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ABSTRACT 
 

ERIN CATHLEEN STEINBACH: Macrophage Phosphoinositide 3-kinase p110δ 
Regulates Intestinal Homeostasis by Directing Adaptive Immunity and Enhancing 

Microbial Clearance 
(Under the direction of Scott E. Plevy, MD) 

 
 The human inflammatory bowel diseases (IBDs), Crohn’s disease (CD) and 

ulcerative colitis, result from an inappropriately directed immune response to enteric 

microbiota in a genetically susceptible host. IBDs represent an increasing burden on the 

global health care system, as incidence is increasing and effective therapies remain 

elusive. Genome-wide association studies highlight the importance of host innate 

immune cell-microbial interactions in the pathogenesis of IBDs. 

 PI3K signaling regulates diverse functions, including cell growth, differentiation, 

proliferation and survival. The Class IA PI3K catalytic subunit p110δ negatively regulates 

toll-like receptor signaling in innate immune cells. The importance of p110δ in intestinal 

homeostasis is shown in a mouse harboring a kinase-dead p110δ (p110δKD) that develops 

spontaneous Th1/Th17-skewed colitis. We describe a requirement for the enteric 

microbiota to drive intestinal inflammation in p110δKD mice. Microbial-innate immune 

interactions maintain homeostasis through regulation of both protective (IL-10) and 

inflammatory (IL-12p40) cytokines, and p110δ is a central regulator of this balance. 

Additionally, p110δ positively regulates eradication of intracellular bacteria in 

macrophages. Persistence of intracellular bacteria and chronic stimulation in intestinal 

p110δKD macrophages propagates the cytokine imbalance. Furthermore, p110δ 
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orchestrates innate immune cell regulation of pathogenic adaptive immune responses. 

Importantly, in human CD, decreased intestinal PIK3CD gene expression and an inverse 

correlation with intestinal IL12B:IL10 ratios are demonstrated. Thus, p110δ appears to be 

a central homeostatic switch in the intestine, governing the critical balance between IL-

12/23 and IL-10 induced by the microbiota that determines the subsequent T cell 

response. Counter to prevailing paradigms where p110δ inhibition is a strategic approach 

in inflammatory diseases, strategies to induce p110δ gene expression could be a potential 

therapeutic approach in human IBDs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Inflammatory Bowel Diseases 

 The human inflammatory bowel diseases (IBDs), Crohn’s disease (CD) and 

ulcerative colitis (UC), result from an incompletely defined and complex interaction 

between host immune responses, genetic susceptibility, environmental factors and the 

enteric luminal contents (Xavier and Podolsky, 2007). In North America, CD prevalence 

is estimated to be 16.7 to 318.5 per 100,000 people, and UC prevalence is estimated to be 

37.5 to 248.6 per 100,000 people (Molodecky et al., 2012). A recent systematic review 

revealed increases in the worldwide incidence and prevalence of both adult- and 

pediatric-onset IBDs (Burisch and Munkholm, 2013). Several studies have shown that 

having CD is associated with an incremental but statistically significant increase in all-

cause mortality above the general population (Bewtra et al., 2013). IBDs account for 

emergency room visits, hospitalizations and surgical interventions that place a significant 

cost burden on health care (Park and Bass, 2011). Furthermore, IBDs impart significant 

emotional, psychological, and physiological stress on patients with these chronic diseases 

(Kemp et al., 2012). Thus, IBDs represent an increasing burden on global and United 

States health care systems. 
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 The two most common types of IBDs are CD and UC. CD is characterized by 

chronic, transmural inflammation occurring anywhere along the digestive tract but most 

commonly affecting the terminal ileum. The disease course tends to be one of relapse and 

remission, and complications such as stricture and fistula formation often develop. This is 

in contrast to UC, where ulcerous lesions are typically confined to the superficial layer of 

the colonic mucosa, extending proximally from the rectum. Histopathologically, UC 

lesions demonstrate crypt abscesses, goblet cell depletion, and significant infiltration of 

neutrophils. CD lesions often contain non-caseating granulomas and infiltration of 

macrophages (Xavier and Podolsky, 2007). 

Despite recent advances in identifying IBD susceptibility loci using population-

based genome-wide association studies (GWAS), the etiology of IBDs remains elusive. 

There is a complex interaction of host susceptibility, enteric microbiota, immune system 

responses and unspecified environmental contributions to IBD pathogenesis. Single 

nucleotide polymorphisms (SNPs) associated with increased risk of developing IBDs 

were identified in genes involving microbial sensing (NOD2, IRF5, NFKB1, RELA, REL, 

RIPK2, CARD9, and PTPN22) and clearance (ATG16L1, IRGM, NCF4), and integrating 

antimicrobial adaptive immune responses (IL23R, IL10, IL12, IL18RAP/IL1R1, 

IFNGR/IFNAR1, JAK2, STAT3, and TYK2) (Jostins et al., 2012). Additionally, despite 

great advancements in the use of biologics as therapeutics, hospitalization rates have not 

decreased (Park and Bass, 2011). Furthermore, biologics are relatively expensive, and 

patients are not immune from failing this treatment option. Indeed, approximately 10% of 

patients with IBD lose their response to biologics every year (Gisbert and Panes, 2009). 
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Therefore, there is a real and pressing need to understand the pathways involved in IBD 

pathogenesis in order to develop safer and more effective therapies. 

 

1.2 Macrophages and Dendritic Cells in Innate Immunity 

1.2.1 Macrophages 

Macrophages are a highly heterogeneous population of cells that demonstrate a 

continuum of activation states. The wide spectrum of macrophage phenotypes is often 

somewhat oversimplified into two functional groups: “inflammatory” M1 (high IL-12, 

low IL-10) and “wound healing” M2 (low IL-12, high IL-10) macrophages (Mosser and 

Edwards, 2008). Additionally, the recently appreciated subset of macrophages that 

produces high levels of IL-10 is referred to as “regulatory macrophages.”  

Specific combinations of cytokines within the tissue microenvironment polarize 

macrophages, and evidence suggests that macrophages maintain considerable plasticity 

between activation states. M1 macrophages are polarized by IFN-γ produced by natural 

killer and T helper (Th) 1 cells, TNF-α produced by granulocytes or other antigen 

presenting cells (APCs) and engagement of pattern recognition receptors (PRRs) by 

pathogen-associated molecular patterns (PAMPs), which activates suppressor of cytokine 

signaling 3 (SOCS3) to induce the M1 phenotype (Dale et al., 2008; Mackaness, 1977; 

Spence et al., 2013). M1 macrophages produce pro-inflammatory cytokines (TNF-α, IL-

12, IL-6), and reactive oxygen and nitrogen species (ROS and RNS, respectively). 

Production of these mediators promotes the differentiation and activation of Th1 and 

Th17 cells (Bettelli et al., 2007; Edwards et al., 2006; Langrish et al., 2005; Mosser and 

Edwards, 2008). The Th1 response in turn helps macrophages by enhancing their ability 
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to clear intracellular pathogens. While M1 macrophages are essential for the eradication 

of intracellular infections, they also produce pro-inflammatory cytokines implicated in 

IBD pathogenesis. Furthermore, unregulated M1 macrophage activity can induce tissue 

damage, predispose the host to developing neoplastic lesions, and induce insulin 

resistance (Sica and Mantovani, 2012; Swann et al., 2008). 

M2 macrophages are polarized by IL-4 produced by granulocytes and Th2 cells in 

response to tissue injury and activation by some fungi and parasites and initiation of 

SOCS2 signaling (Mosser and Edwards, 2008; Spence et al., 2013). M2 macrophages 

produce matrix metalloproteases, growth factors, and demonstrate efficient phagocytosis 

of debris without producing pro-inflammatory cytokines. Th2 responses are aimed at 

inducing wound healing and clearing parasites, although the exact mechanisms 

underlying parasite eradication are unknown. Indeed, the downregulation of microbicidal 

functions in M2 macrophages can render the host more susceptible to certain infections 

(Bishop et al., 2008; Harris et al., 2007; Kropf et al., 2005; Muller et al., 2007; Shirey et 

al., 2008; Tumitan et al., 2007). M2 macrophages are also efficient at recruiting Foxp3+ T 

regulatory (Treg) cells, which would further downregulate local immune responses 

(Spence et al., 2013). Furthermore, unregulated M2 macrophage activity can promote the 

development of fibrotic lesions through elaboration of TGF-β and enhanced allergic 

responses (Fairweather and Cihakova, 2009; Murray et al., 2011). 

Regulatory macrophages are polarized by a wide array of signals, including IgG 

immune complexes, IL-10, prostaglandins, and apoptotic cells, potentially by activation 

of the MAPK pathway extracellular signal-regulated kinase (ERK) (Mosser and Edwards, 

2008). However, typically an additional signal is necessary to induce regulatory 
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macrophages, such as engagement of PRRs by PAMPs. Regulatory macrophages differ 

from M2 macrophages in that they do not produce extracellular matrix components but 

express high levels of co-stimulatory molecules (CD80, CD86) necessary for the 

activation of T cells. Like M2 macrophages, regulatory macrophages produce high 

amounts of the anti-inflammatory cytokine IL-10 and can render the host more 

susceptible to certain infections (Agrawal and Pulendran, 2004; Baetselier et al., 2001; 

Benoit et al., 2008; Kim et al., 2008; Mahalingam and Lidbury, 2002; Miles et al., 2005; 

Ruas et al., 2009). Furthermore, unregulated regulatory macrophage activity may also 

play a role in the induction of neoplastic lesions (Biswas et al., 2006; Lin et al., 2006). 

 

1.2.2 Dendritic Cells 

Broadly speaking, dendritic cells (DCs) are professional antigen presenting cells 

(APCs) with the ability to initiate adaptive immune responses against potential 

pathogens. Like macrophages, DCs comprise a heterogeneous population of cells with 

functional diversity. DCs originate from blood monocytes or a common DC progenitor 

(CDP) in the bone marrow at steady state. DCs repopulating tissues from monocyte 

precursors rely on granulocyte-macrophage colony stimulating factor (GM-CSF) for local 

proliferation (Rutella et al., 2004). Conventional DCs (cDCs) arising from the CDP 

express high levels of CD11c, varying levels of CD8α and CD11b, and reside in 

secondary lymphoid tissues. Plasmacytoid DCs (pDCs) also originate from the CDP and 

are specialized in the production of type I interferons. In addition to functional subsets of 

DCs, the maturation state of DCs has important implications in immunity. Mature DCs 

that have previously encountered microbial products and inflammatory stimuli are highly 
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specialized for antigen presentation. Thus, mature DCs express high levels of co-

stimulatory molecules and tend to reside in secondary lymphoid organs where they are 

ideally positioned to prime antigen-specific T cells (Rescigno and Di Sabatino, 2009). On 

the other hand, immature DCs demonstrate low surface expression of co-stimulatory 

molecules and constitutively migrate in low numbers to lymph nodes, perhaps to 

maintain tolerizing signals there (Huang et al., 2000; Rescigno and Di Sabatino, 2009).  

 

1.3 Recognition of Pathogen-associated Molecular Patterns 

Macrophages and DCs sense conserved molecular patterns, or PAMPs, on 

microbes via germ-line encoded PRRs (Akira et al., 2001; Janeway and Medzhitov, 

2002). PRRs are divided into four families based on shared functional domains: toll-like 

receptors (TLRs), nucleotide-binding oligomerization domain (NOD), leucine-rich repeat 

(LRR) receptors (NLRs), C-type lectin receptors (CLRs), and retinoic acid-inducible 

gene 1 (RIG-I)-like receptors (RLRs) (Kawai and Akira, 2011). Signaling downstream of 

each family of PRRs culminates in activation of central immune response pathways: 

nuclear factor kappa-light-chain-enhancer of B cells (NF-κB), the mitogen-activated 

protein kinases (MAPKs), and interferon regulatory factors (IRFs) (Akira et al., 2006). 

Upon engagement of PRRs, immune and non-immune cells produce inflammatory 

cytokines, type I interferons, chemokines, and antimicrobial peptides. As a result, 

neutrophils are recruited and macrophages are activated, leading to the direct killing and 

clearance of microbes. Additionally, these inflammatory products induce the maturation 

of DCs, promoting the induction of adaptive immune responses. A carefully orchestrated 

process, microbial sensing and subsequent immune responses are highly regulated. 
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Dysregulation of these pathways can lead to both enhanced susceptibility to infections 

and development of chronic inflammatory diseases (Kawai and Akira, 2011).  

 

1.3.1 Toll-like Receptors (TLRs) 

The best-characterized PRRs are the TLRs (Kawai and Akira, 2010). TLRs are 

transmembrane proteins with an extracellular LRR domain and an intracellular Toll-

interleukin 1 receptor (TIR) domain. Upon binding its ligand to the LRR domain, homo- 

and heterodimerized TLRs recruit TIR domain-containing adaptor proteins. TLRs signal 

through one or both of two adapters: myeloid differentiation primary response gene 88 

(MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) (Akira et 

al., 2006). TLR3 signaling is TRIF-dependent, whereas TLR4 can signal through both the 

MyD88- and TRIF-dependent pathways, and the remaining TLRs are MyD88-dependent 

(Akira et al., 2006). MyD88-dependent signaling activates transforming growth factor-β-

activated kinase 1 (TAK1), a kinase of inhibitor of NF-κB (IκB) kinase (IKK). IKK 

phosphorylates IκB, leading to its degradation and subsequently releasing the 

transcription factor NF-κB from sequestration in the cytoplasm (Bhoj and Chen, 2009). 

NF-κB then translocates to the nucleus and initiates transcription of a large number of 

inflammatory response genes. TAK1 also activates MAPKs, leading to the activation of 

other inflammatory transcription factors, including activator protein 1 (AP-1) (Yamamoto 

et al., 2006). The TRIF-dependent pathway initiates the production of type I interferons 

via the activation of IRF3 by TANK-binding kinase 1 (TBK1) (Kawai and Akira, 2008). 
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1.3.2 Nucleotide-binding Oligomerization Domain (NOD), Leucine-rich Repeat (LRR) 
Receptors (NLRs) 

NLRs are cytosolic PRRs that can respond to a diverse array of stimuli, from 

bacteria to viruses and particulates involved in pathogenic states (e.g., monosodium urate 

crystals in gout and asbestos in mesothelioma and pneumoconiosis) (Kersse et al., 2011). 

NLRs contain a NACHT (present in NAIP, CIITA, HET-E, and TP-1) oligomerization 

domain, an LRR domain (except NLRP10 and NAIP), an N-terminal effector domain 

(except NLRX1), and an N-terminal homotypic protein-protein binding domain. Based 

on their N-terminal effector domain, the NLRs are divided into four subfamilies: NLRA, 

NRLB, NLRC, and NLRP. The sole member of NLRA is CIITA, which contains an 

acidic transactivation domain. NRLB proteins contain a baculovirus inhibitor repeat 

domain, NRLCs contain a caspase recruitment domain (CARD), and NRLPs contain a 

pyrin domain. Activation of NLRs can lead to several consequences, from inflammasome 

assembly and pro-IL-1β and pro-IL-18 processing (Bergsbaken et al., 2009), to caspase-

1-dependent pyroptotic cell death (Schroder and Tschopp, 2010), and activation of NF-

κB and MAPKs (Ting et al., 2010). Because the array of ligands that activate NLRs is so 

diverse, a controversial theory is that NLRs actually respond to a more universal 

physiologic change within the cell, such as a decrease in intracellular potassium 

concentration or an increase in extracellular calcium (Rajamaki et al., 2013; Rossol et al., 

2012). Nevertheless, NLRs are important for the clearance of certain intracellular 

pathogens, maintenance of intestinal epithelial cell (IEC) homeostasis (Marques and 

Boneca, 2011), and promotion of local and systemic immune responses to perceived 

dangers (Kersse et al., 2011). 
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1.3.3 C-type Lectin Receptors (CLRs) 

CLRs are indispensable for immunity against fungal pathogens (Hardison and 

Brown, 2012). Activation of these transmembrane proteins containing a C-type lectin 

domain induces binding of the pathogen and phagocytosis, activation of antifungal 

programs, and production of cytokines and chemokines important in antifungal 

immunity. Dectin-1, Dectin-2, and Mincle signal through Syk to activate NF-κB, 

MAPKs, and nuclear factor of activated T cells (NFAT), inducing ROS generation and 

the production of cytokines and chemokines (Goodridge et al., 2007; Gross et al., 2006; 

LeibundGut-Landmann et al., 2007; Strasser et al., 2012). In contrast, dendritic cell-

specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) signals 

through Raf-1 to modulate NF-κB activity (Gringhuis et al., 2007). CLRs demonstrate 

extensive crosstalk with other PRRs, enhancing antifungal defenses. CLRs are especially 

important at mucosal surfaces where they induce Th17 responses (Iliev et al., 2012; 

Vautier et al., 2010). 

 

1.3.4 Retinoic Acid-inducible Gene-1 (RIG-I)-like Receptors (RLRs) 

Finally, RLRs are cytoplasmic RNA helicases that recognize viral RNA and are 

expressed in many cell types in addition to immune cells (Loo and Gale, 2011). RLRs 

contain N-terminal tandem CARDs, a DExD/H box RNA helicase domain, and a C-

terminal repressor domain (Saito et al., 2007; Yoneyama et al., 2005; Yoneyama et al., 

2004). Without viral RNA present, the C-terminal repressor domain interacts with the 

CARDs to block the central RNA helicase domain. Binding of viral RNA, especially 

RNA with 5’ triphosphorylated ends, to the repressor domain frees the CARDs to 
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multimerize and interact with the adaptor protein interferon-β promoter stimulator 1 (IPS-

1) (Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005). 

Recruitment of other proteins into the IPS-1 signalosome ultimately leads to type I 

interferon production through activation of IRF3, IRF7, and NF-κB (Paz et al., 2006). 

Like CLRs, RLRs demonstrate extensive crosstalk with other PRR signaling pathways. 

 

1.3.5 Functional Integration of Pathogen Recognition Receptor Signaling 

 PRR recognition of its cognate PAMPs culminates in the initiation of pathogen-

specific programs designed to eradicate the prevailing insult. But how does the host 

recognize an intact microbe and decide which program to initiate? In reality, one microbe 

has many different PAMPs, and many PRRs may recognize one PAMP. Additionally, 

different cell types express unique sets of PRRs, and each PRR may play fundamentally 

different roles in the temporally distinct phases of an infection (i.e., initial infection 

versus memory response). The complex crosstalk between PRR families also confers 

specificity to and regulates each immune response. Thus, the assembly of a successful 

immune response to microbes depends on the context of the infection, the cell types 

responding to it, and the array of PRRs that are engaged during the infection (Kawai and 

Akira, 2011). Furthermore, the local microenvironment provides contextual cues to 

immune cells via cytokines and growth factors produced by host cells and metabolic 

products from microbes (Danese, 2008). It is likely through this complex context of 

recognition that innate immune cells distinguish between commensal and pathogenic 

microbes and initiate an appropriate response program. However the precise mechanism 

of discernment of helpful from harmful microbes and regulation of subsequent immune 
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responses and how this relates to intestinal homeostasis and IBDs remains incompletely 

understood. 

 

1.4 Macrophage Intracellular Bactericidal Functions 

 A central function of macrophages, literally translated as “big eater”, is to engulf 

and eradicate pathogens and other debris/stimuli. These functions are critical to 

maintaining intestinal homeostasis, as demonstrated by IBD-associated SNPs identified 

in genes regulating bactericidal activity (ATG16L1, IRGM, NCF4) (Jostins et al., 2012). 

Macrophages can kill or limit the replication of microorganisms through many possible 

mechanisms. Macrophages can limit the availability of essential nutrients, as well as 

produce antimicrobial peptides, lysosomal enzymes, and ROS/RNS (Ismail et al., 2002). 

Oxygen-dependent metabolites are perhaps the most efficient anti-microbial effectors 

produced by macrophages. NADPH oxidases and associated accessory proteins are 

therefore essential components of cellular responses to microbial invasion. Hemoprotein 

complexes of the NADPH phagocyte membrane-bound gp91phox and p22phox subunits, 

along with the cytosolic p40phox, p47phox, p57phox and Rac proteins, can consume 

molecular oxygen to produce ROS/RNS (Rada et al., 2008; Robinson, 2008). The 

cytosolic components stabilize and activate phagocyte NADPH oxidase (Nox2). 

Compartmentalization of membrane-bound and cytosolic components of Nox2 ensures 

that the production of cytotoxic oxygen radicals is prevented in resting cells, thus 

avoiding “collateral damage”.  

 Another important bactericidal pathway in macrophages following the 

phagocytosis of a microbe is phagosome maturation to the actively bactericidal vesicle, 
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the phagolysosome. The nascent phagosome goes through three stages of maturation: 

early, late, and lysosome-interacting (Fairn and Grinstein, 2012). Rab-family GTPases 

mediate the maturation process. Early phagosomes are marked by Rab5 decoration, 

which allows fusion with early endosomes via interactions with endosomal early antigen 

1 (EEA1) (Christoforidis et al., 1999; Kinchen et al., 2008). Recruitment of maturation 

factors such as EEA1 is mediated by the generation of membrane-bound 

phosphoinositide 3-phosphate (PIP) molecules by the Class III phosphoinositide 3-kinase 

(PI3K) vacuolar protein sorting 34 (Vps34) (Kinchen et al., 2008; Scott et al., 2002). 

GTPase activity on late phagosomes transitions from Rab5 to Rab7, which mediates 

intracellular trafficking and fusion with lysosomes (Harrison et al., 2003; Johansson et 

al., 2007). The resulting phagolysosome drives a critical drop in intravesicular pH by 

pumping H+ into the lumen via V-ATPase (Flannagan et al., 2009). The low pH of 

phagolysosomes directly impairs microbe function, activates host hydrolytic enzymes and 

assists in the generation of superoxide by NADPH oxidase. Furthermore, the H+ gradient 

is used to pump essential microbial nutrients out of the phagolysosome.  

Another indirect pathway that macrophages use to eradicate intracellular bacteria 

is autophagy. Autophagy is a normal cellular process use for recycling intracellular 

organelles and is typically activated during cell stress (Levine and Deretic, 2007). 

However, the autophagy machinery can be hijacked to eliminate phagocytosed microbes 

(Andrade et al., 2006; Birmingham et al., 2006; Checroun et al., 2006; Gutierrez et al., 

2004; Ling et al., 2006; Nakagawa et al., 2004; Ogawa et al., 2005; Py et al., 2007; Rich 

et al., 2003; Singh et al., 2006). Autophagy is initiated by the formation of a phagophore 

membrane that envelopes damaged organelles or microbes into a double-membranous 
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vesicle termed the “autophagosome” (Levine and Deretic, 2007). The autophagosome 

then fuses with lysosomes to form autolysosomes where degradation of intravesicular 

contents occurs. Indeed, autophagy is central to intestinal homeostasis, as several IBD-

associated SNPs in genes involved in autophagy have been identified (Jostins et al., 

2012). 

 

1.5 Lamina Propria Mononuclear Cells in the Healthy Gastrointestinal Tract 

1.5.1 Lamina Propria Mononuclear Cells 

 The gut-associated lymphoid tissue (GALT) represents the largest aggregate of 

lymphoid tissue in the body. GALT includes various organized collections of immune 

cells within the gastrointestinal tract, such as Peyer’s patches in the small intestine and 

cryptopatches in the large intestine; and the diffuse arrangement of intestinal 

mononuclear cells within the lamina propria (LP). The close proximity of lamina propria 

mononuclear cells (LPMCs) to the enteric luminal compartment, separated by an 

epithelial cell monolayer, is important for several reasons: LPMCs (1) sample luminal 

antigens that gain access to the LP under normal physiologic conditions to maintain local 

and systemic tolerance, and (2) efficiently clear microbes and stimuli that cross the IEC 

barrier. Resident LP macrophages demonstrate distinct attributes from peripheral 

monocyte populations. While LP macrophages maintain robust microbicidal effector 

functions, they do not produce inflammatory mediators upon encountering microbial 

stimuli (Mowat and Bain, 2011). Additionally, LP macrophages promote the transition 

from protective inflammatory responses to resolving anti-inflammatory responses upon 
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encountering a danger signal. Thus, LPMCs are integral to directing appropriate immune 

responses and maintaining intestinal homeostasis in the gut. 

There remains active debate about the classification and ontogeny of LP 

macrophages and LP dendritic cells (LPDCs). The surface integrins CD11b and CD11c 

are routinely used to distinguish between macrophages and DCs in peripheral lymphoid 

tissues (CD11b+CD11c- and CD11b+/-CD11chigh are characterized as macrophages and 

DCs, respectively). However, the distinction between LP macrophages and LPDCs is less 

clear, as LP macrophages express both CD11b and CD11c (Mowat and Bain, 2011). It 

has been proposed that differential expression of CX3CR1 (the receptor for the 

chemokine fractalkine, CX3CL1) and CD103 (αEβ7 integrin) reliably distinguish between 

LP macrophages and LPDCs (Mowat and Bain, 2011; Schulz et al., 2009). CD103-

CX3CR1hi LP macrophages express the classical macrophage marker F4/80, demonstrate 

ultrastructural characteristics of macrophages, and under physiologic conditions do not 

traffic to draining mesenteric lymph nodes (MLNs) where priming of adaptive immune 

responses is initiated. However, there is evidence that CX3CR1hi LP macrophages do 

travel to MLNs during enteric microbial dysbiosis (Diehl et al., 2013). Conversely, 

CD103+CX3CR1lo LPDCs are F4/80- and perform functions typically associated with 

DCs, including constitutive trafficking to MLNs, antigen presentation to T cells, and 

inducing gut homing receptors on T cells. Both LP macrophages and LPDCs express high 

levels of MHC class II, demonstrating their ability to interact with and shape adaptive 

immune responses. While controversy remains over the exact nature and origin of these 

LP subsets, for our purposes, we will classify LP macrophages as CD103-CX3CR1hi and 

LPDCs as CD103+CX3CR1lo cells. 
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1.5.2 Lamina Propria Macrophages 

LP macrophages are unique tissue resident macrophages characterized by the 

inability to produce inflammatory cytokines in response to microbial stimuli. However, 

these cells maintain robust phagocytic and microbicidal effector capabilities. The tolerant 

phenotype of LP macrophages is likely conditioned by locally produced IL-10 and TGF-

β (Denning et al., 2007; Smythies et al., 2010). However, the ontogeny of these cells is 

unknown. LP macrophage maintenance may depend on local proliferation rather than 

repopulation from migrating blood monocytes, but this is experimentally difficult to 

determine due to the extremely low turnover rate of these cells. Additionally, the context 

during which blood monocytes are recruited to the intestines may determine the final 

phenotype of the LP macrophages. During non-inflammatory homeostatic conditions, 

Ly6Chi monocytes almost exclusively repopulate the LP with CD11c+ 

(F4/80hiCX3CR1hiCD11b+CD103-) LP macrophages (Rivollier et al., 2012). In contrast, 

under inflammatory conditions, Ly6Chi monocytes recruited to the LP differentiate into 

CD103+CX3CR1intCD11b+ DCs that produce high levels of the inflammatory cytokines 

IL-12, IL23, iNOS, and TNF-α (Rivollier et al., 2012).  

CX3CR1hi LP macrophages extend dendrites between IECs to sample luminal 

antigens and promote local tolerance through constitutive production of the anti-

inflammatory cytokine IL-10 (Hadis et al., 2011), the absence of an inflammatory 

response to activating stimuli, very low expression of co-stimulatory molecules CD80, 

CD86 and of the macrophage activating receptor CD40 (Smythies et al., 2010). Although 

these cells that sample the luminal environment were originally defined as DCs (Niess et 
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al., 2005), recent work supports that they may represent a macrophage population 

(Medina-Contreras et al., 2011). IL-10 produced by LP macrophages promotes the 

persistence of Foxp3 expression in Treg cells in the intestine (Murai et al., 2009). 

Additionally, CX3CR1hi LP macrophages participate in the induction of systemic oral 

tolerance (Hadis et al., 2011). It has been suggested that CX3CR1hi LP macrophages 

sample luminal antigens and deliver them to CD103+ LPDCs, which are then able to 

traffic to MLN to prime adaptive immune responses (Ruane and Lavelle, 2011). 

However, there is recent compelling evidence that CX3CR1hi LP macrophages traffic to 

MLNs in a CCR7-dependent manner during dysbiosis of the enteric microbiota (Diehl et 

al., 2013). 

Unique intracellular signaling pathways contribute to the inflammation anergic 

characteristic of LP macrophages; however, it remains unclear exactly what makes LP 

macrophages distinct from circulating monocytes and other tissue resident macrophages. 

Additionally, inflammation anergic LP macrophages are distinct from the more widely 

studied endotoxin-resistant macrophages. For one, LP macrophages do express PRRs, 

contrary to conventional thought. Recent studies suggest that the enteric microbiota are 

not necessary to program LP macrophages to express high amounts of the anti-

inflammatory cytokines IL-10 and TGF-β (Kobayashi et al., 2012) (Maheshwari et al., 

2011). One enticing candidate for inducing LP macrophage non-responsiveness to 

PAMPs is IL-10. Importantly, IL-10-deficient mice (Kuhn et al., 1993) and mice with 

myeloid-specific ablation of the IL-10 signaling molecule STAT3 (Takeda et al., 1999) 

develop spontaneous colitis reminiscent of human IBDs. Additionally, blocking IL-10 

restores PAMP responsiveness in LP macrophages. Our lab described a mechanism for 
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IL-10-mediated suppression of IL-12p40 via altering histone acetylation and RNA 

polymerase II accessibility to the Il12b promoter (Kobayashi et al., 2012), suggesting that 

IL-10 directly inhibits the production of pro-inflammatory cytokines in response to 

PAMP stimulation. IL-10 additionally exerts its anti-inflammatory effects on the innate 

immune system by regulating transcriptional elongation (Smallie et al., 2010), microRNA 

induction (McCoy et al., 2010), mRNA stability (Schaljo et al., 2009), and transcriptional 

repressors and co-repressors (El Kasmi et al., 2007). 

Additionally, the PI3K pathway negatively regulates signaling through TLRs in 

macrophages (Fukao and Koyasu, 2003). In particular, the catalytic subunit of PI3K, 

p110δ, is enriched in leukocytes and regulates IL-12p40 production in LP macrophages 

in response to microbial stimulation. PI3K p110δ is indispensable for intestinal 

homeostasis as mice harboring an inactivating point mutation in p110δ (p110δ kinase-

dead, or p110δKD mice) develop spontaneous colonic inflammation (Uno et al., 2010). LP 

macrophages from p110δKD mice produce significantly more IL-12p40 and less IL-10 

upon stimulation with heat-killed Escherichia coli (Uno et al., 2010). Thus, a loss in the 

critical negative regulation of TLR signaling results in the disruption of intestinal 

homeostasis. 

 

1.5.3 Lamina Propria Dendritic Cells 

 LPDCs also comprise a heterogeneous group of cells in the intestines. 

Only recently has it also been appreciated that LPDCs play an active and direct role in 

maintaining peripheral tolerance to self and intestinal luminal antigens. Like LP 

macrophages, LPDCs represent a spectrum of functionally distinct phenotypes. CD8α+ 
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pDCs in the LP are capable of inducing Treg cells and supporting their function 

(Bilsborough et al., 2003). While the majority of LPDCs are CD11b+CD8α-, CD11b-

CD8α+ and CD11b-CD8α- subsets are also present. These DCs weakly stimulate antigen-

specific T cell proliferation and constitutively express IL-10 and type I interferons 

(Chirdo et al., 2005). Furthermore, LPDCs are divided into CD103+ and CD103- (E-

cadherin receptor) populations, each demonstrating distinct functions. CD103+ LPDCs 

are able to induce Foxp3-expressing Treg cells (Coombes et al., 2007; Mucida et al., 

2007; Sun et al., 2007), whereas CD103- LPDCs are efficient at inducing Th17 cells 

when stimulated with flagellin or microbial ATP (Atarashi et al., 2008; Kinnebrew et al., 

2012; Uematsu et al., 2008). While the Th17 response is important for antimicrobial 

immunity, dysregulation of Th17 lymphocytes and cytokines is implicated in a number of 

autoimmune disorders (Bettelli et al., 2007). 

CD103+ LPDCs represent a population of tolerizing innate immune cells that 

express the enzyme retinaldehyde dehydrogenase (RALDH), which produces retinoic 

acid (RA) from retinaldehyde, and the important regulatory cytokine TGF-β. Both 

CD103+ LPDC-produced RA and TGF-β are necessary for the induction of Treg cells in 

the intestine (Coombes et al., 2007; Mucida et al., 2007; Sun et al., 2007). Additionally, 

CD103+ LPDCs produce indoleamine 2,3-dioxygenase (IDO), which participates in the 

induction of Treg cells and suppression of Th cell proliferation (Matteoli et al., 2010). 

The induction of CD103 expression in LPDCs is dependent on the vitamin A 

metabolite retinoic acid (RA) and the local production of factors from IECs and stromal 

cells. IECs induce CD103 expression in LPDCs in an RA-, TGF-β-, and contact-

dependent manner (Iliev et al., 2009). In addition to TGF-β, stromal cells in the LP 
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constitutively produce prostaglandin E2, which inhibits the production of pro-

inflammatory cytokines in DCs (Newberry et al., 2001). Importantly, thymic stromal 

lymphopoietin (TSLP) produced by IECs conditions LPDCs to induce Th2 cell 

differentiation (Iliev et al., 2009), although its necessity in inducing and maintaining Treg 

cells is controversial. Nonetheless, TSLP produced by IECs confers a homeostatic 

phenotype on LPDCs to protect mice from colitis (Iliev et al., 2009; Liu et al., 2007; 

Rimoldi et al., 2005; Taylor et al., 2009). CD103+ LPDC differentiation is dependent on 

Notch2 signaling, as Notch2-/- mice demonstrate a selective loss of CD11b+CD103+ 

LPDCs (Lewis et al., 2011). Furthermore, the preferential expansion of CD103+ LPDCs 

depends on the DC differentiating molecule Fms-related tyrosine kinase-3 ligand (Flt3L) 

(Collins et al., 2012). The function of CD103+ LPDCs depends on several factors. 

Dietary vitamin A induces RALDH expression in CD103+ LPDCs (Molenaar et al., 2011) 

and is necessary for these cells to imprint T cells with gut-homing receptors (Jaensson-

Gyllenback et al., 2011; Wang et al., 2011b). 

Aside from inducing Th17 differentiation, CD103- LPDCs are involved in the 

induction of immunoglobulin A (IgA) class switching of B cells, both in the Peyer’s 

patches and intestinal LP. IgA is abundantly produced in the intestine and prevents 

bacterial overgrowth and adhesion to IECs in the intestinal lumen (Mantis et al., 2011). In 

the isolated lymphoid follicles of the LP, CD70+ LPDCs expressing TLR5 and any of 

various ATP receptors induce IgA class switching in RA-dependent and T cell-

independent manners (Uematsu et al., 2008). LPDCs that produce iNOS and TNF-α also 

support IgA class switching (Tezuka et al., 2007). Cytokines produced by IECs, stromal 

cells and LPDCs, including B cell activating factor (BAFF), a proliferation-inducing 
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ligand (APRIL), IL-4, TGF-β, and IL-10, support the induction, maintenance, and 

expansion of IgA+ plasma cells (Bemark et al., 2012). 

LPDCs have a higher turnover rate than LP macrophages due to frequent 

trafficking to MLN to present antigen to naïve T cells (Rescigno and Di Sabatino, 2009). 

Evidence suggests that CD103+CD11b- LPDCs are replenished by DC-committed 

precursors (pre-cDC) in a Flt3L-dependent manner (Liu et al., 2009b), whereas CD103-

CD11b+ LPDCs are derived from circulating Ly6Chi monocytes in a GM-CSF-dependent 

manner (Varol et al., 2009). Additionally, the preferential expansion of regulatory 

CD103+ LPDCs is also Flt3L-dependent (Collins et al., 2012). The conditions under 

which precursors are recruited to and the existing microenvironment of the LP likely 

determine the final phenotype of LPDCs. For instance, under steady-state conditions 

F4/80loCD103+CD11c+ LPDCs are repopulated from circulating Ly6Chi monocytes 

(Rivollier et al., 2012). Mice with experimental colitis and reconstituted with Ly6Chi 

monocytes demonstrated intestinal accumulation of inflammatory CD103-

CX3CR1intCD11b+ LPDCs and exacerbated colitis (Rivollier et al., 2012; Varol et al., 

2009). 

 

1.6 Lamina Propria Mononuclear Cells in IBD 

1.6.1 Murine Experimental IBD 

 There are a number of phenotypic and functional alterations described in LP 

macrophages and LPDCs during IBDs. Recent research highlights a central role for 

macrophages and DCs in the pathogenesis of colitis, as numerous IBD susceptibility 

SNPs affecting innate immune cell functions have been identified (Cho and Brant, 2011; 
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Jostins et al., 2012). Additionally, the selective depletion of macrophage and DC subsets 

in mouse models of colitis has been particularly informative about the protective and 

pathogenic roles innate immune cells play during discrete stages of disease pathogenesis. 

Lymphocyte deficient mice (severe combined immunodeficiency, SCID) develop colitis 

upon treatment with the intestinal irritant dextran sodium sulfate (DSS), suggesting that 

macrophages and DCs are pathogenic in this model in the absence of mature lymphocytes 

(Dieleman et al., 1994). Depletion of phagocytes in Il10-/- mice (Watanabe et al., 2003), 

and blocking myeloid cell recruitment in both 2,4,6-trinitrobenzene sulfonic acid 

(TNBS)-induced (Palmen et al., 1995) and T cell adoptive transfer (Kanai et al., 2006) 

colitis ameliorate disease, as does selective depletion of LPDCs during DSS colitis (Abe 

et al., 2007; Berndt et al., 2007). Contrary to these findings, depletion of LP macrophages 

and LPDCs prior to the induction of DSS colitis results in exacerbated disease (Qualls et 

al., 2006; Qualls et al., 2009). Furthermore, different subsets of macrophages and DCs 

have distinct effects on the severity of colitis in animal models. M2 polarized 

macrophages protect mice from DSS colitis, whereas M1 polarized macrophages 

contribute to disease pathogenesis (Arranz et al., 2012; Hunter et al., 2010; Weisser et al., 

2011). Selective expansion of CD103+ LPDCs by Flt3L protects TNFΔARE mice from 

ileitis (Collins et al., 2012), but E-cadherin-expressing DCs increase colonic pathology in 

DSS colitis (Siddiqui et al., 2010). Thus, the protective/pathogenic role of distinct 

macrophage and DC populations in the LP remains an active area of investigation. 

In general, there are three ways in which defects in innate immune cell functions 

can initiate IBD development: (1) by responding inappropriately to normally benign 

stimuli such as commensal microbes, (2) by inefficiently clearing microbes, leading to 
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chronic immune stimulation, and (3) by failing to switch from an appropriate pro-

inflammatory response to an inflammation-resolving anti-inflammatory response. Here 

we will discuss each of these defects and how each leads to chronic inflammation and 

IBDs. 

The enteric microbiota is essential for the development of colonic inflammation in 

most murine models of colitis (Guarner, 2008; Sartor, 2008). Perturbations in the 

negative regulation of innate immune responses to stimuli enhance susceptibility to 

colitis development. The well-characterized Il10-/- murine model of spontaneously 

developing colitis demonstrates the necessity of the potent anti-inflammatory cytokine 

IL-10 in the maintenance of intestinal homeostasis (Kuhn et al., 1993). Indeed, LP 

macrophages derived from germ free (GF) Il10-/- mice produce increased IL-12p40 

compared to GF WT LP macrophages at baseline, suggesting that IL-10 is the critical 

driver of the LP macrophage phenotype (Kobayashi et al., 2012). Furthermore, IL-10 

produced by CD11b+ LP macrophages is necessary for the maintenance of Foxp3 

expression in Treg cells and protection from colitis (Murai et al., 2009). The important 

IL-10- and microbiota-inducible nuclear transcription factor, interleukin-3 regulated 

(NFIL3) negatively regulates IL-12p40 production in LP macrophages and has been 

recently implicated in intestinal homeostasis (Kobayashi et al., 2011). Thus, studying the 

regulation of IL-10 production and its downstream signaling effects is crucial to 

understanding intestinal homeostasis.  

IL-10-independent regulation of innate immune responses also contributes to 

intestinal homeostasis. One negative regulator of intestinal macrophage activation is 

paired immunoglobulin-like receptor B (PIR-B). PIR-B is expressed on colonic LP 
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macrophages, B cells, and neutrophils and contains several immunoreceptor tyrosine-

based inhibitory motifs (ITIMs) that activate intracellular phosphatases, negatively 

regulating TLR signaling (Munitz et al., 2010). PIR-B is highly upregulated on LP 

macrophages following DSS administration in mice. Furthermore, PIR-B-deficient (Pirb-

/-) macrophages produce significantly more TNF-α and IL-6 in response to Escherichia 

coli, and WT mice reconstituted with Pirb-/- macrophages demonstrate increased 

susceptibility to DSS colitis. PIR-B expression is also important in human intestinal 

biology, as LP mononuclear cells from both healthy controls and patients with UC 

express immunoglobulin-like transcript-2/leukocyte Ig-like receptor-1 (ILT-2/LIR-1), a 

human homologue of PIR-B. Our lab recently described spontaneous colitis development 

in mice harboring a kinase-dead PI3K catalytic subunit p110δ (p110δKD), a potent 

negative regulator of TLR responses in macrophages (Uno et al., 2010). CD11b+ LPMCs 

from p110δKD mice produced increased pro-inflammatory cytokines (IL-12p40, IL-23) 

and decreased anti-inflammatory IL-10 in response to enteric microbes compared to 

CD11b+ LPMCs from WT mice. Conversely, triggering receptor expressed on myeloid 

cells-1 (TREM-1) amplifies TLR-induced inflammatory responses in macrophages, and 

blocking its activity attenuates murine colitis (Bouchon et al., 2000; Schenk et al., 2005). 

Indeed, resident LP macrophages do not express TREM-1 but abundant TREM-1-

expressing LP macrophages can be found in patients with IBDs (Schenk et al., 2007; 

Smith et al., 2001). Thus, unrestrained pro-inflammatory responses of LP macrophages 

and LPDCs participate in the induction of chronic inflammation by continued recruitment 

of inflammatory cells, inducing altered barrier function of the IEC layer, and promoting 

pathogenic adaptive immune responses. 
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The enteric microbiota interacts with host immune cells to induce protective anti-

inflammatory responses and maintain intestinal homeostasis. Dysregulation of these 

protective pathways, either by enteric microbial dysbiosis or intrinsic defects in 

macrophage and DC responses to stimuli, may underlie IBD pathogenesis. Short chain 

fatty acids (SCFAs) are anti-inflammatory metabolites produced by specific phyla of 

enteric bacteria (Bacteroidetes, Firmicutes) (Cavaglieri et al., 2003). When DSS colitis is 

induced in immune cell-specific Gpr43-/- mice (a host receptor for SCFAs), colonic 

inflammation is exacerbated, pointing to the beneficial anti-inflammatory effect of 

SCFAs in the colon (Maslowski et al., 2009). Interestingly, bacteria also actively 

suppress intestinal inflammatory responses, although a bacterium can exploit this to 

promote its pathogenicity. Citrobacter rodentium and Helicobacter pylori express 

bacterial proteins with domains similar to host ITIMs (Yan et al., 2012). ITIMs 

negatively regulate immunoreceptor signaling pathways in immune cells, and bacterial 

ITIM-like-containing proteins dampen immune responses in murine colons. On the other 

hand, analysis of the enteric microbiota of patients with IBD demonstrates decreased 

biodiversity, decreased proportions of Firmicutes, and increased Gammaproteobacteria 

(Sokol and Seksik, 2010). While it is unknown whether enteric dysbiosis in IBD patients 

contributes to or is a consequence of colonic inflammation, researchers demonstrate 

reproducible increases in bacteria with unique abilities to adhere and invade mucosal 

cells in patients with IBD (i.e., adherent-invasive E. coli) (Boudeau et al., 1999), as well 

as decreases in bacteria capable of producing protective SCFAs (Morgan et al., 2012). 

Furthermore, it was recently shown that E. coli is especially adept at using nitrates as 

electron acceptors, supporting its selective growth during intestinal inflammation, when 
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nitrates are produced in abundance (Winter et al., 2013). This suggests that the interplay 

between host and bacteria actively shapes intestinal homeostasis and participates in IBD 

pathogenesis. 

Both macrophages and DCs actively promote the transition from inflammation to 

the return to homeostasis after immune system activation, and non-resolving 

inflammation is associated with many chronic diseases, including IBDs (Nathan and 

Ding, 2010). A study found that the pro-resolution mediator prostaglandin D2 was 

upregulated only in UC patients who had achieved long-term remission, suggesting that 

intact pro-resolution pathways are necessary to halt damaging intestinal inflammation 

(Vong et al., 2010). Additionally, a SNP associated with low expression of the immune 

cell ectonucleotidase CD39, which generates the pro-resolving mediator adenosine, is 

associated with CD (Friedman et al., 2009). Immune cells are major contributors of 

extracellular adenosine at inflammatory sites. Adenosine interacts with its receptor A2B 

on macrophages and DCs to inhibit pro-inflammatory cytokine production, expression of 

co-stimulatory molecules, and induction of T cell proliferation while increasing IL-10 

production (Hasko et al., 2009). 

Other pro-resolving soluble mediators with diverse effects on macrophages and 

DCs are resolvins, lipoxins, protectins, and maresins (Uddin and Levy, 2011). These 

mediators are derived from polyunsaturated fatty acids (PUFAs), and both CD and UC 

patients have demonstrated deficiencies in these resolving mediators (Kuroki et al., 1997; 

Weylandt et al., 2007). Interestingly, there was found to be a very low incidence of IBDs 

among a population in Northwest Greenland that consumes high amounts of PUFAs, 

suggesting that dietary precursors of pro-resolving factors help to prevent chronic 
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gastrointestinal inflammation (Kromann and Green, 1980). PUFA-derived mediators 

enhance the capacity of macrophages and DCs to promote the resolution of inflammation 

by inducing efficient phagocytosis of apoptotic granulocytes and debris, preventing 

further recruitment of neutrophils, inducing anergy or deletion of effector T cells, and 

promoting repair of local damage (Uddin and Levy, 2011). Treatment with resolvin E1 

ameliorates pathology in two experimental murine models of colitis, illustrating the 

powerful effects of PUFA-derived mediators on resolving inflammation (Arita et al., 

2005; Ishida et al., 2010). 

Macrophages and DCs additionally respond to resolving mediators by switching 

to unique “resolution phase” phenotypes. DCs generated in the presence of resolvin E1 

demonstrate decreased expression of co-stimulation molecules, TNF-α, and IL-12, while 

inducing antigen-specific CD4+ T cell apoptosis via IDO production and activation 

(Vassiliou et al., 2008). A defining distinction of resolution phase DCs from tolerogenic 

DCs is the continued expression of CCR5, which enhances chemotaxis toward 

inflammatory sites, without upregulation of CCR7, which induces chemotaxis to lymph 

nodes, on resolution phase DCs (Vassiliou et al., 2008). Similarly, resolution phase 

macrophages demonstrate a distinct phenotype from both M1 and M2 macrophages. Like 

M2 macrophages, resolution phase macrophages express high levels of molecules 

associated with the recognition and clearance of apoptotic cells, TGF-β, IL-10, and 

arginase 1 (Bystrom et al., 2008; Stables et al., 2011). However, resolution phase 

macrophages also possess features of M1 macrophages, such as expression of iNOS, 

COX2, and CCR5 (Bystrom et al., 2008; Stables et al., 2011). It is likely that local factors 

condition both macrophages and DCs to switch phenotypes and promote the resolution of 
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inflammation, and that generation of these local factors or innate immune cell responses 

to these factors are defective in IBDs. 

 

1.6.2 Human IBDs 

 In human IBDs, inflammatory lesions demonstrate an increase in accumulation of 

macrophages that display enhanced expression of co-stimulatory molecules (CD80, 

CD86) and macrophage activating receptors (CD40) (Rugtveit et al., 1997), TLRs 

(Hausmann et al., 2002), TREM-1 (Schenk et al., 2005), and CD14 (Kamada et al., 2008; 

Smith et al., 2001). Likewise, there are higher frequencies of LPDCs positive for markers 

of mature DCs (CD83, S-100, CD40) (Baumgart et al., 2009; Hart et al., 2005; te Velde 

et al., 2003; Verstege et al., 2008) and for PRRs (CD209, TLR2/4) found in patients with 

IBDs (Hart et al., 2005; Verstege et al., 2008). Interestingly, IECs from patients with CD 

secrete less TSLP, suggesting that the conditioning factors produced by IECs and stromal 

cells in the intestine that are necessary for inducing hemostatic LPDCs are deficient in 

IBDs (Rimoldi et al., 2005). Indeed, LPDCs from IBD patients also produce significantly 

more pro-inflammatory cytokines (IL-12, IL-6, IL-8, TNF-α) compared to those from 

healthy controls (Baumgart et al., 2009; Hart et al., 2005). Furthermore, there is an 

increase in frequency of LP pDC from IBD patients (Baumgart et al., 2011). However, 

stimulated peripheral blood pDC from IBD patients secrete significantly less IFN-α 

compared to those from healthy controls, suggesting that a decrease in functional 

tolerogenic pDC in IBD patients contributes to disease pathogenesis (Baumgart et al., 

2011; Baumgart et al., 2005). 
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 There is accumulating evidence that inappropriate macrophage and DC responses 

to the enteric microbiota contribute to human IBD pathogenesis (Xavier and Podolsky, 

2007). These include both inadequate protective and enhanced pathogenic responses to 

such stimuli. Macrophages isolated from both CD and UC patients demonstrate altered 

cytokine production in response to bacterial challenge: CD macrophages produce more 

pro-inflammatory IL-23 but less of the protective cytokine IL-10, whereas UC 

macrophages constitutively produce high levels of the pro-inflammatory cytokine IL-12 

(Campos et al., 2011). This may be in part due to impaired regulation of TLR-induced 

inflammatory responses in macrophages. For instance, patients with IBDs demonstrate 

significantly decreased expression of intestinal NFIL3, an IL-10- and microbiota-induced 

transcriptional repressor of IL-12p40 expression, compared to tissue from healthy, non-

inflamed control patients (Kobayashi et al., 2011). Additionally, increased numbers of 

TREM-1-expressing LP macrophages are found in intestinal tissue from patients with 

IBDs compared to tissue from control patients (Schenk et al., 2007). TREM-1 critically 

amplifies TLR-induced inflammatory responses of macrophages and is implicated in IBD 

pathogenesis. Conversely, LP macrophages from IBD patients produce less of the 

cytokine G-CSF, which is protective in experimental models of colitis, in response to the 

probiotic Lactobacillus rhamnosus GR-1 compared to those from healthy controls 

(Martins et al., 2009).  

There has long been evidence that patients with IBDs demonstrate impaired 

ability to eradicate bacteria (Rahman et al., 2008), and antibiotic therapy in certain 

clinical situations is efficacious for the induction and maintenance of remission in IBD 

(Khan et al., 2011; Pineton de Chambrun et al., 2012). The human IBD susceptibility 
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polymorphisms associated with NOD2 and ATG16L1 encode proteins involved in the 

autophagy pathway and lead to defective bacterial clearance (Travassos et al., 2010). 

Macrophages isolated from patients with CD demonstrate decreased ROS production and 

impaired eradication of bacteria (Palmer et al., 2009; Smith et al., 2009). Additionally, 

peripheral blood monocytes isolated from patients with both CD and UC demonstrate 

decreased phagocytosis and killing of bacteria (Caradonna et al., 2000). Perhaps the most 

compelling evidence of the link between bacterial persistence and IBD is the long list of 

primary immunodeficiencies, such as chronic granulomatous disease (CGD), associated 

with IBD-like clinical manifestations (Diez et al., 2010; Ishii et al., 1987; Marks et al., 

2009; Marks et al., 2010; Yamaguchi et al., 2001). Approximately 50% of patients with 

CGD, in which phagocyte ROS production and bacterial clearance are greatly impaired, 

develop IBD-like manifestations that share clinical and pathological features of CD 

(Marks et al., 2009; Segal et al., 2009). Furthermore, a SNP within the first intron of 

NCF4 (p40phox) is associated with enhanced susceptibility to IBD (Rioux et al., 2007). 

Bacterial persistence and chronic stimulation of macrophages and DCs may contribute to 

IBD development by producing increased pro-inflammatory cytokines that shape 

pathogenic adaptive immune responses. Indeed, defects in how macrophages and DCs 

respond to enteric antigens, eradicate bacteria and induce resolution of inflammation 

underlie IBD pathogenesis (See Figure 1.1 for summary of pathways and phenotypes). 

 

1.7 Phosphoinositide 3-kinases in Immune Responses 

 PI3Ks are a group of kinases that regulate diverse cell functions, including 

growth, proliferation, survival, migration, glucose homeostasis and membrane trafficking 
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(Vanhaesebroeck et al., 2010). Indeed, dysregulation of PI3K signaling is implicated in 

various human diseases including diabetes and cancer (Falasca and Maffucci, 2012). 

PI3Ks initiate intracellular signaling cascades by phosphorylating the 3’-position of the 

inositol ring on select phosphoinositide molecules embedded in the cell membrane. The 

consequent phosphoinositide phosphate (PIP), either PI(3)P (e.g., PIP), PI(3,4)P (e.g., 

PIP2) or PI(3,4,5)P (e.g., PIP3), recruits proteins with recognition domains for PIP, PIP2, 

or PIP3 to the cell membrane signaling scaffold.  

The PI3K heterodimer consists of a catalytic and regulatory subunit; the 

regulatory subunit protects the catalytic subunit from degradation, prevents its 

promiscuous signaling and acts as a protein-binding scaffold (Vanhaesebroeck et al., 

2010). PI3K catalytic subunit isoforms are grouped into three classes based on substrate 

specificity and structure: Class I, II and III. The most abundant phosphoinositide 

generated by Class I PI3Ks is PIP3. Class I PI3Ks are further divided into Class IA and IB. 

There are three members of the Class IA PI3Ks: p110α, p110β and p110δ. The Class IA 

PI3Ks propagate signals downstream of receptor tyrosine kinases, such as TLRs and 

cytokine receptors. Class IA PI3Ks may also be activated downstream of G protein-

coupled receptors (GPCRs) by Ras (Vanhaesebroeck et al., 2010). The regulatory 

subunits of Class IA PI3Ks include p85α, p55α, p50α, p85β and p55γ. The sole member 

of Class IB PI3Ks is p110γ and is associated with signaling downstream of GPCRs. PI3K 

p110γ associates with p101 or p84/p87 regulatory subunits. Whereas p110α and p110β 

are ubiquitously expressed, p110δ and p110γ are highly enriched in leukocytes (Koyasu, 

2003; Papakonstanti et al., 2008), suggesting dominant roles for these subunits in 

immune functions. Class II PI3Ks consist of only catalytic subunits, PI3K-C2α, PI3K-
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C2β and PI3K-C2γ and preferentially generate PIP. Class II PI3Ks are implicated in cell 

growth, survival, migration, membrane trafficking and insulin signaling (Falasca and 

Maffucci, 2012). The Class III PI3K, vacuolar protein sorting 34 (Vps34), associates with 

the Vps15 regulatory subunit to preferentially generate PIP. Vps34 has been associated 

with regulation of endocytosis, autophagy, and nutrient homeostasis (Backer, 2008). 

 

1.7.1 Structure and Signaling Downstream of the Class IA PI3Ks 

 Class I PI3Ks contain a Ras binding domain (RBD), a C2 domain, a helical 

domain, and a catalytic domain (Vanhaesebroeck et al., 2001). Class IA PI3Ks 

additionally have a p85-binding domain. Upon activation of receptor tyrosine kinases or 

GPCRs, Class IA PI3Ks are recruited to the activated receptor by either Ras or 

phosphorylated tyrosine residues, which are recognized by Src homology 2 (SH2) 

domain of the regulatory p85α subunit (Vanhaesebroeck et al., 2010). Recruitment to the 

membrane releases p110 from inhibition by p85α, allowing generation of PIP3. Proteins 

containing a pleckstrin homology (PH) domain, such as Akt and phosphoinositide-

dependent kinase-1 (PDK1), recognize and are recruited to newly generated PIP3. PIP3 is 

rapidly dephosphorylated by phosphatase and tensin homolog (PTEN), attenuating 

signaling (Vanhaesebroeck et al., 2010). Akt is a major signaling molecule activated 

downstream of Class I PI3K. In turn, Akt regulates multiple signaling pathways, 

including mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β (GSK-

3β), forkhead box protein O1 (FOXO1), and mouse double minute 2 homolog (MDM2) 

(Hemmings and Restuccia, 2012). 
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1.7.2 PI3K p110δ in Innate Immune Cells 

 The cell-type distribution of the Class IA PI3Ks p110δ and p110γ suggests that 

these enzymes regulate immune responses. Indeed, the promoter of PIK3CD, the gene 

encoding p110δ, contains binding motifs for several immune-specific transcription 

factors (Kok et al., 2009). PI3K p110δ has emerged as an important negative regulator of 

TLR signaling in innate immune cells (Fukao and Koyasu, 2003). This was first shown in 

DCs, as p85α-deficient DCs produced significantly more IL-12p40 and IL-12p70 in 

response to TLR ligands compared to WT DCs (Fukao et al., 2002). The increased 

generation of IL-12p70 by DCs led to enhanced Th1 responses. Additionally, p110δ 

signaling in DCs induces IL-6 production, which limits Th1 responses (Krishnamoorthy 

et al., 2008). Recently, Aksoy et al., demonstrated p110δ regulates the transition from 

pro-inflammatory MyD88/TIR domain-containing adaptor protein (TIRAP) signaling 

downstream of TLRs to anti-inflammatory TRIF/TRIF-related adaptor molecule (TRAM) 

signaling (Aksoy et al., 2012). The switch to TRIF/TRAM signaling allows the potent 

anti-inflammatory cytokine IL-10 to be produced. In macrophages, the different Class IA 

isoforms perform distinct, non-redundant functions, and p110δ is the dominant isoform 

responsible for Akt activation downstream of cytokine receptor activation (Papakonstanti 

et al., 2008). PI3K p110δ signaling in macrophages downstream of TLRs also negatively 

regulates IL-12p40, IL-12p70 and IL-23 through increased MAPK p38 and JNK 

activation (Uno et al., 2010). Furthermore, p110δ positively regulates bactericidal activity 

in macrophages but does not affect phagocytosis of opsonized bacteria (FcγR-dependent 

phagocytosis) or apoptotic cell debris (Leverrier et al., 2003; Uno et al., 2010). PI3K 

p110δ additionally regulates colony stimulating factor-1 (CSF-1) induced cell spreading 
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and migration of monocytes and macrophages (Mouchemore et al., 2013). Further 

demonstrating a role for p110δ in regulating vesicular trafficking, macrophage trafficking 

and secretion of TNF-α requires p110δ signaling (Low et al., 2010). 

 PI3K p110δ also regulates functions of other innate immune cell populations. 

PI3K p110δ mediates rolling, adhesion, migration of and activation-induced cell 

morphology changes and cytokine production in eosinophils in circulation, thus 

regulating allergic immune responses in vivo (Kang et al., 2012; Tanemura et al., 2009). 

Neutrophil cytokine production elicited by LPS or TNF-α stimulation and neutrophil 

migration into tissues is regulated by p110δ (Fortin et al., 2011; Randis et al., 2008). 

PI3K p110δ signaling in neutrophils recruits p40phox and p47phox, subunits of NADPH 

oxidase, to the membrane signaling complex, implicating p110δ activation in ROS 

production (Kanai et al., 2001). Interestingly, pharmacologic inhibition of p110δ in 

neutrophils and other cell types decreases production of ROS and the respiratory burst 

(Yamamori et al., 2004). Furthermore, p110δ negatively regulates LPS-induced IL-1β 

production, but enhances TNF-α and IL-6 production, in mast cells (Hochdorfer et al., 

2011). In natural killer cells, p110δ positively regulates maturation as well as secretion of 

IFN-γ, TNF-α and GM-CSF (Kim et al., 2007). 

 

1.7.3 PI3K p110δ in Adaptive Immune Cells 

 Additionally, p110δ regulates adaptive immune cell functions, although its 

functional output is often the opposite of responses in innate immune cells. PI3K p110δ 

regulates differentiation, survival, chemotaxis, antigen presentation and both T cell-

dependent and -independent generated antibody responses of B cells (Al-Alwan et al., 
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2007; Haylock-Jacobs et al., 2011; Jou et al., 2002; Okkenhaug et al., 2002; Reif et al., 

2004). Furthermore, p110δ positively signals through the T cell receptor (TCR) and B 

cell receptor (BCR) to induce antigen-specific proliferation of T and B cells (Garcon et 

al., 2008; Jou et al., 2002; Okkenhaug et al., 2002; Okkenhaug et al., 2006; Ying et al., 

2012). PI3K p110δ signaling is also necessary for CD4+CD25+Foxp3+ Treg function 

(Patton et al., 2006; Patton et al., 2011), antigen-specific cytokine production by both 

naïve and memory T cells (Liu and Uzonna, 2010; Okkenhaug et al., 2006; Soond et al., 

2010), development and function of T follicular helper cells involved in induction of B 

cell responses (Rolf et al., 2010; So et al., 2013) and regulates antigen-specific T cell 

homing to inflamed tissues (Jarmin et al., 2008; Liu and Uzonna, 2010; Sinclair et al., 

2008). Thus, whereas p110δ negatively regulates many responses to receptor tyrosine 

kinase activation in innate immune cells, p110δ positively regulates functions 

downstream of the TCR and BCR in adaptive immune cells. 

 

1.8 PI3K p110δ in Intestinal Homeostasis 

 Paradoxically, mice with a germline knock-in of Pik3cd harboring an inactivating 

point mutation (p110δ kinase-dead; hereafter referred to as “p11δKD”) demonstrate 

enhanced Th1 responses and develop spontaneously occurring experimental colitis (Liu 

et al., 2009a; Okkenhaug et al., 2002; Uno et al., 2010). Enhanced Th1 responses, despite 

impaired TCR-induced proliferation and cytokine production, can be partially explained 

by the reduction in numbers of functional Treg cells (Liu et al., 2009a). Conversely, 

p110δKD macrophages produce increased IL-12p40, IL-12p70 and IL-23 in response to 

microbial products and demonstrate impaired bacterial clearance in vitro and in vivo (Uno 
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et al., 2010). Intriguingly, a case study recently described a patient with homozygous 

germline loss of full-length p85α who lacked B cells and had colitis but did not 

demonstrate other pathologic inflammatory processes (Conley et al., 2012). This patient 

demonstrated normal expression of immune cell p50α and p55α, but greatly reduced 

expression of p110δ. Both human and murine studies strongly implicate p110δ signaling 

in the maintenance of intestinal homeostasis. Contrary to prevailing paradigms where 

p110δ inhibition is a strategic approach in inflammatory diseases driven by adaptive 

immune defects (Durand et al., 2013; Haylock-Jacobs et al., 2011; Matteoli et al., 2010; 

Ying et al., 2012), blockade of p110δ in diseases where innate immune processes are 

central drivers of pathogenesis, such as IBDs, may actually be harmful. 

 Given the role of the PI3K p110δ subunit in innate immune processes 

fundamental to the pathogenesis of IBD, we further characterized host-enteric microbiota 

and APC-T cell interactions in p110δKD mice. We describe a requirement for the enteric 

microbiota to drive intestinal inflammation in p110δKD mice. Microbial-innate immune 

interactions maintain homeostasis through regulation of both protective (IL-10) and 

inflammatory (IL-12p40) cytokines, and p110δ is a central regulator of this balance. 

Additionally, p110δ positively regulates eradication of intracellular bacteria in 

macrophages. Persistence of intracellular bacteria and chronic stimulation in intestinal 

p110δKD macrophages propagates the imbalance of cytokines. Furthermore, p110δ 

orchestrates innate immune cell regulation of pathogenic adaptive immune responses. 

Importantly, in human CD, decreased intestinal PIK3CD gene expression and an inverse  
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correlation with intestinal IL12B:IL10 ratios are demonstrated. Thus, p110δ appears to be 

a central homeostatic switch in the intestine, governing the critical balance between IL-

12/23 and IL-10 induced by the microbiota that determines the subsequent T cell 

response. 
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1.9 Figures 

 
Figure 1.1. Lamina propria mononuclear cells affect intestinal homeostasis in health 
and disease. LPMCs participate in maintaining intestinal homeostasis and in initiating 
disease when homeostasis is perturbed. [1] CD103-CX3CR1high LPMCs extend dendrites 
across the IEC barrier to sample luminal bacteria and antigens. [2] IECs and stromal cells 
produce local factors that condition LPMCs to be tolerant. [3] LP macrophages 
constitutively produce high levels of IL-10, which is necessary for the maintenance of 
Foxp3 expression in LP Treg cells. [4] CD103+CX3CR1low LPDCs produce TGF-β and 
retinoic acid (RA) to induce Treg cells and imprint gut homing receptors in adaptive 
immune cells. [5] CD103+CX3CR1low LPDCs induce IgA class switching in B cells. IgA 
is important in controlling the growth and composition of the enteric microbiota. [6] 
During perturbation of intestinal homeostasis, the enteric microbiota demonstrates 
dysbiosis. Additionally, the mucous layer just superficial to the IEC layer can break 
down, exposing IECs to the microbiota and inducing IECs to produce inflammatory 
cytokines. [7] Defects in intracellular bacterial clearance leads to persistent stimulation of 
LPMCs and induction of pro-inflammatory cytokines. IL-12 and IL-23 support the 
maintenance and differentiation of Th1 and Th17 cells, respectively. [8] 
CD103+CX3CR1low cells become inflammatory, producing increased amounts of IL-12, 
IL-6, IL-8 and TNF-α, supporting the differentiation of pathogenic T cells and the 
recruitment of inflammatory cells to the intestines. 
 



 

 
 

CHAPTER 2 

ALTERED MACROPHAGE FUNCTION CONTRIBUTES TO COLITIS IN 
MICE DEFECTIVE IN THE PHOSPHOINOSITIDE 3-KINASE SUBUNIT p110δ1 

2.1 Personal Contributions to Manuscript 

 I am a co-author on the manuscript entitled, “Altered macrophage function 

contributes to colitis in mice defective in the phosphoinositide 3-kinase subunit p110δ,” 

published in Gastroenterology in 2010 (Uno et al., 2010). I contributed to the manuscript 

by performing the bacterial assays in which we infected WT and p110δKD bone marrow-

derived macrophages (BMDMs) with K12 Escherichia coli, NC101 E. coli or Salmonella 

typhimurium and measured bacterial survival and phagocytosis and IL-12p40 produced 

by the BMDMs. Additionally, I isolated bacterial DNA from various tissues from WT 

and p110δKD mice and quantified total bacteria by quantitative RT-PCR. This was a 

significant contribution to the manuscript, as my work contributed to most of Figure 5. 

 

2.2 Overview 

Background and Aims: Innate immune responses are crucial for host defense against 

pathogens, but need to be tightly regulated to prevent chronic inflammation. Initial 
                                                
1Jennifer K. Uno, Kavitha N. Rao, Katsuyoshi Matsuoka, Shehzad Z. Sheikh, Taku 
Kobayashi, Fengling Li, Erin C. Steinbach, Antonia R. Sepulveda, Bart Vanhaesebroeck, 
R. Balfour Sartor, Scott E. Plevy. 2010. Altered macrophage function contributes to 
colitis in mice defective in the phosphoinositide 3-kinase subunit p110δ. 
Gastroenterology 139(5):1642-1653. doi: 10.1053/j.gastro.2010.07.008 
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characterization of mice with a targeted inactivating mutation in the p110δ subunit of 

phosphoinositide 3-kinase (PI3K p110δKD) reveal defects in B- and T-cell signaling and 

chronic colitis. Here, we further characterize features of inflammatory bowel diseases 

(IBD) in these mice and investigate underlying innate immune defects. 

Methods: Colons and macrophages from PI3K p110δKD mice were evaluated for colonic 

inflammation and innate immune dysfunction. Colonic p110δ mRNA expression was 

examined in IL-10-deficient (Il10-/-) and wild type (WT) germ free (GF) mice during 

transition to a conventional microbiota. To assess polygenic impact on colitis 

development, p110δKD mice were backcrossed to Il10-/- mice. 

Results: A mild spontaneous colitis was demonstrated in p110δKD mice at 8 weeks with 

inflammation increasing with age. An inflammatory mucosal and systemic cytokine 

profile was characterized by expression of IL-12/23. In p110δKD macrophages, 

augmented toll-like receptor signaling and defective bactericidal activity were observed. 

Consistent with an important homeostatic role for p110δ, WT mice raised in a GF 

environment markedly upregulated colonic p110δ expression with the introduction of the 

enteric microbiota, however colitis-prone Il10-/- mice do not. Moreover, PI3K p110δKD 

mice crossed to Il10-/- mice developed severe colitis at an early age. 

Conclusions: This study describes a novel model of experimental colitis that highlights 

the importance of PI3K p110δ in maintaining mucosal homeostasis and could provide 

insight into the pathogenesis of human IBD. 
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2.3 Introduction 

The pathogenesis of the human inflammatory bowel diseases (IBD) Crohn’s 

disease (CD) and ulcerative colitis (UC) is complex, with abnormal immune responses in 

genetically susceptible individuals eliciting uncontrolled intestinal inflammation (Xavier 

and Podolsky, 2007). Genetic variants that confer CD susceptibility highlight the 

importance of innate immune interactions with the enteric microbiota in controlling 

inflammation (Xavier and Podolsky, 2007). Commensal and pathogenic bacteria are 

recognized through conserved molecular microbial patterns by pattern-recognition 

receptors (PRRs), of which toll-like receptors (TLRs) form integral components (Abreu, 

2010). Signaling through TLRs leads to the activation of NF-κB, culminating in the 

induction of inflammatory cytokines including IL-12/23 and TNF-α. This inflammatory 

response is essential for the eradication of infectious microorganisms; however, excessive 

and prolonged activation can be detrimental to the host. Although mechanisms by which 

the host distinguishes commensal from pathogenic bacteria are not well defined, under 

normal conditions TLR signaling initiated by the enteric microbiota is protective (Rakoff-

Nahoum et al., 2004). 

Phosphoinositide 3-kinases (PI3Ks) have emerged as important regulators of TLR 

signaling (Fukao and Koyasu, 2003; Liew et al., 2005). Class IA PI3Ks are a family of 

heterodimeric enzymes consisting of a regulatory subunit (p85α, p55α or p50α) and a 

catalytic subunit (p110α, p110β, p110δ) (Vanhaesebroeck et al., 2001). While p110α and 

p110β are expressed ubiquitously, the p110δ isoform is highly expressed in leukocytes 

(Vanhaesebroeck et al., 1997). The clearest role of PI3K in chronic inflammation is 

described in a mouse harboring a point mutation in the p110δ catalytic subunit of PI3K 
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(p110δ kinase-dead; hereafter referred to as “p110δKD”) (Okkenhaug et al., 2002). These 

mice demonstrate B- and T-cell defects including improper maturation, defective antigen 

receptor signaling and impaired humoral immune responses. Notably, these mice 

spontaneously develop chronic segmental colonic inflammation. However, effects of the 

p110δ subunit on innate immune responses in mucosal inflammation remain 

uncharacterized. In this study, we further describe the development of chronic IBD in 

p110δKD mice and investigate the role of p110δ in the regulation of TLR signaling and 

bactericidal pathways in macrophages. 

 

2.4 Results 

2.4.1 PI3K p110δKD mice develop chronic colitis 

Macroscopically, colons from 16-week-old PI3K p110δKD mice were shorter in 

length and thicker than those from wild type (WT) with ten percent of mutant mice 

developing rectal prolapse (data not shown). To characterize histological features and 

progression of colitis, colonic sections were examined from 6 to 45 weeks of age (Figure 

2.1A). A histological scoring system was developed based on features of this model to 

assess the severity of inflammation (see Section 2.6 Materials and Methods). Colitis was 

characterized by increased colonic epithelial apoptotic bodies and a marked increase in 

the number of mitoses in the colonic crypts. There was an increase in lamina propria 

lymphocytes and neutrophils (Figure 2.1C, left). The colonic crypt architecture was 

generally well preserved with focal disruption of the tubular architecture associated with 

crypt abscesses (Figure 2.1C, middle, black arrow). Histologic inflammation was 

detected starting at 8 weeks of age (Figure 2.1B). The percentage of fields demonstrating 



 42 

no histological inflammation (grade 0) significantly decreased and the percentage of 

fields with marked inflammation (grade 3 to 4) significantly increased (Figure 2.1A,B) 

with age. A reduction in goblet cells was observed in older mice (Figure 2.1C, right). A 

unique feature was the presence of numerous intraepithelial lymphocytes (IELs) in the 

colonic epithelium (Figure 2.1C, right, white arrows). Immunohistochemical analysis 

revealed the presence of numerous CD3+ IELs in the colonic crypts of mutant mice 

compared to WT mice (Supplemental Figure 2.1). 

 

2.4.2 PI3K p110δKD mice display an exaggerated mucosal and systemic Th1/Th17 
cytokine profile 

Colonic explants from p110δKD mice secreted significantly elevated amounts of 

inflammatory cytokines IL-12p40, IL-12p70, TNF-α, IFN-γ and IL-17 (Figure 2.1D), as 

well as the growth factors and chemokines G-CSF, MIP1α, RANTES and KC 

(Supplemental Figure 2.2). LPS-stimulated PI3K p110δKD splenocytes secreted elevated 

levels of IL-12p40 (Figure 2.2A) and TNF-α (Supplemental Figure 2.3) compared to WT 

splenocytes. 

CD11b+ lamina propria mononuclear cells (LPMCs), comprising macrophages 

and dendritic cells, were isolated from colons of p110δKD and WT mice. PI3K 

p110δKD CD11b+ colonic LPMCs produced lower basal levels of IL-10 relative to WT 

LPMCs (Figure 2.2B). Moreover, p110δKD CD11b+ LPMCs activated with heat killed E. 

coli expressed increased levels of IL-12p40 and decreased levels of IL-10 compared to 

WT CD11b+ LPMCs (Figure 2.2B,C). Furthermore, CD11b+ LPMCs from p110δKD mice 

demonstrated upregulation of numerous activation markers, TLR4, and CD14 
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(Supplemental Figure 2.4B) compared to WT CD11b+ LPMCs, consistent with in vivo 

activation and/or recruitment of macrophages during the development of colitis. 

 

2.4.3 PI3K p110δKD macrophages are hyperresponsive to TLR signaling 

The role of PI3K p110δ in the regulation of IL-12p40 gene expression was next 

studied as a biologically relevant target of TLR signaling in macrophages. Bone marrow-

derived macrophages (BMDMs) from p110δKD mice secreted significantly greater 

amounts of IL-12p40 protein with LPS stimulation compared to WT BMDMs (Figure 

2.2D). Although the kinetics of IL-12p40 induction were similar between WT and 

p110δKD BMDMs, the magnitude of induction at each time point was significantly 

greater in the latter. PI3K p110δKD and WT BMDMs revealed similar kinetics of IL-

12p40 mRNA (Il12b) expression that peaked 4 hours post-stimulation and was 

significantly attenuated by 12 hours. However, there was increased magnitude of 

expression at all time points until 12 hours in p110δKD BMDMs (Figure 2.2E). 

Next, BMDMs from WT and p110δKD mice were stimulated with TLR9 (CpG), 

TLR2 (synthetic bacterial lipoprotein, sBLP) or TLR5 (flagellin) ligands. IL-12p40, IL-

12p70, IL-23 and nitric oxide (NO) production were assessed. PI3K p110δKD BMDMs 

produced enhanced amounts of inflammatory cytokines and nitric oxide in response to 

multiple TLR ligands (Figure 2.3). There were no differences in cell surface phenotypic 

or activation marker expression between p110δKD and WT BMDMs, including TLR4 and 

CD14 (Supplemental Figure 2.4A), suggesting that augmented TLR signaling in p110δKD 

BMDMs is secondary to intrinsic defects in TLR signaling pathways and not a result of a 

heightened activation state or increased expression of TLRs or TLR co-receptors. 



 44 

 

2.4.4 PI3K p110δKD macrophages display enhanced MAP kinase activation 

PI3K signaling is significantly diminished in PI3K p110δKD BMDMs as 

demonstrated by decreased phosphorylation of the PI3K downstream target Akt in LPS or 

sBLP activated p110δKD BMDMs compared to WT BMDMs (Figure 2.4A). TLR 

signaling in macrophages is positively regulated by the MAP kinases p38 and JNK (Feng 

et al., 1999; Zhu et al., 2001) and negatively regulated by the ERK MAP kinase pathway 

(Feng et al., 1999). LPS-activated p110δKD BMDMs displayed a different kinetic pattern 

of JNK and p38 MAP kinase activation compared to WT BMDMs (Figure 2.4B), with 

earlier activation and enhanced phosphorylation of p38 MAP kinase. There were no 

significant differences in ERK activation between p110δKD and WT BMDMs. Likewise 

there was no difference in magnitude or kinetics of NF-κB p65 phosphorylation in LPS-

stimulated WT and p110δKD BMDMs (Supplemental Figure 2.5A). 

 

2.4.5 PI3K p110δKD macrophages demonstrate decreased bactericidal activity 

To determine whether p110δKD macrophages are defective in eradicating 

intracellular bacteria, gentamicin protection assays were performed with the commensal 

enteric bacteria K12 E. coli, NC101 E. coli, and the invasive enteric organism S. 

typhimurium. NC101 E. coli is a colitogenic bacterial strain isolated from Il10-/- mice 

(Kim et al., 2005). PI3K p110δKD BMDMs display decreased bactericidal activity when 

infected with K12 E. coli, NC101 E. coli, and S. typhimurium (Figure 2.5A, right). 

Moreover, bacterial colonies recovered one hour following infection were not 

significantly different from WT BMDMs (Figure 2.5A, left). Additionally, WT and 
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p110δKD BMDMs were infected for one hour with K12 E. coli, washed and 

permeabilized, and then immunostained with anti-E. coli LPS antibodies. No 

immunoreactivity was demonstrated in non-permeabilized cells, and WT and 

p110δKD BMDMs demonstrated similar numbers of intracellular bacteria, demonstrating 

that uptake/phagocytosis is not defective in p110δKD BMDMs (Supplemental Figure 2.6). 

Culture supernatants showed a marked increase in IL-12p40 protein in p110δKD BMDMs 

that inversely correlated with bactericidal activity (Figure 2.5B). 

Bacterial products such as LPS and inflammatory cytokines like IFN-γ activate 

macrophages and augment bactericidal responses (Rada and Leto, 2008; Yap et al., 

2007). Bactericidal activity was significantly enhanced in WT BMDMs treated with LPS 

and IFN-γ. This augmentation was completely absent in p110δKD BMDMs (Figure 2.5C). 

To obtain in vivo evidence of defective enteric bacterial clearance in 

p110δKD mice, the presence of bacterial DNA in WT and p110δKD spleens and mesenteric 

lymph nodes (MLNs) was determined using universal bacterial 16S ribosomal RNA 

(rDNA) gene primers. Markedly increased bacterial rDNA was detected in spleens and 

MLNs of p110δKD mice compared to WT mice, consistent with defective bacterial 

clearance and/or increased bacterial translocation (Figure 2.5D). 

 

2.4.6 The enteric microbiota induces colonic PI3K p110δ expression in WT but not in 
colitis-prone Il10-/- mice 

Colonic expression of p110δ was studied in WT and colitis-prone Il10-/- mice 

raised in a GF environment and then colonized with a conventional microbiota. PI3K 

p110δ mRNA (Pik3cd) (Figure 2.6A) expression increased in WT mice beginning 7 days 

following colonization and was most strongly upregulated 14 days following transition. 
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This increase was specific for the p110δ isoform, as colonic mRNA expression for the 

p55α (Pik3r3) and p85α (Pik3r1) subunits were not significantly altered (Figure 2.6B). 

This robust increase in colonic Pik3cd was not observed in GF Il10-/- mice transitioned to 

a conventional microbiota (Figure 2.6A). These results, in a well-established model of 

experimental colitis, support the hypothesis that p110δ is an important homeostatic 

pathway limiting the extent and duration of intestinal inflammation. 

Additionally, this result suggested that IL-10 might be an important cofactor for 

the induction of p110δ expression by enteric bacteria. Therefore, induction of p110δ was 

assessed in LPS-activated WT and Il10-/- BMDMs. LPS-activated Il10-/- BMDMs 

demonstrated decreased Pik3cd (Figure 2.6C, left) and p110δ protein expression 

compared to WT BMDMs (Figure 2.6C, right). Moreover, Pik3cd induction in LPS-

activated BMDMs is MyD88-dependent, as significantly less Pik3cd and p110δ protein 

was observed in MyD88-/- BMDMs compared to WT BMDMs (Supplemental Figure 

2.5B), confirming that p110δ induction is through the canonical TLR signaling pathway. 

 

2.4.7 Il10-/-/p110δKD mice exhibit severe colitis at an early age 

The phenotype of murine and human IBDs is influenced by polygenic 

contributions. In p110δKD and Il10-/- mice on the C57BL/6 background, in contrast to 

other backgrounds, the phenotype of colitis is relatively mild. Moreover, partial but not 

complete abrogation of colonic p110δ expression was observed in GF Il10-/- mice 

transitioned to a conventional microbiota (Figure 2.6A). Therefore, to address whether a 

combined genetic defect in p110δ and IL-10 alters the phenotype of colitis, Il10-/- mice 

were crossed with p110δKD mice to create Il10-/-/p110δKD mice. While 4-week-old 
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p110δKD and Il10-/- mice do not demonstrate colonic inflammation, Il10-/-/p110δKD mice 

developed severe colitis and were notably smaller in size than either parent strain. Gross 

colonic appearance showed 100% disease penetrance with all mice developing colitis by 

4 weeks of age and over 50% displaying severe inflammatory changes (Supplemental 

Figure 2.7). Colitis scores from Il10-/-/p110δKD mice were significantly higher than age-

matched p110δKD, Il10-/- and WT mice (Figure 2.7A). Intestinal explant cultures 

demonstrated increased secretion of IL-12p40, IL-12p70 and IL-23 in Il10-/-

/p110δKD mice compared to age-matched Il10-/- and p110δKD mice (Figure 2.7B-D). 

 

2.5 Discussion 

This study describes an important role for the activity of the PI3K p110δ isoform 

in the regulation of TLR signaling and bactericidal pathways in macrophages. Notably, 

PI3K p110δ plays a critical role in intestinal homeostasis in experimental colitis models. 

Class IA PI3Ks are heterodimers consisting of a catalytic subunit (p110α, p110β, or 

p110δ) which complexes with one of five p85 isoform regulatory units. While p110α and 

p110β are ubiquitously expressed, p110δ expression is low or absent in most cell types 

but is abundantly expressed in leukocytes (Koyasu, 2003). PI3K p110δKD mice have 

significant defects in B cell antigen receptor signaling, substantial declines in 

immunoglobulin levels and diminished numbers of immature and mature B cells. 

Interestingly, in B cells, p110δ regulates TLR-induced proliferation (Al-Alwan et al., 

2007). PI3K p110δ also suppresses TLR9-induced IL-12 production in B cells, inhibiting 

a Th1-skewed response (Dil and Marshall, 2009). T cell functional abnormalities have 

also been described in p110δKD mice, including defects in T cell signaling through the T 
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cell receptor, and defective CD4+/CD25+/Foxp3+ T regulatory cell function, recently 

demonstrated in an adoptive transfer model of colitis (Patton et al., 2006). 

We provide the first detailed characterization of spontaneously occurring colitis in 

p110δKD mice. Immunologically, an exuberant inflammatory Th1/Th17 cytokine profile 

was observed systemically and in the colon. Several characteristics of colitis are 

reminiscent of features of human IBD, including leukocytic and neutrophilic infiltrates, 

intestinal epithelial cell damage, and goblet cell depletion. Although older p110δKD mice 

had more significant histologic inflammation, the majority of mice demonstrated colonic 

inflammatory changes that were not severe in nature. However, genetic background is an 

important modifier of phenotype in murine experimental colitis and human IBD and 

could account for this observation. For instance, Il10-/- mice on the C57BL/6 background 

have a relatively mild colitis phenotype. In fact, in our comparative studies, the incidence 

and severity of histological inflammation and intestinal inflammatory cytokine secretion 

were similar in p110δKD mice and age-matched Il10-/- mice on the C57BL/6 background. 

As polygenic contributions and genetic background can alter phenotype, Il10-/- mice were 

backcrossed to p110δKD mice. Using a scoring system devised for Il10-/- mice, Il10-/-

/p110δKD mice developed severe colitis and an exuberant mucosal inflammatory cytokine 

response at an early age compared to each of the founder strains. This finding implicates 

IL-10 and p110δ as two important, non-redundant, homeostatic pathways that function in 

normal physiology to suppress intestinal inflammation directed against the enteric 

microbiota. 

The importance of the enteric microbiota in the initiation of IBD is illustrated by 

Il10-/- mice, where the development of spontaneous colitis is dependent on the presence 
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of the microbiota (Sellon et al., 1998). We show dramatically increased levels of p110δ 

mRNA (Pik3cd) in the colon of WT GF mice transitioned to a conventional microbiota. 

Importantly, augmented expression was not seen in transitioned colitis-prone Il10-/- mice, 

which correlated with the development of intestinal inflammation. Strikingly similar 

findings were observed in LPS-activated BMDMs from Il10-/- and WT mice. These 

findings suggest that p110δ regulation may be an important homeostatic pathway in other 

models of intestinal inflammation. Based on our results, p110δ induced through TLR 

signaling is an event that limits the extent and duration of TLR-activated pro-

inflammatory responses. With IL-10 deficiency, one mechanism for exuberant and 

prolonged inflammatory responses may be loss of induction of p110δ (See Supplemental 

Figure 2.8 for model). 

A prominent histological feature in p110δKD mice that is not characteristic of 

human CD or UC is the presence of numerous IELs. However, intraepithelial 

lymphocytosis is characteristic of three rare forms of human IBD: celiac disease, 

lymphocytic colitis and collagenous colitis (Moayyedi et al., 1997; Sollid, 2004). As 

small intestinal inflammation is characteristic of these microscopic colitides (Green and 

Cellier, 2007; Moayyedi et al., 1997), we extensively searched but were not able to 

identify any inflammation in the small bowel of p110δKD mice. Although the purpose of 

this study was to correlate the development of colitis with defects in innate immunity in 

p110δKD mice, a goal of future research will be to characterize the role of IELs in this 

model. 

PI3K p110δKD macrophages demonstrate heightened sensitivity to stimulation by 

TLR ligands. This finding underscores the importance of p110δ in dampening TLR 
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signaling and also suggests that aberrant regulation of innate immune responses could 

contribute to the development of colitis in p110δKD mice. Accumulating evidence has 

established the role of PI3K in the attenuation of TLR signaling (Aksoy et al., 2005; 

Fukao et al., 2002; Kuo et al., 2006; Yu et al., 2006). For instance, mice with genetic 

deletion of the PI3K p85α subunit display altered balance of Th1/Th2 responses (Fukao 

et al., 2002), and dendritic cells produce enhanced levels of IL-12 in response to TLR2 

(PGN), TLR4 (LPS) and TLR9 (CpG) ligands. However, these mice do not develop 

chronic colonic inflammation. It is possible that mice deficient in PI3K subunits 

demonstrate compensatory changes in expression and availability of regulatory subunits, 

which could affect phenotypic and functional analyses (Okkenhaug et al., 2002). As we 

demonstrate in p110δKD mice, TLR activation in macrophages elicits an exuberant 

inflammatory response. However, TLR signaling in intestinal epithelial cells is protective 

against inflammation (Abreu, 2010). We speculate that the genetic defects in 

p110δKD mice that lead to the development of colitis are limited to the hematopoietic 

compartment, as p110δ is not highly expressed in epithelial cells (Papakonstanti et al., 

2008). 

Genetic variants linked to CD include genes that mediate autophagy and 

phagosomal function (Xavier and Podolsky, 2007). Recent studies indicate the 

importance of PI3K signaling in phagosomal maturation and acidification, essential for 

optimal bacterial killing (Booth et al., 2003; Levine and Deretic, 2007). Here, we show 

that p110δKD macrophages are less efficient than WT macrophages at eliminating enteric 

commensal and pathogenic bacteria. Our results indicate that p110δ is not necessary for 

phagocytosis of bacteria into the cell, as there is no difference in bacterial survival 
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following one hour of incubation with bacteria between WT and p110δKD macrophages. 

We also demonstrated that defective bactericidal activity in p110δKD macrophages is 

associated with increased inflammatory cytokine production. Additionally, p110δKD mice 

are defective at clearing enteric bacteria in vivo, suggesting that the inability of 

p110δKD macrophages to efficiently kill and clear microbes may contribute to prolonged 

inflammatory responses. However, macrophage function is not globally compromised in 

p110δKD mice. Indeed, the ability of macrophages and dendritic cells from p110δKD mice 

to produce NO and destroy intracellular Leishmania parasites was recently reported to be 

similar to WT mice (Liu et al., 2009a). 

In summary, the PI3K p110δKD mouse is an interesting model for understanding 

the pathogenesis of human IBD as it provides an example of how a genetic defect in a 

specific intracellular signaling molecule can lead to global defects in innate and adaptive 

homeostatic pathways in the intestine. Furthermore, polygenic contributions alter the 

phenotype of colitis as Il10-/-/p110δKD mice develop severe colitis at a young age 

compared to the parent strains. This study describes aberrant innate immunity including 

exuberant TLR signaling and defective bactericidal activity in macrophages that 

contribute to the pathogenesis of colitis in this model. 

 

2.6 Materials and Methods 

Mice. PI3K p110δKD mice were on the C57BL/6 background. C57BL/6 WT and Il10-/- 

mice were obtained from Jackson Laboratories. Mice were housed in conventional 

housing in accordance with guidelines from the American Association for Laboratory 

Animal Care and Research. Germ free (GF) 8-week-old 129 Sv/Ev WT and Il10-/- mice 
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were provided by the University of North Carolina Gnotobiotic Facility. Mice were 

colonized with conventional enteric microbiota at 8 weeks of age with a microbiota 

isolated from WT mice raised in conventionalized conditions (Sellon et al., 1998). PI3K 

p110δKD and Il10-/- homozygous mice were crossed and offspring were genotyped for 

Pik3cd and Il10 mutations. For F2 breeding, mice homozygous for one mutation and 

heterozygous for the other mutation were bred and mice homozygous for both p110δKD 

and Il10-/- were identified. All experimental mice were genotyped by PCR screening prior 

to tissue collection with littermates used as controls. The Institutional Animal Care and 

Use Committee of the University of Pittsburgh and the University of North Carolina 

approved all methods used in this study. 

 

Reagents. Flagellin was purchased from Invivogen (San Diego, CA). CpG DNA was 

obtained from Integrated DNA Technologies (Coralville, IA). Synthetic bacterial 

lipoprotein (sBLP) was purchased from EMC Microcollections (Tübingen, Germany). 

Peptidoglycan (PGN) and Lipopolysaccharide (LPS) from Salmonella enteritidis was 

purchased from Sigma (St. Louis, MO). LPS was repurified by modified phenol 

extraction as previously described (Hirschfeld et al., 2000). GM-CSF, and M-CSF were 

obtained from Peptotech, Inc (Rocky Hill, NJ) and IFN-γ was purchased from R&D 

Systems (Minneapolis, MN). 

 

Cell isolation. Splenocytes and bone marrow-derived macrophages (BMDMs) were 

cultured as described (Xiong et al., 2004). Lamina propria mononuclear cells (LPMCs) 

were isolated from mouse colons by an enzymatic method as previously described 
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(Kamada et al., 2005). LPMCs were separated into CD11b+ and CD11b- cells using anti-

CD11b microbeads from Miltenyi Biotec (Auburn, CA). 

 

ELISAs. Murine IL-12p40, IL-12p70, IL-10, IFN-γ and TNF-α from R&D Systems 

(Minneapolis, MN) and IL-23 from eBioscience (San Diego, CA) immunoassay kits were 

used according to manufacturers’ instructions. IL-17, MIP1α, RANTES, KC and G-CSF 

levels were determined by multiplex ELISA from Luminex (Austin, TX). 

Phosphorylation levels of p-Akt was determined using a cell-based ELISA from SA 

Biosciences (Valencia, CA). 

 

Western blot. Western blot analyses were performed on whole cell extracts as described 

(Xiong et al., 2004). Antibodies to p-JNK, p-p38, p-ERK, JNK2, p38, ERK, NF-κB p65, 

and p110δ were obtained from Santa Cruz Biotechnology (Santa Cruz, CA), and p-p65 

was obtained from Cell Signaling (Danvers, MA). 

 

Nitrite Determination. Nitrite was assayed by a standard Greiss Reaction adapted to a 

microplate system. 

 

Real-time RT-PCR analysis. Quantitative real-time RT-PCR was performed as 

described (Hegazi et al., 2005). Primer sequences are available on request. 

 

Colonic tissue explant cultures and histology. Colonic explant cultures were performed 

as described previously (Hegazi et al., 2005). Slides were prepared for hematoxylin and 
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eosin staining and histologic analysis was performed by a pathologist blinded to the study 

groups (ARS) using established criteria for Il10-/- mice (and Il10-/-/p110δKD mice) 

(Hegazi et al., 2005). 

Histologic scoring of PI3K p110δKD mice. A histological scoring system was developed 

to assess colonic inflammation based on the characteristic of this model. The criteria used 

to classify histology into grades 0 to 4 were as follows: Grade 0 was defined as (a) 

presence of 1 or less mitosis in the colonic crypts per 10 high power fields (HPF), (b) no 

epithelial hyperplasia, and (c) no neutrophils in the lamina propria. Grade 1 was 

established if less than two of the following criteria were found: (a) presence of epithelial 

hyperplasia, (b) presence of more than 2 mitosis/10 HPF in the colonic crypts, (c) any 

apoptotic body in the colonic crypts, (d) Infiltration by neutrophils in the lamina propria, 

(e) infiltration by lymphocytes and/or plasma cells in the lamina propria, (d) infiltration 

by lymphocytes and/or plasma cells and neutrophils in the lamina propria, (g) less than 

30% of colonic crypts showing intraepithelial lymphocytes (IELs). If there were two or 

more of the criteria for grade 1, grade 2 was attributed. Grade 3 was defined as (a) any of 

the criteria for grade 2 was present and there were more than 30% of IELs involving the 

colonic crypts per 10 HPF, or (b) there was submucosal inflammation. Grade 4 was 

attributed when any of the criteria for grade 3 was identified together with the presence of 

crypt abscesses and/or mucosal ulcers. Histopathologic analysis of WT mice revealed no 

or minimal mucosal inflammation with one or less mitosis per 10 HPF, and was scored as 

grade 0 in the majority of mice, or 1. 
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Gentamicin Protection Assay. Bacterial invasion was measured by gentamicin 

protection assays (Darfeuille-Michaud et al., 2004). Briefly, BMDMs were infected with 

bacteria with a multiplicity of infection of 10 bacteria per cell in antibiotic-free media. 

Cells were incubated with the bacteria for 2 hours at 37°C with 5% CO2. LPS (100 

ng/ml) and IFN-γ (10 ng/ml) were added 2 hours prior to bacteria where indicated. Cells 

were then washed twice with PBS and fresh media containing 100 µg/ml of gentamicin 

was added for one hour. Cells were lysed with 1% Triton-X, and samples were diluted 

and plated on LB agar plates to determine the number of colony-forming units. 

 

Bacterial DNA Isolation. Total DNA was extracted from splenocytes and mesenteric 

lymph nodes as outlined previously (Frank et al., 2007). Universal bacteria primer 

sequences were obtained from Horz HP, et al. (Horz et al., 2005). Bacterial DNA 

expression was determined by real-time RT-PCR and expression was normalized to host 

Gapdh and represented as relative expression to control. 

 

Statistical Analysis. Statistical significance from experiments in cells was determined 

using student t-test or one-way ANOVA. Statistical significance for in vivo data was 

assessed by the Mann-Whitney U test (SPSS, Chicago, IL, USA) with Bonferroni 

correction. 
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2.7 Figures 

 
Figure 2.1. PI3K p110δKD mice develop colitis. (A,B) Histological scores of colonic 
sections from WT and p110δKD mice at different ages. Results are represented as 
percentage of microscopic fields in each age group with score 0, 1 to 2 or 3 to 4 (A); or 
mean colitis scores (B). (ud, undetermined; *, p<0.05 versus WT 25-45-week-old mice) 
(C) Colonic sections from 10-week-old p110δKD mice demonstrate leukocytic infiltration 
of the lamina propria (white circle) and intraepithelial lymphocytes (white arrows) in the 
crypts. Focal crypt abscesses were observed (black arrow). (D) Colonic explants from 
WT (black bars) and p110δKD (grey bars) mice were assayed for spontaneous secretion of 
cytokines. Error bars represent mean ± SEM of three independent experiments. 
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Figure 2.2. PI3K p110δKD mice display enhanced expression of IL-12p40. (A) 
Splenocytes from WT (black bars) and p110δKD (grey bars) mice were not stimulated 
(NS) or stimulated with LPS (1 µg/ml) for 24 hours. IL-12p40 was measured by ELISA. 
(B,C) Colonic macrophages from WT or p110δKD mice were stimulated with heat killed 
E. coli (multiplicity of infection=10) for 24 hours. ELISAs were performed to assess IL-
12p40 (B) and IL-10 (C) levels. (D,E) Bone marrow-derived macrophages (BMDMs) 
from WT (black bars) and p110δKD (grey bars) mice were not stimulated (NS) or 
stimulated with LPS (1 µg/ml) and supernatants analyzed for IL-12p40 (D). PI3K 
p110δKD BMDMs were harvested at each time point and IL-12p40 mRNA (Il12b) (E) 
levels were assessed by real-time RT-PCR. Results are expressed as fold induction 
normalized to β-actin. Error bars represent mean ± SEM of three independent 
experiments (*, p<0.05 versus WT).  
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Figure 2.3. PI3K p110δKD macrophages demonstrate heightened sensitivity to TLR 
stimulation. BMDMs from WT (black bars) and p110δKD (grey bars) mice were 
stimulated with TLR9 (CpG), TLR2 (sBLP) or TLR5 (Flagellin) ligands for 24 hours. 
Supernatants were analyzed for IL-12p40, IL-12p70 or IL-23 secretion by ELISA and 
nitric oxide secretion by Greiss reaction. Error bars represent mean ± SEM of three 
independent experiments (ud, undetermined). 
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Figure 2.4. PI3K p110δKD macrophages demonstrate altered kinetics and magnitude 
of MAPK activation. (A) BMDMs from WT or p110δKD mice were stimulated with 
sBLP (100 ng/ml) (left) or LPS (100 ng/ml) (right) for the indicated periods of time and 
phosphorylation of Akt (p-Akt) was assayed by ELISA. Results are presented as a ratio 
of p-Akt to total Akt. (B) BMDMs from WT and p110δKD mice were stimulated with 
LPS (1 µg/ml) for the indicated times. Whole cell extracts were analyzed for 
phosphorylation of MAPK (JNK, ERK, p38) by western blot. Results represent mean ± 
SEM of three independent experiments (*, p<0.05 versus WT). 
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Figure 2.5. PI3K p110δKD BMDMs demonstrate defective bactericidal activity. (A) 
WT and p110δKD BMDMs were cultured with K12 E. coli., NC101 E. coli or S. 
typhimurium. Bacteria were recovered one hour post-infection (left panel) and 8 hours 
post-infection (right panel). (B) IL-12p40 production by ELISA was assessed in p110δKD 
BMDMs infected with K12 E. coli. (C) BMDMs were treated with LPS (100 ng/ml) or 
IFN-γ (10 ng/ml) prior to bacterial infection, and bacteria was recovered from lysed cells 
8 hours post-infection. (D) Total bacterial DNA in spleen and mesenteric lymph nodes 
was detected by real-time RT-PCR using primers for total 16S rDNA genes normalized 
to host Gapdh. Error bars represent mean ± SEM of three independent experiments (*, 
p<0.05 versus WT). 
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Figure 2.6. The enteric microbiota induces colonic p110δ expression in WT but not 
colitis-prone Il10-/- mice. (A,B) Germ-free (GF) WT and Il10-/- mice were transitioned to 
a conventional microbiota. Colonic mRNA was isolated, and expression of Pik3cd 
(p110δ), Pik3r1 (p85α), and Pik3r3 (p55α) mRNA was assessed by real-time RT-PCR. 
(A) Colonic Pik3cd was determined in WT and Il10-/- mice at 0, 3, 7, and 14 days post-
colonization of GF mice with conventional microbiota (*, p<0.05 versus WT). (B) 
Colonic expression of Pik3cd, Pik3r1, and Pik3r3 was examined 14 days post-transition 
of GF mice to conventional microbiota. Results are expressed as fold induction 
normalized to β-actin. Error bars represent mean ± SEM of three independent 
experiments. (C) BMDMs from WT and Il10-/- mice were stimulated with LPS (100 
ng/ml) for the indicated times. Pik3cd levels were assessed by real-time RT-PCR (left 
panel). Results are expressed as fold induction normalized to β-actin and represent mean 
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± SEM of three independent experiments (*, p<0.05 versus WT). BMDMs from WT and 
Il10-/- mice were stimulated with LPS (100 ng/ml) for 16 hours. Whole cell extracts were 
analyzed for p110δ by western blot (right panel). Results are representative of three 
independent experiments. 
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Figure 2.7. Il10-/-/p110δKD mice exhibit severe colitis at an early age. (A) Colitis 
scores were determined for 4-week-old Il10-/-/p110δKD (DKO), WT, Il10-/-, and p110δKD 
mice using criteria established for Il10-/- mice (Hegazi et al., 2005) by a pathologist 
(ARS) blinded to experimental groups (*, p<0.05 versus WT). IL-12p40 (C), IL-12p70 
(E) and IL-23 (D) protein in supernatants from colon explant cultures from DKO, WT, 
Il10-/- and p110δKD mice were analyzed by ELISA (*, p<0.05 versus WT). Error bars 
represent mean ± SEM of three independent experiments. 
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2.8 Supplemental Figures 

 
Supplemental Figure 2.1. Increased CD3+ IELs in the colonic crypts of p110δKD 
mice. Representative immunohistochemical analysis of CD3+ cells in paraffin embedded 
colonic sections from WT and p110δ mice. A marked increase in CD3+ IELs prominent 
at the base of the crypts (black arrows) is observed in p110δKD colonic sections, 
compared to WT colons. 
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Supplemental Figure 2.2. Colonic explants from p110δKD secrete elevated 
chemokines. Intestinal explants from WT (black bars) and p110δKD (grey bars) mice 
were cultured for 24 hours and cell-free supernatants were assayed for spontaneous 
secretion of the indicated chemokines by ELISA. Results are representative of a Luminex 
multiplex array analysis replicated independently three times. 
  



 66 

 
Supplemental Figure 2.3. PI3K p110δKD splenocytes secrete elevated levels TNF-α. 
Splenocytes from WT (black bars) and p110δKD (grey bars) mice were not stimulated 
(NS) or stimulated with LPS (1 µg/ml) or LPS (1 µg/ml) plus IFN-γ (10 ng/ml) for 24 
hours. TNF-α levels were measured by ELISA in cell-free supernatants. Error bars 
represent mean ± SEM of three independent experiments (*, p<0.05 versus WT). 
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Supplemental Figure 2.4. WT and PI3K p110δKD BMDMs and LPMCs phenotypic 
and activation marker expression. BMDMs (A) or colonic LPMCs (B) from 8- to 10-
week-old WT and p110δKD mice were isolated and labeled with antibodies against 
macrophage lineage and activation markers (CD11b, F4/80, CD80, CD86, MHCII, 
TLR4, and CD14), and analyzed by flow cytometry for each antibody (black histograms) 
and the isotype controls (grey histograms). Macrophages were gated using forward 
scatter and side scatter to exclude contaminating cells. Histograms are representative 
patterns from three independent experiments. 
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Supplemental Figure 2.5. Further characterization of signal transduction pathways 
in p110δKD macrophages. (A) BMDMs from WT and p110δKD mice were stimulated 
with LPS (100 ng/ml) for the indicated periods of time. Whole cell extracts were 
analyzed for  p-p65 (NF-κB) and total p65 by Western blot. Results are representative of 
three independent experiments. (B) BMDMs from WT and MyD88-/- mice were 
stimulated with LPS (100 ng/ml) for 4 hours. Expression of p110δ mRNA (Pik3cd) was 
assessed by quantitative real-time RT- PCR at the indicated time points. Results are 
expressed as fold induction normalized to β-actin. Results represent mean ± SEM of 
three independent experiments (*, p<0.05 versus WT). BMDMs from WT and MyD88-/- 
mice were stimulated with LPS (100 ng/ml) for 16 hours. Whole cell extracts were 
analyzed for p110δ by western blot. Results are representative of three independent 
experiments. 
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Supplemental Figure 2.6. Bacterial uptake/phagocytosis is intact in p110δKD 
BMDMs. WT (A) and p110δKD (B) BMDMs were infected for one hour with K12 E. 
coli, extensively washed to remove adherent bacteria, permeabilized, and then 
immunostained with anti-E. coli LPS antibodies. Results are representative of three 
independent experiments. (C) Infected cells were quantitated in 12 fields from three 
independent experiments and expressed as percentage of cells infected per total number 
of cells counted. 
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Supplemental Figure 2.7. Il10-/-/p110δKD mice exhibit severe colitis at an early age.  
(A) Colons from 1-month-old Il10-/-/p110δKD are shorter and thicker relative to age-
matched WT, Il10-/- and p110δKD mice. (B) Il10-/-/p110δKD mice were significantly 
smaller in size relative to age-matched Il10-/- mice. 
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Supplemental Figure 2.8. Pathogenesis of IBD in p110δKD mice. (1) PI3K 
p110δ dampens TLR signaling, suggesting that dysregulation of innate immune 
responses contributes to the development of colitis in p110δKD mice. This is opposed to 
TLR function on intestinal epithelial cells, which has been postulated to be protective 
against inflammation (Abreu, 2010). Furthermore IL-10 contributes to induction of p110δ 
expression. (2) Defective bactericidal activity is demonstrated in p110δKD macrophages. 
The inability of p110δKD macrophages to efficiently kill and clear microbes may 
contribute to prolonged inflammatory responses. 
 



 

 
 

CHAPTER 3 

INNATE PI3K p110δ REGULATES TH1/TH17 DEVELOPMENT AND 
MICROBIOTA-DEPENDENT COLITIS2 

3.1 Overview 

The p110δ subunit of class IA phosphoinositide 3-kinase modulates signaling in 

innate immune cells. We previously demonstrated that mice harboring a kinase-dead 

p110δ subunit (p110δKD) develop spontaneous colitis. Macrophages contributed to the 

Th1/Th17 cytokine bias in p110δKD mice through increased IL-12 and IL-23 expression. 

Here, we show that the enteric microbiota is required for colitis development in germ free 

p110δKD mice. Colonic tissue and macrophages from p110δKD mice produced 

significantly less IL-10 compared to wild type (WT) mice. p110δKD APCs co-cultured 

with naïve CD4+ antigen-specific T cells also produce significantly less IL-10 and induce 

more IFN-γ- and IL-17A-producing CD4+ T cells compared to WT APCs. Illustrating the 

importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1-/-/p110δKD 

mice develop mild colonic inflammation and produced more colonic IL-12p40 compared 

to Rag1-/- mice. However, CD4+CD45RBhigh/low T cell recipient Rag1-/-/p110δKD mice 

develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing 

                                                
2 Erin C. Steinbach, Taku Kobayashi, Steven M. Russo, Shehzad Z. Sheikh, Gregory R. 
Gipson, Jennifer K. Uno, Yoshiyuki Mishima, Luke B. Borst, Bo Liu, Hans Herfarth, 
Jenny P. Y. Ting, R. Balfour Sartor, Scott E. Plevy. 2013. Innate PI3K p110δ regulates 
Th1/Th17 development and microbiota-dependent colitis. Journal of Immunology (In 
resubmission). 
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lamina propria CD3+CD4+ T cells compared to recipient Rag1-/- mice. Intestinal tissue 

samples from patients with Crohn’s disease revealed significantly lower expression of 

PIK3CD compared to intestinal samples from non-IBD control subjects (p<0.05). 

PIK3CD expression inversely correlated with the ratio of IL12B:IL10 expression.  In 

conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by 

altering the balance between IL-10 and IL-12p40. Defects in p110δ expression and/or 

function may underlie the pathogenesis of human IBD and lead to new therapeutic 

strategies. 

 

3.2 Introduction 

Genetic variants that confer susceptibility to the human inflammatory bowel 

diseases Crohn's disease (CD) and ulcerative colitis highlight the importance of innate 

immune interactions with the enteric microbiota in both initiating and controlling 

inflammation (Rioux et al., 2007). Commensal and pathogenic microorganisms are 

recognized through conserved molecular microbial patterns by pattern-recognition 

receptors, of which toll-like receptors (TLRs) form integral components (Abreu, 2010). 

Although mechanisms by which the host distinguishes commensal from pathogenic 

bacteria are not well defined, under normal conditions TLR signaling initiated by the 

enteric microbiota is protective (Rakoff-Nahoum et al., 2004). Phosphoinositide 3-

kinases (PI3Ks) have emerged as important regulators of TLR signaling (Fukao and 

Koyasu, 2003; Liew et al., 2005). Class IA PI3Ks have five different regulatory subunits 

and three p110 catalytic subunits: p110α and p110β are expressed ubiquitously in many 

tissues whereas p110δ is enriched in leukocytes (Koyasu, 2003). Agents that activate 
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macrophages to produce IL-12p40, the common subunit of the proximal inflammatory 

cytokines IL-12 and IL-23, also activate Class IA PI3K (Fukao et al., 2002). Activation of 

PI3K in turn blocks the expression of IL-12p40 mRNA (Il12b) (Fukao et al., 2002). 

Although inflammatory responses are essential for eradicating pathogenic microbes, 

excessive/prolonged activation of innate immunity is harmful to the host. PI3K-mediated 

negative feedback of IL-12p40 is important to prevent excessive innate immune 

responses. 

The clearest role of PI3K in chronic inflammation is described in a mouse 

harboring a kinase-dead p110δ catalytic subunit of PI3K (p110δD910A/D910A kinase-dead; 

here on referred to as “p110δKD”) (Okkenhaug et al., 2002). These mice demonstrate B 

and T cell defects including defective antigen receptor signaling and impaired humoral 

responses. Notably, the occurrence of spontaneous colitis was demonstrated in PI3K 

p110δKD mice (Uno et al., 2010). Expression of IL-12p40, Th1 and Th17 cytokines was 

described in the intestinal and systemic immune compartments. Consistent with a 

homeostatic role for p110δ in the intestine, wild type (WT) mice raised in a germ free 

(GF) environment markedly upregulated colonic p110δ (Pik3cd) expression when the 

enteric microbiota were introduced, but colitis-prone Il10-/- mice did not (Uno et al., 

2010). 

Given the role of the PI3K p110δ subunit in innate immune processes 

fundamental to the pathogenesis of IBD, we further characterized host-enteric microbiota 

and APC-T cell interactions in p110δKD mice. We describe a requirement for the enteric 

microbiota to drive intestinal inflammation in p110δKD mice. Microbial-innate immune 

interactions maintain homeostasis through regulation of both protective (IL-10) and 
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inflammatory (IL-12p40) cytokines, and p110δ is a central regulator of this balance. 

Furthermore, p110δ orchestrates innate immune cell regulation of pathogenic adaptive 

immune responses. Importantly, in human CD, decreased intestinal PIK3CD gene 

expression and an inverse correlation with intestinal IL12B:IL10 ratios are demonstrated. 

Thus, p110δ appears to be a central homeostatic switch in the intestine, governing the 

critical balance between IL-12p40 and IL-10 induced by the microbiota that determines 

the subsequent T cell response. Counter to prevailing paradigms where p110δ inhibition 

is a strategic approach in inflammatory diseases (Maxwell et al., 2012; So et al., 2013), 

strategies to induce p110δ gene expression could be a potential therapeutic approach in 

human IBD. 

 

3.3 Results 

3.3.1 Presence of the enteric microbiota is necessary for the development of colitis in 
p110δKD mice 

To determine whether the microbiota is necessary for the development of colitis, 

p110δKD mice were derived germ free (GF). GF p110δKD mice up to 30 weeks of age did 

not develop histological colitis (Fig. 3.1A, left, Supplemental Fig. 3.1A). Interestingly, 

GF p110δKD mice produced significantly less colonic IL-10 compared to GF WT mice. 

GF p110δKD and WT mice were then transitioned to conventionalized housing (CNV), 

and colonic inflammation was assessed at days 7 and 14 after transfer. Compared to GF 

to CNV WT mice, colons from GF to CNV p110δKD mice demonstrated increased colitis 

scores (Fig. 3.1A, middle, right, Supplemental Fig. 3.1A). However, GF to CNV p110δKD 

mice gained weight similarly to GF to CNV WT mice (Supplemental Fig. 3.1B). 
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Furthermore, colonic explants from day 7 and 14 GF to CNV p110δKD mice produced 

significantly less IL-10 (Fig. 3.1B, middle, right) compared to GF to CNV WT mice. At 

day 14, GF to CNV p110δKD mice produced significantly elevated IL-12p40 (Fig. 3.1C, 

middle, right) compared to GF to CNV WT mice. IL- 10 is important for the maintenance 

of intestinal homeostasis in part through inhibition of IL-12p40 (Sheikh and Plevy, 2010). 

The ratio of colonic IL-12p40 to IL-10 protein production therefore reflects the overall 

balance of intestinal pro- and anti-inflammatory cytokines. Indeed, colons from days 7 

and 14 GF to CNV p110δKD mice demonstrated significantly higher ratios of IL-

12p40:IL-10 production (Fig. 3.1F) compared to GF to CNV WT mice. 

 

3.3.2 PI3K p110δ regulates macrophage production of IL-10 in response to TLR ligands 

WT and p110δKD bone marrow-derived macrophages (BMDMs) were exposed to 

TLR agonists (LPS (TLR4), 5 ng/ml; Pam3CSK4 (TLR2/1), 5 ng/ml; Zymosan A 

(TLR2/6), 5 µg/ml), and cytokine production was measured. BMDMs from p110δKD 

mice produced less IL-10 in response to all TLR agonists tested compared to WT 

BMDMs (Fig. 3.2A). Additionally, p110δKD BMDMs exposed to TLR agonists produced 

significantly more IL-12p40 compared to WT BMDMs (Fig. 3.2B), in agreement with 

our previously published data (Uno et al., 2010). Consequently, the ratio of IL-12p40:IL-

10 production in TLR ligand treated p110δKD BMDMs was consistently increased 

compared to WT BMDMs (Fig. 3.2C). LPS or Zymosan A stimulated CD11b+ and 

CD11c+ splenocytes from p110δKD mice also produced less IL-10 and more IL-12p40 

than WT splenic cells (Supplemental Fig. 3.2). 
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To further validate these findings, LPS stimulated WT BMDMs were treated with 

p110 isoform-specific chemical inhibitors. LPS activated WT BMDMs demonstrated a 

dose-dependent decrease in IL-10 (Fig. 3.3A, left) and increase in IL-12p40 (Fig. 3.3B, 

left) production with specific chemical inhibition of p110δ (IC87114). PI3K p110α and 

p110β inhibition (PIK-90 and TGX-221, respectively) did not alter LPS stimulated IL-10 

(Supplemental Fig. 3.3A,B, left) or IL-12p40 (Supplemental Fig. 3.3C,D, left) production 

in WT BMDMs, in agreement with reported results in dendritic cells (Aksoy et al., 2012). 

As a control, p110δ-specific inhibition of LPS-activated p110δKD BMDMs did not alter 

IL-10 or IL-12p40 expression (Fig. 3.3, right panels). However, in p110δKD BMDMs, 

p110β inhibition decreased IL-10 production (Supplemental Fig. 3.3B, right), and p110α 

or p110β inhibition modestly enhanced LPS induced IL-12p40 expression (Supplemental 

Fig. 3.3C,D, right) suggesting that in the absence of p110δ function other isoforms may 

have modest effects on IL-10/IL-12p40 regulation. 

Chemical inhibition of p110δ in Il10-/- BMDMs led to a dose-dependent increase 

in IL-12p40 production (Fig. 3.3C, right), suggesting that p110δ-mediated decreases in 

IL-12p40 are in part independent of the inhibitory actions of IL-10. Relevant to mucosal 

innate inflammatory responses, WT CD11b+ colonic lamina propria mononuclear cells 

(LPMCs) treated with heat killed E. coli (HKEC) demonstrated diminished Il10 (Fig. 

3.3D) and enhanced Il12b (Fig. 3.3E) expression in the presence of the p110δ-specific 

inhibitor. As a control, expression of neither cytokine was altered in CD11b+ colonic 

LPMCs from p110δKD mice treated with the p110δ-specific inhibitor. 
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3.3.3 mTOR and GSK-3β act downstream of p110δ in macrophages to regulate cytokine 
production 

PI3Ks modulate multiple downstream signaling pathways, of which mammalian 

target of rapamycin (mTOR) and glycogen synthase kinase-3β (GSK-3β) have been 

previously shown to regulate cytokine secretion in macrophages (Wang et al., 2011a). 

BMDMs from WT and p110δKD mice were exposed to mTOR or GSK-3β inhibitors 

(rapamycin or SB-216763, respectively) prior to LPS stimulation. Rapamycin decreased 

IL-10 (Fig. 3.4A,C) and increased IL-12p40 (Fig. 3.4B,D) protein and mRNA expression 

in WT and p110δKD TLR stimulated BMDMs. These same trends were observed in WT 

and p110δKD CD11b+ and CD11c+ splenocytes (Supplemental Fig. 3.4A-D). Inhibition of 

GSK-3β in p110δKD BMDMs and splenocytes increased IL-10 protein (Fig. 3.4E, 

Supplemental Fig. 3.4E,F) and mRNA expression (Fig. 3.4G) and decreased IL-12p40 

protein (Fig. 3.4F, Supplemental Fig. 3.4G) and mRNA (Fig. 3.4H) expression. Hence, 

mTOR and GSK-3β are downstream of p110δ and are relevant for regulation of IL-10 

and IL-12p40. 

 

3.3.4 Antigen presenting cell p110δ regulates T cell cytokine production 

To begin to determine whether resident antigen presenting cells (APCs) regulate 

intestinal T cell phenotype and function, T cell cytokines and lineage markers were 

measured in GF to CNV p110δKD colons. Colonic Tbx21 and Rorc transcripts (Fig. 

3.5A,B, middle, right), the hallmark transcription factors of Th1 and Th17 cells, 

respectively, were increased in GF to CNV p110δKD mice at days 7 and 14 post-transition 

compared to matched GF to CNV WT mice. Likewise, increased Ifng and Il17a 
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transcripts (Fig. 3.5C,D, middle, right) were detected in cecal tissue from days 7 and 14 

GF to CNV p110δKD compared to matched GF to CNV WT mice. 

Consequently, we next investigated whether T cell dependent IL-12p40 and IL-10 

expression was altered in p110δKD APCs. Splenic CD4+CD62L+ T cells from WT mice 

were cultured with either WT or p110δKD splenic APCs pulsed with cecal bacterial lysate 

(CBL). CBL pulsed p110δKD APCs cultured with naïve WT CD4+ T cells produced 

decreased levels of IL-10 (Fig. 3.5E, middle) and increased levels of IL-12p40 (Fig. 3.5F, 

middle) compared to WT APCs. WT and p110δKD APCs cultured with Il10-/- CD4+ T 

cells demonstrate that IL-10 expression is largely derived from APCs (Fig. 3.5E, right). 

As expected, CBL pulsed p110δKD APCs also produced significantly less IL-10 (Fig. 

3.5E, left) and more IL-12p40 (Fig. 3.5F, left) compared to WT APCs in the absence of 

CD4+ T cells. 

Next, to study antigen-specific APC-T cell interactions, splenic CD4+ T cells 

from OVA specific transgenic T cell receptor mice (OT-II mice) were co-cultured with 

OVA pulsed and LPS activated WT and p110δKD APCs. OVA-loaded p110δKD APCs 

induced significantly more IFN-γ- (Fig. 3.5H,I) and IL-17A-producing (Fig. 3.5H,J) 

CD4+ T cells compared to OVA-loaded WT APCs (Fig. 3.5G,I,J). However, WT and 

p110δKD APCs induced the same amount of T cell proliferation (Supplemental Fig. 3.5A-

C). These data suggest that cytokine production by p110δKD APCs directs differentiation 

of antigen specific Th1 and Th17 CD4+ T cells. 

These results suggest a model where defective p110δ signaling, through 

regulation of IL-10 and IL-12p40, leads to inflammatory effector T cell development. To 

test this model in vivo, we generated Rag1-/-/p110δKD mice (RKO/δKD). Interestingly, 
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colitis was present but attenuated in the absence of an adaptive immune system (Fig. 

3.6A,B). Colonic explant cultures from RKO/δKD mice produced significantly decreased 

IL-10 (Fig. 3.6C) and increased IL-12p40 (Fig. 3.6D) compared to colonic tissue explant 

cultures from Rag1-/- mice. 

It was previously reported that p110δKD CD4+ T cells adoptively transferred into 

Rag1-/- recipients induce colitis owing to impaired T regulatory cell function (Patton et 

al., 2006). To study how p110δ inactivation in non-lymphocyte populations affects T cell 

differentiation, admixed WT CD4+CD45RBhigh and CD4+CD45RBlow T cells were 

adoptively transferred into Rag1-/- and RKO/δKD mice (CD45RB recipients), and 

recipients monitored for colitis development. Total body weight of recipients was 

recorded until the experiment was terminated at day 24 due to severe clinical 

manifestations in the CD45RB RKO/δKD recipients. Clinical colitis activity scores (Fig. 

3.7A) and quantitative colonic histologic analysis (Fig. 3.7B,C) from CD45RB recipient 

RKO/δKD mice were increased compared to the respective recipient Rag1-/- mice. Colonic 

IL-10 production was significantly lower (Fig. 3.7D) and IL-12p40 production higher 

(Fig. 3.7E) in CD45RB recipient RKO/δKD mice compared to CD45RB recipient Rag1-/- 

mice. Consequently, ratios of colonic IL-12p40:IL-10 production from CD45RB 

recipient RKO/δKD mice were significantly higher (Fig. 3.7F) than ratios from recipient 

Rag1-/- mice. Furthermore, more IFN-γ-producing (Fig. 3.7G), but not IL-17A-producing 

(Fig. 3.7H), CD4+ T cells were isolated from mesenteric lymph nodes (MLNs) of 

CD45RB recipient RKO/δKD mice compared to recipient Rag1-/- mice. Finally, a greater 

percentage of lamina propria CD3+CD4+ T cells from recipient RKO/δKD mice produced 

IFN-γ (Fig. 3.7I) and IL-17A (Fig. 3.7J), compared to recipient Rag1-/- mice. 
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3.3.5 Intestinal PIK3CD expression correlates with IL12B:IL10 ratios from patients with 
CD 

Expression of p110δ (PIK3CD), IL-12p40 (IL12B) and IL-10 (IL10) mRNA was 

determined in human intestinal tissue from control subjects without intestinal 

inflammation and patients with CD or UC. Significantly higher levels of PIK3CD mRNA 

were detected in non-inflamed intestinal samples from control subjects compared to 

tissue from patients with CD, but not UC (Fig. 3.8A). Paired macroscopically inflamed 

and non-inflamed intestinal resections were obtained from 14 CD patients. There was 

lower expression of PIK3CD in inflamed intestinal tissues compared to non-inflamed 

tissues obtained from the same patient (Fig. 3.8B,C). Furthermore, ratios of IL12B:IL10 

expression from individual CD patients demonstrated a strong and statistically significant 

inverse correlation with PIK3CD expression (Fig. 3.8D). 

 

3.4 Discussion 

We previously described the development of spontaneously occurring Th1 and 

Th17 mediated colitis in p110δKD (Uno et al., 2010). In the present series of experiments, 

we further elucidate intestinal host-microbial and APC-T cell interactions mediated by 

p110δ. Colitis in p110δKD mice is dependent on host responses to the enteric microbiota, 

as has been described in other murine colitis models (Nell et al., 2010). In the absence of 

the enteric microbiota, p110δKD mice did not develop intestinal inflammation, whereas 

after reconstitution with commensal enteric microbiota, colons from p110δKD mice 

demonstrated histological inflammation and impaired IL-10 and increased IL-12p40 
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production (Fig. 1). Consequently, altered IL-10 and IL-12p40 production by p110δKD 

APCs in response to microbial products and cognate interactions with T cells orchestrate 

pathogenic adaptive immune responses contributing to intestinal inflammation. 

Class IA PI3Ks regulate macrophage and DC responses to bacteria (Fukao and 

Koyasu, 2003). Taken together, our results and those of others (Aksoy et al., 2012) 

elucidate a model where p110δ is an intracellular integrator of environmental signals that 

is involved in the restoration of inflammatory responses to homeostasis, mediated in part 

by IL-10. Regulation of IL-10 expression involves both PI3K-dependent and -

independent pathways. Moreover, IL-10 signaling in macrophages has been shown to 

activate the PI3K pathway (Antoniv and Ivashkiv, 2011). Indeed, we have shown that 

colonic p110δ expression is attenuated in colitis-prone Il10-/- mice, suggesting that IL-10 

regulation of IL-12p40 occurs in part via induction of p110δ (Uno et al., 2010). Aksoy et 

al. recently demonstrated that p110δ signaling in dendritic cells dampens responses to 

LPS by sequestering TLR4 signaling components and facilitating the switch from toll-

interleukin 1 receptor (TIR) domain containing adaptor protein (TIRAP)/MyD88-

dependent inflammatory cytokine production (IL-12, IL-6, TNF-α) to TIR domain 

containing adaptor inducing interferon-β (TRIF)-related adaptor molecule 

(TRAM)/TRIF-dependent anti-inflammatory cytokine production (IFN-β, IL-10) (Aksoy 

et al., 2012). It is possible that LPS induced p110δ signaling in macrophages also 

facilitates the switch to TRAM-TRIF signaling, leading to the enhanced production of IL-

10 and IFN-β. Indeed, this agrees with our finding that p110δKD macrophages produce 

less LPS induced IL-10. However, we have previously shown that CD11b+ LPMCs from 

Trif-/- mice produce higher levels of basal and bacterially stimulated IL-10 compared to 



 83 

WT mice (Kobayashi et al., 2012; Onyiah et al., 2013). Conversely, BMDMs from Trif-/- 

mice produce less LPS-induced IL-10 compared to WT mice (Boonstra et al., 2006). 

These findings suggest that the TRIF pathway negatively regulates IL-10 production 

uniquely in intestinal macrophages. Furthermore, CD11b+ LPMCs produce high levels of 

IL-10 in GF conditions (Kobayashi et al., 2012), suggesting that microbial signals are not 

necessary for driving constitutive expression of IL-10. However, TLR signaling, perhaps 

through the recognition of endogenous ligands, remains vital for IL-10 production in 

intestinal macrophages, as HKEC stimulated MyD88-/- CD11b+ LPMCs do not produce 

detectable levels of IL-10 (Kobayashi et al., 2012). While we did not investigate IFN-β 

expression as the prototype TRAM-TRIF regulated gene, it is possible that IFN-β and IL-

10 demonstrate differential regulation in CD11b+ LPMCs, in contrast to the recent study 

demonstrating convergent regulation in LPS stimulated bone marrow-derived DCs 

(BMDCs) (Aksoy et al., 2012). Indeed, Kaiser et al. demonstrated cell type-specific 

differences in IL-10 and IFN-β production in response to LPS; BMDMs and splenic 

macrophages did not make detectable amounts of IFN-β but did make significant 

amounts of IL-10 in response to LPS, whereas BMDCs induced both IFN-β and IL-10 

(Kaiser et al., 2009), suggesting that macrophages utilize distinct pathways to regulate 

IFN-β and IL-10. Thus, further studies are necessary to elucidate specific intestinal 

macrophage signaling pathways required for IL-10 production. 

In macrophages, mTOR and GSK-3β are central regulators of IL-12p40 and IL-10 

downstream of PI3K. Bacterial products induce MyD88-dependent PI3K activation, 

leading to phosphorylation of its downstream effector molecule Akt. Akt inactivates 

tuberous sclerosis complex (TSC), a negative regulator of mTOR (Weichhart et al., 
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2008). Both Akt and PI3K dependent mTOR activation modulate IL-12p40 and IL-10 

production by suppressing GSK-3β activity (Wang et al., 2011a; Zhang et al., 2006). 

GSK-3β constitutively represses IL-10 by blocking cAMP response element-binding 

(CREB) binding to and activation of the Il10 promoter (Martin et al., 2005). PI3K- and 

mTOR-mediated inhibition of GSK-3β thus releases IL-10 from suppression by GSK-3β 

(Martin et al., 2005). Interestingly, mTOR activation targets were not altered in LPS 

stimulated p110δKD BMDCs compared to WT BMDCs, suggesting that compensatory 

activation pathways sustain mTOR signaling in p110δKD BMDCs (Aksoy et al., 2012). 

Indeed, mTOR is activated through many pathways, including cellular energy sensing 

and Wnt signaling (Weichhart and Saemann, 2009). Additionally, the balance of IL-10 

and IL-12p40 production, as well as other cytokines, is regulated by MAPK signaling 

downstream of TLR signaling (Bode et al., 2012). Furthermore, other cytokines such as 

TNF-α are affected by p110δ, which regulates tubule fusion in TNF-α containing vesicles 

bound for secretion (Low et al., 2010). Indeed, we have previously shown dysregulation 

of IL-12p70, IL-23, and NO in TLR-activated p110δKD macrophages (Uno et al., 2010). 

Thus, p110δ may regulate cytokine secretion in multiple ways. Here we showed that 

inhibition of GSK-3β rescues LPS induced IL-10 production in p110δKD BMDMs (Fig. 

4). Our results therefore suggest that GSK- 3β activity may be a therapeutic target in 

IBDs to induce IL-10 production. Indeed, GSK-3β inhibition has previously been shown 

to ameliorate colitis in mice (Hofmann et al., 2010). 

PI3K p110δKD B and T cells demonstrate impaired proliferative signaling through 

the B cell and T cell receptors (Okkenhaug et al., 2002). PI3K p110δKD mice demonstrate 

impaired intrinsic T regulatory cell function, and p110δKD CD4+CD45RBlow cells co-
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transferred with colitogenic WT CD4+CD45RBhigh cells did not protect Rag1-/- mice from 

T cell-mediated colitis (Patton et al., 2006). To determine how APC p110δ influences T 

cell subset differentiation and colitis development, APC-CD4+ T cell co-culture 

experiments were performed (Fig. 5). CD4+ T cells induced greater production of IL-

12p40 by APCs, while APCs from p110δKD mice induced more antigen-specific IFN-γ- 

and IL-17A-producing T cells. Because only WT CD4+ T cells were used in co-culture 

with APCs from both WT and p110δKD mice, T cell phenotype can be attributed to the 

defect in p110δKD APCs. As an in vivo correlate, Rag1-/- and RKO/δKD mice were 

reconstituted with admixed WT CD4+CD45RBhigh and CD45RBlow T cells (Fig. 7). 

Compared to respective recipient Rag1-/- mice, recipient RKO/δKD mice demonstrated 

significantly increased clinical and histology scores. More IFN-γ-producing T cells were 

isolated from MLNs and colonic lamina propria of recipient RKO/δKD mice compared to 

recipient Rag1-/- mice. IL-17A-producing CD4+ T cells are rarely found in MLNs and 

other secondary lymphoid tissues but are found in abundant quantities at mucosal 

surfaces (Atarashi et al., 2008). Indeed, recipient RKO/δKD mice contained significantly 

higher percentages of IL-17A-producing T cells in the colonic lamina propria compared 

to the respective recipient Rag1-/- mice. We previously showed that bacterially stimulated 

p110δKD macrophages produce significantly more IL-23, a cytokine necessary for the 

differentiation and maintenance of Th17 cells (Uno et al., 2010). 

While we extensively studied the development of pathogenic CD4+ T cells in 

CD45RB recipient mice, we did not study Treg cell differentiation and function in these 

mice. During GF to CNV transition, colons from p110δKD mice demonstrated 

significantly increased transcription of Foxp3, correlating with increased inflammation, 
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compared to colons from WT mice (data not shown). However, this does not rule out 

functional defects in p110δKD Treg cells. It is entirely possible, and in fact likely, akin to 

human IBD pathogenesis, that innate and adaptive immune defects interact to drive the 

colitis phenotype. Thus it would be appropriate to expand our current studies in the future 

to include evaluation of Treg cell development and maintenance by p110δKD non-

lymphocyte populations in the intestines. 

Interestingly, in the absence of T cells, RKO/δKD mice developed mild 

histopathologic colonic inflammation. The development of mild colonic inflammation in 

RKO/δKD mice could be explained by the presence non-hepaticus Helicobacter species in 

our mouse colony (data not shown). The ability of H. hepaticus to induce innate immune 

driven colonic inflammation in the absence of adaptive immune cells has been well 

described (Kullberg et al., 2001; Kullberg et al., 1998). 

Recently, p110δ inhibition has been targeted for the treatment of chronic rejection 

of tissue transplants, systemic lupus erythematosus, and certain lymphoid cell 

malignancies (Maxwell et al., 2012; So et al., 2013; Ying et al., 2012). While preliminary 

clinical results are promising, this study highlights a potentially untoward consequence of 

p110δ inhibition – enhanced intestinal and innate inflammatory processes initiated by 

APCs. 

 

3.5 Materials and Methods 

Mice. All mice were maintained on a C57BL/6 background in conventional or GF 

housing. PI3K p110δD910A/D910A (p110δKD) mice were previously obtained from Dr. Bart 

Vanhaesebroeck (Queen Mary University of London, London, England). GF p110δKD 
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mice were Caesarian derived as previously described (MacDonald and Carter, 1978) and 

were maintained according to standard techniques in the University of North Carolina 

National Gnotobiotic Resource Center. OT-II (C57BL/6- Tg(TcraTcrb)425Cbn/J) male 

mice were provided by JPY Ting (UNC, Chapel Hill). All animal experiments were in 

compliance with protocols approved by the International Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill. 

 

Reagents. LPS from Escherichia coli was purchased from Invivogen (San Diego, CA). 

Zymosan A from Saccharomyces cerevisiae was purchased from Sigma (St. Louis, MO). 

Synthetic bacterial lipopeptide Pam3CSK4 (sBLP) was purchased from EMC 

Microcollections (Germany). Inhibitors IC87114, Rapamycin, and SB-216763 were 

purchased from Selleck Chemicals (Houston, TX). Cecal bacterial lysates (CBL) 

C57BL/6 mice were prepared as described previously (Cong et al., 2002). The peptide 

corresponding to residues 323-339 of ovalbumin (OVA) was purchased from AnaSpec 

(Fremont, CA). 

 

Colonic Tissue Explant Culture. Colonic tissue explant cultures were performed as 

described previously (Hegazi et al., 2005). 

 

Histology. Slides were prepared for H&E staining and a pathologist (LBB) blinded to the 

study groups performed histological analysis using established criteria for p110δKD mice 

(Uno et al., 2010). In T cell adoptive transfer studies, the following scoring system was 

utilized: Tissue changes were categorized into inflammatory and epithelial changes and 
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graded for severity (0= normal, 1= mild, 2= moderate, 3= marked and 4= severe); the 

sum of the two grades comprises the histopathology score. For inflammation, a score of 0 

(normal) signified rare small lymphoplasmacytic aggregates confined to the lamina 

propria; scores of 1 (mild) and 2 (moderate) represented increasing numbers of multifocal 

inflammatory aggregates which were predominantly confined to the lamina propria, with 

occasional submucosal infiltration; a score of 3 (marked) was assigned if inflammatory 

infiltrates frequently extended into the submucosa and muscular layers; a score of 4 

(severe) was designated if transmural inflammation was common. Epithelial changes, 

characterized by hypertrophy, were scored (0-4) with increasing severity and prevalence 

of the observed change. 

 

Cell Isolation. Bone marrow-derived macrophages (BMDMs) were cultured as described 

previously (Xiong et al., 2004). Splenocytes were isolated as described (Murali-Krishna 

et al., 1998) and further separated into CD11c+ and CD11c-/Cd11b+ cells by MACS with 

anti-CD11c and anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA). Lamina propria 

mononuclear cells (LPMCs) were isolated from mouse colons as described previously 

(Kamada et al., 2005). LPMCs were further separated into CD11b+ and CD11b- cells by 

MACS with anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA). 

 

Cell culture experiments. BMDMs or splenocytes were cultured at 1x106/ml in the 

presence of LPS (1 ng/ml), Zymosan A (10 µg/ml), sBLP (20 ng/ml) or PBS, and 

supernatants were harvested after 4 hours or 24 hours (BMDMs or splenocytes, 

respectively). Inhibitors IC87114 (0.1 or 1 µM), Rapamycin (1 or 10 µM), SB-216763 (1 
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or 10 µM), or DMSO were added 1 hour prior to stimulation with LPS or Zymosan A. 

CD11b+ LPMCs were treated with IC87114 (10 µM) for 30 minutes prior to exposure to 

heat killed E. coli (HKEC, MOI=100) for 3 hours. Total RNA was assessed for Il12b and 

Il10 expression by quantitative PCR. 

 

Quantitative RT-PCR. Quantitative real time RT-PCR was performed on total RNA as 

described (Hegazi et al., 2005). Murine primer sequences will be provided upon request. 

The following human primer sequences were used: PIK3CD, forward, 5’-

GCGCCGGGACGATAAGGAGTC-3’, reverse, 5’-GCTGCCCACAGGGGTCTACCT-

3’; IL10, forward, 5’-GCCTAACATGCTTCGAGATC-3’, reverse, 5’-

TGATGTGTGGGTCTTGGTTC-3’; IL12B, forward, 5’-

GCTCTTGCCCTGGACCTGAACGC-3’, reverse, 5’-

CGTAGAATTGGATTGGTATCCGG-3’; GAPDH, forward, 5’-

GGTGAAGGTCGGAGTCAACGGA-3’, reverse, 5’- 

GAGGGATCTCGCTCCTGGAAGA-3’. 

 

ELISAs. IL-12p40 and IL-10 concentrations were determined by sandwich ELISA 

according to manufacturer’s instructions (BD Biosciences, San Jose, CA). 

 

APC-CD4+ T cell Co-culture. Splenic APCs from WT or p110δKD mice were isolated 

by negative selection using CD90.2 microbeads (Miltenyi Biotec, Auburn, CA). Splenic 

APCs were incubated overnight with CBL (50 ng/ml), and, after washing several times to 

remove extracellular antigen, APCs were co-cultured with negatively-selected CD4+ T 
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cells (CD8α/B220/MHC II microbeads, Miltenyi Biotec, Auburn, CA) from WT or Il10-/- 

mice at a 3:2 ratio (APCs:T cells) for 72 hours. For antigen specific studies, APCs were 

incubated overnight with LPS (10 ng/ml) and OVA peptide (323-339, 5 µM) (Cong et al., 

2002). After washing to remove extracellular antigen, APCs were co-cultured with 

negatively-selected CD4+CD62L+ T cells (CD8α/B220/MHC II microbeads, Miltenyi 

Biotec, Auburn, CA) from mice expressing a transgenic TCR that recognizes OVA 

epitope residues 323-339 (OT-II mice) at a 3:2 ratio (APCs:T cells) for 72 hours. CD4+ T 

cells were analyzed for intracellular cytokine expression (IFN-γ and IL-17A) by flow 

cytometry. 

 

Flow Cytometry. CD4+ T cells were stimulated for 4 hours with PMA (100 ng/ml) and 

ionomycin (1 µg/ml) in the presence of GolgiStop™ (BD Biosciences, San Jose, CA). 

Cells were then washed and stained with APC-conjugated anti-CD3 (Clone 17A2, 

eBioscience, San Diego, CA). After fixing and permeabilizing the cells with BD 

Cytofix/Cytoperm™ (BD Biosciences, San Jose, CA), staining for intracellular PE-

conjugated anti-IFN-γ (Clone XMG1.2, eBioscience, San Diego, CA) and FITC-

conjugated anti-IL-17A (Clone eBio17B7, eBioscience, San Diego, CA) was performed. 

Flow cytometry samples were run on a CyAn™ ADP Analyzer (Beckman Coulter, Brea, 

CA) and analyzed using Summit v4.3 (Beckman Coulter, Brea, CA). 

 

CD4+CD45RBhigh/low T cell adoptive transfer colitis. T cell mediated colitis was 

induced in Rag1-/- and Rag1-/-/p110δKD (RKO/δKD) mice at 8 weeks of age as described 

previously (Read and Powrie, 2001). CD4+ T cells were isolated by negative selection 
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(CD8α/B220/MHC II microbeads, Miltenyi Biotec, Auburn, CA) and stained with FITC-

conjugated anti-CD4 (Clone GK1.5, eBioscience, San Diego, CA) and PE-conjugated 

anti-CD45RB (Clone 16A, BD Pharmingen, San Jose, CA). CD4+ T cells were sorted into 

CD45RBhigh and CD45RBlow populations using a MoFlo™ XDP Cell Sorter (Beckman 

Coulter, Brea, CA). Mice were i.p. injected with 4 x 105 CD4+CD45RBhigh cells admixed 

with 2 x 105 CD4+CD45RBlow cells as described (Read and Powrie, 2001). Clinical 

scores were assigned as described (Maillard et al., 2007). 

 

Human intestinal samples. Intestinal samples were obtained from surgical resections 

from CD patients and subjects requiring surgical intervention for non-inflammatory 

conditions (e.g., colon cancer). In CD patients, when available, paired inflamed and non-

inflamed intestinal segments, as determined by gross appearance by the processing 

pathologist, were obtained for analysis. The University of North Carolina Institutional 

Review Board approved collection of de-identified samples, and written informed 

consent was obtained from all patients. 

 

Statistical analysis. Statistical significance for data subsets was assessed by the two-

tailed Student’s t test, where p values < 0.05 were considered to be significant. All data 

are expressed as mean ± standard error (SEM). 
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3.6 Figures 

 
Figure 3.1. The enteric microbiota is required for the development of colitis in 
p110δKD mice. Germ-free (GF) p110δKD (n = 10) and age-matched WT (n = 12) mice 
were monitored for colitis up to 30 weeks of age. Additionally, GF WT and p110δKD 
mice were transferred to CNV housing and monitored for colitis at days 7 (n = 5 and 7, 
respectively) and 14 (n = 6 and 12, respectively) after transfer. (A) H&E slides of colonic 
tissue were scored for colitis severity using criteria described in the methods by a 
pathologist (LBB) blinded to the experimental groups. Error bars represent mean ± SEM 
(NS, not significant; **, p<0.005). (B, C) Colonic tissue explants were incubated in 
media for 24 hours. Supernatants were collected and assayed for IL-10 (B) and IL-12p40 
(C) production by ELISA, and are expressed as the amount of cytokine (pg/ml) per 50 mg 
colonic tissue weight. Error bars represent mean ± SEM (NS, not significant; *, p<0.05; 
**, p<0.005). (D) IL-12p40 and IL-10 protein levels from colonic tissue explant cultures 
in individual mice were used to determine the ratio of IL-12p40 to IL-10 production. 
Error bars represent mean ± SEM (NS, not significant; *, p<0.05). 
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Figure 3.2. Defective p110δ activity alters macrophage production of IL-10 and IL-
12p40 in response to bacterial products. BMDMs were stimulated with LPS (5 ng/ml), 
sBLP (5 ng/ml) or Zymosan A (5 µg/ml) for 8 hours. Supernatants were collected and 
assayed for IL-10 (A) and IL-12p40 (B) production by ELISA. Error bars represent mean 
± SEM from three independent experiments (NS, not significant; *, p<0.05). (C) The 
ratio of IL-12p40 to IL-10 from individual experiments was calculated. Error bars 
represent mean ± SEM from three independent experiments (*, p<0.05; **, p<0.005). 
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Figure 3.3. A p110δ-specific inhibitor decreases IL-10 and augments IL-12p40 
production in WT macrophages stimulated with bacterial products. (A-C) WT, 
p110δKD and Il10-/- BMDMs were cultured with a p110δ-specific inhibitor (IC87114, 0.1, 
1 or 10 µM) for 1 hour prior to stimulation with LPS (1 ng/ml). Supernatants from WT 
and p110δKD BMDMs were collected after 8 hours of culture and assayed for IL-10 (A) 
and IL-12p40 (B) production by ELISA. Error bars represent mean ± SEM from three 
independent experiments (NS, not significant; *, p<0.05; **, p<0.005; ***, p<0.0005). 
(C) Supernatants from WT and Il10-/- BMDMs were collected after 8 hours of culture and 
assayed for IL-12p40. Error bars represent mean ± SEM from three independent 
experiments (*, p<0.05; **, p<0.005; ***, p<0.0005). (D, E) WT and p110δKD CD11b+ 
LPMCs were incubated with a p110δ-specific inhibitor (IC87114, 10 µM) 1 hour prior to 
stimulation with HKEC (MOI=100) for 3 hours. Quantitative real time RT-PCR was 
performed in duplicate for Il10 (D) and Il12b (E) expression levels normalized to β-actin 
expression and calculated as fold induction over unstimulated cells. Error bars represent 
mean ± SEM for three independent experiments (*, p<0.05). 
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Figure 3.4. IL-10 and IL-12p40 production in macrophages is mTOR- and GSK-3β-
dependent. WT and p110δKD BMDMs were cultured with the mTOR inhibitor 
rapamycin (A-D) or the GSK-3β inhibitor SB-216763 (E-H) for 1 hour prior to 
stimulation with LPS (1 ng/ml) for 4 (quantitative RT-PCR) or 8 (ELISA) hours. 
Supernatants were assayed for IL-10 (A, E) and IL-12p40 (B, F) production by ELISA. 
Error bars represent mean ± SEM from three independent experiments (*, p<0.05; **, 
p<0.005). Total RNA was assayed for Il10 (C, G) and Il12b (D, H) expression 
normalized to β-actin expression by quantitative RT-PCR. Error bars represent mean ± 
SEM from three independent experiments (*, p<0.05). 
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Figure 3.5. APC p110δ regulates T cell differentiation. (A-D) GF WT and p110δKD 
mice were transferred to CNV housing. Colonic tissue was collected from WT and 
p110δKD mice sacrificed at days 0 (n = 12 and 10, respectively), 7 (n = 5 and 7, 
respectively) and 14 (n = 6 and 12, respectively) after transfer. Quantitative real time RT-
PCR was performed in duplicate for Tbx21 (A), Rorc (B), Ifng (C), and Il17a (D) 
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expression normalized to β-actin expression. Error bars represent mean ± SEM (*, 
p<0.05). (E, F) WT and p110δKD APCs were cultured overnight with CBL (50 ng/ml) and 
then co-cultured with WT or Il10-/- CD4+ T cells at a ratio of 3:2 for 72 hours. 
Supernatants were assayed for IL-10 (E) and IL-12p40 (F) production by ELISA. Error 
bars represent mean ± SEM for three independent experiments (*, p<0.05). (G-J) WT and 
p110δKD APCs were stimulated with LPS (10 ng/ml) and OVA peptide (5 µM) overnight 
and then co-cultured with WT CD4+CD62L+ OT-II T cells at a ratio of 3:2 for 72 hours. 
T cells were assayed for IL-17A and IFN-γ production by flow cytometry. CD4+ 
lymphocytes were gated using forward and side scatter. Representative flow cytometry 
plots show IFN-γ- and IL-17A-producing WT CD4+ OT-II T cells co-cultured with LPS 
and OVA stimulated WT (G) and p110δKD (H) APCs. Plots are representative of results 
from three independent experiments with similar results. Quantification of the percentage 
of total CD4+ T cells producing IFN-γ (I) and IL-17A (J) was determined from the flow 
cytometry analysis. Error bars represent mean ± SEM from three independent 
experiments (*, p<0.05). 
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Figure 3.6. Mild innate mediated colitis develops in Rag1-/-/p110δKD mice. 16-week-
old Rag1-/- (n = 8) and Rag1-/-/p110δKD (RKO/δKD, n = 14) mice were assessed for colitis 
severity by histopathology and cytokine production in colonic explant cultures. (A) (20X, 
H&E) Representative histology pictures are shown. (B) H&E slides of colonic tissue 
were scored for colitis severity using criteria described in the methods by a pathologist 
(LBB) blinded to the experimental groups. Error bars represent mean ± SEM (**, 
p<0.005). IL-10 (C) and IL-12p40 (D) production was determined by ELISA and 
expressed as the amount of cytokine (pg/ml) per 50 mg colonic tissue weight. Error bars 
represent mean ± SEM (**, p<0.005; ***, p<0.0005). 
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Figure 3.7. Adoptive transfer of CD4+CD45RB T cells into Rag1-/-/ p110δKD recipient 
mice leads to severe colitis. 8 week old Rag1-/- (n = 13) and RKO/δKD (n = 14) recipient 
mice were given 4x105 CD4+CD45RBhigh T cells admixed with 2x105 CD4+CD45RBlow T 
cells by i.p. injection to induce colitis as described in the methods. Mice were assessed 
for colitis severity at 24 days after adoptive transfer. (A) Clinical disease activity scores 
were determined as described in the methods. Error bars represent mean ± SEM (*, 
p<0.05). (B) (20X, H&E) Representative histology pictures are shown. (C) H&E slides of 
colonic tissue were scored for colitis severity by a pathologist (LBB) blinded to the 
experimental groups as described in the methods. Error bars represent mean ± SEM (**, 
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p<0.005). (D-F) Supernatants from 24 hour colonic tissue explants were collected and 
assayed for IL-10 (D) and IL-12p40 (E) production by ELISA, and are expressed as the 
amount of cytokine (pg/ml) per 50 mg colonic tissue weight. Error bars represent mean ± 
SEM (*, p<0.05). (F) IL-12p40 and IL-10 protein levels from colonic tissue explant 
culture in individual mice were used to determine the ratio of IL-12p40 to IL-10. Error 
bars represent mean ± SEM (**, p<0.005). (G,H) Mesenteric lymph nodes (MLNs) from 
Rag1-/- and RKO/δKD recipient mice were analyzed by flow cytometry for intracellular 
IFN-γ (G) and IL-17A (H) expression in CD4+ T cells. Each point on the graphs 
represents MLN cells from one mouse. Error bars represent mean ± SEM (NS, not 
significant; *, p<0.05). (I,J) LPMCs were analyzed by flow cytometry for IFN-γ (I) and 
IL-17A (J) expression in CD3+CD4+ T cells. Each point on the graphs represents pooled 
LPMCs from three mice. Error bars represent mean ± SEM (*, p<0.05). 
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Figure 3.8. Human intestinal PIK3CD expression is decreased in patients with CD 
and inversely correlates with IL12B:IL10 ratios. Macroscopically inflamed and non-
inflamed colonic or ileal tissue was obtained from patients with CD (n = 14), UC (n = 6) 
or non-IBD control patients (non-inflamed tissue; n = 20) undergoing surgical resection. 
(A,B) Total RNA from samples was assessed for PIK3CD expression by quantitative real 
time RT-PCR in duplicate normalized to GAPDH expression. Error bars represent mean 
± SEM (*, p<0.05). (C) Intestinal PIK3CD expression normalized to GAPDH expression 
from patients with CD was assessed at inflamed sites (n = 14) and compared to non-
inflamed sites (n = 14) from the same patient. Lines connect samples from individual 
patients. Data was analyzed using a paired t test. (**, p<0.005). (D) Total RNA from 
samples was assessed for IL12B and IL10 expression by quantitative real time RT-PCR in 
duplicate normalized to GAPDH expression. IL12B:IL10 ratios in patients were 
correlated with PIK3CD expression (r2=0.2363; p=0.014). 
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3.7 Supplemental Figures 

 
Supplemental Figure 3.1. GF to CNV p110δKD develop histologic colitis. GF WT (n = 
6) and p110δKD (n = 12) mice were transitioned to conventional housing and monitored 
for colitis by weight and histology. (A) Representative H&E stained colonic tissue from 
GF and GF to CNV WT and p110δKD mice at 14 days after transfer. (B) Percentage of 
initial weight of GF to CNV WT and p110δKD mice after transfer. Error bars represent 
mean ± SEM (NS, not significant). 
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Supplemental Figure 3.2. Splenic macrophages and dendritic cells demonstrate 
increased Il-12p40 and impaired IL-10 production in response to TLR agonists. 
Splenic macrophages (CD11b+CD11c-) and DCs (CD11b-CD11c+) were stimulated with 
TLR agonists (LPS, 1 ng/ml; Zymosan A, 10 µg/ml) for 8 hours. Supernatants were 
collected and assessed for IL-10 (A and B, macrophages and DCs, respectively) and IL-
12p40 (C and D, macrophages and DCs, respectively) production by ELISA. Error bars 
represent mean ± SEM from three independent experiments (NS, not significant; *, 
p<0.05). 
  



 104 

 
Supplemental Figure 3.3. Inhibition of the Class IA PI3K isoforms p110α and p110β 
in WT macrophages has no effect on IL-10 and IL-12p40 production. WT and 
p110δKD BMDMs were stimulated with LPS (1 ng/ml) 1 hour after exposure to p110α- 
and p110β-specific inhibitors (PIK-90 and TGX-221, respectively) for 8 hours. 
Supernatants were collected and assessed for IL-10 (A,B) and IL-12p40 (C,D) by ELISA. 
Error bars represent mean ± SEM for three independent experiments (NS, not significant; 
*, p<0.05). 
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Supplemental Figure 3.4. LPS stimulated splenic macrophages and DCs modulate 
IL-10 and IL-12p40 expression in the presence of mTOR and GSK-3β inhibitors. 
(A-D) One hour after exposure to rapamycin (1 or 10 µM), splenic macrophages (CD11c-

/CD11b+) and DCs (CD11c+) were stimulated with LPS (10 ng/ml) for 24 hours. 
Supernatants were assessed for IL-10 (A and B, macrophage and DCs, respectively) and 



 106 

IL-12p40 (C and D, macrophage and DCs, respectively) production by ELISA. Error bars 
represent mean ± SEM from three independent experiments. (E-H) One hour after 
exposure to SB216763 (1 or 10 µM), splenic macrophages (CD11c-/CD11b+) and DCs 
(CD11c+) were stimulated with LPS (10 ng/ml) for 24 hours. Supernatants were collected 
and assessed for IL-10 (E and F, macrophage and DCs, respectively) and IL-12p40 (G 
and H, macrophage and DCs, respectively) production by ELISA. Error bars represent 
mean ± SEM from three independent experiments. 
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Supplemental Figure 3.5. WT and p110δKD APCs induce the same amount of 
antigen-specific CD4+ T cell proliferation. T cell-depleted splenocytes (APCs) from 
WT and p110δKD mice were activated with LPS (100 ng/ml) and pulsed overnight with 
OVA peptide (5 μM). After washing extracellular antigen, APCs were co-cultured with 
CFSE-labeled OT-II (OVA-tg TCR) CD4+CD62L+ T cells for 72 hours. CD4+ T cells 
were analyzed by flow cytometry. (A) Lymphocytes were gated on forward- and side-
scatter and CD4. Figures shown are representative results from 3 independent 
experiments. (B) Percentage of proliferating CD4+ T cells was quantified from 3 
independent experiments (NS, not significant). (C) Mean fluorescence intensity (MFI) of 
the CFSE signal was quantified from 3 independent experiments (NS, not significant). 
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Supplemental Figure 3.6. Adoptively transferred T cells localize to the colon of 
recipient mice. (20X, IHC) 8 week old Rag1-/- and RKO/δKD recipient mice were given 
4x105 CD4+CD45RBhigh T cells admixed with 2x105 CD4+CD45RBlow T cells by i.p. 
injection to induce colitis as described in the methods. Mice were assessed for colitis 
severity at 24 days after adoptive transfer. Paraffin-embedded sections of colon tissue 
were stained by immunohistochemistry for CD3. 
 



 

 
 

CHAPTER 4 

PI3K p110δ REGULATES BACTERICIDAL ACTIVITY OF MACROPHAGES3 

4.1 Overview 

GWAS studies identified IBD-associated SNPs supporting the hypothesis that 

altered phagosome function and subsequent impaired innate response to the enteric 

microbiota underlies the pathogenesis of IBDs. Therefore, as a model with relevance to 

the pathogenesis of IBD, we explored defects in phagosome formation and ROS 

production in macrophages from p110δKD mice. Additionally, we identified dysbiosis in 

the enteric microbiota of p110δKD mice. Functionally altered phagosomes kill microbes 

less effectively, resulting in prolonged immune activation and/or incomplete microbial 

clearance, contributing to the pathogenesis of IBDs. 

 

4.2 Introduction 

The human IBDs, CD and UC, result from an inappropriately directed immune 

response to enteric microbiota in a genetically susceptible host (Xavier and Podolsky, 

2007). IBDs have a prevalence of 51-445 per 100,000 people in the United States and 

account for 100,000 hospitalizations per year (Loftus, 2004). However, the etiology of 

                                                
3 Erin C. Steinbach, Steven M. Russo, Taku Kobayashi, Shehzad Z. Sheikh, Nitsan 
Maharshak, Christopher D. Packey, R. Balfour Sartor, Scott E. Plevy. 2013. PI3K p110δ 
regulates bactericidal activity of macrophages. (Unpublished work). 
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IBDs remains elusive, and hospitalization rates have not decreased in recent years despite 

advancements in therapy (Loftus, 2004). Incomplete understanding of the pathways 

involved in IBD pathogenesis impedes the development of safer and more effective 

therapies. 

The importance of the enteric microbiota in IBD pathogenesis is supported by 

studies in experimental models. Colitis is not observed when colitis-prone mouse strains 

are maintained germ free but emerges when they are reconstituted with normal enteric 

bacterial constituents (Sellon et al., 1998). Furthermore, it has been possible to induce 

colitis in a susceptible murine strain with a single species of non-pathogenic bacteria, for 

example, Bacteroides vulgatus in the Il10-/- mouse (Sellon et al., 1998). Macrophages are 

essential for the recognition, phagocytosis and clearance of commensal bacteria in the 

intestine that breach the epithelial barrier (Rioux et al., 2007). Recently, alterations in 

autophagy and phagosomal function have emerged as a central focus in the macrophage’s 

ability to eradicate intracellular bacteria (Rioux et al., 2007). Indeed, the importance of 

microbicidal pathways in the pathogenesis of IBDs was highlighted by the discovery that 

a synonymous SNP in the auto-phagocytic gene ATG16L1 and a SNP in the phagosomal 

gene NCF4 are associated with enhanced risk for IBD (Rioux et al., 2007; Xavier and 

Podolsky, 2007). Therefore, a new paradigm in IBD pathogenesis research is a model of 

defective intracellular responses to commensal enteric bacteria.  

 Macrophages can kill or limit the replication of microorganisms through many 

possible mechanisms. Macrophages can limit the availability of essential nutrients, as 

well as produce antimicrobial peptides, lysosomal enzymes, and ROS/RNS (Ismail et al., 

2002). Oxygen-dependent metabolites are perhaps the most efficient anti-microbial 
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effectors produced by macrophages. NADPH oxidases and associated accessory proteins 

are therefore essential components of cellular responses to microbial invasion. 

Hemoprotein complexes of the NADPH phagocyte membrane-bound gp91phox and 

p22phox subunits, along with the cytosolic p40phox, p47phox, p57phox and Rac 

proteins, can consume molecular oxygen (Rada et al., 2008; Robinson, 2008). The 

cytosolic components stabilize and activate phagocyte NADPH oxidase (Nox2). PI3K 

p110δ signaling can recruit p40phox and p47phox to the membrane signaling complex, 

implicating p110δ activation in ROS production (Kanai et al., 2001). Interestingly, 

pharmacologic inhibition of p110δ in neutrophils and other cell types decreases 

production of ROS and the respiratory burst (Yamamori et al., 2004). 

Compartmentalization of membrane-bound and cytosolic components of Nox2 ensures 

that the production of cytotoxic oxygen radicals is prevented in resting cells, thus 

avoiding “collateral damage”. The discovery that chronic granulomatous disease is a 

consequence of genetic alteration in any one of the five essential subunits of Nox2 

indicates the vital function of the enzyme (Segal et al., 2009). These patients are 

susceptible to bacterial infections but also develop chronic inflammatory bowel disease 

(IBD) with features similar to human CD (Segal et al., 2009). Furthermore, a SNP within 

the first intron of NCF4 (p40phox) is associated with enhanced susceptibility to IBDs 

(Rioux et al., 2007).  

 Another important bactericidal pathway in macrophages following the 

phagocytosis of a microbe is phagosome maturation to the actively bactericidal vesicle, 

the phagolysosome. The nascent phagosome goes through three stages of maturation: 

early, late, and lysosome-interacting (Fairn and Grinstein, 2012). Rab-family GTPases 
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mediate the maturation process. Early phagosomes are marked by Rab5 decoration, 

which allows fusion with early endosomes via interactions with early endosome antigen 1 

(EEA1) (Christoforidis et al., 1999; Kinchen et al., 2008). Recruitment of maturation 

factors such as EEA1 is mediated by the generation of membrane-bound PIP molecules 

by the Class III PI3K vacuolar protein sorting 34 (Vps34) (Kinchen et al., 2008; Scott et 

al., 2002). GTPase activity on late phagosomes transitions from Rab5 to Rab7, which 

mediates intracellular trafficking and fusion with lysosomes (Harrison et al., 2003; 

Johansson et al., 2007). The resulting phagolysosome drives a critical drop in 

intravesicular pH by pumping H+ into the lumen via V-ATPase (Flannagan et al., 2009). 

The low pH of phagolysosomes directly impairs microbe function, activates host 

hydrolytic enzymes and assists in the generation of superoxide by NADPH oxidase. 

Furthermore, the H+ gradient is used to pump essential microbial nutrients out of the 

phagolysosome. 

The leukocyte-expressed PI3K p110δ protein regulates innate immune responses 

to bacteria (Fukao and Koyasu, 2003; Koyasu, 2003). In response to extracellular stimuli, 

phosphoinositides are phosphorylated on the 3-position of the inositol ring by PI3Ks. The 

products of PI3Ks govern fundamental cellular events such as cell growth and survival, 

and cytoskeletal remodeling. The PI3Ks are divided in four classes (IA, IB, II and III) on 

the basis of structural characteristics and substrate specificity. Class IA enzymes have five 

different regulatory subunits, and three p110 catalytic subunits: p110α and p110β are 

expressed ubiquitously in many tissues whereas p110δ is expressed preferentially in 

leukocytes (Koyasu, 2003; Papakonstanti et al., 2008). Agents that activate macrophages 

and DCs to produce the inflammatory cytokine IL-12 also activate Class IA PI3K (Fukao 
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et al., 2002). Activation of PI3K in turn blocks the expression of IL-12p40 mRNA (Il12b) 

(Fukao et al., 2002). Although inflammatory responses are essential for eradicating 

infectious microorganisms, excessive/prolonged activation of innate immunity is harmful 

to the host. Thus, PI3K-mediated negative feedback of IL-12 production is important to 

prevent excessive innate immune response. Therefore, the PI3K signal transduction 

pathway serves as an important molecular “brake” on inflammatory immune responses. 

 The clearest role of PI3K in chronic inflammation was described in a mouse with 

a knock-in kinase-dead point mutation in the p110δ subunit (p110δKD) (Okkenhaug et al., 

2002). The strategy of mutation rather than deletion was necessary as mice deficient in 

PI3K subunits had compensatory changes in expression and availability of regulatory 

subunits (Okkenhaug et al., 2002). In p110δKD mice, antigen receptor signaling in T and 

B cells is defective (Okkenhaug et al., 2002). Notably, these mice developed chronic 

segmental intestinal inflammation (Okkenhaug et al., 2002). The lesions were 

characterized by mucosal hyperplasia, crypt abscesses and mixed leukocyte infiltrates 

(Uno et al., 2010). We have demonstrated that these mice develop focal Th1/Th17-

mediated colitis (Uno et al., 2010). Therefore, PI3K p110δKD mice are an invaluable 

reagent to understand the role of PI3K in the mucosal inflammatory response. PI3K 

p110δ is expressed predominantly in leukocytes (Koyasu, 2003), indicating that it plays a 

unique role in immune signaling. 

 Importantly, we recovered increased bacterial ribosomal DNA from the spleen 

and mesenteric lymph nodes (MLNs) of p110δKD mice (Uno et al., 2010), suggesting that 

in the absence of p110δ there is (1) an increase in bacterial translocation across the 

intestinal epithelial barrier, (2) an increase in bacterial persistence, or (3) a combination 
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of both increased translocation and persistence. Indeed, p110δKD macrophages 

demonstrate defective eradication of intracellular commensal, pathogenic and colitogenic 

bacteria, even when activated with IFN-γ or LPS (Uno et al., 2010). However, the 

specific way that p110δ contributes to enhancing bactericidal activity in macrophages is 

unknown. 

SNPs identified by GWAS in humans support the hypothesis that altered 

phagosome function leading to a defective innate response to the enteric microbiota may 

underlie the pathogenesis of IBDs. Therefore, as a model with relevance to the 

pathogenesis of IBDs, we explored defects in phagosome formation and ROS production 

in macrophages from p110δKD mice. Additionally, we identified dysbiosis in the enteric 

microbiota of p110δKD mice. Functionally altered phagosomes kill microbes less 

effectively, resulting in prolonged immune activation and/or incomplete microbial 

clearance, contributing to the pathogenesis of IBDs. 

 

4.3 Results 

4.3.1 IFN-γ and E. coli-stimulated p110δKD macrophages demonstrate decreased 
lysosomal activation 

Given that macrophages from p110δKD mice do not effectively eradicate 

intracellular bacteria (Uno et al., 2010), we sought to determine whether p110δKD 

macrophages demonstrated appropriately matured phagolysosomes. Previous results from 

our lab demonstrated greatly impaired induction of bactericidal activity in IFN-γ-

activated p110δKD macrophages (Uno et al., 2010), and so we continued to activate 

macrophages with IFN-γ in our studies in order to maximize differences between those 
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from WT and p110δKD mice. WT and p110δKD BMDMs were stimulated with IFN-γ and 

cultured with GFP-expressing K12 E. coli for one hour. Cells were incubated with 

medium containing LysoTracker®, a weak base that permeates cell membranes and 

fluoresces upon protonation in low-pH environments. LysoTracker® detects 

phagolysosomal acidification by a fluorescence emission signal at 590 nm. Cells were 

washed, fixed, and visualized by fluorescent microscopy. Representative photographs 

were blinded, and the percentage of LysoTracker®-positive cells was calculated. PI3K 

p110δKD macrophages had significantly decreased percentages of LysoTracker®-positive 

cells (Fig. 4.1), suggesting that bacteria-laden phagosomes in p110δKD macrophages do 

not appropriately mature. 

 

4.3.2 PI3K p110δ regulates reactive oxygen species generation in macrophages 

 PI(3)P molecule generation at cell and vesicular membranes regulates 

intracellular trafficking (Vanhaesebroeck et al., 2001). Generation of PI(3)P by PI3Ks is 

especially important in the maturation of nascent phagosomes and recruitment of Nox2 

components to the phagosome membrane (Kinchen et al., 2008; Scott et al., 2002). While 

the Class III PI3K is the major generator of PI(3)P, Class IA PI3Ks also make contribute 

to PI(3)P formation. Therefore we explored the production of ROS in IFN-γ-activated 

p110δKD macrophages during eradication of intracellular bacteria. IFN-γ-activated 

macrophages from p110δKD mice consistently demonstrated a lower peak of 

luminescence, representing the amount of ROS produced, when incubated with K12 E. 

coli or S. typhimurium compared to macrophages from WT mice (Fig. 4.2). Interestingly, 

there was no difference in the production of ROS between WT and p110δKD 
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macrophages when incubated with E. faecalis, a gram-positive enteric commensal 

organism. 

 To confirm these results, we measured ROS production in IFN-γ-activated WT 

macrophages pre-treated with the p110δ-specific inhibitor IC87114 (10 µM) and 

incubated with K12 E. coli, E. faecalis or S. typhimurium. In agreement with the data 

from p110δKD macrophages, inhibition of p110δ in WT macrophages decreased the 

production of ROS when incubated with K12 E. coli and S. typhimurium, but not E. 

faecalis (Fig. 4.3). 

 

4.3.3 Phagosome maturation is regulated by p110δ 

 Given that p110δ appears to regulate lysosomes and the generation of ROS, we 

next sought to determine whether p110δ regulates phagosome maturation in macrophages 

during intracellular bacterial eradication. IFN-γ-activated WT and p110δKD macrophages 

were pulsed with FITC-labeled dextran followed by a short chase to allow the FITC-

dextran to traffic to lysosomes. Macrophages were then incubated with mCherry-labeled 

K12 E. coli for 60 minutes, and confocal microscopy was performed to determine 

whether bacteria-laden phagosomes are able to fuse with lysosomes. While the 

observations were never quantified, we saw decreased co-localization of FITC-dextran 

with K12 E. coli in p110δKD macrophages compared to WT macrophages (Fig. 4.4). 

 EEA1 is a marker of nascent phagosomes, and its recruitment to the phagosome is 

dependent on the generation of PI(3)P at the vesicular membrane (Kinchen et al., 2008; 

Scott et al., 2002). Therefore we studied EEA1 recruitment to bacteria-laden phagosomes 

in IFN-γ-activated WT and p110δKD macrophages. We observed more co-localization 
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between GFP-expressing K12 E. coli and EEA1 in WT macrophages compared to 

p110δKD macrophages after 10 minutes of infection (Fig. 4.5). While this was not 

quantified, it represents a consistent observation. Furthermore, at 60 minutes after 

infection when EEA1 is no longer associated with the maturing phagosome, we observed 

more EEA1 and GFP K12 E. coli co-localization in p110δKD compared to WT 

macrophages (Fig. 4.6), suggesting that the kinetics of EEA1 association with the 

maturing phagosome is dysregulated in p110δKD macrophages. 

 

4.3.4 Outcome of in vivo infection with Streptomycin-resistant Salmonella is no different 
between WT and p110δKD mice 

 To better understand how p110δ regulates bactericidal activity in vivo, we utilized 

the Streptomycin-Salmonella infection model (Barthel et al., 2003) in WT and p110δKD 

mice. Mice were given streptomycin (20 mg) 21 hours prior to oral gavage with 1x108 

CFUs of streptomycin-resistant Salmonella typhimurium. Weight loss and clinical signs 

of infection were followed until sacrifice at various times post-infection. Initially, 

p110δKD mice infected with streptomycin-resistant S. typhimurium lost more weight than 

matched WT mice (Fig. 4.7A). However, 48 hours post-infection and thereafter, weight 

loss in both S. typhimurium-infected WT and p110δKD mice precipitously dropped, and 

there was no significant difference between the two genotypes. At 48 hours post-

infection, all mice exhibited clinical signs of dehydration, and, surprisingly, WT mice 

demonstrated decreased colon lengths compared to streptomycin-pretreated only controls 

and infected p110δKD mice (Fig. 4.7B). Colons from infected p110δKD mice were also 

significantly shorter than those from control mice. However, at 96 hours but not 72 hours 

post-infection, colons from p110δKD mice trended toward decreased length compared to 
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colons from WT mice (Fig. 4.7C,D). There was no significant difference in colonic 

production of IL-12p40 between infected WT and p110δKD mice at any time point (Fig. 

4.7E). 

 We next studied the colony forming units (CFUs) recovered from various tissues 

in each infected WT and p110δKD mouse. We recovered significantly more S. 

typhimurium from feces collected from the ceca of WT mice compared to p110δKD mice 

at 72 hours post-infection, but not at the other time points (Fig. 4.8A). There was no 

difference in the amount of S. tyhpimurium recovered from colonic (distal) feces from 

WT or p110δKD mice at any time point (Fig. 4.8B). Interestingly, at tissues proximal to 

the gastrointestinal tract (cecal lamina propria, MLN), we recovered significantly more S. 

typhimurium from WT compared to p110δKD mice at 48 and 72 hours post-infection (Fig. 

4.8C,D). At tissues distal to the gastrointestinal tract (spleen, liver), there was no 

difference in the numbers of S. typhimurium recovered from WT and p110δKD mice at 

any time point (Fig. 4.8E,F). 

 

4.4.4 PI3K p110δKD mice demonstrate enteric microbiota dysbiosis 

 Although the functional relationship between altered microbiota and intestinal 

inflammation remains to be fully established, it is reasonable speculation that changes in 

the microbiome affect the host’s ability to maintain homeostasis (Frank et al., 2011; 

Sartor, 2010). We conducted a microbial community composition analysis using terminal 

restriction fragment length polymorphisms (T-RFLP) on fecal samples from eight WT 

C57BL/6 mice and eight p110δKD mice. On a principle-components plot, enteric bacterial 

communities from p110δKD mice clustered independently of WT mice (Fig. 4.9A).  Next, 
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fragment information for all enzymes was uploaded to Phylogenetic Assignment Tool 

and assigned to bacterial strains. We compared to the richness and evenness of both 

populations, demonstrating differences in diversity between the two populations (Fig. 

4.9B). 

 Based on this preliminary analysis, we took a “candidate” approach to 

demonstrate differences in prevalent bacterial species between p110δKD and WT mice. 

Presence of bacterial populations from all four major phyla was analyzed by quantitative 

real time RT-PCR. There were notable differences in the assessment of individual 

bacterial species. Overall, more total bacterial DNA was isolated from the feces of 

p110δKD mice compared to WT mice (Fig. 4.9C). Furthermore, we detected significantly 

higher percentages of Bacteroides fragilis, Bifidobacteria and segmented filmentous 

bacteria, and a trend toward increased percentages of Pseudomonas fluorescens and 

Clostridium coccoides, in fecal samples from p110δKD mice compared to WT mice. 

There were no differences in the percentages of other bacteria (Lactobacillus, 

Faecalibacterium prausnitzii, Enterococcus faecalis, and Escherichia coli) isolated from 

feces of p110δKD compared to WT mice. 

 

4.4 Discussion 

 We previously published that p110δKD macrophages demonstrate defective 

bactericidal activity against intracellular bacteria, and p110δKD mice harbor more 

systemic bacteria compared to WT mice (Uno et al., 2010). In the present studies we 

sought to mechanistically understand how p110δ regulates bactericidal activity. Studies 

of other Class IA PI3K isoforms demonstrate participation in the regulation of bacterial 
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clearance. For instance, p110β positively regulates autophagy, an alternative bactericidal 

pathway in macrophages (Dou et al., 2010). While quantitative studies still need to be 

undertaken, we describe important observations that provide insights into where p110δ 

acts in pathways of intracellular eradication of bacteria in vitro and in vivo. Importantly, 

we have previously shown that IFN-γ-induced activation of p110δKD does not enhance 

microbicidal functions of macrophages (Uno et al., 2010), suggesting that p110δ 

regulates macrophage responses to IFN-γ. Indeed, p110δ is activated downstream of 

cytokine receptors, including IFN-γ (Hardy et al., 2009). It has been previously reported 

that p110δ activity is necessary for the production of IFN-γ in T cells and NK cells 

(Jarmin et al., 2008; Kim et al., 2007; Soond et al., 2010; Tassi et al., 2007), however, 

macrophage responses to IFN-γ in p110δKD have not been studied. There is mounting 

evidence suggesting Class IA PI3Ks are necessary for proper macrophage activation and 

enhanced bactericidal activity, including autophagy, by IFN-γ (Hardy et al., 2009; Ling et 

al., 2006; Matsuzawa et al., 2012; Sakai et al., 2006), however p110δ specifically has not 

been shown to be involved. Isoform-specific studies carried out in the future will further 

delineate how p110δ signaling in macrophages induces IFN-γ-dependent activation. 

 We observed decreased Lysotracker®-positive p110δKD macrophages, compared 

to WT macrophages, during infection with K12 E. coli. Previously, PI3K p85α and 

ERK1/2 were shown to co-localize with vacuolar-type H+-ATPase (V-ATPase), the 

proton pump responsible for acidifying vesicles, on endosomes and mediate endosomal 

acidification during infection with Influenza A (Marjuki et al., 2011). In contrast, p110γ 

negatively regulates endosomal acidification induced by CpG stimulation in macrophages 

(Hazeki et al., 2011). In general, the flux of PIP2 and PIP3 determines the maturation and 
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fate of phagosomes (Bohdanowicz et al., 2012), and the relative contributions of the PI3K 

subunits in the maturation and acidification of macrophage phagosomes are unknown. 

Indeed, the relevance of p110δ specifically in the regulation of phagosome maturation 

and acidification has not been shown. Furthermore, the method of phagocytosis (i.e., 

TLR-mediated, immunoglobulin- or complement-opsonized) affects the dynamics of 

phagosome maturation, and PI3Ks are differentially involved in these processes. For 

instance, TLR engagement during phagocytosis regulates the kinetics of bacterial uptake 

and phagosome maturation (Blander and Medzhitov, 2004), and PI3Ks are activated 

downstream of TLRs (Fukao et al., 2002). Phagocytosis of particles engaging Fcγ 

receptors (FcγR), which recognize the common chain of Ig molecules, initiates a single 

wave of PIP3 production at the phagocytic cup. In contrast, engagement of complement 

receptors (CR) on the surface of macrophages produces two waves of PIP3: one at the 

phagocytic cup that is necessary for the closure and formation of the nascent phagosome, 

and another that is involved in the propulsion of the phagosome away from the plasma 

membrane by generation of an actin tail (Thi and Reiner, 2012). It has been proposed that 

PIP3 generated by Class I PI3Ks recruits Ca2+-sensing proteins such as synaptotagmins 

(Syts) that prime SNARE proteins, which mediate cell membrane fusion, and Rab 

GTPases for the fusion of vesicles with the nascent phagosome (Thi and Reiner, 2012). 

Here we showed prolonged association of EEA1 at the phagosome in p110δKD 

macrophages, suggesting there is a loss in recruitment of the necessary vesicular 

membrane components to properly mature the phagosome. Thus, Class I PI3Ks have 

been implicated in phagosome maturation in several ways, and it will be important to 

understand which isoforms regulate this process. 
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 We did not show differences in bacterial translocation and/or survival between 

WT and p110δKD mice infected with streptomycin-resistant Salmonella enterica serovar 

Typhimurium. However, at 48 and 72 hours post-infection we recovered significantly 

more CFUs from WT murine cecal lamina propria and MLNs compared to p110δKD 

murine tissues, and at 72 hours post-infection we recovered significantly more CFUs 

from WT cecal feces compared to p110δKD cecal feces. It is unclear whether this baseline 

difference in S. typhimurium cecal fecal growth affected our results. Indeed, baseline 

dysbiosis in p110δKD mice could affect the intraluminal growth of S. typhimurium. It has 

been shown that in B cells with non-functional p110δ, BCR-induced proliferation and 

function is impaired (Okkenhaug et al., 2002), and it is known that alterations in IgA 

production in the intestines affect the composition of the microbiota (Mantis et al., 2011). 

It is thus a short leap to hypothesize that p110δKD mice have altered intestinal IgA 

production and subsequent dysbiosis that affects the growth of S. typhimurium. However, 

IgA production in the intestines of p110δKD mice has not been explored. 

Additionally, it is unknown whether translocation of S. typhimurium across the 

intestinal epithelium was different between WT and p110δKD mice. Indeed, it would be 

prudent to measure intestinal barrier permeability both at baseline and during infection in 

WT and p110δKD mice to understand whether p110δ regulates barrier function. The mere 

presence of inflammation in p110δKD mice, but not WT mice, suggests that barrier 

function is altered by p110δ, at least indirectly by the production of inflammatory 

mediators (Teshima et al., 2012). Furthermore, S. typhimurium-induced colitis in WT and 

p110δKD was maximally driven, as demonstrated by loss of 20% of starting body weight 

just 96 hours post-infection. Thus, while there was a trend for decreased colon length in 
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p110δKD compared to WT mice 96 hours post-infection, the experiment had to be 

terminated due to advanced clinical morbidity in both WT and p110δKD mice, precluding 

analysis of later time points where differences between the experimental groups may 

have emerged. Finally, Salmonella species are adept at escaping the macrophage 

phagosome to enhance their intracellular survival (Hashim et al., 2000). Thus, the 

differences between WT and p110δKD macrophage phagosome maturation observed in 

vitro with E. coli, which does not escape phagosomes, might not apply to infection with 

S. typhimurium. Indeed, it would be interesting to employ a peritoneal Listeria 

monocytogenes infection in p110δKD mice for several reasons: (1), intraperitoneal 

infection with L. monocytogenes would eliminate unclear results due to differences in 

barrier permeability between WT and p110δKD mice, and (2), eradication of L. 

monocytogenes requires IFN-γ-activated macrophages (Harty and Bevan, 1995; Huang et 

al., 1993) which has shown to be specifically defective in p110δKD macrophages (Uno et 

al., 2010). 

PI3K p110δKD mice demonstrate enteric microbiota dysbiosis. Indeed, global 

immunologic defects are present in p110δKD mice (Jou et al., 2002; Okkenhaug et al., 

2002; Okkenhaug et al., 2006; Patton et al., 2006) and likely shape the resident enteric 

microbial communities. However, we demonstrated increased percentages of Bacteroides 

fragilis and Bifidobacteria in the feces of p110δKD mice, an intriguing result given both 

B. fragilis and Bifidobacteria demonstrate homeostatic roles in other murine models of 

intestinal inflammation. B. fragilis protects mice from experimental colitis through a 

single microbial molecule, polysaccharide A (PSA). B. fragilis and purified PSA, but not 

PSA-deficient B. fragilis, suppress inflammation through homeostatic TLR2 signaling 
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and IL-10 production (Mazmanian et al., 2008; Round et al., 2011). Bifidobacterium 

breve, via TLR signaling on CD103+ LPDCs, induces type 1 regulatory T (Tr1) cell 

production of IL-10 and maintenance of intestinal homeostasis (Jeon et al., 2012). It is 

possible that these bacteria, while protective in other colitis models, drive colonic 

inflammation in p110δKD mice due to the loss of homeostatic TLR signaling normally 

regulated by p110δ. Additionally, we observed an increase in percentage of fecal 

segmented filamentous bacteria (SFB) from p110δKD mice compared to WT mice. 

Indeed, mice lacking proper IgA production (activation-induced cytidine deaminase 

(AID)-deficient mice) demonstrate increased percentages of fecal SFB (Suzuki et al., 

2004), and thus it follows that the defect in BCR signaling and Ig production in B cells 

lacking functional p110δ (Jou et al., 2002) leads to expansion of enteric SFB populations. 

Importantly, SFB has been shown to induce a wide range of protective immune 

responses, including the induction of Th17 cells and mucosal antimicrobial defenses, in 

the murine intestine (Ivanov et al., 2009; Klaasen et al., 1993). However, it is unknown 

whether SFB induces pathogenic Th17 immune responses, as seen in murine and human 

IBDs. 

 

4.5 Materials and Methods 

Mice. All mice were maintained on a C57BL/6 background in conventional housing. 

PI3K p110δD910A/D910A (p110δKD) mice were previously obtained from Dr. Bart 

Vanhaesebroeck (Queen Mary University of London, London, England). All animal 

experiments were in compliance with protocols approved by the International Animal 

Care and Use Committee of the University of North Carolina at Chapel Hill. 
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Reagents. We obtained K12 Escherichia coli (MG1655) and Salmonella enterica serovar 

Typhimurium (700720D-5) from ATCC (Manassas, VA), and streptomycin-resistant 

Salmonella enterica serovar Typhimurium (SL1344), GFP-expressing K12 E. coli 

(MG1655) and Enterococcus faecalis (OG1RF) from Dr. R. Balfour Sartor (UNC-Chapel 

Hill, NC). Lysotracker® Red DND-99 was purchased from Life Technologies™ (Grand 

Island, NY). Recombinant IFN-γ was purchased from R&D Systems (Minneapolis, MN). 

Luminol, horseradish peroxidase and FITC-dextran were purchased from Sigma-Aldrich 

Corp. (St. Louis, MO). Rabbit anti-EEA1 (ab2900) was purchased from Abcam 

(Cambridge, MA). K12 E. coli expressing mCherry red plasmid was graciously given to 

us by Miriam Braunstein (UNC, Chapel Hill, NC). IL-12p40 OptEIA™ ELISA kit was 

purchased from BD Biosciences (San Jose, CA). 

 

Isolation and Culture of Bone Marrow-Derived Macrophages. Bone marrow-derived 

macrophages (BMDMs) were isolated and cultured as previously described (Uno et al., 

2010). 

 

Detection of Phagosomal Acidification. WT and p110δKD BMDMs were cultured 

overnight in antibiotic-free RPMI-1640 with IFN-γ (20 ng/ml) to induce activation. At 

the same time, an overnight culture of K12 E. coli was sub-cultured and grown to 

logarithmic phase and added to the BMDMs (multiplicity of infection, MOI, = 10). 

BMDMs were cultured with E. coli for one hour. Lysotracker® Red DND-99 (25 nM) 

was added when there were 30 minutes of culture time left. BMDMs were then rinsed 
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with cold PBS and fixed in 4% paraformaldehyde for 30 minutes. Nuclei were stained 

with DAPI and BMDMs were analyzed by fluorescence microscopy. At least 10 fields 

were randomly chosen and used to quantify the percentage of Lysotracker®-positive cells 

present. 

 

Phagosomal Maturation Assays. WT and p110δKD BMDMs were cultured overnight in 

antibiotic-free RPMI-1640 with IFN-γ (20 ng/ml) to induce activation. At the same time, 

an overnight culture of K12 E. coli was sub-cultured and grown to logarithmic phase and 

added to the BMDMs (multiplicity of infection, MOI, = 10). BMDMs were cultured with 

FITC-dextran for several hours before infection with E. coli for various time points. 

BMDMs were then rinsed with cold PBS and fixed in 4% paraformaldehyde for 30 

minutes. For immunofluorescence, BMDMs were permeabilized with 0.1% Triton X-100 

for 5 minutes, washed and blocked with 10% normal rabbit serum for one hour. BMDMs 

were stained with anti-EEA1 (1/200) overnight at 4°C and with anti-Rabbit conjugated to 

Texas Red dye for one hour. Nuclei were stained with DAPI and BMDMs were analyzed 

by fluorescence confocal microscopy on a Zeiss CLSM 710 Spectral Confocal Laser 

Scanning Microscope (Thornwood, NY). 

 

Detection of ROS. Detection of ROS by chemiluminescence was performed using 

luminol as previously described (Li et al., 1999). WT and p110δKD BMDMs were 

activated overnight with IFN-γ (20 ng/ml) and cultured with luminol with or without the 

p110δ-specific inhibitor IC87114 (10 µM) one hour prior to infection with K12 E. coli, E. 

faecalis or S. typhimurium (MOI = 100). Immediately after addition of bacteria to 
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BMDMs, chemiluminescence was measured using a Molecular Devices Lmax 

Luminometer Microplate Reader (Sunnyvale, CA). 

 

In vivo Streptomycin-resistant Salmonella typhimurium Infection. Infection with 

streptomycin-resistant Salmonella typhimurium was performed as previously described 

(Barthel et al., 2003). Six-eight-week-old WT and p110δKD mice were given 

streptomycin (20 mg) by oral gavage 24 hours prior to infection and gavaged with 1x108 

CFUs of streptomycin-resistant S. typhimurium. Total body weight was monitored over 

the course of the experiment. At 48-, 72- and 96-hours post-infection, mice were 

sacrificed and tissue collected for analysis of disease and for recovery of bacteria. For 

determination of CFUs S. typhimurium recovered, tissue was weighed and homogenized 

in PBS. Dilutions were plated on LB agar plates and incubated overnight at 37°C, after 

which colonies were enumerated and normalized to weight (g) of tissue isolated. Colonic 

tissue explant cultures were performed as described previously (Hegazi et al., 2005), and 

levels of IL-12p40 were determined by sandwich ELISA according to manufacturer’s 

instructions. 

 

Microbiota studies. We conducted a microbial community composition analysis using 

terminal restriction fragment length polymorphisms (T-RFLP) on fecal samples from 8 

WT C57BL/6 mice and 8 p110δKD mice. Mice were randomly assigned to different cages 

at 6 weeks of age and feces collected at 12 weeks when p110δKD mice have documented 

colitis. Bacterial genomic DNA was isolated and amplified by universal primers specific 

for ribosomal 16S DNA, and amplified products from each mouse were digested by 3 T-
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RFLP enzymes (RsaI, MspI and HhaI) and mixed with size standard (Bioventures Map 

Marker 1000). A principal-coordinates graph representing the relationship between 

samples in multidimensional space was generated using Qiime. Next, fragment 

information for all enzymes was uploaded to Phylogenetic Assignment Tool and assigned 

to bacterial strains. Using diversity functions (Shannon and Simpson), we compared to 

the richness and evenness of both populations. Presence of bacterial populations from all 

four major phyla was analyzed by quantitative RT-PCR using bacterial species-specific 

16S rRNA primers normalized to total bacterial DNA.  
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4.6 Figures 

 
Figure 4.1. IFN-γ-activated, E. coli-infected p110δKD BMDMs demonstrate 
decreased phagosome acidification. WT and p110δKD bone marrow-derived 
macrophages (BMDMs) were activated overnight with IFN-γ (20 ng/ml) and cultured 
with K12 E. coli for one hour. Lysotracker® Red DND-99 (25 nM) was added for the 
final 30 minutes of culture. Three independent experiments were performed. (A) Pictures 
shown are representative of results from IFN-γ-activated, E. coli-infected BMDMs. (B) 
Percentage of Lysotracker®-positive cells was quantified from at least 10 random fields 
for each experimental group by a colleague (SMR) blinded to the experimental groups. 
Error bars represent mean ± SEM for three independent experiments (**, p<0.005 versus 
WT BMDMs). 
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Figure 4.2. Reactive oxygen species production is diminished in p110δKD BMDMs. 
WT and p110δKD BMDMs were cultured with either K12 E. coli, E. faecalis or S. 
typhimurium in the presence of luminol and chemiluminescence was measured over 90 
minutes. Graphs representative of typical results from three independent experiments are 
shown. Error bars represent mean ± SEM from triplicates per experiment. 
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Figure 4.3. Inhibition of p110δ impairs reactive oxygen species production in WT 
BMDMs. IFN-γ-activated WT BMDMs were cultured in the presence or absence of the 
p110δ-specific inhibitor IC87114 (10 µM) and various microbes (K12 E. coli, E. faecalis 
or S. typhimurium), and chemiluminescence was measured over 90 minutes. Graphs 
representative of typical results from three independent experiments are shown. Error 
bars represent mean ± SEM from triplicates per experiment. 
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Figure 4.4. K12 E. coli-laden phagosome colocalization with FITC-dextran is 
decreased in IFN-γ-activated p110δKD BMDMs. WT and p110δKD BMDMs were 
activated overnight with IFN-γ and loaded with FITC-dextran. After 60 minutes of 
culture with K12 E. coli, cells were fixed and analyzed by immunofluorescence confocal 
microscopy. Pictures representative of typical results from three independent experiments 
are shown. 
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Figure 4.5. K12 E. coli-laden phagosome colocalization with EEA1 is decreased in 
IFN-γ-activated p110δKD BMDMs after 10 minutes. WT and p110δKD BMDMs were 
activated overnight with IFN-γ and cultured with K12 E. coli for 10 minutes. Cells were 
then fixed and stained for EEA1 and analyzed by immunofluorescence confocal 
microscopy. Pictures representative of typical results from three independent experiments 
are shown. 
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Figure 4.6. K12 E. coli-laden phagosome colocalization with EEA1 is decreased in 
IFN-γ-activated p110δKD BMDMs after 60 minutes. WT and p110δKD BMDMs were 
activated overnight with IFN-γ and cultured with K12 E. coli for 60 minutes. Cells were 
then fixed and stained for EEA1 and analyzed by immunofluorescence confocal 
microscopy. Pictures representative of typical results from three independent experiments 
are shown. 
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Figure 4.7. Streptomycin-resistant Salmonella typhimurium colitis is not worsened in 
p110δKD mice. WT (48 hours, n = 8; 72 hours, n = 3; 96 hours, n = 4) and p110δKD (48 
hours, n = 9; 72 hours, n = 3; 96 hours, n = 4) mice were orally gavaged with 
streptomycin (20 mg) 24 hours prior to oral infection with streptomycin-resistant 
Salmonella typhimurium. Body weight loss was monitored over the course of the 
experiment, and mice were sacrificed at 48-, 72- and 96-hours post-infection. (A) Percent 
initial weight of S. typhimurium-infected WT and p110δKD mice was monitored up to 96 
hours post-infection. Error bars represent mean ± SEM (*, p<0.05 versus WT). (B,C,D) 
Colon lengths were measured at 48 hours (B), 72 hours (C) and 96 hours (D) post-
infection. Error bars represent mean ± SEM of two independent experiments (*, p<0.05 
versus WT). (E) IL-12p40 production was measured by ELISA from colonic tissue 
explant cultures. 
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Figure 4.8. Salmonella CFUs recovered from cecal feces, cecal lamina propria and 
mesenteric lymph nodes of p110δKD mice was decreased compared to that from WT 
mice. WT (48 hours, n = 8; 72 hours, n = 3; 96 hours, n = 4) and p110δKD (48 hours, n = 
9; 72 hours, n = 3; 96 hours, n = 4) mice were orally gavaged with streptomycin (20 mg) 
24 hours prior to oral infection with streptomycin-resistant Salmonella typhimurium. 
Mice were sacrificed at 48-, 72- and 96-hours post-infection, and various tissues were 
collected for determination of CFUs. Results are normalized to weight (g) of tissue. (A-F) 
Streptomycin-resistant Salmonella typhimurium was recovered from WT and p110δKD 
cecal feces (A), distal colonic feces (B), cecal lamina propria (C), MLN (D), spleen (E) 
and liver (F) at 48-, 72- and 96-hours post-infection and normalized to weight (g) of 
tissue. Error bars represent mean ± SEM from two independent experiments (*, p<0.05 
versus WT). 
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Figure 4.9. PI3K p110δKD mice demonstrate unique microbial community 
composition. Bacterial DNA was recovered from fecal samples from WT (n = 9) and 
p110δKD (n = 10) mice for analysis of microbial community composition by T-RFLP and 
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quantitative RT-PCR. (A) Principle components plots were made from T-RFLP analysis 
using Qiime. (B) Diversity and evenness of microbial communities were analyzed using 
Shannon and Simpson diversity functions. (C) Total bacterial numbers and percentages of 
various bacterial species were determined using quantitative RT-PCR. Error bars 
represent mean ± SEM of two independent experiments (NS, not significant). 
 



 

 
 

CHAPTER 5 

CONCLUSIONS AND FUTURE PERSPECTIVES 

5.1 Overview 

 The human IBDs, CD and UC, result from an incompletely defined and complex 

interaction between host immune responses, genetic susceptibility, environmental factors 

and the enteric luminal contents (Xavier and Podolsky, 2007). IBD-associated SNPs have 

identified macrophages and DCs as key players in IBD pathogenesis (Jostins et al., 2012). 

IBDs represent an increasing burden on global and United States health care systems 

(Park and Bass, 2011). Thus, there is a pressing need for understanding IBD pathogenesis 

and for the development of specific, novel therapeutic targets.  

We identified innate immune cell p110δ as a critical regulator of intestinal 

homeostasis through modulating innate immune cell responses to microbes and 

promoting subsequent homeostatic adaptive immune responses, and enhancing 

intracellular clearance of microbes in the gastrointestinal tract. In the absence of 

functional p110δ (p110δKD), mice develop chronic colonic inflammation characterized by 

patchy inflammatory infiltrates, epithelial hyperplasia, intraepithelial lymphocytosis and 

hypersecretion of Th1/Th17 cytokines (Uno et al., 2010). Furthermore, colonic 

inflammation in p110δKD mice is microbiota-dependent. Indeed, p110δ activity in colonic 

CD11b+ LPMCs provides a functional “brake” on TLR-induced responses, allowing for 
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the maintenance of intestinal homeostasis. Colonic CD11b+ LPMCs from p110δKD mice 

also produced significantly more IL-12p40 and less IL-10 in response to heat-killed E. 

coli. While p110δKD mice without mature T and B cells (Rag1-/-/p110δKD) did develop 

mild histopathologic colitis, reconstitution of Rag1-/-/p110δKD mice with WT naïve T 

cells induced severe colitis. We propose that chronic colitis in p110δKD mice is driven by 

LPMCs producing inappropriate inflammatory mediators in response to the enteric 

microbiota and subsequently promoting the development of pathogenic T cell responses. 

Furthermore, enhanced survival of intracellular microbes provides chronic stimulation of 

already hyper-inflammatory innate immune cells, perpetuating inflammation in the 

intestines. 

Understanding how p110δ regulates innate immune cell responses to microbes in 

the GALT has significant implications for human IBDs. We show that PIK3CD 

expression from intestinal tissue biopsies, both inflamed and non-inflamed, from patients 

with CD inversely correlated with the ratio of IL12 to IL10, suggesting that human p110δ 

regulates the balance of homeostatic cytokines in the intestines. Furthermore, PIK3CD 

expression in tissue from patients with CD was significantly decreased compared to 

tissue from normal, non-inflamed control patients. This is surprising given that 

expression of PIK3CD is highly enriched in leukocytes, and intestines from patients with 

CD demonstrate significant numbers of infiltrating inflammatory cells. Interestingly, we 

did not demonstrate a similar decrease in PIK3CD expression in intestinal biopsy 

specimens from patients with UC. However we need a larger pool of samples from 

patients with UC to confirm these findings, as the cohort of UC patients was small. The 
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implications for CD-specific downregulation of PIK3CD expression are exciting and may 

lead to development of CD-specific therapies. 

Most studies of PIK3CD expression focus on posttranslational regulation, as it 

was shown that changes in p110δ levels do not change acutely in response to various 

agonists (Kok et al., 2009). We have shown that p110δ expression is induced in BMDMs 

stimulated with TLR agonists and in the intestines upon colonization with enteric 

microbiota (Fig. 2.6) (Uno et al., 2010). This may represent a novel concept in p110δ 

regulation that needs further study. Indeed, PIK3CD lies within an IBD susceptibility 

locus (1p36) (Cho et al., 1998), and we speculate that an IBD-associated SNP lies within 

a regulatory region of PIK3CD leading to decreased expression in IBD susceptible 

individuals. Thus the full impact that p110δ has on IBD pathogenesis remains to be 

elucidated. 

Finally, p110δ inhibitors are being developed in the clinic for the treatment of 

inflammatory disorders (Durand et al., 2013; Haylock-Jacobs et al., 2011; Matteoli et al., 

2010; Ying et al., 2012). Both human and murine studies strongly implicate innate p110δ 

signaling in the maintenance of intestinal homeostasis. While p110δ inhibition has the 

desired effects of inhibiting adaptive immunity, blockade of p110δ in diseases where 

innate immune processes are central drivers of pathogenesis, such as IBDs, may actually 

be harmful.  

 

5.2 IBD Heterogeneity and p110δ 

 Differences between CD and UC, the two major subtypes of IBDs, suggest that 

there are diverse etiologies driving different forms of IBDs. This presents a barrier to 
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therapeutic development, as human IBDs remain poorly defined clinically, and there is 

significant overlap in the way CD and UC present clinically, endoscopically and 

histopathologically. Furthermore, even less is understood about the more rare IBDs, 

including lymphocytic colitis and collagenous colitis (both types of “microscopic colitis”) 

and eosinophilic colitis. These inflammatory conditions are marked by chronic, watery 

diarrhea, and the incidence is increasing worldwide (Bohr et al., 1995; Fernandez-

Banares et al., 1999; Olesen et al., 2004; Pardi et al., 2007; Stewart et al., 2011; Williams 

et al., 2008). Interestingly, intraepithelial lymphocytosis is common in these human 

disorders (Yen and Pardi, 2012), and we described this distinct finding in the colons of 

p110δKD mice (Uno et al., 2010). This mouse model presents a unique opportunity to 

understand how intraepithelial lymphocytosis develops and affects IBD pathogenesis. 

 Colitis in p110δKD mice is 100% penetrant but relatively mild compared to other 

well-characterized murine models of IBDs. Genetic background greatly affects disease 

outcome in rodent models of IBDs, as unknown modifier genes contribute to disease 

susceptibility and phenotype (Buchler et al., 2012; Valatas et al., 2013). Indeed, host 

genotype is but one reason human IBDs are so heterogeneous. Although we found low 

expression of PIK3CD in intestinal tissue biopsies from patients with CD, the patient 

pool was small. Thus, there could be differences in PIK3CD expression between subtypes 

of CD, between locations of biopsies (e.g., ileum versus distal colon) or depending on the 

disease status of the patient (e.g., remission versus flare). To further characterize PIK3CD 

expression in human IBDs, it will be important to expand our patient population and 

correlate clinical parameters with PIK3CD expression in specific cell populations from 

specific sites along the gastrointestinal tract. 
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The p110δKD mouse is currently maintained on a C57BL/6 background, a strain 

that is relatively resistant to autoimmune pathologies. To further understand how host 

genetics alters IBDs, it would be interesting to backcross p110δKD mice onto other more 

susceptible genetic backgrounds (e.g., C3H/HeJBir, BALB/c) and identify quantitative 

trait loci (QTL) contributing to disease variability. This approach may also uncover novel 

functions of p110δ. 

 

5.3 Development of Novel Tools to Study p110δ Function in Innate Immunity 

 While the T cell adoptive transfer model of colitis allowed us to study the effects 

of defective p110δ activity in innate immune cells on T cells, ideally we would use a cell-

specific p110δKD knock-in mouse to determine whether intestinal inflammation develops 

spontaneously as in the p110δKD mouse. We could create a macrophage-specific p110δKD 

knock-in mouse using a previously described genetic engineering strategy (Skvorak et al., 

2006). This strategy utilizes a construct with both the WT and mutant alleles present, but 

only the WT allele is expressed at baseline. Expression of the mutant allele is induced 

only when Cre recombinase is expressed and removes the WT allele from the construct. 

We will be able to restrict the expression of the mutant p110δ allele to macrophages by 

using Cre recombinase expressed under the control of the macrophage-specific lysozyme-

2 (LysM) promoter (LysMCre). The development of this mouse will greatly enhance our 

ability to understand the role of macrophage p110δ in IBD pathogenesis. 

 One of the obvious criticisms of our studies is the use of BMDMs as a surrogate 

cell type for colonic macrophages. While we always tried to confirm results from 

BMDMs in colonic macrophages when technically feasible, these two cells types are 
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distinctly different. Ideally, colonic macrophages would be used in all studies; however, 

realistically this is difficult for some molecular experiments due to the low numbers of 

CD11b+ cells in the colon as well as potential phenotypic changes during the isolation 

process. Furthermore, an intestinal macrophage-specific knock-in inactive p110δKD 

mouse would be an indispensable tool for the study of p110δ in intestinal homeostasis, 

but there are as yet no known intestinal macrophage-specific markers. 

 

5.4 PI3K p110δ Expression and Regulation in IBDs 

 PIK3CD is mainly regulated at the transcriptional level in both mice and humans, 

and transcript levels correlate well with protein levels (Kok et al., 2009). We previously 

showed that p110δ mRNA and protein levels are increased in macrophages following 

TLR stimulation, and that colonization of the gastrointestinal tract with commensal 

microbiota induces intestinal p110δ expression (Fig. 2.6) (Uno et al., 2010). To continue 

these studies, we would characterize chromatin modifications and transcription factor 

recruitment at the Pik3cd locus in intestinal macrophages from GF mice exposed to 

bacteria. 

While PIK3CD mRNA levels correlate well with p110δ levels, it is unknown 

whether this holds true for tissues from patients with IBDs. It would be informative to 

measure protein levels and identify subcellular localization of p110δ in tissues obtained 

from patients with IBD. We could obtain whole tissue for use in western blot and 

immunofluorescence analysis, as human p110δ antibodies are widely available and well 

characterized (Vanhaesebroeck et al., 1997). Additionally, we would look for changes in 

chromatin modifications at the PIK3CD locus to identify potential epigenetic 
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mechanisms that could account for the decrease in PIK3CD expression in tissues from 

patients with CD. These studies may reveal novel mechanisms of regulating p110δ 

expression during health and disease that could be exploited for the development of IBD 

therapeutics. 

 

5.5 The Enteric Microbiota, p110δ and IBDs 

We showed that the composition of enteric microbial communities from p110δKD 

mice is different from that of WT mice. Although the functional relationship between 

altered microbiota and intestinal inflammation remains to be fully established, it is 

reasonable speculation that changes in the microbiome affect the host’s ability to 

maintain homeostasis (Frank et al., 2011; Sartor, 2010). A microbiota “knockout” of 

specific types of bacteria does not yet exist but would be enormously helpful in 

delineating the effects of certain microbes on IBD pathogenesis. A major barrier to 

understanding IBD pathogenesis is a veritable lack of tools for studying the effect of the 

enteric microbiota on disease development and severity. It has already been shown in 

numerous rodent models of intestinal inflammation that in the absence of the enteric 

microbiota, IBD does not develop (Nell et al., 2010). However, human IBDs are not 

cured with antibiotics, and the efficacy of antibiotics as primary or adjuvant therapy in 

IBD is controversial (Sartor, 2004; Wang et al., 2012).  

 Exciting technological advances in bioinformatics have made collection and 

analysis of massive data sets manageable. It is now possible to employ deep sequencing 

on microbial communities to identify microbes down to the species level for some taxa. 

Furthermore, the depth of reads generated by deep sequencing allows for identification of 
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less abundant taxa. However, despite showing considerable variability between 

individual’s enteric microbiota compositions, studies of microbial function demonstrate 

widespread functional conservation between different individuals (Consortium, 2012; 

Qin et al., 2012). Thus, the functional characterization of microbial communities is 

necessary to understand the potential metabolic impact changes in the community may 

have on an individual in health and disease. This next step will employ whole-population 

integrated “-omics” studies, including metagenomics, metatranscriptomics, metabolomics 

and metaproteomics, to functionally characterize microbial communities. Additionally, 

studies on enteric resident archaea, viruses, fungi and protists are necessary. 

 A complete study to understand the role of the microbiota in colitis pathogenesis 

in the p110δKD mouse must contain many elements. First, a robust time course of sample 

collection is necessary to follow compositional changes before and during when 

inflammation develops in the p110δKD mouse. Second, the location of sample collection 

importantly allows for characterization of specific, ecologically distinct niches. We 

would collect luminal and mucosal-associated samples from different areas of the 

gastrointestinal tract (e.g., cecum, proximal colon, distal colon). Third, we would 

combine “-omics” studies on bacterial samples with complete characterization of host 

colitis. Thus, we would be able to combine robust techniques for the community and 

functional characterization of the microbiota with important host parameters of disease 

progression. 
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5.6 Macrophage Intracellular Microbe Eradication and p110δ 

 Macrophages with impaired p110δ function demonstrate impaired intracellular 

eradication of several species of gram-negative enteric bacteria (Fig. 2.5) (Uno et al., 

2010). To determine whether this defect extends to gram-positive enteric bacteria, we 

will perform gentamicin protection assays with WT and p110δKD macrophages using 

Enterococcus faecalis, Staphylococcus aureus, Clostridium leptum, and Listeria 

monocytogenes. Macrophage proteins that specifically regulate intracellular bactericidal 

activity of gram-negative bacteria exist (Berger et al., 2010). It would be interesting to 

know whether regulation of bacterial eradication by p110δ is restricted to certain types of 

bacteria. Additionally, macrophage eradication of fungi (i.e., Histoplasma capsulatum) 

may also be affected by p110δ activity. 

 To continue characterizing how p110δ regulates intracellular eradication of 

bacteria in macrophages, we would first need to supplement our documented 

observations with quantitative colocalization analyses (Fig. 4.4-4.6). Next, we would 

further follow GFP E. coli-laden phagosome maturation using immunofluorescence for 

markers of late phagosomes (LAMP-2, Rab7) and phagolysosomes (LAMP-1). We 

would measure phagolysosomal pH in WT and p110δKD macrophages infected with E. 

coli. To determine whether p110δ regulates the recruitment of NADPH oxidase to the 

phagosome, we would localize NADPH oxidase subunits to GFP E. coli-laden 

phagosomes in WT and p110δKD macrophages. Finally, we can measure the activity of 

proteases within phagosomes, as previously described (Yates et al., 2007), from WT and 

p110δKD macrophages infected with E. coli. Ideally these studies would be conducted in 
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intestinal macrophages. The conclusion of these studies will fully characterize the role of 

p110δ in regulating macrophage intracellular eradication of bacteria. 

 

5.7 PI3K p110δ as a Therapeutic Target in IBDs 

 The Class IA PI3Ks and their downstream signaling molecules are popular targets 

for anti-cancer therapy; inhibition of p110 isoforms, Akt or mTOR has shown varying 

effects on tumor growth and progression (Rodon et al., 2013). While there have been no 

reported side effects of intestinal inflammation with the use of p110δ-specific inhibitors, 

it is possible, given our studies, that p110δ inhibition in susceptible individuals may 

induce IBDs. Because PI3Ks regulate diverse pathways involved in cell growth, 

proliferation, differentiation and survival, it will be prudent to target specific pathways 

downstream of PI3K that regulate cytokine production and intracellular bacterial 

eradication for the therapeutic use in IBDs.  

One promising candidate is GSK-3β. Inhibition of GSK-3β ameliorates murine 

colitis caused by chronic administration of DSS (Hofmann et al., 2010). While DSS as an 

IBD model has many weaknesses, this study suggests that inhibition of GSK-3β, 

normally a function of PI3Ks, can reverse exaggerated immune responses to the enteric 

microbiota during intestinal inflammation. We showed that GSK-3β inhibition in TLR-

stimulated p110δKD BMDMs enhanced the production of IL-10 and decreased the 

production of IL-12p40 (Fig. 3.4E-H). The next step is in vivo administration of the 

GSK-3β inhibitor SB216763 to p110δKD mice to determine whether this can prevent 

colitis development or reverse damages from chronic intestinal inflammation. A powerful 

tool available is the GF p110δKD mouse colony at the UNC Center for Gastrointestinal 
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Biology and Disease (CGIBD) Gnotobiotic Facility. To remove some of the variability of 

disease onset seen in p110δKD mice, we can coordinately initiate intestinal inflammation 

in a cohort of GF p110δKD mice by colonizing them with a predefined commensal enteric 

microbiota. Treatment with SB216763 would occur either at the onset of microbiota 

colonization or several weeks after colonization to address the effects of GSK-3β 

inhibition on IBD development and on therapy during active inflammation. 

 

5.8 Conclusion 

 Defects in innate immune cell functions are central events in the pathogenesis of 

IBDs (Jostins et al., 2012). We provide compelling evidence for the involvement of the 

PI3K catalytic subunit p110δ in maintaining intestinal homeostasis in mice and humans 

through regulating innate immune cell responsiveness to microbial stimuli. Additionally, 

p110δ regulates intracellular eradication of bacteria in macrophages. In the absence of 

functional p110δ, chronic stimulation of macrophages from persistent bacteria induces 

dysregulated cytokine production, promoting pathogenic T cell differentiation and the 

development of chronic intestinal inflammation. Understanding the role of p110δ in these 

processes in rodents and humans will elucidate novel pathogenesis-based therapeutic 

strategies to treat human IBDs. 
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