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ABSTRACT 

ELIZABETH GRACE POLLOM: Structure and Function of Lentiviral  
Genomic and Messenger RNA 

(Under the direction of Ronald Swanstrom, Ph.D.) 
 

The positive sense lentiviral RNA genome is packaged within the virus as a dimer 

of two single strands. The RNA of primate lentiviruses human immunodeficiency virus 

(HIV-1) and simian immunodeficiency virus (SIVmac239) are distantly related and the 

secondary structures of these viral RNAs share many known biological functions. Using 

selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE), I present an 

analysis of the secondary structure of ex virio genomic SIVmac239 RNA in relation to 

that of HIV-1 as well as an investigation into the secondary structure of the various in 

vitro mRNA species of HIV-1 resolved using the SHAPE technique. 

First, I describe a SHAPE-derived model of SIVmac239 genomic RNA structure. 

When compared to that of HIV-1, I find very few conserved structural regions outside the 

previously studied functional structures. I observe that this is due to the flexible nature of 

the adenosine-rich lentiviral genome. The structures that are conserved are located in 

regions with high guanosine concentration, forming more stable pairing interactions. 

These results suggest that lentiviral genomic RNA structure is flexible and metastable 

unless held by stronger pairing interactions that seem to persist through the course of 

viral evolution. 



 iv 

The lentiviral genomic RNA structures that I have studied do share a few 

common base pairs, including a small stem-loop at the site of the first splice acceptor 

(SA1). In the second part, I describe the effect of mutating this structure on viral 

replication and on the splicing profile of the viral mRNA. To further investigate viral 

splicing regulation, I determined the SHAPE-derived structures of the most abundant 

mRNA variants for all of the protein products of HIV-1. Results reveal local interactions 

that form at regulatory regions in the viral transcripts. 

Because RNA is an important feature throughout the lentiviral replication cycle, a 

greater understanding into the role of RNA in various aspects of viral replication will 

increase comprehension toward the complex biology of infection. This analysis provides 

insight into evolutionary conservation of RNA structures that play functional roles and 

may be possible targets for novel factors as part of a broad spectrum of viral inhibitory 

agents. 
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CHAPTER I 

LENTIVIRUSES AND RNA STRUCTURE 

 

A. Basic biology of lentiviruses 

1. Genome organization and viral replication 

 Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) 

belong to the family retroviridae in the genus lentivirus. Retroviruses are defined by their 

common replication strategy which involves a reverse-transcribed DNA intermediate that 

is integrated into the genomic DNA of the host cell and by virions composed of structural 

proteins surrounding and encapsidating viral enzymes that are packaged within the virion 

along with the two strands of single-stranded, positive sense RNA. The lentiviruses have 

additional accessory proteins that function as adaptor proteins by interacting with host 

factors in the cell (1).  

The RNA genomes of these viruses largely represent coding domains for genes of 

a number of viral proteins (Figure 1.1). The intrinsic function of the genomic RNA is to 

be immediately reverse-transcribed into DNA, which is integrated into the cellular 

genome and eventually transcribed into full length genomic RNA by the cellular 

transcription machinery. This RNA has the baseline functions of acting as a template for 

protein translation, both in its full length form and as spliced forms, and packaging into 

new virions as genomic RNA (1). These basic functions, however, cannot fully account 

for the entirety of the RNA. The RNA sequence provides a context for replication and 
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translation, but RNA structure has implications in transcription activation, dimerization, 

packaging, frameshifting, nuclear export, and splicing regulation. Such functions are 

incompletely understood and require a more complete description to explain viral 

replication. 
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Figure 1.1: Organization of SIVmac239 and HIV-1 genomes. The SIVmac239 (above) protein-
coding domains are in gray (labeled), and lines indicate domain junctions. The domains are not shown 
in codon alignment with the HIV-1NL4-3 genome (below) whose protein-coding domains shown in white.  



	   4	  

The lentiviral replication cycle, including the function of many viral proteins, 

revolves around RNA. When the envelope protein (Env) interacts with the cellular 

receptor CD4 along with either the coreceptor CCR5 or CXCR4, the virus enters the host 

cell with a pair of identical, positive sense, single-stranded RNA genomes. Inside the cell, 

viral reverse transcriptase (RT) transcribes this approximately 9kb RNA into one copy of 

double-stranded DNA, then integrase (IN) incorporates the DNA into the host genome. 

The DNA is transcribed to produce genomic RNA, some of which is spliced to form the 

various mRNAs, which code for all of the structural and enzymatic viral proteins, as well 

as the accessory proteins Vpr and Vpu (in HIV), Vpx (in SIV), Vif, Nef, Tat, and Rev. 

The host-initiated transcription of the viral DNA produces full-length 5'-capped and 3’-

polyadenylated RNA. The full-length RNA is packaged by and with the structural Gag 

and Gag-Pro-Pol polyproteins. The surrounding envelope is composed of cellular lipids 

and viral gp120 and gp41 glycoproteins, which are cleaved from the full-length Env 

protein by a cellular protease.  Viral protease (PR) cleaves Gag and Gag-Pro-Pol into 

individual structural nucleocapsid (NC), matrix (MA), and capsid (CA), and the enzymes 

PR, RT and IN proteins, creating a virion that is mature and infectious (1). 

 

2. Viral evolution 

 Two distinct types of HIV are currently circulating in the human population, and 

both are causative agents of AIDS. HIV type 1 (HIV-1) is the main type in most of the 

world, while HIV type 2 (HIV-2) is localized mainly to West Africa. Although both 

viruses use the same cellular receptors and co-receptors for entry, HIV-2 progresses to 

AIDS at a slower rate than HIV-1 and appears to be less infectious (77, 113). The 
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mutagenic rate of HIV-1 has propelled its genetic diversity via pressure from host 

immune system and restriction factors acting in conjunction with an error-prone reverse 

transcriptase and a short life cycle (43). Through this rapid evolution, the virus has been 

able to adapt to its host and be successful in high level replication as it has moved from 

its original hosts of non-human primates to humans (reviewed in (67)).  

The lentiviruses found in non-human primates, SIV, infect African apes or Old 

World monkeys with little capacity to cause disease in these animals. One	  strain	  of	  SIV	  

(SIVmac)	  originating	  from	  a	  species	  of	  West	  African	  monkeys,	  called	  sooty	  

mangabey,	  is	  able	  to	  cause	  illness	  in	  a	  group	  of	  Asian	  monkeys,	  called	  macaques,	  

which	  were	  initially	  infected	  in	  captivity. Phylogenetic analysis has grouped HIV-2 in 

the same category as SIVmac239 since they both share a common lineage from SIVsm, 

which infects but does not lead to disease in the West African primate sooty mangabey 

(reviewed in (67)). One of the reference sequences for these HIV-2 and SIV strains is 

SIVmac239 (Genbank accession number M33262). HIV-1 originated from SIVcpz, 

which is the primate lentivirus found in chimpanzees (55); HIV-1 is further subclassified 

into “groups” of genetically similar isolates. These groups are determined based on 

geological clustering along with phylogenetic similarity and are labeled group M (main), 

group O (outlier), and group N (new). Group M, which is the most prevalent HIV-1 

group worldwide, is further divided into subtypes A through K (reviewed in (67)). HIV-

1NL4-3 (Genbank accession number AF324493) belongs to HIV-1 group M subtype B, and 

the 3' half of the genome shares a nearly identical sequence to the reference strain of that 

same subtype called HXB2. 



	   6	  

 Throughout the evolution of the viral sequence, HIV-1, HIV-2, and SIV isolates 

have maintained quite similar protein structures. Consider, for example, the lentiviral PR 

enzymes, whose sequences and structures are different from cellular proteases in overall 

length and conformation of many of their functional regions. Even between HIV-1NL4-3 

and SIVmac239, the amino acid sequences of PR differ by approximately 50%. However, 

the different viral isolates maintain common structural elements, most of which can be 

superimposed almost identically (174). Functional regions in the viral RNA, in contrast, 

not only differ in sequence and length, but also in structure. An obvious example is the 

trans-acting response element (TAR), which forms a three-helical stem in HIV-2 and 

SIVmac239 but a single stem-loop in HIV-1 (12). In these and other instances throughout 

the viral genomes, the structure of the proteins seems to be more evolutionarily conserved 

than that of the RNA. 

 

B. RNA Structure 

1. Importance of RNA structure in biological systems 

 Ribonucleic acid (RNA), like its counterpart deoxyribonucleic acid (DNA), is a 

polymer chain composed of individual nucleotide monomers. Ribonucleotide monomers 

are linked together through a ribose-phosphate backbone with each ribose also linked to a 

base of either adenine (A), uracil (U), guanine (G), or cytosine (C). RNA is synthesized 

as a single strand of these nucleotides, as opposed to DNA which stays base-paired with 

its template to form a double-stranded double helix which, for animal cells, stays in the 

cellular nucleus. Due to the lack of a complementary strand to stabilize the RNA in 

solution, the nucleotides form hydrogen bonds and hydrophobic interactions to reduce 
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their free energy and stabilize the molecule (66). These interactions occur through 

Watson-Crick base pairs where U pairs with A and G pairs with C. The thermodynamic 

stability of each pair is determined by the number of hydrogen bonds that form between 

the two nucleotides, with the stronger G-C pair forming three bonds and the weaker A-U 

pair forming two. In a non-Watson-Crick pair, G can also pair with U by forming two 

hydrogen bonds. These interactions can occur when the single-stranded RNA folds back 

on itself to create short, irregular stretches of A-form helix. Each turn of the A-form RNA 

helix has 11 base pairs with each base pair rising 2.73 Å, compared to the 10 base pairs in 

B-form helix made by DNA (148). Variations in the pairing interactions within the RNA 

molecule lead to many different motifs that define the RNA structure. A single nucleotide 

bulge occurs when one individual nucleotide does not have a pairing partner while the 

surrounding nucleotides are forming a helix. A multiple nucleotide bulge has more than 

one unpaired nucleotide on the same side of a helix. A hairpin loop or stem-loop is a 

structure that forms when the RNA strand folds back in a small loop and allows nearby 

nucleotides to form base pairs. RNA helices form mismatch pairs when two nucleotides 

directly across from each other do not form canonical G-C, A-U, or G-U pairs. Internal 

loops are formed when these mismatch pairs include more than two nucleotides, with 

symmetrical loops having the same number of nucleotides on each side of the helix, and 

asymmetrical loops having differing numbers of nucleotides on each side of the helix. 

Junctions form in RNA structure when two, three, or four stems intersect. RNA also 

forms long-range interactions such as pseudoknots which are formed when loop regions 

pair with nucleotides to extend the helix of the stem; kissing hairpins are pairing 

interactions between two loops of separate stem-loop structures, and hairpin loop-bulge 
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contacts are pairing interactions between a loop from one stem and a bulge from another 

(reviewed in (68)). 

 These various pairing interactions occur, as stated above, and minimize the free 

energy of the system. Pairing happens spontaneously at physiological temperature and pH 

and is accomplished by unfavorably lowering the entropy during hydrogen bond 

formation but favorably and significantly lowering the enthalpy by ordering the water 

around the RNA molecule. This entropy loss increases as the number of consecutive base 

pairs increases (reviewed in (68)). The RNA folds into the most energetically favorable 

structure, folding into helices by forming base pairs whenever such interactions lower the 

free energy. The strength of these helices, however, is not determined solely by the 

number of G-C bonds compared to the less energetic A-U or G-U bonds. Instead, the 

length of the helix and the surrounding base pairs (or “nearest neighbors”) play a role in 

determining free energy of the structure (17). Along	  with	  hydrogen	  bond	  formation,	  π-

stacking interactions play an important role in determining the structure of nucleic acids. 

The stacking of the aromatic rings between neighboring nucleotide bases helps conserve 

the α-helical structure and increases the bases’ ability to hydrogen bond with one another 

(116, 119). The strength of a given helix is dictated by not only base pairing interactions, 

but also the amount and positioning of loops, bulges, mismatches, and consecutive G-C 

pairs (reviewed in (68)). 

RNA structure plays an important role in many biological systems. Transfer RNA 

(tRNA) is a classic example of the role of RNA structure in biology. Its cloverleaf 

structure, which further folds into two pairs of stacked helices, allows biochemical 

interactions to occur at both the anticodon and the amino-acid binding site, both of which 
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are required for precise protein synthesis to take place (reviewed in (44)). As part of 

larger RNA molecules, riboswitches bind to ligands or aptamers, which force structural 

changes and can regulate gene activity and metabolic processes (reviewed in (109)). 

Group 1 introns use ribozyme-catalyzed cleavage to self-splice out their own exons as is 

the case with certain ribosomal RNAs (rRNAs) in Tetrahymena (90) and can be 

engineered to splice a heterologous mRNA such as for human p53, correcting splicing 

defects and repairing damaged mRNA (170). The structure of ribosomal RNA allows the 

RNA to participate in peptide bond formation and contributes to a number of tertiary 

interactions which enable it to efficiently partake in protein synthesis (7, 126) reviewed in 

(159) and (127). RNAs that are involved in critical cell processes (and/or have catalytic 

function) evolve slowly and in ways that conserve the base pairs involved in the 

important features of secondary structure, allowing these structures to be compared over 

evolutionary time. 

 

2. Structure of viral RNAs 

 RNA structure has been implicated in the control of various functions including 

transcription, splicing, aminoacylation, translation, and encapsidation in many viruses. 

Tobacco bushy stunt virus contains RNA stem-loop structures that modulate mRNA 

transcription initiation dependent on base-pairing interactions (168). A single nucleotide 

change in some influenza virus H5N1 strains affects the conformation of an RNA 

structure, shifting the balance between hairpin formation and pseudoknot formation in 

this region, which leads to possible alterations in splicing and impacted virulence of this 

strain (59). Some viruses including Nemesia ring necrosis virus and satellite tobacco 
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mosaic virus contain tRNA-like structures at their 3’ regions that can be aminoacylated 

(50, 87). Others, including members of the Dicistroviridae family, use these tRNA-like 

structures at their 5' regions to guide translation initiation as part of internal ribosome 

entry sites (IRESes) (31). The IRES structure of the RNA in the 5'UTR of this and 

members of the Picornaviridae family initiates translation via an internal ribosome entry 

site (IRES) in a (m7Gppp) cap-independent way by competing for cellular translation 

factors then recruiting and binding them to an internal position in the viral RNA through 

their conserved RNA structural motifs (reviewed in (51, 138)). RNA structures have been 

shown to influence viral packaging by folding into “panhandle” hairpin structures in 

Hantaviruses (120) and by mediating dimerization and protein recognition in Moloney 

murine leukemia virus (33).  

 

3. RNA structure determination: SHAPE 

 Determining the structure of large RNAs is challenging and has been approached 

by folding the RNA to obtain the lowest free energy state, comparing related RNA 

sequences to identify compensatory changes that can preserve base pairs, and by probing 

the structure with chemicals or nucleases to infer the presence of paired versus unpaired 

regions. Structural studies are limited by the size of the RNA. Bioinformatics-based 

folding programs help determine the lowest free energy of the entire structure, but do not 

incorporate chemical data (179). Selective 2' hydroxyl acylation analyzed by primer 

extension (SHAPE) is a hybrid approach able to map structure in large RNAs by using 

chemical analysis to constrain a folding program (118, 122, 164, 173). The 2' hydroxyl 

group of the ribose is much more reactive with the 1M7 reagent at single-stranded or loop 
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positions where the base is not paired compared to positions where the base is paired. 

After treatment with 1M7, the extent of derivatization at each ribose is assessed as 

terminations of DNA synthesis using reverse transcriptase and fluorescent primers. This 

approach allows determination of reactivity values for each individual nucleotide and 

inputs these reactivity values as pseudo-energy constraints in RNAstructure (146), an 

RNA structure prediction program. SHAPE has been used to map diverse RNA 

structures, including the structures near the start codons of all 13 mammalian 

mitochondrial RNA open reading frames (72), ribosomal RNA (40), group 1 intron RNA 

(45), and even other retroviruses such as Moloney murine leukemia virus (56). 

 

4. Functions of known RNA secondary structures of lentiviruses  

The RNA structure in certain regions of the lentiviral genome has been studied in 

great detail, and functions have been assigned to various structures throughout the 

genome that serve different purposes throughout the viral replication cycle. The 5' 

regulatory region of the genome does not code for any proteins, and is therefore termed 

the untranslated region (UTR). The UTR is vital to the genome because it contains many 

known functional structures. These include the trans-acting response (TAR) hairpin 

which interacts with the viral Tat protein to increase the level of transcription of full 

length RNA (8, 12, 18), the primer binding site (PBS) which anneals to the tRNALys3, 

which serves as primer to initiate negative-strand synthesis during reverse transcription 

(85), the dimerization initiation site (DIS) which is contained in the loop region of a 

hairpin and makes pairing interactions with the second strand of viral RNA that is 
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copackaged within the virion (132, 155), and the psi stem which has been implicated in 

packaging of the full-length genomic RNA into the virion and in dimerization (26).  

Although the coding region of the genome has selective pressure to maintain the 

necessary encoded amino acid sequence, the RNA downstream of the UTR still retains a 

sequence that is able to form critical structures. Two essential structures in viral 

replication are the Gag-Pro-Pol frameshift stem and the Rev-response element (RRE). 

The Gag-Pro-Pol frameshift stem is found in only the full-length RNA. The gag gene 

encodes a polyprotein, which is subsequently cleaved to yield the MA, CA, and NC 

structural proteins. Near the 3' end of the gag gene, a poly(U) sequence directly before 

the stable Gag-Pro-Pol frameshift hairpin causes the ribosome to stall and occasionally 

slip to the –1 reading frame. This slip shifts the reading frame of the ribosome prior to the 

Gag stop codon to form the Gag-Pro-Pol polyprotein, allowing the ribosome not only to 

translate the Gag protein (in the 0 reading frame), but also the RT, PR, and IN enzymes, 

which are part of the Pro-Pol region (in the -1 reading frame) (69). The downstream RRE 

structure is present in all incompletely spliced mRNA, including the vif, vpr, and vpu/env 

message, and full-length genomic RNA containing gag and gag-pro-pol genes. The RRE 

secondary structure allows for transport of these transcripts out of the nucleus via 

recognition by the viral Rev protein (47, 49, 105, 106) in a Crm1-dependent pathway in 

which the host nuclear export factor Crm1 helps to transport the mRNA through the 

nuclear pore complex into the cytoplasm (32, 52, 139). 

The functional RNA structures contained within the TAR, RRE, and frameshift 

stem regions fold in ways that facilitate RNA-protein interactions. TAR binds to the viral 

protein Tat via a U-rich bulge that interrupts a stem-loop structure. The TAR structure 
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undergoes a rearrangement when the arginine side-chains of Tat are bound, creating a 

binding pocket for the protein and allowing contact to the other basic residues of Tat 

(reviewed in (79)). The viral Rev proteins cooperatively bind to the helical structures that 

compose the RRE. The initial binding interaction occurs at stem-loop IIB of the RRE 

through binding of a single Rev monomer (27, 34, 162). Subsequently, more Rev proteins 

cooperatively assemble via hydrophobic interactions between Rev molecules and 

electrostatic interactions between the proteins and the RNA (35, 38, 84, 110). Unlike the 

TAR and RRE interactions with viral accessory proteins, the RNA structure at the Gag-

Pro-Pol frameshift stem interacts with cellular factors that compose the ribosome. Instead 

of binding sites that encourage interaction, the function of this stable stem is to hinder 

translation by the ribosome, discouraging macromolecular interactions between the RNA 

structure and the translation machinery (69). The functions of RNA structure described 

above are performed by only a fraction of the total lentiviral RNA. Analyzing other 

conserved RNA structures may divulge important roles and interactions that are yet 

unknown throughout lentiviral replication. 

 

C. Pre-mRNA splicing 

1. General principles of splicing 

 The initial RNA transcript can be modified in several ways including alteration 

through removal of long segments of the RNA by splicing. Splicing occurs in the nucleus 

and is executed by the spliceosome, a complex machine composed of both protein and 

RNA (reviewed in (166)). This mechanism removes segments of RNA, called introns, 

and combines the remaining exons to form messenger RNA (mRNA), the mature form of 
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the RNA, to be used as a template for protein translation. In total, about 95% of human 

cellular RNAs are spliced, and the genes have an average of seven exons (135). Each 

intron starts with a 5' splice site (5'ss) beginning with the sequence GURAGU to serve as 

the donor, and a 3' splice site (3'ss) ending with the sequence YAG, which is preceded by 

a polypyrimidine tract (py-tract), to accept the ligation event from the donor (Figure 

1.2a). The RNA is cut at the donor site and the 5' end of the intron is transferred to the 

2'hydroxyl of a conserved adenosine at the branch-point sequence YNYURAY (Figure 

1.2a) by a transesterification reaction. The 3'ss is then broken after the AG and linked to 

the upstream exon through another transesterification reaction (102, 143). The 

spliceosome uses these common sequences to aide in recognition during the splicing 

events. Different small nuclear RNAs (snRNAs) combine with proteins to form small 

nuclear ribonucleoprotein (snRNP) complexes. These complexes recognize and bind to 

the splicing donor, acceptor, or branch-point sequences sequentially. The U1 snRNP 

recognizes the 5'ss while the U2 activating factor (U2AF) binds the 3'ss. These elements 

then act cooperatively to recruit U2 snRNP (Figure 1.2a). Although these factors work to 

excise the introns, these assembling complexes do not recognize the introns in their 

entirety. Instead, they bind to and define both sides of the individual exons before joining 

them together (11, 57, 147). 

 When a single transcript is spliced in two or more alternative ways, it can give 

rise to more than one protein or protein isoforms with different activities. This alternative 

splicing is accomplished in different ways: i) The same transcript is spliced at completely 

different exons leading to completely different proteins, ii) the spliceosome intermittently 

recognizes and includes an exon in the middle of the transcript, adding inserts to the 
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middle of a protein, or iii) multiple exons are available and the machinery can chose any 

of them to include in the message (115). Exons range in size and can potentially be rather 

small. When the gene includes even a few extra residues due to alternative exon 

inclusion, the protein structure and function can be drastically affected. In this way, the 

approximately 25,000 genes in the human genome can give rise to around 500,000 

proteins, or a short viral genome can generate the many necessary viral proteins for 

efficient replication, allowing greater diversity from a small amount of genetic 

information.  

 

2. Regulation of splicing 

 The positioning of introns relative to the genetic code appears to be random. 

However, the ability of the spliceosome to recognize these introns and splice them 

properly is vital to proper cellular function. The spliceosomal machinery, especially the 

snRNPs, must be able to distinguish genuine splice sites from cryptic or fortuitous sites. 

The RNA binding factors must also be able to recognize and use the correct alternative 

sites given the needs of the cell or virus. Therefore, many factors are involved to assure 

this process is precise. The spliceosome accurately splices the transcribed RNA based on 

many factors that are encoded in the mRNA itself. These are displayed as sequences 

termed splicing regulatory elements (SREs) and include exonic splicing enhancer (ESE) 

sequences which enhance splicing of the exon they are part of, exonic splicing silencer 

(ESS) sequences which are located in the exon but inhibit splicing at a certain acceptor or 

donor site, intronic splicing enhancer (ISE) sequences which amplify a splicing event that 

eventually eliminates their sequence from the mature message, and intronic splicing 
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silencer (ISS) sequences which are also located in the potentially discarded intron but act 

to inhibit such a splicing event from happening (9, 53, 163). 
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Figure 1.2. Splicing factors and the impact of RNA structure on splicing regulation. Figure 
adapted from (169). (a) Generic splicing factor recognition sites in exons (yellow) and introns. 
Letters represent nucleotides as described in text. Pyrimidines (Y), purines (R), and any nucleotide 
(N) are indicated. Splicing factors are indicated as ovals at interaction sites of snRNPs (red), 
U2AFs (orange), SR proteins (green), and hnRNPs (blue). (b) RNA stem structures are shown 
secluding sequences from protein recognition. (c) Recognition sequences in single-stranded and 
loop regions enhance protein binding. YAG indicates a cryptic splice site, which is secluded in a 
hairpin. Hashed loop indicates a large structure, which is paired at the base to bring recognition 
sequences into proximity. 
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Functional SREs seem to inhabit single-stranded regions more often than base-

paired regions, allowing binding proteins to identify and interact with these particular 

sequences. It has been found that enhancer-dependent regions (those with weak splicing 

sequences) are particularly marked with single-stranded ESE motifs, and regions that 

depend on silencing have a stronger occurrence of single-stranded ESS motifs (65). 

These SRE sequences work by binding specific proteins, which in turn inhibit or enhance 

splicing factors from recognizing the 5'ss or 3'ss sequences in close proximity. The 

acceptor sites are enhanced by the ability of surrounding sequences to bind SR proteins 

(Figure 1.2a), which are defined by their RNA recognition motifs and their carboxy-

terminal domain that contains several serine and arginine repeats (reviewed in (58, 156). 

These proteins interact with different parts of the spliceosome: regions of the U1 snRNP, 

U2AF, and U4/U6.U5 tri-snRNP (reviewed in (58)). Interactions between parts of the 

spliceosome and the corresponding splice sites are inhibited by ISS or ESS sequence 

recognition by heterogeneous nuclear ribonucleoprotein (hnRNP) complexes (Figure 

1.2b), blocking recognition and disallowing splicing at a given site (41). In the cell, 

however, the splicing factors, including SR proteins and hnRNP complexes, are present 

at varying concentrations, which leads to the concept that cells are able to regulate the 

utilization of different splicing pathways by controlling the amounts of these complexes. 

This allows for more complexity in splicing regulation through cellular control factors 

that dictate the ratios of splicing enhancement and silencing factors (156). 

 RNA structure itself can have a regulatory effect on splicing. In a broad sense, 

structures that form within large introns to bring distant splice sites closer together allow 

the assembling spliceosome to recognize all of the necessary sequences within a shorter 
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range (24) (Figure 1.2c). At a closer scale, structure formation occurs co-

transcriptionally, allowing the RNA to make short-range interactions as each nucleotide 

is added to the polymer (150). These short interactions, particularly stem-loop structures, 

have been implicated in controlling recognition of splicing factors (Figure 1.2b and c). 

The minimal structure needed is a small stem-loop as short as 7-bp, which is adequate to 

enclose and seclude an enhancer sequence, impeding its activity (98). An analysis of 

splicing in mammalian cells showed conserved structures around splice sites that conceal 

certain sites where regulation is necessary for control of gene expression and repression 

of various disease phenotypes (152). Furthermore, GC content, which is implicated in 

stronger pairing interactions, has been shown to be enriched around alternative splice 

sites, particularly those for the first possible exon, suppressing usage of such sites by the 

splicing machinery (178). These analyses imply that stable secondary structures around 

splice sites serve to seclude these sequences from their binding proteins and allow other 

alternative sites to be used at higher frequency. A stem that includes the py-tract and the 

AG 3'ss precludes binding of that sequence to U2AF, while a stem that makes pairing 

interactions with the sequences involved in the 5'ss precludes U1 snRNP binding (Figure 

1.2b). Even though the U2AF and U1 snRNP help recruit U2 snRNP, if the branch point 

sequence is paired in a stem structure, the binding of U2 snRNP to that site will be 

disrupted. In contrast, when these sequences are in single-stranded or loop regions, they 

increase the binding interactions to their respective proteins (Figure 1.2c). Additionally, 

cryptic acceptor sites, when paired in structure, are hidden from U2AF recognition and 

binding (reviewed in (169)) (Figure 1.2c). 
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 Splicing regulation depends not only on the accessibility of actual splice sites but 

also the RNA structures around cis-acting SRE sequences. These motifs bind certain 

proteins that allow or disallow splicing to occur. ESE and ISE motifs bind to SR proteins 

which, when bound, enhance the splicing efficiency of the nearby 3'ss. If enhancer 

elements are secluded in base-pairing interactions, the SR proteins are not able to bind 

and thus do not impact splicing at the 3'ss (reviewed in (169)) (Figure 1.2c). In a 

converse event, an hnRNP can bind to either an ISS or ESS (Figure 1.2b). Once bound, 

this causes the structure around the exon to form a loop and disallows U1 snRNP binding 

at the 3'ss near the silencer motif, thus avoiding the given exon altogether (125), 

(reviewed in (19)). Although they do not incorporate the given regulatory element, 

structures that occur upstream of SRE regions have been shown by computational 

analysis to enhance the function of the given SRE. These stable structures near the region 

of regulation could potentially function to interfere with any RNA conformation that 

might have otherwise been part of the SRE (98). Taken together, these concepts 

strengthen the idea that structure of the pre-mRNA around the splice site sequences, 

which includes enhancer and silencer elements, helps determine whether the given site 

will be recognized and spliced by the spliceosome (reviewed in (169)). The general 

model for splicing regulation by RNA structure is the following: The single-stranded 

SREs are recognized by and bind their regulatory proteins, and the base-pairing of these 

sequences limits their effectiveness. 
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3. Pre-mRNA splicing of HIV-1 

 Cellular genomes are vast in size compared to viral genomes, especially those of 

RNA viruses. These RNAs need to strike a balance between being small enough to allow 

efficient replication in a cell yet large enough to contain all of the genetic material to 

produce the necessary viral proteins. One way lentiviruses accomplish this is by their 

ability to be spliced in a multifaceted manner. The proviral DNA is transcribed by 

cellular polymerase Pol II to produce a long unspliced RNA that can either be used as the 

genomic RNA in the packaged virus, as a transcript for Gag and Gag-Pro-Pol translation, 

or spliced to produce the over 40 different mRNA species used to generate the remaining 

viral proteins (142). For HIV-1, the cellular splicing machinery utilizes four 5'ss donors 

and eight 3'ss acceptors (Figure 1.3a).  
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Figure 1.3: Schematic showing splice sites and regulatory regions in HIV-1. (a) Location of splice 
donors SD1-4 and acceptors SA1-7 in relation to unspliced RNA. Known splice regulatory regions are 
shown above. (b) Exons producing the incompletely spliced (4 kb class) and fully spliced (1.8 kb class) 
mRNAs. Exons 2 and 3, which are sometimes included in the mature transcripts, are gray. 
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The first 5'ss SD1 is the major splice donor and is used in all spliced products. 

When SD1 is used in conjunction with the splice acceptors SA1, SA2, or SA5 with no 

downstream splicing events, the vif, vpr, or vpu/env mRNA transcripts are produced, 

respectively. These are categorized as the 4 kb class of transcripts (or singly spliced 

mRNAs) because they incorporate the RRE-containing sequence between SD4 and SA7 

(Figure 1.3b). The splice variants that excise this intron are grouped as the 1.8 kb class of 

transcripts (or small, multiply spliced mRNAs), which is comprised of mRNAs spliced 

once from SD1 to SA3, SA4(a,b,c), and SA5 and then again from SD4 to SA7 creating 

tat, rev, and nef mRNAs, respectively (142) (Figure 1.3b). Although the transcripts that 

are spliced directly from the SD1 donor to the closest upstream acceptors are the most 

abundant variants, smaller exons can still be incorporated into the mRNA, including exon 

2 from SA1 to SD2 and exon 3 from SA2 to SD3 (Figure 1.3b). The start codons for Vif 

and Vpr are after SD2 and SD3, respectively. Therefore, any splicing event that uses 

these donors effectively excises those start codons, producing the corresponding 

transcript of the next acceptor that is used (142).  

An important feature of unspliced and singly spliced (4 kb class) mRNA is the 

RNA structure in the SD4-SA7 intron, the RRE. Typically, unspliced or incompletely 

spliced mRNA remains in the nucleus until it is fully spliced (32). If incompletely spliced 

pre-mRNA interacts with U1snRNA alone with no other splicing factors, it is retained in 

the nucleus and disallowed to either be fully spliced or exit into the cytoplasm (21, 95). 

HIV-1 overcomes this nuclear retention by encoding the nuclear-export protein Rev. 

Once Rev is translated in the cytoplasm (using the multiply spliced and efficiently 

transported small mRNA), the Rev protein then returns to the nucleus, recognizes and 
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binds the RRE of these incompletely spliced mRNA molecules, and shuttles them out of 

the nucleus (32, 139). 

 

4. HIV-1 splicing regulation 

 The diverse mRNA splicing that occurs in HIV-1 transcripts is a result of 

complicated alternative splicing (142). The splicing events must be highly regulated to 

allow the necessary amounts of each transcript to be produced. For example, if the 

nascent transcript were completely spliced to the smallest mRNA form, or if any of the 

splice sites were preferentially used, one protein product would dominate. Instead, the 

pre-mRNA contains many weak splice acceptor and donor sites along with weak branch-

point sequences, leveling the potential for all to be recognized by the splicing machinery. 

The acceptor sites contain purines, causing them to be weaker than the ideal 

polypyrimidine tracts that enhance splicing (4, 46, 129, 153, 157). Maintaining the 

balance for splicing at each acceptor remains complicated, however, because the RNA 

also contains cis-acting regulatory elements in the form of sequences and secondary 

structures that enhance or repress splicing at particular sites (reviewed in (160). 

 Regulation of HIV-1 RNA splicing begins with the major splice donor (SD1). 

This donor has the capacity to splice to any of the downstream acceptors, and when 

splicing occurs within the primary transcript, the splicing machinery will always use SD1 

(142). The SD1 sequence is composed of the loop region of a conserved stem-loop 

structure in the 5' region of the genome which, when mutated, alters the efficiency of 

splicing using SD1 (2). SD1 becomes a less efficient 5'ss when the structure around SD1 

is changed to incorporate the SD1 recognition sequence into a hairpin structure, 
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suggesting that accessibility of SD1 in a loop is imperative for SD1 recognition (2). The 

mechanism that seems to be at work in this region is one that allows the SD1 site to be 

visible to the splicing machinery by placing it in a loop instead of in a paired interaction. 

 Splicing to the first splice acceptor SA1 with no further downstream splicing 

events results in the mRNA transcript for the Vif protein. This protein is necessary for 

cellular APOBEC3-G and -F cytadine deaminase downregulation, therefore diminishing 

the cellular restriction factors’ mutagenic effects on the newly reverse-transcribed 

negative strand DNA (29). Regulation of the SA1 site is crucial for usage of downstream 

splice acceptor sites. This site has been determined to include the strongest splice 

acceptor site of all the HIV-1 3’ss sequences (76). However, this 3'ss must be used in 

moderation to allow for splicing from SD1 to the other possible splice acceptors.  

Following the idea that splicing complexes recognize the entire exons instead of 

the introns (11), it has been shown that production of the vif message is regulated at the 

second splice donor site (SD2) (48, 76), located 50 nucleotides downstream of SA1 and 

78 nucleotides upstream of the vif start codon. If used, SD2 splices to a downstream 3’ss, 

creating a small exon 2 and excluding as an intron the sequence that would begin Vif 

translation (142). In this way, even if SA1 is the acceptor used for SD1, the vif message is 

not necessarily the final product. A weak 5'ss sequence at the SD2 site has been shown to 

enhance the production of the vif message (104, 108). Another enhancer, ESEVif, occurs 

in the region between SA1 and SD2 along with a GGGG splicing silencer that follows 

SD2. These are in competition with one another to systematically regulate splicing at this 

site and, ultimately, expression of Vif (48). The regulatory sequences ESEM1 and 

ESEM2 have also been described and perform similar functions to ESEVif in enhancing 
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the use of SD2 (76). These elements have been identified through mutagenesis analysis 

that specifically disrupted the sequences, however, this was done with no regard to the 

structures that may have been formed in these regions. As of yet, the RNA structure 

around SA1 has not been implicated in any silencing or enhancing function for splicing at 

this region. 

 A splicing event to the second splice acceptor site (SA2) produces a message that 

encodes Vpr, a protein important for both promoting infection in myeloid cells (6, 28) 

and arresting the cell cycle of dividing cells (64, 74). A regulatory sequence termed 

ESSV has been identified in this region that helps to repress the use of SA2 (13). This 

silencing mechanism functions when the ESSV sequence binds hnRNP A/B proteins and 

inhibits binding of U2AF65 to SA2 (42). Specific mutagenesis of ESSV has localized the 

interacting element to a 16-nt sequence (103).  

The splicing events that use SA3 will produce the tat transcript. The usage of SA3 

is usually followed by excision of the intron from SD4 to SA7, and this is a requirement 

for the production of functional Tat (142). The Tat protein recognizes the TAR hairpin 

structure in the 5' UTR and recruits transcription factors to upregulate RNA Pol II 

function during mRNA transcription (15, 93). However, Tat has an apoptotic effect on 

the cell (16, 79, 97) and its production is therefore well regulated. An upstream silencer 

called ESS2p (70) and ESS2, a silencer downstream of SA3 (153), work against a 

relatively stronger py-tract compared to most others on the RNA (71) and splicing 

enhancer sequence ESE2 (176) to accomplish this regulation. These sequences are 

located on two stem-loop structures SLS2 (which contains ESS2p (70)) and SLS3 (which 

contains both ESS2 and ESE2 located directly next to each other (3, 176)), which reside 
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in the vicinity of SA3. Various regions on these stem-loop structures interact with 

enhancing and silencing proteins to modulate splicing at SA3. The proteins recognize 

sequences within these RNA structures that seem to be shared binding sites between 

many of them, thus leading to competition of regulation at this site (61). 

Splicing from SD1 to any of the splice acceptors SA4c, SA4a, and SA4b followed 

by the SD4-SA7 splicing event leads to the rev mRNA transcript. Use of SA5 by SD1 

leads to the transcript for either nef or vpu/env depending on if the intron between SD4 

and SA7 is excised (nef) or included (vpu/env) (142). An ESE element termed GAR is 

located directly downstream of SA5 and has been shown to regulate usage of the splice 

acceptor sites SA4c/a/b and SA5 and the downstream donor SD4 (20, 75). This 

regulation is accomplished in two ways: binding SR proteins in a bidirectional manner to 

allow sufficient usage of the upstream acceptors, and binding U1 snRNP to SD4 which 

amplifies expression of unspliced and incompletely spliced mRNA (75). An RNA 

structure at this site has yet to be identified. 

 Perhaps one of the most intuitive splicing regulatory regions is that pertaining to 

the splicing event that occurs between SD4 and SA7. When this intron is excised, the 1.8 

kb class of mRNA products is produced. Even in the absence of Rev, these products are 

able to exit the nucleus freely. If the SD4-SA7 intron is not spliced from the transcript, 

the 4 kb class of mRNAs and the unspliced product are generated and require Rev for 

efficient transport from the nucleus into the cytoplasm. The sequences that serve as SREs 

around this splicing interaction have been studied in detail, and the RNA structures that 

include these SREs are known. An ISS at this site consists of a sequence that makes up 

one half of the hairpin structure SLS1, the two-part ESS3 (ESS3a/b) sequence is base-
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paired in the structure SLS3, and ESE3/(GAA)3 has been described as a large bulge 

region in the structure SLS2 (37, 111). As with the different silencers and enhancers that 

act upon SA3, these various SREs must cooperatively and competitively bind different 

hnRNP factors and SR proteins to regulate splicing at this site (111). 

 

D. Thesis Overview 

 Regions of RNA secondary structure play essential roles in the replication cycle 

of HIV-1. The SHAPE technique has been applied to determine the RNA secondary 

structure of the full-length HIV-1NL4-3 genome, and this analysis has shown many 

elements of RNA structure (172), but only a fraction of these have been previously 

studied. One tool to assess the importance of these structures is to determine the extent to 

which they are conserved over evolutionary time and the extent to which they are 

maintained after mRNA splicing. 

The second chapter describes the application of SHAPE technology to develop a 

secondary structure model for the genomic RNA of a second primate lentivirus, simian 

immunodeficiency virus (SIVmac239), which shares 50% sequence identity at the 

nucleotide level with HIV-1. In both genomes approximately 60% of the nucleotides are 

paired within the coding region (8,738 nucleotides). However, only about half of these 

paired nucleotides are paired in both sequences, and only 58 base pairs form with the 

same pairing partner in the coding region of both sequences. Thus on average the RNA 

secondary structure is evolving at a much faster rate than the sequence. Some structures 

are conserved between HIV-1 and SIVmac239, including in the 5' untranslated region (5' 

UTR), the Rev responsive element (RRE), a pseudoknot to sequester the 5' 
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polyadenylation sequence, the polypurine tracts (PPT and cPPT) that begin plus-strand 

synthesis, and the stem-loop structure that includes the first splice acceptor site. Structure 

at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form. As 

with all lentiviruses, the HIV-1 and SIVmac239 genomes are adenosine-rich and 

cytidine-poor. Approximately two-thirds of the cytidines, uridines, and guanosines are 

base-paired while only one-third of adenosines are base-paired, leading to the 

concentration of adenosines in single-stranded regions (55% of the unpaired nucleotides). 

Thus the base composition of the structured regions is very different from either the 

unpaired regions or the genome as a whole. Structures with adenosine content equal to or 

greater than the number of guanosines had higher SHAPE reactivity and were not 

conserved between the two genomes. By contrast, those structures in which guanosines 

were more abundant than adenosines had lower SHAPE reactivity and structure was 

maintained, although still undergoing significant evolution. This leads to the conclusion 

that much of the secondary structure reflects pairing in a state which allows the RNA to 

form and reform interactions throughout evolution of the sequence. However, regions of 

the structure that perform necessary functions within the viral replication cycle seem to 

have a high guanosine content, which stabilizes these structures and allows them to 

remain intact even through the course of sequence evolution.  

 The work in the third chapter examines regulation of splicing due to RNA 

secondary structure in the HIV-1NL4-3 transcript mRNA. I evaluate the importance of an 

evolutionarily conserved stem-loop structure whose pairing interactions at the base of the 

stem were kept constant between HIV-1NL4-3 and SIVmac239 genomic RNA structures. 

This stem-loop structure is at the first splice acceptor site SA1, and is termed SLSA1. 
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Mutations to this stem that disrupted the pairing interaction while keeping surrounding 

ESE sequences intact as well as the corresponding amino acid sequence were introduced 

to the HIV-1NL4-3 genome, creating the mutant virus SLSA1m. In a virus coculture assay, 

the wild-type virus outcompeted the SLSA1m by a small margin. Separately, the mutant 

and wild-type viruses were passaged in cells and the mRNA profiles from these cells 

showed a difference in splicing pattern. Taken together, these data indicate a decreased 

viral fitness to SLSA1m and a change in usage of the splice sites based on the disruption 

of this stem structure. To examine other splicing regulatory features in the context of 

entire transcripts of fully spliced and partially spliced mRNA, I performed SHAPE 

analysis on in vitro transcribed RNAs representing the most abundant versions of spliced 

mRNA for all of the viral proteins. These structures exhibit maintenance of known motifs 

around splice sites SD1, SA2, SA3, and SA7, but with slightly altered conformations, 

emphasizing the importance of analyzing these structures and pairing interactions in a 

whole-molecule context. I observed maintenance of some previously unreported 

structures around the known SRE sequence at SA4c/a/b, SA5, and SD4, implying a role 

of RNA structure in regulation of splicing at this region. Many of these known and newly 

identified structures are preserved even after splicing events excise large regions of 

sequence, however, some structures are altered based on initial splicing events. This leads 

to the conclusion that most RNA regulatory structures affecting splicing of HIV-1 are 

formed through local interactions and are thus made impervious to large sequence 

changes or deletions because of the need to maintain these structures intact in the mRNA 

after the initial splicing event, but some structures are altered to modify the occurrence of 

downstream splicing events. 
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 In the fourth chapter, I will summarize the results of my thesis work and discuss 

areas where further research is needed.  
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CHAPTER 2 

COMPARISON OF SIV AND HIV-1 GENOMIC RNA STRUCTURES REVEALS 
IMPACT OF SEQUENCE EVOLUTION ON CONSERVED AND NON-CONSERVED 

STRUCTURAL MOTIF1 
 
 
 
A. Introduction 

RNA secondary structures play fundamental roles in the replication of all 

positive-strand RNA viruses. Because of their small genomes (which are largely devoted 

to encoding viral proteins), these viruses use available sequence space highly efficiently. 

The genomic RNA of viruses forms structures necessary for various functions. For 

example, internal ribosome entry site elements interact with the cellular translation 

initiation machinery, diverse structural signals direct packaging of viral RNA into viral 

particles, and RNA structure can provide control signals for differential viral gene 

expression. The human immunodeficiency virus type 1 (HIV-1) is no exception and well-

characterized RNA structures within the coding domains of the genome play critical roles 

in regulation of replication. These include a structure in the env gene, the Rev response 

element (RRE), that binds the viral protein Rev leading to the transport of unspliced and 

singly-spliced viral mRNA out of the nucleus (80, 130), and a hairpin structure preceded 

by a poly(U) slippery sequence that mediates a frameshift during synthesis of the Gag-

Pro-Pol polyprotein (136). The untranslated regions (UTRs) of HIV-1 and simian 

immunodeficiency virus (SIV) contain the TAR hairpin, which recruits the Tat protein to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Kristen Dang and Christina Burch contributed the data that is shown in Figure 2.2c.	  
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modulate transcription (63, 124) (reviewed in (80)) and other stem-loop structures that 

are important for dimer initiation (DIS) (155), splicing (123, 142), and viral RNA 

packaging (10, 62) (reviewed in (101)). Several lines of evidence emphasize that the 

HIV-1 genome contains extensive RNA secondary structures whose functional roles are 

not yet fully understood (99, 167, 172). 

The structures of large RNAs, like viral RNA genomes, are too complex to be 

predicted with confidence from first principles or thermodynamic-based algorithms 

alone. Useful working models can often be obtained when additional information is used 

to restrain the number of possible secondary structure elements. Two such approaches are 

to compare evolutionarily related sequences to identify RNA motifs that co-vary to 

preserve base pairs, and to experimentally probe the RNA structure with chemicals or 

nucleases to infer the presence of paired versus unpaired regions. In the selective 2'-

hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing approach, 

nucleotide reactivities show a strong inverse correlation with the probability that a 

nucleotide is base-paired. SHAPE-directed prediction of RNA folding has been used to 

develop secondary structure models for diverse RNAs (40, 45, 56, 72, 173) including the 

full-length genomic RNA structure of HIV-1NL4-3 (172). This HIV-1 model shows a very 

strong correlation between regions that can be targeted by siRNAs to inhibit viral 

replication (99) and regions that are predicted to be single-stranded, suggesting that 

global structural features are likely correct.  

One approach to evaluating the broader significance of these structures is to examine the 

conservation of these structures in a related virus. To this end, we analyzed the secondary 

structure of the genomic RNA of a second primate lentivirus, SIVmac239, a 
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representative of the SIVsm/HIV-2 lineage of primate lentiviruses. HIV-2 evolved from a 

different primate reservoir than did HIV-1. HIV-2 arose in the sooty mangabey 

(Cercocebus atys), and SIVsm has also infected rhesus macaques in primate centers and 

to cause an AIDS-like illness. SIVmac239 (144) now serves as a prototype reference 

sequence for comparative analysis of the HIV-2/SIVsm lineage (22). SIVmac239 has a 

large evolutionary distance from HIV-1, and conservation of structures between HIV-1 

and SIVmac239 represents an especially stringent test for functional relevance. In this 

analysis, we describe areas where RNA structure is maintained between HIV-1NL4-3 and 

SIVmac239, where it is divergent, and outline possible mechanisms for understanding the 

interplay between rapid sequence evolution in the context of selection for maintenance of 

function of RNA structural motifs. 

 

B. Results and Discussion 

1. Features of the SIVmac239 RNA structure 

To develop an experimentally-based secondary structure model for the genomic 

RNA structure of SIVmac239 (GenBank accession M33262), we used a strategy similar 

to that used to develop a model for the secondary structure of genomic HIV-1 RNA 

(172). Viral RNA was purified from SIVmac239 particles and derivatized with the 

SHAPE reagent 1-methyl-7-nitroisatoic anhydride (1M7) under physiologically relevant 

conditions to discriminate between single-stranded (generally reactive) positions versus 

(unreactive) nucleotides constrained by base-pairing or other interactions (118, 122, 164, 

173). The derivatized positions were identified as terminations of DNA synthesis by 

reverse transcriptase (primers listed in Table 2.1). SHAPE reactivities were measured for 
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9,605 nucleotides, 99.6% of the genome. These data were used as pseudo-free energy 

change constraints to direct RNA secondary structure prediction. In the secondary 

structure model for the SIVmac239 RNA genome (Figures 2.1 and 2.2), 4,970 

nucleotides were predicted to be base-paired (51.5%), whereas 4,676 nucleotides were 

predicted to be single-stranded (48.5%). 
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 Name Primer Sequence 
SIV309 
SIV443 

TCCTTCAAGTCCCTGTTCAGGC 
AACCGGAGGCCTCTTCCTCTCC 

SIV593 CTTTCCGTTGGGTCGTAGCCT 
SIV897 GATGGTGCTGTTGGTCTACTTG 
SIV1193 GTCCTTGTTGTGGAGCTGGTTG 
SIV1475 GTTTGAGTCATCCAATTCTTTAC 
SIV1761 TCCAGCATCCCTGTCTTCTTG 
SIV2095 CTGTATCCAGTAATACTTCTAC 
SIV2138 GTGGACCTAACTCTATTCCTG 
SIV2386 GCCACTGCTTCAATTTTGGTCC 
SIV2674 CTAGAGGTATGGAGAAATATGC 
SIV2952 CCCTATGCTATTCAAGAGTTCC 
SIV3225 CTCATATTCTGCTTCTGCCATC 
SIV3505 CCCATACATCCTTCTCAACTGG 
SIV3780 CCCTGAGTCTGTCAATGCCATG 
SIV4027 CATGTTCTTCTTGTGCTGGCTC 
SIV4289 AATAGTGCTGTCTGTCTTCCTG 
SIV4576 GAGTCATATCCCCTATTCCTCC 
SIV4831 AACTGCTATCCACCTCTTTTCC 
SIV5112 TAGTTTGGTGTTACATCTGTCC 
SIV5382 CCGCCTCTCTGTTTATCTCCTC 
SIV5647 TGTGGTCCTTCATTTTCTGGAG 
SIV5904 TAGAGGGCGGTATAGCTGAGAG 
SIV6184 ATTGTCGCATTCCTCCAAGCTG 
SIV6350 CTCAAAGAGTTGCCATACATCC 
SIV6635 TGCAGATGACCAAGTTTCATTG 
SIV6894 AGCCAAACCAAGTAGAAGTCTG 
SIV7170 CAGTATACCTGGGATGTTTGAC 
SIV7462 AGACTGGTCACTGTGGAGTTAC 
SIV7745 CCCAGCCAATAAAGTTCGGGAC 
SIV8001 AGTCAACCTTTCGCTCCCACTC 
SIV8261 GAAATAAGAGGGTGGGGAAGAG 
SIV8536 TGTAGGTAGGTCAGTTCAGTCC 
SIV8830 CCAAGTCATCATCTTACTCATC 
SIV9107 TCATCCTCCTGTGCCTCATCTG 
SIV9282 TAGCCTTCTTCTAACCTCTTCC 
SIV9485 GAACCTCCCAGGGCTCAATCTG 
SIV9621 TTTTTACTTCTAAAATGGCAGC 
 
  

Table 2.1: Sequences of primers used for SHAPE analysis of HIV-1 mRNA. Numbers indicate the 5' 
position in the SIVmac239 genome to which each anneals. 
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  Figure 2.1 (Next Page): Model for the structure of the SIVmac239 RNA genome as determined by 
SHAPE probing and directed RNA structure refinement. The genome is divided into (a) 5' and (b) 
3' halves. Colors of nucleotides indicate SHAPE reactivity on the scale shown on the left. Each sphere 
corresponds to a nucleotide, and side-by-side spheres indicate a base pair. Protein coding region 
boundaries are indicated by letters with the code shown at the bottom. Splice acceptor and donor 
sites(165) are labeled SA and SD, respectively. tRNALys3 interaction is shown in gray. Heavy blue bars 
indicate base pairs in stems that are conserved between codon-aligned SIVmac239 and HIV-1NL4-3 RNA 
structures (71 total pairs). Areas of structure with a median reactivity below 0.3 over a 75 nucleotide 
window are numbered in green and correspond to motif numbers in Figure 2.3b. All positions are 
numbered in reference to the GenBank accession number M33262 for SIVmac239. A full structure, 
including nucleotide identity, is shown in Figure 2.2.  
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Figure 2.1: Model for 
the structure of the 
SIVmac239 RNA 
genome as 
determined by 
SHAPE probing and 
directed RNA 
structure refinement.	  
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Region Start End Nucleotides in Structure GC AU GU 
1* 1 488 1-539 99 60 16 
2 720 804     
3# 2091 2193 2098-2187 11 14 4 
4# 2434 2548 2462-2497 9 7 0 
5# 2616 2871 2641-2895 32 33 10 
6# 2969 3044 2996-3038 6 3 1 
7# 3254 3361 3285-3323 5 5 0 
8# 4679 4756 4679-4726 8 3 4 
9# 4819 4914 4862-4907 5 6 1 

10# 4926 5000 
4976-4988; 
5220-5232 

7 4 2 

11# 5409 5522 5392-5527  
5786-5946 

54 35 8 
12# 5818 5987 
13# 7095 7236 7166-7223 6 8 2 
14# 8200 8332 8233-8359 28 14 7 
15 9433 9655     
G-P-P FS* 1793 1974 1793-1879 17 6 1 
RRE* 7617 7853 7601-7909 47 25 13 
 

Table 2.2: Start and end points corresponding to regions in the 75-nt moving window of median 
SIVmac239 SHAPE reactivities with values lower than 0.3 (from Figure 2b). Asterisks (*) indicate 
structures of known function and pound signs (#) indicate structures of unknown function used for GC 
versus AU/GU content and (G – A) analysis and comparison. For the GC versus AU/GU analysis, the 
valley at position 10, which corresponds to the 5' side of the longest continuous helix, was included along 
with the paired nucleotides on the 3' side. Nucleotides corresponding to valleys 11 and 12 were also taken 
together since they spanned both sides of the resultant stems. In all cases, we included 37 nts before and 
after each region to include all of the nucleotides that are included in the 75-nt window. 
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Highly structured regions in an RNA can be inferred in a model-free way by 

identifying regions with low overall median SHAPE reactivities. Many areas of the 

SIVmac239 RNA genome have low median SHAPE reactivity (defined as less than 0.3 

on a scale from 0 to ~1.5) over a 75 nucleotide window, and these correspond to regions 

of structure with both known and unknown function (Figure 2.3). The lowest median 

SHAPE reactivity values occurred at the 5' and 3' ends of the genome. The highly 

structured 5' region extends until nucleotide 539 (Figures 2.1a and 2.3b, motif 1), and the 

structured 3' region begins at position 9462 at the start of the 3' TAR structure within the 

terminal repeat (R) regions (Figures 2.1b and 2.3b, motif 15). In addition, the Gag-Pro-

Pol frameshift (G-P-P FS) element (Figures 2.1a and 2.3b; positions 1852-1879) and the 

RRE are highly structured (Figures 2.1b and 2.3b). By comparison, when we used RNA 

Decoder (a program that predicts evolutionarily conserved RNA secondary structure in 

the context of the protein-coding sequence of the RNA (137)) with an HIV-2/SIVsm 

sequence dataset to infer conserved regions of secondary structure, we found that the 5' 

and 3' UTRs and the RRE showed the strongest signal for conservation of structure 

(Figure 2.2). Using the RNA Decoder approach we conclude that major features of 

secondary structure are not conserved within the coding region at the level of the RRE. 

Other regions, however, have low median SHAPE reactivities, yet currently unknown 

RNA functions (Figures 2.1a, 2.1b, and 2.3b, motifs 2-14). In the following sections, we 

examine these structures and infer biological importance based on their conservation with 

HIV-1, first on a global scale then in detail. 
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Figure 2.3: Genomic organization and SHAPE reactivity of SIVmac239 and comparison with 
HIV-1NL4-3. (a) Organization of the SIVmac239 genome. Grey boxes indicate protein coding regions, 
dark lines indicate the boundaries of the mature viral proteins. (b) SIVmac239 median SHAPE 
reactivity values calculated over a 75 nucleotide sliding window (red). Green dashed line indicates 
SHAPE reactivity of 0.3. Regions with SHAPE reactivities below 0.3 are numbered (and listed explicity 
in Table 2.2). SHAPE reactivity values of HIV-1NL4-3 (gray) are shown as medians calculated over a 75 
nucleotide sliding window and overlayed with those of SIVmac239. Viruses were codon-aligned based 
on the Los Alamos Database alignment (www.hiv.lanl.gov). Blue dashed line indicates SHAPE 
reactivity of 0.4, and the gray bars below indicate regions where median reactivity values for both 
viruses are below 0.4. (c) Comparison of SIVmac239 median SHAPE reactivity values (red) and 
median phylogenic pairing probability values (cyan). Pairing probabilities were calculated as described 
[3]. Genome regions where the median pairing probabilities are above 0.6 are indicated by gray. (d) 
Percent guanosine (gold) and adenosine (black) in the SIVmac239 genome over a 75 nucleotide sliding 
window. Gray bars below indicate regions where the percentage of guanosines is greater than the 
percentage of adenosines. 
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2. Overview of Base-pairing within the HIV-1NL4-3 and SIVmac239 RNA Genomes 

SIVmac239 is the second full-length genomic primate lentivirus RNA evaluated 

by SHAPE-directed modeling; the first was that of HIV-1NL4-3 (172). Comparison of the 

structural models of these two distantly related retroviral RNA genomes should reveal 

conserved structural elements. For this analysis we have used updated folding parameters 

that result in modest changes in the previous HIV-1 model (see Methods). Visually the 

patterns of 1M7 reactivity in the 5' noncoding region, the frameshift site, and the RRE — 

all regions with well-established conserved functions — are similar for SIVmac239 and 

HIV-1 RNAs (Figure 2.3b). A bootstrapping analysis (see Methods) showed that the 

measured SHAPE profiles across both genomes were significantly more similar than 

expected by chance (10,000 trials, p < 0.0001). Thus, in a broad view, there appears to be 

a strong propensity to conserve the overall level of local RNA structure across the same 

regions of these two genomes. 

The RNA folding algorithm employed for structure prediction included a pseudo-

free energy change term to account for the SHAPE reactivity (see Methods). Newly 

optimized parameters for calculating the pseudo-free energy term were used to predict a 

revised secondary structure model for HIV-1NL4-3 based on the original reactivity data 

(172). We then compared the codon-aligned sequences of HIV-1NL4-3 and SIVmac239 for 

equivalency in terms of base-pairing. The two genomes share 50% identity at the 

nucleotide level; however, if these sequences were randomized, they would appear to 

have 24% identity, emphasizing the extent of divergence at 50% identity. We found that 

roughly half of the nucleotides predicted to be base-paired in the HIV-1NL4-3 sequence 

were also paired in the SIVmac239 sequence; conversely, only half of the nucleotides 
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predicted to be single-stranded in the HIV-1NL4-3 sequence were also single-stranded in 

the SIVmac239 sequence (Table 2.3). In spite of the limited conservation of paired bases, 

we did observe regions in similar locations within the genomes with low SHAPE 

reactivity (defined as median reactivity below 0.4 over a 75 nucleotide window). These 

areas (Figure 2.3b, grey dashes) largely fold into structures of unknown function. None of 

these structures have conserved base pairs, and in only a few examples are there even 

small hairpins that share pairing partners within 40 nucleotides in both alignments.  
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Codon- 
Aligned 
Bases 

Base-
Paired 

Base-Paired 
In Both HIV 

and SIV 

Base-Paired 
With Same 

Partner 

Base-Paired 
With Similar 
Partner (w/in 

40 nts.) 
Single-

Stranded 

Single-
Stranded In 

Both HIV and 
SIV 

SIV 8490 
 

4970 2421 
 

142 
 

432 
 

4671 2420 
 HIV 4500 4672 

 

 

  

Table 2.3: Comparison between SIVmac239 and HIV-1NL4-3 RNA genome secondary structure 
models.  SHAPE-directed folding used ∆GSHAPE parameters of m = 1.9 and b = -0.7.  
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As a more stringent definition of structural conservation, we tallied the number of 

base pairs in both genomes where both nucleotide positions of the base-pairing partners 

were maintained. Only 58 base pairs were fully conserved between the two genomes 

within the 8,738 nucleotides of the SIVmac239 coding region; an additional thirteen base 

pairs were conserved in the 5' UTRs. Overall, only 71 base pairs, 3% of the base pairs 

were precisely conserved in these two primate lentiviral genomes (Figure 2.1, blue bars 

in paired regions). Thus the regions that share a low SHAPE reactivity are areas of base 

pairing in both viruses, but the exact structures are not conserved between the two 

genomes.  

 

3. Conserved Structure in the 5'-UTR 

We aligned the 5'-UTRs of each virus both using the structures as predicted by 

SHAPE-directed modeling and by identifying the positions of the functionally conserved 

TAR region, 5' polyadenylation [poly(A)] signal, primer binding site (PBS), major splice 

donor (SD1) sequence, dimerization initiation sequence (DIS), and the Psi packaging 

element (Figure 2.4). Each of these functional elements folds into similar structures in 

both viral RNA genomes even though only thirteen of the ~180 predicted base pairs have 

the same two pairing partners in both 5' UTR regions (Figure 2.4, emphasized with heavy 

lines to indicate bonds). Additional conserved structures include a stem immediately 5' of 

the PBS, and the SL1 (DIS), SL2 (SD1), and SL3 helices. The stem containing the gag 

start site (Figure 2.4, MA start), initially identified by structure probing (36, 173), 

accounts for six of the identical pairing partners between HIV-1 and SIVmac239. This 

interaction has also recently been visualized by NMR analysis of the dimerized and 
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packaged form of HIV-1 RNA (100). There are structural differences in the TAR motif, 

which features three stem-loops in SIVmac239 but only a single stem in HIV-1. In 

addition, the stems in SIVmac239 5' UTR generally have more base pairs than the 

equivalent structures of HIV-1 (Figure 2.4).  
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Figure 2.4: Structural similarity in the 5’ regions of the SIVmac239 and HIV-1NL4-3 genomes. 
Predicted structures of SIVmac239 (left) and HIV-1 (right) in the 5' region; distinctive structures are 
coded by color. Conserved base pairs are indicated by dark blue connecting lines. The primer binding 
site (PBS) and 5' poly(A) signal AAUAAA are emphasized with curved lines. The hatched lines 
indicate nucleotides within the MA coding domain that are not shown. The predicted pseudoknot in 
SIVmac239 is shown with thick gray lines; protein residues encoded by the pseudoknot region are 
shown. 
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Because of the sequence redundancies at each end of a retroviral genome, a 

poly(A) signal (AAUAAA) occurs at each end. The virus must prevent use of the signal 

at the 5' end to avoid producing truncated RNA transcripts. The 5' poly(A) signal lies in 

similar stem structures in both genomes, with unreactive loop nucleotides in the same 

area in SIVmac239 as in HIV-1. In the 5' poly(A) region of HIV-1, in vitro analysis 

suggests formation of a pseudoknot (134). The SIVmac239 SHAPE reactivity is low in 

the region in gag that corresponds, based on the codon alignment, to one of the 

pseudoknot stems in HIV-1. It is likely that a pseudoknot forms in this region of the 

SIVmac239 RNA as well (Figure 2.4). Conservation of the poly(A) stem-loop structure 

was previously noted for HIV-1, SIV, and HIV-2 sequences (134), whereas structural 

similarity in the MA region has only become apparent with SHAPE analysis (Figure 2.4). 

In sum, although only 13 base pairs are identical, the 5'-UTR structure is highly 

conserved between the SIVmac239 and HIV-1 RNA genomes both at the level of overall 

structure (Figure 2.3b) and in terms of the local architecture of multiple functional 

elements (Figure 2.4).  

 

4. Conserved Structure in the Gag-Pro-Pol Frameshift Region 

The primate lentiviruses generate more Gag protein than the Gag-Pro-Pol product 

via a minus-one frameshifting process. Frameshifting occurs at a "slippery sequence", a 

poly(U) region, and is potentiated by a downstream structure that stalls the ribosome (88, 

136). The RNA structure in the region of the frameshift site is similar in HIV-1NL4-3 and 

SIVmac239. In both cases, the poly(U) slippery sequence is part of a stem, although the 

poly(U) region is not paired in the SIVmac239 structure. In addition, there is a second 
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stem just downstream of the U stretch; however, the frameshift stem is further from the 

poly(U) sequence in SIVmac239 than it is in HIV-1NL4-3 (Figure 2.5). Despite the fact 

that this region carries out a conserved and essential function in retrovirus replication, the 

organization of these stems is different in the two genomes and they have no shared base 

pairs (Figure 2.5).  
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Figure 2.5: Codon alignment and predicted pairing partners in the Gag-Pro-Pol frameshift region 
of SIVmac239 and HIV-1. (a) RNA structures at the Gag-Pro-Pol frameshift stem for SIVmac239 
(left) and HIV-1 (right). The main stem is emphasized by brackets and the poly(U) slippery sequence is 
emphasized by a curved line. The dotted line indicates nucleotides between the poly(U) sequence and 
the beginning of the frameshift stem. (b) The sequences of HIV-1, SIVagm, and SIVmac239 were 
aligned horizontally. The poly(U) slippery sequence is boxed. Curved lines represent base pairs 
between the nucleotides within HIV-1 and SIVmac239; the curved lines connecting nucleotides 
downstream of the poly(U) sequence correspond to the frameshift stems, the dotted line represents the 
extended frameshift stem in HIV-1. Gray boxes indicate regions of strong alignment, and spaces in the 
sequence indicate regions of poor alignment. The structure of the HIV-1 hairpin is modified from the 
previous model(172) based on the updated folding parameters as described in the Methods. 
 



	   53	  

We attempted to define the pathway through which these structures evolved by 

examining the sequences surrounding the poly(U) slippery sequence. To facilitate this 

analysis, we included a sequence from SIVagm (GenBank accession M30931), which is 

distantly related to both SIVmac239 and HIV-1NL4-3. All three sequences aligned well at 

the protein and nucleotide levels upstream and through the poly(U) slippery sequence 

(Figure 2.5, gray boxes). However, this alignment is lost three nucleotides 3' of the 

poly(U) sequence. Sequence was again aligned at the conserved PTAPP motif in Gag 

(Figure 2.5, 3'-most gray box). One possible explanation for the abrupt loss of sequence 

alignment in this region is that the frameshift hairpin itself in mutagenic, consistent with 

the idea that structure in the RNA would induce pausing which enhances recombination 

and mutation during viral DNA synthesis (54, 92). These hairpins are predicted to be 

among the most stable in each genome. A structure stable enough to stall the ribosome is 

likely also to induce pausing of reverse transcriptase during DNA synthesis, increasing 

the possibility of recombination in the region of the frameshift hairpin. Thus, we 

hypothesize that the rapid evolution of structure in this region is due to the mutagenic 

effect of the structure itself.  

 

5. Conserved Structure in the Rev Response Element (RRE) 

The RRE includes binding sites that mediate oligomerization of the Rev protein; 

oligomerized Rev mediates export of unspliced and singly-spliced viral RNA from the 

nucleus (110). The sequence is conserved in this region of many primate lentivirus 

genomes (94). The predicted RRE structure (Figure 2.1) consists of a long, irregular stem 

I helix terminated by a set of small hairpins including the IIb stem, previously described 
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as the primary Rev binding site (30, 83), and the auxiliary hairpins (stems III, IV, and V) 

that facilitate multimerization of Rev (39). Twenty-nine of the 71 base pairs conserved 

between HIV-1NL4-3 and SIVmac239 are in the small terminal hairpins in the RRE 

(Figure 2.6, blue bars); these nucleotides are 78% conserved at the sequence level. By 

contrast, the long stem is mostly devoid of conserved pairing partners, and there is a shift 

by one nucleotide in the codon-aligned pairing. When we used the codon alignment to 

force superposition of the SIVmac239 sequence onto the RRE structure of HIV-1NL4-3 

(contrary to the SHAPE-directed structure), there was a large reduction (30%) in the 

number of base pairs formed in stem I (Figure 2.6). Thus, conservation of specific base 

pairs is limited to four of the small hairpins that serve as protein interaction regions, 

whereas the long stem has pairs that are shifted by one nucleotide (Figure 2.6). We infer 

that neither the sequence nor the exact base-pairing partners of the long stem I are 

critical, although its presence and long length are conserved. 
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Figure 2.6: Codon alignment and predicted pairing partners in the RRE region of SIVmac239 
and HIV-1.  (a) Predicted structures within the RRE are shown for SIVmac239 (left) and HIV-1 
(middle). The HIV-1 structure with forced SIVmac239 pairing is also shown (right). Blue lines indicate 
base pairs that are exactly conserved between the two viruses. (b) The sequences of SIVmac239 (top) 
and HIV-1NL4-3 (bottom) aligned horizontally. Curved lines indicate base-pairing partners. Gray boxes 
indicate regions of amino acid alignment. Roman numerals indicate helices discussed in the text. 
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6. Conserved Structure at the First Splice Acceptor Site SA1 

Retroviruses use diverse splice donor (SD) and splice acceptor (SA) sites to generate a 

multitude of spliced mRNAs which direct synthesis of the small regulatory proteins and 

Env while retaining some unspliced RNA for both translation of Gag and Gag-Pro-Pol 

and for packaging of the full-length genome into new virions (142). Splicing to generate 

these mRNAs is highly regulated. This regulation takes place at both the sequence level 

and at the RNA structure level. Five of the base pairs that are precisely conserved 

between HIV-1NL4-3 and SIVmac239 are in the stem of the hairpin structure that contains 

the first splice acceptor site (SA1) (Figure 2.7), which is used to generate the transcript 

that codes for the viral protein Vif (165). Most of the other splice acceptor regions (SA2-

SA8) downstream of SA1 are part of short hairpins as well, with the exception of SA4 

(Figure 2.1). Each of these short hairpins has low median SHAPE reactivity (most are 

below the overall median of 0.46); however, only the hairpin at the SA1 site is exactly 

conserved between HIV-1 and SIVmac239 with several of the same pairing partners. The 

viral splice acceptors have weak splicing sequences to allow balanced usage of each with 

the major splice donor SD1 (129). The relative strengths of HIV-1 splice acceptor 

sequences have been previously analyzed, and splicing is most efficient to SA1 (76). We 

propose that the conserved stem-loop structure at SA1 down-regulates splicing to this site 

to ensure sufficient use of the other downstream splice acceptor sites.  

 

  



	   57	  

 

 

 

  

Figure 2.7: Codon alignment 
and predicted pairing partners 
in the stem-loop surrounding 
SA1. (a) Structures for the 
conserved stem in SIVmac239 
(left) and HIV-1NL4-3 (right). Blue 
lines indicate the base pairs that 
are exactly conserved between the 
two viruses. (b) The sequences of 
SIVmac239 (top) and HIV-1NL4-3 
are aligned horizontally. Curved 
lines indicate base-pairing 
partners. Gray boxes indicate 
regions of amino acid alignment. 
Bold letters represent the bases 
that are involved in the conserved 
pairing interactions. 
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7. Conserved Structure in the cPPT and PPT 

Retroviruses prime plus-strand DNA synthesis from polypurine tracts (PPT) that 

are derived from viral RNA during minus-strand DNA synthesis (161). These primers are 

resistant to degradation by RNase H, and their specificity as second-strand primers is 

enhanced by the viral NC protein (141). Primate lentiviruses prime from two regions, one 

near the center of the genome (cPPT) and one just upstream of the U3 sequence near the 

3' end of the genome (PPT) (23). We observed a common structural motif in these 

polypurine tracts in SIVmac239 and in HIV-1. cPPT and PPT motifs in both viruses 

contain a 5' A-rich single-stranded region followed by a 3' G-rich base-paired region 

(Figure 2.8a) that have strikingly similar patterns of SHAPE reactivity (Figure 2.8b). 

Since the PPT and cPPT function as second-strand primers while hybridized with the 

first/minus strand of viral DNA, it is unlikely that RNA secondary structure per se is 

relevant to the function of these sequences as plus strand primers. These patterns drew 

our attention to the possibility that guanosine and adenosine play very different roles in 

defining secondary structure and that these roles might be reflected in the structures of 

the PPTs in genomic RNA but as a byproduct of their high G content in the context of a 

purine-rich run. This caused us to consider the role of base composition in defining 

secondary structure more broadly across the genome. 
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Figure	  2.8:	  SHAPE	  analysis	  of	  the	  polypurine	  tracts	  of	  SIVmac239	  and	  HIV-‐1	  and	  base	  
composition	  of	  both	  genomes	  in	  structured	  and	  unstructured	  regions.	  (a)	  RNA	  structure	  
models	  for	  the	  cPPT	  and	  PPT	  of	  HIV-‐1	  and	  SIVmac239.	  Nucleotides	  involved	  in	  the	  polypurine	  
tracts	  are	  colored	  according	  to	  their	  SHAPE	  reactivity	  values	  as	  in	  Figure	  2.1.	  Other	  nucleotides	  
are	  light	  gray.	  Nucleotides	  not	  shown	  are	  indicated	  by	  hatched	  lines.	  (b)	  Histograms	  of	  SHAPE	  
reactivity	  values,	  integrated	  and	  normalized,	  along	  the	  span	  of	  the	  polypurine	  tracts.	  HIV-‐1	  
reactivity	  values	  are	  displayed	  in	  a	  lighter	  color	  scale.	  (c)	  Histogram	  of	  percentage	  of	  each	  
individual	  nucleotide	  compared	  to	  the	  percentage	  of	  each	  in	  the	  entire	  genome.	  For	  each	  
individual	  nucleotide,	  SIVmac239	  (green)	  is	  on	  the	  left	  and	  HIV-‐1NL4-‐3	  (blue)	  is	  on	  the	  right.	  The	  
percent	  paired	  for	  each	  nucleotide	  is	  indicated	  by	  hatched	  lines.	  (d)	  Histogram	  of	  percentage	  of	  
each	  nucleotide	  in	  the	  genome	  compared	  to	  the	  percentage	  in	  highly	  structured	  regions	  of	  
known	  function	  (5'UTR	  and	  RRE).	  SIVmac239	  (green)	  is	  on	  the	  left	  and	  HIV-‐1NL4-‐3	  (blue)	  is	  on	  
the	  right.	  
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8. The Role of Base Composition in Defining Structure 

The base compositions of both the HIV-1 and SIVmac239 RNA genomes are 

dominated by adenosine (34%); the percentage of cytidine is low, around 17%, and the 

percentages of guanosine and uridine are each about 25% (Figure 2.8c). Regions with 

large numbers of base pairs must have approximately the same number of pyrimidines 

and purines. In structured regions with known function, including the 5' UTR and RRE in 

both HIV-1 and SIVmac239, the average base composition is 25% A, 29% G, 22% C, 

and 22% U (Figure 2.8d). The higher percentage of guanosines compared to adenosines 

in these base-paired regions has the effect of concentrating more adenosines in unpaired 

regions, where adenosines represent fully half of the nucleotides. Only about 30% of the 

adenosines are base-paired, whereas approximately 60-70% of guanosines, cytidines, and 

uridines are base-paired in the two lentivirus models (Figure 2.8c). This trend toward 

favoring unpaired adenosines but paired guanosines, cytidines, and uridines is also 

observed in other highly structured regions of RNAs, including bacterial ribosomal RNAs 

(60). However, given the A-rich primate lentiviral genome the overall effect is to create 

A-rich single-stranded regions. 

We considered the possibility that the greater stability of the G-C base pair 

relative to A-U or G-U base pairs might define structures that are conserved between the 

two genomes. We compared the base compositions of structures within SIVmac239 with 

known function (5' UTR, RRE, and the frameshift stem) to regions of extensive structure 

but unknown function. The conserved structures with known function have a higher 

average guanosine content and a significantly higher (p = 0.04) percentage of G-C pairs 

(57.9%) than structured regions of the genome that are not conserved (49.5%) (Table 
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2.2). In support of this idea, we noted that the SHAPE reactivity was higher for both 

adenosine and guanosine residues in regions of non-conserved structures (data not 

shown), which suggests that the adenosine-rich structures may allow for unfolding and 

refolding to occur more readily or may allow for the presence of multiple conformations 

compared to guanosine-rich structures in functional regions. We also hypothesize that 

selection to maintain functional secondary structures in primate lentiviruses such as HIV-

1NL4-3 and SIVmac239 has resulted in regions defined by clusters of guanosines within an 

otherwise adenosine-rich genome. In Figure 2.3d we show an analysis of A versus G 

content across the SIVmac239 genome using a sliding window of 75 nucleotides. For 

several of the structures with known function there is a reciprocal relationship with an 

increase in G content and a decrease in A content, consistent with the idea that there is 

selective pressure to maintain islands of high G content to anchor structure. 

 

C. Summary 

Ultimately, HIV-1 and SIVsm/HIV-2 genomic RNAs accomplish many of the 

same functions in the context of viral replication. There is abundant evidence that RNA 

structure is either critical or directly modulates functions including viral DNA synthesis, 

RNA splicing, genome packaging, and mediating interactions with both viral and cellular 

proteins. One paradigm for assessment of conserved function is that of the ribosomal 

RNAs where strong base-pairing patterns are highly conserved despite large sequence 

variations over the course of evolution. We sought to identify functionally important 

RNA secondary structures in the primate lentivirus genome by comparison of SHAPE-

directed nucleotide-resolution structure probing information and by developing structural 
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models of representative HIV-1 and SIVsm genomes. We developed a secondary 

structure model for SIVmac239 and compared it to a modestly revised structural model 

for the HIV-1NL4-3 genome (172). These genomes share about 50% sequence identity, 

and, although a similar fraction of each genome is base-paired (60%), only about 3% of 

predicted base pairs were with identical partners within the coding region of the genome. 

Almost one-half of these identical pairs were clustered in the Rev binding domain of the 

RRE. Thus, there has been massive reorganization of the patterns of RNA secondary 

structure between these two genomes.  

Even within regions of highly conserved function, there were large differences in 

the sequence and pairing partners. Dramatic differences in the structure of TAR, longer 

stems in the 5' UTR of SIVmac239 relative to that of HIV-1, different pairing partners 

and poor sequence alignment in the Gag-Pro-Pol frameshift stem, and a one-base shift in 

the alignment in the RRE stem all point to remodeling of these domains. It has been 

shown that elements of secondary structure can promote recombination during retroviral 

DNA synthesis (54, 92). Certain stable structural elements in fact appear to be mutagenic. 

In regions like the Gag-Pro-Pol frameshift stem, selective pressure does not maintain a 

particular set of base pairs, but rather ensures that a sufficiently stable structure exists. In 

contrast, regions involved in RNA-protein interactions, such as the Rev oligomerization 

domain, displayed a significantly higher level of conservation than other regions of the 

genome, indicating that selective pressure maintains a particular structure for interaction 

with protein. 

In the regions of conserved secondary structure, we observed significantly higher 

guanosine content compared to the overall base composition of the genome. Higher 
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levels of guanosine content may function to stabilize functionally critical structures. The 

lentivirus genomes are adenosine-rich, and the resulting less stable secondary structures 

are likely to exist in one or more alternative states, even if they are drawn as a single 

representative structure in our models. We propose that scanning for guanosine-rich 

regions in these and other adenosine-rich viral genomes may help identify important 

structural domains. One source of the selective pressure to maintain an adenosine-rich 

genome is the action of APOBEC3-G and -F, enzymes that deaminate cytidines on the 

DNA minus strand during viral DNA synthesis giving rise to G-to-A transitions on the 

plus strand (14). Although these lentiviral genomes are adenosine-rich, they are not 

guanosine-poor (approximately 25% G content) but rather cytidine-poor (at 17% C 

content). Thus mechanisms must be in place to retain guanosines in these regions of 

functional RNA secondary structure.  

Our analysis shows that within the short evolutionary distance between the HIV-

2/SIVsm lineage and HIV-1, the primary features of secondary structures at the 

individual base pair level are at the ends of the RNA and in the RRE. This observation is 

consistent with the interpretation that, for most of the lentivirus genome, there is little 

selective pressure to maintain specific pairing interactions. This is in contrast to the 

evolutionary pressure on ribosomal RNA. The sequences of 16S rRNA are less than 50% 

conserved when eubacterial, archaebacterial, and eukaryotic RNAs are compared, but the 

structure has been maintained through evolution by mutations that compensate for 

changes in the sequence directly affecting the base pairing (reviewed in (128)). In strong 

contrast, the lentiviral RRE structure, particularly in Stem I, did not evolve through base 

changes that maintained pairing. We previously examined a model where higher rate of 
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transition versus transversion mutations exist in paired regions of many RNA structures 

(presumably to maintain pairing partners), but found that the HIV-1 RRE was the 

exception as its mutation pattern did not fit this model (86). The relatively low 

conservation of base pairs between HIV-1NL4-3 and SIVmac239 is consistent with this 

observation since very few pairing partners are maintained.  

We propose that the lentiviral genomic structure is evolving in the context of two 

significant mutagens. APOBEC3-G and -F indirectly mutate guanosines to adenosines, 

which weakens stability of structural motifs. The structural motifs themselves are 

mutagenic during DNA synthesis. The effect of these mutagens is filtered by the selective 

pressure to maintain useful structural motifs. The majority of the genome, in contrast, is 

depleted of both guanosines and strong secondary structure, and thus has evolved to be 

less susceptible to these mutagens. 

 

C. Materials and Methods 

1. Virus production  

An infectious clone of SIVmac239 (GenBank accession M33262) was a gift from Ronald 

C. Desrosiers (New England Regional Primate Center, Harvard Medical School)(81). 

SIVmac239 was used to infect SupT1 CCR5 CL.30 cells (a gift from J. Hoxie, University 

of Pennsylvania); these cells are a non-Hodgkin’s T cell lymphoma cell line (a modified 

version of the SupT1 cell line) (117). The virus produced was purified as described (25). 

 

 

 



	   65	  

2. Genomic RNA  

Viral genomic RNA was extracted from purified SIVmac239 viral particles as described 

(172) in a manner that avoided denaturation of RNA secondary or tertiary structure. Viral 

RNA was extracted using phenol/chloroform after lysis and treatment with Proteinase K. 

No heating steps, chelating agents, or chemical denaturants were used in the purification. 

The final RNA product was precipitated in 70% (v/v) ethanol with 300 mM NaCl and 

stored at -80 °C until use. 

 

3. SHAPE analysis of RNA  

RNA was treated as described (172). Briefly, the precipitated RNA was collected by 

centrifugation and the ethanol removed. Each pellet, containing 62 pmol of SIVmac239 

genomic RNA, was individually resuspended in 620 µl of 50 mM HEPES (pH 8.0), 200 

mM potassium acetate (pH 8.0), 3 mM MgCl2 and incubated at 22 °C for 10 min then at 

37 °C for 15 min. Aliquots of 32 µl of 45 mM 1M7 in dimethyl sulfoxide (DMSO) (122) 

or DMSO alone were warmed at 37 °C for 30 sec, then 288 µl of the RNA solution was 

added to each and incubated at 37 °C for 5 min. RNA was recovered by adding 32 µl of 

50 mM EDTA (pH 8.0) and precipitation with ethanol. 

 

4. Primers  

Each primer contained a 5' six carbon linker terminated with an amino group (IDT); a 

total of 38 primers were used (Table 2.1). The primers were tethered to 5-FAM or 6-JOE 

fluorophores (AnaSpec) using N-hydroxysuccinimide chemistry. Purified primers were 
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spectrophotometrically determined to have at least 82% labeling efficiency, with most 

labeled to greater than 95%, as determined by the [dye]/[DNA] ratio. 

 

5. Primer extension  

Both the (+) and (–) 1M7 reagent reactions were subjected to reverse transcription with 

FAM-labeled primers using SuperScript III Reverse Transcriptase (Invitrogen). A 

sequencing length ladder was generated using the JOE-labeled primers and termination 

with a dideoxynucleotide. After cDNA synthesis, the reverse transcription reaction 

products were combined with their corresponding JOE-labeled sequencing reactions, the 

latter performed using plasmids containing SIVmac239 sequences, p239SpSp5', and 

p239SpE3' (obtained through the AIDS Research and Reference Reagent Program, 

Division of AIDS, NIAID, NIH from Dr. Ronald Desrosiers (81)). Primer extension 

products were resolved by length using an Applied Biosystems AB3130 capillary 

electrophoresis instrument. 

 

6. Data processing  

ShapeFinder software (http://bioinfo.unc.edu) was used to convert the raw capillary 

electrophoresis electropherograms of fluorescence intensity to normalized SHAPE 

reactivities (40, 164, 173). Data were processed as described (172).  

 

7. SHAPE-directed RNA structure modeling  

Inclusion of SHAPE information provides an experimental adjustment to the well-

established nearest neighbor model for RNA folding (114). For secondary structure 
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prediction, SHAPE data are incorporated as a pseudo-free energy change term, ∆GSHAPE, 

implemented in RNAstructure (40): 

 ∆GSHAPE = m ln [SHAPE + 1] + b (1) 

The slope, m, corresponds to a penalty for base pairing that increases with the 

experimental SHAPE reactivity, and the intercept, b, reflects a favorable pseudo-free 

energy change term for base pairing at nucleotides with low SHAPE reactivities. These 

two parameters must be determined empirically. When Watts et al. analyzed the HIV-

1NL4-3 genome, m = 3.0 and b = -0.6 were the optimal parameters (172) and, in general, 

these parameters still perform well. The current, recently updated, parameters are m = 1.9 

and b = -0.7 give the highest sensitivities in a bootstrapping statistical analysis of 

multiple RNAs (C.E. Hajdin, personal communication). Changing the slope and intercept 

parameters from m = 3.0, b = -0.6 to m = 1.9, b = -0.7 results in a reduction of 34% of the 

specific base pairs that were predicted in the HIV-1NL4-3 genome, most of which are in 

weakly structured regions. 

 

8. RNA secondary structure model  

The SIVmac239 sequence (9646 nucleotides) with the addition of a poly(A) tail 

consisting of 10 adenosines was folded using the RNAstructure algorithm (114, 146). 

SHAPE reactivities were incorporated into the thermodynamic folding algorithm to 

constrain secondary structure. Due to computational restrictions in the folding algorithm 

(caused by the length of the genomes), folding was accomplished in large overlapping 

pieces consisting of at least two-thirds of the entire genome. The structure of the whole 

genome was generated by combining the separately folded pieces at identical structures. 
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Multiple analyses with varying lengths gave consistent structures. Although we are 

unable to identify pseudoknots de novo with the current algorithm, the model includes the 

pseudoknot at the 5' poly(A) stem that we predict based on low SHAPE reactivity of 

nucleotides in loop regions and by sequence alignment with HIV-1NL4-3. Recently 

updated folding parameters m = 1.9 and b = -0.7 (C.E. Hajdin, personal communication) 

were used to generate a new version of the HIV-1NL4-3 RNA structure, which was used 

for these analyses. 

 

9. Sequence alignment 

HIV-1NL4-3 and SIVmac239 sequences were aligned at the codon level using the Los 

Alamos lentivirus compendium (www.hiv.lanl.gov). Protein start and end positions, 

known RNA structures, and known protein functional regions were taken into 

consideration as well as conserved amino acids. Deletions and insertions were 

incorporated into the sequence alignment where appropriate. 

 

10. Statistical analyses 

A Matlab 7.8 (R2009a) script was used to compare the actual average absolute difference 

in SHAPE reactivity value across all aligned HIV-1NL4-3 and SIVmac239 genome 

positions. We randomized the position assignments for reactivity values in the 

SIVmac239 genome to make a distribution of average absolute differences, then repeated 

this 100,000 times to generate a random distribution curve and plotted the observed 

average on this curve. We employed a two-tailed Fishers exact test to compare the GC 
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content to AU and GU content of structures with known and unknown function in 

SIVmac239.  

 

11. RNA structure display 

The secondary structures of the RNA models were organized using xrna 

(http://rna.ucsc.edu/rnacenter/xrna). 

 

12. Grammar predictions of structure 

Structure predictions using RNA-Decoder (137) were performed as previously described 

(172) with the following modifications. The input alignment was a reduced version of the 

HIV-2 web alignment available from the Los Alamos lentivirus compendium 

(www.hiv.lanl.gov). Codon positions in overlapping regions were designated according 

to the reading frame of the first member of the following pairs: gag-pro, pol-vif, vif-vpx, 

vpr-tat1, tat1-rev1, env-tat2, env-rev2, env-nef. The alignment was scanned using 

separate phylogenetic trees for the upstream and downstream sections, which were 

generated by Tree-Puzzle6 using the GTR+γ (4) model, 10,000 puzzling steps, “accurate” 

parameter estimation, and other default settings. The tree for the first half of the genome 

was built on the third codon positions of the gag, pro, pol, and vif genes and the 5' non-

coding region, and the downstream tree was inferred from the third positions of the vpx, 

vpr, tat1, env, and nef genes and the 3' non-coding region. Trees are available from the 

authors on request. 
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CHAPTER 3 

THE EFFECT OF RNA SECONDARY STRUCTURE ON SPLICING REGULATION 
AT THE 3' SPLICE SITE SA1 AND ANALYSIS OF REGULATORY STRUCTURES 

IN HIV-1 IN VITRO mRNA TRANSCRIPTS2 
 
 
 

A. Introduction 

Lentiviruses preserve their complex transcriptome while still maintaining the size 

of their relatively small RNA genome by utilizing the host splicing machinery. The 

human immunodeficiency virus type 1 (HIV-1) RNA primary transcript contains four 

splice donor sites (5'ss, SD1-4) and eight splice acceptor sites (3'ss, SA1-7), which are 

combined to produce more than 40 mRNA species (142). Each transcript exits the 

nucleus in one of three states: unspliced, singly spliced, or multiply spliced. The fate of 

unspliced RNA transcribed from the integrated proviral DNA is either to dimerize and be 

packaged with the budding virus (73, 91, 121, 133, 140) or to be used as a template for 

Gag and Gag-Pro-Pol translation. Splicing of this viral RNA, however, results in an 

elaborate pattern of transcribed messages that allows for increased diversity of viral 

proteins (142). RNAs that are singly spliced yield the longer 4kb class of transcripts 

representing the mRNAs for the Vif, Vpr, Vpu, and Env proteins. The shorter 1.8 kb class 

of multiply spliced transcripts represent the mRNAs for the Tat, Rev, and Nef proteins 

(142).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Megan Wise contributed to the production of plasmids for use as templates for in vitro 
transcription. 
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 Viral RNA splicing is controlled to ensure that all needed RNA variants are 

generated, including a fraction that remains completely unspliced. For RNAs that are 

spliced, the major splice donor (SD1) 5'ss is used in all splicing events, and multiple 

splice acceptors are available. The tat transcript is formed when 3'ss SA3 is used. The rev 

transcript can result if one of three 3'ss (SA4a, SA4b, or SA4c) is used. When 3'ss SA5 is 

used, the nef transcript can result. Fully-spliced messages subsequently excise the intron 

between the 5'ss SD4 and the 3'ss SA7, yielding the 1.8 kb class. If 3'ss SA5 is used with 

no other downstream splicing, the result is the vpu/env transcript. The other two 

transcripts without downstream splicing are 3'ss SA1 and SA2 which are the vif and vpr 

messages, respectively (142). If any of the splice acceptors were too strong, they would 

be preferentially utilized. Instead, the HIV-1 genome contains a series of weak splice 

donors and acceptors coupled with weak branch-point sequences throughout the RNA (4, 

46, 129, 153, 157). In this way, the usage of each site is controlled to produce the proper 

amount of all the necessary transcripts.   

Along with weak sequences, the splicing machinery is further controlled by 

multiple cis regulatory elements within the sequence and structure of the RNA (Figure 

3.1) (Reviewed in (160)).  RNA structure has been implicated in regulation of splicing at 

the 5'ss SD1 whose stem loop must be kept at a certain stability for proper usage of the 

major donor site (2). Splicing of the vpr transcript occurring at 3'ss SA2 is regulated by 

an exonic splicing silencer (ESSV) downstream of SA2, which folds into a hairpin and 

binds heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in the loop region (103, 

149). The 3'ss SA3 which is used for splicing of the tat message is regulated in multiple 

ways by a long asymmetrical stem-loop including SLS3 that contains an exonic splicing 
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enhancer sequence (ESE2) which binds elements including SR protein SC35 to increase 

splicing at 3'ss SA3 (61). This splicing enhancement is counteracted by both an exonic 

splicing silencer (ESS2p) in a short stem-loop SLS2 near SA3 that controls the usage of 

the splice acceptor by binding hnRNP H, as well as the sequence ESS2 on SLS3 which 

acts by binding hnRNP A/E (3, 70, 71, 176). Regulation at SA4c/a/b and SA5 along with 

the 5'ss SD4 is accomplished by a guanosine-adenosine-rich ESE called GAR that binds 

SR proteins to upregulate splicing events in this region (20, 75). The structure around the 

GAR sequence has not yet been described as playing a regulatory role. Usage of the 3'ss 

SA7, which is necessary for removal of the intron for the tat/rev/nef mRNAs, is tightly 

regulated by RNA structures SLS1 including the ISS element and a SLS3 including the 

bipartite ESS3 element which cooperatively bind hnRNP A/B proteins to yield unspliced 

and incompletely spliced transcripts for vif, vpr, and vpu/env mRNA, while another stem 

loop (also termed SLS2) contains the Janus element ESE3 which is the initiation site for 

hnRNP A1 binding, yet also is able to bind SR proteins SF2/ASF, effectively both 

enhancing and silencing splicing at SA7 (37, 111). RNA structure has been implicated in 

either hiding or exposing various regulatory elements to enhance or seclude protein-

binding efficiency to these sequences (reviewed in (169)). In this way, RNA structure 

plays a substantial role in splicing regulation throughout the virus. 

The lentiviral Vif protein is important in the downregulation of APOBEC3-G and 

–F cellular restriction factors (78, 112, 151, 175). The transcript for Vif is a singly spliced 

product that results when the major 5'ss SD1 is joined to the 3'ss SA1, but none of the 

other possible downstream splice donors are used (SD2, SD3, or SD4) (142). Splicing 

control that reduces the production of the vif mRNA has been described wherein a 
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suboptimal donor sequence and a GGGG silencing site at the downstream 5' ss SD2 

along with upstream sequences ESEVif, ESEM1, and ESEM2 regulate transcription of 

the full vif message (48, 104, 107). The sequence at SA1, including these downstream 

elements, has been characterized as one of the strongest acceptor sequences, (76, 107). 

None of these studies, however, have investigated the structure at SA1 or its effect on 

splicing regulation. The full-length genomic HIV-1 RNA has recently been modeled 

using the selective 2’hydroxyl acylation analyzed by primer extension (SHAPE) RNA 

structural probing method (40, 45, 56, 72, 173), identifying a hairpin structure around the 

3'ss SA1 (172). The base pairs that interacted to form the stem-loop structure at the SA1 

site were 5 of only 71 conserved pairs in a SHAPE analysis of simian immunodeficiency 

virus (SIVmac239) RNA genomic structure. The conservation of structure at this site in 

an otherwise rapidly evolving genome suggests a function for this RNA stem-loop 

structure, perhaps in splicing regulation (Pollom et al., submitted). 

The availability of two full-length lentiviral genomic RNA structures makes 

identification of conserved regions possible. We tested the function of the evolutionarily 

conserved stem-loop at the 3'ss SA1 (which we term SLSA1) to determine its role in viral 

replication and splicing regulation and demonstrate that mutations to SLSA1 affect the 

fitness and splicing profile of the virus. In an effort to understand how the removal of 

various introns in the production HIV-1 mRNAs affects their structure, we used SHAPE 

to determine the RNA secondary structures of the most abundant spliced RNA variants. 

These structures have previously only been analyzed in small segments of RNA or by 

computational methods. Here, we identify the structural context of the splicing regulatory 

elements that remain present within the various forms of the HIV-1 mRNA transcripts.  
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Figure 3.1: HIV-1 splicing regulatory sequences. Sequences that have been indicated in regulation of 
splicing the HIV-1 pre-mRNA are shown as well as sites of splice acceptors (SA1-7) and donors (SD1-
4). Arrows indicate positive regulation (enhancement) toward the directed splice site and dashed lines 
indicate negative regulation (silencing) toward the directed splice site. Hash marks indicate sequences 
not shown. Numbering along the top is HIV-1NL4-3 RNA numbering. 
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B. Results 

1. The effect of the HIV-1 3'ss SA1 RNA stem loop structure on viral splicing 
efficiency 
 
 The stem-loop structure at the first 3'ss SA1 (SLSA1) has five conserved base-

pairing interactions in the full-length genomic RNAs of both HIV-1NL4-3 and SIVmac239 

(172) (Pollom et al., submitted), suggesting this structure plays an important role in viral 

replication to provide selective pressure for its maintenance. Although genomic RNA is 

packaged and dimerized, these full-length RNA structures are presumably good models 

for the unspliced RNA transcript for gag and gag-pro-pol mRNA. A small difference of 

local pairing partners in the 5' untranslated region has been described between 

packaged/dimerized and mRNA forms (100). We tested the importance of SLSA1 by 

making mutations that disrupt the structure and then observed the effect of these 

mutations on viral fitness and mRNA splicing patterns. The following considerations 

were taken into account when designing the mutations to SLSA1: i) we were careful not 

to disrupt any of the described ESE elements within the region downstream of the SA1 

site (48, 76), ii) neither of the nucleotide mutations affected the gag-pro-pol coding 

sequence, iii) both of the mutations were to alternative codons that were also found 

nearby in the sequence so as not to require any rare or non-viral codon usage. The 

resulting mutant sequence (SLSA1m) has two single nucleotide substitutions that disrupt 

the pairing interactions at SLSA1 (Figure 3.2). 

 To test the relative fitness of the mutant virus HIV-1SLSA1m to the wild-type HIV-

1NL4-3, we infected CEMx174 cells with both viruses in a coculture assay to test for 

relative fitness (171). The change in replication of both viruses was quantified by 

heteroduplex tracking assay (HTA) analysis, which separates the two viruses based on 
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sequence due to mismatched interactions with a heterologous probe (145) (Figure 3.2). 

We observe a change in the composition of virus within the culture by the third day post-

infection when the wild-type HIV-1NL4-3 starts to become more prevalent than the mutant 

HIV-1SLSA1m, indicating a greater ability of HIV-1NL4-3 to replicate in the cell culture than 

HIV-1SLSA1m (Figure 3.2). However, this viral fitness difference is modest, with HIV-

1SLSA1m continuing to replicate fairly well, but not better than, HIV-1NL4-3 in cells. 
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  Figure 3.2: Mutations to the SLSA1 stem and coculture analysis of viral fitness. (a) Schematic of 
HIV-1 pre-mRNA showing 5'ss donors (SD1-4) and 3’ss acceptors (SA1-7) (above). Sequence 
around SA1 is shown with ESE regions highlighted. Single nucleotide mutations that disrupt the 
SLSA1 stem, producing SLSA1m, are indicated (A) and (U) while the sequence that remains the 
same is indicated by dashed lines. The sequence of the probe is indicated, where mutations and 
deletions are labeled (T), (A) and Δ, respectively (below). (b) Structures for the SLSA1 stem in HIV-
1NL4-3 (left) and the SLSA1m stem in HIV-1SLSA1m (right) as predicted using the RNAStructure (146) 
folding algorithm. The 3'ss SA1 is labeled and mutated nucleotides are boxed. (c) Heteroduplex 
tracking assay analysis of coculture with HIV-1NL4-3 (black squares) and HIV-1SLSA1 (gray circles). 
The cDNA products are separated based on sequence. Graph shows percent abundance of each virus 
at 1-day time points.  
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 To explore possible causes of the slight decrease in viral replication between 

HIV-1SLSA1m compared to HIV-1NL4-3, we passaged both viruses in separate cell cultures 

for several days and examined the splicing profile of each viral mRNA pool. The mRNA 

was amplified with a forward primer that encompassed a unique NarI site at the 5' end 

and a reverse primer that was placed either after the 5'ss SD1 or the 3'ss SA7 to include 

either the 4 kb class or 1.8 kb class of spliced mRNAs, respectively (Figure 3.3). Each 

pool of cDNA products were cleaved with NarI and radiolabeled with 33P-αdCTP, 

allowing each cDNA to be labeled only once at the 5' end and thus give uniform intensity 

of radioactive signal. Separating these products on a polyacrylamide gel gave a banding 

profile for each of three HIV-1NL4-3 cultures and three HIV-1SLSA1m cultures (Figure 3.3). 

The cultures infected with HIV-1SLSA1m have mRNA band intensities that are increased 

(Figure 3.3, right-directed arrows) or decreased (Figure 3.3, left-directed arrows) 

compared to the cultures infected with wild-type HIV-1NL4-3.  

  



	   79	  

  

Figure 3.3: Profiles of HIV-1NL4-3 and HIV-1SLSA1m transcripts. (a) Diagram displaying reading 
frames (open boxes) of the HIV-1 genome. Solid lines indicate different classes of mRNA including 
unspliced, 4 kb, and 1.8 kb, with their corresponding genes labeled on the right. Gray boxes represent 
exons 2 (between SA1 to SD2) and 3 (between SA2 and SD3). Splice donors (SD1-4) and acceptors 
(SA1-7) are labeled on the top of the unspliced length of RNA The sites of NarI cleavage and primer-
binding for the forward and reverse primers used to create the splicing profile are shown on the 
unspliced RNA. (b) Splicing profiles for three separate cultures of HIV-1NL4-3 (black squares) and HIV-
1SLSA1m (gray circles) from primers that amplified the 4kb class (top) or 1.8 kb class (bottom) of 
mRNAs are shown. The cDNA was separated on a urea-containing polyacrylamide gel. The mRNA 
lengths are labeled according to common nomenclature (142). Arrows point to increased average 
abundance of bands. (c) Graphs of percent abundance of each variant of mRNA in either HIV-1NL4-3 
(black squares) and HIV-1SLSA1m (gray circles) that were visualized for the 4 kb class (above) and 1.8 kb 
class (below). 
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The splicing events that are augmented between the two viruses follow a pattern 

of fewer longer transcripts and, in general increased shorter transcripts in the HIV-

1SLSA1m cultures than in the HIV-1NL4-3 cultures (with the exception of the Env 1 variant). 

Longer transcripts include those which utilize 3'ss SA1, SA2, and SA3 and the shorter 

ones skip exons 2 and 3 and splice directly from 5'ss SD1 to SA4c/a/b or SA5. 

Specifically, the abundance of tat mRNA in the HIV-1SLSA1m cultures decreases greatly 

compared to the amount of tat mRNA in HIV-1NL4-3 cultures. However, because SD1 can 

be spliced to either SA1 or SA2 followed by a splicing event between downstream donors 

and SA3 and still produce tat mRNA, it is not clear that the one specific splice acceptor 

or donor is preferentially used to any exact amount than another. What can be concluded, 

however, is that this alternate splicing profile produced by disruption of HIV-1SLSA1 RNA 

structure leads to a shift to the balance of necessary spliced mRNA products, which is a 

possible reason that the fitness of the mutant virus decreases compared to that of wild-

type. 

  

2. Similar features of RNA secondary structure in spliced mRNA variants 

 Previously, investigations toward understanding how RNA structure affects HIV-

1 splicing regulation have been performed with small lengths of RNA, but as evidenced 

by our SLSA1 analysis, many features of secondary structure can be identified when the 

full-length of the RNA is analyzed. Therefore, we sought to map the full-length spliced 

mRNA structures to reveal similarities and differences between them. We made in vitro 

RNA transcripts of the reported most abundant spliced variants (142). Each variant 

transcript was constructed to reflect a splicing event between the major donor, 5'ss SD1, 
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and the 3'ss directly upstream of the given protein initiation codon (with the exception of 

the rev construct, which utilized the 3'ss SA4a, which is used slightly more frequently 

than the downstream 3'ss SA4b (142)). Although in cells, the multiply spliced RNA 

variants could potentially contain exons formed by splicing with SA1, SA2, SD2 and/or 

SD3 (Figure 3.3, gray exons), the main variant of each excludes these additional exons. 

The constructs of each multiply spliced variant also reflected a splicing event from 5'ss 

SD4 to 3'ss SD7, eliminating the large intron containing the Rev responsive element 

(RRE) and placing these transcripts in the 1.8 kb class of mRNA variants. The singly-

spliced variants did not include this splicing event, giving them a longer sequence and 

placing them in the 4 kb class of mRNA variants (142). Throughout this section, we 

compare the SHAPE-derived structures of the HIV-1 mRNA variants to the SHAPE-

derived HIV-1 full-length genomic RNA (172) with box-plot normalized data and folding 

parameters m = 1.9 b = -0.7 (Pollom et al., submitted). The mRNA transcripts included a 

tail of 20 adenosine nucleotides, and this tail was also used to purify the RNAs from the 

in vitro transcription reaction via an oligo dT affinity column. The final step in the 

purification method requires heating the RNA to 75°C. The RNA was allowed to refold 

at 37°C with no further denaturating chemicals or heat before the addition of 1M7.  

Certain portions of the structure are maintained both between the different 

mRNAs and with the full length RNA. Much of the structure 3' of SA7 in the 1.8 kb class 

and 3' of SD4 of the 4 kb class is very similar. This includes an almost identical structure 

from nucleotide 8578 to the 3' end, which is likely due to the shared sequence in all of the 

variants after the common splicing event between SD4 and SA7 that occurs in the 1.8 kb 

class of mRNA. Similarly, the functional structures in the 5' region of all of these 
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mRNAs remain intact. Though the spliced variants lose major lengths of intronic 

sequences right after SD1, they keep some of the regulatory structures that are found in 

the 5' region of full-length genomic RNA. These regulatory regions contain stem-loops at 

the transacting responsive site (TAR), 5' poly (A) site, primer-binding site (PBS), and the 

dimer initiation site (DIS) and splice donor site (SD) hairpins (10, 36, 62, 131, 172, 173). 

The pairing interactions at the TAR, 5' poly (A), PBS, and DIS hairpins are mostly 

consistent with those seen in the full-length structure, with the exception of the DIS stem 

which forms long-distance pairing interactions with downstream sequence in nef mRNA 

(Figure 3.4a). The main changes that occur in the 5' region are to the loop of the PBS 

which, without a tRNA primer bound, forms different local interactions and to the SD 

stem, which loses half of its sequence after splicing. Slight changes are seen in the 5' 

poly(A) stem within the loop regions. The pairing remains constant throughout most of 

the 5' poly(A) stem, but the nucleotides that interact in a pseudoknot structure with the 

sequence in the coding region (134) are unreactive to the SHAPE reagent in the full-

length RNA but more reactive in the spliced mRNA, with the exception of vpu/env 

mRNA whose sequence in this region remains unreactive. The interacting sequence was 

in the Gag-coding sequence, which is on the excised intron in spliced transcripts. Its 

removal leaves the 5' poly(A) loop unpaired and reactive. The loop region of the DIS 

stem maintains low reactivity even in the spliced structures, which implies that these 

transcripts are interacting with each other and is consistent with the observation by Sinck 

et al that the HIV-1 mRNA forms homo- and heterodimers with each other and with the 

genomic RNA in vitro (154). 
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RNA structure has been implied in splicing regulation with the function of 

bringing donors and acceptors closer together (24). We observe a possible example of 

this in the full-length genomic RNA and vif transcript with a large structured region 

between SD2 and SA2. Although the exact pairing interactions are not kept constant 

between the two configurations, the pairs at the base of the large structures are the same 

(Figure 3.4c, gray box). We hypothesize that this could be a previously undescribed 

splicing regulatory mechanism for HIV-1 and suggest that future studies, which disrupt 

the maintained pairing, would help confirm this supposition. 

Watts et al. described a conserved stem at the signal peptide (SP) coding region of 

the Env protein and hypothesized a functional role for this region in stalling the 

translating ribosome, thus facilitating interaction of the Env SP to the signal recognition 

particle (SRP) and directing the translation complex to the ribosome (158, 172). Because 

this event would occur during translation from the vpu/env mRNA template, this 

hypothesis would only prevail if this same structure were present in the spliced transcript 

for the vpu/env gene. Indeed, the structure of vpu/env mRNA maintains this stem around 

the SP site that was previously described. The presence of this stem in the vpu/env 

mRNA gives credibility to the stalling ribosome hypothesis and would be a suitable 

template for further experiments to confirm this hypothesis involving footprinting 

analysis to detect paused ribosomes on the message. 

 Although many differences occur between the genomic and messenger RNA 

structures, many of these are simply due to the overall metastable state of the RNA 

(Pollom et al., submitted). Notable differences seen between the genomic and transcript 

RNA mainly occur around sites where splicing has taken place. All of the spliced 
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messages depend on usage of 5'ss SD1, which occurs in the genomic RNA as the loop of 

a stem. When this donor is utilized, the structure at that stem is disrupted. Similarly, the 

splice acceptors SA1, SA3, and SA4a are contained in individual stems (SA2 and SA5 

are in single stranded regions between distinctive structures) (Figure 3.4 – genomic). The 

result of splicing these sites is a change in the pairing interactions but a maintenance of 

base-pair interactions in the acceptor sites that were previously in stems and single-

stranded regions in the acceptor sites that were previously single-stranded (Figure 3.4). 

This results in maintenance of many local interactions including structures that constrain 

or expose SRE sequences. This idea is particularly visible in the structure after the 

SD4/SA7 junction in the 1.8 kb class of mRNAs. The pairing or single-stranded 

characteristics of the regulatory sequences in the unspliced or incompletely spliced RNAs 

are maintained in this region regardless of the SD4-SA7 spicing event (Figure 3.4g). 
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Primer	  Name	   Primer	  Sequence	  

	   	  HIV16	   CCCTGACCCAAATGCCAGTCTC 
HIV17	   GCTCCCTCTGTGGCCCTTGGTC 
HIV18	   ATGAGCTCTTCGTCGCTGTCTCC 
HIV19	   CCCCATTTCCACCCCCATCTCC 
HIV20	   GTGGGGTTAATTTTACACATGG 
HIV21	   GAATCGCAAAACCAGCCGGGGC 
HIV22	   CATTTTGCTCTACTAATGTTAC 
HIV23	   CATCTCTTGTTAATAGCAGCCC 
HIV24	   TCTGGCCTGTACCGTCAGCGTC 
HIV25	   CTCTGTCCCACTCCATCCAGGTC 
HIV26	   CCTACCAAGCCTCCTACTATCA 
HIV27	   CTATTCCTTCGGGCCTGTCGG 
HIV28	   GCAAAATCCTTTCCAAGCCCTG 
HIV29	   GTAGCCTTGTGTGTGGTAGATCC 
HIV30	   GTACAGGCAAAAAGCAGCTGC 
HIV31	   TTTTTTTTTTTTTTTTTTTTTTGAAG 

 
Table 3.1: Sequences of primers used for SHAPE analysis of SIVmac239. Primers were designed and 
used for SHAPE analysis of the 3' end of the HIV-1NL4-3 genome (172) with the exception of HIV18, which 
was modified to accommodate splicing events.  
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  Figure 3.4: Structures of the most abundant variants of HIV-1 spliced messenger RNAs. 
Structures for the unspliced genomic, 4 kb class (vif, vpr, and vpu/env) mRNA, and 1.8 kb class (tat, 
rev, and nef) mRNA are shown. Nucleotides are displayed as dots and colored based on their SHAPE 
reactivity (scale shown) (SHAPE Primer sequences in Table 3.1). RNA is numbered according to full-
length NL4-3 RNA sequence numbering. Hashed lines indicate regions of sequence that are not 
included in the figure. SLSA1 and previously described stem-loop structures are circled and labeled 
(purple). Regulatory structures in the 5' UTR are labeled. Start codons for the given transcript are 
labeled (TAR: trans-acting response element, poly(A): polyadenylation signal stem, PBS: primer 
binding site, DIS: dimerization initiation site). Splice donors, acceptors, splicing enhancers (green), and 
splicing silencers (blue) that appear in each structure are labeled (as depicted in top graphic). (a) 5' 
untranslated region, including SD1; (b) splice sites SA1 and SD2 with regulatory regions ESEVif, 
ESEM1 and ESEM2; (c) structure between SD2 and SA2 maintained between genomic RNA and vif 
mRNA, gray box indicates maintained base-pairs at the base of the structure; (d) splice sites SA2 and 
SD3 with regulatory sequence ESSV; (e) splice site SA3 with regulatory regions ESS2p, ESE2, and 
ESS2; (f) splice sites SA4c/a/b, SA5, and SD4 with regulatory region GAR; (g) splice site SA7 with 
regulatory regions ISS, ESE3(GAA)3, and ESS3(a/b). Figure continues on next page. 
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3. Analysis of cis regulatory structures in spliced mRNA 

Regulators of splicing must function in both the full-length transcript and in the 

incompletely spliced transcripts. Thus we compared the structural context of these 

elements in the unspliced and partially spliced RNAs and also observed changes to these 

regions in the completely spliced 1.8 kb class of RNAs. A summary of whether the 

majority of the nucleotides in the regulatory sequences form base paired or single 

stranded structures in these RNAs is given in Table 3.2. Overall, regulators that govern 

SA7 and SA2 along with ESEVif and ESEM1 which enhance splicing at SA1 and SD2 

remain consistently either paired or single stranded in all the transcripts, but the SREs 

that regulate SA3 along with ESEM2 and the GGGG silencer element have altered 

structural conformation between genomic and messenger RNA (Table 3.2). The changed 

structures indicate a shift in the ability for the cellular proteins to recognize many of these 

regions after the initial SD1-3'ss event takes place. A consideration of each site follows. 
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	  	   genomic	   vif	   vpr	  
vpu/	  
env	   tat	   rev	   nef	  

ESEVif	   ss	   ss	   -‐	   -‐	   -‐	   -‐	   -‐	  
ESEM1	   ss	   ss	   -‐	   -‐	   -‐	   -‐	   -‐	  
ESEM2	   bp	   bp	   -‐	   -‐	   -‐	   -‐	   -‐	  
GGGG	   ss	   bp*	   -‐	   -‐	   -‐	   -‐	   -‐	  
ESSV	   bp	   bp	   bp	   -‐	   -‐	   -‐	   -‐	  
ESS2p	   bp	   ss*	   ss*	   -‐	   -‐	   -‐	   -‐	  
ESE2	   ss	   bp*	   bp*	   -‐	   ss	   -‐	   -‐	  
ESS2	   ss	   bp*	   bp*	   -‐	   bp*	   -‐	   -‐	  
ESE(GAR)	   bp	   bp	   bp	   bp	   bp	   bp	   bp	  
ISS	   bp	   bp	   bp	   bp	   -‐	   -‐	   -‐	  
ESE3(GAA)3	   ss	   ss	   ss	   ss	   ss	   ss	   ss	  
ESS3a	   bp	   bp	   bp	   bp	   bp	   bp	   bp	  
ESS3b	   ss	   ss	   ss	   ss	   ss	   ss	   ss	  

 

Table 3.2: Comparison of SRE sequences in genomic and messenger RNA structures. SRE sequences 
(rows) are labeled as indicated in the text. RNA variants (columns) are labeled. Abbreviations ss and bp 
indicate whether most of the sequence is single stranded or base paired, respectively. Changes in base-
pairing or single-strandedness compared to the genomic structure are indicated with an asterisk (*). Gray 
rows signify enhancer elements and white rows signify silencer elements. 
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Splicing events at 3'ss SA1 and 5'ss SD2 are influenced by multiple sequences in 

the exon between these sites which share similar structural motifs in both the genomic 

RNA and vif mRNA. Three enhancer elements, ESEVif, ESEM1, and ESEM2, promote 

splicing at SD2, and ESEVif also promotes SA1 recognition (48, 76). Even though the 

intron between SD1 and SA1 is excluded in the vif mRNA, dramatically changing the 

sequence directly before SA1, a common theme is still maintained between the enhancer 

elements after SA1: each enhancer sequence is mostly located within a single-stranded 

loop except ESEM2 of genomic RNA (Figure 3.4b). ESEVif is found in the loop region 

of SLSA1 in the genomic structure and the loop region of an analogous stem in vif 

mRNA. ESEM1 is located in a bulge of SLSA1 in the full-length structure and in the 

loop of a small stem in the vif mRNA. ESEM2 has the common theme of being 

incorporated between two stems in both structures, though it is contained within more 

pairs in vif mRNA. The role of these enhancer sequences is to bind either SR proteins 

SRp75 (ESEVif) (48) or SF2/ASF (ESEM1 and ESEM2) (76), so their single-stranded 

sequences might improve their exposure to these splice-promoting proteins. After the first 

splicing event between SD1 and SA1, the GGGG silencer is more secluded in base pairs. 

This could disallow the silencer element to be recognized, upregulating use of SD2 when 

SA1 is used. It is of note that ESEVif and ESEM1 are both incorporated into SLSA1, 

both of which occur directly upstream of the conserved pairing interaction between HIV-

1NL4-3 and SIVmac239 that was described (Pollom et al., submitted). This pairing 

interaction could potentially perform the function of maintaining these sequences in their 

respective structures.  
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 A sequence downstream of the 3'ss SA2 has been previously reported to act as an 

exonic splicing silencer (ESSV) (13, 103). We mapped this 16 nt sequence onto the full-

length genomic RNA and the vif and vpr mRNA structures to find an exactly identical 

stem-loop structure shared by all three forms of the RNA (Figure 3.4d). The local 

sequence in this region is not altered in vpr mRNA since it is far enough downstream of 

SA2, making any structural rearrangement less likely. The pairing interactions at this 

region have been described (149), but the effect this structure has on the regulatory 

sequence is yet unknown.  

Expression of tat mRNA has been described as being regulated by ESS2p at a 

small stem-loop structure followed by ESE2 and ESS2 elements on a long irregular stem 

further downstream of 5'ss SA3 (3, 61, 71, 176), but we have found slightly divergent 

structures in our analysis. We examined the mRNA variants that would contain the 

sequences necessary to form these previously predicted structures: genomic, vif, vpr, and 

tat mRNA. The genomic RNA structure includes the short stem containing ESS2p. 

However, although both vif and vpr mRNA have structures similar to each other in this 

region, the long irregular stems formed by these singly spliced mRNAs are not the same 

as the one that has been previously described (Figure 3.4e). The ESE2 and ESS2 

enhancer sites in the genomic RNA are both single-stranded, allowing for use of either, 

depending on levels of SR or hnRNP proteins in the cell. After splicing at SA1 or SA2, 

the silencers become single-stranded while the enhancers are secluded in pairing 

interactions (Figure 3.4e). This may allow for binding of hnRNP factors, but not the 

enhancing SR proteins, thus limiting the amount of tat transcript and subsequent Tat 

protein production. 
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The ESE GAR sequence that positively influences splicing at all of the 

surrounding splice sites, SA4c/a/b, SA5, and SD4 is mostly paired in all of the structures 

(Figure 3.4f). This sequence works on the acceptors before it and the 5'ss SD4. No 

structure has been attributed to regulation for this region, but we observe pairing 

interactions at many of the nucleotides involved in the enhancer sequence in all of the 

transcripts and the genomic RNA. Utilization of the upstream acceptors SA4c/a/b and 

SA5 does not differentially affect the use of SD4 given that any of these acceptors can be 

used without the splicing event occurring from SD4 to SA7 (142). Therefore, the 

regulation from the GAR sequence to these splice sites is not necessarily linked. 

Sequence could be secluded in this structure to minimize the efficiency of the enhancer 

toward any of its surrounding splice sites.  

Each of the singly spliced mRNA structures as well as the full-length genomic 

RNA structure contain the same motif around the region of the 5'ss SA7, but slightly 

different interactions than what has been previously described. At this site, regulation 

elements termed ISS and ESS3 perform the function of silencing the splicing event 

between SD4 and SA7 by binding hnRNP A1 (5, 37, 111). Regulatory element 

ESE3/(GAA)3 both silences and enhances this splicing event (37, 111). Three stem-loop 

structures at this region have been previously mapped using chemical probing analysis 

(37), and recently one of the stem structures, SLS2, was solved by NMR (96). Each of 

these methods, however, has been performed using small isolated lengths of RNA exactly 

surrounding the site of interest. Our analysis reveals slightly different structures in this 

region due to the availability of interactions at other sequences that are outside the 

previously examined range (Figure 3.4g). The singly-spliced mRNA structures form very 
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similar interactions to those previously described, but the full-length genomic RNA 

makes slightly different interactions. All share the proposed structure at SLS1 around the 

ISS sites, and SLS3 which includes the ESS3 sites (Figure 3.4g). However, the singly-

spliced mRNA forms a long stem structure at the ESE2 site which is similar but not 

identical to the SLS2 stem described (96) while the full-length genomic RNA and nef 

mRNA do not form a stem-loop at this site, but a long helix leading to SLS3 instead 

(Figure 3.4g). This helix does contain an important element, however: the bulge in the 

helix is the same as that containing the GAA repeats implicated in ESE2. The multiply-

spliced variants also maintain both the SLS3 bulges as well as an intact SL3 with the 

ESS3 elements. This indicates that the pairing interactions of the shorter stems should be 

preserved for function, but the long stem structure may not be as important in regulation 

as the maintenance of a single-stranded loop at the ESE3/(GAA)3 site. 

To further characterize how RNA structure influences regulation of pre-mRNA 

splicing in lentiviruses, we compared the structures of HIV-1 genomic and messenger 

RNA to the structure of SIVmac239 genomic RNA (Pollom et al., submitted). Most of 

the structures around the splice sites in SIVmac239 differed from those of HIV-1. 

Sequence analysis has shown that most of the SRE sequences in different clades of HIV-

1 are strongly conserved (reviewed in (160)), so we examined the sequence and structure 

of SIVmac239 to find that only the SRE sequences and the pairing patterns of these 

sequences around SA1 are conserved. These discrepancies between SIVmac239 and 

HIV-1 could be a result of the different protein-coding regions in the viruses. SIVmac239 

RNA contains the vpx gene (whose 3'ss directly upstream is SIV’s second splice 

acceptor) and lacks the vpu gene. The viruses could be therefore differentially regulated 
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to account for these discrepancies. The two splicing events that are more similar between 

the viruses are the event that takes place from SD1 to SA1 to produce vif mRNA (as we 

have investigated above) and the event that excludes the RRE-containing intron. 

Structures in SIVmac239 at both of these regions not only have low median SHAPE 

reactivity, but are also high in guanosine content compared to adenosine content over a 

75 nucleotide window (Pollom et al., submitted). Although the pairing partners are not 

conserved in the SIVmac239 3'ss SA8 (whose equivalent is SA7 in HIV-1), the strong 

pairing interactions indicated by SHAPE reactivity and G-content suggest that the 

structure around this splice site performs a splicing regulatory function similar to that of 

HIV-1. 

 

C. Discussion 

1. Altering the structure at SLSA1 has a moderate effect on viral replication and 
influences the splicing profile of HIV-1 
 

The effect of mutating the stem-loop structure at 5'ss SA1, which we have termed 

SLSA1, is not a drastic decrease in viral replication. Instead, the mutation causes a 

moderate change in the fitness of the virus due to an alteration in the pattern of mRNA 

splicing. The pattern, though different from the wild-type splicing pattern, still produces 

the necessary messages to maintain replication but at disparate levels from that of wild-

type HIV-1NL3-4. This is perhaps because all of the splicing factors work in concert to 

effect viral splicing. Changing one of these factors might force the others to silence or 

enhance splicing at a different level to keep the balance needed for every spliced message 

to be transcribed. Furthermore, with only two mutations, the SLSA1 may maintain some 

of its stability, but disrupting the stem further by modulating more of the sequence would 
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also disrupt known splicing regulatory factors contained therein. The mutations that were 

made in this study would have only disrupted the stem without changing the amino acid 

sequence or using any rare codons, making it possible for us to conclude that the SLSA1 

structure plays a role in regulating alternative splicing of HIV-1. The pairing partners that 

are conserved between HIV-1NL4-3 and SIVmac239 include the nucleotides involved in 

the polypyrimidine tract of SLSA1. We suggest that SLSA1 performs the function of 

secluding the polypyrimidine tract of SA1 from the spliceosomal factors that recognize 

this sequence.  

 

2. Analysis of regulatory structures that are maintained in spliced mRNA 

 Despite excision of the intron after SD1 to the given splice acceptor in all of the 

mRNA products, the spliced mRNA variants keep the functional structures at the 5' UTR 

that are intrinsic in full-length genomic RNA. The TAR structure performs the same 

function of transcription initiation in genomic mRNA as it does in full-length RNA, but 

the functions of the PBS and DIS stems seem unnecessary in the spliced variants. The 

presence of these stems could simply be a remnant of their strength and stability, 

implying that these local structures are necessary to the virus and even large sequence 

omissions or changes do not have a deleterious effect on them. 

 Many of the elements implicated in HIV-1 mRNA splicing regulation have been 

described as sequences or small independent structures. However, mapping these 

sequences onto the SHAPE-derived mRNA structures and comparing how they change 

based on splicing events can give evidence of importance in different stages during 

splicing. Some of these structures have remained intact while others vary based on 



	   96	  

changes in structure due to different local sequences. Furthermore, we observe structures 

that have been yet undefined at regulatory sequences ESEVif, ESEM1, and GAR.  

 Although the splicing events from SD1 to the given 3'ss and between SD4 to SA7 

have already occurred in the fully spliced variants, they still maintain many of the 

splicing silencer and enhancer features of the incompletely spliced structures. This is 

peculiar due to the assumption that these structures would act similarly in all of the 

transcripts, limiting or enhancing splicing identically when the structures are the same. 

However, the presence of these structures strengthens the idea that HIV-1 RNA splicing 

is an act of balance. The silencing elements will potentially be impeded by enhancers, 

and vice versa. The regulatory structures we observe are typically maintained in small 

hairpins. Even though HIV-1 RNA folding has been hypothesized to occur post-

transcriptionally (177), short-range structures would likely form first and become stable 

before long-range structures had a chance to interact both in cells and in vitro. Therefore, 

these small hairpins would only depend on the local sequence around them. Furthermore, 

these mRNA structures were analyzed in the absence of RNA binding proteins. Such 

splicing factors could act to strengthen or weaken the given structures, forcing the 

regulatory sequences into different conformations. The virus relies on the equilibrium of 

these forces to produce the adequate heterogeneous mixture of all the diverse mRNA 

variants. We conclude that many of the regulatory elements essential for this transcript 

diversity are impervious to the sequence alteration that follows viral mRNA splicing. 

Structures at the regulatory sequences around SA7 are similar to what has been 

previously shown, but the exact pairing interactions are different. These previous studies 

used shorter lengths of RNA, which may not have been sufficient to resolve the other 
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local and long-range interactions that are occurring. Although the structure is rearranged, 

the described necessary loop and paired regions remain the same. These are the binding 

sites for hnRNP A1, particularly the loop region of ESE3(GAA)3, which is the initiation 

site for hnRNP A1 binding (37, 111). After this initial cellular protein binds, the 

surrounding structures may be effected and change to better resemble the previously 

published RNA structures (5, 37, 111).  

The regulatory structure SLSA1 that we describe here is not the only regulator of 

splicing at the 5'ss SA1. The other sequences found around SA1 that bind to regulatory 

SR proteins include ESEVif, ESEM1, and ESEM2 (48, 76). We found all three of these 

sequences to be in partially single-stranded regions in both full-length genomic RNA and 

vif mRNA SHAPE-derived structures, even though the exact pairing partners for the 

surrounding base-paired interactions are different due to the altered sequence brought 

about by SD1-SA1 splicing. This suggests that these regions are not only available for 

protein binding, but their maintenance in both RNAs implies that they are used in 

regulating splicing events regardless of whether 3'ss SA1 is used or not. This corresponds 

to the observation that ESEM1 and ESEM2 have been implicated in regulation of 3'ss 

SD2 usage, but are not responsible for diminishing the amounts of singly-spliced vif 

mRNA (76). Therefore, having the same structural motif as in full-length genomic RNA 

implies that their function is the same for both. However, the change of the silencer 

GGGG sequence from being single stranded in the genomic structure to being paired in 

the vif mRNA structure indicates a possible lowered recognition of this region, 

potentially decreasing its silencing ability toward SD2 after the first splicing event. 
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Given that mutations within the nine nucleotides upstream of the necessary ESSV 

sequence did not affect the silencing function of that region (103), even though these 

account for the 5' side of the observed stem, perhaps the sequence is more important than 

the structure for exonic silencing. However, the maintenance of the exact pairing partners 

in this stem within the genomic RNA and in vif and vpr transcripts strongly suggests a 

function for this structure. Perhaps it contains some other splicing enhancer in its vicinity 

that the vpr transcript requires to cooperatively counteract the silencing function of the 

sequence. 

The described stem structures around SA3 contain silencing elements ESS2p in 

SLS2 and ESS2 in SLS3 that bind hnRNP H and hnRNP A/E, respectively, and function 

to counteract the enhancing ability of ESE2 in SLS3 which binds SC35 (3, 61, 71, 176). 

Although none of the spliced messages maintain SLS2, the longer SLS3 structure is 

present in tat mRNA while vif and vpr only share the small stem loop that is formed at 

the end. The vif and vpr mRNA contain a stem-loop structure upstream of ESS2 which 

forces ESE2 into another stem while ESS2p is contained within a single-stranded region. 

We propose that this structural rearrangement is another method of regulating the 

production of Tat. If either of the first two splice acceptors are used, the silencers around 

SA3 become more accessible to regulatory proteins while the enhancer sequence is 

secluded, disallowing further splicing from SD2 or SD3 to SA3. 

The newly discovered structure at the first 3'ss SA1, termed SLSA1, seems to 

play a role in HIV-1 pre-mRNA splicing regulation. This is just a single part in the 

complex coordinated splicing regulation scheme that is necessary to produce the adequate 

levels and variety of the HIV-1 transcriptome. The full-length mRNA structural models 
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presented here give a wide view of the impact of structural maintenance or change based 

on intron excision and provide evidence that these structural motifs are necessary for 

splicing regulation and essential for proper HIV-1 replication. 

 

D. Materials and Methods 

1. Cell lines  

CEMx174 and 293T cell lines were obtained from the National Institutes of Health ADS 

Research and Reference Reagent Program. CEMx174 cells were sustained in RPMI 1640 

medium with 10% fetal calf serum and penicillin-streptomycin. 293T cells were 

maintained in Dulbecco’s modified Eagle medium with 10% fetal calf serum and 

penicillin-streptomycin.  

 

2. Site-directed mutagenesis 

The viral plasmid pNL4-3 was acquired from the National Institutes of Health ADS 

Research and Reference Reagent Program. For site-directed mutagenesis of pNL4-3, 

fragments digested with PflMI and AgeI (New England Biolabs) were inserted into 

vector pT7Blue (Novagen). Mutagenesis primers 5'-

GAGATCCAGTATGGAAAGGTCCAGCAAAGCTCCTC-3' and 5'-

GCTTTGCTGGACCTTTCCATACTGGATCTCTGCTG-3' were used in accordance 

with the previously described mutagenesis protocol (89). The resulting plasmid and 

pNL4-3 were then digested with PflMI and AgeI (New England Biolabs) and ligated with 

T4 DNA Ligase (New England Biolabs) to create the plasmid pSLSA1m, which was 

sequenced to confirm the presence of the given mutation. 
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3. Virus production 

A total of 2 µg of pSLSA1m mutant or wild-type viral plasmid pNL4-3 and was used to 

produce mutant and wild-type viruses by transfection into 3x105 293T cells in a volume 

of 2 ml DMEM following the FuGENE (Promega) protocol. After 48 hrs, supernatant 

from the cells was centrifuged, transferred to 1 ml aliquots, then stored at -80 °C. One 

aliquot per virus was used in a viral infectivity assay (82) to determine infectious units 

per ml of supernatant. 

 

4. Isolation of viral mRNA from cells. 

To obtain viral mRNA, 5 x 105 cells were infected with 0.3 ml virus (either wild-type or 

mutant) supernatant in a volume of 0.5 ml for 2 hrs at 37 °C before being brought to a 

final volume of 10 ml and incubated at 37 °C for four days. Cells were centrifuged and 

supernatant was removed. The cell pellet was homogenized through a QiaShredder 

column (Qiagen) and total mRNA was purified by the RNeasy Mini Prep kit (Qiagen) 

according to the manufacturer’s protocol. 

 

5. Viral mRNA profile 

Using viral mRNA isolated from three flasks of cells infected with HIV-1NL4-3 and three 

flasks of cells infected with HIV-1SLSA1m, we digested each sample with RQ1 DNase 

(Promega) for 2 hrs at 37 °C and purified them again using the same RNeasy Mini Prep 

kit (Qiagen). We then performed One-Step RT-PCR (Qiagen) following the 

manufacturer’s protocol and using primers 5'-
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AGTCAGTGTGGAAAATCTCTAGCAGTGG-3' and either 5'-

CCGCAGATCGTCCCAGATAAG-3' (1.8 kb class) or 5'-

CTATGATTACTATGGACCACAC-3' (4kb class) in a volume of 25 µl. Each was then 

digested at a unique restriction site with NarI (New England Biolabs) for 2 hr at 37 °C 

and labeled with 0.78 µCi 33P-αdCTP (Perkin-Elmer) using Klenow fragment (New 

England Biolabs). Each was then purified through a PCR Purification column (Qiagen) 

and eluted with 30 µl elution buffer (Qiagen). A sample of 10 µl of each was mixed with 

10 µl 90% formamide in 1xTBE and denatured by boiling for 2 min. Samples were run 

on a 7M Urea gel with 6% polyacrylamide. 

 

6. Virus coculture 

The HIV-1SLSA1m mutant virus and HIV-1NL4-3 wild-type virus dually infected CEMx174 

cells in a coculture-growth competition assay as described in (171) to measure relative 

fitness. Briefly, the two viruses were used to infect 3 x 106 CEMx174 cells in a ratio of 

3:1 with 600 infectious units of the mutant virus and 200 infectious units of the wild-type. 

Infected cells, in a volume of 0.5 ml, were incubated at 37 °C before being washed with 1 

ml 1x PBS, centrifuged, resuspended in 0.5 ml 1x trypsin (Sigma), incubated at 37 °C for 

5 min, and centrifuged again. The cell-virus pellet was then resuspended in 10 ml 

medium. Virus supernatant samples were taken every day and the cells were resuspended 

in fresh medium. RNA extraction and PCR amplification was done as described (145). 
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7. HTA 

Heteroduplex tracking assay (HTA) was performed to assess the relative ratio of HIV-

1SLSA1m mutant virus to HIV-1NL4-3 wild-type as described (145) with a modification of 

being labeled with 33P-αdCTP (Perkin-Elmer) after cleavage with SpeI (New England 

Biolabs). The probe was designed to separate the two virus cDNA amplicons based on 

sequence at the site of mutation, and the sequence difference is shown in Figure 3.2a. 

Hybridized heteroduplex products were run on a 6% polyacrylamide gel.  

 

8. Transcription template plasmid construction 

To create a template for transcription, we amplified the 5'R sequence until the 5'ss SD1 

by PCR of plasmid pNL4-3 using oligonucleotides 5'-

AATAGCATGCGGTCTCTCTGGTTAGACCAGATCTGAGCC-3' and 5'-

AATAATCTAGACTTTCAAGTCCCTGTTCGGGCGCCACTGCT-3' and the sequence 

from 3'ss SA7 to the 3'Repeat region including a 20-adenosine tail and AatII cleavage site 

by PCR amplification of plasmid pNL4-3 with oligonucleotides 5'- 

AATATCTAGAGTGCAGGGGAAAGAATAGTAGACATAATAG-3' and 5'- 

GACGTCTTTTTTTTTTTTTTTTTTTTGAAGCACTCAAGGCAAGCTTTATTGAGG

C-3'. The cDNA products were ligated separately into pT7Blue (Novagen) using T4 

Ligase (New England Biolabs) to create pExVec. Subsequently, cDNA products for 

mRNA variants were produced by RT-PCR amplifying viral mRNA previously isolated 

from cells with the following primers: 5'-

GAAAATCTCTAGCAGTGGCGCCCGAACAGG-3' and either 5'-

CTCTTTTTCCTCCATTCTATGGAGACTCC-3' (SD1-SA1), 5'-
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CGAGTAACGCCTATTCTGCTATGTCGAC-3' (SD1-SA2), 5'-

CCAAATTGTTCTCTTAATTTGCTAGCTATC-3' (SD1-SA5), or 5'-

GATCGTCCCAGATAAGTGCTAAGGATCC-3' (SD1-SA3/SA4a/SA5 and SD4-SA7) 

using the One-Step RT-PCR Kit (Qiagen) following the manufacturer’s protocol. The 

resulting cDNA products and pExVec were digested with restriction enzymes (New 

England Biolabs) NarI and PflMI (SD1-SA1), SalI (SD1-SA2), NheI (SA1-SD5), or 

BamHI (SD1-SA3/SA4a/SA5 and SD4-SA7), then ligated using T4 Ligase (New 

England Biolabs) and screened for content by sequencing analysis with primers 5'-

ATGACCATGATTACGCCAAG-3' and 5'-GGTTTTCCCAGTCACGACG-3'. This 

created plasmids pSVif, pSVpr, pSEnv, pSTat, pSNef, and pSRev. 

 

9. RNA in vitro transcription. 

To create a blunt stop for transcription, 1500 ng of each plasmid (pSVif, pSVpr, pSEnv, 

pSTat, pSNef, and pSRev) was linearized with one unit of restriction enzyme AatII (New 

England Biolabs) followed by end repair using DNATerminator (Lucigen) following the 

manufacturer’s protocol. RNA was transcribed from 500 ng digested plasmid template 

using MegaScript® T7 (Ambion) following the manufacturer’s protocol at 37 °C for 3 

hrs. RNA was then DNase treated with 2 µl DNase Turbo (Ambion) at 37 °C for 15 mins. 

 

10. RNA purification. 

Transcribed RNA was purified using the GenEluteTM
 mRNA Miniprep Kit (Sigma 

Aldrich) following manufacturer’s protocol, which uses oligo(dT) beads to bind to and 
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purify RNA containing a poly(A) tail followed by heating and elution and precipitation 

with ethanol. Purified RNA yield was typically 25-50 ng/µl. 

 

11. SHAPE analysis of RNA 

RNA was modified as described in Chapter 2. Briefly, the purified RNA was precipitated 

and the ethanol was removed. Each pellet contained from 10 to 40 pmol HIV-1NL4-3 

transcribed RNA of the given variant and was resuspended in 10 µl of 50 mM HEPES 

(pH 8.0), 200 mM potassium acetate (pH 8.0), 3 mM MgCl2 per 1 pmol RNA. The RNA-

containing solution was then incubated for 10 min at 22 °C then 15 min at 37 °C. Per 1 

pmol RNA, 1 µl aliquots of 45 mM 1M7 in dimethyl sulfoxide (DMSO)(122) or DMSO 

alone were pre-warmed (37 °C) for 30 sec before addition of half the RNA solution to 

each, followed by incubation for 5 min. Per 1 pmol RNA, 1 µl 50 mM EDTA (pH 8.0) 

was added then the RNA was recovered by precipitation with ethanol. 

 

12. Primers 

Primers were labeled exactly as in Chapter 2. A total of 16 primers were used (Table 3.1). 

  

13. Primer extension 

Primer extension was performed exactly as in Chapter 2. Plasmids used for primer 

extension were the same as were used for transcription templates. 
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14. Data processing 

Data were converted using ShapeFinder software (40, 164, 173) exactly as in Chapter 2. 

Data were processed using the box-plot normalization method (J. Low, personal 

communication). 

 

15. RNA secondary structure modeling 

Each mRNA sequence was folded in its entirety with using the RNAstructure algorithm 

(114, 146) as described in Chapter 2. No pairing or forced single-strands were constricted 

in any of the models. We used folding parameters m = 1.9 and b = -0.7 (C.E. Hajdin, 

personal communication) to generate structures for all six the mRNA variants. 

 

16. RNA structure display 

The secondary structure models for all of the mRNA were arranged using xrna 

(http://rna.ucsc.edu/rnacenter/xrna). 
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CHAPTER IV 

CONCLUSION 

 

 In this work, I have described two studies that use the SHAPE chemical probing 

method as a tool for understanding the conservation, maintenance, and function of RNA 

structure in different stages of the lentiviral replication cycle. Given the SHAPE-derived 

structures of SIVmac239 genomic RNA and HIV-1 messenger RNA, I was able to probe 

further into the relevance of individual pairing interactions based on evolutionary 

conservation of specific regions, formation of RNA structure based on base composition, 

and changes or maintenance of structure in certain sites regardless of or as a function of 

splicing events. 

 Determination of the secondary structure of genomic SIVmac239 RNA provided 

a second lentiviral RNA structure with which I was able to compare regions of the 

genome that contained low SHAPE reactivity, high guanosine content, and high pairing 

probability to those of the published HIV-1NL4-3 structure (172). The results showed 

conserved RNA structures at regions with known functions in the viruses. Stems at the 5' 

UTR, frameshift, and RRE regions have been well established and were very similar. 

These also are included in the few areas of the RNA where guanosine concentration is 

higher than that of adenosine. These G-rich regions are islands of conserved structure in 

an otherwise A-rich and non-conserved genome. Even at these RNA structures with 
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known function, however, the exact pairing interactions are not identical between the two 

viruses. In fact, only a small percentage of base-pairs are maintained between the 

relatively similar genomes. I conclude that the RNA genomes of SIVmac239 and HIV-

1NL4-3 fold in a way that is rapidly changing over the course of evolution, and the regions 

that are necessary for function are kept stable by localized guanosines that strengthen 

pairing interactions. 

 Analysis of the structure of HIV-1 messenger RNA allowed identification of 

structures that are maintained in an entirely separate stage of the lentiviral replication 

cycle than genomic RNA. Functional assays that tested the effects of mutating the 

evolutionarily conserved stem at the first splice acceptor site (SA1) showed the 

importance of that stem (termed SLSA1) in the complex splicing regulation of HIV-1 

mRNA. Disruption of this previously undescribed stem only had a mild effect on the 

replication capacity and splicing profile of the virus, illustrating that many other factors 

contribute to the production of spliced products. I further analyzed the role of RNA 

structure in splicing regulation by determining the secondary structures of in vitro 

transcribed variants of HIV-1 mRNA. Many of the structural motifs were slightly 

different from what had been previously described due to the ability of the SHAPE 

method to allow structural probing of longer RNA molecules. Furthermore, many of the 

structures that I describe are maintained between the fully spliced, incompletely spliced, 

and unspliced variants unless a change in pairing is necessary to preclude downstream 

splicing events. From these results, I conclude that the complex regulation of HIV-1 

mRNA splicing is controlled by RNA structures that interact locally and most are stable 

enough to be impervious to drastic changes and deletions throughout the sequence, 
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however, the regulatory sequences that control use of SA3 have altered structures after 

usage of the first two splice acceptors which may allow the singly-spliced SA1 and SA2 

transcripts to downregulate further splicing at SA3. 

The final product of this work broadens our understanding of the role of RNA 

structure in lentiviral replication, but is not a conclusive analysis of the subject. Instead, it 

develops a starting point for further research and investigation. The purpose of these 

RNA structural analyses was to gain a better understanding of structural conservation, 

rearrangement, and maintenance for the sake of identifying structures that may be 

important for various aspects of viral replication. Identification of these structures has, in 

effect, opened the doors to many new and potentially critical experiments and analyses.  

The possibility of a conserved pseudoknot between the SIVmac239 and HIV-1 

5'UTR and Gag-coding sequence based on SHAPE reactivity led to experiments 

involving locked nucleic acids (LNAs), which seclude this pairing interaction on both 

sides of the 5' poly(A) pseudoknot. The results of these experiments, not described 

herein, were too weak to support the conclusion of a pseudoknot at this site in 

SIVmac239 as has been identified in HIV-1. The SHAPE data at the site of interaction is 

strong evidence toward a pseudoknot interaction; however, further investigation into this 

site is necessary to claim with confidence that this pairing interaction is definitively 

conserved between the two viruses. Mutations that change the sequence of either side of 

the predicted pseudoknot in SIVmac239 followed by a change in the SHAPE reactivity of 

the predicted pair would strengthen this conclusion. Furthermore, mutations that disrupt 

the 5' poly(A) pseudoknot in SIVmac239 or HIV-1 may allow for a functional analysis of 

this interaction which explores its effect on viral replication in cells. 
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An obvious investigation that is drawn from the conclusions made in our 

SIVmac239 structural analysis is a comparison of the guanosine and adenosine 

abundances in other viruses. Lentiviruses have an A-rich genome, which makes 

identification of isolated regions of Gs fairly clear to observe. Identifying clusters of 

guanosines within other viral genomes may point to potentially significant functionally 

conserved structures as in HIV-1 and SIVmac239. Conversely, finding areas where 

adenosines are rich in G-dominant genomes would indicate lack of structure with 

possible functional relevance.  

 The decision to determine the genomic RNA structure of SIVmac239 was due to 

many reasons including convenience and accessibility of obtaining a large amount of 

purified viral RNA from Dr. Rob Gorelick and coworkers, the long evolutionary distance 

between HIV-1NL4-3 and SIVmac239, and the characterization of many known structures 

of SIVmac239. This choice, however, was also predicated on the idea that many of the 

structural motifs between the two viruses would be well conserved. Since this is not the 

case, structural analysis of a more closely related virus to HIV-1NL4-3, perhaps SIVcpz or 

even another HIV-1 subtype would give more clues into the conservation of RNA 

secondary structure between lentiviruses. Based on our findings, the difference in 

structural conservation between two distantly related lentiviruses is not surprising. 

However, a structural change between two lentiviruses whose sequences were more 

highly conserved would enhance the argument that structure evolves more rapidly than 

sequence. If many of the structures stayed intact, this would lead to further analysis of the 

functional relevance of these regions. 
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An analysis that uses SHAPE to probe structures of the regulatory sites after the 

mutations at SLSA1 altered the stem structure would be beneficial to analyzing the effect 

of mutations to this region. Obtaining enough mutated full-length genomic RNA would 

be difficult, but inserting the mutation into the vif transcript would allow us to observe 

how this mutation is affecting the structure, even after splicing. Disrupting the stem at 

SA1 could potentially have an effect on downstream structural elements. I would be 

particularly interested in the effect of the mutation on SA3 since structure at this region is 

a well-known splicing regulator and considering the most dramatic changes in the 

splicing profile occurred to transcripts that produce the tat mRNA. This could be an 

indication that the regulatory structures around the SA3 region are being altered by the 

changes in structure at SA1. A structural analysis of the SLSA1 mutations in the vif 

transcript would also allow an investigation into any structural change in the nearby 

splicing enhancer sequences of ESEVif and ESEM1/M2. A change in the structure of 

these enhancers would affect their recognition by the SR proteins to which they bind. 

The structure of the spliced vpu/env mRNA also provides possible answers to 

previously raised questions about the regulation of translation from this transcript 

including how this single message produces both Env and Vpu proteins. One could 

speculate that the bicistronic nature of this transcript could be due to the structure of the 

mRNA, whether it is a ribosomal shunt or an IRES. The mRNA model that I have 

described, with the Vpu start site located within a single hairpin, suggests a ribosomal 

shunting pathway wherein the ribosome associates at the 5' cap, disassociates at the stem 

to bypass the Vpu start codon, then reassociates to recognize the downstream Env AUG 

site. Many different protocols exist for detection of ribosomal shunting, but the 
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availability of the RNA secondary structure allows for directed analysis. Mutations to 

disrupt the stem at the Vpu start codon would allow analysis of whether this structure is 

acting to disassemble to the ribosome. The SHAPE-determined structure at this region 

may help to answer the pestering question:	  What allows Env to be translated from the 

same message as Vpu?	  

 Lastly, the SHAPE experiments that I performed were limited by the absence of 

protein in the system, especially concerning the analysis of structure in the HIV-1 

mRNA. The regulation of splicing depends on the presence of protein in the nucleus. SR 

proteins and hnRNPs will bind to specific sequences, and in doing so, strengthen or 

weaken the surrounding structures. A thorough analysis of these structures as they appear 

in the cell would include these RNA-binding factors in various concentrations and ratios. 

The structures that I describe in this work give a snapshot of the RNA prior to protein 

recognition, but adding binding factors would aide in understanding how the change in 

these structures may be significant in splicing regulation. 
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