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The host adaptation of influenza virus is partly dependent on the sialic acid (SA) isoform bound by the viral
hemagglutinin (HA). Avian influenza viruses preferentially bind the �-2,3 SA and human influenza viruses the
�-2,6 isoform. Each isoform is predominantly associated with different surface epithelial cell types of the
human upper airway. Using recombinant HAs and human tracheal airway epithelial cells in vitro and ex vivo,
we show that many avian HA subtypes do not adhere to this canonical view of SA specificity. The propensity
of avian viruses to adapt to human receptors may thus be more widespread than previously supposed.

Influenza virus causes significant respiratory disease in the
human population, but the natural reservoir is aquatic birds
(41). Human influenza virus pandemics arise when viruses
bearing a novel hemagglutinin (HA) protein are introduced
into the population as transmissible viruses either through
direct zoonoses from birds or swine or by reassortment with a
circulating human virus (15). Little or no immunity in the
global population to a novel HA protein results in widespread
infection and the associated potential for significant morbidity
and mortality. Human pandemics in the 20th century were
caused by viruses with HA subtypes H1, H2, and H3 (15) and
in the 21st century by a novel form of H1 originating in swine
(25). However, there are 16 HA subtypes circulating in the
avian population, inviting the question of what the potential
may be for lesser-studied HA subtypes to cause human disease.
HA is an envelope glycoprotein of influenza virus and facili-
tates viral attachment and subsequent entry of the virion into
host cells via interaction with sialic acid (SA) moieties on the
cell surface (24). Terminal sialic acid linkage to the penulti-
mate sugar of the glycan chain occurs via carbon 3 or carbon 6,
giving the two isomers �-2,3 and �-2,6 SA, respectively (32).
The human upper respiratory tract, the primary site of influ-
enza virus replication in the human host, has abundant SA of
the �-2,6 isomer, while in the avian gut, the site of replication
in avian hosts, the �-2,3 conformer predominates, as demon-
strated by isoform-specific lectin staining (22, 23, 38). Among
a variety of factors that influence tropism, a major host adap-
tation facilitating avian influenza virus infection and transmis-
sion among humans is mutation in the receptor binding pocket
of the HA protein to allow efficient �-2,6 SA rather than �-2,3

SA binding (19, 21, 33). This has not occurred in the highly
pathogenic H5N1 subtype, despite nearly 500 people having
been infected. Some H7 avian viruses and certain H9 mutant
strains transmit in mammalian model systems and demonstrate
an expansion of receptor binding capacity for �-2,6 SA (26,
39). Eurasian and North American H6 subtypes can infect
mice and ferrets without prior adaptation (9), and swine lin-
eage H4 viruses that possess the �-2,6 SA binding motif L226/
S228 efficiently infect human airway primary epithelial cells
(2). The extent to which other HA subtypes interact with dif-
ferent SA isoforms and consequently have the potential for
human infection is unclear, and receptor screening for this
could be a beneficial component of pandemic planning. Al-
though screening could use viruses, the biohazard posed by an
emerging virus may be unknown. In addition, cell-based prop-
agation of influenza virus isolates immediately imposes selec-
tion on the virus population for the predominant receptor
present (7, 11). At the level of a suitable substrate, the exact
form of �-2,6 sialyated glycan(s) bound by influenza virus in
the human respiratory tract is undetermined and may depend
on topology (4, 28). Red blood cells and synthetic sialic acid
mimics do not accurately reflect this microenvironment or the
type and distribution of glycans present (8, 14, 16, 42, 43, 44).
We and others have previously reported that the ciliated cells
in well-differentiated human airway epithelium (HAE) or ex
vivo human tracheal sections showed a lectin staining pattern
indicating predominant expression of �-2,3 SA, whereas lectin
staining of nonciliated cells indicated �-2,6 SA (31, 37). More-
over, the binding of soluble HA to the different cell types in
these epithelia reflected the SA binding preference of the HA
derived from glycan binding profiles (29, 30). Viruses that
transmit between humans, including pandemic H1N1 virus and
1918 virus, have been shown to attach more readily to noncili-
ated cells of the upper respiratory tract than avian viruses (21,
28, 33, 34). Here, we assess the binding of a panel of lesser-
studied avian HA subtypes to cells derived from the human
upper respiratory tract.

Avian influenza virus HA proteins comprising the sub-
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types H4 (A/Pintail/Alberta/210/99; GenBank accession no.
AY633356.1), H5 (A/Vietnam/1194/04; GenBank accession
no. AY651333), H8 (A/Turkey/Ontario/6118/1968; GenBank
accession no. J02089.1), H9 (A/Hong Kong/1073/99; GenBank
accession no. AB080226.1), H10 (A/Shorebird/DE/10/2004;
GenBank accession no. CY005930.1), and H13 (A/Shorebird/
DE/2004; GenBank accession no. CY006001.1) and two hu-
man influenza virus HA proteins, H1 (A/New York/221/03;
GenBank accession no. CY002984.1) and H3 (A/Panama/
2007/99; GenBank accession no. DQ865956.1), were generated
as described previously (1, 5, 18). Expression levels were sim-
ilar and all HAs were competent for SA binding by hemad-
sorption with either turkey or guinea pig red blood cells (Fig.
1). Formalin-fixed sections of HAE, containing a mixture of
ciliated, nonciliated, and mucin-containing “goblet” cells (31),
were incubated with HA-Fc and an anti-human Fc conjugate
(Fig. 2) (1). Human influenza virus H3 HA bound mainly

nonciliated cells (Fig. 2B), while avian H5 HA bound exclu-
sively ciliated cells (Fig. 2F) as before (1). H10 displayed a
binding profile similar to that of the H5 HA, while H8 and H13
failed to bind to any cells in HAE. Avian H4 and H9 HAs,
however, showed considerable binding to nonciliated cell types
(Fig. 2D and I). Quantification of the relative binding for each
HA was obtained by blinded counting of the number of each
cell type bound from five different fields of view and subjected
to analysis of variance (ANOVA) (Fig. 2L). As the cellular
tropism indicated by the binding of some HAs, notably H4, was
unexpected, live HAE cultures were also infected with a selec-
tion of viruses whose HA genes were identical to those used for
expressed protein binding assays. Cultures were inoculated by
A/Panama/2007/99 (H3N2) and two recombinant viruses bear-
ing the H4 and H5 HAs with the internal genes of A/PR/8/34
and fixed 24 h later, and histological sections were prepared
and immunostained with an antinucleoprotein serum. The pat-
tern of infection exactly mirrored the binding phenotype shown
by the recombinant HA-Fc proteins. For example, the H4 virus
clearly infected some nonciliated cells, whereas those cells
infected by the H5 virus always possessed cilia (Fig. 2E and G).
In order to confirm that HAE cultures, a tractable model of
human upper airway epithelia (17), were representative of
tracheal epithelial surfaces, HA-Fc proteins were also used to
probe ex vivo sections of human tracheal airway tissue. The
binding phenotypes observed were subtly different from those
observed for HAE sections. H3 HA bound nonciliated cells to
ciliated cells with a 2:1 ratio (Fig. 3B and I). In contrast, 81%
of all cells bound by avian H5 were ciliated (Fig. 3D and I).
Human H1 HA bound more nonciliated than ciliated cells,
similar to H3 (Fig. 3A and I). None of the avian virus HAs
bound to as many cells in the tracheal sections as did the
human virus HAs. However, as before, H4 and H9 displayed a
binding phenotype similar to that of the human HAs; that is,
they bound mainly to nonciliated cells but still with a significant
proportion (7 and 34%) of binding occurring on ciliated cells
(Fig. 3C, F, and I). The H8 HA, which had failed to bind to
sections of HAE, bound to tracheal sections, predominantly to
ciliated cells (57%) (Fig. 3E), akin to the H10 HA (54.5%)
(Fig. 3G). As with the HAE cultures, the H13 HA failed to
bind to any cell type in the tracheal sections (Fig. 3H) despite
being competent for hemadsorption (Fig. 1B). The differences
observed with the trachea section model were not significant by
the statistical test used, but the trend observed was the same as
for the HAE section binding. Tracheal sections from different
donors are more variable in the types and distribution of sialic
acid on their surface, as the age of the subject, genetic makeup,
and health status at donation may all have an effect. In con-
trast, HAE cultures are stricter in their cell-tropic sialic acid
linkage due to the uniform stimulus applied during the in vitro
differentiation procedure. In addition, a glycan with terminal
sialic acid present on human tracheal epithelium may not be
faithfully represented in HAE cultures.

Of the panel of avian HAs investigated here, the H4 and H9
HAs exhibited human influenza virus-like binding profiles.
This may be explained for the H9 HA by the fact that the
sequence chosen contains a 226L residue previously described
as facilitating �-2,6 SA binding and transmission in ferrets (37,
39). No such change was present in the H4 sequence used, yet
it preferentially bound nonciliated cell types known to display

FIG. 1. Expression and function of HAs as HA-Fc fusion proteins.
(A) HA-Fc fusion proteins detected by Coomassie blue staining of a
10% SDS-PAGE gel of insect cell supernatant following recombinant
baculovirus infection. (B) Red blood cell binding as a measure of
biological competence. The assays used turkey red blood cells with the
exception of H1, which used guinea pig. HAs from A/Panama/2007/99
(H3) and A/Vietnam/1194/04 (H5) have been described previously (1).
M, molecular size markers.
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FIG. 2. Recombinant HA binding and virus infection of human airway cultures. (A, B, D, F, and H to K) HAE culture sections were probed
with HA-Fc proteins from human and avian influenza virus strains. Ciliated cells were identified using anti-acetylated �-tubulin (green), and the
HA-Fc proteins were visualized with anti-human Fc (red). (C, E, and G) HAE cultures were infected with a multiplicity of infection (MOI) of 1
for 24 h with H3N2 A/Panama/2007/99, H4/PR8, or H5/PR8 and then probed with anti-NP serum (red). Images are representative of multiple
probed sections. (L) The percentage of recombinant HA protein-bound epithelial cells that were ciliated (�standard error of the mean [SEM]).
ANOVA was applied relative to H3. *, P � 0.05.
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�-2,6 SA, a phenotype of potential human transmissibility (28,
33, 34). Both H8 and H10 HA proteins also bound nonciliated
cells in the human tracheal epithelium sections, although the
predominant target cells were ciliated. Binding patterns were
not an artifact of the experimental system, as they correlated
with actual virus infection where tested. While entry of H4

virus to HAE cells does not guarantee a full cycle of replication
and spread, these observations suggest that the potential for a
human-tropic virus emerging from an avian reservoir may be
greater than previously supposed. To properly assess the pan-
demic potential, not only SA binding phenotype but also the
relative abundance of each subtype in the wild should be con-

FIG. 3. Recombinant HA binding to ex vivo human tracheal sections. (A to H) Ex vivo human trachea sections were probed with HA-Fc
proteins. Ciliated cells were identified using anti-acetylated �-tubulin (green), and the HA-Fc proteins were visualized with anti-human Fc (red).
Images are representative of multiple probed sections. (I) The percentage of recombinant HA protein-bound epithelial cells that were ciliated
(�SEM). ANOVA was applied relative to H3. *, P � 0.05.
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sidered. Surveys of avian influenza virus in the wild bird pop-
ulations of Europe and North America estimate an incidence
range of from 2 to 30% (3, 6, 10, 12, 13, 20, 27, 36, 40), and in
Europe, subtypes H12, H6, and H4 are the most prevalent
(Fig. 4). The binding and infection pattern exhibited by H4 in
our assays taken together with studies of H4 viruses already
established in pigs (2) suggest that this subtype in particular
may be poised for a species jump. The use of tagged HAs
sourced directly without virus passage and the available HAE
culture system may represent a tractable and informative tool
for assessing pandemic potential among influenza viruses.

This work was funded by a grant from the United Kingdom Medical
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