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ABSTRACT 
 

TING WANG: Paleoclimate Reconstruction in Northwest Scotland and Southwest Florida 
during the Late Holocene 

(Under the direction of Dr. Donna M. Surge) 
 

The study reconstructed seasonal climate change in mid-latitude northwest Scotland 

during the climate episodes Neoglacial (~3300-2500 BP) and Roman Warm Period (RWP; 

~2500-1600 BP) and in subtropical southwest Florida during the latter part of RWP (1-550 

AD) based on archaeological shell accumulations in two study areas. In northwest Scotland, 

seasonal sea surface temperature (SST) during the Neoglacial and RWP was estimated from 

high-resolution oxygen isotope ratios (δ18O) of radiocarbon-dated limpet (Patella vulgata) 

shells accumulated in a cave dwelling on the Isle of Mull. The SST results revealed a cooling 

transition from the Neoglacial to RWP, which is supported by earlier studies of pine pollen in 

Scotland and European glacial events and also coincident with the abrupt climate 

deterioration at 2800-2700 BP. The cooling transition might have been driven by decreased 

solar radiation and weakened North Atlantic Oscillation (NAO) conditions. In southwest 

Florida, seasonal-scale climate conditions for the latter part of RWP were reconstructed by 

using high-resolution δ18O of archaeological shells (Mercenaria campechiensis) and otoliths 

(Ariopsis felis). The reconstructions agree with archaeological observations and are partially 

coherent with the history of sea-level change. Moreover, the results suggest a marked drying
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and cooling trend across the RWP to Vandal Minimum (VM; ~500-800 AD) transition, 

which is consistent with falling sea level and reduced solar radiation. Reduced solar radiation 

might have triggered a change in atmospheric circulation patterns that precipitated the 

observed climate transition. Although NAO and other atmospheric circulation patterns have 

been proposed as the internal climate mechanism responsible for the climate fluctuations in 

the late Holocene, other studies suggest that stochastic processes are possibly associated with 

the internal climate mechanism. Therefore, I also examined the extent to which the internal 

climate mechanism in the late Holocene is stochastic. Our results indicate that the stochastic 

extent of climate change over the past millennium generally decreased during the intervals of 

climate transition.
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PREFACE 
 
 

Climate in the late Holocene (0-3000 BP) was more variable and dynamic than 

previously thought. Several climate change episodes have been detected, such as the 

Subboreal/Subatlantic transition (2800-2700 cal. BP), Roman Warm Period (RWP; ~2500-

1600 cal. BP), Vandal Minimum (VM; ~400-800 AD), Medieval Warm Period (MWP; 

~1200-1400 AD) and Little Ice Age (LIA; ~1500-1700 AD). Paleoclimate reconstructions 

during these climate episodes in the sensitive North Atlantic sector are pivotal for 

understanding natural variation in the climate system prior to anthropogenic influence. 

However, the majority of Holocene climate proxies in the North Atlantic sector provide 

decadal or annual resolution. Few studies provide the high resolution necessary to reconstruct 

seasonal-scale variability, which can provide more accurate reconstruction necessary to gain 

insights into climate mechanism. Therefore, there is an increasing demand for seasonal-scale 

resolution. 

 

High-resolution time series of oxygen isotope ratios (δ18O) preserved in mollusc 

shells or fish otoliths (ear bone) have been widely used in seasonal-scale paleoclimate studies 

and are accepted as reliable and accurate climate proxies (Jones and Allmon, 1995; Schöne et 

al., 2005; Surge and Walker, 2005, 2006; Goewert and Surge, 2008, and many others). 

Moreover, paleoclimate reconstructions that use archaeological shells or otoliths also contain 

information of human behavior in the late Holocene, and hence can contribute to our 
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understanding of human-climate relationships (Surge and Walker, 2005; Walker and Surge, 

2006; Hallmann et al., 2009; Hufthammer et al., 2010; Jones et al., 2010; Patterson et al., 

2010; Helama and Hood, 2011; Wang et al., 2011). The archaeological middens found along 

the northwest coast of Scotland and the southwest coast of Florida contain abundant shells, 

providing a rich source of seasonal climate records and information on human subsistence 

strategies. Chapter 1 reconstructs seasonal sea surface temperature (SST) variability during 

the Neoglacial (3300-2500 BP) and the RWP using δ18O values of archaeological limpet 

(Patella vulgata) shells from Croig Cave, an archaeological site in northwest Scotland. 

Chapter 2 reconstructs the variability of summer precipitation and winter temperature during 

the latter part of RWP (1-500 AD) using δ18O values of archaeological shell-otolith pairs 

(Mercenaria campechiensis and Ariopsis felis) from southwest Florida. 

 

Although solar radiation change has generally been accepted as the external trigger 

for climate change in the late Holocene, there is no consensus on the internal mechanism for 

the changes. Stochastic climate models have been widely used to help understand the 

fundamental dynamics of climate systems (Majda et al., 1999; Dobrovalski, 2000; Ditlevsen, 

2001; Király and Jánosi, 2002; Roe and Steig, 2004, and many others). Chapter 3 uses a 

conceptual stochastic climate model to examine the extent to which the climate change in the 

late Holocene is stochastic, to enhance our insight into internal climate dynamics during the 

late Holocene. 
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CHAPTER I 

SEASONAL TEMPERATURE VARIABILITY OF THE NEOGLACIAL 
AND ROMAN WARM PERIOD RECONSTRUCTED FROM OXYGEN 

ISOTOPE RATIOS OF LIMPET SHELLS (PATELLA VULGATA), 
NORTHWEST SCOTLAND 

 
 

Abstract 

 

Seasonal SST variability for the Neoglacial (3300-2500 BP) and Roman Warm Period 

(RWP; 2500-1600 BP), which correspond to the Bronze and Iron Ages, respectively was 

estimated using oxygen isotope ratios obtained from high-resolution samples micromilled 

from radiocarbon-dated, archaeological limpet (Patella vulgata) shells. The coldest winter 

months recorded in Neoglacial shells averaged 6.6±0.3ºC, and the warmest summer months 

averaged 14.7±0.4ºC. One Neoglacial shell captured a year without a summer, which may 

have resulted from a dust veil from a volcanic eruption in the Katla volcanic system in 

Iceland. RWP shells record average winter and summer monthly temperatures of 6.3±0.1oC 

and 13.3±0.3ºC, respectively. These results capture a cooling transition from the Neoglacial 

to RWP, which is further supported by earlier studies of pine pollen in Scotland and 

European glacial events. The cooling transition observed at the boundary between the 

Neoglacial and RWP also agrees with the abrupt climate deterioration at 2800-2700 BP (also 

referred to as the Subboreal/Subatlantic transition) and therefore may have been driven by 

decreased solar radiation and weakened NAO conditions. 

 



 

Keywords: oxygen isotope, Patella vulgata, Neoglacial, Roman Warm Period, northwest 

Scotland, Subboreal/Subatlantic transition 

 

1. Introduction 

 

Pre-industrial climate reconstructions during the mid to late Holocene provide the 

necessary information for understanding natural variation in the climate system prior to 

anthropogenic changes in the atmosphere, hydrosphere, and land use. Moreover, 

paleoclimate reconstructions that use archaeological sources contribute to our understanding 

of human-climate relationships (Surge and Walker, 2005; Walker and Surge, 2006; Hallmann 

et al., 2009; Hufthammer et al., 2010; Jones et al., 2010; Patterson et al., 2010; Helama and 

Hood, 2011; Wang et al., 2011), particularly in regions that are sensitive to climate change, 

such as mid-latitude coastal areas of the North Atlantic. These paleoclimate records can be 

compared to proxies of possible climate forcings (e.g., solar activity, the North Atlantic 

Oscillation, Atlantic Meridional Overturning Circulation) and to predictions made by 

regional climate models (Shindell et al., 2001; Renssen et al., 2006; Swindles et al., 2007; 

Mann et al., 2009, and many others). Linking paleoclimate records with proxies of climate 

forcings is particularly important for the North Atlantic sector because the North Atlantic 

plays a critical role in heat transport and climate change at regional and global scales.  

 

The majority of Holocene climate proxies provide decadal, annual, or single season 

(mostly summer and the growing season) resolution. Few studies provide the high resolution 

necessary to reconstruct seasonal-scale variability. Regional climate models demonstrate the 
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need for such high-resolution, seasonality studies. Numerical (idealized multi-level primitive 

equation) and sensitivity (ECBilt-Clio) model experiments show that small changes in the 

coupled atmospheric-oceanographic climate system influence regional mid-latitude 

seasonality in the North Atlantic sector (Lee and Kim, 2003; van der Schrier et al., 2007). 

Therefore, climate archives capable of capturing seasonal-scale resolution can provide the 

data necessary to gain insights into the mechanisms controling seasonal variability at mid 

latitudes in the North Atlantic. 

 

High-resolution time series of oxygen isotope ratios (δ18O) in mollusc shells have 

been widely used in paleoclimate and paleoecological studies (Jones and Allmon, 1995; 

Schöne et al., 2005; Surge and Walker, 2005, 2006; Goewert and Surge, 2008, and many 

others). Their fast growth makes them ideal candidates to capture seasonal variability. 

Archaeological middens found along the northwest coast of Scotland contain abundant 

limpet (Patella vulgata) shells, providing a rich source of seasonal climate records and 

information on human subsistence strategies. Isotopic studies of Patella shells have shown 

that these shells are useful for reconstructing sea surface temperature (SST) and inferring 

climate change (Shackelton, 1973; Cohen and Tyson, 1995; Fenger, et al. 2007;). Other 

advantages of using P. vulgata shells from this area include environmental conditions and 

shell mineralogy. Shells from the study area occupy a marine environment where the salinity 

and δ18OWATER values are quite stable (Crisp, 1965; Branch, 1981; Inall et al., 2009). Their 

shells are composed primarily of calcite, which makes them less susceptible to diagenetic 

alteration (Fenger et al., 2007). 
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In this study, we reconstructed the seasonal SST variability during the Neoglacial 

(3300-2500 BP) and the RWP (RWP; 2500-1600 BP) using oxygen isotope ratios of ten 

archaeological P. vulgata shells from Croig Cave, an archaeological site on the Isle of Mull 

in the Hebrides Islands west of mainland Scotland. We also compared our reconstructed 

temperatures with previous climate reconstructions to discuss the potential forcing factors 

responsible for the two climate change episodes. Based on results of climate modeling 

experiments (Lee and Kim, 2003; van der Schrier et al., 2007), our approach allowed us to 

test the hypothesis that seasonal temperature should also change when climate forcing drives 

climate change from one episode to the other one. 

 

1.1. Ecology of Patella vulgata 

The common European limpet, P. vulgata, is a gastropod that inhabits rocky 

shorelines in the high intertidal and shallow subtidal zones. This species grazes on diatoms, 

algae, algal spores, and small plants from the substratum. It rarely shows migratory 

movements much beyond its home base and is able to record environmental conditions at a 

fixed location. P. vulgata occurs in the cold- and warm-temperate biogeographic provinces 

from Norway to northern Spain and is particularly widespread around the British Isles 

(Blackmore, 1969). Water temperature and salinity tolerances of P. vulgata range from −8.7 

to 42.8oC and 20 to 35 psu (practical salinity units) (Crisp, 1965; Branch, 1981), although 

shell growth rate slows down at extreme temperatures. Although they can inhabit a range of 

salinities, our specimens came from fully marine environments where surface salinity 

measured from a seabird SBE37 moored at the surface ranges from 34.0-34.6 psu (Inall et al., 

2009). 
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P. vulgata has a conical, cap-shaped shell (~2-4 cm in length on average), which the 

apex of the shell located at the center or slightly anterior. The shell exterior exhibits gray to 

white color similar to the substratum, and the coarse surface is sculptured with radiating ribs 

and concentric growth rings. The shell interior is smooth and exhibits a prominent muscle 

scar. The shell cross-section reveals its major sclerochronological features, such as annual 

growth lines and growth increments. When the cross-section is processed with Mutvei’s 

solution (Schöne, et al., 2005), the sclerochronological features are enhanced and more 

detailed microstructures can be observed, such as semidiurnal, lunar daily, fortnightly growth 

lines and increments (Fenger et al., 2007). The growth rate of P. vulgata shells is not constant 

throughout the year and varies from 0.005mm/month to 2.6mm/month (Blackmore, 1969; 

Ekaratne and Crisp, 1984). Growth rate is primarily controlled by temperature. In mid to high 

latitudes, such as the United Kingdom, shells form a prominent growth line in the coldest 

winter month. In contrast, shells in low latitudes, such as the Mediterranean, slow their 

growth rate during the summer (Schifano and Censi, 1986). Although temperature plays the 

dominant role on growth rate and the formation of annual growth lines (Blackmore, 1969), 

reproduction can also influence growth rate (Ekaratne and Crisp, 1984). 

 

1.2. Oceanography of study area 

Coastal northwest Scotland is located in the cold-temperate biogeographic province. 

The climate is typically maritime and, therefore, relatively mild and wet compared to other 

regions at the same latitude (Baxter et al., 2008). Climate is strongly influenced by the 

prevailing southwesterly winds that deliver heat from the North Atlantic Current. The 
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strength of the prevailing winds is largely governed by the North Atlantic Oscillation (NAO). 

During positive NAO phases, a large sea-level pressure gradient between the subtropical 

Azores High and the subpolar Icelandic Low will generate strong mid-latitude westerly 

winds and bring warm and saturated air masses northward to this region (Hurrell, 1995). The 

close relationship between the climate and NAO pattern has been indicated by the residual 

winter flows through Tiree Passage (56o37.7’N, 6o23.8’W, Fig. 1.1). Inall et al. (2009) 

measured the residual winter flow through Tiree Passage from 1980 to 2006 and found that 

winter flow has significant correlation with the NAO index. 

 

The coastal waters in our study area are dominantly marine with a narrow (±0.3 psu) 

salinity range around 34.3 psu (Inall et al., 2009). The coastal waters are primarily composed 

of two sources: the Scottish Coastal Current from the Irish and Clyde Seas and the North 

Atlantic Current from Atlantic origin. Inall et al. (2009) reported that ~50% of the 

temperature variance is attributed to the temperature variations of Irish and Clyde Sea waters, 

and ~17% of the variance to that of the North Atlantic Current. 

 

2. Materials and methods 

2.1. Archaeological site, shell selection and radiocarbon dating 

Croig Cave is a small rock shelter among a number of caves on the Isle of Mull, west 

of mainland Scotland (Fig. 1.1). The cave has thick shell midden deposits that contain a 

nearly continuous accumulation of shells ranging from 800 BC-500 AD, and possibly older 

based on radiocarbon dating of shells and charcoals collected throughout the stratigraphic 

sequence. This range represents a long chronology of human use from the late Bronze to Iron 
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Ages and spans the Neoglacial through Little Ice Age climate episodes. The midden deposits 

of Croig Cave were first excavated in 2006 and were further explored in 2007. 

 

Bulk samples were collected from discrete stratigraphic horizons, and shells were 

hand picked from bulk samples for radiocarbon dating. Shells were selected based on growth 

rate, preservation (diagenetic assessment), and pristine taphonomic grade. Only specimens 

with >1mm of growth per year were used to avoid truncated records (i.e., diminished 

amplitudes in the δ18O time series) due to slow ontogenetic growth (e.g., Fig. 5 in Fenger et 

al., 2007). Assessment of diagenetic alteration requires preservation of original mineralogy. 

We selected shells with original calcitic microstructure (concentric cross-foliated and radial 

cross-foliated layers) indicating fidelity of the stable isotopic ratios. Shells containing 

remnants of encrusting or boring organisms were not selected to avoid secondary calcite 

contamination (taphonomic assessment).  

 

The selected shells were dated by accelerator mass spectrometry (AMS) at Beta 

Analytic Inc. in the United Kingdom. Radiocarbon dates of the archaeological shells were 

calibrated using MARINE04 of CALIB 6.0 (Hughen et al., 2004) and corrected for the global 

ocean reservoir effect (408 years), local reservoir effect (−68±6 years; Harkness, 1983), and 

13C fractionation (Stuiver et al., 2005) (Table 1.1). We identified 5 shells (110-30-1, 109-23-

1, 110-32-1, 109-33-1, 112-20-2) from the Neoglacial climate episode and 5 shells (103a-37-

1, 103a-39-1, 111-31-1, 103a-38-1, 102b-43-1) from the RWP (Table 1.1).  

 

2.2. Geochemical analysis 
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Selected shells were coated with a quick-dry metal epoxy resin (J-B KWIK WELD) 

on the outer and inner surface to prevent the shells from breaking during cutting. The shells 

were sectioned from the anterior to posterior margins along the axis of maximum growth and 

mounted on microscope slides. The slides were attached to a Buehler Isomet low speed saw 

and cut into ~1 mm thick cross-sections. Cross-sections were polished down to 1μm diamond 

suspension grit until the internal growth lines and increments were visible. We identified 

prominent annual growth lines to guide our microsampling strategy by using an Olympus 

stereomicroscope with a 12.5 megapixel DP71 digital camera. The light control of the 

stereomicroscope allows viewing with reflected (Fig. 1.2A) and transmitted light (Fig. 1.2B). 

Transmitted light enhanced the prominence of winter growth lines enabling identification of 

these annual features to guide microsampling (Fig. 1.2B). 

 

Limpet shells were microsampled at 20-26 samples per year from the margin toward 

the apex to achieve submonthly resolution. Microsampling was conducted on a Merchantek 

micromill with a carbide dental scriber (Brasseler). Oxygen isotope ratios of carbonate powder 

were measured using an automated carbonate preparation device (Kiel-III) coupled to a gas-ratio 

mass spectrometer (Finnigan MAT 252) housed in the Environmental Isotope Laboratory at the 

University of Arizona. The precision of the measurements was better than ±0.1‰ VPDB 

(Vienna Pee Dee Belemnite) for δ18O (1σ). 

 

2.3. Estimated temperature 

High-resolution temperature records were estimated from the measured δ18O values 

according to the previous calibration of Fenger et al. (2007). Pursuant to their calibration, 
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1.01‰ was subtracted from each δ18O value to account for the predictable vital effect in P. 

vulgata. Calculated temperatures from the subtracted values were based on the equilibrium 

fractionation equation for calcite and water (Friedman and O’Neil, 1977) modified from 

Tarutani et al (1969): 

 

1000lnα = 2.78 × 106/T2 − 2.89 

 

where α is the fractionation factor between calcite and water, and T is temperature in Kelvin. 

The relationship between α and δ is as follows: 

 

α = (δ18ΟCALCITE + 1000) / (δ18ΟWATER + 1000) 

 

where δ is expressed relative to the standard VSMOW (Vienna-Standard Mean Ocean 

Water). δ18ΟCALCITE values of limpet shells were converted from the VPDB scale to the 

VSMOW scale before applying the above equations using the following relationship reported 

by Coplen et al. (1983) and Gonfiantini et al. (1995) 

 

δ18OVPDB = (δ18OVSMOW − 30.91)/1.03091 

 

Although P. vulgata grows under normal marine conditions, the oxygen isotope composition 

of marine seawater is closely related to the mixing of local freshwater run-off (e.g. rainfall) 

with oceanic water, and consequently varies more or less among different locations. We 

applied a δ18ΟWATER value of +0.1‰±0.04‰ (VSMOW) in the temperature calculation 
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because the annual mean seawater oxygen isotope ratio in the study area is similar to that of 

Fenger et al. (2007)’s location according to the global gridded data set of  LeGrande and 

Schmidt (2006). This value is reasonable because it is close to the estimation from the 

salinity:δ18ΟWATER relationship (mixing line) in nearby Loch Sunart (Austin and Inall, 2002; 

Fig. 1.1). The δ18ΟWATER mixing line for Loch Sunart indicated that at 34 psu, the δ18ΟWATER 

value is approximately 0.12‰, in agreement with our assumed value from LeGrande and 

Schmidt (2006). Estimated temperature from the measured δ18OSHELL values and the assumed 

+0.1‰±0.04‰ (VSMOW) of δ18ΟWATER has an overall error of ±0.6ºC. 

 

3. Results  

3.1. Neoglacial 

All Neoglacial shells (110-30-1, 109-23-1, 110-32-1, 109-33-1, 112-20-2) have a 

temporal variation of δ18Ο values following a quasi-sinusoidal trend (Fig. 1.3). The 

prominent growth lines occur at or near peaks in the δ18Ο time series. Distances between 

growth lines measured around 2mm except specimen 109-33-1 which measured around 4mm 

(Fig. 1.3 and 1.4, Table 1.2). Estimated warmest summer temperatures range from 12.6oC to 

15.7oC (Fig. 1.4, Table 1.2). Estimated coldest winter temperatures of the two 

chronologically youngest shells (110-30-1, 109-23-1) recorded the coldest winter 

temperature around 7.0oC, whereas the three more recent shells (110-32-1, 109-33-1, 112-20-

2) recorded cooler temperatures during the coldest winter months (Fig. 1.4, Table 1.2). 

 

3.2. Roman Warm Period 
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The δ18Ο values of the RWP limpets vary sinusoidally with prominent growth lines 

occurring at or near the most positive δ18Ο values (Fig. 1.5). Distances between growth lines 

ranged from 1.04 to 2.56 mm, although most of them are close to 2mm except specimen 

103a-38-1 (Figs. 1.5 and 1.6, Table 1.3). Estimated warmest summer temperatures range 

from 11.6oC to 14.9oC (Fig. 1.6, Table 1.3). Coldest winter temperatures in all shells showed 

a consistent trend with the exception of specimen 103a-38-1 which recorded ~2oC warmer 

winter temperature (Fig. 1.6, Table 1.3). 

 

4. Discussion 

4.1. Neoglacial  

The Neoglacial climate interval is conventionally defined as the advancing of 

continental glaciers following the retreat of the Wisconsin glaciation during the early 

Holocene thermal maximum (Porter and Denton, 1967). Because the boundaries between the 

Neoglaciation and the early Holocene thermal maximum are not isochronous across regions, 

there is no universal beginning of Neoglacial conditions, although the interval is generally 

dated to 3300-2500 BP. For southern Norway, Europe, Matthews and Dresser (2008) 

reported 13 major century- to millennial-scale European Neoglacial events by correlating 

events recognized from the Alps and southern Norway extending throughout Europe. The 

forcing factors for the European Neoglacial events are complex, and low solar irradiance can 

explain only part of the Neoglacial events. Other potential forcing factors include volcanic 

eruptions and freshwater outbursts. 
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In our study, the temporal variation of δ18Ο values in Neoglacial shells (110-30-1, 

109-23-1, 110-32-1, 109-33-1, 112-20-2) recorded seasonal temperature changes during the 

Neoglacial (Fig. 1.3). The most positive δ18Ο values represent winter, whereas the lowest 

δ18Ο values represent summer.  Prominent annual growth lines formed during cold winter 

months (Figs. 1.3 and 1.4), which is consistent with the modern calibration study of Fenger et 

al. (2007). We also observed fewer numbers of δ18O data points in cold seasons relative to 

warm seasons, reflecting slower growth during winter and fast growth during the warm 

months.  Both these observations are in agreement with previous studies that P. vulgata from 

the cold-temperate biogeographic province slows its growth during the winter (Blackmore, 

1969; Jenkins and Hartnoll, 2001). 

 

The temporal variation of δ18Ο values also showed differences among individuals. 

Specimen 112-20-2 exhibited the smoothest sinusoidal curve. Specimens 109-23-1, 110-30-1 

and 110-32-1 are generally smooth with several fluctuations interrupting the sinusoidal 

curve. Specimen 109-33-1 has the most fluctuations and therefore least smooth. These high-

frequency fluctuations likely reflect frequent changes in SST rather than changes in 

δ18ΟWATER because the study area is not affected by influxes of freshwater and is dominated 

by well-mixed shelf water (Connor et al, 2006). Perhaps these fluctuations represent times of 

increased storminess. 

 

One shell (specimen 112-20-2) recorded a year (~4.58-7.09 mm from margin) lacking 

the typical seasonal variation (Fig. 1.4). Normally, the δ18Ο values between two neighboring 

winter growth lines should follow the sinusoidal trend which includes the coldest winter and 
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the warmest summer. However, the third annual growth increment from the margin of 

specimen 112-20-2 exhibited only a slight change in temperature. We interpret this 

observation as a year without a summer. Such an event has been documented in 536 AD, 

within the Vandal Minimum climate episode. Historical documents report a widespread dust 

veil event that caused dimming and cooling across much of the Northern Hemisphere 

(Stothers and Rampino, 1983; Rampino et al., 1988). In some regions, dry fog or aerosols 

were so persistent that the fine dust existed in the atmosphere for as long as 18 months. Due 

to the extended residence time of the dry fog or aerosols, the solar radiation was reduced to 

one tenth of normal and the year 536 AD was a year without summer (Gunn, 2000).  In 

addition to the historical records, Larsen et al. (2008) reported evidence from Greenland and 

Antarctic ice cores suggesting that the dust veil causing the year without a summer in 536 

AD resulted from a large explosive eruption from an equatorial volcano. This episode in 536 

AD likely surpassed the severity of the cold period following the Tambora eruption in 1815. 

We hypothesize a similar cause for the year without a summer in specimen 112-20-2. The 

age range of specimen 112-20-2 is 2950-2760 cal. BP and is close to the time of GB4-150 

tephra (2750-2708 cal. BP) identified from a peat deposit in Northern Ireland (Swindles et 

al., 2007). The GB4-150 tephra preserved in the Irish peat is believed to correspond to a large 

volcanic eruption in the Katla volcanic system in Iceland identified by Larsen et al. (2001) 

and Swindles et al. (2007). 

 

Neoglacial shells were also compared to monthly records of modern sea surface 

temperature (SST) near the study area for years 1961 to 1990 (Fig. 1.4). The average modern 

SST for the warmest month is 14.12±0.54ºC and for the coldest month is 7.40±0.35oC based 
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on the temperature record from the National Oceanic and Atmospheric Administration 

(NOAA) Extended Reconstructed SST V2 database (http://www.cdd.noaa.gov). The 

comparison between the estimated temperatures from the Neoglacial shells and modern SST 

record indicated that the coldest winter temperatures during the Neoglacial were similar to 

the late 20th century in the beginning of Neoglacial as recorded by the specimens 110-30-1 

and 109-23-1(Fig. 1.4, Table 1.2). Following this earlier interval, the coldest winter 

temperatures became ~1oC colder than the late 20th century (Fig. 1.4, Table 1.2). In the early 

part of our Neoglacial record, the warmest summer temperatures were ~1oC warmer than the 

late 20th century, subsequently became slightly colder (at the time of specimen 109-23-1), 

and then became warmer again (at the time of 110-32-1 and 109-33-1). The latest part of our 

Neoglacial summer temperature record was similar to the late 20th century (Fig. 1.4, Table 

1.2). The observed temperature fluctuations are in agreement with temporal fluctuations of 

the pollen record from south of the Alps during the Neoglacial (Tinner et al., 2003). Aside 

from the temperature fluctuations, the average winter temperature for the overall Neoglacial 

period was 6.6±0.3ºC based on the estimated winter temperatures of all our specimens, and 

the average summer temperature was 14.7±0.4ºC (Table 1.2). Our results indicated that the 

Neoglacial winters were slightly colder than the late 20th century winters and Neoglacial 

summers were slightly warmer than the late 20th century summers. 

 

4.2. Roman Warm Period 

The RWP, also called the Roman Climate Optimum, is defined as the climate episode 

during Roman times. The time span for RWP is generally 2500-1600 BP, although it varies 

in different regions: 2400-1600 BP in the North Sea (Hass, 1996), 2500-2100 BP in the 
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Qinghai-Tibet Plateau (Ji et al., 2005), 2700-1600 BP in southwest Greenland (Seidenkrantz 

et al., 2007) and 2600-1600 BP in southern Spain (Martín-Puertas et al., 2009). The character 

of this climate change is not always warm; for instance, the record from Martín-Puertas et al. 

(2009) suggests wet and humid climate during this time. 

 

The sinusoidal time series of δ18Ο values recorded in the RWP shells reflect seasonal 

temperature fluctuation (Fig. 1.5). Like the Neoglacial shells, the prominent annual growth 

lines all coincide with winter months (Figs. 1.5 and 1.6). The annual growth rate of the 

specimens is ~2mm except specimen 103a-38-1 (Figs. 1.5 and 1.6, Table 1.3). Further 

investigation revealed that the RWP specimen 103a-38-1 recorded winter temperature that 

was significantly different from the other four RWP shells (Table 1.3). There are two 

possibilities for this difference. One possibility is that the temperature during the growth 

period of shell 103a-38-1 was indeed significantly warmer than the other RWP shells. 

However, this possibility has low confidence because we would expect the summer 

temperature recorded in shell 103a-38-1 to be distinctive from the other RWP shells. Our 

preferred explanation is the time-averaging effect resulting from slow growth rate during 

winter. A similar time-averaging effect was also observed modern P. vulgata shells and 

produced the truncated range in δ18O values and hence estimated temperatures (Fenger et al., 

2007). Therefore, we consider the winter record of shell 103a-38-1 to be biased by time 

averaging due to slow winter growth rates, and we exclude its winter temperatures from 

further interpretations. 
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We also compared the estimated RWP temperatures to the modern SST record from 

1961 to 1990 near the study area. For the winter months, the RWP shells (not including 

excluded specimen 103a-38-1) were consistent in the coldest winter temperatures at ~6oC 

and therefore all recorded winter temperatures that were colder than the late 20th century. For 

the summer months, the RWP was initially ~2oC colder than the late 20th century as recorded 

by the specimen 103a-37-1 (Table 1.3). Summer temperature subsequently increased to 13oC 

at the time of 103a-39-1 and 111-31-1, but was still 1oC colder relative to the late 20th 

century. At the time of 103a-38-1, the summer temperature was similar to the late 20th 

century and then dropped back to 13oC at the time of 102b-43-1.  By averaging the 

temperatures of all the specimens, we concluded that the RWP winters (6.3±0.1oC) were 

~1oC colder than late 20th century winters and the RWP summers (13.3±0.3oC) were slightly 

colder than late 20th century summers. 

  

4.3. Comparison of Neoglacial and Roman Warm Period 

As previously discussed, the five Neoglacial shells recorded average winter 

temperature of 6.6±0.3ºC and average summer temperature of 14.7±0.4ºC, whereas the RWP 

shells recorded average winter temperature of 6.3±0.1oC and average summer temperature of 

13.3±0.3oC. Therefore, the RWP winters were similar to or slightly colder than the 

Neoglacial winters, and the RWP summers were ~1oC colder than the Neoglacial summers, 

which is statistically significant according to the results of one-way analysis of variance (F= 

3.46, α=0.10, with 1 and 8 degrees of freedom). Consequently, the seasonal range of the 

RWP is approximately 1oC smaller than that of the Neoglacial (Tables 1.2 and 1.3). 
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Our findings that the RWP was colder than the Neoglacial are consistent with 

previous studies. The Neoglacial shells primarily recorded the temperature during 3500-3100 

cal. BP, and most of the RWP shells recorded the temperature in 2300-1900 cal. BP (Table 

1.1, Fig. 1.7).  According to the pine history in Scotland (Bridge et al., 1990) and the 

European glacier record (Matthews and Dresser, 2008), the climate between 3500-3100 cal. 

BP was relatively warm compared to other times during the Neoglacial period, and the 

climate between 2300-1900 cal. BP was relatively cold compared to the rest of the RWP. The 

macrofossil record of Scots pine (Pinus sylvestris) from Scotland indicates that the 

percentage of pine pollen was high at 3520-3030 14C yr BP but decreased to a minimum at 

2500-1800 14C yr BP (Bridge et al., 1990). Because pine growth requires dry, warm climate, 

this suggests that the RWP was colder and wetter than the Neoglacial interval; i.e., had 

higher effective precipitation (low temperature may reduce rates of evapotranspiration and 

increase wetness). Moreover, the pollen record in northeast Scotland spanning the Bronze 

and Iron Ages also indicates a significant increase in effective precipitation at ca. 2900 cal. 

BP which led to more wet mire surfaces (Tipping et al., 2008). The chronology of European 

Neoglacial events also showed major glacial advances around 2200-1900 cal. BP and no 

glacial advances between 3500-3100 cal. BP (Matthews and Dresser, 2008).  

 

Increasing water input from the Scottish Coastal Current may have been directly 

responsible for the decreasing SST. The Scottish Coastal Current originates from the Irish 

and Clyde Seas and, hence, is colder and fresher (~1% dilution due to the brackish water 

from the fjords) relative to the North Atlantic Current. This hypothesis is supported by the 

modern instrumental records near Tiree Passage, which indicate that cooler episodes were 
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generally coincident with lower coastal salinities and westward migration of isohalines (Inall 

et al., 2009). The westward displacement of Scottish Coastal Current and isohalines is further 

determined by the strength of sub-polar gyres (SPG) and sub-tropical gyres (STG). A strong 

SPG results in a more east-west orientated gyre and, hence, colder and fresher water mass in 

the coast, whereas a strong STG results in a more south-north orientated gyre and modifies 

the coastal water mass towards warmer and saltier. In addition, Holliday (2003) investigated 

the air-sea interaction and circulation in the northeast Atlantic and suggested that the gyre 

circulation of SPG and STG are significantly influenced by the state of the NAO. Therefore, 

the cooling transition detected in our study may result from the change of NAO via 

modulating the strength of SPG and STG circulation.  

 

4.4. Subboreal/Subatlantic transition  

The Neoglacial-RWP climate transition detected in our study is in agreement with the 

Subboreal/Subatlantic transition (2800-2700 cal. BP). This climate transition is also known 

as the 850 cal. BC “event” and has been identified by pollen zones, and the Bronze Age/Iron 

Age transition based on episodes in human history. The various names for this climate shift 

result from its widespread impact on global climate and vegetation distribution, and hence, 

on prehistoric agriculture and human society.  

 

Similar to the Little Ice Age climate episode, this abrupt climatic deterioration has 

been identified in many regions in both hemispheres, and is considered to be geographically 

widespread. Most proxy evidence for this climate event comes from the North Atlantic 

Ocean (Bianchi and McCave, 1999; Bond et al., 2001; Oppo et al., 2003; Hall et al., 2004), 
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from continental Europe (Kilian et al., 1995; van Geel et al., 1998; Speranza et al., 2000, 

2002; Blaauw et al., 2004; Swindles, et al., 2007), and from eastern North America (Brown 

et al., 2000; Booth et al., 2003). There is also some proxy evidence from the Andean region 

of South America (Heusser, 1995; van Geel et al., 2000), south-central Siberia (van Geel et 

al., 2004), and northwest Africa (Van Geel et al., 1998; Elenga et al., 2004). In the North 

Atlantic, colder surface waters and accompanying prominent increases in drift ice around 

2800 cal. BP were detected from the proxy records in deep-sea sediment cores (Bond et al., 

2001). Synchronous with the change of overlying surface waters, deep meridional 

overturning circulation was reduced in the North Atlantic (Bianchi and McCave, 1999; Oppo 

et al., 2003; Hall et al., 2004). In continental Europe, this climate event shows more or less 

regional variation, although it is normally characterized by a decline of temperature or a 

wetter climate shift. Sudden increase in wet conditions started at ca. 2800 cal. BP in the 

eastern part of Netherlands based on high resolution AMS dating and micro/macro-fossil 

compositions of Holocene bog deposits (Kilian et al., 1995; Blaauw et al., 2004). A shift to 

wetter and cooler climate occurred at ca. 2800 cal. BP according to proxy records in the peat 

sequence of the Giant Mountains (Czech Republic) (Speranza et al., 2000, 2002). The 

multiproxy records from the peatlands of northern Ireland reveal a major climate shift to 

wetter/colder climate conditions at ca. 2700 cal. BP (Swindles, et al., 2007). The resolution 

for these proxy records is generally at the decadal scale.  

 

Because this climate deterioration occurred during the period of reduced solar activity 

between 2800 and 2710 cal. BP (850 and 760 cal BC), the so-called “Homeric minimum” 

(Landscheidt, 1987), van Geel et al. (1998, 2000) proposed that the abrupt decrease of solar 

 19



 

irradiance probably triggered this climate shift. This hypothesis is supported by the solar 

activity record derived from the Δ14C record of multiple peat deposits in northwest Europe 

(Mauquoy et al., 2004). Renssen et al. (2006) further explored the impact of reduced solar 

activity on centennial-scale cooling events in the Holocene by using the coupled global 

atmosphere-ocean-vegetation model ECBilt-CLIO-VECODE. In the simulation, the global 

annual atmospheric surface temperature anomaly closely followed variations in total solar 

irradiance (TSI) during the cooling phase of 2800-2700 cal. BP, implying that temperature 

change was triggered by reduced solar activity.  In addition, the simulation showed a spatial 

pattern in the temperature change. For instance, the strongest cooling (up to 0.5ºC) was 

observed at Northern Hemisphere mid-latitude continents, which is in agreement with most 

proxy evidence. After 2700 cal. BP, the value of the TSI anomaly started to increase, but the 

global atmospheric surface temperature anomaly still remained low. The extended cooling of 

surface temperature was explained by positive oceanic feedbacks. Simulated precipitation at 

Northern Hemisphere mid-latitudes did not show significant change on continents, which is 

inconsistent with the general shift to wetter conditions found in proxy data from continental 

Europe. 

 

In summary, simulations suggest that the centennial cooling event around 2800-2700 

cal. BP is a combined consequence of reduced solar activity and positive oceanic feedback. 

In our study area, positive oceanic feedback should be largely governed by the NAO based 

on the modern instrumental records (Inall et al., 2009). Global circulation models conducted 

by Shindell et al. (2001) also suggest that the decrease of solar irradiance will trigger a low 

NAO index and cause regional cooling over the continents of the Northern Hemisphere. 
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Moreover, Mann et al. (2009) and Trouet et al. (2009) implicated weak NAO conditions as a 

driver of climate during the Little Ice Age, which may also explain the cooling trend 

observed in our study. However, we are not able to exclude other possibilities in explaining 

the cooling transition from the Neoglacial to the RWP. 

 

5. Conclusions 

 

Our study provides the first reconstruction of SST variability at seasonal time scales 

in the North Atlantic along northwestern coastal Scotland across the Neoglacial-RWP 

transition. Neoglacial shells recorded slightly colder winters and slightly warmer summers 

during their growth period. RWP shells generally have slightly colder summers and ~1oC 

colder winters than present during their growth period. Our findings document a slight winter 

cooling and a significant summer cooling of ~1ºC from the Neoglacial to the RWP. This 

cooling transition is supported by other paleoclimate proxies in Scotland and Europe. This 

transition is likely associated with the Subboreal/Subatlantic transition and may have been 

triggered by reduced solar radiation at 2800-2700 cal. BP with weakened NAO conditions. 

One shell from the Neoglacial period captured a year without a summer, which may have 

resulted from an explosive volcanic eruption in the Katla volcanic system in Iceland. 
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Table 1.1. Time range of the archaeological limpets. 

Specimen No. BETA 
No. Measured Age δ13C (‰) Conventional Age (14C yr BP) 2 Sigma Calibration 

102b-43-1 252892 1930±40 +0.2 2340±40 cal. BP 2130-1930 (cal. BC 180-cal. AD 40)
103a-38-1 251118 1950±40 −0.1 2360±40 cal. BP 2150-1960 (cal. BC 200-10) 
111-31-1 251120 2000±40 +0.5 2420±40 cal. BP 2280-2030 (cal. BC 330-80) 
103a-39-1 252894 2030±40 +0.7 2450±40 cal. BP 2300-2080 (cal. BC 340-130) 
103a-37-1 252893 2080±40 +1.3 2510±40 cal. BP 2330-2140 (cal. BC 380-190) 
112-20-2 251121 2600±40 +1.0 3030±40 cal. BP 2950-2760 (cal. BC 1000-810) 
109-33-1 252895 2910±40 +0.8 3330±40 cal. BP 3350-3160 (cal. BC 1400-1220) 
110-32-1 252897 2940±40 +1.5 3370±40 cal. BP 3380-3220 (cal. BC 1430-1270) 
109-23-1 251119 2960±40 +1.0 3390±40 cal. BP 3410-3240 (cal. BC 1460-1290) 
110-30-1 252896 3100±40 +0.9 3520±40 cal. BP 3560-3380 (cal. BC 1620-1430) 
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Table 1.2. Summary statistics for temperature estimated from the Neoglacial limpets. For each specimen, distance between growth 
lines, coldest winter temperature and warmest summer temperature are all listed with the first year at bottom. 
 

Specimen 
(cal. BP) 

Distance between 
growth lines 

(mm) 

Coldest winter 
temperature (oC) 

Average winter 
temperature with 

standard errors (oC) 

Warmest summer 
temperature (oC) 

Average summer 
temperature with 

standard errors (oC) 

Seasonal 
range 
(oC) 

112-20-2 
(2950-2760) 

2.52 
2.51 

6.0 
6.6 6.3±0.3 

13.6 
15.2 14.4±0.8 8.1 

109-33-1 
(3350-3160) 4.19 

6.0 
6.1 6.0 

14.9 
14.9 14.9 8.9 

110-32-1 
(3380-3220)  6.1 6.1 15.5 15.5 9.4 

109-23-1 
(3410-3240) 

2.46 
2.08 

7.1 
7.5 
7.0 7.2±0.2 

12.6 
14.0 13.3±0.7 6.1 

110-30-1 
(3560-3380) 

1.61 
2.16 

7.8 
7.1 7.5±0.4 

15.7 
15 15.4±0.4 7.9 

Average in 
total   6.6±0.3  14.7±0.4 8.1±0.6 
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Table 1.3. Summary statistics for temperature estimated from the Roman Warm Period limpets. For each specimen, distance between 
growth lines, coldest winter temperature and warmest summer temperature are all listed with the first year at bottom.  
 

Specimen 
(cal. BP) 

Distance 
between growth 

lines (mm) 

Coldest Winter 
Temperature 

(oC) 

Average winter 
temperature with 

standard errors (oC) 

Warmest summer 
temperature           

(oC) 

Average summer 
temperature with 

standard errors (oC) 

Seasonal 
range 
(oC) 

102b-43-1 
(2130-1930) 

2.02 
2.56 
2.20 

5.6 
6.4 
5.8 5.9±0.2 

12.4 
13.4 
13.1 13.0±0.3 7.1 

103a-38-1 
(2150-1960) 

1.58 
1.39 
1.32 
1.04 

8.0 
8.3 
8.1 
9.8 
7.5 8.3±0.4 

15.1 
13.2 
14.4 
14.3 
14.5 14.3±0.3 6.0 

111-31-1 
(2280-2030) 

1.59 
1.88 
2.13 
1.72 

6.4 
5.2 
7.4 
6.2 
6.4 6.3±0.4 

13.9 
13.2 
12.3 
12.6 
12.8 
13.8 13.1±0.3 6.8 

103a-39-1 
(2300-2080) 

1.66 
1.95 

6.6 
5.9 
6.4 6.3±0.2 

13.3 
12.8 
14.9 13.7±0.6 7.4 

103a-37-1 
(2330-2140) 

2.20 
2.10 

6.0 
7.0 
6.5 6.5±0.3 

13.4 
11.6 
12.3 
11.8 12.3±0.4 5.8 

Average in 
total   6.3±0.11  13.3±0.3 6.6±0.3 
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16.3±0.1oC is calculated after excluding the outlier 103a-38-1.

 



 

 
 

Figure 1.1. Map of Scotland and Isle of Mull. The star identifies the archaeological site Croig 
Cave, which is located on the northwestern shore of Mull. The circle indicates the position of 
Loch Sunart. 
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Figure 1.2. Cross-section along the axis of maximum growth of archaeological limpet 102b-43-1. 
Arrows identify prominent annual growth lines. (A) Cross-section observed under reflected light. 
(B) Cross-section observed under transmitted light. 
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Figure 1.3. δ18O values of the 
Neoglacial limpets (110-30-1, 
109-23-1, 110-32-1, 109-33-
1, 112-20-2) versus distance 
from margin toward apex 
(growth direction is from 
right to left). The vertical 
lines represent the positions 
of annual growth lines. 
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Figure 1.4. Estimated 
temperatures with errors from 
the Neoglacial limpets. The 
vertical lines represent the 
positions of annual growth 
lines. The horizontal bars 
indicate the average range of 
summer SST data 
(14.12±0.54oC) and winter SST 
data (7.40±0.35oC) from 1961-
1990 around the grid (56oN, 
6oW) provided by the National 
Oceanic and Atmospheric 
Administration (NOAA) 
Extended Reconstructed SST 
V2 database 
(http://www.cdc.noaa.gov). 
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Figure 1.5. δ18O values of the 
Roman Warm Period limpets 
(103a-37-1, 102b-41-1, 103a-
39-1, 111-31-1, 103a-38-1, 
102b-43-1) versus distance 
from margin toward apex 
(growth direction is from right 
to left). The vertical lines 
represent the positions of 
annual growth lines. 
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Figure 1.6. Estimated 
temperatures with errors 
from the Roman Warm 
Period limpets. The vertica
lines represent the position
of annual growth lines. Th
horizontal bars indicate the 
average range of summer 
SST data (14.12±0.54oC) and 
winter SST data 
(7.40±0.35oC) around the 
grid (56oN, 6oW) from 1961-
1990 provided by the 
National Oceanic and 
Atmospheric Administration 
(NOAA) Extended 
Reconstructed SST V2 
database 
(

l 
s 
e 

http://www.cdc.noaa.gov). 
 
 
 
 
 
 
 
 
 
 
 
 

 37

http://www.cdc.noaa.gov/


 

 38

 
 
Figure 1.7. Temperature comparison between the Neoglacial and Roman Warm Period. The solid 
black lines refer to the age range of the limpets. The outlier 103a-38-1 is marked with dashed 
circle. The vertical bars indicate the average range of winter SST data (7.40±0.35oC) and 
summer SST data (14.12±0.54oC) around the grid (56oN, 6oW) provided by the National Oceanic 
and Atmospheric Administration (NOAA) Extended Reconstructed SST V2 database 
(http://www.cdc.noaa.gov). 
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CHAPTER II 

SEASONAL CLIMATE CHANGE ACROSS THE ROMAN WARM 
PERIOD/VANDAL MINIMUM TRANSITION USING ISOTOPE 

SCLEROCHRONOLOGY IN ARCHAEOLOGICAL SHELLS AND 
OTOLITHS, SOUTHWEST FLORIDA, USA 

 
 
Abstract 

 

Archaeological evidence suggests that southwest Florida experienced variably warmer and 

wetter climate during the Roman Warm Period (RWP; 300 BC-550 AD) relative to the Vandal 

Minimum (VM; 550-800 AD). To test this hypothesis, we reconstruct seasonal-scale climate 

conditions for the latter part of the RWP (1-550 AD) by using high-resolution oxygen isotope 

ratios (δ18O) of archaeological shells (Mercenaria campechiensis) and otoliths (Ariopsis felis). 

Eight shells radiocarbon-dated to 150-550 AD recorded RWP summers that were drier relative to 

today, which is represented by the average value of modern shell specimens. Eight otoliths 

indicate that RWP winters gradually increased in temperature from 18oC (150-200 AD) to 23oC 

(500-550 AD) punctuated by cold interruptions at 250-300 AD and 450-500 AD. Our climate 

reconstructions agree with archaeological observations and are partially coherent with the history 

of sea-level change. We observe a marked drying and cooling trend across the RWP/VM 

transition. The climate transition is not only consistent with falling sea level, but also coincident 

with reduced solar radiation. Reduced solar radiation might have triggered a change in 

atmospheric circulation patterns that precipitated the observed climate transition. 

 

 



 

Keywords: oxygen isotope, Ariopsis felis, Mercenaria campechiensis, Roman Warm Period, 

Vandal Minimum, southwest Florida 

 

1. Introduction 

 

The pre-European Calusa people in southwest Florida left behind abundant shell 

middens/mounds, artifacts, and other cultural remains (Marquardt 2004). Archaeological 

evidence from these deposits suggests that this region was impacted by abrupt climate 

change and sea-level fluctuation during two climate episodes in the first millennium: the 

Roman Warm Period (RWP; 300 BC-550 AD) and the Vandal Minimum (VM; 550-800 AD) 

(Marquardt and Walker, 2001). In an earlier study, we reconstructed seasonal climate change 

during the VM using oxygen isotope proxy data (δ18O) preserved in archaeological 

Mercenaria campechiensis shells and Ariopsis felis otoliths (fish “ear bones”) from discrete 

chronostratigraphic layers within these Calusa middens and mounds (Wang et al., 2011). 

Following the earlier VM study, the primary intent of the present research is to reconstruct 

climate change in the RWP with oxygen isotope ratios of archaeological shell-otolith pairs 

and provide isotope evidence to test the archaeological findings across the RWP and VM 

climate episodes. Archaeological shell-otolith pairs are good study proxies for both 

paleoclimate reconstructions and human-climate relationships. The shell-otolith pairs provide 

high-resolution climate information on changes in summer wet season conditions and winter 

sea surface temperature (SST) (Walker and Surge, 2006). Because archaeological shells and 

otoliths were deposited during the RWP by the Calusa of southwest Florida, the climate 

proxies also reflect aspects of human behavior in the late Holocene.  
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Aside from providing isotope evidence for the archaeological findings, the climate 

reconstruction in this study should also be pivotal for studying the mechanism dominating 

late Holocene climate change. Accurate reconstruction of paleoclimate is essential to 

investigate the mechanism underlying the climate change. High-resolution climate proxies 

are able to help reduce uncertainties generated in the process of reconstruction. Oxygen 

isotope ratios of mollusc shells and fish otoliths have been widely used in high-resolution 

temperature or precipitation reconstructions, and are accepted as reliable and accurate climate 

proxies (Jones et al., 1989, 1990, 1996; Ivany et al., 2000; Wurster and Patterson, 2001; 

Surge and Walker, 2005, 2006; Wang et al., 2011).  Moreover, there is increasing 

paleoclimate evidence that tropical/subtropical climate is actually more variable and dynamic 

than previously thought (Winter et al., 2000; Haug et al., 2001; Hodell et al., 2001; Black et 

al., 2007; Richey et al., 2009). The model simulation conducted by Barnett et al. (1992) 

identified the climate variability within the latitudes of 0o-30o as the primary contributor to 

global climate variability at multi-decadal to centennial timescales. Adjacent to our study 

area, the Gulf of Mexico, experienced a larger magnitude of cooling than the mean 

magnitude of northern hemisphere cooling during the Little Ice Age (Richey et al., 2009). 

Therefore, subtropical southwest Florida (26-27oN) is sensitive to climate change like other 

low-latitude regions and is appropriate for studying multi-decadal to centennial climate 

oscillations, such as the VM and RWP. 

 

In this project, we present a multi-proxy record of δ18O values that signal the 

variability of summer precipitation and winter temperature during the RWP in southwest 
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Florida. We further compare the RWP climate reconstruction with archaeological evidence to 

check if they are in agreement. Additionally, we integrate the climate records of RWP and 

VM with the history of sea level and solar activity to gain insights into the climate 

mechanism driving the late Holocene climate change in southwest Florida. 

 

2. Study site 

2.1. Climatic context 

Coastal southwest Florida, and in particular the Charlotte Harbor-Pine Island Sound 

region (Fig. 2.1), is a low-lying, topographically flat estuarine environment, which makes it 

vulnerable to climate related disasters such as sea-level rise, floods, droughts, hurricanes and 

other storms, etc. (Beever III et al., 2009). Additionally, falls in sea level such as those 

indicated by regional beach-ridge research (Stapor et al. 1991) in a shallow-water bay such as 

Pine Island Sound (Fig. 1) would be or have been especially disastrous for a people 

dependent on the molluscan and fish populations of these inshore waters. In response to some 

of this variability, ancient Calusa people in this region may have shifted their residential 

locations several times during their long history there (Walker, 2000; Walker et al., 1995).  

Therefore, coastal southwest Florida is an ideal location for studying past human-climate 

interactions. 

 

The climate of coastal southwest Florida is typically subtropical. The instrumental 

record of monthly average air temperature (from 1892-2007) at Fort Myers (Fig. 2.1B; 

www.ncdc.noaa.gov) shows that the coldest average monthly temperature is 17.4±1.7oC 

(n=116), whereas the warmest average monthly temperature is 28.1±0.6oC (n=116). 
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Therefore, the interannual temperature variability is larger in winter compared to summer 

months. The instrumental record for precipitation from 1931-2007 at Fort Myers (Fig. 2.1B; 

www.ncdc.noaa.gov) indicates that monthly accumulation of rainfall during the wet season 

(May-October) averages 181 mm/month, whereas the dry season (November-April) averages 

50 mm/month. The rainfall during the wet season contributes approximately 78% of the 

annual rainfall, resulting in a seasonal pattern of warm/wet summers and cool/dry winters. 

The seasonal difference in wind conditions controls this pattern. In winter, continental cold 

fronts generate high-speed wind and carry cool and dry Arctic air from Canada to the study 

site, resulting in cooler and drier winters relative to summers (Bradley, 1972). 

 

On the long-term basis of decades to centuries, the climate of southwest Florida is 

strongly influenced by atmospheric circulation patterns. Temperature change, especially 

winter temperature change, is mainly affected by a low-frequency circulation pattern 

resembling the North Atlantic Oscillation (NAO) (Marshall et al., 2001; Lund and Curry, 

2004; Saenger et al., 2011). Precipitation change is largely influenced by the Atlantic 

Multidecadal Oscillation (AMO) which develops in high latitudes and secondarily from low-

latitude climate patterns such as the El Niño-Southern Oscillation (ENSO) and Intertropical 

Convergence Zone (ITCZ) (Soto, 2005). Soto (2005) attributes increasing precipitation in 

Florida to an increase of warm, moist air delivered either from the tropical Pacific during El 

Niño years or from the Atlantic during warm AMO phases and northward migration of the 

ITCZ. Therefore, the long-term climate variability of southwest Florida is a combined 

reflection of high-latitude and low-latitude climate systems. 
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2.2. Archaeological context 

In southwest Florida, Calusa people inhabited the highly productive Charlotte 

Harbor-Pine Island Sound region, which archaeologists refer to as the Caloosahatchee culture 

region (Fig. 2.1B; Walker, 1992). Although the Calusa people were culturally complex, their 

subsistence strategy was nonagricultural, and they relied heavily on aquatic foods (Widmer, 

1988; Marquardt 2004). They regularly collected estuarine/marine fish, shellfish and other 

aquatic animals from the shallow-water zones close to their habitation sites (Walker, 1992). 

The skeletal remains of consumed aquatic animals were mostly deposited in sequence, so 

their accumulated middens and mounds are usually in stratigraphic succession (Walker, 

1992; Walker et al., 1995; Walker 2000). Thus, these stratigraphic middens and mounds 

contain information about the temporal and spatial variation of animal diversity and 

abundance as well as settlement changes of the local people. Therefore, these stratigraphic 

middens and mounds represent an environmental archive that can be used to reconstruct the 

history of paleoenvironmental and paleoecological changes (Walker, 1992; Marquardt and 

Walker, 2001; Walker and Surge, 2006). 

  

The archaeological specimens used in this study were collected from the shell 

middens and mounds at the Pineland Site Complex (see Marquardt and Walker, 2001; 

Marquardt and Walker, in press for detailed descriptions). The temporal focus of this study is 

the cultural period, Caloosahatchee I-late and the earliest part of the IIA-early period (1-550 

AD), which correlates with the later part of the RWP (Walker and Surge, 2006). A schematic 

composite of the stratigraphy of the Pineland Site Complex for the cultural interval of 

Caloosahatchee I-late (Fig. 2.1A; Marquardt and Walker, in press) is characterized by beds of 
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sand and shell midden, sometimes with much intermixing. They variably contain hard-part 

remains of many fishes, mollusks, and echinoderms. Most remains were discarded by 

Pineland’s human residents after consuming the fish and shellfish meats (e.g., of hardhead 

catfish and other fishes, and of oysters, surfclams, quahog clams, whelks, conchs, etc.). In 

other cases, remains such as small articulated marsh clam and ribbed mussel shells are in-situ 

specimens that died in life positions, indicating layers of natural sedimentation. One stratum, 

occurring at 300 AD and indicated by articulated surfclam shells and sea urchin remains is 

interpreted as a storm-surge deposit. Additionally, the remains of a dwelling floor located in 

one area of the site complex are indicated by a dark layer with an associated post mold. 

 

3. Methods 

3.1. Dating 

Following the approach of Walker and Surge (2006) and Wang et al. (2011), we 

analyzed shell-otolith pairs dated to the Caloosahatchee I-late and the earliest part of the IIA-

early period (1-550 AD). The archaeological pairs were chosen based on their 

chronostratigraphic context from multiple areas of the Pineland Site Complex (Walker et al., 

1995; Walker, 2000; Marquardt and Walker, 2001). We selected eight shell-otolith pairs (CI-

M6/CI-A6, CI-M7/CI-A7, CI-M8/CI-A8, CI-M3/CI-A3, CI-M5/CI-A5, CIIA-M6/CIIA-A6, 

CIIA-M7/CIIA-A7, and CIIA-M9/CIIA-A9) and two additional shells (CI-M2 and CI-M4) 

from the Pineland collections housed at the Florida Museum of Natural History (FLMNH) 

(see Table 2.1 for corresponding FLMNH shell catalog numbers). However, shells CI-M7 

and CI-M3 are too small in size and hence were not sampled. The selected shells and otoliths 

were dated using accelerator mass spectrometry (AMS) at the National Ocean Sciences 
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Accelerator Mass Spectrometry (NOSAMS) Facility, Woods Hole Oceanographic Institute. 

Measured AMS 14C ages of the archaeological shells were calibrated using MARINE04 of 

CALIB 5.0.2 and corrected for the global ocean reservoir effect (408 years), local reservoir 

effect (−5±20 years), and 13C fractionation (Hughen et al., 2004; Stuiver et al., 2005). By 

combining the stratigraphic order of archaeological proveniences and the calibrated AMS 14C 

dates, the 50-year archaeological AD time ranges of the specimens were estimated (Table 

2.1). 

 

3.2. Microstructure and microsampling 

The accretionary growth patterns in M. campechiensis shells and A. felis otoliths 

contain annual markers, which guided our sampling strategy. We cut shells and otoliths into 

cross-sections along the axis of maximum growth. The cross-sections were polished down to 

1μm diamond suspension grit until the internal growth increments were clearly visible. Shell 

cross-sections showed alternating dark slow growth increments (or translucent under 

transmitted light; Jones and Quitmyer, 1996) and light fast growth increments under reflected 

light (Fig. 2.2A).  The surrounding environmental conditions dominate the growth rate of 

Mercenaria shells. When water temperature and salinity exceed the limits of shell growth, 

i.e., below 9oC or above 31oC or below 17 psu (practical salinity units), growth rate slows 

(Ansell, 1968; Kraeuter and Castagna, 2001). Therefore, dark increments in Mercenaria 

shells under reflected light form in summer for the southern hard clam M. campechiensis 

(Arnold, et al., 1991). The cross-sections of A. felis otoliths exhibited fast growth increments 

separated by prominent growth lines of slow growth rate (Fig. 2.2B; Wurster and Patterson, 

2001). Because A. felis prefer living in warm water (25oC-36oC), the growth rate of A. felis 
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otoliths in our study area decreases in winter and forms growth lines (Jones et al., 1978). In 

addition, the microstructure of archaeological shells and otoliths displays that annual growth 

rate slows with ontogeny after 5 to 6 years of age. 

 

Cross-sections of all archaeological shells and otoliths were examined using an 

Olympus stereomicroscope with a 12.5 megapixel DP71 digital camera to evaluate 

preservation of original aragonite. We only use specimens with preserved original aragonite 

and that were not diagenetically altered. Shells were microsampled at 24 to 26 samples per 

year during the first 5 years of growth and otoliths were microsampled at 15 to 20 samples 

per year across the second to sixth years of growth. Microsampling was performed using a 

Merchantek micromill fitted with a Brasseler carbide dental scriber (Fig. 2.2C). Each 

digitized drilling path produced approximately 40 to 60 μg of carbonate powder for isotopic 

analysis. Oxygen isotope ratios were measured using an automated carbonate preparation 

device (Kiel-III) coupled to a gas-ratio mass spectrometer (Finnigan MAT 252). Powdered 

samples were reacted with dehydrated phosphoric acid under vacuum at 70°C for one hour. 

The isotope ratio measurement was calibrated based on repeated measurements of NBS-19 

and NBS-18. The precision of the measurements was ±0.1 ‰ for δ18O (1σ). The results were 

reported in per mil units (‰) relative to the VPDB (Vienna Pee Dee Belemnite) standard. 

 

3.3. Estimated precipitation and temperature 

Mixing relations between oxygen isotope ratios and salinity in Charlotte Harbor 

exhibit a relatively steep gradient during the summer wet season compared to the winter dry 

season (Walker and Surge, 2006). However, the estuarine waters in Pine Island Sound have a 
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much more complex seasonal behavior. Pine Island Sound may behave like a restricted 

lagoon having limited communication with Charlotte Harbor. Moreover, near-surface aquifer 

systems may produce freshwater seeps in the shallow basin of Pine Island Sound further 

complicating the seasonal relationship between δ18Owater and salinity. Therefore, although M. 

campechiensis shells and A. felis otoliths precipitate in oxygen isotope equilibrium with 

ambient water (Kalish, 1991; Iacumin et al., 1992; Patterson et al., 1993; Thorrold et al., 

1997; Elliot et al., 2003), the complication of δ18Owater making it difficult to estimate 

temperature from δ18Oshell and δ18Ootolith values. To overcome this complication, we used a 

multi-taxa approach to evaluate summer precipitation and winter temperature during the 

RWP. This approach has been successfully applied in previous studies by Walker and Surge 

(2006) and Wang et al. (2011).  

 

We first compared δ18Oshell values between modern (05PI05 and 05PI17 from Wang 

et al., 2011) and archaeological (CI-M6, CI-M8, CI-M2, CI-M4, CI-M5, CIIA-M6, CIIA-

M7, and CIIA-M9) shells to make inferences about summer precipitation in the RWP. More 

negative summer δ18Oshell values refer to more negative δ18Ow values that result from 

increased input of freshwater due to more precipitation. The influence of temperature on 

summer δ18Oshell is negligible because of low inter-annual variability observed in summer 

temperature (0.6oC) between 1892 and 2007. The variability of 0.6oC can only result in 

approximately 0.1‰ differences in δ18Oshell values (Elliot et al., 2003). We assumed that the 

inter-annual variability of summer temperature during the RWP is similar to today because 

the low-frequency circulation pattern resembling NAO controls the long-term temperature 

change in southwest Florida and it mainly influences the winter temperature change. 
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Unlike M. campechiensis which are sessile, A. felis migrate between estuarine and 

marine environments seasonally. In winter and early spring, adults migrate from estuarine 

water into normal marine water in the Gulf of Mexico where δ18Ow can be constrained to 

marine seawater values of ~+1‰VSMOW (Vienna Standard Mean Ocean Water) (Surge and 

Walker, 2005). In addition, A. felis live in water above the thermocline during winter, so 

δ18Ootolith values record climatic temperature variability rather than depth-related temperature 

change (Muncy and Wingo, 1983).  Therefore, the seasonal migration behavior of A. felis 

provides an opportunity to estimate winter temperature from winter δ18Ootolith values. 

Following Surge and Walker (2005), we used the equilibrium fractionation equation reported 

by Patterson et al. (1993) to calculate temperature: 

 

103lnα=18.56(103T−1)−33.49 

α=(δ18Οotolith+103)/(δ18Οw+103) 

 

where T is the temperature in Kelvin, and δ18Οotolith and δ18Οw are oxygen isotope ratios 

relative to the VSMOW scale. We converted δ18Ootolith values from the VPDB scale to 

VSMOW following Gonfiantini, et al. (1995): 

 

δ18ΟVSMOW=1.03091×δ18ΟVPDB+30.91. 

 

4. Results 
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The temporal variations of δ18Οshell values in all RWP shells (CI-M6, CI-M8, CI-M2, 

CI-M4, and CI-M5) followed a quasi-sinusoidal trend (Fig. 2.3). Dark increments (under 

reflected light) coincided at or near the most negative values in the δ18Οshell time series (Fig. 

2.3). The most negative δ18Οshell values were selected for evaluation of summer precipitation 

(Fig. 2.3; Table 2.2). δ18Ο values of RWP otoliths (CI-A6, CI-A7, CI-A8, CI-A3, and CI-A5) 

also varied sinusoidally (Fig. 2.4). The majority of prominent growth lines occurred at or 

near the most positive δ18Οotolith values (Fig. 2.4). The coldest temperatures recorded in each 

otolith were selected to evaluate winter temperature change (Fig. 2.4; Table 2.2). 

 

5. Discussion 

5.1. Oxygen isotope ratios of shells and otoliths 

Although varying δ18Ow values of the estuarine water in our study area impedes the 

accurate estimation of temperature, variations in the δ18Oshell values of archaeological shells 

can reflect the seasonal pattern that the most positive values represent cold winter 

temperatures and the most negative values represent warm summer temperatures (Fig. 2.3). 

In addition, combining the seasonal pattern of δ18Oshell values with growth-increment analysis 

also reveals the relationship between temperature and growth rate. The increments of slow 

growth always coincide with the most negative δ18Oshell values (i.e., warm summers), 

whereas the increments of fast growth rate are coeval with more positive δ18Oshell values (i.e., 

colder temperatures) (Fig. 2.3). Therefore, the δ18Oshell profile of archaeological shells exhibit 

relatively broad peaks and narrow valleys. The ontogenetic analysis is consistent with earlier 

studies in that Mercenaria shells from subtropical latitudes form slow growth increments in 

summer (Arnold et al., 1998; Surge and Walker, 2006; Surge et al., 2008). 
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Similar to the δ18Oshell values of archaeological shells, the δ18Ootolith values of 

archaeological otoliths exhibit a seasonal pattern with most positive values in winter and 

most negative values in summer (Fig. 2.4). Positions of most prominent growth lines are 

coincident with the most positive δ18Ootolith values, suggesting that the growth rate decreased 

significantly in winter. However, there were one or two growth lines in otoliths CI-A3, CI-

A8, and CI-A6 occurring at the negative δ18Ootolith values instead of at the most positive 

δ18Ootolith values. This indicates that the growth rate of otoliths is not only determined by 

temperature but also by biological factors, such as food and reproduction (Wang et al., 2011). 

Because a significantly slow growth rate can increase the time averaging during 

microsampling, the δ18Ootolith profile potentially does not record the coldest winter 

temperature (Patterson et al., 1993). Wang et al. (2011) observed warmer winter temperature 

reconstructed from the modern otolith than that measured instrumentally. To reduce the 

biases of time averaging, we compared the winter temperatures of archaeological otoliths 

with the winter temperatures of modern otolith MOD2002 (from Wang et al., 2011), instead 

of with winter temperatures from the instrumental record. 

 

5.2. Reconstructed precipitation and temperature during the RWP 

Summer precipitation of the RWP was lower or similar to the late 20th century. The 

oldest shell (CI-M6; 150-200 AD) recorded more positive summer δ18Oshell values in the first 

two years and similar values in the latter years compared to the average value of modern 

shell specimens measured by Wang et al. (2011)  (Fig. 2.3). The average for the most 

negative δ18Oshell values in the first, third, fourth and fifth summers was −1.9±0.3‰, slightly 
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higher than the average value of modern shell specimens (Table 2.2). Therefore, the summers 

over 150-200 AD were slightly drier than today, which is represented by the average value of 

modern shell specimens (Table 2.2). The second summer of CI-M6 was not included for 

average because we lost several samples for the second summer and risked not recording the 

most negative δ18Oshell value. In 200-250 AD, shell CI-M8 recorded more positive δ18Oshell 

values in the first and fourth summers and similar δ18Oshell values in the second and third 

summers relative to modern specimens (Fig. 2.3). The average for the four summers was 

−2.1±0.2‰, which suggests slightly drier summers than today (Table 2.2). In 250-300 AD, 

shell CI-M2 recorded both summers drier than today (Fig. 2.3). In 300-350 AD, shell CI-M4 

recorded similar a summer in the first year, then soon changed into drier summers relative to 

today (Fig. 2.3). The average for the most negative δ18Oshell values of CI-M4 also suggests 

drier summer in 300-350 AD (Table 2.2). Shell CI-M5 also indicated four consistent drier 

summers than today in 300-350 AD although there appears to be a trend of increasing 

precipitation after the fourth summer. The average δ18Oshell value for the four summers of CI-

M5 was −1.6±0.1‰, similar to that of shell CI-M4 (−1.6±0.3‰). To summarize, the majority 

of RWP summers were drier than today with few summers similar to today. 

  

Winter temperature of the RWP was colder or similar to today. In 150-200 AD, 

otolith CIA-6 recorded colder winters in the first and third winters and similar winter in the 

second winter compared to today, which is represented by the average winter temperature of 

modern otolith MOD2002 (Fig. 2.4). The average for the coldest temperatures of the three 

winters was 18.1±0.7oC, which was about 2oC colder than today (Table 2.2). In 200-250 AD, 

the winter temperatures of otoliths CI-A7 and CI-A8 were consistent and were similar or 
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slightly colder relative to today (Fig. 2.4). In 250-300 AD, all the three winters of otolith CI-

A3 recorded colder winters than today and the coldest temperature (16.2oC) was almost 4oC 

colder than today (Fig. 2.4). In 300-350 AD, otolith CI-A5 recorded similar winter 

temperature in the first and third winters and warmer temperature in the second winter 

relative to today (Fig. 2.4). The average for the otolith CI-A5 was 20.6±0.5oC, which was 

similar to today (Table 2.2).  Therefore, otoliths CI-A6 and CI-A3 recorded colder winters 

relative to today whereas otoliths CI-A7, CI-A8 and CI-A5 recorded similar winters to today. 

 

Reconstructed summer precipitation and winter temperature are in agreement with the 

archaeological evidence for the RWP. In 150-200 AD, the shell/otolith pair CI-M/A6 

suggests drier summers and colder winters relative to today (Fig. 2.5; Table 2.2). This was 

consistent with the early part of regression after a transgression peak at 150 AD in a sea level 

record reconstructed by Tanner (2000) (Fig. 2.5). The sand observed underlying the stratum 

of CI-M/A6 might have been deposited at the time of transgression peak (Marquardt and 

Walker, 2001). During 200-250 AD, shell CI-M8 recorded slightly drier summers and CI-

A7&8 recorded slightly colder winters (Fig. 2.5; Table 2.2). Therefore, compared to the 

earlier deposited CI-M/A6, they suggest that both summer precipitation and winter 

temperature increased in 200-250 AD relative to 150-200 AD. This is in agreement with the 

dominance of eastern oyster shells, along with low numbers of the high-salinity associate, 

crested oysters in this time increment, which suggests relatively low-salinity water 

(Marquardt and Walker, in press). In 250-300 AD, summer precipitation decreased 

significantly as recorded by shell CI-M2 and winter temperature also decreased based on the 

winters of otolith CI-A3 (Fig. 2.5; Table 2.2). These results are plausible because these 

 53



 

specimens were both from the very bottom of Old Mound (OM)'s buried, waterlogged 

midden. The elevation of CI-M2/A3 was Level 102 (−0.46 m MSL), well below estimated 

MSL within Level 97. Therefore, the specimens represent the initiation of that midden which 

was deposited on a lowered shoreline and then accumulated up to a half-meter depth 

(Marquardt and Walker, in press). This is in agreement with the 250 AD sea-level low and 

subsequent abrupt reversal in 250-300 AD (Fig. 2.5). In 300-350 AD, shell CI-M4 also 

recorded dry summers, consistent with its high-salinity midden context and coincident with 

the beginning of a regression of sea level after a peak at 300 AD (Fig. 2.5; Tanner, 2000). 

After CI-M4, shell CI-M5 recorded dry summers, still relatively high water but consistent 

with falling sea level (Fig. 2.5; Tanner, 2000) and high abundance of crown conchs 

(Marquardt and Walker, in press), an opportunistic gastropod that flourishes in times of 

environmental stress (Walker 1992, 2000). 

 

5.3. Climate transition across the RWP and VM climate episodes 

We combined the RWP climate with VM climate (Table 2.3; Wang et al., 2011) 

together to investigate how the climate changed across the boundary of the two episodes 

(Fig. 2.5). During the 1-500 AD portion of RWP, summer precipitation was first lower than 

today in 150-200 AD, and then slightly increased in the interval of 200-250 AD, and later the 

precipitation decreased and summer became even drier in 250-500 AD. The winter 

temperature appeared to gradually increase from 18oC at 150-200 AD to 23oC at 500-550 

AD, although there seemed having cold interruptions occurring at 250-300 AD and 450-500 

AD. During the VM (500-800 AD), the summer precipitation was low at first and abruptly 

increased at 550-600AD. Then it began decreasing until 650-700 AD and slightly increased 
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in 700-750 AD. For the VM winters, a cooling trend was detected changing from 23oC at the 

end of RWP to 17oC at 700-750 AD. After the cooling, winter temperature increased again at 

850-900 AD. Therefore, the climate change across the RWP and VM transition was 

characterized with a drying and cooling transition. 

 

We also compared the RWP and VM climate change with a sea-level record from 1-

900 AD (Fig. 2.5). Tanner (2000) reconstructed the Denmark sea level record for the past 

2000 years based on the long, Jerup beach ridge sequence in northern Denmark. The 1-900 

AD portion of this record is used here because its resolution (50.5 years on average) is higher 

than the existing sea level records for the Gulf of Mexico area (Marquardt and Walker, in 

press). Therefore, it provides more detailed sea-level fluctuations which are needed for 

comparison with the Pineland isotopic data. Moreover, Marquardt and Walker (in press) 

provide many lines of evidence justifying the Jerup Denmark record as appropriate in the 

study of southwest Florida, including its consistency with less detailed sea-level records 

around Florida and oceanic teleconnections throughout the North Atlantic region. To better 

visualize the comparison, we added the 1-900 AD portion of the Jerup record to the panels of 

reconstructed summer precipitation and winter temperatures, respectively (Fig. 2.5). The 

comparison shows that the RWP and VM climate data correlate with the sea-level record, 

although neither the RWP nor VM data were exactly synchronous with the sea-level 

oscillation. The dating errors (~50 years) of the sea level record and its lower resolution 

relative to the temperature and precipitation reconstructions might have contributed to the 

observed discrepancies. Nonetheless, despite the discrepancies, we observe a distinct match 

between a striking drying and cooling trend in 500-700 AD and a falling sea level (Fig. 2.5). 
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Solar radiation is a primary forcing factor in the Earth’s climate change. In the late 

Holocene, climate change often temporally coincides with solar activity. Examples are the 

Subboreal/Subatlantic transition (2800-2700 cal a BP) with the Homeric Minimum, the 

Medieval Warm Period (~1200-1400 AD) with the Medieval Maximum, and the Little Ice 

Age (~1500-1700 AD) with the Maunder Minimum. Therefore, it is informative to assess the 

temporal relationship between the climate of RWP or VM and solar activity. We compare the 

reconstructed precipitation and temperature of the RWP and VM with variability of total 

solar irradiance (TSI) over 1-900 AD (Fig. 2.6; Steinhilber, et al., 2009). Although the 

comparison is rudimentary, the drying and cooling transition across the RWP and VM shows 

substantial correlation with decreasing TSI (Fig. 2.6). Therefore, we infer that the RWP-VM 

climate transition was likely driven by the change of solar forcing. As to how solar forcing 

caused the RWP-VM drying and cooling transition, we refer to the explanation for the 

drying/cooling of the Little Ice Age in the subtropical North Atlantic (Lund and Curry, 2004, 

2006; Soto, 2005; Richey et al., 2009). The cooling in the Little Ice Age was explained by 

positive NAO-like phases. When solar radiation decreased from the Medieval Maximum to 

the Maunder Minimum, sea-surface temperatures of the North Atlantic became colder and 

formed positive NAO-like phases. During the positive NAO-like phases, the north-south sea-

level pressure gradient increased and consequently oceanic meridional overturning increased, 

which cooled the sea-surface temperatures of the subtropical North Atlantic (Marshall et al., 

2001). The proposed mechanism for the Little Ice Age drying involved multiple atmospheric 

circulation patterns (Lund and Curry, 2004; Soto, 2005). Low sea-surface temperatures of the 

North Atlantic caused a cold phase of AMO that is characterized by a small pressure 
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difference between the North Atlantic High and the Icelandic Low. The small pressure 

difference then produced weaker trade winds and hence decreased precipitation in Florida. 

The relative position of the ITCZ was forced to migrate southward by the Little Ice Age 

cooling which also decreased precipitation in subtropical Florida. Moreover, decreased solar 

radiation of the Little Ice Age might also trigger the cold phase of ENSO that would have 

further lowered rainfall in the study area. We hypothesize that the climate transition from 

RWP to VM experienced similar changes in atmospheric circulation patterns. However, this 

explanation is not conclusive and we do not exclude other possible mechanisms for the 

RWP-VM climate change. 

 

6. Conclusions 

 

Based on a multi-taxa approach, this study successfully reconstructed the seasonal 

paleoclimate in southwest Florida over the latter part of the RWP. The reconstruction 

indicates that the RWP summers were drier relative to today. The RWP winters gradually 

increased in temperatures from 18oC at 150-200 AD to 23oC at 500-550 AD with cold 

interruptions at 250-300 AD and 450-500 AD. Eight shells radiocarbon-dated to 150-550 AD 

recorded that RWP summers were drier relative to today, which is represented by the average 

value of modern shell specimens. The reconstructed variable RWP summer and winter 

climate agrees with the archaeological evidence observed during the cultural period 

Caloosahatchee I-late (1-500 AD). 
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Combining the RWP climate results with those of the previously estimated VM, we 

detect a cooling and drying climate transition across the RWP and VM climate episodes. The 

climate transition presented significant temporal coherence with falling sea level and 

decreasing solar radiation. Based on existing explanations for the Little Ice Age in the 

subtropical North Atlantic, we suggest that decreased solar radiation likely was a significant 

forcing factor for the cooling and drying RWP-VM climate transition in southwest Florida 

via modifying the atmospheric circulation patterns (NAO, AMO, ENSO, ITCZ). 
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Table 2.1. Time range of the archaeological shells in the Roman Warm Period. 
 

Specimen FLMNH-ANT Catalog No. NOSAMS No.
AMS radiocarbon age 

(14C yrs BP) 
δ13C  

(VPDB ‰)
cal yr AD range 

(1 sigma) 
Chronostratigraphic Range 

(AD) 
CIIA-M91 2003-38-8/2/5 OS-54183 1890±30 0.93 460-560 500-550 
CIIA-M71 95-3-31/5 OS-54181 1970±35 0.67 350-470 450-500 
CIIA-M61 92-24-2 OS-54180 1930±40 0.83 420-540 450-500 

CI-M5 90-19-3 OS-54447 2050±35 0.95 270-380 300-350 
CI-M4 92-11-66 N/A N/A N/A N/A 300-350 
CI-M3 92-18-18 OS-54185 2070±35 1.21 250-360 250-300 
CI-M2 92-24-21 N/A N/A N/A N/A 250-300 
CI-M8 92-11-65 OS-54294 2120±40 −1.03 160-300 200-250 
CI-M7 2001-128-15 OS-54293 2140±50 0.91 140-280 200-250 
CI-M6 90-8-15/1 OS-54292 2130±30 0.73 160-270 150-200 

1Data for the specimens CIIA-M/A9, CIIA-M/A7, and CIIA-M/A6 were published by Wang et al. (2011) as Vandal Minimum specimens. 
Marquardt and Walker (in press) update the chronostratigraphic range of the three specimens and add them to the Roman Warm 
Period specimens. 63
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Table 2.2. Summary statistics for the modern and Roman Warm Period shells and otoliths. For each specimen, most negative summer 
δ18O values or coldest winter temperatures are all listed with the first year at bottom.  
 

Shell specimen 
(AD) 

Most negative summer 
δ18O values (VPDB ‰) 

Average summer δ18O 
values with standard error 

(VPDB ‰) 
Otolith specimen 

(AD) 
Coldest winter 

temperatures (oC) 

Average winter 
temperature with 

standard error (oC) 

05PI051 
−2.64 
−2.07 −2.4±0.3 

05PI171 
−2.27 
−2.70 −2.5±0.2 MOD20021 

22.7 
21.4 
19.1 
19.1 
21.2 
20.9 
20.7 
19.2 20.5±0.5 

CIIA-M92 
(500-550) 

−2.02 
−1.72 
−1.29 
−1.45 −1.6±0.2 

CIIA-A92 
(500-550) 

22.2 
21.9 
23.6 
22.4 22.5±0.4 

CIIA-M72 
(450-500) 

−1.79 
−2.13 
−1.62 −1.8±0.2 

CIIA-A72 
(450-500) 

 
19.8 
19.8 
15.1 18.2±1.6 

CIIA-M62 
(450-500) 

−1.73 
−1.34 
−1.36 
−2.07 −1.6±0.2 

CIIA-A62 
(450-500) 

21.6 
21.5 
20.1 
19.5 20.7±0.5 

CI-M5 
(300-350) 

−1.72 
−1.85 
−1.35 
−1.41 −1.6±0.1 

CI-A5 
(300-350) 

 
20.7 
21.4 
19.6 20.6±0.5 

CI-M4 
(300-350) 

−1.20 
−1.28 
−1.29 
−2.47 −1.6±0.3    
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CI-M2 
(250-300) 

−1.28 
−1.69 −1.5±0.2 

CI-A3 
(250-300) 

17.6 
18.3 
16.2 17.4±0.6 

   
CI-A7 

(200-250) 

19.7 
20.0 
19.7 
18.9 19.6±0.2 

CI-M8 
(200-250) 

−1.82 
−2.58 
−2.33 
−1.71 −2.1±0.2 

CI-A8 
(200-250) 

19.3 
20.0 
20.8 
19.5 19.9±0.3 

CI-M6 
(150-200) 

−1.89 
−2.34 
−2.32 
−1.14 −1.9±0.3 

CI-A6 
(150-200) 

 
17.0 
19.5 
17.9 18.1±0.7 

1Data for the modern shells (05PI05 and 05PI17) and otolith (MOD2002) and the archaeological specimens (CIIA-M/A9, CIIA-M/A7 
and CIIA-M/A6) were published by Wang et al. (2011). 
2Data for the specimens CIIA-M/A9, CIIA-M/A7, and CIIA-M/A6 were published by Wang et al. (2011) as Vandal Minimum specimens. 
Marquardt and Walker (in press) update the chronostratigraphic range of the three specimens and add them to the Roman Warm 
Period specimens. 



 

Table 2.3. Summary statistics for the VM shells and otoliths. For each specimen, most negative summer δ18O values or coldest winter 
temperatures are all listed with the first year at bottom. Most data have been published by Wang et al. (2011), except the data of CIIB-
M/A4, CIIA-A5, CIIA-A1, and CIIA-A4, which were measured but unpublished by Wang et al. (2011). 
  

Shell specimen 
(AD) 

Most negative summer 
δ18O values (VPDB ‰) 

Average summer δ18O 
values with standard error 

(VPDB ‰) 
Otolith specimen 

(AD) 
Coldest winter 

temperatures (oC) 

Average winter 
temperature with 

standard error (oC) 

CIIB-M4 
(750-850) 

−1.98 
−1.58 
−1.27 
−1.54 −1.6±0.1 

CIIB-A4 
(750-850) 

20.3 
23.4 
21.1 
20.1 21.2±0.8 

CIIA-M5 
(700-750) 

−1.29 
−1.83 
−1.68 
−1.28 −1.5±0.1 

CIIA-A5 
(700-750) 

17.9 
16.4 
17.0 
17.4 17.2±0.3 

CIIA-M2 
(650-700) 

−2.22 
−2.36 
−1.62 
−1.88 −2.0±0.2 

CIIA-A2 
(650-750) 

17.0 
17.6 
18.3 
18.5 17.8±0.3 

CIIA-M1 
(650-700) 

−1.34 
−1.06 
−1.67 
−0.92 −1.3±0.2 

CIIA-A1 
(650-700) 

21.7 
21.2 
18.0 
17.4 19.6±1.1 

CIIA-M8 
(600-650) 

−1.51 
−1.84 
−1.76 
−3.02 −2.0±0.3 

CIIA-A8  (600-
650) 

20.5 
23.0 
18.4 
19.4 20.3±1.0 

CIIA-M4 
(550-600) 

−2.99 
−2.97 
−2.11 
−2.05 −2.5±0.3 

CIIA-A4 
(550-600) 

21.6 
21.1 
20.8 
20.5 21.0±0.2 
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Figure 2.1. Map and stratigraphy of the study area. (A) Synthetic stratigraphy of Pineland 
Site Complex (northwestern shore of Pine Island) for the cultural intervals of Caloosahatchee 
I-late and Caloosahatchee IIA-early (Marquardt and Walker, in press). Archaeological 
proveniences for the specimens are presented at the right of the stratigraphy. The 
abbreviations CR, SP, NWP, OM, SCR, LM, Lv and St represent Citrus Ridge, South 
Pasture, Northwest Pasture, Old Mound, Surf Clam Ridge, Low Mound, Level, and Stratum 
respectively. (B) Map of southwest Florida, United States, showing geographical features and 
sites discussed in the text.  
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Figure 2.2. Microstructure and microsampling of archaeological specimens. (A) Cross-
section of archaeological shell along the axis of maximum growth observed under reflected 
light. (B) Cross-section of archaeological otolith along the axis of maximum growth 
observed under reflected light. (C) Microsampling performed by a Merchantek micromill. 
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Figure 2.3. δ18O values of archaeological shells versus distance from growth margin (growth 
direction is from right to left). (a) δ18O values; (b) most negative δ18O values selected for 
summer precipitation evaluation; (c) increments with slow growth rate; (d) average summer 
δ18O value of modern shells 05PI05 and 05PI17 (from Wang et al., 2011). 
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Figure 2.4. δ18O values and estimated temperatures of archaeological otoliths versus distance 
from the inner core toward the growth margin (growth direction is from left to right). The 
ordinate of temperature is decreasing upward to coincide with the temperature scale. (a) δ18O 
values and estimated temperatures; (b) coldest temperatures selected for winter temperature 
evaluation; (c) positions of primary growth lines; (d) average winter temperature of modern 
otolith MOD2002 (from Wang et al., 2011). 
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Figure 2.5. Reconstructed Roman Warm Period and Vandal Minimum summers and winters 
in comparison with sea-level change. (A) Summer precipitation represented by shell δ18O 
values and sea-level positions based on kurtosis (K) values; (a) average summer δ18O value 
of each archaeological shell; (b) the Denmark sea-level record (from Tanner, 2000); (c) 
average summer δ18O value of modern shells 05PI05 and 05PI17 (from Wang et al., 2011). 
(B) Winter temperatures estimated from otolith δ18O values and sea-level positions based on 
kurtosis (K) values; (a) average winter temperature of each archaeological otolith; (b) the 
Denmark sea-level record (from Tanner, 2000); (c) average winter temperature of modern 
otolith MOD2002 (from Wang et al., 2011). 
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Figure 2.6. Reconstructed Roman Warm Period and Vandal Minimum summers and winters 
in comparison with solar irradiance change. (A) Summer precipitation represented by shell 
δ18O values and the variation of total solar irradiance (ΔTSI); (a) average summer δ18O value 
of each archaeological shell; (b) TSI value relative to the solar minimum in 1986 (1365.57 
Wm−2) (from Steinhilber et al., 2009); (c) average summer δ18O value of modern shells 
05PI05 and 05PI17 (from Wang et al., 2011). (B) Winter temperatures estimated from otolith 
δ18O values and the variation of total solar irradiance (ΔTSI); (a) average winter temperature 
of each archaeological otolith; (b) relative value of TSI to the TSI in 1986 (1365.57 Wm−2) 
(from Steinhilber et al., 2009); (c) average winter temperature of modern otolith MOD2002 
(from Wang et al., 2011). 



CHAPTER III 
 

STOCHASTIC EVALUATION OF CLIMATE CHANGE OVER THE 
PAST 1000 YEARS 

 
 

Abstract 

 

Previous studies of climate change over the past millennium suggest that natural processes 

within the climate system (internal climate mechanism) are associated with stochastic 

processes intrinsic to the nonlinear climate system. To examine the extent to which the 

internal climate mechanism is stochastic, we used a conceptual linear stochastic climate 

model to simulate the temperature variations of Northern Hemisphere (NH) over the past 

millennium. The simulated temperature variations reproduced key features of the power 

spectrum and autocorrelation of the reconstructed temperature record. Using a conceptual 

model and replacing the Gaussian weather forcing with the reconstructed solar fluctuation we 

obtained improved simulation results, suggesting that solar power played a role in the forcing 

of climate change over the past millennium. We developed a new method of randomness 

evaluation for stochastic time series (RESTS) to quantitatively investigate not only the 

stochastic extent of internal climate mechanism but also the temporal evolution of the 

stochastic process in climate time series analysis. We applied this method to the temperature  

variations of NH over the past millennium, the climate change record of Greenland Ice Sheet 

Project 2 (GISP2), and the tree ring records from France and northern Sweden. The results 

 



 

indicate that the stochastic extent generally decreased during the intervals of climate 

transition. The implication being that the natural processes within the climate system 

changed during the intervals of climate transition and as a result the internal climate 

mechanism might become more deterministic during climate transitions. 

 

1. Introduction 

 

The climate in the late Holocene (0-3000 BP) includes several climate change 

episodes, such as the Subboreal/Subatlantic transition (2800-2700 cal. BP), Roman Warm 

Period (RWP;~2500-1600 cal. BP), Vandal Minimum (VM;~400-800 AD), Medieval Warm 

Period (MWP; ~1200-1400 AD) and Little Ice Age (LIA; ~1500-1700 AD). These climate 

events have been detected in abundant historical records or paleoclimate proxy records 

(Lamb, 1995; Keigwin, 1996; Crowley and Lowery, 2000; Hodell et al., 2001; McDermott, 

et al., 2001; Jones and Mann, 2004 and many others). Although changes in solar radiation 

have been generally accepted as the driver of climate change in the late Holocene, there is no 

consensus on the mechanism responsible for these changes. 

 

Different mechanisms have been proposed to explain climate variability in the late 

Holocene, especially the climate over the past millennium. Crowley (2000) modeled the 

temperature change over the last millennium with a linear upwelling/diffusion energy 

balance model. The modeled results suggest that external natural climate forcings (e.g., solar 

variability, greenhouse gas, volcanism and tropospheric aerosols) are able to explain part (41-

64%) of the pre-anthropogenic low-frequency temperature variance. Therefore, internal 
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forcing processes such as the ocean’s thermohaline circulation played a secondary role in the 

climate change over the past millennium. To examine the climate response to solar irradiance 

change, Shindell et al (2001) used the Goddard Institute for Space Studies general circulation 

model (GISS GCM) to simulate the climate change during the Maunder Minimum from the 

mid-1600s to the early 1700s. Their results suggested that relatively small change in solar 

irradiance will trigger shifts on the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) 

pattern and cause the century-scale Northern Hemisphere (NH) winter climate changes in the 

MWP and LIA. In addition, Hunt (2006) used a coupled general circulation model with no 

external forcings to simulate the low-frequency climate fluctuations of the Holocene to 

examine the internal mechanism of the climate system. The simulation results suggested that 

internal forcings in the climate system were capable to generate the basic features of MWP 

and LIA, such as spatial extent, surface temperature anomalies. However, the amplitude and 

duration of the simulated temperature anomalies were smaller relative to the observed 

temperature anomalies of MWP and LIA, and external forcings had to be included to sustain 

these centennial climate fluctuations. Moreover, the simulation did not support that the 

climate fluctuations of MWP and LIA were caused by the internal mechanisms such as the 

NAO and El Nino-Southern Oscillation (ENSO). Therefore, Hunt’s study proposed that the 

stochastic process intrinsic to the nonlinear climate system partially caused the climate 

fluctuations of MWP and LIA, and mechanisms such as NAO and ENSO were probably just 

the spatial manifestation of naturally occurring climatic variability.  

 

Stochastic climate model has been widely used to investigate climate fluctuations at 

different temporal and spatial scales (Majda et al., 1999; Dobrovalski, 2000; Ditlevsen, 2001; 
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Király and Jánosi, 2002; Roe and Steig, 2004 and many others). It was first developed by 

Hasselmann (1976) as a possible mechanism for generating the climate variations on time 

scales of months, years, decades or even longer. The theory of stochastic climate model 

postulated that the coupled ocean-atmosphere-cryosphere-land system of the earth can be 

divided into slowly responding climate components (the oceans, ice sheets, vegetation) and 

rapidly responding weather components (the atmosphere). Therefore, the stochastic climate 

model realizes statistical reduction of the complex climate system by separating the time-

scale between climate and weather. According to this theory, the variability of climate 

components can be attributed to continuous random forcing by the short period weather 

components. The theory of stochastic climate model is primarily used to help understand the 

fundamental dynamics of climate system that govern the more complicated general 

circulation models. Except the general assumption that high-frequency weather components 

are a significant source of low-frequency climate variability, the stochastic model does not 

make any assumptions about the character or nature of feedback mechanisms. It simulates the 

low-frequency climate component from a zero-order approximation; therefore, it can not 

reproduce the mechanism of climate system in detail. Nevertheless, since climate system is a 

nonlinear system (Rial et al., 2004) and the climatic variable might be treated as a random 

variable (Dobrovalski, 2000), probabilistic approach is its primary study method and the 

statistical properties instead of details should be our major concerns (Vallis, 2010). 

 

The objective of this study is to examine the extent to which the climate change in the 

late Holocene is stochastic, to enhance our insights into the internal climate mechanism 

responsible for the late Holocene climate changes, such as the RWP, MWP, LIA and etc. In 
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order to realize this goal, we first simulated the average temperature variations in NH over 

the last millennium with a simple conceptual stochastic climate model and estimated the 

extent of stochasticity by comparing the simulation results with the reconstructed record. We 

also developed an analytical method to analyze how the randomness of climate time series 

evolved temporally over the past millennium. 

 

2. Methods 

2.1. Stochastic climate model 

According to the stochastic model, climate variability is explained as the integral 

response of the climate to continuous random excitation by short time-scale disturbances 

(Hasselmann, 1976), an approach analogous to the statistical treatment of the Brownian 

motion. The evolution of the climate state in a stochastic climate model can be described by a 

Langevin-type equation (Ruiz De Elvira et al., 1982), 

 

 )()()()( ttyt
dt

tdy ων +−= ; (1) 

 

where dy(t)
dt

 denotes the time evolution of climate variable .The variable  maybe 

associated with sea surface temperature, ice coverage and other climate variables which 

typically have time scales in the orders of several months, years or longer. The variable 

y(t) y(t)

ν(t)  

works as the stabilizing internal feedback and maybe associated with the mean atmosphere-

ice-ocean interactions. The minus sign on the left-hand side of ν(t)  turns the stabilizing 

feedback ν(t)  into negative feedback and hence prevents the value of y(t)  from growing 
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indefinitely. The variable ω(t) is used to describe the weather forcing in the time order of a 

few days and is normally approximated by white noise.  

 

In this study, we use the linear stochastic climate model developed by Ditlevsen 

(2001). Therefore, we assume ν(t)  to be a constantα, and use the product σx(t)  to 

represent ω(t) where x(t)  is uncorrelated white noise with unit variance. Therefore, the 

Langevin-type equation is reduced to 

 

 dy(t)
dt

= −αy(t) + σx(t) . (2) 

 

The discrete version of equation (2) is a first-order auto-regressive process, AR(1) process, 

which conventionally generates weakly stationary time series. Therefore, this model is 

restricted to simulate stationary or weakly stationary time series. However, it is hard to verify 

if a climate process is stationary or not, earlier studies generally assume climate processes to 

be weakly stationary (von Storch and Zwiers, 1999). In the stochastic model, the constant α  

can be predicted from the time series by calculating its autocorrelation. Autocorrelation is the 

cross-correlation of a signal with itself and is usually used to analyze the repeat pattern in the 

time domain. The autocorrelation function is expressed as a function of the time 

lagτ (Ditlevsen, 2001),  

 

 ∫−∞→ +>=+=<)(τ
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)()(1lim)()(

T

TTy dttyty
T

tytyc ττ  (3) 

 

 78



 

Combining with equation (2), we can obtain the derivative of autocorrelation function )(τyc  

(Ditlevsen, 2001),  

 d
dτ

cy (τ) =
d
dτ

y(t)y(t + τ )dt = −αcy (τ )∫  (4) 

 cy (τ ) = c0 exp(−α | τ |)  (5) 

 

Therefore, the value of α −1 is the time lag it takes for the autocorrelation to drop its value 

by a factor of e. We define this critical time lag asτ c, which represents the memory of inertia 

that characterizes the signal. Therefore, the critical time lagτ c can also be treated as a 

characteristic time scale associated with the physical process that restores the system to 

equilibrium. The constant  can be derived when c0 τ  is zero. With c  and0 α , we may derive 

the constant σ  from equation (6), which is based on the fluctuation-dissipation theorem, 

 

 c0 =
σ 2

2α
 (6) 

 

Therefore, the feedback coefficient α and the forcing variance σ can both be determined 

from the analysis of time series. 

 

2.2. Randomness evaluation for stochastic time series (RESTS) 

Temperatures at the different time intervals of stochastic climate series may have 

different degrees of randomness. At some time points, it is possible to predict the temperature 

based on previous temperature record, such as the time points in correlated noise. At other 

time points, these predictions based on historic data fail, such as the time points in white 
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noise. Therefore, it is noteworthy to evaluate the degree of randomness at each individual 

time point of the whole stochastic time series. To realize this, we developed an analytical 

method we call randomness evaluation for stochastic time series (RESTS). The method 

evaluates at each year of the time series how well it can predict the future temperature given 

the historic record before that year. For simplicity of the first approach we applied least 

square linear fitting (Mathews and Fink, 2004) to the past n years temperature records for a 

specified year and checked how well the prediction agreed with its future n years records. 

The coefficients of the linear fitting for a specified year i with window size w are given by 

equation (7) below.  

 

 

 

(7) 

 

 

 

 

We use the sum of square difference between the predicted temperatures and the real 

temperature records as described in equation (8) to quantitatively evaluate the disagreement. 

 

         (8) 
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The larger the disagreement the more randomness occurred at that year. We repeat this 

process for every year in the time series. The number of data points for fitting and the 

number of data points for disagreement evaluation sum together into the window size 

associated with a data point. If window size w is an odd number, the number of points for 

fitting is (w+1)/2 and number of points for prediction evaluation is (w−1)/2. Otherwise, if the 

window size w is an even number, the number of points for fitting is w/2 and the number of 

points for prediction evaluation is w/2. For completeness, we also vary the window size to 

evaluate how long the prediction in future temperature can be statistically meaningful. 

RESTS method takes a time series as input and outputs a matrix with columns representing 

data randomness along time and rows representing data randomness at different window 

sizes. The algorithm has been implemented as a matlab package named ‘RESTS’ which will 

be put up online for public use.  

 

3. Results and discussion 

3.1. Evaluation of stochastic extent with linear stochastic climate model 

The simplified linear stochastic climate model has been applied in many climate 

studies, such as the daily average temperature data in Hungary (Király and Jánosi, 2002), and 

the oxygen isotope series from ice cores in central Greenland and West Antarctica (Roe and 

Steig, 2004). In this study, we aim to investigate the internal mechanism of climate changes 

in the late Holocene, which are basically at the centennial scale and are geographically 

widespread in the NH. Therefore, we simulated and evaluated the temperature fluctuation in 

the NH over the past millennium reconstructed by Crowley and Lowery (2000). This 

hemispherical reconstruction record is a composite of 15 NH climate records from different 
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sites and proxies. The proxies used in this reconstruction are more variable relative to other 

composite records. The proxies include ice core such as Greenland Ice Sheet Project 2 

(GISP2), pollen from Michigan, tree ring from France and Sweden and etc. Therefore, this 

hemispherical reconstruction by Crowley and Lowery (2000) is heterogeneous in data source 

and preferred to use in this study.  

 

To simulate the reconstructed temperature variations, quantitative analysis of the time 

series is essential to determine the coefficients in the stochastic climate model. The time 

series varied irregularly with a typical time scale of ~50-100 years in the time domain (Fig. 

3.1a and b). The temperature was relatively warm during the MWP, and then gradually 

dropped approximately 0.2˚C during the LIA, and finally rapidly increased as much as 0.6˚C 

in the twentieth century (Fig. 3.1a). The power spectrum of the time series exhibits similar 

trend to the power spectrum of red noise that spectral power decreases with frequency (Fig. 

3.1c). The weight of power spectrum concentrates at the low-frequency section (≤10–2 years–

1) and therefore implies that most of the variance in the time series occurred at periods of 

longer than 100 years. The autocorrelation coefficients of the time series dropped rapidly to 0 

when time lag τ  changed from 0 to 241 years (Fig. 3.1d). The critical time lagτ c is around 

57 years, so the characteristic time scale of the natural processes working in the climate 

system should also be about 57 years. This time scale is much shorter than the time scale of 

thermohaline circulation, but is closer to the time scale of atmosphere circulation. This seems 

consistent with the simulation results by Shindell et al (2001) that the atmospheric circulation 

pattern AO/NAO acted as the primary internal mechanism in the centennial climate change 

of NH. 
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Through time series analysis, we obtained suitable coefficients for the stochastic 

climate model. The value of the feedback coefficient α equals to 1/57 and the value of c  

equals to 0.0203, and hence the forcing variance 

0

σ can be calculated by 57/0203.02 × . 

With the estimated α  andσ , we simulated the temperature variations. We compared the 

ensemble average of 1000 runs of simulation with the reconstruction from frequency and 

time domain respectively (Fig. 3.2). In the frequency domain, the power spectrum of the 

simulation exhibits same decreasing trend as that of the reconstruction (Fig. 3.2a). In addition, 

the power spectrum of the simulation results is proportional to f −0.89, similar to that of the 

reconstruction which is proportional to f −0.94. The autocorrelation for the ensemble average 

of 1000 runs of simulation also presents similar trend to that generated from the 

reconstruction (Fig. 3.2b). Therefore, this simple stochastic climate model can explain the 

majority of the power spectrum and autocorrelation of the climate reconstruction. 

 

In spite of the coherent trend of power spectrum and autocorrelation between the 

simulation and reconstruction, the deviation between the reconstruction and simulation is 

also visible. Király and Jánosi (2002) extended the white noise forcing in the stochastic 

climate model into power-law correlated (colored) noise forcing and well reproduced the 

linear correlation of the climate record with detrended fluctuation analysis. Therefore, we 

considered changing the white noise component in the stochastic climate model into other 

types of forcing. Because the Earth climate system can be thought as a closed system, the 

solar forcing will become the sole external forcing. We assume that the change of the solar 

forcing will quickly influence the weather and produce the change of the weather forcing 
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based on the close relationship observed between solar radiation change and weather (King, 

1973). Therefore, under this assumption, we changed the white-noise weather forcing in the 

stochastic model into the reconstructed solar radiation variation (Steinhilber et al., 2009) over 

the past millennium. The simulated temperature fluctuation reproduced the warm MWP, 

however, it did not agree with the LIA (Fig 3.3a). The simulated temperature also 

underestimated the 20th century warming although it showed a gentle increasing trend from 

the beginning of 20th century. In addition, the simulated temperature did not generate the fine 

details in the reconstruction. There are many possible reasons for the observed deviation, 

such as the errors in the reconstruction of temperature or solar radiation, the absence of 

nonlinearity in the model, the direct use of solar forcing to take the place of weather forcing. 

Nevertheless, the power spectrum and autocorrelation both improved and reproduced more 

features relative to the earlier simulation forced by white noise (Fig. 3.3b and c). Therefore, 

this improvement supports the earlier studies that solar forcing has played a non-negligible 

role in the climate change over the past millennium. To summarize, although this heuristic 

stochastic climate model is very simple and cannot be treated as quantitatively accurate, it 

still repeated the principal features or trends of the reconstructed temperature change over the 

past millennium, which might work as evidence to support the stochastic nature of the 

internal climate mechanism. 

 

3.2. Temporal variations of stochastic extent over the past millennium 

Before applying the method RESTS to the climate record, we calibrated RESTS first 

with white noise and sinusoidal signal. The results indicate that white noise has very low 

predictability, and the scores representing disagreement between predicted data and actual 
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data increased very rapidly (Fig 3.4a). The sinusoidal signal presents good predictability 

when the window size is within 20 (Fig 3.4b). When the window size is between 20 and 40, 

the scores exhibit periodic change along the time scale. Because we use linear fitting in 

RESTS, when the window size is larger than 40, the scores all became very high that suggest 

no predictability. The score distribution of the combination of white noise and sinusoidal 

signal is intermediate between the white signal and the sinusoidal signal (Fig 3.4c). Therefore, 

this method should be able to measure the randomness inherent in the time series.  

 

We applied the RESTS method to the time series of temperature variations in the NH 

over the past millennium. As we expected, when the window size increased, predictability 

decreased whereas randomness increased (Fig 3.5a). However, the changing rate of 

predictability (or randomness) exhibits variability with different time intervals. At some 

intervals, the color changed very rapidly from black to white, whereas at other intervals, the 

color slowly turned from black to white. On the century-scale, the most remarkable feature 

we observed is slow changing rate at the transition (~1300-1500 AD) from the MWP to the 

LIA. On the finer scale, we observed narrow black columns at every 40-50 years. In other 

words, the predictability at the time of black columns is always high and independent of 

window size change. The temperature fluctuation in the NH might have the risk of artificial 

change during incorporating different climate proxy records. Therefore, we also analyzed the 

climate change record of GISP2 (73oN 38oW) (Grootes et al., 1993; Meese et al., 1994; Steig 

et al., 1994; Stuiver et al., 1995; Grootes and Stuiver, 1997), tree ring records from France 

(44oN 7oE) (Mann et al., 1999) and northern Sweden (68oN 19oE) (Grudd, 2008). These 

records in the time domain all showed random pattern and no significant trend (Fig 3.5b, c 
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and d). However, their RESTS color maps exhibited similar features (blue dashed lines) to 

the color map of the NH temperature reconstruction. According to these features, the 

stochastic extent decreased and predictability increased during the intervals of directly before 

the MWP, the transition from the MWP to the LIA, after the LIA and the 20th century 

warming. However, these intervals are not equally obvious in these color maps. The intervals 

are generally more distinct in the color maps derived from the tree ring record in France and 

isotope record of GISP2 relative to that derived from the tree ring record in Sweden. We also 

observed that these intervals of relatively high predictability occurred at the frequency of 

300-400 years before the 20th century warming. 

 

Based on the features detected from the RESTS color maps, we infer that the internal 

climate mechanism might become more predictable and deterministic during climate 

transitions. According to the stochastic climate theory, the natural processes within the 

climate system can be treated as stochastic process. Therefore, the detected temporal 

variation of stochastic extent suggests that the natural processes involved in the climate 

system should change as well at different time intervals. In addition, the temporal variation 

that the stochastic extent decreased and predictability increased during the intervals of 

climate transitions may also indicate the changing relationship between noise component 

σx(t)  and feedback component −α y(t)  in the stochastic model. Noise component dominates 

the climate variation during the stable climate intervals and feedback component dominates 

the climate variation and increases the predictability during the unstable transition intervals. 

Therefore, the feedback coefficient α  and the forcing variance σ  in the stochastic climate 

model should change nonlinearly with time instead of being treated as fixed constants. As to 
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what forced the natural processes or the internal climate mechanism to change at different 

intervals, we infer the driver is external forcing based on the results of previous studies 

(Crowley, 2000; Shindell et al, 2001; Hunt, 2006) and the earlier stochastic climate model 

with solar forcing in this study. According to our conclusion, the solar variability should be 

responsible for driving the climate transitions in the pre-industrial period and the greenhouse 

gas for driving the 20th century warming.  

 

4. Conclusions 

 

In this study, we examined the extent to which the internal climate mechanism is 

stochastic as opposed to deterministic over the past millennium. To test this, we used a 

conceptual linear stochastic climate model to simulate temperature variations of NH over the 

past millennium. The model validation includes replicating the principal features and orders 

of magnitude of the power spectrum and autocorrelation of the reconstructed temperature 

variations. However, this only indicates that stochastic climate theory can explain the power 

spectrum and autocorrelation of the climate change over the past millennium, but is not 

enough to demonstrate that the internal climate mechanism is stochastic because power 

spectrum and autocorrelation cannot cover all the features of a time series. Therefore, this 

experiment is only a preliminary test of the relationship between stochastic processes and 

internal climate mechanism in the Holocene, and we will implement it with more evidence in 

future work. When we replaced the Gaussian weather forcing in the conceptual model with 

the solar forcing, we obtained an improved simulation result. This might reflect the forcing 

role of solar variability during the climate change over the past millennium. Additionally, we 
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developed a new method to quantitatively investigate the temporal evolution of the stochastic 

extent in climate analysis. Our results indicate that the stochastic extent generally decreased 

during the intervals of climate transition. The most distinct example is the transition (~1300-

1500 AD) from the MWP to the LIA. We imply that external forcings such solar variability 

or greenhouse gas drive the internal climate mechanism to become more deterministic during 

climate transitions. 
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Figure 3.1. Temperature variations of Northern Hemisphere over the past millennium. (a) 
Time series of temperature variations from Crowley and Lowery (2000). (b) Normalized time 
series of temperature variations. (c) Power spectrum of the normalized temperature variations. 
(d) Autocorrelation of the normalized temperature variations. 
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Figure 3.2. Comparison between the reconstruction and the ensemble average of 1000 runs of 
simulation. (a) Power spectrum of normalized temperature variations from simulation and 
reconstruction. The solid black (blue) line represents the power spectrum of the 
reconstruction (the ensemble average of 1000 simulations). The dashed black (blue) straight 
line represents the linear trend of the reconstruction (simulation) (b) Autocorrelation of 
normalized temperature variations from simulation and reconstruction. The solid black (blue) 
line represents the autocorrelation of the reconstruction (the ensemble average of 1000 
simulations). 
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Figure 3.3. Comparison between the reconstruction and the simulation with solar forcing. (a) 
Normalized temperature variations of the reconstruction (black) and the simulation (red). (b) 
Power spectrum of normalized temperature variations from the reconstruction (black) and 
simulation (red). (b) Autocorrelation of normalized temperature variations from the 
reconstruction (black) and the simulation (red). 
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Figure 3.4. Calibration of the method RESTS. (a) Score distribution of white noise. (b) Score 
distribution of sinusoidal signal. (c) Score distribution of the combination of white noise and 
sinusoidal signal.  
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Figure 3.5. Different climate records and their score distribution with the method RESTS. (a) 
Time series of temperature variations from Crowley and Lowery (2000) and its score 
distribution. (b) Tree ring record from France (44oN 7oE) and its score distribution. (c) 
Temperature reconstructed from tree ring of northern Sweden (68oN 19oE) and its score 
distribution. (d) Time series of GISP2 δ18O record and its score distribution. The blue dashed 
lines mark the intervals when the four different climate records shared similar score features. 
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