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Abstract 
 

Timothy Myers: Regulation of TACE-Dependent TGF-α Shedding  
(Under the direction of David C. Lee) 

 
   The ErbB signaling network regulates many critical biological processes.  This network 

consists of Epidermal Growth Factor Receptor (EGFR) and three related receptors and a 

superfamily of growth factor ligands.  Signaling is initiated when EGF-like polypeptide 

ligands bind to EGFR, ErbB3 or ErbB4, causing receptor homo- or heterodimerization 

between the four related receptor tyrosine kinases, including the orphan receptor ErbB2.  

The EGF-like family of growth factors include: epidermal growth factor (EGF), transforming 

growth factor-α (TGF-α), amphiregulin (AR), heparin binding-epidermal growth factor (HB-

EGF) betacellulin (BTC), epiregulin (EPR), epigen (EPI).  The growth factors binding to ErbB 

receptors are produced as membrane anchored precursors that can be proteolytically 

cleaved in the extracellular juxtamembrane domain to release mature, soluble ligands, in a 

process termed ectodomain shedding.  Metalloproteases, in particular the family of 

disintegrin and metalloproteases (ADAMs) have been identified as the proteases 

responsible for the shedding of diverse cell surface proteins.  Efforts to understand the 

regulation of growth factor shedding led to the discovery of ADAM17, or tumor necrosis 

factor-α converting enzyme (TACE), as the major sheddase for the ErbB ligands.  Evidence 

came from biochemical and in vivo studies, including mice lacking functional TACE due to a 

deletion in the metalloprotease domain.  Homozygous TACE-deficient animals displayed 

perinatal lethality similar to EGFR-null mice and revealed subtle phenotypes that mimicked 

single growth factor null mice such as delayed eyelid closure like TGF-α deficient mice, 
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heart and lung defects seen in the absence of HB-EGF and mammary gland development 

issues found in AR null creatures.  Despite the recognition of a key role for TACE in 

development, understanding of the regulation mechanisms are incomplete.  Several findings 

point to a role for MAPK pathways, non-receptor tyrosine kinases, calcium and calcium-

dependent kinases and reactive oxygen species.  The work described here identifies a 

pathway initiated by ATP binding to the P2Y family of GPCRs that mediates TACE-

dependent TGF-α shedding and concomitant EGFR activation.  Transactivation offers a 

physiologically relevant pathway to examine the mechanism of TACE regulation, which I use 

to identify mitochondria as a source of the key signaling intermediate in TACE activation, 

reactive oxygen species. 
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Chapter 1 
 
 
 
 

Introduction 
 



   Activation of ErbB receptors by G-protein coupled receptors (GPCRs) regulates many 

essential biological processes and could play an important role in cancer progression and 

cardiovascular disease.  The focus of this work is on the regulation of cleavage of the ErbB 

receptor activating growth factor ligand, TGF-α.  TGF-α is cleaved from the extracellular 

segment of a cell surface precursor, proTGF-α, in a process termed ectodomain shedding.  

The disintegrin and metalloprotease (ADAM) proteins, and in particular ADAM17/TACE, are 

established mediators of this TGF-α shedding event.  Shedding can be stimulated by signals 

from GPCRs, leading to the activation of the ErbB receptor, EGFR.  This process, known as 

transactivation, allows us to examine regulatory signals and proteins that can control TACE-

dependent TGF-α shedding. 

 

The ErbB Signaling Network 

   Epidermal Growth Factor Receptor (EGFR/ErbB1) is the prototype of a family of receptors 

whose imperative functions regulate cell activities such as adhesion, differentiation, 

proliferation and survival (1-3).  The ErbB superfamily is made up of four related, type-I 

receptor tyrosine kinases and their polypeptide growth factor ligands.  Homologues of these 

receptors and growth factors are found throughout evolution (4).  Highlighting the 

importance of this signaling network are key physiological roles in development and 

maintenance of the cardiovascular, respiratory and gastrointestinal systems (1).  Moreover, 

several of these network components act as oncogenes in many different types of cancer 

(5,6).  EGFR and ErbB2 are promising clinical targets and growth factor ligands are 

overexpressed in many neoplastic tissues.  Thus, these receptors and their ligands are 

essential not only for normal development and adult cell maintenance, but are also key 

targets in the fight against malignant cancer. 

 

 

2



The ErbB Receptors 

   The four related receptors of the ErbB family include:  EGFR (ErbB1, mouse/HER1, 

human), ErbB2 (HER2/neu), ErbB3 (HER3) and ErbB4 (HER4) (2,7).  Each contains an 

ectodomain consisting of two cysteine-rich domains combined with two unique domains that 

function together as ligand binding regions.  A single transmembrane domain connects the 

extracellular portion of the receptor to a cytoplasmic tail containing an intrinsic tyrosine 

kinase domain.  The cytoplasmic region also contains numerous tyrosines and docking 

motifs that allow signaling molecules to bind when phosphorylated.  ErbB3 lacks the active 

kinase domain, but maintains its signaling motifs and function through cross-phosphorylation 

in heterodimers with the other ErbB receptors. 

   ErbB receptor signaling requires the cooperation of the entire protein.  Receptor activation 

occurs upon ligand binding which leads to dimerization with either the same receptor family 

member (homodimerization), or another ErbB receptor (heterodimerization) (8).  

Dimerization occurs after ligand binding to the extracellular domain causing a 

conformational change that exposes a bridging arm made up mostly of the first cysteine-rich 

domain; once exposed this arm interacts with the arm of another receptor (9).  ErbB2, which 

does not have a known ligand, but imparts higher ligand affinities and longer, more robust 

signaling activities with heteromeric partners, appears to adopt this pro-interaction 

conformation constitutively based on the crystal structure of the extracellular domain (10).  

The ErbB2 receptor-interaction arm is unique in containing a negative electrostatic charge 

that deters ErbB2 homodimers, but strengthens heterodimer interactions, thus helping to 

explain why ErbB2 is the preferred heterodimer partner.  The solution of the ErbB2 crystal 

structure also clarified why there may be no binding ligand for ErbB2, as key ligand binding 

residues differ from those of the other ErbB receptors and a smaller, enclosed binding 

pocket impedes ligand association (10).  The extracellular ligand interaction and subsequent 

domain rearrangement of ErbB1, ErbB3 and ErbB4 receptors is also believed to allow for a 
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conformational change of the intracellular domain that triggers auto- and trans- 

phosphorylation of the cytoplasmic tyrosine kinase domain activation loop based on the well 

studied prototypes of non-receptor protein kinases (11).  The kinase domain can then 

phosphorylate tyrosines on either receptor (auto- or trans- phosphorylation) which interact 

with signaling proteins containing Src homology 2 (SH2) or phosphorylated tyrosine binding 

(PTB) motifs. 

   The SH2 and PTB domain-containing signaling proteins link the receptors to canonical 

signaling pathways.  Proteins that contain SH2 and PTB domains include adaptor proteins 

such as, Shc, Crk, Grb2, Grb7, Gab1, non-receptor src-like kinases Src, the common 

signaling protein PI3K and tyrosine phosphatases like SHP1 and SHP2 (12,13).  Which 

signaling proteins bind and are activated depends on the receptor pair involved, since each 

ErbB receptor has overlapping as well as distinct docking motifs; it also depends on the 

pattern of tyrosine phosphorylation, which specifies the motifs available as docking sites 

(14,15).  Initiation of biological effects is accomplished mainly through two major signaling 

pathways: Ras-Raf-MAPK and PI3K-Akt (1,16).  The Mitogenic-Activated Protein Kinase 

(MAPK) pathways are targeted by every ErbB receptor.  As with all ErbB initiated pathways, 

binding and phosphorylation of adaptor proteins leads to larger transient complexes that 

allow activation of more downstream signaling molecules.  Activation of signaling molecules 

is accomplished by phosphorylation cascades that activate downstream kinases before 

ultimately targeting transcription factors for the alteration of gene expression patterns.  The 

other major pathway, PI3K-Akt, is vital due its influence on not only gene expression 

patterns, but also cell survival and proliferation signals (17).  PI3K can interact directly with 

the phosphorylated ErbB3/4 cytoplasmic tail via its p85 regulatory subunit, while adaptor 

proteins are required in the case of EGFR and ErbB2 (18).  Growing evidence suggests that 

it is this activation of the PI3K pathway, required for tumorigenesis, which makes the EGFR 

family of receptors potent oncogenes and thus important targets for cancer therapies. 
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ErbB Ligands 

   Under basal conditions receptors require ligands to initiate efficient dimerization.  The 

ligands, like their receptors, are members of a family, in this case polypeptide growth 

factors, that share similar structure and functions.  The Epidermal Growth Factor (EGF)-like 

family is named after the first identified member, EGF (19).  There are seven members of 

this family that can be further divided into two groups based on their binding specificity.  

Group 1 consists of EGF, Transforming Growth Factor-α (TGF-α), Amphiregulin (AR) and 

Epigen (EPI); this group binds with high affinity to only EGFR.  Group 2 is made up of 

Betacelllulin (BTC), Heparin Binding-Epidermal Growth Factor (HB-EGF) and Epiregulin 

(EPR); members of this group interact strongly with both EGFR and ErbB4.  A third group 

consists of the related growth factors termed neuregulins (NRG), which are ligands for 

ErbB3 and ErbB4.  Neuregulins are related to the other EGF family growth factors by their 

EGF-like domain and receptor preferences, but considered unique due to their function in 

neuronal development and the use of alternative splicing to generate up to 14 different 

isoforms, including some that lack a cytoplasmic domain (20).   

   EGF-like growth factor family members in groups 1 and 2 are all produced as membrane 

anchored precursors with similar structure (Figure 1.1) (19).  The signal peptide and pro-

domain are followed by an N-terminal extension of variable length, except in the case of 

TGF-α and EPI, which have no intervening sequence.  Prior to the EGF-like peptide, which 

forms a three-loop structure due to disulfide bonds between six cysteines, is the receptor-

binding motif of the protein.  The cysteines are embedded in a consensus sequence that 

allows for proper folding of the mature, receptor binding region.  This EGF-like peptide, 

which sits a short distance from the membrane, can be proteolytically released from its 

transmembrane tail by cleavage in the juxtamembrane region to produce a mature, soluble 

peptide that is necessary and sufficient to interact with receptor.  The N-terminal extension 

can also be proteolytically removed in a rapid cell surface event, though the identity and 
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regulation of this protease is unclear (21,22).  The ectodomain of all family members 

appears to be highly glycosylated leading to variably sized precursor forms whose effect on 

function is not understood.  The single-spanning transmembrane domain is followed by a 

cytoplasmic tail of variable length depending on the growth factor.  The cytoplasmic tail of 

the precursor, while not necessary for receptor activation, may play a role in growth factor 

maturation and proper localization (23).   

   While all family members act as potent growth signals and can induce transformed growth, 

important distinctions exist (19).  Despite the overall structure and EGF-like motif, minimal 

sequence homology is present among the ligands and the N-terminal pro-region and 

cytoplasmic domains often vary widely in their length and function (24).  Lastly, while there 

appears to be some overlap in biological activity, each family member potentially may have 

distinct roles as well.      

   The precursor to the first growth factor discovered, proEGF, is a large protein with a 

greatly extended N-terminal sequence compared to the other growth factors (19).  This 

extension is made up of eight separate EGF-like motifs in addition to the bona fide receptor 

binding EGF-like sequence (Figure 1.1).  As with most family members, EGF is broadly 

expressed throughout life and a long list of functions has been attributed to this growth 

factor.  EGF knockout mice display no overt phenotype (25), likely owing to redundancy of 

other EGF-peptides.  However, EGF transgenic mice showed stunted growth and bone 

deformities, but no increase in tumorigenesis (26).  As noted previously, EGF has a high 

affinity for EGFR and preferentially induces EGFR homodimers and EGFR:ErbB2 

heterodimers, though there is now evidence for a low affinity interaction with ErbB3 (27,28). 

   Other type I EGF-like growth factors are TGF-α, AR and EPI.  TGF-α is the best studied 

member of the family and possesses several prominent actions.  TGF-α knockout mice are 

viable and fertile, but display epidermal defects including wavy hair and whiskers, abnormal 

patterning of hair follicles and delayed eyelid closure during embryonic development (29).  
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TGF-α transgenic mice revealed that overexpression produced abnormal growth in several 

organs and mammary tumors (30).  Spontaneous, overexpressed AR has also been 

discovered in many malignancies, including those induced by a TGF-α transgenic model in 

the mammary gland (31).  AR is a heparin binding, bifunctional ligand, so described 

because it could inhibit prolifereation of A431 carcinoma cells while stimulating proliferation 

of fibroblasts, through a relatively low affinity interaction with EGFR.  Studies of mice bearing 

a targeted deletion in AR showed a critical role in mammary gland development (25).  Ductal 

outgrowth was impaired in female mice lacking functional AR, hindering the proper quantity 

and quality of milk; this phenotype was further exacerbated when combined with TGF-α and 

EGF deficiencies in triple-null mice.  Epigen is the most recently identified EGFR ligand and 

little is known about its function.  Its low-affinity interaction with EGFR does not rule out 

interaction with other receptor family members, but the higher mitogenic potential than EGF 

with EGFR suggests EPI is compatible with this group of growth factors (32).        

   Group 2 of the EGF-like growth factors (HB-EGF, BTC and EPR) are capable of high 

affinity interactions with both EGFR and ErbB4.  The best studied member of this group, HB-

EGF, requires its heparin binding domain for optimal receptor binding and activity (24).  This 

appears to be due to the availability, presentation and altered binding afforded the mature 

peptide by an interaction with extracellular heparin.  As with all other family members, 

expression is detected throughout mammalian tissues.  HG-EGF knockout mice produced a 

non-Mendelian ratio of genotypes from crosses of HB-EGF heterozygotes with 60% of HB-

EGF-/- homozygotes dying before weaning (33,34).  Survivors were viable and fertile, yet 

contained enlarged hearts with no discernable difference in body weights compared to wild 

type control mice.  Death was likely due to cardio-pulmonary defects, including enlarged 

heart valves from persistent proliferation of mesenchymal cells during valvulogenesis and 

alveoli formation in the lung, likely due to dysregulated BMP signaling (33).  Further 

evidence for the role of HB-EGF in heart development came from Iwamoto et al (34), who 
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confirmed the above findings and uncovered enlarged ventricular chambers and reduced 

cardiovascular function in their version of HB-EGF-null mice.  Upregulation of HB-EGF 

expression occurs at sites of injury, suggesting a role in wound healing (24).  Wound stimuli 

initiate an HB-EGF-shedding response and subsequent EGFR activation leading to 

migration of keratinocytes into the wound site (35).  HB-EGF has also been found to be 

linked to the upregulation of an early immune response in skin wounds (36).  During 

development, HB-EGF may promote implantation and growth of the embryo, as evidenced 

by HB-EGF expression in response to estrogen and progesterone (37), and central nervous 

system maturity due to cell proliferation, motility and survival (38,39).  Finally, HB-EGF 

expression has also been detected in several types of tumors positioning HB-EGF as a 

potentially important EGFR family ligand in cancer (19). 

   Other Group 2 growth factors that share high affinity binding with EGFR and ErbB4 are 

BTC and EPR.  These growth factors can also bind to ErbB3 in ErbB2:ErbB3 heterodimers 

making these pan-ErbB ligands (19).  Both peptides are expressed in many different tissues, 

with enhanced expression in several neoplastic tissues.  BTC knockout mice present no 

overt phenotype indicating overlap of other family growth factors (33).  This redundancy was 

supported when BTC knockout mice were crossed with HB-EGF knockout mice to form the 

double knockouts that exacerbated the HB-EGF heart and mortality phenotype (33).  

Overexpression of BTC by transgenics however, produced early postnatal death and 

reduced body weight.  Mortality was most likely due to pulmonary defects, such as 

thickened alveolar septa, accumulation of macrophages and alveolar hemorrhaging (40).  

EPR, like AR, is a bifunctional ligand that can stimulate and inhibit growth in different cell 

lines.  EPR-null mice reveal no phenotype, but are vulnerable to cancer predisposing 

intestinal damage (19).  No transgenic models yet exist. 

   The members of the EGF-like family of growth factors are similar, yet different.  

Structurally, the growth factors are almost identical, sharing a conserved protein fold 
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important for receptor binding.  However, there is very little sequence homology and the 

precursor proteins can vary widely in size.  In terms of signaling, there does appear to be 

some redundancy among growth factors, but individual knockout models also reveal 

independent activities that cannot be accounted for by related growth factor family 

members.  Almost, all family members potentially function in transformed growth of 

neoplastic tissue making them important therapeutic targets for several types of human 

cancer.  The details of signaling specificity must be elucidated to take advantage of these 

potent signaling ligands. 

 

ErbB Signaling Characteristics 

   As presented above, the ErbB family of receptors and ligands play fundamental roles in 

development, growth and homeostasis in many different species as seen by lethality in mice 

lacking the ErbB receptors and disruption or delay of development of several tissues with 

the loss of growth factors.  Genetically engineered models lacking growth factor activity 

indicates redundancy of the growth factor functions, underscoring the importance of these 

systems.  Overlapping functions raise the question of how specificity is generated within the 

numerous and sometimes opposing responses that define a network.  The ligands and 

receptors each offer characteristics with which potential degrees of specificity can be 

defined.   

   A central purpose of the ligands appears to be influencing the selection of dimer partners.  

While ErbB2 is always a possible partner, the ligands influence which of the remaining 

receptors are available for dimerization (41).  This is important because downstream signals 

are determined by the receptor pairing due to the differences in signaling motifs present on 

each receptor and the affect of trans-phosphorylation on selection of targeted tyrosines (42).  

Ligand discrimination by the receptor dimers would also allow ligands to directly affect the 

tyrosine phosphorylation pattern of the receptors (43).  The first evidence of ligand 
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differentiation was reported when EGF- and BTC-induced phosphorylation patterns were 

compared in mouse cells expressing EGFR or ErbB4 (44).  The strongest evidence was 

seen using ErbB4 interactions with BTC NRG1β, NRG2β and NRG3.  While bulk 

phosphorylation of the receptor cytoplasmic domain was increased with each ligand, 

different consequences were detected that affected proliferation and migration of a human T 

cell line, CEM, depending on the growth factor.  Closer inspection of the phosphorylated 

tyrosines revealed a consistently unique pattern following stimulation with each ligand (45).   

   Another characteristic of ligands that affects signal specificity is binding affinity.  The 

strength and interval of the interaction could have a profound effect on the final genetic 

program initiated by receptor signaling, as lower affinity ligands delay degradation of EGFR 

(46).  Other features that also could affect ligand affinity include the N-terminal extension on 

some growth factors, as seen with the heparin binding domains of HB-EGF and AR, and 

distinctions in signaling between soluble and membrane anchored ligands (19).  Though 

genetic evidence suggests the soluble growth factor is the essential form (33,47), signaling 

by membrane anchored TGF-α has been described (48,49).  Lastly, the strength of the 

ligand:receptor interaction varies under diverse pH conditions for each ligand.  For instance, 

TGF-α dissociates at endosomal pH while EGF, and to an even greater extent BTC, can 

withstand lysosomal pH ranges (50).  This allows longer signal duration and possibly diverse 

signals, since EGFR has been shown to transmit distinct signals when localized to 

endosomes (51). 

   Along with specific docking sites, receptors have additional characteristics that can be 

utilized in specifying signal pathways.  Localization of receptors in polarized cells, in 

membrane microdomains and to internal vesicles have all been demonstrated to influence 

potential signaling attributes of the ErbB receptors.  As mentioned, EGFR signaling from 

endosomes is distinct from that initiated on the surface.  Neuregulin induced expression of 

acetylcholine receptor requires MAPK signaling that only occurs following receptor 

10



internalization and signaling from a clathrin-coated endocytic vesicle (52).  Additionally, 

phospholipase-Cγ signaling from EGFR does not require endocytosis, while sustained EGF-

induced MAPK signaling does, due to the necessary recruitment of scaffolding proteins by 

endosomal adaptor proteins (51).  EGFR signaling based on membrane sorting has also 

been established.  When channeled to the apical membrane of polarized epithelial cells 

EGFR activated SHC-dependent pathways and increased β-catenin phosphorylation, 

whereas on the basolateral surface, SHC pathways were combined with phospholipase-Cγ 

and focal adhesion kinase activity (53,54).  Detergent-resistant membrane microdomains, 

called rafts, have been shown to contain various ErbB receptors prior to ligand binding and 

activation.  Also, positioning in rafts prior to activation could influence dimer partners, 

depending on which receptors are present (41).  Rafts could also function in assembling 

signaling complexes on activated receptors by enriching for particular signaling proteins, 

such as H-Ras on the cytoplasmic side of the raft (55).  Beyond localization, extracellular 

interacting proteins could function in facilitating or obstructing ligand binding (43), while the 

carbohydrate modifications could also function in spatial and temporal alterations of ligand 

binding (41).  Finally, recruitment of phosphatases to the receptor cytoplasmic region can 

influence the phosphorylation pattern and thus the duration and nature of signaling (56).  

Clearly there is much more work to be done in order to validate these potential layers of 

specificity. 

 

The ADAM Family Proteins   

   Soluble EGF-like growth factors can mediate unique activities compared to anchored 

growth factors and soluble ligands are vital to proper development.  Identification of the 

protease(s) responsible for cleavage is therefore critical to the understanding of regulation of 
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EGFR signaling.  ADAM family proteases have since emerged as the chief enzymes 

responsible for cleavage of the EGF-like growth factors.   

 

ADAM Structure 

   ADAM is short for A Disintegrin And Metalloprotease which describes the key domains of 

these family members that belong to the adamalysin group of the metzincin zinc protease 

superfamily (Figure 1.2).  ADAMs are closely related to the snake venom metalloproteases 

(SVMP) in their shared extracellular domain arrangement and similar metalloprotease 

catalytic domain structure (57,58).  Along with these features, these type I transmembrane 

glycoproteins are known for their conserved domain sequence: pro-, metalloprotease, 

disintegrin, a cysteine-rich juxtamembrane, a transmembrane and cytoplasmic domain.  

From the 40 family members currently recognized across all species, crucial functions have 

been identified in fertilization, neurogenesis, angiogenesis and ectodomain shedding of 

membrane anchored proteins (59,60).  ADAM proteins can be generally grouped into two 

categories: testis specific and those that are more broadly expressed.  In humans, the 

predominantly testis specific ADAMs are 2, 3, 6, 18, 20, 21, 29, 30, and 32.  The remaining 

are somatically expressed and of these 8-10, 12, 15, 17, 19, 28 and 33 (predicted) are 

thought to be catalytically active (61).  While activities and relevance have been shown for 

ADAMs without protease activity, especially concerning cell adhesion in spermatogenesis 

and fertilization, I will focus only on the protease active proteins.  It is from these, specifically 

ADAMs 9, 10, 12, 15, 17 and 19, that potential sheddases for the ErbB ligands emerge.      

   The prodomain is a ~200 amino acid peptide that acts as an autoinhibitor of the 

metalloprotease domain to dampen protease function during transport through the cell.  

Most ADAMs utilize a “cysteine switch” mechanism, whereby a conserved cysteine in the 

prodomain helps to coordinate the essential catalytic zinc atom, thus inactivating the 

protease.  A similar mechanism has been described for matrix metalloproteases (MMP) (61).  
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Alternatively, ADAM10 and 17 employ the cysteine switch only to protect against premature 

degradation (62).  Instead, with these ADAMs, the protease is potently restrained when the 

cysteine-rich domain (CRD) helps position the prodomain, thus altering the native 

conformation of the metalloprotease domain (63).  Prior to surface localization, all ADAMs 

are cleaved by proprotein convertases to detach the prodomain from the mature ADAM.  

Serine/Threonine proteases furin and PC7 have been identified as the enzymes responsible 

for this action on ADAM10 and 17, and most likely, for all other ADAMs (64-66), except 

ADAM28 which appears to autocatalytically remove its prodomain (67).  Furin cleavage 

takes place in the Trans to Late Golgi Network, though the prodomain may remain bound in 

the metalloprotease substrate binding site until delivery to the surface, as the prodomain 

also acts as a chaperone for folding and secretion (62). 

   The metalloprotease domain directly follows the prodomain.  Highlighting the dual 

behavior of some ADAMs is the fact that some lack functional protease domains.  Twenty-

five ADAMs are thought to be active proteases based on analysis of this domain, though a 

proven protease activity has only been shown for half of these.  Activity is thought to 

correlate with the presence of a highly conserved consensus sequence found in all active 

proteases of the metzincin family: His-Glu-X-X-His-X-X-Gly-X-X-His.  The three conserved 

histidine residues position the metal ion, usually zinc, which in turn coordinates the water 

molecules to allow hydrolytic proteolysis.  Use of in vitro peptide assays to test individual 

domains of ADAM17 have established that the metalloprotease domain alone contains the 

necessary sequence for catalytic activity, though other domains may impart regulation 

(68,69).  The metalloprotease domain is also subject to many active site binding inhibitors 

as a form of regulation.  The endogenous tissue inhibitors of metalloprotease are broad 

proteinacious inhibitors of metalloproteases that block substrate binding in the catalytic 

pocket (70,71).  Related to this, chemically synthesized inhibitors that are aimed at specific 

ADAM active sites have also been under development due to the role of ADAMs in disease 

13



progression.  The crystal structure for several active proteases in association with these 

inhibitors (58,72) will allow better design of the next generation of inhibitors (73,74).     

   The disintegrin domain was first identified in SVMPs that interact with platelet integrins to 

inhibit clotting in the victim.  Integrin interactions have also been associated with this domain 

in ADAMs, yet the functional links have only recently been addressed (Table 1.1).  Human 

ADAM15, which is the only known ADAM with the consensus integrin binding sequence Arg-

Gly-Asp (RGD), can interact with the integrin receptors αVβ3 and α5β1 through the RGD 

sequence (75,76).  The integrin α9β1 is often found in association with ADAMs, but 

associates independent of the RGD sequence.  Instead, α9β1 requires the sequence 

RXXXXXXDLPEF found in the disintegrin domain of all interacting partners (77).  

Functionally, ADAM:integrin associations appear able to affect cell migration, both positively 

and negatively (78).  The TACE:α5β1 interaction is found in focal adhesions and leading 

edges of CHO and HeLa cells and inhibits cell migration in wounding assays (79,80).  

Likewise ADAM12 appears to impair normal integrin function leading to decreased cell 

adhesion of adipocytes by α4β1 (81), and ADAM15 overexpression reduces ovarian 

carcinoma cell adhesion to vitronectin through αVβ3 (76).  ADAM9 appears to be a promoter 

of cell invasion, since α6β1-expressing cells displays enhanced migration ability on ADAM9 

coated plates versus control plates (76) and soluble ADAM9 provokes invasion of numerous 

cell lines through α6β4 and α2β1 (82).  It appears as though ADAM, integrin interactions can 

disrupt the conventional integrin interactions leading to altered signaling and function.  

However, the majority of these studies were done using recombinant proteins, thus further 

investigation of the endogenous functions and interactions will be required to verify the 

validity of these findings.   

   Thus far the cysteine-rich domain (CRD) has only been found to complement the other 

domains.  Beyond coordination of the prodomain as an inhibitor of metalloprotease activity, 
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the ADAM12 disintegrin/CRD promotes adhesion between fibroblasts and myoblasts 

dependent on the disulfide bonds formed between cysteines (83).  Coated culture dishes of 

ADAM12 CRD led to adhesion and cell migration due to an interaction with the cell surface 

adhesion molecule snydecan-4.  In the absence of this interaction cells did not adhere to the 

plate, suggesting the CRD may have an independent function in some ADAMs (84).  Other 

ADAM family members offer examples of non-adhesion based interactions and will be 

covered below.  In summary, these domains have been determined, thus far, to regulate the 

binding capabilities of the extracellular region. 

   Finally, the cytoplasmic domain varies in both length, sequence and function among the 

family members.  A regulatory role for the cytoplasmic domain is suggested by the presence 

of potential binding motifs for signaling molecules.  Most commonly they are Pro-X-X-Pro, 

that are considered SH2 or 3 binding motifs for signaling proteins.  Interactions of signaling 

molecules with the cytoplasmic domains of ADAMs 9, 10, 12, 13, 15 and 17 have been 

reported, though limited functional studies have been performed and no physiological roles 

for these interactions have been established (Table 1.2).  There are also several examples 

of induced phosphorylation of this domain.  ADAM9 was phosphorylated following phorbol 

12-myristate 13-acetate (PMA) stimulation (85), while Erk-dependent phosphorylation of 

ADAM17 in HeLa cells was also induced by PMA and was necessary for TACE surface 

localization (86).  A second article challenged this finding in CHO cells, using a point 

mutation at Thr735 that did not diminish overall TACE phosphorylation levels, suggesting a 

different residue was phosphorylated.  Serum-induced phosphorylation of TACE instead 

targeted Ser819 and was coupled with Ser791 dephosphorylation.  However, this 

phosphorylation had no effect on the metalloprotease activity, as point mutations of these 

serines and a complete cytoplasmic truncation had no effect on TGF-α shedding (87).  This 

is in agreement with Reddy and colleagues, who showed PMA stimulated TNF-α shedding 

was not dependent on the presence of the TACE cytoplasmic domain (88).  The cytoplasmic 
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domain of several other ADAMs is also dispensable for protease function based on cell 

models and in vitro assays.  Recently, ADAM10 was shown to mediate BTC shedding in 

response to calcium induced signals, despite the absence of its cytoplasmic domain (89).  

Evolution also suggests the expendable nature of the cytoplasmic domain.  Naturally 

occurring alternative splice variants of ADAM9 and ADAM12 that are secreted due to 

truncations above the transmembrane domain maintain their protease activity towards 

laminin (82) and insulin-like growth factor binding protein-3 (71), respectively.  Due to their 

low abundance in nature, the requirements and functional consequence of these 

alternatively spliced forms is still in doubt, especially under normal circumstances, as the 

short form of ADAM9 may only be produced in response to aberrant neoplastic signals for 

assistance in cell invasion by sequestering integrin interactions (82).  Thus, while not 

necessary, the cytoplasmic domain may still function in localization, maturation and 

regulation of ADAMs.       

 

 

 

Ectodomain Shedding of ErbB Ligands By ADAMs  

   After the critical discovery of ADAM17 as a TGF-α sheddase, other ADAM family 

members were implicated in cleavage of ErbB ligands.  Overexpression experiments with 

ADAM9 in monkey kidney cells revealed a phorbol ester-induced increase in HB-EGF 

shedding (90).  This event could be precluded with ADAM9 protease domain mutants.  

However, ADAM9 deficient mice displayed no overt phenotypes and fibroblasts isolated 

from these mice showed no deficiencies in basal, or PMA-induced levels of shed HB-EGF 

(91).  ADAM12 has also been suggested as an HB-EGF sheddase since dominant negative 

ADAM12 transfected into cardiac cells inhibited GPCR-induced HB-EGF shedding (92).  

However, the ADAM12-null mice lacked any distinguishable phenotype and fibroblasts 
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derived from the null mice from one study were able to constitutively and PMA-inducibly 

shed HB-EGF in culture (93), while PMA-induced shedding was markedly decreased in 

another (94).  Sensitivity differences between the two distinct assays could account for the 

conflicting observations.  ADAM15 was implicated in TGF-α and AR shedding by knocking 

down ADAM15 expression (95,96), but shedding remained constant in fibroblasts from null 

mice (93).  A role for ADAM19 in constitutive neuregulin cleavage was insinuated from 

mouse cells overexpressing wild type and dominant negative ADAM19 mutants, which 

increased and inhibited, respectively, shedding of NRG1β (97).  Therefore while ADAM-9, -

12, -15, -19 may be capable of cleaving ErbB ligands, genetic evidence does not support 

this as a primary responsibility.   

   ADAM10 and ADAM17 share unique characteristics that may separate them from other 

family members.  As mentioned above, other ADAMs and MMPs employ the cysteine switch 

mechanism for inhibition of the catalytic activity during transport, while these ADAMs do not, 

relying on other determinants to alter the conformation of this domain (63,66).  Comparison 

of the metalloprotease sequences of ADAM10 and ADAM17 predict surface protuberances 

found in the TACE structure that may function in substrate specificity and are not found on 

any other ADAMS (58).  The primary function of these proteins appears to be as 

metalloproteases, with only minor roles as adhesion molecules since only two integrin 

interactions have been ascribed to either ADAM.  Also, among the ADAMs, only knockouts 

of ADAM10, ADAM17 and ADAM19 caused lethality of homozygous mutant offspring, 

implying a requirement for these metalloproteases that cannot be compensated for by 

redundant functions of other ADAMs (47,98,99).  ADAM10 knockout mice die due to central 

nervous system defects and insufficient development of the cardiovascular system (98).  

ADAM10 has been described as another HB-EGF sheddase (100,101), yet again embryonic 

fibroblasts from the knockout mice shed HB-EGF up to wild type levels.  PMA-stimulated 

shedding of TGF-α, AR, EPR and EPI were also unaffected by the loss of ADAM10.  
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However, there was diminished constitutive and induced shedding of BTC and EGF 

(93,102).  These levels returned to normal following overexpression of wild type, but not 

catalytically inactive ADAM10, validating ADAM10 as a key sheddase for these ligands.  

Along with its role in ErbB shedding, ADAM10 may also function as an α-secretase of 

amyloid precursor protein (APP) forming α-sAPP and opposing formation of β-sAPP, the key 

component of plaques found in Alzheimer’s disease, and prion precursor proteins (103,104).  

ADAM10 may not be the primary, or only, protease for APP, since embryonic fibroblasts 

lacking ADAM10 are still able to produce soluble APP (98).  Furthermore, ADAM10 targets 

the Notch receptor and its ligand Delta in Drosophila and ligands of the Eph tyrosine kinase 

receptors, both critical pathways in neuronal development and control of cell fate (105,106). 

   ADAM17 was first identified by its ability to cleave Tumor Necrosis Factor-α (TNF-α), 

hence its more widely known designation TNF-α Converting Enzyme (TACE), but is also the 

major EGF-like growth factor sheddase.  Mice deficient in TACE activity, due to removal of 

the exon that encodes the zinc binding domain (TACE ΔZn/ΔZn), exhibited perinatal lethality 

in a majority of pups, that could not be attributed to a lack of TNF-α, since TNF-α and TNF 

receptor null mice survived to adulthood (107,108).  TACE ΔZn/ΔZn newborns that survived 

displayed several epithelial defects that resembled the phenotypes found in both EGFR and 

TGF-α null mice, namely: open eyelids, stunted vibrissae, wavy hair and impaired 

development of the respiratory and digestive tracts (29,47).  Embryonic fibroblasts derived 

from these mice were impaired in shedding of TGF-α, HB-EGF and AR.  Shedding could be 

partially rescued by transfection of wild type TACE into the cells (47,89,109).  This data was 

further supported by in vitro peptide cleaving assays that demonstrated purified TACE could 

cleave TGF-α, AR and HB-EGF at the correct juxtamembrane site on each growth factor 

(109) and later through comparison of AR and HB-EGF null phenotypes to TACE null mice 

(33,110).  TACE has recently been reported to also cleave EPR and EPI in cell culture 
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assays. (93,111).  TACE may also be able to cleave several isoforms of the neuregulin 

family of growth factors (112).  These cumulative findings suggest that TACE is the major 

sheddase for ErbB family ligands. 

 

Regulation of ADAM-Dependent Ectodomain Shedding  

   In addition to ErbB ligands, numerous substrates for the catalytic activity of ADAMs have 

been reported, including cytokines, adhesion proteins and ligand receptors indicating the 

need for regulation in substrate selection (61,113).  Low levels of ADAM-dependent 

ectodomain shedding occurs constitutively, but can be rapidly induced by a host of 

stimulants including other growth factors (FGF, PDGF), non-physiological phorbol esters 

(PMA), calcium ionophores, the phosphatase inhibitor pervanadate and signals from other 

receptors such as G-protein coupled receptors (GPCRs), suggesting multiple pathways for 

activation of ADAM protease activity (61).  The stimulated cleavage of EGF-like ligands 

allows GPCRs to harness EGFR downstream signaling pathways and is the central step of a 

triple membrane spanning signal required for transactivation of ErbB receptors (114) (Figure 

1.3).  This has been seen with GPCR activation of EGFR-regulated pathways such as ERK 

activation and cell proliferation (115,116).  Stressing the importance of soluble growth 

factors, metalloprotease inhibitors have been shown to block transactivation (117).  MMP2 

and 9 are implicated in HB-EGF mediated EGFR transactivation in gonadotropic cells (118), 

while MMP7 in response to phenylephrine can cleave HB-EGF in rat arteries (119).  Since 

ADAMs are implicated as the major proteases responsible for ErbB ligand cleavage, it has 

been hypothesized they could play a key role in transactivation.  Accordingly, several 

ADAMs are directly implicated in transactivation of EGFR in various cell lines and with 

numerous GPCR stimulants (120).  ADAM10 shed HB-EGF and AR in gastric cancer cells 

when the GPCR agonist interleukin-8 was used to activate EGFR (121).  ADAM10-

dependent HB-EGF shedding was also detected in response to lysophosphatidic acid (LPA) 

19



and bombesin stimulation of kidney and prostate cancer cell models, respectively (96,101).  

ADAM12 and ADAM15 are also implicated in EGFR transactivation.  ADAM15 mediated 

LPA-stimulated cleavage of TGF-α and AR in bladder carcinoma cells (95,96), while 

ADAM12 stimulation of cardiac myocytes, shed HB-EGF in response to phenylephrine (92).  

The evidence for TACE as a mediator of transactivation is abundant.  GPCR-induced TACE-

dependent shedding of TGF-α and HB-EGF was observed in response to angiotensin II 

(AngII) treatment of vascular smooth muscle cells, kidney cells and COS7 cells (95,122-

124), while AR was shed from squamous cell carcinoma cells in response to LPA and an 

active ingredient in marijuana, THC (114, 254).  Thus, ADAMs and in particular, TACE, are 

key regulators of EGFR transactivation.   

 

Mechanisms of Regulation 

   Despite their central role, little is known about the specificity and upstream regulation of 

ADAMs.  Cell type (or tissue) along with stimulant appear to be important determinants in 

targeting growth factors for cleavage, but this alone does not address the protease 

activation mechanism or issues of substrate selectivity.  The prodomain inhibition of ADAMs 

is one level of regulation, but with removal believed to occur prior to surface localization it is 

not believed to be the only layer for regulation of protease activity (125).  The cytoplasmic 

domain of ADAMs can be phosphorylated, interact with proteins and have recognized 

signaling motifs that may allow them to regulate inside-out signaling.  While the decisive 

regulation mechanism for TACE activity has not been determined, several reports identify 

potential regulatory mechanisms that include substrate presentation, activation by 

phosphorylation, participation in protein interactions, stimulation of translocation, a role for 

common signaling pathways and second messenger production.  With the diversity of 

substrates and abundant stimulants, a complex assortment of mechanisms may be required 

to determine substrate specificity and regulation of function. 
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Influence of the Substrate 

   The target substrate of ADAM-directed cleavage could have a profound effect on the 

ability of metalloproteases to function.  It has been repeatedly proven that the primary 

sequence of the substrate cleavage site for TACE and ADAM10 has no bearing on 

selection.  Instead it appears to be a combination of the distance from the membrane along 

with conformation and surrounding residues that permit access of the protease active site to 

the cleavage site (89,126-129).   Proper localization and presentation of the substrate may 

also play a part in stimulated shedding.  For example, in transitional cell carcinoma (TCC) 

bladder cells a reserve of pro-HB-EGF has been found in the nucleus.  Upon stimulation 

with the known inducer of shedding, hydrogen peroxide, the ligand translocates from the 

nucleus to the plasma membrane and is then shed.  It was further shown that HB-EGF was 

deposited in lipid rafts at the cell surface possibly allowing greater access to activated 

ADAMs (see below) (130).  HB-EGF shedding can also be stimulated by the GPCR agonist 

bombesin through ADAM10 proteolysis (101).  Bombesin also enhances both the ADAM10 

and HB-EGF association with the tetraspanin CD9 (101).  This interaction, which also occurs 

with TGF-α (131), could help target ErbB ligands for shedding by positioning the substrate 

and enzyme in close proximity.  Presentation of the ADAM10-substrate ephrin-A5 plays a 

major role in regulating cleavage of this ligand.  ADAM10 constitutively associates with the 

ephrin-A5 receptor EphA3 and following membrane anchored ligand binding to the Eph 

receptor in trans (ligand and receptor on opposite cells) a new interacting site is generated 

in the ADAM10 CRD positioning the metalloprotease in such a way that cleavage is 

achieved (132).  However, an in vitro cell culture experiment revealed a requirement for 

TACE and shedding when a non-cleavable form of TGF-α did not activate EGFR (133).  

Also, no interaction between TACE and EGFR has been reported and this contradicts earlier 

evidence that TGF-α can activate EGFR in trans (48,49), raising doubts about the feasibility 
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of juxtacrine signaling by ErbB ligands.  Further evidence that the disintegrin and CRD of 

ADAMs may be responsible for substrate presentation to the metalloprotease domain 

comes from studies of the development of frogs.  Xenopus ADAM13 chimeras containing 

the ADAM10 metalloprotease domain functions the same as wild type ADAM13 in 

developing animals.  However, when the ADAM10 CRD was substituted into ADAM13, 

function was lost (134).  These examples, in conjunction with the role of the CRD in 

prodomain coordination and inhibition of ADAM10 and TACE (63), demonstrate the 

importance of the extracellular adhesion domains in regulation of the protease, likely 

through substrate selection and presentation. 

 

Role of Localization 

   ADAMs may also be regulated by spatial effects.  One potential mechanism for regulation 

of ADAMs is compartmentalization of the protease.  The ADAM10 substrate CD171 is 

constitutively cleaved in membrane-enclosed secretory vesicles, called exosomes, followed 

by extracellular release of soluble product from ovarian carcinoma cells (135).  Production of 

soluble CD171 and another cytokine, CD44, was induced in an ADAM10-dependent manner 

by an increase in intracellular calcium levels, also from exosomes (136).  TACE, however, 

stimulated by the global activator of shedding PMA in this same study, shed CD171 and 

CD44 only at the cell surface.  Conversely, the TACE substrate TNFR has also been found 

to be cleaved and released from exosome-like vesicles (137).  This implies different ADAMs 

can function in distinct compartments of the cell depending on the stimulus or substrate.   

   Micro-compartments on the cell surface comprise another region where ADAM activity is 

found.  Rafts are detergent-insoluble membrane regions rich in cholesterol and signaling 

proteins.  In cholesterol depleting experiments, which disrupt raft formation, ADAM10-

dependent amyloid precursor protein shedding was increased in neural cell lines (138), 

while ADAM10 and ADAM17 activity towards the IL-6 receptor was enhanced in COS-7 
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cells.  Shedding of the ErbB ligand NRG-β1 by ADAM19 was found to occur in rafts of 

neuronal cells (139).  TACE activity is partitioned in rafts during transport through the Golgi 

network and the mature form of TACE and its protease activity is limited to rafts in 

endothelial cells (140).  These results demonstrate the importance of rafts as negative 

regulators of ADAM protease activity by amassing ADAMs during transport through the cell 

and sequestering their activity away from potential substrates until stimulation leads to 

translocation of the substrate or ADAM.   

   Trafficking and maturation of ADAMs may also play a role in regulating activity.  The 

prodomain acts as both an inhibitor and a chaperone during passage of ADAMs through the 

secretory pathway (141).  SH3PX1 and endophilin 1 are SH3 containing proteins that utilize 

SH3 binding domains in the cytoplasmic domains of ADAM9, ADAM15 and ADAM19 to 

potentially regulate these proteins (248).  Interestingly, these proteins preferentially bind the 

pro-form of ADAM-9 and -12 over the mature forms and since endophilin is associated with 

endocytosis at synapses and SH3PX1 contains a phospholipid interacting domain, these 

may play a role in processing or transport of ADAMs prior to the removal of the prodomain.  

PKC and casein substrate in neurons (PACSINs) contain one SH3 domain and are believed 

to function in vesicle formation and transport.  PACSIN2 is an ADAM13 binding partner 

(142), while PACSIN3 interacts with ADAM-9, -10, -12, -15, and -19 (143).  Furthermore, 

PACSIN3 overexpression enhanced HB-EGF shedding in response to phorbol esters and 

the GPCR agonist AngII, while knockdown of PACSIN3 inhibited ADAM12 dependent HB-

EGF shedding (143).  This suggests that PACSIN3 is necessary for the shedding activity of 

some ADAMs, possibly through regulation of the translocation of these ADAMs.   

 

Protein Interactions 

   Along with integrins and other extracellular interactions, cytoplasmic binding partners that 

take advantage of the SH3 binding motifs may directly regulate ADAM protease activity 
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(Table 1.2).  ADAM12 also associates with the regulatory subunit of PI3K through SH3 

motifs (144).  This association is believed to be part of the regulatory mechanism of PI3K by 

mediating recruitment of this enzyme to the plasma membrane in differentiating myoblasts.  

Grb2 is a well known adaptor protein that can bind to activated EGFR to initiate Ras-MAPK 

signaling pathway.  ADAM12 and ADAM15 also interact with Grb2, but while the Grb2 

binding to ADAM15 can be mediated by phorbol ester induced phosphorylation, the effect of 

these interactions on ADAM function is unknown (145,146).   

   In contrast, the TACE cytoplasmic binding partners appear to effect protease activity.  

Eve-1 is a protein with no enzymatic domain, but numerous proline-rich and SH3 motifs that 

allow docking with signaling proteins (147).  It was shown through immunoprecipitation 

assays that ADAM-9, -10, -12 and -15 interact with Eve-1 via the ADAM SH3 binding 

domains (147).  When Eve-1 expression was knocked down, TPA stimulated HB-EGF, TGF-

α, AR and EPR shedding were all diminished.  Likewise, N-arginine dibasic convertase 

(NRDc) potentiates PMA-induced TACE protease activity towards HB-EGF (148).  NRDc is 

an active endopeptidase, but mutations to the catalytic domain had no effect on HB-EGF 

shedding, ruling out any effect of the endopeptidase function in HB-EGF shedding, or TACE 

binding (148).  Instead NRDc was shown to also interact specifically with HB-EGF, but not 

other ErbB ligands, providing another example of how substrate specific interactions may 

influence shedding (149).  Another interacting protein lacking enzymatic domains is a 

Synapse Associated Protein (SAP97) that binds TACE at the very C-terminus at a novel 

PDZ domain (150).  These two proteins also colocalize early in the secretory pathway, 

suggesting SAP97 may function in TACE maturation.  The interaction also regulated TACE 

protease activity.  Overexpressed SAP97 inhibited TACE-dependent shedding of TNF-α and 

TNFR, whereas overexpression of a SAP97 mutant incapable of binding TACE had no 

effect.  The TACE interaction and phosphatase activity of protein tyrosine phosphatase H1 

(PTPH1) negatively regulates TACE cleavage of TNF-α, although this affect has not been 
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examined on ErbB ligands (151).  While the mechanism of regulation is unknown and the 

relationship or function of these interactions has not been tested following GPCR 

stimulation, these results demonstrate that interactions can influence protease activity and 

that interaction partners may specify unique substrates for cleavage. 

 

Signaling Intermediates Implicated in Activation of ADAMs 

   Many signaling intermediates have been implicated in pathways that lead to the activation 

of ADAM metalloprotease activity.  These pathways include MAPK proteins, non-receptor 

Src family tyrosine kinases, PKC, and signaling molecules such as calcium and reactive 

oxygen species. 

   The MAPK signaling pathway is an intermediate in many signaling schemes including 

those directly downstream of GPCR signaling that can lead to ectodomain shedding.  

However, it is difficult to differentiate between MAPK signaling initiated directly by GPCRs 

versus MAPK signaling activated by EGFR.  As expected, GPCR transactivation leads to 

EGFR-dependent Ras/Raf/MEK/ERK activation (117).  TACE knockdown, but not ADAM12 

knockdown, in head and neck squamous cell carcinoma cells (SCC-9) led to loss of EGFR 

phosphorylation and downstream signaling induced by LPA and carbachol (114).  However, 

MAPK pathways may also be directly activated by GPCRs and involved in ADAM regulation.  

The stress response pathway comprising the p38 MAPK can mediate ADAM-dependent 

shedding of HB-EGF and TGF-α in a variety of cell types (152-154).  Stress-inducing 

reagents elevated p38 phosphorylation and subsequent HB-EGF shedding that also could 

be induced with constitutively active p38 mutants and blocked by dominant negative p38 

mutants (152).  Interestingly, phorbol ester and LPA induced shedding were not affected by 

p38 inhibitors indicating specific signals that utilize p38 in activating shedding (154).  For 

TGF-α, p38 functioned only in constitutive shedding as growth factor stimulation was able to 

induce production of soluble TGF-α (153).  Fan and Derynck (153) also reported a role for 
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another MAPK protein, MEK1, in inducible, but not constitutive TGF-α shedding stimulated 

by other receptor tyrosine kinases.  Only when inhibitors of both pathways were combined 

was fibroblast growth factor-induced shedding completely abolished (153).  Pervanadate 

directed ADAM10 shedding of the neural cell adhesion molecule (NCAM) through ERK1/2 

(155) and PMA stimulated shedding of the TACE substrates L1 and HB-EGF that was 

dependent on the active kinase MEK (135,156).  MEK is an upstream activator of ERK and 

could induce the Erk:TACE interaction and subsequent phosphorylation that regulates 

TACE transport to the cell surface following PMA stimulation (86).  Montero et al. (157) have 

also reported on the role of MAPK in TGF-α shedding from CHO cells.  In this report, MAPK 

inhibition using the same reagents described above only partially blocked PMA stimulated 

TGF-α shedding demonstrating a MAPK-independent pathway by phorbol esters.  Further 

supporting the idea of dual pathways, the GPCR agonist LPA requires MEK activity to 

mediate HB-EGF shedding by an unidentified ADAM in Vero-H cells, while phorbol ester-

induced HB-EGF shedding was independent of MEK signaling (158).  This is, however, the 

only example of Ras-Raf-MEK signaling mediating GPCR-induced EGF-like shedding.  

Taken together, it appears that MAPK pathways do have a role in regulation of ADAMs 

depending on the signal and cell type, but only in response to certain conditions.  This does 

not rule out alternative pathways that may also lead to shedding and leaves the exact 

situations for which MAPK pathways are applied to be determined. 

   Cytosolic nonreceptor tyrosine kinases, like Src family proteins, have been implicated in 

EGFR transactivation (159-163), though only recently has their precise role been 

scrutinized.  HB-EGF shedding following activation of andrenergic GPCRs was sensitive to 

c-Src inhibitors (115), while carbachol stimulated TGF-α shedding was dependent on Src-

like CADTK/PYK2 nonreceptor tyrosine kinase activity (164).  Src-family kinases can also 

directly interact with the SH3 domains of several ADAMs (Table 1.2).  Src interacts with 

ADAM-9, -12, -13, and-15; Abl interacts with ADAM-12, -13, and -15; Yes can bind 
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ADAM12; Lck associates with ADAM-10 and -15; Fyn, and Hck, so far, only bind to 

ADAM15.  The ADAM15 interactions with Hck and Lck were dependent on ADAM15 

cytoplasmic phosphorylation, though the kinase responsible is not known (145).  The 

ADAM12 interaction with v-Src leads to phosphorylation of ADAM12 in muscle cells, and 

although this interaction activates Src, the affect on ADAM12 function is unknown (146,165).  

Providing the most comprehensive study of Src signaling to date, Zhang et al. (166) showed 

that Src association with TACE is part of a mechanism that activates PI3K and causes 

phosphoinositol dependent kinase-1 (PDK1) to directly phosphorylate serines and 

threonines in TACE, leading to AR shedding and activation of EGFR.  Finally, the Src 

substrate Fish is a scaffolding protein that binds ADAM-12, -15, and -19 (167) and could 

mediate substrate presentation, or protease regulation, of these ADAMs through formation 

of complexes with secondary binding sites.  Thus, Src proteins can function upstream of 

ADAMs in some scenarios, though their function is not well understood on a mechanistic 

level.  

   Protein Kinase C (PKC) is another family of signaling proteins involved in ADAM regulation 

via Ser/Thr phosphorylation as a regulatory modification.  PKC can be activated by phorbol 

esters, which are general activators of shedding.  Though a non-physiologic stimulus, the 

mechanism by which PMA-activated PKC regulates ADAM activity is nevertheless of 

interest.  ADAM9 associates with PKC-δ and that this phorbol ester-induced interaction can 

regulate ADAM9 dependent HB-EGF shedding (90).  ADAM9 was phosphorylated in 

response PMA (85), but whether or not this is a direct result of PKC binding, or its affect on 

ADAM9 activity, is not known.  ADAM12 can also associate with PKC-δ and PKC-ε (92,168).  

PKC-ε regulates ADAM12 translocation from a perinuclear compartment to the cell surface 

upon stimulation with PMA (168).  This event was dependent on the cytoplasmic binding 

and kinase activity of PKC-ε, though direct phosphorylation of ADAM12 was not 

investigated.  PKC was identified upstream of EGFR transactivation by carbachol in human 
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embryonic kidney 293 cells (169) and again in hepatic C9 cells in response to AngII (170).  

PKC-δ, using specific PKC inhibitors, was later situated in between upstream calcium and 

Src signaling and downstream EGFR transactivation by phenylephrine in neurons and 293 

cells (171).  PKC isoforms are modulated by diacylglycerol (DAG), which in turn are 

regulated by DAG kinase (DGK) (172).  Thus, it was of great interest when DGK-δ knockout 

mice displayed EGFR and TACE-like open-eye phenotypes and enhanced activation of PKC 

and PKC substrates (173).  This suggests DGK can influence EGFR signaling, but whether 

this is dependent on shedding is under investigation.  Together, this evidence proves a 

necessary role for PKC, but also supports the contention that multiple signaling pathways 

can converge on ADAMs to activate shedding. 

   Second messengers are diffusible signaling molecules commonly used as intermediates 

for signal transduction utilized by GPCRs and other receptor initiated pathways.  Calcium is 

a common downstream target of G-proteins and participates in EGFR transactivation (174-

176).  Extracellular calcium uptake, which initiates signaling, can be reproduced using an 

ionophore to transport calcium across the membrane and this has been shown in several 

independent reports to specifically trigger ADAM10-dependent shedding.  This led to 

cleavage of the cell adhesion molecule CD44 by ADAM10, whereas TACE-dependent CD-

44 shedding was regulated by PKC (177).  Calcium also regulated shedding of the ADAM10 

specific substrates EGF and BTC (89,102).  TACE substrates TGF-α, AR, HB-EGF and 

EPR could also be shed by intracellular calcium increases, but independent of TACE 

activity, implicating other metalloproteases and demonstrating how various stimuli can target 

different proteases and substrates.   

   Calcium has been reported upstream of TACE-dependent HB-EGF shedding in COS7 

cells.  Using phospholipase-C activators, a calcium ionophore and dominant negative TACE, 

Mifune et al. (123) elucidated an AngII pathway that utilized phospholipase C-Ca-ROS-

TACE-HB-EGF in transactivation of EGFR.  How calcium influences TACE activity may be 
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explained through involvement of another second messenger, reactive oxygen species 

(ROS).  ROS are byproducts of oxidative phosphorylation in the mitochondria and the 

reduction of NADPH by its oxidase in the cytoplasm of most cells along with a host of other 

oxidases such as xanthine oxidase, cyclooxygenase, lipoxygenase and nitric oxide (178).  

They are known to promote a variety of cellular events through their stimulated production 

following signaling by GPCRs, cytokines and stress inducing agents.  The ROS, hydrogen 

peroxide, can stimulate the shedding of TGF-α, AR, TNFR and L-selectin by TACE 

(100,179,180).  HB-EGF shedding mediated by ADAM10, TACE and to a lesser extent 

ADAM9 (152), utilized the p38 MAPK pathway, however in rat prostate cancer cells HB-EGF 

shedding involving ROS was independent of p38 signaling (181).  ROS activation of TACE 

and ErbB ligand shedding is important in many physiologically relevant transactivation 

events, too.  Insulin growth factor-1 receptor and endothelin-1 receptors can transactivate 

EGFR through ROS-stimulated ADAM-directed shedding of HB-EGF (182,183).  

Transactivation of EGFR regulates mucin expression in airway epithelial cells relying on 

TACE shedding of TGF-α initiated by ROS production from NADPH oxidase (Nox) to 

propagate the signal (179).  In vascular smooth muscle cells, phenylephrine and angiotensin 

II induce proliferation through ROS-ADAM-HB-EGF-EGFR and have become useful models 

for cardiovascular disease (123,180).  Angiotensin II (184) and phenylephrine (180), along 

with endothelin I (185), appear to utilize Nox complex as the main source of ROS by 

activating Rac-1 (186), which is responsible for the phosphorylation and translocation of the 

cytoplasmic subunits of Nox to the membrane where they interact with and form a 

functioning complex (187).  Several reports suggest that Src kinases may play a role in Nox 

activation and ROS production following GPCR activation (171,186,188).  Zhang et al. (189) 

showed that hydrogen peroxide might directly activate TACE metalloprotease by removing a 

peptide mimic of the TACE prodomain in an in vitro peptide cleavage assay.  This 

corresponds with the ability of ROS to oxidize cysteine residues as a modification.  ROS 

29



may also regulate ADAM activity through oxidation of lipid moieties, or targeting of 

cholesterol, which may alter lipid raft integrity.  Thus, calcium and ROS, or even calcium 

upregulating ROS, are positioned as key determinants in selection of substrate and 

activation of ADAMs, though exactly where and how are undetermined. 

 

   The importance of the ErbB network, and by extension ligand shedding, has been 

established through the studies concerning development and the role of disregulated 

signaling in disease progression.  Since GPCRs appear to routinely utilize EGFR to 

integrate and amplify hormone signaling, transactivation of EGFR may also play an 

important role in development of cardiovascular diseases, lung fibrosis and asthma, and 

Alzheimer’s disease.  The dependence on soluble ligand indicated by the requirement of 

metalloproteases from Prenzel et al. (117) reveals how indispensable shedding is and how 

regulation of this central process could be crucial.  ADAMs have been implicated in this 

shedding event through genetic and biochemical studies of TACE and ADAM10 knockout 

mice and in cell culture models, yet substrate specificity and enzymatic regulation are still 

not fully understood.  The evidence so far points to many different levels of regulation that 

could cooperate to control ADAM and ectodomain shedding.  Signaling molecules and 

pathways, such as calcium, ROS and MAPK, translate external ligand binding to ADAM 

activation by yet unknown mechanisms.  Other signals, such as those transmitted by PKC 

and Src-like kinases, may alter localization and protein interactions that regulate 

associations of enzyme with its substrate.  Still for all that has been discovered, 

contradictions remain and there remains much to learn.  Thus, refining and improving our 

understanding of ADAM regulation mechanisms is the current focus of this field with the 

hope that each advance in our knowledge of ADAM-dependent shedding brings us closer to 

understanding and development of novel treatments for any number of diseases. 
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Table 1.1  ADAM, Integrin Interactions 
 

ADAM Integrin Reference 
ADAM1 α9β1 77, 234 
ADAM2 α4β1, α6β1, α9β1 77, 234, 235 
ADAM3 α4β1, α6β1, α9β1 77, 234, 236 
ADAM7 α4β1, α4β7, α9β1 237 
ADAM8 α9β1 238 
ADAM9 α2β1, α3β1, α6β1, α6β4, 

α9β1, αvβ5 
82, 77, 239, 240, 241 

ADAM12 α4β1, α9β1, α3β1, α7β1, 
β1, β3 

77, 79, 81, 83, 242, 243, 
244 

ADAM15 α5β1, α9β1, αIIβ3, αvβ3 75, 76, 77, 245  
ADAM17 α5β1 80 
ADAM19 α4β1, α5β1 79 
ADAM23 αvβ3 246 
ADAM28 α4β1, α4β7, α9β1,  11, 237 
ADAM33 α4β1, α5β1, α9β1 79, 247 
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Table 1.2  Selected ADAM Protein Interactions 
 

ADAM Interacting Protein Identifying 
Technique 

Reference 

ADAM9 Enophilin-1 
Eve-1 
Fish  

MAD2β 
PACSIN3 

PKCδ 
SH3PXI 

Src 

Y2H, GST-pd 
tIP 
tIP 

Y2H, GST-PD 
Y2H 

FW, tIP 
Y2H, GST-PD 

FW 

248 
147 
167 
249 
143 
90 
248 
250 

ADAM10 Eve-1 
Lck 

MAD2 
PACSIN3 

tIP 
GST-PD 
GST-PD 

Y2H 

147 
145 
145 
143 

ADAM12 Abl 
Actinin-1 
Actinin-2 

Eve-1 
Fish 
Grb2 

MAD2β 
PACSIN3 
p85-PI3K 

PKCδ 
PKCε 
Yes 

GST-PD 
FW, GST-PD, tIP 
Y2H, GST-PD, tIP 

Y2H, tIP 
tIP 

GST-PD, eIP 
Y2H 

Y2H, GST-PD, tIP 
GST-PD, tIP 

Y2H 
eIP 

GST-PD 

146 
251 
252 
147 
167 
146 
249 
143 
144 
92 
168 
146 

ADAM15 Abl 
Endophilin-1 

Eve-1 
Fish 
Fyn 

Grb-2 
Hck 
Lck 

MAD2β 
PACSIN3 
SH3PX1 

Src 

GST-PD 
Y2H, GST-PD 

tIP 
tIP 

GST-PD 
GST-PD 

GST-PD, tIP, FW 
GST-PD, eIP, FW 

Y2H 
Y2H 

Y2H, GST-PD 
GST-PD 

145 
248 
147 
167 
145 
145 
145 
145 
249 
143 
248 
145 

ADAM17 ERK 
Eve-1 
MAD2 
NRDc 

PTPH1 
SAP97 

GST-PD, eIP 
tIP 

GST-PD 
tIP 

Y2H, GST-PD, tIP 
Y2H, GST-PD, eIP 

232 
147 
249 
148 
151 
150 

ADAM19 ArgBP1 
b-Cop 

Endophilin-1 
Fish 

PACSIN3 
Ubiquitin 

Y2H, GST-PD 
Y2H 
Y2H 

PD, GST-PD, tIP 
Y2H 
Y2H 

253 
253 
253 
167 
143 
253 

Technique key: eIP, endogenous immunoprecipitation; tIP, transfected immunoprecipitation; FW, far 

western; GST-PD, glutathione-S-transferase pulldown; PD, phage display; Y2H, yeast two-hybrid. 
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Figure 1.1  The EGF-Like Growth Factors.  Schematic of the seven EGF-like growth factors.  

Epidermal growth factor possesses an N-terminal extension consisting of eight EGF-like 

motifs (dashed lines).  All other N-terminal extensions are indicated by solid lines.  The N-

terminal cleavage sites are designated by black arrows, while the C-terminal cleavage sites 

are illustrated with grey arrows.  These polypeptide ligands begin as membrane anchored 

precursor proteins.  They all contain an approximately 50 amino acid receptor binding region 

that is folded into a three loop structure, formed by disulfide bonds between six conserved 

cysteines.  This region is found in the ectodomain of the protein, a short distance above the 

membrane. 
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Figure 1.1 
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Figure 1.2  ADAM Domain Sequence.  A schematic of disintegrin and metalloproteases 

(ADAMs) and their relationship to snake venom metalloproteases and matrix 

metalloproteases.  Note matrix metalloproteases may include domains such as hemopexin-

like and proline-rich regions that participate in substrate selection and protein interactions, 

C-terminal to the catalytic domain.  SP, signal peptide; Pro, prodomain; MP, 

metalloprotease; Dis, disintegrin; CRD, cysteine-rich domain; TM, transmembrane domain; 

Cyto, cytoplasmic domain. 
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Figure 1.2 
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Figure 1.3  Triple Membrane Passing Transactivation Pathway.  Paradigm for transactivation 

of EGFR following GPCR stimulation.  A GPCR agonist binds and stimulates G-protein 

signaling that eventually leads to the activation of ADAM metalloproteases, which is possibly 

dependent on the cytoplasmic domains of ADAMs.  The protease cleaves membrane 

anchored growth factors, which bind EGFR and initiate downstream signaling pathways 
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Figure 1.3 
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Chapter 2 
 
 
 
 

Purinergic GPCRs Utilize Mitochondrial ROS to Mediate TACE-Dependent TGF-α Shedding 
 
 
 
 
 
 
 
 
 

This work has been submitted to the American Society of Microbiology for publication in the 

journal Molecular and Cellular Biology.  Myers, T. J., Brennaman, L. H., Stevenson, M., 

Higashiyama, S., Russell, W. E., Lee, D. C. and Sunnarborg, S. W.  



This work was a collaborative effort.  I collected conditioned media for analysis by RIA 

following pretreatment with NAC in Table 2.1 and Figure 2.3, RT-PCR experiments for 

murine and CHO cells (Figures 2.2 and 2.4), all AP shedding assays in Figures 2.4 and 

2.5 along with measurements of ATP induced mitochondrial ROS in Figure 2.5.  All RIA 

media analysis was performed by Mary Stevenson under William E. Russell.  Detection 

of EGFR phosphorylation was performed by Susan Sunnarborg, while collection of 

conditioned media for RIA analysis in Figures 2.1, 2.2 and Table 2.1 were performed by 

Susan Sunnarborg and Leann Brennaman. 
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Abstract 

 

     EGFR transactivation by GPCRs has been shown to regulate many essential 

biological processes.  ADAM metalloprotease activity has been implicated as a key step 

in transactivation, yet the regulation mechanisms are not fully understood.  Here, we 

investigate the regulation of TGF-α shedding through the ATP-dependent activation of 

the P2Y family of GPCRs.  We report that ATP stimulates TGF-α proteolysis with 

concomitant EGFR activation and that this process requires ADAM17/TACE activity in 

both murine and CHO cells.  ATP-induced TGF-α shedding was independent of Src 

family kinases, PKC and MAPK signaling, but could be stimulated by a calcium 

ionophore.  Moreover, ATP-induced TGF-α shedding was completely inhibited by 

scavengers of reactive oxygen species (ROS) and stimulated by hydrogen peroxide, 

while stimulation with the calcium ionophore was partially inhibited by reduction of ROS 

in the cell.  We also found that the cytoplasmic NADPH oxidase complex was not 

required for ATP-induced shedding.  Instead, mitochondrial ROS production increased in 

response to ATP and mitochondrial oxidative complex activity was required to activate 

TACE-dependent shedding.  This study reveals the requirement for mitochondrial ROS 

in regulating GPCR-induced growth factor shedding. 
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Introduction 

   Epidermal growth factor receptor (EGFR) has long been recognized as a critical 

component of cellular signal transduction machinery (2).  The recent discovery of the 

essential role of EGFR in propagating signals generated by G-protein coupled receptor 

(GPCR) agonists indicates that EGFR may function as a central signal integration point 

for stimuli impacting the cell surface (59,120).  A wide variety of GPCR agonists, 

including lysophosphatidic acid (LPA), phenylephrine and carbachol, can harness EGFR 

to promote ERK activation leading to physiological and patho-physiological processes 

(95,101,114,180).  Until recently, GPCR crosstalk was thought to consist of entirely 

intracellular signaling pathways that led to EGFR phosphorylation, independent of ligand 

binding and dimerization.  However, elucidation of a rapid, metalloprotease-dependent 

growth factor cleavage step leading to EGFR activation (117) revealed the importance of 

regulated proteolysis in GPCR-EGFR transactivation.   

   The seven known members of the EGF family of growth factors, amphiregulin (AR), 

betacellulin, EGF, epigen, epiregulin, heparin-binding EGF (HB-EGF), and transforming 

growth factor alpha (TGF-α), are all initially synthesized as type I transmembrane 

precursors, containing the growth factor moiety in the ectodomain (19).  Several studies 

have demonstrated the biological activity of the non-cleavable, membrane anchored 

precursor molecules (48,49), but the metalloprotease dependence of transactivation, the 

loss of EGFR signaling in cells inhibited with metalloprotease inhibitors (133,190), and 

the convergence of phenotypes of growth factor, growth factor receptor and protease 

knockout models indicate that proteolytic cleavage of the growth factors is an important 

and regulatable step in most contexts (33, 34, 47, 110).   

   A variety of in vitro and in vivo evidence points to the ADAM family member Tumor 

Necrosis Factor Alpha Converting Enzyme (TACE/ADAM17) as the critical convertase 

for TGF-α, AR and HB-EGF.  ADAMs (A Disintegrin And Metalloprotease), along with 
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matrix metalloproteases, belong to the metzincin family of zinc-dependent proteases.  

When mice lacking active TACE were compared to TGF-α, AR and HB-EGF knockouts, 

they were found to share epidermal defects with homozygous TGF-α null mice (47), loss 

of mammary gland branching as in mice lacking AR (110), and heart and lung defects 

with HB-EGF -/- animals (33,34).  Fibroblasts derived from the TACE-deficient mice 

were impaired in shedding of TGF-α, HB-EGF and AR, but shedding could be partially 

rescued by transfection of wild type TACE into the cells (93,109).  In cell culture, 

knockdown of TACE expression can also have an inhibitory effect on growth factor-

dependent transactivation by LPA and angiotensin II stimulation (96,123).  The 

overlapping phenotypes of mice lacking these growth factors and those lacking 

TACE/ADAM17, along with the in vitro results, support a critical role for the soluble forms 

of the growth factors and highlight the importance of their proteolysis as a regulatory 

step.   

   Despite its presence at a critical signaling juncture, the regulation of ADAM 

metalloprotease activity is still not fully understood.  ADAMs are type I transmembrane 

proteins that possess an archetypal organization, including the metalloprotease and 

disintegrin domains along with a cytoplasmic domain often rich in SH3 binding sites that 

could potentially regulate ADAM inside-out signaling (59,61).  Recently, several signaling 

components have been implicated in GPCR-initiated TACE activation.  Src-like non 

receptor tyrosine kinases are accepted as intermediates in EGFR transactivation and 

have been found in association with several ADAMs leading to phosphorylation of ADAM 

cytoplasmic domains (61,115,166,191).  Elevation of intracellular calcium was also found 

to stimulate the release of ErbB ligands in an ADAM-dependent manner (89,102,123), 

while PKC is suspected to play a role in ADAM activation because of the ability of PMA 

to trigger PKC signaling and stimulated ectodomain shedding.  MAPK proteins have also 

been implicated both prior and subsequent to EGFR activation (114,117,152,158).  
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Lastly, reactive oxygen species (ROS) can function as a second messenger in response 

to G-protein signaling (189,192).  ROS has been shown to be necessary for Angiotensin 

II and endothelin-1 mediated TACE activation and HB-EGF shedding, possibly through 

direct modification of a cysteine that coordinates the binding of the inhibitory prodomain 

(123,185,189).  The wide variety of possible regulatory mechanisms suggests substrate- 

or cell type-specific pathways dependent on the stimulant, or intended signal effect.   

   In this study we characterize a P2Y-initiated pathway that, in response to ATP, 

stimulates TACE-dependent TGF-α proteolysis and EGFR phosphorylation, independent 

of Src, PKC and MAPK signaling.  We report for the first time the requirement for 

mitochondrially-derived ROS, whose production is stimulated by ATP, for regulation of 

GPCR-stimulated growth factor shedding.  Collectively these results offer a model that 

can be utilized to further our understanding of the activation mechanisms of TACE. 

 

Materials and Methods 

Materials – RC-20 antibody was purchased from Transduction Laboratories and MF9 

anti-human TGF-α came form Lab Vision Corporation.  The rabbit anti-EGFR, antibody, 

ERCT, was a generous gift from H.Shelton Earp (193).  Horseradish peroxidase-

conjugated secondary antibodies were from Roche Molecular Biochemicals.  Adenosine 

Triphosphate was purchased from Amersham.  N-Acetyl-L-Cysteine, rotenone and 

myxothiazol were from Sigma and all other chemicals were from Calbiochem. 

 

Cell Lines, Transfections, and Stable Clones – EC-4 (Tace+/+) and EC-2 (TaceΔZn/ΔZn) 

fibroblasts (88) and their derivatives were maintained in Dulbecco’s modified Eagle’s 

medium/F-12, 1% FBS with antibiotic.  Wild type and M2 CHO cells and their derivatives 

were maintained in Dulbecco’s modified Eagle’s medium, 10% FBS, 1x non-essential 

amino acids and antibiotic.  Transfections were performed using lipofectAMINE 
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(Invitrogen).  The human EGFR cDNA (194) was subcloned into modified pCEP4 

(Invitrogen) and stably expressed in all cell lines following selection with 800 μg/mL 

hygromycin B (Roche).  Alkaline phosphatase-tagged TGF-α (35) was kindly sent by Dr. 

Carl Blobel.  Stable expression of AP-TGF-α in wild type CHO cells was achieved by 

selecting clones in 500 μg/mL of G418 (Sigma).  For stable expression in M2 cells that 

had already been subjected to G418 selection, AP-TGF-α was subcloned into pcDNA 

3.1 Hygro vector (Invitrogen) using a PCR-generated fragment (Hind III-capped forward 

PCR primer 5’-AAGCTTGTTCTAGCGGCACCGC-3’; Kpn I capped reverse PCR primer 

5’-GGTACCCGTTCTTACAGCAAAAGGC-3’) and the TOPO cloning kit (Invitrogen).  

Stable clones were selected in 800 μg/mL hygromycin B. 

   

Harvesting, Immunoprecipitation and Western Blot Analysis – Confluent cells were 

washed twice in serum free medium (SFM) and then starved for 4 hours at 37 0C in 

SFM.  Following a 5 minute stimulation, conditioned media was collected and cells 

washed in phosphate buffered saline and lysed in 1% Triton X-100 50 mM Tris, pH 7.4, 

150 mM NaCl with 10 μg/mL leupeptin, 20 μg/mL aprotinin, 1 mM phenylmethylsulfonyl 

fluride, 2 μM sodium orthovanadate, 10 mM sodium fluoride and 5 mM sodium 

molybdate.  Protein concentration was determined with a BCA assay kit (Pierce).  For 

some experiments media was concentrated using Sep-Pak C-18 reverse phase 

cartridges (Waters) and TGF-α amounts in both lysates and media measured with a 

specific radioimmunoassay (RIA) (196).  For immunoprecipitations, equal amounts of 

protein were incubated for 30 minutes in primary antibody at 4 0C followed by rProtein 

Agarose G (Invitrogen) at 4 0C for 1 hour.  Beads were washed three times in 20 mM 

Tris, pH 7.5, 0.1 M NaCl, 0.1 mM EDTA, 0.1% Nonidet P-40 and protein was eluted in 

Laemmilli’s sample buffer.  Proteins were separated by SDS-PAGE and transferred to 

Immobilon polyvinylidene difluoride (Millipore).  Membranes were blocked in Tris-
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buffered saline, 0.1% Tween 20, 5% nonfat milk or 3% BSA for pTyr immunoblots.  

Bands were visualized using Pierce SuperSignal West Pico chemiluminescent system 

for autoradiography. 

 

Expression of P2Y Receptors by RT-PCR – RNA was extracted from wild type EC-4 or 

CHO cells grown in 10-cm dishes using RNeasy Mini Kit (Qiagen).  Total RNA was used 

to prepare cDNA with MMTV Reverse Transcriptase (Invitrogen).  PCR amplification 

used primers for mouse P2Y2 or P2Y4 corresponding to analogour regions to yield the 

same size products.  Primers for P2Y2, 5’-ACGGTGCTCTGCAAGCTGGTGC -3’; 5’-

GTAGAGGGTGCGCGTGACGTGG-3’; P2Y4, 5’-TACTACTATGCTGCCAGAAACCAC-

3’; 5’-AGCAAAGACAGTCAGCACCACAGC-‘3.  

 

Alkaline Phosphatase Assay – Cells were plated in 24-well dishes at a density of 2.5 x 

105 for 18 hours.  Cells were washed twice in SFM and starved in fresh SFM for 4 hours 

at 37 0C.  Vehichle (DMSO) or inhibitors were added directly to cells for 30 minutes: NAC 

5 mM, apocynin 1 mM, rotenone 25 μM, myxothiazol 1 μM.  After inhibition, media was 

changed to fresh SFM containing inhibitor and stimulant for 5 minutes.  Media was then 

collected, centrifuged for 30 minutes, 14,000 xg at 4 0C.  Media aliquots were mixed with 

an equal volume of 2x AP buffer (0.1 M glycine, 1 mM MgCl2 , 1 mM ZnCl2, 5.4 mM p-

nitrophenylphosphate) and allowed to develop at room temperature.  Absorbance at 405 

nm was measured to quantify alkaline phosphatase activity.   

 

Measurement of Mitochondrial ROS – Cells were plated in 24-well dishes at a density of 

2.5 x 105 for 18 hours.  Cells were washed twice in SFM and starved in fresh SFM for 4 

hours at 37 0C.  Cells were loaded with 250 nM reduced MitoTracker Red (MTR) 

(Molecular Probes) for 15 minutes at 37 0C away from direct light.  Media was aspirated 
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and cells washed twice in phenol free serum free media supplemented with 2 mM L-

glutamine and left in washing media.  Cells were then stimulated for 5 minutes and 

excited at 544 nm and emission detected at 612 nm. 

 

Statistical Analysis – Statistical analysis was performed with assistance from the UNC 

Lineberger Comprehensive Cancer Center’s Biostatistics Shared Resources Group 

using the Wilcoxon rank sum test for pairwise group comparisons. 

    

 

 

Results 

   In order to study the regulation of proteolytic growth factor cleavage induced by GPCR 

stimulation, we chose TACE/ADAM17 cleavage of proTGF-α as a model system.  

Stimulation of EC-4 transformed fibroblasts stably expressing EGFR with the purinergic 

receptor agonist ATP led to the phosphorylation of receptor, as did treatment with 

exogenous EGF (Figure 2.1A).  Therefore, these cells possess the endogenous 

components to accomplish GPCR-induced EGFR transactivation.  

   Since EC-4 cells constitutively release low levels of TGF-α (109), we asked if ATP 

stimulation would lead to rapid release of soluble TGF-α.  ATP stimulates the murine 

purinergic P2Y2 and P2Y4 receptors with an EC50 of 100 μM (195).  Using a highly 

specific TGF-α radioimmunoassay (RIA) (196), we detected a greater than 2-fold 

increase in endogenous TGF-α shedding 5 minutes after addition of 100μM ATP (Figure 

2.1B).  The effect of ATP was not dependent on hydrolysis, as indicated by comparable 

results with the non-cleavable ATP analog, ATPγS and was comparable to shedding 

induced by the known EGFR transactivator, thrombin.  These results indicate that GPCR 
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stimulation via purinergic receptors leads to rapid release of soluble TGF-α and EGFR 

transactivation. 

   The paradigm for GPCR-induced EGFR transactivation requires a metalloprotease-

dependent growth factor cleavage step (117).  We verified the dependence on 

metalloprotease activity in this model system by treating cells with the metalloprotease 

inhibitor TAPI-2.  In the presence of inhibitor, ATP transactivation of EGFR was 

abolished, while EGF was still able to activate the receptor (Figure 2.2A).  Therefore, 

purinergic stimulation of EGFR requires metalloprotease activity.   

   In astrocytoma cells, ATP stimulated the release of amyloid precursor protein through 

P2Y2 receptors by activating both ADAM10 and TACE (197).  In our system, ATP 

stimulated TGF-α release, and as proTGF-α does not appear to be a substrate for 

ADAM10 (89,93), we hypothesized that TACE was responsible for the ATP-induced 

TGF-α release and EGFR transactivation that we have observed.  To test this 

hypothesis, we used TACE-deficient EC-2  fibroblasts (88) stably expressing EGFR.  

While EGF activated its receptor in wild-type and TACE-deficient cells, ATP was unable 

to stimulate phosphorylation of EGFR in the EC-2 cells compared to the wild type EC-4 

cells (Figure 2.2B).  Similar to our previous observations for constitutive shedding (109), 

induction of TGF-α release by treatment with 100 μM ATP was abolished in the absence 

of TACE (Figure 2.2C).  To ensure that the lack of TGF-α shedding in EC-2 cells was not 

attributable to a defect in coupling of purinergic receptors to downstream signaling, we 

monitored inositol phosphate metabolism following ATP stimulation.  EC-2 and EC-4 

cells incorporated comparable levels of 3H-inositol in response to 100 μM ATP and UTP 

(data not shown).  Thus, TACE is the crucial protease responsible for ATP-induced TGF-

α shedding in mouse fibroblasts. 
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   We also wished to determine the purinergic receptor subtype responsible for this 

shedding event.  ATP and UTP stimulated the same level of 3H -inositol incorporation 

over a range of concentrations (data not shown), a response indicative of mouse P2Y2 or 

P2Y4 receptors.  Semi-quantitative reverse transcriptase-PCR on RNA from EC mouse 

fibroblasts revealed expression of both receptor subtypes (Figure 2.2D), with higher 

levels of P2Y2 present.  Therefore, both receptors may contribute to the ATP response in 

our cell model. 

   In order to elucidate the regulatory steps of TACE-dependent shedding, we used 

chemical inhibitors to ask which pathways contributed to the release of TGF-α following 

ATP stimulation in EC-4 cells.  Pathways involving the protein kinase C family, calcium, 

and src-family non-receptor tyrosine kinases have been implicated in shedding of a 

number of EGF family members, including GPCR-induced shedding 

(89,90,102,115,164,177).  As shown in Table 2.1, reagents that target these pathways, 

including the broad spectrum PKC inhibitor bisindolylmaleimide (BIM-1), intracellular 

calcium chelator BAPTA-AM, as well as the Src family inhibitor PP2, showed no 

significant inhibition of ATP-stimulated TGF-α shedding. MAPK pathways have also 

been associated with growth factor shedding following stress or other stimuli 

(152,153,156,158,188).  However, we observed no inhibition of TGF-α release when 

ERK activity was blocked, or with either of two inhibitors of p38 MAPK signaling. This 

indicates use of an alternative route for purinergic signaling.  

   Studies of ADAM regulation, and specifically TACE, have recently focused on the 

ability of reactive oxygen species (ROS) to act as a signaling intermediate.  In vitro 

experiments have shown that hydrogen peroxide can lead to TACE activation and 

shedding of both HB-EGF and TGF-α (179,180,198).  ROS have also been found to act 

downstream of the angiotensin II receptor and P2Y purinergic receptors (123,199,200).  

We therefore hypothesized that ROS may also play a role in ATP-induced TGF-α 
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shedding.  To test this prediction, we treated mouse fibroblasts with the ROS scavenger 

N-Acetyl-L-Cysteine (NAC).  Shedding of TGF-α was dramatically reduced in the 

presence of NAC, pointing to a significant role for ROS in the regulation of TGF-α 

shedding (Table 2.1, Figure 2.3).   

   Further investigation of the source and role of ROS in the activation of TGF-α shedding 

required an assay system with high-throughput capabilities.  Alkaline phosphatase-

tagged EGF-like growth factors are an established method of monitoring the growth 

factor cleavage by quantifying alkaline phosphatase activity in conditioned media 

(35,89,93,147,152,156).  To facilitate transfection and culturing, we shifted our cell 

model to Chinese Hamster Ovary cells (CHO), which have been used previously to 

study the regulation of growth factor shedding (156,201).  While lacking endogenous 

EGF- family growth factors, they express TACE (201,202), and have been reported to 

respond to purinergic stimulation (203).  Reverse transcriptase-PCR of CHO RNA 

revealed strong expression of P2Y2, although P2Y4 was undetectable even with elevated 

cycle numbers (Figure 2.4A).  Thus, CHO cells should provide a suitable model for 

further study of GPCR-induced TGF-α shedding. 

   To test the cells and assay system we prepared wild type CHO clones that stably 

express alkaline phosphatase-tagged TGF-α (AP-TGF-α) or empty vector (35).  We next 

determined the effect of ATP on AP-TGF-α shedding.  As in mouse cells, a 5 minute 

stimulation with 100 μM ATP caused a significant increase of alkaline phosphatase 

activity in the media compared to mock stimulation (Figure 2.4B).  Metalloprotease-

dependence was verified for ATP-induced shedding by pre-treatment of the cells with 

TAPI-2.  When these cells were stimulated with water or ATP, shedding was almost 

completely abrogated (Figure 2.4B).  We next confirmed that TACE was responsible for 

AP-TGF-α shedding in CHO cells by using M2 CHO cells that carry mutations in each 

TACE allele that prohibits TACE activity (201,202).  Following ATP treatment, alkaline 
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phosphatase activity was negligible in M2-APT cells stably expressing AP-TGF-α, 

compared to wild type cells (Figure 2.4D).  These results confirm the presence of a 

P2Y2-TACE-TGF-α pathway in CHO cells.    

   We then tested the requirement for ROS signaling in the CHO cell model.  Hydrogen 

peroxide stimulated a greater than 2-fold increase in shedding over basal levels (Figure 

2.4B).  This ROS-induced increase in shedding was also dependent on metalloprotease 

activity since the inhibitor TAPI-2 prevented shedding (Figure 2.4B).  When the cells 

were pre-incubated with the scavenger NAC, ATP-induced shedding was completely lost 

as seen in the EC-4 cells (Figure 2.4C).  Thus, ROS regulation of TGF-α shedding 

appears to be a conserved pathway of P2Y receptor activation.   

   Calcium is a common signaling molecule utilized by GPCRs, especially P2Y receptors.  

Calcium has also been demonstrated to play a role in other shedding and transactivation 

studies.  We therefore tested for calcium in our pathway using a calcium ionophore, 

A23187, which mimics extracellular calcium influx by coupling to and transporting 

extracellular calcium across the membrane.  Stimulation with the calcium ionophore 

A23187 led to a significant increase in shedding over control levels (Figure 2.4E).  

A23187-induced shedding was mainly dependent on TACE activity, as shedding was 

markedly reduced in the TACE deficient M2-APT CHO cells (Figure 2.4D).  A23187-

stimulated shedding was also partially inhibited by the ROS scavenger, NAC, in wild 

type CHO-APT cells (Figure 2.4E).  These data suggest that extracellular calcium influx 

can function upstream of ROS to activate TACE-dependent shedding, but can also 

stimulate a lesser ROS and TACE independent shedding pathway.  

   Several sources of ROS exist within non-phagocytic cells, including the cytoplasmically 

bound NADPH oxidase, the mitochondrial electron transport chain, nitric oxide and 

several other oxidases (178).  In most non-phagocytic cells the NADPH oxidase 

produces the majority of cytoplasmic superoxide, which is then rapidly dismutated into 
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hydrogen peroxide (187).  To test whether the ROS required for TGF-α shedding is 

dependent on NADPH oxidase activity, we treated CHO-APT cells with apocynin, which 

blocks formation of the complete NADPH oxidase complex, thus blocking ROS 

production by this complex.  CHO cells pre-incubated with 1 mM apocynin and then 

stimulated with water, or ATP, showed no signs of inhibition (Figure 2.5A).  Comparable 

results were obtained using a range of concentrations as low as 30 μM (data not shown).  

Because several reports present evidence of a role for the NADPH oxidase in GPCR 

transactivation of EGFR (100,179,180,183,204), we also tested apocynin on 

endogenous TGF-α shedding from EC-4 mouse fibroblasts (data not shown). In 

fibroblasts as well, apocynin had no effect on ATP-stimulated TGF-α shedding, 

indicating an NADPH-oxidase independent mechanism of ROS production.  

   The electron transport chain of the mitochondrion is another major source of cellular 

ROS in cells.  To determine if the mitochondrially-derived ROS contributes to the 

regulation of TGF-α shedding, we examined two independent inhibitors of the electron 

transport chain: rotenone, which inhibits transfer of electrons from iron-sulfer centers to 

ubiquinone in Complex I, and myxothiazol, which inhibits transfer of electrons between 

cytochrome b and cytochrome c1 in Complex III.  Treatment with myxothiazol had no 

effect on basal shedding, but partially inhibited ATP-induced shedding.  A consistent 

30% decrease was measured compared to ATP alone (Figure 2.5B).  Likewise, 

rotenone, did not affect basal shedding, but it inhibited ATP-stimulated of TGF-α 

shedding by more than 65% (Figure 2.5C).  Individually these inhibitors were unable to 

inhibit shedding to the same extent as the scavenger NAC.  However, when used in 

tandem, rotenone and myxothiazol reduced shedding as efficiently as NAC (Figure 

2.5D).  These results strongly suggest that ROS produced in combination from 

mitochondrial Complex I and Complex III are an essential component of the signaling 

pathway for GPCR-induced TGF-α shedding.   
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   To determine whether ATP signaling generated increased levels of mitochondrial ROS 

we directly measured ROS using the CM-H2XRos MitoTracker Red.  This fluorescent 

dye is specifically sequestered in mitochondria and remains non-fluorescent until 

oxidized.  Cells stimulated with ATP displayed a significant, rapid increase in fluorescent 

intensity over control cells, as measured by a fluorescent platereader (Figure 2.5E).  

This increase in ROS-dependent fluorescence was inhibited by pretreatment with the 

combination of mitochondrial inhibitors rotenone and myxothiazol.  Taken together, 

these results indicate that ATP-induced signaling pathways can induce production of 

ROS from mitochondria oxidative complexes, which is an essential step in regulating 

TGF-α shedding. 

 

 

 

Discussion  

   Transactivation of EGFR via GPCR signaling has emerged as an important event for 

signal integration and amplification in many biologically essential processes, and 

typically requires a metalloprotease-mediated growth factor cleavage event (59,120).  

This study examines a transactivation pathway from the P2Y family of GPCRs that 

utilizes ADAM17/TACE metalloprotease activity to cleave TGF-α, followed by activation 

of EGFR.  Our goal was to further elucidate the signaling events leading to TACE-

mediated growth factor cleavage following stimulation with GPCR agonists.  We report 

here the first observation of mitochondrially produced ROS as a critical step in regulated 

growth factor proteolysis. 

   Extracellular nucleotides, such as ATP, are released from many cell types in response 

to stress, mechanical or biochemical stimulation (205) and can function as a paracrine 

signal for the P2Y family of purinergic receptors.  In this study we identified a P2Y-
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dependent pathway leading to TGF-α shedding and transactivation of EGFR.  More 

prominent expression of P2Y2 in mouse cells along with the lack of detectable P2Y4 

expression in CHO cells suggests a favored role for the P2Y2 subtype in this 

transactivation pathway.  P2Y2 receptors have been previously linked to EGFR 

transactivation in PC12 cells and rat fibroblasts (206,207), consistent with the ability of 

P2Y2 receptors to stimulate proliferation of epidermal keratinocytes (208) and smooth 

muscle cells (209).  P2Y2 receptors are also important for regulating ion channel function 

in epithelial cells (205).  Activation of P2Y2 can promote mucin release in airway cells, an 

event that has also been tied to TACE-dependent TGF-α shedding and EGFR 

transactivation (210,211).  Thus, elucidation of the mechanisms responsible for 

regulating EGFR transactivation pathways could have important physiological and 

therapeutic implications.  

   A recent study showed that ATP stimulation through P2Y2 receptors led to both 

ADAM10 and TACE metalloprotease activity towards amyloid precursor protein in 

astrocytoma cells (197).  Here, we show that ATP stimulated TACE-dependent TGF-α 

shedding in mouse fibroblasts, consistent with previous evidence for TACE as the major 

constitutive and PMA-stimulated TGF-α sheddase (47,89,93,109,128). A variety of 

studies have implicated roles for other ADAM proteases in TGF-α processing under 

specific conditions (89,96,201,212); however, the lack of TGF-α release and of EGFR 

transactivation in TACE-deficient cells indicates that TACE is the predominant TGF-α 

sheddase in this transactivation model as well. 

   In this study, we undertook a further examination of the signaling pathways leading to 

TACE activity.  Reactive oxygen species (ROS) have recently gained attention as 

second messengers in GPCR signaling pathways (213).  P2Y family receptors have 

been specifically linked to ROS production in eosinophils and prostate tumor cells 

(200,214).  Here we use the ROS scavenger N-acetyl-cysteine to establish a critical role 
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for ROS in P2Y receptor-dependent TGF-α shedding.  Other studies have implicated 

ROS in EGFR transactivation initiated via other GPCRs (180,183,215).  These 

observations are also consistent with reports that exogenous hydrogen peroxide 

stimulated the shedding of TGF-α and other EGF family members such as HB-EGF, 

amphiregulin, and betacellulin (100,152,179,181,183).   

   The cytoplasmic NADPH oxidase (Nox) complex, which assembles at the plasma 

membrane following cell stimulation, has been implicated as the main source of ROS in 

EGFR transactivation pathways stimulated by angiotensin II, phenylephrine, endothelin-

1 and tobacco smoke (100,180,183,204).  We investigated the involvement of the Nox 

complex in our system by using the Nox inhibitor apocynin, which directly blocks 

formation of the Nox complex.  We observed that at apocynin concentrations ranging 

from 30 μM up to 1 mM, ATP-induced TGF-α shedding was unaffected, ruling out the 

NADPH oxidase complex in this pathway.     

   To further examine the source of ROS for regulation of P2Y dependent TGF-α 

shedding, we used specific inhibitors of Complex I and Complex III of the mitochondrial 

electron transport chain to gauge the contributions of mitochondrial ROS.  The inhibitors 

myxothiazol and rotenone partially decreased shedding when used individually, but 

when used together inhibited fully, as did the general ROS scavenger NAC, indicating 

that the functional ROS generation in this pathway can be entirely attributed to 

mitochondrial sources.  Mitochondrial ROS have been implicated in aging and cell fate, 

cell responses to hypoxia and many aspects of cardiovascular remodeling and disease 

(216), as well as in hydrogen peroxide-induced EGFR activation (217) and as a 

downstream signal of EGFR (218-220).  Here, we present evidence here for 

mitochondrial ROS as a signaling intermediate for regulation of P2Y-induced, TACE-

dependent growth factor shedding.  This novel observation of mitochondrial ROS in 
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regulating shedding reveals another possible mechanism that cells may use to generate 

specificity.   

   ROS-induced TACE shedding may also involve other signaling molecules that have 

been previously implicated in EGFR transactivation.  Increases in intracellular calcium 

concentrations is a well-characterized result of GPCR activation (224) and has been 

shown to stimulate ROS production (123,199,200,204,223).  In our system, a calcium 

chelator had no effect on media TGF-α levels following ATP stimulation, indicating that 

an increase in calcium may not be a requirement for shedding, though it has been 

implicated in other P2Y2-dependent events (199).  However, a calcium ionophore did 

stimulate shedding that was largely dependent on TACE activity and was partially 

inhibited by the ROS scavenger NAC.  Since the ionophore A23187 has been shown in 

CHO BQ1 cells to induce higher levels of extracellular calcium influx than with the 

physiological ATP event (255) it may be that ionophore-induced calcium levels led to 

mitochondrial ROS production in our system.  This is consistent with reports 

demonstrating ATP, AngII and lysophosphatidylcholine stimulation of extracellular 

calcium influx and subsequent increases in ROS (123,199,200,204,223), though more 

work will be required to establish a role for calcium as a physiological, intermediate in 

ATP-induced mitochondrial ROS production.  The Ca2+-ionophore-induced residual 

shedding seen in M2 and NAC-treated wild type CHO cells may indicate a ROS- and 

TACE- independent shedding event, like that shown in mouse cells lacking functional 

TACE (89).  Taken together, these observations hint at the complexity of regulating 

specific downstream circuits following receptor stimulation.  

   PKC has been widely implicated in regulation of ectodomain shedding based on the 

well-established ability of phorbol esters to stimulate TACE-dependent TGF-α shedding 

(89,93,155).  A previous report implicated the PKC-δ isoform in regulating stimulated 

shedding of HB-EGF (90).  Inhibition of PKC with bisindolylmaleimide-1 (BIM-1, 
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GF190203X) did not affect ATP-stimulated TGF-α release in our system.  PKC has also 

been positioned upstream of Nox-dependent ROS production following PMA, 

lysophosphatidylcholine and ATP, but not angiotensin II stimulation (179,198,199,222).  

However, it may be that this pathway does not function in regulating the shedding 

response to GPCR stimulation.       

   Src family kinases have also been implicated in several GPCR-mediated 

transactivation cascades upstream of growth factor shedding, including the direct 

association of Src with TACE, that led to TACE phosphorylation and increased shedding 

of AR (166).  Other examples of P2Y2 transactivation of EGFR have demonstrated a role 

for Src including direct association with P2Y2 receptors via SH3 motifs (225).  There is 

also evidence suggesting ROS may modulate Src function in transactivation schemes 

(188,204).  In contrast, Camden et al. (197) demonstrated Src-independent activation of 

TACE and ADAM10 following ATP stimulation.  We show here that activation of TGF-α 

shedding is independent of the Src family members Src, Fyn, Hck and Lck.  This further 

underscores the selective use of available regulatory pathways for particular 

physiological events.  

   In summary, we present evidence for the first time of regulation of ATP-stimulated, 

TACE-dependent shedding of TGF-α regulated by mitochondrially derived ROS.  The 

discovery of a second source of ROS for the activation of TACE-dependent shedding 

reveals the necessary complexity of signaling that could define specificity in EGFR 

transactivation.   
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Table I   
ATP-Stimulated TGF-α Shedding Uniquely Requires ROS 
 
 
 

Inhibitor         Target               TGF-α Shedding 
PP2 Lck, fyn, hck + 
BIM-I PKC + 

BAPTA Ca2+ Chelator + 
SB202190 p38 + 
SB203580 p38 + 

U0126 MEK + 
N-Acetyl-Cysteine ROS -- 

 
       
Four replicates of EC-4 cells were pretreated for 30 minutes with the following concentration 

of inhibitors: 10 μM PP2; 20 nM BIM-I; 10 μM BAPTA; 10 μM SB202190; 10 μM SB203580; 

5 μM U0126; 5mM NAC; or vehicle (DMSO).  Following five minute stimulation with 100 μM 

ATP, conditioned media was collected and analyzed for TGF-α using a radio-immunoassay 

(196).  TGF-α levels were compared to mock inhibited samples treated with ATP.  Results 

are the average of a minimum of two experiments with at least three replicates.   
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Figure 2.1  GPCR stimulation induces EGFR transactivation and TGF-α shedding.  (A) EC-

4 EGFR cells were serum starved for 4 hours and treated with vehicle, 100 ng/mL EGF or 

100 μM ATP for 5 minutes.  EGFR was immunoprecipitated from cell lysates and 

immunoblotted with anti-phosphotyrosine antibodies.  Representative results from three 

separate experiments are shown.  (B) EC-4 cells were serum starved for 4 hours, then 

stimulated for 5 minutes with vehicle, 100 μM ATP, 100 μM ATPγS or 2 Units/mL mouse 

thrombin (Thr).  Media and lysates were harvested and concentrated as described in 

Materials and Methods, and analyzed for TGF-α content by specific RIA.  Data is presented 

as picograms of TGF-α in conditioned media per milligram of total lysate from three separate 

experiments with at least three replicates.  *, p < 0.02 as compared to the control. 
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Figure 2.2  ADAM17/TACE is required for P2Y GPCR-stimulated TGF-α shedding and 

EGFR transactivation.  EC-4 EGFR cells were serum starved for 4 hours and pretreated with 

vehicle, or 50 μM TAPI-2 for 15 minutes where indicated.  Cells were then stimulated with 

vehicle, 100 ng/mL EGF, or 100 μM ATP for 5 minutes.  EGFR was immunoprecipitated 

from cell lysates and immunoblotted with anti-phosphotyrosine antibodies.  Representative 

results of three separate experiments are shown.  (B) EC-4 EGFR or EC-2 (TaceΔZn/ΔZn) 

EGFR cells were serum starved for 4 hours then treated with vehicle, 100 ng/mL EGF, or 

100 μM ATP for 5 minutes.  EGFR was immunoprecipitated from cell lysates and 

immunoblotted with anti-phosphotyrosine antibodies.  Representative results of three 

separate experiments are shown.  (C) EC-4 and EC-2 cells were serum starved for 4 hours 

then stimulated for 5 minutes with vehicle, or 100 μM ATP.  Media and lysates were 

harvested and concentrated as described in Materials and Methods, and analyzed for TGF-

α content by specific RIA.  Data is presented as picograms of TGF-α in conditioned media 

per milligram of total lysate from three separate experiments with at least three replicates.  *, 

p < 0.05 as compared to the control. (D) Total RNA from EC-4 cells was subjected to first 

strand cDNA synthesis with, or without, reverse transcriptase and amplified for 28 cycles to 

detect the expression of P2Y2 and P2Y4 receptors. 
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Figure 2.3  ROS mediate ATP-induced TGF-α shedding.  EC-4 cells were serum starved for 

4 hours then pretreated with vehicle, or 5 mM NAC for 30 minutes.  Cells were then 

stimulated for 5 minutes with vehicle, or 100 μM ATP.  Media and lysates were harvested 

and concentrated as described in Materials and Methods, and analyzed for TGF-α content 

by specific RIA.  Data is presented as picograms of TGF-α in conditioned media per 

milligram of total lysate from three separate experiments with at least three replicates.  *, p < 

0.001 as compared to the stimulated control. 

 

64



- +- +ATP:

NAC: - +- +

0

50

100

150

200

250

300

350

400

pg
 T

G
Fα

/m
g 

pr
ot

ei
n

∗

Figure 2.3

65



Figure 2.4  CHO cells demonstrate P2Y2-TACE-TGF-α shedding.  (A) Total RNA from CHO 

cells was subjected to first strand cDNA synthesis with, or without, reverse transcriptase and 

amplified over 28 cycles to detect the expression of P2Y2 and P2Y4 receptors.  Comparable 

sized products are expected as seen in Figure 2.2D.  (B) CHO-APT cells were serum 

starved for 4 hours and pretreated with vehicle, or 25 μM TAPI-2 for 30 minutes where 

indicated.  Cells were then stimulated for 5 minutes with vehicle, 100 μM ATP, or 30 μM 

hydrogen peroxide (HP).  Media was collected and analyzed for alkaline phosphatase 

activity.  Results are an average of three separate experiments with at least three replicates.  

Alkaline phosphatase activity is presented relative to the unstimulated control.  *, p < 0.001 

as compared to control.  (C) CHO-APT cells were serum starved for 4 hours and pretreated 

with vehicle, or 5 mM NAC for 30 minutes.  Cells were then stimulated for 5 minutes with 

vehicle, or 100 μM ATP.  Media was collected and analyzed for alkaline phosphatase 

activity.  Results are an average of three separate experiments with at least 3 replicates.  

Alkaline phosphatase activity is presented relative to the unstimulated control.  *, p < 0.001 

as compared to stimulated control.  (D) Mutant M2 CHO-APT clones, which lack functional 

TACE, were serum starved for 4 hours.  Cells were then stimulated for 5 minutes with 

vehicle, 100 μM ATP, or 10 μM of the calcium ionophore A23187 (A23).  Media was 

collected and analyzed for alkaline phosphatase activity.  Results are an average of three 

separate experiments with at least 3 replicates.  Alkaline phosphatase activity is presented 

relative to the unstimulated control.  (E)  Wild type CHO-APT cells were serum starved for 4 

hours and pretreated with vehicle, or 5 mM NAC for 30 minutes.  Cells were then stimulated 

for 5 minutes with vehicle, 100 μM ATP, or 10 μM A23187.  Media was collected and 

analyzed for alkaline phosphatase activity.  Results are an average of three separate 

experiments with at least 3 replicates.  Alkaline phosphatase activity is presented relative to 

the unstimulated control.  *, p < 0.002 as compared to A23187 stimulated control. 
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Figure 2.5  Mitochondrially-derived ROS is required for ATP-induced TGF-α shedding.  (A) 

CHO-APT cells were serum starved for 4 hours and pretreated with DMSO, or 1 mM 

apocynin for 30 minutes.  Cells were then stimulated for 5 minutes with vehicle, or 100 μM 

ATP.  Media was collected and analyzed for alkaline phosphatase activity.  Results are an 

average of three separate experiments with at least 3 replicates.  Alkaline phosphatase 

activity is presented relative to the unstimulated control.  (B) CHO-APT cells were serum 

starved for 4 hours and pretreated with DMSO, or 1 μM myxothiazol for 30 minutes.  Cells 

were then stimulated for 5 minutes with vehicle, or 100 μM ATP.  Media was collected and 

analyzed for alkaline phosphatase activity. Results are an average of three separate 

experiments with at least 3 replicates.  Alkaline phosphatase activity is presented relative to 

the unstimulated control.  *, p < 0.001 as compared to stimulated control.  (C) CHO-APT 

cells were serum starved for 4 hours and pretreated with DMSO, or 25 μM rotenone for 30 

minutes.  Cells were then stimulated for 5 minutes with vehicle, or 100 μM ATP.  Media was 

collected and analyzed for alkaline phosphatase activity.  Results are an average of three 

separate experiments with at least 3 replicates.  Alkaline phosphatase activity is presented 

relative to the unstimulated control.  *, p < 0.001 as compared to stimulated control.  (D) 

CHO-APT cells were serum starved for 4 hours and pretreated with DMSO, 5 mM NAC, or 

1μM myxothiazol and 25 μM rotenone for 30 minutes.  Cells were then stimulated for 5 

minutes with vehicle, or 100 μM ATP.  Media was collected and analyzed for alkaline 

phosphatase activity.  All Alkaline Phosphatase assays are an average of three separate 

experiments with at least three replicates and presented relative to the unstimulated control 

samples.  *, p < 0.001 as compared to stimulated control.  (E) CHO cells were serum 

starved for 4 hours then pre-treated with vehicle, or 1 μM myxothiazol and 25 μM rotenone 

for 30 minutes.  During pre-treatment, cells were also loaded with 250 nM MitoTracker Red 

and treated as described in Materials and Methods.  Cells were stimulated with vehicle, or 

100 μM ATP.  Data represents three separate experiments of at least 4 replicates relative to 
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the unstimulated control.  *, p < 0.03 as compared to the unstimulated control.  †, p < 0.001 

as compared to the stimulated control.     
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Chapter 3 
 
 
 
 

Discussion 
 



   The work presented here describes the characterization of a transactivation pathway 

consisting of purinergic G-protein coupled receptors (GPCRs) mediating the protease 

activity of TACE for TGF-α shedding and activation of EGFR signaling modules.  This 

transactivation pathway offers a physiologically relevant model to examine the mechanism 

of TACE regulation of EGF-like growth factor shedding.  I present evidence that 

mitochondrial ROS is a previously unrecognized source of ROS for the regulation of TACE-

dependent P2Y-induced shedding.  This pathway is also independent of the previously 

reported signaling intermediates Src, PKC, MAPK and intracellular calcium stores.   

 

TACE mediates P2Y-stimulated TGF-α Shedding 

   EGF-like growth factor shedding by a zinc-dependent metalloprotease is necessary for 

GPCR-stimulated EGFR transactivation.  Multiple metalloproteases have been implicated in 

this critical growth factor shedding step and specifically in TGF-α shedding (89,212,226).  

P2Y2 receptors were recently shown to activate ADAM10 and TACE activity towards 

amyloid precursor protein in astrocytoma cells (197).  To identify the metalloprotease 

responsible for P2Y-initiated TGF-α shedding and activation of EGFR, we tested TACE-

deficient cells for their ability to transactivate EGFR following ATP stimulation.  EGFR 

phosphorylation was detected after the addition of exogenous EGF, however without 

functional TACE, ATP-induced EGFR activation was not detected.  Furthermore, when we 

directly assessed ATP-induced TGF-α shedding in TACE-deficient murine cells, almost all 

shedding was lost.  We also demonstrated a requirement for TACE in TGF-α shedding from 

CHO cells using cells carrying point mutations in each TACE allele that disrupts either 

function, or folding (M2 cells) (201,202).  We showed a complete loss of TGF-α shedding in 

response to ATP stimulation in M2 cells, yet when TACE was transiently expressed in the 

M2 cells, shedding was partially restored, though not to the same extent as in wild type cells 

due to expression of TACE in a small population of cells (data not shown).  These results 
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demonstrate TACE as the major protease required for TGF-α shedding after P2Y receptor 

stimulation and confirm previous results from our lab, and many others, that TACE is the 

major sheddase for TGF-α, along with the other EGFR ligands, AR, HB-EGF, EPI and EPR 

(33,34,47,89,93,109-111,128).  The loss of EGFR transactivation in cells inhibited with 

metalloprotease inhibitor, or lacking functional TACE, also underscores the necessity of 

proteolytic processing of EGFR ligands in this pathway. 

         

P2Y Family Receptors Transactivate EGFR 

   The P2Y family of receptors binds extracellular nucleotides as hormone ligands; these 

nucleotides are released from millimolar intracellular stores in response to stress and 

stimulation (205).  The P2Y2 and P2Y4 receptors specifically respond to ATP, or UTP, while 

other P2Y receptors utilize GTP, ADP and/or UTP.  P2Y2 and P2Y4 receptors are expressed 

in muscle (smooth muscle cells), heart (cardiomyocytes), brain (astrocytes and 

astrocytomas), spleen and lung, among other tissues (205).  We show by semi-quantatative 

RT-PCR that P2Y2 receptors have elevated expression over P2Y4 receptors in murine 

fibroblast cells and confirm that CHO cells also express P2Y2, but lack P2Y4 expression; 

given the presence of an intact transactivation loop in both cell types, this suggests a 

prominent role for P2Y2 receptors as the initiator of ATP-induced EGFR transactivation.  

However, we cannot exclude a contribution by low-abundance P2Y4 receptors in the mouse 

cell line.   

   Our work reveals an alternative model to the Src-dependent intracellular signaling in P2Y-

stimulated EGFR transactivation pathways.  P2Y2 receptors have been established as 

transactivators of EGFR in rat fibroblasts, PC12 and astrocytoma cells, activating the MAPK 

pathways through EGFR-dependent signaling (206,207,225).  P2Y2–induced transactivation 

was shown to require both, intracellular calcium and PKC-dependent activation of the kinase 

CADTK (RAFTK, PYK2) for activation of EGFR in PC12 cells (206,207).  P2Y2 –dependent 
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transactivation was later shown to involve Src-dependent association between EGFR and 

P2Y2 receptors in astrocytoma cells (225).  Src can also directly phosphorylate EGFR and 

EGFR-binding proteins Shc and Grb2 (159,227), suggesting a ligand-independent activation 

model.  We examined the role of the triple membrane passing model for P2Y transactivation 

of EGFR (114).  This model was first described by Prenzel et al. (117) and utilizes 

metalloprotease activity to activate EGFR in a ligand dependent manner.  Indeed, growth 

factor shedding was increased in response to ATP and protease activity was required for 

EGFR activation.  Due to the previous emphasis on Src as an intermediate in GPCR-EGFR 

transactivation pathways, we used inhibitors to demonstrate that this pathway was 

independent of Src family tyrosine kinases.  The existence of two distinct pathways for 

EGFR transactivation, one independent and one dependent on Src activity, could allow for 

increased signal module specificity.  This idea is supported by the report that CADTK and 

Src combine to transactivate EGFR by direct phosphorylation following GPCR stimulation, 

but are not required for activation of MAPK pathways upon EGFR activation by LPA in 

mouse embryonic fibroblasts (163).  Taken together, these reports, and our work, suggest 

that EGF-like growth factor binding could be key to activating EGFR-dependent MAPK 

pathways following GPCR stimulation complementing Src-activated EGFR downstream 

pathways. 

 

Activation of TACE-mediated TGF-α Shedding Requires Mitochondrial ROS 

   Besides Src tyrosine kinases, many other distinct signaling pathways and molecules have 

been implicated in the activation of TACE-dependent shedding (120).  Since transactivation 

allows for a physiologically relevant and rapid mechanism to study the activation of TACE, 

we tested previously identified signaling pathways in this system.  We were surprised to 

discover that ATP-stimulated TACE activity is not regulated by PKC, MAPK, or intracellular 

calcium release.  Our results are similar to those found for ATP-stimulated, TACE-
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dependent APP shedding, which also did not rely on PKC, MAPK, or intracellular calcium 

(197).  However, previous results, from numerous reports in distinct cell types with each of 

these signaling molecules, suggest that there are multiple signaling schemes that lead to 

TACE-dependent shedding, based upon cell type and cell treatment. 

   Calcium is a common second messenger utilized by GPCRs (224).  Calcium can be found 

downstream of ATP signaling and is known as a key component for EGFR transactivation 

and in shedding activation schemes (123,174,199,200,204).  We have used the calcium 

ionophore A23187, which couples extracellular calcium to transport the ions through the 

membrane, independent of channels or pores, to assess the role of extracellular calcium in 

activation of shedding.  Stimulation with this reagent in wild type CHO cells led to a 

significant increase in TGF-α shedding similar to results seen with shedding of HB-EGF 

(123).  Using CHO cells lacking functional TACE (M2), A23187-induced shedding was 

markedly decreased compared to wild type cells, but still displayed a minimal increase of 

TGF-α shedding over control treated M2 cells.  This is consistent with a report that a 

different ionophore can stimulate TGF-α, HB-EGF and AR shedding in the absence of TACE 

activity (89).  Based on these results and residual shedding from mouse cells lacking TACE, 

we conclude the major sheddase for TGF-α must be TACE, but it is not the only protease 

capable of cleaving TGF-α.  The redundant activity could be important for tissues where 

TACE is not highly expressed, or cannot function due to disease or mutations. 

   Reactive oxygen species (ROS) gained increasing attention for their important role as a 

second messenger and in TACE activation.  ROS can be generated in many cell types in 

response to a host of stimuli including cytokines, growth factors and cellular stress, and are 

then utilized as signaling intermediates in redox sensitive pathways (213).  Exogenous 

addition of the ROS, hydrogen peroxide, which mimics oxidative stress, has been shown to 

stimulate shedding of TGF-α, AR, HB-EGF and EGFR activation (100,152,179,181).  ROS 

have also been identified as intermediates of GPCR-induced shedding by angiotensin II, 
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endothelin-1, phenylepherine, lipopolysaccharide and lysophosphatidylcholine 

(179,180,185,198,222).  P2Y receptors have also been tied to ROS production in 

eosinophils, prostate and thyroid tumor cells (199,200,214).  We examined the possibility 

that ROS may therefore mediate TGF-α shedding in response to ATP in our system.  Using 

the ROS scavenger NAC, we show that induced shedding is completely dependent on the 

presence of ROS in both murine and CHO cells.  This evidence supports ROS signaling as 

a requirement for induced, TACE-dependent EGF-like growth factor shedding. 

   To further examine the source of ROS acting in TACE activation, we tested the inhibitor 

apocynin in ATP stimulated cells.  The role of the NADPH oxidase (Nox) complex is a low 

level homologue of the phagocytic oxidase and one of the major sources of ROS in non-

phagocytic cells.  Using the inhibitor apocynin, which blocks formation of Nox complex, we 

found that over a range of concentrations from 30 μM to 1 mM, TGF-α shedding was 

unaffected ruling out the function of Nox in this pathway.  Thus, we have identified a 

requirement for a source of ROS, distinct from Nox, for P2Y-induced TGF-α shedding.   

   A second major source of ROS that could be utilized as a second messenger is 

superoxide anion formation as a by-product of oxidative phosphorylation in the mitochondria 

(216).  Mitochondrial ROS signaling has been implicated in cellular metabolism through JNK 

pathways (228) and linked to cardiovascular remodeling and disease, aging and cell fate 

determinations (216).  Mitochondrial ROS are also implicated in GPCR-dependent 

lysophosphatidylcholine activation of MAPK pathways (223).  It is tempting to presume this 

GPCR-stimulated activation of MAPK pathways could depend on EGFR transactivation, 

especially when considering that mitochondrial ROS can stimulate EGFR activation.  

Exogenous hydrogen peroxide added to COS-7 cells led to EGFR activation that was further 

dependent on mitochondrially-derived ROS (217).  To test for the possible role of 

mitochondrially-derived ROS in our system, we used two separate inhibitors of the electron 

transport chain to block ROS production.  Myxothiazol, which inhibits Coenzyme Q: 
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cytochrome c oxidoreductase (Complex III), and rotenone, which inhibits NADH 

dehydrogenase (Complex I); each partially inhibited ATP-induced TGF-α shedding when 

used separately.  When added together the inhibitors completely blocked induced TGF-α 

shedding, matching the results with the non-specific scavenger NAC.  Furthermore, we 

directly measured an increase in ROS within mitochondria, which was also inhibited by 

treatment with the combination of mitochondrial protein complex inhibitors.  We offer 

evidence that P2Y receptors couple to mitochondrial ROS as a signaling intermediate for 

regulation of P2Y-induced EGFR transactivation and report for the first time that 

mitochondrial derived ROS regulates GPCR-induced growth factor shedding. 

   Our findings, implicating the mitochondria as a source of ROS following GPCR signaling, 

differ from previously reported GPCR-induced shedding results.  Stimulation with 

angiotensin II, endothelin-1, lipopolysaccharide, lysophosphatidylcholine and phenylephrine 

utilized Nox dependent ROS production for HB-EGF and TGF-α shedding 

(179,180,185,204,222,229) based on experiments that either knocked down expression of 

Nox subunits.  For P2Y-induced ROS production, use of the inhibitor diphenylene iodonium 

(DPI) implicated the cytoplasmic Nox complex (199,200).  DPI acts by binding flavoproteins 

to inhibit ROS production such as the flavoprotein cytochrome b558 in the cytoplasmic Nox 

complex.  However, DPI may also inhibit the NADP dehydrogenase complex of the 

mitochondrial electron transport chain at low concentrations, so DPI inhibition is not limited 

to Nox-mediated signaling (230).  It is also possible that Nox may complement mitochondrial 

ROS in activation of shedding depending on the intended signal. 

 

The Mechanism of ROS Signaling for the Activation of TACE-Dependent Shedding 

   The question remains as to how GPCR activation can induce increases in ROS, especially 

from the mitochondria.  The Nox complex is dependent on Rac-1 phosphorylation of several 

cytoplasmic subunits prior to complex aggregation, which allows for known GPCR signaling 
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pathways to link to Nox through Rac-1 kinase activity (187).  ROS production has been tied 

to Src, PKC and calcium signaling in certain cell systems, similar to their roles in EGFR 

transactivation (179,186,199,200).  Despite their demonstrated role in alternative 

transactivation pathways, we have ruled out a role for Src, PKC and intracellular calcium 

stores as regulators of P2Y stimulated shedding and presumably as inducers of ROS for the 

same purpose.  However, our findings that calcium ionophore induced shedding depends on 

ROS suggests that high concentrations of extracellular calcium influx may stimulate 

mitochondrial ROS production.  Mitochondrially-derived ROS has previously been shown to 

respond to changes in intracellular calcium concentrations induced by stimuli (231).  

However, we also measured residual TGF-α shedding that was independent of ROS, 

pointing to a distinct pathway for extracellular calcium-induced shedding.  These collective 

observations hint at the complexity of regulating stimulated TACE-dependent EGF-like 

growth factor shedding. 

   The underlying mechanism for ROS-dependent, TACE activation is also still undergoing 

investigation, though potential methods have been proposed.  ROS are known to mediate 

protein kinase and phosphatase activity through oxidation of thiol groups (198).  TACE is 

cytoplasmically phosphorylated in response to growth factors, serum stimulation and PMA 

treatment, on both serine and threonine residues (86,87,232).  Our work has also shown 

phosphorylation of TACE that is dependent on the presence of the cytoplasmic domain, but 

is independent of ATP stimulation.  Phospho-amino acid analysis revealed elevated serine 

phosphorylation following ATP treatment compared to tyrosine, or threonine, suggesting 

ATP may alter the residues that are modified following stimulation if not the overall level of 

phosphorylation of the protein.  Erk kinase has been reported to phosphorylate TACE on 

threonine (86,232), while Phosphatidylinositol-Dependent Kinase-1 (PDK1) has also been 

shown to phosphorylate TACE (166,232).  Both of these kinases require an activating 

phosphorylation event and thus, could be involved in pathways regulated by ROS.  

78



However, the cytoplasmic domain of TACE may not be required for regulation of TACE 

activity.  Our work demonstrates that the ATP-induced increase in shedding in TACE 

deficient CHO cells transfected with TACE lacking the cytoplasmic domain matches 

shedding in wild type transfected cells (data not shown). This is consistent with several other 

reports in which a TACE cytoplasmic deletion mutant lacking functional TACE displayed no 

changes in shedding in response to PMA and growth factor stimulation when transfected 

into murine cells (87,88).  These results suggest that TACE may be inducibly 

phosphorylated, but requires a mechanism independent of the cytoplasmic domain for 

activation of the protease domain. 

   The prodomain of TACE, which is believed to be an inhibitor of metalloprotease function 

that must be removed prior to activation, could be the key.  The prodomain inhibition has 

been shown to depend on coordination with the cysteine-rich domain to alter the native 

conformation (63).  ROS can modify cysteine thiol groups by oxidation, thus potentially 

disrupting the prodomain masking of the catalytic zinc ion.  Zhang et al. and colleagues 

(189) proposed this model after showing inhibition with a prodomain peptide that mimicked 

the native domain could be moderated by exogenous hydrogen peroxide in an in vitro 

cleavage assay.  Thus, ROS, and especially hydrogen peroxide, which can freely diffuse 

through membranes, could act directly on the TACE protein to remove the self-imposed 

inhibition by post-translational modification of cysteine thiol moieties.   

 

   We have provided evidence for the P2Y-dependent transactivation of EGFR through 

TACE-mediated shedding of TGF-α.  The P2Y family of receptors has been shown to 

function in cardiovascular remodeling and in protection of airway epithelial cells through 

mucin production (210,233).  Both of these effects have been suggested to rely on EGFR 

signaling, revealing new potential therapeutic targets for the treatment of cardiovascular 

disease and cystic fibrosis.  We have also presented novel evidence for the use of 
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mitochondrial ROS in regulating TACE-dependent shedding.  The mounting evidence for 

ROS in TACE-mediated shedding events supports the hypothesis that ROS may be the 

point of convergence for activation of TACE by many distinct pathways.  However, the 

discovery of a second source of ROS in shedding activation, independent of Nox and known 

transactivation intermediates PKC, Src and MAPK pathways foretells the complexity still 

confronting the comprehensive elucidation of TACE activation and EGFR regulation 

scheme(s).  Alternatively, use of distinct pathways by individual GPCR pathways could also 

indicate necessary levels of signaling specificity that are required for in vivo ADAM function 

and substrate selection.  Future work will focus on reconciling the usage of varying 

pathways and signaling molecules in different cell types and for different substrates.  The 

differences between sources of ROS and the identification of the proximal signaling events 

required for induced ROS production will also be important, as these appear to be key 

intermediates in the activation of TACE-dependent shedding. These improvements in our 

understanding of TACE regulation mechanisms is the current focus of this field with the 

hope that each advance in our knowledge of TACE-dependent shedding brings us closer to 

understanding and development of novel treatments for any number of diseases.  
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