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ABSTRACT 

PATRICIA CASBAS-HERNANDEZ: In vitro Coculture Models to Study Heterotypic 

Interactions in Breast Cancer Microenvironments 
(Under the direction of Melissa A. Troester, Ph.D. M.P.H.) 

 

Epithelial-stromal interactions are fundamental to tissue homeostasis and may alter 

breast cancer (BC) initiation and progression. Co-evolution of the neoplastic epithelium 

and the stroma implies that these compartments maintain an active dialogue with 

functional consequences for both parts. To study epithelial-stromal interactions and 

elucidate the role of stromal variation in tumor phenotypes, in vitro cocultures can be used. 

Gene expression data and cell-based assays from cocultures can identify cellular 

phenotypes and biomarkers with possible relevance in human studies. This research 

hypothesizes that stromal-epithelial interactions are altered from early in carcinogenesis 

(Chapter2) and that the different subtypes of invasive BC have distinct heterotypic 

interactions (Chapter3). 

Epithelial-stroma interactions change during progression from benign disease to 

ductal-carcinoma in-situ (DCIS) in invasive Basal-like BC (BLBC). We cocultured 

fibroblasts with an isogenic series of cell lines (the MCF10 series) that represent 

premalignant stages of BC. The MCF10DCIS: fibroblasts cocultures have similar gene 

expression responses to those observed when invasive BLBC lines are cocultured with 

fibroblasts.  Compared to MCF10A (benign) and MCF10AT1 (atypical-hyperplasia), 

MCF10DCIS cocultures showed high HGF secretion/activation and complimentary MET 

upregulation. The morphogenic development of MCF10DCIS in 3D cocultures was slowed 
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when the HGF-pathway was blocked. A novel HGF genomic signature was identified and 

was highly expressed in 86% of BLBCs.  High expression of this HGF signature predicted 

worse overall survival among BLBC patients. These results show that HGF secretion and 

complementary MET overexpression occurs early in BLBC carcinogenesis with important 

consequences in invasive tumors.  

Heterotypic interactions in cancer-adjacent tissue also differ by BC subtypes. We 

studied gene expression data of cancer-adjacent tissue from 158 BC patients and 

performed in-vitro cocultures. Gene expression analysis shows triple-negative BCs are 

associated with upregulated immune response and cytokine gene expression and Luminal 

BCs are associated with estrogen-response in cancer-adjacent tissues. Intrinsic tumor 

subtypes are reflected in the histologically normal cancer-adjacent tissue. 

This research furthers our understanding on how BC interacts with surrounding 

tissues and how epithelial-stromal interactions play a role in BC progression.. Biomarkers 

derived from these studies may be helpful in earlier detection of aggressive lesions, in 

defining personalized surgical strategies or in predicting recurrence risk. 
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Chapter 1  

EPITHELIAL-STOMAL INTERACTIONS IN BREAST CANCER 

 

1.1. Overview 

The interactions between breast epithelium and stroma are fundamental to normal 

tissue homeostasis and for tumor initiation and progression. Gene expression studies of in 

vitro coculture models demonstrate that in vitro models have relevance for tumor 

progression in vivo. For example, stromal gene expression has been shown to vary in 

association with tumor subtype in vivo, and analogous in vitro cocultures recapitulate 

subtype-specific biological interactions. Cocultures can be used to study cancer cell 

interactions with specific stromal components (e.g., immune cells, fibroblasts, endothelium) 

and different representative cell lines (e.g., cancer-associated versus normal-associated 

fibroblasts versus established, immortalized fibroblasts) can help elucidate the role of 

stromal variation in tumor phenotypes. Gene expression data can also be combined with 

cell-based assays to identify cellular phenotypes associated with gene expression 

changes. Coculture systems are manipulable systems that can yield important insights 

about cell-cell interactions and the cellular phenotypes that occur as tumor and stroma co-

evolve. 
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1.2. The Tumor microenvironment:  

The value of studying heterotypic interactions in breast cancer biology. 

Breast cancer is a heterogeneous disease. Using gene expression patterns of 

tumors, researchers have identified six subtypes of breast cancer: Normal-like, Luminal A, 

Luminal B, Her2-enriched, Basal-like and Claudin-low. Each subtype is characterized by 

the expression of a subset of genes and has specific trends in response to treatment and 

overall survival [1-4]. However, in recent years it has become clear that the intrinsic 

characteristics of the tumor is not just a function of the epithelial cells, but also reflects 

interactions of epithelial cells with their microenvironment [5].  

Cancer research has traditionally focused on the study of the neoplastic cells and 

how their intrinsic characteristics can be altered and modified to produce cell death or 

better respond to therapy [6]. While mutations in oncogenes and tumor suppressors cause 

neoplastic epithelial cells to lose many of their growth constraints, neoplastic cells do not 

lose their interactions with the surrounding non-malignant cells or with the extracellular 

architecture [7].  Instead, the interactions with cells in the microenvironment change during 

cancer progression and can promote or repress the tumorigenic process [8, 9].  Growth 

factors, cytokines and proteolytic enzymes are upregulated and secreted [10, 11], giving a 

histological appearance of granulation tissue similar to tissue morphology during 

physiological wound healing processes.  The observation of histological changes in tumor 

adjacent tissue led Dr. Hal Dvorak to propose that tumors are “…wounds that do not 

heal…” [12].  More recent experimental and observational studies have expanded on these 

observations to further suggest that an activated stroma may be dominant in cancer 

progression [13, 14].  

Some key evidence for the dominance of stroma comes from work identifying 

windows of susceptibility for breast cancer initiation and progression (for example during 
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pregnancy and postlactational involution).  Extracellular matrix (ECM) function and 

composition are remodeled during pregnancy and lactation [15, 16], and these changes 

along with other changes in tissue cellular composition appear to contribute to increased 

breast cancer progression [15].  Conversely, progression can be reversed by stromal 

changes. Tamoxifen, a drug that primarily targets ER-positive epithelium, induces changes 

in mammary stroma leading to suppression of transformed phenotypes [17] and pre-

malignant breast cancer cells placed on a reconstituted physiological basement membrane 

undergo cell growth arrest and form polarized alveolar structures as normal epithelial cells 

would [18]. These observations illustrate the important role of stromal response in breast 

cancer. 

The stromal responses to a tumor can be collectively referred to as ‘the tumor 

microenvironment’. It includes all the structures and cells that support the tumor: 

extracellular matrix, blood vasculature, inflammatory cells, adipocytes, myoepithelial cells 

and fibroblasts, all of which have been shown to contribute to cancer development [19].  

However, it is important to distinguish two types of microenvironment based on location: 

intratumoral microenvironment and extratumoral microenvironment.  Figure 1.1 shows a 

schematic depicting the wide variety of cells that make up intra and extratumoral 

microenvironments.  The intratumoral microenvironment is what has classically been 

referred to as “microenvironment of the tumor” or “tumor stroma”.  It is physically located 

within the tumor mass or very directly adjacent [20].  The majority of in vivo studies of 

microenvironment have emphasized this intratumoral microenvironment as shown in Table 

1.1.  However, other studies have examined the extratumoral microenvironment or ‘cancer-

adjacent tissue’, which extends further around the perimeter of the tumor (from millimeters 

to centimeters, depending on the study) and includes all the histologically benign-looking 

tissue that surrounds the tumor. This extratumoral tissue also provides support for and 
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influences tumor progression, reflecting either a tissue level response to the tumor or the 

baseline biological behavior of the tissue in which the tumor developed [21].   

Both intratumoral and extratumoral microenvironments are related to the concept of 

‘field cancerization’, initially defined as changes to the epithelium which are found in 

histologically normal tissue near the site of tumorigenesis and that could account for local 

recurrences [22].  In recent years the concept of field cancerization has been broadened to 

include stromal changes. A review of epithelial-specific field effects have been presented 

elsewhere [23], but in the current review, we are focusing on intratumoral and extratumoral 

stromal changes.  We prefer the term ‘microenvironment’ to address these stromal-

epithelial interactions and reserve the term ‘field effect’ for epithelium-specific changes. 

Studies of intratumoral and extratumoral stroma in patient specimens have 

identified interesting biological associations, but it is difficult to evaluate the specific 

contributions of distinct cellular populations in these complex tissues. Wiseman and Werb 

[11] concluded a review article in 2002 with an important idea: “…if our aim is to find cures 

for diseases that rely on epithelial and stromal crosstalk we must increase our 

understanding of how these different cell types communicate with each other…”.  In vitro 

cell-cell communication studies can be integrated with studies from human tissue and with 

animal studies to better understand how heterotypic communication alters disease.  

 

1.3. In vitro cocultures as models to study the microenvironment. 

Monoculture studies of breast cancer cells have been the foundation for much of 

what we understand about molecular mechanisms and molecular signaling in cancer. Early 

studies showed that Basal-like and Luminal breast cancers have distinct responses to 

chemotherapeutics [24] and more recent studies have comprehensively profiled many 

established breast cancer cell lines to identify genomic models for each breast cancer 
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subtype [25]. Pathway focused studies in monocultures are also common. For example, 

Hoadley et al. showed that Basal-like breast cancer cell lines are more sensitive to the 

combination of carboplatin and cetuximab in vitro when compared to luminal cancer cell 

lines, and that EGFR-signatures have prognostic value when projected onto tumor 

datasets [26].  Other studies have identified p53-loss or p53-mutation associated 

signatures that can predict mutation status and survival in vivo [27, 28]. Studies of 

individual cell lines in monoculture have contributed to the development of new targeted 

therapies and are proving to have relevance in vivo. However, gene expression studies of 

monoculture experiments are not informative for microenvironment influences on 

progression.  Coculture systems have become important in studying stromal factors.   

Drastic changes occur when coculturing epithelium with different cell types. As a 

clear example, endometrial epithelial cells proliferate in response to estrogen only when 

cocultured with stromal cells, but not when they are in a monoculture [29]. Other studies 

have demonstrated that breast cancer cell lines in the presence of benign mammary 

epithelial cells have a more transformed phenotype than when grown in monoculture [9].  

Thus, coculture systems can be used to better model key biological behaviors of epithelial 

and tumor cells advancing the complexity of the system by increments, focusing on one or 

a small number of particular characteristics of the tissue (e.g. fibroblast-cancer cell 

interactions or mechanical characteristics). 

Cocultures grown in 2-dimensions on plastic are so far the most common type of 

culture studied by gene expression analysis. For some characteristics, 3D cocultures may 

be preferable, as they allow cells to organize themselves in space and to mimic tissue 

structures in vitro [30-33].  The gene expression profiles of 3D and 2D cultures of the same 

cell lines do show differences [34].  However, 2D cultures are easier to work with and can 

provide valuable genomic information.  A large number of gene expression studies on 2D 

cocultures (Table 1.2) have been reported, demonstrating that these cocultures can 
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generate important insights. They can also preserve important physical characteristics. For 

example, fibroblast-to-myofibroblast transdifferentiation can be more easily studied on 

plastic (2D) than in Matrigel due to physical properties of the culture surface [35]. In both 

2D and 3D cultures, there are a number of variables that play a role in determining what 

phenotypes are observed, including: the ratios of different cell types (using a convenient 

pre-specified ratio such as 1:1 vs. identifying multiple different biologically relevant ratios) 

[5], the number of cell types (e.g. choosing to coculture epithelial cells only with one 

stromal cell type or combining multiple cell types), mechanical factors (culture of cells with 

certain matrices or polymers to stimulate stiffness or other biophysical properties) [36] or 

the degree of cell contact (growing cells in direct physical contact or separating cell types 

on transwell cultures). 

In addition to the variables that can be explicitly controlled, there are some 

experimental decisions that are less easily manipulated but important to consider in 

designing a study. For example, every cell line is unique and shows individual 

characteristics. To make experiments generalizable, it may be necessary to use multiple 

cell lines (at least 3 or more) to begin to establish reproducible trends for a given cell type 

(e.g. three cell lines or more may show consistency in luminal breast cancer behaviors, 

whereas one cell line alone cannot establish behavior of the class of luminal cell lines).  

Also, changes in the stromal cells over time should be considered. If using primary rather 

than established cell lines for stromal populations, it is important to consider that primary 

cells, such as fibroblasts, ultimately undergo senescence. Senescent fibroblasts create 

very different signaling milieus [37], so intraindividual variation in a given fibroblast line in 

culture (e.g. due to in vitro aging or passage number) should be considered when 

interpreting results. If a primary cell line will be used, variation in patient characteristics 

should be considered (i.e., due to collection of cells from different patients with different 

tumor subtypes, ages, and genetic or environmental exposure history) [38]. It is known that 
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cell lines can persistently harbor changes due to the exposure history of their donors [39].  

Some studies have used hTERT immortalized cells to create a renewable source of 

isogenic cell lines for coculture studies [5, 40], and this has some advantages for 

reproducibility.  On the other hand, variation may be of interest itself, such as variation that 

suggest differences between African American and Caucasian fibroblast lines [41]. 

Aligning the strengths and weaknesses of a given model system with the research 

question is most important given that it is typically impossible to perfectly recapitulate the 

complexities of the tissue. 

 

1.3.1. Cellular phenotypes of epithelial cells in coculture:  

Changes in gene expression. 

Epithelial gene expression has been examined in relation to exposure to different 

cell types such as fibroblasts, immune cells, and even adipocytes (Table 1.2).  Fibroblasts 

are abundant in the extratumoral and intratumoral microenvironment and play an essential 

role in the maintenance of normal tissue. Activation of fibroblasts to myofibroblasts, creates 

a sustained fibrosis and wound healing response leading to the desmoplastic reaction in 

advanced breast carcinomas [6, 21].  Fibroblasts also deposit the ECM necessary for cells 

to adhere, and their activation changes ECM and signaling to alter tumor initiation and 

progression [19]. 

Rozenchan et al. exposed MCF10A, a benign mammary epithelial cell line and the 

transformed MDA-MB-231 cell line to cancer associated fibroblasts (CAFs) and normal-

tissue associated fibroblasts (NAFs) from the same patient. Through this indirect coculture 

they found many changes in the gene expression: MDA-MB-231 cells upregulated genes 

involved in the β-catenin/TCF pathway probably related to regulating cell polarity (DDX21, 

DICER) while MCF10A cells induced stress response (S100A9, HSP90B1, SPRR3) and 
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pro-survival genes when cultured with CAFs.  Meanwhile, in culture with NAFs, MDA-MB-

231 responded by down-regulating genes associated with glycolipid and fatty acid 

biosynthesis (ACSL5, AGTPAT4), potentially affecting membrane biogenesis, and 

MCF10A down-regulated genes critical for growth control and adhesion (DDIT4, CTNND1, 

PCDH1) [42].  The influence of the fibroblast on breast cancer cell gene expression has 

also been observed in cocultures comparing responses to (1) fibroblasts from negative and 

positive lymph nodes [43] and (2) fibroblasts from different anatomical sites and patients 

[44].  Each of these studies showed that fibroblasts from different sites and patients had 

distinct effects on the cancer cells with which they were cultured in both cell-based assays 

and gene expression. The fibroblasts from different anatomical sites (skin and lung) induce 

distinct proliferation effects on breast cancer cell lines and the proliferation responses 

could be  used to segregate these cell lines on the basis of their tissue of origin [44].  The 

transcriptional changes induced in breast cancer cell lines when cocultured with fibroblasts 

from positive and negative lymph nodes had some common features.  However, the 

fibroblasts were distinct for each breast cancer cell line, suggesting a response that is 

intrinsic to breast cancer subtype [43]. Likewise, in a different model system, soluble 

interactions between Basal and luminal cancer cells had distinct effects on fibroblast gene 

expression. When in a transwell coculture system Basal-like breast cancer cells induce the 

upregulation of genes such as IL-6, IL-8, CXCL3, TWIST and SOD2 in fibroblasts while 

luminal breast cancers do not [5]. These studies echo one another in demonstrating that 

both the fibroblasts and the cancer cells influence the character of the interaction. 

The studies discussed above were conducted using transwells where cells are not 

in direct contact, but several gene expression studies have incorporated direct cell-cell 

contact with some additional technical or analytical steps.  Direct cell-cell contact can 

create gene expression profiles that are distinct from those produced through soluble 

factors alone.  However, methods for separating the cells may aid interpretation of the 
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resulting gene expression profiles. For example, cells can be transfected with a GFP 

reporter and grown in coculture with fibroblasts. The GFP-producing cells can then be 

isolated using flow cytometry, and subsequently analyzed [45]. Similarly, magnetic beads 

have been used to separate cells and demonstrate that tumor fibroblasts support 

neoplastic progression by altering the epigenome of mammary epithelial cells [46], 

specifically increasing hypermethylation of the CST6 gene. The authors of that study 

speculated that the direct cell-to-cell contact is involved in the epigenetic cascade that 

produces long term silencing of this gene. Others have performed a variety of cell sorting 

methods, ranging from use of surface markers to labeling of cells with short-lived cell 

tracking dyes [5]. These cell sorting methods are proving to be an important tool for 

deconvoluting cocultures. 

Cocultures can also be deconvoluted using computational methods rather than 

physical cell sorting. Buess et al. [47]described a deconvolution method that 

computationally controls for cellular composition of cocultures. Using this approach, it was 

demonstrated that the interaction between some breast cancer cells and stromal 

fibroblasts induces an interferon-response signature which is correlated with survival [48]. 

Using the same deconvolution method, Camp et al. [5] recently showed that luminal and 

Basal-like breast cancer cells respond differently to the coculture with fibroblasts, but both 

show substantially altered expression relative to the monocultures. Furthermore, the direct 

coculture of Basal-like breast cancer cells and fibroblasts induced the expression of 

interleukins and chemokines such as IL-6, IL-8, CXCL3, TGF-β, TWIST and SOD1, while 

luminal breast cancer cell line cocultures with fibroblasts upregulated genes involved in 

stress response, such as the S100AB and S100A9 genes, as well as certain transcription 

factors (FOXP1, FOXA2). These cocultures studies raised the hypothesis that heterotypic 

interactions are intrinsic to breast cancer subtypes, and better understanding of cell-cell 
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interactions will yield important insights relative to treating and clinical course of these 

cancer subtypes.  

Other stromal cell types (beyond fibroblasts) have been less well studied, but 

certainly play a critical role in tumor microenvironment. The most widely studied are 

endothelial, inflammatory and mesenchymal stem cells. For example, Buess et al. [49] 

have documented that endothelial cells cocultured with epithelial cells induce M-phase 

genes in the CD44+/CD24- epithelial cell population.  This ‘M-phase cell cycle gene set’ 

consists of 70 genes such as HMGN2, CDC2, CDKN3, DICER, etc and can predicted 

metastasis in vivo. But perhaps more importantly, endothelial cocultures mirrored results 

with fibroblasts; gene expression studies showed complex patterns reflecting substantial 

variation in the abilities of normal and malignant cells to send and respond to extrinsic 

signals [5].  

Macrophages have been evaluated for their role in tumor progression using 

coculture models.  For example, Hagemann et al. [50] showed that coculture with 

macrophages increased tumor cell invasiveness through TNF-α dependent upregulation of 

matrix metalloproteinases (MMP-2,-3,-7,-9).  Hou et al. [51] recently demonstrated that 

macrophages induce COX-2 expression in breast cancer cells through IL-1beta signaling. 

These observations gain greater importance when they are designed to confirm in vivo, 

biology, such as work following on recent studies [51] showing that tumor associated 

macrophages may enhance metastasis through activation of epidermal growth factor 

receptor signaling in neoplastic mammary epithelial cells. Continued work in cocultures 

with macrophages can elucidate whether these macrophage-cancer cell associations are 

subtype specific, as many of the markers induced in cancer cells (e.g. EGFR, COX2) are 

strongly associated with breast cancer subtype [52]. 

A common theme across stromal cell-breast cancer cocultures has been an 

increase in cytokines and inflammatory gene expression patterns. These results have been 
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observed for a variety of mesenchymal and immune cell types, therefore, it may not be 

surprising that similar responses have been observed in cocultures with mesenchymal 

stem cells (MSCs). MSC are important players in the tumor microenvironment [26, 53], as 

they migrate and engraft into the primary tumor site. This was compellingly demonstrated 

in a humanized mouse model; tibial injections of human MSCs induced increased 

proliferation and progression of tumor xenografts [7]. These results also demonstrate that 

species differences are important because the mouse mesenchymal cells in the control 

animals (no tibial injection) were not capable of promoting progression as strongly. 

Complementary in vitro cocultures used in this study clearly demonstrated a role of CXCL7 

and IL-6 signaling in the aggressive, invasive phenotypes induced by MSCs. Other recent 

results also support the role of MSCs in promoting a more aggressive phenotype, showing 

that after direct coculture of MDA-MB-231, T47D and SK-Br3 with MSCs, the cancer cells 

up-regulate genes such as SNAIL, TWIST, vimentin, N-cadherin, and others. [54]. Similar 

observations were detected in transwell assays with SUM149 and HMEC cells [55], 

suggesting that many of these signals may be communicated via soluble factors, 

potentially including those factors identified by Liu et al. [54]. 

Cocultures have also been used to study how tumors metastasize to specific site 

and what molecular mechanisms are involved. A recent study by Rajski et al. 

demonstrated that cocultures of malignant breast epithelial cell lines with osteoblasts from 

the bone marrow increase IL-6 expression profiles; these profiles were associated with 

increased rates of bone metastasis in vivo [56]. Others have demonstrated that specific 

molecules increase the affinity to specific cell types in the metastatic sites, Claudin-2 

increases the affinity of breast cancer cells to hepatocytes, increasing the possibility of liver 

metastasis [57].  

An emerging area that will require additional investigation is how microRNAs 

modify the stromal-epithelial gene expression patterns. In a recent study, neoplastic 
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epithelial cells were directly cocultured with bone marrow stromal cells and microRNAs 

were shown to be transported via gap junctions between cancer cells and MSCs. These 

microRNAs led to reduced CXCL12 expression and a decreased proliferation [54]. Thus, 

future studies of gene expression changes in cocultured cells may find that microRNAs 

play an important role in controlling some of the observed gene expression profiles. The 

direct cell-cell transport of critical mRNA regulators suggests that the complexity of cell-cell 

interactions far exceeds what we have begun to understand. However, a growing database 

of gene expression data from coculture studies will help to advance our understanding of 

the unique cell-cell interactions that influence cancer progression. 

While in vitro cocultures allow controlled investigation of signaling pathways and 

help to reconstruct step-by-step the complexity of cancer biology, human tumors in vivo 

are the ultimate system of interest. Thus, most studies have tested their signatures in 

coculture by linking the gene expression patterns with published microarray findings in 

patients. For example, the aforementioned ‘M-phase cell cycle gene set’, obtained through 

the coculture of endothelial cells with the stem cell portion of cancer cell lines was 

projected onto tumor data to demonstrate that this gene set can predict metastasis in vivo 

and patient survival [58]. Luciani et al. also used their in vitro signature of seven 

independent primary tumor cell line cocultures with primary fibroblasts to define two groups 

of patients with distinct overall survival rates [49]. Other approaches include showing that 

coculture derived signatures recapitulate established gene expression classes. For 

example, a subtype-specific fibroblast-coculture signature predicts breast cancer subtype 

in tumors, demonstrating that the in vitro signature is relevant in vivo [59]. These in vivo 

comparisons can also be combined with experimental data that demonstrate function, 

either in cell-based assays in vitro or in mouse models. 
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1.3.2. Confirming changes in cellular phenotypes:  

Using cell-based assays to corroborate gene expression data with cocultures.  

Because much of the research on cocultures has focused on how the stroma 

modulates invasive potential, cell-based assays demonstrating changes in migration and 

anchorage independent growth can help to establish biologic plausibility. Epithelial cells, in 

normal physiological conditions, are immobile, attached to a basement membrane, and 

bound to neighboring cells through several types of cell-junctions. They present apical 

versus basal polarity and these characteristics are essential for them to carry out their 

function in vivo [5]. One of the most drastic and visible changes that epithelial cells can 

acquire during carcinogenesis is the capacity to migrate, a hallmark of cancer [6]. Thus, 

migration assays in vitro can help assess how gene expression changes alter the capacity 

to migrate and invade. Common migration assays are transwell/Boyden chamber assays 

and scratch/wound healing assay.  The Boyden chamber assay allows for paracrine and 

autocrine communication because it uses a transwell coculture system in which the cells 

share the same medium but cannot physically interact. The chemotactic cells are placed 

on the bottom well and the migrating cells are placed on the top insert. This insert has 

pores big enough (usually 8.0μm) to allow cells to migrate through. The transwell migration 

assays may or may not include an extracellular matrix (ECM) layer.  If this ECM layer is 

present, the assay models the capacity of cells to break down ECM and invade, whereas 

in the absence of ECM, the migratory capacity alone is investigated. In either case, the 

cells migrating to the opposite side of the transwell insert are fixed, stained, and counted.  

The Wound/Scratch assay allows for paracrine, autocrine and cell-to-cell communication. 

Cells are seeded on the same surface in direct contact, a scratch is made when cells are 

nearly confluent and cells migrating into the scratch are measured overtime. By labeling 

one cell type with a fluorescent label, it is possible to identify which of the two cell types are 

closing the wound.  
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Many of the stromal cocultures discussed above have been evaluated for their 

effects on migration of cancer cells. For example, focusing on fibroblasts, Potter et al. [60] 

showed that tumor stromal cells (compared to normal stromal cells) caused greater 

chemotaxis of MDA-MB-231 and that this effect could be blocked by the addition of a 

monoclonal antibody to CCL2. MCF7s also become more migratory when cocultured with 

fibroblasts [60]. Fibroblast populations isolated from different distances relative to a breast 

tumor had distinct effects on the migratory capacity of MCF7 cells in scratch assays [61].  

Similar findings have been observed for MSCs [48] and macrophages [62]. Breast 

adipocytes are abundant, comprising a major percentage of the extratumoral 

microenvironment, and have also been cocultured with breast cancer cells. Adipocytes are 

challenging to culture and coculture because they terminally differentiate and cannot be 

propagated to achieve a reproducible culture system; however, they are proving to have 

important implications for cancer progression. Dirat et al. [63] showed that the estrogen-

receptor positive breast cancer cell line ZR75.1, and the estrogen-receptor negative line 

SUM159PT, both increased their invasive capacity after 72 hours in coculture with mature 

primary adipocytes. 

As an epithelial cell becomes more aggressive, it becomes less dependent on 

extracellular matrix and basement membrane interactions for survival. After coculture with 

certain types of cells, benign or malignant epithelial cells can acquire or enhance their 

anchorage independent growth properties. There are two main types of assays to address 

anchorage independent growth, mammosphere and soft-agar colony formation assays.  In 

both cases, coculture studies can be designed to evaluate paracrine, autocrine and/or cell-

to-cell contacts. In the mammosphere formation assay, cells are cultured in suspension in 

a defined growth media [63]. Colonies are allowed to grow for 7-10 days and then 

analyzed. Only cells with anchorage-independent growth capacity will grow, so the number 

and size of colonies reflect acquisition of this phenotype. In soft-agar colony formation 
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assays, cells are grown in a gel-like matrix that provides more structure than a suspension 

culture, but the same phenotypes (colony number and size) are assessed after a period of 

growth, typically at least two weeks.  These assays have been used to confirm anchorage-

independent growth changes in coculture. For example, breast cancer fibroblasts 

decreased time required for MCF7s to form mammospheres, and increased the overall 

number of spheres relative to cocultures with normal fibroblasts.  Additionally, when MDA-

MB-468, a Basal-like breast cancer cell line, was cocultured with CAFs, the number of soft 

agar colonies were higher than when cocultured with NAFs [64]. MSCs have also been 

shown to induce mammosphere formation in human mammary epithelial cells (HMEC), 

and SUM149 but not in primary inflammatory breast cancer cells (MDA-IBC-3). These 

effects occurred though paracrine factors, as conditioned media from the MSCs had the 

same effects [65].  In 3D cultures, we can perform morphogenesis assays in which we 

study how proliferation, apoptosis and migratory phenotypes occur simultaneously, these 

assays are useful to analyze the malignant behavior of epithelial cells [32, 33, 66].  

By combining the expression data suggesting a certain phenotypic trait and with 

cell based assays, new treatment-relevant advances are possible [67]. Genome 

expression data along with cell based assays can be used to test targeted perturbations 

(e.g. blocking cytokines or treating with growth factors such as in [5, 59]) to study how 

these phenotypes are regulated. Given that these studies can be done with human cells, 

and with careful control of cell ratio, cell physical environment, polarity, etc., these systems 

can provide interesting and important insights about how cancers become more invasive 

and aggressive through interactions with their environments. 
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1.4. Mouse models for comparative biology of tumor microenvironment 

Given identification of novel hypotheses from in vitro cocultures and confirmation of 

the cellular phenotypes in vitro, a complete picture of stromal-epithelial interactions 

requires linkages with studies in vivo.  As described above, public genomic data can be 

useful for this purpose, but mouse models have contributed to our fundamental 

understanding of the reciprocal signaling between stroma and epithelial compartments. 

Noel et al. [68] performed the first inoculation of cocultured fibroblasts and breast cancer 

cell lines with matrigel in an athymic mice model.  The inoculation of these cocultures 

decreased the latency time and enhanced tumor growth.  Both tumor growth and latency 

time were dependent on the number of inoculated fibroblasts in the coculture.  In another 

classic example, it was demonstrated that when non-tumorgenic cell lines are introduced 

into irradiated cleared fat pads, they form tumors.  Conversely, when introduced into 

cleared fat pads that have not been irradiated the same tumorogenic cell lines do not form 

tumors. This indicates that radiation induces changes in the stromal microenvironment that 

contribute to neoplastic progression in vivo [68].  More recently, Hu et al.  [69] have shown 

that myoepithelial cells suppress, while fibroblasts enhance, tumor progression from DCIS 

to invasive cancer in a mouse xenograph model. Novel models for combining and 

humanizing the microenvironment have also been proposed, including a humanized 

mouse xenograft model into cleared fat pads [69], and an intraductal xenografts, where 

human cell lines can be injected alone or with stromal components [70]. An advantage of 

these models is that some of the innate immune responses are preserved, as is the 

systemic circulation and the three dimensional structure of the tissue.  

Recently, it has also been established that different mouse models can be used to 

represent the heterogeneity of human breast cancers [71]. For example, the C3Tag mice 

over-express the SV40Tag transgene in distal mammary ductal epithelium and terminal 

ductal lobular units. This over-expression allows for a targeted inactivation of two tumor 
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suppressor genes: p53 and Rb, giving rise to a very predictable onset of tumors [72]. They 

most commonly develop tumors with features of Basal-like breast cancer.  Thus, these 

models may be useful for studying Basal-like microenvironments. Future studies should 

examine how microenvironment characteristics, such as obesity or immune cell ablation 

influence the progression of tumors in some of these model systems, to gain a perspective 

on the role of microenvironment in different breast cancer subtypes. These models, when 

combined with coculture-based mechanistic studies, can be a powerful combination. 

 

1.5. In vivo studies of breast cancer microenvironments. 

In recent years, tissue-level wound and stromal responses have been more 

thoroughly characterized using molecular data [73, 74]. A growing body of gene microarray 

data support a role for stromal gene expression in breast cancer progression (Table 1.1). 

Finak et al. [75] analyzed biopsies of cancer tissue and non-affected tissue from breast 

cancer patients.  By laser capture microdissection they separated the tumor compartment 

from the stromal compartment and performed microarrays to identify a prognostic gene set 

from tumor stroma that predicted patient surviva. Ma et al. [14] compared gene expression 

of ductal carcinoma in situ (DCIS)-associated stroma to stroma from individuals with 

invasive disease and showed that the majority of stromal alterations occur at the DCIS 

stage. These authors argued that invasiveness is dependent on the signals the epithelial 

cells receive from myoepithelial cells, fibroblasts and myofibroblasts.  Allinen et al. isolated 

pure stromal cell populations from reduction mammoplasties, DCIS, and invasive breast 

cancer patients. Analysis of gene expression of these purified cell populations revealed 

widespread molecular changes in all cell types of the breast cancer stroma [76]. We and 

others have shown an activated wound response in the tumor microenvironment of breast 

cancer [73, 77]. Signatures of wound response from in vitro [77] or in vivo [73, 74] predict 
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breast cancer survival and relapse in independent datasets. Finally, Beck et al. have 

studied both macrophage infiltration-associated gene expression [78] and fibromatosis-

associated gene expression [79] as predictors of outcome. These studies cumulatively 

suggest that tumor progression occurs due and is the results of the concerted action of a 

variety of stromal responses.  

 

1.6. Significance 

The tissue stroma is crucial for normal organ homeostasis as well as for tumor 

initiation and progression. Additionally, both intra and extratumoral microenvironments play 

essential roles in tumor biology. Thus, improved understanding of the interactions that take 

place between epithelial cells and stromal compartments is critical to advancing our 

knowledge of human cancer. In vitro coculture systems are controllable systems that can 

be used to study gene expression changes and corresponding cellular phenotypes that 

occur as tumor and stroma co-evolve. These systems can be used to define critical factors 

mediating the communication between the cell types. Although cocultures have limitations, 

the growing body of gene expression coculture data, when combined with observational 

studies, demonstrates that these models are generating important insights in the biology of 

breast cancer. 
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1.7. Figures and Tables 

 

Figure 1.1.  Intra and extratumoral microenvironments and cellular components of 

these compartments. Cell types present in the extratumoral and intratumoral 

microenvironment are similar and include fibroblasts, immune cells, endothelial cells, and 

mesenchymal stem cells.  Abundance and signaling of these cells vary widely between 

and within individuals with cancer.  
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Table 1.1: Whole Genome Microarrays studies to investigate breast cancer microenvironments in human tissues.  

Authors 
[citation] 

Type of specimen studied Processing of 
specimen 

Type of micro-
environment 

Major Findings 

Finak et. al.(2008) 

[75] 
Fresh, frozen tissue  from 

primary cancers (53) and 
adjacent non-affected tissue (31) 
from breast cancer patients 

Laser capture 

microdisection of 
tumor stroma 

Intratumoral vs 
Extratumoral 

 Stromal Derived Prognostic Predictor 

(SDPP),a gene set that stratifies 
patients by disease outcome. Genes 
are involved in immune response, 
angiogenesis and hypoxic response 

Ma et al. (2009) 

[14] 
Fresh frozen biopsies from 

disease free tissue, DCIS and 
invasive breast cancer (14).  

Laser capture 
microdisection 

Intratumoral Tumor microenvironment participates 

in tumorogensis before tumor cells 
invade. Invasiveness is dependent on 
the signals from myoepithelial cells, 
fibroblasts and myofirboblasts. 

Allinen et al. 
(2004) [76] 

Snap frozen biopsies from 
reduction mammoplasties, 
DCIS and invasive breast 
cancer. 

Isolation of pure cell 
populations by 

differential 
centrifugation 

Intratumoral Widespread genome changes in all 
stromal cell types. Genetic alterations 
only occur in epithelial cancer cells. 

Troester et al. 

(2009)[73] 
Snap frozen tissue from 

histologically normal tissue 
adjacent to breast cancer 
(47) and reduction 
mammoplasties (60). 

Whole genome 
profiles of the tissue 

Extratumoral A wound response is activated in the 

tumor microenvironment. The wound 
response signature predicts cancer 
progression. 

Chang et al. 

(2004) [77] , 
Chang et al. 
(2005) [74] 

Isolated fibroblasts from 10 
different anatomical sites & 

Tissue from early breast 
cancer patients (295) 

In vitro response of 

the fibroblast 
populations to serum 

Intratumoral 

Normal tissue 

Identification of an in vitro wound 

response, enriched in early stage 
tumors High expression of this 
signature correlates with worse overall 

survival and increased distant 
metastasis. 

Beck et al (2008) 
[79] 

Desmoid fibromatosis and 
solitary fibrous tumors. 

 Intratumoral DTF core gene set (derived mainly 
from fibroblasts) is a robust descriptor 

of stromal response that is associated 
with improved clinical outcome in 
public genomic data from breast 
cancer patients. 

Beck et al. (2009) 
[78] 

Tenosynovial giant cell 
tumors and pigmented 
villonodular synovitus  

 Intratumoral The CSF1 gene expression signature 
(derived mainly from macrophages) is 
present in more aggressive cancers.  

Luciani et al. 
(2011) [59] 

Tissue from primary breast 
tumors and reduction 
mammoplasties 

Isolation of epithelial 
and fibroblast cells. 

Intratumoral A ‘fibroblast triggered gene expression’ 
gene set generated by coculture of 

primary breast tumor cell lines and 
fibroblasts is enriched for inflammatory 
signaling, cell death and cell 

proliferation genes. Predicts survival in 
independent datasets. 

Roman-Perez et 
al. (2012) [80] 

Cancer-adjacent tissue from 
invasive tumors (72) 

 Extratumoral There are 2 subtypes of cancer-
adjacent tissue independent of tumor 

subtype with distinct survival patterns.  

Table 1.1: Whole genome microarray studies to investigate breast cancer 

microenvironments in human tissues. 
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Table 1.2: Whole genome microarray studies to investigate breast cancer tumor microenvironment in vitro 

Authors 
[citation] 

Cancer cell 
lines used 

Stromal cell 
lines used 

Type of 
coculture 

Special 
separation 
techniques 

Linked to 
human in 
vivo data 

Major Findings 

Rozenchan et 
al. (2009) [42] 

MCF10A 
MDA-MB-231 

Primary CAFs 
and NAFs 

Transwell No No Epithelial cell lines 
upregulate different 
pathways when 

cocultured with the two 
types of fibroblasts. 
MDA-MB-231-CAF 

cocultures CAFs 
upregulate β-
catenin/TCF pathway 

genes; MDA-MB-231-
NAF cocultures .down 
regulate glycolipid and 

fatty acid biosynthesis. 
MCF10A-CAF cocultures 
upregulate stress 
response genes, while 

MCF10A-NAF cocultures 
downregulate 
growthcontrol and 

adhesion genes. 
Santos et al. 

(2011) [43] 
MDA-MB-231, 
MDA-MB-435, 

MCF7 

Primary 
fibroblasts from 

positive and 
negative LN 

Transwell No No Gene expression 
changes induced by 

coculture with fibroblasts 
from positive and 
negative nodes are 

distinct and intrinsic to 
each tumor subtype. 

Camp et al. 

(2010) [5] 

MCF7, T47D, 

ZR75, Sum102, 
Sum149, 
HCC1537 

Immortalized 

reduction 
mammary 
fibroblasts 

Direct 

physical 
contact & 
transwell 

Yes Computational 

deconvolution 

The response to 

fibroblast coculture 
differs between Basal 
like and luminal cancer 

cell lines. The genes that 
distinguish Basal-like vs. 
luminal cultures also 

distinguishes human 
tumors. Basal-likes 
upregulate interleukins 

and chemokines  (IL-6, 
IL-8, CXCL1, CXCL3, 
TGF-β) also TWIST and 

SOD1. Luminal cells 
increase stress response 
genes. 

Buess et al. 

(2009)[49] 
Hs578T, 
BT549, MDA-
MB-436, MDA-

MB-231, 
HMEC, SKBR3, 
MCF7, T47D, 

HMECs 

Stromal 
fibroblasts: 
human dermal 

fibroblasts, 
embryonic lung 
fibroblasts, 

breasts stromal 
fibroblasts 

Transwell & 
direct 
physical 

contact 

Yes Computational 
deconvolution 

Interaction between 
some breast cancer cells 
and stromal fibroblasts 

induced interferon 
response. The presence 
of this response is 

associated with higher 
risk of tumor progression 

Buess et al. 

(2009)[49]] 

HMECs, MCF7, 

T47D, MDA-
MB-231, SKBR-
3, Hs578T, 

BT549 

HuVECs & 

Human dermal 
microvascular 
endothelial cells 

Direct 

physical 
coculture & 
transwell 

Yes Computational 

deconvolution 

Induction of an ‘M-phase 

cell cycle genes’ in 
breast cancer cell lines 
but not in normal 

epithelium. Tumors with 
this gene signature have 
increased metastasis 

and worse overall 
survival. Endothelial cells 
induce proliferation in 

CD44+/CD24- cancer 
cells. 
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Liu et al. 

(2011) [54] 
Sum159, 
Sum149, MCF7 

Human bone 
marrow derived 

mesenchymal 
cells 

Direct 
physical 

coculture & 
transwell 

No No MSCs regulate cancer 
cell behavior through 

their effects on cancer 
stem cells. Networks of 
cytokines (IL-6, Il-8, 

CXCl1, CXCl5, CXCl6 
are associated with 
migration of cancer 

cells). 
Wadlow et al. 

(2009) [44] 
Many 
commercially 

available 
cancer cell lines 

Many 
commercially 

available normal 
skin and lung 
fibroblasts 

 GFP 
expression in 

epithelial cells 

 Cancer cell proliferation 
is modulated both by the 

cancer cell and the 
fibroblasts.  Two 
functionally distinct 

pathways associated 
with altered proliferation 
were identified, one of 

which showed features 
of activated 
mesenchyme. 

Stewart et al 
(2012) [81] 

HCC1937, 
MDA-MB-468, 
SUM149 

MCF-7, T47D, 
ZR-75-1 

THP-1 
monocytes 

Transwells   Basal-like BC mediates a 
specific stromal immune 
response, implicating 

specific cytokines that 
are differentially 
expressed in Basal-like 

microenvironments 

Table 1.2: Whole genome microarray studies to investigate breast cancer tumor 

microenvironment in vitro. 

 

 



 

Chapter 2  

ROLE OF HGF IN EPITHELIAL-STROMAL CELL INTERACTIONS DURING 

PROGRESSION FROM BENIGN BREAST DISEASE TO DUCTAL CARCINOMA IN 

SITU. 

 

2.1. Overview 

Introduction: Basal-like and Luminal breast cancers have distinct stromal-epithelial 

interactions, which play a role in progression to invasive cancer. However, little is known 

about how stromal-epithelial interactions evolve in benign and pre-invasive lesions.  

Methods: To study epithelial-stroma interactions in Basal-like breast cancer progression, 

we cocultured reduction mammoplasty fibroblasts (RMFs) with the isogenic MCF10 series 

of cell lines (representing benign/normal, atypical hyperplasia, and ductal carcinoma in 

situ). We used gene expression microarrays to identify pathways induced by coculture in 

premalignant cells (MCF10DCIS) compared to normal and benign (MCF10A and 

MCF10AT1). Relevant pathways were then (1) evaluated in vivo for associations with 

Basal-like subtype and (2) targeted in vitro and effects on morphogenesis were evaluated. 

Results: Our results show that premalignant MCF10DCIS cells express characteristic 

gene expression patterns of invasive Basal-like microenvironments.  Furthermore, while 

HGF secretion is upregulated (relative to normal, MCF10A levels) when fibroblasts are 

cocultured with either atypical (MCF10AT cells) or premalignant (MCF10DCIS) cells, only 

MCF10DCIS cells upregulate the HGF receptor, MET. In 3-dimensional cultures, 
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upregulation of HGF/MET in MCF10DCIS cells induced morphological changes suggestive 

of malignant potential, and these changes were reversed by antibody-based blocking of 

HGF signaling. These results are relevant to in vivo progression because high expression 

of a novel MCF10DCIS-derived HGF signature was correlated with Basal-like subtype and 

with worse overall survival, with approximately 86% of Basal-like cancers highly expressing 

the HGF signature. 

Conclusions: In this study we document coordinated and complementary changes in HGF 

and MET expression in epithelium and stroma in pre-invasive lesions. These results 

suggest that targeting stroma-derived HGF signaling in early carcinogenesis may block 

progression of Basal-like precursor lesions. 

 

2.2. Introduction 

Normal development and homeostasis requires stromal-epithelial interactions. 

Cancers must evolve and adapt in stromal context and therefore, cancer progression 

depends upon an initiated cell’s ability to utilize permissive signals and circumvent 

repressive signals [8]. Under evolutionary theories of cancer, tumors that progress have 

characteristics that are advantageous given their microenvironments [82]. Cancer cells 

may also modify their environments to induce growth-promoting signals. Recent data 

suggest that host and/or stromal factors affect tumor subtype. For example, aging stroma 

may influence which tumor subtypes develop or may promote more aggressive disease 

[37, 83].  Conversely, tumor characteristics may define epithelium-stromal interactions.  

Basal-like breast cancers have a distinct microenvironment interaction pattern relative to 

other breast cancer subtypes [5] and appear to be associated with distinct immune 

microenvironments [6, 81, 84]. These and many other data suggest that complementary 

epithelial-stromal coevolution is influential in cancer development. However, since most of 

these studies have examined epithelial-stroma interactions after tumors have acquired 
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invasive characteristics, it is not well known how host-tumor interactions are maintained 

earlier in disease progression. 

We hypothesized that Basal-like breast cancers may have unique interactions with 

their microenvironments beginning in the early stages of progression. In epidemiologic 

studies, there is evidence that Basal-like breast cancers progress very rapidly through the 

ductal carcinoma in situ stage (DCIS) compared to other cancers [85]. However, many of 

the DCIS-adjacent stromal tissue studies have been from patients who also have invasive 

cancers in the same breast [14], and given the cross-sectional nature of these studies (with 

data at only a single time point in the progression of disease), it is diff icult to identify 

epithelial-stromal interactions that are induced during progression. In addition, stroma from 

DCIS lesions and invasive tumors are very similar, suggesting that stromal changes may 

occur prior to invasion [14, 76]. It is important to identify pathways that are altered in the 

stroma prior to invasion as these pathways may be targetable. 

To study epithelial-stromal interactions in the pre-invasive phases of Basal-like 

breast cancer development, we employed the MCF10 cell line series in cocultures. The 

MCF10 cell lines represent an isogenic background (being derived from a single patient), 

but express pathologic characteristics in xenografts, ranging from non-neoplastic benign 

morphology (MCF10A) to atypical hyperplasia (MCF10AT1) to DCIS (MCF10DCIS). These 

lines were cocultured with fibroblasts (both two dimensional (2D) on plastic and three 

dimensional (3D) in Matrigel®/collagen). Cell-based assays and gene expression profiling 

were conducted to track the evolution of cell-cell interactions with progression. The 

resulting experimental data, together with patient data, suggests an important role for HGF 

signaling in premalignant to invasive Basal-like breast cancer.  
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2.3. Methods  

2.3.1. Cell lines and treatments 

MCF10A, MCF10AT1 and MCF10DCIS.com (referred to as MCF10DCIS) were purchased 

from Karmanos Cancer Institute (Detroit, MI) and Asterand (Detroit, MI). These cell lines 

were maintained in DMEM supplemented with 5% horse serum, 50 units/mL penicillin, and 

50 units/mL streptomycin, 5 μg/mL insulin (GIBCO, Life technologies, Carlsbad, CA), 1 

μg/mL hydrocortisone (Sigma-Aldrich), cholera toxin (EMD, Millipore, Darmstadt, 

Germany) and EGF (Invitrogen, Life technologies, Carlsbad). Cocultures were also 

performed in this media after ascertaining that reduction mammary fibroblasts (RMFs) 

maintained their RPMI 1640 doubling times in this DMEM/F12. MCF7 (Luminal cell line) 

and SUM149 (Basal-like cell line) were purchased from ATCC. RMFs (htert-immortalized 

fibroblasts from reduction mammoplasty [70]) were provided by Dr. Charlotte 

Kupperwasser (Tufts University). We selected an htert immortalized cell line for our 

experiments over primary cell lines (as other studies have done [38]), for several reasons. 

Primary cells have a limited life; after 9 passages they senesce allowing insufficient time to 

perform many assays (such as the 3D assays described below). Even prior to senescence, 

the aging process and patient-to-patient variation affects gene expression as shown by 

quantitative reverse transcriptase (RT) PCR for HGF. Figure 2.1 shows HGF RNA levels 

vary by up to 546-fold for a panel of 14 primary CNAF (Cancer-normal associated 

fibroblasts, obtained from histologically normal tissue adjacent to a tumor) and CAFs 

(Cancer-associated fibroblasts) at different passages. These cell lines were maintained at 

37˚C and 5% CO2 in RPMI 1640 or DMEM/F12  with L-glutamine (GIBCO) supplemented 

with 10% FBS (Sigma-Aldrich) and 50 units/mL penicillin and 50 units/mL streptomycin 

(GIBCO) as described in [5, 38]. All cell lines were tested for mycoplasma prior to use by 

the University of North Carolina at Chapel Hill Tissue Culture Facility, NC. 
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2.3.2. Primary fibroblasts 

Primary fibroblasts were obtained from breast tissue of patients undergoing breast 

surgery for primary invasive breast carcinoma at UNC Hospital. Tissue specimens were 

procured under an IRB-approved protocol by the Lineberger Cancer Center Tissue 

Procurement Facility. Isolation protocol of these CNAFs and CAFs was previously 

described in [38]. 

 

2.3.3. Coculture conditions and treatments 

Two types of cocultures were performed using media and culture conditions 

described above and previously in [5]. Direct cocultures are defined as a coculture where 

the two cell types are grown in direct physical contact, in the same well. The following 

epithelial:RMF ratios were plated for these cocultures: 1:4, 1:2, 1:1, 2:1 as well as the 

monocultures of each cell line and cells were maintained for 48 hours before RNA 

isolation. Interaction cocultures are defined as a coculture where the fibroblasts and cancer 

cells are separated by a porous membrane that allows cell-cell communication via soluble 

factors. For interaction cultures, fibroblasts were seeded in inserts on Corning Transwell 

plates with 0.4 μm pore polycarbonate membranes; epithelial cells were grown in the 

bottom well. Interaction cultures were plated at a 1:1 ratio and maintained for 48 hours 

before RNA isolation.  

 

2.3.4. RNA and expression microarrays 

Cells were harvested by scraping in RNA lysis buffer. Total RNA was isolated using the 

RNeasy mini kit (Qiagen, Valencia, CA) and RNA quality was analyzed on an Agilent 2100 

Bioanalyzer using an RNA6000 nano chip. Quantification was performed on a ND-1000 



28 

 

Nanodrop spectrophotometer. Microarrays were performed according to Agilent protocol 

using two-color Agilent 4×44K V2 (Agilent G4845A). We used the Agilent Quick Amp 

labeling kit and protocol to synthesize Cy3-labeled reference from Stratagene Universal 

Human Reference spiked at 1:1,000 with MCF7 RNA and 1:1,000 with ME16C RNA to 

increase expression of breast cancer genes. The identical protocol was applied to total 

RNA from cocultured or monocultured cell lines to label these samples with Cy5. Labeled 

cDNAs were hybridized to arrays overnight and washed before scanning on an Agilent 

G2505C microarray scanner.  

 

2.3.5. Coculture data normalization and analysis 

Data from 58 microarrays (representing monocultures, direct cocultures, and 

indirect cocultures from 6 different cell lines) were included in this study.  Microarray data 

are available in the Gene Expression Omnibus (GSE43467).  Only those genes where 

more than 70% of microarrays had signal in both channels greater than 10 dpi were 

included.  Data were Lowess normalized and missing data were imputed using k-nearest 

neighbors' imputation. For the direct coculture analyses, we excluded genes that did not 

have at least two-fold deviation from the mean in at least one sample and the method of 

Buess et al. [47] was used to normalize cocultures to appropriate monocultures performed 

in the same media and under identical conditions as previously described in [5]. Briefly, the 

Buess method is an example of an expression deconvolution approach applied to 

coculture data; this method estimates the percent of fibroblasts and cancer cells in each 

coculture, and normalizes the data for composition differences prior to estimating the effect 

of epithelial-stromal interaction on gene expression. The Buess interaction coefficient “I” 

was calculated as the ratio of observed to expected gene expression and an “I-matrix” 

representing the epithelial-stromal interaction coefficient for each gene in each coculture 
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was generated. The estimated “I” for each gene and coculture can be thought of as an 

indicator of the ratio of that gene's expression level relative to the expected level based on 

the cellular composition and the monoculture expression values. For coculture studies, I-

matrices were analyzed using multiclass Significance Analysis of Microarrays (SAM [86]), 

comparing MCF10A to MCF10AT to MCF10DCIS cocultures (three classes). Microarray 

analysis was done using R.1.14. Heatmap generation and visualization were done using 

Cluster 3.0 and Java treeview, respectively. Functional and pathway analyses were done 

using Ingenuity Pathway Analysis (IPA), with Benjamini–Hochberg multiple testing 

correction to identify significant functions and pathways with P-values less than 0.05. 

Pathways and functions with less than 2 genes were excluded from our analysis.  

 

2.3.6. Calculation of Basal-like interaction score 

We utilized gene sets identified in Camp et al. [5] to score each coculture for the 

degree to which it expressed Basal-like microenvironment genes. In Camp et al. a 30 gene 

signature was identified that predicted Basal-like vs. Luminal interactions in cocultures and 

that also distinguished Basal-like vs. Luminal tumors. Using I-values (as described above) 

for each of these 30 genes across all cocultures, we computed a Basal-like interaction 

score.  Briefly, using the method of Creighton et al. [87], vectors corresponding to the thirty 

genes in the Basal-like signature were constructed, with 1 assigned to genes up-regulated 

in Basal-like cocultures/cancers and -1 assigned to down-regulated genes. A Pearson 

correlation coefficient was calculated for this standard vector versus the vector of I-values 

for each coculture experiment. The Pearson correlation coefficient from this analysis is 

defined as the ‘Basal-like interaction score’. 
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2.3.7. Analysis of cytokine expression in conditioned media 

To identify soluble mediators of Basal-like microenvironments in the MCF10DCIS 

cells, conditioned media samples from direct 1:1 cocultures (48 hours, standard coculture 

media conditions as described above) were analyzed according to manufacturer protocol 

on a RayBio Human Cytokine Antibody Array 5 (80) (Raybiotech, Norcross GA) designed 

to detect 80 cytokines and chemokines. Briefly, slides were blocked by incubation with 

blocking buffer at room temperature for 30 min and incubated with 100 µL of conditioned 

media at room temperature for 90 minutes. Slides were washed and incubated with biotin-

conjugated antibodies overnight at 4˚C. Finally, the slides were washed and incubated with 

fluorescent dye-conjugated streptavidin at room temperature for 2 hours. After final 

washing, slides were dried by centrifugation at 0.2 RCF (Centrifuge 5702R Eppendorf, 

Hauppauge, NY) for 3 minutes. Fluorescent signal was detected on a laser scanner (Axon 

scanner) using a Cy3 (green) channel (excitation frequency 532 nm). Data for each 

cytokine was normalized to positive controls on the same slide to estimate relative protein 

expression. Each monoculture or direct coculture was analyzed in duplicate. 

 

2.3.8. Western Blot 

Cells were harvested from interaction cocultures and protein was isolated and 

quantified as described previously [27]. Lysates were denatured by boiling with β-

mercaptoethanol and 15-30 μg of protein were electrophoresed on a 4–20% Tris-HCl 

Criterion precast gel (Bio-Rad,Hercules, CA) and transferred to a Hybond-P membrane 

(Amersham-GE Healthscience) by electroblotting. The blots were probed with antibodies 

against the receptor MET (Cell signaling #8198S), HGF–α chain (Santa Cruz sc-166724) 

and β-actin (Cell signaling #4967). Blots were washed three times with Tris-buffered saline 

supplemented with 0.1% TWEEN and then were probed with ECL anti-mouse IgG 

horseradish peroxidase-linked whole antibody from sheep (Amersham-GE Healthscience). 
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Blots were rewashed, and detection was by enhanced chemiluminescence western blotting 

detection system (Amersham-GE Healthscience). Relative MET and HGF protein 

concentration was quantified using Image J software, with pixel intensity of the MET or 

HGF protein band divided by pixel intensity of the β-actin band. Fold-change expression 

was calculated by dividing the coculture expression by the monoculture expression at that 

same time point.  

 

2.3.9. qPCR for MET and HGF 

The relative abundances of HGF (Hs00300159_m1 Cat. # 4331182) and MET 

(Hs01565584_m1 Cat. # 4331182) mRNA were quantified by qPCR using an ABI 7900HT 

machine (Life Technologies, Carlsbad, CA). mRNA was isolated from cells using Qiagen’s 

RNeasy mini kit and protocols (Qiagen, Valencia, CA). 1 μg of total RNA was reverse 

transcribed into cDNA using the iScript cDNA synthesis kit and protocol from Bio-Rad. The 

cDNA was then diluted five-fold by the addition of 80 μl of water. Subsequently, 2 μl of 

cDNA and 18 μl of master mix 10 μl SsoFast 2X Probes Supermix (Bio-Rad), 0.5 μl 18S-

VIC and 0.5 μl gene specific Assay-On-Demand-FAM (ABI), 7 μl water were used in each 

well of the qPCR 96-well plate. Amplification conditions were as follows: 1 cycle of 95C for 

1 minute; 40 cycles of 95C for 5 seconds, 60C for 20 seconds. 

 

2.3.10. Generation of coculture-derived HGF signature.  

To identify HGF-regulated genes, monocultures of MCF10DCIS cells were grown in 

serum-free media and treated with recombinant human HGF (rhHGF, 294-HG/CF, R&D 

Systems) for six hours with addition of HGF every hour at a 100 ng/ml concentration (half-

life of HGF is approximately four minutes). Total RNA was isolated after six hours of 

treatment and analogous cocultures with fibroblasts were performed.  Microarray data from 
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both HGF-treated and fibroblast-cocultured cell lines were normalized to sham 

monocultures (monocultures in serum free media with no rhHGF and monocultures in 

regular media) by subtracting the log2(R/G) values of the monoculture. The resulting 

log2(R/G) ratio represents the response to coculture or treatment relative to that of sham. 

To identify genes that were differentially regulated by both coculture and HGF treatment, a 

one class SAM analysis was performed with all HGF-treated and cocultured arrays first 

normalized to sham monocultures. Functional and pathway analyses of the resulting gene 

signatures were performed using Ingenuity Pathway Analysis (IPA), with significant 

functions and pathways defined as those with P values less than 0.05 after Benjamini–

Hochberg multiple testing correction.  

 

2.3.11. Correlation with HGF signature in human tumors 

We evaluated the behavior of our HGF Signature (described above) in 707 breast 

cancer samples from three publically available datasets: 1) NKI295 (N=295) [88], 2) Naderi 

et al. (N=135) [89] and 3) UNC337 samples (N=277) [2]. Intrinsic subtype classification 

was performed using the PAM50 predictor Parker et al. [4]. By mapping the 280 gene 

signature to all three datasets, a common probe set representing 109 unique genes was 

identified. These probes were median centered across samples, and then duplicate genes 

were collapsed to a unique entrez ID by statistical mean. To classify tumors according to 

HGF expression (positively or negatively correlated), we applied methods described in 

Creighton et al. (as described above) [87]. Correlations that were > 0 were classified as 

positive for the HGF signature (HGF-positive) and correlations that were <= 0 were 

classified as negative for the HGF signature (HGF-negative). We then obtained a Chi 

square statistic (four degrees of freedom) to test the association between tumor subtype 

(Basal-like, Luminal A, Luminal B, Her2, Normal-like) and HGF score (HGF-positive vs. 
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HGF-negative). All statistical analyses were performed using R 1.14 and Bioconductor 

packages. 

 

2.3.12. Migration/Wound assays 

Migration/wound assays were performed in six-well plates. 1:1 ratios of epithelial 

and RMFs were seeded in direct cocultures for 48 hours prior to performing the scratch. 

Epithelial cells were stained for better visualization using 5 μmol/L of Invitrogen (Life 

technologies) Cell Tracker (Green CMFDA) following the manufacturers protocol and as 

previously described in [5]. A scratch was made with a pipette tip and allowed to close for 6 

hours. Phase and green fluorescent pictures were taken at 0 and 6 hours with an Olympus 

IX70 at 4X magnification. Image J was used to quantify percent wound closure by 

measuring the area free of cells at 0 hours and at 6 hours. 

 

2.3.13. 3D Morphogenesis assay 

3D cocultures were performed as previously described in [90, 91]. A model system 

similar to that of Jedeszko et al. was used; however our RMF lines are not engineered to 

overexpress HGF [92]. Briefly, a 1:3 ratio of epithelial:RMF cells were cocultured in a 3D 

extracellular scaffold composed of a 1:1 mixture of biologically derived collagen I and 

Matrigel® (BD Biosciences). The final concentration of Collagen I was 1 mg/mL. One well 

from a 24 well plate was prepped for coculture by coating with 500 μL of Matrigel-collagen 

mix. Then, 1 mL of cell suspension in Martrigel-collagen mix was plated. Cultures were 

maintained in a humidified, 37ºC, 5% CO2 incubator for two weeks, with media change 

every 2 days. To test the role of HGF in morphogenesis of these cocultures, a set of plates 

were cultured with neutralizing, anti-HGF antibody (0.5 mg/ml, Abcam10678) was added 

every day for 2 weeks.  
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The Matrigel-collagen embedded 3D structures were fixed after 2 weeks using 4% 

paraformaldehyde (USB) overnight.  Fixed cultures were then cryopreserved in 20% 

sucrose in 0.1 M phosphate buffer at 4°C and washed before embedding and freezing in 

optimal cutting temperature compound (Tissue-tek 4538).  Frozen sections (6 µm) were 

cut for immunohistochemistry using a Leica 1950 cryostat. For immunostaining, slides 

were brought to room temperature, hydrated and placed in Citrate buffer pH 6.0 (Thermo-

Fisher TA135-HBH).  Heat-induced epitope retrieval (HIER) was performed using a 

decloaking chamber (Biocare Medical) at 95°C for 5 minutes followed by 90°C for 10 

seconds. Slides were cooled for 20 minutes, washed in Tris-buffer (0.05M pH 7.6) and 

blocked in 10% Normal Goat Serum (NGS) in Tris for 1 hour at room temperature. 

Samples were incubated overnight at 4°C in Mouse monoclonal Smooth Muscle Actin 

(Dako M085; 1:100) and Rabbit polyclonal Cytokeratin (Dako Z0622; 1:100). After rinsing, 

slides were incubated at room temperature for 3 hours in a mixture containing Goat anti-

Mouse (Alexafluor 568, Invitrogen A21134; 1:400) and Goat anti-Rabbit (Alexafluor 488, 

Invitrogen A11008; 1:400) antibody. Slides were washed and coverslipped with Fluorogel II 

containing DAPI (EM Sciences). For hematoxylin and eosin stain (H&E), frozen sections 

were stained 1 minute in acidified Harris Hematoxylin (Thermo Scientific 6765003), rinsed 

in running tap water for 4 minutes, stained 3 minutes in alcoholic Eosin Y (Thermo 

Scientific 6766007), dehydrated in 95% alcohol for 2 minutes and 5 minutes in absolute 

alcohol, cleared in Xylene for 6 minutes and coverslipped with DPX mountant. Phase and 

fluorescent images were obtained using an Olympus IX-81 microscope at 10X 

magnification. 

Acinar morphology and apoptosis were assessed using H&E slides of 3D sections. 

Apoptosis was present if apoptotic bodies (small, sealed membrane vesicles) were present 

[93]. Immunofluorescence (IF) staining of pan-cytokeratin was used to score each organoid 
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for lumen (present or absent) and to confirm epithelial cell identity of acinar cells. Each 

structure was visualized and classified as “with lumen” if there was a clear open space 

within the center of the structure, “no lumen” if the lumen was filled by cells or cellular 

debris. For lumen and apoptosis, 30-35 acinar structures were analyzed per condition.   

Lumen size and total acinar size were also measured by a method based on optical 

coherence tomography (OCT). Imaging of the 3D cultures was performed using a custom, 

ultrahigh-resolution, spectral-domain optical coherence tomography (SD-OCT) system as 

previously described in [90]. The OCT image stacks were resampled into an isotropic pixel 

resolution of 1.55 µm after correcting for the refractive index of the aqueous gels, and 

displayed in a “hot” color map using MATLAB® (2011a, MathWorks). From color mapped 

OCT images, cell clusters resembling acini were selected based on their ‘spherical’ shape. 

The OCT image containing the central position of each acinus was determined by sifting 

through the OCT image-stack to find the image with the largest acinus size. The overall 

acinus area and acinus lumen area were each characterized from these central OCT 

image slices using ImageJ. The mean acini area and mean lumen area were calculated for 

each gel. A total of 50-60 acinar structures were analyzed per condition.  

 

2.3.14. Statistical analysis 

Statistical analyses for experimental results were performed using SAS 9.2 (32). 

ANOVA was performed to compare Basal-like interaction scores across MCF10A, 

MCF10AT1 and MCF10DCIS cocultures. Two-tailed t-tests were performed to determine 

statistical differences between lumen size (by OCT measurement in 3D morphogenesis 

assay) of MCF10A and MCF10DCIS, with and without anti-HGF. A Chi-square analysis 

was performed comparing the presence of apoptosis (Yes/No) and lumen (Yes/No) in the 

3D morphogenesis in MCF10A, MCF10DCIS and MCF10DCIS + anti-HGF cocultures.  
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2.4. Results  

2.4.1. The MCF10A series acquire “Basal-like microenvironment” characteristics  

at DCIS stage 

Each cell line in the MCF10 isogenic panel had a distinct response to coculture with 

reduction mammoplasty fibroblasts (RMF). By multiclass SAM (significant analysis of 

microarrays) we identified approximately 700 genes as differentially expressed across 

these three cell lines (Figure 2.2 A). One set of genes was particularly upregulated in 

MCF10DCIS cells, and not in MCF10A or MCF10AT cells (grey bar in Figure 2.2 A).  This 

cluster of genes was analyzed by Ingenuity Pathway Analysis (IPA) (Tables 2.1 and 2.2) 

and results suggest immune response processes and connective tissue disorders, such as 

immune cell trafficking (p-value=0.021), cell mediated immune response (p-value=0.005) 

acute phase response signaling (p-value<0.001) or cell mediated immune response (p-

value=0.005). Many of these processes were also upregulated in invasive Basal-like breast 

cancers in direct cocultures [5].  

We utilized a gene set identified by Camp et al. [5] to directly test whether the 

cocultures upregulated  Basal-like microenvironment characteristics.  This signature can 

distinguish Basal-like from Luminal cocultures in vitro and can distinguish Basal-like from 

Luminal tumors in vivo. We calculated a score for each sample based on its correlation 

with the signature, and this score was termed the ‘Basal-like interaction score’.  

MCF10DCIS cells had a high Basal-like interaction score (Figure 2.2. B), similar to that of 

invasive Basal-like breast cancer cell line, SUM149. In contrast, the cocultures of 

premalignant MCF10AT1 and MCF10A cells showed weakly positive Basal-like interaction 

scores and the Luminal MCF7 cell line showed a negative score (Figure 2.2. B). Pearson 

correlations were also performed for the monocultures and interaction cocultures of these 

same cell lines (Figure 2.3). The correlation observed in the indirect cocultures followed 
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the same trend as observed in direct cocultures, although the strength of the Basal-like 

score was attenuated.  This attenuation was expected based on dilution and diffusion 

requirements in indirect coculture; signals from the fibroblasts are diluted in large volumes 

of media, whereas direct coculture reduces the dependence on diffusion kinetics and 

protein stability. While neither direct nor interaction cocultures simulate the inhibitory 

effects of basement membrane on cellular signaling, direct cocultures offer important 

advantages to address cell-cell signaling, particularly when considering effectors with short 

half-lives. Thus, all coculture data are from direct cocultures unless otherwise stated. 

 

2.4.2. Upregulation of secreted cytokines in MCF10DCIS-fibroblast cocultures. 

Having established that Basal-like microenvironments are induced by soluble 

factors, we sought to identify the secreted mediators.  Eighty cytokines and chemokines 

were measured in the conditioned media of the direct cocultures. A striking increase in the 

number of cytokines expressed occurred in the MCF10DCIS cocultures, with a total of 62 

cytokines upregulated by more than 1.5-fold.  In contrast, MCF10A and MCF10AT 

cocultures each upregulated only a small number of cytokines (Table 2.3; A full list of 

cytokines and their fold-change relative to monoculture is provided in Table 2.4). The most 

highly upregulated cytokine in DCIS cocultures was hepatocyte growth factor (HGF), which 

increased monotonically from MCF10A to MCF10AT1 to MCF10DCIS and was 

upregulated more than 80-fold in MCF10DCIS and 70-fold in MCF10AT1 direct cocultures 

(Figure 2.4. A).  

When HGF secretion is measured in the conditioned media from cocultures, the 

source of the HGF is not discernible.  To identify which component of the system is 

producing the HGF, intracellular HGF RNA and protein levels were measured in each cell 

line after 48 hours of coculture.  Figure 2.5 shows that HGF is exclusively being produced 
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by the fibroblasts.  The epithelial cells had no detectable levels of transcript or protein in 

the monoculture; however, in coculture some HGF protein was observed in the epithelial 

cells, presumably due to internalization of the receptor-ligand complex. HGF secretion and 

activation is part of a complex cascade that regulates the actions of HGF. Consistent with 

previously published results [94], we found HAI-1 differentially expressed in our heatmap 

from Figure 2.2. A. HAI-1 inhibits the activity of HGF-activator thereby inhibiting the 

activation and subsequent activity of HGF. HAI-1 was found in higher levels in the 

MCF10A cocultures, accounting for different levels of HGF observed between MCF10A 

and MCF10DCIS in our cytokine arrays (which are presumed to measure active HGF).  

HGF is the major ligand for the MET tyrosine kinase receptor and is also a negative 

regulator of MET transcription [95]. To evaluate whether MET is present in these cell lines, 

and whether MET levels are differentially regulated in coculture conditions, we assayed 

expression of this receptor in the MCF10 series, alone and in coculture over the course of 

48 hours. Both at the RNA (Figure 2.5. B) and the protein level (Figure 2.5. C), we 

observed that contact with fibroblasts (6 hours) induced the MCF10DCIS cells to markedly 

upregulate MET RNA.  Peak RNA induction at 6 hours is followed by peak protein 

expression at 12 hours. This effect was not observed (in MCF10A) or markedly diminished 

(in MCF10AT1) in the other two cell lines of the series. Thus, the interaction of 

MCF10DCIS cells with RMF in coculture stimulates an increase in HGF secretion and a 

concomitant increase in epithelial HGF receptor, MET, expression. 

 

2.4.3. An HGF gene signature correlates with Basal-like tumors  

Our coculture results established a fold-change increase in HGF signaling in 

premalignant, Basal-like microenvironments; however, if these changes are essential for 

Basal-like breast carcinogenesis, then they should also be present in invasive Basal-like 
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breast cancers. To assess this hypothesis, we generated an in vitro HGF signature.  We 

identified gene expression changes that occurred in both (1) MCF10DCIS monocultures 

treated with rhHGF and (2) cocultures of MCF10DCIS with RMFs.  These HGF-regulated 

genes are most likely to be effecting the action of HGF on Met in coculture. IPA analysis of 

the HGF signature suggested Sonic Hedgehog Signaling (p-value=0.007), Basal Cell 

Carcinoma Signaling (p-value=0.017), Tight Junction Signaling (p-value=0.020) among 

other signaling pathways were upregulated by HGF signaling in cocultures. Using this 

signature we scored 707 invasive tumors from three independent data sets as having a 

high or low correlation with this HGF signature.  Figure 2.6.A shows that 86% of the 

aggressive Basal-like tumors in these data sets are positively correlated with the HGF 

signature, whereas only 23.6% of the Luminal A tumors present a positive association.  

Additionally, 40% of Her2-like and 36% of Luminal B tumors, both of which are more 

aggressive than Luminal A tumors, were positively associated with the HGF signature (p-

value<2.2e-16). Furthermore, among Basal-like patients that are positive for the HGF 

signature, patients had worse overall survival (Figure 2.6.C). These results emphasize the 

importance of HGF signaling in aggressive breast cancer. While our coculture results show 

that HGF signaling is already present at the DCIS stage, the importance of this pathway in 

survival illustrates that the dysregulation of the HGF pathway persists in invasive Basal-like 

tumors and contributes to their progression. 

 

2.4.4. Blocking of HGF inhibits three dimensional phenotypes 

Our previous studies of Basal-like vs. Luminal cocultures indicated ‘hepatic fibrosis’ 

signaling was upregulated in Basal-like cocultures [5], and in light of our current data 

illustrating (1) that MCF10DCIS:RMF cocultures have high Basal-like interaction scores, 

(2) that HGF was secreted/active in MCF10DCIS cocultures, and  (3) that HGF signaling is 
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over-represented among invasive Basal-like tumors and is predictive of overall survival, we 

used HGF-targeted antibodies to study the role of HGF in Basal-like interaction score and 

functional morphogenic coculture assays. First, MCF10DCIS:RMF cocultures were 

incubated for 36 hours to allow for epithelial-stromal interactions to occur, and for the last 

12 hours anti-HGF antibody was added every 2 hours. In Figure 2.7.A we observe a 

decrease in the Basal-like interaction score due to anti-HGF treatment. While there is 

variation (due to random or other unexplained causes) in the time course data such that 4, 

8 or 12 h after exposure have Basal-like interaction scores ranging from negative to slightly 

positive, it is clear that at all three time points the score is dramatically reduced. 

Morphogenic assays have been shown to track normal, physiological acinar 

development as well as pathological malignant potential of epithelial cells [96]. The Brugge 

and Bissell labs have characterized the development of 3D structures over time in 

MCF10A cells, identifying important morphogenic mechanisms [97-99]. Namely, 

morphogenesis represents a balance between a variety of physiologic and pathologically-

relevant processes including cell proliferation, apoptosis, and cellular migration [97] To first 

confirm that blocking HGF signaling with anti-HGF antibody was affecting these 

phenotypes, we performed wound healing assays. Figure 2.8 shows that the 

MCF10DCIS:RMF cocultures are greatly affected by inhibition of HGF, migration of the 

epithelial cells was reduced in the absence of HGF signaling. Therefore, we aimed to 

develop an integrated picture of how key cellular phenotypes change by studying 

morphogenesis in 3D with and without HGF signaling. Briefly, the expected development of 

MCF10A cells in 3D dictates that by 6-8 days they have reached their final size and will 

then start acquiring a lumen through apoptosis of the centrally located cells [31, 33, 100] 

Using this as a metric, we performed 3D cocultures of MCF10A and MCF10DCIS with 

RMFs in a matrigel-collagen mix for two weeks. Cells were treated in the presence or 

absence of an anti-HGF antibody and the resulting acinar structures were analyzed using 
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two techniques 1) longitudinal Optical Coherence Tomography (OCT) imaging at two time 

points (one week and two weeks) and 2) traditional H&E and IF staining at two weeks. 

To track the morphogenesis of these cell lines over time, we used OCT. as we 

have previously found that OCT imaging allows for longitudinal 3D in vitro imaging without 

disruption of the acinar structures [101]. In addition, with these images we can estimate the 

size of the acinar structures and their lumens.  After counting 50 structures per condition, 

we observed no overall difference in the size of MCF10DCIS cocultures with and without 

anti-HGF antibody treatment. However, blocking HGF resulted in a statistically significant 

decrease in lumen size (p-value=0.017, Figure 2.7.B). The MCF10DCIS cocultures treated 

with the anti-HGF antibody bore a greater resemblance to the non-malignant MCF10A 

(Figure 2.9). As shown in Figure 2.7.B, the number of structures without a lumen is high in 

MCF10A cocultures, and similar in the MCF10DCIS cocultures treated with anti-HGF, 

whereas the untreated MCF10DCIS cocultures have progressed to form a lumen (Table 

2.5; p-value=0.0007). These differences cannot be attributable to differences in 

proliferation rates of the cell lines, because the population doubling times (PDT) of 

MCF10A and MCF10DCIS with RMF are very similar (29.7 vs. 30.8 hours, respectively).  

Finally, H&E stains were used to measure apoptosis. By counting the presence of 

apoptotic bodies in the lumens, structures were classified as having apoptotic bodies or not 

[93]. Since apoptosis is the mechanism by which the lumens are formed [31, 33, 100], we 

would expect that in cells where lumen formation is not complete (MCF10A), the levels of 

apoptosis would be higher at a given time point. Figure 2.7.C shows that as expected, 

apoptosis was greater in the cocultures of MCF10A compared to MCF10DCIS cocultures 

and that treatment with anti-HGF antibody restores MCF10 apoptosis levels to those more 

similar to MCF10A (Table 2.5; p-value=0.0450053). Taking these results collectively, 

treatment with anti-HGF reverts the MCF10DCIS cells to morphogenic phenotypes that 
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resemble the less malignant cells (MCF10A), thereby blocking a microenvironment-

mediated increase in malignant potential.  

 

2.5. Discussion  

Breast cancer progression requires that epithelial cells acquire capabilities that 

enhance their growth and survival. While biological models of cancer have traditionally 

emphasized cell-autonomous characteristics, it is clear that changes in the 

microenvironment are also necessary [6]. Castro et al. demonstrated that the stroma of 

DCIS lesions already possess alterations found in full invasive tumors [102], Ma et al. and 

Allinen et al. demonstrated that genomic changes occur in many cell populations of the 

microenvironment [14, 76]. These models explicitly hypothesize that epithelial cells must 

undergo an evolutionary adaptation to their microenvironments [8, 13, 103]. Other models 

propose that the microenvironment is the driving force of the benign lesion evolution into 

full invasive tumors; Gatenby and Gillies even speculate that the origin of cancer may lie 

not in mutations within epithelial cells but within acquired or somatic mutations changes in 

the mesenchymal cells that control tissue structure [104]. While our data do not support 

these latter models, our data do suggest that progression is not isolated to a single 

compartment (the epithelium), but rather reflective of epithelium-stroma co-evolution. 

Heterotypic interactions between epithelium and stroma foster this co-evolution by 

selecting for complementary phenotypes in stroma and epithelium. 

Evidence of progressive complementarity between stroma and epithelium is critical 

to documenting co-evolution. For example, considering transition from pre-invasive to 

invasive tumors, Hu et al. recently demonstrated that NFKB and COX-2 signaling 

contribute to epithelial-stromal mediated invasive potential [69]. In the current study we 

document co-evolution in the earlier transition between benign and pre-invasive lesions. A 
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striking upregulation of HGF was evident early in progression (at the atypical hyperplasia 

stage), but was not sufficient to induce the characteristic Basal-like stromal-interaction 

phenotype. MET must also be expressed, and at the DCIS stage MET was upregulated 

with drastic consequences on the behavior of the epithelial cells: MCF10DCIS cells 

expressed high Basal-like interaction scores and an associated ability to progress in 

morphogenesis assays. Similarly increased malignant  potential has been observed in 

xenograft models with MCF10DCIS, which also preserve stromal interactions [105, 106]. 

The importance of the HGF pathway was further documented in our system by blocking 

HGF signaling with an antibody, resulting in reversal of expression and morphologic 

phenotypes. In fact, this latter experimental work underscores an advantage of our in vitro 

coculture system: in studying cancer evolution using this cell line panel, pathways can be 

manipulated and direct causal effects can be examined. We were also able to separately 

assay both epithelial and stromal characteristics and show complementary changes. 

Epithelial cells upregulate the MET receptor only at the DCIS stage, despite HGF 

expression by all cocultured fibroblasts. While other studies have reported HGF expression 

by the epithelial cells [107, 108], these studies utilize different cell line models of 

progression and we did not observe a similar autocrine pathway of HGF-MET interaction in 

our studies. The previous studies focused on cell line models of metastatic progression, so 

perhaps our focus on pre-invasive stages of disease also accounts for some differences 

between findings. It is interesting to consider that by later stages of progression, this 

pathway may develop autocrine capability. By studying the interactions and the relative 

contributions of each component at different stages of progression, we can better 

understand how stroma and epithelium are co-evolving. 

Our results emphasize that HGF/MET signaling is important in Basal-like breast 

cancer progression from early in the disease, but HGF has long been studied in invasive 

cancer biology and in normal development [109, 110]. Previous studies have linked 
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HGF/MET signaling with poor outcome in invasive breast cancers [111]. Several recent 

publications have demonstrated the importance of HGF/MET signaling and the 

microenvironment in melanoma treatment-resistance [112, 113].  Our data, using a novel 

HGF signature and three independent tumor datasets, indicate that HGF/MET signaling is 

highly correlated with Basal-like breast cancer subtype and worse overall survival in 

patients. Mouse models with over expression of MET induce Basal-like tumors with 

signatures of WNT and epithelial to mesenchymal transition (EMT) [114], suggesting that 

this pathway’s importance in tumor biology is conserved across species. In normal tissue, 

HGF is produced by stromal fibroblasts and acts as a mitogen, motogen and morphogen 

on MET-expressing epithelial cells [115]. MET is a tyrosine kinase receptor that, when 

activated by its ligand (HGF), auto-phosphorylates and initiates an intracellular signaling 

cascade that involves many targets. In the developing mammary duct, deletion of epithelial 

MET inhibits ductal branching [116] and in adult glands, HGF is critical for tubulogenesis 

[117]. Thus, the HGF/MET pathway is an essential player in normal development and 

wound healing [118, 119]. Given the high expression of wound response genes in the 

tissue adjacent to cancer [73] and the important role of HGF in normal ductal 

morphogenesis and invasive breast cancer, a better understanding of HGF/MET in 

progression of Basal-like breast cancers is important. 

Future work should focus on studying how molecules that block MET signaling 

affect stromal-epithelial interactions and should study HGF/MET in tissue from pre-invasive 

Basal-like lesions. One case series reported by Lindemann et al. [120] attempted to link 

HGF and MET signaling in earlier lesions by immunohistochemistry studies of HGF and 

MET in DCIS. That study concluded that an imbalance in MET expression between the 

tumor and the surrounding normal tissue is associated with aggressive DCIS phenotypes. 

However, uncertainty remains about how the imbalance can best be characterized in 

human tissue. Studying cell-cell communication is difficult in tissue, so the availability of 
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complementary in vitro models is helpful. These coculture models advance our 

understanding of the reciprocal molecular changes in the pre-invasive stages of breast 

cancer and can guide research on tissue.  

In conclusion, heterotypic interactions are crucial for disease progression both 

compartments, the stroma and the epithelium must coevolve to produce a successful 

tumor. Understanding the reciprocal epithelial and stromal changes that occur in early 

lesions will help to identify strategies to treat patients and/or prevent invasive breast 

cancers. HGF/MET signaling is a strong candidate pathway for treating premalignant 

Basal-like lesions and the application of MET inhibitors should be considered in preclinical 

models to advance this plausible strategy.  
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2.6. Figure and Tables 

 

 
 

Figure 2.1. Primary fibroblasts have temporal and intra-individual instability. mRNA 

quantification of HGF across a panel of 14 primary fibroblasts lines and the RMF cell line in 

coculture with the MCF10A progression series. Primary fibroblasts were isolated from 5 

patients both from the cancer-adjacent tissue (CNAF: cancer-normal associated 

fibroblasts) and the tumor itself (CAF: cancer-associated-fibroblasts) at different passages 

(p=2 and p=5). HGF levels vary at the transcriptional level between patients and between 

passages. Samples with a (*) had no detectable levels of transcript by qPCR. 
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Figure 2.2. The MCF10A series progressively acquires “Basal-like 

microenvironment” characteristics. A) One-dimensional (genes only) hierarchical 

clustering showing interaction scores (I-values) for genes that significantly change due to 

coculture. Distinct clusters of genes are upregulated in each cell line. A grey bar adjacent 

to the heatmap shows a cluster of genes that are uniquely upregulated in the 

MCF10DCIS:RMF cocultures. B) The ‘Basal-like interaction score’ was developed by 

Camp et al [5] previously, the coculture data shows a strong relationship between 

progression and expression of Basal-like microenvironment characteristics. Luminal 

cocultures had a negative Basal-like interaction score, while the score increased with 

progression from A/AT1 to DCIS, with DCIS having interaction scores similar to those in 

the Basal-like invasive cancer cell line, SUM149.  
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Table 2.1. IPA pathway analysis of genes upregulated in MCF10DCIS:RMFs direct 

cocultures.  
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Table 2.2.. IPA biological function analysis of genes upregulated in 

MCF10DCIS:RMFs direct cocultures  
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Figure 2.3. The MCF10A series progressively acquires “Basal-like 

microenvironment” characteristics in interaction cocultures. Basal-like interaction 

score of monoculutres (M), Indirect cocultures (I) and direct cocultures (D).  Indirect 

cocultures maintain the trends of the ‘Basal-like interaction score” present in the direct 

cocultures (from Figure 2.2.B).  
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Table 2.3.. Number of cytokine expressed in the cocultures of the MCF10A series.  
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Table 2.4. Fold change relative to monoculture of all cytokine that change in 

coculture of the MCF10A series. List of the cytokines detected on the antibody 

based array with the values for each coculture.   
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Figure 2.4. The MCF10A series cocultures present differentially secreted cytokines 

and MET receptor status. A) A variety of cytokine are overexpressed in the direct 

cocultures of all three cell lines. The number of cytokines overexpressed increases with 

progression. The cytokine most strongly overexpressed was HGF. B) MET RNA fold 

change expression relative to the corresponding cell line in monoculture over a 48hour 

period. We observe a sharp increase of transcript in the MCF10DCIS cells when in 

coculture after 6 hours. C) MET protein fold change expression relative to the 

corresponding cell line in monoculture over a 48hour period. The protein increase is 

delayed 6 hours when compared with RNA expression due to the delay in translation. 
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Figure 2.5. HGF is produced by the stromal component of the cocultures, the RMFs. 

A) RNA levels of HGF (delta CT values relative to 18s gene) in the monocultures of the 

MCF10A series and the RMFs, as well as these cell lines in coculture. The epithelial cells 

had no detectable levels of HGF transcript (*) even in coculture with RMFs; only RMFs had 

high levels of the transcript. B) Protein levels of HGF, again of cells in monoculture or 

coculture. Epithelial cells in monoculture had no detectable levels of HGF (#) however in 

coculture they appear to have some HGF protein, we argue this is due to the 

internalization of the receptor-ligand complex. RMFs, had high levels of HGF expression 

both in monoculture and in coculture. Both graphs demonstrate the same trend, the 

stromal cells are responsible for HGF secretion in this coculture system.  
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Figure 2.6. HGF signaling is present in vivo in Basal-like tumors. An in vitro generated 

signature that captures HGF signaling is highly correlated with invasive Basal-like tumors. 

A) Table with the number of tumors that are positively and negatively correlated with the 

HGF signature by subtype. B) Bar graph that shows the Creighton correlation of each 

Basal-like and Luminal tumors with the HGF signature, the degree of positivity among 

Basal-like tumors is higher when compared to the Luminal tumors (scale bar) C) Kaplan-

Meier survival curves for overall survival among patients that were positive or negative for 

the HGF signature. Patients with Basal-like tumors with positive HGF signatures had worse 

overall survival over a period of 14 years.  
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Figure 2.7. Blocking HGF signaling reverts Basal-like microenvironments and slows 

down morphogenesis in a 3D coculture assay. A) Basal-like interaction score of 

MCF10DCIS:RMF direct cocultures when treated with anti-HGF antibody (as described in 

the methods section), despite the variability Basal-like score is reversed from positive 

association to negative association. B) Morphogenesis represents a balance between cell 

proliferation, apoptosis, and cellular migration. Morphogenesis assays track these 

processes in vitro. Bar graph shows the quantification of structures with and without 

lumens at 2 weeks in coculture. When HGF signaling is blocked in the DCIS cocultures, 

the morphogenesis process  is slowed down causing these acinar structures  to display an 

intermediate phenotype between the MCF10DCIS and the MCF10A cocultures. C) 

Apoptosis was lowest for DCIS at 2 weeks, these cocultures had already undergone 

cavitation at that time point. Treatment with anti-HGF increases the apoptosis levels at this 

time-point because of delayed the cavitation process, D) Representative H&E images of 

cross-sections of the 3D structures and with apoptotic bodies. 
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Figure 2.8. Blocking HGF signaling in coculture conditions inhibits migratory 

phenotypes in the MCF10DCIS cells. A) Quantification of % wound closure after 6 hours 

in a scratch assay of direct cocultures with anti-HGF relative to the cocultures without anti-

HGF. B) Representative phase and fluorescent pictures of the direct cocultures with anti-

HGF at 0 and 6 hours. The epithelial cells were dyed green for better visualization.  
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Figure 2.9. Quantification of OCT measurements of the acini structures. A) 

Representative fluorescent pictures of acinar structures stained with pan-cytokeratin 

(green) and DAPI (nucleus), the left picture shows a structure without a lumen and the right 

picture represent a structure with a very well defined lumen. B) Graphs representing the 

evolution of the overall size (Area) of the acini and the size of the lumen (Lumen). Anti-

HGF treatment does not affect the overall size of the 3D structures; however, it has a big 

influence on the area of the lumen (*p-value=0.017). Acini with anti-HGF treatment present 

smaller lumens resembling the more benign cell line MCF10A. 
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Table 2.5. Chi square analysis of 3D quantification of morphological assay. Lumen 

and apoptosis quantification.  

 



 

Chapter 3  

TUMOR INTRINSIC SUBTYPE IS REFLECTED IN CANCER ADJACENT TISSUE 

 

3.1. Overview 

Introduction: Overall survival of early-stage breast cancer patients is similar for those who 

undergo breast conserving therapy and mastectomy, however, approximately 10-15% of 

women undergoing BCT suffer an ipsilateral breast tumor recurrence. The risk of 

recurrence may vary according to age or breast cancer subtype. Understanding the gene 

expression of the cancer-adjacent tissue and/or stromal response to specific tumor 

subtypes is important for developing clinical strategies to reduce recurrence risk.  

Methods: We studied gene expression data in cancer-adjacent tissue from 158 patients 

with breast cancer. Complementary in vitro cocultures were used to study cell-cell 

communication between fibroblasts and specific breast cancer subtypes.  

Results: Our results suggest that intrinsic tumor subtypes are reflected in the histologically 

normal cancer-adjacent tissue. Gene expression analysis of disease-free cancer-adjacent 

tissues shows that triple-negative (Claudin-low or Basal-like tumors) exhibit increased 

expression of genes involved in inflammation and immune response. While such changes 

could reflect distinct immune populations present in cancer-adjacent tissue of the different 

breast cancer subtypes, altered immune response gene expression is also observed in 

cocultures in the absence of immune cell infiltrates, emphasizing that these inflammatory 

mediators are secreted by breast-specific cell types. In addition, while Basal-like breast 
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cancers are associated with upregulated immune response gene expression, Luminal 

breast cancers are more commonly associated with estrogen-response in adjacent tissues.  

Conclusions: Specific characteristics of breast cancers are reflected in the normal tissue 

that surrounds them. This commonality between tumor and surrounding normal may 

underlie second primaries and local recurrences. Biomarkers derived from normal tissue 

may be helpful in defining personalized surgical strategies or in predicting recurrence risk. 

 

3.2. Introduction  

Breast conservation therapy (BCT) with lumpectomy and radiotherapy has become 

an established alternative to mastectomy for treatment of early breast cancer.  While 

overall survival of early-stage breast cancer patients is similar for those who were treated 

with combinatorial breast-conserving surgery and radiotherapy and those who underwent 

radical mastectomy [121, 122], approximately 10-15% of women undergoing BCT suffer an 

ipsilateral breast tumor recurrence [123].  Younger age has been associated with higher 

rates of recurrence [124], but in recent years it has become apparent that other 

characteristics, such as tumor subtype, may underline these associations.  Aggressive 

breast cancers tend to be diagnosed in younger women [83] and have higher local 

recurrence rates when compared to less aggressive breast cancers [125, 126].  

Furthermore, while at least some studies among all patients (BCT and Mastectomy 

combined) have found increased risk of recurrence among younger women with Basal-like 

or triple-negative breast cancers, the association may vary by surgery type [127], indicating 

complex interactions between treatment and biology of recurrence.  The merit of 

aggressive surgical strategies may depend on the degree to which definitive biological 

changes can be detected in the tissue left behind following BCT. 
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In this study, we hypothesized that the stromal responses or other genomic 

features of histologically normal, cancer-adjacent tissue differ by intrinsic subtype.  Stromal 

responses to breast tumors have previously been associated with clinical outcomes of 

breast cancer [75, 80], however, few studies have identified subtype-specific changes in 

surrounding stroma.  A recent study reported histological differences such as differences in 

epithelial microarchitecture in the cancer-adjacent tissue of triple-negative breast cancers 

versus Luminal breast cancers [128].  Another recent study suggested that ER-positive 

tumors may more commonly be associated with high expression of estrogen receptor RNA 

in histologically normal, cancer-adjacent tissue [129].  These findings have not been 

confirmed in subsequent studies or in larger populations. To address whether adjacent 

tissue reflects the biology of the tumor itself, we investigated gene expression profiles of 

cancer-adjacent tissue from 158 patients.  To identify the contributing cell types (cancer 

cell versus stromal cell contributions) we investigated whether these gene expression 

associations could be recapitulated in vitro using a coculture model system.  Our results 

suggest that estrogen responsiveness may be more common in the normal tissue of 

patients developing Luminal breast cancers and distinct stromal responses are more 

common in Basal-like and Claudin-low tumors.  The triple-negative stromal response is 

dependent upon fibroblast interactions and which may have important consequences for 

the immune microenvironment. 

 

3.3. Methods 

3.3.1. Patient samples:  

Polish Women’s Breast Cancer Study and The Normal Breast Study 

The study population included 139 women from the PWBCS with available snap 

frozen extratumoral breast tissues and gene expression data.  The PWBCS is a 
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population-based case-control study conducted in two major cities in Poland (Warsaw and 

Łódź) during 2000-2003 [130].  PWBCS cases were women aged 20-74 years with newly-

diagnosed, pathologically-confirmed in situ or invasive breast carcinoma identified through 

a rapid identification system organized at five participating hospitals and via cancer 

registries.  Fresh tissues from invasive tumors, non-neoplastic cancer-adjacent breast 

tissue and mammary fat tissue were collected at the time of breast surgery and snap 

frozen in liquid nitrogen. Tumor adjacent breast tissues used in this study were <2 cm from 

the tumor margin. Based on in vitro evidence of their distinctive microenvironments, Basal-

like and Luminal tumors were oversampled in this study. Information on clinicopathological, 

demographic, and anthropometric factors was collected from medical records and in-

person interviews as described previously.  All participants provided written informed 

consent under a protocol approved by the U.S. National Cancer Institute and local (Polish) 

institutional review boards. 

The Normal Breast Study (NBS) is a hospital-based cross-sectional study currently 

being conducted in UNC Hospitals (Chapel Hill, NC, USA) since 2009.  A small subset of 

19 patients with 45 cancer-adjacent samples was used from this study.  All patients had a 

newly diagnosed invasive breast carcinoma.  Fresh tissues were collected at the time of 

breast surgery and snap frozen in liquid nitrogen.  Tumor adjacent breast tissues used in 

this study were classified as peritumoral (<2 cm from the tumor margin) and remote (>2 cm 

from the tumor margin). Information on clinicopathological, demographic, and 

anthropometric factors was collected from medical records and in-person interviews.  All of 

the participants provided written informed consent under approved by the IRB (Protocol # 

LCCC-0913). 
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3.3.2. RNA, expression microarrays and subtyping: Tumor samples 

Fresh tumor tissue was collected at the time of surgery and snap frozen. Illumina 

Ref-8 Beadchip Version2 microarray platform was used and normalization of the data was 

done using Lumi software package.  To classify tumors according to intrinsic subtype, 

genes were median-centered and samples were standardized to zero mean and unit 

variance.  Then the PAM50 predictor was performed as described in Parker et al. [4] to 

categorize the tumors into the five subtypes (Luminal A, Luminal B, Her2-enriched, Basal-

like, and normal-like).  The Claudin-low predictor was  applied as described in [2]. 

 

3.3.3. RNA and expression microarrays: Cancer-adjacent samples 

Fresh cancer-adjacent tissue was collected at the time of surgery and snap frozen. 

All microarrays on cancer-adjacent breast tissue were performed at the University of North 

Carolina at Chapel Hill.  The medial section of fresh frozen cancer-adjacent tissue was 

homogenized using a MagnaLyser homogenizer (Roche), and RNA was isolated by Qiazol 

extraction followed by purification on an RNeasy column as described in Troester et al. 

[73].  RNA quality and quantity were analyzed on an Agilent 2100 Bioanalyzer and a ND-

1000 Nanodrop spectrophotometer, respectively, before running two-color 4X44K Agilent 

whole genome arrays.  Cy3-labeled reference was produced from total RNA from 

Stratagene Universal Human Reference (spiked 1:1,000 with MCF-7 RNA and 1:1,000 with 

ME16C RNA to increase expression of breast cancer genes) following amplification with 

Agilent low RNA input amplification kit.  The same protocol was applied to total RNA from 

breast tissues, with all patient samples labeled with Cy5.  Data were lowess-normalized, 

and probes that had a signal of <10 dpi in either channel were excluded as missing.  

Probes that had more than 20% missing data across all samples were excluded from 

further analysis.  In expression data preprocessing, we 1) eliminated the probes without 
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corresponding ENTREZ ID, 2) collapsed the duplicate probes by averaging, 3) imputed 

missing data using k-nearest neighbors (KNN) method with k=10, and 4) median-centered 

each gene.  

 

3.3.4. Supervised analysis of cancer-adjacent tissue 

Four-class significance analysis of microarrays (SAM) was used to identify 

differentially expressed genes associated with distinct intrinsic breast cancer subtypes 

(Luminal A, Luminal B, Basal-like and Claudin-low) [86].  False discovery rate (FDR) was 

used to address multiple comparisons, with significance defined as FDR < 5%.  

Considering that tumors classified as “normal-like” may result from extensive normal tissue 

or stromal content in the tumor specimen [131], we excluded normal-like tumors from the 

supervised analysis.  HER2-like tumors were also excluded due to their low number (n=9).  

From of the remaining 130 tumor-adjacent, histologically normal tissues, a gene list of 126 

genes was identified as differentially expressed across these 4 tumor subtypes. Functional 

and pathway analyses were done using Ingenuity Pathway Analysis (IPA), with Benjamini–

Hochberg multiple testing correction to identify significant functions and pathways with P-

values less than 0.05. Pathways and functions with less than 2 genes were excluded from 

our analysis.  

 

3.3.5. Composition analysis of cancer-adjacent tissues  

from PWBCS 

Frozen sections were obtained adjacent to each specimen used for microarray 

analysis, and 127 samples from the PWBCS had hemotoxylin and eosin (H&E) stained 

sections that were of sufficient quality to be analyzed for tissue composition.  Slides that 

were out of focus or had folded tissues were not included.  Briefly, 20 µm slices obtained 
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from the histologically normal-appearing tissue adjacent to tumors were H&E stained and 

scanned using Aperio ScanScope CS V11.0.2.725, a digital pathology platform for image 

analysis.  A set of 15 H&E slides were used to train an analysis macro in Genie (Aperio 

Technologies, Vista, CA, USA) to segment adipose tissue, epithelium, non-fatty stroma, 

and glass on each slide. Methods for analysis of composition are detailed the Appendix 1, 

briefly, each slide was manually annotated for area of each tissue component and this was 

used as a ‘gold standard’ to compare with the automated Genie-based method. For both 

manual and Genie annotation, the area of each component was computed and divided by 

the sum of the areas of adipose, epithelium and non-fatty stroma. All image analyses were 

performed by UNC Translational Pathology Laboratory.  The final training accuracy of the 

Genie macro was 99.37%.  Slides were also analyzed by pathologist in terms of 

percentages of adipose tissue, epithelium, and non-fatty stroma in each slide for 

comparison. 

 

3.3.6. Cell lines and Coculture conditions 

Cell lines were purchased and maintained as previously explained in [5].  All cell 

lines were tested for mycoplasma by the University of North Carolina at Chapel Hill Tissue 

Culture Facility, NC.  Cells were maintained at 37°C and 5% CO2. Cultures were 2-

dimensional, grown on plastic.  Cancer cell lines and fibroblasts cells were grown in the 

appropriate cancer cell media (e.g., MCF 7 in RPMI) for 48-hours, after performing growth 

curves to ascertain that the reduction mammary fibroblasts (RMFs) maintained doubling 

times in each media similar to the doubling times observed in RPMI 1640.  Direct 

cocultures were performed as previously explained [5].  The following RMF:cancer cell 

ratios were plated for most direct cocultures: 0:1, 1:4, 1:2, 1:1, 2:1, 1:0, and cells were 

maintained in coculture for 48 hours before harvesting cells for RNA isolation.  
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3.3.7. RNA and expression microarrays: Cell lines 

Cells were harvested by scraping in RNA lysis buffer.  Total RNA was isolated 

using the RNeasy mini kit (Qiagen, Valencia, CA) and RNA quality was analyzed on an 

Agilent 2100 Bioanalyzer using an RNA6000 nano chip.  Quantification was performed on 

a ND-1000 Nanodrop spectrophotometer.  Microarrays were performed according to 

Agilent protocol using 2-color Agilent 4×44K (Agilent G4112F) human arrays and 244K 

(Agilent G4502A) custom human arrays.  Only probes present on the 4×44K array were 

utilized and all 4×44K probes were present on the 244K custom array.  We used the 

Agilent Quick Amp labeling kit and protocol to synthesize Cy3-labeled reference from 

Stratagene Universal Human Reference spiked at 1:1,000 with MCF7 RNA and 1:1,000 

with ME16C RNA to increase expression of breast cancer genes.  The identical protocol 

was applied to total RNA from cocultured or monocultured cell lines to label these samples 

with Cy5.  Labeled cDNAs were hybridized to arrays overnight and washed before 

scanning on an Agilent G2505C microarray scanner.  All array data are available through 

the Gene Expression Omnibus (GSE26411).  

 

3.3.8. Coculture data normalization and analysis  

Data from 122 microarrays (representing monocultures and direct cocultures from 

14 different cell lines) were included in this study.  Only those genes where more than 70% 

of microarrays had signal in both channels greater than 10 dpi were included.  Data were 

Lowess normalized and missing data were imputed using k-nearest neighbors' imputation.  

For the direct coculture analyses, we excluded genes that did not have at least 2-fold 

deviation from the mean in at least 1 sample and the method of Buess et al. [47] was used 

to normalize cocultures to appropriate monocultures performed in the same media and 
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under identical conditions as previously described in [5].  Briefly, the Buess method is an 

example of an expression deconvolution approach applied to coculture data; this method 

estimates the percent of fibroblasts and cancer cells in each coculture, and normalizes the 

data for composition differences prior to estimating the effect of epithelial-stromal 

interaction on gene expression.  The Buess interaction coefficient “I” was calculated as the 

ratio of observed to expected gene expression and an “I-matrix” representing the epithelial-

stromal interaction coefficient for each gene in each coculture was generated.  The 

estimated “I” for each gene and coculture can be thought of as an indicator of the ratio of 

that gene's expression level relative to the expected level based on the cellular 

composition and the monoculture expression values.  For coculture studies, I-matrices 

were analyzed using multiclass Significance Analysis of Microarrays (SAM [86]), 

comparing Basal-like and Claudin-low cocultures  to the rest (Her2-like and Luminal 

cocultures).  Microarray analysis was done using R.1.14.  Heatmap generation and 

visualization were done using Cluster 3.0 and Java treeview, respectively.  

 

3.3.9. Statistical analysis 

R 1.14 was used to generate box plots and chi-square test to generate p-values 

associated with them. SAS 9.2 (32) was used for the remaining analysis and table 

generation.  Odds ratios and confidence intervals were calculated for comparison of 

estrogen response signature and the triple-negative stromal response signature.  Fisher’s 

Exact test was calculated for association of clinical features among both groups of patients 

(‘Triple-negative’ and ‘Others’) as well as for subtype specific tissue composition due to the 

low ‘n’ in some of the cells.  Chi-square analysis was performed to analysis composition 

and estrogen response. 
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3.4. Results 

3.4.1. Tumor intrinsic subtype is reflected in Cancer-adjacent tissue. 

We used samples from the Polish Women’s Breast Cancer Study (PWBCS) to 

identify subtype-associated changes in normal tissue (Population characteristics of the 

PWBCS are shown in Table 3.1).  The triple-negative-adjacent tissues had a unique 

stromal response, with Figure 3.1 showing a heatmap of genes whose expression differed 

significantly between tissues adjacent to Basal-like, Claudin-low, Luminal B and Luminal A 

tumors (in multiclass supervised analysis).  Because there was a common signature 

associated with both triple-negative tumor subtypes, we collapsed tumor subtypes to 

conduct a 2-class comparison of Basal-like and Claudin-low to the rest of the subtypes.  

Gene ontology analysis (using Ingenuity Pathway Analysis) revealed that genes 

associated with Basal-like and Claudin-low tumors are involved in functions and pathways 

such as activation of leukocytes (p-value<0.001), proliferation of mononuclear leukocytes 

(p-value<0.001), cell movement of leukocytes (p-value<0.001), interferon signaling (p-

value< 0.001), Hepatic Fibrosis (p-value < 0.0001), T-helper cell differentiation (p-value< 

0.004) or antigen presentation pathway (p-value< 0.02) (a full list can be found in Tables 

3.2 and 3.3).  

Our results also suggest that the cancer-adjacent tissue shares biology of the 

tumors themselves.  Four genes (NAT1, FOXA1, MLPH, ESR1) used to identify Luminal 

breast cancers by the PAM50 subtyping [4] have elevated expression levels in the tissue 

adjacent to Luminal breast cancers. Having observed high expression of ESR1 adjacent to 

Luminal breast cancers, and in light of previous reports suggesting similarities between ER 

positive tumors and their adjacent tissue [129], we utilized an estrogen response signature 

(EReS) generated by Oh et al. [132] (Figure 3.1A) to calculate Pearson correlation 

coefficients for each cancer-adjacent specimen. Based on these Pearson correlation 
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coefficients, samples were classified as being positive or negative for the EReS.  The 

Odds Ratios (using Basal-like cancer-adjacent tissue as the reference) clearly shows an 

increased proportion of estrogen responsive tissues among Luminal A (OR=2.36) and 

HER2 (OR=1.79) (non-triple-negative) patients (Table 3.4).  

To further investigate if distance affects the expression of EReS, we utilized a small 

cohort of 19 patients with 45 cancer-adjacent samples (from The Normal Breast Study, 

explained in the Method section) with carefully annotated distances from the tumor.  We 

tested the EReS among peri-tumoral samples (less than 2cm from tumor) and ER positives 

were more likely to express this signature (62.5%) than ER negatives (16.6%).  In addition, 

the EReS was tested in remote samples (more than 2cm from tumor), of ER+ and ER- 

tumors, we observe that it follows the previously identified association where an increased 

proportion of ER+ tumors have estrogen responsive cancer-adjacent tumors in samples as 

far as 4cm from the tumor (62.5%) (Table 3.5).  This shows that estrogen receptor positive 

tumors arise from normal tissues that are more likely to be estrogen responsive and that 

the estrogen responsiveness is not localized to just the area adjacent to tumor. 

Conversely, the aggressive signature appears to be highly localized. To estimate 

the strengths of the association between triple-negative subtype and the newly identified 

triple-negative gene expression signature, we also computed Pearson correlation 

coefficients for each tissue’s association with this signature (from Figure 3.1).  Again 

samples were classified as positive or negative for this signature using Pearson correlation 

(as described in methods) (Figure 3.1.B).  Odds ratios (using Luminal cancer-adjacent 

tissues as a reference) show that Basal-likes and Claudin-lows (OR=8.2 and OR=8.4) are 

much more likely to express the signature associated with triple-negative cancer adjacent 

tissue.  Luminal B (OR=3.4) were more positively associated with this signature than 

Luminal A breast cancers, but were more weakly associated than the triple-negatives 

breast cancers (Table 3.6). 
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3.4.2. Cancer-adjacent expression is not associated with tissue composition. 

 One source of variation in cancer-adjacent signatures is the heterogeneous 

composition of normal breast tissue.  To evaluate the role of tissue composition in estrogen 

response and triple-negative signatures, we quantified the proportion of different 

components (epithelium, non-fatty stroma and fatty/adipose) present in each individual 

sample.  Sections adjacent to the portion of tissue used for RNA extraction were used to 

perform analyses.  We used a computational approach to automate analysis of the 

percentage of epithelium, non-fatty stroma and adipose present in H&E stained tissue 

sections.  Results of this analysis show that the gene expression patterns detected in 

Figure 3.1 are not due to differences in composition.  The average percentage of 

epithelium in these samples was 9.8% while average percentage non-fatty stroma was 

26.8%. Table 3.7 dichotomizes the samples as below or above average for each 

component.  There is no statistically significant association between the subtypes and 

epithelial content (Fisher’s Exact test p-value=0.1652) or stromal content (Fisher’s Exact 

Test p-value=0.2346).  The EReS was also not associated with epithelial content (p-

value=0.8570), but was significantly associated with non-fatty stromal content (p-

value<0.001). 

 

3.4.3. Cancer-adjacent biology can be recapitulated in vitro. 

To further understand the unique biology of the triple-negative tumors, it is 

important to understand which stromal cell types are contributing to the cytokine and 

interleukin gene expression observed in triple-negative adjacent tissues. Previous studies 

examined cytokines in cancer-adjacent stroma and hypothesize that they were due to 

inflammatory infiltrates [75], however the origin of these signatures are not well 

documented. In vitro cocultures are useful systems to model specific heterotypic 
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interactions and we have previously demonstrated that they recapitulate tumor biology [5].  

However, in the current study we wished to address whether these changes extend to 

cancer-adjacent tissue and to expand the definition of triple-negative to include the newly 

identified Claudin-low subtype [2].  Thus, we cocultured breast cancer subtype models with 

reduction mammary fibroblasts (RMFs) to study gene expression changes due to 

heterotypic interactions.  By analyzing these cocultures, we identified a unique set of 

genes upregulated in triple-negative cocultures (Figure 3.2.A, grey bar). To address 

whether this in vitro gene signature is associated with triple-negative-adjacent tissue in 

vitro we took two approaches: (1) we compared pathways and biological functions in vitro 

with those identified in tissue (as shown in Figure 3.1) and (2) we studied the expression of 

the in vitro genes in breast tumors and the cancer adjacent tissue. 

Using the first approach, the genes identified through the in vitro cocultures (Tables 

3.8 and 3.9) and in vivo are involved in similar pathways (Tables 3.2 and 3.3).  Statistically 

significant biological functions and pathways common in both settings were activation of 

cells (p-value<0.001), proliferation of mononuclear leukocytes (p-value<0.001), cell 

movement of leukocytes (p-value<0.001), inflammatory response (p-value<0.001), hepatic 

fibrosis (p-value<0.001) and those involved in immune cell such activation role of cytokines 

in mediating communication between immune cells (p-value=0.002) or IL-6 signaling (p-

value=0.002). Using the second approach, the in vitro, coculture-derived triple-negative 

gene signatures were associated with subtype in vivo.  Basal-like and Claudin-low tumors 

had high expression of coculture genes both in the intratumoral microenvironment (Figure 

3.2.B), p-value=8.44e-15 and in the cancer-adjacent tissue (Figure 3.2.C), p-value=0.196. 

The magnitude of the differences were lower among cancer-adjacent tissues and the 

sample size was smaller, so the resulting p-value was not statistically significant, but the 

patterns of expression mirror the statistically significant patterns observed intratumorally. 
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3.5. Discussion 

Stromal responses to tumor are well documented in many gene expression and 

pathology studies [75, 76, 79, 128], occurring in invasive disease and early during disease 

progression (Chapter 2). Specific stromal responses, such as wound response signatures 

in the tissue adjacent to cancers, can predict cancer survival and relapse [73, 74]. 

However, while most tumors appear to be associated with some stromal reaction, there is 

substantial heterogeneity in the gene expression and other characteristics of cancer-

adjacent tissue. Roman-Perez et al., identified two distinct subtypes of cancer-adjacent 

tissues that were independent of tumor subtypes but that presented distinct survival 

patterns [80].  Graham et al. also showed that ER positive tumors more commonly express 

estrogen receptor in adjacent tissue [129].  Yang et al. conclude that compared to Luminal 

tumors, tumors with basal phenotypes (by immunohistochemistry markers) are associated 

with less involution in cancer-adjacent terminal-ductal lobular units (TDLU) [128]. Given 

that there appear to be subtype-specific stromal responses and tissue characteristics, this 

research may have important translational implications. Of note, aggressive forms of 

breast cancer (i.e.: triple-negative breast cancers) have higher rates of local recurrence 

[125, 126].   

Our results support biological differences in the cancer-adjacent tissue of Basal-like 

vs. Luminal breast cancers and suggest that biologically distinct tissue characteristics exist 

in the histologically normal tissue left behind after tumor resection. Tissue adjacent to 

Basal-like and Claudin-low tumor subtypes (triple-negative breast cancers) have highly 

expressed genes involved in immune and inflammatory processes, consistent with the 

proinflammatory milieu reported previously for aggressive tumors [2, 81, 133]. This 

response of the stroma or ‘reactive stroma’ [23] in these triple-negative breast cancers, 

may be important for outcome and may reflects a response to tumor instead of a host 

predisposition.  In less aggressive Luminal cancers, genes used to identify Luminal tumors 
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[4] as well as their characteristic estrogen response were found upregulated in the cancer-

adjacent tissue.   

The current study is cross-sectional in nature and therefore cannot identify whether 

the cancer-adjacent signatures are a response to tumor or pre-exist tumor formation.  

However, if these changes are host factors that precede the tumors, they may reflect 

subtype-specific risk.  Some authors have proposed that host factors or widespread field 

effects underlie phenotypic concordance between first and second primaries, however 

molecular evidence of this has not been identified [134, 135]. Our results may reflect 

molecular evidence of etiologic distinctiveness: we observed that ER positive tumors are 

more likely to occur in EReS normal tissues.  An important question is whether this 

difference is present only peritumorally, or across a broader geographic range within the 

tissue. 

Distance from tumor has been hypothesized to be important for determining 

whether molecular changes surrounding tumors relate to recurrence or second primary 

risk.  Yang et al. hypothesized that changes observed close to the tumor are due to 

cancerization effects, especially mutations in epithelium, and those observed further away 

are a result of the environmental risk factors [136].  We found that ER positive tumors tend 

to have estrogen-responsive cancer-adjacent tissues both peritumoral and remote.  

Because of this association we suspect it is a host or etiologic pre-disposition factor.  The 

triple-negative signature could not be assessed in samples from >2cm from the tumor 

because intrinsic tumor subtype information was not available for these remote samples. 

However, based on previous observation we speculate it to be localized response, and 

related to stromal reaction to the tumor.  If this is true, it seems less likely to reflect risk of 

second primaries. Thus, the different factors that influence the phenotype of the cancer-

adjacent tissue may have distinct clinical implications.  
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 Cancer-adjacent tissue is composed of a high percentage of stroma (both fatty and 

non-fatty) and gene expression analyses of these tissues are enriched for stromal 

pathways. Because of this, many studies have approached the study of stromal response 

and field cancerization effects by microdissecting and studying the individual cellular 

components [14, 75, 76].  However, cellular heterogeneity is an important factor, and while 

our results do not allow definitive attribution of signatures to specific cell types, we are able 

to see that stromal composition plays a distinct role in the estrogen responsiveness 

signature. While mechanisms by which the stromal content mediates the estrogen 

response remain to be determined, some evidence suggests that stroma may modulate 

hormone receptor levels in breast epithelium [137]. By studying whole tissue we are able to 

capture important epithelial-stromal interactions among the different components.  

However, tissue studies, even with microdissection, cannot perfectly isolate the immune 

infiltrates from stroma and epithelium, thus other approaches are needed to identify the cell 

type of origin for the immune mediators that are upregulated in the triple-negative 

microenvironment. 

Our use of cocultures allowed us to identify fibroblasts as important contributors to 

cytokine/chemokine expression in the tissue adjacent to triple-negative cancers. Our data 

suggest that triple-negative stromal response is dependent upon fibroblasts interactions 

because epithelial-fibroblast cocultures, even in the absence of immune cells, produce 

molecules that are important in immune cell recruitment and activation. These molecules 

(i.e.: cytokines, chemokines, etc.) can also play important roles in regulating epithelial 

cells.  For example, IL-6 appears to regulate epithelial cellular differentiation [138] . Many 

others have previously shown that in vitro epithelial-cell generated signatures have 

predictive accuracy when using tumor gene expression data [5, 47, 59, 77], however we 

expand this to show that even stroma-derived signatures can be predictive and that some 

of the signatures are not only highly expressed in tumors but also in cancer adjacent 
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tissues. The robustness of the biological phenotype across settings strengthens our 

observation that triple-negative BCs have unique microenvironments.  

Our study had some limitations. Our analysis is limited to 139 patients from Poland, 

and 19 from a North Carolina-based study. While the U.S. study appears to validate the 

findings from Poland, complete tumor subtype data was not available and so medical 

record abstraction of receptor status was used instead. Future work should verify our 

observations in other populations with accurate tumor subtype information. In addition, 

while neither EReS nor triple-negative subtype were associated with epithelial content, it is 

possible that epithelium specific signals were under-represented in our tissue. Epithelial 

content is low in normal breast tissue (median 9.8% in our data), and therefore 

microdissection studies may be necessary to enrich for these changes. Simultaneously, 

consideration of other demographic variables (such as BMI, race or age) in tandem with 

tumor subtype may help to further understand heterogeneity in cancer-adjacent tissue 

expression among patients with particular tumor subtypes. Future work could also evaluate 

specific immune cell populations and their associations with the cytokine profiles that are 

upregulated in triple-negative cancers.   

In conclusion, we found distinct biological characteristics of the cancer adjacent 

tissue depending upon the intrinsic characteristics of the tumor.  This commonality 

between tumor and surrounding normal may underlie second primaries and local 

recurrences and may provide plausible explanations as to why aggressive tumors recur 

more often. These results also suggest that it may be feasible to develop normal tissue 

biomarkers that can help to define appropriate, personalized surgical strategies. 
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3.6. Figures and Tables 

 

Table 3.1. Characteristics of Polish Women’s Breast Cancer Study patients with 
gene expression profiles 
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Figure 3.1. Tumor Intrinsic Subtype is reflected in Cancer-Adjacent Tissue. Heat map 

representing 126 differentially expressed genes across the cancer-adjacent tissue of 

Claudin-low (triple-negative), Basal-like (triple-negative), Her-2-like, Luminal B and Luminal 

A. Distinct clusters of up and down regulated genes show a trend in the gene expression of 

these cancer-adjacent tissues. Among those 126 genes, 4 genes that are used in the 

PAM50 classification system to identify Luminal tumors are aso highly expressed in their 

adjacent tissue.  A) Samples were dichotomized as having a high (black) or a low (white) 

expression of an Estrogen response signature (EReS) developed by Oh et al. Luminal 

cancers had the highest proportion of EReS positive cancer-adjacent tissues.  B) Samples 

were dichotomized as having high (dark orange) or low (light orange) expression of the 

newly identified triple-negative signature (upregulated genes in cancer-adjacent tissue of 

Basal-like and Claudin-low tumors, represented here by the orange bar on the side). The 

triple-negative cancers (Claudin-low and Basal-like) had the highest proportion of samples 

with high expression of this signature.  
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Table 3.2. Biological functions associated with genes differentially expressed in 
cancer adjacent tissue of Claudin-low, Basal-like, Luminal B and Luminal A tumors. 
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Table 3.3. Pathways associated with genes differentially expressed in cancer 
adjacent tissue of Claudin-low, Basal-like, Luminal B and Luminal A tumors. 
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Breast Cancer Subtype Odds Ratios (95% C.I.) 

Basal-like Ref. 

Claudin-low 0.12  (0.01-1.14) 

Luminal B 0.97  (0.31-3) 

Her2-like 1.79  (0.35-9.13) 

Luminal A 2.36  (0.77-7.18) 

. 
Table 3.4. Odds Ratio of estrogen response signaling in the cancer-adjacent tissue 
(PWBCS). 
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Table 3.5. Cancer-adjacent tissue classified by ER status as well as distance from 

tumor (NBS). Association between estrogen response gene signature and distance is 

shown. 

  



83 

 

Breast Cancer Subtype Odds Ratios (95% C.I.) 

Basal-like 8.23  (2.31-29.32) 

Claudin-low 8.44  (2.04-35) 

Luminal B 3.42  (1.5-7.9) 

Her2-like 0.97  (0.31-3) 

Luminal A Ref.  

 
Table 3.6. Odds Ratio of triple-negative microenvironment signature in cancer-
adjacent tissue (PWBCS). 
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Effective Sample Size = 127 
Frequency Missing = 3 
 
Table 3.7. Cancer-adjacent tissue classified by subtype and by %epithelium (average 
% epithelium=9.8%) as well as by %non-fatty stroma (average % non-fatty 
stroma=26.8%). Association between estrogen response gene signature (EReS) and 
epithelial content. 
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Figure 3.2. Triple-negative microenvironments can be recapitulated in vitro using 

coculture systems. (A) Direct in vitro cocultures were performed by culturing fibroblasts 

with cell lines models of different subtypes of breast cancer. Heat map represents 

interaction values (I) for genes differentially expressed in triple-negatives versus all the 

other cocultures. The grey bar represent genes upregulated in triple-negative tumors. B) 

The in vitro generated list of genes (grey bar in A), is highly expressed both in the 

intratumoral microenvironment (B) and in the cancer-adjacent tissue (C).  
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Table 3.8. Biological functions associated with genes differentially expressed in 
Basal-like and Claudin-low cocultures. 
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Table 3.9. Pathways associated with genes differentially expressed in Basal-like and 
Claudin-low cocultures. 

 

 



 

Chapter 4 

DISCUSSION 

4.1. Summary of main findings 

The findings in Chapters 2 and 3 stress the importance of heterotypic interactions 

in breast cancer progression. Utilizing in vitro coculture, in tandem with in vivo 

observational studies, it is possible to increase our understanding of complementary 

epithelial and stromal changes in breast cancer progression.  Figure 4.1 puts our findings 

in context of the natural history of a tumor.  We showed how epithelial-stromal interactions 

were altered in progression of Basal-like breast cancer from benign disease to DCIS 

(Chapter 2) by combining coculture of fibroblasts with the MCF10 progression series and 

tumor data. We show that HGF secretion and the complementary MET overexpression 

occurs early in Basal-like breast cancer progression and is maintained in invasive tumors.  

We then showed how epithelial-stromal interactions vary with different tumor subtypes 

using cocultures to identify gene expression changes induced by heterotypic interactions 

and then evaluating these signatures in vivo in tumor and cancer-adjacent normal tissue 

(Chapter 3).  These findings in premalignant and invasive breast lesions have possible 

consequences for theories of carcinogenesis and for clinical prevention of tumor 

recurrence.  

 

4.2. Implications for evolutionary theories of carcinogenesis. 

Biological models of cancer have traditionally emphasized epithelial characteristics, 

however it is clear that changes in the microenvironment are also important [6]. 
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Evolutionary theories of carcinogenesis argue that tumors are initiated and progress with 

pressure from the surrounding tissue, and their survival is dependent upon acquisition of 

mutations that improve ‘fitness’ (Figure 4.2.A). In other words, these models explicitly 

hypothesize that epithelial cells must undergo an evolutionary adaptation to their 

microenvironments [8, 13, 103]. Many models have been proposed to explain how this 

process occurs, some propose the microenvironment is the driving force of progression, 

others even speculate that mutations within the stromal cells are necessary [104]. Based 

on our data we suggest that tumor progression is not isolated to a single compartment, but 

rather reflective of epithelium-stroma co-evolution.  Heterotypic interactions between 

epithelium and stroma foster this co-evolution by selecting for complementary phenotypes 

therefore having long lasting consequences for the phenotypes of both compartments. 

These evolutionary theories of carcinogenesis imply that cancers must overcome 

many hurdles the microenvironment puts on them.  Physiological tissue architecture and 

composition or ‘normal tissue contexts’ are known to suppress tumor growth [8, 139].  

Studies have shown that neoplastic cells introduced into normal tissue contexts will revert 

back to benign phenotypes [140]. Conversely, we know that during the invasive stages of 

cancer, the microenvironment has a promoting effects on the tumor, helping it grow and 

expand.  Bissell et al. argue that the microenvironment undergoes two stages during 

carcinogenesis, one in which it still maintains its physiological organization and therefore 

suppresses tumor growth, another in which it becomes promoting of tumor growth [8] 

(Figure 4.3.B).  In Chapter 2 and 3 we investigated the crucial dialogue between the 

microenvironment and the tumor during the early stages of tumorigenesis which are 

essential for the tumor, as well as the effects of this dialogue on the tissue directly adjacent 

to the tumor which may have consequences later, when the microenvironment has 

become permissive and may have implications for recurrence and reflect etiologic 

heterogeneity of the tumors. 
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We now know that the distinct tumor subtypes have different risk factors and 

present different natural histories.  Development of Basal-like tumors is associated with 

premenopausal obesity, having children as well as having a BRCA1 mutation [141-144]; 

Basal-like breast cancers progress much more rapidly through the pre-invasive phases of 

the disease and tend to present with recurrences more often  [85, 125-127].  This etiologic 

heterogeneity is intimately tied with the evolution and progression of tumors.  The final 

outcome of a given tumor will be the interplay of environmental, host and tumor specif ic 

factors; in other words how the epithelial-stromal interactions evolve given the context in 

which they develop.  Many authors argue that we can use cancer microenvironments as 

windows into the tumors past and potentially its future.  Our findings show that (1) 

investigating the early events in the natural history a tumor will shed light on how and why 

certain factors allow a tumor to overcome the microenvironmental hurdles and (2) the 

cancer-adjacent tissue may provide insight into further understanding the origins of certain 

tumors as well as understand why and how different subtypes recur more than others. 

Future work should focus on further understanding these heterotypic interactions 

and how they play a role in tumor progression.  Specifically, tumor-stroma interactions 

should be studied to understand clonal expansion of neoplastic epithelial cells within 

tumors [145], how and why certain clones progress and others do not.  It would be 

interesting to study if this clonal expansion also occurs among stromal cells; are certain 

subpopulations of fibroblasts or immune cells selected in individual tumors? Do certain 

subtypes of breast cancer select for stromal cells with similar alterations?  Another concept 

that should be further investigated is the fact that at the time of diagnosis cancer patients 

present many micrometastasis but not all of them progress to form macrometastasis [8]. 

The microenvironment of the metastatic organ is clearly playing a role in this process, 

understanding how the heterotypic interactions allow for some metastasis to occur but not 

others will be essential for improving clinical management. There are many remaining 
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questions about evolutionary microenvironments that should be addressed.  Future studies 

should also be designed to address the limitations of the current work.  In particular, there 

are limitations and opportunities for future research using both coculture model systems 

and human tissue-based genomic methods. 

 

4.3. Limitations and future directions 

4.3.1. Coculture models of gene expression 

In vitro cocultures have led to significant advances in our understanding of 

heterotypic interactions among different cell types, complementing mouse studies and 

human in vivo studies. However, making inferences about the relevance of coculture 

findings to human patients in vivo has limitations and requires some assumptions.  Some 

limitations of these systems are as follows: representativeness of stromal cell lines, 

variation introduced by other cell types such as macrophages or mesenchymal cells, 

understanding the differences between 2D and 3D cultures or the limitation of only being 

able to studying one or few signaling pathways.   

We utilized a single fibroblast line through much of our work: an immortalized 

reduction mammoplasty fibroblast [70].  It is clear that this cell line does not represent the 

full variability present in human breast tissue fibroblasts, but this system had advantages 

for allowing reproducibility of our experiments.  It also enabled us to compare findings 

across cancer cell lines.  While we hypothesized that stromal interactions were important, 

our work focused more on understanding how the variation in cancer cells modulated 

stromal responses.  Future work could expand the number and type (for example: primary 

cell lines) of fibroblasts and study a single breast cancer cell line’s responses to a range of 

stromal cells.  In fact, some studies [38, 146] have already demonstrated that stromal 

characteristics may vary considerably from patient to patient. We focused on isolating 
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fibroblast-epithelial interactions in coculture and it was beyond the scope of this 

dissertation to study how these interactions are affected by other cell types. While 

inflammatory responses and cytokine milieus emerge as important biological determinants 

of Basal-like vs. Luminal cancer microenvironments, it will be interesting to investigate the 

effect of other immune cell populations on epithelial cells in the context of a coculture.  

Macrophages have been studied in coculture with breast cancer cell lines [50, 81, 133], but 

there is more to be learned in this area.  The plasticity of immune cells makes this a 

particularly challenging area of study.  For example, macrophages can react to coculture 

by differentiating and polarizing to a wide range of phenotypes.  Understanding these 

changes in vitro is a first step to interpreting immune cell infiltration and tissue level gene 

expression in tumors.  It will also be useful to consider specific inflammatory signals in 

monoculture, as previously addressed with IL-1B, [51] but adding other cells to the culture 

system will improve the in vivo relevance of these findings.  Also, a variety of 

mesenchymal cells appear to induce similar responses in cancer cells [47, 54, 67].  It is 

also possible that the responses can even be induced by de-differentiating epithelial cells 

or by interactions between Luminal and myoepithelium. These transient phenotypes are 

challenging or impossible to study in vivo, but could be more readily manipulated in 

coculture systems.   

It is also important to consider how the physics of the cell culture model influence 

cell behavior. For example, we performed 3D cocultures in a mix of matrigel and collagen 

and compared these findings to findings from 2D.  Previous papers have shown that cells 

have distinct behavior in 3D environments compared to 2D environments [99].  Each 

system also has unique advantages for studying specific characteristics.  For example, we 

analyzed morphogenesis in 3D, allowing us to study the integration of several cellular 

phenotypes in a single assay [32, 33, 97]. This experimental model also leaves gaps and 

results likely depend upon the type of extracellular matrix used, the stiffness present in the 
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matrix and the amount of time that the cell are allowed to grow [147, 148]. Therefore, 

studies focusing on ECM in heterotypic contexts [149], the role of mechanical forces [150] 

and the overall 3D architecture of the tissue [151] will add new biological insights.  

Biomechanical features are of established importance in cancer progression, and 

nanotechnology tools for dynamically altering physical environments may help address this 

[11, 101, 152] . 

We must acknowledge that a common limitation to all cocultures is that the unit of 

study is often a single pathway or a small number of pathways in isolation, and typically 

limited to cancer cells and one other stromal cell type.  Each coculture system 

recapitulates some aspect of the whole tissue and the interactions that are occurring in 

vivo, but given the complexity of the whole tissue, cocultures cannot fully recapitulate all 

dynamics and dimensions of the tissue.  Assays and bioinformatics methods are available 

for studying interactions between two or three cell types; but incorporating more cell types 

has not yet been accomplished.  In any case, models with increasing complexity will be 

needed to advance our understanding of heterotypic interactions in breast cancer.  

 Beyond these limitations, there is much to be learned about epithelial-stroma 

interactions and cocultures will play an important role in further understanding key 

processes in carcinogenesis. Future studies using coculture systems should address 

several issues, including how the microenvironment of a tumor responds to hypoxic 

conditions and how this affects disease progression.  It is established that hypoxia occurs 

during tumor progression but the epithelial-stromal interactions affected by these 

conditions are unknown.  These cocultures also could address other data types beyond 

gene expression, such as metabolomics.  The Warburg effect, defined as energy 

overproduction primarily using the glycolytic pathway, is not easily studied in solid tumors 

and could be studied in detail in coculture models [38].  As metabolism has gained 
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recognition as an important driver of cancer progression [6], novel methods for studying 

metabolic microenvironments are needed.  

Finally, there may be important translational implications of extending of cocultures 

to study responsiveness to cytotoxic chemotherapeutics.  If signatures associated with 

increased toxicity were able to predict pathologic complete response in vivo, cocultures 

could help identify pathways that are promising as biomarkers or targets in neoadjuvant 

therapies. Given the wealth of public data from tumors and their adjacent 

microenvironment that has accrued in recent decades, it is becoming increasingly possible 

to test the relevance of in vitro gene expression results in patient populations at little 

additional cost. These types of analyses could help refine lists of candidate pathways 

involved in interactions to those that are most likely to play an important role in disease 

progression. 

 

4.3.2. Tissue-based genomic studies.  

There is an urgent need for reliable, predictive biomarkers,and these biomarkers 

may develop out of a better understanding of how tumors arise and progress.  The majority 

of the studies to understand tumor biology have been done on tumor samples collected at 

the clinical or expression stage  (Figure 4.2), which is the final step in a very long process 

that takes many years [8].  These studies have been extremely helpful in understanding 

the phenotypes of invasive tumors, but they can provide little information about the early 

stages of disease.  Chapter 2 illustrates that some changes observed in invasive Basal-like 

tumors in vivo (e.g. HGF signaling) occur early.  By examining only invasive tumors, we 

would have missed that this signaling pathway becomes important much earlier in the 

disease progression. Additional tissue samples, collected from earlier stages of 

progression such as atypical hyperplasia or DCIS, could help to further ascertain the 
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relevance of these pathways in early lesions.  In an ideal study, researchers collect tissue 

samples in a longitudinal design, beginning with benign or histologically normal tissues 

(during the induction period,) and study how they are altered over time, ultimately leading 

to tumor formation.  This design is impractical for ethical and other reasons, however we 

argue that a good surrogate is cross-sectional study of many people at different stages, 

including analysis of the tissue adjacent to cancer.  These cross-sectional and cancer-

adjacent tissues are easily obtained and can reflect the causal action period providing a 

window into the natural history of the cancer [73, 153] (Figure 4.2.).  The ‘genomic 

fingerprints’ of lifetime exposures and risks may be detectable within these normal and 

benign tissues, prior to onset of genomic instability [80].  Genomic instability may mask the 

etiologically-relevant and early progression-relevant changes.  The results presented in 

Chapter 3 represent how we could utilize cancer-adjacent gene expression patterns to 

further understand breast cancer etiology.  Future studies and analysis should devote 

more efforts to the collection of these samples, with a focus on understanding the etiology 

of this heterogeneous disease, and understanding how risk factors and host response to 

the cancer work together to alter the normal tissue  

 

4.4. Translational implications of findings 

In these studies we have analyzed epithelial and stromal changes that occur in 

early lesions and in tissue adjacent to tumors.  Specifically, our results suggest that 1) 

HGF/MET signaling is a strong candidate pathway for treating premalignant Basal-like 

lesions and the application of MET inhibitors should be considered in preclinical models to 

advance this plausible strategy, 2) understanding the heterogeneous etiology of breast 

cancer as well as the responses to the tumors will help design better treatments. For 

example, triple-negative breast cancers may warrant wider margins during surgery given 
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the expression of aggressive gene signatures present in the cancer-adjacent tissue.  

Together these advances contribute to our larger goal: to better understand cancer 

incidence, identify new ways of preventing the disease, and improving clinical 

management of patients with breast cancer. 
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4.5. Figures  

 

Figure 4.1. Summary of findings. Schematic representing how the studies from this 

document are integrated into the natural history of a tumor. Highlighted in green are the 

major finding of Chapter 2 (Role of HGF in epithelial-stromal cell interactions during the 

progression from benign disease to DCIS). We show how epithelial-stromal interactions 

are altered in progression of Basal-like breast cancer from benign disease to DCIS, that 

HGF secretion and the complementary MET overexpression occurs early Basal-like breast 

cancer progression and that it is maintained in invasive tumors.  Highlighted in orange are 

the major finding of Chapter 3 (Tumor intrinsic subtype is reflected in the cancer-adjacent 

tissue), we show how epithelial-stromal interactions vary with different tumor subtypes 

using cocultures to identify gene expression changes induced by heterotypic interactions 

and then evaluating these signatures in vivo in tumor and cancer-adjacent normal tissue. 

These alterations may have consequences for breast cancer recurrence.  
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Figure 4.2. Evolutionary theories of carcinogenesis. A) Schematic representing the 

clonal evolution of a small tumor in response to a change in the microenvironment. B) 

Diagram adapted from Bissel et al. (cite), it shows the anti-tumorigenic pressures the 

carcinogenic process encounters because of the microenvironment.  
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Figure 4.3. Natural history of breast cancer. A tumor undergoes many stages from a 

clinical perspective. There is an initial stage in which risk factors and genetic susceptibility 

are interacting with the tissue until a given cell undergoes the first driver mutation that will 

lead to cancer (disease initiation). The Latent period is when, the disease is progressing 

but we cannot detect it clinically. Lead time is very dependent on tumor site and the 

available technologies, it represent the time between when we can detect the tumor (in the 

case of breast cancer through mammography) and the time in which it become clinically 

detectable. After a tumor is clinically detectable is when tumor samples are usually 

collected; this is also the time in which the tumor-adjacent sample should be collected. 

Collection of this tissue will increase our understanding of the preceeding stages.  
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Appendix 1. BREAST TISSUE COMPOSITION MEASURMENTS.  

Frozen non-neoplastic breast specimens of approximately 100 mg were cut over 

dry ice and then used to cut frozen sections.  Sections were collected at both ends of the 

specimen and then constructed into 20 µm slides. The central portion was used for RNA 

extraction. After H&E staining, the slides were scanned into high-resolution digital images 

using the Aperio Scan-Scope XT Slide Scanner (Aperio Technologies, Vista, CA, USA) in 

the UNC Translational Pathology Laboratory. After excluding slides with poor resolution or 

having folded tissues, 118 (97.5%) slides were subjected to breast tissue composition 

analysis. To train the composition estimator in Aperio’s Genie software, 15 representative 

H&E slides were selected and evaluated by eye by a pathologist who provided semi-

quantitative estimates of the percentage of adipose tissue (10% bin width), epithelium (1% 

bin width), and non-fatty stroma (10% bin width). Each pathologist-scored slide was also 

manually annotated for epithelial area, stromal area, and total area (mm2) using Aperio 

ImageScope software.  These digital area-based, quantitative estimates were used to train 

Aperio’s Genie Classifier to partition epithelium, adipose tissue, non-fatty stroma, and 

glass into percentages. Examples of annotated digital images are presented in Figure 1 of 

this Appendix.  The trained classifier was strongly correlated with pathologist review, 

particularly for stroma and adipose (Table 1 of this Appendix, Pearson correlation 

coefficient ranged 0.95-0.96). The trained classifier was also positively and strongly 

correlated with manually scored area, for all three tissue compartments.  Compared with 

digital assessment, visual assessment (by human eye) of small percentage differences is 

weaker, and thus the digital image analysis data were used in analyses of epithelial tissue, 

which is sparse (<10%) in benign breast. The trained Genie Classifier was then applied to 

the remaining slides.  
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 Epithelium Adipose Stroma 

Manual &Genie 0.98 0.96 0.96 

Manual & Pathologist 0.71 0.96 0.95 

Pathologist & Genie 0.68 0.96 0.96 

 

Appendix 1 Table 1. Pearson correlation coefficient between evaluation approaches 

by breast composition (n=118).  
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Appendix 1 Figure 1. Representative pictures of breast composition by digital 

pathological image analysis. (Pink=adipose tissue, Green=epithelial tissue and Blue= 

outline of specimen) A) Adipose=62.93% Epithelium=6.68% Stroma=30.38%, B) 

Adipose=5.14% Epithelium=0.09% Stroma=94.80%  

 

A. 

B. 
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