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ABSTRACT
JIE ZHOU: High Dimensional Spatial Modeling of Extremes with Applications to United

States Rainfalls
(Under the direction of Dr. Richard L. Smith)

Spatial statistical models are used to predict unobserved variables based on observed

variables and to estimate unknown model parameters. Extreme value theory(EVT) is used

to study large or small observations from a random phenomenon. Both spatial statistics

and extreme value theory have been studied in a lot of areas such as agriculture, finance,

industry and environmental science.

This dissertation proposes two spatial statistical models which concentrate on non-

Gaussian probability densities with general spatial covariance structures. The two models

are also applied in analyzing United States Rainfalls and especially, rainfall extremes.

When the data set is not too large, the first model is used. The model constructs a gen-

eralized linear mixed model(GLMM) which can be considered as an extension of Diggle’s

model-based geostatistical approach(Diggle et al. 1998). The approach improves conven-

tional kriging with a form of generalized linear mixed structure. As for high dimensional

problems, two different methods are established to improve the computational efficiency of

Markov Chain Monte Carlo(MCMC) implementation. The first method is based on spec-

tral representation of spatial dependence structures which provides good approximations

on each MCMC iteration. The other method embeds high dimensional covariance matri-

ces in matrices with block circulant structures. The eigenvalues and eigenvectors of block

circulant matrices can be calculated exactly by Fast Fourier Transforms(FFT). The compu-

tational efficiency is gained by transforming the posterior matrices into lower dimensional

matrices. This method gives us exact update on each MCMC iteration. Future predictions

are also made by keeping spatial dependence structures fixed and using the relationship

between present days and future days provided by some Global Climate Model(GCM). The

predictions are refined by sampling techniques. Both ways of handling high dimensional
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covariance matrices are novel to analyze large data sets with extreme value distributions

involved. One of the main outcomes of this model is for producing N -year return values

and return years for a given value for precipitation at a single location given climate model

projections based on a grid. This is very important, because in many applications, de-

tailed precipitation information on pointwise locations is more important that predictions

averaged over grids.

The second model can be applied to those large data sets and is based on transformed

Gaussian processes. These processes are thresholded due to the emphasis on rainfall ex-

tremes.

Keywords: Block Circulant Matrix; Extreme value theory;Fast Fourier Transform; Gener-

alized Linear Mixed Model; Kriging; Markov Chain Monte Carlo; Spectral Representation;

Spatial statistics
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CHAPTER 1

Introduction

Extreme values are very important in a lot of areas such as agriculture, finance, industry,

environmental science, etc. The Extreme Value Theory(EVT) is developed to study prob-

abilistic and statistical properties of these unusual phenomena. The theory of univariate

extremes has been well discussed and there is a large literature behind this subject.

Even though one may be able to collect a lot of data on many locations, it is still

impossible to have the observations from all of the area. So it is necessary to use spatial

statistics to study high dimensional spatial extreme problems.

Kriging, as one of the broadly used methods in spatial statistics, is an interpolation

method to have spatial predictions based on least mean squared error under some assump-

tions of spatial dependent structures. The limitation of kriging is that it is a method of

optimal spatial linear prediction and cannot be applied directly to those spatial data with

complicated probability densities. In our case, we are focusing on the precipitation data

which contain a lot of zeros and can never be a negative value. The conventional kriging

does not reflect these constraints.

Model-based geostatistical approaches proposed by Diggle et al.(1998) discussed a gen-

eralized linear mixed model (GLMM) which improves on conventional kriging and is able

to handle non-Gaussian cases. The model is solvable by Monte Carlo sampling but conven-

tional Markov Chain Monte Carlo(MCMC) implementation is not practically implementable

for high dimensional prediction problems. As an improvement, Wikle et al.(2002) proposed

a spectral generalized linear prediction model which is based on spectral parameterized

covariance structures. Diggle’s model has the assumption that the parameters of the proba-

bility density distributions at observed locations are based on some conditional expectations,



while Wikle’s model is based on exponential family distributions. It is possible to extend

these two models to our extreme value cases, because essentially, the point of these two

models is treating the parameters from distributions as Gaussian random fields with noises.

The form of probability density distributions is not very important. So in fact, the spectral

GLMM can be extended to any parametric distributions but it is an approximate approach.

Alternatively, it is possible to consider an exact approach without losing much of the

computational efficiency. The essential point is to embed the covariance matrix in a block

circulant matrix and therefore, the eigenvalues and eigenvectors can be obtained exactly by

using FFT. If the embedded matrix is not too large, then one will still be able to generate

a Gaussian random field quickly with this certain covariance matrix. This idea is proposed

by Wood and Chan(1994). For our empirical computational problems, there are several

critical adjustments need to be made. Some other linear algebraic techniques are also used

to gain the computational efficiency.

Evidence shows that variations in global surface temperature cannot be explained by

natural climate variability, especially, the unusual increase in global mean temperature dur-

ing the latter half of the 20th century can be attributed to anthropogenic forcing. Further-

more, the increase in intense precipitation, more so than the changes in mean precipitation,

are consistent with changes expected in a warmer atmosphere due to an acceleration of

the hydrological cycle(e.g. Trenberth 1999). The observations of rainfall also support the

relationship between extreme rainfall events and the climate changes.

In our work, we would like to focus on the United States due to the availability of a

large amount of controlled station data. We will be using a comprehensive description of the

statistics of extremes along with spatial interpolation and smoothing methods to simulate

the United States rainfalls(extreme events) and make spatial(-temporal) predictions.

The rest of the dissertation is organized as follows. Chapter 2 is an overview of Extreme

Value Theory and Spatial Statistics in the literature. It includes the basic concepts of EVT

and some standard statistical approaches. Spatial statistics is also introduced in this part,

including the conventional kriging method, the generalized linear mixed model proposed

by Diggle et al.(1998), the spectral parametrization method developed by Wikle(2002) and

simulation of stationary Gaussian processes by Wood and Chan(1994).
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Chapter 3 introduces the background and motivation of our study on North American

rainfall extremes.

Chapter 4 includes a high dimensional spatial modeling with EVT on United States

rainfalls, two computational methods to solve the model and the statistical criteria and

results for rainfall predictions in the future.

Chapter 5 describes an alternative statistical approach, transformed, thresholded Gaus-

sian Process is considered to simulate the rainfall extremes.

Chapter 6 shows the outline of completion of current works and proposes some future

possible extensions.
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CHAPTER 2

Extreme Value Theory and Spatial Statistics

2.1 Univariate Extreme Value Theory

Intuitively, Extreme Value Theory(EVT) is a theory concentrating on unusual extreme

events and studying the probabilistic and statistical properties of these events. There is a

large literature behind this subject going back to the 1920’s, so it is impossible to include a

complete list of references. There are some classic references including the books written by

Leadbetter, Lindgren and Rootzén(1983) and Resnick(1987). The first chapter written by

Smith(2003) in Finkenstadt and Rootzén’s book Extreme Values in Finance, Telecommu-

nications and the Environment is a comprehensive reference of EVT with the application

in environment, insurance and finance.

In this section, we will briefly summarize some main results in extreme value theory.

These results are mostly taken from the recent paper by Smith(2003), which is a good

introduction to this subject.

2.1.1 The Extreme Value Distributions

Let X1, ..., Xn be i.i.d. random variables with common density function F . Let Mn =

max{X1, ..., Xn}, then

Pr{Mn < x} = F (x)n (2.1)

This won’t give us anything other than the trivial result that for any fixed x for which

F (x) < 1, the probability will tend to 0 when n tends to +∞. Or in fact, the maximum

of a sample will tend to the right endpoint of the distribution almost surely, regardless it is



finite or infinite. For instance, let XE be the right endpoint, since

∞∑
n=1

Pr{|Mn −XE | > ε} =
∞∑
n=1

Pr{Mn < XE − ε}

=
∞∑
n=1

Pr{X1 < XE − ε}n

=
Pr{X1 < XE − ε}

1− Pr{X1 < XE − ε}
<∞.

But after proper normalization and centralization, the form of limits

lim
n→∞

Fn(anx+ bn) = lim
n→∞

Pr{Mn − bn
an

≤ x} = H(x) (2.2)

becomes meaningful and there is a limit law known as Three Types Theorem for this.

Theorem 2.1.1 (Three Types Theorem). If there exist normalizing constants an > 0,bn ∈

<, and some non-degenerate df H such that

a−1
n (Mn − bn) d→ H (2.3)

then H belongs to the type of one of the following three dfs;

Gumbel:

Λ(x) = e−e
−x
, x ∈ <. (2.4)

Fréchet:

Φα(x) =


0 x ≤ 0

e−x
−α

x > 0
α > 0 (2.5)

Weibull:

Ψα(x) =


e−|x|

α
x ≤ 0

1 x > 0
α > 0 (2.6)

The detailed proof of this theorem, issues about maximum domains of attraction and

other related topics, can be found in Leadbetter et al.(1983) or Resnick(1987). And we say

such F (or X) belongs to the maximum domain of attraction of H and write F ∈MDA(H).
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The following theorems indicate the way to find such distribution functions.

Theorem 2.1.2. Let 0 ≤ τ ≤ ∞ and suppose that for suitable normalizing constants an > 0

and bn, un(x) = anx+ bn such that

n(1− F (un))→ τ as n→∞ (2.7)

then

Pr{Mn ≤ un} → e−τ as n→∞ (2.8)

Conversely, if (2.8) holds for some τ , 0 ≤ τ ≤ ∞, then (2.7) holds.

Theorem 2.1.3. Necessary and sufficient conditions for the distribution F belongs to the

MDA of

(i) Gumbel:
∫∞

0 (1− F (u))du <∞

lim
t↑XE

1− F (t+ xg(t))
1− F (t)

= e−x

for all real x, where

g(t) =

∫ XE
t (1− F (u))du

1− F (u)

for t < XE.

(ii) Fréchet: XE =∞ and

lim
t→∞

1− F (tx)
1− F (t)

= x−α

α > 0, for each x > 0.

(iii) Weibull: XE <∞ and

lim
h↓0

1− F (XE − xh)
1− F (XE − h)

= xα

α > 0, for each x > 0.

There are some other results for finding MDA(H) of F and the normalizing constants

in Leadbetter et al.(1983) and Resnick(1987). Consider a simple example here, suppose we
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have the Pareto distribution

F (x) = 1− κx−α, α > 0, κ > 0, x ≥ κ1/α.

then we calculate
1− F (tx)
1− F (t)

=
(tx)−α

t−α
= x−α

which indicates F belongs to MDA of a Fréchet type of extreme value distribution. By

setting

n(1− F (un)) = τ

where un(x) = anx+ bn, we have

Pr{(κn)−1/αMn ≤ x} → exp(−x−α)

therefore,

an = (κn)−1/α, bn = 0. (2.9)

The extreme value distributions lead to max-stable distributions, that is, distributions

for which Hn(anx + bn) = H(x) holds for some constants an > 0, and bn for each n ∈

N. Theorem 2.1.4(Leadbetter et al. 1983) shows the relationship between extreme value

distributions and max-stable distributions.

Theorem 2.1.4. Every max-stable distribution is of extreme value type, i.e. equal to

H(ax+ b) for some a > 0 and b and H that is one of (1.4), (1.5) or (1.6); conversely, each

distribution of extreme value type is max-stable.

The Generalized Extreme Value(GEV) distribution is a combination of these three types:

H(x) = exp
{
−(1 + ξ

x− µ
ψ

)−1/ξ
+

}
, (2.10)

where µ is a location parameter, ψ > 0 is a scale parameter and ξ is a shape parameter.

The limit ξ → 0 corresponds to the Gumbel type, ξ > 0 and ξ < 0 correspond to Fréchet

type and Weibull type with α = 1/ξ and α = −1/ξ respectively.
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Furthermore, the case ξ > 0 refers to the “long-tailed” case for which 1−H(x) ∝ x−1/ξ,

ξ → 0 refers to the “medium-tailed” case for which 1−H(x) decreases exponentially for large

x,i.e., exp
(
−x−µ

ψ

)
and ξ < 0 refers to the “short-tailed” case for which the distribution has

a finite endpoint at x = µ− ψ/ξ.

Now suppose {Xi, i = 1, 2, ...} are a stationary sequence with continuous marginal dis-

tribution function F (x) and {X̂i, i = 1, 2, ...} be the associated sequence of i.i.d. random

variables with same marginal distribution function F (x). Define

Mn = max{X1, ..., Xn}

M̂n = max{X̂1, ..., X̂n},

then the limiting distribution of Mn and M̂n are associated with each other via a quantity

θ defined as follows: θ is called the extremal index (Leadbetter, 1983) of a sequence {Xn} if

for every τ > 0, there exists a sequence of thresholds {un} such that

Pr{M̂n ≤ un} → e−τ (2.11)

and under quite mild additional conditions,

Pr{Mn ≤ un} → e−θτ . (2.12)

The index θ can be any real number between 0 and 1, and 1
θ is the mean cluster size of

exceedance over some threshold. For instance, if θ is close to 0, it corresponds to a strong

dependence because the cluster size is very large. On the other hand, if θ tends to 1, then

it indicates convergence towards asymptotic independence of extremes but meanwhile, the

random variables in the original sequence do not have to be independent.

2.1.2 Exceedances Over Thresholds

Consider the excess distribution of X over some high threshold u and let Y = X−u > 0,

Fu(y) = Pr{Y ≤ y|Y > 0} =
F (u+ y)− F (u)

1− F (u)
. (2.13)

9



As u→ ωF = sup{x : F (x) < 1}, we are able to get a limit

Fu(y) ≈ G(y;σu, ξ), (2.14)

G is called Generalized Pareto Distribution(GPD) and has the following form:

G(y;σ, ξ) = 1− (1 + ξ
y

σ
)−1/ξ
+ . (2.15)

The case ξ > 0 corresponds to “long-tailed” distributions; the case ξ → 0 is 1− e−x/σ and

the case ξ < 0 has finite upper endpoint at −σ/ξ. The rigorous connection between classical

extreme value theory and generalized Pareto distribution was established by Pickands(1975),

who proves Fu(y/σu) → 1 − (1 + ξy)−1/ξ for all y for which 1 + ξy > 0. As a result, the

limit results of sample maxima and limit results for exceedances over thresholds are quite

parallel.

2.1.3 Poisson-GPD model for exceedances

The Poisson-GPD model is another useful approach in extreme value theory. It is a

limiting form of the joint process of exceedance times and excesses over the threshold. Let

N be the number of exceedances of the level u in any one unit of time, then N ∼ Poisson(λ).

Conditionally on N ≥ 1, the excess values Y1, Y2, ..., YN are i.i.d. from GPD with parameters

(σ, ξ). This is how the Poisson-GPD model is defined.

Now we are able to find the relationship between GEV distribution and Poisson-GPD

process by calculating

Pr{ max
1≤i≤N

Yi ≤ x} = P{N = 0}+
∞∑
n=1

Pr{N = n, Y1 ≤ x, ..., Yn ≤ x}

= e−λ +
∞∑
n=1

λne−λ

n

[
1− (1 + ξ

x− u
σ

)−1/ξ
+

]n
= exp

{
−λ
(

1 + ξ
x− u
σ

)−1/ξ

+

}
. (2.16)

10



By substituting

σ = ψ + ξ(u− µ), λ =
(

1 + ξ
u− µ
ψ

)−1/ξ

, (2.17)

(2.16) reduces to the GEV form (2.10). This proves the GPD model and GEV model are

consistent with each other above a certain threshold u, and (2.16) gives out an explicit

relationship between the two set of parameters.

2.1.4 Statistical Approaches

Peaks Over Threshold

The Peaks Over Threshold(POT) model was originally developed by hydrologists. As

currently applied, the basic idea of POT is to fix a high threshold u and then fit the GPD

to exceedances over the threshold. For datasets that with serial correlation, the threshold

exceedances occur in clusters and this method can be directly applied to the peak values

within each cluster.

There are also some extensions of the basic POT model including selecting the threshold,

incorporating covariates and dependence in the time series. In environmental process, the

probability of an extreme event typically varies over a year. In order to take such seasonality

into account, one may try(Smith 2003):

1. Remove seasonal tread before threshold approach;

2. Use different Poisson-GPD model for different season;

3. Add some covariates to Poisson-GPD model.

Point Process Approach

The Point Process Approach of extreme value theory is to combine the times at which

high threshold exceedances occur and the excess values over the threshold into one process.

The estimation method was first proposed by Smith(1989) and it has subsequently been

described in some detail by Coles (2001, chapter 7) as well as Smith (2003). This context

theoretically relies on the point process presentation of extreme values which was developed

by Leadbetter, Lindgren and Rootzén(1983).

11



In this approach, under suitable normalization, the process behaves like a nonhomo-

geneous Poisson process. In general, a nonhomogeneous Poisson process is defined as the

following. Suppose A is a measurable subset of some domain D, let N(A) denote the number

of points in A. With some intensity function λ(x), x ∈ D, if N(A) has a Poisson distribution

with mean

Λ(A) =
∫
A
λ(x)dx.

for every measurable set A, then N is a nonhomogeneous Poisson process.

For the EVT application, assume x is two-dimensional with time t and excess value y

over high threshold u, D = [0, T ]× [u,∞]. Write

λ(t, y) =
1
ψ

(
1 + ξ

y − µ
ψ

)−1/ξ−1

+

. (2.18)

If A = [t1, t2]× [y,∞], then

Λ(A) = (t2 − t1)
(

1 + ξ
y − µ
ψ

)−1/ξ

+

(2.19)

To fit this model, we note that if a nonhomogeneous process of intensity λ(t, y) is

observed on a domain D, and if (T1, Y1), ..., (TN , YN ) are the N observed points of the

process, then the joint density is

N∏
i=1

λ(Ti, Yi) · exp
{
−
∫
D
λ(t, y)dtdy

}
(2.20)

(2.20) may be treated as a likelihood function and maximized with respect to those unknown

parameters.

As an extension of this approach, the parameters µ, ψ, ξ are allowed to be time-dependent.

In homogenous case where µ, ψ, ξ are constants, the model is just the same as Poisson-GPD

model with different parametrization.
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2.2 Spatial Modeling

Spatial modeling is used to analyze data with spatial dependence. Based on current

continuous or discrete observations on spatial locations, one will be able to make predictions

on other locations by constructing spatial models under appropriate assumptions of spatially

related structures. The literature of spatial statistics is very substantial, the standard

reference include the books written by Ripley(1981,1988), Cressie(1993) and Stein(1999).

There are also other specific references by Smith(2000) on environmental statistics and Yun

and Smith(2001) on spatial extremes.

In this section, we will try to give an introductory review of spatial statistics, especially

in the discipline of geostatistics.

2.2.1 Geostatistics and Kriging

Applications of spatial statistics cover many fields, but a lot of the original contexts

of this subject are arisen from geostatistics. Among all kinds of modeling techniques,

Kriging, as an optimal least square interpolation method over a random spatial field, is

widely used. It was first proposed by Matheron(1963) and named after D.G. Krige, a

South African mining engineer who developed the idea in the 1950’s. The following results

are mostly taken from ”Spatial statistics in environmental science”, a chapter written by

Smith(2000) in Fitzgerald, Smith, Walden and Young’s book “Nonlinear and Non-stationary

Signal Processing”.

Spatial Processes and Variogram

Consider a spatial process represented by {Z(s), s ∈ D} where D is a subset of Rd.

Suppose we have a finite number of observations at {si, i = 1, ..., n} and zi = Z(si). Given

these zi, i = 1, ..., n, predict z0 = Z(s0) for some location s0 other than s1, ...sn, this is how

the classical “kriging” problem has been defined. If the problem can be solved, then it is

easily extended to problems such as jointly making predictions on several unobserved sites

or estimating other quantities like
∫
A Z(s)ds for A ⊆ D.
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There are two traditional types of models for zi:

zi = µ+ εi, (2.21)

zi = xTi β + εi, (2.22)

where in each case, {εi} are the “noise” which can be represented as some spatially corre-

lated process with zero-mean. In (2.21), µ is an undetermined parameter supposed to be

constant all over D and it is described as the “ordinary kriging”(Matheron, 1971; Journel

and Huijbregts, 1978). In (2.22), the mean at a specific location depends on a given set of

covariates xi through a linear regression model with parameters β to be determined. This

is always recognized as “universal kriging”(Matheron, 1963).

The covariance structure of ε(·) can be represented as

Cov{ε(s), ε(s′)} = C(s, s′), (2.23)

for some covariance function C(·, ·).

The process Z is strictly stationary if the joint distribution of (Z(s1), Z(s2), ..., Z(sk)) is

the same as that of (Z(s1 + h), Z(s2 + h), ..., Z(sk + h)) for any k spatial locations s1, s2, ..., sk

and any h ∈ Rd with s1, s2, ..., sk, s1 + h, ..., sk + h ∈ D. The process Z is called weakly

stationary if

Cov{ε(s), ε(s′)} = C0(s− s′), for all s, s′ ∈ D. (2.24)

Instead of focusing on covariance functions, it is more common in spatial statistics to

work with semivariogram function γ(·), which is defined as following:

V ar{ε(s)− ε(s′)} = 2γ(s− s′). (2.25)

The left hand side of (2.25) is defined as the variogram. If such γ(·) exists, the spatial process

Z is called intrinsically stationary. One reason for considering this variogram rather than

the covariance function is because (2.25) is a weaker property comparing with (2.24).

If γ(s − s′) only depends on ||s − s′||, i.e. the scalar distance between s and s′, the
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process is said to be isotropic. A spatial process is homogeneous if it is both stationary and

isotropic.

Kriging

The model (2.22) can be rewritten as:

Z = Xβ + ε (2.26)

where ZT = (z1 z2 ... zn), X is n × p matrix of covariates, β is a p-dimensional vector

of unknown regression coefficients and ε is a vector of random errors with zero-mean and

covariance matrix of the form C = αΓ. Here α > 0 is an unknown positive scalar while the

matrix Γ is supposed to be known or estimated. This is recognized as universal kriging, but

ordinary kriging is just a special case of universal kriging with letting Xβ = 1µ, where 1 is

an n-dimensional vector of 1s and µ is a unknown constant.

Under this model, we would like to predict:

z0 = xT0 β + ε0, (2.27)

where x0 is a new location and ε0 is a random variable with zero-mean, variance αγ0 and

covariance with ε given by E{εT ε0} = αωT with known scalar γ0 and vector ω. Now consider

a linear predictor ẑ0 = λTZ where λ satisfies the constraint

XTλ = x0, (2.28)

The constraint (2.28)is used for justifying the reduction

ẑ0 − z0 = λT (Xβ + ε)− xT0 β − ε0 = λT ε− ε0,

which means the prediction doesn’t depend on the unknown regression coefficients β.

The way to find the prediction is as follows: minimize Q = E{(ẑ0 − z0)2} under the

constraint (2.28). The solution λ only depends on the first and second order moments

of ẑ0 and is not related with any normality assumption. Using the method of Lagrange
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multipliers, λ can be explicitly written as:

λT = {
(
x0 −XTΓ−1ω

)T (
XTΓ−1X

)−1
XT + ωT }Γ−1 (2.29)

Covariance matrix Γ

Consider the most common situation that the spatial process is stationary and isotropic.

There are typically several steps to estimate the covariance matrix.

1. Determine the shape of covariance function(or variogram).

2. According to the first step, choose from a family of positive-definite covariance func-

tions(or variogram).

In practice, there are a lot of standard families of covariance functions(or variograms).

For example:

� Spherical model:

γ0(t) =


0, t = 0,

c0 + c1{ 3t
2R −

1
2

(
t
R

)3}, 0 < t ≤ R,

c0 + c1, t > R,

(2.30)

� Exponential model:

γ0(t) =


0, t = 0,

c0 + c1

(
1− e−t/R

)
, t > 0,

(2.31)

� Gaussian model:

γ0(t) =


0, t = 0,

c0 + c1

(
1− e−(t/R)2

)
, t > 0,

(2.32)
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� Matérn model:

C0 (t) =
1

2ν−1Γ0 (ν)

(
2
√
νt

R

)ν
Kν

(
2
√
νt

R

)
, (2.33)

where ν > 0 is a shape parameter and Kν is the modified Bessel function of the third

kind of order ν(Abramowitz and Stegun 1964). The special cases ν = 1
2 and ν → ∞

correspond to the exponential model and Gaussian model, respectively.

3. Estimate the parameters of the assumed covariance function(or variogram).

Cressie(1993) proposed a simple but efficient way for this by using a weighted least

squares technique. There are also other alternative methods based on likelihood proce-

dure including maximum likelihood estimation(Kitanidis 1983, Mardia and Marshall

1984), restricted maximum likelihood estimation(Kitanidis 1983, Cressie 1993) and

Bayesian methods(Le and Zidek 1992, Handcock and Stein 1993, Brown et al. 1994,

Banerjee, S., Carlin, B.P. and Gelfand, A.E.(2004)).

4. Application to kriging.

After the covariance matrix Γ has been estimated, it is treated as known feature for

solving the kriging problem. However, it is logical to adapt the kriging procedure

with allowing unknown parameters in Γ. There are two possible approaches for this

adaption:

(a) Corrections based on the delta method. It is possible to use Taylor expansions

of the covariance matrix and correct the prediction. The detailed method was

proposed by Zimmerman and Cressie(1992).

(b) Fully Bayesian approach. Treat (β, θ, z0)(where β is the regression coefficient, θ

are the unknown parameters of the covariance matrix, and z0 is the predictor)

as a random vector and solve the conditional density of z0 given observed data

Z after integrating out β and θ. The standard kriging is just a special case of

this when assuming θ are known and the prior distribution of β is uniform.
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2.2.2 Generalized Linear Mixed Modeling

The limitation of traditional kriging methods is that the predictions are always made un-

der Gaussian assumptions. For non-Gaussian cases, the most widely implemented method-

ology is trans-Gaussian kriging(Cressie 1993) which applies the standard Gaussian methods

after a marginal non-linear transformation, i.e. analyze the transformed data Φ(zi), i = 1, ..., n

for some specified function Π(·) instead of analyzing zi, i = 1, ..., n directly.

Diggle et al.(1998) embedded the linear kriging(and trans-Gaussian kriging) in a more

general distributional framework, which is comparable with embedding the Gaussian linear

model into a generalized linear mixed model.

Suppose Z = {Z(s) : s ∈ D} denotes a spatial process, D is a subset of Rd. Let

{yi, i = 1, ..., n} be the observations at locations (si, i = 1, ..., n),then {yi, i = 1, ..., n} can

be treated as a function of {zi = Z(si)} plus some noise.

Now assume:

1. Z is a stationary Gaussian process with E[Z(s)] = 0 and cov{Z(s), Z(s′)} = αΓ(s−s′);

2. Conditionally on Z, the observations yi, i = 1, ..., n are independent with distributions

fi{y|zi} = f(y;Mi) where Mi = E[yi|zi];

3. h(M) = KZ + η, for some known link function h, vector of normal errors η and

location mapping matrix K.

Let S∗ = (s∗1 ... s
∗
m) denote the locations we want to make predictions and K0 the cor-

responding location mapping matrix, then Ẑ(S∗) = E[Z(S∗)|y1, ..., yn] is the generalized

linear predictor for Z(S∗).

Suppose gn and gm+n denote multivariate normal distributions with dimensions n and

m + n,respectively. The unconditional distribution of Y = (y1 y2 ... yn) is given by the

integral

f(Y ) =
∫
f(Y |Z)gn(KZ)dZ1dZ2...dZn (2.34)
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and the unconditional joint distribution of (Y,K0Z) is given by

f(Y,K0Z) =
∫
f(Y |Z)gm+n(KZ,K0Z)dZ1dZ2...dZn (2.35)

The conditional density of K0Z given yi, i = 1, ..., n is then the ratio of (2.35) and (2.34),

so one will be able to produce predictions of Gaussian processes on S∗. The predictions

Ẑ(S∗) therefore can be reached after using some sampling technique.. Due to the fact that

n is very large in many statistical problems, it is difficult to find the explicit form of f(Y ).

A straightforward idea is to deploy Markov Chain Monte Carlo method. But since we have

a high dimensional covariance structure, the convergence of MCMC is always very slow.

This approach was first discussed by Diggle, Tawn and Moyeed(1998).

2.2.3 Spectral Representation of Covariance Structures

To improve the computational efficiency, Wikle(2002) proposed an alternative basis-

function representation of the Gaussian random field Z. Under his representation, one will

be able to get a simpler form of covariance matrix(asymptotically diagonal), and therefore,

have more easily computable MCMC processes to deal with.

Specifically, Wikle assumes we can write

Z = Ψα (2.36)

where Ψ (a n× p matrix) is some known set of p basis functions evaluated at the n spatial

coordinates, and α is a set of coefficients, distributed as α ∼ N [0,Σα(θ)] where Σα(θ) is a

known covariance matrix dependent on a finite-dimensional unknown parameter θ.

The two representations are equivalent if

ΣZ = ΨΣα(θ)ΨT (2.37)

and under some circumstances it might be appropriate to find Ψ and Σα(θ) so that (2.37)

holds exactly. However this is also not feasible for large grids, and Wikle proposes approx-

imations to (2.37).
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In particular, if Z is a stationary process on a regular lattice, it is possible to define Ψ

as an n×n array of Fourier coefficients so that α is the discrete Fourier transform of Z and

(2.36) is the inverse Fourier transform. This can greatly ease computation since if n is a

power of two, the calculation of (2.36) is an application of the FFT.

As described by Wikle, the matrix Σα(θ) is asymptotically a diagonal matrix whose

diagonal entries are determined by the spectral density of Z. For example, consider the

Matérn class of covariance functions,

C(r) = θ3(θ1r)θ2Kθ2(θ1r), θ1 > 0, θ2 > 0, θ3 > 0

where Kθ2 is modified Bessel function, θ1 and θ2 reflect the correlation range and the degree

of smoothness of a spatial process, respectively, and θ3 is proportional to the variance

of the process(Stein, 1999). This is equivalent to (2.33) under different notations. The

corresponding spectral density function at frequency ω is then given by

f(ω; θ) =
2θ2−1θ3Γ(θ2 + g)θ2θ2

1

πg/2(θ2
1 + ω2)θ2+g/2

(2.38)

where g is the dimension of the process. Thus, we can assume that Σα(θ) is a diagonal

matrix where the diagonal entries that correspond to Fourier components of frequency ω

are given by (2.38).

After the spectral decomposition, we have an approximated covariance matrix which

can be easily updated through MCMC iterations. In fact, the covariance matrix of θ and

α are both diagonal which let us avoid lots of computations on inverse of large dimensional

matrices. And therefore, the computation is much more efficient than Diggle’s model.
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2.2.4 Exact Statistical Approach of Stationary Gaussian Processes

As for high dimensional covariance structures, the spectral method provides efficient

approximations, but it is still possible to consider an exact approach without losing much of

the computational efficiency. Wood and Chan(1994) first proposed a method for simulating

stationary Gaussian processes on a rectangular grid in [0, 1]d ⊂ <d. The following sections

will briefly describe how the method works.

Toeplitz Matrix and Circulant Matrix

A Toeplitz matrix is a matrix in which each descending diagonal from left to right is

constant. It can be defined as follows:

Suppose T is a n × n matrix with T = [tk,j ; k, j = 0, 1, 2, . . . , n − 1] where tk,j = tk−j ,

i.e. a matrix of the form

T =



t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0


(2.39)

A Circulant matrix C is a special Toeplitz matrix which having the form

C =



c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

...
. . . . . . . . . c2

c1

c1 · · · cn−1 c0


(2.40)
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And the eigen-decomposition of C can be easily obtained by Fourier Transform. Define

F =
1√
n



1 1 1 · · · 1

1 ω1 ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

... · · · · · ·
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


, (2.41)

where ω = exp−2πi/n. Then F is unitary(F−1 = F ∗) and we have the following theorem:

Theorem 2.2.1. If C is a circulant matrix, then C is diagonalized by F . More specifically,

C = F ∗ΛF, (2.42)

where Λ is the diagonal matrix consists of the eigenvalues of C.

The eigenvalues of C are therefore can be written as:

λk =
n−1∑
j=0

cje
−2π
√
−1jk/n, k = 0, 1, ..., n− 1. (2.43)

A general Toeplitz matrix can be easily embedded in a circulant matrix. For example

we can extend T as follows:

T ⇒ CT =



t0 t−1 t−2 · · · t−(n−1) tn−1 · · · t2 t1

t1 t0 t−1 · · · t−(n−1) · · · t2

t2 t1 t0
...

. . . . . .

tn−1 tn−2 tn−3 · · · t0 t−1 · · · t−(n−1)

...
. . . . . .

...
. . . . . .

t−2 t−3 t−4 · · · tn−2 · · · t0 t−1

t−1 t−2 t−3 · · · tn−1 tn−2 · · · t1 t0



(2.44)

where CT is now a circulant matrix. This is the way to extend a general Toeplitz matrix to a
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circulant matrix with the least dimension, we can extend the matrix by adding more entries

making the circulant matrix larger with better properties, for example, positive definite.

Now suppose {Ti, i = 0,±1,±2, . . . ,±(m− 1)} is a set of n× n Toeplitz matrices, then

T̂ =



T0 T−1 T−2 · · · T−(m−1)

T1 T0 T−1

T2 T1 T0
...

...
. . .

Tm−1 · · · T0


(2.45)

is a matrix with block Toeplitz structure, and it can be embedded into a block circulant

matrix. First, we can embed each of Ti to a circulant matrix Ci like (2.44), then a new

block circulant matrix containing T̂ can be obtained as follows:

T̂ ⇒ Ĉ =



T0 T−1 T−2 · · · T−(n−1) Tn−1 · · · T2 T1

T1 T0 T−1 · · · T−(n−1) · · · T2

T2 T1 T0

...
. . . . . .

Tn−1 Tn−2 Tn−3 · · · T0 T−1 · · · T−(n−1)

...
. . . . . .

...
. . . . . .

T−2 T−3 T−4 · · · Tn−2 · · · T0 T−1

T−1 T−2 T−3 · · · Tn−1 Tn−2 · · · T1 T0



(2.46)

The One-Dimensional Case

Now consider a stationary Gaussian process {X(t) : t ∈ <} with zero mean and covari-

ance function γ. The purpose is to generate a random vectorX =
(
X(0), X

(
1
n

)
, · · · , X

(
n−1
n

))T .
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We have X ∼ Nn[0,Σ], where

Σ =



γ(0) γ( 1
n) · · · γ(n−1

n )

γ( 1
n) γ(0) · · · γ(n−2

n )
...

...
. . .

...

γ(n−1
n ) γ(n−2

n ) · · · γ(0)


(2.47)

and Σ has Toeplitz structure.

There are several steps to simulate the random vector X:

1. Embed Σ in a positive definite circulant matrix C with dimension m = 2g for some

integer g and m ≥ 2(n− 1)

2. Write C = QΛQ∗ where Λ is the diagonal matrix of eigenvalues of C which can be

efficiently obtained by one-dimensional Discrete FFT, Q is the corresponding unitary

matrix and Q∗ is the conjugate transpose of Q.

3. Define Y = QΛ1/2Q∗Z, where Z ∼ Nm[0, I]. Then Y ∼ Nm[0, C], and the random

vector X is a subvector of Y .

The n-Dimensional Case

The n-dimensional case is analogous to 1-dimensional case. After reordering the indices,

the embedded positive definite matrix C will have block circulant structure. For each

dimension, a certain m will be selected. Suppose m[l] is corresponding to lth dimension

and for the covariance function γ, if

γ(t[1], . . . , t[k], . . . , t[n]) = γ(t[1], . . . ,−t[k], . . . , t[n]),

for all (t[1], . . . , t[n])T ∈ <n, γ is said to be even in kth coordinate. γ has to be even in all

coordinates in order to get the exact simulation. There is an alternative way proposed by

Wood and Chan(1984)to handle the case γ is not even in some coordinates, but it will be

an approximation.

Other than the one dimensional case, we can use two-dimensional discrete Fourier trans-
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form to get the superstructures of Ĉ. And the eigenvalues of Ĉ turn to be:

λ(u′) =
∑

u∈I(m)

c(u) exp
{
−2π
√
−1uT (

u′

m
)
}
, u ∈ I(m) (2.48)

where

I(m) = {u = (i1, i2, ..., in) : 0 ≤ i1 ≤ m[1]− 1, 0 ≤ i2 ≤ m[2]− 1, ..., 0 ≤ in ≤ m[n]− 1},

The Wood-Chan method cannot be directly used in Bayesian analysis because in Bayesian

analysis, we are focusing on those posterior distributions and the covariance forms will be

much more complicated. So an alternative approach will be discussed in later chapters.
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CHAPTER 3

North American Rainfall Extremes

3.1 Introduction

There is evidence that shows that variation in global surface temperature is significantly

different from estimates of natural climate variability, and especially, that the unusual

increase in global mean temperature during the latter half of the 20th century can be

attributed to anthropogenic forcing. The early impacts of change on society and ecosystems

are mostly felt via changes in climate variability and extreme climatic events. Therefore,

it is very important to analyze changes in climatic extremes to determine whether these

changes are statistically significant and to make predictions for future changes.

The increase in intense precipitation, rather than the change in mean precipitation, is

consistent with changes expected in a warmer atmosphere due to an acceleration of the

hydrological cycle(e.g. Trenberth 1999) and reflects the climate changes forced by scenar-

ios of greenhouse gas and sulfate aerosol emissions. Recent discussion(Karl and Trenberth

2003) concludes even without any change in total precipitation, higher temperatures lead

to a greater proportion of total precipitation in extreme events. Kharin and Zwiers(2000)

found that North American rainfall extremes with 20-year return values are expected ap-

proximately every 10 years by the end of next century.

Observations of rainfall also support the relationship between extreme rainfall events

and climate change. Karl and Knight (1998) found that the proportion of precipitation

extremes has increased over the United States. Subsequent work has shown that changes

in very heavy precipitation are positive in many regions(Groisman et al. 2004).

We focus on the United States because of the ready availability of quality-controlled



station data. We will be using three data sets in our analysis.The North American Rainfall

Data collected by National Climatic Data Center(NCDC; Groisman et al.,2001) consists

of rainfall values for the last 100 years. Data from United States are observed in about

6000 stations. The following two figures are from NCDC web site(www.ncdc.noaa.gov).

Figure 3.1 shows the observational stations of NCDC all over the continental United States

and Figure 3.2 shows the average annual precipitation for the period 1899− 1999.

Figure 3.1: Observational Stations of NCDC

There is also a set of re-analysis data available which is provided by the National Cen-

ter for Environmental Prediction(NCEP). A re-analysis is a reconstruction of the observed

weather using forecasting models in which observational data define the boundary condi-

tions. The third dataset we use is from the Community Climate System Model(CCSM),

which is a global climate model (GCM). CCSM simply generates data that are representa-

tive of a particular set of climatic conditions - the output of CCSM is not correlated on a day

to day basis with actual weather pattern, whereas the output of a re-analysis is. Re-analyses

are useful in studies of this nature because they use similar grid cells to GCMs, but can

28



Figure 3.2: Average Annual Precipitation(1899− 1999, NCDC)
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also be compared directly with observational data, and therefore are useful for calibrating

GCMs. In our study, we examine daily NCDC in one NCEP grid-cell and make predictions

of rainfall amounts at locations other than the stations. These predictions are then aggre-

gated to form predictions of the grid-cell average for each day, which can then be compared

with the NCEP values. Figure 3.3 shows the grid cells used by NCEP(Smith, 2006, page

34). Having thus derived relationships between grid-cell and point-station values, we then

apply these relationships to present and future CCSM grid-cell data.

Figure 3.3: NCEP Grid Cells(Continental United States)

3.2 Statistics of Rainfall Extremes

There are several possible statistical approaches to analyze rainfall extremes, for ex-

ample, estimating the distribution function for rainfall, using extreme value theory for
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examining extreme events and indices for climate extremes. The first approach has a big

disadvantage because the distribution fit is mostly determined to a large extent by the cen-

ter of the distribution, which will not be able to reflect the extreme events very well. Meehl

et al.(2000) and Frich et al.(2002) proposed and applied a large range of indices related

to extreme events with “extreme” referring to events that can be observed at least once

or several times every certain period(one year in general) on average. We will be using a

more complete description of the statistics of extremes along with spatial interpolation and

smoothing methods to simulate the North American rainfalls and make spatial(-temporal)

predictions.
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CHAPTER 4

Generalized Linear Mixed Modeling on Rainfall
Extremes

4.1 Generalized Linear Mixed Model

For United States rainfall data, we assume they follow a piecewise distribution. More

specifically, at day n and location k,

� For the data exceed our threshold u, we assume y follows POT approach, i.e.

fn,k(y|µn,k) ∼
1
φn,k

(
1 + ξn,k

yn,k − µn,k
φn,k

)−1/ξn,k−1

+

exp

{
−
(

1 + ξn,k
u− µn,k
φn,k

)−1/ξn,k
}

where µn,k is a location parameter, ξn,k is a shape parameter and φn,k is a scale

parameter.

� Estimate Fn,k(0) by the sample proportion of zeros.

� For 0 < y ≤ u(threshold), divide the range into T equiprobable intervals(depending

on the number of data we have in this interval) and assume Fn,k(y) is piecewise linear

within each interval.

Due to the huge observational data set we have from NCDC, it is more realistic to do

one NCEP grid cell at a time. The NCEP grid cells are of dimensions 2.5o latitude × 2.5o

longitude, centered on latitude-longitude coordinates that are multiples of 2.5o. We are go-

ing to take the grid cell that contains Raleigh-Durham airport(RDU) as our computational

example. Raleigh-Durham airport, at latitude 35.87oN and longitude 78.78oW , is in the

grid cell centered at 35oN and 80oW , which covers latitudes from 33.75oN to 36.25oN and



longitudes 78.75oW to 81.25oW . Even within this one grid cell, there are 66 NCDC rainfall

stations. We will only update the location parameters µ as the spatial parameter every day

and use maximum likelihood estimations for the other two in one grid cell. Therefore µn,k

is the only parameter considered as a noisy observation of a Gaussian process Zn on day n

at location k.

Given that rainfall varies seasonally, it makes sense to break up the year into individual

months, fitting a separate model to each month. We will be using 5 years of data at a

time, that is approximately 150 days per analysis, which at 66 stations gives 9900 station-

day combinations to be updated on each MCMC cycle. More than this, we would like to

define a large value of q = 30 × 30(number of grid points at which prediction is obtained)

to ensure good spatial coverage on NCEP grid cell, which let us have 900 × 150 point-day

combinations of Gaussian Processes to be updated at each MCMC iteration.

We are really talking about spatial-temporal data since we obviously don’t want to

analyze the data just one day at a time. But it is known with precipitation data that the

temporal correlations are not very strong, and for this study, as a simplification, we are

treating the days as independent so as to concentrate on the spatial dependence.

Now for the data exceeding threshold u, we have

f(yn,k;µn,k, φ̂, ξ̂) ∼
1

φ̂

(
1 + ξ̂

yn,k − µn,k
φ̂

)−1/ξ̂−1

+

exp

{
−
(

1 + ξ̂
u− µn,k

φ̂

)−1/ξ̂
}
.(4.1)

Under this assumption, for each day n, two observations yn,k and yn,k′ are independent

conditional on location parameters µn,k and µn,k′ . The dependence among the data is then

parameterized as a random effect. Now let us assume

µn,k = µ̄+ zn,k + ηn,k (4.2)

where µ̄ is the mean with some noise over grid cells. zn,k and ηn,k are spatial related Gaussian

processes and independent errors, respectively. The µ̄ could be written as a regression

component such as µ̄n,k =
∑l

i=1 βn,ix
i
n,k plus some noise with xn,k reflecting topography of

the area and the model can be more generally used, but it is not our intention here.
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4.2 Spectral Representation of Covariance Structure

To improve the computational efficiency, especially, to avoid calculating the inverse of

large dimensional covariance matrices, we try to represent the covariance structure in a

Fourier space. This method is based on the technique first described by Wikle (2002). He

assumed the data are from exponential family distribution, but it is really not a necessary

assumption for the model. We can write

Zn = Ψαn (4.3)

where Ψ is a n× n Fourier basis matrix and αn is the corresponding vector of coefficients.

We will be using the Matérn class of covariance functions and the spectral density

function at frequency ω is given by

f(ω; θ) =
2θ2−1θ3Γ(θ2 + g)θ2θ2

1

πg/2(θ2
1 + ω2)θ2+g/2

(4.4)

where g is the dimension of the process. Thus, we can assume that Σα(θ) is a diagonal

matrix where the diagonal entries that correspond to Fourier components of frequency ω

are given by (4.4). We assume θ3 = 1 and make up for the missing scale component by

including a parameter γ in the MCMC formulation that follows.

This leads us to the model

µn,k|Z ∼ N

µ̄+ γ

q∑
j=1

kk,jzn,j ,
1
κη

 ,
zn,j ∼ N

[
p∑
`=1

ψj`αn,`,
1
κε

]
,

αn ∼ N [0,Σα(θ)],

µ̄ ∼ N

[
µ̄0,

1
κµ

]
,

κη ∼ Gamma[qη, rη],

κε ∼ Gamma[qε, rε],

γ ∼ πγ(γ),
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θ ∼ πθ(θ).

where n refers to day n, K = [ki,j ] is the location matrix with entries 1 if there is a station

at corresponding grid cell and entries 0 otherwise and Σα(θ) is the asymptotic covariance

matrix with (4.4) as diagonal entries .

Under this model, the joint density of (µ, κη, κε, γ, θ, α, Z, φ, y) beyond threshold u at

day n is proportional to

exp
{
−κµ

2
(µ̄− µ̄0)2

}
· κqη−1

η e−rηκη · κqε−1
ε e−rεκε · πγ(γ) · πθ(θ)

·|Σα(θ)|−1/2 exp
{
−1

2
αTΣα(θ)−1α

}
· κq/2ε exp

{
−κε

2
(Z −Ψα)T (Z −Ψα)

}
·κm/2η exp

{
−κη

2
(µ− µ̄1− γKTZ)T (µ− µ̄1− γKTZ)

}
·
m∏
k=1

1

φ̂

(
1 + ξ̂

yn,k − µn,k
φ̂

)−1/ξ̂−1

+

exp

{
−
(

1 + ξ̂
u− µn,k

φ̂

)−1/ξ̂
}
. (4.5)

And for the data below threshold u, we have

Pr{Y < yn,k} = F (yn,k) =

 C1 ·
(
t−1
T + yn,k−ut−1

ut−ut−1

)
, 0 < yn,k ≤ u and yn,k ∈ (ut−1, ut];

C0, yn,k = 0.
(4.6)

where C0 is the sample proportion of zeros, C1 is the sample proportion of numbers between

0 and u and ut−1 and ut are the boundaries of the tth interval.

These implies the following sequence of conditional distributions:

π(µn,k | rest) ∝ exp

−κη2
µn,k − µ̄− γ∑

j

kkjzn,j

2 · f(yn,k|µn,k), (4.7)

Zn | rest ∼ N
[
(κεIq + κηγ

2KTK)−1(κεΨαn + κηγK(µn − µ̄1), (κεIq + κηγ
2KTK)−1

]
,

(4.8)

αn | rest ∼ N
[(

Σα(θ)−1 + κεΨTΨ
)−1

κεΨTZn,
(
Σα(θ)−1 + κεΨTΨ

)−1
]
, (4.9)

µ̄ | rest ∼ N

[
κµµ̄0 + κη1T (µ− γKTZ)

κµ +mκη
,

1
κµ +mκη

]
, (4.10)

κη| rest ∼ Gamma

[
qη +

m

2
, rη +

1
2

(µ− µ̄1− γKTZ)T (µ− µ̄1− γKTZ)
]
, (4.11)
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κε| rest ∼ Gamma

[
qε +

q

2
, rε +

1
2

(Z −Ψα)T (Z −Ψα)
]
, (4.12)

γ| rest ∼ πγ(γ) exp
{
−κη

2
(µ− µ̄1− γKTZ)T (µ− µ̄1− γKTZ)

}
, (4.13)

θ| rest ∼ πθ(θ)|Σα(θ)|−1/2 exp
{
−1

2
αTΣα(θ)−1α

}
. (4.14)

Because we are considering different days as independent, the “global” parameters,

γ, θ, µ, κε and κη will be providing us the link between different days and will update pro-

cesses (4.10)–(4.14) combining data from all days. This won’t increase the computational

difficulty because our day-independent assumption gives us that the combined log likelihood

from all days will simply be a sum of log likelihoods from the individual days.

In this case, the Z and α processes are defined each day on every grid point and they

are the main computational obstacle we want to conquer. It is really not practically imple-

mentable to deal with such high dimensional(q = 900) covariance structures of Z directly

as in Diggle et al. (1998). This is because we need to invert these matrices at each MCMC

iteration and it will take too long to get the whole MCMC process convergent. But af-

ter the spectral parameterizations, the covariance matrices of conditional densities of both

the Gaussian process,Zn, and the random vector of coefficients,αn, become very simple.

More specifically, KTK and ΨTΨ are obviously diagonal. The matrix Σα(θ) derived from

Matérn’s covariance matrix is asymptotically diagonal which has been presented before.

Therefore,κεIq + κηγ
2KTK, the covariance matrix of Zn, and Σα(θ)−1 + κεΨTΨ, the co-

variance matrix of αn are both very easy to deal with. At this point, the MCMC sampling

can proceed quite efficiently.

The simulated data generated by this method therefore are daily based on each unit of

NCEP grid cell. In order to compare with the NCEP data, we can take the grid-cell average

based on the simulated data and then it is possible to see on each day, how good the NCEP

data are. Even though the method is very efficient, it is still a large amount of work to

generate simulated data within every NCEP grid cell on each day for all over the last 100

years. But nevertheless, this approach gives us a possibility to provide detailed simulated

extreme precipitation under a much smaller scale compared with other climate models.

By this method, for each day we obtain a sample of predicted precipitation values at
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each point of the grid-cell. We can use this to calculate a sample of predicted grid-cell

averages for eahc day, which may be directly compared with the NCEP value.

4.3 Embedded Block Circulant Approach to Spatial Depen-

dence Structures

The spectral method provides us an approximation of spatial dependence structures for

generating the MCMC iterations. But it is also possible to consider an alternative approach

which is based on embedding our current covariance structures from stationary Gaussian

processes in large dimensional matrices with block circulant structures. That is to say, we

can expand the spatial related area to a much bigger area with simpler spatial dependence

structure(block circulant). Then after some transformations, the MCMC iterations can still

proceed very quickly.

We will still use the generalized linear mixed model and assume the rainfall data follow

piecewise distribution, and only consider it at one certain day n, then

� For the data exceed our threshold u, we assume y follows POT approach, i.e.

fi,j(yi,j |µi,j) ∼
1
φi,j

(
1 + ξi,j

yi,j − µi,j
φi,j

)−1/ξi,j−1

+

exp

{
−
(

1 + ξi,j
u− µi,j
φi,j

)−1/ξi,j
}

where µi,j is a location parameter, ξi,j is a shape parameter and φi,j is a scale param-

eter.

� Estimate Fi,j(0) by the sample portion of zeros.

� For 0 < y ≤ u(threshold), divide the range into T equiprobable intervals(depending

on the number of data we have in this interval) and assume Fn,k(y) is piecewise linear

within each interval.

Where (i, j) corresponds to the indices of locations in a 30× 30 grid cell.

According to our generalized linear mixed model approach, we have

µi,j = µ̄+ zi,j + ηi,j (4.15)
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where µ̄ is the mean with some noise over grid cells. zi,j and ηi,j are spatial related stationary

Gaussian processes and independent errors, respectively.

For the spatial dependence of Z processes, instead of using Matérn covariance, we switch

to the exponential model with nugget

C0(t) = θ1I(t = 0) + θ2 exp−
t
θ3 I(t > 0) (4.16)

where t is the distance to the origin. Because we are actually more focusing on those ex-

treme rainfalls, the spatial dependence structure is not the most important issue here. In

fact, in practice, it is very hard to distinguish the two models. Even in standard geosta-

tistical applications (when we observe the Gaussian process directly) it tends to be tough

to distinguish the different covariance models(Stein, 1999). And the reason we switch from

Matérn class of covariance structures to exponential class is because in the exact approach-

ing cases, we need to find every entry of the covariance matrix and the complex forms of

Matérn function will let us spend too much time on calculating these entries themselves

during MCMC iterations.

Given {θ1, θ2, θ3},

Z = {Zi,j : i, j ∈ {0, 1, · · · , 29}} (4.17)

is an array of zero means Gaussian variables with covariance given by

E
{
Zi,jZi′,j′

}
= C0(

√
(i− i′)2 + (j − j′)2) (4.18)

We would like first to re-order the indices to build a new 1-dimensional Gaussian Random

field Ẑ which is equivalent to Z. The 2-dimensional indices {(i, j) : i, j ∈ {0, 1, 2, · · · , 29}}

are related to the new indices {r : r ∈ {0, 1, · · · , 899}} by

r = i+ 30j. (4.19)

We assume Ẑ process has covariance matrix Σ̂(θ1, θ2, θ3).
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This lead us to the model

µ|Z ∼ N

[
µ̄+ K̂Ẑ,

1
κη

]
,

Ẑ ∼ N
[
0, Σ̂(θ1, θ2, θ3)

]
,

µ̄ ∼ N

[
µ̄01,

1
κµ

]
,

κη ∼ Gamma[qη, rη],

θ1 ∼ πθ1 ,

θ2 ∼ πθ2 ,

θ3 ∼ πθ3 .

where K̂ is a q × 900 location matrix(q is the number of observational stations) with its

column indices {v = r + 1 : r ∈ {0, 1, · · · , 899}} corresponding to the two-dimensional

indices {(i, j) : i, j ∈ {0, 1, · · · , 29}} under the relationship r = i+ 30j.

Under this model, the joint density of {µ, κη, µ̄, Z, θ1, θ2, θ3, Y } is proportional to

exp
{
−κµ

2
(µ̄− µ̄01)2

}
· κqη−1

η e−rηκη · πθ1 · πθ2 · πθ3 · |Σ̂(θ1, θ2, θ3)|−1/2 exp
{
−1

2
ẐT Σ̂(θ1, θ2, θ3)−1Ẑ

}
·κm/2η exp

{
−κη

2
(µ− µ̄− K̂Ẑ)T (µ− µ̄1− K̂Ẑ)

}
· f(y, µ). (4.20)

The conditional distribution of Ẑ turns to be

Ẑ|rest ∼ N
[(

Σ̂(θ1, θ2, θ3)−1 + κηK̂
T K̂
)−1

κηK̂
T (µ− µ̄1),

(
Σ̂(θ1, θ2, θ3)−1 + κηK̂

T K̂
)−1

]
.

(4.21)

It is not possible to employ Wood-Chan’s method directly because they need the value

of each entry of covariance matrix to calculate eigenvalues and then lead to simulation of

Gaussian process. Here we have to invert Σ̂(θ1, θ2, θ3), and it will take too much time if we

don’t have anything, for example, spectral representation like Wikle did, done preliminarily.

But alternatively, it is possible to write the prior of Ẑ in terms of V = (V0, V1, · · · , Vm̄−1)T

which is a vector of independent N [0, 1] random variables, where m̄ = 2g is the least number
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such that the embedded circulant covariance matrix C is positive definite. That is, write

Ẑ = GV , where G = (gij(θ1, θ2, θ3)). Then we have

µ|Z ∼ N

[
µ̄+ K̂GV,

1
κη

]
,

V ∼ N [0, I] ,

µ̄ ∼ N

[
µ̄01,

1
κµ

]
,

κη ∼ Gamma[qη, rη],

θ1 ∼ πθ1 ,

θ2 ∼ πθ2 ,

θ3 ∼ πθ3 .

The joint density of {µ, κη, µ̄, V, θ1, θ2, θ3} then is proportional to

exp
{
−κµ

2
(µ̄− µ̄01)2

}
· κqη−1

η e−rηκη · πθ1 · πθ2 · πθ3 · exp
{
−1

2
V TV

}
·κm/2η exp

{
−κη

2
(µ− µ̄− K̂GV )T (µ− µ̄− K̂GV )

}
· f(y, µ) (4.22)

These imply the following conditional distributions

µ|rest ∝ exp
{
−κη

2
(µ− µ̄− K̂GV )T (µ− µ̄1− K̂GV )

}
· f(y, µ), (4.23)

V |rest ∼ N

[(
I + κηG

T K̂T K̂G
)−1

κηG
T K̂T (µ− µ̄1),

(
I + κηG

T K̂T K̂G
)−1

]
,(4.24)

µ̄|rest ∼ N

[
κµµ̄0 + κη1T (µ− K̂GV )

κµ + 900κη
,

1
κµ + 900κη

]
, (4.25)

θ1 ∼ πθ1 · exp
{
−κη

2
(µ− µ̄− K̂GV )T (µ− µ̄− K̂GV )

}
, (4.26)

θ2 ∼ πθ2 · exp
{
−κη

2
(µ− µ̄− K̂GV )T (µ− µ̄− K̂GV )

}
, (4.27)

θ3 ∼ πθ3 · exp
{
−κη

2
(µ− µ̄− K̂GV )T (µ− µ̄− K̂GV )

}
. (4.28)

Now we define the parameter matrix G. Assume m̄ has been chosen and discuss this
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part lately. Define the following notations for convenience:

I(m) = {u = (i, j) : 0 ≤ i ≤ m[1]− 1, 0 ≤ j ≤ m[2]− 1}

I∗(m) = {u = (i, j) : 0 ≤ |i| ≤ m[1]− 1, 0 ≤ |j| ≤ m[2]− 1}

C = {cu1u2 , u1, u2 ∈ I(m)}
u

m
=

(
i

m[1]
,
j

m[2]

)T

where m̄ = m[1]×m[2] and m[1] = m[2] in this case. cu1u2 = c(u1 − u2),

c(h) = C0(
h̃

m
), h, h̃ ∈ I∗(m), (4.29)

h̃ = h̃(h) is given by

h̃(h)[l] = h[l] if 0 ≤ |h[l]| ≤ m[l]
2

= h[l]−m[l] if
m[l]

2
< h[l] ≤ m[l]− 1

= h[l] +m[l] if
m[l]

2
< −h[l] ≤ m[l]− 1, (4.30)

where l = 1, 2 and

C0(t) = θ1I(t = 0) + θ2 exp−
t
θ3 I(t > 0)

as we defined previously. So C is symmetric with covariance structure Σ of Z embedded

and C has block circulant structure.

The eigenvalues of C can be calculated by two-dimensional discrete Fourier transform

of c

λ(u′) =
∑

u∈I(m)

c(u) exp
{
−2π
√
−1uT (

u′

m
)
}
, u′ ∈ I(m)

=
∑

u∈I(m)

(θ1I(u = 0) + θ2 exp

{
−
√
i2 + j2

θ3
I(u 6= 0)

}
) exp

{
−2π
√
−1(

ii′

m[1]
+

jj′

m[2]
)
}

(4.31)
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(4.32)

For each u ∈ I(m), define a vector qj of length m̄ with components

qu(u′) = m̄−1/2 exp
{
−2π
√
−1(

ii′

m[1]
+

jj′

m[2]
)
}
, u′ ∈ I(m). (4.33)

This defines a m̄×m̄ diagonal matrix Λ and m̄×m̄ matrix Q and according to Wood-Chan’s

method, we have

C = QΛQ∗ and C1/2 = QΛ1/2Q∗ (4.34)

(4.34) implies that

W = C1/2V = QΛ1/2Q∗V ∼ N [0, C] (4.35)

Finally, we have

Z(u) = W (u), u ∈ I(n)

(4.36)

where n = (30, 30) is a subset of W and corresponds to the actual grid cells we need to

consider and therefore, G is the corresponding sub-matrix of C1/2.

Now instead of considering Z or Ẑ, we consider the whole W process. This won’t

increase the computational complexity by extending the location matrix K̂ to K with

dimension d × m̄,where d is still the number of observational stations in certain grid cell.

The expanded entries are all set to be 0. The updated model then is

µ|Z ∼ N

[
µ̄+KC1/2V,

1
κη

]
,

V ∼ N [0, I] ,

µ̄ ∼ N

[
µ̄01,

1
κµ

]
,

κη ∼ Gamma[qη, rη],
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θ1 ∼ πθ1 ,

θ2 ∼ πθ2 ,

θ3 ∼ πθ3 .

and the joint density is proportional to

exp
{
−κµ

2
(µ̄− µ̄01)2

}
· κqη−1

η e−rηκη · πθ1 · πθ2 · πθ3 · exp
{
−1

2
V TV

}
·κm/2η exp

{
−κη

2
(µ− µ̄− K̂C1/2V )T (µ− µ̄−KC1/2V )

}
· f(y|µ) (4.37)

These imply that the conditional distributions are

µ|rest ∝ exp
{
−κη

2
(µ− µ̄−KC1/2V )T (µ− µ̄1−KC1/2V )

}
· f(y|µ), (4.38)

V |rest ∼ N

[(
I + κηC

1/2KTKC1/2
)−1

κηG
T K̂T (µ− µ̄1),

(
I + κηC

1/2KTKC1/2
)−1

]
,

(4.39)

µ̄|rest ∼ N

[
κµµ̄0 + κη1T (µ−KC1/2V )

κµ + 900κη
,

1
κµ + 900κη

]
, (4.40)

θ1|rest ∼ πθ1 · exp
{
−κη

2
(µ− µ̄−KC1/2V )T (µ− µ̄−KC1/2V )

}
, (4.41)

θ2|rest ∼ πθ2 · exp
{
−κη

2
(µ− µ̄−KC1/2V )T (µ− µ̄−KC1/2V )

}
, (4.42)

θ3|rest ∼ πθ3 · exp
{
−κη

2
(µ− µ̄−KC1/2V )T (µ− µ̄−KC1/2V )

}
. (4.43)

Here C1/2 = QΛ1/2Q∗, and now the computation issue becomes how to handle
(
I + κηC

1/2KTKC1/2
)−1

.

We have Woodbury Formula as follows:

(A+ UV T )−1 = A−1 −
[
A−1U(I + V TA−1U)−1V TA−1

]
, (4.44)

so

(
I + κηC

1/2KTKC1/2
)−1

= I −
[
κηC

1/2KT (I + κηKCK
T )−1KC1/2

]
= I −

[
κηQΛ1/2Q∗KT (I + κηKQΛQ∗KT )−1KQΛ1/2Q∗

]
(4.45)
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Because (I + κηKCK
T )−1 is depending on the number of observational stations which is

much lower than the number of sub-grid cells and then is much lower than m̄(for example,

in CCSM grid cell around RDU, there are only 31 stations, or in NCEP grid cell around

RDU, there are 66 stations).

In principle, m̄ is chosen to be the least number greater than 2r − 1 which let C be

positive definite. Currently, the existence of m̄ is proved by Wood and Chan(1994) but

there are no theoretical criteria to pick such m̄ in different scenarios. In our case, because

parameters are updated after each MCMC iteration, we have to check if C is positive definite

every time. The way to do it is very straightforward. We will have to calculate eigenvalues

of C every time by using DFFT, these eigenvalues will provide direct information about the

positive definite property of C. If in some step, C is not positive definite, then we will need

to increase m̄ for the following iterations.

4.4 Computational Results

4.4.1 Computational Results Based on Spectral Generalized Linear Mixed

Model

We apply the model to the data collected in Aprils of 1978-1982 within the NCEP

grid cell around RDU. For these data, eight Markov chains were obtained after 20000 it-

erations. The last 100 samples of the µ process are retained to compute the posterior

summaries. Other history of global parameters’ samples are also retained. The Raftery and

Lewis(1992b)’s convergence diagnostic is used for test the convergence of all the samples.

The diagnostic suggests that all parameters have converged with a small number of itera-

tions as “burn-in”(after discarding 5000 iterations) after estimating 2.5% quantile of each

parameter to within ±0.005 with 95% probability. Convergence was also assessed by using

Gelman-Rubin diagnostic(Gelman and Rubin 1992).

Posterior means and standard deviations for model parameters are given in the following

table(4.1). The MCMC history for parameter κη is shown in Figure(4.2) which, although

indicating high autocorrelation, does appear stable and well-mixing. The two parameters

µ15,34 and µ136,20 which refer to the 34th grid cell of day 15 and the 136th grid cell of day
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V ariable PosteriorMean StandardDeviation

µ15,34 0.326 0.0123
µ136,20 0.333 0.0120
µ̄ 0.328 5.85× 10−4

θ1 24.59 0.641
κη 5670.50 513.47
κε 2.856× 10−2 8.157× 10−4

Table 4.1: Summary of MCMC Output(Spectral GLMM Approach)

136, respectively are randomly picked for illustration.

Now we are able to create a simulated rainfall on each grid-point within the NCEP

grid cell around RDU, as illustrations, at day 15, day 100 and day 147(Figure (4.1)). The

simulated grid cell based averages comparing with NCEP data indicates on most of the

days, the simulation is quite close to the re-analyses except for day 80-90(Figure (4.3)).

The scatter plot indicates both the NCEP data and simulated data are in same scale and

the correlation(0.7416) provides an evaluation on how well NCEP is doing.

4.4.2 Computational Results Based on Embedded Block Circulant Ap-

proach

We still apply the model to the data collected in Aprils of 1978-1982 within the NCEP

grid cell around RDU. Six Markov chains were obtained after 20000 iterations. The last 100

samples of the µ process are retained to compute the posterior summaries. Other history of

global parameters’ samples are also retained. The Raftery and Lewis(1992b)’s convergence

diagnostic is used for test the convergence of all the samples. The diagnostic suggests that all

parameters have converged with a small number of iterations as ”burn-in”(after discarding

5000 iterations) after estimating 2.5% quantile of each parameter to within ±0.005 with 95%

probability. Convergence was also assessed by using Gelman-Rubin diagnostic(Gelman and

Rubin 1992). The m̄ = 211 all over the MCMC iterations.

Posterior means and standard deviations for model parameters are given in the table

4.2. The MCMC history for parameter κη is shown in Figure 4.5 which, although still

indicating high autocorrelation, does appear stable and well-mixing.

The two parameters µ15,34 and µ136,20 which refer to the 34th grid cell of day 15 and the
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(a) Spatial rainfall plot on April 15, 1978 (b) Spatial rainfall plot on April 10, 1981

(c) Spatial rainfall plot on April 28, 1982

Figure 4.1: Simulated Spatial Plots on NCEP Grid Cell around RDU

V ariable PosteriorMean StandardDeviation

µ15,34 0.315 0.0201
µ136,20 0.381 0.0150
µ̄ 0.346 4.83× 10−4

κη 5836.17 468.82
θ1 1.021 0.020
θ2 0.903 0.012
θ3 1.874 0.067

Table 4.2: Summary of MCMC output(Embedded Block Circulant Approach)
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Figure 4.2: MCMC history for κη and its estimated posterior distribution

136th grid cell of day 136, respectively are picked the same as spectral GLMM approach

for comparison.

The simulated rainfalls on each grid-point within the NCEP grid cell around RDU can

be obtained then, and as illustrations, at day 10, day 48 day 125 and day 150(Figure 4.4).

The simulated grid cell based averages comparing with NCEP data indicates similar result

comparing with using spectral method(Figure 4.6) and also provides an evaluation on re-

analyses by NCEP. The scales of NCEP and simulated results are similar with each other

and the correlation(0.7398) implies how well NCEP is doing.

4.4.3 Precipitation Predictions based on CCSM grid cell

The Community Climate System Model(CCSM), as one of the global climate models,

provides future rainfall data that could lead us to detailed spatial rainfall predictions. To

be more specific, after getting spatial dependence information from past data and given the

future area averages, our goal is to predict future rainfalls on the sub-grid cells of CCSM

grid cells within certain areas.
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Figure 4.3: Simulated Grid Cell Averages vs NCEP Averages
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Figure 4.4: Simulated Spatial Plots on NCEP Grid Cell around RDU
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Figure 4.5: MCMC history for κη and its estimated posterior distribution

Computational Results from Spectral GLMM

First of all, we need to get the spatial dependence structure of rainfalls. We use the

CCSM grid cell around RDU as an illustration to do our simulation. A CCSM grid cell is

of dimensions 1.4o latitude × 1.4o longitude. We still split this area into 30 × 30 sub-grid

cells to have good spatial coverage. We consider the 150 days’ data from Aprils of year 1980

− year 1984 then make pointwise precipitation predictions for Aprils of year 2080 − year

2084 based on CCSM data.

Figure.4.7 shows the density of CCSM data and the density of simulated mean(Aprils of

1980-1984) within the grid cell around RDU. Table 4.3 shows the mean and variance from

two sources. Comparing the distributions for 1980-1984 is intended to validate the CCSM

model for its use in future prediction, because table 4.3 provides the information how far

the simulated data are away from CCSM data.

And the simulation also provides the detailed spatial rainfall information as showing on

figure.4.8
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Figure 4.6: Simulated Grid Cell Averages vs NCEP Averages, Corr=0.7398

Mean Variance
CCSM Data 30.91 2873.79

Simulated Data 29.03 2349.61

Table 4.3: Mean and Variance(CCSM vs. Simulated Data)
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Figure 4.7: Comparison of two densities
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Figure 4.8: Simulated Spatial Rainfall Plots
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Precipitation Predictions

Now we try to make predictions on future precipitations. There are two beneficial

things we want to do here. The first is try to generate pointwise precipitation based on

CCSM mean for grid cells. This will give us the detailed precipitation predictions in the

future. Another thing is to find the N -year return values and try to identify the trends

of extreme precipitations which can’t be derived directly from mean values. To make such

predictions, we still assume the future rainfalls follow the piecewise distribution similar

to the past days. There are two ways to adjust the previous piecewise distribution. One

is to perturb the parameters but keep the probabilities of the rainfall falling into three

categories{0, (0, threshold], (threshold,+∞)} the same. The other is to change the prob-

abilities but keep parameters the same. I am choosing the second way because it is much

easier to keep the spatial dependence fixed.

Because we have assumed daily independence, we link any future day with a past day

with closest area mean to get simulated averages. As mentioned before, the mean of CCSM

data and simulated data give us a measurement of how close could be considered as reason-

able. In our prediction, the difference between simulated prediction mean and CCSM mean

is limited to less than 1% of CCSM mean. And apparently, the predictions are drawn from

the posterior piecewise distribution with perturbation on probabilities falling into three

different categories.

Now we have the initial rainfall predictions on each future day and we can use sampling

technique to refine the predictions. Before doing this, we would like to change the piecewise

distribution a little as follows:

� For the data exceed our threshold u, we assume y follows POT approach, i.e.

fn,k(y) ∼ 1
φn,k

(
1 + ξn,k

yn,k − µn,k
φn,k

)−1/ξn,k−1

+

exp

{
−
(

1 + ξn,k
u− µn,k
φn,k

)−1/ξn,k
}

where µn,k is a location parameter, ξn,k is a shape parameter and φn,k is a scale

parameter.

� For 0 ≤ y ≤ ε, Fn,k(y) is linear.
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� For ε < y ≤ u(threshold), divide the range into T equiprobable intervals(depending

on the number of data we have in this interval) and assume Fn,k(y) is piecewise linear

within each interval.

All of the parameters used here are refer to posterior parameters of the corresponding day

in the past. The reason to make such modification is because when we do the sampling, we

also want 0 to be perturbed.

According to the modified piecewise distribution, we can write down the corresponding

likelihood components. Suppose l(yn,k, µn,k) is the likelihood component at day n, location

k, then perturb yn,k with the constraint that the mean of yn,k at day n is not far away from

CCSM data(the difference should not be greater than 1% of CCSM mean) and the proposal

densities of generating ˆyn,k here are as follows:

Q( ˆyn,k; yn,k) ∼ N(yn,k, σ2
n,k),

where σn,k is a unique value for day n and location k and is decided by the initial yn,k’s

and the mean values from CCSM data. Now let

α = min{1,
∏150
k=1 l(ŷn,k, µn,k)∏150
k=1 l(yn,k, µn,k)

} (4.46)

We then perform Metropolis sampling and accept ŷn,k with probability α at day n.

After running 20000 iterations, we have the posterior rainfall predictions. The following

figure.4.9 shows some snapshots of detailed spatial rainfall predictions. These are generated

from the distributions we updated for future days and are just illustrations. And the spatial

dependence structures are embedded in the distributions.

We also have the difference plot between simulated means and CCSM means as 4.10

where the red line refers to the CCSM means and the points represent the simulated means.

This shows how the actual sequence of means used in the MCMC generation compares with

the CCSM mean that we are conditioning on.
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Figure 4.9: Simulated Spatial Rainfall Predictions
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Figure 4.10: Comparison of Means from CCSM and Simulation
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Return Years and N-year Return Values

As we described in Chapter 2, the increase in intense precipitation, rather than the

change in mean precipitation, is consistent with changes expected in a warmer atmosphere

due to an acceleration of the hydrological cycle(e.g. Trenberth 1999) and reflects the climate

changes forced by scenarios of greenhouse gas and sulfate aerosol emissions. We first take a

look at the difference between present means and future means generated by CCSM. Figure

4.11 shows there is a trend that we will have more heavy rainfall events in the future than

present days.

According to the simulated results, we can construct the detailed N -year return values

pointwisely in the grid-cell around RDU. The return year and N -year return value are

defined by the exceedance probability as follows:

If we have

P{Annual maximum value > yN} =
1
N
, (4.47)

The following two tables 4.4 and 4.5 provide the return years and N -year return values

for the whole area, that is, the CCSM grid-cell around RDU. Without changing much in

the total mean values between present days (29.03) and future days(28.68), we can certainly

find the trend of increasing in intensive precipitations in the future.

Return Year Return Value(Present) Return Value(Future) Ratio(Future/Present)
10 111.1643 104.3863 0.939
20 159.5820 220.0126 1.379
50 266.5093 342.9191 1.287
100 349.2094 430.1455 1.232

Table 4.4: Return Values’ Comparison (Present days vs Future days)

Return Value Return Year(Present) Return Year(Future) Ratio(Future/Present)
111.1643 10 10.1964 1.0196
159.5820 20 12.9051 0.6453
266.5093 50 28.1074 0.5615
349.2094 100 51.8433 0.5184
430.1455 223.8806 100 0.4467

Table 4.5: Return Years’ Comparison (Present days vs Future days)
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Figure 4.11: Comparison of Current CCSM Means and Future CCSM Means
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4.4.4 Conclusions

The Generalized Linear Mixed Model provides a quite useful way to estimate the spatial

dependence structure over a certain area. Further more, this model be applied not only to

those extreme value distributions, but also to any other parameterized distributions.

Spectral representation on high dimensional spatial covariance matrices provides an

efficient way to do the sampling implementations(MCMC). The approximate decomposition

method can also be extended to quite general scenarios without limitations on distributions.

Embedding the spatial covariance matrices in matrices with block circulant structure will

lose some of the computational efficiency comparing with the spectral method. But on

the other hand, it is still quite efficient and worth doing because it is an exact approach.

According to the computational results provided in the previous section, the two methods

produce very similar results. There is a potential defect on the embedded block circulant

approach, which is that it is possible when parameters change, the least number m̄ to let

the block circulant matrix C be positive definite could increase significantly. In this case,

we probably won’t have computational efficiency any more.

The simulated results also show the intensive rainfalls, rather than the mean of the

rainfalls, will be increasing much in the future. This trend is consistent with the research

done by meteorologists before(Karl and Trenberth 2003, etc.). The warming environment

will tend to produce more extreme events.
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CHAPTER 5

Models for Rainfall Extremes Based on Mixture of
Gaussian Processes

The Generalized Linear Mixed Model works well when the data sets are not too large, but

it would require an enormous amount of computation to reconstruct the data for the whole

US for a long time period, using this method. As an alternative approach, Smith (2006)

has suggested using a transformed, thresholded Gaussian process model. Some details of

this approach are outlined in Section 5.1. Nevertheless, it appears that the transformed

Gaussian model may not fit the data. The new contribution of the present chapter is to

propose an extension of Smith’s model that is based on a mixture of Gaussian processes.

Some initial results about this are given in Section 5.2 and elaborated in Appendix B.

5.1 Single Transformed, Thresholded Gaussian Approach for

Rainfall Extremes

Another statistical approach to the rainfall extremes is to think of a transformed, thresh-

olded Gaussian model. The objectives of this approach is quite similar with the previous

model:

1. Use spatial statistics to interpolate daily data and estimate a grid-cell average for each

day

2. Estimate long-term(50-year) return values based on estimated daily grid-cell averages

3. Compare with NCEP re-analyses and give an evaluation of how good NCEP data are.



5.1.1 Statistical Model

For Rainfall data, we still would like to assume they follow a piecewise distribution.

� For the data exceed a threshold u, Fit GEV to tails of distribution which is equivalent

to

1− F (y) = Pr(Y > y) ≈ 1
T

(
1 + ξ

y − µ
ψ

)−1/ξ

+

(5.1)

where T is number of relevant days per year

� Estimate F (0) by sample portion of zeros.

� For 0 < y ≤ u(threshold), divide range into some equiprobable intervals(depending

on the number of data we have in this interval) and assume F (y) is piecewise linear

within each interval.

Now define Z = Φ−1(F (Y )) so that Z has marginal N [0, 1] distribution. u∗ = Φ−1(F (0))

then becomes the natural threshold of Z values, i.e. Z values are censored at u∗. Assume

that the Z process is a Gaussian spatial process.

There are several related topics in the literature. Coles and Tawn(1996) proposed a

similar approach with assuming Z is max-stable. Their paper is limited to a particular

representation of max-stable processes and the estimation methods are very intensive in

computation for our problem. Sansó and Guenni(2000,2004) developed an embedded Gaus-

sian model which is similar to the one proposed here, but due to much less data they

used, MCMC can proceed directly in their case which is not implementable in the high

dimensional cases.

5.1.2 Parameter Estimation of a Thresholded Gaussian Process

Suppose Z = (Z1, ..., Zn)T has a multivariate normal distribution N [0,Σ(θ)] where Σ(θ)

is a known function of finite-dimensional parameter θ. Also assume Zi’s are censored at u,

which means we only observe those values Zi for which Zi > u.

After considering various alternatives, Smith proposed a method for fitting this model

based on a pairwise approximation to the likelihood. First choose a fixed ordering of the
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indices. Then use a pairwise approximation

L(Z1) · L(Z2|Z1) · L(Z3|Z2) · · · (5.2)

Here L(Zi+1|Zi) is the conditional likelihood of Zi+1 given Zi which allows for censoring,i.e.

1. L = f(Zi+1|Zi), if Zi > u,Zi+1 > u,

2. L = Pr{Zi+1 ≤ u|Zi}, if Zi > u,Zi+1 ≤ u,

3. L = Pr{Zi≤u|Zi+1}f(Zi+1)
Pr{Zi≤u} , if Zi ≤ u, Zi+1 > u,

4. L = Pr{Zi≤u,Zi+1≤u}
Pr{Zi≤u} , if Zi ≤ u, Zi+1 ≤ u.

The estimating equations are unbiased. The method is motivated by similar methods in the

spatial statistics literature using approximations to the likelihood function (Vecchia (1988),

Stein, Chi and Welty (2004)).

5.1.3 Application to Rainfall Data

Some Computational Results by Smith

There is a paper in preparation by Smith(2006) which have some results using this

method applied to the North American Rainfall Data(by NCDC). For instance, within

the grid cell in Alabama, using natural threshold(Φ−1(F (0))) u∗ = 0.5306, and other two

alternative thresholds u∗ = 1 and u∗ = 2, the results(parameter estimations and SE’s) are

as follows:

Threshold θ̂1 θ̂3 θ̂3

0.5306 1.037(0.015) 0.665(0.015) 1.37(0.04)

1 1.007(0.13) 0.630(0.17) 0.84(0.04)

2 1.008(0.18) 0.724(0.62) 0.15(0.37)

The estimation is based on exponential covariance function with nugget via pairwise likeli-

hood with ordering of stations that minimizes total distance.

The standard errors for θ3 are much smaller than the differences between the different

estimates of θ3 associated with different thresholds. Therefore, this points to a weakness
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in the model itself, rather than just meaning that we get different estimates because of

random variation and we need to derive an alternative model that is consistent with different

thresholds.

5.2 Alternative approach based on mixtures of Gaussian pro-

cesses

In fact, in the previous model, Z is treated as a single Gaussian process which is defined

by a set of parameters {θ1, θ2, θ3}. But as we stated before, the estimates of θ3 are not

consistent across different thresholds, so it is possible, θ3, along with θ1 and θ2 are not just

coming from one Gaussian Process. That’s why we are trying to think about mixtures of

Gaussian process as an alternative approach.

The first thing we did is that suppose our previous assumption was correct, i.e., Z is a

single Gaussian process, then what the maximum likelihood estimations of parameters are.

The parameters should satisfy the equation:

E

{
∂`i
∂θj

}
= 0, (5.3)

where `i is the approximate likelihood function of f(Zi|Zi−1) and j ∈ {1, 2, 3}. The calcu-

lation is not trivial due to the fact that censored data are used here. Appendix B includes

the detailed check-up calculation.

But, what we are really interested is to get a formula for E
{
∂`i
∂θj

}
under wrong model.

More clearly, we assume the previous thresholded Gaussian process model is not correct,

and the correct Z process is a mixture of Gaussian processes. Then the parameters are

coming from different Gaussian processes with certain priors. After getting the formula of

E
{
∂`i
∂θj

}
, we are able to estimate those real parameters. We cannot do this directly because

apparently, the estimations of parameters we get from data is under a wrong model. This

is practically solvable and we would like to introduce a theorem by Huber(1964,1972) first.

Theorem 5.2.1 (Maximum likelihood type estimators(M-estimators)). Let ρ be a real

valued function of a real parameter, with derivative ψ = ρ′. Define a statistics Tn =
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Tn(X1, ..., Xn) either by

n∑
i=1

ρ(Xi − Tn) = inf
t

n∑
i=1

ρ(Xi − t), (5.4)

or by
n∑
i=1

ψ(Xi − Tn) = 0 (5.5)

Under quite general conditions, Tn converges to T (F ), defined by

∫
ψ(x− T (F ))F (dx) = 0, (5.6)

and
√
n(Tn−T (F )) is asymptotically normal with asymptotic mean 0 and asymptotic vari-

ance

σ2
M (F ) =

∫
ΩF (x)2F (dx), (5.7)

where

ΩF (x) =
ψ(x− T (F ))∫

ψ′(x− T (F ))F (dx)
. (5.8)

If we choose

ψ0(x) = −f ′0(x)/f0(x), (5.9)

for ψ(x), then Tn is the maximum likelihood estimator of θ for distribution function F0 and

will be asymptotically efficient for F = F0.(Huber(1964)).

In our case, because we are using pairwise approximation of likelihood components, i.e.:

L(Z1) · L(Z2|Z1) · L(Z3|Z2) · · · ,

we are able to apply the theorem stated above and regulate the problem as follows:

We define a mixture model in the following way. Assume there are M Gaussian processes

with parameters {θ(1), ..., θ(M)}. Assume there are also mixture probabilities {π1, ..., πM}.

On any day, we first choose index m ∈ {1, ...,M} with probability πm, and then, conditional

on that choice, generate a Gaussian process with parameter θ(m). Suppose we choose R

thresholds u1, ..., uR and, for each threshold, calculate the estimator θ̂(r), r = 1, ..., R under
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the method of Section 4.1. If we can calculate

E
θ
(m)
j ,π

{
∂`i

∂θ
(m)
j

(
θ̂(r)
)}

,

where m ∈ 1, 2, ...,M and r ∈ 1, 2, ..., R, then by solving the set of equations:

n∑
i=1

E
θ
(m)
j ,π

{
∂`i

∂θ
(m)
j

(
θ̂(r)
)}

= 0, (5.10)

we can finally find the approximations for {θ(1), θ(2), ..., θ(M)} when n is sufficiently large.

This will lead us to the correct mixture of Gaussian processes model.
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CHAPTER 6

Future Works

6.1 Computation Based on Mixture of Transformed, Thresh-

olded Gaussian Approach

The transformed, thresholded Gaussian approach will provide us a more reasonable way

to handle the whole rainfall data set over the United States if the mixture assumption is

correct. After setting certain thresholds and making calculations under ”wrong” model, we

can obtain the ”correct” parameters by using the relationship between the ”wrong” model

and the ”correct” model(Single Gaussian process v.s. Mixture of Gaussian Processes).

6.2 Further Consideration on Approximation Method of Em-

bedded Block Circulant Approach

The spectral representation is a good approximation method as we stated before, but

it has its own disadvantage. Though each of the approximated eigenvalues is very close to

the real one, it is still hard to know how well the global performance in high dimensional

cases. So it is probably promising to consider some other matrix approximation methods

under more meaningful matrix norms based on the embedded block circulant approach.

6.2.1 Refined Embedded Block Circulant Approach to Spatial Depen-

dence Structures

In chapter 3, an exact statistical approach on estimating spatial dependence structures

has been developed(embedded block circulant approach). But the efficiency of the approach

mostly depends on the number m̄, which is the least number letting the embedded matrix C



be positive definite. In some cases, especially when we update the corresponding parameters

of C, the number m̄ will become very hard to control. So it is necessary to find an alternative

way to refine the approach.

Now let us still consider the embedded block circulant matrix C as follows:

C = {cu1u2}, u1, u2 ∈ I∗(m)

(6.1)

where

I∗(m) = {u = (i, j) : 0 ≤ |i| ≤ m[1]− 1, 0 ≤ |j| ≤ m[2]− 1}

(6.2)

and cu1u2 is defined by C0 which is the exponential covariance function with nugget as we

indicated before.

Now suppose C is not a positive definite matrix. In the previous chapter, the way to

handle it is to increase the number m̄ until C is positive definite and let it be a covariance

matrix of a real random process, but it is possible to think it in different ways.

One possibility is to consider an approximation to C. Because C is not positive definite

any more, so some of the eigenvalues, though still real and can be efficiently calculated

by two-dimensional discrete Fast Fourier Transform, are negative. Now we still assume by

eigendecompsition

C = QΛQ∗

(6.3)

and write

Λ = Λ+ − Λ−

(6.4)
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where the non-zero entries of Λ+ and Λ− corresponding to positive and negative eigenvalues

of C.

Suppose the approximation of C has the form

C∗ = ρ2QΛ+Q
∗

(6.5)

and set the trace of C∗ and C be the same, which brings us

ρ2 =
tr(Λ)
tr(Λ+)

(6.6)

The approximation of Ẑ has the same marginal distribution with Ẑ(Wood and Chan, 1994).

Alternatively, letting ρ2 be
(
tr(Λ)
tr(Λ+)

)2
will also lead us to a good approximation.

6.2.2 Other Thoughts

We’ve considered trace norm, but it is definitely not a good matrix norm at any point.

There are two essential matrix norms in the literature – the operator norm(strong norm)

and the Hilbert-Schmidt norm(weak norm or Frobenius norm). We still would like to break

the eigenvalue matrix Λ into Λ+ and Λ−, and try to find approximations only using posi-

tive numbers, which could be from both positive and negative eigenvalues, under these two

norms. Then after investigating issues like marginal distributions, we may be able to find

some more accurate approximation comparing with the spectral method. The computa-

tional efficiency is still retained because the main computational issue is still the discrete

Fourier transform.
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APPENDIX A: SAMPLING TECHNIQUES

Sampling techniques are always used for simulating samples from the posterior distribu-

tion of the parameters of interest which does not have an analytic closed form in Bayesian

inference.

There are several indirect sampling techniques available in the literature, for instance,

importance sampling, rejection sampling, weighted bootstrap and MCMC.

.1 Importance Sampling

This approach was stated by Hammersley and Handscomb(1964) first and discussed for

Bayesian analysis by Geweke(1989).

Suppose we want to approximate a posterior expectation:

E[f (θ|x)] =
∫
f(θ)L(θ|x)π(θ)dθ∫
L(θ|x)π(θ)dθ

(7)

where L(θ|x) ∝ p(x|θ) is likelihood function and π(θ) is the prior distribution of parameters.

If we are able to approximate the normalized likelihood times the prior, L(θ|x)π(θ)
c , by some

density g(θ), then we can define the weight function

ω(θ) =
L(θ|x)π(θ)

g(θ)
(8)

We have

E[f(θ|x)] =
∫
f(θ)L(θ|x)π(θ)dθ∫
L(θ|x)π(θ)dθ

≈
1
N

∑N
j=1 f(θj)ω(θj)

1
N

∑N
j=1 ω(θj)

(9)
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where θj are i.i.d samples from importance function g(θ).

.2 Rejection Sampling

Rejection sampling is widely used in random variate generation. The detailed discussion

are given in the books by Ripley(1987) and Devroye(1986).

Suppose there exists a constant M > 0 and a smooth density g(θ), called the envelope

function, such that

L(θ|x)π(θ) < Mg(θ) (10)

for all θ.

The algorithm of rejection sampling is as following:

1. Generate θj ∼ g(θ)

2. Generate U ∼ Uniform(0, 1)

3. If MUg(θj) < L(θj)π(θj), then accept θj , otherwise reject θj

4. Return to the first step and repeat until the desired sample θj , j = 1, ..., N is obtained.

.3 Weighted Bootstrap

This method was proposed by Smith and Gelfand(1992). Suppose we are not able to

find an appropriate M for the rejection sampling, while we have a sample θ1, ..., θN from

some approximating density g(θ). Define

ωi =
L(θi|x)π(θi)

g(θi)
,

qi =
ωi∑N
i=1 ωi

.

Draw θ∗ from the discrete distribution over {θ1, ..., θN}, which places mass qi at θi. Then

θ∗ is a sample from

p(θ|x) =
L(θ|x)π(θ)∫
L(θ|x)π(θ)dθ

, (11)

with the approximation improving as N →∞. This is a weighted bootstrap.
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.4 Markov Chain Monte Carlo Methods

For many problems, especially high dimensional ones, it is quite difficult to apply the

above sampling techniques because they are all noniterative methods. They draw a sample

of size N and stop. Furthermore, it is very hard or even impossible to find an importance

sampling density or envelop function which is reasonably accurate for the log posterior.

Markov Chain Monte Carlo(MCMC) methods are standard ways to solve these problems.

.4.1 Gibbs Sampling

Suppose we have a collection of k random variables U = (U1, ..., Uk). We assume that

the full conditional distributions

p(ui|uj), j 6= i, i = 1, ..., k (12)

can be calculated up to a normalized constant, and therefore are available for sampling.

Besag(1974) proves under mild conditions, the one-dimensional distributions uniquely

determine the full joint distribution [U1, ..., Uk], and hence all marginal distributions [Ui], i =

1, ..., k. The Gibbs Sampling algorithm proceeds as following:

0) Suppose we have a set of arbitrary starting values U (0)
1 , ..., U

(0)
k .

1) Draw U
(1)
1 from [U1|U (0)

2 , ..., U
(0)
k ]

2) Draw U
(1)
2 from [U2|U (1)

1 , U
(0)
3 , ..., U

(0)
k ]

...

k) Draw U
(1)
k from [Uk|U

(1)
1 , ..., U

(1)
k−1]

This is one iteration of the Gibbs sampler and after t such iterations, we are able to

obtain (U (t)
1 , ..., U

(t)
k )

The convergence of Gibbs sampler has been proved by Geman and Geman(1984) and

Schervish & Carlin(1992) and we have the following result: For the Gibbs sampling algo-

rithm stated above, (U (t)
1 , ..., U

(t)
k ) d→ [U1, ..., Uk] as t→∞ and the convergence is exponen-

tial in t.
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.4.2 Metropolis-Hastings Algorithm

This method is first discussed by Metropolis et al.(1953). Hastings(1970) generalized

the algorithm and introduced it for statistical problems.

Suppose we want to sample from the joint distribution [U1, ..., Uk][U ] with density p(u).

Let q(v, u) be a density in u such that q(u, v) = q(v, u). The function q is called a candidate

or proposal density. The Metropolis algorithm can be written as following:

1) Draw v ∼ q(·, u), where u = U (t−1), the current state of the Metropolis algorithm.

2) Compute the odds ratio

r =
p(v)
p(u)

=
L(v)π(v)
L(u)π(u)

3) If r ≥ 1, accept v and let U (t) = v

4) If r < 1, set

U (t) =


v with probability r

u with probability 1− r
(13)

Theorem .4.1. For the Metropolis algorithm, under mild conditions, [U (t) → [U ]] as t →

∞.

Hastings(1970) drops the requirement that q(·, ·) is symmetric and redefined the odds

ratio as

r =
p(v)q(v, u)
p(u)q(u, v)

. (14)

The modification generalized the sampling technique and the algorithm still converges to

the required distribution for any candidate density q. The detailed proof due to Hastings

(1970).
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APPENDIX B: MAXIMUM LIKELIHOOD
CALCULATIONS FOR THRESHOLDED GAUSSIAN

PROCESS

Suppose Z is a thresholded Gaussian process. ”Thresholded” means if we have some

observations {Z1, ..., Zn}, we are only interested in those values above a fixed threshold u

and the rest are censored. Furthermore, we assume {Z1, ..., Zn} follow a multivariate normal

distribution MVN [0,Σ(Θ)].

The way to estimate the parameters Θ here is to apply pairwise principle to the whole

likelihood under some fixed ordering of indices. That is, concentrate on the pairwise ap-

proximation of likelihood function:

L(Z1) · L(Z2|Z1) · L(Z3|Z2) · · · (15)

instead of the exact likelihood:

L(Z1) · L(Z2|Z1) · L(Z3|Z2, Z1) · · · . (16)

So we have

� Li = f(Zi+1|Zi), if Zi > u,Zi+1 > u,

� Li = Pr{Zi+1 ≤ u|Zi}, if Zi > u,Zi+1 ≤ u,

� Li = Pr{Zi≤u|Zi+1}f(Zi+1)
Pr{Zi≤u} , if Zi ≤ u, Zi+1 > u,

� Li = Pr{Zi≤u,Zi+1≤u}
Pr{Zi≤u} , if Zi ≤ u, Zi+1 ≤ u.

and the corresponding negative log-likelihood’s are as follows:

� li = 1
2 log(1− ρ2

i ) + 1
2

(Zi−ρiZi−1)2

1−ρ2i
, if Zi−1 > u, Zi > u
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� li = −1
2 log

{
Φ
(
u−ρiZi−1√

1−ρ2i

)}
, if Zi−1 > u, Zi ≤ u

� li = −1
2 log

{
Φ
(
u−ρiZi√

1−ρ2i

)}
, if Zi−1 ≤ u, Zi > u

� li = − log {Φ2(u, u, ρi)}, if Zi−1 ≤ u, Zi ≤ u

where ρi = ρi(θ) = Corr(Zi−1, Zi) is the correlation function and Φ & Φ2 are the nor-

mal distribution function and bivariate normal distribution function, respectively. Consider Zi−1

Zi

 ∼ N

 0

0

 ,

 1 ρi

ρi 1


, i.e., we will be evaluating the expectation assum-

ing the model is correct first. The estimating equations are unbiased for this method:

E

{
∂li
∂θj

}
= 0. (17)

(17) gives out the relationship between correlation parameters θj and threshold u.

For the case Zi−1 > u & Zi > u, we have:

∂li
∂θj

= − ρi
1− ρ2

i

∂ρi
∂θj

+
(ρiZi − Zi−1)(Zi − ρiZi−1)

(1− ρ2
i )2

∂ρi
∂θj

, (18)

For the case Zi−1 ≤ u & Zi ≤ u, we have:

∂li
∂θj

=
1

Φ2(u, u, ρi)

∫ u

−∞

∫ u

−∞

(
− ρi

1− ρ2
i

+
(ρiy − x)(y − ρix)

(1− ρ2
i )2

)
φ(x, y, ρi)

∂ρi
∂θj

dxdy (19)

For the case Zi−1 > u & Zi ≤ u, we have:

∂li
∂θj

= − 1√
2π

1

2Φ(u−ρiZi−1√
1−ρ2i

)
exp
− (u−ρiZi−1)2

2(1−ρ2
i
)

uρi − Zi−1

(1− ρ2
i )3/2

∂ρi
∂θj

(20)

For the case Zi−1 ≤ u & Zi > u, we have:

∂li
∂θj

= − 1√
2π

1
2Φ(u−ρiZi√

1−ρ2i
)

exp
− (u−ρiZi)

2

2(1−ρ2
i
)

uρi − Zi
(1− ρ2

i )3/2

∂ρi
∂θj

(21)

As preparation, we would like to evaluate the following expressions first:

1. E{Z2
i I(Zi−1 > u,Zi > u)},
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2. E{Zi−1ZiI(Zi−1 > u,Zi > u)},

3. E{Z2
i I(Zi−1 ≤ u, Zi ≤ u)},

4. E{Zi−1ZiI(Zi−1 ≤ u, Zi ≤ u)}.

In fact, suppose Zi−1 = ρiZi +
√

1− ρ2
i Ẑi, where Ẑi ∼ N [0, 1] is a Gaussian process

independent with Zi−1, and do the calculation term by term, we have:

E{Z2
i I(Zi−1 > u,Zi > u)}

= E{Z2
i (1− Φ(

u− ρiZi√
1− ρ2

i

))I(Zi > u)}

= uφ(u) + 1− Φ(u)−
∫ ∞
u

x2Φ(
u− ρix√

1− ρ2
i

)φ(x)dx

= uφ(u) + 1− Φ(u) +
∫ ∞
u

x2Φ(
u− ρix√

1− ρ2
i

)dΦ(x)

= uφ(u) + 1− Φ(u)−

xΦ(
u− ρix√

1− ρ2
i

)φ(x)

∞
u

−
∫ ∞
u

φ(x)Φ(
u− ρix√

1− ρ2
i

)dx+
ρi√

1− ρ2
i

∫ ∞
u

xφ(x)φ(
u− ρix√

1− ρ2
i

)dx

= uφ(u) + 1− Φ(u)− uΦ(u
√

1− ρi
1 + ρi

)φ(u)− Pr{Zi > u,Zi−1 ≤ u}

+
ρi

2π
√

1− ρ2
i

∫ ∞
u

x exp−
x2

2 exp
− (u−ρix)

2

2(1−ρ2
i
) dx

= uφ(u) + 1− Φ(u)− uΦ(u
√

1− ρi
1 + ρi

)φ(u)− Φ(u) + Φ2(u, u, ρi)

+
ρi

2π
√

1− ρ2
i

exp−
u2

2

∫ ∞
u

(x− uρi + uρi) exp
− (x−uρi)

2

2(1−ρ2
i
) dx

= uφ(u) + Φ2(u, u, ρi) + 1− 2Φ(u)− uΦ(u
√

1− ρi
1 + ρi

)φ(u)

−

ρi
√

1− ρ2
i

2π
exp−

u2

2 exp
− (x−uρi)

2

2(1−ρ2
i
)

∞
u

+ uρ2
iφ(u)Φ̄(u

√
1− ρi
1 + ρi

)

= Φ2(u, u, ρi) + 1− 2Φ(u) + u(1 + ρ2
i )Φ̄(u

√
1− ρi
1 + ρi

)φ(u) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi (22)
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and

E{Z2
i I(Zi−1 ≤ u, Zi ≤ u)}

= E{Z2
i Φ(

u− ρiZi√
1− ρ2

i

)I(Zi ≤ u)}

=
∫ u

−∞
x2Φ(

u− ρix√
1− ρ2

i

)φ(x)dx

= −
∫ u

−∞
xΦ(

u− ρix√
1− ρ2

i

)dφ(x)

= −

xΦ(
u− ρix√

1− ρ2
i

)φ(x)

u
−∞

+
∫ u

−∞
φ(x)Φ(

u− ρix√
1− ρ2

i

)dx

− ρi√
1− ρ2

i

∫ u

−∞
xφ(x)φ(

u− ρix√
1− ρ2

i

)dx

= −uΦ(u
√

1− ρi
1 + ρi

)φ(u) + Φ2(u, u, ρi) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi −uρ2
iΦ(u

√
1− ρi
1 + ρi

)φ(u)

= −u(1 + ρ2
i )Φ(u

√
1− ρi
1 + ρi

)φ(u) + Φ2(u, u, ρi) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi (23)

and

E{ZiZi−1I(Zi−1 > u,Zi > u)}

= E{Zi(ρiZi +
√

1− ρ2
i Ẑi)I(Zi > u, Ẑi >

u− ρiZi√
1− ρ2

i

)}

= ρiE{Z2
i Φ̄(

u− ρiZi√
1− ρ2

i

)I(Zi > u)}+
√

1− ρ2
iE{Ziφ(

u− ρiZi√
1− ρ2

i

)I(Zi > u)}

= ρi

Φ2(u, u, ρi) + 1− 2Φ(u) + u(1 + ρ2
i )Φ̄(u

√
1− ρi
1 + ρi

)φ(u) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi


1− ρ2

i

ρi

uρ2
i Φ̄(u

√
1− ρi
1 + ρi

)φ(u) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi


= ρi(Φ2(u, u, ρi) + 1− 2Φ(u)) + 2uρiΦ̄(u

√
1− ρi
1 + ρi

)φ(u) +

√
1− ρ2

i

2π
exp−

u2

1+ρi (24)
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and

E{ZiZi−1I(Zi−1 ≤ u, Zi ≤ u)}

= E{Zi(ρiZi +
√

1− ρ2
i Ẑi)I(Zi ≤ u, Ẑi ≤

u− ρiZi√
1− ρ2

i

)}

= ρiE{Z2
i Φ(

u− ρiZi√
1− ρ2

i

)I(Zi ≤ u)} −
√

1− ρ2
iE{Ziφ(

u− ρiZi√
1− ρ2

i

)I(Zi ≤ u)}

= ρi

−u(1 + ρ2
i )Φ(u

√
1− ρi
1 + ρi

)φ(u) + Φ2(u, u, ρi) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi


+

1− ρ2
i

ρi

−uρ2
iΦ(u

√
1− ρi
1 + ρi

)φ(u) +
ρi

√
1− ρ2

i

2π
exp−

u2

1+ρi


= ρiΦ2(u, u, ρi)− 2uρiΦ(u

√
1− ρi
1 + ρi

)φ(u) +

√
1− ρ2

i

2π
exp−

u2

1+ρi . (25)

Furthermore, we have

E

{
∂li
∂θj

I(Zi−1 ≤ u, Zi > u)
}

= E

{
∂li
∂θj

I(Zi−1 > u,Zi ≤ u)
}

= E

− 1√
2π

1
2Φ(u−ρiZi√

1−ρ2i
)

exp
− (u−ρiZi)

2

2(1−ρ2
i
)

uρi − Zi
(1− ρ2

i )3/2

∂ρi
∂θj

Φ(
u− ρiZi√

1− ρ2
i

)I(Zi > u)


= − 1

2(1− ρ2
i )3/2

∂ρi
∂θj

E

(uρi − Zi)φ(
u− ρiZi√

1− ρ2
i

)I(Zi > u)


= − 1

2(1− ρ2
i )3/2

∂ρi
∂θj

uρi ∫ ∞
u

φ(
u− ρix√

1− ρ2
i

)φ(x)dx−
∫ ∞
u

xφ(
u− ρix√

1− ρ2
i

)φ(x)dx


= − uρi

2(1− ρ2
i )
∂ρi
∂θj

Φ̄(u
√

1− ρi
1 + ρi

)φ(u)

+
uρi

2(1− ρ2
i )
∂ρi
∂θj

Φ̄(u
√

1− ρi
1 + ρi

)φ(u) +
1

4π
√

1− ρ2
i

∂ρi
∂θj

exp−
u2

1+ρi

=
1

4π
√

1− ρ2
i

∂ρi
∂θj

exp−
u2

1+ρi , (26)
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E

{
∂li
∂θj

I(Zi−1 > u,Zi > u)
}

= − ρi
1− ρ2

i

∂ρi
∂θj

Pr{Zi−1 > u,Zi > u}+
2ρi

(1− ρ2
i )2

∂ρi
∂θj

E
{
Z2
i I(Zi−1 > u,Zi > u)

}
− 1 + ρ2

i

(1− ρ2
i )2

∂ρi
∂θj

E {ZiZi−1I(Zi−1 > u,Zi > u)}

= − 1

4π
√

(1− ρ2
i )

exp−
u2

1+ρi
∂ρi
∂θj

, (27)

and

E

{
∂li
∂θj

I(Zi−1 ≤ u, Zi ≤ u)
}

= − ρi
1− ρ2

i

∂ρi
∂θj

Pr{Zi−1 ≤ u, Zi ≤ u}+
2ρi

(1− ρ2
i )2

∂ρi
∂θj

E
{
Z2
i I(Zi−1 ≤ u, Zi ≤ u)

}
− 1 + ρ2

i

(1− ρ2
i )2

∂ρi
∂θj

E {ZiZi−1I(Zi−1 ≤ u, Zi ≤ u)}

= − 1

4π
√

(1− ρ2
i )

exp−
u2

1+ρi
∂ρi
∂θj

. (28)

So, we have

E

{
∂li
∂θj

}
= E

{
∂li
∂θj

I(Zi−1 ≤ u, Zi > u)
}

+ E

{
∂li
∂θj

I(Zi−1 > u,Zi ≤ u)
}

+E
{
∂li
∂θj

I(Zi−1 ≤ u, Zi ≤ u)
}

+ E

{
∂li
∂θj

I(Zi−1 > u,Zi > u)
}

= 0.
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