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ABSTRACT
VASILEIOS MAROULAS: Small Noise Large Deviations for Infinite Dimensional

Stochastic Dynamical Systems

(Under the direction of Amarjit Budhiraja)

Large deviations theory concerns with the study of precise asymptotics governing

the decay rate of probabilities of rare events. A classical area of large deviations is the

Freidlin–Wentzell (FW) theory that deals with path probability asymptotics for small

noise Stochastic Dynamical Systems (SDS). For finite dimensional SDS, FW theory has

been very well studied. The goal of the present work is to develop a systematic framework

for the study of FW asymptotics for infinite dimensional SDS. Our first result is a general

LDP for a broad family of functionals of an infinite dimensional small noise Brownian

motion (BM). Depending on the application, the driving infinite dimensional BM may

be given as a space–time white noise, a Hilbert space valued BM or a cylindrical BM.

We provide sufficient conditions for LDP to hold for all such different model settings.

As a first application of these results we study FW LDP for a class of stochastic reac-

tion diffusion equations. The model that we consider has been widely studied by several

authors. Two main assumptions imposed in all previous studies are the boundedness

of the diffusion coefficient and a certain geometric condition on the underlying domain.

These restrictive conditions are needed in proofs of certain exponential probability esti-

mates that form the basis of classical proofs of LDPs. Our proofs instead rely on some

basic qualitative properties, eg. existence, uniqueness, tightness, of certain controlled

analogues of the original systems. As a result, we are able to relax the two restrictive

requirements described above.

As a second application, we study large deviation properties of certain stochastic
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diffeomorphic flows driven by an infinite sequence of i.i.d. standard real BMs. LDP for

small noise finite dimensional flows has been studied by several authors. Typical space–

time stochastic models with a realistic correlation structure in the spatial parameter

naturally leads to infinite dimensional flows. We establish a LDP for such flows in the

small noise limit. We also apply our result to a Bayesian formulation of an image analysis

problem. An approximate maximum likelihood property is shown for the solution of an

optimal image matching problem that involves the large deviation rate function.
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CHAPTER 1

Introduction

Theory of Large Deviations concerns with the study of probabilities of rare events. It

is one of the most active research fields in probability, having many applications to areas

such as statistical inference, queueing systems, communication networks, information

theory, risk sensitive control, partial differential equations and statistical mechanics. We

refer the reader to [13, 14, 15] for background, motivation, applications and fundamental

results in the area.

Consider, for example, one of the classical subjects in Probability Theory–sum of i.i.d.

random variables. Suppose that X1, X2, · · · is an i.i.d. sequence of random variables on

a probability space (Ω,F ,P) with mean µ and variance σ2. Let Sn =
∑n

i=1Xi, n ≥ 1 be

the partial sums. Then by the strong law of large numbers (SLLN) Sn

n
→ µ a.s., and by

the central limit theorem (CLT) Sn−nµ
σ
√

n
→ Z in distribution, where Z is a standard normal

random variable. While the SLLN provides the convergence of the empirical average Sn

n
to

µ as n→∞, the CLT gives the asymptotics of the probability of deviations of Sn from nµ

by an amount of order
√
n. Deviations of this size are usually referred as “normal”. On

the other hand, deviations of order n; for example the event An
.
= {Sn ≥ (µ+a)n}, a > 0,

are referred as “large”. Note that the probability of the above event tends to zero

as n → ∞. Theory of Large Deviations deals with the study of precise asymptotics

governing the decay rate of such probabilities.

In particular, for the event An introduced above, the celebrated Cramér’s theorem



(cf. p.18 [13]) gives

− inf
x∈(µ+α,∞)

I(x) ≤ lim inf
n→∞

1

n
log P(An) ≤ lim sup

n→∞

1

n
log P(An) ≤ − inf

x∈[µ+α,∞)
I(x)

where I(x)
.
= supλ∈R{λx − Λ(λ)} is the Legendre transformation of the log moment

generating function of X1, i.e. Λ(λ)
.
= log EeλX1 , λ ∈ R. The function I governs the rate

of (exponential) decay of such probabilities of large deviations and is referred to as the

rate function.

One of the classical areas of large deviations is the Freidlin–Wentzell theory that deals

with path probability asymptotics for small noise stochastic dynamical systems. As a

motivating example consider a k–dimensional stochastic differential equation of the form:

dXε(t) = b
(
Xε(t)

)
dt+

√
ε a
(
Xε(t)

)
dW (t), t ∈ [0, T ], (1.1)

with coefficients a, b satisfying suitable regularity properties and W a finite dimensional

standard Brownian motion. As ε → 0, Xε P→ X0 in C([0, T ] : Rk) (for a Polish space E ,

C([0, T ] : E) denotes the space of continuous functions from [0, T ] to E), where X0 solves

the ODE ẋ = b(x). Freidlin–Wentzell theory describes precise asymptotics (as ε → 0)

of probabilities of events such as
{
sup0≤t≤T |Xε(t)−X0(t)| > c

}
. For finite dimensional

stochastic differential equations (SDEs) such a study is classical and we refer the reader

to [20] for a comprehensive account.

The goal of the present work is to undertake a similar analysis for infinite dimensional

stochastic dynamical systems. Although there are several works that have considered

Freidlin–Wentzell asymptotics for infinite dimensional stochastic systems, typically proofs

proceed through approximation and discretization arguments that are specific to the

model under study. One of the main emphasis in the current work is to develop a

unified framework for addressing such asymptotic questions for a broad family of infinite

dimensional stochastic dynamical systems. Starting points of our work are the variational

2



representation for a Hilbert space valued Brownian motion presented in Theorem 2.6.1

and a large deviation result for functionals of such Brownian motions, given in Theorem

3.3.1, that was established in [8].

The general large deviation result of Theorem 3.3.1 is our main tool in the study of

small noise large deviations for stochastic differential equations driven by infinite dimen-

sional Brownian motions. Depending on the application of interest the infinite dimen-

sional nature of the driving noise may be given in a variety of forms. Some examples

of such forms include–an infinite sequence of i.i.d standard (1–dim) Brownian motions,

a cylindrical Brownian motion, a Hilbert space valued Brownian motion, a space–time

Brownian sheet. We introduce in Chapter 2 all such different descriptions of an infinite

dimensional Brownian motion and using relationships between them obtain, in Chap-

ter 3, general large deviations results (analogous to Theorem 3.3.1) for functionals of

Brownian motions given by such alternate descriptions. In fact we develop a somewhat

strengthened form of Theorem 3.3.1 by establishing a uniform large deviation principle

(LDP) with respect to some parameter (typically for SDEs, this parameter is the ini-

tial data). Uniform LDPs are needed in the study of exit time and invariant measure

asymptotics for small noise Markov processes.

In Chapter 4, as a first application of the general large deviation results established

in Chapter 3 (specifically Theorem 3.6.2 ), we will study Freidlin–Wentzell LDP for a

class of reaction–diffusion stochastic partial differential equations (SPDE) [see (4.1)], for

which well–posedness has been studied in [27] and a small noise LDP established in [26].

The class includes, as a special case, the reaction–diffusion SPDEs considered in [36] (see

Remark 4.2.2).

Our proof of the LDP proceeds by verification of the general sufficient condition

Assumption 3.3.1. The key ingredient in the verification of this assumption are the well–

posedness and compactness for sequences of controlled versions of the original SPDE–see

Theorems 4.2.3, 4.2.4 and 4.2.5. For comparison, the statements analogous to Theorems

3



4.2.3, 4.2.4 in the finite dimensional setting (1.1) would say that for any θ ∈ [0, 1) and

any L2–bounded control u, (i.e. a predictable process satisfying
∫ T

0
||u(s)||2ds ≤M , a.s.

for some M ∈ (0,∞)), and any initial condition x ∈ Rk, the equation

dXθ,u
x (t) = b

(
Xθ,u

x (t)
)
dt+ θa

(
Xθ,u

x (t)
)
dW (t) + a

(
Xθ,u

x (t)
)
u(t)dt, Xθ,u

x (0) = x (1.2)

has a unique solution for t ∈ [0, T ]. Also, the statement analogous to Theorem 4.2.5

in the finite dimensional setting would require that if θ(ε) → θ(0) = 0, if a sequence

of uniformly L2–bounded controls uε satisfies uε → u in distribution (with the weak

topology on the bounded L2−ball), and if xθ(ε) → x (all as ε→ 0), then X
θ(ε),uε

xθ(ε) → X0,u
x

in distribution.

As one may expect, the techniques and estimates used to prove such properties for

the original (uncontrolled) stochastic model can be applied here as well, and indeed

proofs for the controlled SPDEs proceed in very much the same way as those of their

uncontrolled counterparts. A side benefit of this pleasant situation is that one can often

prove large deviation properties under mild conditions, and indeed conditions that differ

little from those needed for a basic qualitative analysis of the original equation. In the

present setting, we are able to relax two of the main technical conditions used in [26],

which are the uniform boundedness of the diffusion coefficient [i.e., the function F in

(4.1)] and the so called “cone condition” imposed on the underlying domain (cf. p.320

[25]). In place of these, we require only that the domain is a bounded open set and

that the diffusion coefficients satisfy the standard linear growth condition. It is stated

in Remark 3.2 of [26] that although unique solvability holds under the weaker linear

growth condition, they are unable to derive the corresponding large deviation principle.

The conditions imposed on F and O in [26] enter in an important way in their proofs

of the large deviation principle which is based on obtaining suitable exponential tail

probability estimates for certain stochastic convolutions in Hölder norms. This relies on
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the application of a generalization of Garsia’s theorem [21], which requires the restrictive

conditions alluded to above. An important point is that these conditions are not needed

for unique solvability of the SPDE.

In contrast, the weak convergence proof presented here does not require any expo-

nential probability estimates and hence these assumptions are no longer needed. Indeed,

suitable exponential continuity (in probability) and exponential tightness estimates are

perhaps the hardest and most technical parts of the usual proofs based on discretization

and approximation arguments. This becomes particularly hard in infinite dimensional

settings where these estimates are needed with metrics on exotic function spaces (e.g.,

Hölder spaces, spaces of diffeomorphisms, etc.).

Standard approaches to small noise LDP for infinite dimensional SDE build on the

ideas of [2]. The key ingredients to the proof are as follows. One first considers an

approximating Gaussian model which is obtained from the original SDE by freezing

the coefficients of the right hand side according to a time discretization. Each such

approximation is then further approximated by a finite dimensional system uniformly

in the value of the frozen (state) variable. Next one establishes an LDP for the finite

dimensional system and argues that the LDP continues to hold as one approaches the

infinite dimensional model. Finally, one needs to obtain suitable exponential continuity

estimates in order to obtain the LDP for the original non–Gaussian model from that

for the frozen Gaussian model. Exponential continuity (in probability) and exponential

tightness estimates that are used to justify these approximations are often obtained

under additional conditions on the model than those needed for well posedness and

compactness. In particular, as noted earlier, for the reaction diffusion systems considered

here, these rely on exponential tail probability estimates in Hölder norms for certain

stochastic convolutions which are only available for bounded integrands.

An alternative approach, based on nonlinear semigroup theory and infinite dimen-

sional Hamilton–Jacobi (HJ) equations, has been developed in [18] (see also [19]). The
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method of proof involves showing that the value function of the limit control problem

that is obtained by the law of large number analysis of certain controlled perturbations

of the original stochastic model, uniquely solves an appropriate infinite dimensional HJ

equation in a suitable viscosity sense. In addition, one needs to establish exponential

tightness by verifying a suitable exponential compact containment estimate. Although

both these steps have been verified for a variety of models (cf. [19]), the proofs are quite

technical and rely on a uniqueness theory for infinite dimensional nonlinear PDEs. The

uniqueness requirement on the limit HJ equation is an extraneous artifact of the ap-

proach, and different stochastic models seem to require different methods for this, in

general very hard, uniqueness problem. In contrast to the weak convergence approach,

it requires an analysis of the model that goes significantly beyond the unique solvability

of the SPDE. In addition, as discussed previously the exponential tightness estimates

are typically the most technical part of the large deviation analysis for infinite dimen-

sional models, and are often only available under “sub–optimal” conditions when using

standard techniques.

In Chapter 5 we will consider another application of the general large deviation prin-

ciple established in Chapter 3. In this chapter we will prove a LDP for a wide family class

of stochastic flows in the small noise limit. Stochastic flows of diffeomorphisms have been

a subject of much research [4, 28, 17, 7]. In this work, we are interested in an important

subclass of such flows, namely the Brownian flows of diffeomorphisms [28]. Our goal is to

study small noise asymptotics, specifically, the large deviation principle (LDP) for such

flows.

Elementary examples of Brownian flows are those constructed by solving finite dimen-

sional Itô stochastic differential equations. More precisely, suppose b, fi, i = 1, . . . ,m are

functions from Rd×[0, T ] to Rd that are continuous in (x, t) and (k+1)–times continuously

differentiable (with uniformly bounded derivatives) in x. Let β1, . . . βm be independent

standard real Brownian motions on some filtered probability space (Ω,F ,P, {Ft}). Then

6



for each s ∈ [0, T ] and x ∈ Rd, there is a unique continuous {Ft}−adapted, Rd−valued

process φs,t(x), s ≤ t ≤ T , satisfying

φs,t(x) = x+

∫ t

s

b(φs,r(x), r)dr +
m∑

i=1

∫ t

s

fi(φs,r(x), r)dβi(r). (1.3)

By choosing a suitable modification, {φs,t, 0 ≤ s ≤ t ≤ T} defines a Brownian flow of

Ck−diffeomorphisms (see Section 5.2). In particular, denoting by Gk the topological

group of Ck–diffeomorphisms (see Section 5.3 for precise definitions of the topology and

the metric on Gk), one has that φ ≡ {φ0,t, 0 ≤ t ≤ T} is a random variable with values

in the Polish space Ŵk = C([0, T ] : Gk). For ε ∈ (0,∞), when fi is replaced by εfi in

(1.3), we write the corresponding flow as φε. Large deviations for φε in Ŵk, as ε → 0,

have been studied for the case k = 0 in [32, 3] and for general k in [5].

As is well known [30, 4, 28], not all Brownian flows can be expressed as in (1.3) and

in general one needs infinitely many Brownian motions to obtain a SDE representation

for the flow. Indeed typical space–time stochastic models with a realistic correlation

structure in the spatial parameter naturally lead to a formulation with infinitely many

Brownian motions. One such example is given in Section 5.5. Thus, following Kunita’s

[28] notation for stochastic integration with respect to semi–martingales with a spatial

parameter, the study of general Brownian flows of Ck–diffeomorphisms leads to SDEs of

the form

dφs,t(x) = F (φs,t(x), dt), φs,s(x) = x, 0 ≤ s ≤ t ≤ T, x ∈ Rd, (1.4)

where F (x, t) is a Ck+1–Brownian motion (See Definition 5.2.2). Note that such an F

can be regarded as a random variable with values in the Polish space Wk = C([0, T ] :

Ck+1(Rd)), where Ck+1(Rd) is the space of (k+1)–times continuously differentiable func-

tions from Rd to Rd. Representations of such Brownian motions in terms of infinitely

many independent standard real Brownian motions is well known (see Exercise 3.2.10

7



[28]). Indeed, one can represent F as

F (x, t)
.
=

∫ t

0

b(x, r)dr +
∞∑
i=1

∫ t

0

fi(x, r)dβi(r), (x, t) ∈ Rd × [0, T ], (1.5)

where {βi}∞i=1 is an infinite sequence of i.i.d. real Brownian motions and b, fi are suitable

functions from Rd × [0, T ] to Rd (see below Definition 5.2.2 for details).

Letting a(x, y, t) =
∑∞

i=1 fi(x, t)f
′
i(y, t) for x, y ∈ Rd, t ∈ [0, T ], the functions (a, b) are

referred to as the local characteristics of the Brownian motion F . When equation (1.4)

is driven by the Brownian motion F ε with local characteristics (εa, b), we will denote the

corresponding solution by φε. In Chapter 5 we will establish a large deviation principle

for (φε, F ε) in Ŵk−1 ×Wk−1. Note that the LDP is established in a larger space than

the one in which (φε, F ε) take values (namely, Ŵk ×Wk). This is consistent with results

in [32, 3, 5], which consider stochastic flows driven by only finitely many real Brownian

motions. The main technical difficulty in establishing the LDP in Ŵk×Wk is the proof of

a result analogous to Proposition 5.4.2, which establishes tightness of certain controlled

processes, when k − 1 is replaced by k.

The proof of our main result (Theorem 5.3.1) proceeds by verification of the general

sufficient condition Theorem 3.4.1 obtained in Chapter 3. The verification of this condi-

tion essentially translates into establishing weak convergence of certain stochastic flows

defined via controlled analogues of the original model (see Theorem 5.3.2). These weak

convergence proofs proceed by first establishing convergence for N−point motions of the

flow and then using Sobolev and Rellich–Kondrachov embedding theorems (see the proof

of Proposition 5.4.2) to argue tightness and convergence as flows. The key point here

is that the estimates needed in the proofs are precisely those that have been developed

in [28] for general qualitative analysis (e.g. existence, uniqueness) of the uncontrolled

versions of the flows. Unlike in [32, 3] and [5] (which consider only finite dimensional

flows), the proof of the LDP does not require any exponential probability estimates or

8



discretization/approximation of the original model.

In Section 5.5 we study an application of these results to a problem in image anal-

ysis. Stochastic diffeomorphic flows have been suggested for modeling prior statistical

distributions on the space of possible images/targets of interest in the study of nonlinear

inverse problems in this field (see [16] and references therein). Along with a data model,

noise corrupted observations with such a prior distribution can then be used to compute

a posterior distribution on this space, the “mode” of which yields an estimate of the true

image underlying the observations. Motivated by such a Bayesian procedure a variational

approach to this image matching problem has been suggested and analyzed in [16]. Our

goal is to develop a rigorous asymptotic theory that relates standard stochastic Bayesian

formulations of this problem, in the small noise limit, with the deterministic variational

approach taken in [16]. This is established in Theorem 5.5.1 of Section 5.

Other possible applications of the results of Chapter 5 are as follows. Large deviations

for stochastic flows were studied in [32] in order to obtain large deviation estimates for

finite dimensional anticipative SDEs. The results of the current work are the first step

towards the study of the analogous problem for infinite dimensional SDEs. The paper [5]

used the LDP for stochastic diffeomorphic flows to study large deviation properties, as

ε→ 0, of finite dimensional diffusions generated by εL1+L2, where L1, L2 are two second

order differential operators. The analogous problem for infinite dimensional diffusions is

currently open; a key ingredient is again the LDP for infinite dimensional flows obtained

in the current work.

The dissertation is organized as follows. In Chapter 2 we give some background on

infinite dimensional Brownian motions and recall the variational representation for a

Hilbert space valued BM obtained in [8]. Chapter 3 reviews some background definitions

and results in large deviations theory. We also strengthen the main large deviation

result of [8] by proving a uniform LDP. Chapter 4 is devoted to the study of LDP for

small noise stochastic reaction–diffusion SPDEs. Finally, in Chapter 5 we study large

9



deviations properties of infinite dimensional stochastic flows. The two appendices cover

some basic functional analysis notation, definitions and background material.
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CHAPTER 2

Infinite dimensional Brownian motion

2.1 Introduction.

An infinite dimensional Brownian motion arises in a natural fashion in the study

of stochastic processes with a spatial parameter. We refer the reader to [12, 25, 38], for

numerous examples in physical sciences where an infinite dimensional Brownian motion is

used to model the driving noise for some dynamical system. Depending on the application

of interest the infinite dimensional nature of the driving noise may be expressed in a

variety of forms. Some examples include–an infinite sequence of i.i.d. standard (1–dim)

Brownian motions, a Hilbert space valued Brownian motion, a cylindrical Brownian

motion, a space–time Brownian sheet. In this chapter, we will describe all of these

models and explain how the various models are related to each other.

2.2 Infinite sequence of i.i.d Brownian motions.

Let (Ω,F ,P) be a probability space with an increasing family of right continuous

P–complete sigma fields {Ft}t≥0. We will refer to (Ω,F ,P, {Ft}) as a filtered probability

space. Let {βi}∞i=1 be an infinite sequence of independent, standard, one dimensional,

{Ft}–Brownian motions given on this filtered probability space. We will frequently con-

sider all our stochastic processes defined on a finite time interval [0, T ], where T ∈ (0,∞)

is a fixed arbitrary terminal time. We denote by R∞, the product space of countably

infinite copies of the real line. Then β = {βi}∞i=1 is a random variable with values in the



Polish space C([0, T ] : R∞) and represents the simplest model for an infinite dimensional

Brownian motion.

2.3 Hilbert space valued Brownian motion.

Frequently in applications it is convenient to express the driving noise, analogous to

finite dimensional theory, as a Hilbert space valued stochastic processes. Let (H,< ·, · >)

be a real separable Hilbert space. Let Q be a bounded, strictly positive, trace class

operator on H. We refer the reader to Appendix A for some basic Functional Analytic

definitions.

Definition 2.3.1. An H–valued stochastic process {W (t), t ≥ 0}, given on a filtered

probability space defined as in Section 2.2 is called a Q–Wiener process with respect to

{Ft} if for every non–zero h ∈ H,

{
< Qh, h >− 1

2< W (t), h >, {Ft}
}

t≥0

is a one–dimensional standard Wiener process.

It can be shown that if W is a Q–Wiener process as in Definition 2.3.1 then P[W ∈

C([0, T ] : H)] = 1. Let {ei}∞i=1 be a complete orthonormal system (CONS) for the Hilbert

space H such that Qei = λiei where λi is the strictly positive ith eigenvalue of Q which

corresponds to the eigenvector ei. Since Q is a trace class operator, we have
∑∞

i=1 λi <∞.

Define β̃i(t)
.
=< W (t), ei >, t ≥ 0, i ∈ N. It is easy to check that {β̃i} is a sequence of

independent {Ft}–Brownian motions with quadratic variation: << β̃i, β̃j >>t= λiδijt,

where δij = 1 if i = j and 0 otherwise. Setting βi = 1√
λi
β̃i we have that {βi}∞i=1 is

a sequence of independent, standard, one dimensional, {Ft}–Brownian motions. Thus

starting from a Q–Wiener process one can produce an infinite collection of independent,

standard Brownian motions in a straight forward manner. Conversely, given a collection

of independent, standard Brownian motions {βi}∞i=1 and (Q, {ei, λi}) as above one can

12



obtain a Q–Wiener process W on setting:

W (t)
.
=

∞∑
i=1

√
λi βi(t)ei (2.1)

The right hand side of (2.1) clearly converges for each fixed t in L2(Ω). Furthermore, one

can check that the series also converges in C([0,∞) : H) almost surely, where C([0,∞) :

H) is the space of continuous functions from [0,∞) to the Hilbert space H
(
see Theorem

4.3, pp. 88–89, [12]
)
. These observations lead to the following result. Throughout this

work Polish spaces will always be endowed with their Borel σ−fields and explicit reference

to this σ−field will be omitted in all measurability statements.

Proposition 2.3.1. There exist measurable maps f : C([0, T ] : R∞) 7−→ C([0, T ] : H)

and g : C([0, T ] : H) 7−→ C([0, T ] : R∞) such that f(β) = W and g(W ) = β a.s.

2.4 Cylindrical Brownian motion.

Equation (2.1) above can be interpreted as saying that the trace class operator Q

injects a “coloring” to a white noise, namely an independent sequence of standard Brow-

nian motions, in a manner such that the resulting process has better regularity. In some

models of interest, such coloring is obtained indirectly in terms of (state dependent)

diffusion coefficients. It is natural, in such situations to consider the driving noise as a

“cylindrical Brownian motion” rather than a Hilbert space valued Brownian motion. Let

(H,< ·, · >) be as in Section 2.3. We denote the norm on H by || · ||. Fix a filtered

probability space as in Section 2.2.

Definition 2.4.1. A family {Bt(h) ≡ B(t, h) : t ≥ 0, h ∈ H} of real random variables is

said to be an {Ft}–cylindrical Brownian motion if:

1. For every h ∈ Hwith ||h|| = 1, {B(t, h),Ft}t≥0 is a standard Wiener process.
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2. For every t ≥ 0, a1, a2 ∈ R and f1, f2 ∈ H,

B(t, a1f1 + a2f2) = a1B(t, f1) + a2B(t, f2) a.s.

If {Bt(h) : t ≥ 0, h ∈ H} is a cylindrical Brownian motion as in Definition 2.4.1, and

{ei} is a complete orthonormal system in H then setting βi(t)
.
= B(t, ei), we see that {βi}

is a sequence of independent, standard, real–valued Brownian motions. Conversely, given

a sequence {βi}∞i=1 of independent, standard Brownian motions on a common filtered

probability space,

Bt(h)
.
=

∞∑
i=1

βi(t) < ei, h > (2.2)

defines a cylindrical Brownian motion on H. The above series converges in L2(Ω) for

each fixed t ≥ 0, h ∈ H and also a.s. in C([0,∞) : R) for each h ∈ H. Given a cylindrical

Brownian motion B on H as above, one can construct a Hilbert space valued Wiener

process W on an enlargement of H in a manner so that the two processes generate the

same filtration. This construction proceeds as follows. Let (H1, < ·, · >1) be a Hilbert

space such that H1 ⊃ H, the identity map i : H → H1 is a Hilbert–Schmidt operator and

Q1 = ii∗ is a strictly positive trace class operator on H1, where i∗ is the adjoint operator

of i. Obviously, H1, Q1 are not uniquely determined. For example, let {λi}∞i=1 be an

arbitrary sequence of strictly positive real numbers such that
∑∞

i=1 λi < ∞. Define an

inner product on H as

< h, k >1
.
=

∞∑
i=1

λi < h, ei >< ei, k >, h, k ∈ H

and let H1 be the closure of H in the above inner product. Then it is easy to check that

the embedding map from (H,< ·, · >) into (H1, < ·, · >1) is Hilbert–Schmidt and the

operator Q1 = ii∗ on H1 is a strictly positive trace class operator. The Hilbert–Schmidt

embedding implies that if {ei}∞i=1 and {fk}∞k=1 are complete orthonormal system in H
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and H1, respectively, then
∞∑
i=1

∞∑
k=1

< ei, fk >
2
1 <∞. (2.3)

From (2.3) we infer that for each t ≥ 0 the sequence {
∑n

j=1 ejβj(t)} converges, in proba-

bility, in H1 as n→∞, where {βi} is the sequence of real Brownian motions introduced

in Definition 2.4.1, and

W ∗(t)
.
=

∞∑
j=1

ejβj(t) (2.4)

is a Q1–Wiener process on H1. The series (2.4) above converges in L2(Ω) for every t and

in C([0,∞) : H1) for a.e. ω. The choice of the Hilbert space H1 is immaterial in the

following sense:

Proposition 2.4.1. Let B be a cylindrical Brownian motion as in Definition 2.4.1 and

let W ∗ be the Q1–Wiener process as constructed above. Also, let β = {βi}∞i=1 be as

introduced in Section 2.2. Then σ{W ∗
s : 0 ≤ s ≤ t} = σ{Bs(h) : 0 ≤ s ≤ t, h ∈ H} =

σ{βi(s) : 0 ≤ s ≤ t, i ∈ N}, t ≥ 0. In particular if X is a σ{B(s, h) : 0 ≤ s ≤ T, h ∈ H}

measurable random variable then there exist measurable maps f : C([0, T ] : H1) 7−→ R

and g : C([0, T ] : R∞) 7−→ R such that f(W ∗) = g(β) = X a.s.

2.5 Brownian sheet

In many physical dynamical systems with randomness, the driving noise is given as a

space–time white noise process, also referred to as a Brownian sheet. In this section we

introduce this stochastic process and describe its relationship with a cylindrical Brownian

motion. We also briefly discuss stochastic integration with respect to a Brownian sheet.

Let (Ω,F ,P, {Ft}) be a filtered probability space and fix a bounded open subset O ⊆ Rd.

Definition 2.5.1. A Gaussian family of real–valued random variables
{
B(t, x), (t, x) ∈

R+ ×O
}

on the above filtered probability space is called a Brownian sheet if

1. EB(t, x) = 0, ∀(t, x) ∈ R+ ×O
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2. B(t, x)−B(s, x) is independent of {Fs}, ∀ 0 ≤ s ≤ t and x ∈ O

3. Cov
(
B(t, x), B(s, y)

)
= λ(At,x ∩As,y), where λ is the Lebesgue measure on R+×O

and At,x
.
=
{
(s, y) ∈ R+ ×O

∣∣ 0 ≤ s ≤ t and yj ≤ xj j = 1, · · · , d
}
.

4. The map (t, u) 7→ B(t, u) from [0,∞)×O to R is continuous a.s.

To introduce stochastic integrals with respect to a Brownian sheet we begin with the

following definitions.

Definition 2.5.2. (Elementary and simple functions) A function f : O× [0, T ]×Ω → R

is elementary if there exist a, b ∈ [0, T ], a ≤ b, a bounded {Fa}–measurable random

variable X and A ∈ B(O) such that

f(x, s, ω) = X(ω)1(a,b](s)1A(x)

A finite sum of elementary functions is referred to as a simple function. We denote by

S the class of all simple functions.

Definition 2.5.3. (Predictable σ-field) The predictable σ–field P on Ω× R+ ×O is the

σ–field generated by S. A function f : Ω×R+ ×O → R is called a predictable process if

it is P–measurable.

For fixed T ≥ 0 let P2(T ) be the class of all squared integrable and predictable

processes f such that
∫

[0,T ]×O f
2(s, x)dsdx < ∞, a.s. Also, let L2(T ) be the subset

of those processes that satisfy
∫

[0,T ]×O Ef 2(s, x)dsdx < ∞. We will suppress T in the

notations P2(T ), L2(T ) unless needed. For all f ∈ P2 the stochastic integral Mt(f)
.
=∫

[0,t]×O f(s, u)B(dsdu), t ∈ [0, T ] is well defined as in Chapter 2 of [38]. Furthermore for

all f ∈ P2, {Mt(f)}0≤t≤T is a continuous {Ft}–local martingale which is in fact a square

integrable martingale if f ∈ L2. The quadratic variation of this local martingale is given

as << M >>t
.
=
∫

[0,t]×O f
2(s, x)dsdx. Additional properties of the stochastic integral can

be found in [38].
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Let {φi}∞i=1 be a complete orthonormal system in L2(O) (space of real, square inte-

grable functions on O). Then it is easy to verify that β ≡ {βi}∞i=1 defined as βi(t)
.
=∫

[0,t]×O φi(x)B(dsdx), i ≥ 1, t ∈ [0, T ] is a sequence of independent standard, real Brow-

nian motions. Also for (t, u) ∈ [0,∞)×O

B(t, x) =
∞∑
i=1

βi(t)

∫
φi(y)1(−∞,x](y)dy, (2.5)

where (−∞, x] = {y ∈ O | yi ≤ xi, ∀i = 1, · · · , d} and the above series converges in

L2(Ω) for each (t, x). From these considerations it follows that

σ{B(t, x); t ∈ [0, T ], x ∈ O} = σ{βi(t), i ≥ 1, t ∈ [0, T ]}. (2.6)

As a consequence of (2.6) we have the following result.

Proposition 2.5.1. Let f : C([0, T ] × O : R) → R be a measurable map. Then there

exists a measurable map g : C([0, T ]×O : R∞) → R such that f(B) = g(β) a.s., where β

is as defined above (2.5).

2.6 Variational representations for infinite dimensional

Brownian motions

The large deviation results established in this work critically use certain variational

representations for infinite dimensional Brownian motions that we now present.

Let (Ω,F ,P, {Ft}) be a filtered probability space and let W be an H–valued Q–

Wiener process, where Q is a bounded, strictly positive, trace class operator on the

Hilbert space H. Let H0 = Q1/2H, then H0 is a Hilbert space with the inner product

< h, k >0
.
=< Q−1/2h,Q−1/2k >, where h, k ∈ H0. Also the embedding map i : H0 7→ H

is a Hilbert–Schmidt operator and ii∗ = Q. Analogously to Definitions 2.5.2 and 2.5.3,

a function f : H0 × [0, T ] × Ω → R is elementary if there exist a, b ∈ [0, T ], a ≤ b, a
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bounded {Fa}–measurable random variable X and A ∈ B(H0) such that f(x, s, ω) =

X(ω)1(a,b](s)1A(x). Here, and throughout this work, for a Polish space E , B(E) denotes

the Borel σ−field on E . A finite sum of elementary functions is referred to as a simple

function. We denote by S the class of all simple functions. The predictable σ–field P on

Ω×R+ ×H0 is the σ–field generated by S. A function f : Ω×R+ ×H0 → R is called a

predictable process if it is P–measurable. Define for a fixed T ∈ (0,∞)

A =
{
φ | φ is H0–valued, {Ft}–predictable process and P

[∫ T

0

||φ(s)||20ds <∞
]

= 1
}
.

(2.7)

Theorem 2.6.1. (Budhiraja and Dupuis [8]) Let f be a bounded, Borel measurable func-

tion mapping C([0, T ] : H) into R. Then,

− log E(exp{−f(W )}) = inf
u∈A

E
(1
2

∫ T

0

||u(s)||20ds+ f(W +

∫ ·

0

u(s)ds)
)
.

As immediate corollary to Theorem 2.6.1, Proposition 2.4.1 and 2.5.1, we have the

following representation theorems for a cylindrical Brownian motion and a Brownian

sheet respectively. Define A∗ to be the class of H–valued {Ft}–predictable processes φ,

satisfying P{
∫ T

0
||φ(s)||2ds <∞} = 1.

Corollary 2.6.1. Let {ei}, as before, be a complete orthonormal system in H and let

{Bt(h) : 0 ≤ t ≤ T, h ∈ H} be an {Ft}–cylindrical Brownian motion. Let X be a bounded

random variable which is measurable with respect to σ{Bs(h) : 0 ≤ s ≤ T, h ∈ H}. Then,

− log E(exp{−X}) = inf
u∈A∗

E
(1
2

∫ T

0

‖ u(s) ‖2 ds+ f(W ∗(·) +

∫ ·

0

u(s)ds)
)

= inf
u∈A∗

E
(1

2

∫ T

0

‖ u(s) ‖2 ds+ g
(
βu
))

(2.8)

where βu .
= {Bu

i = B(ei) +
∫ ·

0
ui(s)ds}∞i=1, ui(s) =< u(s), ei > and f , g, W ∗ are related

to B and X as in Lemma 2.4.1.
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Corollary 2.6.2. Let f : C([0, T ]×O : R) → R be a bounded measurable map. Let B be

a Brownian sheet as in Definition 2.5.1. Then,

− log E(exp{−f(B)}) = inf
u∈P2

E
(1
2

∫ T

0

∫
O∩(−∞,x]

u2(s, r)drds+ f(Bu)
)

(2.9)

where Bu(t, x) = B(t, x) +
∫ t

0

∫
[0,x]∩O u(s, y)dyds and [0, x] = {y ∈ O | 0 ≤ yi ≤ xi, ∀i =

1, · · · , d}.
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CHAPTER 3

Large deviations

3.1 Introduction

In this chapter we present the general large deviation principle for functionals of a

Hilbert space valued Brownian motion that was established in [8]. Next, using results of

Chapter 2 we translate this result in Sections 3.4 and 3.5 to settings where the underlying

infinite dimensional noise is given as a cylindrical Brownian motion or as a space–time

white noise. Finally in Section 3.6 we establish a strengthened version of the result in [8]

(and the results in Sections 3.4 and 3.5) by proving a uniform (in initial condition) large

deviation principle. Such uniform large deviation estimates are critical in the study of

exit time and invariant measures asymptotics for the corresponding stochastic processes.

We begin with some basic definitions and background results in Large Deviations Theory.

3.2 Large deviation principle and the Laplace prin-

ciple

Let {Xε, ε > 0} be a collection of random variables defined on a probability space

(Ω,F ,P) and taking values in a Polish space (i.e., complete separable metric space) E .

Denote the metric on E as d(·, ·) and expectation with respect to P by E. The theory of

large deviations concerns with events A for which the probabilities P(Xε ∈ A) converge

to zero exponentially fast as ε → 0. The exponential decay rate of such probabilities is



typically expressed in terms of a “ rate function” I mapping E into [0,∞].

Definition 3.2.1. (Rate function) A function I : E → [0,∞] is called a rate function on

E if for each M <∞ the level set {x ∈ E : I(x) ≤M} is a compact subset of E.

Remark 3.2.1. 1. The compactness of level sets implies that a rate function is a

lower semi–continuous function. In many works, a rate function is defined with

the compact level set requirement replaced by the statement that I is lower semi–

continuous; while a function that in addition has compact level sets, is referred to

as a good rate function. In our work all rate functions will be good and so the

adjective“good” will be omitted.

2. With an abuse of notation for a subset A of E we write I(A)
.
= infx∈A I(x).

Definition 3.2.2. (Large deviation principle) Let I be a rate function on E. The sequence

{Xε} is said to satisfy the large deviation principle on E, as ε→ 0, with rate function I

if the following two conditions hold.

1. Large deviation upper bound. For each closed subset F of E

lim sup
ε→0

ε log P(Xε ∈ F ) ≤ −I(F ). (3.1)

2. Large deviation lower bound. For each open subset G of E

lim inf
ε→0

ε log P(Xε ∈ G) ≥ −I(G). (3.2)

Remark 3.2.2. If a sequence of random variables satisfies the large deviation principle

with some rate function, then the rate function is unique (see Theorem 1.3.1 pp. 17–18

[15]).

In many problems one is interested in obtaining exponential estimates on functions
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which are more general than indicator functions of closed or open sets. This leads to the

study of the, so called, Laplace principle.

Definition 3.2.3. (Laplace principle) Let I be rate function on E. The family {Xε}

is said to satisfy the Laplace principle on E, as ε → 0, with rate function I, if for all

bounded continuous functions h : E → R, the following two conditions hold.

1. Laplace principle upper bound.

lim sup
ε→0

ε log E{exp[−1

ε
h(Xε)]} ≤ − inf

x∈E
{h(x) + I(x)}. (3.3)

2. Laplace principle lower bound.

lim inf
ε→0

ε log E{exp[−1

ε
h(Xε)]} ≥ − inf

x∈E
{h(x) + I(x)}. (3.4)

One of the main results of the theory is the equivalence between the Laplace principle

and the large deviation principle. This equivalence can be regarded as an analogue of the

Portmanteau theorem in the theory of weak convergence of probability measures
(

see,

e.g. Theorem 2.1, p.16 [6]
)
. The precise result describing this equivalence is as follows.

For a proof we refer the reader to Section 1.2 of [15].

Theorem 3.2.1. The family {Xε}ε>0 satisfies the Laplace principle upper (respectively

lower) bound for all bounded and continuous functions h with a rate function I on E if

and only if {Xε}ε>0 satisfies the large deviation upper (respectively lower) bound for all

closed sets (respectively open sets) with the rate function I.

3.3 A general large deviation principle

In this section we present a large deviation principle established in [8], for functionals

of a Hilbert space valued Wiener process. Let (Ω,F ,P, {Ft}), (H,< ·, · >), Q be as in
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Section 2.3. Let W be an H–valued Wiener process with trace class covariance Q given

on the above filtered probability space. Let E be a Polish space and for each ε > 0 let

Gε : C([0, T ] : H) → E be a measurable map. We now present a set of sufficient conditions

for large deviation principle to hold for the family {Xε .
= Gε(

√
εW ), ε > 0} as ε → 0.

For a Hilbert space H, let L2([0, T ] : H) denote the Hilbert space of measurable maps f

from [0, T ] to H satisfying
∫ T

0
|f(s)|2ds <∞. Let H0 be as in Section 2.6 and define for

N ∈ N

SN
.
=
{
u ∈ L2([0, T ] : H0) :

∫ T

0

||u(s)||20ds ≤ N
}
. (3.5)

AN
.
= {u ∈ A : u(ω) ∈ SN ,P− a.s.}. (3.6)

It is easy to check that SN is a compact metric space with the metric d1(x, y) =∑∞
i=1

1
2i |
∫ T

0
< x(s) − y(s), ei(s) >0 ds|. Henceforth, wherever we refer to SN , we will

consider it endowed with the topology obtained from the metric d1 and refer to this

topology as weak topology on SN . We will abbreviate the statement “Xn converges to

X in distribution” as Xn
d→ X.

Assumption 3.3.1. There exists a measurable map G0 : C([0, T ] : H) → E such that the

following hold:

1. For every M <∞ the set

ΓM
.
= {G0(

∫ ·

0

u(s)ds) : u ∈ SM} (3.7)

is a compact subset of E.

2. Consider M <∞ and a family {uε} ⊂ AM , such that uε converges in distribution

(as SM–valued random elements) to u. Then

Gε(
√
εW (·) +

∫ ·

0

uε(s)ds)
d−→ G0(

∫ ·

0

u(s)ds). (3.8)
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The following result was presented (without proof) in [8]. We provide a proof below

for the sake of completeness.

Proposition 3.3.1. For f ∈ E define

I(f) = inf
{u∈L2([0,T ]:H0):f=G0(

∫ ·
0 u(s)ds)}

{1

2

∫ T

0

||u(s)||20ds}, (3.9)

where G0 : C([0, T ] : H) → E is a measurable map. If G0 satisfies the first condition in

Assumption 3.3.1, then I is a rate function on E.

Proof. We need to show that the set EM
.
= {f ∈ E : I(f) ≤M} is compact ∀M ∈ (0,∞).

It suffices to show that EM =
⋂

n≥1 Γ2M+ 1
n

since, by assumption, for each k ∈ R+, Γk is

compact. Let f ∈ EM . Then for every n ≥ 1, there exists u ∈ L2([0, T ] : H0) such that

1
2

∫ T

0
||u(s)||20ds ≤ M + 1

2n
and f = G0(

∫ ·
0
u(s)ds). In particular, u ∈ S2M+ 1

n
and thus

f ∈ Γ2M+ 1
n
. Since n ≥ 1 is arbitrary we get f ∈

⋂
n≥1 Γ2M+ 1

n
. Thus EM ⊆

⋂
n≥1 Γ2M+ 1

n
.

Conversely, let f ∈ Γ2M+ 1
n

for all n ≥ 1 and let un ∈ S2M+ 1
n

be such that f =

G0(
∫ ·

0
un(s)ds). Then I(f) ≤ 1

2

∫ T

0
||un(s)||2ds ≤ 1

2
(2M + 1

n
). Sending n → ∞ we get

that I(f) ≤ M . Thus f ∈ EM and the inclusion
⋂

n≥1 Γ2m+ 1
n
⊆ EM follows. Combining

the two set inclusions established above we have the result.

The following is the main result of [8].

Theorem 3.3.1. (Budhiraja and Dupuis [8]) Let Gε and Xε be as introduced above.

Suppose that Assumption 3.3.1 holds. Then the family {Xε, ε > 0} satisfies the large

deviation principle on E, as ε→ 0, with rate function I defined in (5.7).

3.4 Large deviation principle for functionals of a cylin-

drical Brownian motion

In the previous section a large deviation principle for certain functionals of a Hilbert

space valued Brownian motion was established. In this section, using Proposition 2.4.1,
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which relates a cylindrical Brownian motion with a Hilbert space valued Brownian mo-

tion, we establish a large deviation principle for a family of random elements measurable

with respect to a cylindrical Brownian motion. Let (H,< ·, · >) be a separable Hilbert

space and {B(t, h) ≡ Bt(h) : h ∈ H} be a cylindrical Brownian motion defined on some

filtered probability space (Ω,F ,P, {Ft}). Analogous to sets defined in, (2.7), (3.5) and

(3.6), we define:

A[l2] =
{
φ ≡ {φ}∞i=1| φi : [0, T ] → R , is {Ft}–predictable for all i (3.10)

and P{
∫ T

0

||φ(s)||2l2ds <∞} = 1
}

where
∫ T

0
||φ(s)||2l2ds

.
=
∑∞

i=1

∫ T

0
|φi(s)|2ds. Note that A[l2] is same as A defined in

(2.7) with H0 there replaced by the Hilbert space l2 = {x = (x1, x2, · · · ) : xi ∈ R, i ≥

1 and
∑∞

i=1 x
2
i <∞} (the inner product on l2 is defined as < x, y >l2

.
=
∑∞

i=1 xiyi, x, y ∈

l2). Define,

SN [l2] =
{
φ ≡ {φi}∞i=1 in L2([0, T ] : l2) and

∫ T

0

||φ(s)||20ds ≤ N
}
. (3.11)

Recall that SN [l2] is a compact Polish space endowed with the weak topology. Finally

define,

AN [l2] =
{
u ∈ A[l2] : u(ω) ∈ SN , P–a.s.

}
. (3.12)

In the rest of this section we will write A[l2], SN [l2],AN [l2] as A, SN ,AN respectively.

Let {ei} be a complete orthonormal system in H and let βi(t)
.
= Bt(ei), 0 ≤ t ≤ T, i ≥ 1.

Noting that β ≡ {βi} is a sequence of independent, standard, real Brownian motions,

we have that β is a
(
C([0, T ] : R∞),B

(
C([0, T ] : R∞)

))
≡ (S,S) valued random variable,

where R∞ denotes the product space of countably many copies of the real line. Note

that S is a Polish space and S is its corresponding Borel σ–field. We now introduce

the analog of Assumption 3.3.1 for the case of a cylindrical Brownian motion. Let E
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be a Polish space and for each ε > 0, Gε : S → E , ε > 0 be a measurable map. The

following is the main assumption for the large deviation principle to hold for the family{
Xε .= Gε

(√
εβ
)
, ε > 0

}
.

Assumption 3.4.1. There exists a measurable map G0 : S → E such that the following

hold:

1. For every M <∞ the set

ΓM
.
= {G0(

∫ ·

0

u(s)ds) : u ∈ SM} (3.13)

is a compact subset of E.

2. Consider M <∞ and a family {uε} ⊂ AM , such that uε converges in distribution

(as SM–valued random elements) to u, then

Gε(
√
εβ +

∫ ·

0

uε(s)ds)
d−→ G0(

∫ ·

0

u(s)ds). (3.14)

Define for each f ∈ E

I(f) = inf
{u∈L2([0,T ]:l2):f=G0(

∫ ·
0 u(s)ds)}

{1

2

∫ T

0

||u(s)||2l2ds}, (3.15)

where G0 : S → E is a measurable map.

Theorem 3.4.1. Let G0 : S → E be a measurable map satisfying the first condition in

Assumption 3.4.1. Then I : E → [0,∞], defined by (3.15) is a rate function on E. If,

furthermore {Gε}ε>0 and G0 satisfy the second condition of Assumption 3.4.1 then the

family {Xε, ε > 0} satisfies the large deviation principle, as ε→ 0, with rate function I.

Proof. Let {λi}∞i=1 be a sequence of positive real numbers such that
∑∞

i=1 λi <∞. Define

l∗2
.
=
{
x ≡ (x1, x2, ...)| xi ∈ R and

∑
λix

2
i < ∞

}
. Note that l∗2 is a Hilbert space
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with inner product < x, y >l∗2

.
=
∑
λixiyi. Also note that l2 ⊆ l∗2 and the embedding

map is a Hilbert–Schmidt operator. It can be easily checked that C([0, T ] : l∗2) is a

measurable subset of S–in fact the embedding of C([0, T ] : l∗2) into C([0, T ] : R∞) is

continuous. Note that Ĝ0 .
= G0

∣∣
C([0,T ]:l∗2)

is a measurable map from C([0, T ] : l∗2) to E

satisfying the first part of Assumption 3.3.1 with H there replaced by l∗2 and H0 by

l2. Thus the first part of the theorem follows from Proposition 3.3.1. Next note that

P
[
β ∈ C([0, T ] : l∗2)

]
= 1 and is a l∗2–valued Wiener process with covariance operator

Q defined as (Qx)i = λixi, i = 1, 2, · · · . Let Ĝε .
= Gε

∣∣
C([0,T ]:l∗2)

. Then (Ĝε, Ĝ0) satisfy

Assumption 3.3.1 withW replaced by β andH0, H there replaced by l2 and l∗2 respectively.

Finally, observing that Xε = Ĝε(
√
εβ) the result follows from Theorem 3.3.1.

3.5 Large deviation principle for functionals of a Brow-

nian sheet

In this section, using Lemma 2.5.1 and Theorem 3.4.1, we establish a large deviation

principle for a family of random elements measurable with respect to a Brownian sheet.

Let O be a bounded open subset of Rd and {B(t, x) : (t, x) ∈ R+ × O} be a Brownian

sheet defined on some filtered probability space (Ω,F ,P, {Ft}) (see Section 2.5). We

denote by L2([0, T ] × O) the space of real (Lebesgue) square integrable functions on

[0, T ]×O. Analogous to classes defined in, (2.7), (3.5) and (3.6), we define ABS .
= P2(T ),

where P2(T ) is as introduced in Section 2.5, and,

SBS

N
.
=
{
φ ∈ L2([0, T ]×O) :

∫
[0,T ]×O

φ2(s, r)drds ≤ N
}

(3.16)

ABS

N
.
=
{
u ∈ P2(T ) : u(ω) ∈ SN , P–a.s.

}
(3.17)

We now introduce the analog of Assumption 3.3.1 (or equivalently Assumption 3.4.1) for

the case of a Brownian sheet. Let E be a Polish space and Gε : C([0, T ] × O : R) →

E , ε > 0 be a family of measurable maps. The following is the main assumption for
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the large deviation principle to hold for the family
{
Xε .

= Gε(
√
εB), ε > 0)

}
. For

u ∈ L2([0, T ]×O), define I(u) ∈ C([0, T ]×O : R) as

I(u)(t, x)
.
=

∫
[0,t]×(O∩(−∞,x])

u(s, y)dsdy, (3.18)

where as before (−∞, x] = {y ∈ O | yi ≤ xi, ∀i = 1, · · · , d}.

Assumption 3.5.1. There exists a measurable map G0 : C([0, T ]×O : R) → E such that

the following hold:

1. For every M <∞ the set

ΓM
.
=
{
G0
(
I(u)

)
: u ∈ SM

}
(3.19)

is a compact subset of E.

2. Consider M <∞ and a family {uε} ⊂ AM , such that uε converges in distribution

(as SM–valued random elements) to u. Then

Gε
(√

εB + I(uε)
) d→ G0

(
I(u)

)
(3.20)

Define for f ∈ E

I(f) = inf
{u∈L2([0,T ]×O):f=G0(I(u))}

{1

2

∫
[0,T ]×O

u2(s, r)drds
}
. (3.21)

Theorem 3.5.1. Let G0 : C([0, T ]×O : R) → E be a measurable map satisfying the first

condition in Assumption 3.5.1. Then I : E → [0,∞], defined by (3.21), is a rate function

on E. Furthermore, if {Gε}ε>0 and G0 satisfy in addition the second part of Assumption

3.5.1 then the family {Xε}ε>0 satisfies the large deviation principle, as ε → 0, with rate

function I.
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Proof. Let {φi} be a CONS in L2(O). Define βi(t)
.
=
∫ t

0

∫
O φi(x)B(dsdx), t ∈ [0, T ].

Then β ≡ {β}∞i=1 is a l∗2–valued Brownian motion, where l∗2 is as in the proof of Theorem

3.4.1. From Lemma 2.5.1 we have that there is a measurable map Ψ : C([0, T ] : l∗2) →

C([0, T ] × O : R) such that Ψ(β) = B a.s. An application of Girsanov’s theorem shows

that for every u ∈ L2([0, T ] × O : R), Ψ(βu) = B + I(u) a.s., where βu ≡ {βu
i }∞i=1;

βu
i (t) = βi(t)+

∫ t

0

∫
O φi(y)u(s, y)dsdy. Also note that if g ≡ {gi}∞i=1 ∈ L2([0, T ] : l2), then

defining

ug(t, y)
.
=

∞∑
i=1

φi(y)gi(t), (t, y) ∈ [0, T ]×O, (3.22)

we have that ug ∈ L2([0, T ]×O : R) and βug = β+
∫ ·

0
g(s)ds a.s. Define the maps Ĝε, Ĝ0

from C([0, T ] : l∗2) to E as Ĝε(
√
εb)

.
= Gε(

√
εΨ(b)), b ∈ C([0, T ] : l∗2) and Ĝ0(b)

.
= G0

(
I(ug)

)
if b =

∫ ·
0
gsds for some g ∈ L2([0, T ] : l2), and Ĝ0(b)

.
= 0 otherwise. Here ug is given by

(3.22). It is easy to check that Assumption 3.3.1 is satisfied with (G0,Gε) there replaced

by (Ĝ0, Ĝε), H replaced by l∗2 andW by β. Thus from Theorem 3.3.1, Gε(
√
εB) = Ĝε(

√
εβ)

satisfies the large deviation principle on E with rate function

Î(f) = inf
{g∈L2([0,T ]:l2):f=Ĝ0(

∫ ·
0 g)}

{1

2

∫ T

0

||g(t)||2l2dt
}

= I(f).

This proves the result.

3.6 Uniform large deviation principle

Let E0 and E be Polish spaces and for each ε > 0 Gε : E0 × S → E be a measurable

map, where S is as in Section 3.4 . For x ∈ E0 let

Xε,x .
= Gε(x,

√
εβ), (3.23)

where β is as in Section 2.2. In this section we will give sufficient conditions for the

Laplace principle for {Xε,x} to hold uniformly in x for compact subsets of E0. We begin
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with the following definitions.

Definition 3.6.1. A family of rate functions Ix on E parameterized by x ∈ E0 is said to

have compact level sets on compacts if for all compact subsets K of E0 and each M <∞

ΛM,K
.
= ∪x∈K{f ∈ E : Ix(f) ≤M} is a compact subset of E.

Definition 3.6.2. Let Ix be a family of rate functions on E parameterized by x ∈ E0 and

assume that this family has compact level sets on compacts. The family {Xε,x} is said

to satisfy the Laplace principle on E, as ε → 0, with rate function Ix, uniformly for x

in compacts, if for all compact subsets K on E0 and all bounded continuous functions h

mapping E into R:

lim
ε→0

sup
x∈K

∣∣∣ε log E
{
exp[−1

ε
h(Xε,x)]

}
− F (x, h)

∣∣∣ = 0,

where F (x, h)
.
= − inff∈E{h(f) + Ix(f)}.

We now formulate a sufficient condition for the validity of uniform LDP for the family

{Xε,x}.

Assumption 3.6.1. There exists a measurable map G0 : E0 × S → E such that the

following hold:

1. For every M <∞ and compact set K ⊆ E0 the set

ΓM,K
.
=
{
G0
(
x,

∫ ·

0

u(s)ds
)

: u ∈ SM [l2], x ∈ K
}

(3.24)

is a compact subset of E.

2. Consider M <∞ and a family {uε} ⊂ AM [l2], such that uε converges in distribution

(as SM [l2]–valued random elements) to u. Let xε ∈ E0 be such that xε → x as ε→ 0.

Then as ε→ 0,

Gε
(
xε,
√
εβ +

∫ ·

0

uε(s)ds
)

d−→ G0
(
x,

∫ ·

0

u(s)ds
)
. (3.25)
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Theorem 3.6.1. Let Xε,x be as in (3.23) and suppose that Assumption 3.6.1 holds. Let

for x ∈ E0 and f ∈ E , Ix(f) be defined as:

Ix(f) = inf
{u∈L2([0,T ]:l2):f=G0(x,

∫ ·
0 u(s)ds)}

{1

2

∫ T

0

∞∑
i=1

u2
i (s)ds}. (3.26)

Suppose that for all f ∈ E , x 7→ Ix(f) is a lower semi–continuous map from E0 to [0,∞].

Then the family {Ix(·), x ∈ E0} of rate functions has compact level sets on compacts.

Furthermore, the family {Xε,x}ε>0 satisfies the large deviation principle on E, with rate

function Ix, uniformly on compact subsets of E0.

Proof. For the first part of the theorem we will proceed as in the proof of Proposition

3.3.1, i.e., we will show that ΛM,K equals to
⋂

n≥1 Γ2M+ 1
n

,K . In view of Assumption

3.6.1, the compactness of ΛM,K will then follow. Let f ∈ ΛM,K . There exists x ∈ K

such that Ix(f) ≤ M . We can now find for each n ≥ 1, un ∈ L2([0, T ] : l2) such that

f = G0
(
x,
∫ ·

0
un(s)ds

)
and 1

2

∑∞
i=1

∫ T

0
u2

n,i(s)ds ≤M + 1
2n

. In particular un ∈ S2M+ 1
n

and

so f ∈ Γ2M+ 1
n

,K . Since n ≥ 1 is arbitrary, we have ΛM,K ⊆
⋂

n≥1 Γ2M+ 1
n

,K . Conversely,

suppose f ∈ Γ2M+ 1
n

,K , for all n ≥ 1. Then for all n ≥ 1 there exists xn ∈ K, un ∈ S2M+ 1
n

such that f = G0
(
xn,
∫ ·

0
un(s)ds

)
. In particular, we have infx∈K Ix(f) ≤ Ixn(f) ≤M+ 1

2n
.

Sending n → ∞ we see that infx∈K Ix(f) ≤ M . Therefore f ∈ ΛM,K and the inclusion⋂
n≥1 Γ2M+ 1

n
,K ⊆ ΛM,K follows. This proves the first part of the theorem.

For the second part let fix x ∈ E0. Let {xε > 0} ⊆ E0 be such that xε → x as ε→ 0.

For notational convenience we will write A[l2], AM [l2]. SM [l2] simply as A, AM , SM

respectively.

• Proof of the lower bound. Note that

−ε log E
[
exp
(
− 1

ε
h(Xε,x)

)]
= inf

u∈A
E
[ ε
2

∫ T

0

||u(s)||2l2ds+ h ◦ Gε
(
xε, β +

∫ ·

0

u(s)ds
)]

(3.27)

Fix δ ∈ (0, 1). Then for every ε > 0 there exists uε ∈ A such that the right hand
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side of (3.27) is bounded below by

E
[1
2

∫ T

0

||uε(s)||2l2ds+ h ◦ Gε
(
xε,
√
εβ +

∫ ·

0

uε(s)ds
)]
− δ. (3.28)

Using the fact that h is bounded we can assume without loss of generality (we refer

the reader to Theorem 4.4 of [8] where a similar argument is used) that

sup
ε>0

∫ T

0

∞∑
i=1

(uε
i)

2(s)ds ≤ N, a.s.. (3.29)

In order to prove the lower bound it suffices to show that

lim inf
ε→0

E
[1
2

∫ T

0

||uε(s)||2l2ds+ h ◦ Gε
(
xε,
√
εβ +

∫ ·

0

uε(s)ds
)]
≥ inf

f∈E
{Ix(f) + h(f)}.

(3.30)

Pick a subsequence (relabeled by ε) along which uε converges in distribution to

some u ∈ AN as SN–valued random elements. We now infer from the Assumption

(3.25) that:

lim inf
ε→0

E
[1
2

∫ T

0

||uε(s)||2l2ds+ h ◦ Gε
(
xε,
√
εβ +

∫ ·

0

uε(s)ds
)]

≥E
[1
2

∫ T

0

||u(s)||2l2ds+ h ◦ G0
(
xε, β +

∫ ·

0

u(s)ds
)]

≥ inf
{(f,u)∈E×L2([0,T ]:l2):f=G0(x,

∫ ·
0 u(s)ds)}

{1

2

∫ T

0

||u(s)||2l2ds+ h(f)
}

≥ inf
f∈E
{Ix(f) + h(f)}.

• Proof of the upper bound. We need to show that

lim sup
ε→0

−ε log E(−1

ε
h[Xε,xε ]) ≤ inf

f∈E
{Ix(f) + h(f)}.

Without loss of generality we can assume that inff∈E{Ix(f)+h(f)} <∞. Let δ > 0
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be arbitrary, and let f0 ∈ E be such that

Ix(f0) + h(f0) ≤ inf
f∈E
{Ix(f) + h(f)}+

δ

2
. (3.31)

Choose ũ ∈ L2([0, T ] : l2) such that:

1

2

∫ T

0

||ũ(s)||2l2ds ≤ Ix(f0) +
δ

2
and f0 = G0

(
x,

∫ ·

0

ũ(s)ds
)
. (3.32)

Then,

lim sup
ε→0

ε log E
[
−1

ε
h(Xε,xε)

]
=

= lim sup
ε→0

inf
u∈A

E
[1
2

∫ T

0

||u(s)||2l2ds+ h ◦ Gε
(
xε,
√
εβ +

∫ ·

0

u(s)ds
)]

≤ lim sup
ε→0

E
[1
2

∫ T

0

||ũ(s)||2l2ds+ h ◦ Gε
(
xε,
√
εβ +

∫ ·

0

ũ(s)ds
)]

=
1

2

∫ T

0

||ũ(s)||2l2ds+ lim sup
ε→0

E
[
h ◦ Gε

(
xε,
√
εβ +

∫ ·

0

ũ(s)ds
)]

(3.33)

By Assumption ( 3.25 ) limε→0 E
[
h◦Gε

(
xε,
√
εβ+

∫ ·
0
ũ(s)ds

)]
= h

(
G0(x,

∫ ·
0
ũ(s)ds)

)
=

h(f0). Thus in view of (3.31) and (3.32) the expression (3.33) can be at most

inff∈E{I(f) + h(f)}+ δ. Since δ is arbitrary, the proof is complete.

We now present the analog of Theorem 3.6.1 for the case of a Brownian sheet.

Assumption 3.6.2. There exists a measurable map G0 : E0×C([0, T ]×O : R) → E such

that the following hold:

1. For every M <∞ and compact set K ⊆ E0, the set,

ΓM,K
.
=
{
G0(z, I(u)) : u ∈ SM , z ∈ K

}
(3.34)
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is a compact subset of E, where I(u) is as defined above Assumption 3.5.1.

2. Consider M < ∞ and a family {uε, ε > 0} ⊂ AM , such that uε converges in

distribution (as SM–valued random elements) to u ∈ A. Let {zε, ε > 0} ⊆ E0 be

such that zε → z as ε→ 0. Then as ε→ 0,

Gε
(
zε,
√
εB + I(uε)

) d→ G0
(
z, I(u)

)
(3.35)

Define for f ∈ E and z ∈ E0,

Iz(f) = inf
{u∈L2([0,T ]×O):f=G0(z,I(u))}

{1

2

∫
[0,T ]×O

u2(s, r)drds
}
. (3.36)

Theorem 3.6.2. Let G0 : E0 × C([0, T ] × O : R) → E be a measurable map satisfying

the first part of Assumption 3.6.2. Then Iz : E → [0,∞], defined by (3.36), is a rate

function on E and the family {Iz(·), z ∈ E0} of rate functions has compact level sets

on compacts. Furthermore, if the second part of Assumption 3.6.2 holds then the family

{Xz,ε .= Gε(z,
√
εB), ε > 0)} satisfies the large deviation principle on E, with rate function

Iz, uniformly for z in compact subsets of E0.
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CHAPTER 4

Large Deviations for Stochastic Reaction–Diffusion
equations

4.1 Introduction

In this chapter we will use results from Chapter 3, in particular Theorem 3.6.2,

to study the small noise uniform large deviations principle for solutions of a class of

stochastic partial differential equations (SPDE) that have been considered in [27]. The

class includes, as a special case, the reaction–diffusion SPDEs considered in [36]. Results

of this chapter are contained in [9]. The main result of the chapter is Theorem 4.2.2

which establishes the uniform Freidlin–Wentzell LDP for such SPDEs. Our proofs do

not require any discretization, approximation or exponential probability estimates that

are commonly used in standard approaches to the problem. As a result, we are able to

relax two main conditions which have been used in prior works (see e.g. [26]) on large

deviations analysis for this class of problems. These two restrictive conditions imposed

in [26] are the uniform boundedness of the diffusion coefficients and a certain geometric

condition, the so called “cone condition” (cf. p.320 [25]), on the underlying domain.

In the current work, our only requirement on the domain is that it be a bounded open

set and for the diffusion coefficient we require that it satisfy a standard linear growth

condition (instead of uniform boundedness).



4.2 Setting

Let (Ω,F ,P) be a probability space with an increasing family of right–continuous,

P–complete σ–fields {Ft}0≤t≤T . Let O ⊆ Rd be a bounded open set and {B(t, x) : (t, x) ∈

R+×O} be a Brownian sheet given on this filtered probability space. Consider the SPDE

dX(t, r) = (L(t)X(t, r) +R (t, r,X(t, r))) drdt+
√
εF (t, r,X(t, r))B(drdt) (4.1)

X(0, r) = ξ(r),

where X(0, r) is the initial condition. Here F and R are measurable maps from [0, T ]×

O × R to R and ε ∈ (0,∞). Also, {L(t) : t ≥ 0} is a family of linear, closed, densely

defined operators on C(O) (space of real continuous functions on O) that generates a

two parameter strongly continuous semigroup {U(t, s) : 0 ≤ s ≤ t} on C(O), with kernel

function G(t, s, r, q), 0 ≤ s < t, r, q ∈ O. We refer the reader to Appendix A for these

functional analytic notions. In particular, we have for f ∈ C(O), and t ∈ [0, T ]

(U(t, s)f)(r) =

∫
O
G(t, s, r, q)f(q)dq, r ∈ O, 0 ≤ s < t ≤ T.

For notational convenience we write f(r) =
∫
OG(0, 0, r, q)f(q)dq for f ∈ C(O). By a

solution of the SPDE (4.1), we mean the following:

Definition 4.2.1. A random field X ≡ {X(t, r) : t ∈ [0, T ], r ∈ O} is called a mild

solution of the stochastic partial differential equation (4.1) with initial condition ξ if

(t, r) 7→ X(t, r) is continuous a.s., X(t, r) is {Ft}–measurable for any t ∈ [0, T ], r ∈ O,

and if

X(t, r) =

∫
O
G(t, 0, r, q)ξ(q)dq +

∫ t

0

∫
O
G(t, s, r, q)R (s, q,X(s, q)) dqds

+
√
ε

∫ t

0

∫
O
G(t, s, r, q)F (s, q,X(s, q))B(dqds) a.s. (4.2)
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Implicit in Definition 4.2.1 is the requirement that the integrals in (4.2) are well

defined. We will shortly introduce conditions on G,F and R that ensure that for a

continuous adapted random field X, all the integrals in (4.2) are meaningful. As a

convention, we take G(t, s, r, q) to be zero when 0 ≤ t ≤ s ≤ T, r, q ∈ O.

For u ∈ ABS
N [which was defined in (3.17)] the controlled analogue of (4.2) is

Y (t, r) =

∫
O
G(t, 0, r, q)ξ(q)dq +

∫ t

0

∫
O
G(t, s, r, q)R(s, q, Y (s, q))dqds

+
√
ε

∫ t

0

∫
O
G(t, s, r, q)F (s, q, Y (s, q))B(dqds) (4.3)

+

∫ t

0

∫
O
G(t, s, r, q)F (s, q, Y (s, q))u(s, q)dqds.

As discussed previously, the main work in proving an LDP for (4.2) will be to prove

qualitative properties (existence and uniqueness, tightness properties, and stability under

perturbations) for solutions to (4.3). We begin by discussing known qualitative theory

for (4.2).

For α > 0, let Bα = {ψ ∈ C(O) : ||ψ||α <∞} be the Banach space with norm

||ψ||α = ||ψ||0 + sup
r,q∈O

|ψ(r)− ψ(q)|
|r − q|α

,

where ||ψ||0 = supr∈O |ψ(r)|. The Banach space Bα([0, T ]×O) is defined similarly and for

notational convenience we denote this space by BT
α . For α = 0 the space BT

0 is the space

of all continuous maps from [0, T ]×O to R endowed with the sup–norm. The following

will be a standing assumption for this section. In the assumption, ᾱ is a fixed constant,

and the large deviation principle will be proved in the topology of C([0, T ] : Bα), for any

fixed α ∈ (0, ᾱ).

Assumption 4.2.1. The following two conditions hold.

1. There exist constants K(T ) <∞ and γ ∈ (d,∞) such that
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(a) for all t, s ∈ [0, T ], r ∈ O,

∫
O
|G(t, s, r, q)|dq ≤ K(T ), (4.4)

(b) for all 0 ≤ s < t ≤ T and r, q ∈ O,

|G(t, s, r, q)| ≤ K(T )(t− s)−
d
γ , (4.5)

(c) if ᾱ = γ−d
2γ

, then for any α ∈ (0, ᾱ) and for all r1, r2, q ∈ O, 0 ≤ s < t1 ≤ t2 ≤

T

|G(t1, s, r1, q)−G(t2, s, r2, q)| (4.6)

≤ K(T )
[
(t2 − t1)

1− d
γ (t1 − s)−1 + |r1 − r2|2α(t1 − s)−

d+2α
γ

]
,

(d) for all x, y ∈ R, r ∈ O and 0 ≤ t ≤ T ,

|R(t, r, x)−R(t, r, y)|+ |F (t, r, x)− F (t, r, y)| ≤ K(T )|x− y| (4.7)

and

|R(t, r, x)|+ |F (t, r, x)| ≤ K(T )(1 + |x|). (4.8)

2. For any α ∈ (0, ᾱ) and ξ ∈ Bα, the trajectory t 7→
∫
OG(t, 0, ·, q)ξ(q)dq belongs to

C([0, T ] : Bα) and the map

Bα 3 ξ 7−→
{
t 7→

∫
O
G(t, 0, ·, q)ξ(q)dq

}
∈ C([0, T ] : Bα)

is a continuous map.

For future reference we recall that ᾱ = γ−d
2γ

and note that ᾱ ∈ (0, 1/2).
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Remark 4.2.1. 1. We refer the reader to [26] for examples of families {L(t)}t≥0 that

satisfy this assumption.

2. Using (4.4) and (4.5) it follows that for any 0 ≤ s < t ≤ T and r ∈ O

∫
O
|G(t, s, r, q)|2dq ≤ K2(T )(t− s)−

d
γ . (4.9)

This in particular ensures that the stochastic integral in (4.2) is well defined.

3. Lemma 4.1(ii) of [26] shows that under Assumption 4.2.1, for any α < ᾱ there

exists a constant K̃(α) such that for all 0 ≤ t1 ≤ t2 ≤ T and all r1, r2 ∈ O

∫ T

0

∫
O
|G(t1, s, r1, q)−G(t2, s, r2, q)|2dqds ≤ K̃(α)ρ ((t1, r1), (t2, r2))

2α , (4.10)

where ρ is the Euclidean distance in [0, T ]×O ⊂ Rd+1. This estimate will be used

in the proof of Lemma 4.3.2.

The following theorem is due to Kotelenez (see Theorem 2.1 and Theorem 3.4 in [27];

see also Theorem 3.1 in [26]).

Theorem 4.2.1. Fix α ∈ (0, ᾱ). There exists a measurable function

Gε : Bα × BT
0 → C([0, T ] : Bα)

such that for any filtered probability space (Ω,F ,P, {Ft}) with a Brownian sheet B as

above and x ∈ Bα, Xε,x .
= Gε(x,

√
εB) is the unique mild solution of (4.1) (with initial

condition x), and satisfies sup0≤t≤T E||Xε,x(t)||p0 <∞ for all p ≥ 0.

For the rest of the section we will only consider α ∈ (0, ᾱ). For f ∈ C([0, T ] : Bα)

define

Ix(f)
.
= inf

u

∫
[0,T ]×O

u2(s, q)dqds, (4.11)
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where the infimum is taken over all u ∈ L2([0, T ]×O) such that

f(t, r) =

∫
O
G(t, 0, r, q)x(q)dq +

∫
[0,t]×O

G(t, s, r, q)R(s, q, f(s, q))dqds

+

∫
[0,t]×O

G(t, s, r, q)F (s, q, f(s, q))u(s, q)dqds. (4.12)

The following is the main result of this section.

Theorem 4.2.2. Let Xε,x be as in Theorem 4.2.1. Then Ix defined by (4.11) is a rate

function on C([0, T ] : Bα) and the family {Ix, x ∈ Bα} of rate functions has compact level

sets on compacts. Furthermore, {Xε,x} satisfies the Laplace principle on C([0, T ] : Bα)

with the rate function Ix, uniformly for x in compact subsets of Bα.

Remark 4.2.2. 1. If Assumption 4.2.1 (2) is weakened to merely the requirement that

for every ξ ∈ Bα, t 7→
∫
OG(t, 0, ·, q)ξ(q)dq is in C([0, T ] : Bα), then the proof of

Theorem 4.2.2 shows that for all x ∈ Bα, the large deviation principle for {Xε,x}

on C([0, T ] : Bα) holds (but not necessarily uniformly).

2. The small noise LDP for a class of reaction–diffusion SPDEs, with O = [0, 1]

and a bounded diffusion coefficient, has been studied in [36]. A difference in the

conditions on the kernel G in [36] is that instead of (4.6), G satisfies the L2 estimate

in Remark 4.2.1 (3) with ᾱ = 1/4. One finds that the proof of Lemma 4.3.2, which

is at the heart of the proof of Theorem 4.2.2, only uses the L2 estimate rather than

the condition (4.6). Using this observation one can, in a straightforward manner,

extend results of [36] to the case where the diffusion coefficient, instead of being

bounded, satisfies the linear growth condition (4.8).

Since the proof of Theorem 4.2.2 relies on properties of the controlled process (4.3),

the first step is to prove existence and uniqueness of solutions. This follows from a

standard application of Girsanov’s Theorem.
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Theorem 4.2.3. Let Gε be as in Theorem 4.2.1 and let u ∈ ABS
N for some N ∈ N0 where

ABS
N is as defined in (3.17). For ε > 0 and x ∈ Bα define

Xε,u
x

.
= Gε

(
x,
√
εB + I(u)

)
where I is defined in (3.18). Then Xε,u

x is the unique solution of (4.3).

Proof. Fix u ∈ ABS
N . Since

E
(

exp

{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dqds)− 1

2ε

∫
[0,T ]×O

u2(s, q)dqds

})
= 1,

the measure γu,ε defined by

dγu,ε = exp

{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dqds)− 1

2ε

∫
[0,T ]×O

u2(s, q)dqds

}
dP

is a probability measure on (Ω,F ,P). Furthermore, γu,ε is mutually absolutely continu-

ous with respect to P and by Girsanov’s theorem (see Theorem 10.14 [12]) the process

B̃ = B + ε−1/2I(u) on (Ω,F , γu,ε, {Ft}) is a Brownian sheet. Thus, by Theorem 4.2.1

Xε,u
x = Gε (x,

√
εB + I(u)) is the unique solution of (4.2), with B there replaced by B̃,

on (Ω,F , γu,ε, {Ft}). However equation (4.2) with B̃ is precisely same as equation (4.3),

and since γu,ε and P are mutually absolutely continuous, we get that Xε,u
x is the unique

solution of (4.3) on (Ω,F ,P, {Ft}). This completes the proof.

In the next subsection we will study, under the standing assumption of this section,

the following two basic qualitative results regarding the processesXε,u
x . The first is simply

the controlled, zero–noise version of the theorem just stated and its proof, being very

similar to the proof of Theorem 4.2.1, is omitted. The next is a standard convergence

result whose proof is given in Section 4.3.

Theorem 4.2.4. Fix x ∈ Bα and u ∈ L2([0, T ]×O). Then there is a unique function f

in C([0, T ] : Bα) which satisfies equation (4.12).
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In analogy with the notation Xε,u
x for the solution of (4.3), we will denote the unique

solution f given by Theorem 4.2.4 as X0,u
x . Let θ : [0, 1) → [0, 1) be a measurable map

such that θ(r) → θ(0) = 0 as r → 0.

Theorem 4.2.5. Let M < ∞, and suppose that xε → x and uε → u in distribution as

ε→ 0 with {uε} ⊂ ABS
M . Then X

θ(ε),uε

xε → X0,u
x in distribution.

PROOF OF THEOREM 4.2.2. Define the map G0 : Bα×BT
0 → C([0, T ] : Bα) as follows.

For x ∈ Bα and φ ∈ BT
0 of the form φ(t, x)

.
= I(u)(t, x) for some u ∈ L2([0, T ]×O), we

define G0(x, φ) = X0,u
x . Set G0(x, φ) = 0 for all other φ ∈ BT

0 . In view of Theorem 3.6.2,

it suffices to show that (Gε,G0) satisfy Assumption 3.6.2 with E0 and E there replaced

by Bα and C([0, T ]; Bα) respectively; and for all f ∈ E , the map x 7→ Ix(f) is l.s.c. The

latter property and the first part of Assumption 3.6.2 is immediate on applying Theorem

4.2.4 and Theorem 4.2.5 with θ = 0. The second part of Assumption 3.6.2 follows on

applying Theorem 4.2.5 with θ(r) = r, r ∈ [0, 1). �

4.3 Qualitative Properties of Controlled Reaction–

Diffusion SDEs

This section is devoted to the proof of Theorem 4.2.5. Our first result shows that Lp

bounds hold for controlled SDEs, uniformly when the initial condition and controls lie in

compact sets and ε ∈ [0, 1). Note in particular that ε = 0 is allowed.

Lemma 4.3.1. If K is any compact subset of Bα and M <∞, then for all p ∈ [1,∞)

sup
u∈PM

2

sup
x∈K

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E|Xε,u
x (t, r)|p <∞.
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Proof. By Doob’s inequality there exists a suitable constant c1 such that

E|Xε,u
x (t, r)|p ≤ c1

∣∣∣∣∫
O
G(t, 0, r, q)x(q)dq

∣∣∣∣p + c1E
∣∣∣∣∫ t

0

∫
O
G(t, s, r, q)R (s, q,Xε,u

x (s, q)) dqds

∣∣∣∣p
+ c1E

[∫ t

0

∫
O
|G(t, s, r, q)|2 |F (s, q,Xε,u

x (s, q))|2 dqds
] p

2

+ c1E
[∫ t

0

∫
O
|G(t, s, r, q)| |F (s, q,Xε,u

x (s, q))| |u(s, q)|dqds
]p

.

Using (4.8) and the Cauchy–Schwarz inequality the right hand side above can be bounded

by

c2

[
1 + E

(∫ t

0

∫
O
|G(t, s, r, q)|2|Xε,u

x (s, q)|2dqds
) p

2

]
.

Hölder’s inequality yields for p > 2 that

Λp(t) ≤ c2

[
1 +

(∫ T

0

∫
O
|G(t, s, r, q)|2p̃dqds

) p−2
2
∫ t

0

Λp(s)ds

]
,

where Λp(t) = supu∈P M
2

supx∈K supε∈[0,1) supr∈O E|Xε,u
x (t, r)|p and p̃ = p

p−2
. Choose p0

large enough that ( 2p0

p0−2
− 1)(1 − 2ᾱ) < 1. Using (4.4) and (4.5), we have for all p ≥ p0

that [∫ T

0

∫
O
|G(t, s, r, q)|2p̃dqds

] p−2
2

≤ c3T
(1−(2p̃−1)(1−2ᾱ)) p−2

2 .

Thus for every p ≥ p0 there exists a constant c4 such that Λp(t) ≤ c4

[
1 +

∫ t

0
Λp(s)ds

]
.

The result now follows from Gronwall’s lemma.

The following lemma will be instrumental in proving tightness and weak convergence

in Banach spaces such as Bα and BT
α .

Lemma 4.3.2. Let A ⊆ ABS
N be a family such that for all p ≥ 2

sup
f∈A

sup
(t,r)∈[0,T ]×O

E|f(t, r)|p <∞. (4.13)
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Also, let B ⊆ ABS
M for some M <∞. For f ∈ A and u ∈ B define

Ψ1(t, r)
.
=

∫ t

0

∫
O
G(t, s, r, q)f(s, q)B(dqds),

Ψ2(t, r)
.
=

∫ t

0

∫
O
G(t, s, r, q)f(s, q)u(s, q)dqds,

where the dependence on f and u is not made explicit in the notation. Then for any

α < ᾱ and i = 1, 2,

sup
f∈A,u∈B

E

{
sup

ρ((t,r),(s,q))<1

|Ψi(t, r)−Ψi(s, q)|
ρ ((t, r), (s, q))α

}
<∞.

Proof. We will prove the result for i = 1; the proof for i = 2 is identical (except an addi-

tional application of the Cauchy–Schwarz inequality) and thus it is omitted. Henceforth

we write, for simplicity, Ψ1 as Ψ. We will apply Theorem 6 of [23], according to which it

suffices to show that for all 0 ≤ t1 < t2 ≤ T , r1, r2 ∈ O,

sup
f∈A,u∈B

E |Ψ(t2, r2)−Ψ(t1, r1)|p ≤ cp (ω̂ (ρ ((t1, r1), (t2, r2))))
p , (4.14)

for a suitable constant cp; a p > 2; and a function ω̂ : [0,∞) → [0,∞) satisfying

∫ 1

0

ω̂(u)

u1+α+(d+1)/p
du <∞.

We will show that (4.14) holds with ω̂(u) = uα0 for some α0 ∈ (α, ᾱ) and all p sufficiently

large. This will establish the result.

Fix α0, α̃ such that α < α0 < α̃ < ᾱ and let t1 < t2, r1, r2 ∈ O and p > 2. We will

need p to be sufficiently large and the choice of p will be fixed in the course of the proof.

By Doob’s inequality there exists a constant c1 such that:
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E |Ψ(t2, r2)−Ψ(t1, r1)|p ≤ c1E
[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|2 |f(s, q)|2dqds

] p
2

.

(4.15)

Let p̃ = p/(p − 2) and δ = 4/p. Note that (2 − δ)p̃ = δp/2 = 2. Hölder’s inequality,

(4.9) and (4.13) give that the right hand side of (4.15) is bounded by

c1

[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|(2−δ)p̃ dqds

] p−2
2

×
[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|δp/2 E|f(s, q)|pdqds

]
≤ c2

[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|2 dqds

] p−2
2

(4.16)

for a suitable constant c2 that is independent of f . From Remark 4.2.1(3), the expression

in (4.16) can be bounded (for p large enough) by

c3ρ ((t1, r1), (t2, r2))
α̃(p−2) ≤ c4ρ ((t1, r1), (t2, r2))

α0p .

The result follows.

The next result will be used to prove the stochastic integral in (4.3) converges to 0 in

C([0, T ]×O) ≡ C([0, T ]×O : R), which will be strengthened shortly.

Lemma 4.3.3. Let A and Ψ1 be as in Lemma 4.3.2 and let Zε
f
.
=
√
ε Ψ1. Then for every

sequence {f ε} ⊂ A, Zε
fε

P→ 0 in C([0, T ]×O), as ε→ 0.

Proof. Arguments similar to those lead to (4.16) along with (4.4), (4.5) and (4.13) yield

that supf∈A E|Ψ1(t, r)|2 <∞. This shows that for each (t, r) ∈ [0, T ]×O, Zε
fε(t, r)

P→ 0

(in fact in L2). Defining

ω(x, δ)
.
= sup {|x(t, r)− x(t′, r′)| : ρ ((t, r), (t′, r′)) ≤ δ}
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for x ∈ C([0, T ] × O) and δ ∈ (0, 1), we see that ω(Zε
fε , δ) =

√
εδαM ε

fε where M ε
f
.
=

supρ((t,r),(s,q))<1
|Ψ1(t,r)−Ψ1(s,q)|

ρ((t,r),(s,q))α . Therefore from Lemma 4.3.2

lim
δ→0

lim
ε→0

Eω(Zε
fε , δ) = 0.

The result now follows from Theorem 14.5 of [24].

We now establish the main convergence result.

PROOF OF THEOREM 4.2.5. Given x ∈ K, u ∈ ABS
M , ε ∈ [0, 1), define

Zε,u
1,x(t, r) =

∫
O
G(t, 0, r, q)x(q)dq

Zε,u
2,x(t, r) =

∫ t

0

∫
O
G(t, s, r, q)R(s, q,Xθ(ε),u

x (s, q))dqds

Zε,u
3,x(t, r) =

√
θ(ε)

∫ t

0

∫
O
G(t, s, r, q)F (s, q,Xθ(ε),u

x (s, q))B(dqds)

Zε,u
4,x(t, r) =

∫ t

0

∫
O
G(t, s, r, q)F (s, q,Xθ(ε),u

x (s, q))u(s, q)dqds.

We first show that each Zε,uε

i,xε is tight in C([0, T ] : Bα), for i = 1, 2, 3, 4. For i = 1 this

follows from part 2 of Assumption 4.2.1. Recalling that BT
α∗ is compactly embedded in

BT
α for ᾱ > α∗ > α, it suffices to show that for some α∗ ∈ (α, ᾱ)

sup
ε∈(0,1)

P
[
||Zε,uε

i,xε ||BT
α∗ > K

]
→ 0 as K →∞ for i = 2, 3, 4. (4.17)

For i = 2, 4, (4.17) is an immediate consequence of

sup
ε∈(0,1)

E||Zε,uε

i,xε ||BT
α∗ <∞,

as follows from Lemma 4.3.2, the linear growth condition (4.8) and Lemma 4.3.1. For
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i = 3, in view of Lemma 4.3.3, it suffices to establish

sup
ε∈(0,1)

E[Zε,uε

3,xε ]BT
α∗ <∞,

where for z ∈ BT
α , [z]BT

α
= ||z||BT

α
− ||z||0. Once more, this follows as an immediate

consequence of Lemma 4.3.2, the linear growth condition (4.8) and Lemma 4.3.1.

Having shown tightness of Zε,uε

i,xε for i = 1, 2, 3, 4, we can extract a subsequence along

which each of these processes and Xε,uε

xε converges in distribution in C([0, T ] : Bα). Let

Z0,u
i,x and X0,u

x denote the respective limits. We will show that

Z0,u
1,x (t, r) =

∫
O
G(t, 0, r, q)x(q)dq

Z0,u
2,x (t, r) =

∫ t

0

∫
O
G(t, s, r, q)R(s, q,X0,u

x (s, q))dqds

Z0,u
3,x (t, r) = 0

Z0,u
4,x (t, r) =

∫ t

0

∫
O
G(t, s, r, q)F (s, q,X0,u

x (s, q))u(s, q)dqds. (4.18)

The uniqueness result Theorem 4.2.4 will then complete the proof. Convergence for

i = 1 follows from part 2 of Assumption 4.2.1. The case i = 3 follows from Lemma

4.3.3, Lemma 4.3.1 and the linear growth condition. To deal with the cases i = 2, 4

we invoke the Skorokhod Representation Theorem [29], which allows us to assume with

probability one convergence for the purposes of identifying the limits. We give the proof

of convergence only for the harder case i = 4. Denote the right side of (4.18) by Ẑ0,u
4,x (t, r).

Then

∣∣∣Zε,uε

4,xε(t, r)− Ẑ0,u
4,x (t, r)

∣∣∣
≤

∫ t

0

∫
O
|G(t, s, r, q)|

∣∣∣F (s, q,Xε,uε

xε (s, q))− F (s, q,X0,u
x (s, q))

∣∣∣ |uε(s, q)| dqds

+

∣∣∣∣∫ t

0

∫
O
G(t, s, r, q)F (s, q,X0,u

x (s, q)) (uε(s, q)− u(s, q)) dqds

∣∣∣∣ . (4.19)
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By the Cauchy–Schwarz inequality, equation (4.9) and the uniform Lipschitz property of

F we see that, for a suitable constant c ∈ (0,∞), the first term on the right side of (4.19)

can be bounded above by

√
M

[∫ t

0

∫
O
|G(t, s, r, q)|2

∣∣∣F (s, q,Xε,uε

xε (s, q))− F (s, q,X0,u
x (s, q))

∣∣∣2 dqds]1/2

≤ c

(
sup

(s,q)∈[0,T ]×O

∣∣∣Xε,uε

xε (s, q)−X0,u
x (s, q)

∣∣∣) ,
and thus converges to 0 as ε→ 0. The second term in (4.19) converges to 0 as well, since

uε → u and ∫ t

0

∫
O

(
G(t, s, r, q)F (s, q,X0,u

x (s, q))
)2
dqds <∞.

By uniqueness of limits and noting that Ẑ0,u
4,x is a continuous random field, we see that

Z0,u
4,x = Ẑ0,u

4,x and the proof is complete. �

4.4 Other Infinite Dimensional Models

The key ingredients in the proof of the LDP for the solution of the infinite dimensional

SDE are the qualitative properties in Theorems 4.2.4 and 4.2.5 of the controlled SDE

(4.3). Once these properties are verified, the LDP follows as an immediate consequence

of Theorem 3.6.2. Furthermore, one finds that the estimates needed for the proof of

Theorems 4.2.4 and 4.2.5 are essentially the same as those needed for establishing unique

solvability of (4.1). This is a common theme that appears in all proofs of LDPs, for small

noise stochastic dynamical systems, that are based on variational representations such as

in Section 2.6. Indeed, one can argue that the variational representation approach makes

the small noise large deviation analysis a transparent and a largely straightforward exer-

cise, once one has the estimates for the unique solvability of the stochastic equation. This

statement has been affirmed by several recent works on Freidlin–Wentzell large deviations

for infinite dimensional SDEs that are based on the variational representation approach

(specifically Theorem 2.6.1), and carry out the verification of statements analogous to
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Theorems 4.2.4 and 4.2.5. Some of these works are summarized below.

4.4.1 SDEs driven by infinitely many Brownian motions

Ren and Zhang [34] consider a SDE driven by infinitely many Brownian motions with

non–Lipschitz diffusion coefficients. Prior results on strong existence and uniqueness of

the solutions to the SDE yield continuous (in time and initial condition) random field

solutions. The authors prove a small noise LDP in the space C([0, T ] × Rd). The proof

relies on the representation formula for an infinite sequence of real Brownian motions

{βi} given in Corollary 2.6.1 and the general Laplace principle of the form in Theorem

3.4.1. Non–Lipschitz coefficients make the standard discretization and approximation

approach intractable for this example. The authors verify the analogues of Theorems

4.2.4 and 4.2.5 in Theorems 3.1, Lemma 3.4 and Lemma 3.11 of the cited paper. In

the final section of the paper, Schilder’s theorem for Brownian motion on the group of

homeomorphisms of the circle is obtained. The proof here is also by verification of steps

analogous to Theorems 4.2.4 and 4.2.5 regarding solvability and convergence in the space

of homeomorphisms. Once more, exponential probability estimates with the natural

metric on the space of homeomorphisms, needed in the standard proofs of the LDP, do

not appear to be straightforward. Using similar ideas based on representations for infinite

dimensional Brownian motions, a LDP for flows of homeomorphisms, extending results

of the final section of [34] to multi–dimensional SDEs with non–Lipschitz coefficients, has

been studied in [33].

4.4.2 Stochastic PDE with varying boundary conditions

Wang and Duan [39] study stochastic parabolic PDEs with rapidly varying random

dynamical boundary conditions. The formulation of the SPDE as an abstract stochastic

evolution equation in an appropriate Hilbert space leads to a non–Lipschitz nonlinearity

with polynomial growth. Deviations of the solution from the limiting effective system

(as the parameter governing the rapid component approaches its limit) are studied by

49



establishing a large deviation principle. The proof of the LDP uses the variational rep-

resentation for functionals of a Hilbert space valued Wiener process as in Theorem 2.6.1

and the general Laplace principle given in Theorem 3.3.1. Once more, the hardest part in

the analysis is establishing the wellposedness (i.e., existence, uniqueness) of the stochas-

tic evolution equation. Once estimates for existence/uniqueness are available, the proof

of the LDP becomes a straightforward verification of Assumption 3.3.1.

4.4.3 Stochastic Navier–Stokes equation

Sritharan and Sundar [37] study small noise large deviations for a two dimensional

Navier–Stokes equation in an (possibly) unbounded domain and with multiplicative noise.

The equation can be written as an abstract stochastic evolution equation in an appro-

priate function space. The solution lies in the Polish space C([0, T ] : H)
⋂
L2([0, T ] : V )

for some Hilbert spaces H and V and can be expressed as Gε(
√
εW ) for a H valued

Wiener process W . Authors prove existence and uniqueness of solutions and then apply

Theorem 3.3.1 by verifying Assumption 3.3.1 for their model.
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CHAPTER 5

Large deviations for stochastic flows of
diffeomorphisms

5.1 Introduction

In this chapter we consider a second application of the general large deviation results

from Chapter 3. Using Theorem 3.4.1, we will establish a large deviation principle for

a general class of stochastic flows of diffeomorphisms, driven by an infinite dimensional

Brownian motion, in the small noise limit. This result is then applied in Section 5.5 to

a Bayesian formulation of an image matching problem, and an approximate maximum

likelihood property is shown for the solution of an optimization problem involving the

large deviations rate function.

5.2 Preliminaries

We refer list below some standard notation that will be used in this chapter.

• Let ◦ denote the composition of maps and let id denote the identity map on Rd.

• Let α = (α1, α2, · · · , αd) be a multi index of non–negative integers and |α| = α1 +

α2 + · · ·+αd. For a |α|–times differentiable function f : Rd → R, set ∂αf
.
= ∂α

x f =

∂|α|f
(∂x1)α1 ···(∂xd)αd

. For such an f , we write ∂f(x)
∂xi

as ∂if . If f ≡ (f1, f2, · · · , fd)
′
is a |α|–

times differentiable function from Rd to Rd, we write ∂αf
.
= (∂αf1, ∂

αf2, · · · , ∂αfd)
′
.

K ⊂⊂ Rd will denote the statement that K is a compact subset of Rd.



• For m ≥ 0 denote by Cm the space of m–times continuously differentiable functions

from Rd to R, which endowed with seminorms ||f ||m;K =
∑

0≤|α|≤m supx∈K |∂αf(x)|,

K ⊂⊂ Rd, is a Fréchet space, where ∂0f = f . Also, for 0 < δ ≤ 1, let

Cm,δ .
=
{
f ∈ Cm : ||f ||m,δ;K <∞ for any K ⊂⊂ Rd

}
,

where

||f ||m,δ;K = ||f ||m;K +
∑
|α|=m

sup
x,y∈K;x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|δ

.

The seminorms {|| · ||m,δ;K ;K ⊂⊂ Rd} make Cm,δ a Fréchet space.

• For m ≥ 0 denote by C̃m the space of functions g : Rd ×Rd → R such that g(x, y),

x, y ∈ Rd is m–times continuously differentiable with respect to both x and y.

Endowed with the seminorms

||g||∼m;K =
∑

0≤|α|≤m

sup
x,y∈K

|∂α
x∂

α
y g(x, y)|,

where K ⊂⊂ Rd, C̃m is a Fréchet space. Also, for 0 < δ ≤ 1, let C̃m,δ .
=
{
g ∈

C̃m; ||g||∼m,δ;K <∞, K ⊂⊂ Rd
}
, where

||g||∼m,δ;K = ||g||∼m;K +
∑
|α|=m

sup
x6=x′,y 6=y′

x,y,x′,y′∈K

|∆x,x′g(y)−∆x,x′g(y′)|
|x− x′|δ|y − y′|δ

,

where ∆x,x′g(y)
.
= ∂̂α

x,yg(x, y) − ∂̂α
x′,yg(x

′, y), ∂̂α
x,yg(x, y)

.
= ∂α

x∂
α
y g(x, y). The semi-

norms {|| · ||∼m,δ;K , K ⊂⊂ Rd} make C̃m,δ a Fréchet space.

• We will write ||f ||m;Rd as ||f ||m. The norms || · ||m,δ, || · ||∼m, || · ||∼m,δ are to be

interpreted in a similar manner.

• Let Cm(Rd)
.
=
{
f = (f1, f2, · · · , fd)

′ : fi ∈ Cm, i = 1, 2, · · · , d
}

and ||f ||m =∑d
i=1 ||fi||m. The spaces Cm,δ(Rd), C̃m(Rd×d), C̃m,δ(Rd×d) and their corresponding
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norms are defined similarly. In particular, note that h ∈ C̃m,δ(Rd×d) is map from

Rd × Rd to Rd×d.

• Let Cm,δ
T (Rd) and C̃m,δ

T (Rd×d) be classes of measurable functions b : [0, T ] →

Cm,δ(Rd) and a : [0, T ] → C̃m,δ(Rd×d) respectively such that

||b||T,m,δ
.
= sup

0≤t≤T
||b(t)||m,δ <∞ and ||a||∼T,m,δ

.
= sup

0≤t≤T
||a(t)||∼m,δ <∞.

Definition 5.2.1. (Stochastic flows of homeomorphisms/diffeomorphisms) A collection{
φs,t(x) : 0 ≤ s ≤ t ≤ T, x ∈ Rd

}
of Rd–valued random variables on some filtered

probability space (Ω,F ,P, {Ft}) is called a forward stochastic flow of homeomorphisms,

if there exists N ∈ F , with P(N) = 0, such that for any ω ∈ N c:

1. (s, t, x) 7→ φs,t(x, ω) is a continuous map,

2. φs,u(ω) = φt,u(ω) ◦ φs,t(ω) holds for all s, t, u, 0 ≤ s ≤ t ≤ u ≤ T ,

3. φs,s(ω) = id for all s, 0 ≤ s ≤ T ,

4. the map φs,t(ω) : Rd → Rd is an onto homeomorphism for all s, t, 0 ≤ s ≤ t ≤ T .

If in addition φs,t(x, ω) is k–times differentiable with respect to x for all s ≤ t and the

derivatives are continuous in (s, t, x), it is called a stochastic flow of Ck−diffeomorphisms.

We now introduce a Brownian motion with a spatial parameter, with local characteris-

tics (a, b). Throughout the dissertation we will assume that (a, b) ∈ C̃k,δ
T (Rd×d)×Ck,δ

T (Rd),

for some k ∈ N and δ ∈ (0, 1]. Fix ν such that 0 < ν < δ.

Definition 5.2.2. (Ck,ν−Brownian motion) A continuous stochastic process {F (t)}t≥0

on some filtered probability space (Ω,F ,P, {Ft}) with values in Ck,ν(Rd) is said to be

a Ck,ν−Brownian motion with local characteristics (a, b), if F (0), F (ti+1) − F (ti), i =

0, 1, . . . , n−1, are independent Ck,ν(Rd)−valued random variables whenever 0 ≤ t0 < t1 <
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· · · < tn ≤ T , and if for each x ∈ Rd, M(x, t)
.
= F (x, t) −

∫ t

0
b(x, r)dr is a continuous

(d–dimensional) martingale such that << M(x, ·),M(y, ·) >>t=
∫ t

0
a(x, y, r)dr for all

(x, y) ∈ Rd × Rd.

The existence of a Ck,ν−Brownian motion with local characteristics (a, b) follows from

[28] (see, e.g., Theorem 3.1.2 and Exercise 3.2.10). Indeed, for any γ < δ one can represent

F as in (1.5), where fi : Rd × [0, T ] → Rd are such that for each t ∈ [0, T ], fi(·, t) ∈

Ck,γ(Rd),

a(x, y, t) =
∞∑
i=1

fi(x, t)f
′
i(y, t), a.e. t,

and ∫ T

0

∞∑
i=1

|fi(x, r)|2dr ≤ T ||a||∼T,k,δ <∞.

In particular, note that if F is a Ck,ν−valued Brownian motion, its finite dimensional

restriction (F (x1, ·), F (x2, ·), . . . , F (xn, ·))′ is an nd−dimensional Brownian motion (with

suitable mean and covariance) for any (x1, . . . , xn) ∈ Rnd. If F is as defined by (1.5) and

{φt}0≤t≤1 is a continuous Rd−valued {Ft}−adapted stochastic process, the stochastic in-

tegral
∫ t

0
F (φr, dr) is a well–defined d−dimensional continuous {Ft}−adapted stochastic

process (see Chapter 3, Section 2, pp. 71–86 of [28]).

Definition 5.2.3. Let F be as in Definition 5.2.2. Then for each s ∈ [0, T ] and x ∈

Rd, there is a unique continuous {Ft}−adapted, Rd−valued process φs,t(x), s ≤ t ≤ T

satisfying φs,t(x) = x +
∫ t

s
F (φs,r(x), dr), t ∈ [s, T ]. This stochastic process is called the

solution of Itô’s stochastic differential equation based on the Brownian motion F .

From Theorem 4.6.5 [28] it follows that {φs,t}0≤s≤t≤T as introduced in Definition 5.2.3

has a modification that is a forward stochastic flow of Ck–diffeomorphisms.

5.3 Large deviation principle

Given ε > 0, let F ε be a Ck,ν− Brownian motion on some filtered probability space

(Ω,F ,P, {Ft}), with local characteristics (εa, b), where (k, ν) and (a, b) are as in Section
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5.2. Without loss of generality we assume that F ε is represented as

F ε(x, t)
.
=

∫ t

0

b(x, r)dr +
√
ε

∞∑
l=1

∫ t

0

fl(x, r)dβl(r), (x, t) ∈ Rd × [0, T ], (5.1)

where (βl, fl)l≥1 are as in Section 5.2. Note in particular that

F ε(x, t)−
∫ t

0

b(x, r)dr =
√
εM(x, t).

With an abuse of notation, when ε = εn we write F ε as F n. Observe that for all

t ∈ [0, T ], << M(x, ·), βl(·) >>t=
∫ t

0
fl(x, r)dr , a.s. Let φε ≡ {φε

s,t(x), x ∈ Rd, 0 ≤

s ≤ t ≤ T} be the forward stochastic flow of Ck−diffeomorphisms based on F ε. With

another abuse of notation,we write φε
0,t as φε

t and φε = {φε
t(x), 0 ≤ t ≤ T, x ∈ Rd}.

The goal of this work is to show that the family (φε, F ε)ε>0 satisfies a LDP on a suit-

able function space, as ε→ 0. For m ∈ N, let Gm be the group of Cm−diffeomorphisms

on Rd. Gm is endowed with the metric

dm(φ, ψ) = λm(φ, ψ) + λm(φ−1, ψ−1), (5.2)

where

λm(φ, ψ) =
∑
|α|≤m

ρ(∂αφ, ∂αψ), (5.3)

ρ(φ, ψ) =
∞∑

N=1

1

2N

sup|x|≤N |φ(x)− ψ(x)|
1 + sup|x|≤N |φ(x)− ψ(x)|

.

Under this metric Gm is a Polish space. Let Ŵm
.
= C

(
[0, T ] : Gm

)
be the set of

all continuous maps from [0, T ] to Gm and Wm
.
= C

(
[0, T ] : Cm(Rd)

)
be the set of

all continuous maps from [0, T ] to Cm(Rd). The space Ŵm endowed with the met-

ric d̂m(φ, ψ) = sup0≤t≤T dm(φ(t), ψ(t)) and the space Wm with the metric d̄m(φ, ψ) =

sup0≤t≤T λm(φ(t), ψ(t)) are Polish spaces. Note that (φε, F ε) belongs to Ŵk × Wk ⊆
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Ŵk−1 × Wk−1 ⊆ Wk−1 × Wk−1. We will show that the pair (φε, F ε)ε>0 satisfies LDPs

in both of the spaces Ŵk−1 × Wk−1 and Wk−1 × Wk−1, with a rate function I that is

introduced below.

Let u ≡ {ul}∞l=1 ∈
⋃

N≥1AN [l2]. Given any such control, we want to construct a

corresponding controlled flow in the form of a perturbed analogue of (5.1). Observe that

Zt
.
=
∑∞

l=1

∫ t

0
ul(s)dβl(s) is a continuous square integrable martingale. For any γ < δ one

can find bu : Rd × [0, T ]× Ω → Rd such that bu(t, ω) ∈ Ck,γ(Rd) for a.e. (t, ω), such that

for each x ∈ Rd, bu(x, ·) is predictable, and such that
∫ t

0
bu(x, s)ds =<< Z,M(x, ·) >>t

for each (x, t) ∈ Rd × [0, T ]. In particular, for each x ∈ Rd, bu(x, t)
.
=
∑∞

l=1 ul(t)fl(x, t)

a.e. (t, ω). Furthermore, for some c ∈ (0,∞),

||bu(t)||2k,γ ≤ c||a||∼T,k,δ

∞∑
l=1

|ul(t)|2, [dt⊗ P]− a.e. in (t, ω). (5.4)

The proofs of these statements follow along the lines of Exercise 3.2.10 and Lemma 3.2.3

of [28]. Next, define

F 0,u(x, t)
.
=

∫ t

0

bu(x, s)ds+

∫ t

0

b(x, s)ds. (5.5)

It follows that F 0,u(·, t) is a Ck,γ(Rd)–valued continuous adapted stochastic process. Let

b̂u
.
= bu + b and for (t0, x) ∈ [0, T ]× Rd let {φ0,u

t0,t(x)}t0≤t≤T be the unique solution of the

equation

φ0,u
t0,t(x)

.
= x+

∫ t

t0

b̂u
(
φ0,u

t0,r(x), r
)
dr, t ∈ [t0, T ]. (5.6)

From Theorem 4.6.5 of [28] it follows that {φ0,u
s,t , 0 ≤ s ≤ t ≤ T} is a forward flow of

Ck−diffeomorphisms.

For (φ0, F 0) ∈ Ŵk ×Wk define

I(φ0, F 0)
.
= inf

u∈L(φ0,F0)

1

2

∫ T

0

||u(s)||2l2ds, (5.7)
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where L(φ0, F 0) = {u ∈ L2([0, T ] : l2)
∣∣(φ0, F 0) = (φ0,u, F 0,u)}. Note in particular that u

in (5.7) is deterministic. If (φ0, F 0) ∈ (Wk−1×Wk−1)\(Ŵk×Wk) then we set I(φ0, F 0) =

∞. We denote the restriction of I to Ŵk−1 ×Wk−1 by the same symbol. The following

is the main result of the section.

Theorem 5.3.1. (Large deviation principle) The family (φε, F ε)ε>0 satisfies a LDP in

the spaces Ŵk−1 ×Wk−1 and Wk−1 ×Wk−1 with rate function I.

Let {un}∞n=1

(
un ≡ {un

l }∞l=1

)
be a sequence in AN [l2] for some fixed N < ∞. Let

{εn}n≥0 be a sequence such that εn ≥ 0 for each n and εn → 0 as n→∞. Note that we

allow εn = 0 for all n. Recall that M(x, t) =
∑∞

i=1

∫ t

0
fi(x, r)dβi(r), (x, t) ∈ Rd × [0, T ].

Define

F̂ n(x, t)
.
=

∫ t

0

b̂un(x, r)dr +
√
εn M(x, t), (5.8)

and let φn be the solution to

φn
t (x) = x+

∫ t

0

b̂un

(
φn

r (x), r
)
dr +

√
εn

∫ t

0

M
(
φn

r (x), dr
)
. (5.9)

Clearly F̂ n ∈ Wk, and from Theorem 4.6.5 of [28], equation (5.9) has a unique solution

φn ∈ Ŵk a.s. We next introduce some basic weak convergence definitions.

Definition 5.3.1. Let u ∈ AN [l2] and {φn} be as above. Let P̂n
k−1, P̂0

k−1 be the measures

induced by (φn, F̂ n), (φ0,u, F 0,u) respectively, on Ŵk−1 ×Wk−1. Thus for A ∈ B(Ŵk−1 ×

Wk−1),

P̂n
k−1(A) = P

(
(φn, F̂ n) ∈ A

)
, P̂0

k−1(A) = P
(
(φ0,u, F 0,u) ∈ A

)
.

The sequence
{
(φn, F̂ n)

}
n≥1

is said to converge weakly as Gk−1−flows to (φ0,u, F 0,u) as

n→∞ if P̂n
k−1 converges weakly to P̂0

k−1 as n→∞.

Definition 5.3.2. Let Pn
k−1,P0

k−1 be the measures induced by (φn, F̂ n), (φ0,u, F 0,u) re-

spectively on Wk−1 ×Wk−1. The sequence
{
(φn, F̂ n)

}
n≥1

is said to converge weakly as

Ck−1−flows to (φ0,u, F 0,u) as n→∞ if Pn
k−1 converges weakly to P0

k−1 as n→∞.
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As noted in the introduction, proofs of large deviations properties based on the general

framework developed in Chapter 3 essentially reduce to weak convergence analysis for

controlled analogues of the original process. For our problem the following theorem gives

the needed result. The proof is given in the next subsection.

Theorem 5.3.2. Let {un} converge to u in distribution as an SN [l2]−valued sequence of

random variables. Then the sequence {(φn, F̂ n)}n≥1 converges weakly as Ck−1−flows and

Gk−1−flows to the pair (φ0,u, F 0,u) as n→∞.

We will use Theorem 3.4.1 from Chapter 3. Recall the spaces A[l2], SN [l2],AN [l2],

S ≡ C([0, T ] : R∞) (with the usual topology is a Polish space), introduced in Section 3.4,

and β ≡ {βi}∞i=1 is a S−valued random variable.

PROOF OF THEOREM 5.3.1. We will only show that the sequence (φε, F ε) satisfies a

LDP in Ŵk−1×Wk−1 with rate function I defined as in (5.7). The LDP in Wk−1×Wk−1

follows similarly. Let Gε : S → Ŵk−1×Wk−1 be a measurable map such that Gε(
√
εβ) =

(φε, F ε) a.s., where F ε is given by (5.1) and φε is the associated flow based on F ε. Define

G0 : S → Ŵk−1 ×Wk−1 by G0
(∫ ·

0
u(s)ds

)
= (φ0, F 0) if u ∈ L2([0, T ] : l2) and with φ0, F 0

as defined in (5.6) and (5.5), respectively. We set G0(f) = 0 for all other f ∈ S.

Fix N < ∞ and consider ΓN =
{
G0(
∫ ·

0
u(s)ds), u ∈ SN [l2]

}
. We first show that ΓN

is a compact subset of Ŵk−1 ×Wk−1. For that it suffices to show that if un, u ∈ SN [l2]

are such that un → u, then G0(
∫ ·

0
un(s)ds) → G0(

∫ ·
0
u(s)ds) in Ŵk−1 × Wk−1. This is

immediate from Theorem 5.3.2 on noting that G0(
∫ ·

0
un(s)ds) = (φn, F̂ n), where φn, F̂ n

are as in (5.9) and (5.8) respectively with εn = 0; and G0(
∫ ·

0
u(s)ds) = (φ0,u, F 0,u), where

φ0,u, F 0,u are as in (5.6) and (5.5) respectively.

Next let {un} ⊂ AN [l2] and εn ∈ (0,∞) be such that εn → 0 and un converges in

distribution to some u as n → ∞. In order to complete the proof, it is enough, in view

of Theorem 3.4.1 and the definition of I in (5.7), to show that Gεn(
√
εnβ+

∫ ·
0
un(s)ds) →

G0(
∫ ·

0
u(s)ds) in Ŵk−1 ×Wk−1, as n → ∞. An application of Girsanov’s theorem shows

that Gεn(
√
εnβ +

∫ ·
0
un(s)ds) = (φn, F̂ n), where φn, F̂ n are defined as in (5.9) and (5.8)
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respectively. Also G0(
∫ ·

0
u(s)ds) = (φ0,u, F 0,u), where φ0,u, F 0,u are the same as in (5.6),

(5.5) respectively. The result now follows from Theorem 5.3.2. �

5.4 Proof of Theorem 5.3.2

This section will present the proof of Theorem 5.3.2. It is worth recalling assumptions

that will be in effect for this section, which are that {un} is converging to u in distribution

as an SN [l2]−valued sequence of random variables, and that (a, b) ∈ C̃k,δ
T (Rd×d)×Ck,δ

T (Rd),

for some k ∈ N and δ ∈ (0, 1].

We begin by introducing the (m+p)–point motion of the flow and the related notion of

“convergence as diffusions”. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yp) be arbitrary

fixed points in Rd×m and Rd×p, respectively. Set

φn
t (x) =

(
φn

t (x1), φ
n
t (x2), . . . , φ

n
t (xm)

)
and

F̂ n(y, t) =
(
F̂ n(y1, t), F̂

n(y2, t), . . . , F̂
n(yp, t)

)
.

Then the pair {φn
t (x), F̂ n(y, t)} is a Rd×m × Rd×p−valued continuous stochastic process

and is called an (m + p)–point motion of the flow. Let Vm
.
= C

(
[0, T ] : Rd×m

)
be the

Fréchet space of all continuous maps from [0, T ] to Rd×m, with the usual semi–norms,

and let Vm,p = Vm × Vp be the product space.

Definition 5.4.1. Let Pn
(x,y) and P0

(x,y) be the measures induced by (φn(x), F̂ n(y))

and (φ0,u(x), F 0,u(y)), respectively, on Vm,p. Thus for A ∈ B(Vm,p)

Pn
(x,y) = P

(
(φn(x), F̂ n(y)) ∈ A

)
, P0

(x,y) = P
(
(φ0,u(x), F 0,u(y)) ∈ A

)
.

The sequence
{
(φn, F̂ n)

}
n≥1

is said to converge weakly as diffusions to (φ0,u, F 0,u) as

n → ∞ if Pn
(x,y) converges weakly to P0

(x,y) as n → ∞ for each (x,y) ∈ Rd×m × Rd×p,
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and m, p = 1, 2, . . ..

The following well known result (c.f., Theorem 5.1.1[28]) is a key ingredient to the

proof of Theorem 5.3.2.

Theorem 5.4.1. The family of probability measures P̂n
k−1(respectively, Pn

k−1) converges

weakly to probability measures P̂0
k−1(respectively, P0

k−1), as n → ∞ if and only if the

following two conditions are satisfied:

1. the sequence
{
(φn, F̂ n)

}
n≥1

converges weakly as diffusions to (φ0,u, F 0,u) as n→∞,

2. the sequence
{

P̂n
k−1

}
(respectively,

{
Pn

k−1

}
) is tight.

We will show first that under the condition of Theorem 5.3.2 the sequence
{
(φn, F̂ n)

}
n≥1

converges weakly as diffusions to (φ0,u, F 0,u) as n → ∞. We begin with the following

lemma.

Lemma 5.4.1. For each x ∈ Rd

E sup
0≤t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

fk(x, s)dβk(s)

∣∣∣∣∣
2

<∞, (5.10)

sup
n

E sup
0≤t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

fk(φ
n
s (x), s)dβk(s)

∣∣∣∣∣
2

<∞. (5.11)

Proof. We will only prove (5.11). The proof of (5.10) follows in a similar manner. From

the Bürkholder–Davis–Gundy inequality the left hand side of (5.11) is bounded by

c1E

∣∣∣∣∣
∞∑
l=1

∫ T

0

Tr
(
flf

′
l

)(
φr(x), r

)
dr

∣∣∣∣∣ = c1E
∣∣∣∣∫ T

0

Tr
(
a(φr(x), φr(x), r)

)
dr

∣∣∣∣ ≤ c2||a||∼T,k,δ.

The last expression is finite since a belongs to C̃k,δ
T (Rd×d).

An immediate consequence of Lemma 5.4.1 is the following corollary (c.f. (5.8), (5.9)).
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Corollary 5.4.1. For each x ∈ Rd and t ∈ [0, T ],

F̂ n(x, t) =

∫ t

0

b̂un(x, r)dr + Sn(x, t)

and

φn
t (x) = x+

∫ t

0

b̂un(φn
r (x), r)dr + Tn(x, t),

where Sn(x, ·) and Tn(x, ·) are continuous stochastic processes with values in Rd, satisfying

sup0≤t≤T

{
|Sn(x, t)|+ |Tn(x, t)|

}
→ 0 in probability as n→∞.

The following lemma, showing the tightness of Pn
(x,y), plays an important role in the

proof of the weak convergence as diffusions.

Lemma 5.4.2. For each x ∈ Rd the sequence {
(
φn(x), F̂ n(x)

)
}n≥1 is tight in C

(
[0, T ] :

Rd × Rd
)
.

Proof. We will only argue the tightness of {φn(x)}. Tightness of {F̂ n(x)} is proved

similarly. Corollary 5.4.1 yields that Tn(x, ·) is tight in C
(
[0, T ] : Rd

)
. Thus it suffices

to show the tightness of
{∫ ·

0
b̂un

(
φn

r (x), r
)
dr
}
. Fix p > 0. From the Cauchy–Schwarz

inequality, (5.4), and recalling that un ∈ AN [l2], E
∣∣∫ t

s
b̂un(φn

r (x), r)dr
∣∣p can be bounded

by

E
[∫ t

s

∣∣b̂un

(
φn

r (x), r
)∣∣2dr]p/2

(t− s)p/2 ≤ c1{||a||∼T,k,δ + ||b||2T,k,δ}p/2(t− s)p/2 ≤ c2(t− s)p/2.

The result follows.

Proposition 5.4.1. Let un → u in distribution as SN [l2]–valued random variables. Then

the sequence
{
(φn, F̂ n)

}
n≥1

converges weakly as diffusions to (φ0,u, F 0,u) as n→∞.

Proof. In view of the tightness established in Lemma 5.4.2 and Corollary 5.4.1, it suffices

to show that for each t ∈ [0, T ], the map (ξ, v) 7→
∫ t

0
b̂v(ξs, s)ds, from C([0, T ] : Rd)×SN [l2]
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to Rd, is continuous. Let (ξn, vn) → (ξ, v) in C([0, T ] : Rd)× SN [l2]. Then,

∣∣∣∣∫ t

0

(
b̂vn(ξn

s , s)− b̂v(ξs, s)
)
ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

(
b̂vn(ξn

s , s)− b̂vn(ξs, s)
)
ds

∣∣∣∣
+

∣∣∣∣∫ t

0

(
b̂vn(ξs, s)− b̂v(ξs, s)

)
ds

∣∣∣∣ ≡ L1 + L2. (5.12)

For each x ∈ Rd we have that

∣∣∣∣∫ t

0

(
b̂vn(x, s)− b̂v(x, s)

)
ds

∣∣∣∣ =

∣∣∣∣∣
∞∑
l=1

∫ t

0

fl(x, s)(v
n
l (s)− vl(s))ds

∣∣∣∣∣→ 0, (5.13)

since vn → v weakly in L2([0, T ] : l2) and

∞∑
l=1

∫ t

0

|fl(x, s)|2ds ≤ T ||a||∼T,k,δ <∞.

Furthermore from (5.4) (recall k ≥ 1) we have that for some c1 ∈ (0,∞) and all x, y ∈

Rd, 0 ≤ t ≤ T ,

∣∣∣∣∫ t

0

(
b̂vn(x, s)− b̂vn(y, s)

)
ds

∣∣∣∣ ≤ |x− y|
∫ t

0

(
||bvn(s)||k,γ + ||b(s)||k,γ

)
ds ≤ c1|x− y|. (5.14)

Using the Ascoli-Arzelà Theorem (in the spatial variable) and equations (5.13), (5.14)

yield now that the expression on the left side of (5.13) converges to 0 uniformly for x

in compact subsets of Rd. Thus L2 → 0 as n → ∞. Following similar arguments L1 is

bounded by c2 sup0≤s≤T |ξn
s − ξs|, which converges to 0 as n→∞. Hence the expression

in (5.12) converges to 0 as n→∞ and the result follows.

We next show the tightness of the family of probability measures {Pn
k−1}. Key ingre-

dients in the proof are the following uniform Lp–estimates on ∂αF̂ n(x, t) and ∂αφn
t (x).

Lemma 5.4.3. For each p ≥ 1 there exists k1 ∈ (0,∞) such that for all t, t′ ∈ [0, T ], x ∈

62



Rd, n ≥ 1, and |α| ≤ k:

E
∣∣∂αF̂ n(x, t)− ∂αF̂ n(x, t′)

∣∣p ≤ k1 |t− t′|p/2
. (5.15)

Proof. Fix a multi–index α such that |α| ≤ k and p ≥ 1. Using the Bürkholder–Davis–

Gundy inequality for the martingale ∂αM(x, ·) and the fact that a ∈ C̃k,δ
T (Rd), we obtain

that for some c1 ∈ (0,∞) and all x ∈ Rd, t, t′ ∈ [0, T ],

E
∣∣∂αM(x, t)− ∂αM(x, t′)

∣∣p ≤ c1 |t− t′|p/2
. (5.16)

Recalling that b̂un(·, t) ∈ Ck,γ(Rd) a.e. (t, ω) and using (5.4) we get

∫ t

0

sup
x∈Rd

|∂αb̂un(x, r)|dr <∞ a.e.,

and thus ∂α
∫ t

0
bun(x, r)dr =

∫ t

0
∂αbun(x, r)dr a.e. An application of the Cauchy–Schwarz

inequality and (5.4) now gives, for some c2 ∈ (0,∞),

E
∣∣∣∣∂α

∫ t

t′
bun(x, r)dr

∣∣∣∣p ≤ c2 |t− t′|p/2
. (5.17)

Equation (5.15) is an immediate consequence of (5.16) and (5.17).

For g : Rd× [0, T ] → Rd, let ∇yg(y, r) be the d×d matrix with entries [∇yg(y, r)]ij =

∂
∂yj
gi(y, r). Differentiating with respect to x1 in (5.9) we obtain

∂1φ
n
t (x) = ∂1x+

∫ t

0

[∇y b̂un(φn
r (x), r) · ∂1φ

n
r (x)]dr +

√
εn

∫ t

0

∇yM(φn
r (x), dr) · ∂1φ

n
r (x)

= ∂1x+

∫ t

0

∇yF̂
n(φn

r (x), dr) · ∂1φ
n
r (x).

By repeated differentiation one obtains the following lemma whose proof follows along

the lines of Theorem 3.3.3 of [28]. Given 0 ≤ m ≤ k, let Λm be the set of all multi–
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indices α satisfying |α| ≤ m. For a multi–index γ, denote by m(γ) = ]{γ0 : |γ0| ≤

|γ|}. Also for a |γ|–times differentiable function Ψ : Rd → R, denote by ∂≤|γ|Ψ(x) the

m(γ)−dimensional vector with entries ∂γ0Ψ(x), |γ0| ≤ |γ|. If Ψ = (Ψ1,Ψ2, . . . ,Ψd) :

Rd → Rd is such that each Ψi is |γ|–times continuously differentiable then ∂≤|γ|Ψ(x)
.
=

(∂≤|γ|Ψ1(x), . . . , ∂
≤|γ|Ψd(x)). We will call a map P : Rm → Rd a polynomial of degree at

most ℘ if P (x) = (P1(x), . . . , Pd(x))
′ and each Pi : Rm → R is a polynomial of degree at

most ℘. Also for u, v ∈ Rl we define u ∗ v .
= (u1v1, . . . , ulvl)

′.

Lemma 5.4.4. Let α, β, γ be multi–indices such that |α|, |β|, |γ| ≤ k. Then there exist

subsets Λ1
α, Λ2

α of Λ|α| and Λ|α|−1 respectively, a subset Γα
β,γ of Λ|γ| and polynomials

Pα
β,γ : Rm(γ) → Rd of degree at most |α|, such that ∂αφn satisfies:

∂αφn
t (x) = ∂αx+

∫ t

0

Gn
(
∂αφn

r (x), φn
r (x), dr

)
+

∑
(β,γ)∈Λ1

α×Λ2
α

∫ t

0

Gα,n
β,γ

(
∂≤|γ|φn

r (x), φn
r (x), dr

)
,

(5.18)

where for x, y ∈ Rd, Gn(x, y, r) = ∇yF̂
n(y, r)·x and for (x, y) ∈ Rm(γ)×Rd, Gα,n

β,γ (x, y, r) =

Pα
β,γ(x) ∗ ∂β

y F̂
n(y, r).

Note in particular that in the third term on the right hand side of (5.18), one finds

partial derivatives of φn
r (x) of order strictly less than |α|.

Lemma 5.4.5. For each p ≥ 1, L ∈ (0,∞), there is a constant k1 ≡ k1(k, p, L) ∈ (0,∞)

such that for every multi–index α, |α| ≤ k

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂αφn
t (x)|p ≤ k1 (5.19)

sup
n

sup
|x|≤L

E
∣∣∂αφn

t (x)− ∂αφn
t′(x)

∣∣p ≤ k1 |t− t′|p/2
. (5.20)

Proof. Fix L > 0 and consider x ∈ Rd such that |x| ≤ L. We will first show inequality

(5.19). It suffices to prove (5.19) for α = 0 and establish that if, for some m < k, it

holds for ∂αφn
t with |α| ≤ m and all p ≥ 1 then it also holds for ∂i∂

αφn
t with all p ≥ 1
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(with a possibly larger constant k1) and i = 1, . . . , d. The desired result then follows by

induction. Consider first α = 0. For this case the bound in (5.19) follows immediately on

using (5.4) and applying the Bürkholder–Davis–Gundy inequality to the square integrable

martingale Nt =
∫ t

0
M(φn

r (x), dr) [note that << N >>t=
∫ t

0
a(φn

r (x), φn
r (x), r)dr and

a ∈ C̃k,δ
T (Rd×d)].

Now, suppose that (5.19) holds for all multi–indices α with |α| ≤ m, for some m < k.

Fix α with |α| ≤ m, an i ∈ {1, 2, . . . , d}, and consider the multi–index α̃ = α+ 1i, where

1i is a d–dimensional vector with 1 in the ith entry and 0 elsewhere. From Lemma 5.4.4,

one finds that ∂α̃φn
t solves (5.18) for α = α̃. Note that for β ∈ Λ1

α̃,

∂β
y F̂

n(y, t) =

∫ t

0

∂β
y bu(y, s)ds+

√
εn∂

β
yM(y, t).

From (5.4) and recalling that (b, a) ∈ Ck,δ
T (Rd) × C̃k,δ

T (Rd×d), we have that for some

c1, c2 ∈ (0,∞),

sup
0≤t≤T

sup
y∈Rd

∣∣∣∣∫ t

0

∂β
y bu(y, s)ds

∣∣∣∣ ≤ c1 and sup
0≤t≤T

sup
y∈Rd

∣∣<< ∂β
yM(y, t) >>t

∣∣ ≤ c2.

This along with the assumption

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂νφn
t (x)|p ≤ k1 for ν, |ν| ≤ |α|,

shows that for some c3 ∈ (0,∞), for all (β, γ) ∈ Λ1
α̃ × Λ2

α̃

sup
n

sup
|x|≤L

E sup
0≤t≤T

∣∣∣∣∫ t

0

Gα̃,n
β,γ

(
∂≤|γ|φn

r (x), φn
r (x), dr

)∣∣∣∣p ≤ c3.

Also, in a similar manner one has for some c4 ∈ (0,∞)

E sup
0≤t≤T

∣∣∣∫ s

0

Gn
(
∂α̃φn

r (x), φn
r (x), dr

)∣∣∣p ≤ c4

∫ t

0

E
(

sup
0≤r≤s

|∂α̃φn
r (x)|p

)
ds.
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Combining the above inequalities we obtain

sup
n

sup
|x|≤L

E sup
0≤s≤t

|∂α̃φn
s (x)|p ≤ c3 + c4 sup

n
sup
|x|≤L

∫ t

0

E
(

sup
0≤r≤s

|∂α̃φn
r (x)|p

)
ds.

Now an application of Gronwall’s lemma shows that for some c5 ∈ (0,∞)

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂α̃φn
t (x)|p ≤ c5.

This establishes (5.19) for all α̃ with |α̃| ≤ |α| + 1. Finally consider (5.20). For t, t′ ∈

[0, T ], t′ ≤ t, we have from (5.18) that

∂αφn
t (x)− ∂αφn

t′(x) =

∫ t

t′
Gn
(
∂αφn

r (x), φn
r (x), dr

)
+

∑
(β,γ)∈Λ1

α×Λ2
α

∫ t

t′
Gα,n

β,γ

(
∂≤|γ|φn

r (x), φn
r (x), dr

)
. (5.21)

Using (5.19) on the right hand side of (5.21) we now have (5.20) via an application of

Hölder’s and Bürkholder–Davis–Gundy’s inequalities.

The proof of Theorem 5.3.2 proceeds along the lines of Section 5.4 of [28]. We begin by

introducing certain Sobolev spaces. Let j be a non–negative integer and let 1 < p <∞.

LetBN ≡ B(0, N) be the Rd–ball with center the origin and radiusN . Let h : Rd → Rd be

a function such that the distributional derivative (see, e.g. Chapter 6 [35]) ∂αh ∈ Lp(BN)

for all α such that |α| ≤ j. Define

||h||j,p:N =

∑
|α|≤j

∫
BN

∣∣∂αh(x)
∣∣pdx

1/p

.

The space H loc
j,p = {h : Rd → Rd, ||h||j,p:N < ∞ for all N} together with the seminorms

defined above is a real separable semi–reflexive Fréchet space. By Sobolev’s imbedding

theorem, we have H loc
j+1,p ⊂ Cj(Rd) ⊂ H loc

j,p if p > d. Furthermore the imbedding i :
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H loc
j+1,p → Cj(Rd) is a compact operator by the Rellich–Kondrachov theorem (see [1]).

Proposition 5.4.2. The sequence {(φn, F̂ n)}n≥1 is tight in Wk−1 ×Wk−1.

Proof. It suffices to show that both {φn}n≥1 and {F̂ n}n≥1 are tight in Wk−1. We will

use Kolmogorov’s tightness criterion (see, e.g., Theorem 1.4.7, p.38, [28]). From Lemmas

5.4.3 and 5.4.5, we have that for each p ≥ 1, N > 1, there exist c1, c2 ∈ (0,∞) such that

for all t, t′ ∈ [0, T ]

sup
n

E||φn
t − φn

t′||
p
k,p:N ≤ c1 |t− t′|p/2

,

sup
n

E||F̂ n(·, t)− F̂ n(·, t′)||pk,p:N ≤ c2 |t− t′|p/2
.

Furthermore, since F̂ n(·, 0) = 0 and φn
0 (x) = x, we get that for each p ≥ 1, N > 1 there

exist c3, c4 ∈ (0,∞) such that

sup
n

E||φn
t ||

p
k,p:N ≤ c3 and sup

n
E||F̂ n(t)||pk,p:N ≤ c4.

Theorem 1.4.7 of [28] now gives tightness in the semiweak topology on H loc
k,p (cf. [28]).

Since the imbedding map i : H loc
k,p → Ck−1 is compact, tightness in Wk−1×Wk−1 with the

topology introduced in Section 2 follows (see pp. 246–247 [28]).

Recall the definitions (5.2) and (5.3). For the proof of the following lemma we refer

the reader to Section 2.1 of [4].

Lemma 5.4.6. Let fn, f ∈ Ŵk−1 be such that sup0≤t≤T λk−1(fn(t), f(t)) → 0, as n→∞.

Then sup0≤t≤T dk−1(fn(t), f(t)) → 0.

PROOF OF THEOREM 5.3.2. Convergence as Ck−1–flows is immediate from Theorem

5.4.1, Proposition 5.4.1 and Proposition 5.4.2. Using Skorohod’s representation theo-

rem, one can find a sequence of pairs {(φ̃n, F̃ n)}n≥1 which has the same distribution as
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{(φn, F̂ n)}n≥1 and {(φ̃0, F̃ 0)} which has the same distribution as {(φ0, F 0)} and

sup
0≤t≤T

[
λk(φ̃

n
t , φ̃

0
t ) + λk(F̃

n(t), F̃ 0(t))
]
→ 0, a.s.

Since φn, φ0 ∈ Ŵk a.s., the same holds for φ̃n, φ̃0. Thus from Lemma 5.4.6

sup
0≤t≤T

dk−1(φ̃
n
t , φ̃

0
t ) → 0 a.s.

Hence (φn, F̂ n) → (φ0, F 0) as Gk−1–flows. �

5.5 Application to image analysis

A common approach to image matching problems (see [22], [31], [16] and references

therein) is to consider a Rp–valued, continuous and bounded function T (·), referred to

as the “template” function, defined on a bounded open set O ⊆ R3, which represents

some canonical example of a structure of interest. By considering all possible smooth

transformations h : O → O one can generate a rich library of targets (or images) given

by the form T
(
h(·)

)
.

In typical situations we are given data generated by an a priori unknown function

h, and the key question of image matching is that of estimating h from the observed

data. A Bayesian approach to this problem requires a prior distribution on the space

of transformations and a formulation of a noise/data model. The “maximum” of the

posterior distribution on the space of transformations given the data can then be used

as an estimate ĥ for the underlying unknown transformation h. In certain applications

(e.g., medical diagnosis), the goal is to obtain numerical approximations for certain key

structures present in the image, such as volumes of subregions, curvatures and surface

areas. If the prior distribution on the transformations (and in particular the estimated

transformation) is on the space of diffeomorphisms, then this information can be recov-

ered from the template. Motivated by such a Bayesian approach a variational problem
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on the space of diffeomorphic flows was formulated and analyzed in [16].

Before going in to the description of this variational problem, we note that although

the chief motivation for the variation problem studied in [16] came from Bayesian consid-

erations, no rigorous results on relationships between the two formulations (variational

and Bayesian) were established. The goal of our study is to develop a rigorous asymp-

totic theory that connects a Bayesian formulation for such an image matching problem

with the variational approach taken in [16]. The precise result that we will establish is

Theorem 5.5.1, given at the end of this section.

Let C∞0 (O) be the space of infinitely differentiable, real–valued functions on O with

compact support in O. The starting point of the variational formulation is a differential

operator L on [C∞0 (O)]3, the exact form of which is determined from specific features of

the problem under study. The formulation, particularly for problems from biology, often

uses principles from physics and continuum mechanics as a guide in the selection of L.

We refer the reader to Christensen et. al. [10], [11], where natural choices of L in shape

models from anatomy are provided.

Define the norm || · ||L on [C∞0 (O)]3 by

||f ||2L
.
=

3∑
i=1

∫
O
|(Lf)i(u)|2du,

where we write a function g ∈ [C∞0 (O)]3 as (g1, g2, g3)
′
. It is assumed that || · ||L generates

an inner product on [C∞0 (O)]3 and that the Hilbert space H defined as the closure of

[C∞0 (O)]3 with this inner product is separable. We will need the functions in H to have

sufficient regularity and thus assume that the norm || · ||L dominates an appropriate

Sobolev norm. More precisely, let Wm+2,2
0 (O) be the closure of C∞0 (O) with respect to

the norm

||g||W m+2,2
0 (O)

.
=
(∫

O

∑
|α|≤m+2

|∂αg(u)|2du
)1/2

, g ∈ C∞0 (O), (5.22)

where α denotes a multi-index and m ≥ 3. Define Vm
.
= [Wm+2,2

0 (O)]⊗3, where ⊗ is used
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to denote the usual tensor product of Hilbert spaces. We denote by || · ||Vm the norm on

Vm. The main regularity condition on L is the following domination requirement on the

|| · ||L norm. There exists a constant c ∈ (0,∞) such that

||f ||L ≥ c||f ||Vm for all f ∈ [C∞0 (O)]3.

This condition ensures that H ⊆ Cm,1/2(O) (see Theorem 4.12 parts II and III, p.85 [1]).

We denote by H the Hilbert space L2([0, 1] : H). For a fixed b ∈ H let {ηs,t(x)}s≤t≤1 be

the unique solution of the ordinary differential equation

∂ηs,t(x)

∂t
.
= b
(
ηs,t(x), t

)
, ηs,s(x) = x, 0 ≤ s ≤ t ≤ 1. (5.23)

Then it follows that {ηs,t, 0 ≤ s ≤ t ≤ T} is a forward flow of Cm–diffeomorphisms on

O (see Theorem 4.6.5, p.173 [28]). Since b(·, t) has a compact support in O, one can

extend ηs,t to all of R3 by setting ηs,t(x) ≡ x, if x ∈ Oc. Extended in this way ηs,t can be

considered as an element of Gm, as defined in Section 5.3. Denoting η0,1 by hb, we can now

generate a family of smooth transformations (diffeomorphisms) on O by varying b ∈ H.

Specifically, the library of transformations which is used in the variational formulation

of the image matching problem is {hb|b ∈ H}.

We now describe the data that is used in selecting the transformation hb∗ for which

the image T
(
hb∗(·)

)
best matches the data. Let L be a finite index set and {Xi}i∈L be a

collection of disjoint subsets ofO such that ∪i∈LXi = O. Collected data {di}i∈L represents

integrated responses over each of the subsets Xi, i ∈ L. More precisely, if T
(
h(·)

)
was

the true underlying image and the data were completely error free and noiseless, then

di =
∫

Xi
T (h(σ))dσ/vol(Xi), i ∈ L, where vol(Xi) denotes the Lebesgue measure of

Xi. Let d = (d1, d2, .., dn)′, where n = |L|. Defining Yd(x) = di, x ∈ Xi, i ∈ L, the

expression

1

2

∫
O

∣∣T (hb(x))− Yd(x)
∣∣2dx
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is a measure of discrepancy between a candidate target image T (hb(·)) and the observa-

tions. This suggests a natural variational criterion for selecting the “best” transformation

matching the data. The objective function that is minimized in the variational formu-

lation of the image matching problem is a sum of two terms, the first reflecting the

“likelihood” of the transformation or change–of–variable hb and the second measuring

the conformity of the transformed template with the observed data. More precisely,

define for b ∈ H

Jd(b)
.
=

1

2

(
||b||2H +

∫
O

∣∣T (hb(x))− Yd(x)
∣∣2dx). (5.24)

Then b∗ ∈ argminb∈HJd(b), represents the “optimal” velocity field that matches the data

d and for which the hb∗ , obtained by solving (5.23), gives the “optimal” transformation.

This transformation then yields an estimate of the target image as T (hb∗(·)). Equiva-

lently, defining for each h ∈ G0

Ĵd(h)
.
= inf

b∈Ψh

Jd(b) (where Ψh = {b ∈ H : h = hb}),

we see that an optimal transformation is h∗ = hb∗ ∈ argminhĴd(h).

Up to a relabelling of the time variable, the above variational formulation(in particular

the cost function in (5.24)) was motivated in [16] through Bayesian considerations, but

no rigorous justification was provided. [In [16] the orientation of time is consistent with

the change–of–variable evolving toward the identity mapping at the terminal time. To

relate the variational problem to stochastic flows it is more convenient to have the identity

mapping at time zero.] We next introduce a stochastic Bayesian formulation of the image

matching problem and describe the precise asymptotic result that we will establish.

Let {φi} be a complete orthonormal system in H and β ≡ (βi)
∞
i=1 be as in Section

5.2, a sequence of independent, standard, real–valued Brownian motions on some fil-

tered probability space (Ω,F ,P, {Ft}). Recall the space and its associated Borel σ−field

(C([0, T ] : R∞),B (C([0, T ] : R∞))) ≡ (S,S) as introduced in Section 3.4, and note that
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β is a random variable with values in S. Consider the stochastic flow

dψs,t(x) =
√
ε

∞∑
i=1

φi

(
ψs,t(x)

)
dβi(t), ψs,s(x) = x, x ∈ O, 0 ≤ s ≤ t ≤ 1, (5.25)

where ε ∈ (0,∞) is fixed. From Maurin’s theorem (see Theorem 6.61, p. 202 [1]) it follows

that the imbedding map H → Vm−2 is Hilbert–Schmidt. Also, Vm−2 is continuously

embedded in Cm−2,1/2(O). Thus for some k1, k2 ∈ (0,∞) and all u, x, y ∈ O,

∞∑
i=1

|φi(u)|2 ≤ k1

∞∑
i=1

||φi||2Vm−2
<∞,

∞∑
i=1

|φi(x)− φi(y)|2 ≤ k1|x− y|2
∞∑
i=1

||φi||2Vm−2
= k2|x− y|2.

One also has that if φl is extended to all of R3 by setting φl(u) = 0, for all x ∈ Oc, then

a(x, y) =
∑∞

l=1 φl(x)φ
′
l(y) is in C̃m−2,1/2

T (R3×3). Thus it follows (cf. p.80 and p.106 [28])

that

F (x, t) =
∞∑
l=1

∫ t

0

φi(x)dβi(r)

is a Cm−2,ν–Brownian motion, 0 < ν < 1/2, with local characteristics (a, 0). Also (5.25)

admits a unique solution {ψε
s,t(x), 0 ≤ s ≤ t ≤ 1} for each x ∈ O and {ψε

s,t}0≤s≤t≤1 is

a forward flow of Ck–diffeomorphisms, with k = m − 2, (see Theorem 4.6.5 [28]). In

particular, Xε .
= ψε

0,1 is a random variable in the space of Ck–diffeomorpshisms on O.

The law of Xε (for a fixed ε > 0) on Gk will be used as the prior distribution on the

transformation space Gk. Note that T
(
Xε(·)

)
induces a measure on the space of target

images.

We next consider the data model. Let L and n be as introduced below (5.23). We

suppose that the data is given through an additive Gaussian noise model:

Di =

∫
Xi

T
(
Xε(x)

)
dx+

√
εξi
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where {ξi, i ∈ L} is a family of independent, p–dimensional standard normal random

variables.

In the Bayesian approach to the image matching problem one considers the posterior

distribution of Xε given the data D and uses the “mode” of this distribution as an

estimate for the underlying true transformation. More precisely, let {Γε}ε>0 be a family

of measurable maps from Rnp to P(Gk) (the space of probability measures on Gk), such

that

Γε(A|D) = P[Xε ∈ A|D] a.s. for all A ∈ B(Gk).

We refer to Γε(·|d) as a regular conditional probability distribution (r.c.p.d.) of Xε given

D = d. In Theorem 5.5.1 below, we will show that there is a r.c.p.d. {Γε(·|d), d ∈

Rnp}ε>0 such that for each d ∈ Rnp, the family {Γε(·|d)}ε>0, regarded as elements of

P(Gk−1) ⊇ P(Gk), satisfies a LDP with rate function

Id(h) = Ĵd(h)− λd, where λd = inf
h∈Gk−1

Ĵd(h) = inf
b∈H

Jd(b).

Formally writing Γε(A|d) ≈
∫

A
e−

Id(h)

ε dh, one sees that for small ε, the “mode” of the

posterior distribution given D = d, which represents the “optimal transformation” in the

Bayesian formulation, can be formally interpreted as argminhId(h). Note that Ĵd(h) = ∞

if h /∈ Gm (recall m = k + 2). Theorem 5.5.1 in particular says that h ∈ Gm is a

δ–minimizer for Id(h) if and only if it is also a δ–minimizer for Ĵd(h). Thus Theorem

5.5.1 makes precise the asymptotic relationship between the variational and the Bayesian

formulation of the above image matching problem.

We say a sequence {Qε, ε > 0} of probabilities measures satisfies a LDP (as ε → 0)

on some Polish space E if the corresponding sequence of canonical E−valued random

variables satisfies a LDP.

Theorem 5.5.1. There exists an r.c.p.d. Γε such that for each d ∈ Rn, the family of

probability measures {Γε(d)}ε>0 on Gk−1 satisfies a large deviation principle (as ε → 0)
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with rate function

Id(h)
.
= Ĵd(h)− λd. (5.26)

We begin with the following proposition. Let Ĩ : Gk−1 → [0,∞] be defined as

Ĩ(h)
.
= inf

b∈Ψh

1

2
||b||2H.

Proposition 5.5.1. The family {Xε}ε>0 satisfies a LDP in Gk−1 with rate function Ĩ.

Proof. From Theorem 5.3.1 and an application of the contraction principle we have that

{Xε}ε>0 satisfies LDP in Gk−1 with rate function

I∗(h)
.
= inf

u∈L∗(h)

1

2

∫ T

0

||u(s)||2l2ds,

where L∗(h) =
{
u ∈ L2([0, 1] : l2)|h = φ0,u(1)

}
and where φ0,u is defined via (5.6),

but with fi there replaced by φi in defining bu. Note that there is a one to one corre-

spondence between u ∈ L2([0, 1] : l2) and b ∈ H given as b(t, x) =
∑∞

l=1 ul(t)φl(x) and∫ T

0
||u(s)||2l2ds = ||b||2H. In particular u ∈ L∗(h) if and only if b ∈ Ψh. Thus I∗(h) = Ĩ(h)

and the result follows.

Remark 5.5.1. Proposition 5.5.1 is consistent with results in Section 5.3 in that although

the local characteristics are in Ck and Xε ∈ Gk, the LDP is established in the larger space

Gk−1. This is due to the tightness issues described in Chapter 1. Furthermore, as noted

below (5.23), if ||b||H < ∞ then b induces a flow of Cm–diffeomorphisms on O. Thus if

h ∈ Gk−1 \ Gm then Ψh is empty, and consequently Ĩ(h) = ∞. Hence there is a further

widening of the “gap” between the regularity needed for the rate function to be finite and

the regularity associated with the space in which the LDP is set. This is due to the fact

that the variational problem is formulated essentially in terms of L2 norms of derivatives,

while in the theory of stochastic flows as developed in [28] assumptions are phrased in

terms of L∞ norms.
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Proposition 5.5.2. For each d ∈ Rn, Id defined in (5.26) is a rate function on Gk−1.

Proof. From (5.26) and the definition of Ĩ we have for h ∈ Gk−1 that

Id(h) = Ĩ(h) +
1

2

∫
O
|T (h(x))− Yd(x)|2dx− inf

h∈Gk−1

{
Ĩ(h) +

1

2

∫
O
|T (h(x))− Yd(x)|2dx

}
.

From Proposition 5.5.1, Ĩ is a rate function and therefore has compact level sets. Addi-

tionally T is a continuous and bounded function on O. The result follows.

PROOF OF THEOREM 5.5.1. We begin by noting that Γε(·|d) defined as

Γε(A|d) .
=

∫
A
e
− 1

2ε

∑n
i=1

∣∣di−
∫

Xi
T (h(y))dy

∣∣2
µε(dh)∫

Gk−1 e
− 1

2ε

∑n
i=1

∣∣di−
∫

Xi
T (h(y))dy

∣∣2
µε(dh)

,

where µε = P ◦ (Xε)−1 ∈ P(Gk−1), is a r.c.p.d. of Xε given D = d. Using the equivalence

between Laplace principle and large deviations principle (see Section 1.2 [15]) it suffices

to show that for all continuous and bounded real functions F on Gk−1,

−ε log

∫
Gk−1

exp

[
−1

ε
F (v)

]
Γε(dv|d) (5.27)

converges to infh∈Gk−1{F (h) + Id(h)}. Note that (5.27) can be expressed as

− ε log

∫
Gk−1

e
− 1

ε

[
F (h)+ 1

2

∑n
i=1

∣∣di−
∫

Xi
T (h(y))dy

∣∣2]
µε(dh)

+ ε log

∫
Gk−1

e
− 1

ε

[
1
2

∑n
i=1

∣∣di−
∫

Xi
T (h(y))dy

∣∣2]
µε(dh). (5.28)

From Proposition 5.5.1 we see that the first term converges to

inf
h∈Gk−1

{
Ĩ(h) + F (h) +

1

2

n∑
i=1

∣∣∣∣di −
∫

Xi

T (h(y))dy

∣∣∣∣2
}

= inf
h∈Gk−1

inf
b∈Ψh

{
F (h) +

1

2
||b||2H +

1

2

∫
O
|T (h(y))− Yd(y)|2dy

}
,

75



which is Ĵd(h). Likewise, the second term of (5.28) converges to −λd. This shows the

result. �
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APPENDIX A

Functional Analysis Background

In this appendix we present basic functional analysis terminology and definitions

used in this work. Since only real vector spaces are used in this work we will limit our

presentation to this setting.

Definition A.0.1. (Normed Linear Space). A real vector space V is said to be a normed

linear space if for each x ∈ V there is associated a nonnegative real number ||x||, called

the norm of x, such that

1. ||x+ y|| ≤ ||x||+ ||y|| for all x and y ∈ V,

2. ||ax|| = |a|||x|| if x ∈ V and a ∈ R,

3. ||x|| = 0 implies x = 0.

Definition A.0.2. (Banach Space). A Banach space is a normed linear space which is

complete in the metric defined by its norm.

Definition A.0.3. (Inner Product Space). A real vector space V is said to be an inner

product space if to each pair of vectors x and y in V, there is associated a real number

< x, y >, the so–called inner product of x and y, such that the following rules hold:

1. < x, x > ≥ 0 for all x ∈ V and < x, x >= 0 if and only if x = 0,

2. < x, y >=< y, x >, for all x, y ∈ V,

3. < ax+ by, z >= a < x, z > +b < y, z > for all x, y, z ∈ V and a, b ∈ R.

Definition A.0.4. (Hilbert Space). A Hilbert space H is an inner product space which

is complete.
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Remark A.0.2. Note that an inner product space is a normed linear space and a Hilbert

space is a Banach space.

Definition A.0.5. (Linear/Closed Operator). A linear operator A on a Banach space

L is a linear mapping whose domain D(A) is a subspace of L and whose range R(A) lies

in L. The graph of A is given by G(A) = {(f, Af) : f ∈ D(A)} ⊂ L × L. A is said to

be closed if G(A) is a closed subspace of L× L. We say A is densely defined if D(A) is

dense in L.

Definition A.0.6. (Bounded Linear Operator). A linear operator A on a Banach space

L is called bounded if D(A) = L and the image under A of any bounded subset of L is

bounded. Linear bounded operators A from L1 to L2, where L1 and L2 are Banach spaces

are defined similarly. We denote by L(L1, L2) as the space of all bounded linear operators

from L1 to L2.

Definition A.0.7. (Strongly Continuous Semigroup). Let {A(t), t ≥ 0} be a family of

closed, densely defined, linear operators on a Banach space L. We say that {A(t), t ≥ 0}

generates a two parameters strongly continuous semigroup {U(t, s) : 0 ≤ s ≤ t} if and

only if

1. for all 0 ≤ s ≤ t, U(t, s) ∈ L(L,L) ,

2. for 0 ≤ s1 ≤ s2 ≤ t, U(t, s2)U(s2, s1) = U(t, s1),

3. U(t, t) = I for all t ≥ 0,

4. |U(t, s)x− x| → 0 as |t− s| → 0 for all x ∈ L,

5. D(A(t)) =
{
x ∈ V : the limit U(t+h,t)x−x

h
in V exists as h→ 0+

}
and A(t)x = limh→0

U(t+h,t)x−x
h

for all x ∈ D(A).

Definition A.0.8. (Compact Operator). An operator A ∈ L(H,H) for some Hilbert

space H is said to be a compact operator if the image of any bounded subset of H is

pre–compact in H.
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Definition A.0.9. (Orthogonal/Complete Orthogonal/Complete Orthonormal System).

A subset S of a Hilbert space H is called an orthogonal system if for any x, y ∈ S such

that x 6= y we have < x, y >= 0. S is called a complete orthogonal system (COS) if there

exists no other orthogonal system which strictly contains S. S is a complete orthonormal

system (CONS) if S is a COS and, for any x ∈ S, ||x|| = 1.

Remark A.0.3. (Seperable Hilbert Space) A Hilbert space is called separable if it admits a

countable CONS. All Hilbert spaces here will be separable and so the adjective “separable”

will be dropped.

Definition A.0.10. (Hilbert–Schmidt Operator). An operator A ∈ L(H,H) for some

Hilbert space H is said to be a Hilbert–Schmidt operator if ||A||(2) <∞, where ||A||(2)
.
=(∑∞

n=1 ||Aen||2
)1/2

and {en} a CONS of H.

Definition A.0.11. (Trace Class Operator). Let H be Hilbert space and A ∈ L(H,H)

be a compact operator. A is said to be a trace class operator if there exists a CONS {en}

of H such that
∑∞

n=1 ||Aen|| <∞.

Definition A.0.12. (Symmetric/Nonnegative/Positive Operator). An operator A ∈

L(H,H) is called symmetric if < Ax, y >=< x,Ay > for all x, y ∈ H. Such an operator

is called nonnegative if < Ax), x > ≥ 0 for all x ∈ H, and positive if < Ax, x > > 0 for

all x ∈ H\{0}.

Remark A.0.4. A nonnegative compact operator admits a CONS of eigenvectors. If

{en} is a CONS of eigenvectors of a nonnegative compact operator A with {λn} the

corresponding eigenvalues then λn → 0 as n → ∞. Such an operator is trace class if∑
λn <∞ and Hilbert–Schmidt if

∑
λ2

n <∞.

Definition A.0.13. (Adjoint operator). Let H1, H2 be two Hilbert spaces and A ∈

L(H1, H2). An operator A∗ ∈ L(H2, H1) is called adjoint of A if and only if < Ax, y >=<

x,A∗y > for all x ∈ H1 and y ∈ H2.
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APPENDIX B

Frequently used notations and assumptions

• N0: the space of nonnegative integers.

• N: the space of positive integers.

• R: the space of real numbers.

• H, Hα: Hilbert spaces. All Hilbert spaces in this work will be real and separable.

• < ·, · > , < ·, · >α , ‖ · ‖, ‖ · ‖α: the inner products and the norms of the above

Hilbert spaces respectively.

• For a real–valued function f, |f |∞ = supx |f(x)|.

• Given a k and m dimensional continuous local martingales M,N on some filtered

probability space (Ω,F ,P, {Ft}) we will write the cross–quadratic variation of M

and N as << M,N >>t. This is a continuous Rm×k–valued {Ft}–adapted process.

• L2([0, T ] : H): Hilbert space of maps f from [0, T ] to the Hilbert space H such that∫ T

0
||f(t)||2dt <∞.

• C([0, T ] : E): The space of continuous functions from [0, T ] to a Polish space E .

• Xn
d→ X: Xn converges to X in distribution. The terms, convergence in distri-

bution, convergence in law or weak convergence for random variables, will be used

interchangeably.

• Xn
P→ X: Xn converges to X in probability.

• Generic constants will be denoted as c1, c2, · · · . Their values may change from one

proof to next.
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• Transpose of a d–dimensional vector v will be denoted by v′.

• By convention infimum on an empty set will be taken to be ∞.

• All Polish spaces in this work will be considered as measurable spaces endowed

with the corresponding Borel σ–fields. Borel σ–fields on a Polish space E will be

written as B(E).
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