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ABSTRACT 

 

REBECCA MILSK: Comparative Cytotoxicity of Drinking Water Disinfection  

By-Product Mixtures Produced During Chlorination and Chloramination 

(Under the direction of Dr. Howard Weinberg) 

 

Chlorinated and chloraminated waters containing characterized natural organic 

matter (NOM) were compared on the basis of cytotoxicity, disinfection by-product (DBP), 

and total organic halogen (TOX) levels.  Cytotoxicity was evaluated using a growth 

inhibition assay (GIA) in NCM460 human colon cells.  Without adding iodide or nitrate 

or using medium pressure ultraviolet (UV) pretreatment, the chlorinated water was more 

cytotoxic than the chloraminated water.  At elevated iodide levels and using pretreatment 

with medium pressure UV, the chloraminated water was the most cytotoxic of all 

disinfected samples evaluated.  This is likely due to the formation of iodinated DBPs, 

possibly enhanced by degradation of the NOM with UV but present at levels below 

detection of the analytical methods used.  This current research shows that the GIA is 

able to detect these differential cytotoxic responses, and can provide more insight into 

changes in water quality than DBP and TOX measurements alone.  
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CHAPTER 1 

INTRODUCTION!

DBP Regulation 

A. History of Drinking Water Regulation and Disinfection By-Product Discovery 

Ever since Dr. John Snow identified a contaminated well as the source of a 

cholera outbreak in London in 1855, drinking water quality has been established as a 

critical public health concern.  The incident highlighted the need to examine 

characteristics of drinking water beyond its apparent taste, smell, and color.  After Louis 

Pasteur’s discovery in the late 1880s that microbes were capable of transmitting disease, 

scientists and engineers began to develop methods to identify and remove these 

pathogens from drinking water.  In the U.S. in the early 1900s, slow sand filtration was 

used to remove turbidity, the cloudiness observed in water due to the presence of 

particles or suspended solids.  Turbidity is related to microbial risk because microbes can 

attach to these particles.  Although slow sand filtration did reduce waterborne disease 

outbreaks, the introduction of disinfectants led to much greater efficacy in this regard.  

The first recorded use of a disinfectant in the U.S. was in 1908 in Jersey City, New Jersey, 

where chlorine was employed [1].   

In 1914, the U.S. Public Health Service set the first federal drinking water 

regulation, which restricted bacteriological levels in water delivered to interstate carriers 

such as ships and trains.  Various other drinking water regulations were set over the next 

50 years, culminating in the Safe Drinking Water Act (SDWA) of 1974, which provided 
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a framework for regulating chemical contaminants in public drinking water supplies.  

Specifically, the SDWA called for the U.S. Environmental Protection Agency (U.S. EPA) 

to draw up national interim drinking water regulations based on 28 standards that had 

been set in 1962 by the Public Health Service, and to revise these standards as necessary 

via review by the National Academy of Sciences [1].   

As the SDWA was being passed in 1974, Rook in the Netherlands and Bellar, 

Lichtenberg, and Kroner at the U.S. EPA separately discovered that trihalomethanes 

(THMs) were produced during chlorination of surface waters used in the production of 

drinking water [2, 3].  These represented the first identified drinking water disinfection 

by-products (DBPs), or compounds formed when a disinfectant reacts with naturally 

occurring organic matter, iodide, and bromide present in the water.  The occurrence of 

chloroform and other THMs in treated drinking water was confirmed in a 1975 survey of 

80 drinking water treatment plants, with at least four THMs detected in all plants utilizing 

free chlorine as a disinfectant [4].  This discovery sparked an investigation of the health 

implications associated with chloroform exposure through drinking water.  

Carcinogenicity was observed in rats and mice at high chloroform dosage levels [5], 

leading to the 1979 enactment of trihalomethane regulation, which set the maximum 

contaminant level (MCL) for total trihalomethanes (TTHM), which is the sum of 

chloroform, dibromochloromethane, bromodichloromethane, and bromoform 

concentrations, at 0.10 mg/L [6]. 

By the mid-1980s, only 23 drinking water contaminants including the four THMs 

had been regulated and only one standard had been revised.  Congress was dissatisfied 

with the slow progress being made on the regulatory front, and in 1986 passed an 
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amendment to the SDWA requiring that EPA set maximum contaminant level goals 

(MCLGs) and MCLs for 83 contaminants, and to regulate contaminants beyond these 83 

within a certain time frame.  MCLGs are non-enforceable guidelines that represent the 

level below which no health effect is expected.  MCLs, on the other hand, are enforceable 

guidelines that take into account both technological and cost limitations, while staying as 

close to the MCLGs as possible [1].   

Concern about the feasibility of the plan for regulating new contaminants and the 

possibility that the 83 contaminants listed in the 1986 amendment may not represent 

high-priority contaminants led to a 1996 amendment that required EPA to set 

contaminant regulation priorities.  These priorities were to be based on health effects data, 

occurrence information, and the estimated reduction in health risk provided by regulation 

[1].  Following this amendment, the EPA now earmarks drinking water contaminants for 

further investigation and possible regulation by first generating a contaminant candidate 

list (CCL).  These contaminants are known or predicted to occur in drinking water and 

are known or predicted to cause adverse health effects.  The EPA makes regulatory 

decisions on at least five CCL contaminants every five years [7].  Data used to evaluate 

potential health effects are obtained from epidemiological, clinical or case studies, in vivo 

or in vitro toxicological laboratory studies, and biological activity or effects models [8].   

The 1996 amendment also led to the development of the Stage 1 Disinfectants/ 

Disinfection Byproducts Rule (DBPR), which was issued by EPA in 1998.  This rule set 

an updated MCL for TTHM (0.080 mg/L), and created MCLs for bromate (0.010 mg/L), 

chlorite (1.0 mg/L), and HAA5 (0.060 mg/L), which is the sum of the five haloacetic 

acids, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic 
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acid, and dibromoacetic acid.  Bromate and chlorite are primarily by-products of ozone 

and chlorine dioxide treatment, respectively, while haloacetic acids are formed at highest 

levels during chlorination.  Maximum residual disinfectant levels (MRDLs) were set at 

4.0 mg/L as Cl2 for both chlorine and chloramine [9].  Drinking water treatment plants’ 

compliance with Stage 1 MCLs and MRDLs was measured using running annual 

averages of all monitored locations along the distribution system, meaning that if one 

location had a high contaminant or disinfectant level, this number could be balanced out 

by a lower level at another location.  The Stage 2 DBPR, issued by EPA in 2006, 

maintained the MCLs and MRDLs outlined in the Stage 1 DBPR, but changed the 

calculation for compliance to a more stringent, locational running annual average.  This 

rule, which is currently in effect, requires that the running annual average at each 

monitored location comply with the MCLs and MRDLs [10].   

B. Limitations of the Current Regulations 

In order to meet the MCLs for TTHM and HAA5 outlined in the Stage 2 DBPR, 

drinking water utilities are increasingly choosing disinfectants other than chlorine, such 

as chloramine.  However, different disinfectants are associated with formation of 

different classes of DBPs, which may be more toxic than the regulated DBPs.  While 

over 600 DBPs have been identified [11, 12], many DBPs remain unknown.  For example, 

in a bench-scale study, approximately 60% of total organic halides (TOX) were 

unaccounted for in chlorinated water, while approximately 80% of TOX was unknown in 

chloraminated water [13].  Moreover, the occurrence levels and health effects of most 

known DBPs have not yet been evaluated [14].  While disinfection is necessary for the 
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elimination of pathogens, the EPA must continuously assess DBP formation associated 

with the various disinfectant technologies in order to reduce public health risk.   

Use of chloramination versus chlorination 

A. Disinfectant technology 

 Chlorine remains the most commonly used disinfectant in the U.S. and is added to 

water either as a gas or as a hypochlorite salt.  Upon addition of chlorine gas to water, the 

following reaction takes place: 

! 

Cl
2

+ H
2
O"HOCl + Cl

#
+ H

+
 

Hypochlorous acid (HOCl) is a weak acid (pKa"7.5) and dissociates into hypochlorite ion 

(OCl
-
) and hydrogen ion.  Hypochlorous acid and hypochlorite ion both inactivate 

microbes in water by denaturing enzymes or proteins, or by disrupting the cellular 

membrane, but hypochlorous acid is the stronger disinfectant.  In the case of a 

hypochlorite salt, such as calcium hypochlorite (Ca(OCl)2) or sodium hypochlorite 

(NaOCl), the same active species, HOCl, is formed upon addition to water [15].   

Chloramine is produced by adding ammonia to hypochlorous acid, during which 

the following reactions can take place:  

! 

NH3 + HOCl"NH2Cl + H2O (1)

NH2Cl + HOCl"NHCl2 +H2O (2)

NHCl2 +HOCl"NCl3 +H2O (3)

 

Drinking water utilities aim to produce monochloramine (NH2Cl), which is the active 

disinfectant.  The amounts of monochloramine (NH2Cl), dichloramine (NHCl2), and 

trichloramine (NCl3) formed are influenced by pH and the ratio in which ammonia and 

chlorine are combined.  For example, a Cl2:N (w/w) ratio of 7 leads to formation of 

trichloramine, which is undesirable [15]. 
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B. Advantages/Disadvantages 

 Chloramine provides a more stable residual than chlorine and leads to lower 

formation of regulated DBPs [15].  However, chlorine is much more effective at killing 

pathogens, with chloramine requiring 25 to 100 times longer inactivation periods to be as 

effective as chlorine at equivalent concentrations [16].  Because of this, water utilities 

that use chloramine typically first apply a primary disinfectant, such as chlorine, ozone, 

chlorine dioxide, or UV light, in order to kill pathogens, and then use chloramine as a 

secondary disinfectant to leave a residual in the distribution system [17]. 

While chloramine produces lower levels of the regulated THMs and HAAs, it is 

associated with increased formation of iodinated and nitrogenous DBPs.  In a nationwide 

DBP occurrence study, iodo-THMs, which are not currently regulated, were found at 

highest concentrations (0.2-15 µg/L for individual compounds) in a plant that used 

chloramine without prechlorination.  Iodo-acids were discovered in this same plant [18, 

19].  Still, chloramine is associated with overall lower halogenated DBP formation, as 

indicated by TOX levels [13]. 

Overview of toxicological assays 

A. Salmonella Mutagenicity Assay  

The Salmonella test employs histidine requiring S. typhimurium strains to 

determine mutagenicity.  Different strains possess different types of mutations, such as 

frameshift or base substitution mutations, that lead to this inability to produce histidine.  

When Salmonella cultures that have been treated with a suspected mutagen are plated on 

minimal media, only revertant colonies, which can produce histidine independently, will 

grow.  The number of revertants corresponds to the ability of the chemical agent to 
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directly induce mutations.  S. typhimurium!assays are useful in that microsomal mono-

oxygenases can be added to the bacterial suspensions to see if DBPs are metabolically 

activated, indirect-acting mutagens.  Rat liver enzyme, S9, can be used for metabolic 

activation [20].  If a mutagen is also cytotoxic, then mutagenicity can be underestimated 

because dead cells will not grow on a plate as revertants.  By measuring cytotoxicity in 

addition to mutagenicity, the sensitivity of the mutagenicity assay can be increased [21]. 

B. Mammalian Cell Cytotoxicity and Genotoxicity Assays 

 Because tests on bacteria may not be applicable to mammalian cells, Plewa et al. 

developed quantitative, comparative mammalian cell cytotoxicity and genotoxicity assays 

in Chinese hamster ovary (CHO) cells [22, 23].  In the cytotoxicity assay, different 

concentrations of a specific DBP in growth medium are applied to CHO cells in 96-well 

microplates, with the inclusion of a blank control column containing only medium and a 

negative control column containing only cells and medium.  These plates are covered 

with AlumaSeal to prevent cross-contamination and placed in a 37°C incubator at 5% 

CO2 for 72 hours, after which the wells are aspirated, the cells are fixed with methanol, 

and the cell membranes are stained with crystal violet.  The plates are washed, 200 µL 

aliquots of deionized water are added to each well, and the plates are read on a microplate 

reader at 595 nm [23].  Reductions in absorbance as compared to the negative control 

correspond to reduced cell density due to the impact of the DBP on cell survival and 

growth kinetics [22]. 

The genotoxic effects of DBPs in CHO cells can be measured using the single-

cell gel electrophoresis (SCGE) assay.  In this assay, CHO cells are grown overnight in a 

96-well microplate at 37°C, then washed with Hank’s balanced salt solution (HBSS) and 



! 8!

treated with different concentrations of DBP in growth medium.  Plates covered with 

AlumaSeal are placed in a 37°C incubator at 5% CO2 for 4 hours, after which the cells are 

washed, and trypsin and EDTA solutions are added to detach the cells from the bottom of 

the wells.  An aliquot is taken for acute cytotoxicity measurement using trypan blue, and 

the remaining volume is added to 1% low melting point agarose.  Aliquots of this 

suspension are placed on duplicate slides, which have previously been coated with 1% 

normal melting point agarose and allowed to dry.  A final layer of 0.5% low melting 

point agarose is added, and the slides are placed in lysing solution overnight at 4°C to 

remove the cellular and nuclear membranes.  The slides are denatured in an 

electrophoresis tank containing alkaline buffer and electrophoresed, and then neutralized 

with Tris buffer, rinsed with deionized water, and dehydrated with methanol.  Dried 

slides are stored in a covered slide box until rehydration using deionized water and 

staining with ethidium bromide.  Slides are analyzed using a fluorescence microscope 

with an image analysis system that can measure SCGE parameters, such as tail moment.  

The tail moment value represents the density of DNA that has migrated away from the 

nucleus multiplied by the distance traveled, and is a direct indicator of DNA damage [23].       

The importance of using mammalian cells in toxicity studies was highlighted 

when the same DBP compounds were analyzed using both CHO and Salmonella cells. 

Although the cytotoxic and genotoxic rank order in CHO cells and S. typhimurium are 

similar for the haloacetic acids, there are some discrepancies in cytotoxicity and 

genotoxic/mutagenic potency values between CHO and bacterial cells, such as for the 

DBP, 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX).  Further analysis 

confirmed that S. typhimurium cannot be used to quantitatively predict DBPs’ effects in 
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mammalian cells.  In fact, the S. typhimurium assay would not have found that 

bromoacetic acid is more cytotoxic and genotoxic than MX. This was only discovered by 

using CHO cell assays [23].  However, a recent study using a human-derived hepatoma 

line (HepG2) to measure genotoxicity of several DBPs with the SCGE assay reported 

some findings that were not coincident with the CHO results.  For example, chloroacetic 

acid was not genotoxic in HepG2 cells, but was genotoxic in CHO cells.  Also, di- and 

trichloroacetic acid were positive in HepG2 cells, but negative in CHO cells.  These 

results further illustrate the differing sensitivities of cell lines [24]. 

Differences in sensitivity may in part be due to metabolic deficiencies.  Much of 

the metabolic activity present in vivo is lost in vitro, so it is often desirable to use 

exogenous (e.g. S9 mix) or endogenous (e.g. P450 genes transfected to a cell line) 

systems to activate xenobiotic metabolism [25].  In a recent study, an exogenous S9 mix 

was developed that effectively activates nitrosamine DBP compounds such as N-

nitrosodimethylamine (NDMA) in the CHO genotoxicity assay [26].  The importance of 

metabolic activation has also been highlighted for brominated THMs, which are activated 

in a Salmonella strain (RSJ100) that has been transfected with the rat theta-class 

glutathione S-transferase T1-1.  A dose-dependent increase in revertant colonies was not 

observed in a control strain (TPT100) that lacks this transferase [27, 28].            

DBP toxicity studies 

A. Single compound 

CHO assays have been used to assess the cytotoxicity and genotoxicity of over 60 

individual DBPs [14].  Previous applications have shown that halonitromethanes are 

more cytotoxic and genotoxic than their regulated haloacetic acid counterparts.  When 
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occurrence levels were taken into account as well, halonitromethanes were found to pose 

a bigger toxic threat in drinking water than the regulated haloacetic acids [29].  The CHO 

assays have also indicated that haloacetonitriles and haloacetamides are more cytotoxic 

and genotoxic than the regulated haloacetic acids [30, 31].  Structure-activity relationship 

analysis accompanying these studies also provides insight into the mechanisms of DBP 

toxicity, such as which functional groups are correlated with greater toxicity. 

B. Complex mixture 

While toxicological analysis of single compounds provides insight into individual 

mechanisms of DBP toxicity and helps shape prioritization of DBPs for regulation, 

unknown DBPs cannot be included in single compound studies.  Complex DBP mixture 

studies are, therefore, critical to understanding toxicity related to real world DBP 

exposures.  The Salmonella mutagenicity assay has been used to evaluate toxicity of 

drinking water extracts and concentrates for the past 30 years [14].  Drinking water 

extracts are typically prepared by concentrating water on an XAD resin and extracting 

with an organic solvent.  DeMarini et al. found that chlorinated drinking water extracts 

had 1.5 to 1.8 times higher mutagenic potency than chloraminated extracts.  However, 

use of XAD for concentration caused volatile DBPs to be lost, so these were not included 

in the extracts [32].  Another study investigated both mutagenicity and TOX levels in 

chlorinated water extracts prepared using XAD and found a high correlation (r=0.95) 

between the two parameters [33], indicating that perhaps a higher TOX level might 

explain the elevated mutagenic potency in the chlorinated extract. 

In EPA’s “Four-Lab Study,” reverse osmosis (RO) was used to generate aqueous 

drinking water concentrates suitable for in vivo toxicological studies in rodents [34].  



! 11!

Bromide and iodide-spiked source water that had undergone coagulation, flocculation 

and clarification, followed by either chlorination or ozonation/post-chlorination, was 

concentrated by factors of 136x and 124x, respectively [35, 36].  One issue that arose was 

that volatile DBPs were lost during the concentration process, and so attempts were made 

to evaluate the DBP losses and spike these levels back into the waters before they were 

fed to the animals [36].  However, DBPs with concentrations below 2 µg/L were 

excluded from the spiking, as were nonhalogenated DBPs, which may also be 

toxicologically significant.  Nevertheless, DBP analysis of the concentrates indicated that 

representative bromine and iodine-containing DBPs were formed, and that expected 

differences in DBP formation between the chlorinated and ozonated/post-chlorinated 

water were observed [37].  It was further confirmed that DBP levels were relatively 

stable over the 10-day rodent exposure.  Drinking water extracts were also prepared using 

an XAD resin in order to ascertain differences in performance compared to RO 

concentration.  DBP analysis of both XAD extracts and RO concentrates indicated that 

the RO concentration was similar or better than XAD extraction in concentrating most of 

the DBPs detected [37]. 

 The XAD extracts and RO concentrates generated in the “Four-Lab Study” were 

analyzed with the Salmonella mutagenicity assay, and it was found that the RO 

concentrates exhibited less than 50% of the mutagenic response of the XAD extracts.  

The volatile (from the RO only) and non-volatile organics were more mutagenic in the 

chlorinated samples than the ozonated/post-chlorinated samples, with addition of S9 

attenuating the mutagenic response [38].  The RO concentrate was also used in an in vivo 

developmental toxicity screen in Sprague-Dawley rats.  This screen, which fed the 
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concentrates to rats on gestation days 6-16, did not detect any effects on prenatal or 

postnatal survival, or on pup weight, in either the chlorinated or ozonated/post-

chlorinated treatment groups.  It is possible that longer treatment times are required 

before any developmental effects are observed [39].  

C. Research gaps 

Two-year cancer rodent bioassays are important for predicting human health 

effects of DBPs and shaping regulatory decisions, but these experiments are costly and it 

is not feasible to evaluate each of the hundreds of DBPs in this manner.  In order to focus 

research efforts, DBPs have been prioritized for future carcinogenicity testing and other 

toxicity studies using occurrence levels and structure-activity relationships analysis [40].   

However, the identity of many DBPs remains unknown and, therefore, these are not 

included in the prioritization process.  As utilities switch to alternative disinfectants, the 

occurrence of DBPs in treated waters also changes, further complicating prioritization 

efforts.  At the same time, single-compound DBP studies do not take into account the 

interactions that take place among a mixture of DBPs and other components in real water 

matrices, which could alter the toxic response.  In order to address these concerns, there 

is significant interest in evaluating DBPs as complex mixtures, either as a real-world 

complex mixture—a sufficiently similar mixture that has been produced using a 

reproducible disinfection scenario, or a defined mixture [41]. 

Statement of research question and objectives!

This project sought to address the following research questions: 

1) Are DBPs produced by free chlorine more cytotoxic than those produced by 

monochloramine? 
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2) If so, are differences in toxicity correlated with the presence of specific DBPs, 

including the regulated DBPs, or the amount of total organic halogen (TOX)? 

The specific research objectives were as follows: 

(I) To compare the NCM460 human colon cell cytotoxicity of DBPs formed during 

chlorination to those formed during chloramination using simulated drinking water 

prepared under each of the following conditions (targeting 3 mg/L as Cl2 residual free 

chlorine or monochloramine): 

- 24 hour contact time with chlorine or monochloramine 

- Spiked with iodide prior to 24 hour contact time with chlorine or 

monochloramine 

- Spiked with nitrate prior to 24 hour contact time with chlorine  

- 72 hour and 96 hour contact times with chlorine or monochloramine to 

evaluate changes that might occur in the distribution system 

(II) To measure TOX and representative known DBPs in the chlorinated and 

chloraminated samples and relate to observed cytotoxicity. 

Hypothesis:  Given the reduced TOX levels, which are indicative of overall lower DBP 

formation, typically observed in chloraminated waters as compared to chlorinated waters 

[13], it is predicted that the chloraminated water will be less cytotoxic than the 

chlorinated water  in NCM460 human colon cells. 

 In order to test this hypothesis, the experimental approach was to: 

(a) Prepare a simulated drinking water source 
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- Using commercially available NOM RO isolates, which are freeze-dried 

solids derived from source waters, and can be rehydrated to obtain desired 

dissolved organic carbon (DOC) concentrations 

(b) Evaluate isolates from two different natural source waters, Nordic Lake and 

Suwannee River, in order to assess how cytotoxic response and DBP formation may 

vary based on source 

(c) Evaluate the cytotoxicity of each of the following matrix components separately, in 

order to determine concentrations that the NCM460 cells could tolerate: 

- Each type of NOM  by itself  

- Phosphate buffer used to control pH at 7.1 during disinfection 

- Residual free chlorine or monochloramine in laboratory-grade water (in the 

presence of non-cytotoxic concentration of phosphate buffer) 

- Iodide spike (in NOM matrix) 

- Nitrate spike (in NOM matrix)  

(d) Use selected DOC concentrations for Suwannee River and Nordic Lake NOM (goal 

was to use as high a DOC concentration as possible in order to later generate a high 

level of DBPs) and desired spiking conditions to run chlorine or chloramine demand 

tests over designated contact times (24, 72 or 96 hours) in order to determine the 

disinfectant dose required to leave a target 3 mg/L as Cl2 residual (relevant to full-

scale disinfected waters and determined to not be cytotoxic to NCM460 cells) 

(e) Prepare disinfected samples using calculated doses from (d) and measure DBPs, TOX, 

and cytotoxicity 
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"#$ Analyze chemical and toxicological data and determine how chloraminated samples 

differed from chlorinated ones and if TOX and specific DBP levels are correlated 

with higher cytotoxicity



!

! !

CHAPTER 2 

MATERIALS AND METHODS 

Chemicals and Reagents 

Nordic Lake and Suwannee River Natural Organic Matter (NOM) Reverse 

Osmosis isolates were purchased from the International Humic Substances Society (St. 

Paul, MN).  Laboratory grade water (LGW) was prepared using a Dracor (Durham, NC) 

system that passes influent 7 M# house deionized water through a 1 µm pore size filter 

followed by an activated carbon resin, removing residual disinfectants and reducing the 

total organic carbon (TOC) level to below 0.2 mg C/L.  The system also includes a mixed 

bed ion exchange resin, which further removes ions to 18 M#.  Phosphate buffer 

solutions were prepared using sodium phosphate monobasic monohydrate and sodium 

phosphate dibasic heptahydrate, both certified ACS grade from Fisher Scientific (Fair 

Lawn, NJ).  Nitrate and iodide spikes were prepared using sodium nitrate (99.3%, 

certified ACS grade) from Fisher Scientific and potassium iodide (99.0%, certified ACS 

grade) from EMD Chemicals (Gibbstown, NJ), respectively.  L-ascorbic acid 

(SigmaUltra grade) was obtained from Sigma (St. Louis, MO), sodium azide was 

obtained from Acros (NJ), and both ammonium sulfate (granular) and sodium sulfite 

(anhydrous, granular) were certified ACS grade and obtained from Mallinckrodt (Paris, 

KY).  Sodium hypochlorite solution (5.65-6%, laboratory grade) was purchased from 

Fisher Scientific, and stored in the dark at 4°C.  Ammonium chloride (granular, 99.8%, 

certified ACS grade) was obtained from Mallinckrodt.  Sodium thiosulfate and sodium 
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hydroxide (50% w/w) were certified ACS grade, and concentrated sulfuric acid and 

hydrochloric acid were certified ACS plus grade, all from Fisher Scientific.  DPD free 

chlorine, DPD total chlorine, and monochlor-F reagent powder pillows were purchased 

from the Hach Company (Loveland, CO).  Diiodoacetamide (99%) was obtained from 

CanSyn Chem. Corp. (Toronto, ON), and a stock solution was prepared in methanol 

suitable for purge and trap analysis from Sigma-Aldrich (St. Louis, MO).  Methyl tert-

butyl ether (>99.99%, OmniSolv MtBE) was obtained from EMD Chemicals. 

 The normal derived colon mucosa (NCM460) human epithelial cell line used for 

the growth inhibition assay (GIA) was obtained from INCELL Corporation (San Antonio, 

TX), as were M3:10A cell culture medium complete and SMX supplement mix.  

Phosphate buffered saline (PBS pH 7.4, calcium chloride and magnesium chloride-free), 

TrypLE Express (with phenol red), Fungizone Amphotericin B (250 µg/mL), fetal bovine 

serum (FBS), and minimum essential medium (MEM) powder (with Earle’s salts and L-

glutamine but no sodium bicarbonate) were obtained from GIBCO Invitrogen (Grand 

Island, NY).  Sodium bicarbonate (cell culture tested) and 0.4% trypan blue were 

purchased from Sigma, and dimethyl sulfoxide and methanol, both HPLC grade, were 

purchased from Fisher Scientific.  Isoton II diluent was obtained from Beckman Coulter 

(Fullerton, CA).  Crystal violet was obtained from Fluka (St. Louis, MO). 

Cell line used in this project 

This project used normal derived colon mucosa (NCM460) cells from normal 

human colon epithelium.  The doubling time of these cells is approximately 32 hours, and 

normal growth characteristics are expressed [42].  The ratio of theta-class glutathione S-

transferase T1-1 (GSTT1-1) activity to cytochrome P450 activity for the NCM460 cells is 

similar to that of rat large intestine and higher than that of rat liver [43, 44].  Because 
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GSTT1-1 is associated with activation of THMs and cytochrome P450 is associated with 

detoxication [44], this strain is thought to favor activation of THMs.  The cytotoxic 

response of these cells to about 50 regulated and unregulated DBPs has been measured 

using a growth inhibition assay adapted from the cytotoxicity assay used by Plewa [23].  

When responses were compared to those obtained using the CHO cell line, statistically 

significant concordances were observed [45].  

NOM Source Preparation by IHSS 

Nordic Lake and Suwannee River natural organic matter (NOM) reverse osmosis 

isolates used for this study were obtained from the International Humic Substances 

Society (IHSS).  These isolates could be used to make up waters with high carbon 

concentrations, which are necessary to generate a high level of DBPs and observe cell 

responses.  Nordic Lake is a drinking water reservoir in Vallsjoen, Skarnes, Norway.  

IHSS collected water samples from there between October 29 and November 3, 1997.  

The DOC concentration of the water was 10.7 mg/L as C and the pH was 5.6.  Suwannee 

River rises in Okefenokee Swamp in southern Georgia, USA, and flows southwest to the 

Gulf of Mexico.  DOC concentrations range from 25 to 75 mg/L as C and pH is less than 

4.0.  The NOM is isolated from water using reverse osmosis, then is desalted and freeze-

dried [46].   

Utility of TOX measurement  

Total Organic Halogen (TOX) represents all of the halogenated organics present 

in the water.  When used in concert with DBP occurrence levels, the percent of the TOX 

that is made up of known, quantified DBPs can be calculated, along with the remaining 

unknown, or unidentified, portion of TOX.  While TOX does not include inorganic or 

non-halogenated DBPs, it is a useful metric for determining how well the known DBPs 
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approximate the composition of the DBP mixture as a whole.  For example, the 

Nationwide DBP Occurrence Study that surveyed 12 full-scale drinking water treatment 

plants that utilized varying disinfectants, including chlorine, chloramine, ozone and 

chlorine dioxide, found that the median value of known TOX was only 30% [19].  The 

high percentage of unknown TOX indicates that many DBPs still need to be identified, 

and that the toxicity of real world DBP mixtures that contain this unknown fraction needs 

to be investigated.  

Glassware Preparation 

Glassware was cleaned by soaking overnight in Alconox powder detergent 

solution, rinsing with tap water, soaking in a 10% ACS-grade nitric acid bath, and rinsing 

with LGW.  Non-volumetric glassware was dried in a 180°C oven for 24 hours, while 

volumetric glassware was rinsed with methanol and dried at room temperature.  Plastic 

caps and polytetrafluoroethylene (PTFE)-lined silicone septa were cleaned by soaking in 

Alconox solution, rinsing with LGW followed by methanol, and drying at room 

temperature.   

Sample Preparation  

Nordic Lake and Suwannee River NOM stock solutions were each prepared by 

dissolving the NOM reverse osmosis isolates in LGW and filtered under vacuum through 

a 0.45 µm pore size nylon membrane filter with a 47 mm diameter (Whatman 

International, Maidstone, England) using a glass Millipore filtration system (Bedford, 

MA).  Immediately after the two stock solutions were prepared, a 1:50 dilution of each 

was made in LGW, and the dissolved organic carbon (DOC) levels were measured using 

a Shimadzu TOC-VCPH Total Organic Carbon Analyzer with a TNM-1 Total Nitrogen 

Measuring Unit (Shimadzu Corp., Atlanta, GA) following Standard Method 5310 [47].  
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Samples were analyzed in duplicate, and two out of three 100 µL injections were required 

to have a relative percent difference of <2%.  A standard operating procedure for TOC 

analysis is provided in Appendix A.   

For the first growth inhibition assay experiment evaluating the two types of NOM, 

stock solutions were prepared with DOC concentrations that exceeded the desired final 

concentration of 120 mg/L as C and were then diluted with LGW as necessary during 

sample preparation.  Subsequently, the percent carbon by weight for each NOM was used 

to determine the masses of NOM required to prepare stock solutions with DOC levels of 

approximately 120 mg/L as C.  The percent carbon by weight for Suwannee River NOM 

and Nordic Lake NOM was approximately 39.3% and 27.5%, respectively. For the first 

experiment comparing the two types of NOM, no buffer was added to control the pH, but 

for later experiments in which 20 mM phosphate buffer was used to control the pH at 7.1, 

the phosphate buffer salts were added directly to the NOM stock solution and the pH was 

adjusted using 10M NaOH prior to filtration and preparation of a 1:50 dilution for TOC 

analysis.  NOM stock solutions were stored in amber glass bottles at 4°C, and were 

typically used within one month of preparation.  When using NOM stock solutions stored 

for over one month, the solutions were filtered and the TOC levels in a 1:50 dilution were 

measured again to confirm stability.  Stock solutions of sodium nitrate and potassium 

iodide were also prepared in LGW and stored at 4°C. 

Prior to using the sodium hypochlorite (NaOCl) stock solution for sample dosing 

or monochloramine preparation, its concentration was measured according to Standard 

Method 4500-Cl B [40].  A chlorine working solution targeted at ~1000 mg/L as Cl2) was 

prepared by adding 2 mL of the NaOCl stock to a 100 mL volumetric flask and bringing 
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it to volume with LGW.  To a 125 mL Erlenmeyer flask containing a stir bar, 40 mL of 

working solution was added, followed by ~10 drops glacial acetic acid to adjust the pH to 

between 3 and 4, and 1 g potassium iodide.  The resulting brown solution was titrated 

with 0.1 N sodium thiosulfate (Na2S2O3, prepared in LGW) until a pale yellow color 

appeared, at which point 1 mL of starch was added dropwise to the solution.  The 

resulting dark purple solution was titrated with further 0.1 N Na2S2O3 until it turned clear.  

This titration was repeated with another 40 mL of working solution, and the average 

volume of Na2S2O3 required was used to calculate the chlorine stock solution 

concentration, as follows: 

! 

mg /L asCl2 =
(XmLNa2S2O3used to titrate)(0.1NNa2S2O3)(35.45gCl2 /mol)(1000mg /g)(100mLLGW /2mLCl2)

(40mLsample titrated)  

This measurement was carried out approximately once a month.   

A monochloramine stock solution was prepared fresh daily by first making up 100 

mL of a 24 mM ammonium chloride solution in LGW and adjusting the pH to 8 with 1M 

NaOH and transferring to a beaker.  Using the NaOCl stock solution concentration 

determined previously, for example 55390 mg/L as Cl2, the volume of NaOCl stock 

required to obtain an N:Cl2 molar ratio of 1.2:1 with a final monochloramine 

concentration of 1400 mg/L as Cl2 was calculated, as follows: 

! 

VCl
2

(mL) =
1400mg /LasCl2 "100mL

55390mg /LasCl2measured
= 2.5mL  

This calculated volume of NaOCl stock solution was added dropwise to the 24 mM 

ammonium chloride solution while rapidly stirring.  The pH adjustment to 8 and slow 

addition of NaOCl are necessary to avoid dichloramine formation.  The 1.2:1 N:Cl2 molar 

ratio was used in order to avoid breakpoint chlorination reactions, which occur as the 
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N:Cl2 ratio decreases, and involve reduction of residual disinfectant and production of 

nitrogen gas, nitrate, and nitrogen trichloride.  A 1:20 dilution of the monochloramine 

stock solution was made in LGW, and the monochloramine and dichloramine 

concentrations were determined from absorbance measurements taken at 245 nm and 295 

nm wavelengths using a Hitachi U-3300 UV-VIS spectrophotometer (Hitachi, Tokyo, 

Japan).  Given a path length ( ) of 1 cm and molar absorptivity ($) values for 

monochloramine and dichloramine at each of the two wavelengths, the concentrations of 

monochloramine (c1) and dichloramine (c2) were calculated using two simultaneous 

equations (one for each wavelength) in the following form, from Beer’s Law:   

! 

A(") = c1l#1(") + c2l#2(")  

The level of free chlorine present in a 1:1000 dilution of the monochloramine stock 

solution in LGW was measured using a Hach kit, as described under the Disinfectant 

Residual Measurement heading.  For example, in a 1295 mg/L as Cl2 monochloramine 

stock solution, the free chlorine concentration was relatively low at 90 mg/L as Cl2.  The 

monochloramine stock solution was stored at 4°C until use on the same day.   

Disinfectant demand tests for each NOM were carried out over 24 hours for each 

sample condition.  Three different doses of disinfectant were used within each test, and 

these were plotted versus the corresponding residual.  The line equations for the plots 

were then used to calculate the disinfectant doses required to obtain the desired 3 mg/L as 

Cl2 residual.  For the 72 and 96 hour chloramine treated samples, a formal demand test 

was not carried out, and the chloramine dose used to obtain residuals of approximately 5 

and 3 mg/L as Cl2, respectively, was determined using trial and error.  Disinfected 

samples were placed in headspace-free and demand-free glass vials with open top plastic 
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caps and PTFE-lined silicone septa, and were kept at 25°C in the dark for the duration of 

the treatment time.  Demand-free glassware was prepared by filling with 20 mg/L as Cl2 

sodium hypochlorite solution made from the stock in LGW, letting sit for 24 hours, 

rinsing with LGW, and drying. 

Disinfected NOM samples were prepared in a 70 mL volume by measuring out 

the NOM stock solution with a graduated cylinder into 125 mL amber glass bottles, 

adding chlorine or chloramine doses as determined from the demand tests, covering with 

open top plastic caps  and PTFE-lined silicone septa, inverting slowly and transferring 

headspace-free to 60 mL demand-free glass vials.  These vials were then stored as 

described for the demand tests.  Note that although the chloramine doses required to 

leave a 3 mg/L as Cl2 residual were lower than the chlorine doses, the monochloramine 

stock solution had a much lower concentration (~1400 mg/L as Cl2) than the chlorine 

stock solution (~55390 mg/L as Cl2) and therefore the volume of monochloramine stock 

added for the chloraminated samples slightly diluted the NOM concentration.  In order to 

maintain the 70 mL final sample volume for the chloraminated samples, the volume of 

NOM stock solution was adjusted to account for the added volume from the 

monochloramine stock.  For example, 1.6 mL monochloramine stock solution was added 

to 68.4 mL Nordic Lake NOM during preparation of the chloraminated Nordic Lake 

sample.  After the treatment time, 12 mL of sample was used for the growth inhibition 

assay, 45 mL was used for disinfection by-product (DBP), total organic halogen (TOX), 

and total organic chloride/bromide/iodide (TOCl/Br/I) analysis, and the remaining 

volume was used to measure the residual disinfectant.   
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The 45 mL of sample used for chemical analysis was first added to 180 mL LGW 

(a 1:5 dilution) so that the DBP concentrations would be within the calibration range.  

These volumes were measured into a 250 mL amber glass bottle using 50 and 250 mL 

graduated cylinders, respectively, with the disinfected sample transferred by pouring 

slowly onto the side of the cylinder or bottle in order to minimize volatile losses.  The 

glass bottle was capped and slowly inverted to mix the diluted sample, which was 

immediately transferred to vials prepared for the individual analytical methods later 

described.   

Disinfectant Residual Measurement 

 Free and total chlorine residuals were measured in 10 mL quartz glass cells using 

the Hach Chlorine Pocket Colorimeter (Hach Co., Loveland, CO).  Method 8021 was 

used to measure free chlorine (0 to 2.00 mg/L Cl2) with DPD free chlorine reagent 

powder pillows, and Method 8167 was used for total chlorine (0 to 2.00 mg/L Cl2) with 

DPD total chlorine reagent powder pillows, both methods equivalent to Standard Method 

4500-Cl G [40].  Monochloramine residuals (0-4.50 mg/L Cl2) were measured in 10 mL 

plastic cells using the Hach DR/890 Datalogging Colorimeter (Hach Co., Loveland, CO) 

and Method 10171, an indophenol method, with monochlor-F reagent powder pillows.  

When residuals exceeded the range of the colorimeters or sample volume was limited, 

dilutions were made in LGW using 10 mL volumetric flasks.  The consistency between 

the U-3300 spectrophotometer and the Hach DR/890 in measuring monochloramine 

concentrations was assessed by making a 1:1000 dilution of the monochloramine stock 

solution in LGW and measuring the absorbance with the Hach kit, which automatically 

selects the wavelength upon choosing a particular method.  In one such evaluation, the 
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monochloramine concentration measured with the Hach kit was 1410 mg/L as Cl2, which 

was relatively close to the 1295 mg/L as Cl2 concentration measured on the U-3300.   

Preliminary Experiments 

 Before analyzing disinfected NOM samples with the growth inhibition assay 

(GIA), the effects of the sample matrix on NCM460 human colon cell growth were 

evaluated.  The samples that were tested included phosphate buffer (up to 50 mM) in 

LGW at pH 7.1, the NOM itself (up to 120 mg/L as C), as well as iodide (up to 5 mg/L as 

I) and nitrate (up to 498 mg/L as N) spikes in the presence of Nordic Lake NOM (up to 

112 mg/L as C) and up to 20 mM phosphate buffer, once it was determined that 20 mM 

phosphate buffer at pH 7.1 did not adversely affect cell growth.  Unquenched chlorine 

(up to 36.9 mg/L as Cl2) and monochloramine (up to 43 mg/L as Cl2) residuals in LGW 

with 20 mM phosphate buffer were also analyzed with the GIA.  From this experiment, it 

was decided that chlorine or chloramine residuals of up to 5 mg/L as Cl2 do not adversely 

affect cell growth, and residuals were targeted to not exceed this level during subsequent 

experiments.  

Growth Inhibition Assay 

Unless otherwise noted, solutions were sterile and procedures were carried out in 

a biological safety hood.  On the first day of the growth inhibition assay (GIA), 25 cm
2
 

culture flasks of NCM460 cells were removed from a 37°C incubator, the media was 

aspirated, and the flasks were rinsed with 5 mL phosphate buffered saline (PBS).  The 

PBS was then aspirated, 5 mL TrypLE Express was added, and the flasks were placed in 

a 37°C incubator for 10 to 15 minutes, until cells were detached from the bottom of the 

flasks.  The trypsin reaction was stopped by adding 1 mL of M3:10A medium with 0.5% 

fungizone to each flask and pipetting rapidly to mix.  The cells from each flask were 
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added to a 50 mL centrifuge tube, which was briefly vortexed.  The tube was centrifuged 

(Fisher Scientific Marathon 3000R centrifuge, Thermo IEC, Needham Heights, MA) at 

800 rpm and 4°C for 5 minutes.  The supernatant was aspirated and the cell pellet was 

resuspended in 4 to 10 mL of M3:10A medium with 0.5% fungizone.  A 1:100 dilution of 

the cell mix was made in Isoton solution, and the cells were counted using a Z1 Dual 

Coulter Particle Counter (Beckman Coulter, Fullerton, CA).   Cell viability was 

determined by adding an aliquot of cell mix to an aliquot of 0.4% trypan blue and 

counting at least 100 cells using a hemocytometer (Hausser Scientific, Horsham, PA) and 

a Nikon Diaphot Microscope (Nikon Instruments, Melville, NY).  Based on the 

concentration of viable cells, the volume of cell mix needed to obtain a concentration of 

5x10
4
 cells/mL in a 20 mL volume was calculated and added to 20 mL of M3:10A 

medium with 0.5% fungizone.  The resulting cell suspension was vortexed, poured into a 

reagent reservoir, and 200 µL added to each well (1x10
4
 cells/well) in columns 3 through 

11 in a sterile, 96 well cell culture flat bottom plate with a low evaporation lid (Corning 

Inc., Corning, NY).  To the column 2 wells, 200 µL M3:10A medium with 0.5% 

fungizone was added to constitute the blank.  Covered plates were placed in a 37°C 

incubator overnight. 

On the second day of the GIA, samples were prepared in cell culture medium and 

placed on the cells in a range of concentrations.  For standard compounds, such as the 

positive control diiodoacetamide, working solutions were prepared in M3:10A medium 

with 0.5% fungizone, and then dilutions of these were made, also in M3:10A with 

fungizone.  However, for the NOM samples, preparing a working solution with M3:10A 

medium was undesirable because it would dilute the carbon concentration considerably 
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and diminish the toxicological response.  The NOM samples were therefore combined 

with dry medium and a relatively small volume of supplements.  The highest sample 

concentration corresponded to an 80% dilution of the original sample.  In these cases, a 

“Minimal Essential Medium (MEM) blank” solution was first prepared for use in 

dilutions of the sample.  For a 120 mL MEM blank solution (enough for six 96-well 

plates, or three duplicate samples), 1.14 g MEM and 264 mg NaHCO3 were added to 96 

mL LGW.  The pH was adjusted to 7.1~7.2 using 2M HCl, and 12 mL Fetal Bovine 

Serum (FBS) and 12 mL SMX supplements mix were added.  The solution was vacuum 

filtered using a Nalgene 0.2 µm pore size, 50 mm diameter NYL filtration unit (Nalge 

Nunc International, Rochester, NY).  An “MEM concentrate” solution was then prepared 

for combination with disinfected samples.  To prepare 14 mL MEM concentrate (enough 

for three samples), 665 mg MEM and 154 mg NaHCO3 were added to 7 mL sterile FBS 

and 7 mL sterile SMX, the pH was adjusted to 7.1~7.2, and the solution was filtered 

using a Millipore Steriflip 0.22 µm pore size vacuum filtration unit.  For a 15 mL final 

sample volume, 12 mL of sample (e.g. chlorinated Nordic Lake NOM) was combined 

with 3 mL of MEM concentrate.  Dilutions of the sample, now containing MEM, were 

then prepared using the MEM blank solution.  When running non-disinfected samples as 

in the preliminary experiments involving phosphate buffer, NOM itself, and NOM with 

iodide or bromide spikes, loss of volatile DBPs was not a concern, so instead of using an 

MEM concentrate, the sample was combined directly with the MEM and NaHCO3, pH 

adjusted, and filtered upon addition of FBS and SMX.   

During cell treatment, the old media was removed on sterile gauze, and 200 µL 

aliquots were placed in each well.  Columns 2 and 3 contained only MEM blank solution, 
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and columns 4 to 11 contained increasing concentrations of sample, with one sample 

concentration per column.  The wells were covered with Alumaseal II (Research Products 

International) and plates were placed in 37°C incubator for 72 hours.  After this period, 

plates were stained with crystal violet at the lab bench, as now described.  The plates 

were taken out of the incubator, the media was removed on a gauze mat, and wells were 

rinsed with 200 µL PBS.  The cells were then fixed to the bottom of the wells by adding 

100 µL methanol to each well and letting it sit for 20 minutes.  The methanol was 

removed, and 100 µL of 1% crystal violet in methanol was added for 20 minutes.  The 

plates were rinsed in running tap water until no dye was observed when tapping the plate 

on a clean gauze mat.  After the plates were allowed to dry, 50 µL dimethylsulfoxide was 

added to each well, the plates were wrapped in foil and placed on a shaker at 110 rpm for 

30 minutes.  The absorbance values were measured using a Wallac Victor 1420 

Multilabel Counter microplate reader at 600 nm (Perkin Elmer Wallac Inc., Gaithersburg, 

MD).  The dates on which the different samples were analyzed using the GIA are shown 

in Table 1. 

GIA Data Handling 

Each sample was run on duplicate plates, which were prepared on the same day, 

except for the iodide-spiked UV-treated and chloraminated sample, which was run in 

duplicate on two separate days (four plates total), with each column (8 wells) on the plate 

containing a different concentration of sample (1
st
 column contained only medium, 2

nd
 

column contained only cells and medium).  Each point on the GIA plot therefore 

represents n=16 replicates.  For each plate, the average absorbance value of the 

background (only medium) was subtracted from the absorbance values of all the other 

wells.  Then, the average absorbance value of the negative control (only cells and 
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medium, no sample) was set as 100% cell growth, and the absorbance values of the 

remaining wells, which contained sample, were divided by this average absorbance value 

of the control to get cell density values as “percent control.”  The background-subtracted 

absorbance values of the control wells were also divided by this average absorbance 

value of the control to get cell density values as “percent control,” in order to ascertain 

the variation amongst the control wells.  By correcting the data for each plate using 

absorbance values from its own negative control wells, any variations in growth that 

might occur between plates are taken into account, allowing data from duplicate plates to 

be combined.  The 16 cell density values for each concentration, including the negative 

control, were placed in SigmaPlot 11.0 (Systat Software, San Jose, CA), where a one-way 

analysis of variance (ANOVA) test was used to determine if the sample induced a 

significant cytotoxic response.  If a significant F value (P % 0.05) was obtained, a Holm-

Sidak multiple comparison versus the control group analysis was carried out to determine 

the lowest concentration at which a cytotoxic response was observed.  The Holm-Sidak 

test involves comparing the 16 cell density as percent control values for the control wells 

to the 16 cell density as percent control values for each of the concentrations, and testing 

the null hypothesis that there is no difference between these values for the control wells 

and the wells containing a particular sample concentration.  The mean cell density values 

were then plotted versus concentration, which was on a log scale, to obtain a dose-

response curve.  The curve was fit using three parameter sigmoidal regression, and the R
2
 

value represents how much the data varies from the sigmoidal model.  Error bars 

represent the standard deviation.  Two-way ANOVA was used to compare mean cell 

density values among the disinfected samples at each concentration level, with statistical 
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significance (p<0.0001) denoted with an asterisk above that concentration level on the 

figure.     

Halogenated Volatile DBP Extractions 

The 1:5 dilution of disinfected NOM described in the Sample Preparation section 

was added headspace-free to a 60 mL vial and quenched with 1.95 mg L-ascorbic acid.  

This amount was added as an aliquot of 19.5 mg/mL ascorbic acid solution, which was 

prepared in LGW in a 5 mL volumetric flask.  The pH was adjusted to 3~3.5 using 1N 

H2SO4, which was prepared from the concentrated acid in LGW.  These samples were 

stored at 4°C until analysis, which unless otherwise noted in the results, took place within 

24 hours of quenching.  Halogenated volatiles and haloacetamides were analyzed in 30 

mL sample aliquots using liquid-liquid extraction with MtBE, followed by analysis on a 

Hewlett Packard 5890 Series II gas chromatograph with an autosampler/autotower 

injector, HP-1 (Agilent Technologies, Palo Alta, CA) capillary column (30m X 0.25mm 

id X 1µm film thickness), and a Hewlett-Packard Model Electron Capture Detector 

(ECD), according to the standard operating procedure provided in Appendix A. The 

DBPs extracted included THM4, six iodo-THMs, four haloacetonitriles (trichloro-, 

dichloro-, bromochloro-, dibromo-acetonitrile), haloketones (1,1-dichloropropanone, 

1,1,1-trichloropropanone), chloral hydrate, halonitromethanes (trichloro-, tribromo-, 

bromodichloro- and dibromochloro-nitromethane), and haloacetamides (eleven chloro-, 

bromo- and iodo-substituted).    

Cyanogen Chloride Extraction 

The 1:5 dilution of disinfected NOM described in the Sample Preparation section 

was added headspace-free to a 60 mL vial and quenched with 1.95 mg L-ascorbic acid, as 

previously described for the halogenated volatile DBP extraction.  The pH was adjusted 
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to 3~3.5 using 1N H2SO4.  These samples were stored at 4°C until analysis for cyanogen 

chloride using liquid-liquid extraction with MtBE followed by GC-ECD analysis 

according to the standard operating procedure provided in Appendix A.  The aqueous 

sample for cyanogen chloride analysis was prepared separately from the sample for 

halogenated volatiles analysis because the extraction procedure for cyanogen chloride has 

specific requirements such as keeping the samples on ice and at a lower pH to stabilize 

the compound.  Halogenated volatiles analysis must be completed within 24 hours of 

quenching, while cyanogen chloride analysis can be carried out at a later date. 

Haloacetic Acids Extraction 

The 1:5 dilution of disinfected NOM described in the Sample Preparation section 

was added headspace-free to a 40 mL vial and quenched with 8 grains of ammonium 

sulfate.  For sample preservation, 2 mg sodium azide was also added as an aliquot of 20 

mg/mL sodium azide solution that was prepared in LGW in a 25 mLvolumetric flask.  

These samples were stored at 4°C until analysis.  Nine haloacetic acids were analyzed in 

20 mL sample aliquots using a liquid-liquid extraction with MtBE followed by 

derivitization with diazomethane and analysis by GC-ECD according to the standard 

operating procedure provided in Appendix A.  The haloacetic acids measured included 

chloro-, bromo-, dichloro-, trichloro-, and dibromoacetic acid, which make up HAA5, as 

well as bromochloro-, bromodichloro-, dibromochloro-, and tribromoacetic acid, which 

together with the HAA5 compounds make up HAA9. 

Total Organic Halogen (TOX) and Speciation Analysis 

The 1:5 dilution of disinfected NOM described in the Sample Preparation section 

was added headspace-free to two 25 mL vials and quenched with 0.534 mg of sodium 

sulfite, which was added as an aliquot of 5.34 mg/mL sodium sulfite solution that was 
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prepared in LGW in a 5 mL volumetric flask.  These samples were stored at 4°C until 

analysis for total organic halogen (TOX) and its speciation, total organic 

chloride/bromide/iodide, according to the standard operating procedures provided in 

Appendix A.  



!

! !

CHAPTER 3 

RESULTS 

Preliminary Growth Inhibition Assay Experiments 

The two types of NOM used in this project, Nordic Lake and Suwannee River, 

were prepared in LGW in the absence of phosphate buffer and tested for cytotoxicity up 

to a concentration of 96 mg/L as C (Figure 1).  Note that this highest concentration was 

generated upon addition of FBS and SMX supplements mix to a 120 mg/L as C sample, 

resulting in an 80% dilution, as described in the Methods chapter.  While the y-axes in 

the dose-response curves are properly labeled “cell density as percent control,” for the 

sake of brevity, the cell density values discussed here will only be referred to as “cell 

density.”  Discussions on statistical significance refer to the results of the one-way 

ANOVA test and/or the Holm-Sidak multiple comparison versus the control group 

analysis, also described previously.  At 96 mg/L as C, the cell density was 82±10% for 

the Nordic Lake NOM, and 91±17% for the Suwannee River NOM.  The results of the 

Holm-Sidak test indicated that the growth inhibition observed at 96 mg/L as C for Nordic 

Lake NOM was significantly different from that observed in the control group (100±13% 

cell density), but that the growth inhibition observed at that same level for Suwannee 

River NOM was not significantly different from the control (100±9% cell density).  

While the highest DOC concentration of Nordic Lake NOM did generate a significant 

cytotoxic response, the statistical analysis was not completed until after disinfection 

experiments were already carried out, so the approximately 96 mg/L as C level was still 



! 34!

used for the disinfection experiments.  It is also important to note that while it may seem 

that the Nordic Lake NOM is more cytotoxic than the Suwannee River NOM at the 

highest concentration used, the 96 mg/L as C concentration represents an approximately 

nine-fold concentration factor over the Nordic Lake source water (DOC level=10.7 mg/L 

as C) and only about a two-fold concentration factor over the Suwannee River source 

water (for Suwannee River, the IHSS reports a DOC range of 25-75 mg/L as C, so 50 

mg/L was used for this calculation).  This difference in concentration factor may also 

play a role in the differences in cytotoxicity later observed between the two NOM types 

upon disinfection. 

The cytotoxicity data for the phosphate buffer experiment are shown in Figure 2.  

Although at lower concentrations (5 mM and below) of buffer, it appeared that there may 

be stimulation of cell growth (110±10% cell density at 5 mM phosphate buffer), the cell 

density values at these levels were not statistically different from the control (100±8% 

cell density).  At higher concentrations (20 mM and above), however, there were 

significant reductions in cell density (86±13% cell density in the wells containing 20 mM 

phosphate buffer).  At the 15 mM phosphate buffer concentration, 94±13% cell density 

was observed, and this was not statistically different from the control.  It was, therefore, 

decided to use 20 mM phosphate buffer to control the pH at approximately 7.1 during 

disinfection experiments because the 20 mM phosphate buffer is ultimately diluted to 15 

mM upon addition of SMX and FBS when preparing the samples for the GIA.     

The cytotoxicity of the disinfectants, chlorine and chloramine, was then tested 

(Figure 3), with the presence of 20 mM phosphate buffer at pH 7.1 in each of the original 

samples, prior to addition of SMX and FBS as described above.  For chlorine, at 3.69 
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mg/L as Cl2, there was 109±12% cell density, which was not statistically different from 

the control (100±7% cell density), but at 7.38 mg/L as Cl2, there was 118±11% cell 

density, which was a significant increase as compared to the control, as indicated by 

Holm-Sidak analysis.  For chloramine, however, none of the concentrations tested, even 

the highest, 34.4 mg/L as Cl2 (96±18% cell density), produced significant reductions or 

increases in cell density versus the control (100±15% cell density), also as indicated by 

the Holm-Sidak test.  In the proceeding 24-hour disinfection experiments, the disinfectant 

residual was targeted at 3 mg/L as Cl2 in order to minimize possible stimulation of cell 

growth due to the presence of unquenched disinfectant.  This target residual also meets 

the U.S. EPA’s maximum residual disinfectant level for chlorine and chloramine, which 

is set at 4.0 mg/L as Cl2 [10].  

The cytotoxicity of nitrate and iodide spikes in the presence of Nordic Lake NOM 

(up to 112 mg/L as C) and phosphate buffer (up to 20 mM) was then evaluated, in order 

to determine the level of spiking that the cells could tolerate.  Suwannee River NOM was 

not used for experiments involving spiking due to an apparent increase in cell density 

with exposure to increasing concentrations of chloraminated Suwannee River NOM, 

which was not readily explained.  The cytotoxic response for nitrate-spiked Nordic Lake 

NOM versus nitrate concentration is shown in Figure 4.  Note that the NOM and 

phosphate buffer concentrations were diluted along with the nitrate concentration.  The 

cell density was 101±13% at 100 mg/L as N, and 87±12% at 149 mg/L as N, the latter of 

which represented a significant reduction as compared to the control (100±15%).  At the 

highest nitrate concentration, 398 mg/L as N, there was only 39±6% cell density.  

Although up to 125 mg/L as N would have been acceptable in the original sample, due to 
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the 80% dilution that takes place during GIA sample preparation, it was decided to use 

100 mg/L as N for the nitrate-spiked disinfection experiments.  Figure 5 shows the 

cytotoxic response for the Nordic Lake NOM spiked with nitrate up to 398 mg/L as N as 

shown previously in Figure 4, but plotted versus DOC concentration, along with the 

response for Nordic Lake NOM alone, shown previously in Figure 1.  Together these 

response curves indicate that the cytotoxicity observed in the combined sample at the 

third and higher dilutions is due to the presence of nitrate, not due to the presence of 

NOM.  The use of a 112 mg/L as C concentration of DOC in this study represents an over 

10-fold concentration factor from the original Nordic Lake source water (10.7 mg/L as C).  

Nitrate concentrations are typically no greater than 1 mg/L as N in surface waters [48], 

which means that the 100 mg/L as N spiking level used in this study represents at least a 

100-fold concentration factor.  While the nitrate concentration is scaled up to a greater 

degree than the DOC concentration, the elevated spiking level was chosen in order to 

better understand how these spikes influence DBP formation and cytotoxicity.  

For the iodide-spiked Nordic Lake NOM, the cell density observed at the highest 

iodide concentration, 4 mg/L as I, was 85±12% (Figure 6), which was a significant 

reduction as compared to the control (100±18% cell density).  However, when the 

cytotoxic response was plotted versus DOC concentration and compared to the response 

to Nordic Lake NOM alone, this reduction in cell density appeared to be due to the 

presence of NOM, not the presence of iodide (Figure 7).  It was therefore decided to use 

5 mg/L as I, which is diluted to 4 mg/L as I during GIA sample preparation, for the 

iodide-spiked disinfection experiments.  While iodide concentrations are not reported for 

the Nordic Lake source water, in an occurrence study carried out at drinking water 
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treatment plants in 22 U.S. cities and one Canadian city, the source waters for these 

plants had iodide levels ranging from 0.4 to 104.2 µg/L (when detected) with a median of 

10.3 µg/L [49].  Using this median iodide level as a representative source water 

concentration, the 5 mg/L iodide level used for spiking in this study represents a 485-fold 

concentration over what is typically found.  The iodide levels used in this project are 

therefore scaled up higher in relation to actual waters than the DOC levels, as described 

for nitrate. 

Cytotoxicity, DBP, and TOX levels in Disinfected Samples 

! The NOM type, spiking conditions, disinfectant doses, residuals, and demands for 

each of the samples are listed in Table 2, along with TOX, TOCl, TOI, %known 

TOX, %known TOCl and %known TOI values.  Although the objective of this study was 

to assess differences between chlorinated and chloraminated samples, a concurrent study 

in our laboratory was investigating the effects of UV treatment on DBP formation, and in 

the interest of evaluating the sensitivity of the growth inhibition assay to these different 

treated NOM samples, UV treatment was incorporated as well, using 500 mJ/cm
2
 

medium pressure UV [50].  The concentrations of the 10 THMs and other halogenated 

volatile DBPs are shown in Tables 3 and 4, respectively.  Levels of haloacetamides, 

haloacetic acids, and cyanogen chloride, are listed in Tables 5, 6, and 7, respectively.  

Note that these concentrations represent the levels present in the original disinfected 

sample containing ~120 mg/L as C.  The lowest significant cytotoxic concentration, IC10, 

IC20, and IC50 values for each sample are shown in Table 8.  The regression model 

coefficients and R
2
 values are listed in Table 9.  The two-way ANOVA test results used 

to determine statistical difference (p<0.0001) by comparing the mean cell density values 

among samples (grouped by figure) at each concentration level are listed in Table 10.  
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These p-values represent the probability that the observed difference among the mean cell 

density values of the samples in the figure at a particular concentration level would occur, 

assuming that the null hypothesis is true.  Known TOX values were calculated by 

summing the concentrations of measured DBPs (trihalomethanes, haloacetonitriles, 

haloketones, halonitromethanes, chloral hydrate, haloacetamides, haloacetic acids, and 

cyanogen chloride) as mg/L chloride.  Known TOCl/TOBr/TOI levels were calculated by 

summing the concentrations of chlorinated, brominated, and iodinated DBPs, respectively.   

Of the halogenated volatile DBPs, which include trihalomethanes, 

haloacetonitriles, haloketones, halonitromethanes, and chloral hydrate, the following 

compounds were below the detection limit in all samples:  dibromochloromethane, 

bromochloroiodomethane, and dibromoiodomethane.  Most of the haloacetamides 

measured were below the detection limit in all samples, including bromochloroacetamide, 

dibromoacetamide, chloroiodoacetamide, bromodichloroacetamide, bromoiodoacetamide, 

dibromochloroacetamide, tribromoacetamide, and diiodoacetamide.  Of the haloacetic 

acids, bromoacetic acid, dibromoacetic acid, dibromochloroacetic acid, and 

tribromoacetic acid were below the detection limit in all samples.  TOBr was also below 

the detection limit (<0.24 mg/L) in all samples, and TOI was only detected in iodide-

spiked samples.  Low levels of brominated DBPs were expected because none of the 

samples were spiked with bromide.  For the iodide-spiked samples, higher levels of 

iodinated DBPs were expected to be formed during chloramination as compared to 

chlorination, as has been shown in previous studies [19, 49, 51, 52].  Because iodinated 

DBPs have also been found to be highly toxic [49, 53, 54], it was predicted that the 
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iodide-spiked chloraminated samples might be more cytotoxic than the corresponding 

chlorinated samples. 

For ease of viewing trends, the cytotoxicity data for the different samples were 

plotted in various combinations, as now described.  The cytotoxicity curves for 

chlorinated and chloraminated Nordic Lake NOM, with the curve for untreated NOM 

(same as in Figure 1) included for comparison, are shown in Figure 8.  The cytotoxicity 

curves for Suwannee River NOM treated with these same disinfectants are shown in 

Figure 9.  First, it was observed that chlorinated Nordic Lake NOM was more cytotoxic 

than chlorinated Suwannee River NOM.  The lowest dose that induced a significant 

cytotoxic response using the Holm-Sidak test was 23.0 mg/L as C (corresponding to 

83±10% cell density) for the chlorinated Nordic Lake NOM, but 92.0 mg/L as C 

(corresponding to 69±17% cell density) for the chlorinated Suwannee River NOM.  

However, the 23.0 mg/L as C level represents an approximately two-fold concentration 

factor over the Nordic Lake source water, and the 92.0 mg/L as C level also represents 

about a two-fold concentration factor over the Suwannee River source water, indicating 

that the concentration factor rather than the source water type is playing a role in these 

observed cytotoxic responses.  TOX values were similar between these two samples, with 

25.1 mg/L as Cl in the chlorinated Nordic Lake NOM and 24.2 mg/L as Cl in the 

chlorinated Suwannee River NOM.  TOCl levels were slightly higher in the chlorinated 

Nordic Lake sample (22.7 mg/L as Cl versus 18.6 mg/L as Cl).  The %known TOX was 

also similar between the two samples, at approximately 60%, while the %known TOCl 

was slightly higher in the chlorinated Suwannee River sample (77% versus 68%).  

Similar levels of halogenated volatile DBPs were observed in both chlorinated samples, 
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except for bromodichloromethane and trichloronitromethane, which were present at 

approximately four and five times higher concentrations, respectively, in the Nordic Lake 

sample compared to the Suwannee River sample.  The haloacetic acid levels were also 

similar between the two samples, except for bromochloroacetic acid and 

bromodichloroacetic acid, which were present at approximately three times higher 

concentrations in the Nordic Lake sample.  The two haloacetamides detected, 

dichloroacetamide and trichloroacetamide, were both at slightly higher levels in the 

Nordic Lake sample, at 39 µg/L and 101 µg/L, respectively.  Cyanogen chloride 

concentrations were similar between these two samples, at 4.2 µg/L in the Nordic Lake 

sample and 3.3 µg/L in the Suwannee River sample.   !

 In Figure 8, it was also observed that the chlorinated Nordic Lake NOM was 

much more cytotoxic than the chloraminated Nordic Lake NOM, with lowest cytotoxic 

concentrations at 23.0 mg/L as C (corresponding to 83±10% cell density) and 89.9 mg/L 

as C (corresponding to 86±10% cell density), respectively.  The TOX level was higher in 

the chlorinated sample (24.3 mg/L as Cl) versus the chloraminated sample (3.35 mg/L as 

Cl), which was expected because chlorine is a stronger halogenating agent than 

chloramine with a higher demand and, hence, higher dose is required to leave the same 

residual.  TOCl levels followed this same trend.  Both %known TOX and %known TOCl 

were also much higher in the chlorinated sample than in the chloraminated one, 

indicating that few of the chloraminated DBPs were being accounted for in this study and 

in fact reflect the difficulty in current chemical methods.  Most of the halogenated 

volatile DBPs, such as the trihalomethanes, were present at higher concentrations in the 

chlorinated versus the chloraminated sample, except for 1,1-dichloropropanone (3.8 µg/L 
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in chlorinated sample and 75.1 µg/L in chloraminated sample).  However, in the presence 

of a complex mixture of DBPs, this higher level of 1,1-dichloropropanone did not appear 

to have much cytotoxic impact in the chloraminated sample.   For the haloacetamides, 

dichloroacetamide was found at a slightly higher level in the chloraminated sample (54 

µg/L versus 39 µg/L), while trichloroacetamide was present at an approximately 67-fold 

higher level (101 µg/L) in the chlorinated sample compared to the chloraminated sample.  

Like the trihalomethanes, the haloacetic acids occurred at much higher levels in the 

chlorinated sample.  This observation was expected because the lower formation of these 

regulated DBPs upon chloramination is the main reason utilities are increasingly 

choosing chloramine for their secondary disinfectant.  Cyanogen chloride levels were 

higher in the chloraminated sample (10.1 µg/L) compared to the chlorinated sample (4.2 

µg/L), but as for 1,1-dichloropropanone, these higher levels of DBPs did not translate 

into overall high levels of cytotoxicity for the chloraminated sample.  However, they are 

suggestive of pathways for chloramine DBPs at the lower doses and weaker oxidizing 

properties of chloramine compared to chlorine. 

One unexpected result was the apparent stimulation of cell growth upon exposure 

to increasing concentrations of chloraminated Suwannee River NOM (Figure 9).  The 

lowest concentration at which the mean cell density was statistically different from the 

control (100±13%) was 44.6 mg/L as C, corresponding to 122±22% cell density.  

Differences in TOX, TOCl, and DBP levels between this sample and chloraminated 

Nordic Lake NOM, which did not stimulate cell growth, were not apparent.  The 

Suwannee River NOM did have a higher chloramine residual, at 5.0 mg/L as Cl2, 

compared to 2.7 mg/L as Cl2 for the Nordic Lake NOM.  While the preliminary 
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experiment that tested the cytotoxicity of chloramine residuals up to 34.4 mg/L as Cl2 in 

LGW indicated that none of these concentrations induced significant cytotoxic responses 

(Figure 3), the standard deviations for the cell density as percent control values were 

large, ranging from 11% to 20%, and the presence of a higher residual may have still had 

an impact on the results of the chloraminated Suwannee River experiment.  Because the 

goal of this project was to evaluate differences in cytotoxicity between chlorinated and 

chloraminated samples, and it was not immediately clear what factors had led to the 

stimulation in cell growth for the chloraminated Suwannee River sample, only Nordic 

Lake NOM was used for later disinfection experiments, which involved different 

treatment and spiking conditions.  This chloraminated Suwannee River sample was run 

again about a month later, on October 20, 2011, using the same NOM stock solution, and 

a similar result was obtained (see Appendix B).  However, when the chloraminated 

sample was prepared using a newly made NOM stock solution and evaluated again on 

February 8, 2012, an increase in cell density was not observed (see Appendix B).  

Perhaps a contaminant was present in the original stock solution that reacted with 

chloramine and stimulated growth.   

The cytotoxicity curves for all of the chlorinated Nordic Lake samples evaluated 

in this study are shown in Figure 10.   These include samples that were: chlorinated only; 

iodide-spiked and chlorinated; UV-treated prior to chlorination; nitrate-spiked and 

chlorinated; and nitrate-spiked and UV-treated prior to chlorination.  Taking into 

consideration the large error bars for the cell density as percent control values, the dose-

response curves appeared similar among all of the chlorinated samples.  However, the 

two-way ANOVA results show that the mean cell density values were statistically 
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different (p<0.0001) among these samples at the two highest DOC concentrations.  The 

lowest cytotoxic concentration for these samples ranged from 11.2 mg/L as C for the 

nitrate-spiked (no UV) sample, to 44.8 mg/L as C for the iodide-spiked sample.  These 

lowest cytotoxic concentration values, however, do not provide the full picture of the 

cytotoxic potency of samples, as some of the curves have steeper reductions in cell 

density at the higher sample concentrations.  For example, although the nitrate-spiked (no 

UV) sample induced a significant cytotoxic response at a lower concentration than the 

other chlorinated samples, the smallest IC50 value, which is the concentration at which 

50% reduction in cell growth is observed, was that of the nitrate-spiked UV-treated 

sample, with an IC50 of 61.8 mg/L as C.  The nitrate-spiked (no UV) sample had an IC50 

value of 75.0 mg/L as C, while the iodide-spiked sample had the highest IC50 of all the 

chlorinated samples, at 80.6 mg/L as C.  TOX values ranged from 24.2 mg/L as Cl for the 

chlorinated only sample, to 30.5 mg/L as Cl for the unspiked UV-treated sample.  The 

TOCl values ranged from 19.1 mg/L as Cl for the unspiked UV-treated sample, to 24.4 

mg/L as Cl for the iodide-spiked sample.  These variations in TOX and TOCl values did 

not seem to greatly affect cytotoxic response.  The %known TOX was approximately 60-

70% in the chlorinated samples.  Halogenated volatile DBP levels were similar among 

these chlorinated samples, except that chloral hydrate levels in the UV-treated samples 

(1857 µg/L in UV-treated; 1981 µg/L in nitrate-spiked, UV-treated) were almost double 

those observed in the non-UV-treated samples.  Haloacetic acid levels were also similar, 

with a notable difference observed only in the bromochloroacetic acid concentration, 

which was higher in the chlorinated only sample (85 µg/L versus ~10 µg/L levels in the 

other four chlorinated samples). 
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The cytotoxicity curves for all of the chloraminated samples are shown in Figure 

11.  As compared to the chlorinated samples, more variation in cytotoxic responses were 

observed among the different conditions, which included: chloraminated only; iodide-

spiked and chloraminated; UV-treated prior to chloramination; and iodide-spiked and 

UV-treated prior to chloramination.  The latter sample was produced and evaluated twice, 

first on October 13, 2011, and then on January 16, 2012.  Because the cytotoxicity data 

looked different between the two experiments, these data sets were plotted as separate 

curves, rather than averaged, in order to show this variation.  The two-way ANOVA test 

results showed that the mean cell density values were statistically different among the 

samples beginning at the "22 mg/L as C concentration level.  This result contrasted with 

the chlorinated samples, which were not found to exhibit statistical difference in mean 

cell density until much higher concentration levels, "67 and 90 mg/L as C.  Based on the 

IC20 values, the cytotoxic rank order (from most toxic to least toxic) among the 

chloraminated samples was:  iodide-spiked and UV-treated prior to chloramination 

(1/16/2012) > iodide-spiked and UV-treated prior to chloramination (10/13/2011) > UV-

treated prior to chloramination > iodide-spiked and chloraminated > chloramination only.  

TOX levels did seem to relate somewhat to these differences in cytotoxicity, in that the 

chloramine only sample had the lowest TOX at 3.35 µg/L Cl, the iodide-spiked sample 

was higher at 4.39 µg/L Cl, and the three UV-treated samples were highest, ranging from 

4.63 µg/L to 5.07 µg/L Cl.  No apparent correlations were observed between TOCl or 

TOI values and cytotoxic responses.  Not including the iodinated THMs, the halogenated 

volatile DBPs were generally higher among the UV-treated samples, with THM4 levels 

ranging from 125 to 153 µg/L.  Iodinated THMs, including chlorodiiodomethane and 
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triiodomethane, were only detected upon inclusion of an iodide spike, making THM10 

levels highest in these samples.  Chloral hydrate was only detected in the three UV-

treated samples, bromodiiodomethane (1.1 µg/L) was only detected in the iodide-spiked 

and UV-treated sample from October 13, 2011, and dichloroiodomethane (22 µg/L) was 

only detected in the iodide-spiked and UV-treated sample from January 16, 2012.  HAA5 

and HAA9 levels in the unspiked UV-treated sample and one of the iodide-spiked UV-

treated samples (from 10/13/2011) were almost two times the levels observed in the two 

samples that were not treated with UV.  Interestingly, the iodide-spiked UV-treated 

sample from January 16, 2012, had HAA5 and HAA9 levels that were approximately 200 

µg/L lower than the other two UV-treated samples.  Chloroacetic acid was only detected 

in the unspiked samples, at 46 µg/L in the chloraminated only sample and 131 µg/L in the 

UV-treated, chloraminated sample.  Bromochloroacetic acid was highest in the 

chloraminated only sample, at 27 µg/L.  Cyanogen chloride levels were higher in the UV-

treated samples than the non-UV-treated, with the highest concentration (50.8 µg/L) 

observed in the iodide-spiked UV-treated sample from January 16, 2012.   

While the cytotoxicity data for the iodide-spiked samples have already been 

presented in Figures 8 and 9, these curves were also plotted on the same graph (Figure 

12) in order to better view differences between chlorination and chloramination.  As was 

previously observed in the unspiked samples (Figure 8), for the iodide-spiked samples, 

the chlorinated one (IC20=46.4 mg/L as C) was more cytotoxic than the chloraminated 

one (IC20=58.3 mg/L as C).  The samples that were UV-treated and then chloraminated 

were the most cytotoxic of the iodide-spiked samples, with an IC20 value of 37.8 mg/L as 

C for the experiment run on October 13, 2011, and an IC20 value of 17.8 mg/L as C for 
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the one run on January 16, 2012.  In terms of why these IC20 values differed on the two 

dates, differences in chemical composition, such as DBP levels, between the two samples 

are a possibility.  However, while elevated cyanogen chloride and dichloroiodomethane 

concentrations were detected in the sample from January 16, 2012, compared to the one 

from October 13, 2011, it seems unlikely that these two DBPs fully account for the 

greater cytotoxic response observed with the January 16th sample.  Another possible 

explanation is that there were issues with the cell growth observed during the entire set of 

experiments run on January 16
th

, which would affect the cell density levels.  Indeed, upon 

looking at the cytotoxicity curves for diiodoacetamide, the positive control run 

concurrently with each experiment, an unusually high level of cytotoxicity was observed 

on January 16, 2012 (Figure 13).  Using an unpaired two-sample t-test, it was found that 

the mean cell density values on the two dates were statistically different (p<0.0001) 

beginning at the 9x10
-6

 M diiodoacetamide concentration level.  This topic will be 

discussed further in the Discussion section.  While TOX and TOCl values, as well 

as %known TOX and %known TOCl, were highest in the chlorinated samples, TOI 

levels and %known TOI were highest in the chloraminated samples.  It was notable that 

even though the TOX value for the chlorinated sample (27.8 mg/L as Cl) was much 

higher than that of the UV-treated and chloraminated sample (5.07 mg/L as Cl), the latter 

sample was more toxic.  This result indicates that while TOX is a useful measure of DBP 

content, it is a not a perfect indicator of overall toxicity.  THM4 was highest in the 

chlorinated sample, as were trichloroacetonitrile, chloral hydrate, trichloronitromethane, 

and 1,1,1-trichloropropanone.  As described previously, chlorodiiodomethane and 

triiodomethane were only detected in the chloraminated samples.  Similar to THM4, the 
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HAA5 levels were much higher in the chlorinated sample.  Bromochloroacetic acid and 

bromodichloroacetic acid were also highest in the chlorinated sample.  Despite the high 

levels of the regulated THM4 and HAA5, it was interesting that the chlorinated sample 

was still not as toxic as the UV-treated and chloraminated samples.  The increased 

presence of cyanogen chloride in the UV-treated and chloraminated samples versus the 

other two iodide-spiked samples may have contributed to the higher cytotoxic response 

observed, but likely other compounds that were not measured in this study nor have been 

previously identified played a role.  These results highlight the importance of studying 

the toxicity of DBPs as a complex mixture in which the identities of many DBPs are 

unknown. 

Cytotoxicity curves for the 72 and 96 hour chloraminated samples are shown in 

Figure 14, with the curve for the 24 hour chloraminated sample (same as in Figure 8) also 

included for comparison.  Of special note is that the DBP and TOX levels reported for the 

72 and 96 hour samples in Tables 2, 3, 4, 6 and 7, are for samples disinfected under the 

same conditions as the samples run on the GIA, but on different dates.  This differs from 

the chemical data for the 24 hour treated samples, in which the samples used for chemical 

analysis came from the same original sample as the sample used for the GIA.  Looking at 

the two-way ANOVA values, the mean cell density values for these three samples were 

not statistically different at the 0.0001 significance level for any of the concentration 

levels.  This result was somewhat surprising, given that the TOX value for the 72 hour 

sample (6.49 mg/L as Cl) was almost two times as high as the TOX value in the 24 hour 

sample (3.35 mg/L as Cl).  It was also unusual that the TOX value for the 96 hour sample 

(5.38 mg/L as Cl) was lower than that of the 72 hour sample.  Perhaps this indicates that 
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some volatile DBPs are lost over time.  For example, cyanogen chloride was highest in 

the 24 hour sample, at 10.1 µg/L, but 8.8 µg/L in the 72 hour sample, and 5.6 µg/L in the 

96 hour sample.  THM4 levels were over six times higher in the 72 and 96 hour samples 

compared to the 24 hour sample, and dichloroacetonitrile levels were over 10 times 

higher.  Other halogenated volatiles found at enhanced concentrations in the 72 and 96 

hour treated samples were trichloroacetonitrile, chloral hydrate, 1,1-dichloropropanone 

(although to not as great an extent as the others), trichloronitromethane, 

bromochloroacetonitrile, 1,1,1-trichloropropanone, and tribromonitromethane.  Although 

HAA5 and HAA9 were approximately three times as high in the 72 and 96 hour samples 

as compared to the 24 hour sample, bromochloroacetic acid was lower in the 72 and 96 

hour samples (6.1 and 5.6 µg/L, respectively) versus the 24 hour sample (27 µg/L).  Still, 

these high levels of THMs and HAAs did not appear to have a large effect on cytotoxicity.              
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CHAPTER 4 

DISCUSSION 

The goal of this study was to compare chlorinated and chloraminated controlled 

synthetic natural waters that had been dosed to leave equivalent disinfectant residuals, on 

the basis of cytotoxicity, DBP, and TOX levels.  Using those waters without adding 

iodide or nitrate or using UV treatment, the chlorinated water was more cytotoxic than 

the chloraminated water, a result that corresponds to previously reported Salmonella 

assay results for mutagenicity [32].  Upon inclusion of an iodide spike and pre-treatment 

with medium pressure UV, however, the chloraminated water was the most cytotoxic of 

all disinfected samples evaluated.  This is likely due to the formation of iodinated DBPs, 

possibly enhanced by degradation of the natural organic matter with UV, which have 

been shown individually to possess higher cytotoxicity than their bromine- or chlorine-

containing counterparts [54]. This current research has shown that the growth inhibition 

assay in NCM460 cells is able to detect these differential cytotoxic responses.  It was also 

shown that the two types of NOM, Nordic Lake and Suwannee River, at equivalent DOC 

levels, behaved differently upon disinfection, but these differences may have been a 

function of the much higher concentration factor over the original source water for 

Nordic Lake versus Suwannee River.     

While the cytotoxic potency of single DBP compounds is typically reported 

as %C1/2 values [23], which are analogous to IC50 values, in this study involving DBP 

mixtures generated from concentrated source waters, not all of the samples induced a 
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50% reduction in cell density in the concentration range tested.  Therefore, IC20 and IC10 

values were also calculated in order to make comparisons among more of the samples.  

However, the cytotoxic rank order based on IC20 and IC10 values was slightly different 

from the one based on IC50 values, indicating that the cytotoxic responses observed at 

higher sample concentrations do not always correspond with those observed at lower 

concentrations.  While lower DOC concentrations are of particular interest because they 

approximate DOC levels in natural waters and are therefore better representative of 

human exposure, for most samples the DOC levels needed to be much higher before a 

significant cytotoxic response was observed with this assay.  Notable exceptions were the 

iodide-spiked UV-treated and chloraminated sample from January 16, 2012, and the 

nitrate-spiked chlorinated sample, which had lowest cytotoxic concentrations of 10.8 

mg/L as C and 11.2 mg/L as C, respectively, close to the ~10.7 mg/L as C level in the 

Nordic Lake source water.  However, while the DOC level in these samples may 

approximate the original source water, the iodide (0.48 mg/L as I) or nitrate (10 mg/L as 

N) levels present at these sample concentrations were still elevated as compared to most 

surface waters, as described in the Results chapter.   

Indeed, by using these elevated iodide and nitrate spiking ratios, and not including 

a bromide spike, DBP formation took place at distorted ratios, so it is difficult to make 

conclusions about relevance to actual drinking water.  Still, the data provide insight into 

the cytotoxic effects of using chloramine in the presence of iodide, and UV in the 

presence of nitrate. 

While the IC50 values indicated that the Nordic Lake samples that were iodide-

spiked and UV-treated prior to chloramination, from both October 13, 2011 and January 
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16, 2012, were the most cytotoxic of the disinfected samples, it was surprising that these 

values varied so greatly between the two experiments.  The IC50 values were 42.9 mg/L 

as C for the January 16 sample, and 60.7 mg/L as C for the October 13 sample, with 95% 

confidence intervals of (39.2 mg/L as C, 46.7 mg/L as C) and (58.2 mg/L as C, 63.0 

mg/L as C), respectively.  The dose-response curve for the positive control (Figure 13) in 

the January 16, 2012 experiment was steeper than in the October 13, 2011 experiment, 

meaning that greater reductions in cell density were observed.  While including a control 

column in every plate and expressing the cell density for the sample columns as percent 

control is supposed to account for any differences between plates, the importance of 

including a positive control with every experiment in order to monitor a known cell 

growth response was highlighted in this case.   

    TOX levels in chlorinated waters have previously been strongly correlated with 

mutagenic responses in Salmonella [33], but this study showed that the relationship 

between TOX and cytotoxicity in NCM460 cells is not straightforward when evaluating 

samples treated with two different disinfectants, chlorine and chloramine.  A general 

concordance between TOX levels and cytotoxicity was observed among the various 

chloraminated Nordic Lake samples.  However, TOX could not explain the higher 

cytotoxicity of the iodide-spiked, UV-treated and chloraminated sample compared to the 

iodide-spiked, chlorinated sample, which contained an over five times higher TOX level.  

TOI levels, which represent the amount of total iodinated DBPs, do provide insight into 

this observed difference in cytotoxicity, with 0.59 mg/L as I in the chlorinated sample 

and ~2.3 mg/L as I in the chloraminated sample.  This difference was expected based on 

known reactions of iodide with chloramine to produce iodinated DBPs that do not occur 
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between iodide and free chlorine [51, 52].  The higher cytotoxic response and higher 

iodinated DBP levels in the chloraminated sample as compared to the chlorinated sample 

together correspond with current knowledge regarding the elevated cytotoxicity of 

iodinated DBPs [49, 53, 54].  The measured iodinated DBPs only represented ~12% of 

the TOI for the chloraminated sample, and 0% of the TOI for the chlorinated sample, 

highlighting the limitation of including only nine iodinated DBPs in the analysis and the 

difficulty in detecting iodinated DBPs at low levels.   

It is also important to point out that the iodide-spiked chlorinated sample was less 

cytotoxic than the iodide-spiked, UV-treated, chloraminated sample, despite its 

containing much higher levels of regulated trihalomethanes and haloacetic acids.  This 

result indicates that the regulated DBPs are not representative of overall toxic DBP 

content.  In general, for all of the samples, it was difficult to identify specific DBPs that 

were consistently correlated with increased cytotoxicity.  The DBP measurements did 

indicate that the presence of cyanogen chloride (CNCl) may be a major contributor of 

cytotoxicity in the chloraminated samples, but because less than 20% of the TOX was 

accounted for by the measured DBPs, it seems likely that other cytotoxic compounds are 

present in the chloraminated samples that are not being measured.   

Another observation is that the nitrate-spiked, UV-treated and chlorinated sample 

exhibited reduced cytotoxicity as compared to its non-UV-treated counterpart, despite the 

former sample having an increased disinfectant demand.  This result is surprising because 

a higher disinfectant demand is typically associated with increased DBP formation, which 

would be expected to lead to greater cytotoxicity.  However, the TOX level is slightly 

lower in the UV-treated sample, indicating that the increased demand was not associated 
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with increased formation of halogenated DBPs, and perhaps is associated with formation 

of nitrogenous DBPs that in this case may not be as cytotoxic.  In addition, for the UV-

treated and chlorinated sample, the cytotoxicity was reduced despite the increased 

reaction and higher TOX observed, indicating that the DBPs that were elevated in this 

case were likely not as cytotoxic.  Further, while the chlorinated Nordic Lake sample was 

more cytotoxic than the chloraminated sample, the UV-treated and chlorinated sample 

was similar in cytotoxic potency to the UV-treated and chloraminated sample, even 

though the TOX level for the latter sample was much lower.  Use of UV treatment prior 

to chlorine or chloramine disinfection seems to influence the overall sample cytotoxicity 

compared to treatment with chlorine or chloramine using doses that leave similar 

disinfectant residuals.  

For the Nordic Lake samples that were chloraminated over longer treatment times, 

one surprising observation was that TOX levels, as well as CNCl levels, were lower in 

the 96 hour sample as compared to the 72 hour sample.  This result suggests that some 

DBPs, like CNCl, may be lost through volatilization.  However, this reduction in CNCl is 

below 0.01 mg/L as Cl, indicating that some other DBPs not measured in this study are 

contributing to the overall loss in TOX.  Despite the expectation that the samples treated 

with chloramine over longer contact times, which are more representative of a 

distribution system, would be more cytotoxic than the 24 hour sample, the cytotoxicity 

data for these samples indicate that this was not the case.       

This study took an interdisciplinary approach to assessing differences in water 

quality between chlorinated and chloraminated simulated source waters by 

simultaneously evaluating cytotoxicity, DBP occurrence and TOX levels.  Chlorinated 
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and chloraminated water concentrates containing non-volatile DBPs had previously been 

evaluated for mutagenicity in Salmonella [32], but this current work was novel in that the 

cytotoxic potency of both the volatile and non-volatile portions of DBP mixtures 

produced during chlorination and chloramination was evaluated using a normal human 

colon cell line.  The results of this cytotoxicity analysis showed that in the absence of 

iodide and nitrate, and without UV-pretreatment, the chlorinated sample was more 

cytotoxic than the chloraminated samples, which corresponds with the results of the 

mutagenicity study.  The advantages of using a cytotoxicity assay in addition to chemical 

analysis was highlighted by the iodide-spiked UV-treated and chloraminated sample, 

which had the highest cytotoxic response of the disinfected samples, despite low levels of 

TOX as compared to the iodide-spiked chlorinated sample, and similar levels of iodinated 

DBPs as compared to the iodide-spiked chloraminated sample.  The difficulty in 

correlating specific DBP levels with cytotoxic responses in this study highlights the 

inherent complexity of DBP mixtures, as well as the challenge involved in regulating 

individual DBPs when so many DBPs are unidentified.
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CHAPTER 5 

 

LIMITATIONS OF THIS STUDY AND SUGGESTIONS FOR FUTURE WORK 

One aspect of this work that remains to be investigated is whether the 

composition of the disinfected sample changes over the 72 hour treatment period in the 

growth inhibition assay, due to the presence of unquenched disinfectant residual which 

could possibly continue to react with the NOM.  In addition, although filtering and 

vortexing of disinfected samples were avoided prior to placement on the cells, and 

Alumaseal was placed on the plates to further minimize loss of volatiles, it is unclear to 

what extent the cells are actually exposed to the volatile portion of the sample.  If 

possible, the levels of volatile DBPs present in the media should be analyzed following 

addition of disinfected sample to dilution tubes. 

The inclusion of a concurrent positive control, diiodoacetamide, with each set of 

experiments is a useful tool for monitoring unusual cell response patterns, but it is also 

important that steps be taken to improve the reproducibility of the growth inhibition assay.  

One action that might reduce differences in cell growth observed in the positive control 

between experiment sets would be to consistently use cell cultures that have been 

passaged two to three times rather than ones that have been growing for shorter or longer 

periods.  In addition, the iodide-spiked, UV-treated and chloraminated Nordic Lake 

sample and the chloraminated Suwannee River sample were the only samples evaluated 

on separate days in this study, aside from the positive control.  In order to confirm 

reproducibility, it is recommended that all of the disinfected samples be evaluated again 
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and a two-way ANOVA be carried out with experimental day as a factor.  While the 

complexity of the sigmoidal model may make it difficult, another suggestion is to 

determine a way to adjust the sample cytotoxicity curves based on the positive control 

response.  If such an adjustment could be made, perhaps the cytotoxicity curves obtained 

for the iodide-spiked, UV-treated and chloraminated Nordic Lake sample in two separate 

experiments in this study would no longer differ.       

 Once the reproducibility of the cytotoxicity assay is improved, samples that have 

been spiked with bromide prior to disinfection should also be evaluated because although 

iodinated DBPs have been found to be more cytotoxic than brominated DBPs [54], the 

bromide levels in surface waters are typically an order of magnitude higher than the 

iodide levels [49], and the levels of brominated DBPs that form during treatment of 

source waters may still be toxicologically significant.  When doing so, a realistic bromide 

to iodide ratio that is scaled to the NOM concentration should be used in order to produce 

waters that are representative of those that utilities might encounter.  In order to better 

understand the correlation between specific DBP levels and cytotoxicity, levels of known 

DBPs could be spiked into a disinfected sample to see if the cytotoxic response is 

additive.  For the chloraminated samples evaluated in this study, the %known TOX was 

only 12-18%, indicating that many of the chloramination by-products are not being 

measured.  If possible, more iodinated and nitrogenous DBPs, which are associated with 

chloramination, should be included in future chemical analysis.   

It is also important to note that the highest concentration of Nordic Lake NOM 

was itself cytotoxic to the NCM460 cells, which may have affected the interpretation of 

the cytotoxicity data for the disinfected samples.  One recommendation is for the 
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statistical analysis to be carried out with the cytotoxicity data at this highest NOM 

concentration removed, in order to confirm that the trends described here hold.  Also, 

while the sigmoidal regression model appears to be a good fit for the cytotoxicity curves, 

as observed in the high R
2
 values, another suggestion would be to explore other 

regression models, such as a logistic model.    

It must also be recognized that the concentrations of NOM used in this study were 

much higher than is usually present in source waters.  In a nationwide DBP occurrence 

study, the median TOC level in raw waters was 5.8 mg/L as C, whereas the TOC levels in 

this study were in the 120 mg/L as C range [19]. While the cytotoxicity of the diluted 

sample was already measured, the DBP levels may not scale down proportionately when 

the sample is originally disinfected at a high DOC.  Although cytotoxicity would not be 

detected due to method sensitivity limitations, in order to confirm that composition of 

DBPs is similar between a dilution of a disinfected concentrated NOM and a NOM that is 

diluted to more realistic levels and then disinfected to leave the same level of residual, 3 

mg/L as Cl2, the latter should be evaluated for DBPs to confirm proportional DBP 

formation.  If the resources were available, it would be interesting to also evaluate the in 

vivo effects of these samples, such as by using the developmental toxicity screen in 

Sprague-Dawley rats described in the “Four-Lab Study” [39].   
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Table 1. Experimental matrix 

 

Date* Sample 

2/21/2011 Nordic Lake 

 Suwannee River 

8/11/2011 Phosphate Buffer, pH 7.1, in LGW 

9/1/2011 Nordic Lake + Chlorine 

 Suwannee River + Chlorine 

9/15/2011 Nordic Lake + Chloramine 

 Suwannee River + Chloramine 

9/23/2011 Nordic Lake + Nitrate 

 Nordic Lake + Iodide 

10/6/2011 Nordic Lake + Nitrate + Chlorine 

 Nordic Lake + Nitrate + UV + Chlorine 

 Nordic Lake + UV + Chlorine 

10/13/2011 Nordic Lake + Iodide + Chlorine 

 Nordic Lake + Iodide + Chloramine 

 Nordic Lake + Iodide + UV + Chloramine 

10/20/2011 Chlorine Residual in LGW 

 Chloramine Residual in LGW 

 Suwannee River + Chloramine (repeat) 

1/16/2012 Nordic Lake + Iodide + UV + Chloramine 

 Nordic Lake + UV + Chloramine 

2/8/2012 Suwannee River + Chloramine (repeat**) 

2/20/2012 Nordic Lake + Chloramine, 72 h 

 Nordic Lake + Chloramine, 96 h 

*Date listed is for the first day of the GIA  

**with newly prepared NOM stock 

T
A

B
L

E
S
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Table 2. Listing of disinfected samples prepared for GIA with organic halogen analysis. (Unless otherwise noted, disinfection 

carried out over 24 hours.) 

SR=Suwannee River NOM; NL=Nordic Lake NOM 

NM=not measured; NA=not applicable; *not pH adjusted prior to TOCl/Br/I adsorption; **not including haloacetamides 
#
 values calculated as the difference between sum of the individual DBPs and the total halogen (both values converted to mg/L of the 

appropriate halogen atom). 

 

 
!

Sample 

Dose  

(mg/L Cl2) 

Residual 

(mg/L Cl2) 

Demand 

(mg/L Cl2) 

TOX 

(mg/L 

as Cl) 

TOCl 

(mg/L    

as Cl) 

TOI 

(mg/L 

as I) 

%known
#
 

TOX 

%known
#
 

TOCl 

%known
#
 

TOI 

SR + HOCl 221 2.6 219 25.1 18.6 <0.32 57% 77% NA 

SR + NH2Cl 44 5.0 39 3.73 3.82 <0.32 13% 13% NA 

NL + HOCl 225 5.4 214 24.2 22.7 <0.32 64% 68% NA 

NL + UV + HOCl 234 5.4 229 30.5 19.1 <0.48 61% 97% NA 

NL + Nitrate + HOCl 224 2.0 222 29.5 22.1 <0.48 58% 77% NA 

NL + Nitrate + UV + HOCl* 262 2.4 260 27.1 20.9 <0.48 69% 90% NA 

NL + Iodide + HOCl 236 3.6 232 27.8 24.4 0.59 67% 76% 0.0% 

NL + NH2Cl 32 2.7 29 3.35 3.29 <0.32 13% 13% NA 

NL + UV + NH2Cl (1/16/12) 47 4.1 43 4.96 3.65 <0.24 15%** 21% NA 

NL + Iodide + NH2Cl 40 2.5 37 4.39 2.37 2.88 12% 18% 8.6% 

NL + Iodide + UV +NH2Cl(10/13/11) 54 3.4 50 5.07 3.33 2.49 18% 23% 13% 

NL + Iodide + UV + NH2Cl (1/16/12) 52 4.5 48 4.63 3.11 2.16 15%** 21% 11% 

NL + NH2Cl, 72 h 99 4.6  94 6.49 NM NM 23%** NM NM 

NL + NH2Cl, 96 h 99 2.8  96 5.38 NM NM 28%** NM NM 
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Table 3. Formation of THM10 halogenated volatile DBPs (!g/L) in treated SR and NL samples. Value shown is the average 

between duplicate samples. Br2ClCH, BrClICH and Br2ICH were below detection limit (<0.5-1.0 !g/L) in all samples.!!
!

!

Cl3CH trichloromethane 

BrCl2CH bromodichloromethane 

Br2ClCH dibromochloromethane 

Cl2ICH dichloroiodomethane 

Br3CH tribromomethane 

BrClICH bromochloroiodomethane 

Br2ICH dibromoiodomethane 

ClI2CH chlorodiiodomethane 

BrI2CH bromodiiodomethane 

I3CH triiodomethane 

Sample [Cl3CH] [BrCl2CH] [Cl2ICH] [Br3CH] [ClI2CH] [BrI2CH] [I3CH] !THM4 !THM10 

SR+HOCl 7362 11 <1.0 4.1 <1.0 <1.0 <1.0 7377 7377 

SR+NH2Cl 132 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 132 132 

NL+HOCl 8002 40 <1.0 3.6 <1.0 <1.0 <1.0 8046 8046 

NL+UV+HOCl 10652 43 <1.0 2.0 <1.0 <1.0 <1.0 10697 10697 

NL+Nitrate +HOCl 9826 43 <1.0 2.0 <1.0 <1.0 <1.0 9872 9872 

NL+Nitrate +UV+HOCl 9356 41 <1.0 1.2 <1.0 <1.0 <1.0 9398 9398 

NL+Iodide +HOCl 10197 41 <0.5 2.7 <0.5 <0.5 <0.5 10241 10241 

NL + NH2Cl 95 0.8 <0.5 <0.5 <0.5 <0.5 <0.5 96 96 

NL+UV+NH2Cl (1/16/12) 152 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 153 153 

NL+Iodide+ NH2Cl 75 1.3 <0.5 <0.5 91 <0.5 137 77 305 

NL+Iodide+UV +NH2Cl (10/13/11) 123 1.6 <0.5 <0.5 119 1.1 182 125 427 

NL+Iodide+UV +NH2Cl (1/16/12) 125 0.9 22 <0.5 96 <0.5 157 126 401 

NL+NH2Cl,72h 614 8.0 <0.5 <0.5 <0.5 <0.5 <0.5 622 622 

NL+NH2Cl,96h 649 8.3 <0.5 <0.5 <0.5 <0.5 <0.5 657 657 



!

!

6
1
!

Table 4. Formation of other halogenated volatile DBPs (!g/L) in treated SR and NL samples. Value shown is the average 

between duplicate samples. !

!

TCAN trichloroacetonitrile 

DCAN dichloroacetonitrile 

CH chloral hydrate 

11DCP 1,1-dichloropropanone 

TCNM trichloronitromethane  

BCAN bromochloroacetonitrile 

111TCP 1,1,1-trichloropropanone 

DBAN dibromoacetonitrile 

TBNM tribromonitromethane  

!

!

Sample [TCAN] [DCAN] [CH] [11DCP] [TCNM] [BCAN] [111TCP] [DBAN] [TBNM] 

SR+HOCl 2.4 80 968 3.5 2.8 <1.0 157 <1.0 <1.0 

SR+NH2Cl <1.0 18 <0.5 64 <0.5 <0.5 4.3 <0.5 <0.5 

NL+HOCl 3.7 88 1108 3.8 15 <1.0 174 <1.0 <1.0 

NL+UV+HOCl 3.7 82 1857 4.5 18 <1.0 195 <1.0 <1.0 

NL+Nitrate +HOCl 4.1 101 1060 4.3 17 <1.0 161 <1.0 <1.0 

NL+Nitrate +UV+HOCl 4.8 124 1981 4.7 2512 <1.0 219 3.8 1.2 

NL+Iodide +HOCl 3.9 82 952 3.0 19 <0.5 139 <0.5 <0.5 

NL + NH2Cl <1.0 13 <0.5 75 1.2 <0.5 2.8 <0.5 <0.5 

NL+UV+NH2Cl (1/16/12) <0.5 23 11 158 1.9 <0.5 8.5 <0.5 <0.5 

NL+Iodide+ NH2Cl <0.5 19 <0.5 51 1.8 <0.5 1.3 <0.5 <0.5 

NL+Iodide+UV+NH2Cl (10/13/11) <0.5 31 3.3 94 3.5 <0.5 5.6 <0.5 <0.5 

NL+Iodide+UV+NH2Cl (1/16/12) <0.5 24 4.5 96 2.5 <0.5 4.9 <0.5 <0.5 

NL+NH2Cl,72h 2.4 140 20.4 87.9 11.5 1.3 32.9 <0.5 1.4 

NL+NH2Cl,96h 1.8 140 19.4 87.3 10.6 1.4 27.3 <0.5 0.6 
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Table 5. Formation of haloacetamides (!g/L) in treated SR and NL samples.!

Average concentration between duplicates (!g/L) 

Sample [DCAM] [BCAM] [TCAM] [DBAM] [CIAM] [BDCAM] [BIAM] [DBCAM] [TBAM] [DIAM] 

SR + HOCl 27 <1 64 <1 <1 <1 <1 <1 <1 <1 

SR + NH2Cl 44 <0.5 1.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

NL + HOCl 39 <1 101 <1 <1 <1 <1 <1 <1 <1 

NL + UV + HOCl 38 <0.5 114 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

NL + Nitrate + HOCl 59 <1 102 <1 <1 <1 <1 <1 <1 <1 

NL + Nitrate + UV + HOCl 65 <1 140 <1 <1 <1 <1 <1 <1 <1 

NL + Iodide + HOCl 50 <1 92 <1 <1 <1 <1 <1 <1 <1 

NL + NH2Cl 54 <0.5 1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

NL + UV + NH2Cl (1/16/12) ** ** ** ** ** ** ** ** ** ** 

NL + Iodide + NH2Cl 50 <0.5 1.2 <0.5 29 <0.5 <0.5 <0.5 <0.5 26 

NL + Iodide + UV + NH2Cl 

(10/13/11) 91 <0.5 2.2 <0.5 45 <0.5 <0.5 <0.5 <0.5 34 

NL + Iodide + UV + NH2Cl 

(1/16/12) ** ** ** ** ** ** ** ** ** ** 

NL + NH2Cl, 72 h ** ** ** ** ** ** ** ** ** ** 

NL + NH2Cl, 96 h ** ** ** ** ** ** ** ** ** ** 
**Not Available!

DCAM dichloroacetamide 

BCAM bromochloroacetamide 

TCAM trichloroacetamide 

DBAM dibromoacetamide 

CIAM chloroiodoacetamide 

BDCAM bromodichloroacetamide 

BIAM bromoiodoacetamide 

DBCAM dibromochloroacetamide 

TBAM tribromoacetamide 

DIAM diiodoacetamide 
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Table 6. Formation of haloacetic acids (!g/L) in treated SR and NL samples. 

Average concentration between duplicate samples (!g/L) 

Sample [ClAA] [BrAA] [Cl2AA] [BrClAA] [Cl3AA]  [Br2AA]  [BrCl2AA] [Br2ClAA]  [Br3AA]  HAA5 HAA9 

SR + HOCl 142 <2 2467 31 8467 <0.5 20 <5 <1 11076 11127 

SR + NH2Cl 52 <1 434 8 9 <1 <1 <2.5 <0.5 495 503 

NL + HOCl 149 <2 2575 85 8968 <0.5 59 <5 <1 11691 11835 

NL + UV + HOCl 189 <1 3108 10     8925 <1 63 <5 <1 12222 12295 

NL + Nitrate + HOCl 167 <1 2557 9 8805 <1 60 <5 <1 11529 11598 

NL + Nitrate + UV + HOCl 194 <1 3033 12 8153 <1 60 <5 <1 11380 11452 

NL + Iodide + HOCl 192 <1 3138 11 10484 <0.5 79 <2.5 <0.5 13814 13904 

NL + NH2Cl 46 <1 381 27 5 <1 <1 <2.5 <0.5 431 458 

NL + UV + NH2Cl 

(1/16/12) 131 <0.5 710 2 8 <0.5 <0.5 <2.5 <2.5 850 852 

NL + Iodide + NH2Cl <7.5 <1 430 4 6 <0.5 <1 <2.5 <0.5 435 439 

NL + Iodide + UV + NH2Cl 

(10/13/11) <7.5 <1 797 6 11 <0.5 <1 <2.5 <0.5 808 813 

NL + Iodide + UV + NH2Cl 

(1/16/12) <15 <0.5 611 3 9 <0.5 <0.5 <2.5 <2.5 620 623 

NL + NH2Cl, 72 h 117 8.1 1171 6.1 60.7 <0.5 <0.5 <2.5 <2.5 1356 1362 

NL + NH2Cl, 96 h 121 7.8 1161 5.6 59.3 <0.5 <0.5 <2.5 <2.5 1349 1355 
!

ClAA chloroacetic acid 

BrAA bromoacetic acid 

Cl2AA dichloroacetic acid 

BrClAA bromochloroacetic acid 

Cl3AA  trichloroacetic acid 

Br2AA  dibromoacetic acid 

BrCl2AA bromodichloroacetic acid 

Br2ClAA  dibromochloroacetic acid 

Br3AA  tribromoacetic acid 
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Table 7. Formation of cyanogen chloride (CNCl)  

in treated SR and NL samples. 

 

Sample 

[CNCl] 

(!g/L) 

SR + HOCl 3.3 

SR + NH2Cl 15.9 

NL + HOCl 4.2 

NL + UV + HOCl 4.2 

NL + Nitrate + HOCl 4.3 

NL + Nitrate + UV + HOCl 4.2 

NL + Iodide + HOCl 1.2 

NL + NH2Cl 10.1 

NL + UV + NH2Cl (1/16/12) 37.7 

NL + Iodide + NH2Cl 12.5 

NL + Iodide + UV + NH2Cl (10/13/11) 35.7 

NL + Iodide + UV + NH2Cl (1/16/12) 50.8 

NL + NH2Cl, 72 h 8.8 

NL + NH2Cl, 96 h 5.6 

SR=Suwannee River NOM; NL=Nordic Lake NOM 

!

!
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Table 8. Lowest significant cytotoxic concentration, IC10, IC20, and IC50 values (in mg/L as C) for each treated SR and NL 

sample. 

 

Sample 

Lowest Cytotox. 

Conc.
a
  IC10 

b
 IC20 

b
 IC50 

b
 

ANOVA test 

p-value 

SR + HOCl 92.0  73.1 (66.4, 79.2) 83.4 (78.9, 90.1) NA <0.001 

SR + NH2Cl NA NA NA NA <0.001 

NL + HOCl 23.0  14.7 (10.9, 18.5) 29.4 (26.1, 32.7) 65.8 (63.4, 68.3)  <0.001 

NL + UV + HOCl 33.6  18.6 (13.4, 23.5) 34.1 (29.0, 38.5) 72.2 (68.7, 75.9) <0.001 

NL + Nitrate + HOCl 11.2  9.8 (6.4, 13.1) 26.3 (22.1, 30.4) 75.0 (70.7, 80.3) <0.001 

NL + Nitrate + UV + HOCl 22.4  17.4 (13.2, 21.7) 29.8 (25.3, 34.6) 61.8 (58.3, 65.8) <0.001 

NL + Iodide + HOCl 44.8 32.0 (26.9, 36.9) 46.4 (42.0, 50.9) 80.6 (76.2, 83.9) <0.001 

NL + NH2Cl 89.9  83.9 (76.8, 89.3) NA NA <0.001 

NL + UV + NH2Cl (1/16/12) 32.3  12.1 (6.4, 17.7) 28.4 (22.8, 34.1) 66.8 (62.9, 70.2) <0.001 

NL + Iodide + NH2Cl 43.5  36.3 (31.1, 45.2) 58.3 (53.6, 66.6) NA <0.001 

NL + Iodide + UV + NH2Cl (10/13/11) 32.3 27.1 (22.7, 31.2) 37.8 (34.0, 41.7) 60.7 (58.2, 63.0) <0.001 

NL + Iodide + UV + NH2Cl (1/16/12) 10.8  8.0 (4.5, 11.4) 17.8 (14.2, 21.7) 42.9 (39.2, 46.7) <0.001 

NL + NH2Cl, 72 h 82.9 56.3* NA NA <0.001 

NL + NH2Cl, 96 h 83.1  NC NC NC <0.001 
Values in () are 95% confidence intervals calculated using bootstrapping in the statistical program, R. 

*Could not calculate 95% confidence interval due to error that occurred during bootstrapping. 

NA=Not applicable because this level of growth inhibition was not observed, either due to apparent stimulation of cell growth (SR+NH2Cl) or due to 

concentrations that were too low to induce this level of cytotoxic response. 

NC=Not calculated because data did not fit the sigmoidal 3 parameter model used for the others. 
a
Lowest concentration at which a significant reduction in mean cell density as compared to the control was detected using a Holm-Sidak multiple comparison 

versus the control group analysis. 
b
The ICx is the concentration at which the cell density is reduced by x% as compared to the control.  This value is calculated using the sigmoidal regression 

equation fit to each curve. 
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Table 9. Model coefficients and R
2
 values for cytotoxicity curves 

Sample a b x0 R
2 a

 

SR+HOCl 106.7264 -17.4945 102.5585 0.87 

SR+NH2Cl 226.5184 124.5601 35.4105 0.90 

NL+HOCl 117.6493 -34.4168 55.3606 0.99 

NL+UV+HOCl 117.3322 -36.0286 61.5225 0.99 

NL+Nitrate +HOCl 143.3213 -56.7847 39.5548 0.98 

NL+Nitrate +UV+HOCl 121.5811 -31.6143 50.4772 0.99 

NL+Iodide +HOCl 114.0784 -30.9879 72.891 0.99 

NL + NH2Cl 106.3612 -20.2044 118.3884 0.78 

NL+UV+NH2Cl (1/16/12) 113.6885 -34.6684 58.4002 0.98 

NL+Iodide+ NH2Cl 138.514 -72.1482 80.9014 0.93 

NL+Iodide+UV+NH2Cl (10/13/11) 107.6967 -19.011 57.9778 0.99 

NL+Iodide+UV+NH2Cl (1/16/12) 121.216 -24.7546 34.1828 0.99 

NL+NH2Cl,72h 107.5749 -53.1083 143.0748 0.84 

NL+NH2Cl,96h NA NA NA NA 

NA=Not available because data did not fit the sigmoidal 3 parameter model used for the others. 

a Value indicative of how well the sigmoidal regression model,  , fits the data, where f=cell density as 

percent control, x=concentration, and a, b, and x0 are coefficients that are determined using a series of iterations that 

minimize the error between the observed f value and the predicted f value. !
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Table 10. Two-way analysis of variance (ANOVA) 

 
 

 

 

 

 

 
a 
Results comparing cell density means at nearby DOC concentrations, lowest to highest.  The zero concentration 

(negative control) is excluded from this ANOVA analysis because the mean cell density for these wells is set at one 

hundred percent during data analysis so there is no difference between means (p=1.000) in this case.      
b 
DOC concentrations varied slightly among the different samples.  #1~8 refer to the first through eighth concentration 

levels used in the experiments (the negative control is considered the zero level, as described above).  The exact DOC 

concentrations are listed in Appendix B, but concentration level #1 ! 0.5 mg/L as C, #2 ! 1 mg/L as C, #3 ! 10 mg/L as 

C, #4 ! 20 mg/L as C, #5 ! 30 mg/L as C, #6 ! 40 mg/L as C, #7 ! 70 mg/L as C, #8 ! 90 mg/L as C.   

 Testing Results (p-values) for Difference between Means 
a
 

 Concentration Level 
b 

 1 2 3 4 5 6 7 8 

Figure 8 0.278 0.0009 0.0005 <.0001 <.0001 <.0001 <.0001 <.0001 

Figure 9 0.004 0.0407 0.0134 0.6315 0.4031 0.0041 <.0001 <.0001 

Figure 10 0. 221 0. 0724 0.0074 0.0183 0.0376 0.0136 <.0001 <.0001 

Figure 11 0.076 0.054 0.0008 <.0001 <.0001 <.0001 <.0001 <.0001 

Figure 12 0.264 0.197 0.0022 <.0001 <.0001 <.0001 <.0001 <.0001 

Figure 14 0.482 0.0868 0.0698 0.0225 0.0006 0.1431 0.0522 0.1109 
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FIGURES 

!

Figure 1. Cytotoxicity Dose-Response Curves for Two Types of Natural Organic Matter 

(NOM); Error bars represent standard deviation for n=16 replicates. 

!

!

Figure 2. Cytotoxicity Dose-Response Curve for Phosphate Buffer, pH 7.1, in LGW; Error 

bars represent standard deviation for n=16 replicates. 
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!
Figure 3. Cytotoxicity Dose-Response Curves for Chlorine and Chloramine Residuals in LGW,  

pH 7.1; Error bars represent standard deviation for n=16 replicates. 
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Figure 4. Cytotoxicity Dose-Response Curve for Nitrate-spiked Nordic Lake NOM; Error bars 

represent standard deviation for n=16 replicates. 

 

 

 

!
Figure 5. Cytotoxicity Dose-Response Curves for Unspiked and Nitrate-spiked Nordic Lake 

NOM; Error bars represent standard deviation for n=16 replicates. 
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!
Figure 6. Cytotoxicity Dose-Response Curve for Iodide-spiked Nordic Lake NOM;  

Error bars represent standard deviation for n=16 replicates.   

 

 

!
Figure 7. Cytotoxicity Dose-Response Curve for Unspiked and Iodide-spiked Nordic Lake 

NOM; Error bars represent standard deviation for n=16 replicates. 
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!
Figure 8. Cytotoxicity Dose-Response Curves for Untreated, Chlorinated, and Chloraminated Nordic 

Lake NOM; Error bars represent standard deviation for n=16 replicates.  Asterisks show statistically 

significant differences among samples (p<0.0001, Two-Way ANOVA). 

!

!
Figure 9. Cytotoxicity Dose-Response Curves for Untreated, Chlorinated, and Chloraminated 

Suwannee River NOM; Error bars represent standard deviation for n=16 replicates.  Asterisks show 

statistically significant differences among samples (p<0.0001, Two-Way ANOVA). 
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!
Figure 10. Cytotoxicity Dose-Response Curves for Chlorinated Nordic Lake NOM under different 

spiking conditions and with or without UV treatment; Error bars represent standard deviation for 

n=16 replicates.  Asterisks show statistically significant differences among samples (p<0.0001,  

Two-Way ANOVA). 

 

 

 

 

!
Figure 11. Cytotoxicity Dose-Response Curves for Chloraminated Nordic Lake NOM with or without 

Iodide spike and with or without UV treatment; Error bars represent standard deviation for n=16 

replicates.  Asterisks show statistically significant differences among samples (p<0.0001, Two-Way 

ANOVA). 
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!
Figure 12. Cytotoxicity Dose-Response Curves for Iodide-spiked Nordic Lake NOM with different 

disinfection conditions; Error bars represent standard deviation for n=16 replicates.  Asterisks show 

statistically significant differences among samples (p<0.0001, Two-Way ANOVA). 

!

!

!
Figure 13. Cytotoxicity Dose-Response Curves for the Positive Control, Diiodoacetamide, in different 

experiment sets; Error bars represent standard deviation for n=8 replicates. 
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Figure 14. Cytotoxicity Dose-Response Curves for Nordic Lake NOM Chloraminated for  

24, 72, and 96 h; Error bars represent standard deviation for n=16 replicates.   
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APPENDIX A:  

Standard Operating Procedures 

Procedure for Total/Dissolved Organic Carbon (TOC/DOC) and Total Nitrogen 

(TN) analysis in water samples 

Standards Preparation 

Dissolved Organic Carbon (DOC) Stock Standard (1000 mg/L as C) 

• Dissolve 2.125 g Potassium Hydrogen Phthalate in 1-L lab grade water (LGW); 

mix with a magnetic stir bar 

• Store in fridge in amber bottle with PTFE-lined septa/cap. Good for 2 months 

Total Nitrogen (TN) Stock Standard (1000 mg/L as N) 

• Dissolve 7.219 g Potassium nitrate in 1-L LGW; mix with a magnetic stir bar 

• Store in fridge in amber bottle with PTFE-lined septa/cap. Good for 2 months 

HCl solution (2 N)  

• Carefully add 41 mL concentrated HCl (12.1 N) to LGW in a 250 mL volumetric 

flask.  

• Fill to line with LGW and carefully invert 3 times. Store in amber bottle with 

PTFE-lined septa/cap. 

------------------------------------------------------------------------------------------------------------ 

DOC Working Solution (100 mg/L as C) 

• Pipette 10-mL of DOC Stock Standard into a 100 mL volumetric flask; fill to line 

with LGW; invert stoppered flask three times 

• Store in fridge in amber bottle with PTFE-lined septa/cap. Good for 1 week 
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DOC/TN Working Solution (100 mg/L as C, 100 mg/L as N, 0.05 M HCl) 

• Pipette 10-mL of DOC Stock Standard, 10 mL of TN Stock Standard, and 2.5 mL 

of 2 M HCl into a 100 mL volumetric flask; fill to line with LGW; invert 

stoppered flask three times 

• Store in fridge in amber bottle with PTFE-lined septa/cap. Good for 1 week 

------------------------------------------------------------------------------------------------------------ 

Calibration points should be made fresh for every run 

• To make 0.5 mg-C/L calibration point, pipette 0.5 mL of DOC Working Solution 

into a 100-mL volumetric flask; fill to line with LGW; invert stoppered flask three 

times 

• Additional calibration points are made in an analogous fashion 

Procedure 

Notes: 

*The concentrations of the samples need to be less than 10 mg/L as C or N – you should 

first test a highly diluted sample to make sure you will be in the correct range. 

*If you do not plan to analyze your water samples soon after you collect them, adjust to 

pH 4.5 and store them in the fridge. 

*Before you start running samples, you need to talk to person in charge of the TOC/TN 

about what type of samples you will be running – to make sure they will not compromise 

the instrument 

1. Prepare calibrations (for example: 0, 0.5, 5, 10 mg C and N/L) and samples (dilute 

if necessary – concentration needs to be less than 10 mg/L as C or N). 

2. Pour your samples and calibrations into acid-washed TOC vials. 
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3. Acidify all samples and calibrations to pH 2-2.5 using 2 N HCl. A typical surface 

water requires about 2-4 drops of 2 N HCl if using 24 mL sample vials, but you 

need to test your actual sample matrix using a pH meter to be sure you adjust the 

pH to this value. Cover each vial with aluminum foil. Calibration points prepared 

using LGW from Weinberg lab typically require ~6 drops of 2 N HCl (but you 

should check the pH using an extra aliquot with the pH meter).  

4. Start the system: Before using the instrument, check a day or two in advance that 

the head pressure on the air tank is above 500psi by opening the regulator 

attached to the air tank and reading the pressure. If it is not, consult with whoever 

is responsible for the instrument so that a new gas tank can be ordered. Use only 

UHP air (“air grade zero”). On the day of use turn on computer, turn on TOC 

analyzer, and open the air tank at the regulator. 

5. Check the system: 

Open Software (TOC ControlV) 

Sample table (User = TOC; password = UNC) 

File ! New ! sample run ! (TC/IC-TN 24mL system (default) or use TC/IC-

TN 40 mL if using 40 mL sample vials) 

Instrument ! connect  

Check the following on the instrument: 

(a) Carrier gas flow  = 150 (TOC analyzer) 

(b) Pressure = 200 (TOC analyzer) 

(c) Continuous bubbles in the plastic bottle (TOC analyzer) 

(d) N flow ~ 0.5 (Nitrogen unit) 
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(e) Fill the humidifier tank with laboratory grade water (LGW) of TOC  

< 0.5ppm water if it is empty or almost empty. 

Instrument ! Background monitor ! run and wait for all points to be checked 

and green (about 20 mins) 

6. Create your calibration curve 

For TOC/DOC: 

File ! New ! Calibration curve ! 24mL system (default) ! NPOC (for Non 

Purgeable Organic Carbon) 

Standard 

TOC 

Linear Regression (uncheck the ‘zero shift’) 

Check ‘multiple injections’ 

Put the number of standards and the range of the concentrations 

Adjust the concentrations of each standard and save 

For TN: 

File ! New ! Calibration curve ! 24mL system (default) ! TN 

Standard 

TN 

Linear Regression (uncheck the ‘zero shift’) 

Check ‘multiple injections’ 

Put the number of standard and the range of the concentrations 

Adjust the concentrations of each standard and save 

7. Create your sequence 
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(a) First excel cell ! insert autogenerate! choose your method ! put 3-4 blank 

LGW vials to rinse the system 

(b) Run a 5 mg/L as C and N standard after LGWs. You will record the area 

counts for these in the logbook and do the same for a 5 mg/L as C and N standard 

at the end of your run. 

(c) Click on next excel cell ! insert calib curve NPOC ! enter the vial #s in the 

ASI vial view 

(d) Next excel cell ! insert calib curve TN ! enter the vial #s 

(e) Next excel cell ! insert auto generate ! choose your method ! enter the 

number of samples and start vial # (only after the standards) ! Enter your sample 

name in the excel cells! Save as your sequence 

*be sure to run another 5 mg/L as C and N standard after all of your samples and 

a LGW blank. Run 3 LGW blanks after this standard too. 

8. Check the system: Recheck the previous signals, if all lights are green, 

Maintenance ! replace flow line content (cleans the syringe) 

9. Run the sequence 

Instrument ! Start ! Shut down ! make sure external acid addition is checked 

! run 

10. Instrument will shut down once sample run is finished, but you need to come in 

and manually turn off the gas tank at the regulator when run is done. 

11. In the notebook by the instrument, record the method and calibration you used 

next to your name and the date. When your samples have finished running, record 

the calibration curve information: slope, y-intercept, R
2
, and the area counts for 
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the first non-zero calibration point area. Also record the area counts for the 5 

mg/L standards at the start and end of your run. 

12. After running your samples, remove vials from instrument immediately and clean 

them. Any vial containing environmental samples (tap water or dirtier) needs to 

be rinsed and put in the 10% nitric acid bath overnight. Then rinse at least 3x with 

LGW and dry in 180
o
C oven overnight. Any vial containing LGW or standards 

made up in LGW can be rinsed 3x with LGW and dried in 180
o
C oven overnight. 

13. Maintenance – All users are expected to contribute their time in maintaining the 

instrument, troubleshooting problems, and providing resources to replace 

consumables. 
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Prepared by: Bonnie Lyon, 10/20/08 

Standard Operating Procedure for Halogenated Volatile and Haloacetamide 

Analysis 

Halogenated Volatiles  

Abbrev. Compound CAS # 

mol. wt. 

(g/mol) 

CHCl3 Chloroform 67-66-3 119.38 

TCAN trichloroacetonitrile 545-06-2 144.39 

DCAN dichloroacetonitrile 3018-12-0 109.94 

BrCl2CH bromodichloromethane 75-27-4 163.83 

TCA chloral hydrate 302-17-0 165.40 

11 DCP 1,1-dichloropropanone 513-88-2 126.97 

TCNM Trichloronitromethane (chloropicrin) 76-06-2 164.38 

Br2ClCH dibromochloromethane 124-48-1 208.28 

BCAN bromochloroacetonitrile 83463-62-1 154.39 

111TCP 1,1,1-trichloropropanone 918-00-3 161.42 

CHBr3 bromoform 75-25-2 252.73 

DBAN dibromoacetonitrile 3252-43-5 198.85 

 

Haloacetamides 

 

Abbrev. Compound CAS # 

mol. wt. 

(g/mol) 

DIAM diiodoacetamide      5875–23–0 310.85 

BIAM bromoiodoacetamide     62872–36–0 263.86 

CIAM chloroiodoacetamide    62872–35–9 219.41 

DBAM dibromoacetamide      598–70–9 216.86 

TBAM tribromoacetamide    594–47–8 295.75 

BCAM bromochloroacetamide    62872–34–8  172.41 

DBCAM dibromochloroacetamide     855878–13–6 251.31 

BDCAM bromodichloroacetamide    98137–00–9 206.85 

BAM bromoacetamide     683–57–8 137.96 

DCAM dichloroacetamide   683–72–7 127.96 

TCAM trichloroacetamide   594–65–0 162.40 

 
Equipment 

 

• Clear 60-mL, clean, prewashed glass screw cap sample vials with 

polytetrafluoroethylene (PTFE)-lined silicone septa. Clean vials by washing with 

Alconox powder detergent solution, rinsing with tap water, and soaking in a 10% 

ACS-grade HNO3 bath overnight. The vials should then be rinsed at least three 
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times with tap water and then rinsed three times with laboratory grade water (LGW) 

and dried in a 180
o
C oven for at least 24 hours. Repeat the same steps for cleaning 

the caps and septa except oven temperature should be set at 80
o
C. 

• Gas tight syringes: 25 !L, 50 !L, 100 !L, 250 !L  

• 50-250 !L Dade Model J micropipetter fitted with clean glass capillary tips 

• Eight 100-mL glass volumetric flasks with glass stoppers 

• 1-L amber bottle mounted with 10-mL pump pipetting dispenser containing PFTE 

transfer line 

• 23-cm disposable glass Pasteur pipettes 

• Rubber Pasteur pipette bulb 

• pH indicator strips pH 0-6 – colorpHast, EMD Chemicals, (Fisher Scientific – 

catalog #M95863) 

• GC vials - 12x32 mm 1.8-mL Amber glass vials, Laboratory Supply Distributors, 

(catalog #20211ASRS-1232) 

• GC Caps - 11 mm seal w/ Red Teflon
®

 faced silicone septa, 40 Mils thick, Supelco 

(catalog #27360-U) 

• GC vial inserts – 5x30 mm Flat Bottom LVI, Laboratory Supply Distributors, 

(catalog #20870-530) 

• Hand crimper for sealing gas chromatography autosampler vials 

• Vortexer 

• Teflon tape 

• Stainless steel scupula 
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Instrumentation 

Gas Chromatograph 

• Hewlett-Packard GC5890 Series II with autosampler/autoinjector tower 

• Capillary Column: HP-1 (Agilent) 30 m length x 0.25 mm inner diameter, 1.0-!m 

film thickness 

• Electron Capture Detector (ECD): Hewlett-Packard Model ECD 

• Data System: Hewlett-Packard ChemStation 

GC Gases 

• Carrier Gas-Ultra High Purity (UHP) helium (He) available through UNC Scientific 

Storerooms (catalog # SG62350) 

• Makeup Gas-Ultra High Purity (UHP) nitrogen (N2) available through UNC 

Scientific Storerooms (catalog # SG62750) 

GC Supplies 

Septa- (Restek, Bellafonte, PA) 11-mm diameter Thermolite Septa (catalog #20365) 

• Injector Liner Sleeves- (Supelco, Bellafonte, PA) Split/Splitless Injector Sleeve 

with deactivated glass wool, 4 mm inner diameter (catalog #20486,05) 

• Column Ferrules- (J&W) graphite/vespel 0.5 mm ferrules (catalog #5002025) 

• Autosampler Syringes- 10 !L Agilent tapered needle syringe 

Reagents 

• Laboratory Grade Water  (LGW)  

• Extraction solvent: OmniSolv Methyl-t-Butyl Ether, EMD Chemicals, (Fisher 

Scientific – catalog # MMX08266)  
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• Sodium sulfate (Na2SO4), Mallinckrodt, granular, ACS grade (catalog #8024) from 

Scientific Storeroom. Bake at 400
o
C in muffle furnace for 24 hours in a shallow, 

porcelain dish covered with aluminum foil. Store in glass-stoppered bottle in 

desiccator. 

• Solvent for dilution of standards: OmniSolv Methyl-t-Butyl Ether (EMD Chemicals, 

Fisher Scientific – catalog # MMX08266) 

• Methanol (for rinsing glassware) HPLC grade 

• L-Ascorbic Acid (for quenching residual Cl2) Certified ACS grade (Fisher 

Scientific – catalog #A61-25) 

• Sulfuric Acid (for pH adjustment) Certified ACS Plus (Fisher Scientific – catalog 

#A300-212) 

Standards 

• THM Calibration Mix, 2000 !g/mL each in methanol. (Supelco, Bellafonte - 

catalog # 48140-U) 

• EPA 551B Halogenated Volatiles Mix, 2000 !g/mL each in methanol (Supelco, 

Bellafonte - catalog # 4-8046) 

• Chloral Hydrate, 1000 !g/mL in acetonitrile (Supelco, Bellafonte - catalog # 

47335-U) 

• Internal Standard (IS): Aldrich (Milwaukee, WI) 1,2-dibromopropane neat standard, 

99+% (catalog #14,096-1) 

• Bromoacetamide (98%), Acros Organics (catalog # 291100050) 

• Dichloroacetamide (98%), Acros Organics (catalog # 113050100)  

• Trichloroacetamide (99%), Acros Organics (catalog # 202920250)  
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• Bromochloroacetamide, CanSyn Chemical Corporation 

• Bromodichloroacetamide, CanSyn Chemical Corporation 

• Tribromoacetamide, CanSyn Chemical Corporation 

• Chloroiodoacetamide, CanSyn Chemical Corporation 

• Dibromochloroacetamide, CanSyn Chemical Corporation 

• Dibromoacetamide, CanSyn Chemical Corporation 

• Diiodoacetamide, CanSyn Chemical Corporation 

• Bromoiodoacetamide, CanSyn Chemical Corporation 

Samples 

Samples should be collected headspace-free in pre-cleaned 60 mL glass vials with screw 

caps and PTFE-lined silicone septa containing 1.4 mg ascorbic acid. Samples should be 

filled head-space free and holding vial at an angle so halogenated volatiles do not escape 

through volatilization. Store samples in fridge at 4
o
C.  Samples should be extracted 

within 24 hours of quenching. 

Procedure 

Internal Standard 

Stock solution of Internal Standard (IS) at ~2000 !g/mL in MtBE - prepared by 

injecting 10mL of the neat standard and injecting into a 5 mL volumetric flask containing 

MtBE, fill to line with MtBE. 

Primary dilution at 100!g/mL: prepared by injecting 250!L of IS stock solution 

using a micropipette into a 5 mL volumetric flask containing MtBE, fill to line with 

MtBE.  
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Extracting solution at 50 !g/L or 100 !g/L (depending on what expected 

concentration of analytes in samples): calculate how much extracting solvent will be 

needed for all of your samples and calibrations (3 mL for each sample and calibration). 

Make from primary dilution, and prepare more than needed because there may be bubbles 

in the dispenser that you need to clear, and will need to pump a few times to start out.  

Halogenated Volatiles Calibration Standards 

These are prepared as a mix of THM4, 551B Halogenated Volatiles and chloral hydrate. 

Calibration Standard #1: 100 !g/mL, 100 !L of each THM4 and EPA551B stock 

calibration mix and 200 !L of chloral hydrate to 2 mL volumetric flask containing 

MtBE, fill to line with MtBE. 

Calibration Standard #2: 1 !g/mL, 20 !L of Calibration Standard #1 into 2 mL 

volumetric flask containing MtBE, fill to line with MtBE. 

Haloacetamide Stock & Calibration Standards 

Primary dilution stock: 2000 µg/mL. Prepared from solid standards of each 

haloacetamide. Weigh out 20 mg of each compound, dissolve in 10 mL high purity 

MtBE.  

Calibration Standard #1: 20 !g/mL, 20 µL of primary dilution stock into 2 mL 

volumetric flask containing MtBE, fill to line with MtBE. 

Calibration Standard #2: 1 !g/mL, 100 µL of Calibration standard #1 into 2 mL 

volumetric flask containing MtBE, fill to line with MtBE. 

Transfer standards to a 2-mL amber glass vial and store in laboratory standards 

freezer at -15
o
C. 
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14. Check calibration standards a few days before extraction. Make up two dilutions 

(50!g/L and 1!g/L) in MtBE containing internal standard. Standards should be 

monitored for degradation and contamination by comparing standard 

chromatographic peak area values obtained on the performance evaluated 

designated GC to those obtained during initial calibration of standard.  The 

responses obtained on the same instrument are normalized relative to the freshly 

prepared internal standard to account for instrument detector drift and the values 

for each compound stored on a spreadsheet on the GC computer and backed-up to 

the external hard drive. New standards should be made from the stock solution if 

check exceeds 20% drift. If the drift persists, purchase new stock solutions from 

two suppliers and compare the responses making a note of the stock batch number. 

15. Prepare a laboratory reagent blank (the level 1 calibration standard - see step 6) 

and the laboratory fortified blank (level 3 calibration standard – see step 6) at the 

beginning of each day and analyze on the GC before extracting samples. If QC 

criteria fail, troubleshoot and correct the problem, reanalyzing these check 

standards before proceeding to the next step. 

16. Prepare calibration standards in 100 mL LGW according to the range of 

concentrations expected in the samples. Examples for halogenated volatiles and 

haloacetamides are shown below. 
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Example of Halogenated Volatile Calibrations 

Level 

Calibration 

standard 

Volume Cal. std. 

added (!L) to 

100 mL LGW 

Analyte conc. 

(!g/L) 

1 -- 0 0 

2 1 !g/mL 10 0.1 

3 1 !g/mL 100 1 

4 100 !g/mL 10 10 

5 100 !g/mL 20 20 

6 100 !g/mL 50 50 

7 100 !g/mL 100 100 

8 100 !g/mL 200 200 

 

Example of Haloacetamide Calibrations 

 

Level 

Calibration 

standard 

Volume Cal. std. 

added (!L) to 

100 mL LGW 

Analyte conc. 

(!g/L) 

1 -- 0 0 

2 1 !g/mL 10 0.1 

3 1 !g/mL 50 0.5 

4 20 !g/mL 25 5 

5 20 !g/mL 50 10 

6 20 !g/mL 125 25 

7 20 !g/mL 250 50 

 

17. Prepare matrix spike (MS) and matrix spike duplicate (MSD) in 30 mL samples  

! should be ~2-3 times halogenated volatile levels in samples.  

18. Measure 30 mL from all calibration standards using a 50 mL measuring cylinder 

starting from lowest to highest concentration and then follow with the samples all 

in duplicate and transfer into 60 mL vials.  Rinse cylinder 3 times with LGW and 

once with sample to be measured next between each.  Pour at an angle so 

halogenated volatiles are not lost through volatilization.  

19. Adjust all samples and calibrations to approximately pH 3.5 with 0.2 N H2SO4. 

(Amount required for pH adjustment will likely be different for calibrations 

compared to samples. Use remaining 30 mL aliquot from 60 mL vial to determine 

how much H2SO4 will be needed.) 
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20. Add 3 mL extracting solvent from a solvent dispenser bottle to each 30 mL 

aliquot. Make sure there are no bubbles in the dispenser addition line. 

21. Add ~6 g pre-baked sodium sulfate to each 30 mL sample/calibration standard. (6 

g can be measured out in pre-measured marked 10 mL glass beaker) Vortex 

samples for 1 minute immediately after adding sodium sulfate to avoid clumping. 

Let samples settle for 5 minutes. 

22. Using a disposable 23-cm glass Pasteur transfer ~1.5 mL from the middle of the 

MtBE layer (top layer) to a GC autosampler vial.  Do not transfer any sodium 

sulfate crystals as they will clog the GC.  Cap and crimp vial.  Fill three GC vials 

for each sample (one for halogenated volatile analysis, one for haloacetamide 

analysis, and one backup), and two GC vials with each calibration (since you will 

have separate halogenated volatile and haloacetamides calibrations – need one for 

analysis and one backup). Use GC vial inserts. Store in the laboratory freezer at -

15
o
C in a tray covered in aluminum foil if not analyzed immediately.  Also fill 

two autosampler vials with MtBE and 2 vials of extracting solvent containing 

MtBE + IS. Analyze within 4 weeks.  

23. Analyze according to specified GC method (see GC temperature programs below) 

on the designated GC. Instructions for GC use for this method are provided by the 

instrument that is available at the time. 

Quality Control 

Precision is measured as the average and relative percent difference (RPD) of the 

duplicate analyses of each sample. RPD should be less than 10% otherwise sample has to 

be flagged as suspect. The coefficient of variation of all the internal standard responses 
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for the complete set of samples must be less than 15%. Individual samples responsible for 

elevating this value above the threshold should be flagged and considered suspect. 

A calibration check standard is prepared in the mid-range of the standard calibration 

curve and is injected every 10 samples. If the detector response for this sample varies 

more than 10% from the previous injection, all samples analyzed between the two 

injections are flagged for investigation. 

Each sample bottle set is accompanied by replicate field and travel blanks. 

In cases with unknown or mislabeled samples, we will first attempt to determine the 

sample identity based on received samples and shipping list information. If a reasonable 

determination can be made, the sample will be analyzed and those data will be qualified 

in reports and future data analyses. 

GC-ECD analysis on Hewlett-Packard GC5890 Series II: 

Injector: 

Syringe size = 10!L; Injection volume = 2!L 

Wash solvent = MtBE; Pre-injection washes = 3; Post-injection washes = 3; Pumps = 3 

Injector Temperature = 200°C; Injection splitless (split after 0.5 min) 

Oven/Column: 

Oven equilibration time = 3 min; Oven max °C = 300°C 

Gas = He; Column flow = 1mL/min 

Column type = DB1 (Agilent), 30.0m length, 0.25mm inner diameter, 1!m film thickness 

Split flow = 1mL/min; Split ratio = 1:1 
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Halogenated Volatiles Oven Temperature program (Total time = 55.75 min) 

  Velocity 

(°C/min) 

Temp. 

(°C) 

Time 

(min) 

Initial - 35 22 

Level 1 10 145 2 

Level 2 20 225 10 

Level 3 20 260 5 

Electron Capture Detector (ECD), Detector temperature = 290°C, Injector temp: 117
o
C 

Haloacetamides Oven Temperature program (Total time = 59.60 min) 

 Velocity 

(°C/min) 

Temperature (°C) Time (min) 

Initial - 37 1 

Level 1 5 110 10 

Level 2 5 280 0 

Electron Capture Detector (ECD), Detector temperature = 300°C 
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Prepared by Bonnie Lyon, 08/2009 

Analysis of Cyanogen Chloride by Liquid-Liquid Extraction and Gas 

Chromatography with Electron Capture Detector 

Materials 

Equipment 

• Clear 60 mL clean glass screw cap sample vials with PTFE-lined silicone septa. 

• 10-50 µL and 50-250 µL micropipetter and glass capillary tips 

• 100 mL and 10 mL volumetric flasks with glass stoppers, 2 mL volumetric flask 

with screw cap and PTFE-lined silicone septa 

• 50 mL graduated cylinder 

• 1-L amber bottle mounted with 10 mL pump pipetting dispenser  

• 23 cm disposable glass Pasteur pipettes and rubber bulb 

• pH indicator strips pH 0-6: colorpHast (HC781889 catalog # 9586) 

• 2 mL amber glass autosampler vials with rubber/TFE aluminum seals 

• Hand crimper for sealing autosampler vials 

• Vortexer 

• Teflon tape 

• Stainless steel scupula 

Instrumentation 

Gas Chromatograph 

• Hewlett-Packard GC6890 Series with autosampler/autoinjector tower 

• Column: Zebron 1701 (Phenomenex) 

• Electron Capture Detector (ECD): Hewlett-Packard Model ECD 
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• Data System: Hewlett Packard ChemStation 

GC Gases 

• Carrier Gas-Ultra High Purity (UHP) helium (He) through UNC Scientific 

Storerooms (catalog #SG62350) 

• Makeup Gas-Ultra High Purity (UHP) nitrogen (N2) through UNC Scientific 

Storerooms (catalog #SG62750) 

Reagents 

• Cyanogen chloride stock standard 2000 µg/mL SPEX CertiPrep  

• Internal Standard (IS): Aldrich (Milwaukee, WI) 1,2-dibromopropane neat 

standard, 99+% (catalog #14,096-1)  

• Sodium sulfate (Mallinckrodt, Paris KY) granular ACS grade (catalog #8024) 

baked at 400° for 24 hours, stored in desiccator 

• Extraction solvent: OmniSolv Methyl-t-Butyl Ether (Fisher Scientific catalog 

#MX08266) 

• Solvent for dilution of standards and working solutions: Sigma-Aldrich Purge & 

Trap Methanol (Sigma catalog # 414816) 

• Methanol (for rinsing glassware) HPLC grade 

• L-ascorbic acid (for quenching residuals) Certified ACS grade (Sigma catalog 

#10K0256) 

• Sulfuric acid (for pH adjustment) Certified ACS Plus (Fischer Scientific catalog 

#A300-212) 

• Lab Grade Water (LGW) 
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Procedure 

Internal Standard – 1,2 dibromopropane 

Stock solution of IS at ~2000 µg/mL in MtBE – prepared by injecting 10 µL of neat 

standard into a 5 mL volumetric flask containing 5 mL MtBE. 

Primary dilution at 100 µg/mL: prepared by injecting 250 µL of IS stock solution using a 

micropipette, into a 5 mL volumetric flask containing 5 mL of MtBE. 

Extracting Solution at 100 µg/L in MtBE. Volume depends on number of samples (4 mL 

x # samples, be sure to make extra, as some will be used to clear bubbles in dispensing 

line) 

Sample collection 

Collect samples in 60-mL glass vials with PTFE-lined septa and screw caps, containing 

ascorbic acid for quenching.  The amount of ascorbic acid will depend on expected 

chlorine residual – the stoichiometric ratio is 2.48 mg ascorbic acid/mg Cl2, and a safety 

factor of 2 is typically used. Use 1M sulfuric acid to adjust the sample pH to 2-3 to 

stabilize cyanogen chloride. Fill vials headspace-free and store at 4
o
C until analysis.  

Working Solutions 

Prepare one or two intermediate concentrations in high-purity methanol from the 2000 

!g/mL stock solutions in order to make calibrations.  

Calibration Standards 

Prepare a range of calibrations based on levels expected in samples. Working solutions 

and calibration standards are kept on ice at all times when not being used.   
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Extraction procedure 

*Samples and Calibrations must be kept on ice during extraction procedure. CNCl 

and CNBr have very low boiling points and can volatilize easily. * 

1. Measure out 30 mL of each calibration and sample using a graduated cylinder, 

tilting the cylinder to prevent volatilization.   

2. Adjust the pH of all standards to pH 2-2.5 pH using 2 drops of 1M sulfuric acid 

(amount may vary for different types of samples, so test with pH strips) 

3. Add 4 mL of MtBE with IS extracting solution via pump dispenser to each vial.  

4. Add ~10 g of baked sodium sulfate, cap, and vortex for one minute.    

5. Transfer the organic layer via disposable Pasteur pipette to 2 mL amber 

autosampler vials.  Use two autosampler vials per sample for backup.  Store in 

freezer until ready for analysis.   

GC-ECD analysis on Hewlett-Packard GC6890: 

Injector: 

Syringe size = 10!L; Injection volume = 1!L 

Wash solvent = MtBE; Pre-injection washes = 3; Post-injection washes = 3; Pumps = 3 

Injector Temperature = 120°C; Splitless injection  

Oven/Column: 

Oven equilibration time = 3 min; Oven max °C = 300°C 

Gas = He; Flow column = 1mL/min; Column Pressure= 11.3 psi 

Column type = 1701 (Zebron), 30.0m length, 0.25mm diameter, 1.0 !m film thickness 
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CNX Oven Temperature program (Total time = 38.5 min) 

  Velocity 

(°C/min) 

Temp. 

(°C) 

Time 

(min) 

Initial - 35 9 

Level 1 10 200 10 

Electron Capture Detector (ECD), Detector temperature = 300°C 
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BL – updated 10/27/11 

(Semi-)Quantification of CNCl 

The current stock standards available in our lab have passed their expiration date and 

CNCl standards are not readily commercially available.  SPEX Certiprep sent us all of 

their remaining CNCl standards because they no longer make or sell this compound.  As 

a result, we have CNCl stocks in different solvents at a range of concentrations, but many 

are degraded. We are currently quantifying CNCl in samples by comparing to the 

response of a fresh standard which was run on the 6890 GC-ECD on 04/14/10.  When 

this standard was opened, it was measured on the total organic halogen (TOX) analyzer 

and total nitrogen (TN) analyzer.  These analyses estimated that the stock concentration 

was 1488 !g/mL, compared to the 2000 !g/mL advertised concentration. The calibration 

response of this standard in LGW is used to monitor the concentration of a CNCl 

standard when it is first opened and before each extraction.  Below is a table and resulting 

plot of the calibration curve obtained using the reference CNCl standard.  If the detector 

or column in the 6890 GC-ECD is changed, this comparison will no longer be valid. 

Conc. spiked into 

LGW (!g/L) CNCl peak area 

0.4 8.6 

0.4 8.3 

0.7 19.8 

0.7 20.0 

3.7 99.1 

3.7 96.7 

7.4 255.0 

7.4 253.5 

18.6 598.1 

18.6 596.7 

37.2 1087.8 

37.2 1041.6 
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Prepared by: Jennifer Chu, January 2008  

Adapted from EPA Method 552.2  

Analysis of Haloacetic Acids (HAAs)  

This entire procedure should also be performed under a well-ventilated hood. Hazardous  

reagents will again be used during HAA extraction.  

Materials  

1) Several clear 40 mL glass vials with open-top screw caps and Teflon-lined septa  

2) 10-50 !L micropipetter with clean glass capillary tips  

3) 50-250 !L micropipetter with clean glass capillary tips  

4) Several 23 cm disposable glass Pasteur pipettes  

5) Rubber Pasteur pipette bulb  

6) Volumetric flasks & glass toppers: three 25 mL, eight 100 mL, several 2 mL (number  

depends on number of samples and calibration standards)  

7) Two 25 mL glass graduated cylinder  

8) 10mL glass beaker  

9) 1 L glass bottle with 10mL pump pipetting dispenser containing PTFE transfer line  

10) 500 mL amber bottle mounted with 5 mL pump pipetting dispenser containing PTFE  

transfer line  

11) 5 mL amber glass standard storage vials with open top screw caps and PTFE-lined 

septa  

12) Several 12x32 1.8 mL glass GC autosampler vials with rubber/TFE aluminum seals  

13) Hand crimper for sealing GC autosampler vials  

14) Thermolyne Type 16700 Mixer-MaxiMix I vortexer  
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15) 1/2-inch Teflon tape  

16) Stainless steel scupula  

17) Plastic tub for ice bath  

Reagents  

1) Laboratory Grade Water (LGW)  

2) Extraction solvent & standard solvent: Aldrich, 99%+ Methyl tert-Butyl ether (MtBE)  

3) Sodium Sulfate (Na2SO4): Mallinckrodt, granular. Bake at 400°C in muffle furnace for  

24 hours in a shallow porcelain dish covered with aluminum foil. Store in a tightly  

capped amber jar or in a glass-stoppered bottle.  

4) Sulfuric Acid (H2SO4): Fisher, concentrated ACS grade or equivalent, stored in 500mL  

amber bottle mounted with 2mL pump pipetting dispenser.  

5) Drying agent: Aldrich, anhydrous magnesium sulfate (MgSO4), 99+% or equivalent  

6) Silicic Acid (SiO2!nH2O): JT Baker  

7) Methanol for rinsing glassware: (HPLC grade or equivalent)  

8) Sodium Azide (NaN3): Aldrich, 99.99+%. Prepared as preservation agent at 80mg/L 

by adding 400mg solid NaN3 to a 5mL volumetric flask containing just under 5mL of 

LGW. Fill flask to 5mL mark, invert 3 times. Transfer solution to 40mL amber vial, 

capped with an open top screw cap and PTFE-lined septa. Seal cap with Teflon tape and 

store in lab refrigerator. This solution should be prepared every 3 months. 

9) Ammonium Sulfate ((NH4)2SO4): Mallinckrodt granular, AR grade  

Stock Standards  

Stock standards are purchased as premixed certified solutions contained in sealed amber 

glass ampules. Once the glass 1mL sealed ampule of stock solution is opened, the 
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solution is immediately transferred to a 5mL amber vial with a PTFE-lined screw cap. 

The vial should be immediately capped with the cap and neck of vial wrapped with 

Teflon tape. The vial should be stored in laboratory standards freezer at -15°C.  

Standards should be monitored frequently for degradation by comparing standard area 

values to the initial calibration of the standard. Fresh standards should be prepared if this 

check exceeds a 20% drift. Stock standards should not be used more than 6 months after 

opening of sealed ampule.  

1) Supelco EPA 552.2 Acids Calibration Mix (BrAA, BrClAA, BrCl2AA, ClAA, 

Br2ClAA, Br2AA, Cl2AA, Br3AA, Cl3AA)   

Stock standards should be stored in 5mL amber vials fitted with screw cap and PFTE-

lined silicone septa in freezer with screw caps sealed with Teflon tape for a maximum of 

3 months or until significant degradation or contamination occurs.  

1) Internal Standard Stock Solution: Aldrich; 1,2-dibromopropane neat standard, 99+%  

2) Haloester Standard Stock Solution: Supelco; EPA 552.2 Esters Calibration Mix at 200-  

2000 !g/mL in MtBE  

3) Acid Surrogate Stock Standard: Supelco; 2,3-dibromopropionic acid, 99+% at  

1 mg/mL in MtBE  

Daily Working Standards: Primary Calibration Standards  

1) HAA Standard Primary Dilution prepare at 20 mg/L (or 20 !g/mL).  

a. In the Supelco EPA 552.2 Acids Calibration Mix, each of the nine HAAs is  

present at a different concentration. Make this standard by tracking the HAA with  

the least concentration. The following steps are written for tracking ClAA at a  

concentration of 600 !g/mL.  
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b. Fill a 2 mL volumetric flask to just below the 2 mL mark with MtBE.  

c. With a micropipetter, inject 67 !L of the EPA 552.2 Acids Calibration Mix into  

the volumetric flask. Make sure that it is injected below the MtBE surface.  

d. Fill the flask to the 2 mL mark with MtBE. Cap the flask and invert three times.  

e. Transfer this standard to a 5 mL amber vial with an open top screw cap lined with  

PTFE silicone septa. Seal cap with Teflon tape. Label and store in lab freezer at -  

15°C.  

*Primary dilutions of HAA working standards should be routinely monitored for  

significant degradation by comparing standard area values to the initial calibration of  

the standard. Fresh standards should be prepared if this check exceeds a 20% drift.  

2) Internal Standard Primary Dilution prepare at 2000 !g/mL  

a. Weigh out 10 mg of Aldrich 1,2-dibromopropane neat standard 99+%.  

b. Inject with micropipetter into a 5mL volumetric flask containing 5 mL of Aldrich  

99+% MtBE. Fill to the line with MtBE, cap, and invert 3 times. 

c. Transfer immediately to 5 mL amber vial capped with open top screw caps lined  

with PTFE septa. Seal caps with Teflon tape. Label and store vial in lab freezer at  

-15°C.  

3) MtBE and Internal Standard Extraction Solution prepare at approximately 50 !g/L  

a. Using a micropipetter, directly inject 250 !L of internal standard secondary  

dilution standard (100 !g/mL) into a 500 mL volumetric flask containing just  

under 500 mL of Aldrich 99+% MtBE.  

b. Fill volumetric flask to the 500 mL mark with MtBE. Cap and invert 3 times.  

c. Transfer this standard solution and store it in 1L amber bottle with PTFE pipetting  
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dispenser screw top assembly.  

d. Store in lab refrigerator at 4-5°C.  

The volume of the amount of MtBE and IS Extraction Solution will vary based on the 

number of samples to be extracted. The volume needed can be calculated using the 

equation below:  

N (number of samples to be extracted) * 4 mL + 100 mL MtBE  

4) Multicomponent haloester reference standard prepare at 50 !g/L – 500 !g/L  

a. Fill a 10 mL glass volumetric flask with Aldrich 99+% MtBE to the neck of the  

flask just under the 10 mL mark.  

b. Using a micropipetter, inject 250 !L of Haloester Standard Stock Solution (200-  

2000 !g/mL) into MtBE.  

c. Add MtBE to 10 mL fill line. Cap flask and invert 3 times.  

d. Transfer this standard to a 20 mL amber vial with open top screw cap and PTFE-  

lined silicon septa. Seal cap with Teflon tape.  

e. Label vial and store in lab freezer at -15°C.  

5) Acid Surrogate Additive Standard prepare at 20 !g/mL  

a. Add 100 !L of 1 mg/mL acid surrogate stock standard to a 5 mL volumetric flask  

containing MtBE filled just under the 5 mL mark on the neck of the flask.   

b. Fill to the 5 mL mark with MtBE. Cap and invert 3 times.  

c. Transfer this standard to 5 mL amber vial with open top screw cap and PTFE-lined  

silicone septa. Seal cap with Teflon tape.  

d. Label vial and store in lab freezer -15°C.  
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6) EPA 552.2 Acids Calibration Mix (HAA9) Matrix Spike Standard (MS)  

a. In the Supelco EPA 552.2 Acids Calibration Mix, each of the nine HAAs is  

present at a different concentration. Make this standard by tracking the HAA with  

the least concentration. The following steps are written for tracking ClAA at a  

concentration of 600 !g/mL. The final concentration of this dilution is 6 !g/mL of  

ClAA.*  

b. Add 20 !L of the Supelco EPA 552.2 Acids Calibration Mix to a 2 mL volumetric  

flask filled with MtBE. Be sure to inject beneath the MtBE layer. 

c. Fill to the 2 mL mark with MtBE. Cap flask and invert 3 times.  

d. Transfer this standard to a 5mL amber vial with an open top screw cap lined with  

PTFE silicone septa.  

e. Seal cap with Teflon tape. Label and store in lab freezer at -15°C.  

*The final concentration of this solution should be around 10-20!g/mL, but 6!g/mL  

was the concentration that at which we prepared this solution for HAA analysis on  

11/3/07.  

Instrumentation  

1) Gas Chromatograph (GC)  

a. Hewlett-Packard GC5890 Series A or Series II, or equivalent with  

autosampler/autoinjection tower  

b. Capillary Column HP-1 (Agilent) 30 m length x 0.30 mm inner diameter, 1.0 !m  

film thickness, or equivalent  

2) Electron Capture Detector (ECD)  

a. Hewlett-Packard Model ECD  
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b. Data System: Hewlett-Packard ChemStation  

3) GC Gases  

a. Carrier Gas: Ultra High Purity (UHP) 99.999+% helium (He)  

b. Make-up Gas: Ultra High Purity (UHP) 99.999+% nitrogen (N2)  

4) Miscellaneous GC Equipment  

a. Septa-Restek 11 mm diameter Thermolite Septa  

b. Injector Liner Sleeves Supelco Split/Splitless Injector Sleeve with deactivated  

glass wool, 4 mm inner diameter  

c. Column Ferrules J&W graphite/vespel 0.5 mm ferrules  

d. Autosampler Syringes 10 !L Agilent tapered needle syringe  

Samples  

Samples should be collected in pre-cleaned 40mL glass vials with open top screw caps 

and PTFE-lined silicone septa. Pre-preserve vials in the lab before collecting samples by 

pipetting 50 !L of the 80 mg/L sodium azide solution directly into the vial and adding 

approximately 20 mg (8 grains) of ammonium sulfate. Cap and label all vials properly. 

Samples should be extracted within 14 days from date of collection.  

Test Mixes: Preparation & Procedure  

1) Prepare a dilution of MtBE + IS stock solution in a 25 mL volumetric flask.  

2) Add a dilution of MtBE stock solution to a small GC vial. Cap and label the vial.  

3) Add the MtBE + IS from step 1 to a small GC vial. Cap and label the vial.  

4) Add a dilution of HAA9 ester mix to a third GC vial. Cap and label the vial.  

5) Run all three vials on a GC prior to extracting samples to ensure the purity and  

cleanliness of these reagents.  
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6) If these reagents are clean and the GC is functioning properly, extract samples within  

three weeks of the date the samples were collected.  

7) GC data should be removed from the GC computers within one month.  

Calibration Standards  

1) Prepare all standards in 100 mL of LGW.  

2) Label 6 separate 100 mL volumetric flasks with the concentrations to be prepared. The  

lowest concentration should not be below 0.1 !g/L.  

3) Fill each 100 mL volumetric flask with LGW to just below the fill line on the neck of 

the flask.  

4) With an appropriate micropipetter that uses glass capillary tips, put a measured amount 

of the primary calibration standard directly into LGW below the surface. The amount of  

primary calibration standard will vary depending on the desired concentration of the  

secondary calibration standards.  

5) Fill the volumetric flask to the fill line with LGW, cap the flask, and invert three times.  

6) Two blanks should be prepared by filling two 40 mL clear glass vials with 20 mL 

LGW.  

a. Measure 20 mL LGW with a clean glass 25 mL graduated cylinder.  

b. Label, then cap vials using open top screw caps with PTFE-lined septa.  

7) Rinse the 25 mL graduated cylinder three times with LGW.  

8) Using the cleaned 25 mL graduated cylinder, transfer 20 mL of the secondary 

calibration standards in the 100 mL volumetric flasks to 40mL glass vials. Again, these 

glass vials are capped with open top screw caps and PTFE-lined septa.  

a. Make duplicates of these 20 mL secondary calibration standards.  
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b. Make sure the vials are labeled accordingly.  

Matrix Spike Addition  

1) Matrix spike (MS) and matrix spike duplicate (MSD) samples should be prepared. 

These samples should be chosen randomly from the duplicates of collected samples. One 

set of MS and MSD samples should be prepared for each analytical batch.  

2) Add 25 !L of the HAA9 Matrix Spike Standard to a 25 mL of the matrix spike sample.  

3) Make a duplicate 25 mL aliquot of sample.  

4) Measure 20 mL using a graduated cylinder for each spike solution into a clean 40mL 

glass vial. Label each standard as a MS or a MSD.  

Sample Preparation  

1) Remove samples (stored in 40 mL glass vials) from refrigerator and let them warm to  

room temperature while preparing calibration standards.  

2) Use a clean, glass 25 mL graduated cylinder to measure out 20 mL of each sample.   

3) Dispose remaining amount of sample into a waste beaker.  

4) Pour the measured 20 mL sample back into its 40 mL glass vial.  

a. IMPORTANT: Pour samples on the side of the glass (graduated cylinder or vials)  

to reduce the samples’ interaction with air.  

5) Between measurements, rinse graduated cylinder 3 times with LGW. Pre-rinse 

graduated cylinder one time with the next sample to be transferred.  

NOTE: Wash all used glassware 3 times with LGW and once with methanol.  

Acid Surrogate Addition  

1) Add 20 !L of the acid surrogate additive standard at 20 !L/mL to all 20 mL 

calibration standards, samples, and matrix spike samples using a micropipetter. 
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2) Stir in the surrogate with the pipetter tip. Do NOT cap and invert samples. Change 

pipette tip between samples.   

Acidification  

1) Using a glass pipette, add 1.5 mL of concentrated sulfuric acid (H2SO4) to all 20 mL of  

calibration standards, samples, and matrix spike samples.  

2) Let vials cool in an ice bath for 20-30 min.  

3) Swirl these vials gently to mix water and acid.  

Internal Standard Addition  

1) Using a pump pipette dispenser, add 4 mL of MtBE + IS to each 20 mL sample and  

calibration standard.  

2) When using the pump pipette dispenser, make sure there are no bubbles in the addition  

line.  

3) Two layers will be visible: an organic top layer of MtBE and an aqueous bottom layer.  

Sodium Sulfate Addition and Extraction  

1) Add about 10 g of baked sodium sulfate to each sample and calibration standard. This  

mass is measured out in a pre-measured glass beaker especially for this step.  

2) Immediately after adding sodium sulfate, vortex all samples and calibration standards 

for 1 minute to prevent solidification of sodium sulfate.  

Solvent Transfer to 2 mL Volumetric Flasks  

1) For each sample and calibration standard: With a clean, glass, 23 cm Pasteur pipette,  

transfer 2 mL of the top layer (MtBE + IS layer) to a clear, glass 2 mL volumetric flask  

capped with screw caps and PTFE-lined septa.  



!

! 110!

2) Use a clean pipette for each transfer. Be sure not to transfer any water and sodium 

sulfate crystals.  

Derivitization  

To all MtBE extracts in 2 mL volumetric flasks:  

1) Add 1/2 of a small, rounded scoop of anhydrous powdered magnesium sulfate. Re-cap  

the flask. DO NOT MIX!  

2) Add 225 µL cold diazomethane with a micropipette. Re-cap the flask and DO NOT  

MIX!  

3) Store these flasks in the refrigerator for 15 minutes.  

4) Check for a yellow color in all samples. Note the samples that are not yellow in color.  

5) Allow samples to warm to room temperature (about 15 minutes).  

6) Add a small rounded scoop of silicic acid n-hydrate powder. The extract should 

become colorless because silicic acid quenches residual diazomethane.  

7) Remove enough of the extracts from the 2 mL volumetric flasks to fill GC vials about  

70% full. Make sure no solids are in the vials, and then cap the vials.  

8) Label each vial with the sample location and date.  

9) Place these samples in a tray and wrap them in aluminum foil.  

10) Label foil with name, date, and test. Store in the freezer before GC analysis.  

GC-ECD analysis on Hewlett-Packard GC-ECD 5890:  

Injector:  

Syringe size = 10 !L; Injection volume = 1 !L  

Wash solvent = MtBE; Pre-injection washes = 3; Post-injection washes = 3; Pumps = 3  

Injector Temperature = 180°C; Splitless injection   
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Oven/Column:  

Oven equilibration time = 3 min; Oven max °C = 300°C  

Gas = He; Flow column = 1 mL/min; Column Pressure= 11.3 psi  

Column type = ZB-1 (Zebron), 30.0 m length, 0.25 mm diameter, 1.0 !m film thickness  

Oven Temperature program (total time = 52.5 min)  

 Velocity 

(°C/min) 

Temperature (°C) Time (min) 

Initial - 37 21 

Level 1 5 136 3 

Level 2 20 250 3 

Electron Capture Detector (ECD), Detector temperature = 300°C  
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Updated 10/17/11 by Bonnie Lyon!

Analysis of Total Organic Halogen (TOX) in Finished Drinking Water 

Use laboratory coat, gloves, close-toed shoes, and goggles during the entire procedure. 

Instrumentation 

1) Adsorption Module (Tekmar-Dohrmann) 

Model: AD-2000 Adsorption Module 

Model no: 890-161 

Serial no: 99292009 

For 100 mL sample size: Range: 4-1000 µg AOX/L; Precision: ±2 µg/L or ±2% 

2) Organic Halide Analyzer 

Model: DX-2000 Organic Halide Analyzer 

Model no: 890-162 

Serial no: 99292009 

For 100 mL sample size: Range: 4-1000 µg TOX/L; Precision: ±2 µg/L or ±2% 

For 10 mL sample size: Range: 40-10,000 µg TOX/L; Precision:±20 µg/L or ±2% 

3) Software 

AOX/TOX by column – Copyright 1993-1996 Rosemount Dohrmann Div. – 

Version 2.10 

The process of the system operates in such a way that it meets international methods 

including: 

• EPA Methods 9020A, 9076, 450.1, and 1650 

• ASTM-D-4744 

• Standard Methods 5320B 
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• DIN 38409-H14 

• ISO Method 9562 

• SCAN-W Method 9:89 

• NEN Method 6402 

Reagents 

• Lab grade water (LGW, deionized water) 

• 70% by wt. Acetic Acid (Glacial, Fisher Scientific) in LGW 

• 80% H2SO4 (ACS Plus Grade, Fisher Scientific) in LGW 

• Concentrated H2SO4 (ACS Plus Grade, Fisher Scientific) 

• Silver acetate (!99% purity, Sigma-Aldrich) 

• Na2SO3 (anhydrous, ACS Grade, Fisher Scientific) 

• 1.13 g/L KNO3/L (as N) (ACS Grade, Fisher Scientific) in LGW 

• 200 ng Cl/µL of NaCl (ACS Grade, Fisher Scientific) in LGW 

• 500 ng Cl/µL 2,4,6-Trichlorophenol (98%, Aldrich) in high purity methanol 

• Sodium bicarbonate (Industrial grade, Fisher Scientific) 

• Methanol (halogen free, highest purity, LCMS Grade, Fisher Scientific) 

• Glass-packed Carbon Columns 2mm ID (CPI International) 

• UHP Helium, 220ft
3
 

• Oxygen, 99% purity, 220ft
3
 

Sample Collection & Dechlorination 

Samples for TOX analysis should be collected in amber vials/bottles with open-

top PTFE-lined septa (bottle/vial size will depend on sample adsorption volume used and 

whether you are running duplicates, triplicates, etc.). To quench about 3 mg/L of free 
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chlorine, 40 µL of a 40 mg/mL solution of sodium sulfite (Na2SO3) should be added to 

the 125 mL sample bottles prior to collecting the samples, for example. Adjust this 

amount based on the collection volume and expected chlorine residual. The 

stoichiometric quenching amount is 1.8 mg Na2SO3/1 mg Cl2 (we typically use a safety 

factor of 2 (i.e. Multiply stoichiometric amount by 2)).  

Before collecting samples, the sample tap should be opened and allowed to run to 

waste for 2-3 minutes. The flow should then be reduced, the bottle placed at a slant and 

the water allowed to run down the side. When the bottle is almost full, cap the bottle with 

the Teflon side of the liner facing inwards. Invert the bottle to mix and then open the cap 

and completely fill so that no air bubbles remain. Invert to confirm absence of air.  

After collection, samples should be kept in a refrigerator at 4
o
C until analysis, 

which should take place within 14 days of collection. 

Sample Pre-Treatment 

 Before the analysis, allow sample bottles to achieve room temperature. 

Concentrated sulfuric acid (A.C.S. Plus) should be used to adjust the pH of the sample to 

approximately pH 2 with a glass Pasteur pipette. Use pH paper to verify the adjusted pH, 

or if you have extra sample that will not be analyzed, you can test the pH adjustment and 

measure with the pH meter.  

Sample Preparation – Adsorption 

 The sample volume, adsorption rate of sample to the carbon columns, channel fill 

rate, and use of sample prime can be adjusted in the control panel using the arrow keys 

after selecting the channel in use and pressing the keys “SAMPLE” and “MENU.” 

Program used for sample channels (1-4):  
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Sample volume: 100 mL (can also use 50, 25 or 10-mL, depending on range of TOX 

expected) 

Adsorption rate: 2 mL/min. 

Fill rate: Slow (33 mL/min) 

Sample prime: NO 

Priming volume: 0 mL 

Program used in the nitrate channel for nitrate wash: 

Sample volume: 2 mL 

Adsorption rate: 1 mL/min 

Before sample adsorption, rinse each sample channel with LGW. Label the 

carbon columns appropriately.  To load the samples in the channels, choose one of the 

channels (1-4) keys, press the “START/STOP” key, connect the sample to the channel 

using one of the fill tubes (Figure 1a) and press “OK.” After the desired volume of 

sample is in the channel, the screen will display the message “Connect columns (then 

press OK).”  

Disconnect the fill tube, carefully pierce the endcaps of two glass carbon columns 

(if holes are too big or you go through the yellowish filling hold the carbon in, carbon 

will come out during adsorption), connect the columns in series using a connector (Figure 

1b), and press the “OK” key. The aqueous sample is then passed through the two carbon 

columns, a top column and a bottom column for breakthrough, connected in series at a 

flow rate that permits complete adsorption of the organic halogens. The sample will drip 

out at the end of the bottom carbon column. Collect this waste in a beaker. Water samples 

may be discarded in the drain. 
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Figure 1: Adsorption module; a) Sample loading connection; b) Column connection. 

When the run is complete, disconnect the sample columns from the adsorption 

module. Minimize their contact with the air by wrapping aluminum foil around both ends 

of each column. Keep the sample columns upright in a beaker covered with aluminum 

foil.  

To remove inorganic chloride ions, the samples must be rinsed with a nitrate wash. 

Connect the top column to the nitrate wash channel and wash the column with 2 mL of 

the nitrate wash solution (1.13 g KNO3/L (as N)) at a rate of 1 mL/min. Do the same for 

the bottom column. If the sample columns are not ready to be analyzed on the DX-2000 

Organic Halide Analyzer, cover the ends of the columns with aluminum foil again and 

store in a beaker covered with foil. For sample columns that are ready to be analyzed, 

transfer them to the DX-2000 Organic Halide Analyzer.  
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Throughout the entire sample adsorption process, two nitrate blanks must be made, 

each blank in a single column, typically at the beginning and at the end of the adsorption 

process. 

DX-2000 Organic Halide Analyzer Instrument Preparation 

 Before using the DX-2000 Organic Halide Analyzer module for sample analysis, 

make sure that the gas supplies, oxygen for combustion and helium as carrier gas, are 

above 500 psi. Change gas tanks when pressure of the gas tanks reaches 500 psi. 

 

Figure 2: The titration cell parts. 

Scrubber vial 

When the instrument is not in use, the scrubber should always be disconnected 

from the combustion tube. To change the acid in the scrubber vial, pour the old acid into 

an acid waste container. Add fresh 80% H2SO4 to the marked line on the scrubber vial. 

This acid should be changed every day of TOX use and may need to be changed again 

during the day if the TOX is used for more than 6-7 hours at a time. 
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Spill Tray & Acid Fume Trap 

Change the sodium bicarbonate in the spill tray after making sure that the acid is 

neutralized. If acid is still present in the tray, use more sodium bicarbonate to neutralize it, 

and then empty the tray into aluminum foil and empty the contents in the garbage. Before 

throwing it in the garbage, be sure that no acetic acid smell can be detected. Keep it in the 

hood until this condition is met.     

After rinsing the tray with tap water and drying it, fill it to about 1/3 with sodium 

bicarbonate to neutralize cell electrolyte. Empty the acid fume trap contents in the sink, 

rinse it with LGW and add sodium bicarbonate to about 1/4 full and LGW to about 1/2 

full as shown in Figure 3. 

 

 

Figure 3: Acid fume trap. 

Coulometric Cell 

Change acid in the cell by removing the cell fill plugs, opening the stopcock valve 

to drain the acid from the cell to the spill tray, closing the valve, and filling the cell to the 

cell neck with fresh 70% acetic acid.  

Make sure that the reference electrode (Figure 4) has no bubbles in it. 
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Figure 4: Reference electrode. 

Do not remove the metal reference electrode from the reference electrode 

assembly. Problems in obtaining a stable baseline are likely to occur if the metal 

reference electrode is moved as it connects to the silver acetate reagent. 

If there are bubbles present in the reference electrode, remove it from the cell and 

bring to the hood (fill clean beaker with 70% acetic acid and place reference electrode in 

beaker so no bubbles are introduced into reference electrode). Remove the side-opening 

plug and insert a syringe filled with 70% acetic acid in the side opening. Repeat this 

procedure three times making sure that all the bubbles are removed by moving the 

electrode. 

To replace silver acetate solution in the top of the reference electrode, first 

prepare a slurry of solid silver acetate in 70% acetic acid. Use glass stir rod to stir slurry. 

Empty out old silver acetate/acetic acid mixture from reference electrode using a Pasteur 

pipet (can use a kimwipe to break off tip of pipet for easier use) and rinse bottle of acetic 

acid. Be very careful not to get any silver acetate into bottom compartment of 

reference electrode. This will require rinsing and refilling the entire electrode. Hold a 

kimwipe around top of electrode so nothing drips down. Use another broken-tip Pasteur 
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pipet to add slurry to now-empty top compartment of reference electrode. Allow to settle 

for a few minutes and fill to top with 70% acetic acid, making sure there are no bubbles. 

The silver acetate should be about 2/3 of the top compartment, with 70% acetic acid 

filling the rest. Cover with aluminum foil while slurry is settling. Reconnect reference 

electrode to cell. 

DX-2000 Organic Halide Analyzer Settings 

To begin sample analysis in the computer program, choose the icon “AOX/TOX 

by Column” and click “OK.”  

• Gas & Temperature Settings 

In the “System Setup” menu bar click “Open” and turn the system to 

“Standby.” Slowly increase temperature in 50
o
C increments to 550

o
C. Make sure 

to press tab or click in another box each time you increase the temperature. Once 

system reaches 550
o
C, make sure temperature in “Ready” box is set at 550

o
C. 

Open both gas tank main valves (keep fly valves shut for now). Turn system to 

“Ready.” Slowly open the fly valves of both gas tanks. You should see vigorous 

bubbling in the scrubber vial and cell. Make sure the injection port hatch door is 

completely closed. On the front panel of the TOX, check that the gas gauge for 

oxygen is around 50 and helium is around 25. Adjust the flow up and down by 

turning the knobs on gauges, if necessary. 

Increase the furnace temperature to 850
o
C from its standby temperature of 

550
o
C in increments of 50

o
C. When the temperature reaches the desired ready 

mode temperature, an orange light in the temperature control panel indicator will 

appear in the “Ready” light. 
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• Baseline Monitor 

Select in the “System Checks” menu the “baseline monitor” option and 

wait for about 15 minutes until the baseline is stable. The voltage reading should 

be higher around 250 V. If the voltage reading is lower than 250 V, flush the cell 

with fresh 70% acetic acid, or inject 5 !L of the 200 ng Cl/!L NaCl solution until 

the desired voltage value is obtained. 

In the “System Setup” menu bar click “Open” and turn the cell to the “ON” 

position. In the “System Checks” menu, choose again the “Baseline Monitor” 

option and wait until the baseline is stable. If you wish to see the current instead 

of the voltage reading, select in the “Options” menu the “Graph Mode” option of 

your choice. Both current and voltage will always be displayed in the bottom of 

the computer screen. 

• Cell Check 

In the “System Checks” menu choose the “Cell Check” option and fill the 

“Run Info” menu with the information of the solution injected. Before pressing 

the “Start” key have the syringe ready for the injection. Press “Start,” wait for a 

message saying, “Inject to cell then press OK.” Inject 5 !L of a 200ng Cl/!L 

NaCl solution and check the recovery obtained.  If the resulting percentage 

recovery is between 90-110%, then the cell is working properly. Perform this 

check three times for consistent results. Clean this syringe immediately with 

LGW and then Methanol so that salt does not clog up syringe. 
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• Clean Boat 

Before analyzing the samples, the boat has to be cleaned. Select the “Clean 

Boat” option in the “System Checks” menu. 

• Combustion Check 

First, run two blank carbons to obtain an average background level that 

you will subtract from the TCP spike value. Then, to verify the furnace 

performance, inject 5 !L of a 500 ng/!L solution of 2,4,6-trichlorophenol (TCP) 

into the boat on top of a dry carbon column) and check the recovery obtained.  

Carefully the dry carbon in the boat and close the lid tightly. In the 

“System Checks” menu choose the “Combustion Check” option, fill the “Run 

Info” menu with the information of the solution injected. Before pressing the 

“Start” key have the syringe ready for the injection. Press “Start”, wait for a 

message saying, “Inject to boat then press OK”, carefully inject the volume 

through the lid septum and press “OK.” 

Make sure that the furnace is completely pyrolyzing the carbon: fresh 

carbon is black, while pyrolyzed carbon is a light orange color. If the carbon is 

not completely pyrolyzing, check for gas leaks. The lid above the boat should be 

sealed tightly. 90-110% recovery of the TCP solution indicates good recovery. 

Perform this check three times for consistent results. Remove the pyrolyzed 

carbon from the boat using a vacuum tube attached to a trap. Perform this check 

during analysis of samples to verify the furnace’s performance. 
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• Sample Analysis 

Remove the plastic endcaps from the sample column. Open the injection 

port lid and use the T-shaped ejector tool to inject the sample-adsorbed carbon 

into the glass boat. Be careful to not touch the boat with the tool, as the boat is 

extremely fragile. Close the lid and make sure that the seal is tight by checking 

the bubbling in the titration cell and the scrubber vial. 

Under the “Run” menu, select “Manual Run.” Select the type of sample 

(blank, sample, standard). Next select common run parameters: print results, enter 

comments, sample ID name, and enter adsorption volume. Select the column 

parameters for the type of sample (sample, blank, standard) to be analyzed: 

top/bottom column, blank value, dilution factor, standard concentration if the 

sample is a standard, nitrate if the sample is a nitrate blank. Verify that the 

information is correct. Click “OK” to save and “Start Run” when ready to run the 

analysis. A graph of voltage (or amperes) vs. time in seconds will appear on the 

computer screen during the analysis. When the sample has finished undergoing 

combustion, the computer will output a raw TOX value in “µg Cl.” Vacuum the 

boat once analysis is over. Repeat the procedure for other samples. 

• TOX Measurements 

The following expressions can be used to determine the TOX concentration in 

!g Cl/L and the breakthrough percentage, which should be lower than 10%. An 

average of the nitrate blank values should be used as “blank” in the expressions 

below. 
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Shutdown 

 First check that there are no runs in progress. Next, clean the boat as necessary. 

Save your results and convert to spreadsheet so you can look at the data on another 

computer. Turn off the cell. Set the system into Standby mode and set temperature to 

35
o
C. Close the fly valves and main valves of the gas tanks.  

Power Off 

 Let system reach 35
o
C – this will take several hours. Shut down software and turn 

off TOX power. 

Quality Assurance/Quality Control 

Cell & Combustion Check Recoveries 

To ensure the validity of the data collected, it is extremely important to perform 

cell checks and combustion checks before analysis and sporadically during the sample 

analysis process. If the recoveries obtained range between 90-110% the system is being 

effective in the determination of the total organic halide content of the samples. 

Haloacetic Acids & Trihalomethanes Recoveries 

Standard haloacetic acids (HAA) and trihalomethane (THM) solutions were 

analyzed using the absorption module and the DX-2000 Organic Halide Analyzer to 

measure their TOX content. The percent recoveries obtained with this instrument can be 

found in Table I. The cell check recovery obtained was 107% and the combustion check 

recovery was 96% when these tests were performed. 
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Table I: Percent recoveries obtained in the analyses of standard concentrations prepared 

of the HAA and THM individual species ([std]). 

 Sample ID 
[std] 

(!g/L) 

[std]  

(!g as Cl/L) 

Final result 

(!g Cl/L) 
Recovery (%) 

chloroacetic acid 100 38 35 93 

dichloroacetic acid 100 55 71 129 

trichloroacetic acid 100 65 75 115 

dibromoacetic acid 100 33 41 125 

bromochloroacetic acid 100 41 47 115 

bromoacetic acid 100 26 35 138 

bromodichloroacetic acid 100 51 35 69 

tribromoacetic acid 100 36 26 73 

HAA 

chlorodibromoacetic acid 100 42 46 110 

chloroform 100 89 60 68 

bromodichloromethane 100 65 43 66 

dibromochloromethane 100 51 34 66 
THM 

bromoform 100 42 29 68 

 

The conversion of mg/L to mg as Cl/L is based on the molecular weight of the 

compound and in the Cl and Br content as shown in the following expression: 

 

To identify if the low recoveries obtained in the THM standard solutions were due 

to weak adsorption into the carbon columns, a direct injection of bromoform was made in 

the boat. The percent recovery obtained was 69.9% indicating that the low percent 

recoveries obtained are not explainable by a weak adsorption onto the carbon columns. 
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Updated from 10/23/08 document by Bonnie Lyon 10/17/11!

Total Organic Chloride (TOCl), Total Organic Bromide (TOBr), and Total Organic 

Iodide (TOI) Detection on the Dionex Ion Chromatograph 

Instrumentation 

1) Dionex Ion Chromatograph 

Conductivity Detector, Serial #911003E930302 XTC: uses a Dionex AS22 

analytical column, a Dionex AG22 guard column, 250 µL sample loop, Dionex 

AMMS III-4mm ion suppressor 

Gradient Pump: set to use 100% of eluent at 1.0 mL/minute 

Eluent Gas Module: uses a mobile phase (eluent) at 5 mM sodium carbonate 

(Na2CO3) & 1.4 mM sodium bicarbonate (NaHCO3) 

Column Storage Solution: 100 mM NaHCO3 

Regenerant Pump: uses 25 mN H2SO4 at ~3-5mL/minute 

2)  Adsorption Module (Tekmar-Dohrmann) 

Model: AD-2000 Adsorption Module 

Model n
o
: 890-161 

Serial n
o
: 99292009 

For 100mL sample size: Range: 4-1000µg AOX/L; Precision: ±2µg/L or ±2% 

3) Organic Halide Analyzer 

Model: DX-2000 Organic Halide Analyzer 

Model n
o
: 890-162 

Serial n
o
: 99292009 

For 100mL sample size: Range: 4-1000µg TOX/L; Precision: ±2µg/L or ±2% 
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For 10mL sample size: Range: 40-10,000µg TOX/L; Precision: ±20µg/L or ±2% 

Heating tape must be attached around the area where the glass combustion tube is 

exposed to the air. The tape should heat above 100°C so that the vapors from 

pyrolizing the sample do not condense on the glass. 

4) Software 

Ion Chromatograph: Dionex PeakNet Copyright 1992-2001, Version 5.1 

AOX/TOX by Column: Copyright 1993-1996 Rosemount Dohrmann Division, 

Version 2.10 

Ion Chromatograph (IC) Reagents 

• Lab grade water (LGW, deionized water) 

• Na2CO3 (anhydrous, granular, ACS Grade, Mallinckrodt) 

• NaHCO3 (ACS Grade, Mallinckrodt) 

• Concentrated H2SO4 (ACS Plus Grade, Fisher Scientific) 

• NaCl (ACS Grade, Fisher Scientific) 

• NaBr (ACS Grade, Fisher Scientific) 

• KI (ACS Grade, Fisher Scientific) 

• Methanol (halogen free, highest purity, LCMS Grade, Fisher Scientific) 

• Helium, 99.9+% purity, 220ft
3
 

• 47 mm 0.45 µm membrane filter (hydrophilic polyether sulfone, Gelman 

Sciences/Pall Corp.)!

TOX Reagents 

• Lab grade water (LGW, deionized water) 

• 70% by wt. Acetic Acid (Glacial, Fisher Scientific) in LGW 
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• 80% H2SO4 (ACS Plus Grade, Fisher Scientific) in LGW 

• Concentrated H2SO4 (ACS Plus Grade, Fisher Scientific) 

• 40 mg/mL Na2SO3 (anhydrous, ACS Grade, Fisher Scientific) in LGW 

• 1.13 g KNO3/L (as N) (ACS Grade, Fisher Scientific) in LGW 

• 200 ng Cl/µL of NaCl (ACS Grade, Fisher Scientific) in LGW 

• 500 ng Cl/µL 2,4,6-Trichlorophenol (98%, Aldrich) in high purity methanol 

• Sodium bicarbonate (Industrial grade, Fisher Scientific) 

• Pentachloroacetone (85% PW, Aldrich) 

• (±)1,2-dibromopropane (97%, Aldrich) 

• Methanol (halogen free, highest purity, LCMS Grade, Fisher Scientific) 

• Glass-packed Carbon Columns 2 mm ID (CPI International) 

• Helium, 99.9+% purity, 220 ft
3
 

• Oxygen, 99% purity, 220 ft
3
 

Wear gloves, goggles, close-toed shoes and a lab coat for all laboratory work. 

Sample Collection & Dechlorination 

Samples for TOX analysis should be collected in amber vials/bottles with open-

top PTFE-lined septa (bottle/vial size will depend on sample adsorption volume used and 

whether you are running duplicates, triplicates, etc.). To quench about 3 mg/L of free 

chlorine, 40 µL of a 40 mg/mL solution of sodium sulfite (Na2SO3) should be added to a 

125 mL sample bottles prior to collecting the samples, for example. Adjust this amount 

based on the collection volume and expected chlorine residual. The stoichiometric 

quenching amount is 1.8 mg Na2SO3/mg Cl2 (we typically use a safety factor of 2 (i.e. 

multiply stoichiometric amount by 2)).  
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Before collecting samples, the sample tap should be opened and allowed to run to 

waste for 2-3 minutes. The flow should then be reduced, the bottle placed at a slant and 

the water allowed to run down the side. When the bottle is almost full, cap the bottle with 

the Teflon side of the septa facing inwards. Invert the bottle to mix and then open the cap 

and completely fill so that no air bubbles remain. Invert to confirm absence of air.  

After collection, samples should be kept in a refrigerator at 4
o
C until analysis, 

which should take place within 14 days of collection. 

Sample Pre-Treatment 

Before the analysis, allow sample bottles to achieve room temperature. 

Concentrated sulfuric acid (A.C.S. Plus) should be used to adjust the pH of the sample to 

approximately pH 2 with a glass Pasteur pipette. Use pH paper to verify the adjusted pH, 

or if you have extra sample that won’t be analyzed, you can test the pH adjustment and 

measure with the pH meter.  

Sample Preparation – Adsorption 

 The sample volume, adsorption rate of sample to the carbon columns, channel fill 

rate, and use of sample prime can be adjusted in the control panel using the arrow keys 

after selecting the channel in use and pressing the keys “SAMPLE” and “MENU.” 

Program used for sample channels (1-4):  

Sample volume: 50 mL 

Adsorption rate: 2 mL/min. 

Fill rate: Slow (33 mL/min) 

Sample prime: NO 

Priming volume: 0 mL 
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Program used in the nitrate channel for nitrate wash: 

Sample volume: 2 mL 

Adsorption rate: 1 mL/min 

Before sample adsorption, make sure that the previous user rinsed the sample 

channels with LGW. This information should be written in the TOX logbook. Label the 

carbon columns appropriately. 

To load the samples in the channels, choose one of the channels (1-4) keys, press 

the “START/STOP” key, connect the sample to the channel using one of the fill tubes 

(Figure 1a) and press “OK.” After the desired volume of sample is in the channel, the 

screen will display the message “Connect columns (then press OK).”  

Disconnect the fill tube, pierce the endcaps of two glass carbon columns, connect 

the columns in series using a connector (Figure 1b), and press the “OK” key. The 

aqueous sample is then passed through the two carbon columns, a top column and a 

bottom column for breakthrough, connected in series at a flow rate that permits complete 

adsorption of the organic halogens. The sample will drip out at the end of the bottom 

carbon column. Collect this waste in a beaker. Water samples may be discarded in the 

drain. 
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Figure 1: Adsorption module; a) Sample loading connection; b) Column connection. 

When the run is complete, disconnect the sample columns from the adsorption 

module. Minimize their contact with the air by wrapping aluminum foil around both ends 

of each column. Keep the sample columns upright in a beaker covered with aluminum 

foil.  

To remove inorganic chloride ions, the samples must be rinsed with a nitrate wash. 

Drain the old nitrate wash solution into a waste container. Fill the nitrate channel with 

fresh nitrate wash solution (1.13 g KNO3/L (as N)). Connect the top column to the nitrate 

wash channel. Press the “Nitrate” channel button, followed by the “Start/Stop” button, 

then the “OK” button. This program will wash the column with 2mL of the nitrate wash 

solution at a rate of 1mL/min. Do the same for the bottom column. If the sample columns 

are not ready to be analyzed on the DX-2000 Organic Halide Analyzer, cover the ends of 

the columns with aluminum foil again and store in a beaker covered with foil. For sample 

columns that are ready to be analyzed, transfer them to the DX-2000 Organic Halide 
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Analyzer for TOCl/TOBr/TOI sample collection. Also prepare three LGW/nitrate blanks 

(pass same volume of LGW you are using for samples through one carbon column, and 

use nitrate wash). You will use the average of this value to subtract from the sample and 

correct for any background TOCl/TOBr/TOI.  !

Instrument Preparation of Total Organic Halides (TOX) Analyzer 

Before using the DX-2000 Organic Halide Analyzer module for sample analysis, 

make sure that the helium and oxygen are above 500 psi. Do not use the instrument if the 

pressure of either gas is at or below 500 psi. Replace gas tanks if necessary. 

Set the coulometric cell setup to the side. Even though the cell is not needed for 

detection in this method, check for bubbles in the reference electrode and make sure that 

the level of acetic acid in the cell covers the reference cell. If not, refill with 70% acetic 

acid. Check if there are any bubbles in the electrode. If bubbles are present, follow 

directions in TOX SOP to get rid of them to protect the electrode. 

Fill a clean, dry scrubber vial (not the same one used for the 80% H2SO4) with 

~10 mL of LGW. Connect this to the end of pyrolysis tube where the acid scrubber vial is 

usually connected during TOX analysis.  Be very careful when connecting and 

disconnecting this vial, do not put too much pressure on the pyrolysis tube or it will 

break. 

In the “System Setup” menu bar click “Open” and set system to “Standby.” 

Slowly increase temperature in 50
o
C increments to 550

o
C. Make sure to press tab or click 

in another box each time you increase the temperature. Once system reaches 550
o
C, make 

sure temperature in “Ready” box is set at 550
o
C. Open both gas tank main valves (keep 

fly valves shut for now). Turn system to “Ready.” Slowly open the fly valves of both gas 
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tanks. You should see vigorous bubbling in the scrubber vial. Make sure the injection 

port hatch door is completely closed. On the front panel of the TOX, check that the gas 

gauge for oxygen is around 50 and helium is around 25. Adjust the flow up and down by 

turning the knobs on gauges, if necessary. 

Go to “System Checks,” select “Clean Boat.” When the graph appears, click on 

“Start,” which sends the boat into the oven and makes the system burn off any residue 

left on the boat from previous runs so that it will not be transferred to the samples. 

 After the boat has been cleaned, the system is ready to start preparing samples. 

Fill the scrubber vial with 10 mL of LGW (measure this out volumetrically with a 

graduated cylinder). Connect vial to furnace tube and begin timer (6 minutes). Remove 

plastic endcaps from the sample column and with the T-shaped tool, inject the sample 

into the boat. Close the lid and make sure that it is sealed tightly. Select “Clean Boat” and 

“Yes” when it asks if you want to run with the cell turned off. The boat will start to move 

into the furnace and sample collection will begin. After 6 minutes, remove the sample 

scrubber vial and bring to the hood. Pour the collected sample into a 25 mL glass vial, 

labeled appropriately, with an open-top cap and PTFE-lined septa. Store this sample at 

4°C. Rinse the sample vial and removable glass insert three times with LGW and invert 

over a KimWipe until next use. Rinse the graduated cylinder with LGW. Use a new 

Pasteur pipette each time.  

 Before collecting another sample, the boat should be vacuumed. After vacuuming, 

the TOX analyzer is ready for the next sample collection. Follow these steps with every 

sample column until all of the samples are collected in 25 mL glass vials. When finished, 

store the samples at 4°C until analysis on the IC. Unplug the heating tape from the power 
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outlet, disconnect the acid scrubber, wipe off the red septa at the end of the tube that 

connects the acid scrubber vial to the cell with a KimWipe and LGW, and go to “System 

Startup” and switch the analyzer to “Standby” mode and set the temperature to 35
o
C. 

Close the gas valves and clean up the space around the instrument. 

Matrix & Scrubber Spikes 

 Matrix spike samples are aqueous samples into which a known amount of organic 

halogen has been added into the matrix or the actual water sample. Pentachloroacetone 

and 1,2-dibromopropane can be used for this check. 

Scrubber spikes are samples into which a known amount of inorganic halogen (Cl
-
, 

Br
-
, I

-
) has been spiked into the collected 10 mL sample in LGW. Use the same 

calibration stock solutions that are analyzed on the IC for this check. 

Calibration Standards 

 Separate stock solutions of inorganic chloride, bromide and iodide are prepared at 

1000 mg/L for each ion species. These solutions are stored in amber glass bottles with 

open-top caps and PTFE-lined septa at 4°C and are good for about six months. Using 

these stock solutions, working solutions are prepared, from which the calibration points 

are made. Prepare calibrations in the range that you expect your samples to fall. For 

example, prepare working solutions of 100 mg/L and 10 mg/L as a mixture of chloride, 

bromide, and iodide.  An example of a calibration set is 20, 40, 80, 200, 400, 1000, 2000 

and 4000 !g/L.  

 All of the calibration points should be made in 50 mL volumetric flasks. They 

should be filled to three-fourths of the way to the line with LGW, the appropriate amount 

of working solution added, LGW added to the fill line, and inverted three times. These 
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calibration solutions should be placed in appropriately labeled 40 mL glass vials at 4°C 

until IC analysis. Calibration points should be run for every new set of samples.  If 

sample analysis takes place over several days, inject one or two calibration check points 

(for example 100 and 400 !g/L) and be sure they have similar responses for each ion to 

the calibration standard injected the previous day before proceeding with samples. After 

every 10 samples, a calibration check should be injected to as a performance check. 

Calibration solutions should be made fresh weekly. 

Dionex Ion Chromatograph Preparation 

 The mobile phase for this procedure is 5 mM Na2CO3/1.4 mM NaHCO3 and 

should be filtered using a 47mm, 0.45µm hydrophilic polyether sulfone filter. The 

column storage solution is 100 mM NaHCO3. The regenerant for this procedure is 25 mN 

H2SO4.  

IC operating procedure (from document Prepared July 2009 by Ryan Kingsbury) 

Initial Startup: 

1. Fill all eluent bottles and the regenerant bottle with the appropriate solutions.   

2. Turn on pressure at the Helium tank 

3. Turn the eluent degas module ON.  Set all bottles to SPARGE and turn each 

individual bottle to ON.  Loosen the cap on each bottle. 

4. Verify that gas is flowing out of each sparge line that is turned on. Connect the 

sparge lines to the bottles. Allow the eluents to sparge for 20 minutes 

5. While the eluents are sparging, take out the suppressor and remove the  caps on 

all four ports 
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6. Hydrate the suppressor membranes by using a syringe and the luer-lok adapter to 

push ~5 mL LGW through the REGEN IN port and ~3 mL through the ELUENT 

OUT port.  Be careful not to push through the ELUENT OUT port too fast or you 

may damage the membrane 

7. Uncap the ends of the regenerant and eluent lines in the sink 

8. Install the suppressor in the cabinet and connect the REGEN OUT port of the 

suppressor to the appropriate line 

9. Connect the column and guard column to the injection assembly 

10. When sparging is complete, remove the sparge lines.  Tighten the caps on the 

bottles and switch them to PRESSURIZE.  Adjust the regulator on the degas 

module to 7 +/- 2 psi. Re-cap the sparge lines. 

11. Turn the pump ON 

12. Prime the pump.  For each eluent bottle, set the flow to 100% and 1.0 mL/min.  

Turn the silver bar on the pump perpendicular to the pump face and attach a 3 mL 

syringe.  Press START and draw about 3 mL from the port into the syringe.  

Discard.  Repeat two more times or until no air bubbles are seen.  On the third 

time, loosen the black knob and push the syringe contents back into the pump 

while tapping on the clear tube to remove any air bubbles.  Re-tighten the knob. 

13. Begin pumping eluent through the system at 1.0 mL/min.  As soon as you see 

eluent dripping out of the column line, connect it to the ELUENT IN port of the 

suppressor. 

14. When you see eluent emerge from the ELUENT OUT port of the suppressor, 

connect it to the detector. 
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15. Tighten the cap and the gas line connection on the regenerant bottle.  Carefully 

turn on pressure to the regenerant bottle at the regulator, watching to see when 

regenerant begins to flow in the line.  When regenerant begins to flow, connect 

the line to the REGEN IN port of the suppressor. 

16. Adjust the pressure until the desired regenerant flow rate is achieved (measure 

flow out of the REGEN OUT line in the sink with a graduated cylinder and a 

watch).  Consult the suppressor manual for optimal regenerant flow rates for each 

eluent strength. 

17. Turn the ACI and Detector ON.  Turn the cell OFF. 

18. Allow the system to equilibrate for 30 minutes 

19. Turn the cell ON.   

20. Switch the detector and pump to “Remote” and open the Run ACI on the PeakNet 

main menu. Record the baseline conductivity and the pump back-pressure in the 

log book. 

21. Run samples: Close the “IC 2” window. Click LOAD at the top of the screen and 

select “Method.” Select the appropriate method and click “OK.”  

22. Inject about 1 mL of your sample with a syringe and then on the computer, click 

“Run,” “Start,” enter the sample name, make sure it is saving to the correct 

directory, and then click “Start Run.” 

Short Term (Daily operation) Shutdown: 

1. Flush the system with LGW at 1.0 mL/min for 10 minutes. 

2. Turn the cell OFF.  Turn the detector OFF. 

3. STOP and turn off the pump 
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4. Turn off pressure to the regenerant bottle at the regulator.  Loosen the regenerant 

bottle cap to relieve the pressure.  Re-tighten the cap. 

5. Cap the ends of the eluent and regenerant lines in the sink to keep them from 

drying out. 

6. Leave the Eluent Degas Module ON with pressure to the eluent and LGW bottles. 

Short Term (Daily operation) Startup: 

1. Uncap the ends of the regenerant and eluent lines in the sink 

2. Turn on pressure to the regenerant bottle at the regulator.  Adjust until the desired 

regenerant flow rate is achieved (measure flow with a graduated cylinder in the 

sink) 

3. Turn the pump ON 

4. Prime the pump.  For each eluent bottle, set the flow to 100% and 1.0 mL/min.  

Turn the silver bar on the pump perpendicular to the pump face and attach a 3 mL 

syringe.  Press START and draw about 3 mL from the port into the syringe.  

Discard.  Repeat two more times or until no air bubbles are seen.  On the third 

time, loosen the black knob and push the syringe contents back into the pump 

while tapping on the clear tube to remove any air bubbles.  Re-tighten the knob. 

5. Begin pumping eluent through the system at 1.0 mL/min 

6. Turn the ACI and Detector ON.  Turn the cell OFF. 

7. Allow the system to equilibrate for 30 minutes 

8. Turn the cell ON.  Record the baseline conductivity and the pump back-pressure 

in the log book. 

9. Run samples. 
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Long Term (> 1 week) Shutdown: 

1. Flush the system with LGW at 1.0 mL/min for 10 minutes 

2. Turn the cell OFF.  Turn the detector OFF. 

3. STOP the pump. 

4. Turn off pressure to the regenerant bottle at the regulator.  Loosen the regenerant 

bottle cap to relieve the pressure.   

5. Remove the suppressor.  Cap both ends of the regenerant out line.  Cap the 

ELUENT IN and ELUENT OUT ports with the original plugs. 

6. Using a disposable syringe and the luer-lok adapter in the drawer, push 5-6 mL of 

LGW through the REGEN IN port on the suppressor. 

7. Cap the REGEN IN and REGEN OUT ports with the original plugs. 

8. Connect the column directly to the detector.  Flush the system with operating 

eluent for 10 minutes. 

9. Remove the column and guard column.  Cap the ends with the original caps and 

place in their respective boxes.  Be careful not to tap, drop, or otherwise shock the 

columns as this will disturb the packing. 

10. Connect the detector directly to the injection assembly.  Flush the system with 

LGW at 9.9 mL/min for 10 minutes. 

11. STOP and turn OFF the pump. 

"#$ On the eluent degas module, switch all bottles to SPARGE.  Loosen the caps to 

relieve the pressure.  Switch the entire module OFF.  Switch each bottle OFF.  

Switch all bottles to PRESSURIZE.  Turn off the gas supply.!
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Data Analysis 

 To view the chromatograms, click on “Optimize” in the main menu and then open 

the desired file. Click on “Manual Integration” to view the peak areas. Check every 

chromatogram and make sure that the integration is uniform. If not, manually adjust the 

integrations so that the peaks are integrated at baseline. Save the file after adjustment. 

 To organize and export your data, click “Batch” in the main menu. Save this batch 

file. Click “Processing” and choose “Input.” Click “Build” to set up your sample list. Go 

to the correct data folder, highlight your calibrations and samples and press “Add,” then 

“Exit.” Select “From Data Files” under the “Process Methods” section.  Next, click to the 

“Output” tab. If you are just outputting a file for excel, you do not need to select any of 

these output options. You will make your own calibration curves in excel, so you also do 

not need to select any of the options under “Update Options.” Click on the “Export” tab. 

Click “Browse” and enter a file name for your output file. Select “Ask” where it says “If 

the file already Exists.” Under Report Type, select “Summary.” Under Summary options, 

select “One line Per Injection.” Do not check “Include Unknown Peaks.” Click “Fields” 

and select which fields you want to be in your exported file. I typically choose only 

Sample Name in “Header Fields,” and Peak Area, Peak Height and Peak Retention Time 

under “Data Fields.” Click Ok. Make sure file is saved, and press Start.  

Prepare calibration curves for chloride, bromide and iodide in Excel from your 

exported file. Use the calibration curves to determine the chloride, bromide, and iodide 

concentrations in the samples and subtract the amounts from the average nitrate blank. 

Back-calculate the actual concentration in the original samples by taking into account the 

10 mL collection volume and adsorption volume used. 
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APPENDIX B: 

Cytotoxicity Data 

2/21/2011 

Nordic Lake 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±13 

0.48 107±13 

1.2 111±14 

12.0 107±12 

24.0 103±10 

36.0 100±10 

48.0 103±9 

72.0 100±8 

96.0 82±10 

 

Suwannee River 
Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±9 

0.48 110±11 

1.2 112±12 

12.0 110±13 

24.0 106±12 

36.0 104±13 

48.0 105±11 

72.0 103±11 

96.0 91±17 

 

8/11/2011 

Phosphate Buffer, pH 7.1, in LGW 

Phosphate Buffer (mM) 

Cell Density  

as Percent Control (±SD) 

0.0 100±8 

0.2 102±10 

0.5 104±13 

5 110±10 

10 102±13 

15 94±13 

20 86±13 

30 75±15 

40 72±14 
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9/1/2011 

Nordic Lake+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±13 

0.46  100±14 

1.15 94±14 

11.5 92±11 

23.0 83±10 

34.5 78±9 

46.0 67±9 

69.0 47±6 

92.0 30±7 

 

Suwannee River+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±22 

0.46  110±12 

1.15 113±15 

11.5 101±17 

23.0 101±18 

34.5 110±18 

46.0 105±15 

69.0 91±13 

92.0 69±17 
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9/15/2011 

Nordic Lake+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±11 

0.45  106±13 

1.12 106±10 

11.2 106±10 

22.5 109±13 

33.7 111±11 

44.9 101±12 

67.4 96±13 

89.9 86±10 

 

Suwannee River+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±13 

0.45  99±7 

1.11 102±10 

11.1 95±10 

22.3 103±11 

33.4 108±10 

44.6 122±22 

66.8 133±18 

89.1 134±24 
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9/23/2011 

Nordic Lake+Nitrate 

Nitrate  

(mg/L as N) 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0 0.0 100±15 

2  0.4 106±6 

5  1.1 105±11 

50  11.2 102±11 

100  22.4 101±13 

149  33.6 87±12 

199  44.8 73±7 

299  67.2 55±9 

398  89.6 39±6 

 

Nordic Lake+Iodide 

Iodide  

(mg/L as N) 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 0.0 100±18 

0.02 0.4 111±13 

0.05 1.1 109±11 

0.50 11.1 111±16 

1.0 22.3 113±14 

1.5 33.4 112±21 

2.0 44.6 116±15 

3.0 66.9 105±15 

4.0 89.2 85±12 
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10/6/2011 

Nordic Lake+Nitrate+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±10 

0.45  95±9 

1.12 93±11 

11.2 84±10 

22.4 85±9 

33.6 76±12 

44.8 68±10 

67.2 55±9 

89.6 42±9 

 

Nordic Lake+Nitrate+UV+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±10 

0.45  103±15 

1.12 101±13 

11.2 92±16 

22.4 85±13 

33.6 79±17 

44.8 67±16 

67.2 44±10 

89.6 28±9 

 

Nordic Lake+UV+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±18 

0.45  101±12 

1.12 96±14 

11.2 93±17 

22.4 89±16 

33.6 82±15 

44.8 71±12 

67.2 52±10 

89.6 38±9 
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10/13/2011 

Nordic Lake+Iodide+Chlorine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±12 

0.45  105±11 

1.12 104±12 

11.2 103±13 

22.4 97±14 

33.6 90±13 

44.8 80±13 

67.2 60±9 

89.6 44±9 

 

Nordic Lake+Iodide+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±11 

0.44  107±15 

1.09 103±15 

10.9 102±16 

21.8 102±14 

32.6 92±10 

43.5 81±12 

65.3 76±11 

87.0 68±10 

 

Nordic Lake+Iodide+UV+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±13 

0.43  102±11 

1.08 100±10 

10.8 104±16 

21.5 100±14 

32.3 86±16 

43.1 68±16 

64.6 46±9 

86.1 21±5 
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10/20/2011 

Chlorine Residual in LGW 

Chlorine Residual  

(mg/L as Cl2) 

Cell Density  

as Percent Control (±SD) 

0.0 100±7 

0.15  101±9 

0.37 100±10 

3.69 109±12 

7.38 118±11 

11.07 121±11 

14.76 119±10 

22.14 118±10 

29.52 102±12 

 

Chloramine Residual in LGW 

Chloramine Residual  

(mg/L as Cl2) 

Cell Density  

as Percent Control (±SD) 

0.0 100±15 

0.17  95±11 

0.43 95±15 

4.30 107±14 

8.60 114±18 

12.90 112±18 

17.20 110±19 

25.80 110±20 

34.40 96±18 

 

Suwannee River+Chloramine (repeat) 
Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±9 

0.44  100±9 

1.11 102±9 

11.1 106±10 

22.2 110±8 

33.2 122±9 

44.3 124±10 

66.5 127±9 

88.7 125±18 
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1/16/2012 

Nordic Lake+Iodide+UV+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±7 

0.43  98±15 

1.08 95±14 

10.8 84±18 

21.6 71±18 

32.4 65±17 

43.2 53±14 

64.8 28±9 

86.4 10±7 

 

Nordic Lake+UV+Chloramine 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±11 

0.43  96±12 

1.08 93±17 

10.8 90±19 

21.5 79±21 

32.3 81±9 

43.0 70±17 

64.5 52±9 

86.0 35±8 
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2/8/2012 

Suwannee River+Chloramine (repeat with newly prepared NOM stock) 
Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±7 

0.50  104±7 

1.25 103±9 

12.5 104±10 

25.0 102±12 

37.6 105±9 

50.1 108±9 

75.1 104±9 

100.1 99±8 

 

2/20/2012 

Nordic Lake+Chloramine, 72h 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±17 

0.41  106±14 

1.04 96±16 

10.4 100±19 

20.7 98±17 

31.1 95±16 

41.5 96±9 

62.2 86±13 

82.9 82±9 

 

Nordic Lake+Chloramine, 96h 

Dissolved Organic Carbon 

(mg/L as C) 

Cell Density  

as Percent Control (±SD) 

0.0 100±12 

0.42  101±12 

1.04 99±12 

10.4 92±19 

20.8 91±23 

31.2 90±18 

41.5 92±17 

62.3 85±15 

83.1 78±14 
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