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ABSTRACT

Colton Willig: Nonlinear Geometric Optics for Reflecting and Evanescent Pulses.

(Under the direction of Mark Williams)

Weakly nonlinear geometric optics expansions of highly oscillatory reflecting and evanes-

cent pulses are considered for a general class of differential operators. Through rigorous error

analysis it is shown that the leading term in these expansions is suitably close to the uniquely

determined exact solution. The pulses considered can have multiple components, some of

which reflect off fixed non characteristic boundaries in a spectrally stable way (introduced

in [10]), and some of which decay exponentially away from the boundary. The results in

this paper provide a generalization to the work of Coulombel and Williams in [5], as the

boundary frequency is considered not only in the hyperbolic region, but also in the mixed

and elliptic regions. Furthermore the boundary data considered in this paper is more general

than the boundary data considered in [5]. In fact, it is shown in this paper that θ-decay

inheritance of the boundary data to the solution is in some cases not even possible.
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CHAPTER 1: INTRODUCTION

Background

Highly oscillatory pulse solutions for a general class of hyperbolic equations are studied.

These include quasilinear systems like the compressible Euler equations; in fact, an ongo-

ing example through the thesis is considered for the Euler equations. Because they exhibit

important qualitative features about the system, leading order weakly nonlinear geometric

optics expansions of such highly oscillatory pulse solutions are sought. In a rigorous manner,

these expansions must be justified (to show that they are close to the exact solution in a

precise way). The approximate solution (the leading term of the expansion) yields a decom-

position into hyperbolic and elliptic profile components, which exhibits important qualitative

information about the system (the desired goal of geometric optics). The approximate so-

lution will have the following form:
∑
σi(x, θi)ri, where σi are the profiles and θi = φi(x)

ε

(for interior phases φi(x) defined in section 1.3.) The hyperbolic profiles reflect off of the

boundary and retain their ”energy”, while the elliptic profiles decay exponentially away from

the boundary.

A single pulse colliding with a fixed noncharacteristic boundary in an N ×N hyperbolic

system will generally give rise to a family of reflected pulses traveling with several distinct

group velocities. In this paper, the situation is studied when the underlying boundary

problem is assumed to be uniformly spectrally stable in the sense of Kreiss. (Refer to [3] for

a thorough treatment of Kreiss symmetrizers, along with the uniform Lopatinski condition:

a very important assumption which is discussed in section 1.3.) A formal treatment of the

boundary problem was given in [11], building on an earlier treatment of nonlinear geometric

optics for pulses in free space in [8]. (It should be mentioned here that a rigorous treatment

of the short-time propagation of a single pulse in free space were given in [1] and [6].) In the
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papers [11] and [8], systems of nonlinear equations for leading order profiles were derived,

but their solvability was not discussed. Moreover, the questions of the existence of exact

solutions on a fixed time interval independent of the wavelength of oscillations ε, and of the

relation between exact and approximate solutions, were not studied there.

[5] gave a rigorous construction of leading pulse profiles in problems where pulses traveling

with many distinct group velocities were unavoidably present. Additionally, [5] constructed

exact solutions on a fixed time interval independent of ε, and provided a rigorous error

analysis which yielded a rate of convergence of approximate to exact solutions as ε→ 0.

The results in this paper appropriately generalize the results of Coulombel and Williams

in [5], which is by far the primary motivation for this paper. The boundary frequency β

appearing in the ”θ-argument” of the boundary data is considered not only in the hyperbolic

region, but also in the elliptic and the mixed regions. (Refer to the ”Spectrum and Boundary

Frequency Regions” discussion in section 1.3 for definitions of these regions.) As before the

glancing set is a singular case which is not treated. The main difficulties arising in this

generalization are the presence of both hyperbolic and elliptic modes. These mixed modes

create difficulties when constructing the corrector to the approximate solution; the corrector

possesses carefully constructed components, some of which only exist in a distributional

sense. (Sections 2.2 and 3.3, along with Appendices B,D,E, discuss the construction of the

corrector.) The corrector required moment-zero approximations, which were inspired by the

”low-frequency cutoff” argument of [2].

The technique utilized to construct the exact solution and to justify leading term expan-

sions of the system involves replacing the original system (0.1) with an associated singular

system (0.3) involving coefficients of order ε−1 and a new unknown Uε. The error analysis

is accomplished via ”simultaneous Picard iteration,” a method first used in the study of

geometric optics for wave trains in free space in [9].

Unlike wavetrains, interacting pulses do not produce resonances that affect leading or-

der profiles. Therefore pulses interactions were assumed to be marginal at leading order.

However, even though pulses are considered here, an interesting discovery is made that the
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presence of elliptic modes can disrupt θ-decay for the hyperbolic profiles. This behavior was

not observed in the results of [5] as elliptic modes were not considered. This new behav-

ior supplants previous intuitions that pulse interactions don’t produce noticeable effects at

leading order. Therefore, even though they decay exponentially away from the boundary,

the elliptic profiles have a decided influence on the hyperbolic profiles as they pass into the

interior. This new ”spreading” phenomenon is discussed in Proposition 0.15. The adjective

”spreading” indicates that the hyperbolic profile (after reflecting and losing its θ-decay) has

oscillations which are more spread out from the zero set of the θ-argument of the profile.

The Relevant System and Its Perturbed Solutions

On Rd+1

+ = {x = (x′, xd) = (t, y, xd) = (t, x′′) : xd ≥ 0}, consider the following N × N

quasilinear hyperbolic boundary problem (where x0 = t indicates time):

d∑
j=0

Aj(vε)∂xjvε = f(vε)

b(vε)|xd=0 = g0 + εG(x′,
x′ · β
ε

)

vε|t<0 = u0

(0.1)

The boundary data G ∈ Hs(x′, θ0) is called a pulse; it satisfies supp G ⊂ {t ≥ 0}. β ≡

(τ , η) ∈ Rd\{0} indicates the boundary frequency; φ0(t, y) ≡ β · x′ is called the boundary

phase. The coefficients satisfy: Ai ∈ C∞(RN ,RN2
), f ∈ C∞(RN ,RN), b ∈ C∞(RN ,Rp).
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Seeking a perturbed solution vε = u0 + εuε of a constant state u0, such that f(u0) = 0

and b(u0) = g0, gives (for modified Aj):

d∑
j=0

Aj(ε uε)∂xjuε = F(ε uε)uε

B(εuε)uε|xd=0 = G(x′,
x′ · β
ε

)

uε = 0 (t < 0)

(0.2)

where the C∞ p × N real matrix B(v) is defined by: b(u0 + εuε) = b(u0) + B(εuε)εuε (F is

defined analogously).

For any fixed ε0 > 0, the standard theory of hyperbolic boundary problems produces

solutions of (0.2) on a fixed time interval [0, Tε0 ]. However these time intervals [0, Tε] shrink

to zero as ε→ 0, as the Sobolev norms of the boundary data ”blow up” as ε→ 0. Therefore,

exact solutions of (0.2) are found by seeking solutions of the form uε(x) = Uε(x,
x′·β
ε

) by

solving the associated singular system for Uε:

d∑
j=0

Aj(εUε)∂xjUε +
1

ε

d−1∑
j=0

Aj(εUε)βj∂θ0Uε = F(εUε)Uε

B(εUε)Uε|xd=0 = G(x′, θ0)

Uε|t<0 = 0

(0.3)

[4] outlined a singular pseudo differential calculus for solving systems like (0.2) with pulse

boundary data. Appendix F of this paper summarizes that calculus in order to properly prove

Theorem 0.4. When applying this singular pseudo differential calculus, it’s useful to rewrite
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the singular system (0.3) as:

∂xdUε +
d−1∑
j=0

Ãj(εUε)(∂xj +
βj∂θ0
ε

)Uε = ∂xdUε + A(εUε, ∂x′ +
β∂θ0
ε

)Uε = F (εUε)Uε

B(εUε)Uε|xd=0 = G(x′, θ0)

Uε|t<0 = 0

(0.4)

where Ãj ≡ A−1
d Aj, F ≡ A−1

d F , and A is defined as above. A is an operator used in the

singular calculus.

Examples 0.1. Consider the isentropic, compressible Euler equations in three spacial di-

mensions on the half space x3 ≥ 0, for the unknowns, density ρ and velocity u = (u1, u2, u3)

(p = p(ρ) is the pressure) :

∂t


ρ

ρu1

ρu2

ρu3


+ ∂x1


ρu1

ρu2
1 + p(ρ)

ρu1u2

ρu1u3


+ ∂x2


ρu2

ρu1u2

ρu2
2 + p(ρ)

ρu2u3


+ ∂x3


ρu3

ρu1u3

ρu2u3

ρu2
3 + p(ρ)


=


0

0

0

0


(0.5)

It v ≡


ρ

u1

u2

u3


, then, for appropriate functions fi, (0.5) has the form:

∂tf0(v) + ∂x1f1(v) + ∂x2f2(v) + ∂x3f3(v) = 0 (0.6)

This in turn can be rewritten as:

A0(v)∂tv + A1(v)∂x1v + A2(v)∂x2v + A3(v)∂x3v = 0 (0.7)
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where Ai(v) ≡ f ′i(v). To ensure the proper hyperbolicity condition (as discussed in the fol-

lowing section), set ρ > 0. Also denote c =
√
ρ′. Seek the solution v as a perturbation about

a constant state solution: v =


ρ

u1

u2

u3


.

The Jacobians, Ai(v), are computed as follows:

A0(v) =


1 0 0 0

u1 ρ 0 0

u2 0 ρ 0

u3 0 0 ρ


(0.8)

A1(v) =


u1 ρ 0 0

u2
1 + p′ 2ρu1 0 0

u1u2 ρu2 ρu1 0

u1u3 ρu3 0 ρu1


(0.9)

A2(v) =


u2 0 ρ 0

u1u2 ρu2 ρu1 0

u2
2 + p′ 0 2ρu2 0

u2u3 0 ρu3 ρu2


(0.10)

A3(v) =


u3 0 0 ρ

u1u3 ρu3 0 ρu1

u2u3 0 ρu3 ρu2

u2
3 + p′ 0 0 2ρu3


(0.11)
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Assumptions

The following 4 assumptions are made on the system (0.2):

(Hyperbolicity) Set A0 = I. For an open neighborhood U of 0 ∈ RN , ∃ q ≥ 1 and

eigenvalues: λ1, · · · , λq ∈ C∞(U×Rd\{0},R), which are homogenous of degree 1 and analytic

in ξ, so that for some positive integers ν1, · · · , νq:

detL(u, τ, ξ) = det [τI +
d∑
j=1

ξjAj(u)] =

q∏
k=1

(τ + λk(u, ξ))
νk

where u ∈ U and ξ = (ξ1, · · · , ξd) ∈ Rd. The eigenvalues λ1(u, ξ), · · · , λq(u, ξ) are semi-

simple and are ordered: λ1(u, ξ) < · · · < λq(u, ξ)∀u ∈ U , ξ ∈ Rd\{0}.

(Noncharacteristic Boundary) ∀u ∈ U : Ad(u) is invertible and the matrix B(u) has

maximal rank; its rank p equaling the number of positive eigenvalues of Ad(u) (counted with

multiplicity).

(Diagonalizability / Nonsingularity) For v in an open neighborhood U of 0 ∈ RN and

ζ ≡ (τ − iλ, η) ∈ C× Rd−1, consider the symbol:

A(v, ζ) ≡ −iAd(v)−1[(τ − iλ)I +
d−1∑
j=1

ηjAj(v)]

Denote its distinct eigenvalues as iω1(v, ζ), · · · , iωM(v, ζ).

Write A(ζ) = A(0, ζ) and ωi(ζ) = ω(0, ζ).

The boundary frequency β is chosen so that there is a conic neighborhood O of β in

C×Rd−1\{0} on which eigenvalues of −iA(β) are semi-simple and given by smooth functions

ωm(β) (m = 1, · · · ,M), which are analytic in the (τ − iλ) argument, where ωm(β) is of

constant multiplicity νkm on O. (For ease of notation, henceforth set ωm = ωm(β).)
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The glancing set G is a singular set that’s defined as follows: Let G indicate the set of

all (τ, ξ) ∈ R× Rd: ξ 6= 0 and ∃ 1 ≤ k ≤ q :

τ + λk(ξ) = 0 =
∂λk
∂ξd

(ξ)

Then the glancing set G is defined to be the projection π(G) onto the first d coordinates of

the elements of G. The diagonalizability assumption of β discussed above prevents it from

lying in the glancing set: an important condition for the proof of (0.4).

(Uniform Stability) Define Ξ ≡ {ζ = (τ − iγ, η) ∈ C× Rd−1\{0} : γ ≥ 0},

Ξ0 ≡ Ξ ∩ {γ = 0}, Σ ≡ {ζ = (τ, η) ∈ Ξ : |τ |2 + |η|2 = 1}

Due to a result by [12], when ζ ∈ Ξ \Ξ0, A(ζ) has no purely imaginary eigenvalues and

its stable subspace Es(ζ) has dimension p. Furthermore, Es(ζ) defines an analytic vector

bundle over Ξ \Ξ0 that can be extended as a continuous vector bundle over Ξ0. The analysis

in [12] also shows that, away from the glancing set G ⊂ Ξ0 , Es(β) depends analytically on

ζ ∈ Ξ.

With Es properly defined, the assumption is made that (0.2) is uniformly stable at u = 0,

meaning that:

B(0) : Es(τ − iγ, η) −→ Cp is an isomorphism∀ (τ − iγ, η) ∈ Σ

This is called the uniform Lopatinski condition. It’s satisfied for the isentropic, com-

pressible Euler equations in 3 spatial dimensions for physically relevant boundary operators.
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Examples 0.2. For the ongoing Euler equation example, the symbol A is:

A(ξ′) = A(τ, ξ′′) ≡ −iA−1
3 (v)[τA0(v) + ξ1A1(v) + ξ2A2(v)]

= i


− u23ω

c2−u23
ρu3ξ1
c2−u23

ρu3ξ2
c2−u23

− ρu3ω
c2−u23

− (τu1+ξ1(c2+u21)+u1u2ξ2)

ρu3
+ u1ω

ρ
−ω 0 0

− (τu2+ξ2(c2+u22)+u1u2ξ1)

ρu3
+ u2ω

ρ
0 −ω 0

− c2u3ω
ρ(c2−u23)

−c2ξ1
c2−u23

0
u23ω

c2−u23


(0.12)

where (for ease of notation and later relevance) ω ≡ (τ + u1ξ1 + u2ξ2)

u3

.

The symbol L ≡ τA0 + ξ1A1 + ξ2A2 + ξ3A3, is related to S ≡ A−1
0 [ξ1A1 + ξ2A2 + ξ3A3]

and A ≡ −iA−1
3 [τA0 + ξ1A1 + ξ2A2] in the following way:

detL = det[τA0 + ξ1A1 + ξ2A2 + ξ3A3] = detA0det[τI + S] = detA3det[iA+ ξdI] (0.13)

The eigenvalues of S are λm = λm(u, ξ): (occurring with multiplicities 1,2,1, respectively)

λ1 = u · ξ − c|ξ| (0.14)

λ2 = u · ξ (0.15)

λ3 = u · ξ + c|ξ| (0.16)

The eigenvalues of −iA are ωm = ωm(u, ξ′): (occurring with multiplicities 1,2,1, respec-

tively)

ω1 =
u2

3ω − c
√

(u2
3 − c2)(ξ2

1 + ξ2
2) + u2

3ω
2

c2 − u2
3

(0.17)

ω2 = −ω =
−(τ + u1ξ1 + u2ξ2)

u3

(0.18)

ω3 =
u2

3ω + c
√

(u2
3 − c2)(ξ2

1 + ξ2
2) + u2

3ω
2

c2 − u2
3

(0.19)
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The eigenvalues are related as follows:

−ρ3
∏

(τ + λm) = detL = −detA3

∏
(ξd − ωm) (0.20)

Hence ωm can be computed by solving τ + λm = 0 in terms of ξd. Conversely, λm can be

computed by solving ξd − ωm = 0 in terms of −τ .

The eigenvectors sm of S are easily computed as follows:

s1 =


−ρ|ξ|

cξ3

ξ1
ξ3

ξ2
ξ3

1


s2,1 =


0

− ξ2
ξ1

1

0


(0.21)

s2,2 =


0

− ξ3
ξ1

0

1


s3 =



ρ|ξ|
cξ3

ξ1
ξ3

ξ2
ξ3

1


(0.22)

Note that s2,1 and s2,2 are the 2 different eigenvectors corresponding to λ2, which occurs

which multiplicity 2.

Through the ”shared” symbol L, the eigenvectors of A can be easily related to the eigen-

vectors of S, which greatly simplifies the computation of the eigenvectors for A.

To be clear, sm is an eigenvector of S iff:

Ssm = λmsm ↔ [S − λmI]sm = 0↔ [−λmA0 + ξ1A1 + ξ2A2 + ξ3A3]sm = 0 (0.23)
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Conversely, rm is an eigenvector of A iff:

iArm = −ωmrm ↔ [iA+ ωmI]rm = 0↔ [τA0 + ξ1A1 + ξ2A2 + ωmA3]rm = 0 (0.24)

Hence an eigenvector sm of S is an eigenvector of A when ξ3 = ωm. (This also occurs

exactly when τ = −λm.) Thereby eigenvectors rm of A are found by: rm = sm|ξ3=ωm.

r1 =


−ρ|(ξ′′,ω1)|

cω1

ξ1
ω1

ξ2
ω1

1


r2,1 =


0

− ξ2
ξ1

1

0


(0.25)

r2,2 =


0

−ω2

ξ1

0

1


r3 =


−ρ|(ξ′′,ω3)|

cω3

ξ1
ω3

ξ2
ω3

1


(0.26)

(Subsonic Inflow) In this case, consider 0 < u3 < c. The boundary condition is taken to

be: b(ρ, u) = (ρu3, u1, u2), which has the linearized operator:

B(0)(ρ̇, u̇) = (ρ̇u3 + ρu̇3, u̇1, u̇2) (0.27)

so that:

B(0) =


u3 0 0 ρ

0 1 0 0

0 0 1 0

 (0.28)

Notice that p = 3, where p is the rank of B(0) (and also the number of positive eigenvalues

of A3(v).)
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The index set for the eigenvalues of A(β) can be partitioned as O ∪ I ∪P ∪N . O, I in-

dicate the outgoing/incoming hyperbolic modes (β, ωm) for which the ωm are real and P ,N

indicate the elliptic modes (β, ωm) for which the ωm are non real, with positive/negative

imaginary parts, respectively. For each m ∈ O, I, the hyperbolicity condition guarantees

the existence of a unique km: τ + λkm(η, ωm) = 0. The outgoing/incoming nature of these

modes refers to whether ∂ξdλkm(β, ωm) < 0 or ∂ξdλkm(β, ωm) > 0, respectively. For each

eigenvalue ωm, define interior phases φm(x) ≡ φ0(t, y) + ωmxd. Finally, β is said to lie in

either the hyperbolic, elliptic, or mixed region depending on whether A(β) has eigenvalues

corresponding to modes that are entirely hyperbolic, entirely elliptic, or a mixture of both,

respectively.

There are two useful decompositions from [7] and [5], respectively:

Es(τ , η) =
⊕

m∈I∪P

KerL(dφm) (0.29)

CN =
M⊕
m=1

KerL(dφm) (0.30)

If P1, · · · , PM are the projectors associated with (0.30), then for m = 1, · · · ,M :

ImA−1
d (0)L(dφm) = KerPm. Denote a basis of Ker L(dφm) as {rm,k}

νkm
k=1. For m ∈ O, I,

these consist of real vectors. The approximate solution constructed for (0.2) will be written

as an expansion of such basis vectors. For now, restrict attention to the strictly hyperbolic

case (when νkm = 1 for m = 1, · · · ,M). The generalization (when at least one νkm > 1) is

treated in Chapter 4.

Examples 0.3. For the ongoing Euler equation example, it will be shown that there are

two possibilities for β = (η, ξ′) = (η, ξ1, ξ2): the hyperbolic region and the mixed region.

Because (for physically relevant solutions) u ∈ R3, ω2 must always be real. Hence β can’t

lie in the elliptic region. Notice that the group velocity corresponding to ω2 in incoming, as

∂ξ3λ2 = u3 > 0 in the subsonic inflow case. Whether or not ω1 and ω3 are non real depends
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on the discriminant:

∆ ≡ (u2
3 − c2)(ξ2

1 + ξ2
2) + u2

3ω
2 (0.31)

If ∆ > 0, then β lies in the hyperbolic region. As mentioned in [H], this corresponds to the

region:

{ (τ, ξ′) : |τ + u1ξ1 + u2ξ2| >
√
c2 − u2

3|ξ′′| } (0.32)

∆ = 0 corresponds to the glancing set. Finally, if ∆ < 0, then β lies in the mixed region,

where ω1 and ω3 are conjugate eigenvalues.

Main Results

First, note the following notations:

1. Ω ≡ Rd+1
+ × R1 ΩT ≡ Ω ∩ {−∞ < t < T}

2. bΩ ≡ Rd × R1 bΩT ≡ bΩ ∩ {−∞ < t < T}

3. ωT ≡ Rd+1
+ ∩ {−∞ < t < T} M0 ≡ 3d+ 5

4. Hs
T ≡ Hs(ΩT ) bHs

T ≡ Hs(bΩT )

5. Es
T = Es

T (x, θ0) ≡ C(xd, H
s(bΩT )) ∩ L2(xd, H

s+1(bΩT ))

(where C(xd, ·) denotes the space of bounded continuous functions in xd ≥ 0)

13



Theorem 0.4. Suppose that the quasilinear boundary problem (0.2) satisfies the 4 assump-

tions of Section 1.3. Furthermore, suppose that G ∈ bHs+1 satisfies supp G ⊆ {t ≥ 0},

where s ≥ [M0 + d+1
2

] (the smallest integer ≥ M0 + d+1
2

). Then ∃ ε0 > 0, T0 > 0 independent

of ε ∈ (0, ε0] and ∃!Uε ∈ Es
T0

satisfying the associated singular problem (0.4), such that:

uε(x) ≡ Uε(x,
x′ · β
ε

)

is the unique C1 solution of (0.2) on ωT0.

Remark 0.5. The regularity requirement s ≥ [M0 + d+1
2

] is necessary to apply the singular

pseudo differential calculus.

Theorem 0.6. Suppose that the same 4 assumptions hold and that G ∈ bHs+1. Then

∃ 0 < T1 ≤ T0 and an (explicitly constructed) approximate solution uaε ≡ U0
ε (x, x

′·β
ε

) ∈ Hs
T0

,

defined by (0.107), such that:

lim
ε→0

(uε − uaε ) = 0 in L∞(ωT1)

where uε ∈ C1(ωT0) is the unique exact solution to (0.2), specified in Theorem 0.4

The previous two theorems are proven in Chapter 3.

Remark 0.7. Note that a rate of convergence couldn’t be determined in (0.6), as was possible

in [5]. However, Theorem 0.6 is more general than Theorem 1.14 of [5], as β is considered

not only in the hyperbolic region, but also in the elliptic and mixed regions.
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Additionally more generalized boundary data G can be treated by this result, as frequency

decay conditions (in the θ argument) on G are not necessary. (To be precise, it’s not neces-

sary that G ∈ bΓs+1, where bΓs (and Γs) are defined below.) In fact, as discussed in section

2.3, there are times when, due to disruptive hyperbolic/elliptic boundary interactions, the

profiles σ can’t inherit the θ-decay properties of the boundary data G.

Definition 0.8. For s ∈ N, define:

Γs ≡ { a(x, θ) ∈ L2(Rd+1
+ × R) : (θ, ∂x, ∂θ)

βa ∈ L2 ∀ |β| ≤ s and a|t<0 = 0 } (0.33)

Similarly, define:

bΓs ≡ { a(x′, θ) ∈ L2(Rd × R) : (θ, ∂x′ , ∂θ)
βa ∈ L2 ∀ |β| ≤ s and a|t<0 = 0 } (0.34)

Remark 0.9. A related paper considering quasilinear, highly oscillatory IBVPs of the form

(0.2) is [7]. [7] also solves (0.2) under the same 4 assumptions considered in this paper, along

with the generalization that the boundary data G lies in a Sobolev space and the extension that

the boundary frequency β can lie in any of the 3 regions (hyperbolic, elliptic, mixed). However

[7] differs because it considers wave train boundary data G (data that’s periodic in θ). Despite

the similarities, many differences exist between [7] and this current paper. Namely, much

effort of this paper goes into properly constructing and estimating the corrector U1
p of the

approximate solution U0, which plays a crucial role in the proof of (0.6). This corrector

differs greatly from the corrector constructed in [7]. One major difference is that here the

Fourier spectrum is continuous (and not discrete as in [7]). This poses new difficulties for

the construction of the corrector U1
p due to a different type of small-divisor problem, as κ (the

dual variable to θ) can be close to 0. Thereby moment-zero approximations are necessary in

constructing the required primitives, along with their own error analysis.
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CHAPTER 2: CONSTRUCTING THE APPROXIMATE SOLUTION U0

In this chapter the approximate solution uaε to the system (0.2) is determined by solv-

ing (or in some cases approximately solving) suitable profile equations for the components

(”profiles”) of the eigen-decomposition of the approximate solution uaε via (0.30). Important

conditions on the profiles will be discussed.

To begin, the ansatz is made that the approximate solution uaε (x) (to order ε0) has the

following form:

uaε (x) ≡ [U0(x, θ0, ξd)]θ0=
φ0
ε
,ξd=

xd
ε

(0.35)

Similarly, the corrected approximate solution ucε(x) (to order ε1) is written:

ucε(x) ≡ [U0(x, θ0, ξd) + εU1(x, θ0, ξd)]θ0=
φ0
ε
,ξd=

xd
ε

(0.36)

Taylor expanding the Ãj and F about 0 for (0.4) and collecting ε terms yields the following

ε−1 and ε0 conditions, respectively, along with an ε0 boundary condition:

L̃(∂θ0 , ∂ξd)U0 = 0 (0.37)

L̃(∂θ0 , ∂ξd)U1 = F (0)U0 − L̃(∂x)U0 −M(U0, ∂θ0U0) ≡ F(x, θ0, ξd) (0.38)

B(0)U0|xd=0,ξd=0 = G(x′, θ0) (0.39)

where: L̃(∂θ0 , ∂ξd) ≡ ∂ξd + iA(β)∂θ0 , L̃(∂x) ≡ ∂xd +
d−1∑
j=0

Ãj(0)∂xj ,

M(U , ∂θ0V) ≡
d−1∑
j=0

βj(dÃj(0) · U)∂θ0V
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ε−1 Interior Condition

Utilizing (0.30), the approximate solution decomposes as:

U0(x, θ0, ξd) =
M∑
m=1

σ̃m(x, θ0, ξd)rm (0.40)

Because the eigenvectors {rm} diagonalize A(β), (0.37) gives the equations:

(∂ξd − ωm∂θ0)σ̃m = 0 (0.41)

For ωm corresponding to a hyperbolic mode, it’s easy to see that the profiles have the

form σ̃m(x, θ0, ξd) = σm(x, θm), where θm ≡ θ0 + ωmξd. However, for ωm corresponding to

an elliptic mode, in order to write same formula, the Fourier transform of (0.41) w.r.t. θ0 is

employed as follows:

(∂ξd − iωmκ)σ̃ m̂ = 0 (0.42)

This equation is solved with the integrating factor e−iωmκξd , so that:

σ̃ m̂(x, κ, ξd) = eiωmκξdσ̃ m̂(x, κ, 0)

Applying the inverse Fourier transform yields:

σ̃m(x, θ0, ξd) = (2π)−1

∫
R
eiθmκσ̃ m̂(x, κ, 0)dκ ≡ σm(x, θm) (0.43)
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In order for the exponential term eiθmκ in (0.43) to be decaying, it’s necessary to require

that:

supp σ̃ m̂(x, κ, 0) ⊆ {(Imωm)κ ≥ 0} (0.44)

In light of (0.43), define:

σ m̂(x, κ) ≡ σ̃ m̂(x, κ, 0) = e−iωmκξdσ̃ m̂(x, κ, ξd) (0.45)

By (0.44), if σm ∈ Hs
T for s > d+1

2
+ 1 (the choice of s > d+1

2
guarantees continuity

of σm in (x, θ)), then σm(x, θ) has an analytic extension in θ to the upper half-plane when

m ∈ P (lower half-plane when m ∈ N ). The half-line support condition (0.44) on the elliptic

profiles is an important condition which will be utilized extensively.

Remark 0.10. Along with the half-line support conditions, (0.43) demonstrates the expo-

nential decay of the elliptic pulses. In the case m ∈ P, when κ is away from 0 (say κ ≥ δ for

a fixed δ > 0), the modulus of the integrand of (0.43) is controlled by e−δImωmξd |σ m̂(x, κ)|,

which rapidly decays to 0, as ε→ 0, upon the substitution ξd = xd
ε

.

Remark 0.11. It should also be noted here that the possible discontinuity of σ m̂(x, κ) at

κ = 0 can prevent θ0-decay for σm(x, θ0). In fact, as it will be demonstrated later, when β

does not lie in the hyperbolic region, the approximate solution U0 may not lie in a Γs-space

(see Definition 0.8), even if G does. Instead it will only be assumed that the boundary data

G lies in a Hs-space. This generalization will be taken for β in all 3 possible regions.
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ε0 Interior Condition

Similarly, (0.38) gives the following equations:

(∂ξd − ωm∂θ0)τm = Fm ≡ lm · F (0.46)

where U1(x, θ0, ξd) =
M∑
m=1

τm(x, θ0, ξd)rm and lm denotes a left eigenvector of iA(β) asso-

ciated to −ωm, which satisfies lm · rm′ = δm,m′ .

The elliptic profiles τm are once again solved by Fourier transforming to reduce to an

ODE:

(m ∈ P) τ m̂(x, κ, ξd) = eiωmκξdτ m̂(x, κ, 0) +

∫ ξd

0

eiωmκ(ξd−s)F m̂(x, κ, s)ds (0.47)

Suppose that Im ωm > 0. The exponential term eiωmκ(ξd−s) is well-behaved when κ > 0.

However, when κ < 0, to ensure this same behavior require that:

(m ∈ P) τ m̂(x, κ, 0) =

∫ 0

∞
e−iωmκsF m̂(x, κ, s)ds (0.48)

So that the solution for κ < 0 becomes:

(m ∈ P) τ m̂(x, κ, ξd) =

∫ ξd

∞
eiωmκ(ξd−s)F m̂(x, κ, s)ds (0.49)

So, when Im ωm > 0, the following full solution is found by setting τ m̂(x, κ, 0) ≡ 0:

(m ∈ P) τ m̂(x, κ, ξd) = 1{κ<0}

∫ ξd

∞
eiωmκ(ξd−s)F m̂(x, κ, s)ds

+1{κ>0}

∫ ξd

0

eiωmκ(ξd−s)F m̂(x, κ, s)ds (0.50)
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For Im ωm < 0, the opposite formulae hold for τ m̂ on the κ half-lines:

(m ∈ N ) τ m̂(x, κ, ξd) = 1{κ<0}

∫ ξd

0

eiωmκ(ξd−s)F m̂(x, κ, s)ds

+1{κ>0}

∫ ξd

∞
eiωmκ(ξd−s)F m̂(x, κ, s)ds (0.51)

The following decomposition holds for Fm in terms of the σm:

(where σi, ∂θiσi are evaluated at (x, θ0 + ωiξd) )

Fm = −Xφmσm −
∑
i

cmi σi∂θiσi −
∑
i 6=j

dmi,jσi∂θiσj +
∑
i

emi σi −
∑
i 6=m

V m
i σi (0.52)

where Xφm is the characteristic vector field:

Xφm ≡ ∂xd +
d−1∑
i=0

−∂ξiωm(β)∂xi (0.53)

and for i 6= m the tangential vector field V m
i is:

V m
i ≡

d−1∑
j=0

(lmÃj(0)ri)∂xj (0.54)

cmi ≡ lm

d−1∑
j=0

βj(dÃj(0) · ri)ri, dmi,j ≡ lm

d−1∑
j=0

βj(dÃj(0) · ri)rj, emi ≡ lmF (0)ri
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In light of (0.47), the Fourier transform of Fm w.r.t. θ0 is:

F m̂(x, κ, s) = −Xφme
iωmκsσ m̂ −

∑
i

gm,i(x, κ, s)−
∑
i 6=j

hm,i,j(x, κ, s)

+
∑
i

emi e
iωiκsσ î −

∑
i 6=m

V m
i e

iωiκsσ î (0.55)

where σ î is defined as in (0.45) and where (by the convolution theorem):

gm,i(x, κ, s) ≡ cmi

∫
R
eiωi(κ−t)sσ î(x, κ− t)eiωits(∂θiσi)̂ (x, t)dt = cmi e

iωiκsσ î ∗ (∂θiσi)̂ (x, κ)

(0.56)

hm,i,j(x, κ, s) ≡ dmi,j

∫
R
eiωi(κ−t)sσ î(x, κ− t)eiωjts(∂θiσj )̂ (x, t)dt (0.57)

From there it follows that (because eiωmκs commutes with differential operators in x and

constants):

eiωmκ(ξd−s)F (̂x, κ, s) = eiωmκξd [−Xφmσ m̂(x, κ)−
∑
i

e−iωmκsgi(x, κ, s)−
∑
i 6=j

e−iωmκshi,j(x, κ, s)

+
∑
i

ei(ωi−ωm)κsemi σ î(x, κ)−
∑
i 6=m

ei(ωi−ωm)κsV m
i σ î(x, κ)] (0.58)

Notice that when κ < 0 (for m ∈ P):

τ m̂(x, κ, ξd) =

∫ ξd

∞
eiωmκ(ξd−s)F m̂(x, κ, s)ds

=

∫ ξd

∞
eiωmκξd [−Xφmσ m̂(x, κ)− cmmσ î ∗ (∂θiσi)̂ (x, κ) + emmσ î(x, κ)] ds+ · · ·

= −eiωmκξd [Xφmσ m̂(x, κ) + cmmσ î ∗ (∂θiσi)̂ (x, κ)− emmσ î(x, κ)][

∫ ξd

∞
ds] + · · · (0.59)

21



In Appendix C, it will be shown the terms included in the ellipses of (0.59) can be con-

trolled. However, the rest of the terms highlighted in (0.59) are not even well-defined due to

the presence of the (improper) integral
∫ ξd
∞ ds. Hence the profile equations (0.79) must be

considered.

The ε0 interior condition will now be considered for the hyperbolic corrector profiles:

Motivated by [5], the attempt could be made to solve the hyperbolic corrector profiles

τm (m ∈ I ∪ O) by:

τm(x, θ0, ξd) =

∫ ξd

∞
Fm(x, θ0 + ωm(ξd − s), s)ds (0.60)

These indeed are solutions of (0.46).

However, the integral contribution to the RHS of (0.60) from:

∫ ξd

∞
[L̃(∂x)U0 − F (0)U0]m(x, θ0 + ωm(ξd − s), s)ds

contains (suppressing constants) integrals of the form:

∫ ξd

∞
σi(x, θ0 + ωiξd + s(ωm − ωi))ds

In [5], the integrands above possessed nice decay properties in s. However, these decay

properties relied upon the Γs regularity of the profiles σm. As will be seen in the next

section 2.3, under the hypotheses of this paper, there are times when the profiles (even the

hyperbolic profiles) fail to be in Γ1.
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Because the profiles σ may no longer belong to Γs, it can’t be assumed that these (im-

proper) integrals are well-defined. Instead, these integrals are replaced with primitives of

moment-zero approximations, which have the form σ∗i,p(x, θ0 + ωmξd) (these are defined in

Definition 0.44). A small divisor problem requires these moment-zero approximations of the

profiles (defined in Definition 0.43), in order for the primitives to be controlled for Es
T -norms.

Refer to Appendix B for a discussion of these constructions.

In addition to the modification of the primitives discussed above, the integral contribution

to the RHS of (0.60) from:

∫ ξd

∞
M(U0

p , ∂θ0U0
p )m(x, θ0 + ωm(ξd − s), s)ds

contains (suppressing constants) integrals of the form:

∫ ξd

∞
σi(x, θ0 + ωiξd + s(ωm − ωi))∂θ0σj(x, θ0 + ωjξd + s(ωm − ωj))ds

Because the arguments of σi and ∂θ0σj differ, a difficulty arises when attempting to esti-

mate these integrals. Definition 0.51 resolves this issue by introducing a hyperbolic transver-

sal product modification. The results of Appendix E demonstrate that these modified prod-

ucts can be properly estimated in Es
T spaces. Additionally, by the results of Appendix D, the

error produced by substituting these modifications in the corrector is shown to be controlled.

Remark 0.12. In [5], the above integrals were estimated via Proposition 4.10. However, the

proof of that proposition relied upon the hypothesis that the profiles belonged to Γs spaces.

The omission of the Γs hypothesis necessitates the careful constructions and resulting esti-

mates present in this paper, outlined in Appendices D and E.

The remaining obstacle to the construction of the hyperbolic corrector profiles are the
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Xφmσm + cmmσm∂θσm− emmσm terms which appear in (0.60). They have no s-dependency and

so appear alongside a factor of
∫ ξd
∞ ds. Hence the profile equations (0.79) are also necessary

for the hyperbolic profiles σm(m ∈ I ∪ O). Notice that the profiles equation hold for all

profiles, both elliptic and hyperbolic. They are also decoupled, as there are no interactions

between the elliptic and hyperbolic profiles (at order ε0) when solving the approximate so-

lution U0.

Motivated by the discussion in this section, the fully modified hyperbolic corrector profiles

are defined in (0.121). Additionally, the modified elliptic corrector profiles are defined in

(0.122) and (0.123). These formulae define the corrector U1
p , which, as seen in the proof of

Theorem 0.29, is the appropriate corrector for the error analysis involving the approximate

solution U0 and the exact solution Uε.
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ε0 Boundary Condition

The following proposition will first be proven, in order to aid in the discussion of the ε0

boundary condition:

Proposition 0.13. All outgoing profiles σm (m ∈ O) vanish.

Proof: Consider the iteration scheme (0.84), which is used in section 2.4 for solving the

hyperbolic profiles:

Initializing with σ0
m = 0, the n = 1 condition for (0.84) gives: Xφmσ

m
i = 0.

Because Xφm is a real vector field when i ∈ O, whose flow is ”outward” (towards the

boundary), integration along characteristics from the zero initial information σ1
m|t<0 = 0

ensures that the outgoing iterate σ1
m vanishes throughout the interior Rd+1.

By induction, its now clear that all outgoing iterates σnm will also vanish, as does the limit

σm ≡ 0 (say, in Hs
T for s > d+1

2
). �

Proposition 0.13 and the boundary condition at order ε0 (0.39) require:

B(0)

( ∑
m∈I∪P∪N

σm(x′, 0, θ0)rm

)
= G(x′, θ0)

Fourier transforming (w.r.t. θ0) yields:

∑
m∈I∪P∪N

σ m̂(x′, 0, κ) (B(0)rm) = G (̂x′, κ) (0.61)
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Because the elliptic profiles are only supported on κ half-lines, write:

∑
m∈I∪P

σ m̂(x′, 0, κ) (B(0)rm) = G (̂x′, κ) (when κ > 0)

∑
m∈I∪N

σ m̂(x′, 0, κ) (B(0)rm) = G (̂x′, κ) (when κ < 0) (0.62)

Thereby the elliptic profiles along with the ”incoming” profiles are uniquely determined

by the boundary data G.

For use in the discussion and formulae below, O refers to the index set {1, · · · , |O|}

corresponding to the outgoing modes. Similarly, I refers to {|O|+1, · · · , |O|+|I|}, P refers to

{|O|+|I|+1, · · · , |I|+|O|+|P|}, andN refers to {|O|+|I|+|P|+1, · · · , |O|+|I|+|P|+|N |},

with each index set corresponding to the respectives modes.

Let Q+ and Q− denote the p × p matrices with columns: {B(0)rm : m ∈ I ∪ P} and

{B(0)rm : m ∈ I ∪ N}, respectively. Here the columns of Q+ and Q− are ordered by the

index set I for the first |I| columns and then by either the index set P or N , for Q+ or Q−,

respectively. By the uniform Lopatinski condition and (0.29), {B(0)rm : m ∈ I ∪ P} and

{B(0)rm : m ∈ I ∪ N} form bases of Cp. Therefore Q−1
+ and Q−1

− exist, yielding:

(m ∈ I) σ m̂(x′, 0, κ) = 1{κ>0}(Q
−1
+ G (̂x′, κ))m−|O| + 1{κ<0}(Q

−1
− G (̂x′, κ))m−|O| (0.63)

(m ∈ P) σ m̂(x′, 0, κ) = 1{κ>0}(Q
−1
+ G (̂x′, κ))m−|O| (0.64)

(m ∈ N ) σ m̂(x′, 0, κ) = 1{κ<0}(Q
−1
− G (̂x′, κ))m−|O|−|P| (0.65)

where the indices m of the profiles σm above are indexed by O ∪ I ∪P ∪N , in that specific

ordering.
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Write this prescribed boundary data as:

(m ∈ I) am(x′, θ0) ≡ (2π)−1

∫
R
eiθ0κ[1{κ>0}(Q

−1
+ G (̂x′, κ))m−|O|

+1{κ<0}(Q
−1
− G (̂x′, κ))m−|O|dκ (0.66)

(m ∈ P) am(x′, θ0) ≡ (2π)−1

∫
R
eiθ0κ1{κ>0}(Q

−1
+ G (̂x′, κ))m−|O|dκ (0.67)

(m ∈ N ) am(x′, θ0) ≡ (2π)−1

∫
R
eiθ0κ1{κ<0}(Q

−1
− G (̂x′, κ))m−|O|−|P|dκ (0.68)

So that the leading profiles must satisfy:

σm(x, θ0)|xd=0 = am(x′, θ0) (0.69)

Remark 0.14. The situation simplifies when β is not in the mixed region. When β is in

the elliptic region, equations (0.67) and (0.68) still hold, except that the matrices Q± are

simplified by the omission of the B(0)rI columns. When β is in the hyperbolic region, the

previous discussion is superfluous, as the boundary data for the incoming profiles σ can

simply be expressed in terms of G without having to apply a Fourier transform w.r.t θ0.

Write σ(x′, 0, θ0) = Q−1G(x′, θ0) where Q is the matrix with columns {B(0)rm : m ∈ I}.
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An interesting ”spreading” result is discussed in this section: the profiles σm are shown

to not necessarily inherit the θ-decay of the boundary data G.

Proposition 0.15. Let β be in the mixed region and G ∈ Γs, for s > d+1
2

+ 1.

Then σm ∈ Hs
T (∀m ∈ O ∪ I ∪ P ∪N ) and the following two results hold:

(1) If {B(0)rm : m ∈ P ∪N} is a linearly independent set

and G (̂x′, 0) /∈ span{B(0)rm : m ∈ I}, then σm /∈ Γ1 (m ∈ I) (0.70)

(2) G(x′, θ0) ∈ span{B(0)rm : m ∈ I} ⇒ σm ∈ Γs (m ∈ I) (0.71)

Proof: Consider s > d+1
2

+ 1. First it will be shown that: σm ∈ Hs
T ∀m

The result holds trivially when m ∈ O.

Proposition (0.19) gives the result when m ∈ P ∪N .

As will be discussed in section 2.4, the hyperbolic (incoming) profiles are solved for

via an iteration argument. This argument utilizes the estimates of Theorem 0.20, which

in particular show that the (Sobolev) regularity of the hyperbolic profiles derive from the

regularity of the boundary data G. Thereby, in order to prove that σm ∈ Hs (when m ∈ I), it

suffices to prove that σm|xd=0 ∈ bHs
T . Because κ commutes with 1{κ>0 } and Q−1

+ , inspection

of (0.66) demonstrates that (for m ∈ I):

|σm|xd=0|bHs
T

= |(0.66)|bHs
T
. |G|bHs

T

Thereby σm ∈ Hs, when m ∈ I, which concludes the first desired result.
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Part (1) of Proposition 0.15 is proven as follows:

Let β be in the mixed region and G ∈ Γs, where s > d+1
2

+ 1.

Notice that, because s > d+1
2

, G is continuous in (x′, θ0). Applying the dominated conver-

gence theorem to the Fourier transform formula for G (̂x, κ) yields: G (̂x′, 0−) = G (̂x′, 0+),

so that (0.62) yields:

∑
m∈I∪N

σ m̂(x′, 0, 0−) (B(0)rm) =
∑

m∈I∪P

σ m̂(x′, 0, 0+) (B(0)rm) (0.72)

Suppose now, for the sake of contradiction, that σm ∈ Γ1 (for some m ∈ I), then also:

σ m̂(x′, 0, 0−) = σ m̂(x′, 0, 0+) a.e. in x′. Notice that, because s > d+2
2

and σm ∈ Hs, σm is

continuous in (x, θ0). This gives σ m̂(x′, 0, κ) ∈ L2(x′, C(κ)).

The previous equality then simplifies to:

∑
m∈N

σ m̂(x′, 0, 0−) (B(0)rm) =
∑
m∈P

σ m̂(x′, 0, 0+) (B(0)rm) (a.e. in x′) (0.73)

But {B(0)rm : m ∈ P ∪ N} was assumed to be a independent set, which implies that:

σ m̂(x′, 0, 0+) = 0, σ m̂(x′, 0, 0−) = 0 a.e. in x′ (for m ∈ P ,N , respectively). This forces the

polarization condition: G (̂x′, 0) ∈ span{B(0)rm : m ∈ I}. (The a.e. in x′ qualification can

now be removed because G (̂x′, κ) is continuous in x′.) However, this condition contradicts

the hypothesis regarding G (̂x′, 0). ⇒⇐

Therefore σm /∈ Γ1.
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Part (2) of Proposition 0.15 is proven as follows:

Suppose that G satisfies the polarization condition: G(x′, θ0) ∈ span{B(0)rm : m ∈ I}.

As mentioned earlier in the proof, the (Sobolev) regularity of the hyperbolic profiles

derive from the regularity of the boundary data G.

Therefore, in order to prove that σm ∈ Γs, it suffices to show that: σm|xd=0 = (0.66) ∈ bΓs.

Let Q̃ denote the p× |I| matrix with columns {B(0)rm : m ∈ I}.

Let Q̃−1
left denote the left matrix inverse of Q̃.

Then the polarization hypothesis for G shows that:

[1{κ>0}Q
−1
+ G (̂x′, κ) + 1{κ<0}Q

−1
− G (̂x′, κ)]m = [Q̃−1

leftG (̂x′, κ)]m (when m = 1, · · · , |I|)

(0.74)

[1{κ>0}Q
−1
+ G (̂x′, κ) + 1{κ<0}Q

−1
− G (̂x′, κ)]m = 0 (when m = |I|+ 1, · · · , p) (0.75)

Thereby, for |β| ≤ s, because Q̃−1
left is a constant matrix:

|(θ0, ∂x′ , ∂θ0)
βσm|xd=0|L2(x′,θ0) = |(θ0, ∂x′ , ∂θ0)

β(0.66)|L2(x′,θ0)

. |(∂κ, ∂x′ , κ)βQ̃−1
leftG (̂x′, κ)|L2(x′,θ0) . |(θ0, ∂x′ , ∂θ0)

βG(x′, θ0)|L2(x′,θ0)

which proves that (0.66) ∈ bΓs, as G ∈ bΓs. �

Remark 0.16. Therefore, when β does not lie in the hyperbolic region, the hyperbolic profiles

may not belong to Γ1, even if the boundary data belongs to bΓs (for s > d+1
2

+ 1). Similarly,

the elliptic profiles may not belong to Γ1, even when the boundary data belongs to bΓs (for

s > d+1
2

+ 1), because the half-line support conditions on the elliptic profiles would require

that the profiles vanish at κ = 0.
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Remark 0.17. Notice that the discussion of Section 2.3 did not depend on the nonlinearity

of the system (0.2). Therefore this ”spreading” behavior is a linear phenomenon.

Examples 0.18. For the ongoing Euler equation example:

B(0)s1 =


ρ− ρu3|ξ|

cξ3

ξ1
ξ3

ξ2
ξ3

 B(0)s3 =


ρ+ ρu3|ξ|

cξ3

ξ1
ξ3

ξ2
ξ3

 (0.76)

B(0)r1 =


ρ− ρu3|(ξ′′,ω1)|

cω1

ξ1
ω1

ξ2
ω1

 B(0)r3 =


ρ− ρu3|(ξ′′,ω3)|

cω3

ξ1
ω3

ξ2
ω3

 (0.77)

It’s clear that B(0)r1 and B(0)r3 can only be collinear if they are related by
ω1

ω3

B(0)r1 =

B(0)r3. This occurs when:

(
ω1

ω3

− 1)ρ+
ρu3(|(ξ′′, ω3)| − |(ξ′′, ω1)|)

cω3

= 0

↔ (
ω1

ω3

− 1) +
u3(|(ξ′′, ω3)| − |(ξ′′, ω1)|)

cω3

= 0

↔ cω1 − cω3 + u3(|(ξ′′, ω3)| − |(ξ′′, ω1)|) = 0 (0.78)

Because ω1 − ω3 is purely imaginary, while the other term is real, it follows that ω1 =

ω3. By considering the definitions of ω1 and ω3, it’s clear that this can only occur when Im

ω1 = 0 = Im ω3. However (by definition), for a frequency β chosen in the mixed region,

Im ω1 6= 0. Hence B(0)r1 and B(0)r3 can never be collinear when β is chosen in the

mixed region. (Notice that this argument did not have a dependency on u3; the transversal

relationship of B(0)r1 and B(0)r3 holds regardless of what values u3 assumes.) Therefore

{B(0)rm : m ∈ P ∪N} is a linearly independent set.
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Thereby, via this extended Euler equation example, it’s shown that there are physically

relevant boundary operators B for important equations of mathematical physics for which the

”spreading” phenomenon can occur.

At this point, it’s instructive to remember that the boundary data G and the exact

solution Uε to the desired PDE should be real-valued in any physically relevant context.

Thus, it should be verified that the approximate solution U0 is also real-valued (for it to be

a valid, physically relevant approximation).

Using the Fourier inversion formula, it’s easy to see that U0 is real-valued iff U0,̂(x, κ, ξd) =

U0,̂(x,−κ, ξd). This is the condition that will be verified for U0. For m ∈ I, one sees that

the σm are real-valued via (0.66) and its use in Theorems 0.20, 0.22. It’s already known that

the rm are real for m ∈ I. Hence the hyperbolic contribution to U0 is real-valued.

Recall that there is a bijection between indices m ∈ P and indices m′ ∈ N . Therefore,

to finish the desired verification, it suffices to show that σ m̂(x, κ)rm = σ m̂′(x,−κ)rm′ . It’s

already known that rm = rm′ , because the complex eigenvalues ωm = ωm′ must exist in

conjugate pairs. Additionally (0.67) and (0.68) show that âm(x, κ) = âm′(x,−κ). By how

the elliptic profiles are constructed in (0.81), it follows that σ m̂(x, κ) = σ m̂′(x,−κ), as

desired.
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Solving for the Profiles σ

As was previously shown in Section 2.2, it’s necessary to set the terms on the RHS

of (0.58) which do not depend on the variable of integration equal to zero. Applying the

Fourier inversion formula to this condition yields (along with the prescribed boundary data)

the following profile equations:

Xφmσm + cmmσm∂θσm − emmσm = 0

σm(x, θ0)|xd=0 = am(x′, θ0), σm|t<0 = 0
(0.79)

As mentioned previously, these decoupled interior profile equations for the approximate

profiles σm hold regardless of where β lies. Notice that the vector field Xφm governs the

propagation of the profiles σm into the interior.

When β lies in the elliptic or mixed region, (0.79) must be solved for elliptic profiles

σm. When Xφ is no longer a real vector field, (0.79) can no longer be solved in the in-

terior. Instead, as in [7], (0.79) is solved to first order at the boundary by prescribing

[∂xdσxd(x, θ)]m|xd=0 to be:

bm(x′, θ) ≡ Xφam − cmmam∂θam + emmam (0.80)

where Xφ ≡ ∂xd − Xφ. Notice that the RHS of (0.80) is well-known by (0.67) and (0.68).

From there (the components of) a candidate solution for (0.79) can be constructed as:

σm(x, θ) ≡ χ(xd)[am(x′, θ) + xdbm(x′, θ)] (0.81)

where χ is a compactly supported cut-off function, which is identically 1 near xd = 0. (This

cut-off ensures the necessary boundedness of σm in xd.) Notice that σm can be extended

into the appropriate half-plane, due to the support property of am: supp amˆ⊆ {Imωm κ ≥ 0}
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For use in the error analysis of Chapter 3, it’s helpful to define an (elliptic) error function

R(x, θ0, ξd) ≡
∑

m∈P∪N Rm(x, θ0, ξd)rm, which measures how well (0.81) solves (0.79), where:

Rm(x, θ0, ξd) ≡ [Xφσm + cmmσm∂θσm − emmσm](x, θ0 + ωmξd) (0.82)

As with σm, Rm(x, θ) inherits the desired support property from am, and can thereby be

extended into the appropriate half-plane.

Proposition 0.19. (Regularity of Elliptic Profiles)

Suppose that G ∈ bHs
T and that s > d+3

2
. Then σm ∈ Hs−1

T when m ∈ P ∪ N , by the

estimate:

|σm(x, θ0)|Hs−1
T
. |G(x′, θ0)|bHs

T
(0.83)

Proof: Let G ∈ bHs
T .

By construction of am in (0.67) and (0.68), it follows that am ∈ bHs
T , as:

|am(x′, θ0)|bHs
T
∼

∑
|α|+β≤s

|∂αx′κβ(Q−1
± G (̂x′, κ))m · 1{Imωmκ≥0}|L2

T (x′,κ)

.
∑
|α|+β≤s

|∂αx′κβG (̂x′, κ))m|L2
T (x′,κ) ∼ |Gm(x′, θ0)|bHs

T

Because s > d+3
2

, bHs−1
T is an algebra. Thereby it follows that bm ∈ bHs−1

T .

By considering the estimate:

|σm|Hs−1
T
≤ |χ(xd)am|Hs−1

T
+ |χ(xd)xdbm|Hs−1

T

it suffices to show that ψ(xd)h(x′, θ) ∈ Hs−1
T , when ψ is a compactly-supported smooth

34



function in xd and h ∈ bHs−1
T . This is verified as follows:

|ψ(xd)h(x′, θ0)|Hs−1
T
∼

∑
α+|β|+γ≤s−1

| ∂αxd∂
β
x′κ

γ[ψ(xd)h (̂x′, κ)] |L2
T (x,θ0)

=
∑

α+|β|+γ≤s−1

sup
xd≥0
|∂αxdψ(xd)| | ∂βx′κ

γh (̂x′, κ) |L2
T (x′,θ0) . |h(x′, θ0)|bHs−1

T
�

When β lies in the hyperbolic or mixed region, (0.79) must be solved for hyperbolic

profiles σ using Picard iteration. The following iteration scheme is used to determine the

hyperbolic profiles:

Xφmσ
n+1
i + cmmσ

m
i ∂θσ

n+1
m = emmσ

n
m

σnm|xd=0 = am = (0.66), σnm|t<0 = 0 (m ∈ I) (0.84)

An iteration argument is employed which utilizes standard L2 ”energy-style” estimates.

The necessary Sobolev estimate and subsequent existence/uniqueness result will be stated

here without proof. (Refer to Propositions 3.5 and 3.6 of [5] for proofs of these results.)
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Theorem 0.20. Let T > 0 and s > d+2
2

+ 1. Suppose that G ∈ bHs
T and σnm ∈ Hs

T vanish

in t ≤ 0. Then the system (0.84) has a unique solution σn+1
m ∈ Hs

T vanishing in t ≤ 0.

Additionally, ∃ increasing functions γ0(K) and C(K) of K ≡ |σnm|s,T : ∀γ ≥ γ0(K) :

|σn+1
m |s,γ,T ≤ C(K)[

〈G〉s,γ,T√
γ

+
|σnm|s,γ,T

γ
] (0.85)

where |u|s,γ,T ≡ |e−γtu|s,T ≡ |e−γtu|Hs(ΩT ) and similarly 〈u〉s,γ,T ≡ 〈e−γtu〉s,T ≡ 〈e−γtu〉Hs(bΩT ).

Remark 0.21. Note that, despite the same notation, this is not the Γs norm that was used

in the construction of the hyperbolic profiles in [5].

Theorem 0.22. Under the hypotheses of Theorem 0.20, the iterates σnm converge to a unique

solution σm ∈ Hs
T0

of the profile equations (0.84), for some 0 < T0 ≤ T .

This convergence is weak in Hs
T0

; it’s only strong in Hs′
T0

for s′ < s. This fact will be used

later in the error analysis of Chapter 3.
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An iteration scheme for the elliptic profiles σm is necessary for the error analysis in the

simultaneous Picard iteration. The elliptic iterates are constructed as follows:

Xφσ
n+1
m + cmmσ

n
m∂θσ

n+1
m − emmσnm = 0 (0.86)

σnm|xd=0 = am = (0.67), (0.68) (0.87)

This iteration scheme is adapted from [7], but simplifies greatly, as there is no ”feedback”

from the hyperbolic iterates when one solves for σnm at the boundary. (Although it should

be noted that the n-th incoming and elliptic iterates are solved simultaneously.) Instead all

iterates must agree on the boundary with am (prescribed by G as in (0.67) and (0.68) ).

This scheme is initialized with σ0
m ≡ 0, so that: Xφσ

1
m = 0. σ1

m is solved at the

boundary by prescribing ∂xdσ
1
m|xd=0 = [Xφσ

1
m]xd=0 = Xφam. Thereby, define: σ1

m =

χ(xd)(am + xdXφam).

Next, solve (0.86) for n = 1 by requiring that:

∂xdσ
2
m|xd=0 = [Xφσ

2
m − cmmσ1

m∂θσ
2
m + emmσ

1
m]xd=0

= Xφam − cmmam∂θam + emmam = bm

The prescriptions for ∂xdσ
n
m|xd=0, when n > 2, must also be bm.

Thus, the equations for the profile iterates (solved to first order) are:

σ0
m = 0 (0.88)

σ1
m = χ(xd)(am + xdXφam) (0.89)

σnm = χ(xd)(am + xdbm) (n ≥ 2) (0.90)
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The elliptic iteration scheme also determine the error iterates

Rn(x, θ0, ξd) ≡
∑

m∈P∪N R
n
m(x, θ0, ξd)rm, defined component-wise as:

Rn
m(x, θ0, ξd) ≡ [Xφσ

n+1
m + cmmσ

n
m∂θσ

n+1
m − emmσnm](x, θ0 + ωmξd) (0.91)

Note that the iterate components inherit the desired half-line support conditions:

supp Rn̂
m ⊂ {Imωmκ ≥ 0} from the am.

A certain class of functions will be considered, called type F functions, upon which an

operator E can be defined.

Definition 0.23. A function F is said to be of type F if it has the following form:

F (x, θ0, ξd) =
M∑
i=1

Fi(x, θ0, ξd)ri

where each Fi has the form:

Fi(x, θ0, ξd) =
M∑
j=1

f ij(x, θ0 + ωjξd) +
M∑

j≤k=1

gij,k(x, θ0 + ωjξd)h
i
j,k(x, θ0 + ωkξd) (0.92)

where f ij(x, θ), g
i
j,k(x, θ), h

i
j,k(x, θ) are C1 functions.

Definition 0.24. For a type F function F , define the operator E by:

EF (x, θ0, ξd) ≡
M∑
i=1

F̃i(x, θ0 + ωiξd)ri where F̃i(x, θ) ≡ f ii (x, θ) + gii,i(x, θ)h
i
i,i(x, θ) (0.93)
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Remark 0.25. Notice that this definition of the operator E agrees with the definition given

in [5]. However, the definition here does not make use of ”averaging” integrals, as the prim-

itives which arise may not be exist, if Γs spaces are not used.

With these definitions, the solvability conditions on U0 can now be formulated in the

following concise form (which will be suitable for later error analysis):

EU0 = U0

E[L̃(∂)U0 +M(U0, ∂θ0U0)− F (0)U0] = R

B(0)U0|xd=0,ξd=0 = G

U0|t<0 = 0

(0.94)

Remark 0.26. Notice that unlike in [5], an error term is required for the system (0.94). As

a reminder, this term needed to be introduced because the elliptic profile equations could only

be approximately solved to first order at the boundary. Fortunately, the error is shown to be

controlled in Proposition 0.149.
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CHAPTER 3: PROOF OF MAJOR THEOREMS 0.4 AND 0.6

Proof of Exact Solution Theorem 0.4:

As a reminder, a suitable singular pseudo-differential calculus is essential when solving

systems of the form (0.3). [4] introduced a singular pseudo-differential calculus for solving

such hyperbolic quasilinear problems with pulse boundary data. That calculus was used in

[5] to prove Theorem 1.12 of that paper. A version of the [4] calculus is utilized in solving

(0.2) for this paper. This calculus is summarized in Appendix F and is used in the following

discussion of this section.

The hypotheses of the Exact Solution Theorem 0.4 are nearly identical to those made in

Theorem 1.12 of [5]; the only difference being which boundary frequencies β are considered.

(In [5] the boundary data G was also only assumed to lie in a Hs space for Theorem 1.12.)

Therefore, the proof of Theorem 0.4 in this paper is nearly identical to the proof of Theorem

1.12 in [5], which was outlined in Chapter 2 of that paper. In fact, only one modification needs

to be made to that proof, in order to apply its arguments in this paper. The modification

involves the L∞(L2) estimate (part 2) in the proof of Theorem 2.3 of that paper. This was

the only part of the proof of Theorem 1.12 that made use of the hypothesis that β must lie

in the hyperbolic region.
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Remark 0.27. As a reminder, the normal (xd) derivatives of χeDUε (where Uε is the desired

exact singular solution to (0.3) ) were more difficult to estimate than the normal derivatives

of (1 − χeD)Uε. On the support of 1 − χe, |κβ
ε
| . |ξ′|, so that |X| . |ξ′|. Thereby the

equation (0.4) can be used to estimate normal derivatives of (1− χeD)Uε. On the support of

χe, the direction of X is approximately the boundary frequency β. By the diagonalizability

assumption on β, it can’t lie in the glancing set. Thus the block structure (0.98) and ensuing

energy estimate argument via G̊arding inequalities is utilized in this case, as discussed in the

following section.

The linearized problem for the exact solution is first considered (refer to (2.2) in [5]):

∂xdUε +
d−1∑
j=0

Ãj(εVε)(∂xj +
βj∂θ0
ε

) = fε (0.95)

Applying the ”weight” function e−γt to this equation yields:

[∂xd −AD](e−γtUε) = e−γtfε (0.96)

where AD is the pseudo differential operator with singular symbol:

A(εVε, τ − iγ +
β0κ

ε
, η1 +

β1κ

ε
, · · · , ηd−1 +

βd−1κ

ε
) (0.97)

as in Definition 0.60 and equation (0.169).

As discussed in Remark 0.27, A can be diagonalized when considering the

|χes(D)(e−γtUε)|∞,0 estimate. This will allow (0.96) to be simplified by Proposition 0.68.
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For β in any of the three regions, |χes(D)(e−γtUε)|∞,0 needs to be estimated. (Where

| · |∞,s represents the norm for C(xd, H
s(bΩ)).) Let:

Σ ≡ {z = (v,X, γ) ∈ BR × RN × [0,∞) : (X, γ) 6= 0}

and A(z) = A(v, τ − iγ, η). (Recall that X ≡ ξ′ +
κβ

ε
.)

χes(D) is the Fourier multiplier associated to the cut-off function χe discussed in the final

section of Appendix G. Following the construction of χe in that section, fix sufficiently small

parameters δ1 > 0 and δ2 > 0 : ∀v in a ball of radius δ1 and ∀(z, η) that are δ2-close to β :

S(z)−1A(z)S(z) = M(z) (0.98)

for a suitable invertible matrix S that’s homogeneous of degree zero in (X, γ) and C∞ for z

in a conic neighborhood Γ of {(0, β, 0), (0,−β, 0)} in Σ.

M(z) has the following block diagonal form with blocks of dimension |O|, |P|, |I|, |N |:

M(z) =


MO 0 0 0

0 MN 0 0

0 0 MI 0

0 0 0 MP


where MO and MI are diagonal matrices, whose entries are the eigenvalues µ(z) ≡ iωi(z) of

A(z), which satisfy (for some C > 0 and z ∈ Γ):

Reµi(z) = γHi(z) ≥ Cγ i ∈ O

Reµi(z) = −γHi(z) ≤ −Cγ i ∈ I (0.99)
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where Hi(z) is a homogeneous symbol of degree zero. Additionally:

ReMN (z) ≥ C〈X, γ〉

ReMP(z) ≤ −C〈X, γ〉 (0.100)

[4] showed that χes(D)(e−γtUε) can be written as:

χes(D)(e−γtUε) = r0W (0.101)

where r0 denotes a bounded operator on L2(Ω) whose operator norm is independent of ε and

γ. Let W = (WO,WN ,WI ,WP) correspond to the decomposition:

S(z) = [SO(z) SN (z) SI(z) SP(z)], where SO(z) is the matrix whose columns are ri(z),

for i ∈ O. (The other components of S have analogous columns for the respective index sets.)

For ease of exposition, the estimate for WN will be considered. (The estimate for WP is

analogous; the estimates for the hyperbolic components have already been shown in [5].)

By the diagonalization of A and Proposition 0.68, WN satisfies the following:

∂xdWN −MN WN = r0(e−γtfε) + r0(e−γtUε) (0.102)

This equation can be used to derive useful energy estimates: First, take the real part of

the tangential L2
T (x′, θ0)-inner product of (0.103) with −WN . Then, integrate this normed

equation from xd to ∞, in xd:

|WN (xd)|2L2
T (x′,θ0) +

∫ ∞
xd

Re 〈MNWN (y),WN 〉L2
T (x′,θ0)dy

= −
∫ ∞
xd

〈r0(e−γtfε(y)),WN 〉L2
T (x′,θ0)dy −

∫ ∞
xd

〈r0(e−γtUε(y)),WN 〉L2
T (x′,θ0)dy (0.103)
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(0.100) gives a positivity condition on MN , whereby Theorem 0.1 along with (0.170) can

be applied to the previous equality to give:

|WN (xd)|2L2
T (x′,θ0) + γ

∫ ∞
xd

|WN (y)|2L2
T (x′,θ0)dy

.
∫ ∞
xd

|WN (y)|L2
T (x′,θ0)|e−γtfε(y)|L2

T (x′,θ0)dy +

∫ ∞
xd

|WN (y)|L2
T (x′,θ0)|e−γtUε(y)|L2

T (x′,θ0)dy

(0.104)

Because of the factor of γ, the contribution of WN on the RHS of 0.104 can be absorbed

on the left by Young’s inequality. Then |WN (, ·, xd, ·)|L2
T (x′,θ0) will be the only term appearing

on the LHS of (0.104), which allows the C(xd, L
2
T (x′, θ0)) norm of WN to be estimated, as

the RHS only involves tangential L2
T (x′, θ0)-norms:

|W|2∞,0 ≤ C(K)[γ−1|e−γtfε(y)|2L2
T (x,θ0) + γ−2|e−γtgε(y)|2L2

T (x′,θ0)] (0.105)

where C(K) is the constant from Theorem 2.1 of [5]. The boundary gε appears here, because

Theorem 2.1 of [5] controlled the L2
T (x, θ0) norm of Uε by the L2

T (x, θ0) and L2
T (x′, θ0) norms

of fε and gε, respectively The desired result then follows:

|χes(D)(e−γtUε)|∞,0 ≤ C(K)(γ
−1
2 |e−γtfε|0,0 + 〈e−γtgε〉0) (0.106)

thereby confirming the L∞(L2) estimate in the proof of Theorem 2.3 in [5] for the extension

to β in the elliptic and mixed regions. �

Remark 0.28. Refer to p. 1961 of [5] for an explanation of why the factors of γ in (0.105)

and (0.106) are different. The energy estimate argument changes slightly for WI and WP .

The positivity conditions which (0.99) and (0.100) give for WI and WP , respectively, re-

quire that (0.103) instead have limits of integrations of 0 to xd, in xd. This introduces

a |WI,P |xd=0 |L2
T (x′,θ0) term which must be controlled, introducing L2

T (x, θ0) and L2
T (x′, θ0)

norms of fε and gε, respectively, with different factors of γ.
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Proof of Approximation Theorem 0.6:

This section considers Theorem 0.29, which yields the desired Approximation Theorem

(0.6) as a corollary. The proof of Theorem 0.29 is directly adapted from section 4.3 of [5],

which proves Theorem 4.16 in that paper. The Picard Iteration argument is completely

analogous; in fact, the conditions and estimates for the exact iterates are unaltered. Proofs

of the necessary estimates for Theorem 0.29 are relegated to the appendices. One of the

primary differences in this paper involves the error term R, which arose from the failure

of the elliptic profiles σm (m ∈ P ∪ N ) to exactly solve (0.79). The estimate of this error

(considered in (0.149) ) doesn’t yield a specified rate of convergence. This estimate, along

with the moment zero approximation estimates, prevents the determination of an exact rate

of convergence between the exact and approximate solutions, as ε → 0 (in contrast to [5]).

Another difference of this paper is the corrector U1
p , which differs from the corrector in [5].

As mentioned in Section 2.2, some of the components of the corrector are constructed from

special primitives σ∗m, which are only primitives in the distributional sense. Additionally,

the corrector must be constructed with not only modified non transversal interaction terms,

but also modified transversal interaction terms (defined in (0.120)). A third difference in

this paper is the interaction terms in the corrector estimate involving elliptic profiles, which

now need to be estimated on the Fourier transformed ”κ-side,” as shown in Appendix E.
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Theorem 0.29. For M0 = 3d+ 5 and s ≥ 1 + [M0 + d+1
2

], suppose that G ∈ bHs+1
T vanishes

for t ≤ 0. Let Uε ∈ Es
T0

be the exact solution to the singular system (0.4) for 0 < ε ≤ ε0

specified by Theorem 0.4. Let σj (j ∈ I ∪ P ∪ N ) be the profiles which were constructed in

Chapter 2. Then define U0
ε ∈ Es−1

T0
to be:

U0
ε (x, θ0) ≡

M∑
j=1

σj(x, θ0 + ωj
xd
ε

)rj (0.107)

Here 0 < T0 ≤ T is the minimum of the existence times specified by Theorem 0.4 and Theorem

0.22. Under these hypotheses and definitions, the following result holds: The family U0
ε is

uniformly bounded in Es−1
T0

for 0 < ε ≤ ε0. Furthermore, ∃ 0 < T1 ≤ T0:

lim
ε→0
|Uε − U0

ε |Es−3
T1

= 0 (0.108)

Proof of Precise Approximation Theorem 0.29:

In order to implement simultaneous Picard iteration, consider the iteration schemes for

both the exact solution of (0.4) and the approximate solution of (0.94) (adapted for U0.)

∂xdU
n+1
ε +

d−1∑
j=0

Ãj(εU
n
ε )(∂xj +

βj∂θ0
ε

)Un+1
ε = F (εUn

ε )Un
ε

B(εUn
ε )Un+1

ε |xd=0 = G(x′, θ0)

Un+1
ε |t<0 = 0 (0.109)

EU0,n+1 = U0,n+1

E[L̃(∂)U0,n+1 +M(U0,n, ∂θU0,n+1)− F (0)U0,n] = Rn

B(0)U0,n+1|xd=0,ξd=0 = G

U0,n+1|t<0 = 0

(0.110)
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Here U0,n(x, θ0, ξd) ≡
∑M

j=1 σ
n
j (x, θ0 + ωjξd)rj, U0,n

ε (x, θ0) ≡ U0,n(x, θ0,
xd
ε

), and Rn is

defined as in (0.91).

With the given hypotheses, in order to prove Theorem 0.29, it suffices to show the

following 5 conditions:

1. Uniform boundedness of the family Uε in Es−2
T0

2. Uniform boundedness of the family U0
ε in Es−2

T0

3. lim
n→∞

Un
ε = Uε in Es−2

T0
uniformly w.r.t ε ∈ (0, ε0]

4. lim
n→∞

U0,n
ε = U0

ε in Es−2
T0

uniformly w.r.t ε ∈ (0, ε0]

5. ∃ 0 < T1 < T0 : ∀n : lim
ε→0
|Un

ε − U0,n
ε |Es−3

T1

= 0

Conditions 1 and 3 are confirmed in the construction of the exact solution. Conditions

2 and 4 follow from Proposition 0.41 and the convergence of the profiles σn → σ in Hs−1
T0

,

because σ ∈ Hs
T0

by Proposition 0.19. Condition 5 will be proven via induction using the

following linear estimate:

Proposition 0.30. Let s ≥ [M0 + d+1
2

] and consider the problem (0.109), where G ∈ bHs+1

satisfies supp G ⊆ {t ≥ 0} and the RHS of (0.109a) is replaced by some F ∈ Es
T . Suppose

that Un
ε ∈ Es

T and that ∃K > 0, ε1 > 0:

|Un
ε |EsT + |ε ∂xdUn

ε |L∞ ≤ K for 0 < ε ≤ ε1

Then ∃T0(K) > 0, ε0(K) ≤ ε1 : ∀ 0 < ε ≤ ε0, T ≤ T0:

|Un+1
ε |EsT +

√
T 〈Un+1

ε |xd=0〉s+1,T ≤ C(K)[T |F|EsT +
√
T 〈G〉s+1,T ]
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The inductive argument will involve constructing an appropriate corrector εU1
p,ε. To prop-

erly construct this corrector, U0,n will be approximated by its moment-zero approximation

U0,n
p , defined as:

U0,n
p (x, θ0, ξd) ≡

M∑
j=1

σnj,p(x, θ0 + ωiξd)rj

The discussion of the moment-zero approximations and the resulting primitives is relegated

to Appendix B.

Remark 0.31. The ”little o” notation oε, op indicates that the limits ε→ 0, p→ 0, respec-

tively, are being considered.

The inductive hypothesis is: ∃ 0 < T1 ≤ T0 :

lim
ε→0
|Un

ε − U0,n
ε |Es−3

T1

= 0 (0.111)

1. This hypothesis along with the boundedness of the family Un
ε in Es−2

T0
yields:

|F (εUn
ε )Un

ε − F (0)U0,n
ε |Es−3

T0

= oε(1)

Propositions 0.41 and 0.47 then yield:

|F (εUn
ε )Un

ε − F (0)U0,n
p,ε |Es−3

T0

= oε(1) + op(1) (0.112)
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2. Define:

Gp ≡ L̃(∂x)U0,n+1
p +M(U0,n

p , ∂θ0U0,n+1
p )

Remark 0.32. Because the inductive step is shown for some fixed n, the dependency of Gp

(and later of the corrector U1
p ) on n is suppressed for ease of notation.

Lemma 0.33.

|[E(Gp − F (0)U0,n
p )]ε|Es−2

T0

= oε(1) + op(1) (0.113)

(The notation here indicates the norm is separately both oε(1) and op(1); there’s no depen-

dency of one to the other.)

Proof: To begin, estimate as follows:

|[E(Gp − F (0)U0,n
p )]ε|Es−2

T0

. |[E(Gp − F (0)U0,n
p )]ε − [E(G − F (0)U0,n)]ε|Es−2

T0

+ |[E(G − F (0)U0,n)]ε|Es−2
T0

(0.114)

The first term in (0.114) is estimated as follows:

|[E(Gp − F (0)U0,n
p )]ε − [E(G − F (0)U0,n)]ε|Es−2

T0

≤ |E(G − Gp)− [E(F (0)U0,n
p − F (0)U0,n

p )|Hs−1
T0

by Proposition 0.41

≤ |E(L̃(∂x)U0,n+1 − L̃(∂x)U0,n+1
p )|Hs−1

T0

+|E(M(U0,n, ∂θ0U0,n+1)−M(U0,n
p , ∂θ0U0,n+1

p ))|Hs−1
T0

+|E((F (0)U0,n)− F (0)U0,n
p )|Hs−1

T0
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.
∑

m∈I∪P∪N

[ |∂xdσn+1
m − ∂xdσn+1

m,p |Hs−1
T0

+ |σn+1
m − σn+1

m,p |Hs
T0

+ |σnm∂θ0σn+1
m − σnm,p∂θ0σn+1

m,p |Hs−1
T0

+ |σnm − σnm,p|Hs−1
T0

]

Propositions 0.47, and 0.48 ensure that these terms are op(1).

Inspection of the system (0.110b) yields:

|[E(G − F (0)U0,n)]ε|Es−2
T0

= |Rn
ε |Es−2

T0

Proposition 0.148 shows that this norm is oε(1), which completes the lemma. �

3. The following estimate holds for the singular exact solution:

|L0U
n+1
ε − F (εUn

ε )Un
ε |Es−3

T0

= oε(1) + op(1) (0.115)

where L0 ≡ L̃(∂x) + 1
ε
L̃(dφ0)∂θ0 + M(U0,n

p,ε , ∂θ0) provides an approximation to the operator

appearing on the LHS of (0.109a). This estimate follows from (0.109a) and the following

estimates:

|Ãj(εUn
ε )∂xjU

n+1
ε − Ãj(0)∂xjU

n+1
ε |Es−1

T0

. ε

|ε−1Ãj(εU
n
ε )βj∂θ0U

n+1
ε − (ε−1Ãj(0)βj∂θ0U

n+1
ε + dÃj(0) · Un

ε βj∂θ0U
n+1
ε )|Es−1

T0

. ε

|dÃj(0) · (Un
ε − U0,n

p,ε )βj∂θ0U
n+1
ε |Es−3

T0

. |Un
ε − U0,n

p,ε |Es−3
T0

= oε(1) + op(1) (0.116)
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4. Constructing the Corrector: L̃(∂θ0 , ∂ξd)U0,n+1
p = 0 implies that L0U0,n+1

p,ε = Gp,ε,

which yields:

L0U0,n+1
p,ε − F (0)U0,n

p,ε = Gp,ε − F (0)U0,n
p,ε

= [E(Gp − F (0)U0,n
p )]ε + [(I − E)(Gp − F (0)U0,n

p )]ε (0.117)

Lemma 0.33 shows that the first term on the RHS of (0.117) is oε(1)+op(1). As discussed

in Section 2.2, the attempt is made to construct a corrector which solves away the second

term on the RHS of (0.117). However, as also noted in Section 2.2, several difficulties arose

when trying to properly define and estimate such a corrector, particularly for its hyperbolic

components τm (m ∈ O ∪ I).

5. Therefore modifications to the function (I − E)Gp are needed, where as a reminder:

(I − E)Gp =
M∑
i=1

[−
∑
k 6=i

V i
kσ

n+1
k,p −

∑
k 6=i

cikσ
n
k,p∂θ0σ

n+1
k,p −

∑
k 6=j

dik,jσ
n
k,p∂θ0σ

n+1
j,p ]ri (0.118)

Consider the following modification of (I − E)Gp:

[(I − E)Gp]mod ≡ (1− E)L̃(∂x)U0,n+1
p + [(1− E)M(U0,n

p , ∂θ0U0,n+1
p )]mod (0.119)

where [(1− E)M(U0,n
p , ∂θ0U0,n+1

p )]mod ≡
M∑
i=1

[−
∑
k 6=i

cik(σ
n
k,p∂θ0σ

n+1
k,p )p

−
∑

k 6=j:k or j∈P∪N

dik,j(σ
n
k,p∂θ0σ

n+1
j,p )pe −

∑
k 6=j:k and j∈I∪O

dik,j(σ
n
k,p∂θ0σ

n+1
j,p )ph ]ri (0.120)

Note that σni,p = σni,p(x, θ0 + ωiξd).

(σnk,p∂θ0σ
n+1
j,p )pe(x, θ0, ξd) is defined so that its Fourier transform w.r.t θ0 is hni,j,k,p(x, κ, ξd),

as defined in (0.160). (σnk,p∂θ0σ
n+1
j,p )ph(x, θ0, ξd) is well-defined by Definition 0.51.

The error produced by this modification can be controlled; it’s estimated in (0.126).
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Remark 0.34. Notice that in this paper, the transversal interaction terms must also be

modified, in addition to the non transversal interaction terms, in order to obtain a corrector

that can be suitably estimated in an Es
T space.

Remark 0.35. Due to the differing arguments of σnk,p and ∂θ0σ
n+1
j,p in (0.120), the moment-

zero approximations defined in Definition 0.43 could not be used. Instead, the pe and ph

approximations were used similar, which resemble the approximations of Definition 0.43.

The (appropriately modified) corrector U1
p =

∑M
m=1 τm,prm is (explicitly) constructed as:

(m ∈ O∪I) τm,p(x, θ0, ξd) ≡
∫ ξd

∞
([(1−E)M(U0,n

p , ∂θ0U0,n+1
p )]mod)m(x, θ0 +ωm(ξd− s), s)ds

+(1− E)[L̃(∂x)U0,n+1
p − F (0)U0,n

p ]∗m(x, θ0, ξd) (0.121)

(m ∈ P) τm,p (̂x, κ, ξd) ≡ 1{κ<0}[

∫ ξd

∞
eiωmκ(ξd−s)([(I − E)Gp]mod − F (0)U0,n

p )̂ m(x, κ, s)ds]

+1{κ>0}[

∫ ξd

0

eiωmκ(ξd−s)([(I − E)Gp]mod − F (0)U0,n
p )̂ m(x, κ, s)ds] (0.122)

(m ∈ N ) τm,p (̂x, κ, ξd) ≡ 1{κ<0}[

∫ ξd

0

eiωmκ(ξd−s)([(I − E)Gp]mod − F (0)U0,n
p )̂ m(x, κ, s)ds]

+1{κ>0}[

∫ ξd

∞
eiωmκ(ξd−s)([(I − E)Gp]mod − F (0)U0,n

p )̂ m(x, κ, s)ds] (0.123)

Remark 0.36. U1,̂
p needs to only be defined almost everywhere. Hence the lack of a definition

for U1,̂
p (x, 0, ξd) is not problematic.
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By construction (outlined in Section 2.2) this corrector U1
p satisfies:

L̃(∂θ0 , ∂xd)U1
p = (I − E)F (0)U0,n

p − [(I − E)Gp]mod (0.124)

The error produced by this modified corrector is:

D(x, θ0, ξd) ≡ L̃(∂θ0 , ∂xd)Ũ1
p − L̃(∂θ0 , ∂xd)U1

p = [(I − E)Gp]mod − [(I − E)Gp]

=
M∑
i=1

[−
∑
k 6=i

cik[σ
n
k,p∂θ0σ

n+1
k,p − (σnk,p∂θ0σ

n+1
k,p )p]

−
∑

k 6=j:k or j∈P∪N

dik,j[σ
n
k,p∂θ0σ

n+1
j,p − (σnk,p∂θ0σ

n+1
j,p )pe ]

−
∑

k 6=j:k and j∈I∪O

dik,j[σ
n
k,p∂θ0σ

n+1
j,p − (σnk,p∂θ0σ

n+1
j,p )ph ] ]ri (0.125)

In Appendix D, the following estimate is proven:

|Dε|Es−3
T0

.
√
p (0.126)

6.

Proposition 0.37.

|εU1
p,ε|Es−2

T
.
ε

p
(0.127)

|ε [∂xdU1
p ]ε|Es−3

T
.
ε

p
(0.128)

Proof: The proof of (0.127) is relegated to Appendix E. The estimate of (0.128) is found

by differentiating all the components of U1
p by xd and then proceeding analogously as in the

arguments of Appendix E.
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7.

|L0(U0,n+1
p,ε + εU1

p,ε)− F (0)U0,n
p,ε |Es−3

T0

≤ |[E(Gp − F (0)U0,n
p )]ε|Es−3

T0

+ |Dε|Es−3
T0

+ |(L̃(∂x)εU1
p )ε|Es−3

T0

+ |M(U0,n
p,ε , ∂θ0)(εU1

p,ε)|Es−3
T0

= oε(1) + op(1) +Oε,p(
ε

p
) +Op(

√
p) (0.129)

Hence by (0.112), (0.115), (0.129) and setting (for example) p =
√
ε, it follows that:

lim
ε→0
|L0[Un+1

ε − (U0,n+1
p,ε + εU1

p,ε)]|Es−3
T0

= 0 (0.130)

8. The following estimates hold:

lim
ε→0
|(∂xd + A(εU0,n

p,ε , ∂x′ +
β∂θ0
ε

))(Un+1
ε − (U0,n+1

p,ε + εU1
p,ε))|Es−3

T0

= 0

lim
ε→0
|B(εU0,n

p,ε )(Un+1
ε − (U0,n+1

p,ε + εU1
p,ε))|Hs−2

T0

= 0 (0.131)

Applying Proposition 0.30 yields:

lim
ε→0
|Un+1

ε − (U0,n+1
p,ε + εU1

p,ε)|Es−3
T0

= 0

So that by (0.127):

lim
ε→0
|Un+1

ε − U0,n+1
p,ε |Es−3

T0

= 0

Finally, by applying Propositions 0.41 and 0.47 (and once more setting, e.g., p =
√
ε)

lim
ε→0
|Un+1

ε − U0,n+1
ε |Es−3

T0

≤ lim
ε→0
|Un+1

ε − U0,n+1
ε |Es−3

T0

+ lim
ε→0
|U0,n+1
ε − U0,n+1

p,ε |Es−3
T0

≤ lim
ε→0
|Un+1

ε − U0,n+1
ε |Es−3

T0

+ lim
ε→0
|U0,n+1 − U0,n+1

p |Hs−2
T0

= 0 (0.132)

This completes the inductive argument and hence the proof of Theorem 0.29. �
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CHAPTER 4: EXTENSION TO HIGHER MULTIPLICITY CASE

Here is treated the extension of (0.2) with the four assumptions of section 1.3 to the case

of higher eigenvalue multiplicity. To be precise, an extension is needed when at least one

eigenvalue ωm of A(β) has a corresponding (algebraic) multiplicity νkm > 1.

For m ∈ {1, · · · ,M}, let lm,k (k = 1, · · · , νkm) denoted a basis of vectors for the left

eigenspace of the matrix iA(β) associated to the eigenvalue −ωm, chosen to satisfy:

lm,k · rm′,k′ =

 1 ifm = m′ and k = k′

0 otherwise

For v ∈ CN , define:

Pm,kv ≡ (lm,k · v)rm,k

Functions of type F have the following form:

F (x, θ0, ξd) =
M∑
m=1

νkm∑
k=1

Fm,k(x, θ0, ξd)rm,k
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where each Fm,k has the form:

Fm,k(x, θ0, ξd) =
∑
m′=1

fm,km′ (x, θ0 + ωm′ξd)

+
∑

m′,k′,m′′,k′′

gm,km′,k′,m′′,k′′(x, θ0 + ωm′ξd)h
m,k
m′,k′,m′′,k′′(x, θ0 + ωm′′ξd)

where m′ ∈ {1, · · · ,M}, k′ ∈ {1, · · · , νk′m} (similarly for m′′, k′′) and

fm,km (x, θ), gm,km′,k′,m′′,k′′(x, θ), h
m,k
m′,k′,m′′,k′′(x, θ) are C1 functions.

The operator E acts on functions of type F by:

EF (x, θ0, ξd) ≡
M∑
i=1

F̃m,k(x, θ0 + ωiξd)rm,k

where:

F̃m,k(x, θ) ≡ fm,km (x, θ) +
∑
k′,k′′

gm,km,k′,m,k′′(x, θ)h
m,k
m,k′,m,k′′(x, θ)

It will be seen that the general form of (0.94) still holds.

If W (x, θ0, ξd) =
∑

m,k wm,k(x, θ0, ξd)rm,k, then:

L̃(∂x)W =
∑
m,k

(Xφmwm,k)rm,k +
∑
m,k

(
V m,k
m′,k′wm′,k′

)
rm,k

where V m,k
m′,k′ is the tangential vector field:

V m,k
m′,k′ ≡

d−1∑
j=1

(lm,kÃj(0)rm′,k′)∂xj

The approximate solution generalizes as follows:

U0,n(x, θ0, ξd) =
M∑
m=1

νkm∑
k=1

σnm,k(x, θ0 + ωmξd)rm,k
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By (0.29), even in the higher multiplicity case, {B(0)rm,k : k ∈ {1, · · · , νkm}, m ∈ I ∪P}

and {B(0)rm,k : k ∈ {1, · · · , νkm}, m ∈ I ∪ N} are both still bases of Cp, so that the ar-

guments of section 2.3 still hold and prescribe boundary data am,k for m ∈ I ∪ P ∪ N and

k ∈ {1, · · · , νkm}: σnm,k|xd=0 = am,k.

So now the profiles equations (0.84) take the generalized form:

Xφmσ
n+1
m,l +

d−1∑
j=0

νkm∑
k,k′=1

bk,k
′

m,l,jσ
n
m,k∂θσ

n+1
m,k′ =

νkm∑
k=1

ekm,lσ
n
m,k

σnm,k|xd=0 = am,k = (0.66), σni |t<0 = 0 (∀m, k) (0.133)

where the coefficients bk,k
′

m,l,j are defined by

bk,k
′

m,l,j ≡ lm,l · βj(dÃj(0)rm,k)rm,k′ (0.134)

Remark 0.38. There is a potentially serious obstacle to proving estimates for (0.133). When

taking the L2 pairing of (0.133a) (the first equation) with σn+1
m,l (x, θ), it’s not clear how to

use integration by parts in θ to move the θ-derivative in the sum on the left onto the n-th

iterate. Notice that this problem did not arise in the estimate for (0.84). However, the next

proposition will remove this difficulty by demonstrating that there is a symmetry in the coef-

ficients bk,k
′

m,l,j that appears after regrouping.

Definition 0.39. For u near 0 let −ωm (m = 1, · · · ,M) be the eigenvalues of:

iA(u, β) ≡ A−1
d (u)(τI +

d−1∑
j=1

η
j
Aj(u))

with corresponding projectors Pm(u). It’s assumed that the functions ωm(u) and Pm(u) are

C∞ for u near 0.
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Proposition 0.40. Let w ∈ RN be written as w =
∑

m,k wm,krm,k =
∑
wm and define:

Bm
l,k′(w) ≡

d−1∑
j=0

νkm∑
k=1

bk,k
′

m,l,jwm,k (0.135)

where the bk,k
′

m,l,j are defined as in (0.134). Then the following holds:

Bm
l,k′(w) =


−dωm(0) · wm if k′ = l

0 otherwise

(0.136)

(For the proof of this proposition, refer to Proposition 5.3 of [5].)

This proposition allows:

d−1∑
j=0

νkm∑
k,k′=1

bk,k
′

m,l,jσ
n
m,k∂θσ

n+1
m,k′ = Bm

l,l(W0,n)∂θσ
n+1
m,l (0.137)

where W0,n ≡
∑

m,k σ
n
m,krm,k. Thereby the θ-derivative can be shifted, which facilitates the

integration by parts as discussed in Remark 0.38. Hence the results of section 2.4 for the

approximate solution still hold, where now σm,k = 0 ∀ k when m ∈ O. Otherwise, minor

changes are needed for the error analysis in the proof of Theorem 0.29. For example, the self-

interactions terms dik,jσ
n
k,p∂θ0σ

n+1
j,p are replaced by terms of the form dim,m′,k,k′σ

n
m,k,p∂θ0σ

n+1
m′,k′,p.

These terms are once more handled by replacing (I − E)G with [(I − E)G]mod, which is

composed of terms of the form dim,m′,k,k′(σ
n
m,k,p∂θ0σ

n+1
m′,k′,p)p. The ensuing corrector and mod-

ification error can be controlled as in the estimates in the proof of Theorem 0.29.
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APPENDIX A: ESTIMATES AND RELATIONS FOR THEOREM 0.29

Proposition 0.41. (Relating Norms) Fix s > d+1
2

and ω ∈ C. When ω /∈ R, require the

support condition: supp σ (̂x, κ) ⊂ {Imω κ ≥ 0}. Then the following estimate holds for

functions of the form σε(x, θ0) = σ(x, θ0 + ω xd
ε

):

|σε(x, θ0)|EsT ≤ |σ(x, θ0)|Hs+1
T

(0.138)

Proof: This result has already been verified for the hyperbolic profiles (by Proposition

4.3 of [5]) in the case ω ∈ R. To prove the estimates for the elliptic profiles, the support

condition on σˆwill be utilized as follows:

sup
xd≥0
|σ(x, θ0 + ω

xd
ε

)|bHs
T
∼ sup

xd≥0

∑
|α|+β≤s

|∂αx′κβeiωκ
xd
ε σ (̂x, κ)|L2

T (x′,κ)

≤ sup
xd≥0

∑
|α|+β≤s

|∂αx′κβσ (̂x, κ)|L2
T (x′,κ) ∼ sup

xd≥0
|σ(x, θ0)|bHs

T
≤ |σ(x, θ0)|Hs+1

T

√∫ ∞
0

|σ̃(x, θ0 + ω
xd
ε

)|2
bHs+1

T

dxd ∼

√√√√∫ ∞
0

∑
|α|+β≤s+1

|∂αx′κβeiωκ
xd
ε σ (̂x, κ)|2

L2
T (x′,κ)

dxd

≤

√√√√∫ ∞
0

∑
|α|+β≤s+1

|∂αx′κβσ (̂x, κ)|2
L2
T (x′,κ)

dxd ∼

√∫ ∞
0

|σ(x, θ0)|2
bHs+1

T

dxd ≤ |σ(x, θ0)|Hs+1
T

These two inequalities yield Proposition 0.41. �
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Thereby, for an elliptic profile σε(x, θ0) = σ(x, θ0 +ω xd
ε

), Propositions 0.19 and 0.41 yield:

|σε(x, θ0)|Es−2
T
. |G(x′, θ0)|bHs

T
(0.139)

Proposition 0.42. Let m be the Lebesgue measure on R. The following property holds:

Given a nonnegative integrable function f : ∀ ε > 0 : ∃ δ > 0 :

∀measurable setsE : m(E) < δ ⇒
∫
E

fdm < ε (0.140)

Proof: Consider an arbitrary nonnegative integrable function f and a measurable set E.

Fix some M > 0, so that:

∫
E

fdm =

∫
E∩{f≤M}

fdm+

∫
E∩{f>M}

fdm

≤Mm(E) +

∫
E∩{f>M}

fdm ≤ Mm(E) +

∫
{f>M}

fdm

∀M > 0: f · 1{f>M} ≤ f ∈ L1(R). Additionally, because f can only have values of

+∞ on a set of measure 0, it follows that a.e. f · 1{ f>M } → 0 pointwise. Hence, by the

Dominated Convergence Theorem,
∫
{f>M} fdm → 0, as M →∞.

Thus, for a given ε > 0, ∃Mε > 0:
∫
{f>Mε} fdm < ε

2
.

Thereby, if δ is chosen so that: δ < ε
2Mε

, then
∫
E
fdm < ε.

(Notice that Mε depends only on ε and not on any particular choice of measurable set

E.) �
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APPENDIX B: MOMENT-ZERO APPROXIMATIONS

When constructing the corrector to the approximate solution U0, primitives of the pro-

files σ(x, θ) must be considered, which may not → 0 as |θ| → 0, even though the σ do. The

failure of a primitive to properly decay is due to a small divisor problem on the Fourier side

κ. Hence a primitive of a moment-zero approximation to σ can be utilized, which possesses

the desired decay.

Definition 0.43. Consider φ(κ) ∈ C∞(R) which has support in [−2, 2] and is identically 1

on [−1, 1]. For p ∈ (0, 1), define φp(κ) ≡ φ(κ
p
) and set χp ≡ 1 − φp. For σ(x, θ) ∈ L2(ΩT ),

define the moment-zero approximation of σ, σp(x, θ) (more precisely it’s Fourier transform

w.r.t. θ0) by:

σ p̂(x, κ) ≡ χp(κ)σ (̂x, κ) (0.141)

Definition 0.44. The primitive of σp, σ
∗
p, is then defined (its Fourier transform w.r.t. θ0 is

defined) as:

σ̂∗p(x, κ) ≡ σ p̂(x, κ)

iκ
=
χp(κ)

iκ
σ (̂x, κ) (0.142)

whereby (̂∂θσ∗p) = iκσ̂∗p = σ̂p, indicating that σ∗p is indeed a primitive of σp, in the distribu-

tional sense.

Remark 0.45. For hyperbolic profiles in Γs spaces, this definition directly corresponds to

the unique primitive constructed in Proposition 4.7 of [5], which decays to zero as |θ| → ∞.

The primitive definition in this paper is necessary because the profiles may not possess the

required θ-decay to define antiderivatives of the form
∫ θ
∞ σp(x, s)ds (as the profiles may not

belong to Γs spaces).

Proposition 0.46. (Moment-Zero Estimates)

The following two estimates relate the Hs
T -norms of σp, σ

∗
p back to the Hs

T -norms of σ,
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and are easily proven. For p ∈ (0, 1):

|σp||Hs
T
≤ |σ||Hs

T
(0.143)

|σ∗p|Hs
T
.
|σ|Hs

T

p
(0.144)

Hs
T is a Banach Algebra for s > d+1

2
.

Therefore, if σ, τ ∈ Hs
T for s > d+1

2
, then (0.144) yields:

|(στ)∗p|Hs
T
≤
|σ|Hs

T
|τ |Hs

T

p
(0.145)

Proposition 0.47. (Moment-Zero Approximation Error Estimates)

For σ ∈ Hs
T (x, θ0):

lim
p→0
|σ − σp|Hs

T
= 0

lim
p→0
|∂xdσ − ∂xdσp|Hs−1

T
= 0 (0.146)

Proof:

|σ − σp|Hs
T
∼

∑
|α|+β≤s

|∂αxκβ[1− χp(κ)]σ (̂x, κ)|L2
T (x,κ)

=
∑
|α|+β≤s

[

∫ 2p

−2p

κβφp(κ)|∂αxσ (̂x, κ)|2L2
T (x)dκ]1/2 .

∑
|α|+β≤s

[

∫ 2p

−2p

|∂αxσ (̂x, κ)|2L2
T (x)dκ]1/2

The result now holds by Proposition 0.42. �
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The following proposition is helpful in estimating the error for moment-zero approxima-

tions involving products of functions.

Proposition 0.48. For σ, τ ∈ Hs
T and s > d+1

2
:

|στ − (στ)p|Hs
T
.
√
p |σ|Hs

T
|τ |Hs

T
(0.147)

Proof:

|στ − (στ)p|Hs
T
∼

∑
|α|+β≤s

|∂αxκβ[1− χp(κ)](σˆ∗ τ )̂(x, κ)|L2
T (x,κ)

.
∑
|α|+β≤s

[

∫ 2p

−2p

|∂αx (σˆ∗ τ )̂(x, κ)|2L2
T (x)dκ]1/2

. [

∫ 2p

−2p

(

∫
R
|σ (̂x, κ− s)τ (̂x, s)|Hs

T (x)ds)
2dκ]1/2

. [

∫ 2p

−2p

(

∫
R
|σ (̂x, κ− s)|Hs

T (x)|τ (̂x, s)|Hs
T (x)ds)

2dκ]1/2

. [

∫ 2p

−2p

|σ (̂x, κ− s)|2L2(s,Hs
T (x))|τ (̂x, s)|2L2(s,Hs

T (x))dκ]1/2

≤ |σ |̂Hs
T (x,κ)|τ |̂Hs

T (x,κ)[

∫ 2p

−2p

dκ]1/2

.
√
p |σ|Hs

T
|τ |Hs

T
�
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APPENDIX C: ERROR ESTIMATES FOR R

This appendix proves the following error estimate:

lim
ε→0
|Rn

ε (x, θ0,
xd
ε

)|EsT = 0 (0.148)

(0.148) is a corollary of the following proposition, as the components of Rn
ε satisfy the hy-

potheses of Proposition 0.49.

Proposition 0.49. Fix some ω ∈ C. Suppose that f(x, θ) ∈ Hs+1
T vanishes at the boundary

xd = 0 and satisfies supp f (̂x, κ) ⊂ {Imω κ ≥ 0} (so that f can be analytically extended in

its θ argument into the half plane Imω z > 0.) Then, independently of p ∈ (0, 1):

lim
ε→0
|f(x, θ0 + ω

xd
ε

)|EsT = 0 (0.149)

where (as a reminder) Es
T (x, θ0) ≡ C(xd, bH

s
T ) ∩ L2(xd, bH

s+1).

Proof: WLOG, consider the case where Im ω > 0. Setting θ ≡ θ0+ω xd
ε

, write Fθ0f(x, θ) =

eiωκxdε
−1
f (̂x, κ). Thereby the useful norm relation follows:

|f(x, θ)|bHs
T
.

∑
|α|+β≤s

|∂αx′κβeiωκxdε
−1

f (̂x, κ)|L2
T (x′,κ) (0.150)

Consider first the sup of (0.150) in xd over [0,
√
ε]. Because the exponential is bounded

by 1 on the support of f ,̂ it follows that:

sup
0≤xd≤

√
ε

|f(x, θ)|bHs
T
≤ sup

0≤xd≤
√
ε

∑
|α|+β≤s

|∂αx′κβf (̂x, κ)|L2
T (x′,κ) ≤ sup

0≤xd≤
√
ε

|f(x, θ0)|bHs
T

(0.151)

Thereby, from the Sobolev embedding: f ∈ Hs+1
T ⊂ H1(xd, bH

s
T ) ⊂ C(xd, bH

s
T ), it follows

that: f |xd=0 = 0 ⇒ |f(x′, 0, θ0)|bHs
T

= 0 ⇒ lim
xd→0
|f(x′, xd, θ0)|bHs

T
= 0.
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Hence limε→0 [RHS of (0.151)] = 0. Notice that the Extreme Value Theorem can be

utilized here because the sup in xd is taken over the compact interval [0,
√
ε].

Next consider the sup of (0.150) in xd over (
√
ε,∞):

sup
xd≥
√
ε

|f(x, θ)|bHs
T
≤ sup

xd≥
√
ε

∑
|α|+β≤s

|e−(Imω)κε−1/2

∂αx′κ
βf (̂x, κ)|L2

T (x′,κ) (0.152)

A beneficial exponential can be extracted from the terms on the RHS of (0.152) (along

with a bound by |f(x, θ0)|bHs
T
) away from κ = 0). To be precise, the integral contribution

of the RHS of (0.152) over Ic in the κ-variable (where I ≡ [0, ε1/3], in this case where Im

ω > 0) is controlled by:

e(−Imω)ε−1/6

sup
xd≥
√
ε

∑
|α|+β≤s

|∂αx′κβf (̂x, κ)|L2
T,Ic (x′,κ) ≤ e(−Imω)ε−1/6

sup
xd≥0

∑
|α|+β≤s

|∂αx′κβf (̂x, κ)|L2
T (x′,κ)

. e(−Imω)ε−1/6

sup
xd≥0
|f(x, θ0)|bHs

T
≤ e(−Imω)ε−1/6|f(x, θ0)|Hs+1

T

The regularity hypothesis on f and the decaying exponential ensures that this term → 0

as ε→ 0. Notice that the half-line support condition on fˆis being used here to extract the

decaying exponential.

Close to κ = 0, using the above Sobolev embedding once more yields:

sup
xd≥
√
ε

∑
|α|+β≤s

[

∫ ε1/3

0

e(−2Imω)κε−1/2

κ2β|∂αx′f (̂x′, xd, κ)|2L2
T (x′)dκ]1/2

.
∑
|α|≤s

[

∫ ε1/3

0

sup
xd≥0
|∂αx′f (̂x′, xd, κ)|2L2

T (x′)dκ]1/2 .
∑

|α|+γ≤s+1

[

∫ ε1/3

0

|∂αx′∂γxdf (̂x′, xd, κ)|2L2
T (x)dκ]1/2

Because the integrands are nonnegative, integrable functions over κ ∈ R, Proposition

0.42 may be used to conclude that this term → 0, as ε→ 0.
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Now the L2(xd, bH
s+1
T ) estimate must be considered. The decomposition is analogous:

| |f(x, θ)|bHs+1
T
|L2(xd) ≤ |

∑
|α|+β≤s+1

|∂αx′κβeiωκxdε
−1

f (̂x, κ)|L2
T (x′,κ)|L2(xd)

For the integral in xd over [0,
√
ε]:

[

∫ √ε
0

∑
|α|+β≤s+1

|∂αx′κβeiωκxdε
−1

f (̂x, κ)|2L2
T (x′,κ)dxd]

1/2 ≤ [

∫ √ε
0

∑
|α|+β≤s+1

|∂αx′κβf (̂x, κ)|2L2
T (x′,κ)dxd]

1/2

This term → 0 as ε→ 0, by Proposition 0.42.

For the integral in xd over (
√
ε,∞):

[

∫ ∞
√
ε

∑
|α|+β≤s+1

|∂αx′κβeiωκxdε
−1

f (̂x, κ)|2L2
T (x′,κ)dxd]

1/2 ≤
∑

|α|+β≤s+1

|∂αx′κβe(−Imω)κε−1/2

f (̂x, κ)|L2
T (x,κ)

As before, the integral contribution of the RHS terms over Ic in the κ-variable is controlled

by: e−Imωε−1/6|f(x, θ0)|Hs+1
T

, which goes to 0 as ε goes to 0. The rest is controlled by:

∑
|α|+β≤s+1

[

∫ ε1/3

0

|∂αx′f (̂x, κ)|2L2
T (x)dκ]1/2

This term is handled once more by Proposition 0.42. �
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APPENDIX D: ESTIMATING THE MODIFICATION ERROR D

In order to estimate (0.126), the three parts of (0.125) will be estimated separately. Sim-

ilarly to many estimates in this paper, the bHs′
T estimate is first determined. Then the Es′

T

estimate is concluded by applying supxd≥0 and | · |L2
xd

to the bHs′
T , bHs′+1

T estimates, respec-

tively.

1. Nontransversal Modification Error Estimate

In the following discussion of the non transversal modification error estimate, for ease of

notation, let [σnk,p]ε = σnk,p(x, θ0 + ωk
xd
ε

), σnk,p = σnk,p(x, θ0).

By Propositions 0.41 and 0.48, along with the uniform boundedness of the profile iterates:

|cik[σnk,p∂θ0σn+1
k,p − (σnk,p∂θ0σ

n+1
k,p )p]ε|Es−3

T0

. |σnk,p∂θ0σn+1
k,p − (σnk,p∂θ0σ

n+1
k,p )p|Hs−2

T0

≤ √p |σnk,p|Hs−2
T0

|σn+1
k,p |Hs−1

T0

.
√
p

2. Elliptic Transversal Modification Error Estimate

By the definition of (σnk,p∂θ0σ
n+1
j,p )pe , and thereby by the definition of hni,j,k,p in (0.160):

|dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )pe ]ε|bHs′

T0

= |dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )pe ]ε |̂bHs′

T0

. |φp(κ)

∫
R
eiωk(κ−t)xd

ε σn,̂k,p(x, κ− t)e
iωjt

xd
ε (∂θkσ

n+1
j,p )̂ (x, t)dt|Hs′

T0
(x′,κ)

Because the exponential terms are uniformly bounded by 1 on their support:

|dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )pe ]ε|2bHs′

T0
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. |φp(κ)

∫
R
σn,̂k,p(x, κ− t)(∂θkσ

n+1
j,p )̂ (x, t)dt|2

Hs′
T0

(x′,κ)

≤
∑

|α|+β≤s′

∫ 2p

−2p

∫
Rd

[∂αx′κ
βφp(κ)

∫
R
σn,̂k,p(x, κ− t)(∂θkσ

n+1
j,p )̂ (x, t)dt]2 dx′ dκ

.
∑
|α|≤s′

∫ 2p

−2p

∫
Rd

[∂αx′

∫
R
σn,̂k,p(x, κ− t)(∂θkσ

n+1
j,p )̂ (x, t)dt]2 dx′ dκ

.
∫ 2p

−2p

|
∫
R
σn,̂k,p(x, κ− t)(∂θkσ

n+1
j,p )̂ (x, t)dt|2

Hs′
T0

(x′)
dκ

≤
∫ 2p

−2p

[

∫
R
|σn,̂k,p(x, κ− t)(∂θkσ

n+1
j,p )̂ (x, t)|Hs′

T0
(x′)dt]

2 dκ

.
∫ 2p

−2p

[

∫
R
|σn,̂k,p(x, κ− t)|Hs′

T0
(x′)|(∂θkσ

n+1
j,p )̂ (x, t)|Hs′

T0
(x′)dt]

2 dκ

≤
∫ 2p

−2p

|σn,̂k,p(x, κ− t)|
2
L2(t,Hs′

T0
(x′))
|(∂θkσn+1

j,p )̂ (x, t)|2
L2(t,Hs′

T0
(x′))

dκ

≤ |σn,̂k,p|
2
bHs′

T0

|(∂θkσn+1
j,p )̂ |2

bHs′
T0

∫ 2p

−2p

dκ

.
√
p |σnk,p|2bHs′

T0

|∂θkσn+1
j,p |2bHs′

T0

The desired result follows once more by uniform boundedness of the profile iterates and

by applying supxd≥0 and | · |L2
xd

to the bHs′
T , bHs′+1

T estimates, as in part 1 of this appendix:

|dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )pe ]ε|Es−3

T0

.
√
p (0.153)
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3. Hyperbolic Transversal Modification Error Estimate

By Definition 0.51, which properly defines (σnk,p∂θ0σ
n+1
j,p )ph , the following estimate holds:

|dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )ph ]ε|bHs′

T0

= |(2π)
−1
2 β−1

∫
R
φp(κ)eiθκ

′
eit

1−β
β

(θ0+ωiξd)Fθσnk,p(x,
t

β
)Fθ(∂θ0σn+1

j,p )(x, κ− t)dt|Hs′
T0

(x′,κ)

. |φ(κ)

∫
R
σn,̂k,p(x,

t

β
)(∂θ0σ

n+1
j,p )̂ (x, κ− t)dt|Hs′

T0
(x′,κ)

It’s now clear that a computation analogous to part 2 yields the desired result:

|dik,j[σnk,p∂θ0σn+1
j,p − (σnk,p∂θ0σ

n+1
j,p )ph ]ε|Es−3

T0

.
√
p
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APPENDIX E: ESTIMATING THE CORRECTOR U1
p

In order to prove (0.127), the individual components occurring in the τ profile formulae

(0.121), (0.122), and (0.123) will be separately estimated. More precisely, in order to esti-

mate |U1
p,ε|Es−2

T
, first estimate the bHs′

T norm of the components appearing in (0.121), (0.122),

and (0.123). Then, upon the substitution ξd = xd
ε

, apply the L2
xd

and Cxd norms to the bHs−1
T

estimate and bHs−2
T estimate (resp.) to obtain the Es−2

T estimate.

To begin, for m ∈ O ∪ I, estimate |τm,p|bHs′
T

as follows using (0.144):

|(1− E)[L̃(∂x)U0,n+1
p − F (0)U0,n

p ]∗m|bHs′
T
≤
∑
i 6=m

|(ωi − ωm)−1(V m
i σ

n+1,∗
i − emi σ

n,∗
i )|bHs′

T

.
∑
i 6=m

[|σn+1,∗
i |bHs−1

T
+ |σn,∗i |bHs′

T
] ≤

∑
i 6=m

p−1[|σn+1
i |bHs−1

T
+ |σni |bHs′

T
]

The linear portion of the corrector is thereby easily controlled.

The nonlinear portion of the corrector is now considered:

|
∫ xd

ε

∞
([(1− E)M(U0,n

p , ∂θ0U0,n+1
p )]mod)m(x, θ0 + ωm(

xd
ε
− s), s)ds|bHs′

T

.
∑
i 6=m

|
∫ xd

ε

∞
(σni,p∂θ0σ

n+1
i,p )pds|bHs′

T
+

∑
i 6=j:i or j∈P∪N

|
∫ xd

ε

∞
(σni,p∂θ0σ

n+1
j,p )peds|bHs′

T

+
∑

i 6=j:i and j∈I∪O

|
∫ xd

ε

∞
(σni,p∂θ0σ

n+1
j,p )phds|bHs′

T
≡ (A) + (B) + (C)

Note that here σni,p has argument (x, θ0 + (ωi − ωm)s+ ωm
xd
ε

). Therefore the integrands

in (A) have the common argument (x, θ0 +ωi
xd
ε

) and so a primitive can be considered, which

is controlled as follows:

(A) ≤
∑
i 6=m

p−1|σni,p∂θ0σn+1
i,p |bHs′

T
.
∑
i 6=m

p−1|σni |Hs′
T (x′,θ0)|∂θ0σ

n+1
i |bHs′

T

(Once more (0.144) was used, along with the algebra property of Hs
T , when s > d+3

2
.)
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Due to the presence of an elliptic profile factor in each term in (B), an analogous argu-

ment to the estimate of (3) for the elliptic corrector profiles may be used. This estimate is

outlined in (0.161), Proposition 0.56, and the ensuing L2(Hs) estimates: Propositions 0.57

and 0.58.

From consideration of (0.120) and (0.121), it’s clear that moment-zero approximations

of products of transversal hyperbolic profiles, along with their primitives, must be properly

defined and estimated.

Definition 0.50. For σp = σi,p and τp = σj,p, define an ancillary function to σp, σp, as:

σp(x, θ) ≡ σp(x, βθ + (1− β)(θ0 + ωiξd))

where β = (ωj − ωi)−1.

Notice that: σp(x, θ0 + ωjξd) = σp(x, θ0 + ωiξd).

Because σp and τp share the same argument θ0 + ωjξd, the moment-zero approximation

of the product σpτp, (σpτp)p(x, θ) is well-defined by (0.43).

Definition 0.51. The hyperbolic moment-zero approximation of a product of hyperbolic pro-

files σp = σi,p and τp = σj,p is defined to be:

(σpτp)ph(x, θ) ≡ (2π)
−1
2 β−1

∫
R

∫
R
χp(κ

′)eiθκ
′
eit

1−β
β

(θ0+ωiξd)Fθσp(x,
t

β
)Fθτp(x, κ′ − t)dtdκ′
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Lemma 0.52. The hyperbolic moment-zero approximation of a product of hyperbolic profiles

agrees with the moment-zero approximation of the product involving the over-line definition:

(σpτp)ph(x, θ) = (σpτp)p(x, θ) (0.154)

Proof:

Fθσp(x, κ′) = (2π)
−1
2

∫
R
e−iκ

′θσp(x, βθ + (1− β)(θ0 + ωiξd))dθ

= (2π)
−1
2 β−1

∫
R
e−i

κ′
β

(θ−[(1−β)(θ0+ωiξd)]σp(x, θ)dθ = β−1eiκ
′( 1−β

β
)(θ0+ωiξd)Fθσp(x,

κ′

β
)

⇒ Fθ(σpτp)p(x, κ′) = χp(κ
′)Fθσp ∗ Fθτp(x, κ′)

= χp(κ
′)(2π)

−1
2

∫
R
Fθσp(x, t)Fθτp(x, κ′ − t)dt

= (2π)
−1
2 β−1

∫
R
χp(κ

′)eit
1−β
β

(θ0+ωiξd)Fθσp(x,
t

β
)Fθτp(x, κ′ − t)dt �

By (0.44), the primitive of (σpτp)p is well-defined. Furthermore, (0.52) allows the primi-

tive to be written in the following integral form:

(σpτp)
∗
ph

(x, θ) ≡ (σpτp)
∗
p(x, θ)

= (2π)
−1
2

∫
R

∫
R

χp(κ
′)

iβκ
eiθκ

′
eit(

1−β
β

)(θ0+ωiξd)Fθσp(x,
t

β
)Fθτp(x, κ′ − t)dtdκ′ (0.155)
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Proposition 0.53.

|(σpτp)∗ph |L2
θ0
. p−1/2|σp|L2

θ0
|τp|L2

θ0
(0.156)

Proof: Compute the Fourier transform w.r.t θ0 of (0.155) as:

Fθ0(σpτp)∗ph(x, κ) = (2πiβ)−1

∫
R

∫
R

∫
R

χp(κ
′)

κ′
e−iκθ0eiθ0κ

′
eit(

1−β
β

)(θ0+ωi
xd
ε

)

Fθ(σp)(x,
t

β
)Fθ(τp)(x, κ′ − t) dt dκ′ dθ0

= (2πiβ)−1χp(κ)

κ

∫
R
eit(

1−β
β

)(θ0+ωi
xd
ε

)Fθ(σp)(x,
t

β
)Fθ(τp)(x, κ− t) dt

Thereby:

|Fθ0(0.155)| . |Fθ(σp)(x,
t

β
)|L2

t
|χp(κ)

κ
Fθ(τp)(x, κ− t)|L2

t

= |Fθ(σp)|L2
κ
|χp(t

′ + t)

(t′ + t)
Fθ(τp)(x, t′)|L2

t′
≤ (sup

t

χp(t
′ + t)

(t′ + t)
)|Fθ(σp)|L2

κ
|Fθ(τp)|L2

κ

⇒ |Fθ0(0.155)|L2
κ
.

√∫
R

sup
t

χp(t′ + t)2

(t′ + t)2
)dt′ |σp|L2

θ0
|τp|L2

θ0

Claim: sup
t

∫
R

χ2
p(t
′ + t)

(t′ + t)2
dt′ . p−1

Proof of Claim: Fix t. Then:

∫
R

χ2
p(t
′ + t)

(t′ + t)2
dt′ ≤

∫ −p−t
−∞

dt′

(t′ + t)2
+

∫ ∞
p−t

dt′

(t′ + t)2

=
−1

t′ + t
|−p−t−∞ +

−1

t′ + t
|∞p−t =

−1

(−p− t) + t
+

1

(p− t) + t
= 2p−1 �

Thus: |(σpτp)∗ph|
2
Lθ0
. p−1/2|σp|L2

θ0
|τp|L2

θ0
. �
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The following norm relation is useful in estimating the bHs′
T norm of the transversal

hyperbolic interactions:

| · |bHs
T
. | · |L2

T (x′,Hs(θ0)) + | · |L2(θ0,Hs
T (x′)) (0.157)

The following two estimates complete the estimate of (C), which in turn completes the

estimation of the hyperbolic components of the corrector U1
p .

Compute the L2(θ0, H
s′
T (x′)) estimate of (σni,p∂θσ

n+1
j,p )∗p,ε(x, θ0 + ωj

xd
ε

) for some i 6= j :

i and j ∈ I ∪ O:

Proposition 0.54.

|(σni,p∂θσn+1
j,p )∗ph(x, θ0 + ωj

xd
ε

)|L2(θ0,Hs′
T (x′)) . p−1/2|σni,p|bHs′

T
|∂θσn+1

j,p |bHs′
T

Proof:

|(σni,p∂θσn+1
j,p )∗ph(x, θ0 + ωj

xd
ε

)|L2(θ0,Hs′
T (x′)) = |(2π)−

1
2

∫
R

∫
R

χp(κ
′)

iβκ′
ei(θ0+ωj

xd
ε

)κ′eit(
1−β
β

)(θ0+ωi
xd
ε

)

Fθ(σni,p)(x,
t

α
)Fθ(∂θ0σn+1

j,p )(x, κ′ − t) dt dκ′|L2(θ0,Hs′
T (x′))

. |p−1/2|σni,p|L2(θ0)|∂θσn+1
j,p |L2(θ0) |Hs′

T (x′) (by Proposition 0.53)

. p−1/2|σni,p|Hs′
T (x′,L2(θ0))|∂θσ

n+1
j,p |Hs′

T (x′,L2(θ0))

. p−1/2|σni,p|bHs′
T
|∂θσn+1

j,p |bHs′
T
�
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Compute the L2
T (x′, Hs′(θ0)) estimate of (σni,p∂θσ

n+1
j,p )∗p,ε(x, θ0 + ωj

xd
ε

) for some i 6= j :

i and j ∈ I ∪ O:

Proposition 0.55. For s0 >
d

2
:

|κβFθ0 [(σni,p∂θσn+1
j,p )∗ph(x, θ0 + ωj

xd
ε

)]|L2(x′,κ)

. p−1/2(|σni,p|bHs′
T
|∂θσn+1

j,p |bHs0
T

+ |σni,p|bHs0
T
|∂θσn+1

j,p |bHs′
T

)

Proof:

|κβFθ0 [(σni,p∂θσn+1
j,p )∗ph(x, θ0 + ωj

xd
ε

)]|L2(x′,κ) = |κβFθ0 [(2π)−
1
2

∫
R

∫
R

χp(κ
′)

iβκ′

ei(θ0+ωj
xd
ε

)κ′eit(
1−β
β

)(θ0+ωi
xd
ε

)Fθ(σni,p)(x,
t

α
)Fθ(∂θσn+1

j,p )(x, κ′ − t) dt dκ′]|L2(κ,x′)

Use the inequality |κ|β . |t|β + |κ− t|β to modify Proposition 0.53, in order to estimate

|κβ(σpτp)
∗
p|2Lθ0 , so that:

|κβ(σpτp)
∗
ph
|2Lθ0 ≤ 2p−1/2(|σp|Hs′ (θ0)|τp|L2

θ0
+ |σp|L2

θ0
|τp|Hs′ (θ0))

(Note: this is analogous to the use of this inequality in Proposition 0.58.) Thereby:

|κβFθ0(σpτp)∗ph|L2(x′,κ)

. |p−1/2(|σni,p|Hs′ (θ0)|∂θσn+1
j,p |L2

θ0
+ |σni,p|L2

θ0
|∂θσn+1

j,p |Hs′ (θ0))|L2
T (x′)

. p−1/2(|σni,p|L2(x′,Hs′ (θ0))|∂θσn+1
j,p |L∞(x′,L2

θ0
) + |σni,p|L∞(x′,L2

θ0
)|∂θσn+1

j,p |L2(x′,Hs′ (θ0)))

. p−1/2(|σni,p|bHs′
T
|∂θσn+1

j,p |bHs0
T

+ |σni,p|bHs0
T
|∂θσn+1

j,p |bHs′
T

) �
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Now |τm,p|bHs′
T

will be estimated when m ∈ P ∪N :

Consider m ∈ P ; the other case m ∈ N is completely analogous.

|τm,p|bHs′
T

= |1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)([(I − E)Gp]mod − F (0)U0,n

p )̂ m(x, κ, s) ds|Hs′
T (x′,κ)

.
∑
i 6=m

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)eiωiκsσn+1,̂

i,p ds|Hs′
T (x′,κ)

+
∑
i 6=m

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)gnm,i,p(x, κ, s) ds|Hs′

T (x′,κ)

+
∑

i 6=j:i or j∈P∪N

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)hnm,i,j,p(x, κ, s)ds|Hs′

T (x′,κ)

+
∑

i 6=j:i and j∈I∪O

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)Fθ0 (σni,p∂θ0σ

n+1
j,p )ph ds|Hs′

T (x′,κ)

+
∑
i 6=m

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)eiωiκsσn,̂i,p ds|Hs′

T (x′,κ)

≡ (1) + (2) + (3) + (4) + (5) (0.158)

Here, analogously to the definitions in Chapter 2:

gnm,i,p(x, κ, s) ≡ cmi χp(κ)

∫
R
eiωi(κ−t)sσn,̂i,p(x, κ− t)eiωits(∂θiσn+1

i,p )̂ (x, t)dt

= cmi χp(κ)eiωiκsσn,̂i,p ∗ (∂θiσ
n+1
i,p )̂ (x, κ) (0.159)

hnm,i,j,p(x, κ, s) ≡ dmi,jχp(κ)

∫
R
eiωi(κ−t)sσn,̂i,p(x, κ− t)eiωjts(∂θiσn+1

j,p )̂ (x, t)dt (0.160)

The 5 parts of (0.158) are estimated separately (for ease of notation the sum over i 6= m

or i 6= j is suppressed):
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Because:

|1{κ<0}

∫ xd
ε

∞
eiωmκ(

xd
ε
−s)Fθ0 (σni,p∂θ0σ

n+1
j,p )ph ds|Hs′

T (x′,κ) . |Fθ0 (σni,p∂θ0σ
n+1
j,p )∗ph|Hs′

T (x′,κ)

(4) is estimated in the same way that the transversal hyperbolic interactions present in the

hyperbolic corrector profiles were estimated.

(1) = |1{κ<0}e
iωmκ

xd
ε σn+1,̂

i,p (x, κ)

∫ xd
ε

∞
ei(ωi−ωm)κsds|Hs′

T (x′,κ)

= |1{κ<0}
eiωiκ

xd
ε

i(ωi − ωm)κ
σn+1,̂
i,p (x, κ)|Hs′

T (x′,κ) . |
σn+1,̂
i,p (x, κ)

iκ
|Hs′

T (x′,κ)

= |σn+1,∗
i,p |bHs′

T
≤ p−1|σn+1

i |bHs′
T

Note that this same estimate works for (5).

(2) . |1{κ<0}χp(κ)eiωmκ
xd
ε σn,̂i,p ∗ (∂θiσ

n+1
i,p )̂ (x, κ)

∫ xd
ε

∞
ei(ωi−ωm)κsds|Hs′

T (x′,κ)

= |1{κ<0}χp(κ)
eiωiκ

xd
ε

i(ωi − ωm)κ
σn,̂i,p ∗ (∂θiσ

n+1
i,p )̂ (x, κ)|Hs′

T (x′,κ)

. |χp(κ)
[σni,p(∂θiσ

n+1
i,p )]̂ (x, κ)

iκ
|Hs′

T (x′,κ)

= |[σni,p(∂θiσn+1
i,p )]∗|bHs′

T
≤ p−1|σni,p(∂θiσn+1

i,p )|bHs′
T
. p−1|σni,p|bHs′

T
|(∂θiσn+1

i,p )|bHs′
T

(3) . |1{κ<0}χp(κ)eiωmκ
xd
ε

∫
R
σn,̂i,p(x, κ− t)(∂θiσn+1

j,p )̂ (x, t)

(∫ xd
ε

∞
eis[(ωi−ωm)κ+(ωj−ωi)t]ds

)
dt|Hs′

T (x′,κ)

= |1{κ<0}χp(κ)

∫
R
σn,̂i,p(x, κ− t)(∂θiσn+1

j,p )̂ (x, t)

(
ei
xd
ε

[ωi(κ−t)+ωjt]

i[(ωi − ωm)κ+ (ωj − ωi)t]

)
dt|Hs′

T (x′,κ)

(0.161)

To estimate (0.161), the norm relation (0.157) will again be utilized. But first the mod-
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ulus of the integrand of (0.161) will be estimated by the following proposition:

Proposition 0.56.

|1{κ<0}χp(κ)

∫
R
σn,̂i,p(x, κ− t)(∂θiσn+1

j,p )̂ (x, t)

(
ei
xd
ε

[ωi(κ−t)+ωjt]

i[(ωi − ωm)κ+ (ωj − ωi)t]

)
dt|

. |κ|−1|σn,̂i,p | ∗ |(∂θiσn+1
j,p )̂ (x, κ)| (0.162)

Proof: Write the integrand as:

Hi,j(x, κ) ≡ 1{κ<0}χp(κ)

∫
R

Ωi,j(x, κ, t)Hi,j(xd, κ, t) dt

where: Ωi,j(x, κ, t) ≡ σn,̂i,p (x, κ− t)(∂θiσn+1
j,p )̂ (x, t),

Hi,j(xd, κ, t) ≡
1{κ<0}χp(κ)ei

xd
ε

[ωi(κ−t)+ωjt]

i[(ωi − ωm)κ+ (ωj − ωi)t]

So that:

|Hi,j(x, κ)| .
∫
R
|Ωi,j(x, κ, t)Hi,j(xd, κ, t)| dt ≤ |Hi,j(xd, κ)|L∞t |Ωi,j|L1

t

To finish the estimate, the various cases for the indices m, i, j must be considered. One

case is i,m ∈ P , j ∈ N , considered in the following:

|i[(ωi−ωm)κ+ (ωj −ωi)t]| ≥ |Im[(ωi−ωm)κ+ (ωj −ωi)t]| = Imωi(κ− t)− Imωmκ+ Imωjt

≥ Imωjt− Imωmκ ≥ (Imωj − Imωm)κ = (Imωm − Imωj)|κ|

⇒ |i[(ωi − ωm)κ+ (ωj − ωi)t]|−1 . |κ|−1

Notice that (Imωm − Imωj) > 0 can’t vanish if i 6= m.
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If i = m, then the above estimate still holds, by noting that: |i[(ωi−ωm)κ+(ωj−ωi)t]| ≥

(Imωj − Imωm)t ≥ (Imωm − Imωj)|κ|

Thus: |e
xd
ε
α| = e

xd
ε

(−Imωi(κ−t)−Imωjt) ≤ 1 ⇒ |H̃i,j(ξd, κ)|L∞t . |κ|
−1 �

Use Proposition 0.56 to compute the L2(θ0, H
s′
T (x′)) estimate of Hi,j:

Proposition 0.57.

|(0.161)|L2(κ,Hs′
T (x′)) . p−1/2|σn,̂i,p|bHs′

T
|(∂θiσn+1

j,p )|bHs′
T

(0.163)

Proof:

|(0.161)|L2(κ,Hs′
T (x′)) ≤ [

∫ ∞
p

|
∫
R
σn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)Hi,j(
xd
ε
, κ, t) dt |2

Hs′
T (x′)

dκ]1/2

(0.164)

. [

∫ ∞
p

| |κ|−1

∫
R
|σn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)| dt |2
Hs′
T (x′)

dκ]1/2 (by (0.162))

. [

∫ ∞
p

κ−2[

∫
R
|σn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)|Hs′
T (x′) dt]

2 dκ]1/2

. [

∫ ∞
p

κ−2[

∫
R
|σn,̂i,p (x, κ− t)|Hs′

T (x′)|(∂θiσ
n+1
j,p )̂ (x, t)|Hs′

T (x′) dt]
2 dκ]1/2 (Hs′

T is an algebra)

≤ |σn,̂i,p|L2(κ,Hs′
T (x′))|(∂θiσ

n+1
j,p )̂ |L2(κ,Hs′

T (x′))[

∫ ∞
p

κ−2dκ]1/2

≤ p−1/2|σn,̂i,p|bHs′
T
|(∂θiσn+1

j,p )|bHs′
T
�
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Also use Proposition 0.56 to compute the L2
T (x′, Hs′(θ0)) estimate of Hi,j:

Proposition 0.58.

|κβ(0.161)|L2
T (x′,κ) . p−1/2|σni,p|bHs0 |σn+1

j,p |bHs′+1
T

(0.165)

Proof:

|κβ(0.161)|L2
T (x′,κ) = |

∫
R
κβσn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)Hi,j(
xd
ε
, κ, t)dt |L2

T (x′,κ)

. [

∫ ∞
p

κ−2[

∫
R
|κβσn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)|L2
T (x′) dt]

2 dκ]1/2 . (1) + (2)

(1) = [

∫ ∞
p

κ−2[

∫
R
|(κ− t)βσn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)|L2
T (x′) dt]

2 dκ]1/2

≤ [

∫ ∞
p

κ−2[

∫
R
|(κ− t)βσn,̂i,p (x, κ− t)|L2

T (x′) |(∂θiσn+1
j,p )̂ (x, t)|L∞T (x′) dt]

2 dκ]1/2

≤ [

∫ ∞
p

κ−2 |(κ− t)βσn,̂i,p (x, κ− t)|2L2(t,L2
T (x′)) |(∂θiσ

n+1
j,p )̂ (x, t)|2L2(t,L∞T (x′)) dκ]1/2

= |κβσn,̂i,p |L2(x′,κ) |(∂θiσn+1
j,p )̂ (x, t)|L2(κ,L∞T (x′)) [

∫ ∞
p

κ−2dκ]1/2

. p−1/2|κβσn,̂i,p |L2(x′,κ) |(∂θiσn+1
j,p )̂ (x, t)|L2(κ,H

s0
T (x′)) (for s0 >

d

2
)

≤ p−1/2|σni,p|bHs′ |σn+1
j,p |bHs0+1

T
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(2) = [

∫ ∞
p

κ−2[

∫
R
|tβσn,̂i,p (x, κ− t)(∂θiσn+1

j,p )̂ (x, t)|L2
T (x′) dt]

2 dκ]1/2

≤ [

∫ ∞
p

κ−2[

∫
R
|σn,̂i,p (x, κ− t)|L∞T (x′) |tβ(∂θiσ

n+1
j,p )̂ (x, t)|L2

T (x′) dt]
2 dκ]1/2

≤ [

∫ ∞
p

κ−2 |σn,̂i,p (x, κ− t)|L2(t,L∞T (x′)) |tβ(∂θiσ
n+1
j,p )̂ (x, t)|L2(t,L2

T (x′)) dκ]1/2

= |σn,̂i,p |L2(κ,L∞T (x′)) |tβ(∂θiσ
n+1
j,p )̂ (x, t)|L2(x′,κ) [

∫ ∞
p

κ−2dκ]1/2

. p−1/2|σn,̂i,p |L2(κ,H
s0
T (x′)) |tβ(∂θiσ

n+1
j,p )̂ (x, t)|L2(x′,κ) (for s0 >

d

2
)

≤ p−1/2|σni,p|bHs0
T
|σn+1
j,p |bHs′+1

T
�

The estimate of: |1{κ>0}[
∫ ξd

0
eiωmκ(ξd−s)([(I − E)Gp]mod − F (0)U0,n

p )̂ m(x, κ, s)ds]|Hs′
T (x′,κ)

is directly analogous to the estimate already proven for (0.158); therefore that estimate is

omitted.
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The estimates of this appendix have shown that:

|εU1
p,ε|bHs′

T
.

ε

p
|U0,n+1
ε |bHs′

T
+
ε

p
|U0,n
ε |bHs′

T
|U0,n+1|

bHs′+1
T

+
ε
√
p
|U0,n
ε |bHs′

T
|U0,n+1
ε |

bHs′+1
T

+
ε

p
|U0,n
ε |bHs′

T
(0.166)

Applying the L2
xd

and Cxd norms:

sup
xd≥0

(|U0,n
ε |bHs′

T
|U0,n+1
ε |

bHs′+1
T

) ≤ (sup
xd≥0
|U0,n
ε |bHs′

T
) (sup

xd≥0
|U0,n+1
ε |

bHs′+1
T

)

≤ |U0,n
ε |Es′T |U

0,n+1
ε |

Es
′+1
T

| |U0,n
ε |bHs′+1

T
|U0,n+1
ε |

bHs′+2
T
|L2(xd) ≤ |U0,n

ε |L∞(xd,bH
s′+1
T )
|U0,n+1
ε |

L2(xd,bH
s′+2
T )

≤ |U0,n
ε |Es′+1

T
|U0,n+1
ε |

Es
′+1
T

Therefore:

|εU1
p,ε|Es−2

T
.

ε

p
|U0,n+1
ε |Es−1

T
+
ε

p
|U0,n
ε |Es−1

T
|U0,n+1
ε |Es−1

T

+
ε
√
p
|U0,n
ε |Es−1

T
|U0,n+1
ε |Es−1

T
+
ε

p
|U0,n
ε |Es−1

T
(0.167)

Uniform boundedness of the iterates U0,n yields the desired estimate (0.127). �
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APPENDIX F: SINGULAR PSEUDO DIFFERENTIAL CALCULUS

This appendix summarizes and slightly modifies the singular pseudo-differential calculus

of [4]; this appendix closely resembles Appendix A of [5].

First the singular Sobolev spaces used to describe mapping properties are defined. The

variable in Rd+1 is denoted (x, θ) (x ∈ Rd, θ ∈ R), with associated frequency (ξ, κ). In this

new context, the singular Sobolev spaces are defined as follows:

Consider a vector β ∈ Rd \ {0}. Then for s ∈ R and ε ∈ [0, 1], the anisotropic Sobolev

space Hs,ε(Rd+1) is defined as:

Hs,ε(Rd+1) ≡
{
u ∈ S ′(Rd+1) / û ∈ L2

loc(Rd+1)

and

∫
Rd+1

(
1 + |ξ +

k β

ε
|2
)s
|û(ξ, k)|2 dξ dκ <∞

}
Here û denotes the Fourier transform of u on Rd+1. The space Hs,ε(Rd+1) is equipped with

the following family of norms: ∀ γ ≥ 1, ∀u ∈ Hs,ε(Rd+1):

|u|2Hs,ε,γ ≡
1

(2 π)d+1

∫
Rd+1

(
γ2 + |ξ +

k β

ε
|2
)s ∣∣û(ξ, k)

∣∣2 dξ dk .
When m ∈ Z, the space Hm,ε(Rd+1) coincides with the space of functions u ∈ L2(Rd+1) such

that the derivatives:

(
∂x1 +

β1

ε
∂θ

)α1

· · ·
(
∂xd +

βd
ε
∂θ

)αd
u , α1 + · · ·+ αd ≤ m,

belong (in the sense of distributions) to L2(Rd+1). In the definition of the norm | · |Hm,ε,γ,

one power of γ counts as much as one derivative.

The singular symbols are built from the following sets of classical symbols:

Definition 0.59. Let O ⊂ RN be an open subset which contains the origin. For m ∈ R let

Sm(O) denote the class of all functions σ : O × Rd × [1,∞)→ CM (M ≥ 1), such that σ is
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C∞ on O × Rd and for all compact sets K ⊂ O:

sup
v∈K

sup
ξ∈Rd

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2 |∂αv ∂νξ σ(v, ξ, γ)| ≤ Cα,ν,K .

Let Ckb (Rd+1) (k ∈ N), denote the space of continuous and bounded functions on Rd+1,

whose derivatives up to order k are continuous and bounded. Next define the singular

symbols:

Definition 0.60. Fix β ∈ Rd \ 0, and let m ∈ R, n ∈ N. Then denote Smn as the set of

families of functions (aε,γ)ε∈[0,1],γ≥1, which are constructed as follows:

∀ (x, θ, ξ, κ) ∈ Rd+1 × Rd+1 : aε,γ(x, θ, ξ, κ) ≡ σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
(0.168)

where σ ∈ Sm(O) and V belongs to the space Cnb (Rd+1). Furthermore V takes its values in

a convex compact subset K of O that contains the origin. (For instance, K can be a closed

ball centered round the origin.)

Remark 0.61. The results that follow can be extended to the case where, in place of a

function V that’s independent of ε, the representation of aε,γ in Definition 0.60 is considered

for a function Vε that’s indexed by ε, provided that all functions εVε are assumed to take

values in a fixed convex compact subset K of O that contains the origin, and that (Vε)ε∈[0,1]

is a bounded family of Cnb (Rd+1). Such singular symbols with a function Vε are exactly those

utilized in the construction of the exact solution for (0.3).
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To each symbol a = (aε,γ)ε∈[0,1],γ≥1 ∈ Smn specified in Definition 0.60 and with values

in CN×N , associate a singular pseudodifferential operator Opε,γ(a), where ε ∈ [0, 1], γ ≥ 1,

whose action on a function u ∈ S(Rd+1,CN) is defined by:

Opε,γ(a)u (x, θ) ≡ 1

(2π)d+1

∫
Rd+1

ei (ξ·x+κ θ) σ

(
ε V (x, θ), ξ +

κβ

ε
, γ

)
û(ξ, κ) dξ dκ (0.169)

Note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corresponding singular operator is

∂x1 + β1
ε
∂θ. The action of singular pseudo-differential operators on Sobolev spaces is now

described.

Proposition 0.62. Let n ≥ d + 1, and let a ∈ Smn with m ≤ 0. Then Opε,γ(a) in (0.169)

defines a bounded operator on L2(Rd+1): ∃C > 0 depending on σ and V (as in Definition

0.60): ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Opε,γ(a)u|0 ≤
C

γ|m|
|u|0

Note that the constant C in Proposition 0.62 depends uniformly on the compact set in

which V takes its values and on the norm of V in Cd+1
b . For operators defined by symbols of

order m > 0:

Proposition 0.63. Let n ≥ d + 1, and let a ∈ Smn with m > 0. Then Opε,γ(a) in (0.169)

defines a bounded operator from Hm,ε(Rd+1) to L2(Rd+1): ∃C > 0 depending on σ and V

(as in Definition 0.60): ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Opε,γ(a)u|0 ≤ C |u|Hm,ε,γ

The next proposition describes the smoothing effect of operators of order −1.
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Proposition 0.64. Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) in (0.169) defines

a bounded operator from L2(Rd+1) to H1,ε(Rd+1): ∃C > 0 depending on σ and V (as in

Definition 0.60): ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Opε,γ(a)u|H1,ε,γ ≤ C |u|0

Remark 0.65. When applying the pulse calculus, it’s verified that for V (as in Definition

0.60): V ∈ Cnb (Rd+1), by showing that V ∈ Hs(Rd+1) for some s > d+1
2

+ n, where n ≥ 1.

The two first results deal with adjoints of singular pseudo-differential operators, while

the last two results deal with products.

Proposition 0.66. Let a = σ(εV, ξ + κβ
ε
, γ) ∈ S0

n (n ≥ 2 (d+ 1)), where V ∈ Hs0(Rd+1) for

some s0 >
d+1

2
+ 1. Let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a)

and Opε,γ(a∗) are bounded on L2 and ∃C > 0 : ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Opε,γ(a)∗ u−Opε,γ(a∗)u|0 ≤
C

γ
|u|0

If n ≥ 3d+ 3, then for another constant C:

∀u ∈ S(Rd+1) : |Opε,γ(a)∗ u−Opε,γ(a∗)u|H1,ε,γ ≤ C |u|0

uniformly in ε and γ.

Proposition 0.67. Let a = σ(ε V, ξ + κβ
ε
, γ) ∈ S1

n (n ≥ 3d + 4), where V ∈ Hs0(Rd+1) for

some s0 >
d+1

2
+ 1. Let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a)

and Opε,γ(a∗) map H1,ε into L2 and there exists a family of operators Rε,γ that satisfies:

• ∃C > 0 : ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Rε,γ u|0 ≤ C |u|0
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• The following duality property holds:

∀u, v ∈ S(Rd+1) : 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε into L2.

Proposition 0.68. (a) Let a, b ∈ S0
n (n ≥ 2(d+ 1)), and suppose b = σ(εV, ξ+ κβ

ε
, γ) where

V ∈ Hs0(Rd+1) for some s0 >
d+1

2
+ 1. Then ∃C > 0 : ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) , |Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u|0 ≤
C

γ
|u|0

If n ≥ 3d+ 3, then for another constant C:

∀u ∈ S(Rd+1) : |Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u|H1,ε,γ ≤ C |u|0

uniformly in ε and γ.

(b) Let a ∈ S1
n, b ∈ S0

n or a ∈ S0
n, b ∈ S1

n (n ≥ 3d+4). In each case suppose b = σ(ε V, ξ+

κβ
ε
, γ) where V ∈ Hs0(Rd+1) for some s0 >

d+1
2

+ 1. Then ∃C > 0 : ∀ε ∈ [0, 1], ∀ γ ≥ 1:

∀u ∈ S(Rd+1) : |Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u|0 ≤ C |u|0

The final result is G̊arding’s inequality:
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Theorem 0.1. (a) Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a compact subset

K of O. Let now a ∈ S0
n, n ≥ 2 d+ 2 be given by Definition 0.60, where V ∈ Hs0(Rd+1) for

some s0 >
d+1

2
+ 1 and is valued in a convex compact subset K. Then for all δ > 0, there

exists γ0 which depends uniformly on V , the constant CK and δ, such that for all γ ≥ γ0 and

all u ∈ S(Rd+1), there holds:

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) |u|20 .

(b) Let σ ∈ S1 satisfy Reσ(v, ξ, γ) ≥ CK〈ξ, γ〉 for all v in a compact subset K of O.

Let now a ∈ S1
n, n ≥ 3d + 4 be given by Definition 0.60, where V ∈ Hs0(Rd+1) for some

s0 >
d+1

2
+ 1 and is valued in a convex compact subset K. Then for all δ > 0, there exists

γ0 which depends uniformly on V , the constant CK and δ, such that for all γ ≥ γ0 and all

u ∈ S(Rd+1), there holds:

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) |Λ
1
2
Du|

2
0 .

Remark 0.69. Notice that, in case (b) of Theorem 0.1, because Λ is simply a Fourier

multiplier:

|Λ1/2u|20 = | |ξ +
βκ

ε
, γ|1/2u |̂20 ≥ |γ1/2u |̂20 = γ|u|20 (0.170)
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For given parameters 0 < δ1 < δ2 < 1, choose a cutoff χe(ξ′, κβ
ε
, γ):

0 ≤ χe ≤ 1

χe
(
ξ′,
κ β

ε
, γ

)
= 1 on

{
(γ2 + |ξ′|2)1/2 ≤ δ1 |

κβ

ε
|
}

suppχe ⊂
{

(γ2 + |ξ′|2)1/2 ≤ δ2 |
κβ

ε
|
} (0.171)

and define a corresponding Fourier multiplier χeD in the extended calculus by the formula

(0.169) with χe(ξ′, κβ
ε
, γ) in place of σ(ε V,X, γ). Part (a) of Proposition 0.68 still holds

when either a or b is replaced by an extended cutoff χe.
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