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Abstract

Pavel I. Zhuravlev

Unraveling the Complexity of Biological Processes from Protein Native Dynamics to Cell

Motility in Molecular Simulations.

(Under the direction of Dr. Garegin A. Papoian)

This dissertation consists of two major parts. Both are dedicated to studying biological

molecular processes with computer simulations, but differ in the scale of the studied processes.

In one project we investigated the dynamics of cellular organelles involved in cell motility –

the filopodia. The other project is zooming in to the scale of single molecule, elucidating the

organization of protein molecule native state.

Some motile cells use special fingerlike probes of their environment for guiding their mo-

tion called filopodia. They are bundles of parallel actin filaments protruding from the cell body

and enveloped by cell’s membrane. They are highly dynamic, constantly growing an retract-

ing, randomly, or in response to the change in the environment. These dynamics are governed

by the cell’s regulatory proteins and by external chemical cues or mechanical obstacles. The

previous models predicted that a filopodium grows to a stationary length of about 1 µm with

miniscule fluctuations around. (i) We found that capping proteins (they attach to the barbed

ends of actin filaments and stop polymerization) can induce macroscopic oscillation of filopo-

dial length – the growth-retraction cycles. The retraction can be complete. This is the first

model that predicts finite lifetimes for filopodia. The lifetimes are consistent with experimen-

tal observations. (ii) In the model, however, the maximal filopodial lengths of several microns
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are still limited by the diffusional transport of actin monomers to the filopodial tip and are

far below experimentally observed lengths of up to 100 µm. Assuming the obvious solution

for the problem of slow transport in cell, the molecular motors, that are known to be present

inside filopodia, we found that a naı̈ve addition of motors does not increase the lengths much.

In order to have an efficient active transport, two rules must be observed: the motors should

not sequester the cargo and the rails for motors should be kept from being clogged by motors.

Protein Ena/VASP that is known to be actively transported to the filopodial tip by molecular

motors may be a way to fight sequestration.

On the scale of a single macromolecule we studied the organization of protein native state.

It is not a single structure, but an ensemble of constantly interconverting conformations. It is

essential for a deep insight into protein functioning to know thermodynamics of these substates

and dynamical regime of their exploration. (i) In all-atom MD simulations we constructed

a 2D free energy surface for a protein Trp-cage and using the FES for Brownian dynamics

investigated the nature of dynamical behavior of Trp-cage in its native state. We found that

the dynamical regime is borderline between liquid and supercooled liquid. (ii) We developed

a general technique for calculating free energy difference between two polymer conformations

in explicit solvent simulations and used the Trp-cage 2D FES for testing of this technique,

revealing remarkable accuracy and computation efficiency.
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Chapter 1

Introduction

1.1 Cell motility and filopodia

Eukaryotic cells that have to move to perform their functions rely on actin based organelles for

motility [1]. On a surface, these cells move by extending a flat layer with a three dimensional

actin mesh inside called a lamellipodium. Thickness of a lamellipodium is on the order of 100

nm and transverse dimensions are above the micron length scale. The front of an extending

lamellipodium is called the leading edge. From the leading edge the cell extends thinner finger-

like protrusions called filopodia [2]. They emerge from the lamellipodium, at those points of

the leading edge where actin filaments of the branched 3D mesh bundle together in parallel.

Primary role of filopodia is to sense the environment and help to guide the cell’s motion.

The first part of this dissertation focuses on modeling various aspects of filopodial growth

dynamics. Filopodia are employed by fibroblasts – motile cells that perform wound-healing

– while these cells are finding its way through the body to the wound in order to cover it [3].

During embryo formation, neurons grow axons, which may be up to a meter long. A front

of a growing axon – a neural growth cone – pauses every now and then extending multiple

filopodia to probe the surroundings and decide in which direction it has to turn [4]. Filopodia



are needed for dorsal closure in drosofila embryos [5] and are implicated in cancer metastatic

propagation [6].

Extension and retraction of filopodia and lamellipodia are based on actin polymerization

and depolymerization which are, in their turn, affected by various regulatory proteins [7]. Actin

filament (F-actin) is asymmetric, and the polymerization-depolymerization rates are different

on the two ends called the barbed end and the pointed end. In a living cell, typically, the poly-

merization at the barbed end is considerably faster, so a filament can be thought of as growing

from the barbed end. Barbed ends in lamellipodia and filopodia are near the cell’s membrane

pushing it forward during polymerization. In lamellipodia, the branching agent, Arp2/3 can

attach and start a new filament at an angle to the existing one [8], thus forming the 3D actin

mesh. Another important regulator is capping protein that attaches to the barbed end and stops

polymerization completely until it falls off. Concentration of actin monomers (G-actin) near

barbed ends obviously influences polymerization and growth rates. Amount of free G-actin is

regulated by special sequestering proteins [9]. A filopodium emerges when lamellipodial actin

filaments group together in parallel at a specific spot of the leading edge, increasing there the

pressure on the membrane and starting the protrusion. The pointed ends of filopodial filaments

remain in the lamellipodial actin mesh. Apart from capping and sequestering proteins, there are

many others that regulate the filopodial growth. Anticapping proteins prevent capping proteins

from attaching to the barbed ends, they also promote polymerization [10]. Fascins and other

cross-linking proteins bundle the parallel filaments together increasing mechanical stability of

the filopodium [11]. These and other multiple regulatory proteins form an intricate chemical

signaling network.

As a probe, a filopodium is sensitive to changes in environment and to fluctuations in the

regulatory network. It switches from growth to retraction and back to growth in response

to these internal fluctuations or external influences, such as chemical cues or mechanical ob-

stacles. The process is known as growth – retraction cycles. The aforementioned chemical
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network is tightly coupled to mechanics. Elastic force from the membrane pushes back the

polymerizing barbed ends at the filopodial tip. Apart from that, active motions, which are

based on myosin molecular motors, in the lamellipodial actin mesh pull the filaments into the

cell [12]. The total effect of these two (and possibly more) processes is known as retrograde

flow. Competing with polymerization, it engenders the complicated growth-retraction dynami-

cal behavior. Actin filaments are semiflexible polymers with persistence length on the order of

20 µm [13]. Under the load they will buckle, though, due to cross-linking the buckling force for

the filopodial bundle of filaments will be larger. In addition, in the cells moving over a surface

lamelliodial and filopodial F-actin can attach to the substrate in the specific spots called focal

adhesions [14].

Summarizing, filopodial dynamics is a complicated mechano-chemical system represent-

ing a challenge for both theoretical and experimental studying. Modeling of this mechano-

chemical signaling network assists in capturing the essential effects of regulating various pro-

teins on the network dynamics, where corresponding experiments would require an immense

effort.

1.1.1 Stochastic simulations of mechano-chemical networks

Chemical part of the signaling networks that regulate filopodia consists of proteins and their

interactions through chemical reactions. In many cases a set of chemical reactions is ana-

lyzed through writing down a system of ordinary first-order differential equations with time

as independent variable and concentrations of interacting species as dependent variables, that

is, functions of time. The description of the chemical network based on the solution to this

system of equations is known as chemical kinetics description. The concentrations in these

equations are average numbers of molecules in a unitary volume. However, chemical reactions

are discrete random processes. Reactants float in the solution or in the gas phase and have to

encounter each other randomly, but even unary reactions, such as radioactive decay are random
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events. When the numbers of reacting molecules are large, on the order of Avogadro’s number,

the relative fluctuations of these numbers are negligible. In such cases, time evolution of av-

erages gives an appropriate description of the system dynamics, and chemical kinetics can be

used.

A crucial feature of biological signaling networks is that the average numbers of molecules

of each reacting protein in the relevant spatial region are very low, on the order of several

molecules (down to 10−2 molecules for some of the processes studied in this dissertation). In

this case, the fluctuations (estimated as a square root of number of molecules) are on the same

scale as the average and can even exceed it by an order of magnitude. Chemical kinetics may

not provide a physically meaningful answer for a biological signaling network, therefore, the

dynamics of such network has to be treated stochastically.

In order to illustrate the difference between chemical kinetics and stochastic approaches let

us consider a unary reaction where species A can convert to B with rate k1 and backwards with

rate k2:

A
k1, k2−−−⇀↽−−− B. (1.1)

Instead of following evolution of concentrations [A] and [B], the stochastic approach treats

the dynamics of this chemical system as a random walk on a 1D lattice with nodes correspond-

ing to particular copy numbers for each species involved in the chemical network. If the system

starts with n molecules of A and m molecules of B (state (n,m)), one of the A molecules can

convert to B with rate k1 per molecule, and one of the B molecules can convert to A with rate

k2 per molecule. This translates to a step to the right along the lattice with rate nk1 or step to

the left with rate mk2.:

...
(n+2)k1, (m−1)k2−−−−−−−−−−⇀↽−−−−−−−−−− (n+1,m−1)

(n+1)k1, mk2−−−−−−−⇀↽−−−−−−− (n,m)
nk1, (m+1)k2−−−−−−−⇀↽−−−−−−− (n−1,m+1)

(n−1)k1, (m+2)k2−−−−−−−−−−⇀↽−−−−−−−−−− ...

(1.2)

The complete description of this random walk is given by the probability distribution
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P(n,m, t) – the probability that the system is in the node (n,m) at time t. This function is

a solution of the so-called Master Equation.

The example is zero-dimensional, in the spatially resolved case, the average concentrations

also depend on spatial coordinates, and chemical kinetics equations are complemented by dif-

fusion equations. Stochastic spatially resolved system has a lattice similar to (1.2) at each

point in space. In case of signaling network regulating filopodial growth, the lattice is highly

multidimensional, spatially resolved, and in addition, the rates for steps between the nodes are

dependent on mechanical degrees of freedom, such as retrograde flow velocity, membrane posi-

tion or bending and buckling of the filaments. Solving of this equation analytically is hopeless,

but stochastic computer simulations may be employed.

In the model used in this dissertation, we discretize space into compartments and keep track

of copy numbers of all chemical species in all compartments. To characterize the distribution

function, which is the solution of the master equation, we run multiple realizations of the ran-

dom process and calculate averages, variances, joint distributions etc. This approach is similar

to running multiple Langevin trajectories to obtain characteristics of probability distribution,

which is a solution of corresponding Fokker-Planck equation. The technique may be called,

therefore, chemical Langevin dynamics simulations.

The implementation of such Langevin dynamics of basic filopodial mechano-chemical net-

work has been developed in our research group based on the Gillespie algorithm for stochastic

simulations [15]. Gillespie algorithm draws random numbers to decide which reaction and

where in space occurs next, thus realizing the stochastic propagator on the lattice of chemical

network. The basic model for the filopodial growth only includes diffusion of actin monomers,

polymerization, retrograde flow and mechanical influence of the membrane. No regulatory pro-

teins are considered in the basic model. It predicts growth to a stationary length determined by

balance of diffusional flux of actin monomers forward and retrograde flow actin flux backward.

In this dissertation we build on the basic model [15], adding regulatory proteins, to investigate
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their influence on the filopodial lengths and growth speeds.

1.1.2 Capping protein noise amplification

Chapter 2 discusses capping proteins, which are present in filopodia in very low concentra-

tions. If a filament is capped, it starts to retract due to retrograde flow. When all filaments are

capped, the whole filopodium switches to retraction. Capping proteins fall off from the barbed

ends at a slow rate, so when enough filaments are uncapped to overcome the membrane force,

the filopodium switches back to growth. Eventually, at some retraction phase, the filopodium

would retract all the way to the cell body and disappear, showing now a finite lifetime in-

stead of growing to stationary length. The filopodial lifetimes of several minutes on average,

obtained in our simulations agree with experimentally known values. Low concentration of

capping proteins means that capping process is a discrete slow random noise, and a random

switch between two fast processes of growth and retraction, and the filopodium thus acts as an

amplifier of that noise, making it visible on macroscopic temporal (∼ 100 s) and spatial (∼ 100

nm) scales. This high susceptibility to tiny fluctuation may be beneficial to sensorial role of

filopodia. The second part of Chapter 2 presents analytical estimation for individual filament

disappearance rates based on mean capping and uncapping times.

1.1.3 Active transport in filopodia

The bottleneck for filopodial length is the diffusional flux of G-actin to the filopodial tip, which

decreases with the length [15]. A “standard” biological solution such a problem, lack of perfor-

mance in diffusional transportation, is the use of molecular motors. The picture of such active

transport suggested by cartoons in biology textbooks, shows cargo loaded onto motors which

walk forward and unload cargo at the destination, much like a conveyor belt. In fact, Myosin

X molecular motors, which can walk along actin filaments, have been observed inside filopo-

dia and shown to influence filopodial formation [16]. Chapter 3 investigates the possibility of
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G-actin being transported by these motors to the filopodial tip. It turns out that a mere addition

of these motors to the mechano-chemical network does not affect the transport efficiency a lot,

because motors sequester the cargo. Intricate schemes, involving multifunctional proteins may

work better. For instance, Ena/VASP is known to be transported by Myosin X inside filopo-

dia [17] and also cross-links the actin filaments near the tip [11]. Assuming that Ena/VASP is

needed as an adaptor between G-actin and Myosin X and consumed for cross-linking near the

tip, we found that these two features can prevent sequestration of G-actin and make transport

more efficient. Still, the conveyor-like transportation is only achieved in a narrow ranges of

parameters.

1.2 Energy landscape perspective on the dynamics of the pro-

tein native state

Much more often, molecular simulations in biology are used on a considerably smaller scale. If

we zoom into the scale of a single protein molecule, we find that it is dynamic and complicated.

Protein interactions and rate constants for the reactions between proteins, which are the input

parameters in the first part of the dissertation, follow in fact from protein structural and dynam-

ical organization. In the second part of the dissertation we develop techniques permitting to

study this organization.

A few decades ago, the question of how an amino acid sequence can predefine a unique 3D

folded structure for a protein seemed hopelessly intractable. Even then, however, kinetic mod-

els were successfully devised to describe the conformational transitions in allosteric proteins

such as hemoglobin. Subsequently, the statistical view of the protein folding problem lead to a

realization that globular proteins are built in a very special way, which tremendously simplifies

the folding problem. This, in turn, has allowed nature to evolve complex protein folds.

The energy landscapes of foldable proteins are funneled – the conformations that are struc-
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turally similar to the native state are also low in energy, while the native state interactions are

minimally frustrated [18, 19], diminishing the energetic ruggedness which could kinetically

prevent folding [20–30]. At the same time, the native state, that used to be thought of as a

single structure – simple and clear – turned out to be a collection of conformations that are ex-

plored as the natively folded protein roams the landscape at the bottom of the funnel [31–36].

This portion of the landscape (that we will afterwards call a functional landscape) has a much

smaller phase volume compared with the whole protein folding phase space, but is much richer

in its topography when viewed at high resolution – in other words it is more rugged and glassy.

Ironically, the folding landscape that has astronomical number of states turned out to be eas-

ier to understand conceptually, than this small region at the bottom of the funnel. Despite a

number of open questions still remaining in protein folding, energy landscape theory and the

funnel paradigm ushered in a general understanding and provided a common language, which

is used widely by experimentalists and theoreticians [37–41]. With the functional landscapes,

however, it is likely that most of the properties of protein functional dynamics depend on the

particular features of the landscape of a specific protein, which might prevent emergence of

a general universal view. However, the energy landscape language can still provide a fruitful

common ground for discussion of protein function and dynamics. These dynamics represent

motion in multidimensional manifold riddled with cliffs, ridges, peaks and crevices (also mul-

tidimensional). For deep understanding of these phenomena, we need a reduced representation

of the protein energy landscape and of it exploration by the protein molecule. Or, to put it in

form of simple questions: How many variables are needed to describe the relevant motions?

What are these variables and how to systematically find them?

Because of its minimally frustrated nature, the folding landscape produces kinetics that

are often adequately mapped to a single coordinate, the fraction of native contacts, denoted

as Q [42]. The average energy of contacts decreases as a function of Q, so the energy land-

scape may be visualized as a funnel (Fig. 1.1). These statements are not only qualitatively
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appealing, but are also quantitative, based on the generalized random energy model (GREM),

which was borrowed from spin glass physics [43]. In the middle part of the funnel, the protein

chain is already compact, but very dynamic, still possessing significant entropy [44–47]. One

consequence of this is the robust self-averaging property: an ensemble of energies sampled

on a small part of the landscape is to a large extent representative of the whole ensemble of

energies [48–50]. Self-averaging permits use of the random energy model (REM) which is, in

essence, replacing the detailed description of a particular landscape (like a detailed topograph-

ical map) with an estimated probability distribution of energy minima and barriers. Configura-

tional entropy in REM is determined by the interplay between total number of possible states

and the landscape ruggedness. Therefore, if the funnel is stratified at various Q values, one may

compute the configuration entropy as a function of Q, at the given temperature (see Fig. 1.1).

Using reasonable parameters to describe the funnel, it was found that at Q & 0.7 the configu-

rational entropy is severely diminished, indicating a transition to more glassy dynamics [19].

Importantly, the convenient self-averaging character of low Q strata is no longer observed for

many dynamical variables during the interconversion of nearly folded states. Therefore, the

bottom of the funnel must be described with a detailed map of the functional energy landscape.

Q by itself may no longer be the main order parameter, as it is correlated with the folding,

that has already occurred, while we are interested in functional motions of the folded protein.

Therefore, coordinates transverse to Q play an important role. On the positive side, due to small

phase volume of the native state ensemble, a brute-force sampling of the functional landscape

is feasible, as apparent from numerous experiments and actual protein functioning in biological

organisms. One reason for that is that despite the functional landscape being glassy, the pro-

tein does not have to actually overcome barriers higher than the one associated with unfolding.

From any point of the landscape it can unfold and refold to another point, so the distribution of

the barriers (and therefore, of timescales) is capped. Indeed, typical excitations of a protein in

native state include partial unfolding [51]. For the same reason, Q is still likely to be a relevant
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coordinate, but more coordinates are required to describe the motions transverse to Q.

In the most general case, the functional energy landscape has multiple minima, which are

hierarchically organized with a complicated transitions kinetics [21, 33]. The ultimate goal for

computational modeling is to find an approach that is able to predict other native-like states and

the kinetics of transitions between all of these states starting from an experimentally determined

native structure.

As previously mentioned, the native protein dynamics are immensely multidimensional

with several hundred protein residues corresponding to several thousand degrees of freedom,

in addition to many more solvent degrees of freedom. However, solvent degrees of freedom are

separated by a large timescale gap from the protein conformational motions. For this reason,

when discussing the latter, it is often assumed that the solvent degrees of freedom are adiabat-

ically equilibrated around any protein conformation and are present in the description in the

implicit way. We follow this convention here: when discussing energy landscapes, by energy,

we actually mean free energy of contacts, where solvent degrees of freedom are integrated out.

On the other hand, conformational entropy remains explicit and is separate from this “effective

energy”. Even in this case, the energy landscape remains highly multidimensional and native

dynamics cannot be interpreted unless projected on a low number of coordinates or represented

in a different simplified way.

Proteins possess many structural components: some rigid, some flexible, and some liq-

uid. These components move on a multitude of timescales ranging from picoseconds to sec-

onds [52]. Likewise, the localization of these motions varies from atomic vibrations to global

motions of the whole molecule [53]. When addressing a particular problem, motions on spe-

cific timescales and localizations are usually of interest. Functional allosteric motions, for

instance, are typically in the slower range of the possible timescales and are spatially global.

This places limitations on the set of motions investigated to describe a particular phenomenon

and motivates the projection of the dynamics into a much lower dimensional space. Indeed,
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techniques like principal component analysis (PCA) or Essential Dynamics are able to de-

scribe much of the non-trivial motion by a mere 3-5% of the total conformational degrees of

freedom [54–58]. However, the essential phase subspace may be complicated, even fractal, so

it is not clear how to choose these coordinates, starting from a protein crystal structure. Can

there be a universal method for characterizing the essential subspace, or dissimilar approaches

are better suited for different protein classes and sizes?

1.2.1 Free energy surfaces and differences as a way to represent the en-

ergy landscape

One approach is to directly derive coordinates from the spatial motions of the protein of inter-

est, where these motions are either obtained experimentally, or from computer simulations [52]

or are speculated based on the protein molecular architecture. Often these motions are con-

nected to function, such as binding of oxygen to hemoglobin or ion channel opening and clos-

ing. If there is no clear way to correlate the coordinates with functional motions, they may be

at least based on the structures of various functional states of the protein. The aforementioned

quaternary functional motions, such as respective rearrangements of domains and subunits in

the case of multidomain proteins and oligomers, are usually more obvious. However, smaller,

single domain globular proteins may perform more subtle allosteric switching. In this case,

good coordinates may be ones that correlate with minima or valleys in the energy landscape.

At the very least, a good coordinate must evolve slowly on the timescale of interest.

In the second part of the dissertation we focus on another type of approach, the techniques

that can create a representation of a protein’s energy landscape which allows subsequent study-

ing of specific questions, such as the nature of the dynamics (diffusive or activated). One

approach is reconstructing the free energy surfaces of the native state. To enhance the coor-

dinate Q we choose two different structures (A and B) from the native state and calculate free

energy of the protein molecule as a function of two Qs now. For any given conformation, QA
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is a fraction of contacts shared with structure A and QB is the fraction of contacts shared with

B. Since both A and B are from the native ensemble and similar, both QA and QB are correlated

with folding and can describe partial unfolding excitations (cracking). At the same time, to-

gether, they resolve the motions transverse to folding and allow multiple pathways unlike a 1D

free energy profile. We tested this technique on a small protein Trp-cage. The free energy sur-

face (FES) as a function of two Qs, obtain from all-atom explicit solvent molecular dynamics

simulation, allowed us to investigate the dynamical regime of the Trp-cage native state at room

temperature. Using the FES to run Brownian dynamics, we found that the dynamical behavior

of Trp-cage is borderline between diffusive, or liquid-like, dynamics, and activated dynamics,

characteristic of supercooled liquids. Another feature of a free energy surface technique is

that it provides a way to compare different force-fields by comparing free energy surface pro-

duced by them. These types of comparisons can be used in developing coarse-grained force

fields. We constructed the same FES for Trp-cage in “dielectric solvent” force-field, where

water molecules were not present and electrostatic terms diminished 80-fold. The correspon-

dence between the two free energy surfaces is surprisingly good, especially, in the most folded

region. These results are reported in Chapter 4.

The construction of 2D free energy surface requires a lot of computational resources. As

a first step towards building a representation of energy landscape it is possible to calculate

just the free energy difference between two conformations. These also might be used in de-

veloping coarse-grained force fields and elucidating some biologically related conformational

transitions. In Chapter 5 we report a fully general technique that can calculate free energy

difference between two specific conformations of a polymer chain in explicit solvent computer

simulations. We tested this method on the same molecule, Trp-cage, confirming the accuracy

of the method within 5% through comparing to a more expensive 2D technique.

Summarizing, this dissertation reports the results of several computer simulation works of

biological systems ranging from microscopic single molecule scale to mesoscopic scale of cel-
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lular organelles. We have developed novel techniques for studying protein’s native state, based

on the energy lanscape paradigm, and created the most elaborate to date stochastic physico-

chemical model of filopodial growth dynamics. We investigated role of capping proteins in

filopodia, finding that they induce macroscopic instabilities in filopodial length by generating

slow discrete random noise amplified by the filopodium. We pursued the possibility that actin

monomers are actively transported inside filopodia, formulating two rules of efficient active

transport, and coming up with a plausible biological scheme that can uphold one of these rules.
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Figure 1.1: The protein folding landscape.
The folding landscape be schematically drawn as a funnel [19]. The vertical axis corresponds
to energy of contacts, which is correlated to Q – the similarity to the native state. In the upper
region the protein chain is unfolded with a large conformational entropy. In the middle part of
the funnel, the molten globule region, the chain is compact, but retains significant entropy. The
lower part is a collection of similar low-energy conformations separated by barriers, known
as the native state. The funnel can be stratified according to Q. At a fixed Q, configurational
entropy is defined by the interplay between total number of states and ruggedness of the land-
scape for that particular Q stratum. Glass transition temperature Tg corresponds to vanishing of
the configurational entropy. In the figure, Tg(Q′′) > Tg(Q′). The funnel region around Q∼ 0.7,
which corresponds to the onset of native like conformations, is estimated to have a high glass
transition temperature [19]
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2.1 Abstract

Capping proteins are among the most important regulatory proteins involved in controlling

complicated stochastic dynamics of filopodia, which are dynamic finger-like protrusions used

by eukaryotic motile cells to probe their environment and help guide cell motility. They at-

tach to the barbed end of a filament and prevent polymerization, leading to effective filament

retraction due to retrograde flow. When we simulated filopodial growth in the presence of cap-

ping proteins, qualitatively new dynamics emerged. We discovered that molecular noise due

to capping protein binding and unbinding leads to macroscopic filopodial length fluctuations,

compared with minuscule fluctuations in the actin-only system. Thus, our work shows for the

first time that molecular noise of signaling proteins may induce micron-scale growth-retraction

cycles in filopodia. When capped, some filaments eventually retract all the way down to the

filopodial base and disappear. This process endows filopodium with a finite lifetime. Addi-

tionally, the filopodia transiently grow several times longer than in actin-only system, since

less actin transport is required due to bundle thinning. We have also developed an accurate

mean field model which provides qualitative explanations of our numerical simulation results.

Our results are broadly consistent with experiments, in terms of predicting filopodial growth

retraction cycles and the average filopodial lifetimes.

2.2 Introduction

Eukaryotic motile cells project finger-like protrusions, called filopodia, to probe their environ-

ment and help guide cell motility [2]. They play important roles in neuronal growth [4], wound

healing [3] and cancer metastasis [6]. The filopodial structure consists of parallel actin fila-

ments, cross-linked into bundles by actin-binding proteins, all of which is enclosed by the cell’s

plasma membrane [2, 59]. Despite their importance in eukaryotic biology and human health,

the physical mechanisms behind filopodial regulation and dynamics are poorly understood,
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including what drives ubiquitous growth-retraction cycles and eventual filopodial disappear-

ance [2–4, 6, 59–61]. Using stochastic simulations of filopodial dynamics, we have discovered

that molecular noise due to binding/unbinding of a capping protein results in macroscopic

growth-retraction fluctuations, compared with minuscule fluctuations in the actin only system.

Due to rare fluctuations some filaments eventually retract all the way down to the filopodial

base and disappear. In contrast to prior computational models that predicted stable filopodia

at steady state, our simulations show that filopodial lifetimes are finite. We have also devel-

oped an accurate mean-field model which provides novel insights into filament disappearance

kinetics.

A comprehensive computational model of a filopodium should contain the following fea-

tures: mechanical interactions including membrane dynamics, protrusion force, and retrograde

flow; chemical interactions, including actin polymerization and depolymerization; and biolog-

ical signaling interactions that control the filopodia dynamics turnover. The first mean-field

model for filopodial growth addressed the interplay between filament growth and diffusional

actin transport [62]. A subsequent work highlighted the importance of the interactions between

the membrane and filament barbed ends [63]. Our own previous study was the first to treat both

polymerization and diffusion in a fully stochastic fashion [15]. In that model, the filopodia

grow to some steady state length, and subsequently exhibit only slight fluctuations [15]. Thus,

no essential dynamics occurs after the steady state is reached, a finding similar to those of other

prior filopodial simulations [62, 63], implying an essentially infinite filopodial lifetime and no

turnover.

Although it is not well known whether the turnover is driven externally or internally, it

is plausible that internal biochemical reaction network dynamics is a significant contributor.

For instance, capping proteins bind to the barbed ends of actin filaments preventing polymer-

ization [64]. Their efforts are countered by formins [10], anticapping processive motors that

attach to the barbed ends and may effectively increase polymerization rate up to five-fold [10].
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In this work, we investigated the influence of two regulating proteins on the filopodial turnover

process. The mechano-chemical model that we use here to describe the filopodial dynamics

is fully stochastic, using the Gillespie algorithm to calculate simulation steps (see Fig. 2.1). It

consists of the following processes: 1) the diffusion of proteins from the cytosol at the filopo-

dial base to the tip; 2) the force applied by the membrane on individual filaments; 3) the actin

filament polymerization and depolymerization at the barbed end; 4) the depolymerization at

the pointed end and the induced retrograde flow vretr of the filopodium as a whole; 5) capping

of the filaments that stops polymerization [64]; 6) binding of formin to the barbed end that in-

creases effective polymerization rate fivefold [10]. The filopodium is split into compartments

with diffusion realized as stochastic hops between them. Membrane force is taken into account

by effectively decreasing the polymerization rates (see Methods Secton and Ref. [15] for more

details). The parameters, such as reaction rates and concentrations, are given in Table 2.1.

2.3 Results and Discussion

The addition of capping proteins and formins results in very different, more complex growth

dynamics (see Fig. 2.2), in contrast to actin-only model in Ref. [15], where the observed length

of the filopodium was stationary. In particular, filopodial length fluctuations become macro-

scopic, increasing from below 100 nm in a model without these proteins to a few microns, on

the order of the length of filopodia. In addition, a clearly identifiable retraction phase appears,

with a lifetime of ∼100 s. The mechanism is this: when an individual filament is capped, the

retrograde flow makes it retract — the filament would eventually disappear if uncapping does

not occur quickly enough. If the filament number becomes less than a minimum needed to

overcome the membrane force, the filopodium collapses.

These large-amplitude oscillations of filopodial length observed in our simulations are the

consequence of the amplification of molecular noise of capping protein. This amplification
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is possible due to the timescale separation between fast polymerization and retrograde flow

processes and slow off-rates of formin and capping protein. Since the regulatory proteins

are present in very low concentrations (below 100 nM), their noise is highly discrete [65–

73], randomly driving back-and-forth transitions from fast growth to fast retraction for each

filament. Such a highly-fluctuating behavior should be advantageous from the point of view of

efficiency of a filipodia as an environmental sensor, in analogy to near-critical systems, where

large fluctuations are indicative of large corresponding susceptibilities. Indeed, we found that

the filopodial length is significantly more sensitive to the change in membrane force in a system

with capping proteins and formins than in a system with just actin.

In order to compare our predictions with prior and future experiments, we computed filopo-

dial lifetime distribution from 2048 Gillespie trajectories (Fig. 2.2, lower panel). Experimen-

tally reported lifetimes are on the order of several minutes, consistent with our results [60,

74–78]. We found that computed filopodial lifetimes strongly depend on the amplitude of the

individual filament length fluctuations (see Fig. 2.3).

To gain further insight into the observed noise amplification phenomenon, we investigated

how the capping protein and formin concentrations influence the magnitude of the filopodial

macroscopic fluctuations. In order to measure them, we created a stationary state by allowing

the tips of disappearing filaments to stay at the filopodial base and eventually uncap. As one

might have anticipated, the fluctuation amplitude grows with increasing capping protein con-

centration (data not shown). On the other hand, formin quenches these oscillations such that

the fluctuation amplitude depends mainly on the ratio of the capping protein to formin concen-

trations (Fig. 2.3, upper panel). Overall, filopodial lifetime strongly depends on the amplitude

of the individual filament length fluctuations (Fig. 2.3, lower panel).

To shed light into the kinetics of filopodial retraction, we address the question of how

such long timescale processes (hundreds of seconds) emerge from the much faster constituent

kinetic rates (filament uncapping rate, k−C = (25s)−1 is the slowest rate in our model). We elab-
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orate below on a simple mean-field model to estimate the rate for filament disappearance. We

consider a filament in the bundle of N anticapped filaments of stationary length, L, computed

in our prior work [15] (see Table 2.1 for the definition of variables):

L =
kDlD

N

(
CAδ

vretr
−
(

1+
k−A δ

vretr

)
1

k+
FA

e f δ/NkBT
)

. (2.1)

We keep track of a single filament as various binding/unbinding events occur. After formin

unbinds (with off-rate, k−F ), the filament may either become capped and start retracting or

re-bind formin, with the latter being more likely. The ratio of probabilities for capping and

anticapping is proportional to the ratio of the on-rates for capping protein and formin, CCk+
C

and CFk+
F , where CC and CF are capping protein and formin concentrations, respectively. The

regulatory proteins are not consumed during polymerization (unlike actin), thus, we can as-

sume bulk concentrations at the tip. Overall, the average capping time for a filament may be

estimated as

τ̄c = (k−F )−1(CCk+
C )−1(CFk+

F ). (2.2)

The computational model for filopodial dynamics is essentially a multidimensional lattice

on which a stochastic propagator enacts a random walk. If the filament is capped, it may either

fully retract and disappear or become uncapped and grow back. Thus, many possible trajec-

tories on the lattice must be considered. Each distinct trajectory is characterized by a certain

probability of occurrence and the overall time for filament disappearance. The trajectories may

be grouped according to how may times the filament has been capped and uncapped before it

disappears. In the following analytical estimation, we calculate average time of disappearance

in each group of paths described above, using a mean field approximation, instead of carrying

out a full path integral calculation (Fig. 2.4). Such a group of paths may be thought of as a

particular event scenario. We then average the rates from each group with statistical weights of
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the scenarios; the weights are exact.

In a bundle of N filaments the average time to wait for a capping event is τ̄c/N. Once

a filament is capped, it starts to retract under retrograde flow. It may either fully shrink and

disappear or uncap and regrow (first trajectory bifurcation, see Fig. 2.4). If uncapping does

not occur, it takes τd ≈ L/vretr for the filament to fully shrink and disappear. The probability

to follow this scenario is therefore p = exp(−k−C τd). The alternative scenario – the filament

uncapping and resuming growth after average time τ̄s of shrinking – occurs with 1− p proba-

bility. To find the typical shrinking time (the time it takes for a capped filament to uncap), τ̄s,

one has to average over the exponential distribution for uncapping up to τd (since for longer

times the filament has fully retracted according to the first scenario),

τ̄s =
τdZ

0

τP(τ)dτ =
1

k−C

[
1− e−k−C τd

(
1+ k−C τd

)]
. (2.3)

After uncapping, the filament starts to regrow until the next capping. If x is the position of

the barbed end with respect to filopodial base, then the regrowth speed is

vg(x) = ẋ = CA(1− x/L)k+
FAδ− vretr, (2.4)

where the steady-state G-actin concentration gradient has been taken into account (CA is the

bulk concentration at the filopodial base). We solve this equation to obtain the filament length

after regrowing for time τ̄c, the average time until the next capping event:

x(τ̄c) = L̃−
[
L̃− x(0)

]
exp(−CAk+

FAδτ̄c/L), (2.5)

where L̃ = L
(

1− vretr
CAk+

FAδ

)
. With a very large polymerization rate provided by formin, the

exponential factor is essentially zero, so the new length is x(τ̄c) ≈ L̃ ≈ L, as vretr � CAk+
FAδ.

Therefore, if a capped filament is uncapped, it quickly catches up with the others at steady

state length. Thus, a filament either retracts after average time τ̄c/N +τd with probability p, or
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returns to initial state after time τ̄c/N + τ̄s with probability 1− p. This filament will be capped

again after average time τ̄c, and there will be second trajectory bifurcation: it will either retract

with probability (1− p)p at time τ̄c/N + τ̄s + τ̄c, or start regrowing again with probability

(1− p)2 at time τ̄c/N + τ̄s + τ̄c + τ̄s. Each subsequent trajectory bifurcation leads to a longer

time (lower rate) for filament disappearance, but also is less likely to occur. To get the full rate

one has to average the disappearance rates over all scenarios:

λ =
∞

∑
n=0

pn

τn
=

∞

∑
n=0

p(1− p)n

a+bn
=

p
a 2F1

(
1,

a
b

;
a
b

+1;1− p
)

, (2.6)

where 2F1 is the hypergeometric function; a = τ̄c/N + τd; b = τ̄c + τ̄s.

Thus, the average time for filament disappearance is τ̄ = 1/λ, where λ is given in Equa-

tion 2.6. We ran simulations with different numbers of filaments at two formin concentrations,

looking for an average time of disappearance of one filament. Since there are multiple fila-

ments in these simulations, and several of them may be capped at the same time, we need to

take into account a possibility that the first capped filament is not the first to disappear, in order

to directly compare the results from simulations with the analytical estimates. This possibility

might occur if the first capped filament uncaps and grows back, while another capped filament

quickly retracts at the same time. In Fig. 2.5, the average filament disappearance time is com-

puted by considering not only τ̄ = 1/λ, but also taking into account the contributions from the

simultaneous retraction of other filaments. The comparison between simulations and analyti-

cal results, where the latter did not contain adjustable parameters, showed good agreement (see

Fig. 2.5).

Another interesting result that we observed was that the longest filopodia grow to about 4.5

times the size of those simulated without formins and capping proteins (in our prior work [15]).

The explanation for this follows: a key factor limiting the filopodial length is insufficient actin

transport [15, 62]. A mean field estimation for the stationary length (Eq. 2.1) follows from
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equating the actin flux from the established gradient and actin consumption by N polymerizing

barbed ends [15]. Since the latter is proportional to N, a smaller number of filaments require

less actin for growth, therefore, a thinner filopodium can grow longer before the diffusive G-

actin transport again becomes a limiting factor. As filaments cap and disappear, N decreases,

hence the increase in the length. When too few filaments remain to oppose the force of the

membrane load, the bundle withdraws, resulting in the eventual filopodial disappearance. One

can speculate another interesting consequence of bundle thinning: it may induce mechanical

buckling instability, due to diminution of the mechanical rigidity of the F-actin bundle. In light

of the recent suggestion that filopodia with more than 10 filaments are mechanically stable [79],

our current finding of filament bundle thinning may turn out to be an important mechanism for

mechanical collapse of filopodia due to buckling.

In summary, we have shown in this work that capping proteins exert a dramatic effect

on filopodial dynamics. Introducing them allowed us to create the first computational model

which predicts a finite lifetime of filopodia. The resulting filopodial length dynamics has a

remarkable feature: discrete noise of regulatory proteins, that are in very low concentration,

becomes greatly amplified. Because of timescale separation, this slow discrete noise trig-

gers the fast retrograde flow and polymerization processes resulting in oscillations of filopo-

dial length macroscopic in space and time. This result suggests that experimentally observed

filopodial growth-retraction turnover dynamics [59–61] may be partially driven by the internal

noise of the filopodial mechano-chemical network. Large amplitude fluctuations in filopodia

may be important with respect to their sensory role. In particular, a molecular system hav-

ing oscillations of this magnitude is expected to be easily perturbed by small external forces,

either mechanical or chemical in origin, in analogy with large susceptibilities seen in near-

critical systems with large fluctuations. The noise amplification described in this work, arising

from discrete noise in a low copy number of some of the reaction network species, is related

to stochastic switching in biochemical signal transduction, for example when a cell needs to
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make a binary decision [80]. A similar dynamic instability is observed in microtubular growth,

although in filopodia the oscillations are switched by the binding noise, and in microtubular

catastrophes and rescues it is enzymatic in origin [81]. In addition, by promoting filament dis-

appearance, capping proteins thin the filopodium, reducing its mechanical rigidity. We spec-

ulate that this may be an important mechanism for creating buckling instabilities. We also

investigated in detail the filament retraction kinetics, and developed a mean field analytical

estimation for the rate of disappearance of individual filaments that matches the simulation

data surprisingly well. We explained the extremely slow timescale of filament disappearance,

compared to bare kinetic rates, by common occurrence of multiple capping, shrinking and

regrowing events, before the filament fully retracts as a result of a rare fluctuation.

In our stochastic model of filopodial growth [15], represented in Fig. 2.1, we assume that

the reaction processes are confined to a spatial region having a linear dimension of ζ (so-

called Kuramoto length [82]), such that particles diffuse across the region quickly compared

to the typical reaction times. This allows us to discretize space into compartments and model

protein diffusion along the filopodium as a random walk on a one-dimensional lattice, with

molecules hopping between these compartments at rates calculated from diffusion coefficients.

At relevant concentrations, ζ is on the order of 100 nm at the tip of the filopodium. We chose

a somewhat more conservative compartment size of lD = 50 nm [15]. At the filopodial base

the protein concentrations are kept at their constant bulk values. Biochemical reactions within

each compartment are simulated using the Gillespie algorithm [15, 83]. Polymerization rates

at the tip are decreased by the membrane force via the Brownian ratchet model [15, 62]. The

experimentally reported uncapping frequency is about once every 30 min, however, it may be

greatly increased through the actions of uncapping proteins, such as PIP2 [64]. The variables

and parameters for the model are given in Table 2.1. Further simulation details are elaborated

below.
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2.4 The stochastic model of filopodial growth and retraction

under the influence of capping proteins

A mature filopodium is a bundle of a few dozen actin filaments enclosed by the cell membrane

with a protein complex at the tip [84]. The filopodial base is usually located within a three-

dimensional actin mesh below, which forms the basis for the lamellipodium [84]. In addition,

bundling proteins cross-link the filaments in the bundle, however, this was not included in our

current model.

Typical growth and retraction speeds are within 0.1− 0.2µm/s, with filopodial lengths

reaching around 1− 2µm [85]. In special cases, the filopodial length may reach nearly one

hundred microns [86]. Since short filopodia are mostly straight, for simplicity we assume

growth of straight filaments. Longer filopodia might tilt and bend. The possibilities of bending

of the filaments and buckling of a filopodium will be addressed in future work.

Depending on the number of actin filaments, the filopodial diameter typically varies be-

tween d = 100 nm and 300 nm. In our simulations we used d = 150 nm, a number which was

derived from minimizing the membrane free energy [63] and is reasonable if the number of

filaments is not too large.

Our physico-chemical model of filopodial growth consists of the following processes: 1)

diffusion of proteins along the filopodial tube, providing passive transport from cell body to

the filopodial tip; 2) mechanical interactions between the membrane and individual filaments;

3) actin filament polymerization and depolymerization processes at the barbed end; 4) depoly-

merization at the pointed end and the induced retrograde flow vretr of the bundle as a whole;

5) capping of the filaments that stops polymerization [64]; 6) binding of formin to the barbed

end which increases the effective polymerization rate fivefold [10]
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2.4.1 Polymerization, depolymerization

Actin filaments (F-actin) are asymmetric, with one end called “the barbed end” and the other

end called “the pointed end”. Due to ATP binding and subsequent hydrolysis, chemical affini-

ties for monomers (G-actin) are different at the two ends, such that the polymerization rate

at the barbed end is much higher. This leads to the motion of the filament as a whole in the

direction of the barbed end (while individual monomer units migrate from the barbed end to

the pointed end). This process is called “treadmilling” and is the biochemical basis for the

cytoskeletal dynamics [87, 88], including filopodial protrusion. An actin filament consists of

two protofilaments, wound up in a right-handed helix, with a pitch distance of 37nm. Diameter

of one globular actin monomer is 5.4nm. In our simulations we increase the filament length

by δ = 2.7nm upon one polymerization event, since there are two protofilaments, and two

monomers are needed to increase length by 5.4nm.

The resulting double helical filament is mechanically robust, with a persistent length, Lp ∼

10µm. The buckling length, or the critical length at which one filament would buckle if subject

to a force F , is

Lb ≈
π

2

√
kBT Lp

F
, (2.7)

where kB is the Boltzmann constant and kBT = 4.1pNnm at room temperature [62]. The

equation gives Lb≈ 100nm for a force F = 10pN for a single filament. For weakly cross-linked

bundles of N actin filaments, the buckling length of the bundle is
√

NLb, while it is NLb/
√

2 for

tightly linked bundles [62]. A recent work suggested that the membrane enclosure significantly

increases these estimates [79].

In our model, cytosolic molecules such as G-actin, formin or capping protein, that are in the

same compartment as the filopodial tip can attach to one of the filament ends with a probabil-

ity, given by the rates k+
A , k+

FA or k+
C . These monomers at filament ends can also stochastically
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dissociate with the corresponding rates k−A , k−FA or k−C . In prior experiments, it was shown that

the actin polymerization rate rather strongly depends on the membrane force [89]. Theoretical

explanations were also provided [62,90,91]. For instance, the Brownian ratchet model consid-

ers membrane fluctuations at the tip of the filopodium [90, 92]. If the membrane fluctuations

are sufficient to allow a G-actin monomer to fit sterically atop the filament, that allows a poly-

merization with the rate k+
A . Thus, the effective polymerization rate kA,n on the n-th filament

equals the “bare” rate kA,0 times the probability of the gap opening at the tip of the n-th fil-

ament. A convenient relation between the loading force fn and the polymerization rate was

derived earlier [92],

k+
n = k+ exp(− fnδ

kBT
) . (2.8)

According to Eqn. 2.8 the on-rates for G-actin monomer addition (k+
A for free barbed end;

k+
FA for the barbed end anticapped by formin) and capping protein (k+

C ) are modified after

each timestep. The on-rate for formin, k+
F , was assumed to be independent of the membrane

fluctuations due to diminished steric constraints [10]. All of the off-rates do not depend on the

membrane position.

For these effective on-rates, we needed to estimate the membrane force on each individual

filament, which is discussed next.

2.4.2 Membrane force

According to prior studies fluctuations of a membrane sheet below micron scale relax on the

microsecond to millisecond timescale [93–96]. Chemical reactions occur on a much slower

timescale (10−2− 101 s), thus, due to this timescale separation, the membrane fluctuations

may be assumed to be equilibrated at the time of each given chemical event. Each filament

experiences an individual membrane force, fn, that depends on the proximity of the filament
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tip to the average location of the membrane,. Thus, the total membrane force f is distributed

among the individual filaments, f = ∑
n

fn.

In order to calculate fn, we assume that on average the force on a filament is proportional

to the membrane-filament contact dwelling probability, which is the probability that the mem-

brane touches that filament. That, in turn, depends on the amplitude of the membrane fluctua-

tion near the filament and the filament length. Longer filaments are more likely to be in contact

with the membrane, and feel a stronger membrane force. If the membrane fluctuations are

assumed to be described by a Gaussian distribution around the membrane average position, the

dwelling probability pn for the n-th filament to be in contact with the membrane is proportional

to the probability that the membrane height is found below the filament end

pn ∼
∞Z

h−hn

exp(−z2/σ
2
d)dz , (2.9)

where σd is the average membrane fluctuation amplitude (discussed next). Once pn is obtained,

the force fn on each filament may be computed,

fn =
pn

p
f , (2.10)

where p = ∑
n

pn is a normalization factor. Then we use Eqn. 2.8 to modify the polymeriza-

tion rates.

2.4.3 Retrograde flow

The filopodial dynamics are strongly controlled by the polymerization at its tip [7,97]. As was

mentioned earlier, the “treadmilling” contributes to a steady backward motion of the whole

actin filament bundle, called the retrograde flow. In some cells, it is believed that specific

myosin motors participate in creating the retrograde flow [12]. All of this is subject to the
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regulation by the signaling proteins, but in our current computations, we neglect these subtleties

of the retrograde flow process, and assume a constant average retrograde flow speed, vretr. The

retrograde flow speed vretr is approzimately 20 ∼ 200 nm/s [97–101] and we take vretr = 70

nm/s as the default value in our simulations.

2.4.4 Numerical Scheme

Our computations are based on the Gillespie algorithm [83]. In particular, at each simulation

step two independent random numbers are chosen, where the first one determines the time of

the next event t +∆t (t is the time of last event) based on the reaction rates present in the system,

and the second one determines which event occurs, based on the magnitude of individual event

rates. The event is chosen among the following possibilities: a) G-actin monomer, capping

protein or formin hopping between filopodial compartments, b) individual filament polymer-

ization or capping events, c) depolymerization or uncapping events and d) binding or unbinding

of formin. Then we update current time, adding ∆t, the numbers of proteins in compartments,

filament length and which protein is on its end according to the event that happened. We then

incorporate retrograde flow and update the length of filaments again. Finally, the membrane

load is partitioned among the filaments, as described above, which results in recomputing of

individual filament polymerization rates, according to the Brownian ratchet model.
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Table 2.1: Model variables and parameters in the simula-

tions with capping proteins.

Mechanics

Half actin monomer size δ = 2.7 nm

Number of filaments N = 16

Membrane force f = 10 pN

Diffusion rate kD = 5µm2s−1(2000s−1)*

Membrane fluctuation σd = 20 nm

Retrograde flow speed vretr = 70 nm/s

(De)Polymerization rates

Free barbed end k+
A = 11.6µM−1s−1(21.8s−1)

Formin-anticapped k+
FA = 53.2µM−1s−1(100s−1)

Depolymerization k−A = 1.4s−1

(Anti)Capping rates

Formin on-rate k+
F = 10µM−1s−1(18.8s−1)

Formin off-rate k−F = 0.0667s−1

Capping rate k+
C = 3.5µM−1s−1(6.6s−1)

Uncapping rate k−C = 0.04s−1

Bulk concentrations

Actin CA = 10µM

Capping protein CC = 50 nM

Formin CF = 40 nM; 80 nM

* Reaction and diffusion rates in parenthesis in “seconds”

units depend on the compartment volume. In our com-

putations it was fixed, with compartment length of lD =

50 nm and filopodial diameter of 150 nm.
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Figure 2.1: The mechano-chemical model of the filopodium.
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Figure 2.2: Filopodial growth and lifetime distribution.
Upper panel: 16 individual trajectories are shown from stochastic simulations of filopodial
growth and retraction with 80 nM of formin and 50 nM of capping protein. The average
over trajectories is indicated with a thick black line. Individual trajectories undergo turnover
– growth-retraction oscillations on a micron scale – which is induced by molecular noise of
regulatory proteins. Lower panel: Distribution of the filopodial lifetime calculated from 2048
trajectories at 40 nM of formin and 50 nM of capping protein.
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Figure 2.3: Filopodial length fluctuations
The amplitude of filament length fluctuations depends on the concentrations of regulating pro-
teins, mainly, on their ratio. These fluctuations, in turn, largely determine the mean filopodial
lifetime.
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Figure 2.4: Grouping of the stochastic trajectories into different capping-uncapping sce-
narios.
The system dynamics is executed on a multidimensional lattice on which a stochastic propaga-
tor enacts a random walk. Eventually, a trajectory arrives to a sublattice where one filament is
capped. Mean-field average time for that is τ̄c/N. From there some trajectories lead to filament
disappearance due to retrograde flow and some to filament uncapping with respective statistical
weights of p and 1− p and mean field average times τd and τ̄s. After uncapping, all trajectories
will pass through the phase area where this filament is capped again after mean field average
time τ̄c. Then again, it may either disappear after time τd or uncap after time τ̄s with weights p
and 1− p.
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Figure 2.5: Rate of individual filament disappearance from a bundle of N filaments.
CC=50nM and CF=40nM (circles, solid line) and 80nM (squares, dashed line). The symbols
show simulation results. Solid and dashed lines are computed from combining the disappear-
ance for a single filament, given by Eq. (2.6), with the scenarios of other filaments disappearing,
which had capped later. We used the following expression to estimate the average time for any
of the bundle filaments to fully retract, τmulti = (1− p)nc−1λ−1 +(1− (1− p)nc−1)(τ̄cnc/N +
τd), where, nc = λ−1/(τ̄c/N), indicates the average number of simultaneously capped fila-
ments, while the remaining symbols are defined in text. In this expression, the first term cor-
responds to the first capped filament disappearing first, while the second term accounts for the
possibility of one of the other nc− 1 capped filaments following the scenario of quick disap-
pearing without uncapping even once.The inset shows the bare disappearance times for single
filaments, λ−1, computed from Eq. (2.6), where the effect of other filament retractions is not
taken into account.
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3.1 Abstract

Recent modeling of filopodia – the actin-based cell organelles employed for sensing and motil-

ity – reveals that one of the key limiting factors of filopodial length is diffusional transport of

G-actin monomers to the polymerizing barbed ends. We have explored the possibility of active

transport of G-actin by myosin motors, which would be an expected biological response to

overcome the limitation of a diffusion based process. We found that in a straightforward im-

plementation of active transport the increase in length was unimpressive, not more than 30 per

cent, due to sequestering of G-actin by freely diffusing motors. However, artificially remov-

ing motor sequestration reactions led to about 3-fold increases in filopodial length, with the

transport being mainly limited by the motors failing to detach from the filaments near the tip,

clogging the cooperative conveyer belt dynamics. Making motors sterically transparent led to

a qualitative change of the dynamics to a different regime of steady growth without a stationary

length. Having identified sequestration and clogging as ubiquitous constraints to motor driven

transport, we devised and tested a speculative means to sidestep these limitations in filopodia

by employing cross-linking and putative scaffolding roles of Ena/VASP proteins. We conclude

that a naı̈ve design of molecular motor based active transport would almost always be ineffi-

cient — an intricately organized kinetic scheme, with finely tuned rate constants, is required to

achieve high-flux transport.

3.2 Introduction

For processes including cancer metastasis [6], neuronal growth [4], wound healing [3], and

embryonic development [102], cell motility is guided by the sensing function of finger-like

projections called filopodia. The final location of the cells is critical, so these cells must adeptly

sense their environment to properly direct their movement. To shed light into these processes,

the underlying physical and regulatory mechanisms of filopodial growth and retraction must
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be understood. In fact, the overall structure and function of filopodia is now largely known: G-

actin monomers polymerize into F-actin filaments, which then bundle in parallel to protrude the

cell membrane. Continued polymerization of G-actin at the barbed ends and depolymerization

at the pointed ends results in “treadmilling”, one of the key processes in the dynamics of actin-

based cellular structures [87, 88].

In treadmilling, F-actin elongation results from polymerization at the barbed ends, while re-

traction results from depolymerization at the pointed ends, backward pushing from the stretched

membrane, and ATP-driven pulling from the cell body (the latter two processes are termed ret-

rograde flow [103,104]). Polymerization and retrograde flow are fast processes, and switching

their equilibrium engenders complex and highly dynamical behavior, such as growth-retraction

cycles and turnover process [2,59,61,105,106]. These dynamics allow a filopodium to perform

its role as a mechanochemical receptor to guide cell motility.

A more detailed understanding of filopodia, beyond this general picture of overall structure

and function is a challenging pursuit because of the complex interdependence of governing me-

chanical, chemical, and biological processes. Thus, the development of computational models

which would produce quantitative and testable predictions can be an effective means toward

gaining additional new insights.

Considerable efforts have been made in modeling filopodia and other organelles based on

polymerizing bundles of F-actin, including stereocilia and microvilli [15,62,63,105,107–109].

These models, some deterministic, some stochastic, suggest that the diffusional flux of G-actin

to the polymerizing end, in the absence of other chemical or mechanical regulation, is a limit-

ing factor determining the filopodial length [15, 62]. While experimentally measured filopodia

are often several microns in length, some reach 30, or even 100 µm [60,86,110]. Interestingly,

physiologically reasonable choices of parameters in the current computational models predict

filopodial lengths which are many-fold shorter than longest filopodia observed experimentally.

In addition, the growth rates of the longest filopodia are on the order of 10 µm/min [60]. This
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value is also many-fold higher than current models have reported. These discrepancies indi-

cate that a fundamental mechanism of growth is currently unaccounted for. For this reason,

we extended our previous model [15, 105] to investigate how a hypothetical active transport

of G-actin might influence filopodial length. ATP-driven molecular motors are employed for

many transporting purposes in cells [111], providing a directed and faster alternative to diffu-

sion. Will active transport of G-actin in filopodia sufficiently promote elongation to fill the gap

between models and experimental observations?

This hypothesis of active transport goes against the grain of the long-held view of passive

diffusion in the context of actin filament growth [112]. Although polymerization is clearly

diffusion-limited in vitro [113], an in vitro system necessarily omits much of the in vivo com-

plexity, and mechanisms may vary across actin-based structures. In fact, an in vivo study track-

ing G-actin within a lamellipodium showed that G-actin migration is too fast to be explained

by passive diffusion alone [114].

Molecular motors are a likely candidate for supplementing the passive diffusion of G-actin

during filopodial elongation. Myosins, the family of proteins that can “walk” on actin filaments,

have been detected in both filopodia and stereocilia. In fact, the importance of myosin X(M10)

[115,116] in filopodial growth is well-supported experimentally [104,117], though the specific

roles and cargo of various myosins remain unclear. As new myosin motors and their functions

are still being identified [16], it may be valuable to use computational models to generate

testable hypotheses for the role of these motors.

Myosin X has been identified at the filopodial tips [16], and its overexpression resulted

in increased number and length of filopodia in motile cells [16]. Furthermore, myosin X has

been observed walking forward and moving rearward within filopodia [118]. The forward

motion suggests directed movement of motors along a filament that significantly outraces ret-

rograde flow, and the slower rearward movement suggests stochastic periods without walking

and backward movement due to retrograde flow.
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Beyond the identification of such motors within filopodia, there are a variety of hypotheses

for their actual role in filopodial growth – while not mutually exclusive, they include a physical

pushing against the membrane to effectively increase the polymerization rate [117], transport

of integrin to form adhesive structures near the tip [119], and transport of regulatory proteins,

such as Ena/VASP family members, toward the tip [17]. The complete role of Ena/VASP in

filopodial growth is not fully understood [11, 120, 121] though it has both G-actin and F-

actin binding motifs [122], forms a tetramer to crosslink actin filaments [120–123], and is

transported by myosin X [17].

We explore the hypothesis that myosin motors carry G-actin to the polymerizing barbed

ends of the actin filaments, presumably widening the main bottleneck for the filopodial length.

To our knowledge, only one experimental study suggested a mechanism of actin transport that

goes beyond passive diffusion [114]. In addition, a theoretical study, based on mean-field

deterministic equations, investigated the distribution of various proteins along a stereocilium

under the influence of motor proteins [107]. The current paper represents the first filopodial

model of active transport, building upon our previous work [15,105] to stochastically simulate

individual motors walking on actin filaments and carrying G-actin inside filopodia.

The stationary length in our previous model is set by a balance of fluxes: G-actin diffuses

forward to the tip along its gradient; all of that flux is consumed for polymerization to F-actin;

and as the F-actin filaments are pulled back by retrograde flow, an equal flux but opposite in

direction returns actin to the cell bulk. Transport by motors adds to the forward flux: this addi-

tion is directional, as in retrograde flow, and not linearly decreasing with length like diffusional

flux [15, 62, 107]. If motor-based flux dominates the diffusional flux, then motor-based trans-

port of actin indeed may be visualized, similar to cartoons in biology textbooks, as a conveyor

belt. Furthermore, if active transport flux exceeds the retrograde flow flux, there will be no

stationary length.

Despite this possibility, straightforward introduction of motors did not lead to skyrocketing
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of the stationary filopodial length, let alone indefinite filopodial growth. In fact, freely diffusing

motor proteins sequester G-actin previously available for polymerization. As a result, motors

at large concentrations play a length-diminishing rather than a length-promoting role. In cases

when simulated filopodia did grow longer, it was only a modest increase in length. Therefore,

sequestration by motors can severely undermine active transport, and should be avoided to

achieve a noticeable effect.

We repeated the simulations while disabling sequestration, by forbidding the freely diffus-

ing motors (as opposed to motors bound to and walking along a filament) to load G-actin from

the solution. This yielded a 3- to 5-fold increase in filopodial length. Interestingly, we also

noticed that the longest filopodia were observed in cases when motors had lower affinity to the

filaments. This is a manifestation of “clogging” of the filament “rails” by the empty motors

closer to the tip. We ran control simulations where motors loaded with actin are allowed to

pass through empty motors: the most common result was large increase in stationary lengths,

even in one case resulting in unsaturable linear growth.

Having identified limiting factors to motor-assisted filopodial growth, we explored a plausi-

ble biological means to side-step these limitations. In these simulations myosin X does not load

G-actin directly, instead loading Ena/VASP as a multi-site adaptor, which in turn binds several

G-actins. In this model, Ena/VASP is irreversibly consumed at the tip by a sink mimicking

its cross-linking role [11] with simultaneous release of G-actin to the solution. Consequently,

sinking of Ena/VASP for cross-linking results in decreased Ena/VASP concentration in solu-

tion, diminishing G-actin sequestration. The largest observed stationary lengths in this set were

many-fold longer compared with filopodia produced using a “naı̈ve” model of motor transport.

We summarize these findings as the rules of active transport: an effective transport mech-

anism must successfully overcome sequestration of the cargo and clean the “clogged rails”. It

is likely that these are general principles that apply beyond the context of active transport in

filopodia, where they have been deduced.
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The results presented in this paper were obtained from about 8000 simulation trajectories,

having taken ∼ 100 000 CPU hours on UNC Topsail supercomputer.

3.3 Results

The basic components of our filopodia model include polymerization, depolymerization, G-

actin diffusion, retrograde flow and membrane force [15]. In the first set of simulations re-

ported here, we added motor molecules that can diffuse, load actin, attach to the filaments,

walk on filaments, detach and unload actin. Bulk G-actin concentration influences steady-state

length [15], thus it was kept consistent between simulations. Accordingly, we placed corre-

sponding boundary conditions at the bottom of a filopodium (where it emerges from the cell’s

leading edge), assuming equilibrium with the motor-loading reaction (M10+G-actin) in the cell

bulk, such that the sum of freely diffusing G-actin and G-actin loaded on freely diffusing mo-

tors was kept constant, at CA = 10µM. G-actin binding to motors allows transport but can also

result in sequestration, leaving little free G-actin available to polymerization at the filament

barbed end if motor-actin affinity is too high. Thus, rate of actin dissociation from motors (ku)

is one key parameter we explore. We also explore the rate of motor dissociation from filaments

(k f u) and motor concentration [M].

Exploring the 3-parameter space (ku, k f u, [M], see Table 3.1 for other parameters) via 8 x 8

x 8 logarithmic grid (that is each parameter was scanned on a logarithmic scale, e.g, [M]=0.1,

0.3, 1, 3, 10, 30, 100, 300 µM), we covered the biologically plausible ranges for these param-

eters. Intuitively, very low [M] or very high ku are equivalent to the absence of any motors.

In the latter case, motors are present, but do not carry actin. Thus, ku determines the fraction

of motors that do carry G-actin. For this reason, the stationary length depends mostly on the

ratio of ku and [M] (as can be seen by partial collapse of curves in Fig. 3.2): very high motor

concentrations or low ku result in sequestration of G-actin and filopodia do not grow. There-
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fore, in many cases the stationary length turned out to be shorter than without motors. In a

few cases, we observed about 30% increase in stationary length with the intermediate param-

eter values (Fig. 3.2). In Fig. 3.3 the 3-parameter space is given in three 2D projections and

the bottom-right diagram in Fig. 3.3 includes all 3 parameters. The regions where filopodia

do grow longer than they would without motors are marked to provide a phase-diagram-like

comprehensive representation. These turn out to be quite localized regions, with low motor

concentration. Counterintuitively, upregulating the motors will not lead to increase in transport

efficacy because of sequestration. Moreover, motors accumulate at the tip, in qualitative agree-

ment with previous mean-field calculations in stereocilia [107], strongly sequestering G-actin

in the location where G-actin’s concentration is initially low and where it is most needed for

polymerization. In the stationary state diffusional backward flux of the motors due to concen-

tration gradient is equal to the flux of their directed motion forward.

Realizing that sequestration limits length, we ran another set of simulations within the

same parameter space, but with actin-loading of diffusing motors (as opposed to filament-

bound motors) turned off. Conceptually, motors falling off filaments (accumulating at the tip)

did not sequester actin. The goal of these simulations set was to confirm the limiting role of

sequestration and to find out what would limit the length in its absence. Also, since binding

of G-actin by myosin X has not been observed experimentally, this scheme is not necessarily

unrealistic.

The longest filopodia observed in this set of simulations were almost 6 µm, more than 7

times longer than those that grow in a model without active transport. However, the increase

could have been merely an effect of increased presence of G-actin in the filopodial “tube”,

as in addition to those molecules that freely diffuse in cytosol (maintained to be 10 µM at

the bottom) some are carried by the motors attached to the filaments. To verify that directed

transport was responsible for this length increase, we ran two control simulations: In one we set

motor backward step rate k← to be equal to forward step rate k→ = 50s−1 making the motors
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non-directional random walkers. The resulting filopodial lengths were back to those without

motors. Secondly, we set k← = k→ = 2000s−1, similar to diffusion rate, in which case the

increase in length was minuscule compared to directional motors even at these unrealistically

high motor speeds.

The largest lengths in the nonsequestering motors model were achieved at the k f u values

on the higher end of the parameter space (30 s−1, 100 s−1,300 s−1), corresponding to lower

affinity between motors and F-actin. On one hand, high k f u helps to clear the filaments from

the motors that have delivered cargo at the tip; on the other hand, if very few motors stay on the

filaments the transport is inefficient. Our results show that the former outweighs the latter: the

high values of k f u for the longest filopodia indicate that the “clogging” of filaments by empty

motors represents yet another key bottleneck for achieving long stationary lengths.

To gauge the influence of this bottleneck, we created an artificial setup where loaded mo-

tors could step forward even if the site was occupied by an empty motor (i.e. pass through each

other). In one case (ku = 3s−1,k f u = 300s−1, [M] = 1µM) such a scheme results in a qualita-

tively new growing regime. In the new conditions the forward directional actin flux overcame

the backward directional flux due to retrograde flow, providing the unquenchable source of

actin for the polymerizing barbed ends (see Fig. 3.4 juxtaposing the two regimes). In these

simulations filopodia continued to grow linearly for over 100 s up to more than 6 microns,

without any indication of growth saturation, where the latter has been found in all other cases

discussed here or in prior works [15, 62].

Thus, we have learned that sequestration and clogging can stunt motor-assisted filopodial

growth. If active transport is indeed employed in living organisms for G-actin supply of the

polymerizing barbed ends, there has to be a biological mechanism for disabling these limita-

tions. In search of a plausible biological mechanism, we turned to Ena/VASP, which has tra-

ditionally been implicated in anti-capping activity but actually has additional functions [120].

Ena/VASP can bind G-actin [122, 124], and it has also been observed as myosin X cargo [17].
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However, from ideas in our previous works [15, 105], we conclude that a protein only

needs to be transported actively if it is consumed during the growth, like G-actin. Regulatory

molecules, like capping or anti-capping proteins, that only interact with the filament ends,

are required in only very limited amount, and at realistic growth speeds diffusion will always

provide sufficient flux. Therefore, we suggest that active transport of Ena/VASP indicates that

it may be continuously consumed, most likely to cross-link the filaments [11]. There can be

other reasons to be motor-transported. For instance, as we investigate here, Ena/VASP might

serve as a scaffold, or an adapter, between myosin X and actin monomers. In this scenario of a

“sinking adaptor”, motors would not bind and sequester G-actin when the adapter is absent (and

consumption due to the cross-linking will diminish adaptor concentration), though clogging

would not necessarily be avoided.

To explore this sinking adaptor possibility, we allowed Ena/VASP to bind up to 2 G-actin

monomers and/or be loaded to a motor. We simulate a maximum of 2 G-actin molecules

transported per motor for simplicity, though one motor could carry up to 8 G-actin molecules:

Ena/VASP can form tetramers [122] where each tetramer, therefore, has four G-actin binding

sites. Myosin X is also a dimer with two heads and two tails [116,125,126], and each tail could

bind an Ena/VASP tetramer as cargo (not considered in our scheme for simplicity). This 8:1

stoichiometry could lead to efficient transport, providing that sequestration is avoided.

In the first set of Ena/VASP simulations, a cross-linking sink was not incorporated. Seques-

tration still occurred, and filopodia lengths were similar to those with “naı̈ve” motors. In the

second set of Ena/VASP simulations, a cross-linking sink was incorporated. Ena/VASP does

have a bundling role [11] and is localized near the tip [120] (where sequestration is most dele-

terious), so it is possibly consumed there for cross-linking, releasing actin for polymerization.

Bundling would provide structural rigidity for long filopodia, but because we assume straight

filopodia, the desired scenario is simply achieved by reactions of Ena/VASP irreversible sink-

ing near the tip with simultaneous release of any G-actin it had carried.
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Some of the simulations with this scheme did show significantly increased stationary lengths

compared to simulation of naı̈ve motors. In the most interesting case (ku = 30s−1,ks = 30s−1,k f u =

100s−1, [M] = 1µM), the growth seemed to be linear for over 300 s, though the slope was very

gradual. This corresponds to a small difference between retrograde flow actin flux and motor-

transported actin flux, with the former slightly larger, so that it dominates until the filopodium

becomes very long. The stationary length here reached 3.5 microns, several fold higher than

when using “naı̈ve” motors.

To summarize our results for various active transport designs, a comparative chart for the

maximal observed lengths is given in Fig. 3.5.

3.4 Discussion

When considering biological active transport realized by molecular motors instead of passive

diffusion, one typically envisions a conveyor-like delivery of the materials to the “construction

site”. Without active transport, as diffusional flux and the resulting elongation rate decrease

with the length, retrograde flow plus depolymerization equalizes polymerization at the station-

ary length, and filopodial elongation stops [15]. With active transport, there is the possibility

that forward flux exceeds that of retrograde flow, in which case there is no steady-state, and

conveyor-like delivery with linear growth would last indefinitely.

Even when the motor-based actin forward flux is barely below the retrograde actin flux, it

will still dominate the dynamics, which will exhibit a phase of linear growth for quite a long

time (see Fig. 3.4). Diffusional flux will be gradually decreasing, until the total flux becomes

equal to retrograde flux, which will happen when the filopodium has already grown long, as in

the presented case with Ena/VASP.

If one were to write a diffusion equation for G-actin concentration [62], an addition of

motor-based flux would be represented as a convectional term. From the arguments above,
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the relative magnitude of this term with respect to retrograde flow is crucial, as it sets the

asymptotic growth regime.

Our findings indicate that for a conveyor-like delivery achieved by an active transport term

of large enough magnitude, the process of transport has to be organized quite intricately.

Even for a modest increase in stationary length, certain “rules” have to be observed. These

rules are quite general, so one can think of them as the rules for effective active transport in

polymerization-based protrusions. To follow the rules, 1) motors should be kept from seques-

tering freely diffusing cargo, and 2) “rails” of the carriers should be kept clear of “clogging”

by empty motors.

In our simulations, the directional flux due to active transport was almost always less than

backward flux due to retrograde flow, therefore, diffusion still set the stationary length: that

is when the diffusional flux thins out such that in sum with the motor-based flux it balances

the retrograde flow. Surprisingly, it was only a narrow area of parameter space that yielded

the “conveyor” picture of delivery, even in the artificial control simulations with sequestration

and clogging being turned off. Perhaps this regime of transport would have been enhanced by

simulating transport stoichiometry of 8 G-actins per motor instead of 2, leading to flux amplifi-

cation. Nevertheless, we did not observe a “perpetual conveyor” in our speculative, yet plausi-

ble scheme with Ena/VASP. However, even achieving a transient, yet prolonged conveyor-like

behavior required intricacy in that Ena/VASP needs to have both bundling and scaffolding

(adaptor) functions. Interestingly, Ena/VASP is known to bundle filaments, could possibly act

as a scaffold via its G-actin binding domains, and has been observed as myosin X cargo.

Thus, the balance between active transport-based flux and backward flux due to retrograde

flow can dramatically affect filopodial growth. In this paper we considered a hypothetical ac-

tive transport of G-actin to promote elongation. To the same purpose, retrograde flow might

serve as another convenient way for a cell to regulate the filopodial length, switching between

different growth regimes. Reducing the retrograde flow several-fold will increase the filopodial

48



stationary length [15]. In some cases, the reported values of bulk G-actin concentrations are

much higher, on the order of 100 µM [127], however, in vitro 100 µM pure G-actin polymer-

izes, leaving only 0.1 – 1 µM monomeric G-actin [128]. To maintain a pool of unpolymer-

ized actin in vivo, most of monomeric actin is typically sequesterd by special proteins such as

thymosin-β4 [129]. Prior experimental and computational analysis found that the concentra-

tion for non-sequestered G-actin is on the order of 10-50 µM [130]. Even at the upper limits

of polymerizable G-actin concentrations, this will only lead to several-fold larger filopodial

stationary lengths [15]. However, in combination with another several-fold increase that we

observed when using the postulated Ena/VASP based scheme of G-actin transport, this can

take filopodia from sub-micron lengths to the lengths on the order of ten microns. The same

factors also increase growth speeds. Decreasing retrograde flow rate would increase the growth

speed, by up to 4 µm/min. The combination of the latter effect with enhanced G-actin flux

due to active transport and high G-actin concentration, may be enough to result in high growth

speeds of∼ 10µm/min observed in some experiments [60]. Thus, the cells that grow extremely

long filopodia perhaps use multiple facilities to achieve that, including the down-regulation of

retrograde flow, up-regulation of actin concentration and possibly active transport, explored in

this work.

It would be interesting to test experimentally if G-actin is transported actively with myosin

X and/or Ena/VASP utilized as an adaptor. For example, one might mutate the G-actin binding

domain of Ena/VASP and monitor filopodial length. However, Ena/VASP needs to bind G-actin

for its anticapping activity, so mutation may diminish filopodial length through disabling an-

ticapping, thus obscuring any conclusions regarding transport of G-actin. Another possibility

is to fluorescently label G-actin: to avoid an intense background of glowing F-actin, one could

consider labeling a small fraction of actin, or more attractively, labeling DNaseI which binds

to G-actin but not F-actin [131]. Concurrent labeling of myosin X or Ena/VASP with a second

fluorophore might reveal colocalization with G-actin along the length of the filopodia, or per-
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haps even FRET-based spectral changes, offering support for the active transport of G-actin.

Such a colocalization study might rely on techniques used in the recent work demonstrating

that espin1 and myosin IIIa are cotransported along the length of a stereocilium [132].

Compared to filopodia, the requirement for active transport in other parallel actin based

structures may not be acute. For instance, stereocilia are maintained at very definite lengths,

where this fine-tuning is indicative of regulation by a possible signaling subnetwork.The elon-

gation rate in stereocilia is lower by two orders of magnitude than in filopodia [107]. While

this lower actin flux can probably be sustained by diffusion, nevertheless motors Myosin IIIa

and Myosin XVa are found in stereocilia [132–134]. Myosin IIIa has been observed to carry

epsin 1 protein that has an anticapping role [132], which is similar to M10 carrying Ena/VASP.

Interestingly, myosin IIIa provides a significant boost to elongation, and this boost is depen-

dent on the WH2 domain of espin 1, which binds to actin monomer [135]. Therefore, it is

possible that the boost in stereocilia length might be mediated by active transport of G-actin.

Mutation in M15a, also found in stereocilia, results in deafness in mice and humans because of

stunted length [134]. Consequently, M15a may also be implicated in stereocilia length regula-

tion, although not necessarily as a monomer transporter. The lengths of microvilli are shorter

than of filopodia, so active transport of G-actin is less likely. However, motors are still found

in microvilli too: Myosin I motor attaches the actin filaments to the membrane to power the

sliding against it [136]. The role of Myosin VIIa in microvilli is less certain, though in other or-

ganelles it transports various cargo including proteins, melanosomes, and phagosomes [137].

Our model is general in its treatment of motors, hence, analogous active transport schemes

could be constructed for microvilli and stereocilia, although one needs to take into account the

mechanical and structural differences among these organelles.
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3.5 Methods

Here we report a stochastic treatment of filopodial dynamics based on the Gillespie algo-

rithm [83] that builds on our previously developed model [15] to study motor-mediated active

transport of G-actin monomers to the polymerizing end. Individual reactions in the Gillespie

scheme included 1) diffusion of G-actin along the length of the filopodium (rate kD), 2) poly-

merization and depolymerization at the barbed end as affected by stochastic membrane force

(rates k+ and k−), 3) motor loading and unloading of G- actin (rates kl and ku) , 4) motor bind-

ing and unbinding to and from the filament (rates k f b and k f u) and 5) motor steps along F-actin

filaments (rates k→ and k←). In the simulations with Ena/VASP acting as an adaptor, the motor

could be only loaded with an adaptor. The adaptor could be empty, or scaffolding one or two

G-actin monomers. In yet another set of simulations, there was additional reaction, irreversible

sinking of the adaptor with simultaneous release of G-actin (if it carries any) to the cytosol.

3.5.1 Actin bundle

Filopodia are formed by an F-actin bundle that extends the cell membrane, forming finger-like

protrusions along the leading edge of the cell [2, 98, 138]. Typical extension lengths in real

filopodia are several microns with growth and retraction rates of 0.1 - 0.2 µm/s [85]. Emergence

of a filopodium from the 3D actin mesh of the cell or the lamellipodium is not simulated here.

Instead we start with a pre-formed filopodium of 80 to 600 nm length, the actual value having

no effect on the steady state. Since there are typically 10 – 30 actin filaments per filopodium,

we used 16 as the fixed number of filaments [62]. Accordingly, filopodia tend to be 100 – 300

nm in width [63], so we used a width of 150 nm and assumed rapid mixing in the transverse

direction. Longer filopodia may be thicker to maintain structural rigidity, though the steady-

state effect of increased diffusing species would be canceled by the increased filament number.

Having a persistence length of about 10 µm, or longer if tightly cross-linked, the bundle of F-
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actin in our model was assumed straight for simplicity. Buckling and bending may be modeled

in the future.

3.5.2 Diffusion

Stochastic implementation of duffusion is adopted from our previous model [15, 105]. In

essence, the space is split into a 1D sequence of compartments along the filopodium and dif-

fusion is realized as reaction of stochastic hopping between the adjacent compartments. The

rate of diffusion happens to limit filopodial growth [15], which prompted us to investigate the

effects of active transport of G-actin along the F-actin filaments by molecular motors.

Given the linear dimension, molecules diffuse quickly with respect to molecule reaction

times up to a certain length, called the Kuramoto length [82], which is on the order of 100 nm

with physiological molecule concentrations. This length can be thought of as a mean “free”

(without reacting) path of a protein molecule. For stochastic treatment of diffusion, we divided

the filopodium into compartments 50 nm in height, on the order of Kuramoto length, to allow

molecules to randomly hop in 1-dimension from one compartment to another at rates that

correspond to typical diffusion rates (D = 5µm2s−1 diffusion coefficient, or 2000 s−1 hopping

rate), though diffusion rates within filopodia have not been measured. Varying compartment

height has been shown to have little effect on simulation results [15]. Diffusion constant for all

the diffusing species in our simulation was D = 5µm2s−1.

A boundary condition at the filopodial base maintains a G-actin concentration of 10 µM,

and consumption of G-actin from barbed-end polymerization establishes a base-to-tip gradient.

G-actin concentration at the tip can be very low [15], which is one the motivations for stochastic

simulation of filopodial dynamics. The rate of diffusion thus limits filopodial growth, which

prompted us to investigate the effects of active transport of G-actin along the F-actin filaments

by molecular motors.
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3.5.3 Retrograde flow

Since the depolymerization rate at the pointed end is slow, the limitation of filopodial length

is mainly controlled by retrograde flow, where the entire actin bundle moves backward at a

constant velocity [2,62]. The exact mechanism of retrograde flow remains speculative [12], but

rates are likely subject to regulatory proteins. Here we did not consider variations in retrograde

flow rates but instead used 70 nm/s in all simulations, while experimentally measured values

are ∼ 10 – 200 nm/s [16, 98, 100, 103]. Technically, we drag all the filaments with everything

bound to them towards the filopodial base with a constant velocity of vretr = 70 nm/s.

However, it is worthwhile to test this constant speed approximation. Retrograde flow is

generated by several processes: treadmilling, membrane pushing downward and myosin based

motions of the actin mesh inside the cell body that pull the filopodium backward. Although,

the latter factor is likely the most important, it would be more realistic to take the contribution

of the other factors into account as well. If an actin monomer is inserted between the filament

tip and the membrane, it pushes both the filament and the membrane, and the filament flows

back. Thus, the filopodium is only elongated by a fraction of monomer size, and the rest of

it contributes to the treadmilling. Hence, the higher the effective polymerization rates are, the

higher is the retrograde flow speed.

To include this coupling into out model, we additionally drag all the filaments back by

a distance rδ/N (monomer size δ divided by number of filaments N multiplied by a cou-

pling constant, r) after each polymerization reaction. The constant part of the retrograde flow

speed still remains (v0
r ), although it is correspondingly smaller than the total speed in simu-

lations where vretr is constant. Fig. 3.7 shows the growth curves for v0
r = 35nm/s, r = 0.3,

ku = 3s−1, k f u = 300s−1, [M] = 1µM in the three cases: normal; no sequestration; no se-

questration nor clogging. These simulations show that the qualitative difference between the

dynamical regimes of the growth and changes in stationary lengths does remain the same as in

the simulations with constant retrograde flow of 70nm/s and no coupling of retrograde flow to
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polymerization.

3.5.4 Motors

To investigate active transport of G-actin, we incorporated directed motors into our model.

They can “load” and “unload” a G-actin monomer and step along the actin filaments. To model

such a step in the Gillespie scheme, a motor on a filament reacts with an actin monomer 32.4

nm (this is the size of a motor step) away from its starting location along the filament at rates

of k→ = 50s−1 in the forward direction and k← = 5s−1 in the reverse direction. Not knowing

the real biological values and effects of unloading rates (ku), we explored rates ranging from

1 to 3000 s−1. Similarly, we explored motor-filament detachment rates (k f u from 0.1 to 300

s−1). Loading and attachment were assumed to be diffusion-limited (10 µM−1s−1).

Several different scenarios may arise for motors during the simulation: Motors near the

tip (closer to the barbed end than 32.4 nm) can no longer step forward, but can (un)load actin

(with rates ku and kl), detach from the filament (with rate k f u) or step backward (with rate k←).

Motors that are not attached to any filament also diffuse back and forth within the filopodial

cytoplasm with D = 5µm2s−1. Those that are bound to a filament are dragged backwards

by retrograde flow, so they are in essence walking along a treadmilling “rope”. Thus, the

retrograde flow speed is effectively subtracted from average motor walking speed (found from

reaction rates and the step size).

Under more realistic consideration, the treadmilling speed of a filament depends on the

elongation rate, and so does the retrograde flow. Most of the simulations reported here were

carried out with constant retrograde flow rates, thus, neglecting this coupling. However, as

elaborated in Section 3.5.3, when we explicitly introduce the coupling between polymerization

and retrograde flow processes, the same qualitative conclusions on the rules of active transport

are reached as without coupling.
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3.5.5 Ena/VASP

Ena/VASP are transported by myosin X [17] and have G-actin binding sites, therefore they

might serve as adaptors/scaffolds for the myosin-based G-actin transport. In our scheme, an

Ena/VASP molecule can bind 1 or 2 G-actins (with the diffusion-limited rate, 10 µM−1s−1, one

by one), release either one of bound G-actins (with the rate ks, that we explored in 0.1 to 300

s−1 range), be loaded to a motor (diffusion-limited rate) or unloaded from a motor with the rate

ku.

The irreversible sinking of Ena/VASP at the tip, representing the filament cross-linking role

of Ena/VASP, was also diffusion-limited.

3.5.6 Polymerization, Depolymerization

Actin filaments are polar in that polymerization occurs predominantly at the tip, the barbed

end, while depolymerization occurs predominantly at the base, the pointed end. For actin bun-

dles that are linked to fixed substrate or extracellular matrix, this “treadmilling” is responsible

for motility by extension of filopodia, and cytoskeletal dynamics in general [87, 88]. Whether

protrusion or retraction occurs depends on the equilibrium between polymerization and depoly-

merization rates. G-actin polymerization rates are increased when bound to ATP, depolymer-

ization rates are increased when bound to ADP, and F-actin:ATP hydrolyses to F-actin:ADP,

leading to aging [139]. In our model, we assumed that only G-actin:ATP is polymerized at the

tip and only G-actin:ADP is depolymerized at the base, allowing us to account for effects of

hydrolysis solely via rates of polymerization (k+ = 11.6 µM−1s−1) and depolymerization (k−

= 1.4 s−1).

Polymerization and depolymerization were treated stochastically in the Gillespie scheme,

and the depolymerization rate was slow compared to polymerization. One (de)polymerization

event changed the filament length by 2.7 nm, although the diameter of G-actin is 5.4 nm, since
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F-actin consists of two protofilaments in a right-handed helix. Thus, we modeled F-actin as

one protofilament with a polymerization step of 2.7 nm. The motor step of 32.4 nm, therefore,

spanned 12 actin units.

Polymerization required a free G-actin monomer, so, before one could be incorporated into

the filament, it had to have been unloaded from the motor or Ena/VASP.

3.5.7 Membrane force

While depolymerization is unaffected by membrane force, polymerization rate decreases with

membrane tension [140]. The membrane height must be large enough to sterically accommo-

date a G-actin monomer at the barbed end, so membrane force and its effect on polymerization

rate were derived from membrane height. A Gaussian distribution of membrane height with re-

spect to filament tip position was used with a square root of variance of 20 nm [15]. At the aver-

age height, the typical force was 10 pN. The height with respect to each of the 16 filaments was

recalculated after each reaction because membrane fluctuations are on the micro- to millisec-

ond timescale, rapid compared to growth dynamics on the second scale [93]. Longer filaments

experience stronger membrane force and polymerize more slowly than shorter filaments, on av-

erage. This negative feedback diminishes the heterogeneity in filament lengths [15]. It should

be noted that a second mechanism of negative feedback is the gradient of G-actin concentration

along the filopodial tube, providing higher availability of G-actin for shorter filaments [15].

3.5.8 Simulation scheme

In this work we have used the spatial extension of the Gillespie algorithm [15]. In the Gille-

spie algorithm, a simulation step requires two random numbers. The first determines the time

step as influenced by the aggregate rate of all possible reactions in the scheme (diffusion

of various proteins, (de)polymerization reactions, motor (un)loading of G-actin, and motor

(de)attachment from F-actin). The second random number determines which of these reac-
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tions will occur, as affected by the rates. After an event, the following are updated: time,

species in each compartment, filament length (always affected by retrograde flow, affected by

(de)polymerization if the event occurred), and membrane force on each filament. Thus, the

Gillespie method allows for simulation and evolution of reactions over continuous time while

accounting for effects of molecular noise [65–73, 80]. In summary, we modeled stochastically

the effects of motor transport of G-actin on filopodial dynamics, with molecular level spatial

resolution for motors walking on actin filaments.
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Table 3.1: Model variables and parameters in the simulations with myosin motors and
Ena/VASP.

Mechanics
Half actin monomer size δ = 2.7nm
Number of filaments N = 16
Thermal energy kBT = 4.1pNnm
Membrane force f = 10pN
Diffusion rates (all species) kD = 5µm2s−1(2000s−1)
Membrane fluctuation σd = 20nm
Retrograde flow speed vretr = 70nm/s
Chemical reaction rates
Polymerization k+ = 11.6µM−1s−1(21.8s−1)
Depolymerization k− = 1.4s−1

Motor loading kl = 10µM−1s−1(18.8s−1)
Motor unloading ku = 1−3000s−1

Filament-binding k f b = 10µM−1s−1(18.8s−1)
Filament-unbinding k f u = 0.1−300s−1

Step forward k→ = 50s−1

Step back k← = 5s−1

Adapter taking G-actin k+
s = 10µM−1s−1(18.8s−1)

Adapter releasing G-actin k−s = 0.1−300s−1

Bulk concentrations
Actin CA = 10µM
Myosin X [M] = 0.1−300µM
Ena/VASP [V ] = 0.1−300µM
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Motor

Ena/VASP

G-actin

Figure 3.1: A schematic representation of the filopodial tip in the model.
A bundle of polymerizing actin filaments is enveloped by membrane which affects polymer-
ization rates. Transported G-actin must dissociate prior to polymerization. Retrograde flow
pulls filaments back with constant velocity. Myosin X motors travel the filaments in a directed
fashion towards the barbed ends at the filopodial tip. Ena/VASP serves as a scaffold between
G-actin monomers and motor molecules, and it is consumed near the tip due to cross-linking
of the filaments.
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Figure 3.2: Filopodial stationary length, as a function of model motor-related parameters.
Bulk motor concentration is color-coded. Filament unbinding rate for the motors is equal
to 300 s−1 (thick solid lines), 100 s−1 (thin solid lines) and 30 s−1 (dashed lines). As the
motor unloading rate ku essentially defines which fraction of motors carry actin, the length
dependence comes mostly from the ratio of motor concentration to unloading rate. For this
reason, the latter ratio is used as the variable on x-axis.
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Figure 3.3: Only in specific local regions of the parameter space do motors provide an
increase in filopodial length.
These regions are always characterized by low motor concentrations. High motor concentration
area does not lead to stable filopodia as most G-actin required for growth is sequestered.
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Figure 3.4: Comparison between diffusion-limited and linear growth regimes
These are two simulations with different parameters from the Ena/VASP set.
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Figure 3.5: The highest stationary lengths comparison.
The largest observed stationary length in each set of simulations is shown. In case of simula-
tions with artificial conditions, where motors do not sequester actin and do not clog the fila-
ments, being sterically transparent to each other, a linear growth regime was observed, without
reaching a stationary length.
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Figure 3.6: A sketch of the motor transport processes implemented in the simulations
Normally, a motor could step only on a site with bare actin monomer unit. Thus, if it was closer
than 1 step to the barbed end, the “step forward” reaction could not happen. Likewise it was
not able to step on a monomer unit occupied by another motor. In the “no clogging” regime,
these motors could change places. In the “no sequestration regime” reactions of loading and
unloading in cytosol were not present (upper panel). Whether G-actin is transported directly
by motors or by motors with Ena/VASP adaptors, it must dissociate from its transporter prior
to polymerization
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Figure 3.7: The growth curves for a scheme where retrograde flow speed is dependent on
polymerization.
The parameters are v0

r = 35nm/s, r = 0.3, ku = 3s−1, k f u = 300s−1, [M] = 1µM. 3 curves
correspond to normal (black); no sequestration (red); no sequestration nor clogging (blue).
The influence of active transport bottlenecks remains the same as in the scheme with constant
retrograde flow.
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4.1 Abstract

Many biologically interesting functions such as allosteric switching or protein-ligand binding

are determined by the kinetics and mechanisms of transitions between various conformational

substates of the native basin of globular proteins. To advance our understanding of these pro-

cesses, we constructed a two-dimensional (2D) Free Energy Surface (FES) of the native basin

of a small globular protein, Trp-cage. The corresponding order parameters were defined us-

ing two native substructures of Trp-cage. These calculations were based on extensive explicit

water all-atom molecular dynamics simulations. Using the obtained 2D FES we studied the

transition kinetics between two Trp-cage conformations, finding that switching process shows

a borderline behavior between diffusive and weakly-activated dynamics. The transition is well

characterized kinetically as a biexponetial process. We also introduced a new one-dimensional

reaction coordinate for the conformational transition, finding reasonable qualitative agreement

with the two-dimensional kinetics results. We investigated the distribution of all the 38 native

NMR structures on the obtained FES, analyzing interactions that stabilize specific low-energy

conformations. Finally, we constructed a FES for the same system but with simple dielectric

model of water instead of explicit water, finding that the results were surprisingly similar in a

small region centered on the native conformations. The dissimilarities between the explicit and

implicit model on the larger scale point to the important role of water in mediating interactions

between amino acid residues.

4.2 Introduction

The native state of a typical globular protein is not a single static conformation but possesses

rich intrinsic dynamics. In many cases these dynamics are essential for protein function. Exam-

ples include enzymatic catalysis [141], allosteric switching [141–143], protein-ligand binding

(Mb-CO) [144], the change of antibody-ligand binding during maturation process [145], and
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photorhodopsin photocycle at low temperature [146]. The main objective of this paper is to

advance our understanding of the kinetics of conformational switching in the native basin of

a globular protein. In particular, we address the question of whether native dynamics are ac-

tivated, showing normal Arrhenius temperature dependence, or diffusive, similar to those of

ordinary fluids. After reviewing the underlying energy landscape theory and reaction coordi-

nates used in protein folding, we show a novel way to study the kinetics of protein confor-

mational transitions by carrying out a Brownian Dynamics simulation on our two-dimensional

free energy surface (FES) with two collective coordinates defined by the initial and final con-

formations.

A successful statistical mechanical approach to understanding protein folding is based on

the concept of there being a funneled effective energy landscape [20,21,23,48,147–149]. The

native state is thought to be a set of deep minima, in which the residual frustration between

subtly different structural conformations leads to a rugged topography [20, 23, 48, 148, 149].

Residual entropy plays a similar role in spin glasses [20, 34, 48, 148, 149]. A protein at room

temperature explores multiple conformations with different thermodynamically favorable con-

tacts engendering this frustration [32, 34]. These native structural substates seem to be hi-

erarchically organized into a tree with some ultrametric character∗, that, in principle, can be

mapped onto the funnel (Fig. 1). Kinetics of transitions between the substates is also hierarchi-

cal with timescales dictated by the details of the distribution of energy barriers [20, 149–154].

By “energy” here we mean the energy of contacts. That, strictly speaking, is not an energy

in the thermodynamic sense, because it includes the solvent coordinates in an implicit way.

For example, hydrophobic interactions, though substantially entropic in origin, may be viewed

as an “energetic” attraction between apolar residues. Even this effective energy of a protein

conformation is still a function of hundreds or thousands of protein degrees of freedom [149].

∗An ultrametric is a metric which satisfies the following strengthened version of the triangle inequality. Metric
is a rule that defines a “distance” between any two elements of the set. If it is an ultrametric, then among three
pairwise distances between any three elements two are equal and the third one is smaller. An ultrametric in a tree
can be defined as the number of levels upward to the first common ancestral branch.
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Often physical considerations permit phase space reduction through integration leaving only a

few degrees of freedom that define then some very low-dimensional FES. Therefore, to avoid

confusion (and also for historical reasons) the former representation of the landscape (funnel

picture) is phrased in terms of energy, and the latter (low-dimensional FES) — in terms of

free energy. The quantity and nature of the remaining coordinates determines the resolution

of the FES. In particular, one may choose these so that the hierarchical organization of the

substates and transitions will still be manifest. For instance, we may still see this hierarchy in

non-trivial multiple timescale non-Arrhenius dynamics with an abundance of traps and barriers

on the surface. Once the surface is constructed, studying the features of complicated protein

dynamics consumes considerably less effort and permits a concentration on the kinetics of

conformational switching. This technique can also be used to shed light on many interesting

phenomena such as protein quakes [155].

In this work we constructed a FES, in two dimensions, for the native state of Trp-cage, a

20-residue protein that folds in 4µs [156, 157]. There are 38 NMR structures recorded for this

protein in PDB code (1L2Y) [158]. Using the constructed surface we studied the transition

between two NMR conformations, numbered 1 and 37, the most dissimilar of all 38 structures.

Among the plethora of possible order parameters in polymer physics and protein folding

in particular, only those with a sufficiently high structural resolution can serve our purposes.

One way to achieve such a high resolution is to define a coordinate with respect to a particular

conformation A. A widely used coordinate is the root-mean-square distance (RMSD) between

the corresponding atoms (usually, of the backbone, Cα). Another possible order parameter has

evolved from spin-glass energy landscape theories and is a generalization of what is called the

“overlap parameter” [159]. In case of polymer chains, the latter is a fraction of contacts that

the two conformations have in common [42]. This parameter is often called Q, and may be

defined as,
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Q =
1
N ∑

i j
exp

[
−

(ri j− rA
i j)

2

2σ2

]
(4.1)

where ri j are the distances between i-th and j-th atom in conformation of interest, rA
i j is the same

for the conformation A with respect to which the Q value is defined (usually, it is the native

state), and normalization factor N is equal to number of pairs of atoms whose positions are

defining the conformation [160]. The similarity index Q changes from 1 (for the conformation

A itself) to 0 (when there is no resemblance to A). Indeed, the gaussian in Eqn. 4.1 suppresses

the contribution of a pair of atoms if the distance between these atoms ( ri j ) is very different

from that in conformation A ( rA
i j ). If one replaces the gaussian with a rectangular peak and, in

addition, only includes pairs of proximal atoms (ri j . 5Å), Q will turn into a fraction of shared

contacts (fraction of native contacts when A is the native state).

Though RMSD might seem more familiar and natural, in some cases Q is preferable. If

one imagines, for example, two conformations having two α-helices, that are close in one of

them and apart in the other one, then RMSD between them will be very large, suggesting no

structural similarity, while Q will still show the similarities of individual helices. Another nice

feature of Q is that σ in its definition allows one to control the resolution of the order parameter,

and one may tweak the notion of conformational similarity according to the particular questions

under consideration. Yet another approach would be to use the fraction of shared dihedral

angles of the backbone. Like Q, this parameter has shown considerable correlation with the

strata of the folding funnel [19] when defined with respect to the native structure. Along with

the native structure RMSD and fraction of native contacts or hydrogen bonds, the radius of

gyration has also been used as a coordinate, since it is also correlated with folding. However,

this measure lacks resolution inside the native basin which is the focus of our work, as further

elaborated below.

Q is a good coordinate for protein folding because the funnel makes it possible to stipulate
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that motions in directions transverse to Q will usually be fast, and therefore the motion along

Q (folding) is nearly adiabatic [161]. A 1D profile is then quite appropriate. But if there

were dynamical variables weakly correlated with Q but evolving on similar timescales, the

information yielded by a 1D profile would be of very limited usefulness. In particular, studying

the dynamics of allosteric switching may require higher dimensional order parameter space

which allows the possibility to see multiple transition paths separately rather than integrated

into an averaged one. A number of studies constructing 2D FESs have been reported in the

context of protein folding. [153, 162, 163].

A natural choice of two dynamical variables having sufficient structural precision to provide

a surface that allows the examination of the transition between two states 1 and 37 would

be Q1 and Q37, that is, the similarities to states 1 and 37 respectively. Although Trp-cage

is not an allosteric protein it nevertheless serves as a good test case for a general method

that we develop here. In these coordinates the whole phase space is represented by a square

{0≤Q1≤ 1;0≤Q37≤ 1} (Fig. 2). The Q1 = Q37 diagonal of this square can be paralleled to a

Q-axis in 1D free energy profile of protein folding. With our technique we pick two extremely

close points on the 1D free energy profile, near the folded state (Q = 1), that correspond to

models 1 and 37, and “pull them apart”, unfurling the profile to a surface on a square and

greatly increasing the resolution in the vicinity of reference states 1 and 37. On the (Q,Rg)-

plot these two points would nearly coalesce, but we zoom in the region between and around

them, leaving the unfolded state unresolved. All the unfolded structures are found close to the

origin of the square.

We obtained the FES through extensive (over 1 µs) all-atom explicit water simulations in

CHARMM force field [164] using 2D weighted histogram analysis method (WHAM) [165].

Subsequently, we ran damped Brownian dynamics starting from the basin of model 37, look-

ing for the first passage time to the basin of model 1. Analysis of trajectories, first passage

time distributions and temperature dependence of switching kinetics suggests a nearly free-
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diffusional flow, with shallow traps weakly modulating transition dynamics. About half of

the trajectories undergo partial unfolding down to Q ≈ 0.8 and visit a number of local traps.

We explored a one-dimensional order parameter for describing the kinetics of this transition.

Brownian dynamics on this one-dimensional free energy profile yields FPT-distributions qual-

itatively similar to those obtained from the two-dimensional calculations.

We mapped the other 36 NMR structures onto the surface. This is an initial step in ranking

them by free energies and organizing into an hierarchy. Having identified two deepest basins

we compared structurally the corresponding conformations, highlighting stabilizing contacts

and interactions. We also found that entropy and energy surfaces are much more rugged with

steeper and higher rises and falls than that of free energy, which we attributed to fast solvent

degrees of freedom. Lastly, we repeated the FES calculation with a simple dielectric solvent

model (DSM) obtaining surprisingly similar results for the highly native part of the surface.

Comparing the differences, however, showed the importance of water in stabilizing the folded

state.

4.3 Methods

The Q values among 38 NMR structures were calculated using Biochemical Algorithm Li-

brary (BALL). [166]. All MD simulations were carried out using the LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) package [167] with CHARMM27 protein-

lipid force field [164]. In DSM, the system with dielectric constant 80 was heated up to 282K

and equilibrated for 800 ps using targeted MD to maintain the NMR structures. In the explicit

solvent model, the protein was solvated with 2,275 TIP3P water molecules and the counter

ions, 5Na+ and 6Cl−, in a 50× 50× 50 Å3 water box. The SHAKE algorithm was used to

restrain the hydrogen bonds. Minimization was performed in two steps. First we minimized

energy of water with protein fixed for 10,000 steps with a conjugate gradient method. Then,
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using NAMD suite [168], we minimized the energy of the whole system for additional 10,000

steps. Using the charm2lammps perl script, the initial input file was generated for LAMMP,

and subsequently, a NVT simulation was carried out for 12 ps, followed by an NPT simula-

tion for 60ps with targeted MD. In the final production phase, 1.2 ns long simulations were

carried out for each of the 914 WHAM windows. In subsequent analysis, the first 200 ps were

discarded. The 2D umbrella potential used was Vumb = k1(Q1−Q0
1)

2 + k37(Q37−Q0
37)

2. The

number of windows, spirng constants and simulation time in each window were chosen on the

basis of good overlap between neighboring windows. In other words, for each window, the rate

of going to the areas covered by neighboring windows multiplied by the simulation time for a

window should be considerably greater than unity. It turned out that the spring constants stais-

fying this criterion were in the range of from 11.2 kcal/mol/Å2 to 72.8 kcal/mol/Å2.The cutoffs

of Coulombic and Lennard-Jones interactions were 10.0 Å. The trajectories were recorded

every 3 ps in each window.

Brownian dynamics was carried out using Heun’s method for the difference scheme [169].

FES was interpolated in MATLAB. Gradients were calculated from four nearest points in 2D.

40000 trajectories were used to obtain each FPT-distribution.

4.4 Results and Discussion

Since the configurations of side chains play a key role inside a native basin (Fig. 4.7), we

included side chain carbons atoms (78 atoms total that include Cα, Cβ, Cγ, Cδ, Cε, and Cz) in

the definition Eqn. 4.1 of Q. Fig. 2 shows the computed 2D free energy surface (FES) for

the native state of Trp-cage peptide in terms of two similarity indices, Q1 and Q37. These two

conformations (1 and 37) were chosen on the basis of being the most structurally dissimilar

among the 38 NMR structures: they belong to different classes (structural basins) according to

the hierarchical clustering [170] and have the smallest Q between them. Model 1 corresponds
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to (Q1 = 1.0,Q37 = 0.889) and model 37 – to (Q1 = 0.889,Q37 = 1.0). All the different models

of Trp-cage reside within the rectangle of 0.88 < Q1 < 1.0 and 0.889 < Q37 < 1.0. The deepest

microbasin on the whole FES is that of model 1 followed by model 16 as the next deepest.

4.4.1 Stabilizing structural features

A representative structure from the microbasin of model 1 is shown in lower right corner of

Fig. 2 (this structure is almost identical to NMR model 1). Comparing this structure to model

16, which is the second lowest in free energy, reveals structural features that stabilize model 1:

i) The 3-10 helix is not present in model 1, which is quite consistent with previous result by

Zhou [171]. ii) Arg-16 is shifted towards Trp-6. This hints at the presence of a typical cation-π

interaction between Arg and Trp, which are the likeliest amino acid residues to be involved in

such interaction [172]. The disappearance of 3-10 helix (residues 11-14) may result from the

side chain movement of Arg-16, which is adjacent to the helix and likely contributes to its sta-

bility. iii) Tyr-3 is rotated in model 1, which is favorable for intramolecular interaction between

Tyr-3 and Trp-6. Thus, the main factors that lower model 1’s free energy are the energetic con-

tribution from the interaction between Trp-6 and Arg-16, the intramolecular interaction due to

a ring rotation of Tyr-3 and the increase of entropy due to the loss of 3-10 helix structure. The

backbone RMSD between model 1 and model 16 is approximately 0.8 Å.

4.4.2 Transitions between microbasins

Protein dynamics have been thoroughly analyzed in many prior works [173–175], often us-

ing very diverse viewpoints on the nature of dynamical transitions. Some techniques, such as

normal mode analysis, treat proteins as solids possessing vibrations and phonons [176–178].

Another viewpoint is to imagine activated hopping between different conformations separated

by energy barriers [151, 179]. This can be paralleled to the dynamics of a supercooled liquid.

Yet another possibility is that the motion is similar to flow of a normal liquid such that the
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system spends most of the time in saddle points rather than in minima of the energy landscape.

There have been indications that activated, or even glassy dynamics, are more relevant to pro-

teins, at least at low temperatures [20, 21, 32]. In this work we investigate more deeply the

nature of protein dynamics at room temperature. Knowing the dynamical regime is important

when studying fluorescence intermittency [180] or allosteric regulation [141]. For this purpose

we considered the transition between two reference conformations, 1 and 37. If the dynam-

ics are activated they should be dominated by a few or one pathway between the reference

states. Another issue we address in this section is the determination of the ruggedness of the

surface and how local traps influence transition dynamics. The influence of traps should be

considerable in the activated regime and small in the diffusional flow regime.

To describe conformational transitions, we ran multiple 2D Brownian dynamics simulations

on the computed FES [161], starting from the basin of model 1 (Q1 = 0.97 and Q37 = 0.895)

(see section 4.3). Two trajectories are shown in Fig. 3a. Distribution of first passage times

(FPT) for transitions from model 1 basin to that of model 37 is given in Fig. 3c (black line).

Our analysis of trajectories suggested a lack of dominant pathway. Indeed, even the trajec-

tories picked from around maximum of the FPT distribution (a typical trajectory is shown in

white in Fig. 3a) linger in different basins, despite other similarities. The trajectories taken

from the shoulder of the FPT distribution (an example is shown in magenta in Fig. 3a) differ

completely. It turned out that almost a half of the trajectories fall into the shoulder of the FPT

distribution (Fig. 3c). The observed multiplicity of transition pathways may be engendered

either by trapping in different local traps (and abundance of traps on rugged surface causing

the large width of the FPT distribution), or by the thermal noise if it is large enough to easily

overcome the barriers (free diffusion). Fig. 3b shows a magnified part of the surface depicting

a microbasin. Even though the trajectory might seem as freely moving, it noticeably lingers

in this microbasin. We find that there is almost no trapping as such, although the influence

of fine features of the surface is conspicuous. This observation, along with the temperature
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dependence of mean first passage times discussed below, directly suggests that protein confor-

mational dynamics at room temperature shows a borderline behavior between nearly diffusive

(as in a normal liquid) and weakly activated (as in a weakly supercooled liquid).

To further support this conclusion, we performed analogous calculations on the same sur-

face, but at several different temperatures, comparing the corresponding FPT distributions. In

reality, the FES itself would change with temperature, and therefore, these calculations do not

yield direct information on the behavior of Trp-cage at those temperatures: their sole purpose

is to provide reference points for identifying the character of the dynamical regime. Higher

temperatures promote the role of freely diffusive motions, while lower temperatures promote

trapping. The FPT-distributions computed at 153 K, 282K, and 600K are given in Fig. 3c. The

FPT distribution variance grows, as temperature drops, but relative variance, or coefficient of

variation, decreases. The latter is a measure of distribution width; when Cv < 1 the distribu-

tion is considered “low-variance”, when Cv > 1 the distribution is considered “high-variance”.

Thus, the number of effective pathways drops with decreasing temperature, and at low temper-

atures a dominant pathway emerges (Cv = 0.27 at 51K). We observe at 282 K (Cv = 1.09) a

crossover between the low-variance and high-variance regime.

The Arrhenius plot for the mean first passage time (〈τ∗〉), which is shown in Fig.4, pro-

vides an alternative way to analyze protein conformational dynamics. At low temperatures

we observe normal Arrhenius behavior with 〈τ∗〉 ∼ exp(EA/kT ). At high temperatures depen-

dence becomes characteristic of the diffusive regime (for diffusion in confined space), with

〈τ∗〉 ∼ D−1 ∼ T−1. Dashed and solid curves are the fits to these functions respectively. Room

temperature behavior is near the crossover between these two regimes, with activation energy

of about 0.7kT , corresponding to weak local trapping.

This provides another view on the problem of single- and multiexponential behavior that

has been discussed in the context of both regular (with a barrier) and downhill protein fold-

ing [181, 182]. If P(τ∗) denotes a FPT-distribution, or probability density that the transition
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time is τ∗ then F(τ∗) =
τ∗R
0

P(τ)dτ is the distribution function, or the probability that the tran-

sition has occurred within time τ∗. The survival curve, 1−F(τ∗), is then the probability that

transition has not yet occurred after time τ∗. Though this curve can be fitted by a single expo-

nential, especially at long timescales (where such behavior might be expected , for example,

for diffusion in a confined phase space), it turns out that much better fit is achieved by a double

exponential (Fig.4.8). This is reminiscent of the dynamical behaviors discussed in the con-

text of barrierless, or downhill protein folding where the shorter timescale is called “speed

limit” [181, 183].

Summarizing this section, the dynamics of switching between two conformations shows

features of both “flow” (as in a normal liquid) and weakly “activated” dynamics (as in a weakly

supercooled liquid). Also, the transition kinetics shows biexponential dynamical behavior.

4.4.3 Explicit Solvent model and Dielectric Solvent model

We repeated the 2D FES calculations for a system where explicit water molecules were re-

moved, and, instead, ε = 80 was used for all electrostatic terms in the Hamiltonian. The FES

from this simple dielectric solvent model (DSM) is given in Fig. 5. It is more symmetric

along the diagonal than in case of explicit water. DSM surface has a basin in the region where

both Qs are around 0.75, while that of explicit solvent model does not; this suggests that water

molecules prevent the tendency for partial unfolding. This point is also bolstered by the pres-

ence of barriers of∼kT height scattered in the region of Qs between 0.8 and 0.9 on the explicit

solvent surface and absent on the DSM surface. The presence of the basin in lower left corner

of DSM 2D FES is also a result of the lack of hydrophobic effect, which leads to opening of

hydrophobic cores composed of Trp-6, Pro-12, Pro-17, Pro-18 and Pro-19 [184]; the structures

there (white box in Fig. 5) correspond to a loop structure L found in a work by Juraszek and

Bolhuis [184] as one of the intermediates during Trp-cage folding. In the upper part, near the
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basins of 1 and 37, surface features are well preserved even though dielectric solvent model is

extremely simplistic. The difference between the explicit solvent FES and the DSM FES given

in Fig.6 demonstrates this more clearly. As Qs decrease more differences appear between ex-

plicit and DSM FESs, highlighting the role of the hydrophobic effect, which is completely

absent in the DSM simulations. The 2D FES differences are asymmetric with respect to the di-

agonal line, indicating that the hydrophobic effect favors structures on one part of the surface.

To explore this suggestion, we picked several structures from different sides of the diagonal

line, (Q1 = 0.90,Q37 = 0.81) and (Q1 = 0.77,Q37 = 0.76), and calculated the solvent accessi-

ble surface areas (SASA) for each residue (see Table 4.1). The SASA of the hydrophobic core

for the first region turned out to be about 10 percent smaller which provides further support

that the asymmetric shape of the FES is also hydrophobic in origin. It is an interesting question

whether reasonable corrections for the differences between explicit and DSM FES could be

provided by introducing a simple hydrophobic term into the DSM Hamiltonian. It will also be

interesting to use Generalized Born model to treat electrostatics instead of DSM. Altogeter, it

is quite possible that a free energy surface calculated using GBSA Hamiltonian [163] will be

much more similar to that the of explicit solvent.

Finally, we consider physical motivation for the treatment of the hydrophobic effect as an

“effective” energetic term in implicit solvent models. The entropic and energetic landscapes in

our explicit water simulations are both very rugged, which we attribute to the solvent degrees

of freedom (Fig.4.9). However, protein chain itself is not influenced much by this solvent

energy ruggedness, because of the timescale separation between fast motions of the solvent

and slower motions of the chain. Instead, the protein chain moves mostly adiabatically in the

averaged solvent field, where the resulting free energy ruggedness is about ten times smaller

and much smoother. Therefore, treating hydrophobic interactions as though they are energetic

has reasonable physical grounds.
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4.5 Conclusion

Two-dimensional FESs are a powerful tool in studying kinetics and thermodynamics of the na-

tive state ensemble. With proper choice of dynamical variables one may control the resolution

in various regions of the phase space. For investigation of allosteric switching kinetics between

two states, similarities to each of these states (generalized fraction of shared contacts) serve as

useful collective order parameters. In this work we computed a two-dimensional free energy

surface for Trp-cage. We mapped all 38 NMR structures onto the surface, ranking them in

free energies and identifying most thermodynamically stable conformations. We pointed out

the main interactions that enhance the stability of the deepest basins. Using the computed 2D

FES, we studied the kinetics of transition between two Trp-cage native substates reported by a

NMR study. We found that the native dynamics of Trp-cage is borderline between diffusional

dynamics and weakly activated dynamics. At room temperature and higher, the correspond-

ing survival curve is best fitted by a double exponential. Transition dynamics become clearly

activated at lower temperatures, and diffusional at higher temperatures.

To explore the role of the solvent, we also computed 2D FES for the same system but with

static dielectric medium instead of water. The explicit and DSM free energy surfaces were

quite similar in the vicinity of reference conformations, where resolution of our technique is

the highest. However, when protein conformations become somewhat less native, systematic

differences between explicit and DSM models point to the role of the hydrophobic effect. Com-

puting energy and entropy contributions separately showed the major role played by water and

the necessity for calculation of the free energy as a whole, the latter being a result of cance-

lation of very large terms. Our method may facilitate rigorous construction of coarse-grained

force fields based on free energies. It will be interesting to apply the technique introduced in

this work to conformational transitions in larger proteins.
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Figure 4.1: A sketch of a hierarchical organization of native substates at the bottom of the
energy funnel
Native state on this schematic picture consists of two substates “I” and “J” interchanging on
some timescale. On shorter timescale and higher resolution in energy each on of them also
splits into substates. “I” splits into “G” and “H”, that split further into yet another level of
substates and corresponding microbasins.

(Q1,Q37) SASA of HP core SASA of the whole protein
Model 1 955 1888

Hydrophobically favorable region
(0.907, 0.807) 975 1943
(0.905, 0.809) 975 1952
(0.901, 0.802) 969 1931
(0.900, 0.808) 964 1901

Hydrophobically unfavorable region
(0.774, 0.762) 1089 1936
(0.772, 0.763) 1120 1932
(0.773, 0.764) 1092 1920
(0.773, 0.761) 1038 2027

Table 4.1: Solvent Accesible Surface Areas (Å2) for structures indicated on Fig.4.6.
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Figure 4.2: Two-dimensional Free Energy Surface (FES) of Trp-cage native basin
The free energy is plotted as a function of collective coordinates Q1 and Q37, indicating corre-
sponding similarities to NMR models 1 and 37, was obtained using WHAM in 914 simulation
windows (see section 4.3). An all-atom MD simulation of 1.2 ns in duration was carried out in
each window. White circles, marking FES, represent the 38 NMR structures in the Q1 and Q37
coordinates. Spacing between contour lines is 0.22 kcal/mol (0.37 kT ). White rectangles mark
the deepest and the second deepest basins corresponding to model 1 (lower right corner) and
model 16 (upper left corner), respectively. The difference of ∼0.6kT in free energy is created
by rotation of Tyr-3, cation-π interaction between Arg-16 and Trp-6 and disappearance of 3-10
α-helix ]
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Figure 4.3: Brownian trajectories on the free energy surface.
Brownian dynamics of the transition between states corresponding to NMR structures num-
bered 1 and 37. a) Two sample trajectories: one (white) is from the peak of FPT distribution in
(c), the other one (magenta) is from the shoulder; b) Part of the surface with trajectory shown
in higher resolution revealing finer features of the surface and their influence on the trajec-
tory; c) First passage time (FPT) distributions for conformational transition between 1 and 37.
FPTs were computed at two additional temperatures to obtain the corresponding coefficients
of variation, to provide reference for categorizing the nature of the dynamical regime at room
temperature.

81



100
200

300
400

500
1

10

100

Temperature, K

T
im

e,
 1

0 4
  t

im
es

te
ps

Simulations

τ * =
1.7 ⋅107

T

 τ * = 30099 ⋅e
208

T
 

100
200

300
400

500
600

700
0

10

20

30
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is temperature-independent. The inset zooms into higher temperature region using a semi-
reciprocal plot. Two regimes are clearly seen: exponential at low temperatures and linear at
high temperatures. The near room temperature (282K) result is near the crossover.
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disappeared in the DSM FES. The vicinities of the reference points 1 and 37 are very similar
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Figure 4.7: 38 NMR structures for Trp-cage superimposed.

0 0.5 1 1.5 2 2.5 3
Time, 104 timesteps

0.001

0.01

0.1

1

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Simulations
Double exponential
Single exponential

Survival curves
Fitting to single and double exponential

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Figure 4.8: The survival curve
The probability that the “37” to “1” has not yet occured after time t fitted by a single (blue) and
double (red) exponential. Inset shows the same plot on linear scale.
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5.1 Abstract

We report a fully general technique addressing a long standing challenge of calculating confor-

mational free energy differences between various states of a polymer chain from simulations

using explicit solvent force fields. The main feature of our method is a special mapping vari-

able, a path coordinate, which continuously connects two conformations. The path variable

has been designed to preserve locality in the phase space near the path endpoints. We address

the problem of sampling the unfolded states by creating an artificial confinement “tube” in the

phase space that prevents the molecule from unfolding without affecting the calculation of the

desired free energy difference. We applied our technique to compute the free energy difference

between two native-like conformations of the small protein Trp-cage using the CHARMM

force field with explicit solvent. We verified this result by comparing it with an indepen-

dent, significantly more expensive calculation. Overall, the present study suggests that the new

method of computing free energy differences between polymer chain conformations is accurate

and highly computationally efficient.

5.2 Introduction

Within the energy landscape paradigm, the protein native state is naturally viewed as a mul-

titude of nested conformational basins, that are dynamically explored during protein func-

tion [20, 34, 185–189]. This functional landscape represents only a small fraction of the larger

folding landscape – which includes denatured conformations [185] (see Fig.5.1). On the scale

of the whole folding landscape, it is possible to describe folding dynamics through the statisti-

cal properties of the landscape. However, in the case of protein functional motions and native

dynamics, the specific details of the functional landscape play an important role, necessitating

detailed characterization of the landscape at a relatively high energetic resolution, correspond-

ing to the structural resolution of ∼ 1Å. For example, such topographical maps [185] may
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be needed, to investigate transitions in allosteric proteins, which undergo global conforma-

tional rearrangements upon local perturbation such as ligand binding. In some cases, allosteric

switching is thought to modulate enzymatic rates [141]. Thus, elucidation of functional land-

scapes may help to understand how targeted point mutations influence catalytic activities [54]

and may shed light on large scale phenomena, such as molecular motor functioning [190].

The energy landscape is a function of a large number of conformational and solvent degrees

of freedom. In practical applications, the landscape is projected into one or several collective

degrees of freedom, to allow physically meaningful interpretation of the chain dynamics. The

present work provides the solution for a simpler problem: how to calculate the free energy

difference between two specific conformations, A and B, of a polymer chain in a simulation

with explicit solvent? Solving this problem is a step towards building a reduced representation

of energy landscape and would not only help shed light on the biological processes mentioned

above, but it would also aid in the development of atomistic and coarse-grained force fields,

by allowing researchers to compare the free energy differences among the same conformations

computed with different force fields and representations.

The attempts for addressing the challenge of calculating conformational free energies of

molecules and macromolecules have a long history. A popular molecular mechanics/Poisson-

Boltzmann/surface area (MM/PBSA) technique is based on generating a representative set of

conformations with explicit solvent and then removing solvent and estimating free energy as

a sum of several terms [191]. This technique is based on several uncontrolled approximations

that may potentially limit its applicability [192], such as reliance on continuum electrostatics

calculations to estimate part of polymer’s solvation free energy, where these types of estimates

can sometimes be quantitatively inaccurate [193]. A similar method, ES/IS, avoids using the

Poisson-Boltzmann equation, and instead collects statistical averages computed from explicit

simulations [194]. However, some of the terms in the free energy ansatz are still estimated by

employing implicit continuum models of the solvent [194]. Some newer techniques like the de-
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activated morphing method [195], which is based on using a series of unphysical intermediates

states between conformations A and B, use fully explicit solvent. The deactivated morphing

method has been used to calculate the free energy difference between folded and misfolded

states of human Pin1 WW domain [196]. However, high (thousands of kBT ) free energy dif-

ferences separating the unphysical states require extremely thorough sampling, pointing to a

potentially very fast growth of computational cost with the system size. Structurally based

umbrella sampling techniques have also been employed [145, 197], however, certain technical

problems elaborated below significantly limit their domain of applicability.

To the best of our knowledge, the technique presented in this paper is devoid of any of

the drawbacks mentioned above. It is fully general, takes the solvent into account explicitly,

does not rely on any uncontrolled approximation (other than those intrinsic to any particular

force field) and allows tuning of the conformational resolution. The method is accurate and

computationally efficient. In certain cases, the full free energy profile for a transition may be

obtained rather than just the free energy difference between two conformations.

Let point A in the phase space of a polymer chain be defined by precise coordinates of all

the atoms of the chain. Point A has a finite entropy, and therefore statistical weight, due to

solvent degrees of freedom. Point A only represents a point in polymer’s conformational phase

space, but it is expanded to a small region in the full phase space of the system. Furthermore,

physically meaningful questions most often imply that conformation A includes not only the

point A in conformational phase space, but also some finite size locale around point A. The

latter is often called a conformational basin. The basin size depends on the question of interest

and relevant physical considerations: for example, it could be defined by extent of atomic

vibrations or by the experimental error in determining the structure of A. It may also be defined

by the features of the particular local minimum on the energy landscape, such as its width and

depth compared with thermal energy. The method that we report here does not provide explicit

constraints on structural similarity within a basin, as these will vary between studies. Instead, it
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provides means to calculate the free energy difference between the A and B basins, once those

are defined based on other physical considerations. Thus, by “conformation A” we mean some

well-defined neighborhood of point A, its conformational basin, and by “free energy of A” we

mean the logarithm of statistical weight of this basin.

Many techniques for calculating free energy differences (such as umbrella sampling) re-

quire the free energy of the system to be computed as a function, F(ξ), of a dynamical variable

ξ, where common examples of ξ include density, magnetization, and radius of gyration. It

is defined by a set of phase space variables and reflects the state of the system at any mo-

ment in time. Umbrella sampling is a way to sample low-populated regions of the free energy

profile F(ξ) by restricting trajectories to the narrow regions of the profile with parabolic po-

tential U = k(ξ−ξ0)2. These regions are called umbrella windows, and the name comes from

parabolic shape of the potential [198]. Coming up with an appropriate scalar variable ξ (that

we will refer to as a path coordinate) for the problem of a transition between two polymer con-

formations is a non-trivial task. In this paper we present a method that solves this problem.

The path coordinate has to keep most of the relevant information contained in the multitude

of conformational and solvent degrees of freedom and simultaneously discriminate between A

and B. In addition, both conformations A and B must correspond to finite segments of the ξ

space, which means that conformations similar to A must have ξ close to ξ(A) and vice versa,

a region of ξ≈ ξ(A) must only contain conformations similar to A (the statement has to be true

for conformation B as well). In some cases, the topology of the landscape or allosteric motions

themselves can provide a good, physically meaningful collective coordinate [199, 200]. The

new path coordinate that we propose works for general case. It is local in the conformational

phase space near points A and B and is highly resolved in discriminating them. We tested the

method on two conformations from the native ensemble of a 20-residue protein Trp-cage [158]

at temperature 282 K. The resulting free energy difference between them was found to be 0.43

kcal/mol (0.77 kBT ). We also calculated the same free energy difference with an independent,
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more computationally expensive technique resulting in 0.45 kcal/mol (0.81 kBT ) and confirm-

ing the accuracy of the method within 5%.

Any path coordinate is destined to have a range of values that contains all the unfolded

states which are equally unrelated to either A or B. The phase space volume corresponding

to this region is huge. Nevertheless, in general it must be sampled to obtain a free energy

profile between A and B, unless energy landscape of the molecule has some intricate self-

averaging property. Under specific circumstances, this may be the case in proteins, for example,

when A and B correspond to an actual allosteric transition, but in general the sampling of

this region might be problematic, particularly considering the computational cost of all-atom

explicit solvent simulation techniques on currently available computational resources. We have

conceived a solution of this problem by creating an artificial confinement in the phase space

that prevents the molecule from unfolding without affecting the calculation of the desired free

energy difference. Along with introducing the new path coordinate, this constitutes a new

technique which is the main result of the current work.

Summarizing, in this article, we report a fully general and computationally efficient tech-

nique for finding conformational free energy differences between various states of a protein

chain from all-atom explicit solvent molecular dynamics simulations. We applied our tech-

nique to compute the free energy difference between two conformations of Trp-cage (NLY-

IQWLKDGGPSSGRPPPS) native ensemble, using the CHARMM force field with explicit

solvent. We compared the results with those derived from an alternative, independent method,

which is computationally much more expensive, revealing the remarkable efficiency and accu-

racy of the proposed technique.
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5.3 The path coordinate and confining of the trajectories

To chart the native state in high resolution it is necessary to use some distance measure, s(X ,Y ),

between the points of conformational phase space, to quantify similarity between any two

conformations X and Y . Examples of such measures include root-mean-square-deviation of

corresponding atomic coordinates (RMSD), contact order, fraction of shared contacts (q), and

fraction of shared dihedral angles. With such measure it is possible to map the whole confor-

mational state on a single variable, i.e. to define the variable for an arbitrary conformation X .

This variable is the similarity s(X ,N) between X and a preliminary chosen specific conforma-

tion N. This idea is used in protein folding with N being the native state [159]. The s(X ,N)

is then the coordinate that describes folding. Since in our problem the two states may be very

similar, as it happens in the native basin, we need a much higher resolution, and the one taking

into account the conformational changes transverse to folding (i.e. transverse to s(X ,N)) [185].

One way to increase the resolution is to use two variables instead of one, s(X ,A) and s(X ,B),

the similarities to two specific conformations [201], mapping now the conformational phase

space onto a 2D-plane (see Fig.5.2). Depending on particular choice of s(X ,Y ) this variable

may have different ranges. In many cases it changes from 0 (X and Y are totally different)

to 1 (X is the same as Y ). Fig.5.2 assumes such a case: both s(X ,A) and s(X ,B) can change

from 0 to 1, mapping thus the whole conformational phase space onto a square. Area near the

origin corresponds to conformations highly dissimilar to both A and B (s(X ,A)≈ s(X ,B)≈ 0).

If A and B are both folded states belonging to the native ensemble (for instance, two allosteric

states), the origin will contain all the unfolded states (since these states are dissimilar from the

folded states). A and B then will be similar (s(A,B) ≈ 1) and close to the upper right corner

of the square. Then the diagonal of the square (s(X ,A) = s(X ,B)) will correspond to the fold-

ing coordinate line, and motions perpendicular to this diagonal will be transverse to folding.

Fig.5.2b illustrates such a case: A and B are two structures from the native ensemble of a small

protein Trp-cage. The structural resolution of the native region (upper right corner) is much
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higher than that of unfolded region near the origin.

The most obvious path coordinate would be

ξd(X) = s(X ,A)− s(X ,B), (5.1)

but it lacks the aforementioned property of locality near A and B which is compulsory. We want

ξ(X) = ξ(A)± δξ to only include conformations similar to A, so that s(X ,A) = s(A,A)± δs

with δs being small∗. However, the difference based definition of path coordinate ξd (Eq.5.1)

permits arbitrary large changes to both terms in the difference as long as the difference itself

stays the same. In other words, the whole strip that is highlighted in white in Fig.5.2b will

contribute to free energy of conformation A, including the unrelated unfolded conformations

near the origin.

We propose a path coordinate that remains local around the conformations of interest:

ξg(X) = e
− (s(X ,A)−s(A,B))2+(s(X ,B)−1)2

2σ2g − e
− (s(X ,B)−s(A,B))2+(s(X ,A)−1)2

2σ2g . (5.2)

If this coordinate is visualized as elevation above the 2D-plane defined by s(X ,A) and

s(X ,B), it corresponds to a positive gaussian peak of width σg centered on conformation B

(with coordinates on the 2D plane s(A,B) and s(B,B) = 1) and a negative gaussian peak cen-

tered on conformation A (with coordinates on the 2D plane s(A,A)= 1 and s(A,B)) (Fig.5.2c,d).

In this coordinate constant elevation strips form local regions of width σg near points A and B.

Note that it is not necessary for both gaussians to have the same width σg.

We chose a small protein, Trp-cage, to test our method. Trp-cage is one of the smallest

known proteins (20 residues) with a set of native structures reported by an earlier NMR study

[158]. We chose the two most dissimilar structures in this set as points A and B. Despite the

fact that we had allosteric states in mind while developing the method, these Trp-cage states are

∗Or more formally: ∀δs > 0, ∃δξ > 0 : ∀X : |ξ(X)−ξ(A)|< δξ⇒ |s(X ,A)− s(A,A)|< δs
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not expected to represent deep minima, but are simply used to test our approach. Furthermore,

although allosteric states are typically minima with a barrier separating them, our method is

more general and can be applied to any two arbitrarily defined conformational states, even

if they are not minimum energy structures. Our technique allows computation of the correct

ratio of thermal probabilities to find the system in either of these states, or the free energy

difference. Free energy differences between conformations which are not deep minima may be

used for example to gauge the accuracy of coarse-grained force-fields, by comparing with the

corresponding results from atomistic simulations. Likewise, our technique may be used with

many different similarity measures, s(X ,Y ). In this work, we chose the fraction of common

contacts q(X ,Y ) to quantify similarity between structures X and Y , or more precisely

s(X ,Y ) = q(X ,Y ) =
1
N ∑

i j
exp

[
−

(rX
i j− rY

i j)
2

2σ2

]
, (5.3)

where rX
i j and rY

i j indicate the distances between i-th and j-th atom in conformations X and Y

respectively, and normalization factor N is equal to the number of atom pairs used to compare

structures X and Y . In the example with Trp-cage we included carbons Cα, Cβ, Cγ, Cδ, Cε,

and Cz (78 atoms total) in the summation. Gaussian function in Eq.5.3 smoothes the boundary

between a “contact” and “no contact”. Further in the text we use the following notation:

QA ≡ q(X ,A),QB ≡ q(X ,B),ξg ≡ ξg(QA,QB)≡ ξg(X).

The comparison of locality between the previous, difference based path coordinate ξd and

the newly proposed gaussian based path coordinate ξg is shown in Fig.5.3. Patches of different

colors correspond to different windows of umbrella sampling (that keep the path coordinate

localized). It can be seen from Fig.5.3a that the previously reported coordinate ξd indeed forces

the trajectories to sample a stripe-like region of the 2D (QA,QB) plane. The ξd windows that

contain conformations A and B also group with them unrelated, partially unfolded structures.

95



In comparison, when using the new path coordinate ξg, the window that contains A is local, as

shown in Fig.5.3b, and the trajectory in this windows does not stray far from A, keeping the

conformations unrelated to A from this window.

The new path coordinate ξg constitutes the essence of the technique reported here. How-

ever, there is another major feature that might be needed for efficient calculations under specific

circumstances. Note that the conformational phase volume as a function of ξg is not constant:

it is much larger in the region ξg ≈ 0, which contains all the unfolded states and decreases

rapidly towards the endpoints ξg = 1 and ξg =−1. In principle, the ξg ≈ 0 umbrella windows

have to be thoroughly sampled as well which may represent a problem with large proteins and

explicit solvent force fields. However, if one is interested only in free energy difference be-

tween conformations A and B and not in the full free energy profile between them, this problem

can be side-stepped. It is possible to confine the sampling trajectories inside an artificial “tube”

that envelops a presumptive path between the states. This can be done by adding an appropriate

confinement potential Vc to the Hamiltonian, H ′ = H +Vc. Vc should be chosen in such a way

that the conformational basins of A and B are not affected (Vc(A) ≈ Vc(B) ≈ 0). Using the

modified Hamiltonian, the free energy difference between the conformations A and B is

F ′A−F ′B =−1
β

ln

R
ΓA

e−βH ′dΓR
ΓB

e−βH ′dΓ
=−1

β
ln

R
ΓA

e−β(H+Vc)dΓR
ΓB

e−β(H+Vc)dΓ
, (5.4)

where β = 1/kT , Γ represents the whole conformational space and ΓA and ΓB indicate the

phase volumes of conformations A and B. If we set Vc = 0 (below desirable marginal error,

e.g. less than 0.01 kcal/mol) everywhere in ΓA and ΓB, then FA−FB = F ′A−F ′B, thus, Vc will

not affect the free energy difference we are calculating. In our test example with Trp-cage

we chose a Vc that won’t allow the trajectories to unfold. On the (QA,QB) square this would

mean preventing the trajectories from going towards the origin, keeping them in the upper right

corner, corresponding to the native region. Thus Vc can be visualized as a wall of cylindrical
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shape surrounding the upper right corner of the phase space square (QA,QB). Keeping the

radius of the cylinder small would aid computational efficiency, but it should be large enough

to not touch the conformational basins of A and B and to allow sufficient overlap between

umbrella windows (see Methods Section and Fig.5.5).

5.4 Results

The free energy profile as a function of ξg is shown as a black solid curve in Fig.5.4b. This

1D profile was calculated using 108 umbrella windows that are each 1.2 ns long. High con-

formational entropy in the region ξg ≈ 0 is the thermodynamic factor which tends to lower

that region’s free energy. However, we are mainly interested in obtaining the free energy

difference between the conformations A and B (marked by rectangles). As discussed in intro-

duction, these correspond to finite segments of the path coordinate ξg line. The size of these

segments is not set by our method and must be chosen based on other considerations, such

as magnitude of atomic vibrations. If the structures for A and B are obtained from experi-

ment, the size may be defined by experimental precision. For a given segment size, though,

our procedure provides a definite answer. It makes physical sense to choose a segment size

that corresponds to a conformational basin, the local minimum on the free energy landscape,

providing there is one. We chose the sizes to be ∆ξg = 0.2. To calculate the free energy of a

segment, we sum the partition functions of all the states within it: ZA =
R 1

0.8 exp(−βF(ξg))dξg

and ZB =
R −0.8
−1 exp(−βF(ξg))dξg. The free energy difference FA−FB =−kT ln(ZA/ZB), turns

out to be 0.43 kcal/mol (0.77kBT ).

To independently verify this result we also constructed a 2D free energy surface as a func-

tion of QA and QB (Fig.5.4a). 2D FES calculations are much more expensive computation-

ally [165, 202, 203]. For these calculations, 922 umbrella windows are needed, 1.2 ns each

resulting in over 1µs of total simulation time (compared to∼ 100 ns simulation time for the 1D
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profile). To compare free energies from 1D free energy profile F(ξg) and from 2D free energy

surface F(QA,QB) we integrated the 2D FES numerically using

e−βF(ξ′g) =
Z

e−βF(QA,QB)
δ(ξ′g−ξg(QA,QB))dQAdQB.

The profile obtained from the 2D surface F(QA,QB) yields 0.45 kcal/mol (0.81kBT ) free en-

ergy difference between the basins, to be compared with 0.43 kcal/mol (0.77kBT ) obtained

from 1D F(ξg) calculations. The difference is within 5%, indicating that the method is highly

accurate.

5.5 Discussion

The new method presented for computing free energy differences between polymer chain con-

formations has several advantages compared to previous approaches. The technique is general

and does not involve calculations with unphysical states of the molecule (other than forcing the

system to visit states that are poorly accessible thermally). It has adjustable structural resolu-

tion, that can be changed depending on the nature of the two conformations of interest. The

resolution can be changed by increasing or decreasing the set of atoms whose positions enter

into the definition of s(X ,Y ). For instance, partially unfolded states of proteins would require

coarser treatment, than the one in the example here: side-chain rearrangements should be con-

sidered as not changing the conformation, because they would occur on the same timescale as

solvent motions.

The enveloping “tube” for the pathway between A and B is not as artificial construct as it

may seem at first glance, at least regarding proteins. In real allosteric transitions proteins do

not unfold (or do so only partially), which means a natural tendency to stay in the region of

the energy landscape we are trying to sample. Thus, many proteins would naturally sample

a well-defined path if the umbrella window sampling times are not too long, which would
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allow escape over kinetic barriers surrounding the dominant path. In this case, an externally

introduced confining tube would serve only as a “guard rail” for the trajectory rather than

a wall that cuts a part of phase space off. In the example presented in the paper we used

the following considerations to find a functional form for Vc that would approach such ideal

case. First, the tube has to allow sufficiently many pathways connecting A and B, so that

there is enough overlap between the umbrella windows. Then, the rate of transition between

neighboring windows (with Vc on) multiplied by the simulation time inside a window must be

larger than unity. However, this should not be an excessively large number, since it is a gauge

for the sampling problem that the tube is meant to solve. Thus, some optimal width tube needs

to be devised around the steepest descent path between the end points. Since this path is not

known a priori, we probed the phase space with short time umbrella windows, thus “seeing”

where the trajectory “prefers” to go (Fig.5.3b), until we observe a continuous path between A

and B. The areas where the system spends most of its time are grouped around the steepest

descent path, forming the shape of the tube (see Methods section). A more general procedure

for constructing an adjustable confinement tube and making sure that its main purpose is to be

a “guard rail” would allow the calculation of realistic transition pathways between the states,

not just the free energy difference, with high computational efficiency. Thus, if the system

naturally wants to go from A to B, the tube acts as a “guard rail”, and we can recover the real

transition pathway with a free energy profile along the pathway. In the opposite case, when

system does not want to go from A to B, we may need to force it with the confinement tube,

and then we recover just the free energy difference.

Root-mean-square-deviation of atom positions (RMSD) is widely used as a similarity mea-

sure between two conformations, s. Our method is formulated in terms of general s(X ,Y ), so

RMSD could also be used. The plot corresponding to Fig.5.2 would look somewhat differ-

ently (the whole quadrant instead of square with the native region near the origin) but with the

same main features. We preferred to use fraction of native contacts q(X ,Y ) for the following
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reasons. q is a two-point parameter, comparing the distances between pairs of atoms, while

RMSD compares the coordinates of each atom individually (after proper alignment). Use of

q does not require this preliminary alignment of the structures. As the contact energy plays

crucial role in proteins, q is more correlated with protein physics than RMSD. For example,

if one imagines two conformations having two α-helices, that are close in one of them and

apart in the other one, then RMSD between them will be very large, suggesting no structural

similarity, while q will still show the similarities of individual helices.

In fact, umbrella sampling with the path coordinate ξd (Eq.5.1) and RMSD in the role of s

has been used to calculate free energy difference between A− and B−forms of DNA [197] and

free energy mapping of allosteric switching between the open and the closed forms of adenylate

kinase upon ligand binding [145]. As discussed above, this technique has the non-locality

problem, that we have solved by introducing a new path coordinate in this paper. Along with the

confinement idea, our technique is fully general, adjustable to high resolution, computationally

efficient and does not operate on unphysical states of the system. The method can be used

for an arbitrary pair of states, without the naturally existing transition path between them, like

in the current work, to compute free energy differences between two protein conformations.

In addition, a straightforward generalization should allow computing the whole free energy

profile for the transition path between two states, when this transition occurs in nature.

5.6 Methods

All atomistic molecular dynamics (MD) simulations were carried out using LAMMPS [167]

(Large-scale Atomic/Molecular Massively Parallel Simulator) using CHARMM27 protein-

lipid force field with explicit solvent [164]. Trp-Cage was placed in a 50× 50× 50 Å3 box

with 2,275 water molecules (TIP3P model) and the counterions, 5Na+ and 6Cl− in order to

mimic the physiological conditions. The system was prepared in NAMD using the standard
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protocol [168]. The system was heated up to 282 K and equilibrated for 800 ps using targeted

MD to keep the innate NMR structures. Next, NPT simulations were carried out in LAMMPS

for 60 ps with targeted MD to bring the conformation to a specific umbrella window. Finally,

for each of the windows, 1.2 ns long NPT simulations were carried out, where the last 1 ns was

used for data analysis.

The confinement potential for the “tube” enveloping the trajectory is constructed as follows.

In the case of Trp-Cage, the upper right corner of the (QA,QB) square is naturally devoid of

states, thus, we only need to confine the trajectory from the side of lower values of QA and

QB. We placed a cylindrical “wall” around upper right corner of conformation space square

(Fig.5.4a), that confines the trajectories to the upper right corner. The “wall” (actually, a sharp

step with finite width) was implemented by a hyperbolic tangent of a distance from the upper

right corner of the phase space square (QA = 1,QB = 1):

Vc = ε
(
1+ tanh

(
k
[
(QA−1)2 +(QB−1)2−µ2])) . (5.5)

The parameters ε, k and µ, that were chosen as 10 kcal/mol, 5× 103 and 0.135 respectively, sat-

isfy the conditions of good overlap between umbrella windows, but, eliminate a huge number

of intermediate states.
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Figure 5.1: The protein folding energy landscape is schematically shown in the shape of a
funnel.
The bottom of the funnel [204], containing the native, functional landscape, is zoomed in on
the right. The new technique presented in this work allows to choose two conformations, A and
B, from the native ensemble and calculate the free energy difference between them.
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Figure 5.2: Level lines for different path coordinates
The path coordinate ξd = s(X ,A)− s(X ,B) is shown in 3D (a) and as a contour plot (b). The
path coordinate ξg (Eq.5.2) is shown in 3D (c) and as a contour plot (d). The labeled points
correspond to conformations A and B – two of the states detected by an NMR study of Trp-cage
native state [158]. A one-dimensional dynamical variable necessarily partitions the phase space
into multidimensional iso-surfaces. In both cases on this figure iso-surfaces around ξd ≈ 0 (a
green stripe) and ξg ≈ 0 (the large green area) contain all the unfolded states. This is the
case with any one-dimensional path coordinate. Our method solves this problem with the
confinement potential “tube”.
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