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Abstract

The main goal of this paper is to study the (commutative) geometric objects

whose properties correspond to those of the noncommutative algebras. Specifically

we are interested in the direct deformations of the usual commutative polynomial

ring, and we use the tool of quiver algebras and representations to construct vec-

tor bundles Ei on projective spaces Pn whose endormorphism ring End(⊕iEi) corre-

sponds to these deformations of the polynomial ring. These bundles will turn out to

be the symmetric powers of T (−1) when the algebra is chosen to be the usual poly-

nomial ring. We also derive some properties and exact sequences of these bundles,

and in particular there is a short exact sequence showing that Symk(T (−1)) can be

generated by O and O(−1) in the derived category on Pn for any k ≤ n.

1 Properties of Quiver Algebras

1.1 Basics

We now present the basic definitions and properties of quiver algebras, which serve as

one of the main tools of this paper. We will mainly follow the notations used in [7], with

some differences. A quiver is a directed graph allowing multiple edges and self-looping

edges. We let Q0 denote the set of vertices and Q1 denote the set of edges. s, t : Q1 → Q0

are defined as functions such that, for an edge a,s(a) denotes its source vertex and t(a)

denotes its target vertex.

For our purpose, all quivers considered here are finite (i.e. have finitely many ver-

tices and edges) and have a ordering on vertices. That is, there is an injective function

n : Q0 → {0, ..., |Q0| − 1} such that for all a ∈ Q1 we have n(s(a)) < n(t(a)). In other

words, the edges always go from a smaller vertex to a bigger one. Thus cycles and self-

looping edges are not allowed.

We next describe the path algebra kQ associated to a quiver. Informally speaking, the
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path algebra is an associative k algebra generated by all possible paths, with each arrow

acting by composition. When the path has length 0, we also need to specify its starting

point. Rigorously, kQ is generated by eq for all q ∈ Q0 and all a ∈ Q1 with relations

e2q = eq, ereq = 0 when r 6= q, et(a)a = aes(a) = a

For two arrows a, b ∈ Q1, if they are consecutive, i.e. t(a) = s(b), then their product is

defined as the arrow ba, i.e. composition of arrows is denoted by prepending. Notice that

e=
∑

q∈Q0
eq acts as the identity element in this algebra, since ae = ea = a for all a ∈ Q1.

Since the quiver is assumed to be finite, the path algebra is also finitely generated over k.

We further describe quivers with relations. A relation I is a two-sided ideal of the

path algebra kQ generated by linear combinations of paths originating from and ending

at the same target. A quiver with algebra is then specified by the pair (Q, I), whose path

algebra is defined to be the quotient algebra kQ/I.

As an example, consider the quiver Q drawn below with 3 vertices and 6 arrows. The

relation I is a dimension 3 k vector space spanned by {y2x1 = x2y1, z2y1 = y2z1, x2z1 =

z2x1}. Note that this path algebra is not exactly k[x, y, z] in the sense that they are not

isomorphic as algebras. In fact this path algebra is not even a commutative algebra, since

y1z2 = 0 6= y2z1. But as we shall see later, this quiver algebra represents the commutative

polynomial ring k[x, y, z], in terms of not only the multiplication rule given by commuta-

tivity, but also some geometric properties associated to the polynomial ring. Some other

non-commutative algebras can be obtained by simply changing the relations in the quiver.

0 1 2

x1

y1

z1

x2

y2

z2
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1.2 Quiver Representations

We now consider quiver representations, as well as their geometric implications. A rep-

resentation of a quiver Q assigns to each vertex q a k vector space Vq, and to each edge a

a linear transformation φ. We assume all such vector spaces Vq have finite dimension. A

finite dimensional representation of a quiver with relations (Q, I) has to satisfy further

requirements that the composition of these linear transformations has to conform with

the relations specified in I. Returning to the previous drawn example, a representation of

this quiver would specify three k vector spaces V0, V1, V2 and six k linear transformations

x1, y1, z1 : V0 → V1 and x2, y2, z2 : V1 → V2. These linear transformations must further

satisfy the relations that y2 ◦ x1 = x2 ◦ y1, z2 ◦ y1 = y2 ◦ z1, x2 ◦ z1 = z2 ◦ x1, as linear

transformations from V0 to V2.

Morphisms between two representations of a specific quiver Q are a set of linear trans-

formations φi : Vi → V ′i that need to make all possible squares commute. In other words,

for any arrow from any vertex i to any vertex j, if we denote the linear transformations

within each representation to be xi, x
′
i respectively, then φi, φj must satisfy that x′i ◦ φi =

φj ◦ xi. In the category theory language, for a fixed quiver with relation (Q, I), the finite

dimensional representations of this quiver with morphism defined above form a category

rep(Q, I). This category is abelian, and in particular the kernel and image of quiver repre-

sentation morphisms can be defined naturally.

Given a morphism of (possibly with relations) quiver representation φ : V → V ′,

kerφ as a representation of (Q, I) is defined as having (kerφ)q = ker(φq) ⊂ Vq at each

vertex q. Each arrow morphism x from q1 to q2 is simply defined as the restriction x|kerφq1 .

To see this definition is well-defined, note that for any v ∈ kerφq1 we have φq2
(
x(v)

)
=

x′
(
φq1(v)

)
= x′(0) = 0 since x′ is a linear transformation. So x(v) ∈ kerφq2 . We defined

similarly the image of a quiver representation morphism to be (Imφ)q = Im(φq) ⊂ Vq,

and by a similar diagram chasing argument we see that it is well-defined as well. Hence
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we can define exact sequence, cohomology and derived category in this category. Further-

more, it follows directly from the definition for ker and Im above that a sequence of quiver

representation morphisms is exact if and only if it is exact on each component, i.e. the

corresponding sequence of vector spaces on each vertex is exact.

According to the composition rule of arrows given above, it is also natural to consider

the category of finitely generated left modules over the path algebra mod(kQ/I). Given

a quiver with relations (Q, I) and arrows a : q0 → q1 and b : q1 → q2 and any element

m ∈ M ∈ mod(kQ/I), m acted by a and then b is naturally defined as (ba)m, since arrows

are composed by prepending. Note that we do not get this naturality if we consider the

right modules instead.

We next state the proposition that the category rep(Q, I) is equivalent to the finitely

generated left modules of the path algebra mod(kQ/I). It is stated in [5] (Proposition

1.8) and we give a brief description of the correspondence. Given V ∈ rep(Q, I), we let

M =
∑

i Vqi be the direct sum of all components, and each arrow a acts on the component

s(a) only, i.e. a(v) = φa(v|Vs(a)), where v|Vs(a) denote the projection of v onto the subspace

Vs(a). Conversely, given a left module M over kQ/I, we construct a representation by let-

ting Vq = eqM = {eqm,m ∈ M}. Given an arrow a : q0 → q1, the morphism corresponding

to a is defined as φa : Vq0 → Vq1 , φa(eq0m) = (aeq0)m = (eq1a)m = eq1(am) ∈ Vq1 . From now

on we will use these two concepts interchangeably.

1.3 Projective Modules

Given a path algebra with relations A = kQ/I, now we consider its left modules

Pi which are in fact left submodules of A as a left module over itself, defined as Pi =

Aei, i ∈ {0, 1, ..., |Q0| − 1}. As a k vector space, Pi is generated by all paths having ver-

tex i as source, subjecting to relations I. As a representation, the jth component of Pi is

(Pi)j = ejAei, generated by all effective paths starting at vertex i and ending at vertex j.
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It follows immediately that (Pi)j = 0 for i > j and (Pi)i = k∀i. Also since ei are orthogo-

nal idempotents with
∑

i ei being the identity element of A, A = ⊕iPi as left module over

A.

For a concrete example, consider the quiver with relations representing k[x, y, z] above.

As representations, P2 has 0 on vertex 0, 1 and k on vertex 2. P1 has 0 on vertex 0, k on

vertex 1 and k3 on vertex 2, with which Im(x2), Im(y2), Im(z2) are independent vectors.

The diagram for P0 is drawn below.

k k3 k6

x1

y1

z1

x2

y2

z2

If we choose the basis for second component to be {x, y, z} and third component to be

{x2, xy, xz, y2, yz, z2}, then for example the linear transformation y2 sends x to xy, y to y2,

z to yz, since all relations are assumed to be the ones for commutative polynomial ring.

With a different set of three quadratic relations, these linear transformations will change,

but the dimension for each vector space remains constant.

These modules satisfy ∀i,Hom(Pi,M) ∼= eiM = Mi, and are therefore projective

([7]), since the exactness is preserved component-wise, from the definition of kernel and

image above. For a brief proof of the statement, notice that ∀j > i, (Pi)j as a vector

space is generated by aijmi, where aij is a path from i to j, and mi is the generator of

(Pi)i ∼= k. Besides, such elements form a basis of (Pi)j as aij range from all effective paths.

(paths modulo relations) So any element in (Pi)j can be written as
∑

n anmi where each

an is a different effective path from i to j. So given an element φ ∈ Hom(Pi,M) we have

φ(
∑

n anmi) =
∑

n anφ(mi). So all such homomorphisms are parametrized by Mi. From

this argument we have in particular

Proposition 1.1. Hom(Pi, Pj) ∼= (P (j))i.

Remark. It is 0 for i < j, and Hom(Pi+1, Pi) ∼= (P (i))i+1 as a vector space is generated by
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all arrows from i to i + 1. Similarly Hom(Pi+2, Pi+1) is generated by arrows from i + 1 to

i+ 2, and so on.

Furthermore, the composition map of homomorphisms Hom(Pi+1, Pi)⊗Hom(Pi+2, Pi+1)→

Hom(Pi+2, Pi) corresponds to the composition of arrows in the quiver. If there are quadratic

relations in the quiver, then this map is in general not bijective. We also state the general-

ized version of this, which will be useful afterwards.

Proposition 1.2. There is a map Hom(Pi+1, Pi)⊗...⊗Hom(Pi+n, Pi+n−1)→ Hom(Pi+n, Pi),

where each Hom(Pj+1, Pj) as a vector space is generated by arrows at level j. If we assign

each arrow to be {xj, yj, zj...}, then the composition map corresponds to the composition of

n degree 1 monomials into degree n monomials in the non-commutative algebra.

Let N = |Q0|. 〈PN−1, ..., P0〉1 form a full and strong exceptional collection (for defini-

tion, see [7]) in the derived category Db(mod(kQ/I)). Besides the already shown relations

for Hom, it is also easy to check that Extl(Pi, Pj) = 0 for all i, j, l since all Pi are pro-

jective. One major goal of this paper is to find a projective variety X corresponding to a

given quiver, which have vector bundles Ei in the bounded derived category of coherent

sheaves Db(coh(X)), with additional properties that Hom(Ei, Ej) ∼= Hom(Pj, Pi), with

the same composition rules (in terms of the map of tensor product defined above) as the

quiver algebra after choosing bases.

2 Deformation of Complex Polynomial Ring

Throughout the rest of this paper, the base field is fixed to be k = C. We first study

non-commutative algebras that in some sense resemble (which will be made rigorous later

on) the usual commutative polynomial rings. In other words, given one of such algebra

A, we need to find a complex projective variety X and vector bundles {E0, ..., En} that

1Notice that the order here is reversed due to our definition.
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have the same morphism structure as the projective modules {Pn, ..., P0} of the associated

quiver algebra, i.e. A = End(⊕iEi). In fact, Orlov in [7] has already given a general recipe

to find such varieties given an arbitrary quiver algebra, and the vector bundles will be ex-

ceptional. However, the resulting variety from the iterative procedure is often too complex

and the vector bundles will not in general be full in Db(coh(X)). This section aims for an-

other direction in the particular case of deformations of the usual polynomial ring, that

still in some sense resemble the commutative one. We will fix the base space X to be Pn.

The bundles will no longer be exceptional, but they have the same morphism structures

and are in some sense ‘full’. As a byproduct, we will obtain some properties regarding to

vector bundles SymkTPn(−1).

The construction in this whole chapter can be summarized in the following theorem

Main Goal. For a non-commutative polynomial ring A with n + 1 variables, there exists

n + 1 vector bundles {E0, ..., En} on Pn such that their endomorphism ring (with usual

grading) is isomorphic to the quiver algebra associated with A. In other words, the mor-

phism at each level Hom(Ei, Ei+1) is n+ 1 dimensional, and after choosing a suitable basis,

the composition satisfies the relations in the non-commutative polynomial ring. Further-

more, these bundles satisfy Ext(Ei, Ej) = 0 for all i < j.

2.1 Degree 2 Case

The complex projective space P2 is defined to be the set of dimension 1 subspace of

C3, i.e. P2 = (C3 − {0})/ ∼, where the equivalence relation is defined to be a ∼ b iff

∃λ ∈ C such that a = λb. As mentioned before, P2 corresponds to the quiver with rela-

tions A2 (see 1.1) associated to the commutative polynomial ring C[x, y, z], in the sense

that there are line bundles (viewed as coherent sheaves) O,O(1),O(2) such that the Hom

between them as vector spaces are isomorphic to the Hom between the projective mod-

ules Pi, which also preserves the composition rules after choosing a suitable basis. Further-
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more {O,O(1),O(2)} is a full and strong exceptional collection in Db(coh(P2)) due to the

Běilinson spectral sequence. ([4]) We also have A2 = End(⊕iO(i)). But these line bundles

don’t generalize nicely when the composition rule changes to be non-commutative.

The non-commutative deformations of P2 can be realized through a certain class of

quotient algebras of the non-commutative complex free algebra C〈x, y, z〉 by three quadratic

relations, with all variables having weight 1. Here we assume that all relations are homo-

geneous. We also assume that the resulting quotient algebras are ‘well-behaved’, in the

sense of being Artin-Schelter regular (For the definition please see [2, 9]). 2 Example of

such non-commutative algebras include the 3 dimensional quantum polynomial ring (with

relations 〈xy − pyx, yz − qzy, rxz − zx〉 with p, q, r ∈ C nonzero) and Sklyanin algebra.

(with relations ayx+ bxy + cz2, axz + bzx+ cy2, azy + byz + cx2 with a, b, c ∈ C nonzero)

The procedure here will be similar to [7], From now on we denote Pi,j as the jth pro-

jective module associated with quivers with relations Ai defined below. We define A0 to

be the path algebra associated to the quiver with a single point and no arrows. A1 is the

path algebra of quiver with two vertices and three arrows in between. A2 is the one with 3

vertices and 6 arrows, with relations coming from the non-commutative algebra.

Here we also explicitly write out all projective modules Pi,j. We define vector spaces

U1 = HomA2(P2,1, P2,0) ∼= C3 and U2 = HomA2(P2,2, P2,1) ∼= C3. We also define W1,2 =

HomA2(P2,2, P2,0) which is 6 dimensional, and V = HomA1(P1,1, P1,0). From Proposition

2.2 below, V will be naturally isomorphic to U2. Since Hom(Pi,M) = Mi for all i, we can

2Since this paper deals mainly with specific examples of non-commutative algebras rather than their

general properties, we don’t care too much about the actual definition of Artin-Schelter regular algebras.
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write each component using U,W defined above.

P0,0 :C

P1,0 : C V

P1,1 : 0 C

P2,0 : C U1  W1,2

P2,1 : 0 C U2

P2,2 : 0 0 C

(1)

Here we use the symbol  for special meanings. Namely it is an abbreviation of three

inner morphisms. For example, in P1,0, V is 3 dimensional, and the squiggly arrow denotes

the three morphisms, each sending the generator of C to a vector in V , and the three im-

age vectors will be independent in V .

As we can see, there are some relations between these projective modules. For exam-

ple, intuitively P1,1 can be obtained from P2,2 by cutting the first vertex off. Since V ∼= U2

naturally, P1,0 can also be obtained this way from P2,1. This is made precise in the follow-

ing propositions.

Proposition 2.1. Let A be an acyclic quiver with relations, which has vetices number-

ing from 0 to N . Let Ã be the quiver which has vertex 0 deleted, in the graph theory sense,

while keeping all remaining relations that do not contain vertex 0. That is, the vertex 0

and all edges originating from it are removed from the quiver, without changing the re-

maining relations. Then there is an inclusion i∗ : rep(Ã) → rep(A) which further satis-

fies Hom(M,N) ∼= Hom(i∗M, i∗N) for all M,N ∈ rep(Ã). There is also a surjective map

π : rep(A)→ rep(Ã).

Remark. In our construction, we always have (̃Ai) = Ai−1 for any valid i. We will also

have π(Pi,j) = P(i−1),(j−1) for all i ≥ j > 0, where Pi,j is an Ai representation and

P(i−1),(j−1) an Ai−1 representation.
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Proof. There is a straightforward construction. Given a representation M ∈ rep(Ã), we

construct its image i∗M ∈ rep(A) by assigning 0 to the newly added vertex 0 of A, and

assigning all morphisms originating from the vertex 0 as 0. Obviously this is a representa-

tion for A, and it satisfies all the relations newly added from vertex 0, since all morphisms

connecting to it are already 0, and linear combinations of 0 morphisms are still 0.

For the surjection π, given a representation M ′ of A, we construct its image π(M ′) ∈

rep(Ã) by deleting the vector space associated with vertex 0 of A as well as all linear trans-

formations from it.

The next proposition will also be very useful.

Proposition 2.2. Using the same notation as last proposition, suppose M,N ∈ rep(A)

satisfies M0 = 0. Then HomA(M,N) ∼= HomÃ(π(M), π(N)) are naturally isomorphic.

Remark. This would give U2 = HomA2(P2,2, P2,1) ∼= HomA1(P1,1, P1,0) = V by the remark

above. In general we would have HomAi
(Pi,j, Pi,k) ∼= HomAi−1

(P(i−1),(j−1), P(i−1),(k−1)) for

any j, k > 0.

Proof. Since M0 = 0, any inner morphisms of M originating from M0 must be the zero

morphism. Any φ ∈ HomA(M,N) must also satisfy φ0 = 0. So given such φ, we construct

φ′ ∈ HomÃ(π(M), π(N)) by keeping all other φi, i 6= 0 the same. Conversely, the inverse

map from HomÃ(π(M), π(N)) to HomA(M,N) is defined by setting the morphism at ver-

tex 0 to be zero morphism. This representation satisfies all commuting square relations

pertaining vertex 0, since both sides will be zero morphism as M0 = 0.

Due to Proposition 2.1, π(P2,0) can be viewed as a A1 representation. Applying Propo-

sition 2.1 to (1) we can write out π(P2,0) = U1  W . Since P1,0 and P1,1 form a full ex-

ceptional collection in repA1, π(P2,0) can be generated by these two projective modules.

In fact there is a map U1 ⊗ U2 → W1,2 due to Proposition 1.2. The kernel can therefore be
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identified as I1,2, generated by the relations in the non-commutative algebra. Then we can

write out an exact bicomplex

0 // 0

��

// U1

��

// U1

��

// 0

0 // I1,2 // U1 ⊗ U2
//W1,2

// 0

(*)

Or written in projective modules as written down in (1)

0→ I1,2 ⊗ P1,1 → U1 ⊗ P1,0 → π(P2,0)→ 0

In the commutative case, U1 and U2 can be identified as U , and W is generated by de-

gree 2 monomials, which is isomorphic to Sym2(U). In this case I is isomorphic to the ex-

terior product Λ2U . It is easy to see that there is a fully faithful functor Φ : Db rep(A1) →

Db(coh(P2)) that sends P1,0 to T (−1) and P1,1 to O, because {O, T (−1)} is a mutation of

the dual of {O,O(1)}. Now we can identify the base projective space as P(U2). Then, in

the above exact sequence, the representation 0  I1,2 should be sent to I1,2 ⊗ OP(U2) and

U1  U1 ⊗ U2 sent to U1 ⊗ TP(U2)(−1). Then we can write out a sequence of sheaves on P2

0→ I1,2 ⊗O → U1 ⊗ T (−1)→ F → 0

This sequence also appears in [7], and the cokernel is again a vector bundle on P(U2),

defined as F . When the relations I are the commutative ones, we can identify U2 with U1

by identifying the corresponding basis vectors x1 with x2, etc, and the vector space W be-

comes Sym2U2. Then F is isomorphic to Sym2
(
TP(U2)(−1)

)
([7]).

Since U1  W is the preimage of P2,0 under π, we can extend the faithful functor

Φ : Db rep(A2) → Db(coh(P2)) such that Φ(P2,0) = F ,Φ(P2,1) = T (−1),Φ(P2,2) = O.

This differs from Orlov’s construction in [7], in that he defined these bundles not on P2,

but P(F∨), a P2 bundle over P2. In the commutative case this is isomorphic to Hilb2(P2),

the Hilbert scheme of 2 points on P2. In fact, the bundles defined here (O, T (−1),F) are
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precisely the derived pushforward of the three bundles Orlov defined, which coincides with

the standard pushforward.

Orlov’s construction has the further advantage that the bundles will be exceptional on

the new variety, while F is not necessarily exceptional as a P2 bundle. In particular, com-

putation shows that Ext1(Sym2(T (−1)), Sym2(T (−1))) is 10 dimensional. However, the

variety he defined is much larger, in the sense that Db(coh(P(F∨))) has a semi-orthogonal

decomposition of 9 objects, ([7], Proposition 3.4) while Db rep(A2) only has 3. Further-

more, when the dimension is larger, the variety, defined as nested projective bundles of

multiple layers, will quickly become too complicated to be effectively studied. For P3 it

will already be a bundle over Hilb2(P3) in the commutative case. In the following section

we will fix the base space to be Pn and construct (not necessarily exceptional) bundles

that have the same homomorphism structures.

2.2 Degree n case

We will start with n = 3 case, and provide a general formula for higher dimensions.

We will follow the similar construction above in Proposition 2.1 and 2.2. In the case of P3

we are concerned only with direct deformation of the usual commutative ring C[x, y, z, w].

That is, there are still C4
2 = 6 independent relations, all of which are still quadratic.

We also change the definition of the quivers Ai to adapt to the base change. Let A1

be the quiver with 2 vertices and 4 arrows between them, and A2 be the quiver with 3 ver-

tices and 8 arrows, with 4 arrows on each level, together with relations corresponding to

the non-commutative algebra. For example, if we denote first 4 arrows by {x1, y1, z1, w1}

and next 4 by {x2, y2, z2, w2}, then the relation xy+yz = w2 in the actual non-commutative

algebra would be translated to the relation in quiver as x1y2 + y1z2 − w1w2 = 0.

We further define A3 to be the quiver with 4 vertices and 12 arrows, 4 on each level,

with relations now defined one both The projective modules Pi,j are defined as the jth pro-
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jective module of Ai, similar to the previous section. Notice that Proposition 2.1 and 2.2

still holds, and using the same notation in Proposition 2.1 we still have Ãi = Ai−1.

Similar to the previous section we defined Ui = HomA3(P3,i, P3,(i−1)) = P3,(i−1)(i), the

ith component of P3,(i−1), because of Proposition 1.1. Due to Proposition 2.2 we also have

that P3,(i−1)(i) and P2,(i−2)(i − 1) are naturally isomorphic for i ≥ 2, and so on. We also

define Wi,j = HomA3(P3,j, P3,(i−1)) = P3,(i−1)(j) for 0 < i < j. Based on these we can write

out explicitly all projective modules as follows. We still use  to denote multiple inner

morphisms, here abbreviating 4 arrows.

P0,0 :C

P1,0 : C U3

P1,1 : 0 C

P2,0 : C U2  W2,3

P2,1 : 0 C U3

P2,2 : 0 0 C

P3,0 : C U1  W1,2  W1,3

P3,1 : 0 C U2  W2,3

P3,2 : 0 0 C U3

P3,3 : 0 0 0 C

Notice that all modules of A1 and A2 have the same form as in previous section after shift-

ing all subscripts by 1, except that now  is slightly different, encompassing one more

inner morphism. Also notice that although the dimension of all U and W has changed, the

map Ui ⊗ Ui+1 → Wi,(i+1) is still surjective due to Proposition 1.2, with kernel defined as

Ii,(i+1), representing the degree 2 relations at level i. In particular, if we consider π(P2,0) as

14



an A1 representation, there is a bicomplex similar to (*)

0 // 0

��

// U2

��

// U2

��

// 0

0 // I2,3 // U2 ⊗ U3
//W2,3

// 0

Or as exact sequence of projective modules

0→ I2,3 ⊗ P1,1 → U2 ⊗ P1,0 → π(P2,0)→ 0

Again in the commutative case, W2,3 is isomorphic to Sym2(U) and I2,3 isomorphic to

Λ2U . From this sequence we get an exact sequence of sheaves on P(U3) ∼= P3

0→ I2,3 ⊗OP(U3) → U2 ⊗ TP(U3)(−1)→ F1 → 0

In other words, the functor now sends P2,2 to O, P2,1 to T (−1), P2,0 to F1 as sheaves

on P3, with F1 defined by the above sequence. Similar from above, in the commutative

case F1 is isomorphic to Sym2TP3(−1), after identifying the basis vectors of U2 with U3.

Our next step is to move up a level, and try to resolve π(P3,0) by all P2,i. To do this

we need to consider the resolution of W1,3. We consider the commutative case first, where

W1,3 is now degree 3 monomials and isomorphic to S3U , where S denotes symmetric prod-

uct. By [1] there exists a complex

0→ Λ3U → Λ2U ⊗ U → U ⊗ S2U → S3U → 0

The analogy of this sequence in the general non-commutative setting becomes

0→ I1,3 → I1,2 ⊗ U3 → U1 ⊗W2,3 → W1,3 → 0

Here I1,3 is the non-commutative analogy of the higher wedge power Λ3U , but it lacks an

natural definition since W1,3 is not in general simply the symmetric power. If we add this

layer of sequence to the previous one, we get a complete description of the projective mod-

ules as
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0 // 0

��

// 0

��

// U1

��

// U1

��

// 0

0 // 0

��

// I1,2

��

// U1 ⊗ U2

��

//W1,2

��

// 0

0 // I1,3 // I1,2 ⊗ U3
// U1 ⊗W2,3

//W1,3
// 0

with exact horizontal arrows. Or more concisely

0→ I1,3 ⊗ P2,2 → I1,2 ⊗ P2,1 → U1 ⊗ P2,0 → π(P3,0)→ 0

Translating this exact sequence to sheaves on P3 using the F1 defined above, we get a se-

quence

0→ I1,3 ⊗O → I1,2 ⊗ T (−1)→ U1 ⊗F1 → F2 → 0

and in the commutative case F2 is isomorphic to Sym3T (−1).

The construction for general Pn is entirely analogous to the above case. After fixing

the dimension n, we define Ai, i ∈ {1, ..., n} to be the quiver with i vertices and (n + 1) ar-

rows between each adjacent two. We again assume all relations are quadratic and indepen-

dent. There are in total Cn+1
2 relations as in the commutative polynomial ring C[x0, ..., xn].

The vector bundles constructed will be {O, T (−1),F1, ...,Fn−1} with each Fi defined iter-

atively. In the commutative case we have Fi ∼= Symi+1(TPn(−1)). The projective modules

Pi,j are defined in the similar fashion as above.

At each level, we use Pk,k, ..., Pk,0 to resolve π(P(k+1),0). The inner morphisms of these

projective modules will be denoted as  . At the last level, each P(n−1),k has form

0 . . . 0 C U(k+2)  W(k+2),(k+3)  . . . W(k + 2), n 0

Also notice that for i < j, Pi,k is simply the last ith component of Pj,k+(j−i). This will re-

sult in a 2 dimensional sequence similar to a bicomplex

16



0 // 0

��

// 0

��

// ...

��

// U1

��

// U1

��

// 0

0 // ...

��

// ...

��

// . . .

��

// ...

��

// ...

��

// 0

0 // 0

��

// 0

��

// . . .

��

// U1 ⊗W2,k

��

//W1,k

��

// 0

0 // ...

��

// ...

��

// . . .

��

// ...

��

// ...

��

// 0

0 // 0

��

// I1,(n−1)

��

// . . .

��

// U1 ⊗W2,(n−1)

��

//W1,(n−1)

��

// 0

0 // I1,n // I1,(n−1) ⊗ Un // . . . // U1 ⊗W2,n
//W1,n

// 0

(**)

with horizontal arrows all exact. Written as each P(n−1),i it is

0→ I1,n ⊗ P(n−1),(n−1) → I1,(n−1) ⊗ P(n−1),(n−2) → . . .→ U1 ⊗ P(n−1),0 → π(Pn,0)→ 0

At the previous kth level, moving from Ak−1 to Ak, the 2 dimensional complex is simply

(**) truncated at right corner with size k×k and then shift the subscripts correspondingly.

The sequence of projective modules also looks very similar to the bottom level

0→ Ik,n ⊗ Pk,k → I1,(k−1) ⊗ P(k−1),(k−2) → . . .→ U1 ⊗ P(k−1),0 → π(Pk,0)→ 0

In the commutative case, after identifying each Ui we get the sequence for SkU = SymkU

([1])

0→ ΛkU → Λk−1U ⊗ U → Λk−2U ⊗ S2U . . .→ Λ2U ⊗ Sk−2U → U ⊗ Sk−1U → SkU → 0

From (**) we also get the iterative definition for Fi as coherent sheaves on Pn via exact

sequences
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0→ I(n−1),n ⊗O → Un−1 ⊗ T (−1)→ F1 → 0

0→ I(n−2),n ⊗O → I(n−2),(n−1) ⊗ T (−1)→ Un−2 ⊗F1 → F2 → 0

...

0→ I1,n ⊗O → I1,(n−1) ⊗ T (−1)→ I1,(n−2) ⊗F1 → . . .→ U1 ⊗Fn−2 → Fn−1 → 0 (***)

with dim I1,k = dim ΛkU = Cn+1
k . As said above, in the commutative case we have Fi ∼=

Symi+1(TPn(−1)), and the n − 1 sequences above give a resolution of Symi+1(TPn(−1))

using those of lesser degree.

We also get some additional properties of these symmetric powers of twisted tangent

bundles. If we denote E0 = O, E1 = T (−1), Ei = Fi−1, then we have Hom(Ei, Ej) =

Hom(Pj, Pi), which is by definition Wi+1,j if i + 1 < j, and Ui+1 if i + 1 = j. Further-

more, since they are the derived pushdown of bundles Orlov constructed, they still have

the ”strong” property even though they are no longer exceptional. In other words we have

Exti(Fj,Fk) = 0,∀i > 0, j < k and Exti(T (−1),Fj) = 0,∀i > 0. This is in particular true

for Symi+1(TPn(−1)).
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2.3 Further Description of the Sheaves

The sheaves constructed above also have geometric relationships. In the case of P2

there is a bicomplex on P(U2)

0

��

0

��
U1 ⊗O(−1)

��

U1 ⊗O(−1)

��
0 // I1,2 ⊗O // U1 ⊗ U2 ⊗O

��

//W1,2 ⊗O

��

// 0

0 // I1,2 ⊗O // U1 ⊗ T (−1)

��

// F1

��

// 0

0 0

The bottom left square is obviously commutative. By the proposition below we shall see

that the right two squares are also commutative. The rows are also easily seen to be all

exact.

The second column is exact, since it can be obtained by tensoring the Euler sequence

on P(U2) with U1. In fact this whole bicomplex is exact, which will be proved below. No-

tice that this sequence is also valid for any Pn, with O, T (−1),F1 defined from (***).

On P3 there is a larger bicomplex (on P(U3))

0

��

0

��

0

��
0 // I1,2 ⊗O(−1)

��

// U1 ⊗ U2 ⊗O(−1)

��

//W1,2 ⊗O(−1)

��

// 0

0 // I1,3 ⊗O // I1,2 ⊗ U3 ⊗O

��

// U1 ⊗W2,3 ⊗O

��

//W1,3 ⊗O

��

// 0

0 // I1,3 ⊗O // I1,2 ⊗ T (−1)

��

// U1 ⊗F1

��

// F2

��

// 0

0 0 0
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again with exact rows. The third column is obtained by tensoring the second column in P2

diagram above with U1. From the commutativity of the previous bicomplex, we see that

all squares are commutative, with possible exception of rightmost two squares. Again by

the proposition below they turn out to be exact.

Continuing in this fashion inductively, we see that there is a bicomplex on Pn (again

the commutative squares will be satisfied)

0

��

0

��
0 // I1,(n−1) ⊗O(−1)

��

// . . .

��

//W1,(n−1) ⊗O(−1)

��

// 0

0 // I1,n ⊗O // I1,(n−1) ⊗ Un ⊗O

��

// . . .

��

//W1,n ⊗O

��

// 0

0 // I1,n ⊗O // I1,(n−1) ⊗ T (−1)

��

// . . . // Fn−1

��

// 0

0 0

(†)

the second row of which is obtained from the bottom row of (**), and the bottom row

from (***). The first row is obtained by tensoring the previous level of (**) with O(−1).

We now show the exactness of all columns by induction. The inner rows of (†) are of

the form

0→ I1,j ⊗W(j+1),(n−1) ⊗O(−1)→ I1,j ⊗W(j+1),n ⊗O → I1,j ⊗Fn−1−j → 0

which can be obtained from the last column of of the bicomplex for Pj. So we only need to

prove the following

Proposition 2.3. For any n, suppose all squares (with possible exception of the rightmost

two) are commutative. If all columns of (†) are well-defined and exact except possibly for
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the last column, then it is also well-defined and exact. It also satisfies the commutativity

requirements.

Proof. We will prove this statement by diagram chasing. For convenience we label the

whole diagram as follows

0

��

0

��

0

��

0

��

0

��
. . .

��

// J

u
��

g // G

r
��

d // D

p
��

a // A

α
��

// 0

. . .

��

// K

v
��

h // H

s
��

e // E

q
��

b // B

β
��

// 0

. . .

��

// L

��

i // I

��

f // F

��

c // C

��

// 0

0 0 0 0 0

Our task is to show that maps α, β are well-defined and exact, given that all other rows

and columns in this diagram are exact. The commutativity will also follow directly from

the proof. Note that in the case of P2 and P3 bicomplex, we can set some terms to be 0,

and the argument here still remains valid.

For any element (here section of a sheaf) x ∈ B, we define β(x) as follows. Since b is

surjective, choose y ∈ E such that b(y) = x. Then define β(x) = β(b(y)) = c(q(y)). To

show such β is well-defined, consider another y′ such that b(y′) = b(y) = x. Then y − y′ ∈

ker b = Im e. So we can write y′ = y + e(z) for some z ∈ H. Then c(q(y′)) = c(q(y)) +

c(q(e(z))) = c(q(y)) + c(f(s(z))) = c(q(y)) since c ◦ f = 0. So choosing a different y′ yields

the same result. The map α is defined in an analogous manner, i.e. given any element x ∈

A, choose y ∈ D such that a(y) = x and let α(x) = b(p(y)). By the essentially same

argument we see that α is well-defined as well, and the whole bicomplex is commutative

by our definition of α and β.

Now we show that β is surjective. given any x ∈ C, since both q and c are surjective,
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there exists y ∈ E such that c(q(y)) = x. Then by definition above, β(b(y)) = x. So b(y) is

a preimage.

For β ◦ α = 0, given any x ∈ A there exists y ∈ D such that β(α(x)) = β(α(a(y))) =

c(q(p(y))) = 0 since q◦p = 0. Proceeding to the exactness at B, consider x ∈ ker β. Choose

y ∈ E such that b(y) = x. Then c(q(y)) = β(b(y)) = 0. So q(y) ∈ ker c = Im f . So there

exists z ∈ I such that q(y) = f(z). Since s is surjective, there exists w ∈ H such that

s(w) = z. Now consider y′ = y − e(w). We have b(y′) = b(y) = x since b ◦ e = 0. We also

have q(y′) = q(y) − e(q(w)) = q(y) − f(s(w)) = 0. Now y′ ∈ ker q = Im p. So there exists

z ∈ D such that p(z) = y′. So α(a(z)) = b(p(z)) = x. So x belongs to the image of α, with

preimage a(z).

Now we prove the injectivity of α. Let x ∈ A such that α(x) = 0. Since a is surjective

there is y ∈ D such that a(y) = x. Then b(p(y)) = α(a(x)) = 0. So p(y) ∈ ker b = Im e.

So there exists z ∈ H such that e(z) = p(y). Now f(s(z)) = q(e(z)) = q(p(y)) = 0. So

s(z) ∈ ker f = Im i. Since v is surjective, there exists w ∈ K such that i(v(w)) = s(z).

Consider now z′ = z − h(w) ∈ H. We have e(z′) = e(z) = p(y) since e ◦ h = 0. Also

s(z′) = s(z) − s(h(w)) = s(z) − i(v(w)) = 0. So z′ ∈ ker s = Im r. So there exists t ∈ G

such that r(t) = z′. Then we have p(d(t)) = e(r(t)) = e(z′) = p(y). Since p is injective we

have d(t) = y. Therefore x = a(y) = d(a(t)) = 0 since a ◦ d = 0. So α is injective.

This proof shows that the n + 1 objects we constructed can be generated by O and

O(−1) in the derived category. In particular, the collection we here constructed (symmet-

ric powers of T (−1)) is not as nice as the fully exceptional and strong collection {O, ...,O(n)}.

Not only do they cease to be exceptional, but also they are not full any more. But they do

have the advantage of being able to adapt to non-commutative algebras.
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3 Further Remarks

The above sequence produces a way to classify non-commutative algebras by some

canonical forms. Take the example of the sequence

0→ W1,2 ⊗O(−1)→ W1,3 ⊗O → F2 → 0

with underlying space to be P3. Then W1,2 is 10 dimensional and W1,3 20 dimensional.

Then the sequence is determined by the first morphism, which is a 10× 20 matrix with co-

efficients in degree 1 polynomial of 4 variables. After modding out certain equivalences we

should get a canonical matrix for all non-commutative deformations of the polynomial ring

C[x, y, z, w]. This should also correspond to other means of classifying non-commutative

algebras, for example the quotient graded module category qgr (see [9] definition 4.3 for

details). The relation between this two concepts is yet unknown. In particular, it would be

of interest to study whether two algebras with same qgr category would produce equiva-

lent matrix in the morphism, and vice versa.
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