mutant containing 
phagosome progresses to a late-endosome or possibly a phagolysosome, 
and bacterial replication is arrested. It is unclear whether or not the ∆secA2 
mutant blocks phagosome-lysosome fusion. 
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