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Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS)
and Middle East Respiratory Syndrome (MERS) outbreaks, and the SARS-CoV-2
pandemic'™. Vaccines that elicit protective immunity against SARS-CoV-2 and
betaCoVs circulating in animals have the potential to prevent future betaCoV
pandemics. Here, we show that macaque immunization with amultimeric SARS-CoV-2
receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052/Alum elicited
cross-neutralizing antibody (cross-nAb) responses against batCoVs, SARS-CoV-1,
SARS-CoV-2, and SARS-CoV-2 variants B.1.1.7, P.1, and B.1.351. Nanoparticle
vaccinationresulted ina SARS-CoV-2 reciprocal geometric mean neutralization ID50
titer of 47,216, and protection against SARS-CoV-2 in macaque upper and lower
respiratory tracts.Importantly, nucleoside-modified mRNA encoding a stabilized
transmembrane spike or monomeric RBD also induced SARS-CoV-1and batCoV
cross-nAbs, albeit at lower titers. These results demonstrate current mRNA vaccines
may provide some protection from future zoonotic betaCoV outbreaks, and provide a
platform for further development of pan-betaCoV vaccines.

SARS coronavirus 1 (SARS-CoV-1), SARS coronavirus 2 (SARS-CoV-2),
and MERS coronavirus (MERS-CoV) emerged from transmission events
where humans were infected with bator.camel CoVs® . BetaCoVs that
circulateincivets, bats, and Malayan pangolins are genetically similar
to SARS-CoV-1and SARS-CoV-2, anduse human ACE2 asareceptor>*® ™,
These SARS-related animal coronaviruses have the potential tobe trans-
mitted to humans'. Cross-nAbs capable of neutralizing multiple beta-
CoVsand preventing or treating betaCoV infection have beenisolated
from SARS-CoV-linfected humans®?, providing proof-of-concept for
development of betaCoV vaccines against Sarbecoviruses®™.

In mice, vaccine induction of cross-nAbs has been reported for
CoV pseudoviruses®¥. However, it is unknown whether spike vac-
cination of primates can elicit cross-nAbs against SARS-CoV-1, bat
betaCoVs, or SARS-CoV-2 escape viruses. A target of cross-nAbs is
the RBD of spike!*?*%, One such RBD cross-nAb is antibody DH1047,

which cross-neutralizes SARS-CoV-1, SARS-CoV-2 and bat CoVs®. RBD
immunogenicity can be augmented by arraying multiple copies on
nanoparticles, mimicking virus-like particles?* . Thus, we designed
a24-mer SARS-CoV-2 RBD-ferritin nanoparticle vaccine. The RBD nan-
oparticle was constructed by expressing recombinant SARS-CoV-2
RBD with a C-terminal sortase A donor sequence, and by expressing a
24-subunit, self-assembling protein nanoparticle Helicobacter pylori
ferritin with an N-terminal sortase A acceptor sequence®’. The RBD
and ferritin nanoparticle were conjugated together by asortase A reac-
tion (Fig. 1a, Extended Data Fig. 1)*°. Analytical size exclusion chro-
matography and negative stain electron microscopy confirmed that
RBD was conjugated to the surface of the ferritin nanoparticle (Fig. 1a,
Extended Data Fig. 1b,c). The RBD sortase A conjugated nanoparti-
cle (RBD-scNP) bound to human ACE2, the receptor for SARS-CoV-2,
and to potently neutralizing SARS-CoV-2-specific RBD antibodies
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(Abs) DH1041, DH1042, DH1043, DH1044, and DH1045% (Fig. 1b). The
cross-nAb DH1047 also bound to the RBD-scNP (Fig. 1b). The RBD-scNP
lacked binding to SARS-CoV-2 spike Abs that bound outside ofthe RBD
(Fig.1b).

Five cynomolgus macaques wereimmunized three times intramus-
cularly four weeks apart with 100 pg of RBD-scNP adjuvanted with
Spgofthe TLR7/8 agonist 3M-052 absorbed to 500 pg of alum (Fig. 1c
and Extended Data Fig. 1d,e)*. Immunizations were well-tolerated
in macaques (Extended Data Fig. 2). Immunization with RBD-scNP
adjuvanted with3M-052/Alumelicited binding IgG against SARS-CoV-2
RBD and stabilized Spike ectodomain (S-2P) (Fig. 1d), but immuni-
zation with 3M-052/Alum alone did not (Extended Data Fig. 3a,b).
Boosting once maximally increased SARS-CoV-2 binding IgG titers
(Fig. 1d). ACE2 competitive binding assays demonstrated the pres-
ence of ACE2-binding site Abs in the serum of vaccinated macaques
(Fig. 1e). Similarly, plasma Abs blocked the binding of ACE2-binding
site-focused, RBD neutralizing antibody DH1041 (Fig. 1e). Vaccine
induction of nAbs was assessed against a SARS-CoV-2 pseudovirus
with anasparticacid to glycine substitution at position 614 (D614G)*.
Two RBD-scNP immunizations induced potent serum nAbs with fifty
percent inhibitory reciprocal serum dilution (ID50) neutralization
titersranging from21,292t0162,603 (Fig. 1f,g). We compared these nAb
titers tothose elicited by cynomolgus macaquesimmunized twice with
50 pg of lipid-encapsulated nucleoside-modified mRNA (mRNA-LNP)
encoding stabilized transmembrane (TM) Spike (S-2P) thatis analogous
to COVID-19 vaccines authorized for emergency use (Extended Data
Fig. 1f). Serum neutralization titers against SARS-CoV-2 D614 G pseu-
doviruselicited by RBD-scNP immunization were significantly higher
thantiters elicited by two S-2P mRNA-LNP immunizations (Fig. 1i, group
geometric mean ID50 47,216 versus 6,469, P=0.0079 Exact Wilcoxon
test, n=5)*>*, When compared to natural human infection, RBD-scNP
vaccination elicited higher ID50 neutralization titers (Fig. 1j). Thus,
RBD-scNP adjuvanted with 3M-052/Alum elicits significantly higher
neutralizing titersin macaques compared to current vaccine platforms
or natural human infection.

The SARS-CoV-2variant B.1.1.7 or United Kingdom variant is spread-
ing globally, and has been suggested to have higher infectivity than
the Wuhan-1strain®*?¢, B.1.351 lineage viruses are widespread in the
Republic of South Africa® %, and along with Brazilian variant P.1 are
of concern due to their neutralization-resistant phenotype mediated
by mutations in the RBD at K417N, E484K, and N501Y*’, Each of these
mutations were distal to the cross-nAb DH1047 binding site owing to
itslong HCDR3 used to contact RBD; however, the E484K mutation was
within the binding site of RBD nAb DH1041 (Fig. 2a,b)". Thus, DH1041
binding to SARS-CoV-2 RBD was knocked out by the E484K mutation,
but DH1047 binding to RBD was unaffected by K417N, E484K, or N501Y
(Fig.2c,d and Extended Data Fig. 3).

We determined whether RBD-scNP or mRNA-LNP immunization
elicited nAbs againstthese particular SARS-CoV-2 variants. RBD-scNP
macaque serum potently neutralized a pseudovirus bearing the
D614G spike andthe B.1.1.7 spike (Fig. 2d,e). Similarly, S-2P mRNA-LNP
immunization elicited equivalent titers of nAbs against the B.1.1.7
and D614G variants of SARS-CoV-2, although titers were lower than
RBD-scNP immunization (Fig. 2d,e). Macaque serum from RBD-scNP
or mRNA-LNP immunization neutralized SARS-CoV-2 WA-1,B.1.351, and
P.1pseudoviruses, withID80 titers being more potent for the RBD-scNP
group (Fig. 2f-i). Onaverage, the RBD-scNP group neutralization titers
decreased by 3-fold against B.1.351 or P.1, whereas the mRNA-LNP group
decreased by 6-fold for B.1.351 and 10-fold for P.1based on ID50 titers
(Fig. 2g,i). Additionally, we observed RBD-scNP and S-2P mRNA-LNP
immune plasmalgG binding to SARS-CoV-2 Swas unaffected by muta-
tions observed in Danish minks, B.1.351, P.1, and B.1.1.7 SARS-CoV-2
strains®*’*° (Extended Data Fig. 3). In summary, both vaccines tested
here elicited nAbs that were unaffected by the mutationsinthe B.1.1.7
strain. However, nAbs elicited by RBD-scNP more potently neutralized
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thedifficult-to-neutralize B.1.351and P.1virus strains than nAbs elicited
with S-2P mRNA-LNP immunization.

SARS-related CoVs that circulate in humans and animals remain a
threat for future outbreaks'>**2, Therefore, we examined neutrali-
zation of SARS-CoV-1and SARS-related group 2b batCoV-WIV-1and
SARS-related batCoV-SHCO014 viruses by immune sera from macaques
vaccinated with the RBD-scNP, mRNA-LNP encoding monomeric
RBD or S-2P (Extended Data Fig. 1e-g)****2, After two immunizations,
RBD-scNP, S-2P mRNA-LNP, and the RBD monomer mRNA-LNP elic-
ited nAbs against SARS-CoV-1, batCoV-WIV-1, and batCoV-SHCO014
(Fig. 3a, Extended Data Fig. 4). Neutralization was more potent for
replication-competent SARS-CoV-2 virus compared to the other
three SARS-related viruses (Fig. 3a, Extended Data Fig. 4), with neu-
tralization titers varying up to 4-fold within the RBD-scNP group
(Extended Data Fig. 4). Overall, RBD-scNP immunization elicited the
highest neutralization titers (Fig. 3a, Extended Data Fig. 4). Small
increases in neutralization potency were gained by boosting a third
time with the RBD-scNP (Fig. 3b). Moreover, RBD-scNP immunization
elicited cross-reactive plasma IgG against SARS-CoV-2, SARS-CoV-1,
batCoV-RaTG13, batCoV-SHCO014, pangolin CoV-GXP4L Spike proteins
(Fig.3cand Extended DataFig.5a,c). Binding antibody titers were high
for these spikes, evenininstances where neutralization titers were low
suggesting non-nAbs contributed tobindingtiters. RBD-scNPimmune
plasmalgG did not bind spike from the four endemic human CoVs or
MERS-CoV (Extended Data Fig. 5a,c). The lack of binding by plasmalgG
to these latter five S ectodomains was consistent with RBD sequence
divergence among groups 1, 2a, 2b and 2¢ coronaviruses (Fig. 3f and
Extended Data Fig. 6-7). The SARS-CoV-2 spike induced cross-nAbs
against multiple group 2b SARS-related betaCoVs, with the highest
titersinduced by RBD-scNP.

Immune sera from RBD-scNP-immunized macaques exhibited a
similar cross-neutralizing profile as the cross-nAb DH1047. DH1047
bound with <0.02 nM affinity to monomeric SARS-CoV-2RBD (Extended
DataFig. 5b), and bound the RBD-scNP (Fig. 1b). The cross-reactive
DH1047 epitope is adjacent to the N-terminus of the ACE2-binding
site, distinguishing it from dominant ACE2 binding site-focused nAbs
such as DH1041 (Fig. 3d)", and it has high group 2b sequence conserva-
tion (Fig. 3e). Overall RBD sequences within betaCoV groups are more
conserved thansequences from different groups (Fig. 3f and Extended
DataFig. 6-7). The presence of DH1047-like antibodies was determined
with DH1047 blocking assays. Plasma from all RBD-scNP-immunized
macaques blocked the binding of ACE2 and DH1047 to SARS-CoV-2S-2P
ectodomain (Fig.3g and Extended Data Fig. 5d). The DH1047-blocking
antibodies were cross-reactive as they also potently blocked DH1047
binding tobatCoV-SHCO014 S-2P (Fig.3g). RBD-scNP immunization elic-
ited higher magnitudes of DH1047 blocking Abs than S-2P mRNA-LNP
immunization of macaques, Pfizer/BNT162b2 mRNA-LNP immuniza-
tionof humans, or SARS-CoV-2 humaninfection (Fig. 3h and Extended
DataFig. 5d). ACE2 blocking was high in all groups (Fig. 3h). While 5 of
5RBD-scNP-vaccinated macaques exhibited potent DH1047 serum
blocking activity, 3 of 4 immunized humans and 9 of 22 of COVID-19
convalescent humans had detectable serum DH1047 blocking activity
(Fig.3h). Thus, the DH1047-like antibody response was subdominant
ininfected or immunized humans and S-2P mRNA-LNP-immunized
macaques, but was a dominant antibody response to RBD-scNP vac-
cination.

To determine vaccine protection against coronavirus infection,
we challenged RBD-scNP-vaccinated and S-2P mRNA-LNP primed/
RBD-scNP boosted monkeys with 10° plaque forming units of
SARS-CoV-2 virus via intratracheal and intranasal routes after their
last boost (Fig. 4a). NAbs were detectable in all macaques 2 weeks
after the final immunization (Fig. 3b and Extended Data Fig. 4b,c).
Bronchoalveolar lavage (BAL) fluid was collected 2 days post chal-
lenge (Fig. 4a). Infectious SARS-CoV-2 was detectable in BAL fluid from
5of 6 unimmunized macaques, and undetectable in all RBD-scNP and



S-2P mRNA-LNP/RBD-scNP-immunized macaques (Fig. 4b). Copies
of Envelope (E) and Nucleocapsid (N) subgenomic RNA in fluid from
nasal swabs and bronchoalveolar lavage (BAL) two and four days after
challenge was used to quantify SARS-CoV-2replication (Fig.4a). Onday
2 after challenge, unimmunized macaques had an average of 1.3x10°
and 1.2x10* copies/mL of E sgRNA in the nasal swab and BAL fluids,
respectively (Fig. 4c,d). In contrast, RBD-scNP-vaccinated monkeys
and 4 of 5S-2P mRNA-LNP monkeys had undetectable levels of E sgRNA
inthe upper and lower respiratory tract (Fig. 4c,d). We sampled mon-
keys again 2 days later, and found no detectable E sgRNA in any vac-
cinated monkey BAL or nasal swab samples (Fig. 4b,c). Similarly, all
RBD-scNP-vaccinated macaque had undetectable NsgRNAin BAL and
the nasal swab fluid, except one macaque that had 234 copies/mL of N
sgRNA detected on day 2 in nasal swab fluid (Fig. 4e,f). Virus replication
was undetectable in this macaque by the fourth day after challenge
(Fig. 4e). Additionally, all but one mRNA-LNP/RBD-scNP-immunized
macaque had undetectable N sgRNA in BAL or nasal swab samples
(Fig.4e,f). Moreover, SARS-CoV-2 nucleocapsid antigen was undetect-
ableinthelungtissue of all vaccinated macaques, but was detectedin
all control macaques (Fig. 4g and Extended Data Fig. 8). Hematoxylin
and eosin staining of lung tissue showed a reduction in inflammation
inimmunized macaques compared to control macaques (Extended
DataFig. 8 and Extended Data Table1).

Finally, mucosal immunity to SARS-CoV-2 were examined when
possible both before and after SARS-CoV-2 challenge (Extended Data
Fig.9).1gG from concentrated BAL bound to spike and blocked ACE-2,
DH1041, and DH1047 binding to spike (Extended Data Fig. 9b-d). Each
response was higher inthe BAL from monkeysimmunized three times
with RBD-scNP compared to monkeysimmunized two times with S-2P
mRNA-LNP and boosted once with RBD-scNP, although the BAL was
collected from each group at different timepoints. Unconcentrated
nasal wash samples from monkeysimmunized with either RBD-scNPs
or S-2P mRNA-LNP prime/RBD-scNP boost showed similar low levels of
spike-binding IgG post challenge (Extended Data Fig. 9e). Nonetheless,
RBD-scNP-immunization elicited RBD-specific mucosal antibodies.

Asthree coronavirus epidemics have occurred in the past 20 years,
thereisaneedtodevelop effective pancoronavirus vaccines prior tothe
next pandemic®. The epitopes of betaCoV cross-nAbs; such as DH1047,
provide clear targets for vaccines aiming to protect against multiple
CoVs® 1%, We have shown that immunization with RBD-scNP adju-
vanted with a toll-like receptor agonist 3M-052, and spike mRNA-LNP
to a lesser extent, induces cross-nAbs against multiple SARS-related
human andbatbetaCoVsin primates. These results demonstrate that
SARS-CoV-2 vaccination with eitherthe RBD-scNP or spike mRNA-LNP
vaccines similar to those authorized for use in humans, will likely elicit
cross-nAbs with the potential to prevent future group 2b betaCoV spillo-
ver from bats to humans'>%,

The emergence of SARS-CoV-2 neutralization-resistant and highly
infectious variants continues to be a concern for vaccine efficacy.
RBD-scNP and SARS-CoV-2 spike mRNA-LNP immunizations elicited
SARS-CoV-2 nAbs against SARS-CoV-2 D614G, B.1.1.7, P.1, and B.1.351
strains. The nAbs elicited by RBD-scNP and S-2P mRNA-LNP were of
different specificities since RBD-scNP-induced nAbs showed asmaller
reduction in neutralization potency across the different variants
compared to S-2P mRNA-LNPimmune sera. Our results are consistent
withthe demonstration that current COVID-19 vaccines have reduced
efficacy against the B.1.351 SARS-CoV-2 variant** ™,

The RBD-scNP vaccine is a promising platform for pancoronavi-
rusvaccine development for the following reasons. The RBD-scNP
vaccine induced apparent sterilizing immunity in the upper respira-
tory tract, which has not been routinely achieved with SARS-CoV-2
vaccination in macaques®®®. Additionally, the extraordinarily high
neutralization titers achieved by RBD-scNP vaccination bode well for
anextended duration of protection. Despite the induction of high levels
of antibody we observed no evidence of increased immunopathology,

inflammatory cytokines or virus replication indicative vaccine-elicited
antibody-dependent enhancement. Lack of in vivo infection enhance-
ment is consistent with studies using SARS-CoV-2 monoclonal Abs®.
3M-052 adsorbed to Alum is in clinical testing (NCT04177355) gen-
erating a potential translational pathway for RBD-scNP adjuvanted
with 3M-052. The RBD-scNP/3M-052 vaccine represents a platform
for producing pancoronavirus vaccines that could prevent, rapidly
temper, or extinguish the next spillover of acoronavirus into humans.
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neutralizing antibodies (nAbs). a SARS-CoV-2 RBD (blue and red) Helicobacter
pyloriferritin (gray) nanoparticle sortase conjugation. A model and
two-dimensional class average of negative stain electron microscopy of the
resultant RBD nanoparticle are shown. b Biolayer interferometry SARS-CoV-2
antibody and ACE2 receptor binding to RBD nanoparticles. N-terminal

domain (NTD), infection enhancing non-neutralizing antibody (nonAbs IE),
non-neutralizing antibody (nonAb). Symbols represent values from 3 independent
experiments and bars represent the meanand standard error of the mean (s.e.m.).
¢ Cynomolgus macaque immunogenicity and challenge study design. d Macaque
serumIgG binding titer asarea-under-the curve of the log,,-transformed curve (log
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and Fusion peptide (FP). Group meanzs.e.m. are shownind and e (n=5macaques).
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neutralizing antibody DH1041. f,g f Dose-dependent serum neutralization of
SARS-CoV-2 D614G pseudovirus infection of ACE2-expressing 293T cellsand g
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test). Horizontal bars are the group geometric meaniniandj. Pre-vaccination
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Fig.3|RBD-scNP vaccine induction of serum cross-neutralization of
SARS-related betacoronavirusinfection.aSerumneutralizationID50 titers
frommacaquesimmunized twice with RBD-scNP,S-2P mRNA-LNP, or RBD
MRNA-LNP for SARS-CoV-1and SARS-CoV-2 and SARS-related batCoVs (WIV-1
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Fig.4 |RBD-scNP vaccination alone or asaboost completely prevents virus
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intranasal/intratracheal SARS-CoV-2 challenge study design. Blue and maroon
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immunohistochemistry of lung tissue sections seven days post challenge.
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shown.Red arrows indicate site of antigen positivity. Allimages areshown at
10X magnification with100 micronscalebars. (Right) Quantification of
antigen positivity. Ineach panelsymbols representindividual macaques with
thegroup meanshownasablack horizontal bar.
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Methods

Animals, immunizations, and human samples

Rhesus and cynomolgus macaques were housed and treated in
AAALAC-accredited institutions. The study protocol and all veteri-
narian procedures were approved by the Bioqual IACUC per amemo-
randum of understanding with the Duke IACUC, and were performed
based on standard operating procedures. Nucleoside-modified mes-
senger RNA encapsulated in lipid nanoparticles (MRNA-LNP) was
prepared as previously stated®>, Rhesus macaques (n=8 macaques)
were immunized intramuscularly with 50pg of mRNA-LNP encod-
ing the receptor binding domain (RBD) monomer. Cynomolgus
macaques (n=5 macaques) were immunized twice with 50ug of
mRNA-LNP encoding the transmembrane Spike protein stabilized
with K986P and V987P mutations and boosted once with 100 pg
of RBD-scNP adjuvanted with 5 pg of 3M-052 aqueous formulation
(AF) admixed with 500 pg of Alum in PBS. An additional group of
cynomolgus macaques (n=5macaques) wereimmunized in theright
and left quadriceps with100 pg of RBD-scNP adjuvanted with 5 pg of
3M-052 aqueous formulation (AF) admixed with 500 pg of Alum in
PBS>.. The mixture forimmunization consisted of 250 pL of RBD-scNP
mixed with 250 pL of 0.02 mg/ml 3M-052, 2 mg/ml Alum. Group sizes
were selected such that statistical significance could be reached with
between group nonparametric statistical comparisons. Macaques
were on average 8 or 9 years old and ranged from 2.75to 8 kg in body
weight. Male and females per group were balanced when macaque
availability permitted it. Studies were performed unblinded. Animals
were evaluated by Bioqual veterinary staff before during and after
immunizations. In the animals studied, CBCs and chemistries were
obtained throughout the immunization regimen and no significant
abnormalities were noted. Of the 10 cynomolgus macaques, there
were no adverse events reported at injection sites. Over the course
of the study, 2 cynomolgus macaques experienced slight weight
loss. Two cynomolgus macaques showed asingle incidence of poor
appetite, with one additional cynomolgus macaque showing poor
appetite intermittently throughout the study. Additionally, one
macaque presented with an infected lymph node biopsy site that
respondedto appropriate veterinary treatment. Biospecimens before
challenge, 2 days post-challenge, and 4 days post challenge were col-
lected as described previously”. Human samples were obtained with
informed consent. All recruitment, sample collection, and experi-
mental procedures using human samples have beenapproved by the
Duke Institutional Review Board.

SARS-CoV-2intranasal and intratracheal challenge

All animals were challenged at week 11 (3 weeks after last vaccina-
tion) through combined intratracheal (IT, 3.0 mL) and intranasal (IN,
0.5 mL per nostril) inoculation with an infectious dose of 105 PFU of
SARS-CoV-2(2019-nCoV/USA-WA1/2020). The stock was generated at
BIOQUAL (lot# 030120-1030,3.31x 10° PFU/mL) from a p4 seed stock
obtained from BEI Resources (NR-52281). The stock underwent deep
sequencingto confirm homology with the WA1/2020 isolate. Virus was
stored at-80 °C prior to use, thawed by hand and placed immediately
on wetice. Stock was diluted to 2.5x10* PFU/mL in PBS and vortexed
gently for 5 seconds prior toinoculation. Nasal swabs, bronchoalveolar
lavage (BAL), plasma, and serum samples were collected seven days
before, two days after, and four days after challenge. Unimmunized
control cynomolgus macaques (N=5) comprised were macaques that
had been infused with a 10 mg/kg of a control antibody (CH65) and
then 3 days later challenged with the same challenge dose and stock
of SARS-CoV-2 as used in RBD-scNP-immunized macaques or 2P spike
protein mRNA-LNP/RBD-scNP-immunized macaques. Protection
from SARS-CoV-2 infection was determined by quantitative PCR of
SARS-CoV-2 subgenomic Envelope (E) and the more sensitive Nucle-
ocapsid (N) RNA (E or N sgRNA)* as stated below.

SARS-CoV-2 protein production

The CoV ectodomain constructs were produced and purified as
described previously**. The Spike (S) ectodomain was stabilized by
theintroductionof 2 prolines at amino acid positions 986 and 987 and
referred to as S-2P. Plasmids encoding Spike-2P and HexaPro* were
transiently transfected in FreeStyle 293 cells (Thermo Fisher) using
Turbo293 (SpeedBiosystems) or 293Fectin (ThermoFisher). All cells
were tested monthly for mycoplasma. The constructs contained an HRV
3C-cleavable C-terminal twinStrepTagll-8xHis tag. On day 6, cell-free
culture supernatant was generated by centrifugation of the culture and
filtering through a 0.8 umfilter. Protein was purified from filtered cell
culture supernatants by StrepTactin resin (IBA) and by size exclusion
chromatography using Superose 6 column (GE Healthcare) in 10 mM
Tris pH8,150 mM NaCl or 2 mM Tris pH 8,200 mMNacl, 0.02% NaN,.
ACE-2-Fc was expressed by transient transfection of Freestyle 293-F
cells®*. ACE2-Fc was purified from cell culture supernatant by HiTrap
protein A column chromatography and Superdex200 size exclusion
chromatography in 10 mM Tris pH8,150 mM NaCl. SARS-CoV-2 NTD
was produced as previously described®®. SARS-CoV-2 fusion peptide
was synthesized (GenScript).

Sortase A conjugation of SARS-CoV-2 RBD to H. pyloriferritin
nanoparticles

Wuhan strain SARS-CoV-2 RBD was expressed with sortase A donor
sequence LPETGG encoded at its c-terminus. C-terminal to the sortase
A donor sequence was an HRV-3C cleavage site, 8X his tag, and a twin
StrepTagll (IBA). The SARS-CoV-2 RBD was expressed in Freestyle293
cells and purified by StrepTactin affinity chromatography (IBA) and
superdex200 size exclusion chromatography as stated above. H. pylori
ferritin particles were expressed with a pentaglycine sortase A accep-
tor sequence encoded at its N-terminus of each subunit. For affinity
purification of ferritin particles, 6XHis tags were appended C-terminal
toaHRV3C cleavagessite. Ferritin particles with asortase A N-terminal
tag were buffer exchanged into 50mM Tris, 150mM NacCl, 5mM CaCl2,
pH7.5.180 puM SARS-CoV-2 RBD was mixed with 120 uM of ferritin
subunits and incubated with 100 uM of sortase A overnight at room
temperature. Following incubation conjugated particles wereisolated
fromfree ferritin or free RBD by size exclusion chromatography using
aSuperose616/60 column.

Biolayer interferometry binding assays

Binding was measured using an OctetRed 96 (ForteBio). Anti-humanIgG
capture (AHC) sensor tips (Forte Bio) were hydrated for at least 10 min-
utesin PBS. ACE2 and monoclonal Abs were diluted to 20 ug/mLin PBS
and placed in black 96-well assay plate. The influenza antibody CH65
was used as the background reference antibody. The RBD nanoparticle
was diluted to 50 pg/mL in PBS and added to the assay plate. Sensor
tips wereloaded with antibody for 120 s. Subsequently, the sensor tips
were washed for 60 sin PBS to removed unbound antibody. The sensor
tips were incubated in afresh well of PBS to establish baseline reading
before being dipped into RBD-scNP to allow association for 400 s.
To measure dissociation of the antibody-RBD-scNP complex, the tip
was incubated in PBS for 600 s. At the end of dissociation, the tip was
ejected and anew tip was attached toload another antibody. The data
was analyzed with Data Analysis HT v12 (ForteBio). Background binding
observed with CH65 was subtracted fromall values. All binding curves
were aligned to the start of association. The binding response at the
end ofthe 400 s association phase was plotted in GraphPad Prism v9.0.

Surface plasmon resonance (SPR) assays

SPR measurements of DH1047 antigen binding fragment (Fab) binding
to monomeric SARS-CoV-2 RBD proteins were performed in HBS-EP+
running buffer using a Biacore S200 instrument (Cytiva). Assays were
performed in the DHVI BIA Core Facility. The RBD was first captured
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via its twin-StrepTagll onto a Series S Streptavidin chip to a level of
300-400 resonance units (RU). The antibody Fabs were injected at
0.5t0500 nMover the captured S proteins using the single cycle kinet-
icsinjection mode at aflow rate of 50 pL/min. Fab association occurred
for180 s followed by a dissociation of 360 seconds after the end of the
association phase. At the end of the dissociation phase the RBD was
regenerated witha 30 sinjection of glycine pH1.5. Binding values were
analyzed with Biacore S200 Evaluation software (Cytiva). References
included blank streptavidin surface along with blank buffer binding
and was subtracted from DH1047 values to account for signal drift
and non-specific protein binding. A 1:1 Langmuir model with alocal
Rmax was used for curve fitting. Binding rates and constants were
derived fromthe curve. Representative results fromtwo independent
experiments are shown.

BAL plaque assay

SARS-CoV-2 Plaque assays were performed in the Duke Regional Bio-
containment BSL3 Laboratory (Durham, NC) as previously described®”.
Serial dilutions of BAL fluid-were incubated with Vero E6 cells
inastandard plaque assay®*’. BAL and cells were incubated at 37 °C,
5% CO2 for 1 hour. At the end of the incubation, 1 mL of a viscous
overlay (1:12X DMEM and 1.2% methylcellulose) was added to each well.
Plates are incubated for 4 days. After fixation, staining and washing,
plates were dried and plaques from each dilution of BAL sample were
counted. Data are reported as plaque forming units per milliliter of
BAL fluid. Samples were collected in virus transport media from six
unimmunized, SARS-CoV-2-challenged macaques for comparison to
vaccinated macaques.

SARS-CoV-2 pseudovirus neutralization

For SARS-CoV-2D614G and SARS-CoV-2 B.1.1.7 pseudovirus neutrali-
zation assays, neutralization of SARS-CoV-2 Spike-pseudotyped virus
was performed by adapting an infection assay described previously
with lentiviral vectors and infection in 293T/ACE2.MF (the cell line
was kindly provided by Drs. Mike Farzan and Huihui Mu at Scripps).
Cells were maintained in DMEM containing 10% FBS and 50 pg/ml
gentamicin. An expression plasmid encoding codon-optimized
full-length spike of the Wuhan-1strain (VRC7480), was provided by
Drs. Barney Graham and Kizzmekia Corbett at the Vaccine Research
Center, National Institutes of Health (USA). The D614G mutation was
introduced into VRC7480 by site-directed mutagenesis using the
QuikChange Lightning Site-Directed Mutagenesis Kit from Agilent
Technologies (Catalog # 210518). The mutation was confirmed by
full-length spike gene sequencing. Pseudovirions were produced in
HEK 293T/17 cells (ATCC cat. no. CRL-11268) by transfection using
Fugene 6 (Promega, Catalog #E2692). Pseudovirions for 293T/ACE2
infection were produced by co-transfection with alentiviral backbone
(pCMV ARS.2) and firefly luciferase reporter gene (pHR’ CMV Luc)*°.
Culture supernatants from transfections were clarified of cells by
low-speed centrifugation and filtration (0.45 um filter) and stored in
Imlaliquots at-80 °C.

For 293T/ACE2 neutralization assays, a pre-titrated dose of virus
was incubated with 8 serial 3-fold or 5-fold dilutions of mAbs in dupli-
cate inatotal volume of 150 pL for 1 h at 37 °C in 96-well flat-bottom
poly-L-lysine-coated culture plates (Corning Biocoat). SARS-CoV-2RBD
nAb DH1043 spiked into normal human serum was used as a positive
control. Cells were suspended using TrypLE express enzyme solution
(ThermoFisher Scientific) and immediately added to all wells (10,000
cellsin 100 pL of growth medium per well). One set of 8 control wells
received cells + virus (virus control) and another set of 8 wells received
cells only (background control). After 66-72 h of incubation, medium
wasremoved by gentle aspiration and 30 pL of Promega 1x lysis buffer
was added to allwells. After al0-minute incubation at room tempera-
ture, 100 pl of Bright-Glo luciferase reagent was added to all wells. After
1-2minutes, 110 pl of the cell lysate was transferred to ablack/white plate

(Perkin-Elmer). Luminescence was measured using a PerkinElmer Life
Sciences, Model Victor2 luminometer.

To make WA-1, P.1, and B.1.351 SARS-CoV-2 pseudoviruses, human
codon-optimized cDNA encoding SARS-CoV-2 S glycoproteins of vari-
ous strains were synthesized by GenScriptand cloned into eukaryotic
cell expression vector pcDNA 3.1 between the BamHI and Xhol sites.
Pseudovirions were produced by co-transfection of Lenti-X 293T
cells with psPAX2(gag/pol), pTrip-luc lentiviral vector and pcDNA 3.1
SARS-CoV-2-spike-deltaC19, using Lipofectamine 3000. The super-
natants were harvested at 48h post transfection and filtered through
0.45-um membranes and titrated using 293-ACE2-TMPRSS2 cells
(HEK293T cells that express ACE2 protein).

For the neutralization assay, 50 pL of SARS-CoV-2 S pseudovirions
were pre-incubated with an equal volume of medium containing serum
atvarying dilutions at room temperature for 1 h, then virus-antibody
mixtures were added to 293T-ACE2 (WA-1 and B.1.351 assays) or
293-ACE2-TMPRSS2 (WA-1and P.1assays) cellsina 96-well plate. After
a3 hincubation, the inoculum was replaced with fresh medium. Cells
werelysed 24 hlater, and luciferase activity was measured using lucif-
erin. Controls included cell only control, virus without any antibody
control and positive control sera. Neutralization titers are the serum
dilution (ID50/ID80) at which relative luminescence units (RLU) were
reduced by 50% and 80%compared to virus control wells after subtrac-
tion of background RLUs.

Live virus neutralization assays

Full-length SARS-CoV-2,SARS-CoV, WIV-1,and RsSSHCO14 viruses were
designed to express nanoluciferase (nLuc) and were recovered via
reversegenetics as described previously® . Virus titers were measured
in Vero E6 USAMRIID cells, as defined by plaque forming units (PFU) per
ml, ina 6-well plate format in quadruplicate biological replicates for
accuracy. For the 96-well neutralization assay, Vero E6 USAMRID cells
were plated at 20,000 cells per well the day priorinclear bottom black
walled plates. Cells were inspected to ensure confluency on the day of
assay. Serum samples were tested at astarting dilution of 1:20 and were
serially diluted 3-fold up to nine dilution spots. Serially diluted serum
samples were mixed in equal volume with diluted virus. Antibody-virus
and virus only mixtures were then incubated at 37°C with 5% CO, for
one hour. Following incubation, serially diluted sera and virus only
controls were added in duplicate to the cells at 75 PFU at 37°C with
5% CO,. After 24 hours, cells were lysed, and luciferase activity was
measured viaNano-Glo Luciferase Assay System (Promega) according
to the manufacturer specifications. Luminescence was measured by a
Spectramax M3 plate reader (Molecular Devices, San Jose, CA). Virus
neutralization titers were defined as the sample dilution at which a
50%reductionin RLU was observedrelative to the average of the virus
control wells. Prebleed or unimmunized control macaque values were
subtracted from WIV-1neutralization titers, butall other viruses were
not background subtracted.

Biocontainment and biosafety

Allwork described here was performed with approved standard oper-
ating procedures for SARS-CoV-2 in a biosafety level 3 (BSL-3) facility
conforming to requirements recommended in the Microbiological
and Biomedical Laboratories, by the U.S. Department of Health and
Human Service, the U.S. Public Health Service, and the U.S. Center for
Disease Control and Prevention (CDC), and the National Institutes of
Health (NIH).

Plasma and mucosal IgG blocking of ACE2 binding

For ACE2blocking assays, plates were coated with 2 pg/mL recombinant
ACE2 protein, then washed and blocked with 3% BSA in 1X PBS. While
assay platesblocked, purified antibodies were diluted as stated above,
only in1% BSA with 0.05% Tween-20. Inaseparate dilution plate Spike-2P
protein was mixed with the antibodies at afinal concentration equal to



the EC50 at which spike binds to ACE2 protein. The mixture was allowed
toincubate atroom temperature for 1hour. Blocked assay plates were
then washed and the antibody-spike mixture was added to the assay
plates foraperiod of 1hour at room temperature. Plates were washed
and a polyclonal rabbit serum against the same spike protein (nCoV-1
nCoV-2P.293F) was added for 1 hour, washed and detected with goat
anti rabbit-HRP (Abcam cat# ab97080) followed by TMB substrate.
The extent to which antibodies were able to block the binding spike
protein to ACE2 was determined by comparing the OD of antibody
samples at 450 nmto the OD of samples containing spike protein only
with noantibody. The following formula was used to calculate percent
blocking: blocking% = (100 - (OD sample/OD of spike only)*100).

Plasma and mucosal IgG blocking of RBD monoclonal antibody
binding

Blocking assays for DH1041 and DH1047 were performed as stated
above for ACE2, except plates were coated with either DH1041 or
DH1047 instead of ACE2.

Plasma and mucosal IgG ELISA binding assays

For ELISA binding assays of Coronavirus Spike antibodies, the anti-
gen panelincluded SARS-CoV-2 Spike S1+S2 ectodomain (ECD) (SINO,
Catalog #40589-VO8B1), SARS-CoV-2 Spike-2P**, SARS-CoV-2 Spike S2
ECD (SINO, Catalog #40590-VO8B), SARS-CoV-2 Spike RBD from insect
cell sf9 (SINO, Catalog # 40592-VO8B), SARS-CoV-2 Spike RBD from
mammalian cell293 (SINO, Catalog # 40592- VO8H), SARS-CoV-2 Spike
NTD-Biotin, SARS-CoV Spike Protein DeltaTM (BEI, Catalog # NR-722),
SARS-CoVWH20 Spike RBD (SINO, Catalog # 40150-VO8B2), SARS-CoV
WH20 Spike S1 (SINO, Catalog #40150-VO8B1), SARS-CoV-1 RBD,
MERS-CoV Spike S1+S2 (SINO, Catalog # 40069-VO8B), MERS-CoV Spike
S1(SINO, Catalog #40069-VO8B1), MERS-CoV Spike S2 (SINO, Catalog
#40070-VO8B), MERS-CoV Spike RBD (SINO, Catalog #40071-VO8B1),
MERS-CoV Spike RBD.

For binding ELISA, 384-well ELISA plates were coated with 2 pg/mL
of antigensin 0.1M sodium bicarbonate overnight at4 °C. Plates were
washed with PBS +0.05% Tween 20 and blocked with assay diluent (PBS
containing 4% (w/v) whey protein, 15% Normal Goat Serum, 0.5% Tween-
20,and 0.05% Sodium Azide) at room temperature for1hour. Plasma or
mucosal fluid were serially diluted three-fold insuperblock starting ata
1:30dilution. Nasal was fluid started from neat and diluted 1:30, whereas
BAL fluid was concentrated 10-fold. To concentrate BAL, individual
BAL aliquots from the same animal and same time point were pooled
in 3KDa MWCO ultrafiltration tubes (Sartorious #VS2091). Pooled
BAL was concentrated by centrifugation at 3500 rpm for 30 minutes
or until volume was reduced by a factor of 10. Pool was then aliquoted
and frozenat-80 °Cuntil its use in an assay. Purified mAb samples were
diluted to 100 pg/mL and then serially diluted 3-fold in assay diluent.
Samples were added to the antigen-coated plates, and incubated for
1h, followed by washes with PBS-0.1% Tween 20. HRP-conjugated goat
anti-humanIgG secondary Ab or mouse anti-rhesus IgG secondary anti-
body (SouthernBiotech, catalog #2040-05) was diluted to 1:10,000 and
incubated at room temperature for 1 hour. These plates were washed
four timesand developed with tetramethylbenzidine substrate (Sure-
Blue Reserve-KPL). The reaction was stopped with1 M HCI, and optical
density at 450 nm (OD,;,) was determined.

Subgenomic RNA real time PCR quantification

The assay for SARS-CoV-2 quantitative Polymerase Chain Reaction
(qPCR) detects total RNA using the WHO primer/probe set E_Sar-
beco (Charité/Berlin). A QIAsymphony SP (Qiagen, Hilden, Germany)
automated sample preparation platform along with a virus/pathogen
DSP midi kit and the complex800 protocol were used to extract viral
RNA from 800 pL of pooled samples. A reverse primer specific to the
envelope gene of SARS-CoV-2 (5-ATATTG CAG CAGTACGCA CACA-3)
was annealed to the extracted RNA and then reverse transcribed into

cDNA using SuperScript™ Ill Reverse Transcriptase (Thermo Fisher
Scientific, Waltham, MA) along with RNAse Out (Thermo Fisher Sci-
entific, Waltham, MA). The resulting cDNA was treated with RNase H
(Thermo Fisher Scientific, Waltham, MA) and then added to a custom
4x TagMan™ Gene Expression Master Mix (Thermo Fisher Scientific,
Waltham, MA) containing primers and a fluorescently labeled hydrolysis
probe specific for the envelope gene of SARS-CoV-2 (forward primer
5-ACAGGTACGTTAATAGTTAAT AGC GT-3) reverse primer 5’-ATATTG
CAG CAGTACGCA CACA-3',probe 5’-6FAM/AC ACT AGC C/ZEN/ATCC
TTACTG CGCTTC G/IABKFQ-3’). The gPCR was carried out on a QuantS-
tudio 3 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA)
using the following thermal cycler parameters: heat to 50 °C, hold for
2min, heatto 95 °C, hold for 10 min, then the following parametersare
repeated for 50 cycles: heat to 95 °C, hold for 15 seconds, cool to 60 °C
and hold for 1 minute. SARS-CoV-2 RNA copies per reaction were inter-
polated using quantification cycle data and aserial dilution of a highly
characterized custom DNA plasmid containing the SARS-CoV-2 envelope
gene sequence. Mean RNA copies per milliliter were then calculated
by applying the assay dilution factor (DF=11.7). The limit of detection
(LOD) for this assay is approximately 62 RNA copies per mL of sample.

Recombinant IgG production

Expi293-F cellswere diluted to 2.5E6 cells/mL on the day of transfection.
Cells were co-transfected with Expifectamine and heavy and light chain
expression plasmids. Enhancers were added 16h after transfection. On
day 5, the cell culture was cleared of cells by centrifugation, filtered,
andincubated with protein A beads overnight. The next day the protein
Aresinwaswashedwith Tris buffered saline and thenadded toa25mL
column. The resin was washed again and then glacial acetic acid was
usedto elute antibody off of the protein A resin. The pH of the solution
was neutralized with 1M Tris pH8. The antibody was buffer exchanged
into 25 mM sodium citrate pH6 supplemented with 150 mM NaCl,
0.2 um filtered, and frozen at -80 °C.

Negative stain electron microscopy

The RBD nanoparticle protein at ~1-5 mg/ml concentration that had
beenflash frozen and stored at-80 °C was thawed in an aluminum block
at 37 °C for 5 minutes; then 1-4 pL of RBD nanoparticle was diluted
to a final concentration of 0.1 mg/ml into room-temperature buffer
containing 150 mM NaCl,20 mM HEPES pH 7.4, 5% glycerol,and 7.5 mM
glutaraldehyde. After 5 minutes cross-linking, excess glutaraldehyde
was quenched by adding sufficient 1M Tris pH 7.4 stock to give a final
concentration of 73mM Trisand incubated for 5 minutes. For negative
stain, carbon-coated grids (EMS, CF300-cu-UL) were glow-discharged
for20sat15mA, after whicha 5-pl drop of quenched sample was incu-
bated onthe grid for 10-15 s, blotted, and then stained with 2% uranyl
formate. After air drying grids wereimaged with a Philips EM420 elec-
tron microscope operated at 120 kV, at 82,000x magnification and
images captured with a 2k x 2k CCD camera at a pixel size of 4.02 A.

Processing of negative stainimages

The RELION 3.0 program was used for all negative stainimage process-
ing.Imageswereimported, CTF-corrected with CTFFIND, and particles
were picked using a spike template from previous 2D class averages of
spike alone. Extracted particle stacks were subjected to 2-3 rounds of
2D class averaging and selection to discard junk particles and back-
ground picks. Cleaned particle stacks were then subjected to 3D clas-
sification using a starting model created from a bare spike model, PDB
6vsb, low-pass filtered to 30 A. Classes that showed clearly-defined Fabs
were selected for final refinements followed by automatic filtering and
B-factor sharpening with the default Relion post-processing parameters.

Betacoronavirus sequence analysis
Heatmaps of amino acid sequence similarity were computed for arepre-
sentative set of betacoronaviruses using the ComplexHeatmap package
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inR. Briefly, 1408 betacoronavirus sequences were retrieved from NCBI
Genbank, aligned to the Wuhan-1spike protein sequence, and trimmed
to the aligned region. The 1408 spike sequences were then clustered
using USEARCH®* withasequence identity threshold of 0.90 resulting
in52 clusters. We sampled one sequence from each cluster to generate
arepresentative set of sequences. Five betacoronavirus sequences
of interest not originally included in the clustered set were added:
SARS-CoV-2, GXP4L, batCoV-RaTG13, batCoV-SHCO014, batCoV-WIV-1.
This resulted in a set of 57 representative spike sequences. Pairs of
spike amino acid sequences were aligned using a global alignment and
the BLOSUM®62 scoring matrix. For RBD and NTD domain alignments,
spike sequences were aligned to the Wuhan 1spike protein RBD region
(residues 330-521) and NTD region (residues 27-292), respectively,
and trimmed to the aligned region. Phylogenetic tree construction of
RBD sequences was performed with Geneious Prime 2020.1.2 using
the Neighbor Joining method and default parameters. To map group
2bbetaCoV sequence conservation onto the RBD structure, group 2b
spike sequences were retrieved from Genbank and clustered using
USEARCH®* with a sequence identity threshold of 0.99 resulting in
39 clusters. For clusters of size >5, 5 spike sequences were randomly
downsampled from each cluster. The resulting set of 73 sequences was
aligned using MAFFT®, Conservation scores for each position in the
multiple sequence alignment were calculated using the trident scoring
method® and computed using the MstatX program (https://github.
com/gcollet/MstatX). The conservation scores were then mapped to
the RBD domain coordinates (PDB: 7LD1) and images rendered with
PyMol version 2.3.5.

Histopathology

Lung specimen from macaques were fixed in 10% neutral-buffered
formalin, processed, and blocked in paraffin for histology analyses.
Alltissues were sectioned at 5 pum and stained with hematoxylin-eosin
(H&E) for to assess histopathology. Stained sections were evaluated
by a board-certified veterinary pathologist in a blinded manner.
Sections were examined under light microscopy using an Olympus
BX51 microscope and photographs were taken using an Olympus
DP73 camera.

Immunohistochemistry (IHC)

Staining for SARS-CoV-2 nucleocapsid antigen was performed by the
Bond RX automated system with the Polymer Define Detection System
(Leica) following the manufacturer’s protocol. Tissue sections were
dewaxed with Bond Dewaxing Solution (Leica)at 72 °C for 30 min, then
subsequently rehydrated with graded alcohol washes and IxImmuno
Wash (StatLab). Heat-induced epitope retrieval (HIER) was performed
using Epitope Retrieval Solution1 (Leica) and by heating the tissue
section to 100 °C for 20 min. A peroxide block (Leica) was applied for
5Sminto quench endogenous peroxidase activity prior to applying the
SARS-CoV-2 nucleocapsid antibody (1:2000, GeneTex, GTX135357).
Antibodies were diluted in Background Reducing Antibody Diluent
(Agilent). The tissue was subsequently incubated with an anti-rabbit
HRP polymer (Leica) and colorized with 3,3’-Diaminobenzidine (DAB)
chromogen for10 min. Slides were counterstained with hematoxylin.

Reagent authentication

Cell lines were received with a certificate of authentication certify-
ing their identity. Cell identity was also confirmed by visualizing cell
morphology and using flow cytometry to detect cell surface proteins.
Cells were confirmed to be free of mycoplasma with monthly testing.

Statistics analysis

Data were plotted using Prism GraphPad 9.0. Wilcoxon rank sum
exact test was performed to compare differences between groups
with p-value < 0.05 considered significant using SAS 9.4 (SAS Insti-
tute, Cary, NC). No adjustments were made to the p-values for multiple

comparisons. IC50 and IC80 values were calculated using R statisti-
cal software (version 4.0.0; R Foundation for Statistical Computing,
Vienna, Austria). The R package ‘nplr’ was used to fit 4-Parameter
Logistic (4-PL) regression curvesto the average values from duplicate
experiments, and these fits were used to estimate the concentrations
corresponding to 50% and 80% neutralization.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Theauthors declare that the data supporting the findings of this study
areavailable within the main and supplemental figures. All datais avail-
ableinthe Source DataFile. Source data are provided with this paper.
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Extended DataFig.1|Molecular and structural characterization of the
SARS-CoV-2RBDsortase A conjugated nanoparticle. aSize exclusion
chromatography of RBD and ferritin sortase conjugation. The first peak shows
conjugated protein. The second peak contains unconjugated RBD. b Analytical
size exclusion trace shows ahomogenous nanoparticle preparation. ¢ Negative
stain electron microscopy image of RBD-scNPsonacarbon grid. Inset shows a
zoomed image of RBD-scNP. The zoomed image shows RBD molecules arrayed
around the outside of the ferritin nanoparticle. Arepresentative image from
the 31images taken of the micrographto visualize 13,827 total particlesis
shown.d Chemical structure of toll-like receptor 7and 8 agonist 3M-052. Alum
formulation of 3M-052 was used to adjuvant RBD-scNP immunization. e RBD-
scNPimmunization regimen used for vaccination of cynomolgus macaques
(N=5).Blue arrows indicate timepoints for intramuscularimmunizations with

RBD-scNP (100 pg) adjuvanted with 3M-052 (5 pg 3M-052 plus 500 pg Alum).
Bronchoalveolarlavage (BAL, orange arrows) and nasal swab (green arrows)
fluids were collected 7 days before, 2 days after, and 4 days after intratracheal/
intranasal SARS-CoV-2 challenge (black arrow). f Transmembrane, diproline-
stabilized spike (S-2P) mRNA-LNP prime, RBD-scNP boost vaccination of
cynomolgus macaques (N=5). Maroon arrows indicate timepoints for S-2P
mMRNA-LNPimmunization (50 pg mRNA dose). Blue arrows are the same as
ina.Macaques were challenged 9 weeks after RBD-scNP boost (week 17 of the
study). BALand nasal swab fluids were collected asina. Macaques were
challenged at week 17 (black arrow). g Monomeric RBD mRNA-LNP
immunization of rhesus macaques (N=8). Tanarrows indicate timepoints for
RBD mRNA-LNPimmunization (50 pg mRNA dose). Blood was collected
throughouteach study asshown by red arrowsinall panels.
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Extended DataFig. 8| Histology and immunohistochemistry of lung tissue
collected seven days after SARS-CoV-2 WA-lintratracheal and intranasal
challenge. a-cMacaques wereimmunized athrice with RBD-scNP, b twice with
S-2P mRNA-LNP and once with RBD-scNP, or cunimmunized. Each column
showsresults fromanindividual macaque. The macaque identification
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ST

number isshownabove each column. Hematoxylin and eosin stain of lung
sections are shown onthe top row, with nucleocapsid immunohistochemistry
shownonthebottom row foreachmacaque. Red arrows indicate site of antigen
positivity. Allimages are shown at 10X magnification with 100 micron scale
barsshowninthe bottomrightcorner.
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Extended Data Fig. 9| Mucosal SARS-CoV-2 IgG responses in bronchoalveolar
lavage (BAL) and nasal wash fluids before and after SARS-CoV-2 challenge.
aELISA bindingtiters for SARS-CoV-2-specific IgGin 10X BAL fluid from
macaquesimmunized with (blue symbols, left column) RBD-scNP three times or
S-2P mRNA-LNP twice and RBD-scNP once (red symbols, left column). Day -7 BAL
fluid was collected at week 10 or 16 for the RBD-scNP alone group or the S-2P
MRNA-LNP/RBD-scNP group respectively. Group meanzs.e.m. are shown (N=5).
b-d 10X BAL fluid blocking of ACE2, RBD neutralizing antibody DH1041, and
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Ablack horizontal bar indicates the group mean blocking percentage. Blocking
above 20% (above the dashed line) is considered positive. e Neat nasal wash fluid
from RBD-scNP-immunized or S-2P mRNA-LNP/RBD-scNP-immunized macaques.
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for the S-2P mRNA-LNP/RBD-scNP group. Nasal wash fluid was unavailable for the
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Extended Data Table 1| Scoring of Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of macaque lung

tissue collected seven days after challenge

Group MaT;que Tissue H&E (Lc; Rm; Rc) SA?E?:\;;ZRI\CI)IHC
BB676AC lung +/-; 4 + R
BB676AF lung ++; ++; + i
3X RBD-scNP BB787BC lung ++; +; + R
BA507HC lung +; 4 +/- -} ~iff
BC668DA lung +/-; ++; ++ 3% -
BB953AC lung +[-; +/[-; +/- -
BC123D lung +/-; - +/- R
2X S-2P mRNA-
LNP + 1X RBD- CA261C lung +/-; 4+ Tyt
scNP
CA705A lung +/-; -5 - -
CB666A lung +[-; 4 + R
20201C lung + 4+ +/- - -
BB167A | lung +; 4 +/- - -
Unimmunized BB668AC lung ++; 4+ + +[-; ++; ++
BB785AE lung +/-; +++; + harhas
BB512A | lung + 4 + 4/ +

a H&E (inflammation): - = minimal - absent, +/- = minimal - mild, + = mild to moderate, ++ = moderate-severe, +++ = severe. b IHC (SARS-CoV-2 nucleocapsid Ag positive foci): - =no SARS-CoV-2
Ag detected, +/- = rare- occasional, + = occasional-multiple), ++ = multiple- numerous (foci often larger), +++=numerous.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used groups of 5 or 8 macaques.
Data exclusions | No data were excluded.

Replication Each binding study was repeated to confirm results. Within binding studies we tested multiple dilutions of antibodies to confirm the binding
magnitude instead of relying on single data points. Neutralization assays have been validated to be reproducible and group geometric means
are shown to identify the group trend.

Randomization  Macaques were distributed in groups to balance age, gender and weight whenever possible

Blinding Neutralization, binding, and competition assays were performed by laboratories independent from the discovery laboratory. No other data
was supplied until after the assay was complete. Statistics were not calculated until the study was complete, and were done so by statisticians
independent from the discovery researchers.
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Policy information about cell lines

Cell line source(s) ThermoFisher and the Farzan Laboratory at Scripps

Authentication Each cell line is provided with a certificate of analysis. Cell identity is verified by morphology or fluorescent markers
expressed.

Mycoplasma contamination All cell lines undergo mycoplasma testing every 60 days.

Commonly misidentified lines  None to report.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Macca mulatta. Males and females were used in the studies. Macaques had various ages.
Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve collection of samples from animals in the field.
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Ethics oversight The macaque studies were performed at Bioqual. Prior to study commencement, all procedures and materials to be used in the
study were approved by the Bioqual IACUC. The Duke University Institutional Biosafety Committee approved protocols for
research involving recombinant DNA.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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