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ABSTRACT 
 

Christopher R. Hakkenberg: Mapping plant diversity and composition across North Carolina 
Piedmont forest landscapes using LiDAR-hyperspectral remote sensing 

(Under the direction of Conghe Song) 
 

Forest modification, from local stress to global change, has given rise to efforts to model, 

map, and monitor critical properties of forest communities like structure, composition, and 

diversity. Predictive models based on data from spatially-nested field plots and LiDAR-

hyperspectral remote sensing systems are one particularly effective means towards the otherwise 

prohibitively resource-intensive task of consistently characterizing forest community dynamics at 

landscape scales. However, to date, most predictive models fail to account for actual (rather than 

idealized) species and community distributions, are unsuccessful in predicting understory 

components in structurally and taxonomically heterogeneous forests, and may suffer from 

diminished predictive accuracy due to incongruity in scale and precision between field plot 

samples, remotely-sensed data, and target biota of varying size and density. This three-part study 

addresses these and other concerns in the modeling and mapping of emergent properties of forest 

communities by shifting the scope of prediction from the individual or taxon to the whole stand or 

community. It is, after all, at the stand scale where emergent properties like functional processes, 

biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship 

between forest structure (a proxy for successional demographics and resource competition) and 

tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and 

potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I 
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then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as 

well as turnover in community-continua at varying compositional resolutions in a North Carolina 

Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy 

structure, and foliar biochemistry. Recognizing that the distinction between correlation and 

causation mirrors that between knowledge and understanding, all three studies distinguish between 

prediction of pattern and inference of process. Thus, in addition to advancing mapping 

methodologies relevant to a range of forest ecosystem management and monitoring applications, 

all three studies are noteworthy for assessing the ecological relationship between environmental 

predictors and emergent landscape patterns in plant composition and diversity in North Carolina 

Piedmont forests.  
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CHAPTER 1 

INTRODUCTION 

The pace of species loss in the Anthropocene has far surpassed background extinction rates, 

and is only forecasted to accelerate in the near future (Davis & Shaw 2001; Hooper et al. 2012). 

Perhaps nowhere is this pernicious trend more evident than in the world’s forests. Forests cover 

approximately 30% of the global land surface, yet account for almost half of terrestrial carbon, and 

three quarters of terrestrial biodiversity (Kindermann et al. 2008; FAO 2010). But in recent 

decades, global forests have been profoundly modified, degraded, and destroyed due to the 

synergistic anthropogenic forces of habitat change, climate change, overexploitation, invasive 

alien species, and pollution (MEA 2005; Rudel et al. 2005). When these interacting stressors 

overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are 

at increased risk of harm, including ecological regime shifts and hyperdynamism in ecosystem 

process rates (Laurance 2002; Walther et al. 2002). Studies have demonstrated the central role of 

plant diversity for maintaining stability in ecosystem functioning in forest landscapes effected by 

anthropogenic degradation (Hooper et al. 2002; Folke et al. 2004; Civitello et al. 2015). In fact, a 

fundamental extrinsic value of biodiversity lies in its potential to provide functionally redundant 

system components (e.g. species) to regulate ecosystem processes and buffer against 

anthropogenically-induced environmental change (Elmqvist et al. 2003).  

In forest ecosystems plants are, perhaps not surprisingly, the dominant lifeform and driver 

of ecosystem processes (Diaz & Cabido 2001; McGill et al. 2006). Not only do plants comprise 

the vast majority of biomass, they are likewise a key indicator of overall diversity by providing 
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habitat and serving as nutritional resources for specialist and generalist consumers throughout the 

trophic chain (Gaston 1992; Myers et al. 2000; Raxworthy et al. 2003; Zak et al. 2003). The central 

role of plants in constraining forest ecosystem functioning as well as taxonomic, phylogenetic, 

functional, and biochemical diversity has driven global efforts to model aggregate, emergent 

properties of forest communities like diversity, species composition, canopy structure, and 

fucntional traits for applications ranging from landscape-scale ecosystem management, 

conservation, and habitat modeling, to regional and global modeling of biodiversity and ecosystem 

function (Gillespie et al. 2008; Abelleira Martinez et al. 2016; Jetz et al. 2016). 

Field-based methods for mapping forest community properties can be highly accurate for 

detecting species or characterizing communities at small spatial scales, however they tend to be 

extremely limited in extent (Condit 1995). For this, correlative species distribution models (SDMs) 

and community distribution models (CDMs), have gained prominence in recent years as a means 

towards modeling forest community dynamics at landscape to global scales (Ferrier & Guisan 

2006; Pearman et al. 2008; Elith & Leathwick 2009). These models exploit statistical relationships 

between species/community occurrence and environmental conditions constraining the niche 

space of focal taxa to make predictions of expected distributions based on known abiotic 

conditions (Evans et al. 2011; Cord et al. 2014). Predictive models based purely on abiotic GIS 

layers like topography or climate attempt to translate species’ fundamental niche space - an abstract 

conception of the abiotic conditions required to maintain positive population growth rate - as a 

probabilistic and spatially-explicit geographic entity (Pearman et al. 2008). In other words, niche 

models predict where species should be, rather than where they actually are - their realized niche 

- due to biotic interactions and stochastic events like disturbance. However, if the assumption of 
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niche conservatism underlying these models is flawed and biotic components completely ignored, 

niche modeling based purely on coarse abiotic layers may prove inadequate or even misleading.  

One effective method to return biological realism to niche modeling is through the 

incorporation of remotely-sensed data to simultaneously identify underlying environmental 

gradients constraining the fundamental niche, and directly observe the presence of specific entities 

occupying their realized niche (Guisan & Zimmermann 2000; Cord et al. 2013). Though remotely-

sensed data may be limited in accuracy and precision due to technological and logistical limitations 

in data acquisition, processing, and analysis, it nonetheless excels for providing a consistent, 

repeatable, and synoptic - or “wall-to-wall” - census of biophysical factors within the scene extent. 

In fact, in many cases remotely-sensed data may surpass field-based studies for describing large-

scale forest patterns susceptible to spatially-structured environmental filters otherwise concealed 

amid the complexity of local-scale forest dynamics (Asner et al. 2015).  

Remote sensing, and specifically multi-band optical remote sensing, provides spectrally-

resolved data across the electromagnetic spectrum on the reflectance characteristics of the target 

medium (Song et al. 2015). In the case of continuous cover forest vegetation, aerial or satellite 

sensors detect spectral reflectance signatures based on narrowband light absorption and scattering 

features of the forest canopy, including foliage and nonphotosynthetic vegetation (NPV) like 

woody stems and branches (Asner 1998). These spectral signatures reflect the net outcome of plant 

morphology, biochemistry, and structure that can be diagnostic of species traits and community 

properties in the context of local environmental conditions (Curran 1989). Provided structural 

variation (Knyazikhin et al. 2013) or intra-specific trait disparities (Price 1994) don’t overwhelm 

the signal, reflectance spectra can be an effective means for detecting a host of upper canopy 

features including the composition of emergent individuals and the impact of environmental stress 



 

 
4 

(Ustin & Gamon 2010; Ollinger 2011). However, in structurally-complex, continuous-cover 

forests, optical imagery fails to provide robust data beyond (or below) the upper canopy, and thus 

offers little to no information on the composition and structural properties of individuals obscured 

from the sensor’s view. To correct for this lacuna and model the entirety of a stand’s structural 

elements, from the canopy surface to the shadowed understory, LiDAR has found increasing 

prominence as a compliment to optical imagery in the remote sensing of vegetation. 

Unlike passive optical imagery, active remote sensing systems like LiDAR employ laser 

pulses that bounce off elements throughout the canopy. By calculating the pulse’s return time to 

the sensor, the height of forest structural elements can be estimated (Lesky et al. 2002). LiDAR’s 

ability to provide detailed and accurate data on the three-dimensional structure of the forest 

environment has had a profound effect on the remote sensing of vegetation (Kampe et al. 2010; 

Asner et al. 2012; Cook et al. 2013). This advancement is not merely a case of technology driving 

the science. Instead, it reflects a long-held recognition that structure, along with function and 

composition, is one of the primary components of forest ecosystems (Noss 1990; Franklin et al. 

2002; McElhinny et al. 2005), and a particularly expedient method for quantifying forest temporal 

dynamics like stand age, successional stage, and other demographic trends (Peet & Christensen 

1980; Peet & Christensen 1987; Oliver & Larson 1996; Smith et al. 1997). As a proxy for 

characterizing a stand’s local history and the spatial distribution of resources, forest structure - and 

structural heterogeneity in particular – also serves as an effective predictor of local levels of 

biodiversity. In fact, several studies have found significant correlations between attributes of forest 

structure and local biodiversity among trees (Neumann & Starlinger 2001; Chiarucci & Bonini 

2005; Bacaro et al. 2008), understory herbs (Berger & Puettmann 2000; Cook 2015), birds 
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(MacArthur & MacArthur 1961; Moen & Gutiérrez 1997), insects (Recher et al. 1996), and 

mammals (Sullivan et al. 2001).  

Another potential shortcoming with niche modeling, and with SDMs in particular, worth 

reviewing is the inherent incongruity in the characteristic scales of field plot data (based on 

sampling size, design, and intensity), remotely-sensed data (such as, spatial resolution and 

geolocational precision), and that of target biota (e.g. size, density, and coverage extent). This 

mismatch in scale need not necessarily be problematic. For example, in monospecific forest 

communities, or in open woodlands where individual tree crowns are spatially distinct and discrete, 

remotely-sensed pixels may represent a single endmember; that is, pixels may consist entirely of 

a single plant of sufficient size or cover. However, when scene elements are smaller than the pixel 

resolution, or when target biota are diverse, intertwined, or otherwise obscured from view, the task 

of reconciling the disparate scales of data and model may become problematic. Spectral mixing 

and spatial mismatch between data sources is especially pervasive in structurally and 

taxonomically heterogeneous forests.  

Thus, to better align grain and extent among field plots, remotely-sensed data, and target 

biota in multi-strata multi-species communities, studies have shifted the scale of interest from the 

individual or taxon to that of the whole stand or community (Bunting et al. 2010; Wolter & 

Townsend 2011). In complex forests, this means foregoing a species-centric approach and instead 

embracing community-scale models (Ferrier & Guisan 2006). After all, it is at these aggregate 

scales that the emergent properties of communities such as functional processes, biodiversity, and 

habitat manifest (McGill et al. 2006; Anderson & Ferree 2010). This alignment of disparate scales 

likewise mitigates against ecological fallacies that may occur when scale mismatch confounds 

inference (Ess & Sudweeks 2001). For example, when used to reconstruct entire communities, 
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stacked SDMs (multiple, single-species models), tend to underestimate biotic processes like 

competition that contribute to observed compositional variance in plot data, and thereby grossly 

inflate species richness values (Guisan & Rahbek 2011; Clark et al. 2014). Provided predictive 

models adequately represent the full spectrum of compositional and structural variance observed 

in field plots, a stand-scale approach enables researchers to model communities holistically, 

thereby circumventing the problem of failing to predict obscured, and thus undetected, individuals 

like understory herbs (Ohmann et al. 2011).  

Broadly speaking, this study was motivated by the desire to bridge scales of analysis of 

ecological phenomena from the plot to the landscape, with the ultimate goal to contribute to the 

better integration of the fields of community ecology, landscape ecology, and remote sensing. 

Analyses are intended to uncover phenomenological patterns and underlying drivers of forest 

community properties to map turnover in vegetation composition and diversity across forest 

landscapes of the North Carolina Piedmont. Spatially nested field sampling, together with 

burgeoning technologies of LiDAR-hyperspectral remote sensing and emerging statistical 

techniques like nonparametric predictive community modeling, allow for forest community 

mapping at scales far finer than that of the nominal resolution of the remotely-sensed data, and at 

extents far larger than what field sampling would expediently support. Efforts to predict and infer 

the scale-dependent relationships among remotely-sensed parameters and forest community 

properties will only grow in the years to come as ecologists anticipate annual NEON data products 

and the deployment of a fleet of new LiDAR and hyperspectral satellites for use in applications 

ranging from local-scale land management to global-scale ecosystem modeling.  

The study is split into three parts. In the first section (Ch. 2), I seek to determine whether 

forest structure can serve as a significant predictor of tree species diversity in the forests of the 
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North Carolina Piedmont. If so, which structural attributes are most strongly correlated with 

diversity, and how effective are they when used in concert within a generalized predictive model? 

To accomplish this goal, I analyze Spearman correlations between 15 measures of forest structure 

and five indices of tree species diversity based on a set of 972 geographically-distributed Forest 

Inventory and Analysis (FIA) plots located within North Carolina Piedmont forests (Gray et al. 

2012). Next, I combine all predictors in a nonparametric support vector regression (SVR) model 

to predict tree species diversity in the North Carolina Piedmont based on structure alone, without 

accounting for other known predictors of diversity, such as environment, soil conditions, and site 

history. Beyond the theoretical implications of unraveling the underlying relationship between 

structure (as a surrogate for successional stage) and tree species diversity, this study is designed 

and implemented to determine the empirical basis for successfully utilizing forest structure from 

LiDAR remote sensing in predictive models of tree species diversity over large geographic 

regions. 

In the second section (Ch. 3), I employ lessons from Ch. 2 to map multi-scale vascular 

plant species richness in a compositionally- and structurally-complex North Carolina Piedmont 

forest landscape. Specifically, I use spatially-nested field plots in conjunction with active and 

passive remotely-sensed data from the Goddard LiDAR, hyperspectral, thermal (G-LiHT) airborne 

sensor in feature-selected nonparametric models to predict wall-to-wall vascular plant species 

richness in the Duke Forest Blackwood Division study site at 0.01m2, 0.1m2, 1m2, 10m2, 100m2, 

400m2, and 900m2 scales. Due to the inherent scale-dependence in diversity patterns (e.g. species-

area relationships) and those of remotely-sensed data (e.g. resolution and spatial precision) in 

relation to plant size and density, post-hoc analyses focus explicitly on the role of spatial scale in 

constraining the relationship between remotely-sensed variables and species richness values. In 
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addition to spatially-explicit uncertainty maps and accuracy assessment of nonparametric models, 

hierarchical parametric models are used to infer the relationship between remotely-sensed data and 

drivers of diversity. This study provides insights into multi-scale landscape turnover of plant 

diversity, species-area relationships, and remotely-sensible correlates of plant richness.  

In the final section (Ch. 4), I use multi-scale nested vegetation sampling data in conjunction 

with remotely-sensed data from the G-LiHT airborne sensor to map plant composition in the Duke 

Blackwood forest landscape. I compare two distinct approaches to the mapping of forest 

composition: community-unit classification, where communities are mapped as discrete 

geographical entities at varying compositional resolutions, and compositional gradient regression, 

where intergrading assemblages are depicted as continuous compositional gradients. In so doing, 

I provide a mapped example of the community-continua concept. For both the discrete and 

continuous compositional maps, landscape turnover in composition is consistently represented as 

the RGB color translation of its coordinates in ordination space. Finally, I employ post-hoc 

analysis of remotely-sensed predictor variables to determine the complementarity of LiDAR-

hyperspectral sensors to predict the primary dimensions of vascular plant composition of the North 

Carolina Piedmont forest site.  
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CHAPTER 2 

FOREST STRUCTURE PREDICTS TREE SPECIES DIVERSITY IN THE NORTH 
CAROLINA PIEDMONT* 

2.1. Introduction 

Concerns over global environmental change and biodiversity loss have driven efforts to 

model the spatial distribution of taxonomic diversity (Ackerly et al. 2010; Hooper et al. 2012). 

Despite significant progress in recent decades in the modeling of large-scale patterns in 

biodiversity, direct mapping is still greatly limited by technological and cost constraints (Gaston 

2000; Rodrigues & Brooks 2007; Asner & Martin 2009). To improve the estimation of the spatial 

distribution of diversity over large continuous areas, scalable proxy variables that link ground 

measurements with remotely-sensed data must be identified and assessed (Kreft & Jetz 2007; Kane 

et al. 2010; He et al. 2015). Candidate variables should be remotely sensible, ecologically relevant, 

common in current vegetation inventory databases, as well as temporally dynamic and scalable to 

larger landscapes (Turner et al. 2003; Anderson & Ferree 2010). This study investigates the utility 

of employing one such suite of candidate variables, namely those based on forest structure, to 

predict tree species diversity over large areas of temperate forest. 

Forest structure reflects abiotic conditions and site history, including competition and 

stochastic disturbance events, at multiple spatial scales that affect the three-dimensional 

distribution of biomass in a forest stand. Several potential mechanisms underlie the relationship 

_________________________ 
* This chapter previously appeared as an article in The Journal of Vegetation Science. The original citation is as 
follows: Hakkenberg, C.R., Song, C., Peet, R.K., & White, P.S. 2016. Forest structure as a predictor of tree species 
diversity in the North Carolina Piedmont. Journal of Vegetation Science 27: 1151–1163. 
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between forest structure and tree species diversity, though no single explanation is diagnostic in 

assigning causality. On one hand, higher species counts increase the expectation of greater 

functional diversity in species’ traits. On the other hand, structural complexity begets fine-scale 

environmental heterogeneity conducive to the partitioning of niche space and the creation of new 

habitat for a greater diversity of species (Franklin 1988; Palmer & Maurer 1997). These 

explanations are by no means exhaustive, and without experimental manipulation, teasing apart 

the causal mechanisms driving these relationships remains problematic.  

Observational studies on the effect of stand structure on plant diversity have primarily 

focused on understory herbaceous species (see Cook 2015 for a review), and to a lesser extent, on 

tree species diversity. Chiarucci and Bonini (2005), for example, found plot-scale species richness 

to be significantly related to tree stem density (R2=0.35; p<0.01) and total basal area (R2=0.05; 

p<0.01), though non-structural, regional predictors like elevation had the highest predictive power 

(R2 = 0.64). Bacaro et al. (2008) were able to use a host of local and regional predictors to explain 

83% of the total variation in woody plant species richness in Tuscan forests, though forest structure 

accounted for only 1% of non-shared variation in woody richness. Other studies, mainly based on 

small sample sizes, have tended to find an insignificant or weak correlation between forest 

structure and woody diversity (Aiba & Kitayama 1999; Neumann & Starlinger 2001). In light of 

these inconsistent findings and the emergence of remote-sensing technologies like LiDAR as tools 

for forest biodiversity mapping based on structural surrogates (Rodrigues & Brooks 2007; Wolf et 

al. 2012; Camathias et al. 2013), further work is needed to evaluate the empirical basis of forest 

structure as a generalizable predictor of tree species diversity. 

In this study, we use an extensive set of Forest Inventory and Analysis (FIA) plots, 

geographically distributed across the North Carolina Piedmont region (47500 km2) to determine 
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whether forest structure is significantly correlated with tree species diversity in the temperate 

forests of this region. We then examine which structural attributes are most strongly correlated 

with tree species diversity, and how effective they are when used in concert in a generalized 

predictive model. To address these questions, we first focus on characterizing the relationship 

between individual structural attributes and indices of species diversity. Next, we assess the ability 

of a generalized machine learning algorithm trained solely with structural variables to predict tree 

species diversity. Finally, we evaluate cross-validated model performance using the entire NC 

Piedmont plot database as well as subsets differentiated by stand origin and forest type. 

2.2. Methods 

2.2.1. Study Area 

The study area is located in the 

central portion of the EPA level 3 

“Piedmont” ecoregion and bounded by 

the state borders of North Carolina (Fig. 

2.1) (Griffith et al. 2002). The heavily-

forested Piedmont ecoregion, 

stretching from Northern Virginia to 

central Alabama, separates the 

mountainous Appalachians to the 

northwest from the flat Coastal Plain to 

the southeast. Once largely dominated 

by agriculture and grazing lands 
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Figure 2.1. Piedmont NC study area and FIA plots. 
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(including upland hardwood forests), the NC Piedmont has largely reverted to old-field 

successional pine and hardwood forest (Peet & Christensen 1988).  

Plant species richness levels in the NC Piedmont tend to be strongly correlated with soil 

nutrient content, soil moisture and parent material (Peet & Christensen 1980; Peet & Christensen 

1988; Peet et al. 2014). At local scales (100-1000 m2), the highest levels of species richness occur 

in riparian communities, in moist but well-drained sites (Matthews et al. 2011). Upland forest 

species richness, on the other hand, is driven primarily by soil chemistry and especially base 

cations, phosphorus availability, and soil moisture (Peet & Christensen 1980). Despite the large 

spatial extent of the study area, the narrow range of variability in elevational and latitudinal range 

limits the influence of climatic factors, thereby allowing us to focus exclusively on the relationship 

between structure and tree diversity (National Climatic Data Center 2011). 

2.2.2. Forest Inventory Data 

Vegetation plot data were drawn from 

the USDA Forest Service’s Forest Inventory 

and Analysis (FIA) database, the largest and 

most comprehensive forest inventory and 

monitoring program in the US, with 

remeasurement of all plots occurring on a 5-10 

year cycle.  (Gray et al. 2012). Under the 

nationally-consistent inventory design, plot 

locations are geographically-distributed 

throughout a base grid, with individual plots 

selected to assign one plot for each 2428 ha 

0

20

40

60

80

0 50 100 150
Stand Age

Pl
ot

 C
ou

nt

Forest Type
Pine (n=198)

Mixed (n=308)

Broadleaf (n=466)

Figure 2.2. Histogram of FIA plots by stand age 
and forest type 
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hexagon across the US (O’Connell et al. 2015). Within each plot, trees (>12.7 cm DBH) were 

measured on each of four 7.3m radius subplots (O’Connell et al. 2015). Stem counts were 

converted to a per-unit-area metric using the FIA’s subplot expansion factors, at a spatial scale 

capable of capturing the range of variability in stand structure (Clebsch & Busing 1989; Busing & 

White 1993; Bechtold & Patterson 2005). Due to concerns over landowner privacy, as well as plot 

integrity and vandalism of plot locations on public lands, the precise locations of FIA plots are 

“fuzzed”, such that plot locational precision is limited to one mile, and “swapped”, where up to 

20% of private plot location coordinates are swapped with similar plots within the same county 

(O’Connell et al. 2015). To ensure that plot locations retain their anonymity while still conforming 

to the specific spatial extent of our study area, the Forest Service assisted in the provision of the 

final plot list used in this analysis (USDA 2014, database accessed July, 2015).  

After removing plots experiencing timber removal, 972 plots from the most recent 

remeasurement period (2005-2013) were retained for analysis – containing 89 tree species and 

across a range of stand ages (Fig. 2.2, Appendix 1). Thereafter, the full dataset was subset 

according to stand origin and forest type. Stand origin refers to FIA designated “natural stands” 

(837 plots) and those with “clear evidence of artificial regeneration … by planting or artificial 

seeding” (135 plots) (O’Connell et al. 2015). Forest types represent dominant leaf habit and are 

derived from a parsimonious three-way split among FIA’s forest type groups, a designation of 

community type based on a hierarchical clustering algorithm (O’Connell et al. 2015). FIA 

designated forest types used in this study include: (1) 198 pine plots, 97% of which are in the Pinus 

taeda/Pinus echinata group; (2) 308 broadleaf plots, with 88% in the Quercus/Carya group; and 

(3) 466 mixed plots, representing a broad range of taxa (Fig. 2.2, Appendix 1). Nomenclature 

follows (USDA 2016). 
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Table 2.1. Indices of taxonomic diversity 

Species 
Richness 
(SR) 

SR = 	𝑆 where S is the number of species (2.1) 

Shannon 
Index (H) 𝐻 =	− 𝑝) 𝑙𝑛 𝑝)

,

)-.

 
where S is the number of species, and pi is the 
proportion of individuals (p) belonging to the ith 
species (Shannon & Weaver 1949) 

(2.2) 

Simpson 
index (D) 𝐷 = 	1 − 𝑝)1

2

)-.

 
a variation of Simpson’s index (Simpson 1949) 
where pi is the proportion of individuals in a 
community of s species  

(2.3) 

Pielou’s J 
(J) 𝐽 = 	

𝐻
𝐻456

 
where H is the Shannon Index value and Hmax 
equals the maximum possible value of H for a 
given sample (Pielou 1966) 

(2.4) 

Rarified 
SR 

SR per 24 stems (i.e. 
median plot density) 

rarefaction and extrapolation calculated using 
the iNEXT package in R (Hsieh et al. 2016) (2.5) 

2.2.3. Indices of Taxonomic Diversity 

We used five commonly-used and ecologically-interpretable indices of taxonomic 

diversity, that each emphasize a different aspect of species diversity (Peet 1974; Magurran 1988): 

species richness (SR), the Shannon’s H and Simpson’s D indices of entropy, Pielou’s J measure 

of evenness, and rarified species richness (rarified SR) (Table 2.1). Despite the parsimony in 

tallying species for a given area, species richness fails to account for the distribution of relative 

abundances, making inference and comparison across communities of varying densities 

problematic. Therefore the Shannon index (H) - which is more sensitive to rarer species - and the 

Simpson index (D= 1-Simpson’s 1949 index; Simpson 1949) - which responds more to abundant 

species - were included to represent two points in a spectrum of relative sensitivity to species 

number versus relative evenness (Hill 1973; Peet 1974; Heip et al. 1998). Pielou’s J (J; Pielou 

1966) was used to approximate evenness of species presence (Jost 2010). 

Rarified SR is included to provide an estimate of species richness independent of a density-

dependent sampling effect, a statistical artifact whereby the more individuals sampled, the greater 
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the number of expected species (Bunge & Fitzpatrick 1993). Rarefaction enables a comparison of 

species richness between stands of varying density by re-sampling individuals to simulate species 

accumulation curves at equivalent stem density (Gotelli & Colwell 2001). Rarified SR values were 

calculated from a coverage-based sampling curve based on a Monte Carlo re-sampling procedure 

on all plots (Chao & Jost 2012). Interpolated (rarified) and extrapolated (predicted) richness values 

were then estimated from this sampling curve based on an expectation of equivalent density 

corresponding to the median density of all plots (i.e. 24 individual stems or 0.14 stems per m2) 

(Chao & Jost 2012). 

2.2.4. Indices of Forest Structure 

Structural indices quantify attributes such as abundance and size variation in the standing 

biomass in the horizontal plane (e.g. stem density and basal area), as well as the vertical dimension 

(e.g. canopy heights, foliar profile, and stratification) (Davis & Roberts 2000; Gadow et al. 2012). 

A host of numerical methods exist for quantifying and indexing stand structure, though no single 

authoritative set of criteria exists, making direct comparison problematic (Neumann & Starlinger 

2001; Staudhammer & LeMay 2001). For this study, we selected three classes of easily-measured 

structural metrics with precedence in the forest ecology literature (Lexerød & Eid 2006): (1) 

summary statistics, (2) size heterogeneity, and (3) size distribution statistics (Table 2.2).  

Table 2.2. Indices of forest structure. (“BA” - basal area; “HT” - height; “qmd” - quadratic mean 
diameter; “ST” - stems; “-” – unitless) 

Index Class Attribute Abbreviation Unit Mean Sd Min Max 

Summary 
statistics  

Maximum 
maxBA cm2 1748.68 1227.37 136.85 9816.88 

maxHT m 26.5 6.67 7.32 47.24 

Mean 
qmd cm2 25.55 6.77 12.95 72.26 

meanHT m 18.27 3.86 6.9 33.84 
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Density densityST stems/m2 0.04 0.02 0 0.15 

Size 
Heterogeneity  

Coefficient 
of 
variation 
(cv) 

cvBA - 0.76 0.3 0.02 2.36 

cvHT - 0.24 0.09 0.01 0.6 

Gini 
Coefficient 
(GC) 

GCBA - 0.36 0.11 0.01 0.68 

GCHT - 0.13 0.05 0 0.28 

Size 
Distributions 
Statistics 

Skewness 
skewBA - 1.25 0.86 -0.86 6.35 

skewHT - 0.1 0.63 -2.83 3.53 

Kurtosis 
kurtosisBA - 1.45 4.08 -2.75 42.17 

kurtosisHT - -0.56 1.7 -2.75 15.4 

Weibull 
(WB) 

WBshape - 1.98 3.79 0.65 107.84 

WBscale - 589.03 350.98 134.17 5257.4 

Basic summary statistics of forest structure include those based on individual stems such 

as maximum height (maxHT) and maximum basal area (maxBA), and those based on plot-wide 

statistics such as quadratic mean diameter (qmd), mean height (meanHT) and stem density 

(densityST). Two measures of structural heterogeneity were selected to indicate dispersion in basal 

area and height – attributes that have been found to correlate with stand micro-habitats (Acker et 

al. 1998) and distinguish between successional stages (Spies & Franklin 1991). The coefficient of 

variation (cv) was chosen owing to its ability to measure relative rather than absolute variation, 

thereby allowing direct cross-comparison among stands (Weiner & Thomas 1986). The Gini 

coefficient (GC) is a measure of total inequality in a stand, or the “relative mean difference”, 

calculated as: 

𝐺𝐶 =
|𝑥) − 𝑥;|<

;-.
<
)-.

2𝑛1𝜇  (2.6) 

where xi and xj represent individual stems i and j, respectively; n denotes total individuals 

and µ represents mean stem size (Damgaard & Weiner 2000). GC ranges from zero, when all 
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individuals are equal in size, to a theoretical maximum of one when a stand is dominated by a 

single individual. Being a statistic of dispersion normalized by the stand mean, GC has the desired 

property of being independent of density and total BA, thus allowing for comparison between 

stands (Knox et al. 1989; Valbuena et al. 2012).  

The final class of stand structural measures describes higher order moments of the stands’ 

size distribution, a common indirect method for estimating life table information and stand age 

structure (Lorimer & Krug 1983). Kurtosis, which estimates the degree of peakedness in the 

distribution, indicates the extent to which a stand is dominated by modal size classes that loosely 

track the distribution of age cohorts. Skewness, which measures the degree of asymmetry in the 

distribution about its mean, has been associated with differences in degree of competition (Knox 

et al. 1989). We also adopt the Weibull function to describe stand size distribution for its flexible 

statistical properties and its long history in forestry applications (Weibull 1951; Leak 1964; Bailey 

& Dell 1973). While there is not a distinct biological basis for this function, it derives its utility 

from its superior performance in fitting a wide variety stand-size distributions, despite having just 

two parameters (Rennolls et al. 1985; Jaworski & Podlaski 2011). For a distribution starting at 

zero, the Weibull probability distribution function is expressed as: 

 
𝑓 𝑥; 𝜆; 𝑘 = 	

𝑘
𝜆
𝑥
𝜆

CD.
𝑒D

6
C

F

	𝑥 ≥ 0,
0																													𝑥 < 0,

 (2.7) 

where x is the size or age class, λ is the scale parameter, and k is the shape parameter such 

that k>0 and λ>0 (Weibull 1951). The scale parameter controls the extent of the horizontal 

displacement of the mean value, while the shape parameter determines the form the curve assumes. 

For k<1, f(x) resembles a negative monotonic reverse-J curve. As k increases, the distribution 

transforms to positively-skewed unimodal (1 < k < 3.6), approximately normal (k = 3.6), and finally 
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to a negatively-skewed unimodal distribution (k > 3.6). Parameters of the Weibull distribution and 

their corresponding standard errors were estimated by non-parametric bootstrapping. These three 

measures of the stand size distribution are attractive because, as continuous variables, they 

circumvent the issue of information loss and dependency on subjective choice via thresholding 

and size-class binning (Staudhammer & LeMay 2001; Lexerød & Eid 2006; Valbuena et al. 2012). 

 

Figure 2.3. Distribution of selected response and predictor variables among all plots and subset 
by forest type and regeneration method. Violin plots depict distribution of field plots by species 
richness (SR), maximum height, and basal area heterogeneity (Gini). 

2.2.5. Data Analysis 

Structural predictors and diversity response variables capture a large spectrum of variation 

within and between forest types throughout the study area (Fig. 2.3). Data analyses were designed 

to (1) test the statistical relationship between attributes of forest structure and tree-species diversity 

based on Spearman’s ρ correlation coefficients, a rank-based measure of association that facilitates 

application to non-normal data distributions, and (2) evaluate model fit of a series of support vector 

regression (SVR) predictive models of tree species diversity via 10-fold cross-validation.  SVR 

was chosen over other parametric and machine learning models because of its ability to model 

nonlinearities in complex datasets, while balancing between high accuracy in response variable 

prediction and generalizability to unseen data (Vapnik & Vapnik 1998; Schölkopf & Smola 2002). 
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SVR is an extension of support vector machines (SVM), first developed in statistical learning 

theory as a machine learning method for classification that has since been extended to prediction 

and regression (Cortes & Vapnik 1995; Cristianini & Shawe-Taylor 2000). SVMs aim to translate 

a nonlinear problem to a linear one by using kernel functions to fit a model that maps the original 

low-dimensional input space into a higher dimensional feature space (Vapnik & Vapnik 1998). 

The global optimum solution is unique and minimizes overfitting by optimally balancing between 

the accuracy of the model based on cross-validated training and validation data (Schölkopf & 

Smola 2002).  

Support vector regression (SVR) was performed using a Gaussian radial kernel parameter 

(γ) and two empirically-determined hyperparameters (C and ɛ) derived from training data 

(Appendix 2). Variable importance for the SVR model was assessed via the R2 statistic of a loess 

smoother that compares singular predictors to an intercept-only null model (Kuhn 2008). Model 

fit between observed and predicted values was assessed using 10-fold cross-validation, an out-of-

sample model evaluation procedure whereby random subsamples are iteratively withheld from 

model training and then used as an independent validation of model results. While out-of-sample 

validations may result in a lower goodness of fit than in-sample tests, they are unbiased and provide 

a better measure of a model’s predictive accuracy, especially when generalized to independent 

data (Hastie et al. 2009). All statistical analyses were performed using the software R, v. 3.2.1 (R 

Core Team 2016), with SVR model training and variable importance calculated using the caret 

package (Kuhn 2015) and coverage-based rarified species richness performed using the iNEXT 

package (Hsieh et al. 2016). 

2.3 Results 

2.3.1. Forest Structural Attributes as Predictors of Tree Species Diversity 
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Spearman correlations reveal several significant relationships between forest structure and 

tree species diversity (Fig. 2.4). Among the 15 structural attributes examined in this study, 

maximum size (maxBA and maxHT), size heterogeneity (cv and the Gini coefficient), and the 

shape of basal area distributions (e.g. skewBA and Weibull shape) emerged as the structural 

attributes most correlated with tree species diversity (Fig. 2.5). Stem density exhibited the highest 

degree of correlation with those indices most susceptible to sampling effect (e.g. SR), and was 

non-significant with indices explicitly designed to be independent of it (e.g. rarefied SR). Measures 

representing plot-wide means (e.g. meanHT, qmd and Weibull scale) and the shape of the tree 

height distributions (e.g. skewHT and kurtosisHT) generally registered weak or non-significant 

correlations across diversity indices. Despite some redundancy among covariant structural 

attributes, all variables were included in final models in order to allow comparison between related 

measures (Appendix 3). The highest covariance among structural features occurred between those 

describing alternate yet associated aspects of stem size (e.g. maxHT ~ maxBA; ρ=0.81) or where 

the indices were themselves related (e.g. cvBA ~ GCBA; ρ=0.86).  
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Figure 2.4. Scatterplots of species richness versus selected predictor variables. Linear regression 
line (black) and 95% confidence intervals (grey). 

 

Figure 2.5. Correlation matrix of forest structure versus tree species diversity.  Spearman 
correlation coefficients. Non-zero values significant at p<0.05.  

0

20

40

60

80

0 50 100 150

Stand Age

P
lo

t 
C

o
u
n
t

Forest Type

Pine (n=198)

Mixed (n=308)

Broadleaf (n=466)

Spearman's ρ = 0.28

4

8

12

16

0.0 0.2 0.4 0.6

height variance (cv)

s
p

e
c
ie

s
 r

ic
h

n
e

s
s
 (

S
R

)
Spearman's ρ = 0.44

4

8

12

16

10 20 30 40

maximum height

Spearman's ρ = 0.42

4

8

12

16

0.0 0.2 0.4 0.6

basal area heterogeneity (Gini)

s
p

e
c
ie

s
 r

ic
h

n
e

s
s
 (

S
R

)

Spearman's ρ = 0.37

4

8

12

16

0.00 0.05 0.10 0.15

stem density

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

a
xB

A

m
a
xH

T

m
e
a
n
H
T

q
m

d

d
e
n
si
ty
S
T

cv
B
A

cv
H
T

G
C
B
A

G
C
H
T

sk
e
w
B
A

sk
e
w
H
T

ku
rt
o
si
sB

A

ku
rt
o
si
sH

T

W
B
sh

a
p
e

W
B
sc

a
le

SR

Shannon's H

Simpson's D

Rarified SR

Pielou's J

0.35

0.4

0.4

0.39

0.39

0.44

0.47

0.46

0.45

0.41

0.27

0.3

0.29

0.28

0.26

0.17

0.28

0.31

0.29

0.34

0.37

0.1

0

0

-0.2

0.38

0.45

0.46

0.43

0.46

0.28

0.42

0.45

0.41

0.48

0.42

0.5

0.51

0.48

0.5

0.36

0.48

0.5

0.47

0.52

0.44

0.36

0.31

0.32

0.22

0.18

0.21

0.21

0.2

0.2

0.42

0.3

0.24

0.26

0.13

0.19

0

0

0

-0.17

-0.4

-0.47

-0.48

-0.45

-0.48

0.16

0.27

0.29

0.28

0.33



 

 
22 

2.3.2. Models of Tree Plant Diversity based on Forest Structure 

Support vector regression (SVR) 

models run on the full dataset (n=972 

plots) explained 55% of the variance in 

predicted SR values, and 60%, 61%, 44% 

and 59% of variance in predicted values 

for Shannon’s H, Simpson’s D, rarified 

SR, and Pielou’s J, respectively (Fig. 2.6). 

When subset by stand origin (natural and 

artificially planted/seeded) and forest type 

(pine, mixed, and broadleaf), predictive 

accuracy was highest for artificially-

regenerated and pine-dominated stands. 

This trend was especially pronounced for 

diversity indices most sensitive to relative 

abundance, like Pielou’s J (R2=0.71 and 

R2=0.66 for artificially-regenerated and 

pine stands, respectively). In general, 

tree species diversity in the broadleaf 

(0.21 < R2 < 0.52) and mixed categories 

(0.39 < R2 < 0.56) exhibited the lowest 

degree of predicted accuracy. Relative variable importance of structural attributes based on the full 

SVR model revealed a relationship between individual structural predictors and diversity indices 
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Figure 2.6. Cross-validated adjusted R2 of SVR 
models. All values significant at p<0.05. Full dataset 
and subset by stand origin - Natural (n=837) vs. 
Artificial (n=135) - and forest type - Pine (n=198), 
Mixed (n=466), and Broadleaf (n=308). 
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resembling those observed with Spearman correlations, with size dispersion generally exhibiting 

the largest influence on predictive models, followed by maximum size and Weibull shape (Fig. 

2.7). 

 

Figure. 2.7. Importance values based on the R2 statistic of a loess smoother comparing singular 
predictors to an intercept-only null model. Predictors assessed for the full dataset.  

2.4. Discussion 

2.4.1. Forest Structural Attributes and the Structure-Diversity Relationship 

2.4.1.1. Summary statistics: maximum, mean and density 

Spearman correlation coefficients confirm the first hypothesis that measureable 

components of forest structure are significantly correlated with a range of taxonomic diversity 

indices, though the strength of this relationship varies greatly among structural attributes. 

Corroborating results from other studies, we found a significant correlation between diversity and 

stand maximum values like maxHT and maxBA across all diversity indices (Aiba & Kitayama 

1999; Wolf et al. 2012). While stand maximum values partly reflect the growth traits of constituent 

species whose presence may not necessarily be driving species, they can also be characteristic of 

underlying site factors that drive productivity and diversity levels, such as site index and time since 
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stand-replacing disturbance (Franklin 1988; Peet & Christensen 1988). Stand-wise means such as 

qmd, meanHT, and WBscale, in contrast, were only weakly significant predictors of tree species 

diversity, partially reflecting information loss due to averaging across individuals.  

Of particular note in assessing these results is the shifting role of stem density across 

diversity indices. While density may vary with species richness simply by virtue of sampling 

effect, it may likewise reflect biologically meaningful patterns in successional stage and resource 

availability that can influence community assembly processes (Weiner & Thomas 1986; Goodburn 

& Lorimer 1999; Gotelli & Colwell 2001). Results confirmed our expectation that the magnitude 

of correlation between density and diversity tracks the relative influence of species number versus 

evenness across the spectrum of diversity indices. Thus, while density had the highest correlation 

with species richness, it was not significantly correlated with rarified SR, species evenness, 

Shannon’s H, or Simpson’s D - all measures designed to be independent from this density-

dependent sampling effect.  

2.4.1.2. Size heterogeneity: cv and Gini 

Indices of structural heterogeneity like the coefficient of variation (cv) and the Gini 

Coefficient (GC) were found to be among the most important structural predictors of tree species 

diversity (Damgaard & Weiner 2000). Because they are continuous measures, they avoid 

information loss and bias when subjectively apportioning stems into size-class bins (Lexerød & 

Eid 2006; Valbuena et al. 2012). The positive correlation between size heterogeneity and tree 

species diversity is partly attributable to the fact that higher taxonomic diversity could be expected 

to promote a greater diversity in species traits, like growth rate and size, which then manifest as a 

greater dispersion in stem sizes. An alternative, complementary hypothesis for this close 

relationship is premised instead upon the observation of increasing structural heterogeneity 
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through succession and its impact on resource levels and competition (Franklin 1988; Palmer & 

Maurer 1997). More specifically, the development of increasing structural complexity through 

succession affects patterns of diversity and composition by driving absolute changes in resource 

levels as well as the spatial variability of the individuals exploiting those resources (Peet 1992; 

Halpern & Spies 1995). 

In keeping with the Piedmont old-field model of succession, disturbance and competition 

drive temporal dynamics in stand structure, characterized by a progression from structurally simple 

to more complex, multi-cohort stands (Peet & Christensen 1987). This pattern of increasing 

structural complexity through time reflects findings from other locations that confirm structural 

heterogeneity as an effective proxy for stand age and population structure (Lorimer & Krug 1983; 

Uuttera et al. 1997; Lexerød & Eid 2006). Spatially heterogeneous resource distributions, in turn, 

drive changes in light penetration and root competition that may increase the probability for 

recruitment of a variety of species not necessarily present in the stand overstory, including 

suppressed understory individuals as well as recruits newly dispersed or emergent from the seed 

bank (Canham et al. 1994; Montgomery & Chazdon 2001). Increased microsite heterogeneity 

drives niche-space partitioning and other community assembly processes that allow for greater 

species packing within a given area (Shmida & Wilson 1985).  

2.4.1.3. Size distributions: skewness, kurtosis, and Weibull shape 

Skewness and kurtosis, the third and fourth statistical moments of a stand’s size 

distribution, serve to index patterns in population structure that drive emergent stand-level 

properties like species diversity (Knox et al. 1989; Lorimer & Frelich 1997). These measures of 

size distributions have been found to effectively distinguish single-cohort, early-successional 

forests from multi-cohort, mid- or late-successional ones (Mohler et al. 1978; Lorimer & Krug 
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1983; Knox et al. 1989). Whereas even-aged stands tend toward unimodal Gaussian size-class 

distributions, uneven-aged stands exhibit a negative monotonic diameter distribution, culminating 

in the balanced diameter distribution of the highly skewed reverse-J form (Goodburn & Lorimer 

1999; Rubin et al. 2006). The reverse-J reflects later successional canopy dynamics, namely when 

a highly abundant gap-regenerated younger cohort coincides with remaining large-canopy 

dominants that, despite their scarcity, retain a high proportion of stand basal area (Leak 1964; 

Bailey & Dell 1973).  

Skewness and WBshape (a measure of skewness of the Weibull distribution) were highly 

correlated with species diversity, with left-skewed distributions characterized by positive 

skewness and negative Weibull shape values. In either case, the left-skewed distributions of 

uneven-aged forests tend toward higher tree species diversity levels. These results match findings 

from other studies in the North Carolina Piedmont reporting species richness to peak in late 

succession following gap development and understory re-initiation when strands simultaneously 

possess shade-tolerant, climax species and early-successional colonizers  (Peet & Christensen 

1988). Kurtosis, on the other hand, appeared to have only limited utility in representing cohort 

structure, primarily because high kurtosis values can be suggestive both of structurally-simple, 

single-cohort stands, as well as multi-cohort, later successional stands characterized by the reverse-

J basal-area distribution or fat-tailed, unimodal distributions. These confounding patterns are partly 

responsible for the weak to non-significant correlation between kurtosis values and tree species 

diversity. 

2.4.2. Predictive Models of Diversity based on Forest Structure 

The second aim of this study was to assess the utility of using forest structural attributes in 

a predictive model of tree species diversity. Using 10-fold cross-validation to test model fit and 
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generalizability, we found SVR models trained solely with structural attributes explain more than 

half of the variance observed in tree species diversity across the full Piedmont dataset. Individual 

structural attributes were selected for their potential to reflect components of stand structure readily 

measured on the ground and at larger spatial scales using remote sensing products including 

LiDAR, Interferometric Synthetic Aperture Radar (InSAR), and optical time series data (Hyde et 

al. 2006; Bergen et al. 2009; Song et al. 2015). At present, airborne LiDAR scanners are capable 

of detecting canopy structural elements with <10cm vertical and horizontal precision, and explain 

50-95% of the variance in many of the ground-measured structural attributes used in this study, 

including mean height, maximum height, stem density, and basal area (Næsset 2002; Cook et al. 

2013). In this way, the utility of using forest structure as a parameter for landscape-scale predictive 

mapping of tree species diversity is derived from its ability to indirectly account for variation in 

diversity levels otherwise caused by latent but difficult to measure factors like soil conditions and 

site history (Beier & de Albuquerque 2015). These results confirm the empirical relationship 

between structure and diversity, and thus, the basis for its use as an effective surrogate in modeling 

species diversity – one that would likely be improved greatly with the inclusion of topographic, 

environmental, and land cover data. 

While most studies that have investigated the relationship between forest structure and 

plant diversity have focused on herbaceous understory plants, those focusing explicitly on tree 

diversity tended to find only weak or insignificant relationships (Bagnaresi 2002; Ishii et al. 2004; 

Cook 2015). Inconsistencies between these findings and our own may reflect methodological 

factors driving results and their interpretation. For example, studies based on a small sample size 

of large, closely-monitored plots may fail to capture the spectrum of variability in community 

types expected at larger scales (Aiba & Kitayama 1999; Neumann & Starlinger 2001; Cook 2015). 
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Weak correlations found in studies using large national inventories to investigate regional patterns 

of diversity may reflect a design focusing on maximizing plant diversity prediction through the 

inclusion of other types of environmental predictors (Chiarucci & Bonini 2005; Bacaro et al. 

2008). Depending on the variance partitioning method, covariance between structure and other 

more significant environmental predictors could obscure the predictive power of structural 

variables when used alone, a factor noted by Bacaro et al. (2008). Finally, weak correlations found 

in previous studies could result from inherent limitations of the statistical models used, such that 

assumptions about linearity, normality, and collinearity in parametric models may constrain their 

predictive ability and generalizability to independent data (Vapnik & Vapnik 1998; Dormann et 

al. 2013). Although distribution-free kernel methods like SVR are not immune to multi-

collinearity, redundancy in collinear predictors is minimized when the data are translated into a 

higher-dimensional feature space (Schölkopf & Smola 2002; Toloşi & Lengauer 2011). What the 

black box SVR model loses in lack of transparency of parameter estimation and standard errors, it 

more than regains in flexibility and statistical power.  

2.4.3. Structure and Diversity by Stand Origin and Forest Type 

SVR models were able to predict tree species diversity with far higher accuracy in forests 

that possess clear evidence of artificial regeneration via planting or seeding, compared with natural 

forests where no such evidence exists. While this result partly reflects ecologically meaningful 

patterns that result from management practices, it may also reflect the imbalanced sample sizes 

between the two classes (881 natural vs. 142 artificial plots), such that the natural regeneration 

class possessed far larger variation in community type and site history than the artificial stand 

category. Although stands with evidence of timber removal were censored from the dataset, the 

artificially-regenerated forest category still retains a large portion of managed stands, such as 
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single-cohort, monospecific pine plantations (e.g. Pinus taeda), and to a lesser extent mixed-

species, multi-cohort stands. Structurally-simple planted stands tend towards monospecificity, 

whereas multiple-cohort stands with distinct vertical layering between cohorts are more likely to 

consist of multiple species (Oliver & Larson 1996; Smith et al. 1997). The close relationship 

between structure and diversity among artificially-regenerated stands reflects the fact that small 

changes in structure likely coincide with compositional change. Successional stands have been 

found to show a strong pattern of low diversity during the early self-thinning phase of 

development, followed by a steady increase with the opening of the canopy (Peet 1992). In the 

case of an even-aged, monospecific Pinus-dominated overstory, the establishment of a single new 

understory hardwood in a canopy gap would double species richness – a dramatic change in 

diversity levels, readily observed in the structural signal. While a broad range of silvicultural 

practices exist that maintain multi-strata, multi-species stands, natural forests in our dataset tend, 

by comparison, to a broader range of compositional types and structural forms that tend to be less 

correlated with structural attributes (Smith et al. 1997).  

When subset by forest type and leaf habit, tree species diversity in the pine category was 

predicted with the highest accuracy. As with artificially-regenerated stands, pine-dominated 

forests in the Piedmont tend to be early-successional, single-cohort, structurally simple, and near 

monospecific. Unlike dense-canopy, early-successional pine stands, those undergoing gap 

formation open themselves to recruitment, thereby increasing their likelihood for higher species 

richness (Peet 1992). As with natural forests, the broadleaf and mixed forest categories include a 

wider range of forest types and highlight some of the inherent limitations to modeling species 

diversity based on structure in more species-rich broadleaf forests. 

2.5. Conclusion 
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Based on our analysis of a large, geographically-distributed sample of FIA plots from the 

North Carolina Piedmont, we found that measures of forest structure were able to predict a 

substantial portion of the variance in tree species diversity without accounting for other known 

predictors of diversity in Piedmont forests such as topo-edaphic conditions and site history. Among 

all structural predictors, maximum height, basal area size inequality (Gini coefficient), and 

skewness of the basal area distribution (Weibull shape) exhibited the strongest correlations with 

indices of diversity. SVR models were able to explain and predict more than 50% of the variance 

in species richness across all subsets, with models of species evenness and heterogeneity in 

planted/seeded stands and pine forests greatly surpassing this mark. However, a large portion of 

unexplained variance remains after accounting for structure, and the extent to which this can be 

explained by deterministic ecological processes linked to environment and stand history remains 

a future research priority. Beyond the theoretical implications of unraveling primary patterns 

underlying tree species diversity, these findings highlight the empirical basis and potential for 

using remotely-sensed structural data as an effective predictor for modeling tree diversity over 

large geographic regions.  
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CHAPTER 3 

MODELING MULTI-SCALE PLANT SPECIES RICHNESS IN A PIEDMONT 
NORTH CAROLINA LANDSCAPE USING LIDAR-HYPERSPECTRAL REMOTE-

SENSING 

3.1. Introduction 

Human activities have been implicated in the severe degradation of the Earth’s ecosystems, 

especially the elimination of species whose absence possess the potential to alter the functioning 

of ecosystems and the extrinsic benefits they provide to society (Loreau et al. 2001; Hooper et al. 

2012; Newbold et al. 2015). Species loss is a particularly problematic trend as species diversity 

has been found to bolster community resilience to disturbance (Naeem & Li 1997; Hooper et al. 

2002), strengthen resistance to infectious disease and pathogens (Civitello et al. 2015), and 

increase net ecosystem productivity (Tilman et al. 1996; Aarssen 2004). Plants are a particularly 

important indicator group for monitoring overall diversity levels due to their capacity to provide 

habitat and resources throughout the trophic chain (Myers et al. 2000; Raxworthy et al. 2003). In 

forest ecosystems, plants comprise the majority of total biomass, and increases in the levels of 

plant diversity have been found to be positively correlated with productivity (Liang et al. 2016), 

as well as that of specialist and generalist consumers (Gaston 1992; Zak et al. 2003). The 

recognized importance of plant diversity in the context of overall biodiversity has driven efforts to 

model and map its spatial distribution over landscapes for applications ranging from habitat and 

conservation management to regional and global modeling of biodiversity and ecosystem function 

(Rocchini et al. 2007; Gillespie et al. 2008).  
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One promising technology in this pursuit is hyperspectral imaging, or image spectroscopy, 

which provides highly spectrally-resolved data on the reflectance properties of forest canopies 

(Ghiyamat & Shafri 2008; Im & Jensen 2008). Hyperspectral imaging exploits the fact that spectral 

reflectance can be diagnostic of phenotypic traits like foliar morphology and biochemistry (Curran 

1989). Even when the mechanistic relationships between spectral reflectance and the contingencies 

of trait - environment interactions are not fully resolved, correlational relationships between 

narrowband spectral features (only partially observable using broadband instruments) and foliar 

chemistry allow for the detection of a host of canopy properties including stand composition and 

underlying environmental conditions (Ustin & Gamon 2010; Ollinger 2011). While intra-species 

trait variation and canopy structure can confound consistent spectral retrievals (Castro-Esau et al. 

2006; Knyazikhin et al. 2013), to the extent that inter-species variation in foliar biochemistry 

manifests as heterogeneity in the spectral reflectance signal in a local neighborhood, spectral 

variance has been observed to correlate with taxonomic diversity (Rocchini et al. 2010; Cavender-

Bares et al. 2016).  

While hyperspectral imagery excels in detecting subtle spectral variation in the upper 

canopy surface, it is neither well-suited for the detection of mid- and understory plants, nor the 

derivation of canopy structural properties that have been found to be associated with species 

richness in forest stands (Buddenbaum et al. 2013; Hakkenberg et al. 2016). For the goal of 

characterizing forest structure, LiDAR is particularly adept (Lesky et al. 2002). Unlike optical 

imagery, LiDAR is largely immune from saturation at high biomass values (Parker et al. 1999; 

Næsset & Økland 2002; White et al. 2013). When combined in a single platform, active LiDAR 

and passive hyperspectral sensors provide complementary data on canopy properties that 

simultaneously characterize multiple remotely-sensible environmental data domains, including 



 

 
33 

canopy height from LiDAR first returns, topo-physiognomy from LiDAR ground returns, 

biophysical structure from LiDAR all returns, and canopy biochemistry from image spectroscopy 

(Anderson et al. 2008; Dalponte et al. 2008; Torabzadeh et al. 2014). In fact, combined LiDAR-

hyperspectral datasets have been found to more accurately characterize canopy composition and 

distribution than either used separately (Asner et al. 2008; Feilhauer & Schmidtlein 2009). 

Hyperspectral-LiDAR systems are adept in the direct remote detection of species and that 

of species diversity through the direct detection of structural and biochemical heterogeneity 

(Rocchini et al. 2010). Moreover, they excel as a data source for the mapping of geophysical 

gradients from which multi-species niche models, and therefore landscape patterns in biodiversity, 

can be constrained (Elith & Leathwick 2009; Ohmann et al. 2011). When paired with field plots, 

remotely-sensed data on canopy reflectance and structure allows for robust prediction of landscape 

turnover in plant diversity and provides a basis for inference concerning the underlying drivers 

and merging patterns of diversity at spatial extents far larger than traditional field sampling would 

allow. Most studies in biodiversity modeling focus on empirical relationships between remotely-

sensed data and levels of species diversity (Cayuela et al. 2006; Rocchini et al. 2007; Simonson et 

al. 2012; Camathias et al. 2013; Higgins et al. 2014). Other studies have employed these empirical 

relationships in a predictive mapping format (Ohmann & Gregory 2002; Leutner et al. 2012; Wolf 

et al. 2012; Fricker et al. 2015). With some notable exceptions (e.g. Gould 2000; Schmidtlein & 

Sassin 2004; Simonson et al. 2012), most remotely-sensed diversity mapping studies have focused 

on woody canopy species, at a single spatial scale. 

Mechanisms driving plant diversity are scale-dependent, with no one scale exhaustive in 

explaining multi-scale processes (Levin 1992). Indeed, multiple factors simultaneously effect the 

accuracy of diversity models, ensuring that spatial coherence in the characteristic scales of field 
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plot data (sampling size, design, and intensity), remotely-sensed data (spatial resolution and 

geolocational precision), species diversity patterns (species-area relationships), and that of target 

biota (size, density, and coverage extent) are critical to model output. In light of these concerns, 

this study seeks to explicitly investigate remotely-sensible drivers of plant diversity across multiple 

spatial scales to contribute to the operationalization of wall-to-wall landscape management and 

conservation planning for biodiversity in anticipation of annual NEON data products and the 

deployment of a fleet of new LiDAR and hyperspectral satellites (Kampe et al. 2010; Cook et al. 

2013; Dubayah et al. 2014). Specifically, we employ spatially-nested field plots in conjunction 

with data from the Goddard LiDAR, hyperspectral, thermal (G-LiHT) airborne sensor to map 

vascular plant species richness at seven spatial scales in a compositionally- and structurally-

complex Piedmont forest landscape in North Carolina (NC), USA. To accomplish this goal, this 

study focuses on three primary tasks. First, we assess how the predictive power of nonparametric 

models of plant species richness using feature-selected, remotely-sensed data, changes across 

seven spatial scales. Second, we employ these models, trained with remotely-sensed data and 

spatially-nested field plots, to predict plant species richness across the study area. Finally, we 

determine the remotely-sensible metrics that correlate with plant species richness in the Piedmont 

study site and how they change with spatial scale. 

3.2. Methods 

3.2.1 Study site 

The 2.8 km2 study site is located in Duke Forest Blackwood Division, NC, USA consists 

of Piedmont secondary old-field successional pine and mature hardwood forests, following 

selective cutting, agriculture, and grazing in the 19th and early 20th century (Peet & Christensen 
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1988). The mapped study area focuses 

solely on natural and semi-natural 

forests, and thus excludes areas of 

plantation forest, clear-cut, and built 

infrastructure (Fig. 3.1). Field plot 

locations are based on a stratified 

random design, such that individual plot 

locations were randomly pre-determined 

within the constraints of stratified bands 

along an east-west and a north-south 

topographic gradient (Fig. 3.1). The 

ensuing aspect-elevation combinations 

ensure field plots span the primary 

physiognomic types in the study area, 

including upland, riparian, and 

bottomland forests, which in aggregate 

comprise 0.1% of the entire study area. In all field plots, species presence was recorded following 

Carolina Vegetation Survey protocols for all vascular plant species in 0.01m2, 0.1m2, 1m2, 10m2, 

100m2 spatially-nested subplots, and assessed at the 400m2 and 900m2 scales (Peet et al. 1998). In 

total, 36 900m2 plots were sampled, each with eight subplots at <100m2 scales (288 plots total) 

and four subplots per plot at 100m2 (144 plots total). Sub-meter geo-locational precision of all plot 

and subplot vertices was achieved based on triangulation of Ground Control Points (GCPs) 

measured in the field with tape measures and in a GIS environment using highly-precise, fine 

Figure 3.1. Duke Forest Blackwood study area extent. 
The study area excludes areas of plantation forest, 
clear-cuts, and human habitation. Topographic wetness 
index (TWI) is a proxy for soil moisture (upper right). 
Canopy height (lower right) is derived from G-LiHT 
LiDAR. Elevation (lower left) is featured with ASR 
(annualized solar radiation) for shading and 2ft (0.6m) 
contours, with squares representing plot location and 
extent. 
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resolution (0.15m) Digital Orthophoto Quadrangle (DOQ) imagery (NC OneMap Geospatial 

Portal 2016). Botanical nomenclature follows Weakley (2015). The resultant plot data are 

available on Vegbank (http://vegbank.org; Peet et al. 2012). 

3.2.2. Derived remotely-sensed predictors 

Aerial remotely-sensed data come from NASA Goddard's LiDAR, Hyperspectral and 

Thermal (G-LiHT) airborne imager at a 2m (4m2) spatial resolution and 12-bit radiometric 

resolution (Cook et al. 2013). The G-LiHT airborne imager utilizes commercial, off-the-shelf 

sensors a Hyperspec imaging spectrometer (Headwall Photonics, Fitchburg, MA, USA) with a 

407–1,007 nm spectral range and a ≤5 nm full width half maximum (FWHM) spectral resolution, 

as well as a VQ-480 (Riegl USA, Orlando, FL, USA) airborne laser scanning (ALS) system, with 

a mean return density of up to 50 laser pulses/m2 and 10 cm diameter footprint at the nominal 

operating altitude of 335m (Cook et al. 2013). Remotely-sensed data used in this study was 

collected on Oct. 25, 2013, during late-season, leaf-on conditions when inter-species phenological 

differences could aid in taxonomic discrimination. Thermal data was not available for our study 

area. 

All derived remotely-sensed predictor variables used in this study emanate from four G-

LiHT Level 3 products: (1) a digital terrain model (DTM), (2) all LiDAR returns, (3) a canopy 

height model (CHM), and (4) a 114-band atmospherically-corrected surface reflectance image 

stack (Table 3.1). Owing to the data redundancy in the hyperspectral image stack, full-spectrum 

and narrow-band indices were used in final analyses (Ustin et al. 2009; Asner & Martin 2009). For 

the former, principal components analysis (PCA) was used to reduce the full 114-band 

hyperspectral dataset to three orthogonal layers (PCA 1-3), which cumulatively explained 99.7% 



 

 
37 

of variance among all bands. While in the latter case, narrow-band indices with established 

precedence in the literature were employed (Table 3.1). 

Table 3.1. Remotely-sensed predictor variables. All remotely-sensed predictors represent 
aggregates of 2x2m pixels resampled to a 30x30m (900m2) output resolution.  

Category Predictor Abbv. Equation/Source 

LiDAR 
topography 
(last returns) 

Average Solar 
Radiance (annual) ASR (ESRI 2016) 

Deviation from 
mean elevation DEV 

𝐷𝐸𝑉 = MNDM
,O

; where z0 is the elevation 
of the focal pixel, 𝑧 and SD are mean 
and standard deviation of elevation in 
a 222m window (De Reu et al. 2013) 

Height above 
EGM96 (Earth 
Gravitational Model 
1996) geoid  

elev DTM (Cook et al. 2013) 

Slope in degrees slope DTM (Cook et al. 2013) 

Topographic 
Position Index TPI 

𝑇𝑃𝐼 = 𝑧T − 𝑧 ; where z0 is the 
elevation of the focal pixel and 𝑧  is 
mean elevation in a 222m window (De 
Reu et al. 2013) 

Topographic 
Wetness Index TWI 

𝑇𝑊𝐼 = 𝑙𝑛 5
V5<W

; where a is the local 
upslope area and β is slope (Beven & 
Kirkby 1979) 

LiDAR canopy 
height (first 
returns) 

Canopy height 
model CHM CHM (Cook et al. 2013) 

LiDAR canopy 
structure (all 
returns) 

All return heights  all_returns LiDAR returns (Cook et al. 2013) 

Tree return heights †  tree_returns LiDAR returns (Cook et al. 2013) 

Understory return 
heights †  

understory_
returns LiDAR returns (Cook et al. 2013) 

Anthocyanin 
Reflectance Index 1 ARI1 

ARI1 = .
Z[[N

− .
Z\NN

 (Gitelson et al. 
2002) 
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Hyperspectral 
foliar 
reflectance 

Anthocyanin 
Reflectance Index 2 ARI2 ARI2 = 𝜌^TT

.
Z[[N

− .
Z\NN

 (Gitelson et 
al. 2002) 

Carotenoid 
Reflectance Index 1 CRI1 

CRI1 = .
Z[`N

− .
Z[[N

 (Gitelson et al. 
2002) 

Carotenoid 
Reflectance Index 2 CRI2 

CRI2 = .
Z[`N

− .
Z\NN

 (Gitelson et al. 
2002) 

Normalized 
Difference 
Vegetation Index 
(narrowband) 

NDVI 
NDVI = ZdNNDZe\N

ZdNNfZe\N
 (Haboudane et al. 

2004) 

Principal 
Component Axis 1  PCA1 PCA axis 1 (𝜌gTh: 𝜌.TTh)  

Principal 
Component Axis 2  PCA2 PCA axis 2 (𝜌gTh: 𝜌.TTh) 

Principal 
Component Axis 3  PCA3 PCA axis 3 (𝜌gTh: 𝜌.TTh) 

Photochemical 
Reflectance Index PRI PRI = Z[l`DZ[\N

Z[l`fZ[\N
	(Gamon et al. 1995) 

Red Edge Position 
Index REPI REPI=max[(ρn+1-ρn)/10] where 690 ≤ 

n ≥ 750 (Souza et al. 2010) 

Simple Ratio Index 
(narrowband) SRI SRI = ZdNN

Ze\N
 (Haboudane et al. 2004) 

† Tree returns defined as all returns above 1.37m  

To facilitate pixel aggregation (e.g. sub-pixel heterogeneity measures) and test for scale-

dependence among remotely-sensed predictors of species richness, all remotely-sensed derived 

geophysical variables were aggregated based on mean, minimum, maximum, and standard 

deviation of the 4m2 raw pixels at four spatial resolutions – 16m2, 100m2, 400m2, and 900m2. 

Annualized solar radiation (ASR), deviation from mean elevation (DEV), elevation (elev), slope, 

and topographic position index (TPI) were aggregated as mean values only, while for CHM, the 

mean, minimum, maximum, standard deviation, skewness and kurtosis were computed. All other 

variables were aggregated by mean, minimum, maximum, and standard deviation. For all 
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subsequent analyses, the spatial resolution of the remotely sensed predictor data best 

corresponding to that of the spatial scale of the species richness response variable was employed. 

For example, for the four smallest spatial scales of plant richness (0.01m2, 0.1m2, 1m2, and 10m2) 

we used derived remotely sensed layers at a 16m2 resolution, the finest derived pixel resolution 

capable of incorporating heterogeneity values of 4m2 pixels. Owing to sub-meter locational 

accuracy of pixels and subplots, aggregate predictor pixels thus need not be at an identical spatial 

resolution with sampled subplots, provided they are fully (and centrally) subsumed. For larger 

spatial scales, remotely-sensed predictors were aggregated and geo-locationally aligned at the 

scale corresponding with the plant richness response variable: 100m2 (25 2m pixels), 400m2 (100 

2m pixels), and 900m2 (225 2m pixels). All derived products and subsequent analyses were 

calculated using the software R, v. 3.3.1 (R Core Team 2016), with the exception of ASR, which 

was calculated using the ArcMap version 10.4 AASR plug-in (ESRI 2016). 

3.2.3. Data Analysis 

Field plot training data and derived remotely-sensed predictors were used to predict 

vascular plant species richness at seven spatial scales using random forest (RF) regression models. 

RF is a nonparametric, machine-learning technique that is not subject to distributional assumptions 

and robust to multi-collinearity and over-fitting (Breiman 2001; Toloşi & Lengauer 2011). Each 

RF model in our parameterization is determined from an ensemble of 2000 trees, each grown from 

a bootstrapped sample of the predictors, with the remaining observations left out-of-bag (OOB) 

for model assessment. To maximize the predictive accuracy of each of the seven RF models, 

feature selection of predictor variables was performed on the full model (all predictors), whereby 

the worst performing variables were withheld from each successive model based on importance 

value, the residual sum of squares after splitting on each respective variable. The best performing 



 

 
40 

of the p-1 models, where p is the total number of features (p), was selected based on a comparison 

of the cross-validated accuracy of all p-1 models. Accuracy estimates for feature-selected RF 

models are based on 10-fold cross-validation, a model evaluation procedure that assesses model 

fit and generalizability based on iteratively withheld random samples of the full dataset into quasi-

independent training and validation subsets (Appendix 7). The best-performing, feature-selected 

models at each of the seven scales was then inversed to predict species richness for all pixels 

throughout the study area. Predicted values are based on the mean vote of all OOB observations, 

and rescaled to fit the range of species richness observed in the field (Zhang & Lu 2012). 

Uncertainty maps, on the hand, represent the coefficient of variation of all 2000 OOB votes (Singh 

et al. 2015). All random forest models were run with the randomForest package (Liaw & Wiener 

2002) in R, v. 3.3.1 (R Core Team 2016). 

Feature-selected predictor variables in final RF models reflect those input parameters that, 

by exploiting potentially complex, highly non-linear interactions, result in generalizable models 

optimized for predictive accuracy. Despite their ability to produce high accuracy predictions, 

black-box nonparametric models are relatively uninformative for inference into the role of specific 

parameters (Evans et al. 2011). To determine the sign and magnitude of the relationship between 

key parameters and species richness, we ran two post-hoc tests. First, we assessed the strength of 

correlation using Spearman correlation coefficients, a nonparametric rank-based measure of 

association that facilitates application to non-normal data distributions. Key parameters are defined 

as those variables selected in one of the seven feature-selected random forest regression models 

that are significantly correlated with species richness at more than one spatial scale. Some 

partially-redundant variables were excluded (e.g. TWI at 4m versus 8m). While Spearman 

coefficients are helpful in assessing broader, non-directional correlational patterns between values, 
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they are less helpful in assessing significance and sign in the directional relationship between 

predictor and response from which inference can be made.  

For this latter task, after having determined there to be no consistently significant spatial 

auto-correlation across scales based on Moran’s I and Mantel’s t values, we assessed predictors’ 

strength across spatial scales using simple univariate Bayesian GLMs (Legendre 1993; Lennon 

2000).  For subplot 𝑖 , we modeled species richness 𝑦) , a non-negative integer, as a Poisson 

distribution, 

𝑦)~𝑃𝑜𝑖 𝜃)  (3.1) 

where the mean species richness 𝜃) is linked to linear predictors, 

log 𝜃) = 𝛽T + 𝛽.𝑥) (3.2) 

Here 𝛽T  is the intercept, 𝛽.  is the slope corresponding to 𝑥) , the remote-sensing covariate of 

interest in the subplot 𝑖. Under a Bayesian framework, we used vague uniform priors, 

𝛽T, 𝛽.~𝑈(−10Dy, 10y) (3.3) 

While vague priors in simple (i.e. non-hierarchical) Bayes models yield near identical means and 

confidence intervals compared with frequentist GLMs, the stochastic generation of an empirical 

posterior in parameter models better facilitates the pragmatic concern to assess patterns of variance 

in the sign and magnitude (slope or b1) of regression parameters for comparison across scales 

(Clark 2003; Clark et al. 2005). GLMs were corrected for over-dispersion and zero-inflation when 

necessary. To ensure convergence, Markov chain Monte Carlo (MCMC) were run for 20,000 

iterations, after which the first 10,000 were withheld for burn in based on trace plots.  

3.3. Results 

3.3.1. Predicting plant species richness across spatial scales 
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In total, 208 distinct vascular plant taxa were identified in field plots (Appendix 5). Field 

plots, stratified along two predominant environmental gradients, were designed to span the 

spectrum of compositional variability of the relatively taxonomically diverse and structurally 

heterogeneous study area. Species richness ranged from 0 at the smallest subplot scales (0.01m2) 

to 100, recorded at the 900m2 full plot scale (Table 3.2). Plots exhibited a wide range of 

successional-structural conditions with diameter at breast height (DBH) ranging from the 

minimum recorded 0.1cm to 101.5cm (mean DBH=7.6cm; DBH standard deviation=11.7cm).  

Table 3.2. Species richness summary statistics for vegetation sampling in the summer of 2015 in 
the Blackwood Division of Duke Forest, Durham, North Carolina. 

scale (m2) mean sd min max 

0.01 0.3 0.6 0 4 
0.1 1.6 1.5 0 9 

1 4.8 3.4 0 18 
10 13.5 7.5 0 35 

100 34.4 10.2 15 63 
400 53.2 13.8 28 84 

900 61.4 15.6 35 100 

 

Based on field plot data and feature-selected remotely-sensed predictors, we predicted 

species richness at seven spatial scales over the extent of the entire study site using bias-corrected 

random forest regression models (Fig. 3.2). The value of predicted pixels reflects the mean of all 

2000 random forest votes, while per-pixel uncertainty is expressed as the standard deviation of 

those votes (Fig. 3.3). Uncertainty captures spatially-structured variance unexplained in statistical 

models, as well as data, model and geo-locational errors. Alternatively, the mean and standard 

deviation of random forest out-of-bag votes can be combined into a single red-green-blue (RGB) 

color model such that species richness predictions track a gradient from red to green (low to high) 



 

 
43 

simultaneously with uncertainty values loaded on the blue color gun, such that the greater the 

uncertainty, the more the red coloration approaches magenta while the green approaches cyan (Fig. 

3.4).  10-fold cross-validation of predictive diversity models indicates a distinct trend in accuracy 

across spatial scales, such that predictive accuracy generally increases with spatial scale, from the 

smallest 0.01m2 subplot (R2=0.14) up to 100m2 (R2=0.68), after which it declines slightly at 400m2 

(R2=0.64) and 900m2 (R2=0.59) (Table 3.3). Predicted richness totals likewise increase with spatial 

scale, reflecting expectations from species-area relationships.  

Table 3.3. Final species richness predictive models – parameters and results 

scale (m2) CV R2 Feature selected predictor variables* 

0.01 0.141 elev (mean), TWI (2m min), all_sd (mean), CRI1 (mean), CHM (max), 
TWI (4m mean), PCA2 (min), REPI (mean), PCA2 (mean) 

0.1 0.174 elev (mean), TWI (8m min), all returns (sd), CHM (max), understory 
returns (sd) 

1 0.253 elev (mean), PCA1 (min), ASR (mean), NDVI (min), all returns (skew), 
CHM (skew), all returns (sd), NDVI (max), slope (mean), TWI (2m min) 

10 0.353 elev (mean), PCA1 (min), TPI (222m mean), NDVI (max), all returns 
(skew) 

100 0.676 

SRI (mean), elev (mean), NDVI (mean), all returns (skew), PCA1 (max), 
PCA2 (max), DEV (222m mean), SRI (min), NDVI (min), TPI (222m 
mean), PCA1 (mean), CRI1 (min), ASR (mean),  DEV (162m mean), 
understory returns (sd), CRI1 (mean), PCA2 (mean), TWI (8m max), TWI 
(4m mean), TWI (2m max) 

400 0.641 NDVI (mean), SRI (mean), PCA2 (mean), SRI (mean), NDVI (min), 
PCA1 (max), elev (mean), DEV (222m mean) 

900 0.592 PCA2 (min), PCA2 (mean), elev (mean), PCA1 (max) 

* In order of variable importance. See Table 3.1 for abbreviations 
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Figure 3.2. Mapped species richness 
predictions across spatial scales. 
Random forest models trained with 
field plot and feature-selected 
remotely-sensed input data predict 
vascular plant species richness. 
Predicted species richness values for 
all pixels based on the mean vote 
among all OOB observations in the 
RF regression model.  
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Figure 3.3. Mapped species richness 
predictive uncertainty across spatial 
scales. Random forest models trained 
with field plot and feature-selected 
remotely-sensed input data predict 
vascular plant species richness. 
Predicted uncertainty values for all 
pixels based on the standard deviation 
among all OOB predictions in the RF 
regression model. 
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Figure 3.4. Combined 
diversity-uncertainty maps 
across spatial scales. Map 
output reflects results from 
Figs. 2-3. The spectrum of 
species richness 
predictions depicted from 
red (low) to green (high), 
while uncertainty mapped 
from white (low) to blue 
(high). When combined in 
an RBG pallet, low 
uncertainty values, have 
no effect on coloring of 
relative species richness, 
while they approach 
magenta (low SR) or cyan 
(high SR when uncertainty 
is high. 
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3.3.2. Remotely-sensed predictors of species diversity 

 

Figure 3.5. Spearman correlation matrix for selected remotely-sensed variables versus species 
richness values across spatial scales. When statistically significant (ρ¹0; p<0.01), color and circle 
size vary with the extent and magnitude of the Spearman correlation coefficient, otherwise blank. 
See Appendix 8 for precise values. 

The magnitude of Spearman correlation coefficients between individual remotely-sensed 

predictors and species richness values exhibit a general pattern of increasing strength of 

relationship (or, predictive power) with increasing spatial scale, especially in the data domains of 

LiDAR topography and hyperspectral data (Fig. 3.5; Appendix 8). The primary exception to this 

pattern comes from remotely-sensed indicators of forest height and structure derived from LiDAR 

(first and all returns), where the effect of scale (magnitude and direction) varies differentially 

among individual predictors (Fig. 3.5; Appendix 8). 
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Figure 3.6. Plant richness ~ LiDAR topography slope parameter posteriors across scales. Posterior 
distributions reflect slope values between predictors and plant richness values at seven spatial 
scales. 

 

Figure 3.7. Plant richness ~ LiDAR structure slope parameter posteriors across scales. Posterior 
distributions reflect slope values between predictors and plant richness values at seven spatial 
scales. 
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Univariate Bayesian GLMs reflect the role of topography in driving species richness 

patterns, such that elevation is consistently significantly negatively correlated across scales, while 

topographic wetness index (TWI) is significantly positive, though relationships below 10m2 were 

not significant (Fig. 3.6a-b). Canopy height (CHM_max) is significant and positively correlated 

with richness at the smallest and largest spatial scales, but insignificant at intermediate scales (Fig. 

3.7a). GLMs reveal a mirrored, diverging pattern between the minimum CHM and variance in 

CHM (sd) across spatial scales (Fig. 3.7b-c). While both models are non-significant at the two 

smallest spatial scales (0.01m2 and 0.1m2), minimum CHM grows increasingly positive with 

increasing spatial scale (i.e. at larger spatial scales, lower canopy minimums are associated with 

higher plant richness totals), whereas increasing canopy height variance is linked to increasing 

species richness. The skewness of all returns (whereby increasingly positive values reflect higher 

proportions of biomass in the lower-canopy) fails as a significant predictor of richness at the 

smallest spatial scales, yet exhibits an increasingly positive relationship at larger spatial scales 

(Fig. 3.7d). Understory returns reflect this same general pattern, such that the greater the proportion 

of LiDAR returns between the ground and 1.37m, the greater the chance for higher species richness 

totals (Fig. 3.7e-f).  
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Figure 3.8. Plant richness ~ hyperspectral slope parameter posteriors across scales. Posterior 
distributions reflect slope values between predictors and plant richness values at seven spatial 
scales.  

Hyperspectral predictors reveal two contrasting trends between aggregated pixel means 

and variance measures. The mean of PCA 1 (whose sign is arbitrary) exhibits a consistently strong 

relationship with species richness across all but the smallest spatial scales (Fig 3.8a). Spectral 

variance of PCA 1 is non-significant or otherwise only weakly correlated with species richness at 

all other scales (Fig. 3.8b). On the other hand, mean values for narrowband vegetation indices 

(VIs) tend towards an increasing negative relationship with richness at larger spatial scales, while 

the standard deviation of the aggregated pixel values (i.e. the spectral variance term) grows 

increasingly positive with increasing spatial scale (e.g. NDVI in Fig. 3.8c-d). Both relationships 

are non-significant at the smallest spatial scales. Mean values of the primary components (PC axes) 

of full-spectrum imagery expectedly reveal orthogonal trends (see Fig. 3.5; Appendix 8) between 

the PC axes 1 and 2. 
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3.4. Discussion 

3.4.1. Mapping vascular plant species richness at different spatial scales 

In this study, we find evidence of scale-dependence in the predictive power of species 

richness models based on remotely-sensed data (Table 3.3). Cross-validated R2s increase steadily 

from the smallest scale (R2=0.14) to the maximum (R2=0.68 at 100m2), before declining slightly 

to the largest scales of 400m2 and 900m2 (R2=0.64, R2=0.59, respectively). These results 

corroborate findings from other studies that find increasing predictive power when modeling 

species richness at larger spatial scales and/or at coarser resolutions  (Rocchini et al. 2007; Fricker 

et al. 2015). That increasing model power as a function of increasing spatial scale assumes a modal, 

rather than monotonic, form indicates a local maxima and characteristic scale for predicting 

species richness at 100m2 in our study area - a result of the idiosyncratic relationship between plant 

size and density as well as the characteristics of the G-LiHT remotely-sensed imagery, including 

spatial precision and resolution.  

Models are evaluated based on 10-fold cross-validation, a relatively conservative estimate 

of model fit balancing the desire to maximize the impact of scarce training data against the need 

to minimize the potential for over-fit predictions (Hastie et al. 2009). Our results compare 

favorably with similar studies, though caution is advised with direct comparisons, especially when 

studies differ widely in the statistics used to quantify model fit or predictive power. For example, 

Cayuela et al. (2006) explained 44% (GLM deviance reduction, D2 =0.44) of variability in Fisher’s 

alpha diversity of tropical tree species in Mexico with remotely-sensed data and interpolated 

environmental data. Simonson et al (2012) explained 50% (linear regression, R2 = 0.5) of woody 

species diversity (Shannon index) with LiDAR data in Mediterranean woodlands. Hernández-

Stefanoni et al. (2014) used LiDAR data to explain 46% of variance in plant species richness (CV 
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R2 = 0.46) in Yucatan Mexico. And Fricker et al. (2015) accounted for 35% (adjusted R2 = 0.35) 

in tree species richness, and up to 52% (adjusted R2 = 0.52) for understory trees and shrubs alone 

using high resolution optical imagery fused with LiDAR on Barro Colorado Island, Panama. 

However, even with comparable statistics, inter-site (and inter-biome) comparisons are 

problematic when response parameters differ (e.g. all plant richness versus woody species only), 

and when the eccentricities of the remotely-sensed data coupled with the those of the ecological 

properties of the study site, as well as those of error in data and model, preclude direct comparison.   

When inversed, and used in a predictive mode, species richness maps reveal several distinct 

landscape patterns, and provide a distinct visual representation of how species-area relationships 

(SARs) manifest at landscape scales (Fig. 3.2). By far the most dominant visual pattern is that of 

soil moisture, as predicted plant richness clearly tracks known topographic gradients, including 

the riparian zone to the north of the study site, as well as upland-bottomland transition from the 

center right to the lower middle zones. With the increase in spatial scale (and spatial resolution of 

input imagery and output maps), the distinct boundaries of the hydrological flows gradually 

dissipate. Uncertainty maps show that high relative uncertainty values likewise align with known 

topographic patterns (e.g. riparian areas) at small spatial scales, that are visibly diminished at large 

spatial scales (Fig. 3.3). To better quantify relationships between remotely-sensed environmental 

gradients and predicted richness, post-hoc parametric tests are better suited. 

3.4.2. Spatial scale constrains remotely-sensed predictors of plant species richness 

Nonparametric predictive models excel in their ability to employ highly non-linear, non-

intuitive relationships among covariates upon which high accuracy predictions can be made 

(De’ath 2007). In this study, we employ a data mining approach to maximize explained variance 

when generalized to quasi-independent data via cross-validation. Model-selection for predictive 
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maps is thus driven by agnostic feature-selection rather than being guided by ecological intuition 

(Evans et al. 2011). However, lacking explicit parameters to test, these black box models fail to 

provide a robust basis for inference into the relationships between predictor and response (Prasad 

et al. 2006). For this, post-hoc parametric tests can be performed to uncover underlying 

relationships between the response, plant species richness across all seven spatial scales, and key 

derived, remotely-sensed predictor variables (Olden et al. 2008; Evans et al. 2011).  

Post-hoc analysis of Spearman correlation coefficients among those key predictors (those 

remotely-sensed variables that consistently rank highest in featured-selected nonparametric 

models) reveals a distinct pattern of increasing strength of correlation with increasing spatial scale, 

particularly in the LiDAR topography and hyperspectral data domains. In most cases, the largest 

correlation coefficients occur at 400m2 or 900m2. With the exception of CRI1 (sd), which actually 

registers a significant negative correlation at 0.01m2, before changing sign (to positive) at larger 

spatial scales, all predictors in these two remotely-sensed data domains retain a consistent sign 

(directionality) and generally larger degree of correlation with increasing spatial scale. LiDAR 

structure, on the other hand, appears to be an exception as Spearman coefficients do not appear to 

exhibit any one consistent pattern across scales.  

3.4.2.1. LiDAR last returns – topography 

Terrain variables derived from LiDAR last (ground) returns confirm the predominant role 

of topography in driving landscape patterns of plant diversity. Predictive maps of plant richness 

across scales confirm a clearly visible elevation gradient and visible stream channels and 

bottomland hydrology in topographic wetness maps (Fig. 3.1, upper right).  Elevation is notable 

for being highly significant with plant richness across all spatial scales (Spearman ranges from r 

= -0.21 at 0.01m2 to -0.63 at 400m2; p<0.01) (Fig. 3.6a). While TWI is inversely correlated with 
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elevation and not significant at the smallest spatial scales, it nonetheless grows increasingly 

positive with spatial scale (Fig 3.6b). These results support findings from other studies that found 

remotely-derived abiotic factors related to topographic and edaphic properties as significant 

predictors of plant species richness (Fricker et al. 2015; Zellweger et al. 2016). Similar patterns 

have been found in empirical studies in Piedmont forests, where bottomland and riparian 

communities tend towards higher species richness values compared with their upland counterparts 

(Matthews et al. 2011).  

3.4.2.2. LiDAR first returns - canopy height 

Our results find several LiDAR-derived canopy height estimates to be significant 

predictors in plant diversity models, though effects vary differentially with scale. Specifically, 

results support the hypothesis that canopy height (CHM mean) is positively correlated with plant 

richness – a pattern supported by broad-scale empirical findings (Hakkenberg et al. 2016; Marks 

et al. 2016). Though LiDAR first returns from the upper canopy tend to underestimate canopy 

height because they are more likely to emanate from trees’ upper shoulders rather than the 

uppermost lead, this bias is largely systematic, and thus doesn’t greatly affect the determination of 

relative heights or sub-canopy structure as derived from LiDAR all returns (Sexton et al. 2009; 

Kane et al. 2010). Interestingly, the relationship between maximum canopy height and plant 

richness is not significant at the intermediate scales of 1m2 and 10m2 (Fig. 3.7a). This trend may 

be explained by the characteristic scale of the large crowns of the upper canopy in the study site, 

such that the projected ground area for those regions of maximum height at the finest pixel 

resolution (16m2) may be dominated by that tree’s trunk, thus precluding establishment by herbs 

or saplings. At the largest spatial scales (400m2 and 900m2), richness levels increase as the vertical 

projection of laterally-extended canopy fall well beyond the stem (especially for wide crown 
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broadleaf trees), and thus lead to positive, if modest, increases in plant diversity levels. At the 

smallest spatial scales, on the other hand, where mean richness at 0.01m2 <1, the presence of a 

trunk actually has an inflationary effect on richness prediction.  

Unlike canopy maximum height, canopy minimum height (CHM min) shows a monotonic 

trend with increasing spatial scale, from non-significance towards significant, and increasingly 

negative relationships (Fig. 3.7b). Depending on the scale, canopy minimum may denote shorter, 

immature trees or full gaps with no cover, where canopy height values approach zero. That this 

relationship grows more negative with increasing spatial scale is indicative of the characteristic 

scale of canopy gaps and understory regrowth. Specifically, understory regrowth (and, by 

extension, higher diversity levels) result from the increased light environment in and near 

pronounced canopy minimums (e.g. gaps detectable with LiDAR) (Clebsch & Busing 1989; 

Garbarino et al. 2012). Because speciose regrowth may or may not occur within the bounds of 

vertical projection of fine-resolution LiDAR-determined gaps due to micro-environmental 

limitations and/or errors in spatial precision, fine scale correlations are non-significant (Spies et 

al. 1990; Chen et al. 1995). However, when aggregated to 900m2, CHM minimums become a 

sufficient proxy for heterogeneity in the light environment underneath gap-filled canopy that may 

increase the potential for species rich understory growth (Canham et al. 1994; Ferris et al. 2000). 

3.4.2.3. LiDAR all returns - canopy heterogeneity  

LiDAR returns are effective tools for wall-to-wall modeling of the three-dimensional 

structure of canopy and sub-canopy elements (Lesky et al. 2002). Forest structure, the three 

dimensional distribution of biomass, reflects the net outcome of environmental conditions, biotic 

competition, disturbance, and stochastic events on plants in a forest stand (Peet & Christensen 

1987; Neumann & Starlinger 2001). Forest structure has been used to characterize successional 
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stage which, through various mechanisms, has been found to correlate with temporal trends in 

plant species richness in Piedmont forests (Peet & Christensen 1988). Specifically, several studies 

have found significant correlations between measures of forest structural heterogeneity such as 

variance in basal area and vertical layering with overall tree species diversity (Chiarucci & Bonini 

2005; Marks et al. 2016). Our results generally corroborate these findings, and can be explained 

with the ‘diversity begets diversity” hypothesis (Diamond 1988; Palmer et al. 2007). According to 

this line of reasoning, increasing structural heterogeneity drives the spatial partitioning of light, 

water and nutrient resources, thus constraining the breadth of species’ environmental niche space 

and facilitating complementarity in resource use between species with different resource demands 

and acquisition traits (Franklin 1988; Halpern & Spies 1995). However, this relationship may be 

correlational, and not necessarily causative. For example, greater plant diversity could be expected 

to promote a larger range of species traits, like growth rate and size, which then manifest as a 

greater degrees of structural complexity (Hakkenberg et al. 2016).  

Standard deviation in the canopy height model is one effective means for characterizing 

heterogeneity in the upper canopy surface. While CHM_sd was not significantly correlated with 

plant species richness at the smallest scales, with increasing spatial scale, CHM_sd is significant, 

and increasingly positively correlated with richness (Fig. 3.7c). At the smallest scales, variance in 

the CHM may or may not precisely correspond with the ground location of canopy gaps and 

differential light penetration thought to drive understory richness. Instead, areas of increased CHM 

variation may be spatially offset from where the increased light resources of gaps actually reach 

the forest floor. At larger spatial scales, on the other hand, canopy height variation drives 

heterogeneity in the resources environment at a scale large enough to incorporate both closed 
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canopy and open gaps, which in aggregate are hypothesized to drive increases total plant richness 

levels (Pickett & White 1985; Canham et al. 1994). 

Skewness of all LiDAR returns registered the highest degree of correlation with plant 

richness among all LiDAR-derived structural indicators (Spearman r = 0.61 at 400m2; Appendix 

8). Skewness in the vertical distribution of LiDAR returns is an indicator of the degree to which 

biomass is concentrated in the lower canopy (positive skewness) versus the upper canopy (negative 

skewness). While this measure is insignificant at smaller spatial scales, at larger scales it grows 

increasingly positive indicating that top-heavy canopies (e.g. single layer canopies) in the study 

area tend towards lower diversity, while stands with a more bottom-heavy distribution of biomass 

(e.g. those having robust lower and understory vegetation) tend towards higher diversity levels 

(Fig. 3.7d). These results are in keeping with those from other studies finding biomass skewness 

as an effective proxy for species diversity, especially as a means for estimating the presence of 

smaller size classes which tends towards higher abundance levels, and thus by virtue of sampling 

effect, higher richness (Knox et al. 1989; Lorimer & Frelich 1997).  

As understory individuals tend to drive overall plant richness values, it follows that 

understory returns (LiDAR returns below 1.37m) should be expected to be critical in the detection 

and prediction of plant richness. Unlike canopy measures, mean understory height and the standard 

deviation of these understory heights, shows an increasingly positive relationship with species 

richness with increasing spatial scale (Fig. 3.7e-f). At the largest spatial scales, higher understory 

returns simply connote the presence of a robust understory. While this relationship is not 

significant at the smallest spatial scales, with an increase in scale, the relationship becomes 

significant, and increasingly positive. Owing to the rarity of any LiDAR return between the forest 
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floor and 1.37m especially in the more depauperate upland areas, the presence of any understory 

returns increases the likelihood of higher richness totals at larger spatial scales.  

3.4.2.4. Hyperspectral imagery 

Hyperspectral imagery is effective for detecting inter-species trait variation in canopy 

structure, water content, and foliar biochemicals such as photosynthetic pigments like chlorophyll 

and carotenoids as well as structural compounds like lignin and cellulose (Curran 1989; Asner 

1998). Owing to the daunting size and inherent redundancy of the 114 band hyperspectral image 

layers, hyperspectral imagery was reduced to two derived products: full spectrum indices (PCA 1-

3) and narrowband vegetation indices (VIs). While the former benefits from incorporation of ~99% 

of variance among all hyperspectral image layers, PCA indices are unit-less, relational, and limited 

to the extent of the training data space. Narrowband VIs, on the other hand, each capture just a 

small portion of the reflectance spectrum but excel as interpretable indicators of known traits (e.g. 

CRI – as an index of carotenoid pigments) based on empirical optimal band selection (Ustin et al. 

2009). 

While reflectance spectra are helpful for remote species discrimination (Naidoo et al. 2012; 

Roth et al. 2015), intra-specific variation in spectral signatures may outweigh inter-specific 

variation, especially due to varying illumination conditions as well as idiosyncrasies of differential 

environmental stress on biochemical plant pigments  (Price 1994; Nagendra 2001). Owing to the 

problematic nature of estimating richness based on tallying disparate identified taxa with resolved 

spectral libraries, spectral variability has been proposed as a surrogate for species richness that is 

agnostic to the identity of individual taxa (Palmer et al. 2002; Rocchini et al. 2007; Rocchini et al. 

2010). The spectral variation hypothesis (SVH), posits a positive relationship between spectral 

variation due to foliar biochemical diversity and phylogenetically-conserved trait variation among 
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taxa which can aid remotely-sensed biodiversity modeling efforts (Cavender-Bares et al. 2016). 

Our results confirm the utility of the SVH, especially for narrowband VIs, though full spectrum 

PCAs provide mixed results.  

Variance in the principal components of the full spectrum imagery (e.g. PCA1_sd) was 

only significantly correlated at intermediate scales, and when significant, the relationship was not 

strong (r = 0.13 at 1m2, p<0.01; r = 0.23 at 100m2, p<0.01). This result contracts with the 

aggregated PCA1 mean, which was among the most highly correlated variables with species 

richness (r = 0.72 at 900m2, p<0.01). On the other hand, among narrowband VIs, we see a near 

universal monotonic trend of increasing correlation strength with spatial scale. For narrowband 

VIs, variance measures (e.g. sd) are consistently positively correlated with plant richness (Fig. 3.5, 

Fig. 3.8c-d). The scale-dependence of the SVH, and specifically its increasing utility at coarser 

spatial scales, has been documented in other studies (Palmer et al. 2002; Rocchini et al. 2007). 

While the positive correlation of sub-pixel variance in VIs with plant richness supports the SVH, 

mean narrowband VI values are near-universally negatively correlated with plant richness. 

This result contrasts with those from several studies that found a positive relationship 

between NDVI and plant richness, especially in arid environments where mere presence of 

chlorophyll could significantly predict richness (Levin et al. 2007). However, in the continuous, 

multi-strata canopy of the study area, the opposite seems to be the case. Interestingly, VI means in 

this study area may not be informative for detecting patterns of foliar greenness (which VIs like 

NDVI were originally conceived to do) when they easily saturate in dense and continuous canopy 

(Haboudane et al. 2004). Conversely, the negative relationship may instead reflect patterns of an 

absence of greenness, and specifically the confounding effect of canopy structure in the optical 

signal when mutual shading of leaves within tree crowns subsume a substantial portion of pixel’s 
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endmember fractions (White et al. 2010). Supporting this conclusion, measures of structural 

complexity like CHM_sd - which are positively correlated with richness (r = 0.53 at 400m2; 

p<0.01) - are negatively correlated with mean VI values (e.g. CHM_sd ~ NDVI (mean) r = -0.4; 

p<0.01). 

3.5. Conclusion 

While there is no inherently correct scale at which to observe the mechanism and patterns 

of diversity, incongruity in scale between field data (e.g. sampling size, design, and intensity), 

remotely sensed data (e.g. spatial resolution and geolocational precision), and that of target biota 

(e.g. size, density, and coverage extent) can confound conclusions on the scale-dependent 

relationships driving these patterns. In this study, we model the wall-to-wall distribution of 

vascular plant species richness across seven scales to assess how change in spatial grain affects 

the significance and direction of the relationship between remotely-derived predictors and plant 

richness. To the best of our knowledge, this study is novel in mapping total plant species richness, 

including those understory taxa obscured from passive sensors, across multiple spatial scales in a 

compositionally and structurally complex forest. Predictive maps of multi-scale plant richness 

provide a realistic representation of species-area relationships in relation to known environmental 

gradients, and has immediate application for conservation and habitat modeling at landscape 

scales. Results confirm the scale-dependence of remotely-sensed predictors of species diversity in 

relation to plant size and density in relation to environmental factors like canopy gaps and 

understory growth. The degree to which these results can be readily extrapolated to other study 

systems is not yet fully resolved, and this lacuna invites comparison among disparate sites to 

ascertain the generalizability of using remotely-derived data products to predict multi-scale 
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biodiversity patterns in other ecosystems. With the increasing availability of highly accurate and 

information-rich remotely data, ecologists will increasingly be able to test hypotheses regarding 

the phenomenological patterns and underlying drivers of biodiversity at previously unobtainable 

scales. 
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CHAPTER 4 

MODELING PLANT COMMUNITY-CONTINUA IN A PIEDMONT FOREST 
LANDSCAPE WITH LIDAR-HYPERSPECTRAL REMOTE SENSING 

4.1. Introduction 

Efforts to model ecosystem functioning, map habitat quality, and monitor biodiversity in 

temperate forests hinge upon accurate knowledge of the taxonomic composition of those 

communities (Running & Coughlan 1988; Tilman et al. 1997; Anderson & Ferree 2010). While 

field-based methods for mapping forest composition can be highly accurate at small spatial scales, 

they are extremely resource-intensive at larger scales (Condit 1995). However, when paired with 

field plot data, aerial remote-sensing offers an efficient, repeatable, and synoptic platform with 

which to explicitly characterize species distributions and forest composition at multiple scales 

(Schmidtlein et al. 2007; Anderson et al. 2008; Roth et al. 2015). 

Remotely-sensed imaging spectroscopy, or hyperspectral imaging, is one particularly 

powerful tool for mapping spatial variation in forest composition (Asner 1998; Clark et al. 2005). 

Hyperspectral sensors are capable of distinguishing biochemical absorption features of foliage at 

different narrowband wavelengths that can be used to infer species-specific spectral signatures 

(Curran 1989). However, despite its strengths, the direct estimation of leaf-level properties based 

on imaging spectroscopy alone remains problematic. Several studies have noted how intra-specific 

variation in leaf optical properties can overwhelm attempts at species discrimination based on in-

situ reflectance measurements and spectral libraries (Kodani et al. 2002; Ghiyamat & Shafri 2008). 

The ability to translate canopy reflectance to foliar chemistry, diagnostic of species-specific 
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spectral signatures is further complicated by a number of factors including the phenological stage 

of the vegetation, environmental conditions (including climate, nutrient availability, and biotic 

interactions), epiphyll cover, and, importantly, canopy structure (Okin et al. 2001; Asner & Martin 

2009). Canopy structural attributes - including height, stratification, plant architecture, and leaf 

orientation – shape the fundamental means by which photons interact with multiple surfaces in a 

forest canopy and are thus implicated as one of the most pernicious sources of noise in the retrieval 

of a consistent spectral signature in dense canopy (Asner 1998; Torabzadeh et al. 2014). 

To mitigate the confounding effect of canopy structure, active remote sensing using LiDAR 

has been found an effective complement to passive (optical) instruments for modeling canopy 

structural properties (Ustin & Gamon 2010). When used in combination, hyperspectral-LiDAR 

sensors can simultaneously characterize both foliar biochemistry and canopy biophysics (Dalponte 

et al. 2008). Several studies have found combined LiDAR-hyperspectral datasets outperform either 

used on its own (Hill & Thomson 2005; Leutner et al. 2012), though time lags between LiDAR 

and hyperspectral flights as well as imperceptive calibration and data fusion methods may diminish 

these improvements (Torabzadeh et al. 2014). In recent years, combined LiDAR-hyperspectral 

sensors have seen increasing prominence, allowing for pixel-level fusion and calibration of both 

sensors in a single platform (e.g. Kampe et al. 2010; Asner et al. 2012; Cook et al. 2013).  

Integrated LiDAR-hyperspectral systems have proven competent at species detection, 

particularly in sparse canopies (Naidoo et al. 2012). However, the task of unpacking the taxonomic 

identity of the entire vascular plant community is greatly complicated in forests with relatively 

high species richness, especially those consisting of multiple layers of overlapping strata 

(Thenkabail et al. 2004; Clark et al. 2005). In closed canopy forests, attempts at inferring 

composition are limited largely to emergent and upper-canopy exposed stems, as understory 
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elements may be completely obscured from optical sensors. Owing to the recognition of 

uncertainty in identifying sub-canopy taxa, as well as individuals smaller than the resolution of the 

remotely-sensed imagery, one promising approach to the mapping of landscape turnover in plant 

composition is to shift the scale of analysis to that of whole communities, rather than individuals 

or species (Ferrier & Guisan 2006; Schmidtlein et al. 2007). This stand-level approach embraces 

sub-pixel heterogeneity and exploits the correlative relationships between the remotely-sensed 

signal and the optical-structural properties of aggregate stand traits to predict total stand 

composition, inclusive of those understory individuals out of reach of optical sensors (Gamon 

2008; Ustin & Gamon 2010; Leutner et al. 2012).  

Community-level predictive maps have tended towards the depiction of forest composition 

either as a patch mosaic of discrete community polygons (Foster & Townsend 2002; Bunting et 

al. 2010) or as a continuous compositional gradient overlaid on a pixel-based raster grid (e.g. 

Schmidtlein & Sassin 2004; Feilhauer & Schmidtlein 2009; Middleton et al. 2012). This distinction 

in the translation of abstract compositional space into a spatially-explicit geographic space has its 

historical roots in the community-continua concept in community ecology (Daubenmire 1966; 

Whittaker 1967). And while no one approach is optimal for all applications, the choice of depicting 

communities as discrete units versus continuous turnover in composition has important 

implications for the utilization and interpretation of compositional maps (Hakkenberg et al. 2017). 

In light of the need to operationalize the mapping of forest composition for diverse 

applications from land management to ecosystem modeling, this study employs spatially-nested 

field plots in conjunction with active and passive remotely-sensed data from the Goddard LiDAR, 

hyperspectral, thermal (G-LiHT) airborne sensor to map vascular plant composition in a 

compositionally- and structurally-complex Piedmont forest landscape in NC, USA. In so doing, 
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we are guided by three key questions (1) How do community-units compare with ordination 

gradients as the basis for the predictive mapping of landscape turnover in plant composition? (2) 

How does compositional resolution affect the accuracy and precision of community 

characterization in geographical and ordination space? and finally (3) How effective is the fusion 

of LiDAR and hyperspectral sensors in predicting the primary components of vascular plant 

composition in the Piedmont study area?  

4.2. Methods 

4.2.1. Study site 

The 2.8 km2 study area 

encompasses natural and semi-natural 

forests in the Blackwood Division of 

Duke Forest, Orange County, NC, 

excluding all areas of plantation forest, 

clear-cuts, and human habitation (Fig. 

4.1). Duke Forest is a research forest 

located in the central portion of the EPA 

level 3 “Piedmont” ecoregion (Griffith et 

al. 2002). The heavily forested Piedmont 

region occupies the southern remnants of 

the Taconic orogeny, where mountain-

building events and subsequent 

weathering has left the Piedmont as a 

Figure 4.1. Duke Forest Blackwood study area extent. 
The study area excludes areas of plantation forest, 
clear-cuts, and human habitation. Topographic wetness 
index (TWI) is a proxy for soil moisture (upper right). 
Canopy height (lower right) is derived from G-LiHT 
LiDAR. Elevation (lower left) is featured with ASR 
(annualized solar radiation) for shading and 2ft (0.6m) 
contours, with squares representing plot location and 
extent. 
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spatially complex geologic mosaic. Soils exhibit a high degree of edaphic and hydrological 

variability, closely tracking substrate composition and topographic position, with sandy sediment-

derived soils in floodplains and predominantly clay soils in the uplands (Stone et al., 1985). 

Following selective cutting, agriculture, and grazing in the 19th-20th century, the Duke Forest 

Blackwood Division is today composed largely of secondary old-field successional pine and 

mature hardwood forests (Peet & Christensen 1988). The study area possesses modest topographic 

relief, with elevations ranging from 127m to 228m. Temperatures in this section of the Piedmont 

range from a mean monthly minimum of 3.8 °C in January to 31.1°C in July, with mean annual 

precipitation of 1072 mm (NCDC, 2011). 

4.2.2.  Field data 

Vegetation plot locations throughout the study area were randomized within the constraints 

of topographically stratified study design, ensuring roughly equal representation among plots by 

aspect and elevation across an east-west and a north-south topographic aspect gradient (Fig. 4.1). 

Accordingly, plots span the range of physiognomic forest types in the study area, inclusive of 

upland, riparian, and bottomland forest ecosystems. Vegetation sampling of spatially-nested 

subplots was performed at each site at 0.01m2, 0.1m2, 1m2, 10m2, 100m2, 400m2, and 900m2 scales 

(Appendix 4). Sampling of nested subplots allow for efficient collection of cover data for all 

vascular plants that is robust to problems of scale and spatial autocorrelation (Peet et al. 1998; Peet 

et al. 2012). Within each nested subplot from 0.01m2 to 400m2, cover was estimated for all 

vascular plant species using Carolina Vegetation Survey categorical cover-class codes (see Peet et 

al. 1998, 2012), after which class percentage values were estimated based on the midpoint value 

for each cover class. Using this nested sampling design, each plot’s four 100m2 subplot cover 

values were averaged to provide mean cover for the entire 900m2 plot, based on Carolina 
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Vegetation Survey protocols adapted for square plots (Peet et al. 1998). In total, 36 30x30m plots 

(and 144 nested 100m2 subplots at 5 spatial scales) were recorded – a number deemed adequate 

considering their large size in comparison to the total mapped area of Duke Blackwood (0.1% of 

the entire area). Botanical nomenclature follows Weakley (2015). The resultant plot data are 

available in Vegbank (http://vegbank.org; Peet et al. 2012). 

Due to the importance of geo-locational precision in fitting field plots with high resolution 

(2x2m) remotely-sensed imagery, all efforts were made to achieve sub-meter spatial locational 

accuracies for plot extents. Thus, due to GPS signal interference in dense forest canopy, plot and 

subplots locations were determined based on triangulation of Ground Control Points (GCPs) 

visible in fine resolution (0.15m) Digital Orthophoto Quadrangle (DOQ) imagery (NC OneMap 

Geospatial Portal 2016). The distance of all plot vertices to GCPs in the fine resolution ortho-

rectified imagery was determined in the field with tape measures and in a GIS environment to 

triangulate actual plot vertex coordinates based on the DOQ. 

4.2.3. Remotely-sensed data 

Hyperspectral and LiDAR data covering the study area were collected with NASA 

Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager (Cook et al. 2013). The 

G-LiHT airborne imager was designed to enable the integration of co-registered data of similar 

grain size at the instrument level, rather than via post-hoc fusion of instrument data flown on 

different platforms and acquired on different dates. G-LiHT consists of a scanning LiDAR, 

profiling LiDAR, imaging spectrometer, Global Positioning System and Inertial Navigation 

System (GPS-INS) and time server, data acquisition computer, and downwelling irradiance 

spectrometer. The system utilizes commercial, off-the-shelf instrumentation for use with local 

general aviation aircraft in an attempt to reduce costs and simplify worldwide deployment (Cook 
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et al. 2013). The VQ-480 (Riegl USA, Orlando, FL, USA) airborne laser scanning (ALS) system 

possesses a 60° field of view, a mean return density of up to 50 laser pulses/m2, and 10 cm diameter 

footprint at the nominal operating altitude of 335m. The Hyperspec imaging spectrometer 

(Headwall Photonics, Fitchburg, MA, USA) operates in the 407–1,007 nm spectral region, 

providing imagery at a ≤5 nm full width half maximum (FWHM) spectral resolution, 2m spatial 

resolution, and 12-bit radiometric resolution. Data for our study site were collected during leaf-on 

conditions during Oct. 2013. 

All remotely-sensed predictor variables are derived from four G-LiHT Level 3 (L3) 

products mapped as a 2m resolution raster grid: (1) a digital terrain model (DTM), (2) all LiDAR 

returns, (3) a canopy height model (CHM), and (4) a 114-band atmospherically-corrected 

hyperspectral surface reflectance image stack (Cook et al. 2013). The four data products were used 

to generate three categories of derived products, namely: (1) LiDAR topography, (2) LiDAR 

canopy structure, and (3) hyperspectral foliar reflectance (Table 4.1). All derived LiDAR 

topography layers are calculated from the DTM at a 2m resolution, with the exception of the 

topographic wetness index (TWI), which was also calculated at 4m and 8m resolutions to capture 

scale-dependence in water flow models (Beven & Kirkby 1979). LiDAR canopy structure was 

derived from CHM product as well as all LiDAR returns (Cook et al. 2013). To capture foliar 

chemistry,  full-spectrum and narrow-band indices were used (Ustin et al. 2009; Asner & Martin 

2009). Principal components analysis (PCA) was used to reduce the full 114-band hyperspectral 

dataset to three orthogonal layers (PCA 1-3), which cumulatively explained 99.7% of variance 

among all bands. In addition, narrow-band indices with established precedence in the literature 

were employed, including the Anthocyanin Reflectance Index 1 (ARI1), Anthocyanin Reflectance 

Index 2 (ARI2), Carotenoid Reflectance Index 1 (CRI1), Carotenoid Reflectance Index 2 (CRI2), 
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Photochemical Reflectance Index (PRI), Red Edge Position Index (REPI), Simple Ratio Index 

(SRI), and Normalized Difference Vegetation Index (NDVI) (Table 4.1).  

All derived geophysical variables at 2m (and 4m and 8m resolutions for TWI) were 

aggregated to a 30m grain size that coincides with the extent of field plots and was deemed the 

smallest acceptable minimum mapping unit for assessing forest composition in the Piedmont. 

Specifically, annualized solar radiation (ASR), deviation from mean elevation (DEV), elevation 

(elev), slope, and topographic position index (TPI) are calculated only as means while for CHM, 

mean, minimum, maximum, standard deviation, skewness, and kurtosis was computed. All other 

variables were aggregated by mean, minimum, maximum, and standard deviation. Pixel 

aggregation reflects the dominant signal (e.g. mean), and sub-plot / sub-pixel variation in that 

signal including extremes (e.g. min, max, and standard deviation). All derived products and 

subsequent analyses were calculated using the software R, v. 3.3.1 (R Core Team 2016), with the 

exception of annual average solar radiation (AASR) calculated using the ArcMap version 10.4 

AASR plug-in (ESRI 2016). 

4.2.4.  Data Analysis 

4.2.4.1. Community-unit classification 

Unsupervised classification was performed to determine the most parsimonious crisp 

partitionings of field plots using the Optimal Partitioning of Similarity Relations (optpart) 

clustering function (Roberts 2016b). Optpart is a non-hierarchical, iterative re-allocation algorithm 

that seeks to maximize the partana ratio, a measure of within-cluster similarity versus among-

cluster similarity for a given number of clusters. Optpart has been found to consistently rank among 

the highest performing clustering algorithms, based on goodness-of-clustering evaluators  across 

datasets and dissimilarity matrices (Aho et al. 2008; Roberts 2015). Because no one a priori 
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number of classes exists that optimizes the 

trade-offs between sensitivity and specificity 

for a given dataset, we first evaluated relative 

performance in class differentiability from two 

to eight clusters – with two clusters being the 

minimum number of possible clusters, and 

more than eight groupings deemed excessive 

for so small an area (Kaufman & Rousseeuw 

2005). The number of clusters used for 

community-unit classification across the two 

eight-cluster combinations was determined 

based on local maxima of partana ratio and 

average silhouette width, the mean similarity of 

each plot to other plots in its cluster versus its 

similarity to the most similar cluster (Rousseeuw 1987; Roberts 2016b). Based on these criteria, 

the two- and seven-class partitions were selected to guide final community-unit classification due 

to their large relative partana ratios (1.44 and 1.47, respectively) and local maxima in average 

silhouette widths (0.13 and 0.16, respectively) (Fig. 4.2).  

Following community-unit clustering, community labels and diagnostic species were 

apportioned to all clusters to reference the central taxonomic concept and physiognomy of each 

community type. Diagnostic species were likewise assessed based on indicator species scores, 

canopy dominance, and expert opinion for each community-unit. Indicator species (the product of 

the relative frequency and relative average abundance in clusters) were determined using the indval 
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Figure 4.2. Mapped species richness predictions 
across spatial scales. Random forest regression 
models trained with field plot and feature-
selected remotely-sensed input parameters 
predict vascular plant species richness across 
seven spatial scales. Predicted species richness 
values for all pixels based on the mean vote 
among all OOB observations in the RF 
regression model. 
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function in labdsv package in R (Roberts 2016a), while canopy dominance was based on cover 

when present (Chytrý et al. 2002).  
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Table 4.1. Remotely-sensed predictor variables. All remotely-sensed predictors represent 
aggregates of 2x2m pixels resampled to a 30x30m (900m2) output resolution.  

Category Predictor Abbv. Equation/Source 

LiDAR 
topography 
(last returns) 

Average Solar 
Radiance (annual) ASR (ESRI 2016) 

Deviation from 
mean elevation DEV 

𝐷𝐸𝑉 = MNDM
,O

; where z0 is the elevation 
of the focal pixel, 𝑧 and SD are mean 
and standard deviation of elevation in 
a 222m window (De Reu et al. 2013) 

Height above 
EGM96 (Earth 
Gravitational Model 
1996) geoid  

elev DTM (Cook et al. 2013) 

Slope in degrees slope DTM (Cook et al. 2013) 

Topographic 
Position Index TPI 

𝑇𝑃𝐼 = 𝑧T − 𝑧 ; where z0 is the 
elevation of the focal pixel and 𝑧  is 
mean elevation in a 222m window (De 
Reu et al. 2013) 

Topographic 
Wetness Index TWI 

𝑇𝑊𝐼 = 𝑙𝑛 5
V5<W

; where a is the local 
upslope area and β is slope (Beven & 
Kirkby 1979) 

LiDAR canopy 
height (first 
returns) 

Canopy height 
model CHM CHM (Cook et al. 2013) 

LiDAR canopy 
structure (all 
returns) 

All return heights  all_returns LiDAR returns (Cook et al. 2013) 

Tree return heights †  tree_returns LiDAR returns (Cook et al. 2013) 

Understory return 
heights †  

understory_
returns LiDAR returns (Cook et al. 2013) 

Hyperspectral 
foliar 
reflectance 

Anthocyanin 
Reflectance Index 1 ARI1 

ARI1 = .
Z[[N

− .
Z\NN

 (Gitelson et al. 
2002) 

Anthocyanin 
Reflectance Index 2 ARI2 ARI2 = 𝜌^TT

.
Z[[N

− .
Z\NN

 (Gitelson et 
al. 2002) 

Carotenoid 
Reflectance Index 1 CRI1 

CRI1 = .
Z[`N

− .
Z[[N

 (Gitelson et al. 
2002) 
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Carotenoid 
Reflectance Index 2 CRI2 

CRI2 = .
Z[`N

− .
Z\NN

 (Gitelson et al. 
2002) 

Normalized 
Difference 
Vegetation Index 
(narrowband) 

NDVI 
NDVI = ZdNNDZe\N

ZdNNfZe\N
 (Haboudane et al. 

2004) 

Principal 
Component Axis 1  PCA1 PCA axis 1 (𝜌gTh: 𝜌.TTh)  

Principal 
Component Axis 2  PCA2 PCA axis 2 (𝜌gTh: 𝜌.TTh) 

Principal 
Component Axis 3  PCA3 PCA axis 3 (𝜌gTh: 𝜌.TTh) 

Photochemical 
Reflectance Index PRI PRI = Z[l`DZ[\N

Z[l`fZ[\N
	(Gamon et al. 1995) 

Red Edge Position 
Index REPI REPI=max[(ρn+1-ρn)/10] where 690 ≤ 

n ≥ 750 (Souza et al. 2010) 
Simple Ratio Index 
(narrowband) SRI SRI = ZdNN

Ze\N
 (Haboudane et al. 2004) 

† Tree returns defined as all returns above 1.37m  

Field plot groupings, corresponding to each of the designated community-units, were used 

to train a random forests (RF) classification model parameterized with all remotely-sensed 

predictors (Table 4.1) over 2000 separate trees using the randomForest package in R (Liaw & 

Wiener 2002). RF is a nonparametric modelling approach well-suited to high dimensional, “small 

n large p” ecological data, whose variables exhibit nonlinear and complex interactions (Pal 2005). 

The RF algorithm utilizes an ensemble of classification trees to produce highly accurate and 

unbiased predictions based on votes across bootstrap replicates that are largely immune to over-

fitting (Prasad et al. 2006). While RF classification is easily adapted to fuzzy prediction based on 

the distribution of out-of-bag (OOB) predictions for each observation, our goal was to predict a 

single, ‘crisp’ class membership for all pixels in the study area. Therefore, each pixel was classified 

according to the majority OOB ‘votes’ across all trees (Cutler et al. 2007). Class weights, based 
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on the respective proportions of field plots in each community-unit, were applied to training data 

to reduce prediction bias in underrepresented classes (Chen et al. 2004). Classification accuracy 

of the predicted map was assessed using a weighted Cohen's kappa coefficient (κ), a measure of 

inter-rater agreement that takes into account the possibility of the agreement occurring by chance 

and is weighted to adjust for expectation in the frequency of observations (Cohen 1968),  as well 

as confusion matrices from which overall agreement (OA), user’s agreement (UA), and producer’s 

agreement (PA) was calculated. 

4.2.4.2. Compositional ordination 

Ordination methods are an expedient tool for transforming large species-by-plot matrices 

into a reduced-dimensional space. This data reduction technique enables a plot’s composition, 

relative to other training plots, to be referenced by its coordinates (mean and variance) in ordination 

space. In this study, we used Nonmetric Multidimensional Scaling (NMDS), a technique with 

precedence in the remote sensing and community ecology literature (Thessler et al. 2005). NMDS 

preserves the ordering relationship among samples in ordination space based on their ranked 

dissimilarity in compositional space (Legendre & Legendre 2012). Final scores are arbitrary in an 

absolute sense, but meaningful as relative indictors of n-dimensional compositional dissimilarity 

(where n+1 represents the number of total species in a species-by samples data matrix of relative 

abundances) in a more tractable k-dimensional ordination space (where k < n-1). NMDS was 

chosen over alternate ordination methods because it makes no assumptions about dimensionality, 

linearity or the shape of species-response curves to gradients (Kruskal 1964). Because the NMDS 

procedure seeks to align sample data in ordination space according to ecological dissimilarity, we 

derived a compositional distance matrix among plots using Bray–Curtis dissimilarity, a distance 

matrix for species data that controls for bias due to joint absences and double weights joint 
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presence as a strong indicator of resemblance (Legendre & Legendre 2012). Before running the 

NMDS on vegetation samples, rare species occurring on <5% of plots were removed from the 

dataset (Appendix 5). 

To determine the optimum number of ordination axes, a step-down procedure was 

performed to determine goodness-of-fit based on 180 preliminary NMDS runs (30 runs each on 1-

6 dimensions). With extension to higher dimensions only producing marginal improvements in 

goodness-of-fit, the three-axis solution was deemed an acceptable solution balancing model 

parsimony (low dimensionality) and explanatory power, with NMDS 1-3 explaining 76% of all 

variation in vascular plant composition (R2=0.76) (Appendix 9). In addition, a three-dimensional 

(3D) ordination space allows for an interpretable 3D visualization of compositional space, readily 

translated to an RGB color scale. Because the numerical algorithm of NMDS cannot guarantee a 

global solution, the model was run for 2000 iterations and the solution with the lowest dissimilarity 

between ordination and Bray-Curtis distances (stress=0.2) was selected as the final model. As there 

is no intrinsic ordering to the final NMS ordination axes, the final model was rotated using PCA 

to align it along orthogonal axes of maximum floristic variation (Clarke 1993). All procedures in 

the NMDS analysis, including the derivation of dissimilarity matrices, were performed using the 

ecodist package (Goslee & Urban 2007) in R, v. 3.3.1 (R Core Team 2016). 

4.2.4.3. Compositional gradient modeling 

Continuous gradient modeling of forest composition was performed by running three 

parallel RF regression models, each parameterized with remotely-sensed predictors and trained to 

field data, to predict continuous values for NMDS axes 1-3 at a scale of 30m across the study site. 

While the RF algorithm is robust to multi-collinearity and over-fitting, prediction accuracy can be 

affected when the number of features (p) is significantly higher than the number of samples (n) 
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(Toloşi & Lengauer 2011). Thus, for each of the three models (predicting NMDS 1-3 scores), 

feature selection was performed to reduce the total number of predictors. To accomplish this, full 

models utilizing all predictors were run for each of the three continuous response variables (i.e. 

NMDS 1-3) and predictive accuracy was recorded based on 10-fold cross-validatio, an OOB model 

evaluation procedure that iteratively withholds random subsamples of the training data for use as 

an independent validation of model fit. Thereafter, features were iteratively withheld, until 

convergence on a final set of predictors that maximizes cross-validated prediction accuracy 

(Appendix 10). Feature-selected models, trained with all field plot data and remotely-sensed 

inputs, were then used in a random forest regression model to predict NMDS axis scores for all 

pixels throughout the study area. Predicted values are based on the mean vote (rather than the 

majority vote in the case of classification) from all OOB observations, and rescaled to fit the range 

of NMDS values in the training dataset (Zhang & Lu 2012). As a visual aid, predicted NMDS 1-3 

scores were scaled to an 8-bit dynamic range and displayed as RGB, respectively. Accuracy 

estimates for final models are based on 10-fold cross-validated accuracy of the training set, and 

uncertainty maps were derived from the standard deviation of all per-pixel OOB votes (Singh et 

al. 2015). Because significance in the statistical relationship between remotely-sensed predictors 

and NMDS axes 1-3 is obscured in the black box RF model, post-hoc Spearman correlations, a 

rank-based measure of association that facilitates application to non-normal data distributions, 

were run for all predictors. The final Spearman correlation matrix includes all remaining predictors 

(after feature selection and removal of duplicates) used in RF regression models, significant (ρ¹0; 

p<0.01) with at least one of the NMDS axes.  
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4.3. Results 

4.3.1. Community characterization 

Sampled field plots, stratified along the two predominant environmental gradients, span 

the range of compositional variability of the relatively taxonomically diverse and structurally 

heterogeneous study area. In total, 208 vascular plant taxa were identified in field plots, among 

which 144 remained after removing rare species occurring on less than 5% of all plots (Appendix 

5). Among all 8860 woody stems recorded, diameter at breast height (DBH) ranged from the 

minimum recorded 0.1cm to 101.5cm (mean DBH=7.6cm; DBH standard deviation=11.7cm). 

Mean vascular plant species richness (SR) was 61 species per plot (range: 35-100 species). Among 

all plots, Acer rubrum, Liquidambar styraciflua, Liriodendron tulipifera, Quercus alba, and Pinus 

taeda possessed the highest cover values (in descending order) and Acer rubrum, Carya glabra, 

Cornus florida, Muscadinia rotundifolia, Nyssa sylvatica, Prunus serotina, and Toxicodendron 

radicans occurred on all plots.  

For efficient, intuitively-interpretable data visualization, the three-dimensional coordinates 

of sampled plots and predicted pixels in NMDS ordination space are reduced to a single, 

semantically-meaningful color referencing its compositional identity. Thereafter, all colored 

points and convex hulls (Fig. 4.3) as well as mapped pixels (Fig. 4.4) consistently translate their 

location in three-dimensional ordination space as an RBG color combination, such that NMDS 1 

maps onto the red color gun, NMDS 2 onto green, and NMDS 3 on blue. Unlike points and pixels, 

whose RGB coloration is derived directly from NMDS 1-3 values, community-unit convex hulls 

assume the color representing the central concept (and centroid coordinate) of all constituent plot 

points (Fig. 4.3). Community labels reference the physiognomy of each community type (e.g. 
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Upland sub-xeric vs. Bottomland hydric) and its central taxonomic concept by means of diagnostic 

species (Table 4.2). 

Table 4.2. Community-unit characterization 

Classification Label Diagnostic species 

2 class 

Upland sub-xeric 
(USX) 

Quercus montana, Juniperus virginiana, Amelanchier 
arborea, Vaccinium pallidum  

Mixed Mesic 
(MM) 

Liriodendron tulipifera, Ulmus alata, Polystichum 
acrostichoides, Euonymus americanus, Aesculus sylvatica 

7 class 

Upland sub-xeric 
(USX) 

Quercus montana, Juniperus virginiana, Amelanchier 
arborea, Vaccinium pallidum  

Midslope sub-
xeric (MSX) 

Carya pallida, Oxydendrum arboreum, Smilax bona-nox, 
Chimaphila maculata 

Midslope mesic 
(MSM) 

Liriodendron tulipifera, Carya tomentosa, Hylodesmum 
nudiflorum, Uvularia perfoliata 

Pine mixed (PM) Pinus taeda, Liquidambar styraciflua, Muscadinia 
rotundifolia, Vaccinium pallidum  

Riparian (R) Carpinus caroliniana, Aesculus sylvatica, Polystichum 
acrostichoides, Galium tinctorium 

Toe-slope mesic 
(TM) 

Quercus falcata, Carya ovata, Rubus pensilvanicus, Arisaema 
triphyllum 

Bottomland 
hydric (BH) 

Quercus michauxii, Carpinus caroliniana, Smilax rotundifolia, 
Carex flaccosperma 
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Figure 4.3. Field plots classified into two and seven community-unit clusters in NMDS space. (a-
c) Two-cluster community-unit grouping, and (d-f) seven-cluster community-unit grouping in 
three 2-dimensional slices of 3-dimensional NMDS space. Chart colors reflect the compositional 
identity of plots/community types in ordination space. The color of field plots (points) and 
community-units (convex hulls) result from RGB color combinations of point/hull coordinates in 
3-dimensional NMDS space, translated into red (R), green (G), and blue (B), respectively. Unlike 
field plot points, community-unit convex hulls assume the color of that class’s centroid, and thus 
reflect it’s central concept in NMDS space as an RGB color combination.  
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Figure 4.4. Predictive map of vascular plant composition in Duke Forest Blackwood. (a) Two 
community-unit patch mosaic; (b) seven community-unit patch mosaic; (c) continuous gradient 
map of ordinated NMDS axes 1-3, with each axis mapped onto red, green, and blue color guns, 
respectively. Each map is post-processed for visual clarity (See Appendix 4.5. for pre-processed 
predictive maps). RGB coloration is a reflection of the compositional identity of each pixel in 3-
dimensional NMDS space such that NMDS 1 maps onto the red (R), NMDS 2 onto green (G), and 
NMDS 3 on blue (B).  The RGB combination directly references the predicted location in 
ordination space occupied by that pixel. Colors are consistent across maps and with Fig. 4.3. See 
Appendix 11 for pre-processed maps. 
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4.3.2. Mapping vascular plant composition  

For predictive mapping of landscape turnover in community-units, two- and seven-class 

partitionings of field plots were deemed suitable, though not optimal, solutions for balancing the 

simultaneous goals of model parsimony and compositional resolution (see Methods 2.4.1.). 

Trained with field plot and remotely-sensed data, random forest classification models predict 

compositional turnover for all pixels in the study site at a spatial resolution of 30m and a 

compositional resolution of two and seven community-units (Fig. 4.4a-b). Overall accuracy of two 

community-unit classification was 97% (weighted k = 0.87), while the seven community-unit 

classification achieved an overall accuracy of 57% (weighted k = 0.60) (Tables 4.3 - 4.4).  

Table 4.3. Two-class confusion matrix. Total accuracy as true positive rate and Cohen’s 
weighted Kappa coefficient (lower right). User’s agreement (UA), producer’s agreement (PA). 

(See Table 4.2 for class label acronyms). 
Class MM USX UA 

MM 30 0 100% 

USX 1 4 80% 

PA 97% 100% 97% (k=0.87) 

Table 4.4. Seven-class confusion matrix. Total accuracy as true positive rate and Cohen’s 
weighted Kappa coefficient (lower right). User’s agreement (UA), producer’s agreement (PA). 

(See Table 4.2 for class label acronyms). 

Class USX MSX MSM PM R TM BH UA 

USX 4 1 0 0 0 0 0 80% 
MSX 0 3 0 1 0 0 0 75% 

MSM 0 0 1 1 0 2 0 25% 
PM 0 0 1 4 0 0 1 67% 

R 0 0 0 1 4 0 1 67% 
TM 0 0 1 0 0 3 1 60% 

BH 1 0 0 1 1 1 1 20% 

PA 80% 75% 33% 50% 80% 50% 25% 57% (k=0.60) 
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Continuous compositional gradient maps were produced using the same set of remotely-

sensed predictors, but using a random forest regression model to predict continuous ordination 

scores for all new samples (Fig. 4.4c and Fig. 4.5a-c). Based on 10-fold cross-validation accuracy 

assessment, remotely-sensed predictors account for 72%, 51%, and 57% of the variance in NMDS 

axes 1-3, respectively (Table 4.5). The standard deviation of the distribution of all RF votes 

provides a per-pixel measure of predictive uncertainty, which captures spatially-structured 

variance unexplained in statistical models, as well as data, model and geo-locational errors. (Fig. 

4.5d-f).  

Table 4.5. RF regression model and parameters (post feature-selection) 

NMDS axis CV R2 Feature selected predictor variables* 

1 0.723 elev (mean), CRI2 (mean), PCA1 (mean), SRI (mean), PCA1 (min), 
NDVI (min), SRI (min), TWI (8m max) 

2 0.512 

all returns (skew), PCA2 (min), CHM (sd), TWI (8m min), tree returns 
(sd), PCA1 (max), PRI, CRI1 (sd), slope (mean), PCA1 (mean), PRI 
(sd), PCA3 (mean), PCA1 (sd), CHM (max), CRI1 (max), ASR (mean), 
TWI (4m mean) 

3 0.570 REPI (mean), PCA3 (mean), CRI2 (mean), PCA3 (min), slope (mean), 
CRI1 (max), PCA3 (max) 

* see Table 4.1 for abbreviations 
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Figure 4.5. Mapped predictive mean and standard deviation of NMDS 1-3. Pixel-level prediction 
of (a) NMDS 1, (b) NMDS 2, and (c) NMDS 3, reflect the mean vote among all OOB observations 
in the RF regression model. Uncertainty estimated as the standard deviation of all 2000 RF OOB 
votes per pixel for (d) NMDS 1, (e) NMDS 2, and (f) NMDS 3 predictions. 
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4.3.3. Remotely-sensed predictors of forest composition 

Environmental biplots depict the magnitude and direction of correlations between NMDS 

1-3 and the three primary RS data domains: (1) topography via LiDAR ground returns, (2) canopy 

structure derived from all LiDAR returns, and (3) foliar biochemistry as inferred from full 

spectrum and narrow-band image spectroscopy (Fig. 4.6). With the exception of the positive 

NMDS 2 / negative NMDS 3 quadrant, LiDAR-hyperspectral derived predictors explain a 

substantial amount of variance across all sectors of the ordination space. Spearman’s ρ correlation 

coefficients were used to quantify the relationship between LiDAR-hyperspectral predictors and 

ordination scores of all field plots (Fig. 4.7). Spearman coefficients indicate that NMDS axis 1 is 

largely driven by topographic gradients (e.g. elev and TWI), while NMDS axis 2 is significantly 

correlated with measures of canopy structure (e.g. standard deviation of tree returns and maximum 

canopy height). Hyperspectral imagery explains compositional variance across all three NMDS 

axes, with PCA axes 1-3 and narrow-band vegetation indices each exhibiting significant 

correlations with NMDS axes 1-3.  

 

Figure 4.6. NMDS 1-3 Environmental Biplots. Field plot (point) color represents its 3-dimensional 
NMDS coordinates as an RGB color combination. Vectors represent statistically-significant (ρ¹0; 
p<0.01) remotely-sensed predictors of NMDS axes 1-3 from the three RS data domains: LiDAR 
topography (solid line), LiDAR canopy structure (dashed line), and hyperspectral reflectance 
(dotted line). The direction and magnitude of each vector is proportional to the Spearman 
coefficient of correlation with each respective NMDS axis.  
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Figure 4.7. Spearman correlation matrix NMDS 1-3 ~ RS variables. Includes the six predictors 
most correlated with each of NMDS axes 1-3 (ρ¹0; p<0.01). Shade and circle size vary with the 
extent and magnitude of the Spearman correlation coefficient. 

4.4. Discussion 

4.4.1. From mapping canopy individuals to modeling total stand composition 

In monospecific communities, or in open woodlands where individual tree crowns are 

spatially distinct and discrete, a representation of forest composition as patch-based polygons may 

be relatively precise, at least for canopy species (Naidoo et al. 2012; Roth et al. 2015). However, 

this task is greatly complicated in multi-strata, multi-species communities where variability in leaf 

pigmentation and plant architecture couple to confound attempts at inferring the taxonomic 

identity of individuals via consistent spectral signatures (Price 1994; Ghiyamat & Shafri 2008). 

Owing to the uncertainties inherent in modeling total vascular plant composition in structurally 

and taxonomically heterogeneous forests, as well as the recognition that emergent properties of 

ecosystems such as functional processes, biodiversity, and habitat aggregate at the stand scale, 

studies have shifted focus from individuals to entire stands (McGill et al. 2006; Ferrier & Guisan 

2006; Anderson & Ferree 2010). Despite the coarser spatial resolution, aggregation to the stand 

scale allows for a host of new derived predictors, such as those which rely on sub-pixel 

heterogeneity among the 225 2m pixels used to predict a single 30m response pixel. In addition, 
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stand scale prediction allows for the modeling of total stand composition, including individuals 

out of reach of optical sensors, as well as the spatially-explicit characterization compositional 

variance and predictive uncertainty (Ustin et al. 2009; Singh et al. 2015). 

4.4.2. Community–continua in compositional and geographical space 

Two primary approaches to the predictive mapping of forest communities populate the 

literature: the depiction of community-units as a patch mosaic of discrete vector-based polygons 

(e.g. Anderson et al. 2008; van Ewijk et al. 2011; Wolter & Townsend 2011) and gradient mapping 

of continuous compositional variation in space as a pixel-based raster grid (e.g. Schmidtlein & 

Sassin 2004; Feilhauer & Schmidtlein 2009; Middleton et al. 2012). These alternate approaches 

reflect the dialectic encompassed by the community-continua concept in community ecology. The 

dualistic conception of community-continua refers to the community-unit hypothesis, which 

describes ecological communities as distinct and repeatable entities, and the continuum theory, 

which envisions communities as idiosyncratic assemblages of overlapping yet independent species 

distributions that track environmental gradients and reflect stochastic events of dispersal and 

disturbance (Daubenmire 1966; Whittaker 1967). While each approach is best suited to its own 

unique set of applications, the two are not necessarily mutually exclusive, and can even 

complement each other. 

Part of this divergence in the characterization of landscape turnover in composition may 

be attributed to ambiguity concerning the role of community-units as abstract components of a 

vegetation classification hierarchy versus their representation as spatially-explicit geographic 

entities (Austin 2013; Hakkenberg et al. 2017). As a conceptual category, community-units define 

the central concept of resolved community types or categories (Chytrý et al. 2002; Peet & Roberts 

2013). Based on numerical analysis of representative field plots, community classification employs 
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community-units as descriptive categories and the primary components of a hierarchically-

organized vegetation classification system (Jennings et al. 2009). However, as geographic entities, 

community-units are the spatially-explicit representations of those abstract categories which are 

posited to exist in replicate over the landscape (Austin 2013).  While both the abstract and 

geographic community models recognize that species assemblages are fundamentally continuous 

in space and dynamic through time, they expediently assert the existence of community-units as 

practical abstractions of n-dimensional species assemblages.  

Continuous gradient modeling, on the other hand, explicitly embraces the Gleasonian 

conception of spatial continuity in vegetation composition (as a continuous response variable) as 

well as the idiosyncratic nature of individual assemblages (modeling uncertainty as variance in the 

expected value or posterior). Although gradient ordination maps are still an abstraction of n-

dimensional compositional space to k reduced ordination axes, because they circumvent the 

artefactual boundaries of discrete compositional categories, they embrace heterogeneity in 

multivariate analyses and lend themselves to modeling applications where the depiction of realistic 

landscape vegetation patterning is paramount, such as predictive habitat modeling and functional 

trait mapping (McGarigal & Cushman 2005; Cushman et al. 2010). While this study focused on 

first three NMDS axes primarily for its potential depiction in RGB color space (where NMDS 1-

3 collectively explain 76% of compositional variance), advanced ecosystem modeling applications 

could clearly benefit from the inclusion of additional axes to better account for unexplained 

variance.  

4.4.3. Compositional resolution of community-units 

In this study, we utilize multi-scale vegetation sampling to extrapolate vascular plant 

species cover at 900m2. Field plot locations were determined using a random stratified sampling 
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design to reflect the spectrum of variation in land-use history and environmental conditions of 

forests in the study site. Field plots define the extent of the compositional space to be modeled and 

serve as the sampling basis from which it can be most parsimoniously partitioned into manageable 

community-units (Kaufman & Rousseeuw 2005). Based on the comparison of relative 

dissimilarity among plots’ species cover values, two and seven community-unit clusterings were 

deemed optimal solutions to the challenge of balancing model parsimony and compositional 

resolution (Roberts 2016b). However, as no single unambiguous optimization exists for the 

unsupervised classification of field plots, community-units, thus defined, are expedient as 

indicators of relative dissimilarity in the context of the focal landscape, yet somewhat arbitrary in 

an objective sense (Aho et al. 2008).  

Viewed in ordination space, the two-class partitioning of field plots reveals a highly distinct 

and spatially discrete set of five points whose individual color (representing each plot’s coordinates 

in ordination space) closely matches the mean color of the Upland sub-xeric community-unit (Fig. 

4.3a-c). Classified maps reveal that the distinct aggregation of the two-class solution in ordination 

space is mirrored in geographical space, as the location of the outlying Upland sub-xeric class is 

constrained to the higher elevation areas on the east side of the study area (Fig. 4.4a). By contrast, 

the second unit, generically labeled Mixed mesic, takes on a grayish hue starkly deviating from its 

constituent point colors as a result of averaging the compositionally variegated remaining plot 

points (Fig. 4.3d-f). This color mismatch between the Mixed mesic class and its constituent plots 

is a visual confirmation of what its relatively low mean silhouette width (0.13 versus 0.40 for 

Upland sub-xeric) otherwise indicates: the Mixed mesic class is perhaps too generic (and the two-

class solution too coarse) for effective ecological characterization. 
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Expanding the field plot partitioning from two to seven classes has the immediate impact 

of splitting the Mixed mesic class into six component parts, whose community-unit hull colors 

more closely resemble that of their constituent plot points. When applied for predictive mapping, 

the seven-unit classification reveals a more reticulated pattern of interlocked patches that track 

known cover types and physiognomic contours of the landscape (Fig. 4.4b). Visual observation 

confirms that the botanically-defined Bottomland hydric category corresponds with the fine-scale 

dendritic venation characteristic of topographically-defined bottomlands visible in the same 

location (Fig. 4.8). While compositionally similar to the flat bottomlands, steep stream channels 

constrain the distribution of botanically-defined riparian communities in the north of the study 

area. Classified pine communities form an “H” shape in the center of the study area, which are 

clearly visible in leaf-off reference imagery (Fig. 4.8). That the Upland sub-xeric class remains 

unchanged at the finer seven community-unit resolution, reaffirms both its distinction from other 

classes, as well as the hierarchically nested topology of all field plots in the unsupervised 

classification.  
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Figure 4.8. RBG compositional gradient map with community-unit legend.. The topographic 
wetness index (TWI) (upper left) predicts relative soil moisture. Leaf-off broadband optical 
imagery is particularly effective at highlighting evergreen vs deciduous cover, which in the study 
area translates to pine vs broadleaf cover (NC OneMap Geospatial Portal 2016). See Appendix 11 
for pre-processed maps. 

While finer compositional resolution allows for a more precise articulation of forest 

composition (as indicated by relatively higher mean silhouette widths), when applied in the context 

of predictive mapping, this improvement in precision comes at the expense of accuracy such that 

cross-validated OOB overall accuracies fall from 97% for two classes to 57% for seven (Tables 

4.3-4.4). Despite the advantages of resolved compositional categories, predictive mapping based 

on finer partitionings of compositional space increases the potential for overlap and confusion such 

as when pixels are understandably, but erroneously, classified to the nearest community category. 

Fuzzy classification, whereby pixel class membership is framed in terms of relative membership 
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probability across all classes, partly circumvents this potential for confusion but still fails to 

address the underlying issue inherent in segmenting an n-dimensional continuous entity to a few 

somewhat arbitrary defined, discrete categories (Gopal & Woodcock 1994).  

4.4.4. Gradient mapping of compositional continua 

The recognition that community assemblages are fundamentally continuous in space and 

dynamic through time, coupled with the need for spatially-explicit characterization of landscape 

gradients, has given rise to predictive mapping not of community-units, but of continuous 

ordination scores  (Schmidtlein & Sassin 2004; Thessler et al. 2005; Feilhauer & Schmidtlein 

2009; Middleton et al. 2012; Gu et al. 2015). Given a representative group of samples whose 

location in ordination space exhibits a statistically significant relationship with continuously 

measured variables such as environment or reflectance, regression can be effectively employed to 

interpolate the mean and variance of predicted samples (Gu et al. 2015; Singh et al. 2015). Instead 

of classification accuracy, the power and generalizability of the regression model can be assessed 

based on cross-validated accuracy assessment. In this study, 10-fold cross-validation indicates that 

remotely-sensed predictors were able to account for 72%, 51%, and 57% of the variance in 

compositional ordination space for NMDS axes 1-3, respectively (Table 4.5).  

This exercise in enhancing the compositional realism of modelled landscapes highlights 

some of its shortcomings. Although NMDS is robust to bias, it is ultimately a data visualization 

technique and results are only interpretable within the well-defined constraints of the field data 

used to construct the original space (Legendre & Legendre 2012). Individual loadings on NMDS 

axes are acutely sensitive to training data and highly unstable with the addition of a new samples. 

Thus, NMDS scores, and the subsequent coloration of the gradient map, are only meaningful as 

indicators of relative difference among training data.  Continuous compositional gradient maps 
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lend themselves to the parameterization of spatially-explicit ecosystem models. However, lacking 

supplemental information, they fail to convey readily-interpretable information on the identity of 

the compositional gradients being mapped. In the context of land management, consistent 

coloration and the inclusion of a community-unit legend can be helpful to guide navigation of the 

otherwise semantically-devoid color space (Fig 4.8.). In this capacity, community-unit categories 

serve as complementary and compatible components of a continuous gradient map, and as 

landmarks for the interpretation of n-dimensional compositional gradients.  

4.4.5. Remotely-sensed environmental correlates of vascular plant composition 

Nonparametric data mining approaches have been praised for their ability to identify and 

explore highly non-linear, non-intuitive relationships, upon which parametric statistical tests can 

reveal the sign and magnitude of specific covariates (Evans et al. 2011). In this study, post-hoc 

analysis of remotely-sensed predictor variables confirms the complementarity of the three primary 

remotely-sensed environmental data domains - (1) topo-physiognomy from LiDAR ground 

returns, (2) biophysical structure derived from LiDAR all returns, and (3) foliar biochemistry 

inferred from hyperspectral canopy reflectance - in explaining compositional variation across the 

compositional space. LiDAR-derived terrain variables (e.g. elevation, and TWI), confirm the 

predominant role of topography, a proxy for soil moisture and nutrients, as an indirect driver of 

forest composition along NMDS axis 1. A clearly visible elevation gradient and visible stream 

channels in the NMDS 1 predictive map confirms this interpretation (Fig. 4.8). These results 

support findings from other studies that have found vegetation patterns in the Piedmont’s rolling 

topography to track catenal formations, characterized by sandy, nutrient-poor soils in the uplands 

and moist, clayey soils, high in organic matter content and cation exchange capacity of the 

bottomland shrink-swell clays and the more silty, periodically submerged riparian areas (Peet et 
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al. 2014). Despite these edaphic and hydrologic differences, riparian and bottomland communities 

both tend towards higher stem density and species richness compared with their upland 

counterparts (Matthews et al. 2011).  

Indicators of forest structure derived from all LiDAR returns (e.g. the standard deviation 

of LiDAR tree returns and maximum canopy height) almost exclusively predict variance along 

NMDS 2. While these metrics of forest structure are collinear with aspects of topography and 

canopy reflectance (Appendix 12), that NMDS 2 is so distinctly characterized by forest structure 

demonstrates the added utility of LiDAR canopy structure measurements for integrating the signal 

of successional processes for predicating composition. Of particular note in this regard is the 

visible distinction in the NMDS 2 prediction between the homogenous canopy structure of the 

secondary pine compared to the more heterogeneous mature hardwood mixed class. 

Unlike topography and structure, which each load heavily onto a single NMDS axis, 

hyperspectral imagery explains compositional variance across all three NMDS axes. Part of this 

relationship stems from the correlation between hyperspectral and LiDAR-derived terrain and 

structural predictors which capture overlapping information on the same underlying environmental 

gradients. For example, narrow-band vegetation indices expressing leaf greenness like NDVI and 

SRI are likewise indirect indicators of underlying soil moisture gradients (e.g. NDVI mean ~ TWI 

max: ρ =-0.49; p<0.01) that directly regulate leaf physiology, and specifically, greenness 

reflectance. Unsurprisingly, TWI and NDVI both load heavily onto the topo-edaphically 

constrained NMDS axis 1 (ρ =-0.61 and ρ =0.68, respectively; Appendix 12). 

These results confirm the proficiency of LiDAR sensors in detecting the primary 

environmental gradients constraining the distribution of individual species in a stand, whether by 

modeling topo-edaphic gradients (ground returns) or resource heterogeneity related to canopy 
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structure (all returns). Image spectroscopy, on the other hand, excels in the direct detection of 

physiological leaf traits via their reflectance spectra. Rather than predicting presence based on the 

assumption of species-environment relationships (the fundamental niche), hyperspectral sensors 

capture the net result of complex abiotic and biotic interactions (i.e. the realized niche). Despite 

some degree of collinearity in the hyperspectral and LiDAR remotely-sensed data domains, the 

two sets of predictors interact in complex ways as evidenced by the retention of both sets of 

variables in final models after feature selection.  

4.5. Conclusion 

With evidence accumulating for the role of local and global environmental change in 

altering ecological processes in forest ecosystems, predictive mapping of forest composition will 

be of increasing utility across a range of ecological applications. While integrated LiDAR-

hyperspectral systems have proven competent at species detection, particularly for monospecific 

stands or in sparse woodland canopies, this task is highly problematic in closed-canopy, multi-

strata, high-diversity forests. In this study, we shift emphasis from detecting the optical-structural 

properties diagnostic of individual crowns to those of entire communities. In so doing, we reflect 

a growing recognition of the scale-dependence of aggregate plant traits in driving ecosystem 

processes, while embracing uncertainty in the detection and prediction of constituent individuals. 

To the best of our knowledge, this study is novel in modeling landscape turnover in the vascular 

plant composition of complex forests at nested compositional resolutions. In demonstrating this 

translation of an abstract compositional space into a concrete geographical space, we provide a 

mapped example of the community-continua concept. While community-unit classification and 

compositional gradient regression each have applications to which they are best suited, provided 
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a rigorous numerical approach, the two methods are consistent, compatible, and when used jointly 

provide finer resolution and deeper understanding.  
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CHAPTER 5 

CONCLUSIONS   

Well-designed vegetation sampling protocols, coupled with highly resolved remotely-

sensed data and advanced statistical modeling techniques are increasingly enabling the modeling 

and mapping of forest pattern and process at landscape scales (Turner 2005). Complex, multi-

dimensional forest community properties like those of function, diversity, and composition can be 

imagined as an n-dimensional abstraction, analogous to principal components, that when combined 

in nonparametric models with equally complex predictor data, such as derived LiDAR-

hyperspectral layers, serve as sufficient (if not always transparent) tools for robust prediction. 

Envisioned as such, nonparametric models are capable of predicting forest community properties 

like compositional identity and vascular plant species richness simultaneously at scales far finer 

than that of the nominal resolution of the remotely-sensed data, and at extents far larger than what 

field sampling would expediently support. While the maps produced in this three-part study reflect 

forest properties from a single date, the methods employed are applicable (recommended, in fact) 

for multi-temporal monitoring projects in anticipation of the deployment of a fleet of new LiDAR 

and hyperspectral airborne sensors and spaceborne satellites (Kampe et al. 2010; Dubayah et al. 

2014). 

Broadly speaking, this study was designed and implemented to develop methodologies in 

field sampling and Earth observation that exploit the strengths of active and passive remote sensing 

to uncover phenomenological patterns and underlying drivers of forest community properties at 

landscape scales. In the first study, results show a consistent and significant relationship between 



 

 
97 

indices of tree species diversity and several attributes of forest structure, especially maximum 

height, basal area size inequality, and skewness of the basal area distribution. Combining structural 

predictors in a nonparametric support vector regression (SVR) approach, predictive models - 

trained solely with structural attributes - explained 44-61% of the variance in tree species diversity 

in the full Piedmont dataset, and 22-71% of the variance in subsets defined by stand origin and 

forest type. These results confirm the utility of forest structure to predict tree species diversity in 

the North Carolina Piedmont without accounting for other known predictors of diversity, such as 

environment, soil conditions, and site history. Beyond the theoretical implications of unraveling 

the underlying relationship between structure (as a surrogate for successional stage) and tree 

species diversity, these findings highlight the empirical basis and potential for utilizing forest 

structure from LiDAR in predictive models of tree species diversity over large geographic regions. 

In the second study, feature-selected nonparametric models based on spatially-nested plot 

data and over 100 aggregate, derived remotely-sensed input variables from the G-LiHT airborne 

sensor were used to predict wall-to-wall vascular plant species richness at 0.01m2, 0.1m2, 1m2, 

10m2, 100m2, 400m2, and 900m2 scales in a compositionally- and structurally-complex Piedmont 

forest landscape. Results showed a general pattern of increasing predictive power with spatial 

scale, with cross-validated predictive accuracy ranging from 14% (0.01m2) to 68% (100m2). Due 

to the inherent scale-dependence in diversity patterns, as well as those between remote sensing 

data resolution and spatial precision in relation to plant size and density, post-hoc analyses focus 

explicitly on the role of spatial scale in constraining the relationship between remotely-sensed 

variables and species richness values. Results confirm topography derived from LiDAR ground 

returns (a surrogate for soil moisture and nutrients), and forest structure estimated from LiDAR all 

returns (a proxy for successional stage and resource heterogeneity) especially informative for 
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predicting multiple species’ fundamental niche space driving vascular plant richness. 

Hyperspectral imagery, on the other hand, and spectral variability in particular, performed best at 

direct detection of foliar biochemical diversity - another effective indicator of canopy species 

diversity. In addition to insights into multi-scale landscape turnover of plant diversity, species-area 

relationships, and remotely-sensible correlates of plant richness, this study is, to the best of our 

knowledge, novel for mapping total plant richness across multiple scales in a compositionally- and 

structurally-complex forest landscape.  

In the third study, field plot and G-LiHT data were used to map plant composition as 

community-continua. Results confirm the expectation of a trade-off between precision and 

accuracy such that an increase in compositional resolution results in a concomitant decline in 

overall classification accuracy. Continuous gradient maps, on the other hand, model composition 

not as a categorical but as a continuous response - explaining 51-72% of the variation in the first 

three dimensions of a nonmetric multidimensional scaling (NMDS) ordination space, respectively. 

Post-hoc analysis of remotely-sensed predictor variables confirms the complementarity of LiDAR-

hyperspectral sensors to simultaneously predict forest composition based on the primary 

environmental gradients constraining species’ fundamental niche, while directly detecting the 

foliar spectral signatures that indicate their realized niche. These results demonstrate the 

effectiveness of LiDAR-hyperspectral sensors to detect diagnostic optical-structural properties 

across the primary dimensions of vascular plant composition of the Carolina Piedmont forest site 

and holds promise for applications spanning local land management to biogeographic modeling. 

 

 
Plant traits - evolutionary adaptations related to the uptake, use, and allocation of resources 

- mediate complex biotic and abiotic interactions in ecosystems (Reich et al. 2003; McGill et al. 
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2006; Shipley et al. 2006). While they vary widely, global plant traits cluster along ecologically 

interpretable primary axes of form and function, such as the plant size, leaf economics, or r-K 

colonization-exploitation strategies (Díaz et al. 2015). Because remotely-sensed vegetation indices 

specifically designed to ascertain functional traits correlate strongly with ecosystem-wide nutrient 

cycling rates, trait mapping has seen increasing prominence as a means towards bottom-up 

ecosystem process modeling (Asner et al. 2015; Abelleira Martinez et al. 2016; Jetz et al. 2016). 

Most recently, debate has focused on the utility of employing explicitly trait-based remotely-

sensed predictors for the mapping of community properties (Gu et al. 2015; Singh et al. 2015; 

Abelleira Martinez et al. 2016). In this context, it should be noted that in all three studies featured 

here, response variables are agnostic to plant trait and ecosystem function.  

Indeed, traits matter. But measuring them consistently across taxa and between 

communities can be highly challenging as intra-specific trait variation can rival that of inter-

specific variation, and generally varies widely by species, trait, and community type (Albert et al. 

2010; Hulshof & Swenson 2010). If the goal is simply prediction of community properties like 

composition and diversity, inference into trait-taxa relationships is non-essential. Nor is it 

necessary, in this limited case, to use compositional mapping as an intermediate step to functional 

trait mapping when models directly linking traits with remotely-sensed data would clearly be more 

parsimonious (Abelleira Martinez et al. 2016). Even if the response changes, say from community 

diversity to abundance-weighted traits, the approach needn’t. Provided models are soundly 

constructed, if the goal is predication and not inference, understanding is not required. 

Alternatively, success is defined solely by predictive power. 

Predictive models make a statement about an unknown quantity based on a simplified 

description of how that system works (Houlahan et al. 2016). They are parsimonious 
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representations of complex phenomena constructed from a combination of informed hypotheses, 

relevant data, and a robust statistical framework (Wenger & Olden 2012). The predictive models 

employed in this research are correlative, not mechanistic and thus if they are explanatory, it is 

because they are sufficiently accurate and generalizable (Urban et al.  2016). We assessed model 

accuracy and generalizability via cross-validation - an efficient approach to producing a pseudo-

independent validation data set when training data is otherwise scarce (Arlot & Celisse 2010). 

Based on this model selection and assessment criterion, predictive models perform sufficiently 

well when they explain a significant portion of the variance in the validation set. Results are thus 

most immediately applicable to describe ecological patterns within the study sites, and 

interpolation is made within the constraints of the ecological and geographical space of the training 

data. But this statement on interpolation is immediately suggestive of its corollary: what is the 

utility of this knowledge for extrapolation outside the study sites? Without further investigation, it 

is impossible to say which components are transferable, and to what extent.  

The complexity inherent in the task of modeling aggregate forest community properties 

should not be understated, and can be enough to overwhelm simple linear, parametric models. 

Nonparametric models, on the other hand, exploit non-intuitive, non-linear interactions between 

multi-dimensional remotely-sensed data and field plot data, that have proven to excel in predictive 

accuracy and generalizability (Schölkopf & Smola 2002; Prasad et al. 2006; Cutler et al. 2007). 

But lacking explicit parameters to test, “black box” nonparametric models fail to provide a robust 

basis for inference into the relationship between remotely-sensed environmental predictors and 

forest community properties (Prasad et al. 2006). For this parallel, but ultimately separate task of 

inferring ecological process from underlying pattern, we employ post-hoc, parametric tests of 

individual predictor variables. Resulting conclusions from these tests should be framed within the 
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epistemological goals of inference and updated understanding. That is, results are interpreted in 

the context of institutional knowledge (informed through a history of experiment and summarized 

in the literature) and conditionalized on new data. 

A persistent theme throughout this three-part study is the delicate balance between 

prediction and inference, or analogously, between knowledge and understanding.  Belief in 

conclusions based on knowledge separates the two. In all three studies, I acknowledge this delicate 

balance, applying specific statistical models based on explicit goals, be they prediction or 

inference. Indeed, correlation does not imply causation. A variable may be a good predictor not 

because it fulfills a mechanistic role in a causal relationship, but because it expediently captures 

enough information on “true” drivers that it proves itself sufficient to predict. Conclusions based 

on models require interpretation, and are thus coded by layers of belief informed by our prior 

understanding of the ecological system. When one adds to this uncertainty and error in data and 

model, between observed and latent variables, it would seem robust inference, and belief in our 

conclusions, a shifting target. Ultimately, progress in science is best contextualized within the 

scope of this dialectic between knowledge generation and updated understanding. 
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APPENDIX 1: FIA NORTH CAROLINA PIEDMONT TREE SPECIES LIST 

Genus Species Common Name 
Acer floridanum Florida maple 
Acer negundo Boxelder 
Acer pensylvanicum Striped maple 
Acer rubrum Red maple 
Acer saccharinum Silver maple 
Acer saccharum Sugar maple 
Ailanthus altissima Tree of Heaven 
Albizia julibrissin Silktree 
Amelanchier spp. Serviceberry spp. 
Asimina triloba Pawpaw 
Betula lenta Sweet birch 
Betula nigra River birch 
Carpinus caroliniana American hornbeam 
Carya cordiformis Bitternut hickory 
Carya glabra Pignut hickory 
Carya illinoinensis Pecan 
Carya laciniosa Shellbark hickory 
Carya ovalis Red hickory 
Carya ovata Shagbark hickory 
Carya tomentosa Mockernut hickory 
Castanea mollissima Chinese chestnut 
Catalpa bignonioides Southern catalpa 
Celtis laevigata Sugarberry 
Celtis occidentalis Hackberry 
Cercis canadensis Eastern redbud 
Cornus florida Flowering dogwood 
Diospyros virginiana Common persimmon 
Fagus grandifolia American beech 
Fraxinus americana White ash 
Fraxinus caroliniana Carolina ash 
Fraxinus pennsylvanica Green ash 
Fraxinus profunda Pumpkin ash 
Gleditsia triacanthos Honeylocust 
Ilex opaca American holly 
Juglans cinerea Butternut 
Juglans nigra Black walnut 
Juniperus virginiana Eastern redcedar 
Liquidambar styraciflua Sweetgum 
Liriodendron tulipifera Tulip poplar 
Magnolia acuminata Cucumbertree 
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Magnolia fraseri Fraser magnolia 
Magnolia macrophylla Bigleaf magnolia 
Magnolia tripetala Umbrella magnolia 
Magnolia virginiana Sweetbay 
Morus alba White mulberry 
Morus rubra Red mulberry 
Nyssa biflora Swamp tupelo 
Nyssa sylvatica Blackgum 
Ostrya virginiana Eastern hophornbeam 
Oxydendrum arboreum Sourwood 
Paulownia tomentosa Princess tree 
Pinus echinata Shortleaf pine 
Pinus palustris Longleaf pine 
Pinus pungens Table Mountain pine 
Pinus rigida Pitch pine 
Pinus strobus Eastern white pine 
Pinus taeda Loblolly pine 
Pinus virginiana Virginia pine 
Platanus occidentalis American sycamore 
Populus deltoides Eastern cottonwood 
Prunus americana American plum 
Prunus avium Sweet cherry 
Prunus serotina Black cherry 
Quercus alba White oak 
Quercus coccinea Scarlet oak 
Quercus falcata Southern red oak 
Quercus laurifolia Laurel oak 
Quercus lyrata Overcup oak 
Quercus marilandica Blackjack oak 
Quercus michauxii Swamp chestnut oak 
Quercus montana Chestnut oak 
Quercus nigra Water oak 
Quercus pagoda Cherrybark oak 
Quercus phellos Willow oak 
Quercus rubra Northern red oak 
Quercus shumardii Shumard oak 
Quercus stellata Post oak 
Quercus velutina Black oak 
Robinia pseudoacacia Black locust 
Salix nigra Black willow 
Sassafras albidum Sassafras 
Taxodium distichum Baldcypress 
Tilia americana American basswood 
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Tsuga canadensis Eastern hemlock 
Tsuga caroliniana Carolina hemlock 
Ulmus alata Winged elm 
Ulmus americana American elm 
Ulmus pumila Siberian elm 
Ulmus rubra Slippery elm 
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APPENDIX 2: SVR EMPIRICAL TUNING HYPERPARAMETERS* 

Response Block ε Cost 

Species richness (SR) 

Artificial 0.091 1 
Broadleaf 0.113 1 
Full 0.103 1 
Mixed 0.076 1 
Natural 0.099 0.5 
Pine 0.117 1 

Shannon's H 

Artificial 0.091 1 
Broadleaf 0.110 0.5 
Full 0.103 0.5 
Mixed 0.076 1 
Natural 0.109 1 
Pine 0.117 1 

Simpson's D 

Artificial 0.091 1 
Broadleaf 0.110 0.5 
Full 0.103 1 
Mixed 0.076 1 
Natural 0.109 1 
Pine 0.117 1 

Rarified SR 

Artificial 0.091 1 
Broadleaf 0.110 0.25 
Full 0.103 1 
Mixed 0.076 0.5 
Natural 0.109 1 
Pine 0.117 1 

Pielou's J 

Artificial 0.091 1 
Broadleaf 0.110 0.5 
Full 0.103 1 
Mixed 0.076 0.5 
Natural 0.102 0.5 
Pine 0.111 1 

* All models run using a Gaussian radial kernel parameter  
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APPENDIX 3. RELATIONSHIPS AMONG STRUCTURAL VARIABLES 

Relationship among structural variables represented as scatterplot of ordination scores 

between PCA axis 1 and 2, with proximity in the PCA 1-2 space indicating degree of similarity 

among predictors. 

 
Raw Spearman correlation matrix among structural predictors. Circle size scaled to 

magnitude of correlation coefficient. Correlations significant at p<0.05, otherwise blank. 
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APPENDIX 4. SPATIALLY NESTED PLOT DESIGN 

Nested sampling of 30x30m plots at 0.01m2, 0.1m2, 1m2, 10m2, 100m2, 400m2, and 

900m2 scales. 
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APPENDIX 5. DUKE BLACKWOOD FIELD PLOT TAXA LIST 

208 distinct vascular plant taxa were identified in field plots. Where species identity was 

undetermined, but its uniqueness relative to other species in the genus was confirmed, a generic 

species name is given (e.g. Carex sp. 3).  

Acer floridanum 
Acer rubrum 

Aesculus sylvatica 
Ailanthus altissima 

Amelanchier arborea 
Amphicarpaea bracteata 

Apocynum cannabinum 
Arisaema triphyllum 

Asclepias sp. 
Asplenium platyneuron 

Athyrium asplenioides 
Boehmeria cylindrica 
Botrypus virginianus 

Campsis radicans 
Cardamine diphylla 

Carex cephalophora 
Carex flaccosperma 

Carex sp. 3 
Carex sp. 4 

Carex sp. 5 
Carex sp. 6 

Carpinus caroliniana 
Carya glabra 

Carya ovata 
Carya pallida 

Carya tomentosa 
Celtis occidentalis 

Lonicera standishii 
Lorinseria areolata 

Lycopus sp. 
Lysimachia tonsa 

Maianthemum racemosum 
Micranthes virginiensis 

Microstegium vimineum 
Mitchella repens 

Morus rubra 
Muscadinia rotundifolia 

Nabalus altissimus 
Nabalus sp. 2 
Nyssa sylvatica 

Onoclea sensibilis 
Ophioglossum pycnostichum 

Osmunda spectabilis 
Osmundastrum cinnamomeum 

Ostrya virginiana 
Oxalis stricta 

Oxalis violacea 
Oxydendrum arboreum 

Parathelypteris noveboracensis 
Parthenocissus quinquefolia 

Passiflora lutea 
Paulownia tomentosa 

Phryma leptostachya 
Physalis sp. 
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Cercis canadensis 

Chelone glabra 
Chimaphila maculata 

Chionanthus virginicus 
Chrysogonum virginianum 

Cirsium pumilum 
Clematis viorna 

Cornus florida 
Crataegus pruinosa 

Crataegus sp. 2 
Cunila origanoides 

Cynoglossum virginianum 
Cypripedium acaule 

Daucus carota 
Desmodium paniculatum 

Desmodium sp. 2 
Dichanthelium boscii 

Dichanthelium commutatum 
Dichanthelium dichotomum 
Dichanthelium laxiflorum 

Dichanthelium polyanthes 
Dichanthelium sp. 6 

Dioscorea villosa 
Diospyros virginiana 

Diphasiastrum digitatum 
Elaeagnus umbellata 

Elephantopus carolinianus 
Elephantopus sp. 3 

Elephantopus sp. 4 
Elephantopus tomentosus 

Endodeca serpentaria 
Euonymus americanus 

Pinus echinata 

Pinus taeda 
Pinus virginiana 

Poaceae sp. 1 
Poaceae sp. 2 

Poaceae sp. 3 
Poaceae sp. 4 

Podophyllum peltatum 
Polygonatum biflorum 

Polystichum acrostichoides 
Populus deltoides 

Potentilla canadensis 
Prunus serotina 

Quercus alba 
Quercus coccinea 

Quercus falcata 
Quercus michauxii 

Quercus montana 
Quercus phellos 
Quercus rubra 

Quercus stellata 
Quercus velutina 

Ranunculus recurvatus 
Rhamnus caroliniana 

Rhododendron periclymenoides 
Robinia pseudoacacia 

Rosa multiflora 
Rubus pensilvanicus 

Rudbeckia laciniata 
Ruellia caroliniensis 

Salvia lyrata 
Sanicula canadensis 
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Eupatorium serotinum 

Euphorbia corollata 
Eutrochium sp. 

Fagus grandifolia 
Fraxinus americana 

Galium circaezans 
Galium obtusum 

Galium pilosum 
Galium tinctorium 

Galium triflorum 
Geranium maculatum 

Geum canadense 
Gleditsia triacanthos 

Goodyera pubescens 
Hedeoma pulegioides 

Heuchera americana 
Hexastylis arifolia 

Hibiscus moscheutos 
Hieracium gronovii 
Hieracium venosum 

Houstonia purpurea 
Hylodesmum nudiflorum 

Hypericum sp. 
Hypopitys monotropa 

Ilex ambigua 
Ilex decidua 

Ilex opaca 
Ilex sp. 6 

Ilex verticillata 
Ilex vomitoria 

Impatiens capensis 
Ipomoea sp. 

Sassafras albidum 

Saururus cernuus 
Sceptridium sp. 

Scutellaria elliptica 
Scutellaria integrifolia 

Scutellaria sp. 
Silene virginica 

Smilax bona-nox 
Smilax glauca 

Smilax herbacea 
Smilax pulverulenta 

Smilax rotundifolia 
Smilax sp. 6 

Solidago rugosa 
Solidago sp. 2 

Stellaria pubera 
Styrax americanus 

Styrax grandifolius 
Symphyotrichum sp. 
Teucrium canadense 

Thalictrum thalictroides 
Thaspium barbinode 

Thelypteris sp. 
Thyrsanthella difformis 

Toxicodendron radicans 
Trillium catesbaei 

Trillium cuneatum 
Ulmus alata 

Ulmus americana 
Ulmus rubra 

Uvularia perfoliata 
Uvularia sessilifolia 
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Itea virginica 

Juglans nigra 
Juniperus virginiana 

Lespedeza cuneata 
Lespedeza procumbens 

Ligustrum sinense 
Lindera benzoin 

Liparis liliifolia 
Liquidambar styraciflua 

Liriodendron tulipifera 
Lobelia sp. 

Lonicera japonica 
Lonicera sempervirens 

Vaccinium pallidum 

Vaccinium sp. 4 
Vaccinium stamineum 

Vaccinium tenellum 
Viburnum prunifolium 

Viburnum rafinesqueanum 
Viburnum rufidulum 

Viburnum sp. 4 
Viola affinis 

Viola palmata 
Viola sp. 3 

Vitis sp. 
Zizia trifoliata 
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APPENDIX 6. REMOTELY-SENSED PREDICTORS IN PCA SPACE  

Relationship among remotely-sensed variables represented as scatterplot of ordination 

scores between PCA axis 1 and 2, with proximity in the PCA 1-2 space indicating degree of 

similarity among predictors. Size of circle refers to its relative degree of correlation with plant 

species richness across all seven scales. Color refers to RS data domains: LiDAR topography, 

LiDAR structure, hyperspectral full spectrum, and hyperspectral narrowband VIs. See Table 1 for 

description of abbreviations. 
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APPENDIX 7. SPECIES RICHNESS - RANDOM FOREST FEATURE SELECTION 

Charts reflect the effect of feature selection on model fit and generalizability by means of 

10-fold cross-validation. The features (combination of predictors) that maximize cross-validated 

accuracy were selected for use in final RF models (see Methods 3.4.2.) 
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APPENDIX 8. SPEARMAN CORRELATION MATRIX FOR REMOTELY-
SENSED VARIABLES VERSUS SPECIES RICHNESS ACROSS SPATIAL SCALES.  

 

 

  

scale	(m2 ) ASR	(mean) DEV	(222m	mean) elev	(mean) TPI	(222m	mean) TWI	(8m	max) all	returns	(sd) all	returns	(skew) CHM	(mean) CHM	(max)
0.01 0 0 -0.208 0 0 0.247 0 0.128 0.176
0.1 0 0 -0.244 0 0 0.23 0 0.161 0.197
1 -0.194 -0.178 -0.314 -0.175 0 0.196 0.255 0 0.146
10 -0.26 -0.329 -0.382 -0.312 0.131 0.155 0.349 0 0
100 -0.247 -0.492 -0.574 -0.493 0.286 0 0.586 0 0
400 0 -0.527 -0.632 -0.537 0.456 0 0.602 0 0
900 -0.401 -0.567 -0.608 -0.596 0.444 0 0.58 0 0

scale	(m2 ) CHM	(min) CHM	(sd) shrub	returns	(mean) shrub	returns	(sd) tree	returns	(mean) tree	returns	(sd) PCA1	(mean) PCA1	(sd)
0.01 0 0 0 0 0.146 0.216 0 0
0.1 0.128 0 0 0 0.14 0.202 0.127 0
1 0 0.144 0 0 0 0.228 0.297 0.135
10 0 0.195 0.149 0.134 0 0.196 0.372 0.169
100 -0.328 0.449 0.403 0.354 -0.225 0.231 0.612 0.239
400 -0.524 0.533 0.46 0.403 0 0 0.682 0
900 -0.487 0.515 0.34 0 0 0 0.719 0

scale	(m2 ) PCA2	(mean) PCA2	(sd) CRI1	(mean) CRI1	(sd) NDVI	(mean) NDVI	(sd) SRI	(mean) SRI	(sd)
0.01 0 0 0 -0.191 0 0 0 0
0.1 0 0 0 0 0 0 0 0
1 -0.175 0 -0.23 0 -0.257 0.22 -0.252 0.123
10 -0.298 -0.12 -0.311 0.156 -0.34 0.249 -0.338 0
100 -0.548 -0.35 -0.616 0.425 -0.652 0.506 -0.643 0.24
400 -0.618 0 -0.685 0.562 -0.739 0.653 -0.711 0.435
900 -0.729 -0.399 -0.635 0.551 -0.697 0.578 -0.731 0.416
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APPENDIX 9. NMDS STEP-DOWN PLOTS 

A-priori dimensionality of the NMDS ordination was evaluated using a stress metric (and 

corresponding R2), which characterizes the agreement between the rank-order of distances in the 

original data compared to their respective scores in ordination space. 
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APPENDIX 10. NMDS RANDOM FOREST FEATURE SELECTION. 

Charts reflect the effect of feature selection on model fit and generalizability by means of 

10-fold cross-validation. The features (combination of predictors) that maximize cross-validated 

accuracy were selected for use in final RF models (see Methods 2.4.3.) 
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APPENDIX 11. NMDS MAP POST-PROCESSING. 

For ease of interpretation and to minimize salt-and-pepper effects, final predictive maps of 

vascular plant composition are processed using a 3x3 pixel modal filter. Maps depict (a) pre-

processed two community-unit classification, (b) post-processed two community-unit 

classification, (c) pre-processed seven community-unit classification, (d) post-processed seven 

community-unit classification, (e) pre-processed compositional gradient predictions, and (f) post-

processed compositional gradient predictions. Unlike majority filters which are highly sensitive to 

the values of all adjacent cells, modal filters only smooth the values of singletons pixels, defined 

as focal pixels unique in a 3x3 pixel window. Filtered maps aid in visual interpretation but are not 

appropriate for modeling applications.  
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APPENDIX 12. SPEARMAN CORRELATION MATRIX AMONG ALL REMOTELY-
SENSED PREDICTORS 

Matrix trace and non-significant correlations (p>0.01) left blank. 
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