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Abstract
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing
the performance of both existing and novel scoring functions. We apply two different scoring
functions, both independently and in combination, to predict binding affinity of ligands in the
CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical
descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity
Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands
in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We
show that both individual scoring functions achieve statistically significant prediction accuracies
with the squared correlation coefficient (R2) between actual and predicted binding affinity of
0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore.
Importantly, we find that the combination of QSBAR models and MedusaScore into consensus
scoring function affords higher prediction accuracy than any of the contributing methods
achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and
non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity
for several ligands by the scoring functions employed in this study.

Introduction
Scoring functions play a critical role in structure-based virtual screening.1, 2 An ideal
scoring function can guide docking programs to generate and identify native-like docking
poses. Based on the correct docking models, an ideal scoring function can also predict the
binding affinity and correctly rank all compounds in the virtual screening library. Still,
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despite extensive research over many years, the accuracy of scoring functions remains a
major bottleneck in structure-based virtual screening.3, 4

The binding affinity is defined by free energy of the protein-ligand binding. Direct
calculation of free energy requires extensive sampling in the conformational space, which is
generally infeasible except in a few special cases. Given the computational inefficiency of
conformational sampling, certain approximations or assumptions are often made to estimate
the binding free energy using physical force field models that sometime also account for
implicit solvation.5, 6 With the improvement of the underlying force fields and increased
computational power of modern computers, the performance of binding affinity calculations
using physical methods is expected to improve gradually. On the other hand, there are
alternative approaches that take advantage of the rapidly growing data on the experimental
binding affinity of many compounds. These experimental databases are used to derive
empirical scoring functions or statistical models to predict the binding affinity.7, 8 Such
knowledge-based scoring functions may capture certain factors that are often ignored or
difficult to describe explicitly using physical force field-based scoring functions such as
entropic contribution, pi-stacking, or environment-dependent polarization.

To improve the outcome of structure based drug discovery, there is a great need for an
unbiased comprehensive test set to compare different scoring functions and identify their
respective strengths and limitations, which may lead to novel ways to further improve the
accuracy of binding affinity prediction. The recently established Community Structural-
Activity Resources (CSAR)-National Research Council of Canada (NRC) high quality
benchmark set9 (abbreviated as CSAR-NRC in the following sections) provides excellent
opportunities to develop and benchmark different scoring functions. This benchmark set
contains two diverse subsets (Set1 and Set2) of protein-ligands complexes whose
experimental binding affinity as well as high-resolution x-ray structures are available.

In this study, we employ the CSAR-NRC benchmark set to test two scoring functions of
very different nature. One is MedusaScore6, which is a force field based scoring function
derived from Medusa force field10 and originally designed for protein folding simulations.
To ensure the best transferability of MedusaScore, its parameters are based on
physicochemical properties and no protein-ligand complex data are used for training.
Second is based on quantitative structure binding affinity relationship (QSBAR) modeling,11

an approach that correlates special descriptors of protein-ligand interface to ligand binding
affinity using statistical modeling approaches. In the previous study, QSBAR models were
constructed from 264 x-ray protein-ligand complexes with known binding affinity using
protein-ligand interfacial descriptors derived from Pauling electronegativity. Herein, we
develop novel descriptors by incorporating conceptual DFT atomic properties12 into the
generation of protein-ligand interfacial descriptors and use high-quality CSAR-NRC sets to
construct and validate QSBAR models that are used to predict binding affinity of ligands in
external datasets. These empirical QSBAR models may be able to capture implicitly some
subtle interactions that are difficult to calculate and that may be ignored by physical force
fields.

We find that both scoring functions, i.e., MedusaScore and QSBAR models afford
reasonably good performance in binding affinity prediction for CSAR-NRC ligands.
Moreover, when combining the two scoring functions together, we find that the consensus
scoring function improves the prediction accuracy compared to each individual scoring
function. We attribute this observation to the complementarity of the two types of scoring
functions that employ completely different principles to capturing and representing protein-
ligand interactions as well as to higher accuracy of consensus prediction versus individual
components. More specifically, we find that sets of prediction outliers from each scoring
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function do not completely overlap. Also, by analyzing the prediction outliers for each
scoring function based on their protein family membership and their chemical features, we
identify several distinct chemical features and specific non-covalent interactions, which are
associated with wrong predictions. Some of these traits are specific to outliers when using
MedusaScore while others are characteristic of QSBAR model. Such analysis not only
provides insights into complementarity between these two types of scoring functions but
also gives possible clues for future improvement of their accuracy.

Methods
Dataset

The CSAR-NRC High Quality (CSAR-NRC HiQ) sets are downloaded from the CSAR web
site.9 The two sets, Set1 and Set2, included in the package contain 176 and 167 complexes,
respectively. The descriptive analysis of the two data sets, based on the binding affinity of
complexes and the protein family, is shown in Table 1. For each of the downloaded
complexes, the original Sybyl MOL2 format is converted to the PDB format using
Openbabel 2.2.0.13 Due to current limitations of the MedusaScore program, we also remove
all the capping residues from the protein structures using a Perl script.

MedusaScore
MedusaScore6 is a physical force field-based scoring function that describes the major
physical interactions between proteins and ligands, including van der Waals interaction,
hydrogen bonding and solvation. It is calculated as a linear combination of various energy
terms as:

(1)

where Evdw_attr, Evdw_rep are the attractive and repulsive part of the van der Waals (VDW)
interaction; Esolv is the solvation energy; Ebb_hbond, Esc_hbond and Ebb_sc_hbond are the
hydrogen bond energies formed between backbone atoms, between side chains, and between
backbone and side chains, respectively. The design of the force field is similar to that of the
Rosetta force field,14 which has also been widely used in protein folding and design. The
VDW interaction model and parameters are adapted from CHARMM19.15 The solvation
model is the EEF1 implicit solvent model proposed by Lazaridis and Karplus.16 We use the
hydrogen bonding model proposed by Kortemme and Baker.17 When evaluating the non-
bonded interactions, we use a cutoff distance of 9.0 Å. The van der Waals repulsion
(VDWR) potentials are implemented with linear extrapolation to dampen the fast increase of
the potential as:

Here, rij is the distance between two atoms i and j. The energy parameters ε and σ are taken
from the CHARMM19 force field of united atoms.15 Since the energy terms originate from
different sources, a set of weighting parameters is assigned in order to balance their
respective contributions.
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MedusaScore is an extension of the Medusa force field10, which was developed originally to
describe physical interactions within proteins. The original weighing factors of the Medusa
force field were trained on 34 high-resolution protein crystal structures with diverse
sequences. Notably there were no protein-ligand data used in the development of
MedusaScore, but it still exhibits remarkable accuracy in both docking pose discrimination
and binding affinity prediction.6 Thus, by default MedusaScore is expected to be
transferable and applicable to virtual screening of a variety of chemical compounds. During
the pose rescoring by MedusaScore, we turn off the VDWR term because it was shown to be
sensitive to small deviation in ligand poses.6 It is safe to remove the term in this case
because all steric clashes have already been considered during the generation of docking
poses.

Quantitative Structure-Binding Affinity Relationships (QSBAR) models
The QSBAR models derived from either Set1 or Set2 using novel descriptors of the protein-
ligand interface are applied to predict either Set2 or Set1, respectively. The protein-ligand
interfacial descriptors used in the QSBAR modeling are the combination of newly
developed PL/MCT-Tess descriptors and the published EnTess descriptors.11 The PL/MCT-
Tess descriptors are methodologically similar to the EnTess descriptors but are theoretically
distinctive. The EnTess descriptors are obtained by using Pauling electronegativity (En) as
atomic property and Delaunay Tessellation (Tess) to characterize the protein ligand interface
as follows (Figure 1). When applied to protein-ligand complexes represented at the atomic
resolution level, Delaunay tessellation partitions the protein ligand interface into an
aggregate of space-filling, irregular tetrahedra where both protein and ligand atoms are
vertices. Each Delaunay quadruplet is characterized by its unique four-atom composition,
which defines the descriptor type (certainly, the same four-body compositions may occur in
different or even, the same protein-ligand interfaces). Furthermore, for each quadruplet we
calculate the sum of En values of the composing atom-vertices, which produces the
descriptor value.

In the implementation of PL/MCT-Tess descriptors, the new descriptors employ pairwise
atomic potentials for the protein-ligand complexes (PL) based on maximal charge transfer
(MCT)12 in place of Pauling electronegativities; thus, we call them PL/MCT-Tess. The
values of PL/MCT-Tess descriptors are calculated from the following equation:

(2)

where PL/MCT-Tessm is the potential of the m-th tetrahedron type defined by its four-atom
composition (i.e., individual descriptor type); n is the number of occurrences of this
tetrahedron type in a given protein-ligand complex; p is the index of protein vertex-atoms, l
is the index of ligand vertex-atoms, and dpl is the distance between a pair of protein and
ligand atoms found in the same Delaunay tetrahedron.

Since the Pauling En and MCT values used in two distinct sets of descriptors represent
chemical properties based on distinctive but related theories, it is sensible to test the
modeling performance using the combined descriptor set. We have found that employing
models built by the combined descriptor set (PL/MCT-Tess + ENTess descriptors), the
prediction accuracy is much better than using models built by any single descriptor set (data
not shown). The combined descriptor set is constructed by concatenating the ENTess and
PL/MCT-Tess descriptor sets. We remove descriptors in the combined descriptor set that
have low variance (all, or all but one value is constant) and high correlation (if pair-wise
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square correlation coefficient is greater than 0.99, one of the pair, chosen randomly, is
removed). The remaining descriptors are range scaled (0 to 1).

This combined descriptor set is applied to Set1 or Set2 to construct QSBAR models, where
absolute binding affinity is represented as a function of protein-ligand interfacial descriptors.
We use kNN algorithm with our standard model development and validation workflow
reviewed recently.18 In brief, an n-fold external validation protocol is employed when the
entire dataset is randomly divided into n nearly equal parts and then n-1 parts are
systematically used for model development and the remaining fraction of compounds is used
for model evaluation. In this study, ten-fold protocol was used for Set1 and ninefold
protocol was used for Set2 due to its smaller size. The Sphere Exclusion protocol
implemented in our laboratory19, 20 is used to rationally divide the remaining subset of
compounds (the modeling set) into multiple training and test sets that are used for model
development and validation, respectively. The model acceptability thresholds are
characterized by the lowest acceptable value of the leave-one-out cross validated R2 (q2) for
the training set and by conventional R2 for the test set; our default values are 0.5 for q2 and
0.6 for R2. All validated models are finally assesses in an ensemble using the external
evaluation set. The resulting models based on Set1 (Set2) are then used to predict the
binding affinity of Set2 (Set1) complexes.

Consensus protocol
The multiple linear regression method is applied to combine predictions from QSBAR
models and MedusaScore. The equation is as follows:

(3)

where Yc is the consensus predicted affinity of a ligand, YMedusaScore is the raw prediction
of MedusaScore which in theory is supposed to be in linear relationship with the
experimental binding affinity, and YQSBAR is the affinity of the same ligand predicted by
QSBAR model. The coefficients (b1, b2 and b3) in the equation are optimized by training
based on the predictions from Set1 (Set2) of protein-ligand complexes. The equation with
optimized coefficients is then applied to predict binding affinity of Set2 (Set1) complexes,
respectively.

Comparison metrics
We report the squared correlation coefficient (R2) and two rank correlation coefficients,
Spearman rho and Kendall tau, to measure the performance of a scoring function in terms of
the correlation between the predicted score and the experimental binding affinity. In
addition, because the QSBAR models report the absolute predicted binding affinity, we
could also calculate the coefficient of determination when the regression line is forced to go
through origin (i.e., the R0

2 value) as well as corresponding root mean square error
(RMSE0) and root median square error (RMDSE0) values, where the median of residuals is
used instead.

Outlier analysis
We define the prediction outlier of a scoring function as the protein-ligand complex whose
predicted score is one standard deviation (σ) of residuals larger or smaller than its fitted
value from the regression line. The remaining complexes are categorized as normal.
Furthermore, we subdivide prediction outliers of each scoring function into two groups,
over-predicted and under-predicted. For each group, we analyze its distribution among
protein families based on 90% sequence similarity threshold. We also identify chemical
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features specific for the ligands in the outlier complexes. To this end, we generate structural
fragments and analyze their distribution between outlier and normal groups. The fragments
(sequences of atoms and bonds from 2 to 6 atoms in length, ~1000 unique substructures in
total) are generated by the ISIDA Fragmentor21 program, which we chose for its efficiency
and availability (free of charge to academic investigators); but the same analysis is possible
with other fragment-generating software. Same as for PL/MCT-tess and EnTess descriptors,
we remove highly-intercorrelated and low-occurrence fragments. The statistical analysis of
fragment distribution is done by permutation test in Matlab 7.7.0. Only the fragments that
show significantly higher frequency of occurrence (z-score > 2) in outliers are kept for
further analysis.

Results
The complete performance statistics of each scoring function against either Set1 or Set2 is
reported in Table 2. The correlation plot of each scoring function and the distribution of
predictions are shown in Figures 2 and 3. The IDs of complexes with their predicted scores
(or absolute pKd values) are reported in Table S1 and the IDs of complexes whose binding
affinities are under-predicted or over-predicted are reported in Table S2 and Table S3 for
each scoring function. We will explain the performance of each scoring function in the
following section and discuss the chemical moieties and protein families which tend to point
to the complexes that are being under-predicted or over-predicted (Table 4).

MedusaScore
We calculate MedusaScore for both Set1 and Set2. We use the VDWR-excluded protocol
with no additional parameter adjustment. There are four complexes that contain ligand atom
types that are not yet parameterized by MedusaScore (trimethylsulfonium groups in complex
#183 in set1, and #249 and #74 in set2, as well as the phosphoramide group in complex #18
in set2). The R2 values are 0.34 and 0.47, for Set1 and Set2, respectively. We also test the
effect of adding the VDWR term in MedusaScore. The R2 are slightly decreased to 0.30 and
0.44 for Set1 and Set2, respectively. The slight decrease of accuracy is consistent with the
previous observation6 that the VDWR term is more sensitive to small deviations in the
complex structure, causing uncertainty for binding energy estimation. The observation that
accuracy only slightly decreases after including the VDWR term for prediction also verifies
that the CSAR data sets are of high quality and only minimal steric clashes exist in the
structure of the complexes. The largest VDWR interaction energy is found to be 29.7 kcal/
mol for complex #154 in Set1. There are other three complexes in Set2 (complex #225,
#222, and #92) that also have VDWR term larger than 20 kcal/mol. These complexes are
found to be under-predicted by MedusaScore.

In total, there are 31.3% of Set1 complexes and 34.7% of Set2 complexes considered as
outliers based on the definition described in Methods. A majority of complexes belonging to
the glutamate-related family (glutamate receptor 1, 2, 3, 4, 6) are under-predicted by
MedusaScore. Closely inspecting the protein-ligand interactions in those complexes, we find
salt-bridge interactions, which are ignored in the current version of MedusaScore, are
dominant. Moreover, both of the two complexes in the family of ADAM17 are under-
predicted. This might be due to ignoring of metal-mediated interactions (the catalytic Zinc)
in the binding pocket, where metals directly contribute to the ligand binding.

We have also analyzed the structural fragments based on their tendency of occurring in
outliers in comparison with the normal group. We find that the combination of thiolane/
thiophene moiety and the sulfonamide (or amide) group tends to contribute to the under-
prediction of certain complexes (Table 4). For example, the four protease complexes (1:158,
1:159, 1:160, 1:161) and three coagulation factor X complexes (1:52, 1:141, 1:196) are

Hsieh et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



under-predicted by MedusaScore. The most interesting chemical scaffold is the thiazole
group, which seems to be strongly associated with the under-prediction of binding affinity.
The thiazole group can be found in the four protease complexes (vide supra) and two
carbonic anhydrase-related complexes (1:206 and 1:222). Moreover, MedusaScore tends to
over-predict complexes which contain phosphate groups connected to a sugar moiety
(usually in a nucleoside ligand).

QSBAR models
After removing descriptors with high inter-correlation and low variance, there are 422 and
377 descriptors (out of 1108 descriptors) used in modeling building and validation of Set1
and Set2, respectively. The results of external n-fold cross validation from CSAR data set
modeling are reported in Table 3. The average external n-fold cross-validation R2 is 0.45 for
Set1 and 0.53 for Set2. Since each fold has rather small size (around 17 complexes), R2

values could have large fluctuation due to the random distribution of prediction outliers
among folds. Therefore, we also take MAE and RMSE values into account in the evaluation
of prediction accuracy. We analyze the outliers in the fold(-s) with the worst MAE and
RMSE values (i.e., fold#2 in Set1 and fold#1 in Set2). We find that some of the outliers
have special moieties (and thus, could be viewed as structural outliers), for example, the N5-
[(R)-amino(sulfoamino)phosphoryl] group (2:18) and the hydroxy(oxo)phosphoniumolate
group (1:25), or the whole family (Lipocalin) of complexes (1:207 and 1:208) is not present
in the modeling set. On the other hand, in spite of having close neighbors in the descriptor
space, some complexes are still predicted poorly (e.g., 2:126), suggesting that further
improvement of protein-ligand interfacial descriptors is needed.

The validated Set1 (Set2) models are applied to predict Set2 (Set1). The results are reported
in Table 2. The prediction accuracy of Set2 using Set1 models is higher than the prediction
accuracy of Set1 using Set2 models (i.e., R2 value is 0.44 vs. 0.53, respectively). It is an
expected outcome, because QSAR-based models have difficulty extrapolating data points
under-represented in the training set, and, indeed, Set1 has more data points at the extremes
of the binding affinity distribution.

We analyze the prediction outliers as described in Methods. About 29.5% of Set1 complexes
and 23.3% of Set2 complexes are considered ill-behaved (i.e., outliers) by QSBAR models.
Around 1000 ISIDA fragments are generated for Set1 and Set2. After removing fragments
with low variance or high correlation, around 600 fragments in either Set1 or Set2 remain
for the permutation test. Upon the analysis, we find that the ligands, which contain the
flavan moiety or the combination of thiolane/thiophene moiety and the amide group, tend to
be under-predicted by QSBAR models (Table 4). The flavan moiety occurs in the ligand
complexes of particular protein families. For example, the complexes belong to the estrogen
receptor-β (1:42, 1:43) and estrogen receptor (1:33) family. Coincidentally, the features of
thiolane/thiophene and sulfonamide group are also found to contribute to the under-
prediction by MedusaScore (vide supra). On the other hand, the ligands with naphthalene
moiety tend to be over-predicted only by QSBAR models (e.g., 2:19, 2:23, 2:44, and 2:77).
Moreover, the carboxyalkyl phosphate scaffold (with or without metal coordination) is
found to be associated with over- or under-prediction. We find that complexes whose
ligands contain large hydrophobic moieties (e.g., flavan and naphthalene) in a hydrophobic
environment tend to be mis-predicted; this points to the underlying assumption of PL/MCT-
tess descriptors that protein-ligand binding is driven mostly by charge transfer interactions.
Moreover, the hybridization of carbon is not taken into account in the current
implementation of PL/MCT-tess and EnTess descriptors. These factors may contribute to
the low accuracy of prediction for compounds containing large hydrophobic moieties.
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Comparing prediction outliers from QSBAR models and from MedusaScore scoring
function, we find that these groups do not completely overlap (Figure S1) and the
corresponding structural features associated with QSBAR outliers are distinct from the ones
for MedusaScore. This outcome is not unexpected since these two types of scoring function
employ completely different principles toward representing protein-ligand interactions. This
also implies the possibility of improving overall prediction accuracy by combining the two
scoring functions.

Distribution of chemical fragments of ligands in CSAR data set—We also
analyze the distribution of ligand chemical features (represented by ISIDA fragments) in the
entire CSAR data set. Figure 4 shows the occurrence of each chemical fragment (in % to
that of the CSAR data set) in Set1 and Set2 ligands. The fragments are sorted by
predominance of occurring in Set1. Overall, Set1 is chemically more diverse than Set2.
Approximately 70% of chemical fragments are more prominent in Set1 than in Set2, and
around 4% are unique for Set1. On the contrary, all of the fragments predominant in Set2,
though under-represented, can still be found in Set1. The fragments marked by circles or
squares (Figure 4) are associated with previously identified prediction outliers (e.g. flavan,
thiolane/thiophene and sulfonamide ligand features). As expected, these chemical fragments
are not represented equally in Set1 and Set2. This analysis suggests that the predictive power
of Set2 models can be improved by extending the Set2 data set.

Interpretation of descriptors selected by QSBAR models—We analyze the
descriptors selected by either Set1 or Set2 models (q2 ≥ 0.5 and R2 ≥ 0.6) based on their
frequency of occurrence in the respective models. For each descriptor we calculate Z-score
based on the frequency distribution of all selected descriptors in Set1 (Set2) models. Figure
5 shows descriptors sorted by the difference of their Z-scores in Set1 and Set2. We find that
the descriptors whose tetrahedral type includes a metal are frequent in Set1 models (i.e. high
Z-score) but not in Set2 models. This can explain some mispredictions of Set1 by Set2
models, because metal interactions are under-represented in Set2 data set. Moreover, those
descriptors, whose tetrahedral type is related to the under-predicted outliers of Set1 (see
scaffolds in Figure 5), are selected less frequently by Set2 models. Therefore, we expect that
by expanding Set2 the prediction accuracy of the corresponding QSBAR models should
improve.

Consensus scoring function
We optimize the b1, b2, and b3 parameters of the combined scoring equation (see Methods:
Eq. 3) using Set1 predictions by QSBAR models and by MedusaScore. The R2 value
between the fitted combined score and the experimental binding affinity is 0.45 and the
respective parameters (b1, b2, and b3) are 0.58, −0.03, and 0.82. Applying the trained
scoring function to Set2 gives R2 of 0.58, which is higher than the R2 value by using
QSBAR models and significantly higher than MedusaScore alone (p < 0.05 by permutation
test, N=10,000) ). This suggests the complementarity of these two types of scoring
functions. Consequently, we apply the same procedure to optimize the combined scoring
equation using Set2 predicted scores. The resulting R2 value is 0.58 and b1, b2, and b3
parameters are 0.002, −0.03, and 0.87, respectively. Applying the trained scoring function to
Set1 gives R2 of 0.45, which is slightly higher than R2 by QSBAR and significantly higher
than MedusaScore alone (p < 0.05). The relatively limited improvement over the individual
QSBAR model might be due to the poorer performance on Set1 by each of the individual
scoring functions.

We also analyze the prediction outliers of the combined scoring function. There are about
27.2% of Set1 complexes and 33.5% of Set2 complexes considered as prediction outliers.
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The percentage of outliers in Set2 for the combined scoring function is not as low as in the
case of QSBAR models despite the fact that the overall performance of the combined
scoring function for Set2 is better. By analyzing chemical features of outliers, we find
characteristic moieties that correspond to those obtained for QSBAR models. For example,
the thiolane/thiophene moiety with sulfonamide group and flavan-related scaffolds are found
in the ligands of under-predicted complexes and the naphthalene moiety is in over-predicted
ones.

Conclusions
We found that applying QSBAR models or MedusaScore individually can only afford
predictions with relatively modest accuracy for the CSAR-NRC set. Interestingly, after
combining the results from QSBAR models and MedusaScore, we found that the accuracy
of binding affinity prediction improves (especially, for Set2), suggesting the complementary
nature of the two types of scoring functions. By analyzing prediction outliers for each
scoring function, we have identified distinct chemical features associated with
mispredictions. Some of these features lead only to MedusaScore errors, while several
others were indicative of mispredictions solely by QSBAR models. This analysis not only
highlights the complementarity between these two types of scoring functions but also
suggests further directions for improvement, such as the parameterization of metals and salt-
bridge interactions for MedusaScore and the application of extended data sets for training
QSBAR models.
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Figure 1.
Illustration of the method to derive PL/MCT-Tess descriptors using the tesselated protein-
ligand complex (3ERT, the ER/antagonists benchmarking dataset). The atom types for
protein and ligand are treated differently. For instance, for the tetrahedron at the left corner,
Cp and Op are carbon and oxygen atoms from the protein while Ol and Nl are oxygen and
nitrogen atoms from the ligand.
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Figure 2.
The distribution of predicted values for Set1 (or Set2) by QSBAR models, MedusaScore, or
the combined scoring function. The x-axis is the predicted binding affinity (QSBAR models
and the combined scoring function) or the MedusaScore. The y-axis is the experimental
binding affinity. The black line is the linear regression line and the yellow line is the
regression line forced through the origin. The red lines are parallel to the black regression
line and stand one standard deviation of the residuals away from it. The points beyond or
below the red lines are considered as outliers.
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Figure 3.
The residual distribution plot. The x-axis is the x-error relative to the fitting line (i.e.,
residual) and the y-axis is the # of complexes. The red dotted lines represent the values
which are ± one standard deviation of the residuals. The region between two red lines shows
the density of complexes which have “normal” prediction errors.
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Figure 4.
Distribution of chemical features (ISIDA fragments, see Methods) in Set1 (blue) and Set2
(red); circles and squares denote structural features predominantly found in the ligands of
mispredicted complexes (i.e. prediction outliers).
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Figure 5.
Relative frequencies (z-score) of PL/MCT-Tess descriptors selected by either Set1 or Set2
models.
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Table 1

The descriptive analysis of data sets based on protein-ligand binding pKd values and the protein families

data set
Set1 Set2

parameter

pKd values

Count 176 167

Mean 6.23 6.07

Median 6.25 6.19

Standard deviation 2.31 2.18

Range/Lowest/Highest 13.15/−0.15/13 10.7/1.4/12.1

sequence # of families/# of singletons (90% sequence similarity) 121/80 106/68

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hsieh et al. Page 17

Ta
bl

e 
2

Th
e 

st
at

is
tic

s (
R

2 , 
R

02 , 
M

A
E,

 R
M

SE
0, 

an
d 

R
M

D
SE

0 a
s w

el
l a

s n
um

be
r o

f c
om

pl
ex

es
 p

re
di

ct
ed

) f
or

 p
re

di
ct

in
g 

Se
t1

 a
nd

 S
et

2 
w

ith
 re

sp
ec

tiv
e 

Q
SB

A
R

m
od

el
s, 

M
ed

us
aS

co
re

, a
nd

 th
e 

co
ns

en
su

s a
pp

ro
ac

h.
 T

he
 d

es
cr

ip
tio

n 
of

 m
et

ric
s c

an
 b

e 
fo

un
d 

in
 M

et
ho

ds
.

Se
t1

 p
re

di
ct

io
ns

Pa
ra

m
et

er
R

2
R

02
Sp

ea
rm

an
K

en
da

l
R

M
SE

0
R

M
D

SE
0

# 
of

 c
om

pl
ex

es
M

et
ho

d

Q
SB

A
R

0.
44

0.
44

0.
50

0.
68

1.
75

1.
09

17
6

M
ed

us
aS

co
re

0.
34

N
A

−
0.
42

−
0.
59

N
A

N
A

17
5

C
on

se
ns

us
0.

45
0.

45
0.

51
0.

69
1.

72
1.

07
17

5

Se
t2

 p
re

di
ct

io
ns

Q
SB

A
R

0.
53

0.
53

0.
55

0.
75

1.
50

1.
02

16
7

M
ed

us
aS

co
re

0.
47

N
A

−
0.
48

−
0.
67

N
A

N
A

16
4

C
on

se
ns

us
0.

58
0.

57
0.

57
0.

77
1.

43
0.

97
16

4

R
M

SE
0:

 R
oo

t m
ea

n 
sq

ua
re

 d
ev

ia
tio

n

R
M

D
SE

0:
 R

oo
t m

ed
ia

n 
sq

ua
re

 d
ev

ia
tio

n

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hsieh et al. Page 18

Ta
bl

e 
3

Th
e 

st
at

is
tic

s (
R

2 , 
M

A
E,

 a
nd

 R
M

SE
) f

or
 e

xt
er

na
l n

-f
ol

d 
va

lid
at

io
n 

se
ts

 u
si

ng
 Q

SB
A

R
 m

od
el

s b
ui

lt 
fr

om
 S

et
1 

an
d 

Se
t2

.

“S
et

1”
 d

at
a 

se
t m

od
el

in
g

Fo
ld

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
Pa

ra
m

et
er

R
2

0.
2

0.
21

0.
68

0.
54

0.
57

0.
4

0.
56

0.
65

0.
63

0.
42

M
A

E
1.

25
1.

56
1.

16
1.

57
1.

21
1.

34
1.

19
1.

09
1.

21
1.

36

R
M

SE
1.

58
1.

85
1.

48
1.

84
1.

53
2.

01
1.

5
1.

36
1.

49
1.

71

“S
et

2”
 d

at
a 

se
t m

od
el

in
g

Fo
ld

#1
#2

#3
#4

#5
#6

#7
#8

#9
N

A
Pa

ra
m

et
er

R
2

0.
27

0.
55

0.
73

0.
64

0.
53

0.
64

0.
72

0.
52

0.
36

N
A

M
A

E
1.

63
0.

89
1.

18
1.

11
1.

11
1.

04
0.

9
1.

51
1.

4
N

A

R
M

SE
2.

18
1.

15
1.

46
1.

21
1.

34
1.

23
1.

2
2.

04
1.

73
N

A

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hsieh et al. Page 19

Table 4

Some of the chemical features associated with the under-predicted or over-predicted complexes

Features associated with under-predicted complexes

MedusaScore

ISIDA Fragments21 Representation Ratio** Example***

S-C=N Thiazole 7/7

S-C-C=C-S Sulfonamide connected to sulfur- containing heterocycle (e.g., thiophene) 6/7

QSBAR models

C=C-C-O-C=C flavan-derivative 3/4

Features associated with over-predicted complexes

MedusaScore

P-O-C-O-C-C Phosphate group + sugar (often in a nucleoside) 3/4

QSBAR models

C=C-C=C-C=C Naphthalene ring 4/8

**
# of complexes in the under-predicted (or over-predicted) group with the feature / # of total complexes with the feature

***
Example shows a fragment (solid lines) mapped onto the actual molecular scaffold (dashed lines).
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