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ABSTRACT 

LUCY PERKINS PHELPS: The Selection of Electrical Analog Components from 
Computational Model Impedance Spectra 
(Under the direction of Dr. Brooke Steele) 

 

Lumped parameter models can be used as accurate boundary conditions 

in hemodynamic modeling, requiring only the estimation of a few physiologically 

relevant parameters. The best way to estimate these parameters (typically 

resistances and capacitances) has seen much investigation, but all current 

techniques require experimental (or periodic time-domain) blood pressure or 

blood flow data. A method that can estimate lumped parameter model 

components using only impedance spectra would widen the scope of usefulness 

for lumped parameter models as boundary conditions. Their usefulness would 

then include cases where such data cannot be obtained. The methods presented 

in this work estimate the resistance and capacitance values of two- and three-

element Windkessel models using only features found in typical impedance 

spectra. Comparing these methods to “gold standard” pressure and flow data, 

each other, and previously published methods can determine the accuracy of a 

‘Fourier-domain only’ strategy. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

1.1 Motivation 

Hemodynamic modeling is becoming an increasingly beneficial tool for 

cardiovascular surgical planning and diagnostics. As cardiovascular diseases 

play a role in more than half the deaths in the United States [1], it is important for 

these tools to be as robust and accurate as possible. Being able to quantify 

parameters such as resistance and compliance of blood vessels through 

vascular networks allows for hemodynamic models that represent blood flow and 

blood pressure through a particular systemic vasculature. The accurate 

implementation of boundary condition models is imperative for hemodynamic 

modeling, where precise representation of physiologic conditions is required for 

yielding a useful tool. Two- and Three- element lumped parameter, or 

Windkessel, models have consistently been useful for modeling hemodynamic 

boundary conditions [2-5]. These models require initial estimation of two or three 

parameters.  The motivation for this project was to develop a new method for 

estimating these parameters to increase the usability of these types of models. 
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1.2 Cardiovascular System 

The cardiovascular system is composed of the heart and the circulatory 

system.  The heart acts as a pump, generating pressure that circulates blood 

throughout the circulatory system to the tissues and organs of the body.  The 

circulatory system is divided into two circuits, the pulmonary circulation and the 

systemic circulation.  The pulmonary circulation delivers blood from the heart to 

the lungs and back to the heart.  The systemic circulation consists of the blood 

vessels that carry oxygenated blood throughout the rest of the body.   

1.2.1 Systemic Circulation 

Arteries are the blood vessels of the systemic circulation that carry blood 

away from the heart, delivering oxygen and nutrients.  Arteries are composed of 

a thick smooth muscle layer and large amounts of elastic and fibrous connective 

tissue.  Arteries form a branching pattern throughout the body, dividing into 

smaller and smaller arteries.  Eventually these arteries become arterioles and 

capillaries, the smallest vessels in the cardiovascular system.  The capillaries join 

with venules and are the site of gas and nutrient exchange for the systemic 

circulation. Then, oxygen poor blood returns to the heart via the body’s venous 

system [1].   

In the scope of this project, nine of the major arterial branches are 

discussed.  These are the renal, celiac, iliac, superior mesenteric (SMA), inferior 

mesenteric (IMA), internal iliac, external iliac, profunda and common femoral 

arteries.  The locations of these can be seen in Figure 1 as part of the overall 

systemic circulation. 



3 

 

 

Figure 1: Major Arteries of the Viscera and Lower E xtremities  - modified from figure 
found at http://www.answers.com/topic/artery 

 

1.2.2 Blood Flow 

Typical blood flow through the systemic circulation reflects the ventricular 

contraction of the heart as the cardiac cycle goes from systole to diastole and 

repeats. Figure 2 shows these typical waveforms. Cardiac output (heart rate 

times stroke volume) can be calculated as an indicator of total blood flow through 
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the body. However, it yields no insight as to how that blood is distributed 

throughout the arterial system. Hemodynamic models are useful in characterizing 

blood flow where experimental data cannot be extracted.  Knowing the resistive 

and compliance characteristics of a particular arterial network allows insight 

about the blood flow and pressure through the vasculature in question.  As 

previously mentioned, the arterial system forms a branching pattern throughout 

the body.  As the size (radius) of the arteries decrease, the walls of these blood 

vessels become much less elastic [1].  This loss of elasticity, or compliance, 

combined with blood viscosity and the length of the blood vessels create the 

resistance to blood flowing through the branching arteries. 

 

Figure 2: Typical Blood Flow and Pressure Waveforms - This figure shows the 
amplitude range of blood pressure and blood flow cycles (at rest).  The 
systolic increase of pressure and flow vs. the diastolic ‘rest’ is also depicted. 
These are parameters that can be used to compare like waveforms. 
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1.2.3 Blood Pressure 

Blood is propelled throughout the systemic circulation by the heart.  The 

ventricles of the heart contract creating the pressure which drives blood through 

the arteries (Figure 2).   Blood flows from high to low pressure and the flow is 

inversely proportional to the resistance of the blood vessels [1].  During exercise 

negative flow that exists during rest conditions is eliminated due to increased 

heart rate and cardiac output [6]. During exercise, cardiac output increases 

(going from approximately 5 L/min to 30-35 L/min for a healthy person with 

resting heart rate of 72 bpm) [1]. During rest or exercise, the geometry of arterial 

networks, changes in vascular anatomy (dilation or constriction of the vessels) 

and the resistive and compliance characteristics of vessels are all parameters 

that are considered in hemodynamic models that yield accurate representations 

of blood pressure and flow.  

 

1.3 Computational Models of Systemic Circulation 

Accurate mathematical models represent the true physiological behaviors 

of vascular networks.  There are many types of hemodynamic models, with one-

dimensional and three-dimensional finite element analysis models being two of 

the most useful. These models characterize blood flow and blood pressure 

though a particular region of interest in a vascular network.  Everything outside of 

this region of interest is then represented with boundary conditions [6].   
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Two types of boundary condition models that are extensively used for this 

application are geometric and lumped parameter impedance boundary 

conditions. Geometric, or anatomically based distributed models, represent a 

vascular network by assuming a specific geometry (such as a structured 

branching tree) and computing impedance [6, 7].  Lumped parameter models 

represent an arterial system as an electrical circuit inputting blood flow as current 

or blood pressure as voltage.  Both types of models allow characterization of 

blood flow and pressure data for the circulatory system outside of the arterial 

network being studied, and are good boundary conditions for this application.  

1.3.1 Boundary conditions 

Boundary conditions can quantify blood flow and pressure characteristics 

at the input or output of a particular vascular network.  In hemodynamic modeling 

they represent the behavior of vasculature outside of the region being examined.  

This allows a region of interest to be modeled and the rest of the circulatory 

system to be represented with only a few parameters.  As previously mentioned, 

a good boundary condition parameter is vascular input impedance [7].  

Impedance allows behavior regarding blood pressure, blood flow, and arterial 

wall properties to be extracted. Impedance of a vascular network can be 

determined using both geometric and lumped-parameter models.  Using 

impedance as a common boundary condition, we can use ‘gold standard data’, 

computed using a geometric model, to compare different lumped parameter 

models. 
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1.4 Impedance 

Vascular input impedance is a parameter that can be used to characterize 

an arterial system, representing the opposition to periodic blood flow.  Defined as 

the ratio of blood pressure to blood flow, the input impedance is a complex 

quantity which illustrates flow as a response to a pulsatile pressure [8].  

Impedance is determined by the geometric and vascular structure of the arterial 

network in question.  It can represent a basic lumped parameter model or a more 

complex branching geometry [9]. Impedance is defined in the frequency domain. 

A similar general shape of the impedance modulus and phase spectra can be 

observed in any branching structure despite the number of branches or 

terminals. A typical impedance modulus starts at a high peripheral resistance and 

then rapidly decreases before oscillating at higher frequencies. A typical phase 

spectra will rapidly decrease from zero, reach a minimum point, and then recover 

to oscillate around zero at higher frequencies [9]. This general pattern can be 

observed in Figure 3 and is also discussed in the work of Mills et all [10] where 

the impedance shapes were computed from experimental data for several of the 

major systemic arteries. 
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Figure 3: Typical Shape of Impedance Modulus and Ph ase 

 

The oscillations at the higher frequencies indicate the effects of the 

different geometries of vascular systems, as different geometries would create 

different wave reflections [8, 9]. The definition of impedance describes a linear 

relationship; given an impedance spectra with an input of blood flow, blood 

pressure could be extracted with identical frequency, though there is a phase 

shift (and vice versa, with an input of pressure, flow could be determined).  This 
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makes impedance a good validating parameter for both lumped parameter and 

geometric models [9]. 

 

1.5 Lumped Parameter Models (Electrical Analogs) 

In the two-element Windkessel model, originally proposed by Otto Frank in 

1889 [11], the resistor represents the resistance (as dictated by vessel size, so a 

network consisting of smaller vessels would have a greater resistance to flow 

than a network of larger vessels) and the capacitor represents the total arterial 

compliance of the systemic vascular bed in question. An example of this is 

shown in Figure 4(a). As a lumped parameter model represents an arterial 

network through a pressure-flow relationship at the entrance to the vasculature in 

question, the wave travel aspects (such as damping, amplification, etc) inside the 

modeled network cannot be examined. These wave reflections are illustrated in 

experimental impedance spectra as the higher frequency oscillations (Figure 4).  

These oscillations are not present in two-element lumped parameter model 

impedance spectra, where the modulus decays to negligible values [2, 12].  It 

was also shown by Stergiopulus that the two-element Windkessel model can be 

used to illustrate blood flow and pressure behavior not only for the entire arterial 

tree, but also as a representative of smaller, downstream arterial networks with 

constant compliance [12]. 
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Figure 4:   Two- and Three- Element Windkessel Models (Electric al Analog)  - a) 
Two-element Windkessel model where R represents the total resistance 
and C represents the compliance of an arterial network.  b) In a three-
element Windkessel Model the Zch is added to the circuit as a resistor.   

 

 

The three-element Windkessel model adds the parameter of characteristic 

impedance, which is typically represented by a second resistor in the electrical 

analog. This is shown in Figure 4(b). The characteristic impedance (Zch) added to 

the peripheral resistance (R) comprises the total equivalent resistance. This 

characteristic impedance parameter allows the model to better represent the 

higher frequency characteristics, though the oscillations are still not present. This 

parameter is described as the wave speed multiplied by blood density divided by 

cross-sectional area (or 
γρ

=chZ
A

 where A is aortic cross-sectional area when 

referring to aortic impedance, etc.) and its addition is often seen as an 

improvement over the two-element lumped parameter model [2]. This model is 

practical and easily understood, as all parameters represent actual physiological 

counterparts (e.g. capacitance represents compliance) [4]. Although there are 

documented shortcomings, such as the tendency to underestimate the 
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characteristic impedance and overestimate the total arterial compliance [13, 14], 

the three element Windkessel is generally accepted to be a useful compromise 

between accuracy and complexity. In The Arterial Windkessel, Westerhof et al. 

[2] concludes that the three-element Windkessel model can adequately describe 

the pressure-flow relations at the entrance of a systemic arterial system.   

Because low frequency errors can occur with the three-element 

Windkessel model, which can be attributed to the inclusion of the characteristic 

impedance, four-element models have been examined. Typically this includes an 

inertance in series with the characteristic impedance but this inertance was seen 

to be extremely difficult to estimate [2]. For the applications investigated in this 

project the two- and three-element models were deemed more appropriate.  

1.5.1 Impedance of Windkessel Model 

A lumped parameter or Windkessel model, representing a downstream 

arterial system, can be used as a boundary condition when modeling a larger 

vascular network. Typically a three-element model, the frequency-dependent 

impedance of such a boundary condition can be computed as seen in Equation 1 

[14]. 

 ( ) ω
ω

ω
+ +

=
+

1 2 1 2

2

0,
1

R R i CR R
Z

i CR
 (1) 
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The impedance of lumped parameter models do not have the same shape 

as the aforementioned typical experimental impedance models as they lack the 

oscillations at higher frequencies (wave reflections). 

1.6 Parameter Estimation 

Parameter estimation for lumped parameter models has been extensively 

investigated. The peripheral resistance is typically represented as the initial ratio 

of pressure to flow [2, 15]. However there have been many ways of estimating 

the total arterial compliance and the characteristic impedance.   

In The Arterial Windkessel, Westerhof et al [2] outlines eight different 

estimation methods for the total arterial compliance. Some of the more current 

and most commonly used examples are summarized as follows. The ‘Pulse 

Pressure method’ fits systolic and diastolic pressure computed with a two-

element Windkessel and measured flow data, to measured pressure data. The 

‘Parameter Estimation Method’ uses three-element Windkessel and measured 

flow data to predict pressure data. This is then compared to measured pressure 

data, minimizing the difference between the two. The inverse is also used to 

predict flow data given measured pressure data. The ‘Input Impedance Method’ 

carries out similar comparisons but is performed in the frequency domain, 

comparing impedance spectra of computed vs. measured data. The ‘Area 

Method’ estimates RC as being the area under the diastolic pressure divided by 

the pressure difference between start and some endpoint. This gives an estimate 

for two-element lumped model parameters and then to the characteristic 

impedance would be estimated separately to apply this method to a three-
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element model. Several other parameter estimation strategies are also described 

and the limitations and advantages of each are briefly discussed. All the 

strategies for estimating arterial compliance rely on measured pressure or flow 

data [2].  

No current methods for estimating this parameter solely use Fourier 

domain data. Several sources do point out that compliance is a low-frequency 

property, so the best compliance estimation methods should utilize the lowest 

frequencies [13, 16]. 

 The most accurate way of estimating the characteristic impedance has 

also been examined. Typically this parameter, characterized by a second 

resistor, is estimated by averaging input impedance modulus values over a 

particular range of frequencies [17, 18], though the definition of that range is 

somewhat ambiguous. It has also been approximated using slopes of pressure 

and flow waveforms during early systole [17].   

 One current limitation of using the lumped parameter boundary conditions 

is that the most accurate current parameter estimation strategies require 

experimental data. A particular focus of this work is to investigate parameter 

estimation strategies that require no time domain data, selecting all RC and RCR 

parameters from impedance spectra.   

In 1994, Shim et al presented a three-element Windkessel parameter 

estimation method that could be implemented solely using time-domain 

calculations [4]. This method is based on integrating the governing differential 
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equations of the three-element Windkessel. These are shown in Equations 2, 3 

and 4.    

 

 = ∑
( )1

( )
k

ch
k

PPA t
Z

m Q t
 (2) 

 = −mean
ch

mean

P
R Z

Q
 (3) 

 

− +

=
− − −

∫ ∫
2 2

1 1

1 2 1 2

( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

t t

avg ch avg
t t

avg avg ch avg avg

P t dt R Z Q t dt

C
R P t P t RZ Q t Q t

 (4) 

 

The accuracy of this method was examined by comparing it with four 

previously published methods. The pressure and flow waveforms were 

reconstructed using all methods of estimating the Windkessel parameters and 

were compared back to experimental flow and pressure waveforms [4].  It was 

concluded that this method performed as well as the other known strategies.   

 

1.7 Specific Aims 

Similar to the comparisons made by Shim et al, we can conduct pressure 

and flow waveform comparisons of several methods of Windkessel parameters 

estimation that depend solely on Fourier domain data. Implementation of an 
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accurate method that can estimate lumped parameter model components using 

only impedance spectra would eliminate the need for periodic time domain or 

experimental data altogether. This would widen the scope of usefulness for 

lumped parameter models to include cases where such data is unavailable.  The 

methods presented in this work estimate the resistance and capacitance values 

of two and three-element Windkessel models using only features found in typical 

impedance spectra. Comparing these methods to “gold standard” pressure and 

flow data, as well as to each other and previously published methods can 

determine the accuracy of a ‘Fourier-domain only’ strategy. 



 

 

CHAPTER II 

METHODS 

 

 Initially three-element lumped parameter models were investigated.   First 

this study compared three different methods of selecting a characteristic 

impedance value (Zch, or R1 for simplicity) and deriving a peripheral resistance 

(R2) and compliance value (C). The goal was to establish an accurate parameter 

selection method based on features present in an impedance modulus and 

phase. The computational model of the blood vessels of the viscera and lower 

extremities developed in Steele, et al [6] is used in this work.  Eighteen 

impedance spectra of the peripheral vessel outlets were examined during both 

rest and exercise conditions to provide a wide range of impedance moduli and 

phase characteristics for comparison. The lumped parameter model components 

were selected for each spectrum using the methods described below, and 

pressure and flow data were reconstructed using the selected RCR components. 

The reconstructed waveforms were then compared to the “gold standard” 

computational model data to determine the most simple and accurate method of 

selecting RCR components from impedance spectra data. A similar strategy 

added two-element Windkessel models to the comparison. Results from 
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comparisons of both models are compared to previously established parameter 

estimation methods.  

 

2.1 Gold Standard Impedance Spectra  

 In order to compare the different methods for selecting the RCR 

components, previously developed one-dimensional (1D) finite element analysis 

(FEA) software [19] was used to model the visceral and peripheral blood flow and 

pressure. The outlet boundary conditions were specified with structured tree 

parameters for each outlet for both rest and exercise conditions [6]. The 

impedance spectrum for each was then computed using Womersley’s method of 

calculating impedance for oscillatory flow in an elastic tube [20] and the 

structured tree parameters as described in detail by Olufsen, et al [6, 14].  

 The resulting impedance calculations provide a “gold standard” by which 

to compare the methods of selecting the RCR or RC values. The method which 

selected RCR or RC values that could then be used to reproduce the most 

accurate flow or pressure waveforms (compared to the original flow and pressure 

data from Steele, et al [6]) would constitute the best method of selecting lumped 

parameter model components directly from impedance data.   
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2.2 Three Element Lumped Parameter Model  

2.2.1 Estimation of Characteristic Impedance (R 1)   

A typical impedance modulus will have an initial maximum value (typically 

the zero frequency value or equivalent resistance), then will decrease to a 

minimum.  After the minimum has been reached, the values will oscillate at 

higher frequencies for experimental and structured tree moduli spectra (such as 

in Figure 3) or exponentially approach the characteristic resistance for lumped 

parameter modulus spectra (such as in Figure 6).  

Traditionally, estimating the value of R1 has been defined as averaging the 

higher frequency terms of the impedance modulus as previously described. As 

this strategy can sometimes be ambiguous, a more defined method would lead to 

a more consistent estimation procedure. Three methods of specifying the R1 

value using only features present in typical impedance are investigated in this 

study. Method 1: the proximal resistor (R1) is set to a minimum modulus value 

(Figure 5a). This yields a lower characteristic impedance value than is typically 

seen. Method 2: the proximal resistor (R1) is set to the average of the higher 

order modulus terms after the minimum modulus value (Figure 5b).  This is a 

more classical method of characteristic impedance selection.  Method 3: the 

proximal resistor (R1) is set to the average of the modulus terms up to the term in 

which the phase angle of the impedance spectra changes slope (Figure 5c). This 

method yields a higher value for the characteristic impedance than is typically 

seen.  

 



 

 

Figure 5: Three Methods for Selecting the 
resistor (R1) is set to a minimum modulus value 
resistor (R1) is set to the average of the higher order modulus terms 
minimum modulus value 
average of the modulus terms up to the term in which the phase angle of the 
impedance spectra changes slope

 

2.2.2 Estimation of Peripheral Resistance (R2)

The equivalent resistance is the sum of the two 

element Windkessel model 

taken directly from the impedance data, therefore once the 

estimated the R2 resistor was calculated.  

19 

Three Methods for Selecting the R1 Parameter:   5a) Method 1: the proximal 
) is set to a minimum modulus value 5b) Method 2:  the proximal 
) is set to the average of the higher order modulus terms 

minimum modulus value 5c) Method 3: the proximal resistor (R1) is set to the 
modulus terms up to the term in which the phase angle of the 

impedance spectra changes slope 

2.2.2 Estimation of Peripheral Resistance (R2)  

The equivalent resistance is the sum of the two resistances in a three

model ( = +e 1 2R R R ). The zero frequency value can be 

taken directly from the impedance data, therefore once the R1 resistor was 

resistor was calculated.   

 

a) Method 1: the proximal 
b) Method 2:  the proximal 

) is set to the average of the higher order modulus terms after the 
) is set to the 

modulus terms up to the term in which the phase angle of the 

resistances in a three-

The zero frequency value can be 

resistor was 
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2.2.3 Intermediate Methods -Dynamic Optimization of Capacitance  

Once the resistance values were chosen, the capacitance values are 

selected by minimizing the amplitude error, reproducing accurate diastolic 

means, and replicating the wave shape between the reconstructed flow and 

pressure waveforms and the original data. Custom software allowed the dynamic 

altering of a capacitance value for error minimization, using the resistance values 

from each method described above.   

 

 

Figure 6: Effects of Changing C on Flow and Pressur e Waveforms  – Dynamic 
selection of C allows for the important characteristics of the modulus and 
phase spectra to be identified.  Recovery time of the phase curve increases 
accuracy of flow and pressure reconstructions (Example uses computed 
Celiac Flow data under rest conditions as the Gold Standard, where C (best 
fit) is estimated at 8.085 x10^-5 cm5/dyne*s) 
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The capacitance value that minimizes the error between the original and 

the reconstructed pressure or flow waveforms as selected. The method with the 

lowest error was determined to be the best method for selecting the resistance 

components (or, optimizing error values by dynamically choosing C allows 

comparison of the selection methods of R1 and R2).  This “best” method of 

selecting the resistance values can then be used in determining the features of 

the impedance spectra that are important for computing a capacitance value.  

 

2.3 Intermediate Results  

2.3.1 Determining Resistance Selection Method 

Reconstructed flow and pressure waveforms for all eighteen outlets, using 

each selection method, are compared to original “gold standard” data. 

Comparisons of the precision and the shape of the reproduced curves indicate 

the best parameter estimation method.   Amplitude Range Error (Amplitude 

Error), which is calculated as the difference between the computed and 

experimental amplitude ranges, as well as difference in the diastolic mean, and 

frequency of waveforms, are parameters used to compare the test 

reconstructions to the original computational data.  From these quantifiers, the 

“most accurate” method will be the most precise replica of the original data that 

does not negate the effects of conditions such as hypertension, hypotension, 

etc., that may be present in a subject’s original blood flow or pressure data.    
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2.3.2 Comparison of Flow Waveforms 

Resistance components were initially selected using three trial methods, 

and a capacitance value that was dynamically selected to minimize error 

between reconstructed flow waveforms and the original “gold standard” flow data.   

Method 3 yielded the most accurate results when optimizing a capacitance value.  

Method 2 and Method 3 were generally comparable except Method 3 showed a 

smaller time lag between the Gold Standard data and the reconstructed 

waveforms. For Method 3, the diastolic mean was reconstructed to within 5% 

(average of all outlet cases) under rest conditions and within approximately 3.5% 

(average of all outlet cases) under exercise conditions.   Amplitude range error 

was the lowest for Method 3 in sixteen of the eighteen test cases.  The average 

amplitude rage error for all cases was less than 3%. Figure 7 illustrates examples 

of these flow comparisons.  
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Figure 7: Examples of Flow Comparisons –  The flow waveforms reconstructed using 
all methods are compared to the computed gold standard data. IMA and 
Celiac arterial flow under rest conditions and Internal Iliac flow under exercise 
conditions are shown as examples.  

 

2.3.3 Comparison of Pressure Waveforms  

The same comparison techniques were used to examine reconstructed 

pressure waveforms.   Components were selected in the same manner and the 
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same error comparisons were considered.  The diastolic mean pressures were 

reconstructed to within 2.5% (average of all outlet cases) under rest conditions 

and within 2% (average of all outlet cases) under exercise conditions.  There was 

not a significant difference in the values between the three methods; all were 

determined to perform adequately in reconstructing the diastolic mean pressure.   

In terms of Amplitude Error, Method 3 was again the most accurate method in 16 

of the 18 tested cases.   Over all cases, using selection Method 3, the amplitude 

error was still less than 1%.  The superior mesenteric artery and the internal iliac 

artery outlets under rest conditions were the same two outliers in comparisons of 

both pressure and flow reconstructions. Figure 8 shows examples of pressure 

waveform comparisons. 
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Figure 8: Examples of Pressure Comparisons –  The pressure waveforms 
reconstructed using all methods are compared to the computed gold 
standard data.  Iliac and IMA arterial pressure under rest conditions and 
Internal Iliac pressure under exercise conditions are shown as examples.  

 

2.4 Final Studies - Impedance Spectra Estimations of Capacitance 

While an RCR phase spectra may differ significantly from an experimental/ 

structured tree phase spectra, both will start around zero and have an initially 
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negative slope before reversing to a positive slope.  For an RCR phase 

spectrum, the phase angle will then exponentially approach zero, while an 

experimental phase angle may oscillate and become positive.  By examining the 

impedance spectra that produced the most accurate flow and pressure 

reconstructions, several notable observations about the phase were made. 

These observations were used to identify important graphical characteristics of 

the “best” RCR impedance phases so as to help develop a method to best 

estimate a C value.  

The reconstructed vs. original flow waveforms, illustrated that the recovery 

time of the impedance phase after the initial minimum is important and should 

play a role in capacitance value selection. Upon examination of several 

impedance spectra, it appeared that the intersection of an impedance phase 

produced by the “best” method of resistance selection and the original “gold 

standard” impedance curves would be approximately close to a value that 

minimized this settling time. So to estimate C, equation 5 was implemented in 

software.  

 

 
ω ω

− −
=

−
1 2

1 2 2

Z R R
C

R R i Zi R
 (5) 
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Here ω is the chosen frequency (intersection of phase curves – 

determined to be approximately 2/3 the peak to peak of the initial positive sloping 

phase), R1 and R2 are previously estimated and Z and Zi are the impedance 

modulus and phase values at the chosen frequency.    

  

2.5 Two-Element Lumped Parameter Model 

Though a three-element lumped parameter model is typically depicted as 

being superior to the two-element model for this application, the two-element 

Windkessel is simpler to implement.  Therefore if it can achieve similar or even 

better results, then its usefulness may be re-evaluated. As this is a novel 

approach to parameter estimation, both two- and three-element Windkessel 

models are examined.     

2.5.1 Estimation of (total) Peripheral Resistance ( R) 

As previously described, the two-element Windkessel Model excludes the 

characteristic impedance found in the three-element model.  Here the resistance 

value is the initial ratio of the blood pressure to blood flow, or the first harmonic 

value of the impedance modulus (the initial maximum of a typical modulus).  This 

is easily included in the software as zeroing the R1 term.    

2.5.2 Estimation of Capacitance (C) 

Similar to the three-element lumped parameter estimation strategies, the 

capacitance value can be estimated by solving the corresponding circuit 
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equations. In the two-element case this simplifies to Equation 6 where 

components are estimated as presented in the three-element case above:  

 
ω
−

=
R Z

C
Zi R

 (6) 

These impedance moduli and phase, for the two-element model, will have 

a different typical shape than either three-element, or experimental impedance 

spectra. The impedance modulus will exponentially approach zero from the initial 

maximum, and the phase plot will not recover after reaching its initial minimum. 

Again, pressure and flow can be reconstructed from the estimated components 

and compared to the three-element model reconstructions and the “gold 

standard” data.   

 

2.6 Comparison of Fourier Domain Method to Time Domain Method 

For completeness, selecting RCR and RC components using the 

aforementioned methods can be compared not only to the “gold standard” data, 

but also to the ‘time domain method’ described and validated by Shim et al [4].  

The Shim et al equations (2, 3, and 4) were implemented in software to provide 

this additional comparison.  Parameters were estimated for all outlets using this 

‘time domain method’ and comparisons were again performed between the 

reconstructed flow and pressure waveforms and the original “gold standard” flow 

and pressure waveforms at each outlet.    

  



 

 

CHAPTER III 

RESULTS 

 

3.1 Three-Element Lumped Parameter Model 

3.1.1 Selection of Resistance Values – Intermediate  Step 

The best method of selecting the resistance components is validated in 

the intermediate step of the methods section.  This determined that Method 3 is 

the most accurate at reproducing flow and pressure waveforms from a given 

impedance spectra using an optimized capacitance.  Examples of the values 

chosen for resistance and capacitances for all methods are shown in Table 1. 

3.1.2 Selection of Capacitance Values - Final Studi es 

Once resistance values are determined, capacitance must be computed 

using only information found in a given impedance spectra as can be done using 

Equation 5. This yields a mechanism of selecting all three components without 

using periodic time domain data. Once all values were selected, using only 

Fourier domain data, the error comparisons can again be made against the 

original computational model data. The diastolic mean flow was reconstructed to 

within 2% (average of all outlet cases) under rest conditions and within 5.1% 

(average of all outlet cases) under exercise conditions. In terms of Amplitude 
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Error, over all cases under rest conditions the amplitude range for blood flow is 

reproduced to within 8.4% and the amplitude range for blood pressure is 

reproduced to within 7.03%.  After removing the aforementioned two outliers, 

these percentages decrease to within 5.4% for both blood flow and blood 

pressure reconstruction. This value (for pressure and flow) approximately 

doubles when comparing under exercise conditions. It can be noted that the 

reconstructions were most accurate in the larger visceral blood flow outlets while 

the smaller lower extremity outlets proved less accurate. The diastolic mean 

pressure was reconstructed to within 2% under rest conditions and within 8.2% 

(decreasing to 5.1% when outliers are removed) under exercise conditions. 

 

Table 1: Example of Selected Values.  The values of the resistances for all three 
methods, C optimized for flow and pressure (intermediate step), and C as 
predicted by the Fourier Method are shown in table. Computed iliac artery 
(exercise) data was used for this example of value selections. 

Ilia
c Artery 

R1 

(dyne •s•cm -5) 
R2 

(dyne•s•cm -5) 
C - Flow 

(cm 5
•dyne -1

•s-1) 

C - 
Pressure 

(cm 5•dyne -1•s-1) 

Predicte
d C (cm5•dyne -

1•s-1) 

Me
thod 1 

3.91E
+02 

4.65
E+03 

4.46E-06 4.57E-05 
 

Me
thod 2 

1.11E
+03 

3.94
E+03 

9.67E-05 9.85E-05 
 

Me
thod 3 

1.13E
+03 

3.91
E+03 

1.04E-04 1.02E-04 
5.88E-

04 



31 

 

 

 

3.2 Two-Element Lumped Parameter Model 

In the case of the simpler RC Windkessel model, the same features in the 

impedance phase cannot be duplicated when selecting a capacitance value.  

Matching the initial downslope (such as in Figure 9) proved to be important in 

some cases where matching the 2/3 of the phase initial upslope (as in Figure 10) 

proved to be more important in others.  When dynamically altering C, with these 

18 impedance spectra, there was not a common theme that yielded the best 

results in both blood flow and blood pressure cases.  An example of this can be 

seen in Figure 9 where a good reconstruction of blood pressure can be seen but 

where blood flow is very inaccurate. 
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Figure 9: Dynamically Altering C in the Two-element  Lumped Parameter Model  – 
Matching the initial downslope of the impedance phase by dynamically 
altering the capacitance yields a good blood pressure reconstruction for this 
example but the same method does not yield a reasonable blood flow 
reconstruction (profunda under rest conditions, Best Fit C estimated at 2.51 
x10^-6 cm5/(dyne*s) ).  

 

Even given the most accurate capacitance value in each case there were 

only two cases where the RC circuit outperformed the three-element lumped 

parameter model in terms of both recreating the diastolic mean and the 

amplitude range.  The RC model was generally able to reconstruct the diastolic 

mean but was less reliable in reconstructing an accurate amplitude range.  It can 

be concluded that for this parameter estimation strategy using the three-element 

model will be the preferred method.  Figure 10 illustrates a comparison of the 

two- and three- element cases against the original computational model data.  
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Figure 10: RCR vs. RC  – A comparison of the two-and three- element models when C 
is dynamically selected for the RC model vs. the computed C for the RCR 
model (Renal artery under rest conditions). 

 

 

3.3 Comparison of Time Domain and Fourier Domain Method 

3.3.1 Comparison of Flow and Pressure Waveforms 

The reconstructed flow waveforms produced by the “Fourier Method” 

presented above and the “Time domain method” validated by Shim et al can be 

compared to add one further gage of accuracy.  Four examples of blood flow and 

pressure reconstructions using both methods and the original computational 

model flow and pressure waveforms are shown in Figure 11 illustrate this 

comparison.   
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Figure 11: Time Domain Method vs. Fourier Domain Me thod –  Four examples of the 
comparison between the original computational model flow and pressure 
data with the blood flow and pressure waveforms reconstructed by the ‘time 
domain method’ and the ‘Fourier domain method’.  
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The comparisons indicate that the two methods perform comparably.  In 

all but two cases the Fourier Domain method performed as well or better than the 

Time Domain method in terms of reproducing the original diastolic mean flow and 

pressure.  In terms of recreating the amplitude error, both methods recreated the 

amplitude range similarly with each proving more accurate in several individual 

cases. For the two previously mentioned outliers, both methods continued to 

perform similarly with neither being better for these particular cases than the 

other. 



 

 

CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

4.1 Conclusions 

In large computational models of vascular networks, geometric models 

can struggle with very large numbers of outlets.  Using a lumped parameter 

boundary condition to represent conditions at specific outlets can alleviate some 

of the strain placed on such models.  Lumped parameter boundary conditions 

have repeatedly been examined, and can accurately describe the periodic 

pressure-flow relations (or impedance) at the inlet of a particular arterial system. 

Traditionally, electrical analogs are fit to experimental data.  Periodic blood 

pressure and flow data is used in conjunction with Fourier domain manipulations 

to extract lumped parameter components. Shim et al. proposed a method of 

component selection which requires only calculations performed in the time 

domain [4]. However, the specific problems we address are the cases where no 

time domain data is available for arterial outlets. If such Windkessel parameters 

can be accurately selected using only Fourier domain data, an RCR or RC model 

can be an even more robust tool for representing boundary conditions at specific 

downstream outlets. 
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A selection method for RCR and RC components that is solely 

independent of periodic time domain data is defined using characteristics of the 

shape of impedance moduli and phase. Identifying Method 3, where the proximal 

resistor (R1) is set to the average of the modulus terms up to the term in which 

the phase angle of the impedance spectra changes slope, as “best” illustrates 

features present in the impedance spectra that are useful for predicting 

resistance values, namely the range of harmonics that should be averaged. A 

previously discussed limitation of parameters estimated using the three-element 

Windkessel is that the characteristic impedance is typically underestimated and 

this strategy generally produces a larger estimate for this value.  This slightly 

larger estimate appears to correspond with a smaller time delay in the blood flow 

and pressure waveform reconstructions.  The focus of this project was to predict 

accurate time-domain data rather than identically matching the Fourier domain 

spectra. So in this work Method 3 was used to predict the characteristic 

impedance, though the strategy of selecting capacitance shouldn’t vary if R1 was 

selected using the more traditional Method 2. 

The method of choosing a capacitance value also identified key features 

in the impedance phase spectra, specifically the recovery time of the impedance 

phase after its initial minima.  Initially matching the downward slope of the gold 

standard (computational model) data and then having a quick recovery time 

(where the RCR phase spectra intersected the original phase spectra at about 

2/3 up the initial upslope of the phase) effected both the time lag and the 

amplitude reconstructed in the flow and pressure waveforms.  This relationship is 
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illustrated in Figure 6.  This Fourier selection method is consistent with the point 

that compliance is a low-frequency property [13, 16] and utilizes the lower 

frequency characteristics of the impedance phase when estimating a capacitance 

value.  

Through the initial dynamic selection of capacitance, it can be seen that a 

“good” boundary condition representation is possible using an electrical analog 

for peripheral blood flow outlets and the ambiguity that is historically present 

regarding the selection of the characteristic impedance value in an RCR model 

can be alleviated. For this investigation, when all lumped parameter model 

components are selected solely from the impedance spectra the three-element 

model performs better than the two-element model. The results coincided with 

the conclusions of Wang et al and Westerhof et al [2, 20]. They document a 

difference between the two- and three-element Windkessel models as being that 

the two perform similarly during diastole (when characteristic impedance has no 

effect) but suffer differences during systole [2, 21].  

 When comparing the three-element Windkessel model to a previously 

published model, the results indicate that the presented methods perform 

comparably.  The trend appears to be that selecting the parameters using the 

Fourier method yields better reconstructions than previous methods in the 

smaller (diameter) arteries which are less compliant (here the internal iliac, the 

profunda, etc.). Overall, however, the method is slightly more accurate in 

estimating the amplitude ranges (both of blood flow and pressure) when under 

rest conditions, as compared to exercise conditions regarding wave amplitude 
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error. The smoother shape of exercise condition waveforms are easier to 

reconstruct. This may indicate that flow rate impacts the accuracy of this 

modeling strategy.  When arteries are under exercise conditions they expand to 

accommodate a higher flow rate causing a decrease in compliance.  Overall, 

more compliant arteries yield better results (agreeing with previous studies 

discussed in the introduction and background as a characteristic of lumped 

parameter models). When attempting to adjust the parameter estimation 

strategy, estimating C based on slightly different criteria, no conclusive pattern 

yielded more accurate results across all less compliant vessels.  This increase in 

error associated with increased compliance may be an inherent limitation of the 

type of model.   

 

4.2 Limitations 

Previously documented limitations to general lumped parameter models 

are also exhibited here.  An example being that in the case of two-element 

Windkessel models, the effects of wave travel, wave reflections, etc cannot be 

represented.  Though three-element Windkessel models are increasingly used to 

model the smaller peripheral arterial bed, generally they are more accurate for 

larger more compliant vessels [2]. 

Another noted limitation is the time shift that occurs between the 

reconstructed and original waveforms. The time lag that is inherently present 

between pressure and flow in systemic circulation could be the source of this 
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discrepancy. In the scope of this study, when given cyclic “gold standard data” 

and an impedance spectra, using a three-element lumped parameter model to 

estimate either cyclic pressure or flow yields results with a good reconstruction of 

waveform shape but with a consistent time lag. This also is consistent with 

previous work in that the phase effect present with these model types does not 

affect the reconstruction of wave shapes, only their time delay [2]. If this selection 

strategy is implemented for boundary conditions at peripheral outlets in a large 

hemodynamic model, whether or not these individual lags propagate backward 

up the model could be a source of concern.   

 

 4.3 Future Work 

Three methods of selecting the resistance values based on physical 

characteristics of the impedance spectra are compared in this study. If other 

characteristics are identified as being present throughout typical impedance 

spectra other selection methods could be investigated, perhaps further 

increasing accuracy. Implementing this modeling strategy into larger more 

complex hemodynamic models where experimental blood flow (or pressure) data 

is unavailable would also be a beneficial possibility. 
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APPENDIX I 
 

MATHMATICA PROGRAM 
 

Three Methods of selecting R1, dynamically selecting C 

 

(* Setting up dynamic estimation of Q, P, Modulus and Phase*) 

w[k_] := 2 i  k 

ZRCR[R_, Rd_, C_, k_] := (R + Rd + i  w[k] R Rd C)/(1 + i w[k] Rd C) 

timestepsPer = 50; 

 

loadPandQfromExperimentalData[model_, segment_] := { 

  pathname = basePath <> model <> "/" <> segment <> "_Q.txt"; 

  tq = Import[pathname, "Table"]; 

  pathname = basePath <> model <> "/" <> segment <> "_P.txt"; 

  tp = Import[pathname, "Table"]; 

  t = Table[tq[[i, 1]], {i, Length[tq] - timestepsPer, Length[tq] - 1}]; 

  q = Table[tq[[i, 2]], {i, Length[tq] - timestepsPer, Length[tq] - 1}]; 

  p = Table[ 

    tp[[i, 2]]*1333.3332, {i, Length[tp] - timestepsPer, Length[tp] - 1}]; 

  Pw = Fourier[p, FourierParameters -> {1, -1}]; 

  Qw = Fourier[q, FourierParameters -> {1, -1}]; 

  Zw = Pw/Qw; 

  n = Length[Pw]; 

   

  avgqData = Mean[q]; 

  avgpData = Mean[p];  

  qAmplitudeData = Max[q] - Min[q]; 

  pAmplitudeData = Max[p] - Min[p]; 

  plotExpData; 

  } 

 

plotExpData := { 

  plotQdata =  

   ListLinePlot[Table[{t[[i]], q[[i]]}, {i, 1, Length[t]}],  

    PlotStyle -> {Black, Thickness[.005]}, PlotRange -> All,  

    AxesLabel -> {"s", "cc/s"}, PlotLabel -> "Flow"], 

  plotPdata =  

   ListLinePlot[Table[{t[[i]], p[[i]]}, {i, 1, Length[t]}],  
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    PlotStyle -> {Black, Thickness[.005]}, PlotRange -> All,  

    AxesLabel -> {"s", "dynes s /cm^2"}, PlotLabel -> "Pressure"], 

  plotAbsData =  

   ListLinePlot[Table[Abs[Zw[[i]]], {i, 1, n/2}],  

    PlotStyle -> {Black, Thickness[.005]}, PlotRange -> All,  

    PlotLabel -> "Modulus"], 

  plotArgData =  

   ListLinePlot[Table[Arg[Zw[[i]]], {i, 1, n/2}],  

    PlotStyle -> {Black, Thickness[.005]}, PlotRange -> All,  

    PlotLabel -> "Phase"] 

  } 

 

 

qForRCR[R1_, R2_, C1_] := { 

   ztest = Table[ZRCR[R1, R2, C1, k], {k, 0, n - 1}]; 

   Qtest = Pw/ztest; 

   qtest = Re[InverseFourier[Qtest, FourierParameters -> {1, -1}]] 

   }[[1]] 

pForRCR[R1_, R2_, C1_] := { 

   ztest = Table[ZRCR[R1, R2, C1, k], {k, 0, n - 1}]; 

   Ptest = Qw*ztest; 

   ptest = Re[InverseFourier[Ptest, FourierParameters -> {1, -1}]] 

   }[[1]] 

 

plotQForRCR[R1_, R2_, C1_, plotColor_] := { 

  (* compare  orig flow data using impedance *) 

  qForRCR[R1, R2, C1]; 

  plotqtest =  

   ListLinePlot[Table[{t[[i]], qtest[[i]]}, {i, 1, Length[t]}],  

    PlotStyle -> {  plotColor, Thickness[.005]}, PlotRange -> All,  

    AxesLabel -> {"s", "cc/s"}, PlotLabel -> "Test Flow"]; 

  Show[plotQdata, plotqtest, PlotRange -> All], 

   

  

  plotAbsTest =  

   ListLinePlot[Table[Abs[ztest[[i]]], {i, 1, n/2}],  

    PlotStyle -> {  plotColor, Thickness[.005]}]; 

  Show[plotAbsData, plotAbsTest], 

  plotArgTest =  

   ListLinePlot[Table[Arg[ztest[[i]]], {i, 1, n/2}],  

    PlotStyle -> {  plotColor, Thickness[.005]}]; 

  Show[plotArgData, plotArgTest], 
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  qErrorMean = avgqData - Mean[qtest]; 

  qAmplitudeTest = Max[qtest] - Min[qtest]; 

  qErrorAmplitude = (qAmplitudeData - qAmplitudeTest)/qAmplitudeData * 100, 

  qErrorRMS = RootMeanSquare[q - qtest], 

  dc 

  } 

 

plotPForRCR[R1_, R2_, C1_, plotColor_] := { 

  (* compare  orig flow data using impedance *) 

  pForRCR[R1, R2, C1]; 

  plotptest =  

   ListLinePlot[Table[{t[[i]], ptest[[i]]}, {i, 1, Length[t]}],  

    PlotStyle -> {  plotColor, Thickness[.005]}, PlotRange -> All,  

    AxesLabel -> {"s", "dyne s/cm^2"}, PlotLabel -> "Pressure"]; 

  Show[plotPdata, plotptest, PlotRange -> All], 

   

  plotAbsTest =  

   ListLinePlot[Table[Abs[ztest[[i]]], {i, 1, n/2}],  

    PlotStyle -> {  plotColor, Thickness[.005]}]; 

  Show[plotAbsData, plotAbsTest], 

  plotArgTest =  

   ListLinePlot[Table[Arg[ztest[[i]]], {i, 1, n/2}],  

    PlotStyle -> {  plotColor, Thickness[.005]}]; 

  Show[plotArgData, plotArgTest], 

  pErrorMean = avgpData - Mean[ptest]; 

  pAmplitudeTest = Max[ptest] - Min[ptest]; 

  pErrorAmplitude = (pAmplitudeData - pAmplitudeTest)/pAmplitudeData *100, 

  pErrorRMS = RootMeanSquare[p - ptest], 

  dc 

  } 

 

basePath = "/Users/leperkin/Model/"; 

eData = loadPandQfromExperimentalData["Crest", "LSceliac.scaled.1.30"]; 

dummyData = loadDummyPandQ["Crest", "LSaorta.scaled.0.0"]; 

est1R1 = Min[Abs[Zw]] 

hoterms =  

  Table[Abs[Zw[[i]]], {i, 2, 25}];(* 2 -> # of minimum Modulus *) 

est2R1 =  

 Mean[hoterms] 

hoterms =  
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  Table[Abs[Zw[[i]]], {i, 0, 5}]; (* 5 -> # of minimum phase angle *) 

est3R1 = 

  Mean[hoterms] 

MyDynamic = {(*Slider[Dynamic [dr] ,{5000,9000}]*)  dr = est3R1, 

  Dynamic[r2 = Re[Zw[[1]]] - dr] 

   Slider[Dynamic[dc] , {3.67 *10 ^ -6, 1.44*10 ^-4}],  

  Dynamic[plotQForRCR[dr, r2, dc, Green]],  

  Dynamic[plotPForRCR[dr, r2, dc, Red]]} 

 

{5275.03,  ,

,

} 

 

(*C PROGRESSION  - RCR*) 

 

GoodQ = qForRCR[est3R1, Zw[[1]] - est3R1, 8.05* 10^-5]; 

GoodP = pForRCR[est3R1, Zw[[1]] - est3R1, 8.05* 10^-5]; 

GoodMod = Table[Abs[ztest[[i]]], {i, 1, n/2}]; 

GoodPhase = Table[Arg[ztest[[i]]], {i, 1, n/2}]; 

SmallCQ = qForRCR[est3R1, Zw[[1]] - est3R1, 1* 10^-5]; 

SmallCP = pForRCR[est3R1, Zw[[1]] - est3R1, 1* 10^-5]; 

SmallCMod = Table[Abs[ztest[[i]]], {i, 1, n/2}]; 

SmallCPhase = Table[Arg[ztest[[i]]], {i, 1, n/2}]; 

BigCQ = qForRCR[est3R1, Zw[[1]] - est3R1, 1* 10^-4]; 

BigCP = pForRCR[est3R1, Zw[[1]] - est3R1, 1* 10^-4]; 

BigCMod = Table[Abs[ztest[[i]]], {i, 1, n/2}]; 

BigCPhase = Table[Arg[ztest[[i]]], {i, 1, n/2}]; 

OrigMod = Table[Abs[Zw[[i]]], {i, 1, n/2}]; 
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OrigPhase = Table[Arg[Zw[[i]]], {i, 1, n/2}]; 

 

Export["Cprogression.xls", {OrigMod, OrigPhase, , t, q, SmallCQ, GoodQ,  

   BigCQ, , p, SmallCP, GoodP, BigCP, , SmallCMod, GoodMod, BigCMod, ,  

   SmallCPhase, GoodPhase, BigCPhase}, "XLS"]; 

(*SHIM COMPARISON RCR *) 

ShimR = 4.62*10^3; 

ShimC = 4.76* 10^-7; 

FourierC = 1.12* 10^-4; 

TimeMethodQ = qForRCR[ShimR, Zw[[1]] - ShimR, ShimC]; 

FourierMethodQ = qForRCR[est3R1, Zw[[1]] - est3R1, FourierC]; 

TimeMethodP = pForRCR[ShimR, Zw[[1]] - ShimR, ShimC]; 

FourierMethodP = pForRCR[est3R1, Zw[[1]] - est3R1, FourierC]; 

Export["TimevsIntegral.xls", {t, q, TimeMethodQ, FourierMethodQ, , p,  

   TimeMethodP, FourierMethodP}, "XLS"];  
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APPENDIX II 
 

MATLAB PROGRAMS 
 

1. Implementing Time Domain  Method 

 

% Integral Method for estimating RCR - (Shim Paper)  
 
%Importing Data 
Flow = load ('~/Model/Crest/LSr.renal.scaled.1.30_Q .txt');   
qcycle = Flow(:,2); 
Pressure = load ('~/Model/Crest/LSr.renal.scaled.1. 30_P.txt'); 
pcycle = Pressure(:,2); 
 
% Only need one cycle of the flow and pressure (50 datapoints) 
qcycle = qcycle(length(qcycle)-59:length(qcycle)-10 ); 
pcycle = pcycle(length(pcycle)-59:length(pcycle)-10 ); 
time = Flow(1:50,1); 
 
%Plot of One cycle - Pressure and Flow 
 subplot (1,2,1) 
 plot (time, qcycle) 
 xlabel('time - sec') 
 ylabel ('Flow') 
 subplot (1,2,2) 
 plot (time, pcycle) 
 xlabel ('time - sec') 
 ylabel ('Pressure') 
 
% INTEGRAL METHOD 
 
%getting the pulsatile pressure amplitude  - Pcycle  minus end 
%dyastolic pressure  
 
%Need to choose 6-8 points to make a comparison - ( from the 
ejection point) 
%-not the whole cycle 
 
%need to multiply the pressure by 1333.33 to conver t to dynes 
ratio = 0; 
i=1; 
for tk = 15:2:15; 
    Ped = (min(pcycle))*1333.33; 
    PPA(i) = pcycle(tk)*1333.33 - Ped; 
    Qpoints(i) = qcycle(tk); 
    ratio = ratio+PPA(i)/Qpoints(i); 
    i = i+1; 
end 
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Zch = 1/(i-1)*ratio 
 
%calculating  resistance  (R2)  
%again need to multiply the pressure by 1333.33 - c onverting to 
dynes 
Pmean = mean(pcycle)*1333.33; 
Qmean = mean(qcycle); 
 
R = (Pmean./Qmean) - Zch 
 
%To calculate compliance: 
%need to best-fit the curves and get a polynomial t hat can be 
integrated 
%paper only considered the flow and pressure during  early 
ejection, only look at points 5-15 (will change) li ke before  
figure 
subplot (1,2,1) 
plot (time(15:25), qcycle(15:25)) 
xlabel('time - sec') 
ylabel ('Flow') 
subplot (1,2,2) 
%%Again scale the pressure 
plot (time(15:25), pcycle(15:25)*1333.33) 
xlabel ('time - sec') 
ylabel ('Pressure') 
 
%From above, use best-fit equation for pressure and  
% for flow - get from figure tools 
syms p q; 
 
%%Renal 
Pfit = 1.404e7*p^3+-7.0276e6*p^2+8.5519e5*p+1.1329e 5; 
Qfit = 96.254*q^2-59.309*q+17.081; 
 
%integrate the bestfit polynomials for pressure (pf it) and flow 
%(qfit)  
t2 = 0.15; 
t1 = 0.25; %Check this - these 2 points mark early ejection 
(beginning and end times) 
Pint = int(Pfit); 
Psub = subs(Pint,p,t2) - subs(Pint,p,t1); 
Qint = int(Qfit); 
Qsub = subs(Qint,q,t2) - subs(Qint,q,t1); 
 
%%Calculate C  
Cu = (Psub-((R+Zch)*Qsub)); 
Cl = R*(pcycle(15) - pcycle(25)) - R*Zch*(qcycle(15 ) - 
qcycle(25)); 
C = Cu/Cl 
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2. Calculate C using Fourier Method 

 
 
%% Calculate C value from Impedance Mod and Phase 
 
R1=5936.76; 
R2=6518.28; 
w=15; 
Angle = -.175178569;  
ZMag = 4907.674601; 
syms C %R1 R2 w 
 
Z = ZMag* exp(i*Angle); 
%Z=(R1 + R2 + i*w*R1*R2*C)/(1+i*w*R2*C) 
 
Answer = solve(((R1 + R2 + i*w*R1*R2*C)/(1+i*w*R2*C ))^2 - 
Z^2,'C'); 
Answer = simplify(Answer) 
 
C1 = (Z-R1 - R2)/(w*R1*R2*i-Z*i*w*R1) 
C2 = abs(C1) 
 
 

 
 

** Matlab Also Used to Create Figures 2-11 
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