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ABSTRACT

DIANE LOSARDO: An Examination of Initial Condition Specification in the
Structural Equations Modeling Framework

(Under the direction of Sy-Miin Chow)

A challenge when estimating time series models is deciding how to correctly

specify an initial condition distribution, which describes the process prior to the first

sampled observation. For example, the process may have started in the distant past,

started exactly at the first observation point, or displayed a different structure before

the first time point was collected. Time series models may be estimated within the

structural equations modeling (SEM) framework (Browne & Nesselroade, 2005), and

while some psychological research has focused on the issue of initial condition spec-

ification (e.g., Du Toit & Browne, 2007; Chow, Ho., Hamaker, & Dolan, 2010; Oud,

Bercken, & Essers, 1990), a thorough examination of the consequences of using a

misspecified initial condition distribution has not been conducted. As the number of

time points increases, the consequences of a misspecified initial condition become less

severe (i.e., parameter estimates and state estimates are not affected as noticeably, see

Oud et al., 1990). If a process is not stationary (i.e., does not have the same mean and

covariance structure over time), then conventional methods for initial condition spec-

ification may not be appropriate (De Jong, 1991; Harvey, 1991). Proper methods for

such cases have been developed in the state-space literature (De Jong, 1991; Koop-

man, 1997). In this thesis I conducted a systematic examination comparing initial

condition specifications for time series models estimated within the SEM framework.

For stationary models, I considered three approaches, including (1) a model-implied

initial condition, (2) a free-parameter condition, (3) and a null initial condition spec-

ification. For nonstationary models, I considered De Jong’s augmented filtering ap-
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proach (De Jong, 1991), which consists of augmenting the standard Kalman filter (KF)

with computational products associated with nonstationary portions of the model, a

modification by Koopman (1997), who developed an exact initial KF approach which

removes the reliance of the filtering equations on the nonstationary portions, and

a large κ approximation which is widely used in the time series literature but may

lead to numerical inaccuracies. A Monte Carlo simulation was conducted to exam-

ine parameter and state estimate recovery given different types of initial condition

specification for both intensive repeated measures data and panel data. Finally, each

initial condition specification was estimated using an empirical data set.

Results suggest that, when the process is nonstationary and true initial condition

is diffuse, the de Jong initial condition approach leads to proper point and standard

error estimates with fewer numerical difficulties when compared to the other ap-

proaches. However, the Koopman and free-parameter approaches also performed

well, but exhibited more severe computational problems in the estimation process,

leading to convergence problems and biased point estimates of the variance param-

eters. Furthermore, results illustrate how using different initial condition specifica-

tions with real data may lead to different point and standard error estimates and thus

different substantive conclusions. Implications of results and recommendations for

practice are highlighted in the discussion section.
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CHAPTER 1

Introduction

While initial condition specification has not been extensively discussed within

the psychological literature, there are both methodological and substantive reasons

as to why it is an important topic to consider. Generally speaking, an initial condi-

tion distribution describes the structure of a process before the first observation was

collected, or right on the first occasion. As an example, consider a situation where

a psychologist has collected longitudinal data for a given time frame. A model may

then be fit to the data in hopes of uncovering and understanding some underly-

ing process. However, it is very possible that the process has started in the distant

past, and furthermore that the structure of the process was different before the first

collected data point. It is also possible that the overall process displays differing

structures as a function of time, thus rendering it difficult to discern what the initial

condition process was.

From a substantive viewpoint, the role of initial condition in certain psycholog-

ical theories plays a major part. Several psychological theories concerning initial

condition have been proposed within the context of chaotic processes that are highly

nonlinear in nature, but are actually deterministic (i.e., a process that can be per-

fectly predicted given current and previous information) (see Robertson & Combs,

1995). Such a process has been hypothesized to exist in several areas of psychology,

including developmental psychopathology, neuropsychology, cognitive psychology,



and developmental psychology (Ayers, 1997). One element of a chaotic process, as

applied to explain a psychological process, is the idea that a process is very sensitive

to its initial condition status. Consequently, small changes in initial condition may

produce large effects over time. As an example, Gottschalk, Bauer, and Whybrow

(1995) found evidence indicating that long-term mood variations for both bi-polar

patients and normal patients are not periodic in nature, and may display some form

of chaotic behavior.

Some theories in developmental psychology posit that early childhood events,

which may be loosely thought of as initial conditions for a given individual, have a

significant and long-lasting effect on an individual’s trajectory into adulthood. Clas-

sic examples include attachment theory (Bowlby, 1982), social-cognitive theories (e.g.,

Vygotsky, 1978), and social-cognitive learning theory (Bandura, 1986). As cognitive

growth tends to be rapid during early childhood, any environmental or biological

influences may be more pronounced and affect the eventual progression to a more

stable cognitive style (Sternberg, 1999). An individual’s social development and so-

cial engagement have also been hypothesized to display rapid growth at early ages,

and thus be sensitive to any internal or external events that eventually shape the per-

son’s more stable social behavior. Early psychological trauma, such as child maltreat-

ment, may have a long term effect on a child’s functioning with respect to both brain

development (Cicchetti & Tucker, 1994) and psychological functioning (Maughan &

Cicchetti, 2002). For example, Greenberg, Kusche, and Spelz (1991) discussed how

children’s early exposure to either witnessing or being victims of violence along with

a display of negative affect may hinder a child’s ability to effectively manage and

process emotions. This may, in turn, lead to a larger risk of psychopathology in

adulthood. In the substance use literature, early engagement in problem behaviors

is hypothesized to predict early onset of alcohol use which in turn predicts later

substance use diagnosis (Caspi, Moffitt, Newman, & Silva, 1996; Jessor, Donovan, &
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Costa, 1991; Zucker, Chermack, & Curran, 2000).

Such theories indicate that the role of initial condition in psychological research is

important to consider and may help shape a developmental pathway into adulthood.

It is not always the case, however, that a researcher will know how to characterize

the initial condition distribution. Consider the case where a researcher collects data

on a sample of individuals with a certain anxiety disorder. One measured variable

may be the degree to which a person displays a symptom of anxiety. If this variable

is tracked over the course of a few weeks, a trajectory of anxiety levels for the sam-

pled individuals will be revealed. However, it is unlikely that the given individuals

began to display such a process at the exact time the first data point was collected.

This process may have started long before the data were collected, and may even

have displayed a different structure beforehand. In other words, the initial condition

distribution may be characterized differently than the distribution of the process for

the sampled time frame.

One way psychologists have attempted to explain initial condition status is by

introducing covariates, such as gender, socioeconomic status, and age, to help explain

interindividual differences in initial condition. One example is adding covariates into

a growth curve model to explain interindividual differences in intercept. However,

as stated, this prior knowledge is not always available or exhaustive. If there is no

precise information available researchers may have to resort to other specifications

of initial condition. In this thesis, I consider some of these possible specifications.

I describe different procedures that have been used for initializing a process and

evaluate a set of procedures for more accurately specifying initial condition, with a

focus on types of data that are commonly collected in psychological research. I first

describe stationary and nonstationary processes in more detail as such processes are

integral in informing what type of initial condition to specify.
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1.1 Stationary vs. Nonstationary Processes

To begin, I will introduce the more technical definitions that describe and catego-

rize a process. Specifically, processes may be generally described as either stationary

or nonstationary (Chatfield, 2004; Hamilton, 1994; Shumway & Stoffer, 2006; Wei,

1990), which are terms that arise from the time series literature. Broadly speaking,

a stationary process implies that the statistical properties, including mean, variance,

and higher order moments, of a process do not change over time regardless of when

data were sampled. A nonstationary process, in contrast, may display a different

process depending on a given time frame. This includes time frames that occurred

before a given data point was sampled. Depending on the type of stationarity, differ-

ent initial condition distributions will be needed to properly specify the model and

to ensure that accurate latent variable scores and parameter estimates are obtained.

Time series processes and stationarity. To more extensively describe the stationarity

of a process, I will illustrate how it is explained within the context of time series

processes. In general, time series models allow for the examination of the relations

between series of random variables indexed by time (Chatfield, 2004; Hamilton, 1994;

Shumway & Stoffer, 2006; Wei, 1990). Specifically, a multiple-subject time series may

be represented by the following equation:

xit = git + vit (1.1)

where xit represent outcome variables for a given person i (i = 1, 2 . . . N) and time

point t (t = 1, 2 . . . T), git represents a time series process, such as an autoregressive

(AR) or moving average (MA) process, and vit represents noise or uncertainties in

the change process, such as a white noise process (i.e., a process of uncorrelated

variables with means of zero and some finite variance). A goal in time series analysis

is to model the systematic process, git, and separate out the noise, vit.
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Browne and Nesselroade (2005) referred to git as the process variables and vit as

a series of random shocks (i.e.,”dynamic noise,” often assumed to be white noise).

The process variables are those that are changing over time, while the random shock

variables are forces that cause uncertainties in the process variables. Two examples

of time series processes are an AR(p) process and an MA(q) process

AR(p): xit = α1xi,t−1 + α2xi,t−2 + ... + αpxi,t−p + vit vit ∼ N(0, σ2
v ) (1.2)

MA(q): xit = β1vi,t−1 + β2vi,t−2 + ... + βqvi,t−q + vit vit ∼ N(0, σ2
v ) (1.3)

where the xit variables represent the process variables and the vit variables represent

the random shocks that are uncorrelated with each other over time and distributed

normally with a mean zero and variance σ2
v .

Multiple-subject time series models may be extended to include nx-vector (multi-

variate) autoregression with moving average (VARMA) processes (Shumway & Stof-

fer, 2006), where nx equals the number of x variables. In this case, the model is

formulated as

xit =
p

∑
r=1

Arxi,t−1 +
q

∑
j=1

Bjvi,t−j + vit (1.4)

where xit represents a set of nx× 1 vectors of process variables, uit represents a set of

nx× 1 vectors of random shock variables which are again normally distributed with

a mean vector of zero and covariance matrix Σv, A1, . . . , Ap represent the nx × nx

autoregression weight matrices, and B1, . . . , Bq represent the nx× nx moving average

weight matrices. There are now a total of N × T × nx observations. To technically

define a stationary process, consider the backshift operator B,

Bxit = xi,t−1 (1.5)
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such that the VARMA process may be re-written as

(I−A1B1 − . . .−ApBp)xit = vit. (1.6)

Then, the process is mathematically defined as stationary if the roots of the determi-

nant of

(I−A1B1 − . . .−ApBp) (1.7)

lie outside of the unit circle (i.e., all roots have a modulus, or absolute value, greater

than 1, Ltkepohl, 1993). This model may be particularly attractive to psychologists as

they allow for a focus on understanding intra-individual (i.e., within person) changes

while still retaining a multivariate orientation.

As the variables are dependent on each other with respect to time, in order to

fully understand the concept of stationarity we must first understand the autoco-

variance function of a process. This function is a measure of the linear dependence

between two observations from the same time series, measured as

Γ(s, t) = E[(xi,s − µs)(xi,t − µt)] (1.8)

where s− t represents an arbitrary time lag. The smoother a time series is, the larger

the autocovariance value will be. If the autocovariance function is zero, then there

exists no linear dependency among xi,s and xi,t, and the series will be choppier. Note

that this function applies to all individuals within the time series.

Inherent within time series is the idea that there is some regularity to be modeled

plus some noise, or ”error.” This regularity is tested by making use of the concept of

stationarity. Stationarity implies the stability of a process over time, although stability

of a process over time does not necessarily mean a series is stationary. This can
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be formally expressed in mathematical terms by considering processes that display

strong stationarity, weak stationarity, or nonstationarity.

Strong stationarity asserts that the probabilistic behavior of every set of observa-

tions remains the same when there is an arbitrary shift in time, expressed as t + h.

Formally, this states that every set of observations xi1, xi2, . . . , xik will have the same

joint statistical distribution as a time shifted set xi,1+h, xi,2+h, . . . , xi,k+h. Thus,

P(xi1 ≤ c1, . . . , xik ≤ ck) = P(xi,1+h ≤ c1, . . . , xi,k+h ≤ ck) (1.9)

holds for all k = 1, 2, . . ., all time points t1, t2, . . . , tk, all constants c1, c2, . . . , ck, and all

time shifts h = 0,±1,±2, . . .. This implies that the probability of observing a value

at a given time period is the same as the probability of observing the value at a later

or earlier time period. Also, the mean function does not change with time, so that

µt = µs = µ for all s and t. Any process that involves a mean change over time is then

not stationary. Additionally, the variance function, which is the autocovariance of a

variable with itself, does not change with time. The autocovariance of a stationary

process can be defined as:

Γ(s, t) = Γ(s + h, t + h) (1.10)

Thus, the covariance depends on the lag, or time difference between s and t, only

and not on the actual times. This strong stationarity incorporates all of the possible

distributions of a time series. Thus, not only are the first two moments stationary, but

all possible characteristics of the distribution, including higher-order moments. This

assumption is very strict and difficult to meet, especially in data commonly collected

in psychological research.

A more relaxed version of stationarity is termed weak stationarity. Instead of

making assumptions about the entire probability distribution, this version focuses on

the first two moments. Specifically, the mean and variance structures remain constant
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across time points and the covariance structure depends only on the lag s − t, and

given this lag remains constant over time. Also, if a process arises from a multivariate

normal distribution and is weakly stationary, it is considered to formally exhibit a

stationary process. To illustrate these points more concretely, I will now provide

examples of both stationary and nonstationary processes.

Examples of stationary processes. One example of a model with a stationary process is

an AR(1) model where |α1| < 1. A psychological process that might align well with

this model could be an individual’s overall mood sampled daily over the course of

a few weeks. The model testifies that a person’s current mood is affected by his or

her mood on a previous day, and to a lesser extent by his or her mood two days ago,

and to an even lesser extent by his or her mood three days ago, and so forth. This

can be understood more precisely by examining the autocovariance function for an

AR(1) process, expressed as

σ2
v αs−t

1− α2 . (1.11)

The numerator of this term expresses the AR(1) weight α as being raised to the

power of s− t, which represents a time lag. Thus, if |α1| < 1, larger lags in time will

be characterized by an autocovariance closer to zero. In other words, the covariance

between any two observations is attenuated exponentially (i.e., decays) as the two

observations are further apart in time, either with (when −1 < α1 ≤ 0) or without

(when 0 ≤ α1 < 1) fluctuations. Thus, the linear dependence between a person’s

mood on, say, day 1 as compared to day 10 is lower than the linear dependence of a

person’s mood on day 1 as compared to day 3.

Another feature of a stationary AR(1) model where |α1| < 1 is that the random

shock variables only affect the current time point process variables directly. Thus,

a person’s mood today is also affected by this random shock variable, which are
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uncertainties that may be different from day to day. For example, a person’s anxiety

may be affected today by a pop-quiz in his or her calculus class and tomorrow by

an unannounced visit from a family member. Still, the process is stationary in that

it ensures that large effects of a process variable will become less pronounced with

time instead of being intensified over time.

Another example of a stationary process is a MA(1) model, which is mathemati-

cally expressed as:

xit = β1vi,t−1 + vit. (1.12)

In this model, the random shock variables for a given time point directly affect the

process variable for that time point but also directly affect the process variable for

the subsequent time point. A psychological process that might align well with this

model is one where random day-to-day environmental or external influences, such

as a rainy day or a pop quiz, are hypothesized to directly influence a person’s current

mood and also his or her mood the following day. However, the affect of the external

influence will be gone the third day.

This process has an expected value of zero, a variance of (1 + β2)σ2
v and an

autocovariance function of:

Γ(s, t) =

 βσ2
v , if (s− t) = 1

0, if (s− t) > 1
(1.13)

Thus, the process is stationary as time does not appear in any of these equations.

As discussed, however, not all processes are stationary. I will now discuss several

models that describe nonstationary processes.

Examples of nonstationary processes. A nonstationary process is one that allows the

behavior, including the mean and covariance structures, of a process to change given

9



an arbitrary shift in time. The process may become ”explosive” in the sense that the

effects of current process variables are magnified with time as opposed to decaying

with time. An example of this process is the random walk model, which has the

structure of an AR(1) process with α = 1, expressed as

xit = xi,t−1 + vit. (1.14)

In this model, the value of the xi variable at time t is the value of the xi variable at

time t− 1 plus a random movement determined by vit. This process is non-stationary

as the variance of the random walk is equal to tσ2
v , which increases without bound as

time increases. The autocovariance function is equal to min(s, t)σ2
v and depends on

the particular time values, s and t, and not just the time lag s− t. Finally, the mean

function changes also changes with time. Another nonstationary process is a random

walk with drift model, which is expressed as

xit = ν + xi,t−1 + vit (1.15)

where ν is a constant called the ”drift”, or stochastic trend. This process is nonsta-

tionary with respect to its mean structure, which is equal to νt. The mean of this

process, then, increases as t increases. This may be more clearly illustrated by rewrit-

ing the random walk with drift process as a cumulative sum of the random shock

variables, expressed as

xit = νt +
T

∑
j=1

vij. (1.16)

Here we can see that the past influences of the process accumulate over time and

the drift term increases as t increases. A psychological process that may follow this

is a person’s emotional stability over the course of a series of stressful events. With
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time, this person might become more and more emotionally unstable, as the original

effects of instability do not diminish with time, but rather accumulate with time.

Also, as time increases, so does the variability of a person’s emotional state, as the

person becomes more and more unstable.

Another model that describes a nonstationary process is the latent curve model

(LCM; Meredith & Tisak, 1990), which is a longitudinal model estimated within

the structural equation modeling (SEM; see Bollen, 1989) framework. This model

describes the process via a set of latent factors that are theorized to have given rise

to set of repeated measures. For example, if a linear trend is hypothesized, the

model implies that the process may be explained in part by an intercept latent factor

(i.e., initial starting point) and linear slope latent factor. Furthermore, individual

differences may be captured by allowing the two latent factors to have a group mean

plus variability around this group mean. A larger degree of variability indicates that

there are more individual differences in either the intercept or slope.

While psychologists sometimes implement such models, they may be unaware

that the model is assuming a nonstationary process. To more clearly understand

why such models are nonstationary consider the following modeling equations that

comprise a linear LCM:

yit = xINTi + TIMEtxSLPi + uit

xINTi = µxINT + vxINTi

xSLPi = µxSLP + vxSLPi

(1.17)

where yit represent the repeated measures variables for person i at time t, TIMEt

represents the specific value of time at time t, xINTi is the random intercept term

with a mean of µxINT and individual-specific disturbance term vxINTi , xSLPi is the

random slope term with a mean of µxSLP and individual-specific disturbance term
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vxSLPi , and uit are measurement error variables that are uncorrelated with each other,

have means of zero, and a variance of σ2
u that remains the same over time. Also, the

disturbance terms vxINTi and vxSLPi are multivariate normally distributed with means

of zero and covariance matrix

Σv =

 σ2
vxINT

σvxINT xSLP

σvxSLPxINT
σ2

vxSLP

 . (1.18)

The expected value and variance of yit are expressed as

E(yit) = µxINT + TIMEtµxSLP (1.19)

VAR(yit) = σ2
vxINT

+ TIME2
t σ2

vxSLP
+ 2TIMEtσ

2
vxINT xSLP

+ σ2
u (1.20)

while the covariance of yit and yi,t+s (t 6= s) is

COV(yit, yi,t+s) = σ2
vxINT

+ TIMEtTIME(t+s)σ
2
vxSLP

+ (TIMEt + TIME(t+s))σvxINT xSLP
.

(1.21)

From these equations we can see that the mean, variance, and covariance structures

all depend on time, making the process nonstationary. Note that nonstationary pro-

cesses are not necessarily more complicated than stationary processes. However,

many time series modeling tools are designed to specifically handle stationary pro-

cesses.

1.2 Initial Condition and Stationarity.

Thus far I have discussed the substantive importance of initial condition in psy-

chological theories and defined stationarity with respect to time series processes. I

will now give a more detailed explanation of an initial condition distribution and de-

scribe how it directly relates to stationarity. To begin, an initial condition distribution
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may be formally defined as

xi0 ∼ N(µ0, P0) (1.22)

where µ0 is the mean vector and P0 the covariance matrix of the initial condition. To

better understand the role of initial condition, consider a multiple-subject univariate

AR(1) model:

xit = α1xi,t−1 + vit vit ∼ N(0, σ2
v ). (1.23)

Since the current process variables are affected by previous process variables, the

model can be iterated backwards:

xit = α1xi,t−1 + vit (1.24)

xi,t−1 = α1xi,t−2 + vi,t−1

xit = α1(α1xi,t−2 + vi,t−1) + vit

xit = α1(α1(α1xi,t−3 + vi,t−2) + vi,t−1) + vit.

This process can recur indefinitely if one continues to go back in time. Going back in

time b times leads to the following,

xit = αb
1xi,t−b +

b−1

∑
j=0

α
j
1vi,t−j. (1.25)

Now we can clearly seen that if |α| > 1, the process will explode, i.e., the effect of

the process variable will be magnified with time, and thus will not be stationary.

Also, the model cannot go back in time indefinitely, thus there needs to be an initial

starting point. In order to initiate this otherwise infinite recursion, a distribution for

xi0 needs to be specified.

For a stationary process, the unconditional mean vector and covariance matrix
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may be used as the initial condition distribution (Harvey, 1991). This is because

a stationary process states that the mean and covariance structures do not change

with time. For example, a stationary AR(1) process may have an initial condition

distribution of

xi0 ∼ N

(
0,

σ2
v

1− α2
1

)
. (1.26)

This holds because for the stationary AR(1) process the mean is equal to zero and the

variance is equal to σ2
v

1−α2
1
. If a process is nonstationary, or even if it is hypothesized

that the process prior to the first observation has a different structure, the uncon-

ditional mean and covariance matrix may not be the best choice for specifying the

initial condition distribution.

There are a number of methods for specifying initial condition (the unconditional

mean vector and covariance matrix specification is just one), some of which apply to

stationary models and some that apply to nonstationary models. As psychologists

are currently implementing models incorporating time series processes (Hamaker &

Dolan, 2009), further research regarding the specification of initial condition becomes

important. In time series analysis, nonstationary processes may be made stationary

by either detrending or differencing (Shumway & Stoffer, 2006). Detrending removes

a trend by subtracting an estimated trend component from the original process and

working with the subsequent residuals. Differencing involves subtracting a previous

observation from the current observation a specified number of times. If the trend

is linear, then performing this calculation once, also called first differencing, will

remove the trend. A second difference removes a quadratic trend, a third difference

removes a cubic trend, and so forth. While these approaches work well with respect

to making a nonstationary process stationary, in many psychological theories it is

the trend that is of actual interest. For example, a trend in psychological data may

reflect some sort of development which may be critical to a researcher’s hypothesis.
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Since the parameters that describe the development over time may be integral in

understanding the psychological process, it is not always helpful to remove the trend.

Therefore, when psychologists implement time series models it may be important to

retain the nonstationarity of a process, rendering the proper specification of initial

condition also important.

Browne and Nesselroade (2005) and Du Toit and Browne (2001, 2007) have dis-

cussed how multivariate time series models may be estimated as a longitudinal

model in the SEM framework. This modeling framework is often used by psy-

chologists as it can readily and flexibly model relations among both manifest and

latent variables. Furthermore, latent variable measurement models may be easily es-

timated. However, when estimating any times series model in the SEM framework,

several methodological issues must be addressed, including the proper specification

of an initial condition distribution. While some methodologists have addressed this

issue (Browne & Nesselroade, 2005; Du Toit & Browne, 2001, 2007), the focus has

been on stationary processes.

A particularly flexible way to represent a time series model is to formulate them

within the state-space modeling framework (Harvey, 1991). State-space models were

originally derived for single-subject time series analysis but may also be used to

estimate intensive repeated measures or panel data within the structural equation

modeling framework. In this thesis I will formulate structural equation models con-

taining time series processes within the state-space modeling framework. Given this

set-up, I will describe how to incorporate different types of initial condition distribu-

tions. To facilitate a more technical discussion of initial condition specification given

this set-up, I will first describe the state-space modeling framework in more detail

followed by a description of the SEM framework.
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1.3 State-Space Modeling Framework

State-space models have been more extensively used in econometrics and engi-

neering fields of study. They represent a modeling framework which can incorporate

a host of time series models, difference models, and, with appropriate constraints,

differential equation models (Harvey, 1991). In the psychological literature, exam-

ples of what state-space modelers refer to as states include factor scores and true

scores (Grice, 2001).

The general framework for linear state space models is as follows:

Measurement equation: yit = τ + Zxit + uit uit ∼ N(0, Σu) (1.27)

State or Transition equation: xit = π + Txi,t−1 + vit vit ∼ N(0, Σv) (1.28)

where xit is a nx × 1 vector of latent state variables at time t, where nx now equals

the number of latent variables (which are called state variables in the state-space

literature), π is a nx× 1 vector of intercepts for the transition equation, T is a nx× nx

transition matrix which links the previous states to the current states, vit is a nx× 1

vector of process noise variables with means of zero and a nx× nx covariance matrix

Σv, τ is a ny× 1 vector of measurement intercepts, where ny equals the number of

observed variables, Z is a ny× nx matrix that links the measured yit variables to the

xit states, and uit is a ny× 1 vector of measurement error variables with with means

of zero and a ny × ny covariance matrix Σu. Further model assumptions we make

include the process noise variables being uncorrelated with each other over time, the

measurement error variables being uncorrelated with each other over time, and the

process noise variables being uncorrelated with the measurement error variables.

This framework is very flexible and allows for a chosen number of state variables

that affect each other via the transition matrix and are linked to the observed variables

through the Z matrix. Covariates may be added to either equation. It is also possible
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to incorporate higher order lags (i.e., by expanding the size of xit) and deal with

missingness under assumptions of missing at random (MAR; Shafer & Graham, 2002;

Little & Rubin, 1987). All of these features allow for a host of models that may be fit

(Shumway & Stoffer, 2006).

Estimation in state-space models. To illustrate the role of initial condition in state space

models, I will describe the estimation process in some detail. The estimation of state-

space models may be accomplished using the Kalman Filter (KF; see Harvey, 1991),

which is an iterative estimation procedure designed to estimate the conditional means

and covariance matrix, E(xit|Yit), COV(xit|Yit), Yit = {yij, j = 1, . . . , t}. Also, by us-

ing by-products of the filter a raw data likelihood function known as the prediction

error decomposition (PED; Schweppe, 1965) may be composed. This likelihood func-

tion can then be maximized via an optimization routine of choice to obtain a new set

of parameter estimates.

The set of recursions for the KF is as follows, adopted from the modified recur-

sions used in De Jong (2003). xitPRED represents the expected value of the current

value of x given Yi,t−1, where Yi,t−1 = {yij, j = 1 . . . t− 1}. PtPRED represents the co-

variance matrix of xit given Yt−1, xtFILT represents the expected value of the current

value of x given Yit, and PtFILT represents the covariance matrix of xit given Yit. The

following equations initiate the recursions,

xi0FILT = µ0 (1.29)

P0FILT = P0 (1.30)

xi1PRED = Tµ0 (1.31)

P1PRED = TP0T′ + Σv. (1.32)
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Then, for t = 1, . . . , T,

εit = yit − τ − ZxitPRED (1.33)

Fit = ZPtPREDZ′ + Σu (1.34)

Kt = PtPREDZ′F−1
it (1.35)

xitFILT = xitPRED + Ktεit (1.36)

PtFILT = PtPRED − PtPREDZ′K′t. (1.37)

xi,(t+1)PRED = π + TxitFILT (1.38)

P(t+1)PRED = TPtFILTT′ + Σv. (1.39)

From these equations it is clear to see how initial condition comes into play. The

process must be initiated by specifying a distribution for the initial condition, which

can be seen by examining the prediction equations for x1. The Kt function may be

considered a variation of the Kalman gain function. The εit represents a vector of

innovations, namely discrepancies between yit and E(yit|Yi,t−1), with Fit being the

covariance function of the innovations. These can be thought of as the difference

between the predicted measurement and the actual measurement (Chow et al., 2010).

More generally, εit = yit − E(yit|Yi,t−1) and εit ∼ N(0, Fit). Also notable is that

E(xit, yis) = 0 for all s < t, which implies that the innovations are independent

of all past observations. Thus, the innovations and the covariance function of the

innovations can be used to formulate the likelihood function known as the PED

(Schweppe, 1965). Minimizing negative two times the log of the likelihood is often

completed, resulting in the function, where θ is a vector that contains all of the

parameters to be estimated (i.e., all parameters in the τ, π, T, Z, Σv, Σu vectors and
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matrices)

−2 ln L(θ) =
N

∑
i=1

T

∑
t=1

ny log(2π) + log |Fit|+ ε′itF
−1
it εit. (1.40)

This likelihood function is computed from a conditional probability distribution func-

tion of the innovations, εit. The likelihoods are summed across time across individ-

uals, which allows for the structure of psychological data with multiple time points

and participants. Several versions of this likelihood with special recursions to handle

the initial condition have been considered (Harvey, 1991; De Jong, 1988, 2003; Koop-

man & Durbin, 2003), which I will discuss in more detail later. For now, it is worth

noting that after a sufficient number of time points the KF becomes independent of

the initial state condition (see Jazwinski, 1970, pp. 239-243; Oud et al., 1990). Given

the type of data commonly collected in psychological research, it becomes even more

important to correctly specify initial condition.

A related set of recursions are called the Kalman Smoother (KF; Harvey, 1991;

Shumway & Stoffer, 2006). While the KF provides state estimates based on observa-

tions up to time T, i.e., the filtered estimates xitFILT, the KS provides state estimates

based on all of the observations, which I will call xitSMOOTH. This is accomplished

by making a backwards pass through all observations from the last time point to the

first, using xiTFILT and PTFILT as the initial condition values of the KS. The recursions

are then, for t = T, T − 1, . . . , 1,

xi,(t−1)SMOOTH = xi,(t−1)FILT + Ji,t−1(xitSMOOTH − xitPRED) (1.41)

P(t−1)SMOOTH = P(t−1)FILT + Ji,t−1(PtSMOOTH − PtPRED)J′i,t−1 (1.42)
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where

Ji,t−1 = P(t−1)FILTT′(PtPRED)
−1. (1.43)

As I will be formulating structural equation models in the state-space framework, I

will now describe the SEM framework in some detail, followed by a discussion of

similarities and differences between the two modeling frameworks.

1.4 Structural Equation Modeling Framework

In general, SEM is concerned with understanding and evaluating the relations

among both observed and latent variables (Bollen, 1989). Similar to state-space mod-

eling, the model may be expressed using two equations - a measurement equation,

linking the observed variables to the latent variables, and a structural equation, de-

scribing the relations among the latent variables. These equations are formally ex-

pressed as:

Measurement equation: yi = τS + ZSxi + ui ui ∼ N(0, ΣuS) (1.44)

Structural equation: xi = πS + TSxi + vi vi ∼ N(0, ΣvS). (1.45)

A subscript of S indicates that the parameter matrix contains elements associated

with the SEM approach as opposed to the state-space modeling approach. Note here

that the t subscript has been dropped from the equations. If longitudinal models

are fit, variables associated with the T measurement equations must be incorporated

into yi and xi. Also, the structural equation contains the term xi on both sides of the

equation. Such a set up is well suited for examining structures of inter-individual

(i.e., between people) differences (Chow et al., 2010).

Estimation in SEM. A raw data (i.e., full information) maximum likelihood (FIML; see

Enders, 2001) estimation procedure may be used, which, under certain conditions,
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is equivalent to using the PED likelihood function. Parameter estimation is accom-

plished by placing all parameters in a vector, θS, and choosing values such that the

likelihood function is maximized (or the minimum of the negative likelihood func-

tion is minimized). Specifically, negative two times the log of the raw maximum

likelihood function is expressed as (Bollen, 1989)

−2 ln LLFIML(θS) =
N

∑
i=1

[ny log(2π) + log |ΣS|+ (yi − µS)
′Σ−1

S (yi − µS)] (1.46)

where ΣS is the model implied covariance matrix and µS is the model implied mean

vector containing all parameters. The goal is to find estimates for the parameters that

minimizes the negative likelihood.

At this point, it may not be clear why a psychologist might wish to formulate

models using the state-space modeling framework as opposed to the SEM frame-

work. One important advantage of estimating models within the state-space mod-

eling framework is that, given the KF and PED estimation procedure, data where T

exceeds N may be directly accommodated. In the SEM framework there is no easy

or direct estimation procedure when using data where T exceeds N, which I will

discuss more extensively in Section 1.5. Given that psychologists have been using

time series models to estimate their data (Hamaker & Dolan, 2009), it may be bene-

ficial to formulate models in state-space form. To better understand the advantages

offered from both the SEM and state-space modeling frameworks, I will now discuss

the differences and similarities between the two approaches.

1.5 Similarities Between SEM and State-Space Modeling Frameworks

Given the unique advantages both techniques offer, researchers have discussed

similarities and differences between the SEM and state-space modeling frameworks

(Chow et al., 2010; MacCallum & Ashby, 1986; Oud et al., 1990). In fact, both frame-

works may be thought of as special cases of each other (Chow et al., 2010). As
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discussed, an advantage of state-space models is their ability to capture complicated

intra-individual dynamics, as opposed to SEM where a main strength is the ability

to capture group-based and in some instances, inter-individual dynamics using, e.g.,

panel data. It may be beneficial to use state-space models to answer specific hypothe-

ses geared more toward understanding the change that occurs within individuals

over many time points. Additionally, ARMA and VARMA time series models may

be readily structured as state space models making it easier to account for missing

data and to include complex multivariate systems, mixed effects, and certain types

of nonstationarity (Shumway & Stoffer, 2006).

Several methodologists have commented on the correspondence between factor

scores obtained from latent variables in SEM and state estimates obtained from the

KF and related KS (see Shumway & Stoffer, 2006) in state-space models. If the transi-

tion matrix, T, is null (i.e., there exist no structural relations about the state variables),

then the state estimates obtained from the KF are equal to those obtained by the re-

gression method for obtaining factor scores (Oud et al., 1990; Lawley & Maxwell,

1971). Furthermore, when T is null and P0 → ∞, the state estimates obtained from

the KF are equal to the Bartlett estimator of factor scores. This is also the case when

a diffuse prior is used (to be described in detail later), namely, when the diagonals

of the covariance matrix, P0, approach infinity. When T is not null, Dolan and Mole-

naar (1991) showed that the regression method produces more accurate factor score

estimates than the KF; however, if the related KS is also applied to yield E(yit|YiT),

YiT = {yij, j = 1, . . . , T}, then the state and factor score estimates are again equivalent

(also see Chow et al., 2010).

Equivalences between SEM and PED estimation with respect to parameter esti-

mates have been discussed by Chow et al. (2010) and MacCallum and Ashby (1986).

When the transition matrix T is null Chow et al. (2010) show the exact analytical

equivalence, for the cases where both T = 1 and T > 1, of the likelihood functions
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for SEM and the PED function derived from using the KF. In this case, since they

are equivalent initial condition specification is not an issue. However, when the tran-

sition matrix T is not null, then the parameter estimates from the SEM likelihood

function will NOT be equivalent to those from the state-space likelihood function,

unless the same initial condition distribution is incorporated as part of the model in

the SEM framework. Thus, if a state-space model is estimated in the SEM framework,

the transition matrix T is not null, and the same initial condition specification was

not used, the parameter estimates will not be correct.

Issues in fitting longitudinal models with large T. A reason why psychologists may

wish to formulate models in state-space form as opposed to SEM form is to han-

dle data that have a large number of time points T and a relatively small sample

size N. Estimating such data within the SEM framework poses several difficulties.

For instance, when there are T measurement occasions along with ny manifest vari-

ables at each time point, the data input matrix will be of dimension N × Tny. The

associated data covariance matrix is singular (i.e., rank-deficient) if T > N, even

when ny = 1, and thus cannot be handled using SEM. In addition, in SEM it is re-

quired that a Tny × Tny model-implied covariance matrix, ΣS, be inverted, which

can be computationally unmanageable. Several methodologists have proposed solu-

tions to circumvent the problems of a singular data matrix, including using a block

Toeplitz approach (Molenaar, 1985; Nesselroade & Molenaar, 1999) and a FIML esti-

mation procedure with specific constraints on the model-implied covariance structure

(Hamaker, Dolan, & Molenaar, 2003), both of which pose their own challenges. Fur-

thermore, all existing SEM approaches to handling data where T exceeds N deal only

with stationary systems.

A block Toeplitz approach, proposed by Molenaar (1985), provides a way to re-

duce the input covariance matrix. Basically, a block Toeplitz matrix is formulated

by lagging the observed data on themselves for as many lags as the model specifies.
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Structurally, this matrix consists of the combination of lagged covariance matrices

with a lag zero covariance matrix in the main block diagonal and the lagged co-

variance matrices in the off-diagonal block. If individuals are expected to display

a similar structure, these matrices may be pooled (Nesselroade & Molenaar, 1999).

While this approach has some benefits, there are also some drawbacks. The inde-

pendence assumption that SEM relies on is violated due to the temporal dependence

in the time series data and this results in pseudo-ML estimates (Molenaar & Nessel-

roade, 1998). There are also redundant elements in the block Toeplitz matrix which

researchers need to be aware of so the degrees of freedom are properly adjusted.

One option to resolve this issue is to just use the unique parts associated with the

concurrent and lagged effects (see Browne & Zhang, 2005). Another limitation, how-

ever, is that neither the block Toeplitz formulation or the formulation by Browne and

Zhang (2005) inherently address the concerns for initial condition specification and

use least squares or generalized least squares approaches for parameter estimation

(ML estimates cannot be obtained).

Hamaker et al. (2003) described a method that employs FIML estimation using

the raw data. In this approach, special parameter constraints need to be introduced

in order to make sure the model-implied covariance matrix is positive definite (non-

singular). This procedure may be computationally difficult as a Tny× Tny covariance

matrix still needs to be inverted at each iteration. They deal with stationary models

and they describe procedures for computing initial condition values based on either

1) back-forecasting (Box & Jenking, 1976, pp. 213-217) to obtain the unconditional

sum of squares, 2) the unconditional mean and covariance structures, or 3) setting

the first p states equal to zero and calculating the initial condition based on the data

up to p, then using the rest of the p + 1 data to estimate parameter values. Thus,

nonstationary systems are not dealt with because the constraints that have to be

imposed to ensure the positive definiteness of the model-implied covariance matrix
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can only be derived for stationary systems.

In summary, it may be beneficial to structure models within the state-space mod-

eling framework as time series processes are easily incorporated, data where T ex-

ceeds N may be easily accommodated even for nonstationary processes, and intra-

individual dynamics may be more easily modeled and captured. I now turn to a more

technical discussion of initial condition specification in both the SEM and state-space

modeling frameworks.

1.6 Technical Detail of Initial Condition Specification in the SEM Framework

In the past, psychologists have initialized their models in a number of ways when

using the SEM framework. For example, as discussed, standard LCMs are typically

initialized by freely estimating the parameters associated with the latent factors in the

initial condition distribution. This amounts to freely estimating the means, variances,

and covariances among the latent factors within the initial condition distribution.

Bollen and Curran (2004) discussed an auto-regression latent trajectory (ALT)

model which incorporates features of both a latent curve model and autoregressive

time series process of order 1. They also specify that the AR(1) weight, α, must be

in between the values of -1 and 1, rendering this process to be non-explosive. In this

case, the manifest variables must be initialized as they are the variables exhibiting

the AR(1) process. One method they propose for initializing this process is speci-

fying the first manifest variable, yi1, to be exogenous. This first manifest variable

is then not regressed on the latent states, although it may be regressed upon possi-

ble time-invariant covariates. It is, however, correlated with the latent states and all

subsequent manifest variables. Therefore, the first manifest variable is distributed as

yi1 ∼ N
(

µy1 , σ2
u1

)
(1.47)

with the option of adding covariates into the distribution. If no covariates are added,
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then µy1 and σ2
u1

are simply the unconditional mean and variance of the observed

variable yi1. They describe another method for initializing the process that specifies

yi1 to be endogenous and influenced by another variable, yi0. They show that, if

the α parameters are equal over time and |α| < 1 (i.e., conditions for stationarity),

then the factor loadings linking yi1 to the latent intercept and latent slope may be

constrained to (1− α)−1 and −α(1− α)−2, respectively. The initial state vector may

then be expressed as,

yi0 = xINTi + (1− α)−1 − xSLPiα(1− α)2 + zi0 (1.48)

where zi0 is an infinite weighted sum of previous u variables. Hamaker (2005) de-

scribed how the zi0 term is actually just an AR(1) process. Thus, the initial condition

distribution for yi1 is now much more complicated and expressed as

yi1 ∼ N
([

(1− α)−1µxINT − α(1− α)−2µxSLP

]
,(1.49)[

((1− α)−1)2σ2
vxINT

+ (α(1− α)−2)2σ2
vxSLP

− 2(−α(1− α)−3)σ2
vxINT xSLP

+ σ2
u

1−α2

])
.

While this works mathematically, it may be difficult for the model to converge as

the initial condition is made up of complicated non-linear constraints that must be

explicitly constructed into the initial condition distribution of the model. Also, these

constraints are derived assuming the model is stationary, so nonstationary processes

are not dealt with in this case.

Du Toit and Browne (2001, 2007) were among the first to explicitly consider ini-

tial condition specification in the SEM framework. Specifically, Du Toit and Browne

(2001, 2007) discussed methods analyzing times series models in SEM by incorporat-

ing a covariance structure that allows for some specification of initial condition based

on the stationarity of the model. The models they discussed are VARMA time series
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models, as expressed in Equation 1.4, being estimated in the context of SEM with

the option of using ny observed variables for all individuals instead of just a single

time series (i.e., a single set of yt variables). The VARMA equation formulation is

reproduced here for convenience,

yit =
p

∑
r=1

Aryi,t−1 +
q

∑
j=1

Bjvi,t−j + vit

where yit represent the ny× 1 vector of observed variables over time.

When assuming the process is stationary, Du Toit and Browne (2007) used the

unconditional mean and covariance matrix to specify the initial condition distribu-

tion (i.e., µ0 = µ P0 = P). They also considered a condition where they allowed for a

change of process prior to the first observation, but assumed a stationary process on-

ward. This amounts to the solution that freely estimates the parameters of the initial

condition distribution, i.e., parameters contained in µ0 and P0 are freely estimated.

The third method Du Toit and Browne (2007) consider is assuming the process truly

started at t = 1. This amounts to using a null vector and matrix for the mean and

covariance matrices of the initial condition distribution, i.e., µ0 = 0 and P0 = 0.

Du Toit and Browne (2007) first explained how to estimate a VARMA model to

a group of subjects using SEM by deriving the lagged covariance structure for the

observed variables, yit. They explained that, in a VARMA(p,q) process, the first m

variables are directly affected by the initial state variables where m = max(p, q).

They created an initial state vector of dimension nym× 1 that contains variables that

affect the first m time points of the observed variables,

f =
[

f′11 f′21 f′31 . . . f′m1

]′
(1.50)

An equation representing the effects of the initial state variables on the process vari-

27



ables at the first time point is formulated as

fl1 =
m

∑
j=1

A[l]
j yl−1 + B[l]

j vl−1 l = 1 . . . m. (1.51)

Given this, if we let y be a nyT × 1 vector stacking all T of the ny × 1 observed

variable vectors and v be a nyT × 1 vector stacking all T of the ny× 1 random shock

vectors, the overall model structure may now be defined as

y = T−1
−A(IT|mf + TBv) (1.52)

where IT|m is a nyT × nym matrix formed from the first nym columns of the

nyT × nyT Identity matrix, T−A and TB are both nyT × nyT lower triangular block

Toeplitz matrices, with elements going back in time as far as m, where T−A con-

tains the negative autoregression parameters while TB contains the moving average

parameters (for a specific example, see Du Toit & Browne, 2007, Eq. 7 and Eq. 8),

T−A =



Iny 0 0 0 . . . 0

−A1 Iny 0 0 . . . 0

−A2 −A1 Iny 0 . . . 0

−A3 −A2 −A1 Iny
. . . 0

... . . . . . . . . . . . . 0

0 . . . −Am . . . −A1 Iny


(1.53)
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TB =



Iny 0 0 0 . . . 0

B1 Iny 0 0 . . . 0

B2 B1 Iny 0 . . . 0

B3 B2 B1 Iny
. . . 0

... . . . . . . . . . . . . 0

0 . . . Bm . . . B1 Iny


. (1.54)

The covariance structure of y may then be represented as (Du Toit & Browne, 2007,

Equation 31)

Σy = Cov(y, y′) = T−1
−A(IT|mP0 f I′T|m + TB(IT ⊗ Σ2

v)T
′
B)T

−1′
−A (1.55)

where ⊗ denotes the Kronecker product and P0 f = Cov(f, f′). Given this structure,

the P0 matrix may be composed of extra parameters to be estimated. This allows for

the possibility of a change of process before the first observation was collected, but

assumes stationarity from the first observation to the final one.

Du Toit and Browne (2007) next introduced a state-space formulation to derive

the specific structure of the initial condition distribution for a stationary VARMA

model, and hence an initial condition distribution that contains parameters that are

already in the model. Since stationarity is assumed throughout the whole process,

the f variables may be extended to represent the whole process,

ft+1 = Aft + Gvt (1.56)

yt = Hft + vt (1.57)

where Equation 1.56 is the transition equation and Equation 1.57 is the measurement
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equation. ft is now a nym× 1 vector of the initial state variables given by

ft =



f1t

f2t

...

fmt


t = 1, 2, . . . , T. (1.58)

A is a nym× nym matrix given by

A =



A1 Iny 0 . . . 0

A2 0 Iny . . . 0
...

...
... . . . . . .

Am−1 0 0 . . . Iny

Am 0 0 . . . 0


(1.59)

where A1, . . . Am are ny× ny autoregression weight matrices and Iny is the identity

matrix of dimension ny. G is a nym× ny matrix given by

G =



A1 + B1

A2 + B2

...

Am + Bm


(1.60)

where B1, . . . Bm are ny× ny moving average weight matrices. For the measurement

equation, yt is a nyT × 1 vector of observed variables, H is a ny× nym matrix given

by

H =

[
Iny 0ny 0ny . . . 0ny

]
. (1.61)
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Finally, vt is a nym× 1 vector given by

vt =



v1t

v2t

...

vmt


(1.62)

where vt ∼ N(0, Σv). Now, the covariance matrix for the initial state vector may be

expressed as a function of parameters already in the model,

vec(P0 f ) = (I−A⊗A)−1vec(GΣvG) (1.63)

where the vec operator stacks all elements (column-wise) into a vector and the A and

G matrices correspond to those from Equations 1.57, 1.59, and 1.60. This specification

is for a process that has started in the distant past and satisfies the condition of

weak stationarity. Since the process remains stable prior to the first observation, the

initial condition distribution, specifically the covariance matrix P0 f , is a function of

parameters that are already in the model, and represents the unconditional covariance

matrix. This can be seen in Equation 1.63, where the covariance function includes the

AR parameters, MA parameters, and the process noise variance. Also, assuming

stationarity ensures that the structure of Equation 1.55 holds.

Another specification for initial condition Du Toit and Browne (2007) discussed

happens when a change in the process could have occurred before the first observa-

tion, x1. In this case, the parameters in P0 f are considered additional parameters that

are actually estimated, although the mean value of xi0 is not considered. In this case,

there are 1
2 nym(nym + 1) additional parameters to be estimated. This specification

may not produce the exact covariance structure as in Equation 1.55, with more dis-

tinct differences at earlier time points. If the vector AR part of the model is stationary
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(i.e., as indicated by elements of the A matrices), however, this specification will tend

toward the covariance structure as t increases. This type of initial condition distri-

bution is also commonly implemented in growth curve and latent difference score

models in the SEM literature. For example, Chow et al. (2010) formulated a dual

change score model (McArdle & Hamagami, 2001) in state-space form and included

initial condition by allowing the elements of the initial condition mean vector and

covariance matrix to be parameters estimated in the model.

Another variation of stationarity Du Toit and Browne (2007) discuss is to assume

the process started at the time of the first observation and that there are no prior in-

fluences. The choice of covariance matrix P0 f would then be a null matrix. However,

they are assuming stationarity once the process has started. The structure of the over-

all covariance matrix thus may not be the structure presented in Equation 1.55, but

rather it will approximate this structure more and more accurately with increasing

time points.

One similar feature across their differing structures is that the process is con-

sidered stationary after the initial time point. Thus, while there may have been a

change beforehand, the process must remain stationary throughout the time points

after t = 0. Thus, the covariance structure differs as a function of lag but not over

time.

Some quantitative methodologists have considered initial condition specification

with respect to using the KF and PED estimation procedure. Oud et al. (1990) es-

timated a model by first using a ML estimation in the LISREL software program

(Jöreskog & Sörbom, 2001) and subsequently using the parameter estimates to make

a pass through the KF. When making a pass through the KF, Bartlett’s estimates and

associated covariance matrix of the cross-sectional factor scores (Lawley & Maxwell,

1971) for the first time point were used as the initial condition distribution. This leads
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to the following equations for xi1PRED and P1PRED:

xi1PRED = (Z′(Σu)
−1Z)−1Z′Σ−1

u )yi1 (1.64)

P1PRED = (Z′(Σu)
−1Z)−1. (1.65)

Oud and Jansen (1996) performed a similar procedure, but this time implemented

the expectation-maximization (EM; Dempster, Laird, & Rubin, 1977) estimation pro-

cedure iterating between performing the M-step in LISREL and the E-step using the

KF until some convergence criterion was met. In this case, however, they used the

cross-sectional regression estimator for factor scores (Lawley & Maxwell, 1971) at the

first time point as opposed to Bartlett’s estimates, leading to the following equations

for xi1PRED and P1PRED:

xi1PRED = ΣvZ′(ZΣvZ′ + Σu)
−1yi1 (1.66)

P1PRED = Σv(I + Z′Σ−1
u ZΣv)

−1. (1.67)

Once again, however, these approaches are for stationary models that assume the

process has started in the distant past.

In summary, quantitative psychologists have considered several different initial

condition specifications. Assuming a stationary process, the unconditional mean and

covariance matrix may be used for the initial condition distribution, as considered

by Du Toit and Browne (2007). Bollen and Curran (2004) considered a similar pro-

cedure when they derived what the factor loadings would be given a non-explosive

process. Another specification is freely estimating parameters that are included in

the initial condition distribution. Du Toit and Browne (2007) considered this in the

context of VARMA models, Bollen and Curran (2004) considered this in the context

of ALT models, Chow et al. (2010) considered this in the context of a dual change

33



score model, and this is the general procedure used when estimating a conventional

latent growth curve model. Finally, treating the initial condition as a null vector was

considered by Du Toit and Browne (2007).

1.7 Technical Detail of Initial Condition Specification in the State-Space

Modeling Framework

While some authors in psychological research have discussed initial condition

specification in depth (e.g., Du Toit & Browne, 2007), most of the methodological

work on this subject has been conducted in the state-space literature. Harvey (1991)

explains that if the transition equation is stationary, then the distribution of initial

condition is given by the mean and covariance matrix of the unconditional distribu-

tion of the state vector. This amounts to a mean of E(xi0) = (I− T)−1τ, where τ is

a vector of intercepts (see Equation 1.27), and covariance matrix which is the unique

solution to the equation: Pt = TPtT′ + Σ′v. A solution to this equation given more

complicated models has a similar form as found in Du Toit and Browne (2007), here

shown in Equation 1.63,

vec(P0) = (I− T⊗ T)−1vec(Σv). (1.68)

This holds for all state-space models, of which VARMA processes can be structured

as a special case. However, this is also only for stationary models.

If the transition equation is not stationary, the unconditional distribution of the

state vector is not defined (Harvey, 1991). If prior information is available for the

distribution of xi0, then the KF via the PED will yield the exact likelihood function,

as there will be a known µ0 and bounded P0. However, there must be realistic prior

information for this to be the case; otherwise a diffuse, or non-informative prior, must

be used.

The idea of a diffuse initial condition has been discussed in depth in the state-
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space and econometric literature (De Jong, 1991; De Jong & Chu-Chun Lin, 1994;

De Jong, 2003; Koopman & Durbin, 2000, 2003). De Jong (1991) explains that a state

is diffuse if the covariance matrix associated with it has arbitrarily large values in

its diagonal entries. More formally, this is defined as P0 = κI where κ is a positive

scalar, with a diffuse prior having κ → ∞ (Harvey, 1991). Another way of interpreting

this is to say P−1
0 approaches zero. Such a diffuse initial state is appropriate to use

when there is either uncertainty in the initial condition or the model is nonstationary

(De Jong, 1991).

The KF in its original set up cannot handle incorporating a diffuse initial state

(De Jong & Chu-Chun Lin, 1994). It would need to be initiated with P0 = κI, and

plugging this into the prediction equation for the covariance matrix (Equation 1.39)

would amount to P1PRED = TκIT′ + Σv, which cannot be used unless κ takes on a

finite value. Also, since the initial condition distribution will enter into the likelihood

function, κ will be present in this function as well. Thus, several methodologists have

developed methods for incorporating a diffuse initial state. Schweppe (1973), Harvey

and Phillips (1979), and Chow et al. (2010) have dealt with a diffuse initial state by

initiating the KF with a very large covariance matrix. De Jong (1991) discussed how

this can lead to numerical problems and furthermore, the question of the existence

of diffuse constructs is not addressed. Koopman (1997) commented that this is not

an exact solution and may lead to inaccurate results due to rounding errors.

Another way to deal with a diffuse initial condition is to use the Information fil-

ter, which is a variant of the KF. This procedure adapts recursions that are based on

P−1 instead of P, making it useful for specifying a diffuse prior of P−1 = 0 (Kitagawa,

1981). However, Ansley and Kohn (1985) reported that this procedure breaks down

in some cases and may be numerically inefficient. Also, it cannot be used in all mod-

eling situations. Ansley and Kohn (1985) also developed a modified KF which allows

for the implementation of a diffuse prior by allowing the covariance matrix of the
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initial state vector, P0, to approach infinity. This method employs a transformation

eliminating the dependence on the initial state vector. While this method works,

De Jong (1988, 1991) developed an augmented KF, called the diffuse KF (DKF), that

augments the original KF by adding an extra set of recursions. This procedure is

easier to implement and more efficient than the one proposed by Ansley and Kohn

(1985). Also, it does not require any transformation of the data and the diffuse ele-

ments of the model are estimated simultaneously via the extended recursions. This

approach can also handle missing data and does not require a marked degree of

added complexity with respect to computation. In fact, the DKF implicitly com-

putes initial condition estimates from a set of initial observations and uses these to

initiate the regular KF. Koopman (1997) developed a method allowing for a diffuse

initial condition that is a modification of the Ansley and Kohn (1985) approach. This

method expressed the KF in terms of the constant κ and then allows κ → ∞. He

explains that this approach is more computationally efficient than De Jong’s (1991)

DKF approach. As these two approaches are currently considered to be both efficient

and easy to implement, I will discuss both in greater detail.

De Jong’s DKA. To circumvent the problem of κ appearing in the initial condition dis-

tribution and likelihood function, De Jong (1991) proposed a solution that essentially

takes the first nd observations of the data, where nd equals the number of diffuse

states, and uses them to construct an estimate of the mean and covariance matrix

for the diffuse elements. To better illustrate the derivation of the DKA, consider the

following state vector at time t = 0:

xi0 = µ + A∞δ + A∗η, δ ∼ N(0, κInd), with κ → ∞, η ∼ N(0, P∗) (1.69)

where µ is a nx × 1 vector of fixed and known elements corresponding to the un-

conditional mean for a stationary process or zero for a nonstationary process, A∞
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and A∗ are selection or indicator matrices that correspond to the diffuse part of

the initial state vector and the stationary part of the initial state vector, respec-

tively, where A∞ is of dimension nx × nd and A∗ is of dimension nx × ns where

ns equals the number of stationary states. The random vector δ represents the dif-

fuse initial condition random vector and is a column vector of dimension nd × 1.

The random vector η is a column vector of dimension ns × 1 and represents the

non-diffuse or stationary part of the initial state vector and has a covariance matrix

that may be equal to the unconditional covariance matrix of the non-diffuse or sta-

tionary series, which we will call P∗. De Jong uses the augmented equations from

t = 1, . . . , t = nd to calculate the expected value of the diffuse state vector given

the data, δ̂ = E(δ|data from t = 1, . . . , t = nd), the covariance matrix of the diffuse

state vector given the data, Cov(δ|data from t = 1, . . . , t = nd), and related quantities

which are then used to refine the filtered estimates, the associated covariance matrix,

and the log-likelihood function.

The overall distribution of the initial state vector is then

x0 ∼ N(µ, κA∞A′∞ + A∗P∗A′∗). (1.70)

The DKF will be the same as the ordinary KF if δ is a null vector and thus A∞ is a

null matrix, making the whole model non-diffuse (De Jong & Chu-Chun Lin, 1994).

With the existence of diffuse initial states, the original KF would be initialized using

P0 = κA∞A′∞ + A∗P∗A′∗. In the diffuse case, κ → ∞, and thus the initialization

breaks down since κ appears in the equation for the initial covariance matrix. In

order to implement the DKA, there must be a solution to the fact that when κ → ∞,

the original recursions break down and cannot be initialized. The solution De Jong

(2003) described consists of adding several vector augmentations of the original KF

and an extra set of recursions which are used to calculate all quantities associated
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with δ until t = nd (or, given missing data in the initial stretch of data, until a later

time). This augmented filter may then be collapsed to the original KF after a certain

period of time, usually equal to the number of diffuse states, nd (however, this is not

always the case, due to data-irregularities such as missing data). The by-products

of these augmented equations will then result in a set of estimates for the mean

and covariance matrix of the diffuse initial condition as well as the terms for the

log-likelihood function.

The augmented equations are as follows. First, the observed yit vector must be

augmented with nd columns of zeros. With the extra consideration that there can be

multiple numbers of y variables, where ny again equals the number of y or observed

variables, this amounts to:

y∗it = [0nd yit] (1.71)

where 0nd is an ny × nd zero matrix. The vector of innovations and the vector of

predicted values are also augmented as follows:

ε∗it = [Eit εit] = y∗it − Zx∗itPRED (1.72)

x∗itPRED = [A∞it xitPRED] (1.73)

x∗i,t+1,PRED = [A∞i,t+1 xi,t+1,PRED] = T[A∞it xitPRED] + Kt[Eit εit] (1.74)

where x∗itPRED is of dimension nx × (nd + 1) and ε∗it is ny × (nd + 1), with Eit and

A∞it having dimension nx × nd, and εit and xitPRED having dimension nx × 1. εit

are the usual innovations while Eit now contains information needed to estimate

the diffuse constructs, δ, and this information is also needed in the log-likelihood

equation. The process is initialized with x∗i1PRED = T[A∞ µ], Q1 = 0, and P1PRED =

TA∗P∗A∗T′+Σv where P∗ again represents the covariance matrix associated with the
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stationary part of the model. In addition, the following recursion is added:

Qt+1 = Qt + ε∗
′

it F−1
it ε∗it (1.75)

such that Qt+1 is a (nd + 1)× (nd + 1) matrix with the following elements:

Qt+1 = Qt +

E′itF
−1
it Eit E′itF

−1
it εit

ε′itF
−1
it Eit ε′itF

−1
it εit

 (1.76)

where E′itF
−1
it Eit is an nd × nd matrix, E′itF

−1
it εit is an nd × 1 matrix, ε′itF

−1
it Eit is a

1× nd matrix, and ε′itF
−1
it εit is a scalar. Thus, if there are no stationary elements and

all states in the model are diffuse, this term will be zero. If there are stationary states,

then the P∗ matrix may be the unconditional covariance matrix, corresponding to

A∗P∗A′∗. If no proper priors are used this is a null matrix. Note that none of these

initial conditions are dependent on κ, which allows the DKF to be initialized without

explicitly incorporating κ into the initial condition distribution.

After an initial stretch of the data, De Jong and Chu-Chun Lin (1994) and De Jong

(2003) described how the DKF can be collapsed to the regular KF. This is because the

recursions are no longer dependent on κ as the elements of the equations up to

this point will have provided estimates of the initial state and associated covariance

matrix. Specifically, after an initial stretch of the data, t = 1, 2, . . . , d ≤ n, x∗itPRED and

ε∗t may be collapsed out as they can be reduced to vectors and Qt can be reduced to

a scalar value, after which the ordinary KF can be implemented. At t = d, the Qt

matrix is:

Qd =

S s

s′ qd

 (1.77)
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where S =
d
∑

k=1

N
∑

i=1
E′k−1,iF

−1
k−1,iEk−1,i, s =

d
∑

k=1

N
∑

i=1
E′k−1,iF

−1
k−1,iεk−1,i, and qd =

d
∑

k=1

N
∑

i=1
ε′k−1,iF

−1
k−1,iεk−1,i, where qd contains the usual terms that are input into the log

likelihood function in the regular KF. Once S−1 is nonsingular a collapse can occur

such that the DKF can become the KF, which usually occurs when d = nd. However,

when there is missingness in the initial stretch of the data, the collapse may occur at

a different time.

At the point of the collapse, maximum likelihood estimates of the mean and

covariance matrix of the diffuse state vector may be calculated as follows,

δ̂ = E(δ|Yd) = S−1s (1.78)

VAR(δ̂) =
(qd − s′S−1s)

t− d
S−1. (1.79)

The filter equations may then be calculated as

xi,d+1,FILT = ad + AdS−1s (1.80)

Pd+1,FILT = Pd −AdS−1A′d. (1.81)

Then, from t = d + 1, . . . , T, the regular KF is employed which now incorporates

estimates of elements from the mean and covariance matrix of the diffuse states.

Thus, the effects of initial condition are estimated from an initial stretch of the data,

added to the regular KF, and then the regular KF is employed for the rest of the data.

Another challenge when using a diffuse initial condition is using a likelihood

function that does not depend on κ. The term PtPRED needed to compute Fit in

Equation 1.40 contains an infinity term. De Jong (1991) derives a formation of a
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likelihood as κ → ∞ that can be expressed as,

−2 ln L(θ) ∝
N

∑
i=1

T

∑
t=1

log |Fit|+ qT + log |S−1
T |+ s′TSTsT. (1.82)

Shown another way, if the DKF can be collapsed at t = nd, such that S−1 is non-

singular at t = nd, then the likelihood is as follows:

−2 ln L(θ) ∝
N

∑
i=1

nd

∑
t=1

log |Fit|+ qnd + log |S−1
nd | − s′ndSndsnd (1.83)

+
N

∑
i=1

T

∑
t=nd+1

log |Fit|+
N

∑
i=1

T

∑
t=nd+1

ε′itF
−1
it εit.

Koopman’s approach. The approach initially described by Koopman (1997) does not

require the augmented matrix operations that the De Jong (1991) approach requires.

Instead, Koopman developed what he terms an exact initial KF that breaks up the KF

into two parts: recursions for the diffuse elements and recursions for the non-diffuse

elements. Koopman (1997) termed this the exact initial KF because the KF equations

are expressed explicitly in terms of κ and then a solution is obtained by allowing κ

to approach infinity (see p. 1631-1632 for the proof).

To describe this approach, first denote Mt = PtPREDZ′ so Kt = MtF−1
it . Koopman

then structures the covariance matrix of the initial condition as follows,

P0 = P∗ + κP∞ (1.84)

where P∗ represents the non-diffuse part of the initial condition covariance matrix,

i.e., A∗P∗A′∗ using the notation from Equation 1.69, and P∞ represents the diffuse

part of the initial condition covariance matrix, i.e., A∞A′∞. This procedure is then

initialized with P∞,0 = A∞A′∞ and P∗,0 = A∗P∗A′∗.

The exact initial KF then modifies Equation 1.34 and Equation 1.35 to include
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recursions for the diffuse elements as follows,

Fit = F∗,it + κF∞,it (1.85)

Mt = M∗,t + κM∞,t (1.86)

where

F∗,it = ZM∗,t + Σu F∞,it = ZM∞,t (1.87)

M∗,t = P∗,tZ′ M∞,t = P∞,tZ′. (1.88)

Koopman (1997, p. 1631-1632) provided explicit solutions to the exact initial KF re-

cursions. Koopman and Durbin (2003) suggested only using solutions resulting from

the two special cases of F∞,it, that is, when F∞,it is non-singular and when F∞,it is

equal to zero. When F∞,it is a nonzero singular matrix, Koopman and Durbin (2003)

suggested using the approach described by Koopman and Durbin (2000), which in-

volves converting the multivariate series to a univariate series under the assumptions

that the measurement errors and process noise are uncorrelated and Σu is a diagonal

matrix (Koopman, Shephard, & Doornik, 2008, p. 100).

For most well-defined state-space models, F∞,it is non-singular. F∞,it will be equal

to zero when there is all missing data in yit for a particular occasion t. For all cases

where F∞,it is singular, there is usually something peculiar with the model, such as

having redundant latent variables or manifest variables. Overall, it makes sense to

use the univariate approach in case of a singular F∞,it matrix. Also, Koopman and

Durbin (2000) described how using their univariate method improves computational

efficiency, especially for more complicated models (see Table 1, p. 287, Koopman &

Durbin, 2000).

Koopman (1997) derived the form of Equation 1.85 as κ → ∞. In order to com-
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plete this, Koopman (1997) first partially diagonalized the F∞ and F∗ matrices (see

Equation 7 in Koopman, 1997). He next expanded the inverse of F in Equation 1.85

to arrive at the equation,

F−1 = F−∗ +
1
κ

F−∞ −
1
κ2 F−∞F∗F−∞ +O( 1

κ3 ) (1.89)

where F−∗ and F−∞ are derived from elements of the partial diagonalization of F∞

and F∗. Taking the limit of Equation 1.89 as κ approaches infinity will allow the

terms involving κ terms to drop out of the log-likelihood as they are now all in

a denominator, and the whole term will become infinitely small. The diffuse log-

likelihood is then,

−2 ln L(θ) ∝
N

∑
i=1

nd log |k|+
T

∑
t=1

ny log 2π + log |Fit|+ ε′itF
−1
it εit (1.90)

and Koopman (1997) further showed that the -2 log-likelihood becomes,

−2 ln L(θ) ∝
N

∑
i=1

T

∑
t=1

log |F−∗,it + F−∞,it|+ ε′itF
−
∗,itεit (1.91)

as
N
∑

i=1

T
∑

t=1
ε′itF

−1
it εit =

N
∑

i=1

T
∑

t=1
ε′itF

−
∗,itεit as κ → ∞. For the cases where F∞,it equals zero

or is non-singular, the exact prediction equations are

xi,(t+1)PRED = TxitFILT (1.92)

P(∗,t+1)PRED = TP∗,tPREDT′ + Σv (1.93)

P(∞,t+1)PRED = TP∞,tPREDT′. (1.94)
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For the case where F∞,it is non-singular, the filtering equations are

xitFILT = xitPRED + K∞,tεit (1.95)

P(∗,t)FILT = P∗,tPRED −K∞,tM′∗,t −K∗,tM′∞,t (1.96)

P(∞,t)FILT = P∞,tPRED −K∞,tM′∞,t (1.97)

where

K∗,t = (M∗,t −K∞,tF∗,it)F−1
∞,it (1.98)

K∞,t = M∞,tF−1
∞,it. (1.99)

For the case where F∞,it is zero, the filtering equations reduce to

xitFILT = xitPRED + K∗,tεit (1.100)

P(∗,t)FILT = P∗,tPRED −K∗,tM′∗,t (1.101)

P(∞,t)FILT = P∞,tPRED (1.102)

where

K∗,t = M∗,tF−1
∞,it. (1.103)

Koopman (1997) next explained that the extra equations do not need to be used after

a time period d when P∞,d+1 becomes zero. This is because Pt is no longer dependent

on κ after time t = d. In this sense, the extra equations may be thought of as providing

the exact initialization of the regular KF at time t = d + 1.

The log-likelihood functions used in this approach depend on whether F∞,it is

non-singular, zero, or singular. Here I will present the functions for the non-singular

and zero case, as Koopman and Durbin (2003) state that these two cases ”apply to
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nearly all time series occurring in practice” (p. 88). When F∞,it is non-singular,

F−∗,t = 0 and F−∞ = F−∞. When F∞,it is zero, F−∗,t = F−1
∗,t and F−∞ = 0. Given this, the

log-likelihoods are, aside from a constant,

Non-Singular Case: − 2 ln L(θ) ∝
N

∑
i=1

d

∑
t=1

log |F−1
∞,it|+

N

∑
i=1

T

∑
t=d+1

log |Fit|+ ε′itF
−1
it εit

(1.104)

Zero Case: − 2 ln L(θ) ∝
N

∑
i=1

d

∑
t=1

log |F−1
∗,it|+ ε′itF

−1
∗,itεit +

N

∑
i=1

T

∑
t=d+1

log |Fit|+ ε′itF
−1
it εit.

(1.105)

Comparison of diffuse approaches. To better understand the differences between the

methods for using a diffuse initial state, consider Table 1.1, which compares three

methods for using a diffuse initial state: 1. the original KF, 2. DFK by De Jong

(1991), and 3. exact initial KF with a non-singular F∞,it by Koopman (1997). To

aid presentation, I used the same initial state equation for deriving the KF initial

conditions for the prediction equations. κ appears only in the original KF, as the

DFK and exact initial KF were derived such that the recursions would be invariant

of κ. For the DKF there are extra dimensions for the matrices in the measurement

equation, prediction equation for the expected value of the states, and innovation

equation. There is also the extra recursion of Qt, which is not used in the other

two approaches. For the Koopman (1997) approach, there are extra equations for the

prediction equation for the covariance matrix of the states and the equation for the

covariance matrix of the innovations. A similarity between the DKF and the exact

initial KF is that they both eventually ”collapse” to the original KF. For the DKF, this

occurs when an element of the Qt matrix, S−1, is nonsingular, which is usually at the

time point t = nd. For the exact initial KF, this occurs when P∞,t is a zero matrix,

which usually occurs at time point t = nd.
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Koopman et al. (2008) explained that the de Jong and Koopman approaches yield

numerically equivalent results. Thus, the log-likelihood values would ultimately be

the same. However, de Jong’s approach may be easier to implement as it is simply

the ordinary KF with some augmented vectors and matrices. Also, Koopman et al.

(2008) explained that de Jong’s approach might be more useful when dealing with

fixed regression effects, which I have not considered. However, Koopman (1997)

stated that de Jong’s approach may be more computationally inefficient due to the

extra recursions yielding the matrix Q that needs to be inverted at each step until

a collapse. Furthermore, Koopman (1997) explained that the equations for the KS,

which I did not show, are more complicated for de Jong’s approach.

In summary, de Jong’s approach computes initial values estimates of the diffuse

states from an initial stretch of the data via the use of the augmented equations,

and then proceeds with the ordinary KF. Koopman’s approach explicitly writes out

the KF equations and provides an alternative method for taking the inverse of the

innovation covariance matrix, F, that involves a partial diagonalization procedure.

Despite both approaches yielding identical results, it is not clear which approach

will be computationally most efficient and easiest to implement given the models I

will consider.

In general, depending on the type of initial condition specification used, state

and parameter estimates may be affected. The degree to which this will affect esti-

mation results depends on the number of time points such that with fewer time point

there will be more noticeable discrepancies. However, the degree to which parameter

estimates are affected due to using a misspecified initial condition distribution is not

currently known. In this thesis, investigated the effects of using different initial con-

dition specifications given cases where the number of time points is relatively small

and the number of time points is relatively large.
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1.8 Examples of Initial Condition Specification in the Literature

As discussed in Section 1.2, researchers implementing models for analyzing lon-

gitudinal data have used a variety of methods for initializing the process. To review,

there are four main general approaches to initializing a process: 1. using the un-

conditional mean vector and covariance matrix, 2. freely estimating parameters in

the initial distribution, 3. setting the initial condition parameters to zero, 4. using a

diffuse initial condition approach. In this section I will revisit some of the examples

of initial condition implementation described in earlier sections and explicitly show

how initial condition was specified, with an emphasis on showing what elements are

populated in the matrices of Equation 1.69. I will also describe examples from the

state-space literature.

Examples from the psychological literature. As discussed, traditional growth curve mod-

els structured in the SEM framework (Meredith & Tisak, 1990; Bollen & Curran, 2006)

have initialized processes by estimating the parameters in the initial condition distri-

bution. This can be more clearly illustrated if we formulate the model in state-space

form. Drawing from the SEM formulation using the set of equations in Equation

1.17, the LCM may be expressed in state-space form as

yit =

[
1 TIMEit

] xINTit

xSLPit

+

[
uit

]
(1.106)

xINTit

xSLPit

 =

1 0

0 1


xINTi,t−1

xSLPi,t−1

 . (1.107)

When expressed this way, an initial condition distribution for the two latent states,
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xINTit and xSLPit, is specified as

x0 =

xINTi0

xSLPi0

 ∼ N


µxINT

µxSLP

 ,

 σ2
xINT

σ2
xINT xSLP

σ2
xSLPxINT

σ2
xSLP


 (1.108)

such that this model now corresponds exactly to the latent growth curve model ex-

pressed in the SEM framework. From Equation 1.69, we can see that the following

matrices would be specified:

µ =

µxINT

µxSLP

 , A∞ = 0, A∗ =

1 0

0 1

 , P0 =

 σ2
xINT

σxINT xSLP

σxSLPxINT σ2
xSLP

 . (1.109)

The dual change score model used by Chow et al. (2010) also used the approach

of freely estimating the parameters in the initial condition distribution. The model

expressed in state-space form has a transition equation expressed as

xINTit

xSLPit

 =

1 + β 1

0 1


xINTi,t−1

xSLPi,t−1

 (1.110)

with the following measurement model:

yit =

[
1 0

] xINTit

xSLPit

+ uit. (1.111)

To initialize this process, Chow et al. (2010) constructed an initial condition distribu-

tion for the two state variables, xINTit and xSLPit with a structure of

x0 ∼ N


µxINT

µxSLP

 ,

 σ2
xINT

σxINT xSLP

σxSLPxINT σ2
xSLP


 . (1.112)
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The elements in this initial condition matrix are then freely estimated, which corre-

sponds to the solution of freely estimating parameters in the initial condition covari-

ance matrix. The elements in the matrices of Equation 1.69 are as follows:

µ =

µxINT

µxSLP

 , A∞ = 0, A∗ =

1 0

0 1

 , P0 =

 σ2
xINT

σxINT xSLP

σxSLPxINT σ2
xSLP

 . (1.113)

Chow et al. (2010) also considered a direct autoregressive factor score (DAFS; see

Nesselroade, McArdle, Aggen, & Meyers, 2001) model which contains two sets of

AR(1) processes at the latent level. Each latent state displays an AR(1) process and

cross regressions among the states are estimated. The model in state-space form is

expressed as:

x1it

x2it

 =

t11 t12

t21 t22


x1i,t−1

x2i,t−1

+

v1it

v2it

 (1.114)

with the following measurement model:



y1it

y2it

y3it

y4it

y5it

y6it


=



1 0

Z21 0

Z31 0

0 1

0 Z42

0 Z52



x1it

x2it

+



u1it

u2it

u3it

u4it

u5it

u6it


. (1.115)

The authors then specified that a large constant be used for κ, which specifies the
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elements of the matrices in Equation 1.69 to be:

µ =

0

0

 , A∞ =

1 0

0 1

 , A∗ = 0, P0 =

1000 0

0 1000

 . (1.116)

This is one of the more commonly used approaches in the state-space literature, es-

pecially for nonstationary processes. For large T, the parameter estimates appear to

be satisfactory. However, this may not be the case for data with a relatively small

T, which is a feature of panel data studies in psychological research. In this thesis

I will explore this issue and determine whether a large κ approach produces satis-

factory results when using small T, or whether a different diffuse approach, such

as de Jong’s DKF and Koopman’s exact initial KF approach, would produce more

acceptable results.

Du Toit and Browne (2007) implemented and compared three procedures for ini-

tializing a VARMA process estimated in the SEM framework. When assuming the

process is stationary, they used Equation 1.63 to derive the unconditional mean and

covariance matrix to be used as initial condition (i.e., µ0 = µ and P0 = P). They

also considered a condition where they allowed for a change of process prior to the

first observation, but assumed a stationary process onward. This is equal to the so-

lution that freely estimates the parameters of the initial condition distribution, i.e.,

parameters contained in µ0 and P0 are freely estimated. The third solution (Du Toit &

Browne, 2007) consider is assuming the process truly started at t = 1. This amounts

to using a null vector and matrix for the mean and covariance matrices of the initial

condition distribution, i.e., µ0 = 0 and P0 = 0. To compare the three initializa-

tion methods, they fit three VARMA(1,1) models, each one using a differen initial

condition specification, to an empirical data set and examined the results. The speci-

fication where the parameters are freely estimated in the initial condition distribution

provided the best fit, while the null condition provided the worst fit. This may be be-
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cause the process is not stationary, and the freely estimated specification corresponds

most closely with a nonstationary process. They also conducted a χ2 difference test

as the model-implied specification and null condition are nested under the freely es-

timated condition. The results indicated that the freely estimated condition provided

better fit above and beyond what would be expected by change alone, thus indicating

that there was most likely a change in process before the first observation. However,

the use of a diffuse prior was not considered, and may have provided even better fit

if the process is truly nonstationary.

Examples from the state-space literature. Initializing procedures from the state-space

modeling literature more frequently include some variation of a diffuse initial con-

dition. For example, De Jong (2003, see p. 144) considered a single-subject model

that contains one process that is stationary and one process that is nonstationary,

expressed as,

yt =

[
1 1

]
xt + vt (1.117)

xt+1 =

1 0

0 eφht

 xt + ut. (1.118)

De Jong (2003) describe this model as being a random walk plus an AR(1) process

where the error terms are correlated. The random walk is then nonstationary while

the AR(1) process is stationary. They initialize the nonstationary process using the

DKF method and the stationary process using the unconditional mean and covariance

matrix method. Given Equation 1.69, they initialize the procedure with

µ =

0

0

 , A∞ =

1

0

 , A∗ =

0

1

 , P∞,0 = 0, P∗,0 =
1
−2φ3 (1.119)

where zero and 1
−2φ3 represent the unconditional mean and variance for the station-
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ary process of the model.

Koopman (1997) illustrated several models where he initializes the initial con-

dition using his exact KF approach. One such model is a single-subject time series

model with a local linear trend component (see p. 1634). The transition equation is

expressed as

xINTit

xSLPit

 =

1 1

0 1


xINTi,t−1

xSLPi,t−1

+

vxINTit

vxSLPit

 (1.120)

and measurement model is expressed as

yit =

[
1 0

] xINTit

xSLPit

+ uit. (1.121)

Given that both states, xINTit and xSLPit, in this model are nonstationary, Koopman

(1997) initiates the process by assuming a diffuse prior for both states. Thus, when

using the exact KF, the process is initialized with the following:

µ =

0

0

 , A∞ =

1 0

0 1

 , A∗ = 0, P∞,0 =

1 0

0 1

 , P∗,0 = 0. (1.122)

1.9 Current Investigation

Past research (i.e., Oud et al., 1990; Du Toit & Browne, 2001, 2007; De Jong,

1991; Koopman, 1997; Harvey, 1991) and the analytical expressions indicate that it

is important, especially with few time points and nonstationarity, to correctly spec-

ify initial condition. Furthermore, no one has explicitly shown the consequences

of using different specifications for initial condition when there are both stationary

and nonstationary elements in the model. In psychological research there exist both
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nonstationary processes and a design containing a relatively small number of time

points, which makes it even more important to consider these issues. Past research

highlights the difficulties in estimating state space models and time series models

as SEMs. The different approaches all carry some advantages and disadvantages,

although no systematic and thorough examination of the effects of initial condition

specification have been conducted in the context of using these models in SEM. Thus,

it is not known whether using a diffuse prior, either with the original KF, DKF, or

exact initial KF, would be beneficial. Also, it is unclear how this might be initialized,

as doing so using the KF and PED may require adding the augmented equations

or extra recursions (De Jong, 1991; Koopman, 1997). The overall goal of this thesis

was to conduct an examination of the effects of using different initial condition spec-

ifications for both stationary and nonstationary models that may be formulated as

state-space models and estimated within the SEM framework. Unique contributions

of this thesis include (1) comparing different ways of initializing state-space models

and equivalent structural equation models for both intensive repeated measures data

and panel data using the raw data likelihood approach and (2) comparing methods

proposed in the state-space literature within the context of latent variable models

within the SEM framework.
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CHAPTER 2

Methods

For this thesis I evaluated and compared different methods for initializing SEM

models incorporating time series processes formulated as state-space models. I con-

ducted a Monte Carlo simulation study varying the type of initial condition specifica-

tion administered for both a stationary and non-stationary process. The two models

used were process factor analysis (PFA; Browne & Nesselroade, 2005) models with

vector AR processes and no MA process, also called a direct autoregressive factor

score (DAFS; see Nesselroade et al., 2001) model, which is actually a special case of

the PFA model with an AR(p) process and no MA process. For each initial condi-

tion specification and model, I examined two data structures: one that resembles an

intensive repeated measures study with a small sample size, N = 20, and large num-

ber of time points, T = 50, and one that resembles a panel data study with a large

sample size, N = 200, and small number of time points, T = 5. Table 2.1 contains

information regarding the different manipulated conditions in the simulation study,

each of which will be described in greater detail.

I also illustrated and compared the implementation of all approaches using an

empirical example. Specifically, I analyzed an empirical data set from Van Vuuren,

De Beer, and Du Toit (1982) that was also used by Du Toit and Browne (2007) using

some of the initial condition specifications considered in this manuscript. Unlike

Du Toit and Browne (2007), however, I fitted a PFA(1,0) model to the empirical data.
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2.1 Models

I examined two dynamic factor analysis (DFA; Molenaar, 1985; Nesselroade et al.,

2001) models; one that is stationary and one that is non-stationary. The models con-

sidered were PFA models, which combine a factor analytic model and a VARMA(p,q)

time series model to describe the dynamics of the latent variable series. These mod-

els will not have a moving average process but will contain a vector autoregressive

(VAR) process.

Model 1: PFA with stationary VAR(1) process. The first model examined was a PFA(1,0)

model that contains a vector autoregressive process of order 1. In state-space model-

ing form, this model may be expressed as

yit = Zxit + uit (2.1)

xit = Axi,t−1 + vit (2.2)

where yit contains the sets of observed variables, Z is a ny × nx matrix of factor

loadings where ny is the number of observed variables and nx is the number of sets

of latent series, xit contains the sets of latent time series, or factors, A is the nx× nx

transition matrix containing the autoregression and cross-regression weights, uit is a

ny × 1 vector of measurement error variables, and vit is a nx × 1 vector of process

noise variables. Both models will have three indicator variables per latent variable.
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The population values for the stationary model are chosen to be



y1,it

y2,it

y3,it

y4,it

y5,it

y6,it


=



1 0

1.2 0

.8 0

0 1

0 .9

0 1.1



x1,it

x2,it

+



u1,it

u2,it

u3,it

u4,it

u5,it

u6,it


, ut ∼ N





0

0

0

0

0

0


,



.8 0 0 0 0 0

0 .6 0 0 0 0

0 0 2 0 0 0

0 0 0 .8 0 0

0 0 0 0 1.5 0

0 0 0 0 0 .4




(2.3)x1,it

x2,it

 =

 .5 −.1

−.3 .6


x1i,t−1

x2i,t−1

+

v1,it

v2,it

 vt ∼ N


0

0

 ,

1 .4

.4 1


 . (2.4)

This model has two AR processes of order 1 for two distinct latent series, which

allows for the previous latent states to affect the current latent states. Also, there

are cross loadings from one set of latent factors to the other such that a latent factor

at time t predicts the latent factor from the other series at time t + 1. In order to

decipher whether the model is stationary, I calculated the roots of the determinant

of Equation 1.7, which were 1.37 and 2.70. They both have modulus greater than

unity making this a stationary process. Using Equation 1.69, the following matrices

would be specified for the model-implied, free-parameter, and null initial condition

specifications,

A∞ = 0, A∗ =

1 0

0 1

 . (2.5)

Table 2.3 illustrates the elements that would populate the initial condition mean vec-

tor, µ0, and initial condition covariance matrix, P0, given the different initial condition

specifications.
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Model 2: PFA with nonstationary VAR(1) process. The second model was also a PFA(1,0)

process, but this time the vector autoregressive process is nonstationary. The mea-

surement model contains the same structure and population values as Equation 2.3,

however the transition equation now contains the following population values,

x1,it

x2,it

 =

1.2 −.4

.6 1


x1i,t−1

x2i,t−1

+

v1,it

v2,it

 vt ∼ N


0

0

 ,

1 .4

.4 1


 . (2.6)

Calculating the roots of the determinant of Equation 1.7 led to values of .833 and .833,

and the absolute value of both values is not greater than 1, verifying that this model

is nonstationary. Using Equation 1.69, the following matrices would be specified for

the model-implied, free-parameter, and null initial condition specifications,

A∞ =

1 0

0 1

 , A∗ = 0. (2.7)

The top half of Table 2.4 illustrates the elements that would populate the initial con-

dition mean vector, µ0, and initial condition covariance matrix, P0, given the different

initial condition specifications.

Because most replications failed to converge in the condition with intensive lon-

gitudinal data (i.e., N = 20 and T = 50), a simulation condition was added where the

population generating values yielded simulated trajectories that were not as explo-

sive and exhibited mild nonstationarity; i.e., the values towards the end of the time

frame were not exceedingly low or high when compared to the initial values. Still,

the process is nonstationary as the roots of the determinant of Equation 1.7 both have
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modulus less than unity. The values used in this mild nonstationarity case were

x1,it

x2,it

 =

1.2 −.4

.6 1


x1i,t−1

x2i,t−1

+

v1,it

v2,it

 vt ∼ N


0

0

 ,

.05 .02

.02 .05


 . (2.8)

As this set of parameter values produces a true trajectory that is less explosive, I will

refer to it as the condition with mild nonstationarity and the nonstationary model

described in Equation 2.6 as the condition with moderate nonstationarity.

In summary, there are two overall models being considered; a stationary PFA(1,0)

model a nonstationary PFA(1,0) model. The nonstationary model has two sets of pa-

rameter values; one with mild nonstationarity and one with moderate nonstationar-

ity. Note that all models have the same form, the difference in stationarity and degree

of nonstationarity is a result of the varying true parameter values.

To further highlight the differences between stationary and nonstationary states

with respect to the chosen models, consider Figure 2.1. In the top panel, row (A), the

two stationary states are displayed from Model 1. Notice that the values of the y-axis

do not have a large range as the process does not explode over time. The second

panel, row (B), displays the two states from Model 2 for the moderate nonstationary

case. Here, the process is clearly explosive and increases without bound as time in-

creases. The third panel, row (C), displays the two states from Model 2 for the mildly

nonstationary case. While still increasing without bound over time, this process is

not as explosive as the values on the y-axis range from -6 to 6 for state 1 and -10 to

5 for state 2, as opposed to the moderately nonstationary condition where the values

on the y-axis range from -200 to 200 for both states.

Figure 2.2 and Figure 2.3 display the autocorrelation and partial autocorrelation

functions (ACF and PACFs) for a random person for each of the states of the sta-

tionary model, moderately nonstationary model, and mildly nonstationary model in

panels (A), (B), and (C), respectively. The ACF is a standardized version of the au-
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Figure 2.1: Time series plots of states for Model 1 (A), Model 2 with moderate non-
stationarity (B), and Model 2 with mild nonstationarity. Time is displayed on the
x-axis.
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Figure 2.2: Autocorrelation plots of states for one individual for Model 1 (A), Model
2 with moderate nonstationarity (B), and Model 2 with mild nonstationarity. Lag is
displayed on the x-axis.
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Figure 2.3: Partial autocorrelation plots of states for one individual for Model 1 (A),
Model 2 with moderate nonstationarity (B), and Model 2 with mild nonstationarity.
Lag is displayed on the x-axis.
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tocovariance function given in Equation 1.8 from Section 1.1. It is a measure of the

linear dependence between two points on the same time series observed at different

times, and the values must be between -1 and 1. The PACF is a measure of the linear

dependence between two points on the same time series with the linear dependence

of previous lags removed. The PACF is particularly useful for examining a stationary

AR time series process as the PACF value should be zero starting at lag p + 1. Ex-

amination of Figure 2.3 reveals that, given this person’s observations, the stationary

states do indeed follow such a structure as the values are statistically zero starting

with a lag of 2.
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2.2 Initial Condition Specification

The different methods I considered for specifying a fitted initial condition de-

pend on the stationarity of the model. For the stationary PFA, I examined three

methods for specifying initial condition. See Table 2.2 for a list of the specifications

and corresponding initial condition state vectors. I called the first specification a

”model-implied” specification as it uses the unconditional model-implied moments

as initial condition, i.e., P0 = P and µ0 = µ. The specification assumes the data are

stationary and is the method imposed by Du Toit and Browne (2001) using Equa-

tion 1.63 and Harvey (1991) using Equation 1.68. I called the second specification

the ”free-parameter condition” condition as it freely estimates parameters inside the

initial condition matrices, i.e., parameters in P0 and µ0 are freely estimated. This

specification allows for a change in process to have occurred before the first observa-

tion, but assumes stationarity onward. This approach was employed by both Chow

et al. (2010) and Du Toit and Browne (2001). De Jong (1991) also considered this

case when he assumes the initial state vector is fixed but unknown. I called the third

specification the ”null initial condition” as it specifies the initial condition distribu-

tion to be zero. This specification assumes the process started at the time of the first

observation and there are no prior influences, i.e., the model implied moments of the

initial condition are set to zero (P0 and µ0 = 0). This approach was employed by

Du Toit and Browne (2001).

For the nonstationary PFA model, I examined the free-parameter and null initial

condition specifications plus three extra methods that allow for a diffuse initial con-

dition. The first diffuse method is using the DKF described and developed by De

Jong and colleagues (1991, 1994, 2003). The second diffuse method is using the exact

KF approach described by Koopman (1997). The third method is using a diffuse ini-

tial condition specification without using the appropriate likelihood functions, i.e., a

”large κ approximation”. This condition will serve as a comparison to the De Jong
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(1991) and Koopman (1997) approaches that use likelihood functions derived for the

purpose of accurately including a diffuse initial state.

Table 2.3 displays the values that will populate the initial condition distribu-

tion for Model 1 (the stationary PFA(1,0) model), while Table 2.4 displays the values

that will populate the initial condition distribution for Model 2 given the diffuse

approaches.

Data simulation procedure. Simulating stationary states was accomplished by imposing

three true initial condition specifications: 1. populating the initial condition matrices,

P0 and µ0, with the unconditional mean and variance matrices to start the process,

i.e., using the model-implied initial condition specification as the true initial condi-

tion specification, 2. populating the initial condition matrices, P0 and µ0, with true

population vales that are different from the unconditional mean and covariance ma-

trices, i.e., using the free-parameter initial condition specification as the true initial

condition specification, and 3. populating the initial condition matrices, P0 and µ0,

with values of zero, i.e., using the null initial condition specification as the true initial

condition specification. When simulating data according to the free-parameter ini-

tial condition, the following true values were used to populate the initial condition

matrices

µ0 =

1

.5

 , P0 =

1.2 .3

.3 .7

 . (2.9)

Simulating the nonstationary states was accomplished by imposing three true

initial condition specifications. The first two are identical to the last two stationary

specifications (i.e., initializing with free-parameter and null initial condition matrices,

respectively), while the last one allows for the entire process to be fully diffuse.

This last simulation process involved simulating a total of t = 50 time points before

the actually observations are collected. Next, state values were standardized within
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person across the 50 time points and each person’s respective standardized value

at the 50th time point to simulate a new process starting at t = 1. Specifically,

each person’s x1i1 and x2i1 values were assigned to be the that person’s respective

standardized state value at the 50th time point. This is because, since the process is so

explosive over time (see Figure 2.1 panel (B) and (C)), it is likely that the estimation

procedures I intend on using will pose computational difficulties when simply using

the raw data. Also, this procedure allows the process to have started in the distant

past, without imposing an exact distribution for initial condition.

Nature of model misspecification. Table 2.5 displays the different methods used for

misspecifying modeling conditions. The misspecification of fitted models arises from

simulating the data using a distinct initial condition specification. For the stationary

model, data were simulated according to three true initial condition specifications: 1.

model-implied moments specification, 2. null initial condition specification, and 3.

free parameter specification. All initial condition specifications were fit to each of the

simulated data sets. For the nonstationary models, data were simulated according

to three true true initial condition specifications: 1. null initial condition, 2. free

parameter specification, and 3. diffuse initial condition (procedure described above).

With the exception of the model-implied moments approach, all initial condition

specifications were fit to each of the simulated data sets.
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2.3 Software Packages

The specifications using the De Jong (1991) and Koopman and Durbin (2000) ap-

proaches (specifications 4 and 5, respectively) require a modification of the likelihood

function. Access to this likelihood function is not currently available via in some

common canned software packages such as Mplus (Muthén & Muthén, 1998–2007).

Ox version 5.1 (Doornik, 2007) in combination with SSfpack version 3.0 (Koopman

et al., 2008) allows for the specification of both the De Jong (1991) and Koopman

and Durbin (2000) approaches. Ox is an object-oriented programming language and

the software package SSFpack allows models to be formulated as state-space models

and uses an estimation procedure incorporating the KF and PED. Using this package

also allows for the estimation of data where the number of time points exceeds the

number of observations.

I also programmed the likelihood functions for both the De Jong (1991) and

Koopman and Durbin (2000) approaches using the SAS proc IML software package.

However, the estimation procedure was unable to find a minimum of the negative

log-likelihood in certain conditions, especially when the number of time points was

large in comparison to the sample size. Specifically, the optimization procedure was

unable to successfully converge and would fluctuate at a given log-likelihood value

indefinitely.

2.4 Summary of Simulation Design

The simulation design contained four conditions that were varied: 1. model type,

2. true initial condition specification, 3. fitted initial condition specification, and 3.

type of data. Two models were considered: 1. PFA stationary model and 2. PFA non-

stationary model. For the nonstationary model, two degrees of nonstationarity were

considered: 1. moderate nonstationarity and 2. mild nonstationarity. For the station-

ary model, three true initial condition specifications were used: 1. Model-implied
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moments initial condition, 2. Free parameter initial condition, and 3. Null initial

condition. For the nonstationary models, three true initial condition specifications

were used: 1. Free parameter initial condition, 2. null initial condition, 3. diffuse

initial condition. The fitted initial condition specification will have six conditions

for the stationary model (i.e., all discussed conditions) and five conditions for the

non-stationary models (i.e., all but the model implied condition). Finally, two types

of data will be considered: 1. intensive repeated measures data (T = 50, N = 20)

and 2. panel data (T = 5, N = 200). The moderately nonstationary model was only

estimated with panel data. Thus, there will be a total of 66 cells in the simulation

design. For each cell I completed a total of 500 Monte Carlo replications. Table 2.1

summarizes the simulation design.

2.5 Outcome Measures

To assess the consequences of the different initial condition specifications, I de-

termined how well the true latent variable scores were recovered, how often the

models converged, how well the parameter estimates were recovered, and computa-

tional time. I also compared fit indices across approaches and indicated how many

replications produced strange or outlying results.

To compare the latent variable scores obtained from the model fitting procedure

to the true scores obtained from the simulation specifications I will calculate the root

mean square error (RMSE) between these two values,

RMSE =

√√√√√ N
∑

i=1

T
∑

t=1
(xitLVS − xitTRUE)2

NT
(2.10)

where i represents a given individual, t represents a given time point, xitLVS represent

the latent variable score estimates, and xitTRUE represent the true values. Smaller

values indicate a smaller discrepancy between the latent variable score estimates
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and true scores. To assess the point estimates of the parameters I will calculate the

relative bias, RMSE, confidence interval coverage, and power for detecting non-zero

parameters. To assess the standard errors of the parameter estimates I calculated

the estimated standard errors, i.e., the mean of the estimated standard errors (ŜE)

and compared them to the empirical or ”true” standard errors, i.e., the standard

deviation of the parameter estimates (SEθ). To more directly evaluate the consistency

of the standard error estimation, I compared the estimated standard errors against the

empirical standard errors by computing the difference SEDIFF = SEθ − ŜE. Lower

values indicated better consistency of standard error estimation. Also, the percentage

of iterations where models converged was assessed.

Relative bias was calculated as:

Relative Bias =

R
∑

r=1
θ̂r

R − θ

θ
(2.11)

where r represents a distinct Monte Carlo run, R is the total number of replications,

and θ is the true parameter value. This index provides information concerning the

difference between the average estimate of the parameter and the population param-

eter, with smaller values indicating greater parameter accuracy. RMSE was calculated

as:

RMSE =

√√√√√ R
∑

r=1
(θ̂r − θ)2

R
(2.12)

where smaller values indicate greater parameter precision. Confidence interval cov-

erage was calculated as the percentage of replications in which the population pa-

rameter falls between the lower confidence limit and the upper confidence limit with

an alpha of 0.05. Power was calculated as the percentage of replications in which the

null hypothesis of θ = 0 is rejected. I also assessed the confidence interval coverage

rates which were calculated as the percentage of replications in which the population
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parameter falls between the lower confidence limit and the upper confidence limit

with an alpha of 0.05

I compared values of information fit indices including the Bayesian Information

Criterion (BIC; Raftery, 1995), which is defined as

BIC = −2LL + (nparm) ln (N) (2.13)

, and the Akaike information criterion (AIC Akaike, 1974), defined as

AIC = −2LL + 2(nparm) (2.14)

where nparm is the number of parameters estimated in the model. The form of

these equations are identical to those used in the software package Mplus (Muthén

& Muthén, 1998–2004).

2.6 Hypotheses

Based on past research and current knowledge, I made the following hypotheses

for the stationary modeling condition:

• When the model-implied moments true specification is implemented, the fitted

model-implied moments condition will perform the best with respect to simu-

lation outcomes. The free-parameter condition will perform almost as well, but

may not be chosen by the AIC or BIC as the degrees of freedom is greater.

• When the free-parameter true specification is implemented, the fitted free-

parameter condition will perform the best with respect to simulation outcomes.

• When the null true specification is implemented, the fitted null initial condition

will perform the best with respect to simulation outcomes. The free-parameter

condition will perform almost as well, but may not be chosen by the AIC or BIC
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as the degrees of freedom is greater.

• For all of the true initial condition specifications, the fitted diffuse methods (de

Jong DKF, Koopman exact initial KF, and large κ approaches) will perform the

worst although similar to each other, with the de Jong DKF and Koopman exact

initial KF slightly outperforming the large κ condition.

I also made the following hypotheses for the nonstationary modeling condition:

• When the free-parameter true specification is implemented with mild nonsta-

tionarity, the fitted free-parameter condition will perform the best with respect

to simulation outcomes, followed by the de Jong and Koopman approaches,

large κ approach, and null approach.

• When the null true specification is implemented with mild nonstationarity, the

fitted null initial condition will perform the best with respect to simulation

outcomes. The free-parameter condition will perform almost as well, but may

not be chosen by the AIC or BIC as the degrees of freedom is greater. The de

Jong and Koopman approaches will perform similarly, but not as well as the

null or free-parameter approach, while the large κ approach will perform the

worst.

• When the true initial condition is diffuse (mildly or moderately stationary),

Koopman’s approach will be comparable to de Jong’s approach and both per-

form the best, followed by the free-parameter condition, large κ approximation,

and null initial condition with respect to all simulation outcomes.

• When the free-parameter true specification is implemented with moderate non-

stationarity, the fitted free-parameter condition will perform the best with

respect to simulation outcomes, followed by the de Jong and Koopman ap-

proaches, large κ approach, and null approach. However, the degree to which

76



the free-parameter approach outperforms both the de Jong and Koopman ap-

proaches will be less than in the mild nonstationarity case.

• When the null true specification is implemented with moderate nonstationarity,

the fitted null initial condition will perform the best with respect to simulation

outcomes. The free-parameter condition will perform almost as well, but may

not be chosen by the AIC or BIC as the degrees of freedom is greater. The

de Jong and Koopman approaches will perform similarly, but not as well as

the null or free-parameter approach, while the large κ approach will perform

the worst. However, the degree to which the free-parameter approach outper-

forms both the de Jong and Koopman approaches will be less than in the mild

nonstationarity case.

•

In addition, I made the following general hypotheses:

• The de Jong approach and Koopman approach will produce almost identical

results.

• Both the de Jong and Koopman approaches compared to the free-parameter,

null, and large κ conditions will have a greater impact on results for the panel

data condition versus the intensive repeated measures condition. That is, the

free-parameter, null, and large κ approaches will produce poorer results for

the panel data condition when compared to their performance in the intensive

repeated measures condition, and the improvement in results when using either

the de Jong or Koopman approaches will be more noticeable and substantial for

the panel data condition.
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CHAPTER 3

Results

Given the large amount of results, this section is broken down by data generating

model. Tables are presented followed by figures that capture some significant find-

ings. For each data generating model (i.e., stationary PFA, mildly nonstationary PFA,

and moderately stationary PFA) I will describe results associated with model conver-

gence, model fit and comparison, and simulation outcomes. To formally quantify

which results should be considered significant findings, I applied a series of meta-

models as suggested by Skrondal (2000). Specifically, I ran a series of Analysis of

Variance (ANOVA) models for each true initial condition specification with simula-

tion outcome measures serving as dependent variables. The factors were data type

(two levels: the N = 20/T = 50 intensive repeated measures condition and the

N = 200/T = 5 panel design condition) and fitted initial condition specification (five

levels for stationary model, six levels for nonstationary model). The models were

expressed as

ANOVA Model:SimOutcomei = DataTypei + FittedICi + DataTypei ∗ FittedICi + εi

(3.1)

where SimOutcome is any given simulation outcome for a given true initial condition

specification, DataType is a factor for data type, FittedIC is a factor for fitted initial

condition specification. As there was a large number of parameters per estimated



model, I aggregated results into the following categories: 1. measurement model pa-

rameters, which consisted of averaging factor loading parameters and measurement

error variance parameters, i.e., Z21, Z31, Z52, Z62, U11, U22, U33, U44, U55, and

U66, 2. time series parameters, which consisted of averaging across parameters in

the transition matrix, i.e., T11, T21, T12, and T22, and 3. process noise parameters,

which consisted of average across parameters in the process noise covariance matrix,

i.e., V11, V21, and V22.

Given the large number of replications, most effects were significant. Due to this,

ANOVA main effect and interaction results that have an R2 value of at least .1 were

considered to have relatively strong effects. Thus, effects that had an R2 ≥ .1 were

emphasized. While this cut-off value is arbitrary it coincides with Cohen’s (1992)

popular effect size guidelines.

3.1 Model Convergence Issues

Given the complicated nature of the models and initial condition specifications,

several computational problems emerged. The percentage of times a model con-

verged to a proper solution is important when considering which initial specification

to choose as a specification that is too computationally burdensome, despite being

accurate when it does converge, may not be optimal for noisy empirical data sets.

Time to convergence is also an issue to be considered, but given the relatively short

time spans to converge across all simulation conditions this may not be a deciding

factor when choosing an initial condition specification.

Tables 3.1, 3.2, and 3.3 display model performance results with respect to conver-

gence, model selection, latent variable score recovery, and average model estimation

time. The first column of results is of particular interest as it reports how many repli-

cations were retained after removing cases that did not converge to a proper solution

(i.e., those that reported both weak convergence and no convergence) and cases that

contained extreme outliers. Outliers were detected via visual inspection and omitted
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if they drastically deviated from the both the true population value and the majority

of estimates. Figure 3.1 contains plots illustrating typical outliers that were removed.

This plot displays parameter estimates of Z52, i.e., a factor loading for the second set

of manifest variables, from fitting the free-parameter initial condition specification

to moderately nonstationary data with a true diffuse initial condition specification.

The true parameter value is .9, and clearly there are two outlying cases that have a

magnitude greater than absolute 30. Thus, these two cases were removed.

The next three columns of Tables 3.1, 3.2, and 3.3 report the number of cases that

produced strong convergence, weak convergence, and no convergence, respectively.

Weak and strong convergence are defined as iterations with error tolerance values

that are less than eps1 = 1e−4 and eps2 = 5e−3, respectively (Doornik, 2007). Only

cases with strong convergence were considered. The fifth column of results reports

the number of outliers followed by a column that reports the number of replications

did converged but failed to produce standard error values. The next two columns

report the number of replications where the AIC and BIC, respectively, would choose

a given fitted initial condition specification. The next column reports the RMSE of

the latent variable scores and the final column reports the average time it took to

estimate the models, whether the models converged or not.

When inverting the Hessian matrix (i.e., the matrix of second derivatives) to ob-

tain standard error estimates, there were some replications where a generalized sym-

metric inverse using singular value decomposition was implemented as the regular

inversion procedure failed. Upon close inspection of the point estimates and stan-

dard error estimates produced, there were certain times when the variances of either

process noise variable were very close to zero, which indicates that the optimizer hit

a boundary condition, despite these cases strongly converging. Figure 3.2 displays

a typical plot illustrating some replications that hit a boundary condition. This plot

illustrates the process noise variance for the second state when the free-parameter
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Figure 3.1: Sample of typical outlier cases removed. The free-parameter model is
fitted to the moderately nonstationary model using a diffuse true initial condition
specification. The x-axis displays parameter estimates of Z52, and the values display-
ing an absolute value greater than 30 were removed.
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Figure 3.2: Sample of typical cases hitting a boundary condition. The free-parameter
model is fitted to the moderately nonstationary model using a diffuse true initial
condition specification. The x-axis displays parameter estimates of V22, and the
values that are very close to zero were removed for the second set of results.
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approach is fitted to moderately nonstationary simulated data using a true diffuse

initial condition specification. The replications that hit a boundary condition are ap-

parent as they are all very closet to zero, while cases that did not cluster closer closer

to the true value of 1. Given the moderate frequency of such cases, results are also

presented without these boundary cases.

Tables 3.4, 3.5, and 3.6 display model performance results for the stationary

model, mildly nonstationary model, and moderately nonstationary model, respec-

tively, when the boundary replications are removed. Most boundary condition oc-

curred when the free-parameter approach was fitted to any true initial condition

specification, particularly in the nonstationary model. The fitted Koopman exact ini-

tial KF and large κ approaches also displayed a relatively large number of removed

boundary cases. Interestingly, when the boundary cases were removed, the three dif-

fuse approaches, i.e., de Jong DKF, Koopman exact initial KF, and large κ approaches,

were more similar to each other.

The remainder of the results section is structured as follows. First, results where

the boundary cases were not removed are discussed. The stationary model is dis-

cussed first, followed by the mildly nonstationary model, ending with the moder-

ately nonstationary model. Next, results are displayed with the removal of boundary

cases. Again, the stationary model is discussed first, followed by the mildly nonsta-

tionary model, ending with the moderately nonstationary model. General simulation

conclusions are next presented, followed by the results from the empirical example.

3.2 Stationary PFA

General model performance for stationary PFA. As illustrated in Table 3.1, for the sta-

tionary PFA, the number of replications retained was lowest in the panel data condi-

tion (T = 5 and N = 200) when a diffuse initial condition was specified. Surprisingly,

the number of retained cases was very low when fitting the model implied initial con-

dition specification with panel data to any true specification. This may be due to the
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rather complicated constraints that are placed in the initial condition covariance ma-

trix, as shown in Table 2.3. Also, there were not any stationarity constraints imposed

on the time series parameters, which may have led the model-implied method to

produce highly outlying estimated AR values. In fact, most cases were omitted due

to extreme outliers in the parameter results rather than issues of non-convergence.

Other than this, for the stationary model, the number of retained cases was relatively

large across true initial condition specification conditions. When using the null initial

condition specification as the true one, however, there were somewhat lower rates of

retained cases across fitted initial conditions, particularly in the panel data condition.

Fitting the de Jong DKF initialization approach produced the largest retained cases

across the different true initial condition specifications. Fitting the Koopman exact

initial KF approach, however, did not produce as many retained replications as the

de Jong DKF approach. It is important to note that, under ideal modeling circum-

stances, the results produced by these two models would be identical (Koopman et

al., 2008). This was corroborated as the results generated from both conditions when

there was both strong convergence and no extreme outlying cases were found to be

identical. Thus, any differences in results are a function of model convergence and

outlier issues.

Somewhat surprisingly, even when fitting the de Jong DKF and Koopman exact

initial KF approaches did not produce optimal results with respect to parameter es-

timates, the AIC and BIC tended to choose these two approaches. In general, fitting

the free-parameter approach produced the smallest RMSE of latent variable scores,

indicating that this approach produced estimated latent variable scores that best ap-

proximated the true latent variable scores. However, the superior performance was

marginal and all fitted initial condition specifications across all conditions produced

adequate RMSE values. On average, the estimation of the models did not take a very

long time, with the panel data condition taking slightly longer than the intensive
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repeated measures condition and fitting the de Jong initial condition specification

taking slightly longer than the other fitted initial condition specification.

Absolute biases, absolute coverage rates minus .95, and the absolute discrepancy

between empirical and estimated standard errors (i.e., SEDIFF) are illustrated in

Figure 3.3, Figure 3.4, and Figure 3.5 when the model-implied moments approach,

free parameter approach, and null initial condition approaches were used as the

true data generating specifications, respectively. These results are aggregated across

measurement parameters, process noise parameters, and time series parameters, as

described above, which necessitated taking the absolute value of outcome measures.

Results for individual parameters may be found in Appendix A, Tables 5.1 – 5.36.

Model implied moments approach as true initial condition specification. In general,

the pattern of simulation outcome results across fitted initial condition specifications

were similar, as illustrated in Figure 3.3. Significant differences in fitted initial con-

dition specifications were found, for the measurement parameters, in absolute bias

(R2 = .14, see Figure 3.3A) and SEDIFF (R2 = .142, see Figure 3.3C), for the process

noise parameters, absolute bias (R2 = .12, see Figure 3.3D) and SEDIFF (R2 = .14,

see Figure 3.3F), and for the times series parameters, SEDIFF (R2 = .13, see Fig-

ure 3.3I) and confidence interval width (R2 = .12). In terms of absolute bias, the

fitted free-parameter approach outperforms the others for all parameter groupings.

However, the null initial condition outperformed the others with respect to SEDIFF,

meaning that the empirical standard errors were close to the estimated standard er-

rors. Upon further inspection of the estimates, a few cases in the all fitted conditions

were found that, while not extreme outliers, still deviated from the cluster of the

majority of values, which would explain why the free-parameter condition displayed

better absolute bias but worse SEDIFF than the null condition.

The main effect of data type produced values of R2 high in magnitude for several

outcome measures including, for the measurement parameters, SEDIFF (R2 = .12,
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see Figure 3.3C), for the process noise parameters, absolute bias (R2 = .10, see Fig-

ure 3.3D), relative bias (R2 = .14), coverage rates (R2 = .15, see Figure 3.3E), and

SEDIFF (R2 = .13, see Figure 3.3F), and for the autoregressive parameters, confi-

dence interval width (R2 = .11). These effects all indicate that, for this particular

modeling condition, the panel data condition did not perform as well as the inten-

sive repeated measures condition across all fitted initial conditions. This result makes

sense because, as the number of time points increases, the degree to which the initial

condition specification matters diminishes. When there are more time points, there

are more data for the models to estimate the trajectory.

Several interactions between fitted initial condition and data type were also ap-

parent. For instance, as illustrated in Figure 3.3G, there is an interaction effect

(R2 = .12) between fitted initial condition and data type for the time series parame-

ters such that fitting the model implied method results in poor absolute bias only for

the panel data condition. This same type of interaction is found for coverage rates

(R2 = .27), see Figure 3.3H), and SEDIFF (R2 = .61, see Figure 3.3I). The implications

of this effect are simply that all fitted initial conditions performed well with respect

to recovering the point and standard error estimates of the time series parameters,

with the exception of the model-implied fitted initial condition. However, as stated,

this may be due to the complicated constraints involved in the model-implied con-

dition and may be alleviated if stationarity constraints are imposed on the AR and

cross-regression parameters.

Free parameter approach as true initial condition specification. When using the free

parameter approach as the true initial condition specification, the findings were sim-

ilar to true model-implied condition. However, for the process noise parameters, R2

values for the main effect of initial condition specification were larger in magnitude

for absolute bias (R2 = .17, see Figure 3.4D), absolute relative bias (R2 = .12), and

SEDIFF (R2 = .19, see Figure 3.4F). The fitted free parameter specification performs
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Stationary PFA with Model-Implied Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.3: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the sta-
tionary PFA model simulated using the model-implied moments method as the
true initial condition specification. DKF=de Jong’s diffuse Kalman filter approach,
EKF=Koopman’s exact initial Kalman filter approach.
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the best, followed by the fitted null initial condition, while, in terms of biases, the

fitted de Jong DKF, Koopman exact initial KF, and large κ conditions perform worst,

although similarly to each other. In terms of standard error estimation, however, the

model-implied method performed the worst. The larger effect size of fitted initial

condition for the true free-parameter condition versus the true model-implied con-

dition suggests that the performance of fitted initial conditions was more discrepant

with respect to the process noise variables in this case.

There were several large R2 values for the main effect of data type, including, for

the process noise parameters, absolute bias (R2 = .11, see Figure 3.4D) and absolute

relative bias (R2 = .15), and for the time series parameters, coverage rates (R2 = .15,

see Figure 3.4H), and confidence interval width (R2 = .19). Again, the intensive

repeated measures data consistently outperformed the panel data condition. An

interaction effect between data type and fitted initial condition was found, for the

time series parameters, for coverage rates (R2 = .17, see Figure 3.4H). This interaction

shows that the free parameter fitted initial condition performs best for both data

types, while the model-implied initial condition performs very poorly for the panel

data condition, much like the interaction effects found when the true initial condition

specification was the model-implied moments specification.

Null approach as true initial condition specification. Results when using the null

initial condition as the true initial condition specification revealed a similar pattern

to the two previously discussed true initial specification conditions, as illustrated in

Figure 3.5. One big difference is that the fitted null initial condition performed best

in most cases, which makes sense given that the true initial condition specification

was null. However, keep in mind that the proper convergence rates for this condition

were smaller on average than the other true initial specification conditions.

The main effect of fitted initial condition specification was strong, for the pro-

cess noise parameters, absolute bias (R2 = .2, see Figure 3.5D), absolute relative bias
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Stationary PFA with Free Parameter Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE

Measurement Parameters
(A) (B) (C)

1 1 1 1 1

1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

True Initial Condition: Free Parameter

Fitted IC

A
bs

ol
ut

e 
B

ia
s

2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1 1 1 1 1

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True Initial Condition: Free Parameter

Fitted IC
A

bs
ol

ut
e(

C
ov

er
ag

e 
R

at
es

 −
 .9

5) 2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1

1 1 1

1

1

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

True Initial Condition: Free Parameter

Fitted IC

S
D

−
S

E

2

2
2

2

2

2

DKF EKF Free LargeK MI Null

Process Noise Parameters
(D) (E) (F)

1 1
1

1

1 1

0.
00

0.
05

0.
10

0.
15

True Initial Condition: Free Parameter

Fitted IC

A
bs

ol
ut

e 
B

ia
s

2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1 1 1 1 1 1

0.
0

0.
1

0.
2

0.
3

0.
4

True Initial Condition: Free Parameter

Fitted IC

A
bs

ol
ut

e(
C

ov
er

ag
e 

R
at

es
 −

 .9
5)

2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1
1 1 1

1

1

0.
01

0.
03

0.
05

0.
07

True Initial Condition: Free Parameter

Fitted IC
S

D
−

S
E

2

2

2

2

2

2

DKF EKF Free LargeK MI Null

Time Series Parameters
(G) (H) (I)

1 1
1

1

1 1

0.
00

0
0.

00
4

0.
00

8
0.

01
2

True Initial Condition: Free Parameter

Fitted IC

A
bs

ol
ut

e 
B

ia
s

2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1 1 1 1 1 1

0.
00

0.
05

0.
10

0.
15

0.
20

True Initial Condition: Free Parameter

Fitted IC

A
bs

ol
ut

e(
C

ov
er

ag
e 

R
at

es
 −

 .9
5)

2 2

2

2

2

2

DKF EKF Free LargeK MI Null

1 1 1 1 1
1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

True Initial Condition: Free Parameter

Fitted IC

S
D

−
S

E

2 2 2 2

2

2

DKF EKF Free LargeK MI Null

1
2

Intensive Repeated Measures Data: T=50, N=20
Panel Data: T=5, N=200

Figure 3.4: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters, (C)–
(D) process noise parameters, and (E)–(F) time series parameters for the stationary
PFA model simulated using the free parameter moments method as the true initial
condition specification.
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(R2 = .15), SEDIFF (R2 = .28, see Figure 3.5F), and for the time series parameters,

SEDIFF (R2 = .17, see Figure 3.5I). While the fitted null initial condition performed

well overall, the free parameter condition still also performed well. An unexpected

finding was that the discrepancy between empirical and estimated standard errors

was large for the null initial condition for the measurement and time series param-

eters in the intensive repeated measures condition. This pattern was also true for

the de Jong DKF. Upon further inspection of estimates, for both fitted approaches,

there were a few replications that produced values that were somewhat outside of the

range of the majority of values. More specifically, these values were not identified as

outlying values, but still somewhat deviated from the main cluster of points. When

removed, the standard error estimates were a lot closer to the empirical standard er-

rors. Also, despite the underestimation of the true standard errors of the parameters,

the magnitudes of the bias were still small.

There were again several large R2 values for the main effect of data type, in-

cluding, for the process noise parameters, absolute bias (R2 = .17, see Figure 3.5D)

and absolute relative bias (R2 = .26), MSE (R2 = .11), and confidence interval

width (R2 = .16), and for the time series parameters, and confidence interval width

(R2 = .60). Several interaction effects were found for SEDIFF, and these simply illus-

trate the discrepant findings with respect to the de Jong and null approaches between

the panel data case and intensive repeated measures data case. Other than that, the

same pattern of the intensive repeated measure data condition outperforming the

other true initial condition specification conditions was found. For the process noise

parameters, an interaction effect of absolute bias was found (R2 = .15) which indi-

cates that the degree to which the biases deviate between data types only for the

diffuse initial condition approaches is quite large. The other approaches, however,

maintain adequate bias across data type conditions.
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Stationary PFA with Null Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.5: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters, (C)–
(D) process noise parameters, and (E)–(F) time series parameters for the stationary
PFA model simulated using the null method as the true initial condition specification.
DKF=de Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman
filter approach.
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3.3 Summary of Stationary Results

Some general trends were observed across the different true initial condition

specifications for the stationary model. First, when the true process is stationary,

results suggest that the diffuse initial condition specifications should not be used to

fit the model. Second, the fitted free-parameter approach appeared to have good

versatility across the differing true initial condition specifications. Third, the process

noise parameters were most affected when differing fitted initial conditions were im-

plemented. Fourth, in the panel data condition, the AIC and BIC consistently chose

either the de Jong or Koopman approaches. In the intensive repeated measures con-

dition, while the de Jong and Koopman approaches were still generally chosen by

the AIC and BIC, the other conditions were also chosen some of the time. Disregard-

ing the de Jong and Koopman approaches, the AIC and BIC correctly picked out the

fitted initial conditions that corresponded to the true initial condition specification

a large percentage of the time, with the exception of the true null condition where

the free-parameter condition was chosen most of the time. However, the null initial

condition was the second most chosen condition. Given that researchers generally

do not use a diffuse initial condition specification when they believe the hypothe-

sized model has parameters that are in the stationary range, AIC and BIC can still

legitimately be used to help select the optimal initial condition specification for a

set of data. Fifth, when the true initial condition specifications was free-parameter

the most optimal results were produced from the fitted free-parameter condition and

when the true initial condition was null the most optimal results were produced from

the fitted null condition. However, this was not the case with the model-implied con-

dition, which may work better if appropriate stationary constraints placed on the

parameters. Finally, the estimated standard errors tended to underestimate the true

standard errors.

92



3.4 Nonstationary PFA

General model performance for nonstationary PFA. The general modeling perfor-

mance results for the mildly nonstationary condition are reported in Table 3.2 while

the results for the moderately nonstationary condition are reported in Table 3.3. Over-

all, fitting the de Jong DKF produced the largest number of retained cases, with the

exception when the null initial condition was used as the true initial condition speci-

fication in the mildly nonstationary case for panel data. This is an interesting result

as fitting the Koopman exact initial KF approach resulted in a much higher repli-

cation retention rate, which is counter to previous results. Also interesting is that

many of the de Jong results produced no standard errors while still reporting strong

convergence. Upon closer inspection, the parameter estimates for the measurement

error variances of U11 and U44 yielded in such cases were very close to zero. One

reason why the de Jong approach failed in this situation may be due inverting issues

concerning the Hessian matrix. Specifically, at the first time point, there is no pro-

cess noise variance added to the DKF equations, as the initial covariance matrix is a

null matrix. At the second time point, there is only a small amount of process noise

added (as the process noise variances in this case are small at .05), and since previous

true states were zero, no other information from the first time point is being carried

through. That, coupled with the fact that the panel data case does not have a lot of

subsequent data, gave rise to a Hessian matrix with values close to zero, and thus

inversion problems.

As in the stationary modeling condition, the AIC and BIC frequently chose either

the de Jong DKF or Koopman exact initial KF initialization approaches over the other

fitted approaches. The de Jong and free parameter fitted initial conditions tended

to take the longest to be estimated and also tended to produce latent variable score

estimates that best approximated the true latent variable scores. One notable finding

is that, in the panel data case, when fitting the de Jong DKF to data generated from
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the moderately nonstationary process, there was a much larger percentage of retained

replications than when fitting the other initial condition specifications. This was still

true when the process was mildly nonstationary, but to a lesser extent.

For the moderately nonstationary condition, biases, coverage rates, discrepancies

between empirical and estimated standard errors are illustrated in Figure 3.9, Fig-

ure 3.10, and Figure 3.11 when the free parameter approach, null initial condition

approach, and diffuse approaches were used as the true data generating specifica-

tions, respectively. The corresponding results for mildly nonstationary condition are

illustrated in Figure 3.6, Figure 3.7, and Figure 3.8. Given that no cases converged

for the intensive repeated measures data condition in the moderately nonstationary

case, only the panel data condition is displayed in Figures 3.9, 3.10, and 3.11. These

results are aggregated across measurement parameters, process noise parameters,

and autoregressive parameters. Results for individual parameters may be found in

Appendix A, Tables 6.1 – 6.45.

3.5 Mildly Nonstationary PFA

Free parameter approach as true initial condition specification: Mild nonstationarity.

Main effects with large effect sizes for fitted initial condition included, for the mea-

surement parameters, SEDIFF (R2 = .13), see Figure 3.6C), for both the process

noise parameters, absolute bias (R2 = .27), see Figure 3.6D), absolute relative bias

(R2 = .14), and SEDIFF (R2 = .17), see Figure 3.6F), and for the time series

parameters,SEDIFF (R2 = .18, see Figure 3.6I). While the free-parameter approach

yielded the best performance in terms of biases, the de Jong DKF condition yielded

the the most consistent estimation of standard errors. The differences between data

types were not very salient, with one strong effect for confidence interval width

(R2 = .13), where the intensive repeated measures data displayed more narrow con-

fidence intervals than the panel data condition.

Null approach as true initial condition specification: Mild nonstationarity. The strong
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Mildly Nonstationary PFA with Free Parameter Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.6: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the free parameter moments method as the true
initial condition specification with mildly nonstationary population values. DKF=de
Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter
approach.
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main effects for fitted initial condition included, for the process noise parameters,

absolute bias (R2 = .12, see Figure 3.7D), and for the time series parameters, SEDIFF

(R2 = .10, see Figure 3.7I). For the intensive repeated measures condition, all fitted

initial condition approaches performed very well with respect to the outcome mea-

sures, except for consistency of standard error estimation. Examining the estimates

revealed that there were a few cases that were not identified as outliers but still devi-

ated from the main cluster of points, especially for the measurement error variances.

On average, the standard error estimation was not very consistent across parameters,

and the de Jong approach displayed the best performance in general. In the panel

data case, both the null and free-parameter initial condition performed best with re-

spect to biases and MSE while the de Jong approach performed best with respect to

SEDIFF.

For the main effect of data type, several strong effects were found for the mea-

surement parameters (absolute bias, R2 = .12, see Figure 3.7A, absolute relative bias,

R2 = .10, and confidence interval width, R2 = .16), the process noise parameters (ab-

solute bias, R2 = .12, see Figure 3.7D, absolute relative bias, R2 = .13, and the time

series parameters (absolute bias, R2 = .12, see Figure 3.7G, absolute relative bias,

R2 = .29, power, R2 = .28, and confidence interval width, R2 = .16). Power has yet

to vary much between fitted initial conditions or data type. In this case, the intensive

repeated measures condition displayed high power for all fitted initial conditions,

while the panel data case displayed high power only for the free-parameter and null

initial condition specifications.

Some notable data type by fitted initial condition interaction effects were found

for absolute bias for the process noise parameters (R2 = .13, see 3.7F), and for the

time series parameters, SEDIFF (R2 = .27, see 3.7I). For the absolute bias of the

process noise parameters, the fitted de Jong, exact initial KF, and large κ initial con-

dition approaches all performed well for the intensive repeated measures data but
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Mildly Nonstationary PFA with Null Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.7: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the null method as the true initial condition
specification with mildly nonstationary population values. DKF=de Jong’s diffuse
Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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very poorly for the panel data, while the free parameter and null initial condition

approaches performed well across both data conditions. For the SEDIFF of the time

series parameters, the opposite was true as all initial conditions performed relatively

well in the intensive repeated measures case but the null and free-parameter con-

ditions did not perform as well in the panel data case. Again, there were a few

replications that produced values that were not detected as outliers but still deviated

from the main cluster of values.

Diffuse approach as true initial condition specification: Mild nonstationarity. For this

condition, strong main effects for the measurement parameters included absolute

bias (R2 = .18, see Figure 3.8A), absolute relative bias, R2 = .10, and SEDIFF

(R2 = .21, see Figure 3.8C)). For the process noise parameters, several substantial

main effects for fitted initial condition included for absolute bias (R2 = .46, see Fig-

ure 3.8D), absolute relative bias (R2 = .23), MSE (R2 = .14), and SEDIFF (R2 = .35,

see Figure 3.8F). With respect to biases, the null initial condition did not perform

well for the measurement and process noise parameters, but did for the time series

parameters. For standard error consistency, however, the null initial condition per-

formed well for all parameters, as did the de Jong approach. For both data types, the

free-parameter fitted initial condition displayed good coverage rates for all parame-

ters. The de Jong approach displayed the most optimal results regarding the process

noise parameters across all conditions.

One strong data type by fitted initial condition interaction effect was for the ab-

solute bias of the process noise variables (R2 = .16, see Figure 3.8D). Examination of

the figure reveals that the null initial condition yielded very poor results only for the

panel data condition and only satisfactory bias in the intensive repeated measures

condition. All other initial condition specifications and data types yielded good bi-

ases.
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Mildly Nonstationary PFA with Diffuse Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.8: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the diffuse method as the true initial condition
specification with mildly nonstationary population values. DKF=de Jong’s diffuse
Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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3.6 Moderately Nonstationary PFA

Because the panel data condition is the only data type for the moderately non-

stationary condition, the ANOVA model is modified accordingly,

ANOVA Model: SimOutcomei = FittedICi + εi (3.2)

so that it is a one-way ANOVA comparing only the mean differences between fitted

initial conditions.

When examining the panel data case, the differences between fitted initial con-

dition specifications for mildly nonstationary case were less substantial compared to

the moderately nonstationary condition. Although the pattern of results is similar to

the moderate stationarity condition, This suggests that as the process becomes less

nonstationary, the differences in approaches become less noticeable.

Free parameter approach as true initial condition specification: Moderate nonstationarity.

When the true initial condition was specified as having free parameters, several sim-

ulation outcomes displayed a large main effect of fitted initial condition. Specifically,

the measurement parameters displayed a large R2 value for the main effect of abso-

lute bias (R2 = .17, see Figure 3.9A), absolute bias (R2 = .13), and SEDIFF (R2 = .18,

see Figure 3.9C); the process noise parameters displayed a large R2 value for the

main effect for absolute bias (R2 = .64, see Figure 3.9D), relative bias (R2 = .49), MSE

(R2 = .15), and SEDIFF (R2 = .75, see Figure 3.9F); and the time series parameters

displayed a large R2 value for the main effect for SEDIFF (R2 = .22, see Figure 3.9I).

With respect to biases, coverage rates, the fitted free parameter approach performed

the best, especially for the time series parameters. The de Jong DKF displayed the

most consistent standard error estimation and both the free-parameter and de Jong

approach displayed the smallest MSE values.

Null approach as true initial condition specification: Moderate nonstationarity. When
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Moderately Nonstationary PFA with Free Parameter Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.9: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the free parameter moments method as the
true initial condition specification with moderately nonstationary population values.
DKF=de Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman
filter approach.
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the true initial condition specification were null matrices, the measurement parame-

ters displayed a strong main effect of fitted initial condition for SEDIFF (R2 = .27,

see Figure 3.10C). Fitting the large κ and Koopman exact initial KF specifications

resulted in the least consistent standard error estimation, following by fitting the

free-parameter approach, de Jong DKF, while fitting both the null approach yielded

very consistent standard error estimation. The process noise parameters displayed

very strong R2 values for the main effect of fitted initial condition for several simula-

tion outcome measures, including absolute bias (R2 = .11, see Figure 3.10D), coverage

rates(R2 = .22, see Figure 3.10E), SEDIFF (R2 = .61, see Figure3.10F), and confidence

interval width (R2 = .10).

When examining the plots, it is clear that the null condition performed the best

with respect to absolute bias across the simulation outcomes. With respect to stan-

dard error consistency, the de Jong DKF approach also performed well. As far as

biases and coverage rates, the free-parameter condition also performed well. Both

the Koopman exact initial KF and the large κ fitted initial condition performed the

worst. Thus far, the de Jong DKF fitted approach has regularly produced very con-

sistent standard error estimation results, especially for the process noise parameters.

Diffuse approach as true initial condition specification: Moderate nonstationarity. The

results from this condition are of particular interest as an important goal of this

research was to determine whether fitting either the de Jong DKF or the Koopman

exact initial KF to panel data simulated from a process that is nonstationary would

result in more accurate, efficient, and consistent parameter estimation than other

known stationary approaches. Because the fitted free parameter initial condition

approach has proven to work well thus far, it is important to carefully compare this

approach to the de Jong DKF and Koopman exact initial KF approaches.

The strong main effects of fitted initial condition for the measurement parameters

were for absolute bias (R2 = .41, see Figure 3.11A), absolute relative bias (R2 = .28),
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Moderately Nonstationary PFA with Null Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.10: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the null method as the true initial condition
specification with moderately nonstationary population values. DKF=de Jong’s dif-
fuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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Moderately Nonstationary PFA with Diffuse Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.11: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the diffuse method as the true initial condition
specification with moderately nonstationary population values. DKF=de Jong’s dif-
fuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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coverage rates (R2 = .48, see Figure 3.11B), MSE (R2 = .30), SEFIFF (R2 = .27,

see Figure 3.11C), and confidence interval width (R2 = .32). The fitted de Jong

DKF initial condition approach performed best with respect to these outcomes. With

respect to confidence interval coverage, the fitted Koopman exact initial KF approach

and free parameter approach did not perform as well, and the large κ approach

displayed the poorest results. The null initial condition displayed poor bias and

poor coverage rates, but good standard error consistency. This indicates that the

null initial condition is providing consistent standard error estimates, but they are

clustered around the wrong value.

For the process noise parameters, most simulation outcome measures displayed

a large effect size, including absolute bias (R2 = .80, see Figure 3.11D), absolute

relative bias (R2 = .90), coverage rates (R2 = .97, see Figure 3.11E), MSE (R2 = .64),

SEDIFF (R2 = .85, see Figure 3.11F), and confidence interval width (R2 = .91).

With respect to relative bias, absolute relative bias, coverage rates, and confidence

interval width, the de Jong DKF yielded the best results, followed closely by the free

parameter condition, Koopman exact initial KF approach, and large κ approach, with

the null initial condition performing by far the worst. For standard error estimation

consistency, however, the de Jong DKF outperformed all approaches, followed by the

null initial condition. Strong main effects for the time series parameters included

coverage rates (R2 = .41, see Figure 3.11H) and SEDIFF (R2 = .29, see Figure 3.11I).

The de Jong DKF approach yielded the best coverage rates followed by the null initial

condition approach.

One interesting result is that the fitted null initial condition performed well with

respect to time series parameters. In fact, for these two sets of parameters, it per-

formed the second best followed by the de Jong approach. However, for the measure-

ment and process noise parameters, the fitted null initial condition did not perform

well at all with respect to both biases and coverage rates, despite still displaying good
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standard error consistency.

3.7 Summary of Nonstationary Results

As in the stationary condition, some general trends were observed across the dif-

ferent true initial condition specifications. First, the AIC and BIC tended to choose

the de Jong and Koopman approaches, especially in the panel data condition. Sec-

ond, the intensive repeated measures condition displayed better results, on average,

than the panel data condition, in terms of both point and standard error estimates.

Third, given the moderately nonstationary model, the fitted initial condition speci-

fications performed worse, on average, regardless of true initial condition. Also, in

this more explosive condition the fitted de Jong DKF outperformed the other models

to a larger degree both in terms of 1. proper convergence rates and 2. parameter

accuracy, efficiency, and consistency. This suggests that, as the process becomes more

nonstationary (i.e., more explosive), the degree to which the de Jong DKF approach

outperforms the other approaches increases. Fourth, the parameters that were af-

fected most substantially by both misspecification in initial condition and a larger

degree of nonstationarity were the process noise parameters. Fifth, when the null

initial condition was the true initial condition, two interesting results emerged: 1. the

de Jong approach did not do well in terms of both convergence rates and simulation

outcomes, and 2. the free-parameter approach underestimated the standard errors

for all parameters.

Also, the free-parameter approach performed well, with the exception of pos-

ing convergence issues and sometimes producing very biased process noise variance

point estimates. When compared to the de Jong approach, the large κ approach did

not perform as well, particularly with respect to standard error estimates. This is

an important finding given that, in the time series literature, this approach is widely

used when there is a diffuse initial condition.
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3.8 General Simulation Conclusions

Overall, several trends were revealed across both data type and fitted initial

condition specifications. In the stationary conditions, the free parameter approach

worked very well most of the time, followed by the null initial condition approach.

The model-implied moments condition did not perform as expected, perhaps due to

the complicated constraints placed on the initial condition covariance matrix and not

applying stationary constraints in the estimation procedure. When using intensive

repeated measures data all fitted initial condition specifications worked relatively

well for all true initial condition data generating cases.

For the nonstationary conditions, the initial condition specifications performed

better when the simulated process was mildly nonstationary. The de Jong DKF ap-

proach worked exceptionally well with the intensive repeated measures data, as bi-

ases were very nearly zero, MSE values were very small, coverage rates very close to

.95%, and power was very high for all parameters, indicating good parameter accu-

racy, efficiency, and consistency. However, in the panel data case, when using the null

true initial condition specification, the de Jong DKF approach did not perform well,

nor did the Koopman exact initial KF and large κ approaches. The free parameter

approach, however, worked well in this case. However, when data were simulated ac-

cording to a diffuse initial condition specification, the fitted de Jong DKF performed

just as well if not better than both the free parameter condition and the null initial

condition (with a few exceptions in the mildly nonstationary case). Also, on average,

fitting the de Jong DKF approach resulted in very consistent standard error estimates.

As expected, the large κ approach did not work well under most circumstances.

Somewhat surprisingly, the Koopman exact initial KF did not work very well.

As the de Jong DKF and Koopman exact initial KF should in theory produce the

same results, this must be due to convergence and outlier issues. The next section

discusses results obtained when removing the boundary cases and sheds some light
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on this discrepancy.

3.9 Results Removing Boundary Cases

The next set of results displays simulation outcomes when boundary cases, i.e.,

cases where variance parameter estimates were very close to zero, were removed (see

Section 3.1 for a more in depth discussion of this issue). Results of key point and

standard error estimates are presented in Figure 3.12 to Figure 3.20. One noticeable

change is that the estimates are now more similar to each other, especially those

derived from the de Jong DKF, Koopman initial KF, and large κ conditions. Also, the

free-parameter approach works very well under most circumstances now, even when

the data are moderately nonstationary and the diffuse initialization procedure was

used to generated the data (see Figure 3.20). This suggests that, when the replications

properly converge and a generalized inverse is not used, then the free-parameter

approach performs as well as the de Jong approach. However, there were a large

number of replications in the free-parameter approach where a boundary condition

was observed for the process noise variables leaving only 173 retained replications.

The de Jong DKF, however, still produced the most number of retained cases with

415.

Instead of detailing all results, I will highlight the results that differed substan-

tially from the results retaining the boundary cases, starting with the stationary

model. For this model, one interesting result is that, the standard error consistency

tended to improve across conditions. When the true initial condition was null, the

standard error consistency for the de Jong and null approaches improved when the

boundary cases were removed, as can be seen by comparing Figure 3.13C, F, and I to

Figure 3.13C, F, and I. This trend was also revealed when the model-implied approach

served as true initial condition for the standard error consistent of the measurement

variables for the de Jong, Koopman, free parameter, and large κ approaches.

Removing the boundary cases had a greater impact on results for the nonstation-
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ary models. For the mildly and moderately nonstationary conditions, the standard

error consistency improved for the free-parameter fitted initial condition across all

true initial condition specifications. For the Koopman and large κ conditions, an im-

provement was recorded for all conditions except with a true null initial condition

in the moderately nonstationary model. However, the fitted null initial condition

did not display as large an improvement in standard error consistency as the other

conditions. Thus, the relatively good standard error consistency the null initial con-

dition approach displayed in the results that included the boundary cases may have

been due to the other approaches displaying poor standard error consistency due to

boundary conditions. Still, the de Jong approach did not lose as many cases due

to have a boundary condition, and displayed only a slight improvement in standard

error consistency.

The free-parameter approach displayed an improvement in absolute bias for sev-

eral conditions including, for the mildly nonstationary model, the time series param-

eters (for all true initial condition specifications) and, in the moderately nonstationary

model, for the time series parameters only when the true process was diffuse. For

the moderately nonstationary condition, coverage rates for all parameters improved

for the free-parameter, Koopman, and large κ approaches. As illustrated in Figure

3.20, the optimal performance of the de Jong approach has disappeared as the free-

parameter, Koopman, and large κ approaches all perform consistently well. Given

that the correspondence between the de Jong and Koopman approach is now much

greater, it is likely that the cases with boundary conditions were causing the discrep-

ancy between these two diffuse approaches.

An inspection of the estimated values in the free-parameter initial condition ma-

trices may help to explain why the free-parameter approach both 1. displayed a

large number of boundary cases and 2. improved so much with the removal of such

boundary cases. When boundary cases were removed and the true initial condition
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specification was diffuse, for the mildly nonstationary model the free-parameter esti-

mated the following values in the mean and covariance matrix of the initial condition,

averaged across replications,

T=5: µ̂0 =

.01

0

 , P̂0 =

3.694 1.908

1.908 3.684

 , T=50: µ̂0 =

.043

.043

 , P̂0 =

3.572 1.811

1.811 3.455

 .(3.3)

When the boundary cases were retained, the estimated values were,

T=5: µ̂0 =

.003

.075

 , P̂0 =

3.696 2.518

2.518 3.591

 , T=50: µ̂0 =

.013

.025

 , P̂0 =

 3.60 1.745

1.745 3.17

 .(3.4)

In the moderately nonstationary condition, the estimated values were,

Boundary Cases Removed: µ̂0 =

.036

.026

 , P̂0 =

13.316 4.02

4.02 12.872

 (3.5)

Boundary Cases Retained: µ̂0 =

 .024

−.014

 , P̂0 =

13.295 3.498

3.498 14.072

 . (3.6)

Interestingly, as the process becomes more explosive, as in the moderately diffuse

case, the estimated variances and covariances become larger. This is because the

diffuse part is being estimated freely, and the more diffuse a process is the more

variability will be displayed. Thus, if the variability is being modeled in the initial

condition matrices, perhaps the estimated values for the measurement errors is be-

coming very small. This is a problem when using this approach that the de Jong

approach avoids by more directly estimating the mean and covariance of the diffuse

process.

Overall, it is possible that the discrepancy between fitted initial condition and

true initial condition would cause more replications to fail in the regular inversion
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of the Hessian matrix, especially if the process is highly nonstationary. This makes

the use of de Jong DKF seem more viable in practice because it was the approach

that produced the most retained replications over all, except when the true initial

condition was null. As empirical data sets tend to be noisier than simulated data sets,

it’s possible that the de Jong approach would be the only one to converge properly

and not hit a boundary condition.
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Removing Boundary Cases
Stationary PFA with Free Parameter Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE

Measurement Parameters
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Figure 3.12: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the sta-
tionary PFA model simulated using the free parameter moments method as the
true initial condition specification. DKF=de Jong’s diffuse Kalman filter approach,
EKF=Koopman’s exact initial Kalman filter approach.
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Removing Boundary Cases
Stationary PFA with Null Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
Measurement Parameters
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Figure 3.13: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters, (C)–
(D) process noise parameters, and (E)–(F) time series parameters for the stationary
PFA model simulated using the null method as the true initial condition specification.
DKF=de Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman
filter approach.
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Removing Boundary Cases
Stationary PFA with Model-Implied Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.14: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the sta-
tionary PFA model simulated using the model-implied moments method as the
true initial condition specification. DKF=de Jong’s diffuse Kalman filter approach,
EKF=Koopman’s exact initial Kalman filter approach.

119



Removing Boundary Cases
Mildly Nonstationary PFA with Free Parameter Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.15: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the free parameter moments method as the true
initial condition specification with mildly nonstationary population values. DKF=de
Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter
approach.
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Removing Boundary Cases
Mildly Nonstationary PFA with Null Method as True Initial Condition
Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.16: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the null method as the true initial condition
specification with mildly nonstationary population values. DKF=de Jong’s diffuse
Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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Removing Boundary Cases
Mildly Nonstationary PFA with Diffuse Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
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Figure 3.17: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the diffuse method as the true initial condition
specification with mildly nonstationary population values. DKF=de Jong’s diffuse
Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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Removing Boundary Cases
Moderately Nonstationary PFA with Free Parameter Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
Measurement Parameters
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Figure 3.18: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the free parameter moments method as the
true initial condition specification with moderately nonstationary population values.
DKF=de Jong’s diffuse Kalman filter approach, EKF=Koopman’s exact initial Kalman
filter approach.
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Removing Boundary Cases
Moderately Nonstationary PFA with Null Method as True Initial Condition

Absolute Bias Coverage Rates SEθ − ŜE
Measurement Parameters
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Figure 3.19: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the non-
stationary PFA model simulated using the null method as the true initial condition
specification with moderately nonstationary population values. DKF=de Jong’s dif-
fuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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Removing Boundary Cases
Moderately Nonstationary PFA with Diffuse Method as True Initial Condition
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Figure 3.20: Absolute bias, coverage rates, calculated as the absolute difference from
.95, absolute empirical standard errors ( ˆSD) minus estimated standard errors (SEθ),
calculated as abs(SEθ − ŜE), for the average of (A)–(B) measurement parameters,
(C)–(D) process noise parameters, and (E)–(F) time series parameters for the nonsta-
tionary PFA model simulated using the diffuse method as the true initial condition
specification with moderately nonstationary population values. DKF=de Jong’s dif-
fuse Kalman filter approach, EKF=Koopman’s exact initial Kalman filter approach.
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3.10 Empirical Example

While the simulation results provide some justification for using a diffuse initial

condition, this section illustrates the performance of fitting different initial condition

specifications to a real data set. The data used are adopted from the empirical data

set used by Du Toit and Browne (2007). From 1974 to 1978, a sample consisting of

N=1066 African school children were administered several questionnaires, includ-

ing the High School Personality Questionnaire (HSPQ; Cattell & Cattell, 1969). This

questionnaire seeks to understand dimensions of personality for the purpose of de-

scribing individual differences.

Overall, there are fourteen dimensions being tested. Based on results from several

exploratory factor analyses, I chose to look more closely at the following dimensions:

1. emotionally stable vs. unstable and easily upset, 2. venturesome and bold vs.

shy and timid, 3. conscientious and persevering vs. expedient, 4. outgoing and

warmhearted vs. cool and detached, 5. assertive and aggressive vs. obedient and

submissive, and 6.lively and enthusiastic vs. sober and serious. The first three di-

mensions, which serve as manifest variables y1, y2, and y3, loaded onto a factor which

I called self-assuredness and the last three dimensions, which serve as manifest vari-

ables y4, y5, and y6, loaded onto a factor which I called extraversion. Higher scores

on the self-assuredness factor indicated higher levels of self-assuredness while higher

scores on the extroversion factor indicated higher levels of extroversion. Summary

statistics for the six manifest variables are provided in Table 3.7.

The model estimated is the PFA(1,0) model described in Equation 2.4 in Section

2.1. As the mean values for the manifest variables were all much greater than zero,

and the PFA(1,0) model considered does not contain measurement intercepts, the

data were de-meaned (i.e., the mean of each observed variable was subtracted from

each individuals score for that variable) before estimation so that the observed vari-

ables all had a mean of zero. Each initial condition specification, including model-
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Time Point Variable Mean Standard Deviation Skewness Kurtosis

y11 9.30 3.17 0.10 -0.02
y21 10.53 3.38 0.01 -0.05

T = 1 y31 7.71 3.16 0.18 -0.40
y41 9.62 3.21 0.08 -0.04
y51 12.20 3.24 -0.16 -0.37
y61 8.80 3.98 0.19 -0.39

y12 9.56 3.50 0.03 -0.17
y22 10.80 3.40 -0.09 -0.23

T = 2 y32 8.37 3.39 0.18 -0.24
y42 9.86 3.52 0.11 -0.20
y52 12.26 3.21 -0.06 -0.27
y62 8.95 4.26 0.24 -0.51

y13 9.80 3.61 -0.08 -0.22
y23 10.93 3.60 0.02 -0.22

T = 3 y33 8.79 3.36 0.04 -0.33
y43 10.07 3.51 0.01 -0.32
y53 12.21 3.30 -0.04 -0.44
y63 8.99 4.25 0.19 -0.46

y14 10.36 3.66 -0.05 -0.32
y24 11.14 3.51 -0.05 -0.17

T = 4 y34 9.01 3.36 0.04 -0.17
y44 10.26 3.61 0.03 -0.38
y54 12.49 3.36 -0.23 -0.51
y64 9.31 4.41 0.10 -0.67

y15 10.17 3.53 -0.15 -0.30
y25 11.43 3.42 -0.16 -0.20

T = 5 y35 9.23 3.44 -0.01 -0.37
y45 10.21 3.61 0.01 -0.46
y55 12.55 3.30 -0.26 -0.14
y65 9.32 4.33 0.15 -0.46

Table 3.7: Summary Statistics for Manifest Variables of Empirical Example
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implied, free-parameter, null, de Jong DKF, Koopman exact initial KF, and large κ,

were used in turn to estimate the model using the de-meaned data.

Parameter estimates, associated standard errors, and fit statistics are reported in

Table 3.8 and compared across both approaches in Figure 3.21. The fit statistics used

include the AIC and BIC, calculated as in the simulation study, and in addition the

Root-Mean-Square Error of Approximation (RMSEA; Steiger & Lind, 1980). 1 The

model-implied approach failed to converge properly even when given good starting

values and relaxing the convergence criteria, thus the estimates are not reported. The

de Jong DKF and Koopman exact initial KF produced identical results in terms of

parameters estimates, standard errors, fit statistics, and smoothed state estimates to

the 7th decimal place, and are therefore grouped together in Figure 3.21.

The large κ approach produced values that were identical to the de Jong and

Koopman approaches to the 2nd or 3rd decimal place. However, the log likelihood

values, AIC, BIC, and RMSEA as shown in Table 3.8 all indicated that the de Jong

and Koopman approaches were best. This is an interesting results because, without

other knowledge, a researcher would deem the model with a large κ initial condition

as poorly fitting the data, even though the parameter estimates and standard errors

1The RMSEA was calculated as follows,

RMSEA:

√
FML(N − 1)− d f

d f (N − 1)

where FML is the maximum likelihood fit function where the estimated model is compared to a sat-
urated model (Bollen, 1989), d f is degrees of freedom calculated as (((p(p + 1))/2) + (ny ∗ nt))− k
where p is the number of observed variables and k is the number of free parameters being estimated,
and N is the total sample size. The log-likelihood values obtained in this manuscript were derived
from using full information maximum likelihood estimation, where a saturated model is not calcu-
lated. Therefore, the RMSEA was not available for use in the simulation study. However, in the
empirical example, the saturated model was calculated as a function of the sample covariance matrix
and the maximum likelihood fit function, FML, was computed as

FML =
−2 log(θ)

N
− log(2π)(ny ∗ nt)− log(det(cov(S)))− ny ∗ nt (3.7)

where S is the sample covariance matrix.
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are very close to fitted models that indicate good fit. A more detailed examination

of the likelihood functions may elucidate this discrepant finding. Reproduced here

with the constant term included, the negative two log likelihoods for the de Jong

DKF, Koopman exact initial KF, and large κ approaches are,

de Jong: = (ny ∗ nt− nd) log(2π) +
N

∑
i=1

T

∑
t=1

log |Fit|+ qT + log |S−1
T |+ s′TSTsT

Koopman: = (ny ∗ nt− nd) log(2π) +
N

∑
i=1

T

∑
t=1

log |F−∗,it + F−∞,it|+ ε′itF
−
∗,itεit

Large κ: = ny ∗ nt log(2π) + nd log(κ) + log |Fit|+
N

∑
i=1

T

∑
t=1

ε′itF
−1
it εit (3.8)

where nd equals the number of diffuse elements. Note that nd appears in the constant

term for all three and log(κ) appears in the constant term for the large κ approach.

As nd is subtracted from the constant term in the de Jong and Koopman likelihoods,

it serves to make the likelihood value smaller in magnitude which will make this

model appear to be fitting the data more optimally. Also, the log(κ) is being added

to the constant term for the large κ likelihood, which makes this likelihood larger

in magnitude and thus less preferred. This may be why the de Jong and Koopman

approaches were chosen so frequently in the simulation study and also why they are

chosen here over the other methods, even when the large κ method provides very

similar point and standard error estimates.

The free-parameter and null conditions yielded similar parameter estimates for

the factor loading parameters and time series parameters, as indicated in Figure

3.21A. However, the free-parameter approach yielded process noise parameter es-

timates that more closely resembled those from the de Jong, Koopman, and large

κ approaches. For all methods, the standard errors for the fixed effect parameters

are smaller than those for the variance-covariance parameters, as illustrated when

comparing 3.21B and 3.21D.
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Factor Loading, Process Noise Measurement Error Variances
and Time Series Parameters
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Figure 3.21: Comparison of parameter estimates (A) and standard errors (B) for the
factor loading, process noise, and time series parameters, and parameter estimates
(C) and standard errors (D) for the measurement error variances, produced from the
null, free parameter, de Jong, Koopman, and large κ approaches when applied to the
empirical data set. Because the de Jong and Koopman approaches produced identical
estimates to the 7th decimal place, they are grouped together
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The free-parameter and null approaches estimated the parameters in the transi-

tion matrix, i.e., the time series parameters, as being nonstationary. This is verified by

calculating the roots of the determinant of Equation 1.7, which were 0.99 and 1.06 for

the null approach and 0.98 and 1.07 for the free-parameter approach. As at least one

root from each specification has a modulus less than 1, these transition matrices are

nonstationary. The diffuse approaches, however, including the de Jong, Koopman

and large κ approaches, estimated the time series parameters as being stationary.

This is verified as the roots of the determinant of Equation 1.7 are and 1.10 and 1.20,

and both have moduli greater than 1.

The cross factor regressions were low in magnitude in the null and free-parameter

model, meaning the extroversion factor from the current time point did not have

much influence in predicting the self-assuredness factor at the next time point and

vice-versa. From a substantive viewpoint, it is interesting that the cross-regression

parameters, i.e., T12 and T21, are significantly different from zero when the de Jong,

Koopman, and large κ approaches are implemented but not when the null and free-

parameter approaches are implemented.

The null condition estimated larger values for the process noise variables than

the other initial condition approaches. The de Jong and Koopman method estimated

the process noise parameters as having a larger variance than the free-parameter

approach. The free-parameter condition estimated the initial condition matrix with

the following values,

µ1 =

0

0

 , P1 =

5.12 1.83

1.83 2.75

 . (3.9)

It is also of interest to compare the estimated latent variable scores, or smoothed

estimates, obtained from all approaches. Figure 3.22 illustrates the estimated latent

variable scores for all approaches, with the de Jong and Koopman approaches again
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grouped together. The self-assuredness factor is displayed in the top panel (A) and

the extroversion factor in the bottom panel (B). From this plot it is clear that the

latent variable scores diverge most at the first time point and converge onto each

other as time increases. Also interesting is the how the latent variable scores are

clearly restricted at the first time point when the null approach is implemented. The

free-parameter approach produced estimated latent variable scores at the first time

point between -5 and 5, which coincides with the estimated initial condition mean

vector and covariance matrix. The diffuse approaches, however, produced estimated

latent variable scores ranging from -10 to 10. Overall, this plot nicely illustrates the

idea that the different initial condition approaches will provide different scores at the

first time point, but as time increases will provide scores that are more similar to each

other. Furthermore, the plot verifies that the diffuse approaches are stationary while

the non-diffuse approaches display a nonstationary process. This may be because the

diffuse approaches allow for more variability in latent variable scores at the first time

point.
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CHAPTER 4

Discussion

A specific goal of this thesis was to evaluate two approaches from the time se-

ries literature, the de Jong DKF and Koopman exact initial KF, for specifying ini-

tial condition in both stationary and nonstationary dynamic factor analysis models

estimated in the structural equation modeling framework as equivalent state-space

models. Motivation for this research included the fact that data arising from psycho-

logical processes has a great potential to be nonstationary and a misspecification of

initial condition may be more severe when the number of time points is small, such

as in panel data that is frequently collected in psychological studies. Results from

this thesis revealed conditions under which using the proper diffuse initial condi-

tion specifications may be superior to both an improper diffuse approach and other

known stationary approaches. Furthermore, results from this thesis suggest that us-

ing the de Jong DKF approach led to fewer numerical difficulties in certain cases than

the Koopman exact initial KF approach when estimating PFA(1,0) models with both

panel data and intensive repeated measures data.

Given the large number of results presented, it is important to highlight and dis-

cuss both interesting and unexpected findings. Overall, results from general model

performance emphasized the importance of understanding a model’s potential to

converge under certain data conditions. Counter to my hypothesis, the model-

implied approach did not perform as well as the free parameter approach, even
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when the model-implied approach served as the true initial condition specification.

One reason for the poor performance of the model-implied approach may be that

stationary-constraints were not imposed in the estimation process. Thus, the es-

timates of the time series parameters may have wandered into an outlying range,

which in turn would affect the other estimates. Given this, it is important to complete

a follow up simulation study placing stationary constraints on the AR parameters.

Also, it would be helpful to simulate models that require less complicated constraints

in the covariance initial condition matrix and see if the convergence problems dimin-

ish.

Another estimation issue concerned replications that failed when inverting the

Hessian matrix, so proceeded to use a generalized inverse. This led to some replica-

tions producing parameter estimates that hit a boundary condition for the variance

of the process noise or measurement error parameters. Thus, some of these cases

did not appear to be representative of the majority of cases. Results with and with-

out cases that hit a boundary condition were presented and compared. While the

free-parameter, Koopman exact initial KF, and large κ results significantly improved

with boundary cases removed, this does not necessarily indicate that they performed

just as well as the de Jong DKF approach. The large discrepancy in cases retained

between the de Jong approach and all other approaches suggests that the de Jong

approach is better able to estimate the initial condition distribution even when it is

diffuse. Furthermore, a sever limitation with the free-parameter approach is that it

sometimes soaks up too much variance in the initial condition distribution and sub-

sequently yields process noise variance estimates and measurement error variance

estimates that are very close to zero.

Another interesting result was the exceptionally poor performance of the de Jong

DKF approach when fitted to a process initialized with a null initial condition spec-

ification, particularly in the mildly nonstationary condition using panel data. As
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indicated in the results, this may be because there is not enough variability to form

accurate maximum likelihood estimates of the diffuse constructs.

Counter to my hypothesis, the de Jong and Koopman approaches did not per-

form equally well. Across most simulation conditions, the de Jong approach outper-

formed the Koopman approach on most simulation outcome measures. This is sur-

prising as both approaches should produce identical results. However, the empirical

results provide preliminary evidence that the de Jong approach is robust to differ-

ent starting values, and this may be a reason why it converged more frequently and

provided more results that did not produce outlying parameter estimates. Further-

more, when cases hitting a boundary condition were removed, the two approaches

produced very similar results. Thus, it may be that the Koopman approach is not

as flexible in estimation and resorts to taking a generalized inverse of the Hessian

matrix, thereby producing cases that his a boundary condition.

Another interesting result was that the de Jong DKF approach produced very

good standard error consistency across most conditions, especially for the process

noise parameters. In fact, fitting the de Jong approach resulted in very good point

and standard errors estimates for the process noise parameters under all conditions

except when the true initial condition was null and panel data was used.

Results concerning the AIC and BIC were particularly interesting and highlight

the importance of the constant value in the likelihood function. Even when the de

Jong and Koopman approaches did not perform as well with respect to estimation

results, the AIC and BIC still chose these models a large percentage of the time,

especially in the panel data case. This may be due to the fact that the number of

diffuse elements is subtracted out of the constant, thus making the likelihood smaller

especially in the panel data case. Also, since log(κ) appears in the likelihood function,

this approach was not chosen most of the time.

In line with the goals of this simulation study, it is important to make direct com-

137



parisons among the initial condition specifications. There were many circumstances

under which the free parameter approach yielded the most optimal performance,

such as when the process was stationary. The de Jong approach yielded the most op-

timal results under certain conditions as well, such as when treating the true initial

condition as diffuse, especially in the intensive repeated measures condition and in

the recover of the process noise parameters.

Because fitting both the de Jong and free parameter approaches produced satis-

factory results under different simulation conditions, it is important to understand

circumstances under which each is preferred. The results suggest that, as the degree

of explosiveness increases (i.e., the process has a greater degree of nonstationarity),

the de Jong DKF is more likely to outperform the free parameter approach. Also, as

the number of time points increases, the de Jong DKF is more likely to outperform

the free parameter approach. Furthermore, developing a sense under which 1. the

degree of explosiveness starts to favor using de Jong DKF over free parameter (as

the process has a greater degree of nonstationarity), 2. the number of time points

used starts to favor using the de Jong DKF over free parameter (as T increases). It

may be useful to run a simulation where T = 14, which may correspond to a two

week period as is commonly used in daily dairy studies (Bolger, Davis, Olchowski,

& Rafaeli, 2003).

While a main focus was on comparing fitted initial condition specifications, it is

also of interest to discuss differences between data types. For stationary models, the

intensive repeated measures data condition was associated with very good simula-

tion results across all true and fitted initial conditions. One reason for this is that as

the number of time points increases, the choice of initial condition specification will

become less important. As discussed in Section 1.3, the KF becomes independent

of the initial state condition after a sufficient number of time points (see Jazwinski,

1970, pp. 239-243; Oud et al., 1990). This means that, as the number of time points
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increases, the importance of a correctly specified initial condition is diminished. This

makes sense analytically, as when the number of time points is small the diffuse part

still overwhelms the likelihood value, affecting two out of five time points instead of

two out of 50. Thus, it make sense that, all else held constant, the models estimated

under a stationary process, regardless of true or fitted initial condition, would per-

form well with intensive repeated measures data. With mild nonstationarity the fitted

initial condition specifications still performed well with intensive repeated measures.

Because the SEM framework is more suited for panel type data, perhaps estimating

the free parameter, null, and model-implied approaches in software designed for the

SEM framework, such as Mplus, may have produced more optimal results for these

fitted initial conditions.

The empirical example illustrated the notion that different initial condition spec-

ifications may lead to different point and standard error estimates, and thus different

conclusions. This was particularly salient by the fact that the cross-regression pa-

rameters were found to be significant when using the diffuse approaches, but not

when using the non-diffuse approaches. This is an important distinction as many

psychological hypotheses may concern whether or not a given construct significantly

predicts future performance on another construct.

4.1 Recommendations for Practice

To make specific recommendations for practice, it is important to consider the

circumstances under which the true initial condition specifications used in this

manuscript would arise. Therefore, I will next discuss circumstances and constructs

in psychological research that would give rise to each of the true initial condition

specifications considered and provide suggestions for fitted initial condition specifi-

cations based on the results from this thesis.

Three true initial conditions were implemented when the process is stationary:

1. model-implied, 2. free-parameter, and 3. null. Overall, results suggest that if the
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true process is indeed stationary, choosing one of the stationary approaches is best.

A true initial condition resulting from using a model-implied approach results in a

stationary process that has always maintained its stationarity. This may be viable

for psychological processes that ebb and flow with time, such as emotions or daily

affect (see, for example, Diener, Fujita, & Smith, 1995; Shifren, Hooker, Wood, &

Nesselroade, 1997) sampled on a daily basis. A model-implied approach in this case

would appear to be the best choice, however this study did not provide supporting

evidence as the model-implied approach proved to have severe convergence issues.

Generating a process using the free parameter approach is akin to generating

a process where there is only a change in the first occasion, in line with the free-

parameter approach discussed by Du Toit and Browne (2007). When the process is

stationary, this means that the process before the first occasion was different than

the overall process; however, from the first time point onward the process does not

display mean trends or changes in variability. This type of process is more likely to

arise in psychological data than the null initial condition, although the assumption

of stationarity still holds across all time points other than the first. When this is the

case, the fitted free-parameter initial condition performs best as it captures the mean

and covariance of the process at the first time point, and also the stationary process

onward. However, it is important to carefully consider whether this assumption is

valid given the type of psychological construct being studied. Still, applying such

a specification will provide information regarding the process before the first time

point in the form of mean and variance-covariance parameter estimates. There is a

cost to this, however, as more degrees of freedom are used. In line with the model

selection literature, and a more parsimonious model may be preferred (Preacher,

2006, 2000).

In the stationary case, a true initial condition consisting of null matrices would

arise when the process starts exactly at the first time point. Given the types of con-
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structs estimated in psychological studies, such as self-assuredness and extroversion

in the empirical example considered in this manuscript, this seems like an untenable

assumption. Given that the fitted free-parameter method can estimate the value in

the initial condition matrices, it seems wise to use this approach over a fitted null ap-

proach unless a researcher is certain that the process starts at the first time point, in

which case the null model would be a more parsimonious model. The fitted diffuse

approaches performed especially poorly in this case, so it would be wise to avoid

using them here.

If the process is nonstationary, this thesis considered three true initial condition

specifications: 1. free-parameter, 2. null, and 3. diffuse. Like in the nonstationary

case, the free-parameter condition indicates that there was indeed a change in pro-

cess at the first time point, but in this case the process after the first time point is

nonstationary. A process like this may occur in an experimental design after a treat-

ment in enacted. Specifically, the first time point serves as a person’s process prior

to receiving a treatment, and time points thereafter serve as a person’s process after

receiving a treatment. While the fitted free-parameter approach works well when

there are no convergence issues, it may not be the best choice if the process is highly

nonstationary, as the variance may be consumed fully by the variance and covari-

ance parameters of the initial condition matrices leading to potential convergence

problems, boundary conditions, and parameter estimate outliers.

In the nonstationary case, a true initial condition consisting of null matrices

would arise when the process starts exactly at the first time point, but displays a

nonstationary process onward. Given psychological constructs, this seems like an

untenable assumption. However, there may be cases in experimental designs where,

prior to treatment, every person has no proficiency in a given construct. Still, being

that the free-parameter approach estimates the process before the first time point, it

may be safer to just apply this approach, especially since simulation results suggested
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this approach performs well if the true initial condition is null. As in the stationary

case, the fitted diffuse approaches did not perform very well when the true initial

condition was null.

The final true initial condition considered was that of a diffuse process. In this

case, the process began in the distant past, there is no prior information regarding

the process before the first time point, and the process after the first time point re-

mains nonstationary. This situation may occur often in psychological processes, as

people are constantly changing in complicated ways with respect to many psycholog-

ical constructs such as personality development, intelligence, and severity of clinical

disorders. It is rarely known what a given person’s trajectory was before the first

time point was collected. It is also unlikely that a person began the process right at

the first time point. As the process started in the distant past and there is no prior

information about the process, fitting a null initial condition is not a good idea, as

confirmed by the simulation results. Fitting the free-parameter approach may work

well as it is able to capture some aspects of the process prior to the first observation,

but again there are issues of convergence, boundary conditions, and extreme outly-

ing parameter estimates. The de Jong diffuse initial condition specification worked

well in this case in terms of both recover point and standard error estimates and

not displaying large convergence, boundary, or outlier problems. The other diffuse

approaches did not work as well, mainly due to boundary cases and convergence

issues. Thus, using the fitted de Jong approach would appear to be the best choice,

followed by the free-parameter condition.

4.2 Limitations and Future Directions

Although the results presented in this thesis provide a promising indication that

using a diffuse initial condition specification is beneficial when the process is ac-

tually diffuse, several limitations are apparent. As with all simulation studies, the

findings here are limited to the simulation conditions chosen and may not generalize
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to other types of data or models. The conclusions made in this thesis are restricted

by the choice of the true initial condition specifications, current modeling choices,

and true parameter values considered. The performance of different initial condition

specifications needs to be examined in the presence of methodological concerns that

commonly arise in psychological data, such as the presence of missing data (both

ignorable and non-ignorable) or the use of categorical outcomes (e.g., ordinal, binary,

or count data). Also, other forms of misspecification, such as differing degrees of

explosiveness and different true parameters values in the fixed initial condition ma-

trices. Furthermore, intercepts were not included in either models nor was a moving

average component considered.

The presence of missing data would be an interesting one to consider because,

when using the de Jong DKF approach, the number of time points before a collapse to

the regular KF may increase with missing data (Harvey, 1991; Doornik, 2007). Thus,

the importance of a correctly specified initial condition is magnified as the diffuse

part of the likelihood will larger.

The number of replications per condition was 500, which is not very large con-

sidering the relatively large number of cases that either did not converge to a proper

solution or produced excessive outliers in the parameter estimates. A follow-up

simulation study using upwards of 5,000 replications would reveal a more accurate

percentage rate of solutions that converged properly and solutions that did not pro-

duce extreme outlying parameter estimates. Furthermore, more replications would

be available to make more conclusive statements regarding simulation outcome mea-

sures such as bias and MSE.

It would also be helpful to analytically determine why the Koopman exact initial

KF approach broke down in most simulation conditions. This was certainly an un-

expected result and determining the conditions under which both the de Jong and

Koopman approaches are likely to fail is important. For example, from this simula-
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tion study we can see that the de Jong approach does not converge as often when the

a true null initial condition specification is applied and the process is not extremely

explosive. Determining the exact analytical conditions under which both approaches

fail would be helpful for empirical researchers.

One future consideration is to investigate the merits of and implement a marginal

log-likelihood suggested by Francke, Koopman, and deVos (2010). The authors

present a modification to the DKF that allows for the marginal log-likelihood to be

utilized, which may work better with some state space models. However, it is not

clear if this approach would work well when considering panel data. It would also

be interesting to consider other types of models, such as models that are partially

stationary, models with a time-varying trend, models with covariates, and models

with different trajectory shapes. In psychological research there may be processes

with both stationary and nonstationary underlying latent processes. For example,

daily diary or intensive repeated measures data of positive emotions may produce a

process that ebbs and flows around a set point, while ultimately remaining station-

ary. However, there may also be underlying processes that display a time trend, such

as a person’s anxiety level over a time period where he or she is attending therapy.

Harvey (1991) described a procedure for implementing models where some states

are regarded as stationary and some regarded as nonstationary.

These models were estimated using Ox and SSfPack. Given that many psychol-

ogists are unfamiliar with these packages and formulating models as state space

models in general, it is important to make these statistical methods accessible to em-

pirical researchers. Thus, a future direction for this research is to create R code that

automates the process of fitting a model using a given diffuse initial condition speci-

fication. Still, this may be difficult as the current version of SSfPack with the canned

procedures is expensive. Thus, I will continue to work on the SAS proc IML code

and will consider writing the code in R using an existing optimization procedure,
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perhaps with openMX.

Despite the above mentioned limitations, the results from this thesis provide

promising evidence that using the de Jong DKF may be superior to other methods

when the process is truly diffuse. Still, there is much work to be done in determining

the exact conditions under which such results will hold true. Overall, the research

completed here is a small step forward in the direction of allowing for the feasible

estimation of time series models in the SEM framework in the hopes that researchers

in the psychological sciences will more readily apply such models.
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CHAPTER 5

Appendix A

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.205 0.051 0.048 0.005 0.004 0.052 0.946 1
Z31 0.8 0.801 0.049 0.048 0.001 0.002 0.049 0.938 1
Z52 0.9 0.9 0.04 0.04 0 0 0.04 0.958 1
Z62 1.1 1.1 0.038 0.037 0 0 0.038 0.946 1
V11 1 1.002 0.107 0.077 0.002 0.002 0.106 0.943 1
V21 0.4 0.403 0.073 0.045 0.003 0.007 0.073 0.946 1
V22 1 1 0.086 0.075 0 0 0.086 0.943 1
T11 0.5 0.496 0.058 0.033 -0.004 -0.008 0.058 0.941 1
T21 -0.3 -0.306 0.048 0.034 -0.006 0.019 0.049 0.931 1
T12 -0.1 -0.102 0.046 0.028 -0.002 0.022 0.046 0.938 0.946
T22 0.6 0.599 0.047 0.029 -0.001 -0.001 0.047 0.951 0.998
U11 0.8 0.801 0.056 0.054 0.001 0.001 0.056 0.953 1
U22 0.6 0.594 0.068 0.062 -0.006 -0.009 0.068 0.941 0.998
U33 2 1.986 0.095 0.096 -0.014 -0.007 0.096 0.96 1
U44 1 0.996 0.053 0.058 -0.004 -0.004 0.053 0.96 1
U55 1.5 1.495 0.076 0.075 -0.005 -0.003 0.076 0.938 1
U66 0.4 0.399 0.045 0.045 -0.001 -0.003 0.045 0.943 1

Table 5.1: Stationary PFA Results: True IC: Model Implied, Fitted IC: Model Implied,
N=20, T=50



θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.202 0.049 0.048 0.002 0.002 0.049 0.947 1
Z31 0.8 0.8 0.048 0.048 0 0 0.048 0.939 1
Z52 0.9 0.9 0.041 0.04 0 0 0.041 0.951 1
Z62 1.1 1.1 0.038 0.037 0 0 0.038 0.949 1
V11 1 1 0.077 0.077 0 0 0.077 0.951 1
V21 0.4 0.399 0.046 0.045 -0.001 -0.002 0.046 0.958 1
V22 1 0.997 0.074 0.075 -0.003 -0.003 0.074 0.941 1
T11 0.5 0.497 0.032 0.033 -0.003 -0.005 0.032 0.947 1
T21 -0.3 -0.304 0.034 0.034 -0.004 0.012 0.034 0.943 1
T12 -0.1 -0.101 0.03 0.029 -0.001 0.015 0.03 0.941 0.932
T22 0.6 0.598 0.029 0.029 -0.002 -0.004 0.029 0.945 1
U11 0.8 0.798 0.055 0.053 -0.002 -0.003 0.055 0.953 1
U22 0.6 0.597 0.062 0.062 -0.003 -0.004 0.062 0.945 1
U33 2 1.992 0.096 0.096 -0.008 -0.004 0.096 0.96 1
U44 1 0.996 0.054 0.058 -0.004 -0.004 0.054 0.958 1
U55 1.5 1.496 0.076 0.075 -0.004 -0.003 0.076 0.939 1
U66 0.4 0.398 0.045 0.045 -0.002 -0.005 0.045 0.943 1
X01 - 0.004 0.282 0.27
X02 - -0.004 0.655 0.378
P011 - 1.274 0.499 0.48
P012 - 0.133 0.785 0.535
P022 - 1.591 0.586 1.161

Table 5.2: Stationary PFA Results: True IC: Model Implied, Fitted IC: Free Parameter,
N=20, T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.171 0.044 0.046 -0.029 -0.024 0.053 0.891 1
Z31 0.8 0.803 0.049 0.049 0.003 0.004 0.049 0.937 1
Z52 0.9 0.9 0.041 0.041 0 0 0.041 0.962 1
Z62 1.1 1.063 0.035 0.036 -0.037 -0.033 0.051 0.828 1
V11 1 1.005 0.078 0.078 0.005 0.005 0.078 0.95 1
V21 0.4 0.406 0.047 0.047 0.006 0.014 0.048 0.956 1
V22 1 1.005 0.075 0.078 0.005 0.005 0.076 0.958 1
T11 0.5 0.505 0.034 0.034 0.005 0.009 0.034 0.937 1
T21 -0.3 -0.308 0.035 0.035 -0.008 0.027 0.036 0.947 1
T12 -0.1 -0.101 0.03 0.029 -0.001 0.011 0.03 0.935 0.935
T22 0.6 0.609 0.029 0.029 0.009 0.015 0.03 0.943 1
U11 0.8 0.814 0.054 0.052 0.014 0.017 0.056 0.941 1
U22 0.6 0.719 0.063 0.056 0.119 0.198 0.134 0.452 1
U33 2 1.996 0.097 0.097 -0.004 -0.002 0.097 0.95 1
U44 1 1.006 0.056 0.058 0.006 0.006 0.056 0.966 1
U55 1.5 1.502 0.077 0.077 0.002 0.001 0.077 0.939 1
U66 0.4 0.54 0.051 0.041 0.14 0.351 0.149 0.111 1

Table 5.3: Stationary PFA Results: True IC: Model Implied, Fitted IC: Null, N=20,
T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.177 0.066 0.047 -0.023 -0.019 0.069 0.9 0.998
Z31 0.8 0.786 0.06 0.047 -0.014 -0.017 0.061 0.93 0.998
Z52 0.9 0.887 0.04 0.039 -0.013 -0.015 0.042 0.952 1
Z62 1.1 1.082 0.036 0.036 -0.018 -0.016 0.04 0.914 1
V11 1 1.021 0.09 0.077 0.021 0.021 0.093 0.954 0.998
V21 0.4 0.408 0.047 0.047 0.008 0.02 0.047 0.956 0.998
V22 1 1.021 0.093 0.076 0.021 0.021 0.095 0.942 1
T11 0.5 0.496 0.034 0.034 -0.004 -0.007 0.034 0.946 0.998
T21 -0.3 -0.295 0.172 0.035 0.005 -0.018 0.172 0.942 1
T12 -0.1 -0.101 0.03 0.029 -0.001 0.007 0.03 0.94 0.932
T22 0.6 0.596 0.042 0.029 -0.004 -0.007 0.042 0.946 0.998
U11 0.8 0.79 0.087 0.053 -0.01 -0.013 0.088 0.94 1
U22 0.6 0.615 0.107 0.061 0.015 0.025 0.108 0.956 1
U33 2 1.993 0.101 0.096 -0.007 -0.004 0.102 0.96 1
U44 1 0.989 0.054 0.058 -0.011 -0.011 0.055 0.95 1
U55 1.5 1.495 0.077 0.075 -0.005 -0.004 0.077 0.938 1
U66 0.4 0.406 0.044 0.044 0.006 0.015 0.045 0.942 1

Table 5.4: Stationary PFA Results: True IC: Model Implied, Fitted IC: deJong DKF,
N=20, T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.179 0.046 0.046 -0.021 -0.018 0.051 0.899 1
Z31 0.8 0.788 0.047 0.047 -0.012 -0.015 0.049 0.93 1
Z52 0.9 0.887 0.039 0.039 -0.013 -0.014 0.041 0.954 1
Z62 1.1 1.083 0.036 0.036 -0.017 -0.016 0.04 0.916 1
V11 1 1.023 0.077 0.077 0.023 0.023 0.081 0.962 1
V21 0.4 0.408 0.046 0.046 0.008 0.021 0.047 0.956 1
V22 1 1.019 0.073 0.076 0.019 0.019 0.076 0.947 1
T11 0.5 0.496 0.033 0.033 -0.004 -0.008 0.033 0.947 1
T21 -0.3 -0.303 0.034 0.034 -0.003 0.008 0.034 0.943 1
T12 -0.1 -0.101 0.03 0.029 -0.001 0.01 0.03 0.939 0.932
T22 0.6 0.597 0.029 0.029 -0.003 -0.005 0.029 0.945 1
U11 0.8 0.786 0.054 0.053 -0.014 -0.017 0.056 0.941 1
U22 0.6 0.612 0.062 0.061 0.012 0.02 0.063 0.956 1
U33 2 1.991 0.096 0.096 -0.009 -0.005 0.096 0.96 1
U44 1 0.988 0.054 0.058 -0.012 -0.012 0.055 0.949 1
U55 1.5 1.495 0.076 0.075 -0.005 -0.003 0.076 0.943 1
U66 0.4 0.406 0.044 0.044 0.006 0.015 0.045 0.941 1

Table 5.5: Stationary PFA Results: True IC: Model Implied, Fitted IC: Koopman exact
initial KF, N=20, T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.179 0.046 0.046 -0.021 -0.018 0.051 0.899 1
Z31 0.8 0.788 0.047 0.047 -0.012 -0.015 0.049 0.93 1
Z52 0.9 0.887 0.039 0.039 -0.013 -0.014 0.041 0.954 1
Z62 1.1 1.083 0.036 0.036 -0.017 -0.016 0.04 0.916 1
V11 1 1.023 0.077 0.077 0.023 0.023 0.081 0.962 1
V21 0.4 0.408 0.046 0.046 0.008 0.021 0.047 0.956 1
V22 1 1.019 0.073 0.076 0.019 0.019 0.076 0.947 1
T11 0.5 0.496 0.033 0.033 -0.004 -0.008 0.033 0.947 1
T21 -0.3 -0.303 0.034 0.034 -0.003 0.008 0.034 0.943 1
T12 -0.1 -0.101 0.03 0.029 -0.001 0.01 0.03 0.939 0.932
T22 0.6 0.597 0.029 0.029 -0.003 -0.005 0.029 0.945 1
U11 0.8 0.786 0.054 0.053 -0.014 -0.017 0.056 0.941 1
U22 0.6 0.612 0.062 0.061 0.012 0.02 0.063 0.956 1
U33 2 1.991 0.096 0.096 -0.009 -0.005 0.096 0.96 1
U44 1 0.988 0.054 0.058 -0.012 -0.012 0.055 0.949 1
U55 1.5 1.495 0.076 0.075 -0.005 -0.003 0.076 0.943 1
U66 0.4 0.406 0.044 0.044 0.006 0.015 0.045 0.941 1

Table 5.6: Stationary PFA Results: True IC: Model Implied, Fitted IC: Large κ, N=20,
T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.168 0.039 0.046 -0.032 -0.027 0.05 0.944 1
Z31 0.8 0.815 0.042 0.049 0.015 0.018 0.044 1 1
Z52 0.9 0.909 0.045 0.041 0.009 0.01 0.045 0.944 1
Z62 1.1 1.072 0.042 0.036 -0.028 -0.025 0.05 0.861 1
V11 1 1.061 0.435 0.103 0.061 0.061 0.433 0.667 1
V21 0.4 0.61 0.345 0.064 0.21 0.526 0.4 0.472 1
V22 1 1.028 0.216 0.097 0.028 0.028 0.215 0.833 1
T11 0.5 0.661 0.515 0.036 0.161 0.322 0.533 0.333 1
T21 -0.3 -0.361 0.414 0.043 -0.061 0.204 0.413 0.389 0.917
T12 -0.1 -0.088 0.373 0.038 0.012 -0.116 0.368 0.361 0.972
T22 0.6 0.853 0.374 0.033 0.253 0.422 0.447 0.417 1
U11 0.8 0.846 0.077 0.056 0.046 0.058 0.089 0.778 1
U22 0.6 0.757 0.122 0.066 0.157 0.261 0.197 0.417 1
U33 2 2.016 0.111 0.098 0.016 0.008 0.111 0.944 1
U44 1 1.008 0.053 0.059 0.008 0.008 0.053 0.972 1
U55 1.5 1.505 0.078 0.077 0.005 0.003 0.077 1 1
U66 0.4 0.512 0.095 0.047 0.112 0.281 0.146 0.389 1

Table 5.7: Simulation Results: True IC: Model Implied, Fitted IC: Model Implied,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.197 0.051 0.049 -0.003 -0.003 0.051 0.949 1
Z31 0.8 0.8 0.049 0.048 0 0 0.049 0.958 1
Z52 0.9 0.906 0.09 0.041 0.006 0.007 0.09 0.941 1
Z62 1.1 1.1 0.049 0.038 0 0 0.049 0.927 1
V11 1 1.003 0.08 0.082 0.003 0.003 0.08 0.954 1
V21 0.4 0.401 0.054 0.05 0.001 0.002 0.054 0.936 1
V22 1 0.994 0.105 0.081 -0.006 -0.006 0.105 0.927 0.998
T11 0.5 0.5 0.037 0.037 0 -0.001 0.037 0.956 1
T21 -0.3 -0.302 0.042 0.038 -0.002 0.006 0.042 0.921 1
T12 -0.1 -0.101 0.032 0.032 -0.001 0.014 0.032 0.954 0.894
T22 0.6 0.6 0.033 0.032 0 0.001 0.033 0.947 1
U11 0.8 0.796 0.061 0.055 -0.004 -0.005 0.061 0.927 1
U22 0.6 0.601 0.07 0.064 0.001 0.002 0.07 0.952 0.998
U33 2 1.996 0.105 0.097 -0.004 -0.002 0.105 0.936 1
U44 1 1.004 0.103 0.059 0.004 0.004 0.103 0.934 1
U55 1.5 1.495 0.095 0.076 -0.005 -0.003 0.095 0.954 1
U66 0.4 0.406 0.059 0.047 0.006 0.014 0.059 0.956 0.998
X01 - 0.008 0.088 0.089 -0.992 -0.992 0.996 0 0.051
X02 - 0.099 2.245 0.22
P011 - 1.342 0.187 0.172
P012 - 0.106 3.947 0.338
P022 - 1.631 0.291 0.474

Table 5.8: Simulation Results: True IC: Model Implied, Fitted IC: Free Parameter,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.127 0.041 0.059 -0.073 -0.061 0.084 0.811 1
Z31 0.8 0.859 0.056 0.064 0.059 0.074 0.082 0.87 1
Z52 0.9 0.931 0.047 0.054 0.031 0.035 0.057 0.96 1
Z62 1.1 1.019 0.035 0.049 -0.081 -0.074 0.088 0.637 1
V11 1 0.969 0.088 0.096 -0.031 -0.031 0.093 0.95 1
V21 0.4 0.323 0.056 0.057 -0.077 -0.192 0.095 0.717 1
V22 1 1.065 0.099 0.104 0.065 0.065 0.118 0.95 1
T11 0.5 0.54 0.047 0.05 0.04 0.079 0.062 0.88 1
T21 -0.3 -0.315 0.049 0.054 -0.015 0.05 0.051 0.969 1
T12 -0.1 -0.1 0.04 0.043 0 0.001 0.04 0.953 0.663
T22 0.6 0.646 0.041 0.045 0.046 0.076 0.061 0.83 1
U11 0.8 1.155 0.068 0.062 0.355 0.443 0.361 0 1
U22 0.6 1.271 0.082 0.069 0.671 1.119 0.676 0 1
U33 2 2.125 0.112 0.105 0.125 0.063 0.168 0.778 1
U44 1 1.399 0.084 0.073 0.399 0.399 0.408 0 1
U55 1.5 1.756 0.091 0.089 0.256 0.171 0.272 0.163 1
U66 0.4 1.103 0.073 0.058 0.703 1.757 0.707 0 1

Table 5.9: Simulation Results: True IC: Model Implied, Fitted IC: Null, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.027 0.035 0.036 -0.173 -0.144 0.177 0.002 1
Z31 0.8 0.706 0.043 0.041 -0.094 -0.118 0.104 0.385 1
Z52 0.9 0.786 0.246 0.035 -0.114 -0.127 0.271 0.202 1
Z62 1.1 0.941 0.282 0.03 -0.159 -0.144 0.323 0.002 1
V11 1 1.19 0.082 0.088 0.19 0.19 0.206 0.419 1
V21 0.4 0.468 0.075 0.058 0.068 0.17 0.101 0.786 1
V22 1 1.18 0.118 0.089 0.18 0.18 0.215 0.463 1
T11 0.5 0.477 0.035 0.035 -0.023 -0.047 0.042 0.898 1
T21 -0.3 -0.284 0.048 0.036 0.016 -0.053 0.051 0.918 1
T12 -0.1 -0.095 0.038 0.031 0.005 -0.048 0.038 0.936 0.87
T22 0.6 0.581 0.032 0.031 -0.019 -0.032 0.037 0.906 1
U11 0.8 0.713 0.059 0.056 -0.087 -0.109 0.105 0.639 1
U22 0.6 0.716 0.062 0.062 0.116 0.194 0.131 0.531 1
U33 2 2.001 0.103 0.097 0.001 0 0.103 0.94 1
U44 1 0.963 0.252 0.061 -0.037 -0.037 0.255 0.83 1
U55 1.5 1.494 0.075 0.076 -0.006 -0.004 0.075 0.96 1
U66 0.4 0.471 0.045 0.046 0.071 0.177 0.084 0.693 1

Table 5.10: Simulation Results: True IC: Model Implied, Fitted IC: deJong DKF,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.027 0.035 0.036 -0.173 -0.144 0.177 0.002 1
Z31 0.8 0.705 0.043 0.041 -0.095 -0.119 0.104 0.381 1
Z52 0.9 0.786 0.226 0.034 -0.114 -0.126 0.253 0.2 1
Z62 1.1 0.941 0.261 0.03 -0.159 -0.145 0.305 0.002 1
V11 1 1.191 0.084 0.088 0.191 0.191 0.208 0.418 1
V21 0.4 0.465 0.088 0.058 0.065 0.163 0.109 0.789 1
V22 1 1.177 0.135 0.089 0.177 0.177 0.222 0.458 0.996
T11 0.5 0.476 0.036 0.036 -0.024 -0.049 0.044 0.893 1
T21 -0.3 -0.284 0.049 0.036 0.016 -0.054 0.051 0.913 0.998
T12 -0.1 -0.096 0.036 0.031 0.004 -0.044 0.037 0.932 0.867
T22 0.6 0.579 0.039 0.031 -0.021 -0.035 0.044 0.9 0.998
U11 0.8 0.712 0.06 0.056 -0.088 -0.11 0.106 0.634 1
U22 0.6 0.717 0.061 0.062 0.117 0.195 0.132 0.527 1
U33 2 2.001 0.104 0.097 0.001 0.001 0.104 0.939 1
U44 1 0.967 0.269 0.061 -0.033 -0.033 0.271 0.824 1
U55 1.5 1.494 0.114 0.076 -0.006 -0.004 0.114 0.954 0.998
U66 0.4 0.472 0.068 0.046 0.072 0.18 0.099 0.684 0.998

Table 5.11: Simulation Results: True IC: Model Implied, Fitted IC: Koopman exact
initial KF, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.027 0.035 0.036 -0.173 -0.144 0.177 0.002 1
Z31 0.8 0.705 0.043 0.041 -0.095 -0.119 0.104 0.38 1
Z52 0.9 0.787 0.226 0.034 -0.113 -0.126 0.252 0.205 1
Z62 1.1 0.942 0.26 0.03 -0.158 -0.144 0.304 0.002 1
V11 1 1.191 0.083 0.088 0.191 0.191 0.208 0.423 1
V21 0.4 0.465 0.088 0.058 0.065 0.162 0.109 0.79 1
V22 1 1.176 0.134 0.089 0.176 0.176 0.221 0.46 0.996
T11 0.5 0.475 0.036 0.036 -0.025 -0.049 0.044 0.894 1
T21 -0.3 -0.284 0.048 0.036 0.016 -0.054 0.051 0.914 0.998
T12 -0.1 -0.096 0.036 0.031 0.004 -0.043 0.037 0.933 0.868
T22 0.6 0.579 0.039 0.031 -0.021 -0.035 0.044 0.901 0.998
U11 0.8 0.712 0.06 0.056 -0.088 -0.11 0.106 0.633 1
U22 0.6 0.716 0.061 0.062 0.116 0.194 0.132 0.531 1
U33 2 2.001 0.104 0.097 0.001 0.001 0.103 0.94 1
U44 1 0.967 0.268 0.061 -0.033 -0.033 0.27 0.825 1
U55 1.5 1.494 0.114 0.076 -0.006 -0.004 0.114 0.955 0.998
U66 0.4 0.472 0.068 0.046 0.072 0.18 0.099 0.683 0.998

Table 5.12: Simulation Results: True IC: Model Implied, Fitted IC: Large κ, N=200,
T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.051 0.049 -0.001 -0.001 0.051 0.947 1
Z31 0.8 0.803 0.05 0.049 0.003 0.004 0.05 0.935 1
Z52 0.9 0.899 0.039 0.041 -0.001 -0.001 0.039 0.969 1
Z62 1.1 1.1 0.04 0.038 0 0 0.04 0.94 1
V11 1 0.988 0.129 0.076 -0.012 -0.012 0.13 0.926 1
V21 0.4 0.397 0.085 0.045 -0.003 -0.006 0.085 0.926 1
V22 1 0.988 0.094 0.075 -0.012 -0.012 0.094 0.957 1
T11 0.5 0.486 0.075 0.033 -0.014 -0.028 0.076 0.945 1
T21 -0.3 -0.3 0.058 0.035 0 0 0.058 0.935 1
T12 -0.1 -0.1 0.049 0.029 0 -0.002 0.049 0.94 0.94
T22 0.6 0.586 0.043 0.029 -0.014 -0.023 0.045 0.938 0.998
U11 0.8 0.802 0.055 0.054 0.002 0.003 0.055 0.938 1
U22 0.6 0.601 0.064 0.062 0.001 0.001 0.064 0.94 1
U33 2 1.993 0.096 0.096 -0.007 -0.003 0.096 0.955 1
U44 1 1 0.058 0.058 0 0 0.058 0.933 1
U55 1.5 1.499 0.079 0.076 -0.001 0 0.079 0.943 1
U66 0.4 0.397 0.051 0.045 -0.003 -0.006 0.051 0.926 0.998

Table 5.13: Stationary PFA Results: True IC: Null, Fitted IC: Model Implied, N=20,
T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.059 0.049 -0.001 -0.001 0.059 0.929 0.998
Z31 0.8 0.8 0.106 0.049 0 0 0.106 0.935 1
Z52 0.9 0.9 0.04 0.041 0 0 0.04 0.961 1
Z62 1.1 1.102 0.039 0.038 0.002 0.001 0.039 0.942 1
V11 1 1.001 0.089 0.077 0.001 0.001 0.089 0.95 0.998
V21 0.4 0.398 0.048 0.045 -0.002 -0.004 0.048 0.944 0.998
V22 1 1.001 0.074 0.076 0.001 0.001 0.074 0.95 1
T11 0.5 0.498 0.036 0.034 -0.002 -0.003 0.036 0.95 0.998
T21 -0.3 -0.301 0.04 0.035 -0.001 0.005 0.04 0.942 1
T12 -0.1 -0.099 0.03 0.029 0.001 -0.013 0.03 0.944 0.931
T22 0.6 0.597 0.029 0.029 -0.003 -0.005 0.029 0.935 1
U11 0.8 0.804 0.084 0.053 0.004 0.005 0.084 0.938 1
U22 0.6 0.601 0.109 0.06 0.001 0.001 0.109 0.931 1
U33 2 1.999 0.105 0.096 -0.001 0 0.105 0.944 1
U44 1 1.002 0.06 0.057 0.002 0.002 0.06 0.931 1
U55 1.5 1.497 0.077 0.075 -0.003 -0.002 0.076 0.946 1
U66 0.4 0.394 0.045 0.044 -0.006 -0.016 0.045 0.942 1
X01 - -0.006 0.106 0.113
X02 - -0.088 2.448 0.129
P011 - 0.033 0.122 0.04
P012 - -0.164 2.335 0.097
P022 - 0.023 0.042 0.032

Table 5.14: Stationary PFA Results: True IC: Null, Fitted IC: Free Parameter, N=20,
T=50

155



θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.049 0.048 -0.001 -0.001 0.049 0.935 1
Z31 0.8 0.804 0.05 0.049 0.004 0.004 0.05 0.937 1
Z52 0.9 0.899 0.039 0.041 -0.001 -0.001 0.038 0.962 1
Z62 1.1 1.092 0.167 0.038 -0.008 -0.007 0.167 0.95 1
V11 1 1.004 0.076 0.077 0.004 0.004 0.076 0.956 1
V21 0.4 0.399 0.055 0.046 -0.001 -0.003 0.054 0.948 1
V22 1 0.999 0.086 0.076 -0.001 -0.001 0.086 0.954 0.998
T11 0.5 0.5 0.034 0.034 0 0 0.034 0.95 1
T21 -0.3 -0.301 0.036 0.035 -0.001 0.002 0.036 0.943 1
T12 -0.1 -0.096 0.07 0.03 0.004 -0.043 0.07 0.945 0.937
T22 0.6 0.595 0.068 0.029 -0.005 -0.008 0.068 0.941 1
U11 0.8 0.801 0.054 0.053 0.001 0.001 0.054 0.939 1
U22 0.6 0.601 0.061 0.059 0.001 0.001 0.061 0.937 1
U33 2 1.997 0.097 0.096 -0.003 -0.002 0.097 0.945 1
U44 1 1.004 0.096 0.058 0.004 0.004 0.096 0.945 1
U55 1.5 1.501 0.108 0.075 0.001 0.001 0.108 0.948 1
U66 0.4 0.404 0.115 0.043 0.004 0.009 0.115 0.941 1

Table 5.15: Stationary PFA Results: True IC: Null, Fitted IC: Null, N=20, T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.167 0.132 0.047 -0.033 -0.027 0.135 0.899 1
Z31 0.8 0.788 0.07 0.048 -0.012 -0.016 0.071 0.926 0.996
Z52 0.9 0.886 0.038 0.04 -0.014 -0.016 0.041 0.948 1
Z62 1.1 1.081 0.037 0.037 -0.019 -0.017 0.041 0.901 1
V11 1 1.024 0.1 0.078 0.024 0.024 0.103 0.942 0.996
V21 0.4 0.411 0.046 0.047 0.011 0.026 0.047 0.956 1
V22 1 1.026 0.076 0.077 0.026 0.026 0.081 0.958 1
T11 0.5 0.499 0.038 0.034 -0.001 -0.002 0.038 0.946 1
T21 -0.3 -0.295 0.078 0.035 0.005 -0.015 0.078 0.938 1
T12 -0.1 -0.098 0.029 0.029 0.002 -0.015 0.029 0.956 0.938
T22 0.6 0.596 0.033 0.03 -0.004 -0.007 0.033 0.938 1
U11 0.8 0.795 0.11 0.054 -0.005 -0.006 0.11 0.926 1
U22 0.6 0.624 0.139 0.062 0.024 0.039 0.141 0.938 1
U33 2 1.999 0.113 0.096 -0.001 0 0.113 0.946 1
U44 1 0.991 0.057 0.058 -0.009 -0.009 0.058 0.936 1
U55 1.5 1.498 0.078 0.076 -0.002 -0.002 0.078 0.944 1
U66 0.4 0.406 0.046 0.045 0.006 0.016 0.046 0.942 1

Table 5.16: Stationary PFA Results: True IC: Null, Fitted IC: deJong DKF, N=20, T=50

156



θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.175 0.048 0.047 -0.025 -0.021 0.054 0.903 1
Z31 0.8 0.791 0.049 0.048 -0.009 -0.012 0.05 0.931 1
Z52 0.9 0.885 0.039 0.04 -0.015 -0.016 0.042 0.943 1
Z62 1.1 1.08 0.048 0.037 -0.02 -0.018 0.052 0.897 1
V11 1 1.029 0.076 0.078 0.029 0.029 0.082 0.945 1
V21 0.4 0.409 0.053 0.047 0.009 0.023 0.054 0.956 1
V22 1 1.023 0.087 0.077 0.023 0.023 0.09 0.96 0.998
T11 0.5 0.497 0.036 0.034 -0.003 -0.005 0.036 0.952 1
T21 -0.3 -0.299 0.035 0.035 0.001 -0.004 0.035 0.939 1
T12 -0.1 -0.099 0.033 0.029 0.001 -0.01 0.033 0.952 0.935
T22 0.6 0.597 0.029 0.029 -0.003 -0.005 0.029 0.939 1
U11 0.8 0.789 0.055 0.054 -0.011 -0.014 0.056 0.931 1
U22 0.6 0.615 0.062 0.062 0.015 0.025 0.064 0.943 1
U33 2 1.996 0.097 0.096 -0.004 -0.002 0.097 0.952 1
U44 1 0.994 0.085 0.058 -0.006 -0.006 0.085 0.931 1
U55 1.5 1.494 0.103 0.075 -0.006 -0.004 0.103 0.947 0.998
U66 0.4 0.408 0.066 0.045 0.008 0.021 0.067 0.937 1

Table 5.17: Stationary PFA Results: True IC: Null, Fitted IC: Koopman exact initial
KF, N=20, T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.175 0.05 0.047 -0.025 -0.021 0.055 0.901 1
Z31 0.8 0.791 0.049 0.048 -0.009 -0.012 0.049 0.931 1
Z52 0.9 0.885 0.04 0.04 -0.015 -0.017 0.042 0.941 1
Z62 1.1 1.079 0.055 0.037 -0.021 -0.019 0.059 0.895 1
V11 1 1.029 0.076 0.078 0.029 0.029 0.082 0.945 1
V21 0.4 0.409 0.054 0.047 0.009 0.022 0.054 0.954 1
V22 1 1.021 0.099 0.077 0.021 0.021 0.101 0.958 0.996
T11 0.5 0.497 0.036 0.034 -0.003 -0.006 0.036 0.95 1
T21 -0.3 -0.299 0.035 0.035 0.001 -0.004 0.035 0.939 1
T12 -0.1 -0.099 0.034 0.029 0.001 -0.013 0.034 0.95 0.933
T22 0.6 0.596 0.034 0.03 -0.004 -0.007 0.034 0.937 1
U11 0.8 0.79 0.057 0.054 -0.01 -0.013 0.057 0.929 1
U22 0.6 0.614 0.067 0.062 0.014 0.024 0.068 0.941 0.998
U33 2 1.997 0.097 0.096 -0.003 -0.002 0.097 0.952 1
U44 1 0.996 0.097 0.058 -0.004 -0.004 0.097 0.929 1
U55 1.5 1.496 0.108 0.075 -0.004 -0.003 0.108 0.945 0.998
U66 0.4 0.407 0.069 0.045 0.007 0.019 0.069 0.935 0.998

Table 5.18: Stationary PFA Results: True IC: Null, Fitted IC: Large κ, N=20, T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.211 0.054 0.066 0.011 0.009 0.055 1 1
Z31 0.8 0.796 0.055 0.059 -0.004 -0.005 0.055 0.961 1
Z52 0.9 0.89 0.053 0.052 -0.01 -0.011 0.054 0.922 1
Z62 1.1 1.103 0.057 0.053 0.003 0.003 0.056 0.961 1
V11 1 0.802 0.068 0.071 -0.198 -0.198 0.209 0.235 1
V21 0.4 0.306 0.042 0.039 -0.094 -0.234 0.103 0.294 1
V22 1 0.832 0.086 0.072 -0.168 -0.168 0.188 0.392 1
T11 0.5 0.394 0.039 0.039 -0.106 -0.213 0.113 0.235 1
T21 -0.3 -0.237 0.031 0.042 0.063 -0.21 0.07 0.745 1
T12 -0.1 -0.063 0.039 0.037 0.037 -0.37 0.054 0.784 0.49
T22 0.6 0.471 0.033 0.037 -0.129 -0.215 0.133 0.059 1
U11 0.8 0.795 0.047 0.057 -0.005 -0.006 0.047 0.98 1
U22 0.6 0.585 0.056 0.068 -0.015 -0.024 0.057 0.98 1
U33 2 1.989 0.09 0.096 -0.011 -0.005 0.09 0.98 1
U44 1 0.972 0.068 0.06 -0.028 -0.028 0.073 0.902 1
U55 1.5 1.496 0.065 0.076 -0.004 -0.003 0.065 0.98 1
U66 0.4 0.394 0.055 0.05 -0.006 -0.016 0.055 0.941 1

Table 5.19: Stationary PFA Results: True IC: Null, Fitted IC: Model Implied, N=200,
T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.206 0.053 0.051 0.006 0.005 0.054 0.927 1
Z31 0.8 0.799 0.057 0.056 -0.001 -0.001 0.057 0.93 1
Z52 0.9 0.901 0.139 0.05 0.001 0.001 0.138 0.862 1
Z62 1.1 1.097 0.119 0.044 -0.003 -0.003 0.119 0.83 1
V11 1 1.003 0.083 0.084 0.003 0.003 0.083 0.954 1
V21 0.4 0.393 0.062 0.05 -0.007 -0.018 0.062 0.905 1
V22 1 1.004 0.147 0.086 0.004 0.004 0.147 0.847 0.998
T11 0.5 0.488 0.057 0.048 -0.012 -0.023 0.058 0.896 1
T21 -0.3 -0.291 0.06 0.049 0.009 -0.03 0.061 0.915 0.998
T12 -0.1 -0.096 0.069 0.046 0.004 -0.039 0.069 0.93 0.604
T22 0.6 0.58 0.07 0.046 -0.02 -0.034 0.073 0.888 1
U11 0.8 0.794 0.047 0.047 -0.006 -0.008 0.047 0.942 1
U22 0.6 0.586 0.051 0.047 -0.014 -0.024 0.053 0.925 1
U33 2 1.991 0.095 0.094 -0.009 -0.004 0.095 0.937 1
U44 1 1.005 0.125 0.055 0.005 0.005 0.125 0.84 0.998
U55 1.5 1.493 0.142 0.073 -0.007 -0.005 0.142 0.905 0.998
U66 0.4 0.391 0.127 0.036 -0.009 -0.023 0.127 0.82 0.954
X01 - 0.001 0.033 0.034
X02 - -0.366 4.929 0.169
P011 - 0.013 0.023 0.013
P012 - -0.183 6.899 0.273
P022 - 0.007 0.013 0.253

Table 5.20: Stationary PFA Results: True IC: Null, Fitted IC: Free Parameter, N=200,
T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.051 0.052 0.001 0.001 0.051 0.956 1
Z31 0.8 0.798 0.056 0.057 -0.002 -0.002 0.056 0.947 1
Z52 0.9 0.901 0.053 0.051 0.001 0.001 0.052 0.943 1
Z62 1.1 1.098 0.045 0.045 -0.002 -0.002 0.045 0.958 1
V11 1 1.003 0.083 0.086 0.003 0.003 0.082 0.96 1
V21 0.4 0.4 0.049 0.05 0 0 0.049 0.956 1
V22 1 0.997 0.087 0.088 -0.003 -0.003 0.087 0.952 1
T11 0.5 0.499 0.051 0.048 -0.001 -0.001 0.051 0.936 1
T21 -0.3 -0.3 0.049 0.05 0 0.001 0.049 0.958 1
T12 -0.1 -0.101 0.048 0.046 -0.001 0.013 0.047 0.938 0.608
T22 0.6 0.597 0.045 0.046 -0.003 -0.006 0.045 0.963 1
U11 0.8 0.796 0.047 0.047 -0.004 -0.005 0.047 0.947 1
U22 0.6 0.597 0.045 0.045 -0.003 -0.005 0.045 0.943 1
U33 2 1.995 0.095 0.095 -0.005 -0.003 0.095 0.943 1
U44 1 0.998 0.055 0.054 -0.002 -0.002 0.055 0.936 1
U55 1.5 1.493 0.067 0.073 -0.007 -0.005 0.068 0.965 1
U66 0.4 0.4 0.033 0.032 0 0.001 0.033 0.938 1

Table 5.21: Stationary PFA Results: True IC: Null, Fitted IC: Null, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.926 0.047 0.044 -0.274 -0.228 0.278 0 1
Z31 0.8 0.652 0.05 0.048 -0.148 -0.185 0.156 0.158 1
Z52 0.9 0.749 0.043 0.041 -0.151 -0.168 0.157 0.064 1
Z62 1.1 0.867 0.038 0.036 -0.233 -0.212 0.236 0 1
V11 1 1.319 0.091 0.101 0.319 0.319 0.332 0.068 1
V21 0.4 0.496 0.061 0.065 0.096 0.24 0.114 0.711 1
V22 1 1.329 0.095 0.105 0.329 0.329 0.342 0.056 1
T11 0.5 0.443 0.053 0.048 -0.057 -0.114 0.078 0.772 1
T21 -0.3 -0.26 0.048 0.048 0.04 -0.132 0.062 0.868 0.998
T12 -0.1 -0.076 0.047 0.045 0.024 -0.235 0.053 0.896 0.435
T22 0.6 0.547 0.047 0.045 -0.053 -0.088 0.071 0.79 1
U11 0.8 0.626 0.066 0.065 -0.174 -0.218 0.186 0.23 1
U22 0.6 0.796 0.072 0.068 0.196 0.326 0.209 0.176 1
U33 2 2.02 0.101 0.098 0.02 0.01 0.103 0.942 1
U44 1 0.879 0.066 0.064 -0.121 -0.121 0.137 0.515 1
U55 1.5 1.494 0.072 0.077 -0.006 -0.004 0.072 0.964 1
U66 0.4 0.525 0.053 0.049 0.125 0.313 0.136 0.277 1

Table 5.22: Stationary PFA Results: True IC: Null, Fitted IC: deJong DKF, N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.927 0.047 0.044 -0.273 -0.228 0.277 0 1
Z31 0.8 0.651 0.05 0.048 -0.149 -0.186 0.157 0.147 1
Z52 0.9 0.747 0.057 0.041 -0.153 -0.17 0.163 0.066 1
Z62 1.1 0.865 0.053 0.036 -0.235 -0.214 0.241 0 1
V11 1 1.321 0.092 0.101 0.321 0.321 0.334 0.066 1
V21 0.4 0.496 0.063 0.065 0.096 0.24 0.115 0.713 1
V22 1 1.321 0.128 0.104 0.321 0.321 0.346 0.061 0.996
T11 0.5 0.443 0.054 0.048 -0.057 -0.114 0.078 0.766 1
T21 -0.3 -0.26 0.049 0.048 0.04 -0.134 0.063 0.873 0.996
T12 -0.1 -0.076 0.052 0.045 0.024 -0.24 0.057 0.895 0.446
T22 0.6 0.545 0.059 0.045 -0.055 -0.091 0.08 0.796 0.996
U11 0.8 0.625 0.066 0.065 -0.175 -0.218 0.187 0.23 1
U22 0.6 0.796 0.072 0.068 0.196 0.326 0.209 0.175 1
U33 2 2.02 0.1 0.098 0.02 0.01 0.102 0.943 1
U44 1 0.882 0.103 0.064 -0.118 -0.118 0.156 0.521 1
U55 1.5 1.497 0.086 0.077 -0.003 -0.002 0.086 0.956 1
U66 0.4 0.524 0.062 0.049 0.124 0.31 0.138 0.282 0.998

Table 5.23: Stationary PFA Results: True IC: Null, Fitted IC: Koopman exact initial
KF, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.927 0.047 0.044 -0.273 -0.228 0.277 0 1
Z31 0.8 0.651 0.05 0.048 -0.149 -0.186 0.157 0.15 1
Z52 0.9 0.747 0.057 0.041 -0.153 -0.17 0.163 0.065 1
Z62 1.1 0.865 0.053 0.036 -0.235 -0.213 0.241 0 1
V11 1 1.321 0.092 0.101 0.321 0.321 0.333 0.065 1
V21 0.4 0.496 0.063 0.065 0.096 0.24 0.115 0.711 1
V22 1 1.321 0.128 0.104 0.321 0.321 0.346 0.061 0.996
T11 0.5 0.443 0.054 0.048 -0.057 -0.114 0.078 0.766 1
T21 -0.3 -0.26 0.049 0.048 0.04 -0.133 0.063 0.874 0.996
T12 -0.1 -0.076 0.052 0.045 0.024 -0.239 0.057 0.896 0.447
T22 0.6 0.545 0.059 0.045 -0.055 -0.091 0.08 0.794 0.996
U11 0.8 0.625 0.066 0.065 -0.175 -0.218 0.187 0.228 1
U22 0.6 0.796 0.072 0.068 0.196 0.326 0.209 0.174 1
U33 2 2.021 0.1 0.098 0.021 0.01 0.102 0.944 1
U44 1 0.882 0.103 0.064 -0.118 -0.118 0.156 0.518 1
U55 1.5 1.497 0.086 0.077 -0.003 -0.002 0.086 0.957 1
U66 0.4 0.524 0.062 0.049 0.124 0.311 0.139 0.28 0.998

Table 5.24: Stationary PFA Results: True IC: Null, Fitted IC: Large κ, N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.047 0.048 -0.001 -0.001 0.047 0.948 1
Z31 0.8 0.8 0.05 0.048 0 0 0.05 0.946 1
Z52 0.9 0.901 0.042 0.041 0.001 0.001 0.042 0.953 1
Z62 1.1 1.1 0.037 0.038 0 0 0.037 0.946 1
V11 1 1.015 0.077 0.077 0.015 0.015 0.079 0.958 1
V21 0.4 0.403 0.047 0.045 0.003 0.009 0.047 0.931 1
V22 1 0.992 0.077 0.075 -0.008 -0.008 0.077 0.943 1
T11 0.5 0.496 0.033 0.033 -0.004 -0.009 0.033 0.96 1
T21 -0.3 -0.295 0.035 0.034 0.005 -0.017 0.035 0.955 1
T12 -0.1 -0.096 0.03 0.029 0.004 -0.045 0.03 0.938 0.894
T22 0.6 0.593 0.029 0.029 -0.007 -0.012 0.03 0.96 1
U11 0.8 0.797 0.053 0.054 -0.003 -0.004 0.054 0.948 1
U22 0.6 0.597 0.059 0.062 -0.003 -0.005 0.059 0.968 1
U33 2 2 0.096 0.096 0 0 0.096 0.943 1
U44 1 1.002 0.057 0.058 0.002 0.002 0.057 0.955 1
U55 1.5 1.502 0.075 0.076 0.002 0.001 0.075 0.968 1
U66 0.4 0.396 0.044 0.045 -0.004 -0.01 0.044 0.96 1

Table 5.25: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Model Implied,
N=20, T=50

162



θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.047 0.048 0 0 0.047 0.954 1
Z31 0.8 0.801 0.05 0.048 0.001 0.001 0.05 0.943 1
Z52 0.9 0.902 0.053 0.041 0.002 0.002 0.053 0.954 1
Z62 1.1 1.1 0.038 0.038 0 0 0.038 0.95 1
V11 1 1 0.077 0.076 0 0 0.077 0.95 1
V21 0.4 0.395 0.046 0.045 -0.005 -0.013 0.047 0.929 1
V22 1 0.993 0.089 0.076 -0.007 -0.007 0.089 0.937 0.998
T11 0.5 0.494 0.033 0.033 -0.006 -0.013 0.033 0.956 1
T21 -0.3 -0.302 0.035 0.034 -0.002 0.008 0.035 0.966 1
T12 -0.1 -0.098 0.03 0.029 0.002 -0.024 0.03 0.937 0.914
T22 0.6 0.598 0.031 0.029 -0.002 -0.004 0.031 0.952 1
U11 0.8 0.799 0.053 0.054 -0.001 -0.002 0.053 0.95 1
U22 0.6 0.596 0.06 0.061 -0.004 -0.006 0.06 0.964 1
U33 2 2.001 0.096 0.096 0.001 0.001 0.096 0.943 1
U44 1 1.005 0.092 0.058 0.005 0.005 0.092 0.956 1
U55 1.5 1.499 0.101 0.076 -0.001 -0.001 0.101 0.969 0.998
U66 0.4 0.399 0.068 0.045 -0.001 -0.002 0.068 0.95 1
X01 1 1 0.27 0.261 0 0 0.27 0.939 0.95
X02 0.5 0.498 0.215 0.203 -0.002 -0.004 0.215 0.916 0.677
P011 1.2 1.153 0.443 0.441 -0.047 -0.039 0.445 0.887 0.985
P012 0.3 0.271 0.241 0.248 -0.029 -0.098 0.243 0.943 0.094
P022 0.7 0.637 0.279 0.268 -0.063 -0.09 0.286 0.841 0.87

Table 5.26: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Free Parameter,
N=20, T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.158 0.042 0.046 -0.042 -0.035 0.059 0.833 1
Z31 0.8 0.807 0.051 0.05 0.007 0.009 0.051 0.95 1
Z52 0.9 0.899 0.058 0.041 -0.001 -0.002 0.058 0.95 0.998
Z62 1.1 1.072 0.07 0.037 -0.028 -0.025 0.075 0.897 1
V11 1 1 0.077 0.079 0 0 0.077 0.967 1
V21 0.4 0.402 0.073 0.047 0.002 0.005 0.073 0.946 1
V22 1 0.994 0.089 0.077 -0.006 -0.006 0.089 0.952 0.998
T11 0.5 0.504 0.037 0.034 0.004 0.009 0.037 0.958 0.998
T21 -0.3 -0.307 0.04 0.036 -0.007 0.023 0.04 0.95 0.998
T12 -0.1 -0.1 0.053 0.03 0 0.005 0.053 0.941 0.916
T22 0.6 0.602 0.086 0.03 0.002 0.003 0.086 0.941 1
U11 0.8 0.836 0.055 0.053 0.036 0.045 0.066 0.912 1
U22 0.6 0.778 0.066 0.056 0.178 0.297 0.19 0.13 1
U33 2 2.013 0.097 0.098 0.013 0.006 0.098 0.956 1
U44 1 1.005 0.106 0.058 0.005 0.005 0.106 0.967 1
U55 1.5 1.504 0.093 0.076 0.004 0.003 0.093 0.971 1
U66 0.4 0.487 0.086 0.041 0.087 0.218 0.122 0.46 1

Table 5.27: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Null, N=20,
T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.177 0.045 0.046 -0.023 -0.019 0.051 0.905 1
Z31 0.8 0.788 0.048 0.047 -0.012 -0.015 0.049 0.946 1
Z52 0.9 0.887 0.041 0.04 -0.013 -0.014 0.042 0.93 1
Z62 1.1 1.082 0.036 0.036 -0.018 -0.017 0.04 0.93 1
V11 1 1.024 0.076 0.077 0.024 0.024 0.08 0.952 1
V21 0.4 0.404 0.048 0.046 0.004 0.011 0.048 0.942 1
V22 1 1.017 0.077 0.076 0.017 0.017 0.079 0.952 1
T11 0.5 0.492 0.032 0.033 -0.008 -0.015 0.033 0.948 1
T21 -0.3 -0.302 0.034 0.034 -0.002 0.007 0.034 0.966 1
T12 -0.1 -0.098 0.029 0.029 0.002 -0.024 0.029 0.94 0.92
T22 0.6 0.597 0.03 0.029 -0.003 -0.005 0.03 0.95 1
U11 0.8 0.787 0.053 0.053 -0.013 -0.016 0.054 0.936 1
U22 0.6 0.611 0.06 0.061 0.011 0.018 0.061 0.96 1
U33 2 2.004 0.097 0.097 0.004 0.002 0.097 0.942 1
U44 1 0.993 0.058 0.058 -0.007 -0.007 0.058 0.95 1
U55 1.5 1.501 0.073 0.076 0.001 0.001 0.073 0.966 1
U66 0.4 0.405 0.045 0.045 0.005 0.012 0.045 0.952 1

Table 5.28: Stationary PFA Results: True IC: Free Parameter, Fitted IC: deJong DKF,
N=20, T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.176 0.045 0.046 -0.024 -0.02 0.051 0.904 1
Z31 0.8 0.788 0.048 0.047 -0.012 -0.015 0.05 0.945 1
Z52 0.9 0.886 0.044 0.04 -0.014 -0.015 0.046 0.931 1
Z62 1.1 1.08 0.051 0.037 -0.02 -0.018 0.055 0.929 1
V11 1 1.025 0.076 0.077 0.025 0.025 0.08 0.954 1
V21 0.4 0.405 0.047 0.047 0.005 0.011 0.047 0.943 1
V22 1 1.016 0.089 0.076 0.016 0.016 0.091 0.952 0.998
T11 0.5 0.492 0.032 0.033 -0.008 -0.016 0.033 0.945 1
T21 -0.3 -0.301 0.035 0.034 -0.001 0.005 0.035 0.966 1
T12 -0.1 -0.097 0.032 0.029 0.003 -0.029 0.032 0.939 0.92
T22 0.6 0.596 0.039 0.029 -0.004 -0.007 0.04 0.948 0.998
U11 0.8 0.786 0.053 0.053 -0.014 -0.017 0.054 0.937 1
U22 0.6 0.611 0.06 0.061 0.011 0.018 0.061 0.96 1
U33 2 2.001 0.096 0.096 0.001 0.001 0.096 0.941 1
U44 1 0.996 0.085 0.058 -0.004 -0.004 0.085 0.95 1
U55 1.5 1.498 0.101 0.075 -0.002 -0.001 0.1 0.964 0.998
U66 0.4 0.407 0.067 0.045 0.007 0.017 0.068 0.95 1

Table 5.29: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Koopman
exact initial KF, N=20, T=50

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.176 0.045 0.046 -0.024 -0.02 0.051 0.904 1
Z31 0.8 0.788 0.048 0.047 -0.012 -0.015 0.05 0.945 1
Z52 0.9 0.886 0.044 0.04 -0.014 -0.015 0.046 0.931 1
Z62 1.1 1.08 0.051 0.037 -0.02 -0.018 0.055 0.929 1
V11 1 1.024 0.076 0.077 0.024 0.024 0.08 0.954 1
V21 0.4 0.405 0.047 0.047 0.005 0.011 0.047 0.943 1
V22 1 1.016 0.089 0.076 0.016 0.016 0.091 0.952 0.998
T11 0.5 0.492 0.032 0.033 -0.008 -0.016 0.033 0.945 1
T21 -0.3 -0.301 0.035 0.034 -0.001 0.005 0.035 0.966 1
T12 -0.1 -0.097 0.032 0.029 0.003 -0.029 0.032 0.939 0.92
T22 0.6 0.596 0.039 0.029 -0.004 -0.007 0.04 0.948 0.998
U11 0.8 0.786 0.053 0.053 -0.014 -0.017 0.054 0.937 1
U22 0.6 0.611 0.06 0.061 0.011 0.018 0.061 0.958 1
U33 2 2.001 0.096 0.096 0.001 0.001 0.096 0.941 1
U44 1 0.996 0.085 0.058 -0.004 -0.004 0.085 0.95 1
U55 1.5 1.498 0.101 0.075 -0.002 -0.001 0.1 0.964 0.998
U66 0.4 0.407 0.067 0.045 0.007 0.017 0.068 0.95 1

Table 5.30: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Large κ, N=20,
T=50
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.157 0.196 0.047 -0.043 -0.036 0.196 0.957 1
Z31 0.8 0.761 0.138 0.046 -0.039 -0.049 0.141 0.913 0.957
Z52 0.9 0.894 0.038 0.044 -0.006 -0.006 0.038 1 1
Z62 1.1 1.088 0.04 0.043 -0.012 -0.011 0.041 0.957 1
V11 1 1.079 0.252 0.103 0.079 0.079 0.259 0.609 0.957
V21 0.4 0.482 0.055 0.062 0.082 0.205 0.098 0.565 0.957
V22 1 1.013 0.111 0.084 0.013 0.013 0.11 0.913 1
T11 0.5 0.34 0.86 0.046 -0.16 -0.32 0.856 0.87 1
T21 -0.3 -0.255 0.117 0.049 0.045 -0.15 0.123 0.478 1
T12 -0.1 0.014 0.377 0.064 0.114 -1.143 0.386 0.957 0.261
T22 0.6 0.545 0.045 0.044 -0.055 -0.091 0.07 0.652 1
U11 0.8 0.869 0.367 0.063 0.069 0.086 0.366 0.913 1
U22 0.6 0.692 0.418 0.068 0.092 0.153 0.419 0.87 1
U33 2 2.043 0.173 0.098 0.043 0.021 0.174 0.957 1
U44 1 0.986 0.058 0.06 -0.014 -0.014 0.058 1 1
U55 1.5 1.502 0.074 0.076 0.002 0.001 0.072 0.957 1
U66 0.4 0.402 0.043 0.048 0.002 0.005 0.043 1 1

Table 5.31: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Model Implied,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.047 0.044 0 0 0.047 0.936 1
Z31 0.8 0.798 0.044 0.044 -0.002 -0.002 0.044 0.953 1
Z52 0.9 0.901 0.046 0.045 0.001 0.001 0.046 0.945 1
Z62 1.1 1.102 0.046 0.043 0.002 0.002 0.046 0.949 1
V11 1 1.002 0.078 0.079 0.002 0.002 0.078 0.96 1
V21 0.4 0.397 0.049 0.05 -0.003 -0.007 0.049 0.945 1
V22 1 0.996 0.085 0.084 -0.004 -0.004 0.085 0.94 1
T11 0.5 0.497 0.034 0.034 -0.003 -0.007 0.035 0.947 1
T21 -0.3 -0.302 0.036 0.036 -0.002 0.006 0.036 0.947 1
T12 -0.1 -0.1 0.037 0.038 0 -0.001 0.037 0.953 0.765
T22 0.6 0.598 0.039 0.038 -0.002 -0.003 0.039 0.933 1
U11 0.8 0.803 0.056 0.054 0.003 0.003 0.056 0.942 1
U22 0.6 0.596 0.06 0.062 -0.004 -0.007 0.06 0.96 1
U33 2 1.998 0.097 0.096 -0.002 -0.001 0.096 0.958 1
U44 1 1 0.068 0.058 0 0 0.068 0.929 1
U55 1.5 1.499 0.077 0.076 -0.001 0 0.077 0.947 1
U66 0.4 0.395 0.055 0.046 -0.005 -0.012 0.055 0.94 0.996
X01 1 0.999 0.091 0.088 -0.001 -0.001 0.091 0.938 1
X02 0.5 0.751 3.563 0.068 0.251 0.501 3.568 0.953 1
P011 1.2 1.19 0.139 0.152 -0.01 -0.009 0.139 0.962 1
P012 0.3 0.403 5.975 0.083 0.103 0.343 5.969 0.947 0.965
P022 0.7 0.686 0.133 0.096 -0.014 -0.02 0.134 0.905 0.984

Table 5.32: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Free Parameter,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.127 0.039 0.066 -0.073 -0.061 0.083 0.901 1
Z31 0.8 0.892 0.058 0.07 0.092 0.115 0.109 0.807 1
Z52 0.9 0.919 0.05 0.054 0.019 0.021 0.054 0.953 1
Z62 1.1 1.025 0.035 0.047 -0.075 -0.069 0.083 0.667 1
V11 1 0.907 0.084 0.099 -0.093 -0.093 0.125 0.865 1
V21 0.4 0.364 0.052 0.056 -0.036 -0.09 0.063 0.901 1
V22 1 1.003 0.089 0.096 0.003 0.003 0.089 0.973 1
T11 0.5 0.557 0.047 0.053 0.057 0.114 0.074 0.825 1
T21 -0.3 -0.351 0.054 0.056 -0.051 0.171 0.074 0.852 1
T12 -0.1 -0.1 0.041 0.046 0 -0.003 0.041 0.966 0.611
T22 0.6 0.642 0.043 0.047 0.042 0.07 0.06 0.883 1
U11 0.8 1.409 0.082 0.073 0.609 0.761 0.614 0 1
U22 0.6 1.622 0.102 0.084 1.022 1.703 1.027 0 1
U33 2 2.239 0.108 0.111 0.239 0.119 0.262 0.402 1
U44 1 1.205 0.064 0.064 0.205 0.205 0.215 0.09 1
U55 1.5 1.629 0.078 0.082 0.129 0.086 0.151 0.697 1
U66 0.4 0.841 0.054 0.047 0.441 1.103 0.445 0 1

Table 5.33: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Null, N=200,
T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.056 0.036 0.033 -0.144 -0.12 0.149 0.03 1
Z31 0.8 0.717 0.039 0.038 -0.083 -0.104 0.092 0.394 1
Z52 0.9 0.785 0.036 0.036 -0.115 -0.127 0.12 0.12 1
Z62 1.1 0.934 0.031 0.031 -0.166 -0.151 0.169 0 1
V11 1 1.161 0.081 0.085 0.161 0.161 0.18 0.534 1
V21 0.4 0.469 0.056 0.059 0.069 0.173 0.089 0.824 1
V22 1 1.229 0.087 0.094 0.229 0.229 0.245 0.282 1
T11 0.5 0.477 0.034 0.033 -0.023 -0.046 0.041 0.904 1
T21 -0.3 -0.294 0.035 0.035 0.006 -0.019 0.035 0.94 1
T12 -0.1 -0.087 0.034 0.035 0.013 -0.132 0.037 0.942 0.692
T22 0.6 0.571 0.037 0.037 -0.029 -0.048 0.047 0.892 1
U11 0.8 0.735 0.057 0.054 -0.065 -0.081 0.087 0.768 1
U22 0.6 0.689 0.06 0.061 0.089 0.149 0.108 0.704 1
U33 2 2.002 0.096 0.097 0.002 0.001 0.096 0.96 1
U44 1 0.928 0.064 0.061 -0.072 -0.072 0.096 0.76 1
U55 1.5 1.495 0.075 0.076 -0.005 -0.003 0.075 0.954 1
U66 0.4 0.481 0.048 0.047 0.081 0.204 0.095 0.61 1

Table 5.34: Stationary PFA Results: True IC: Free Parameter, Fitted IC: deJong DKF,
N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.056 0.037 0.033 -0.144 -0.12 0.148 0.036 1
Z31 0.8 0.716 0.037 0.038 -0.084 -0.104 0.091 0.389 1
Z52 0.9 0.784 0.04 0.036 -0.116 -0.129 0.123 0.114 1
Z62 1.1 0.933 0.036 0.031 -0.167 -0.151 0.17 0 1
V11 1 1.162 0.081 0.085 0.162 0.162 0.181 0.528 1
V21 0.4 0.469 0.055 0.059 0.069 0.172 0.088 0.832 1
V22 1 1.224 0.12 0.094 0.224 0.224 0.255 0.277 0.996
T11 0.5 0.476 0.034 0.033 -0.024 -0.048 0.042 0.902 1
T21 -0.3 -0.294 0.036 0.035 0.006 -0.018 0.037 0.937 0.998
T12 -0.1 -0.085 0.037 0.035 0.015 -0.145 0.04 0.94 0.694
T22 0.6 0.57 0.043 0.037 -0.03 -0.05 0.052 0.895 1
U11 0.8 0.737 0.058 0.055 -0.063 -0.079 0.085 0.774 1
U22 0.6 0.688 0.06 0.061 0.088 0.147 0.107 0.716 1
U33 2 2.003 0.097 0.097 0.003 0.002 0.097 0.957 1
U44 1 0.935 0.115 0.061 -0.065 -0.065 0.132 0.756 1
U55 1.5 1.499 0.09 0.076 -0.001 -0.001 0.09 0.953 1
U66 0.4 0.478 0.058 0.047 0.078 0.194 0.097 0.624 0.996

Table 5.35: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Koopman
exact initial KF, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.056 0.037 0.033 -0.144 -0.12 0.148 0.036 1
Z31 0.8 0.717 0.037 0.038 -0.083 -0.104 0.091 0.393 1
Z52 0.9 0.784 0.04 0.036 -0.116 -0.129 0.123 0.113 1
Z62 1.1 0.933 0.036 0.031 -0.167 -0.151 0.17 0 1
V11 1 1.162 0.081 0.085 0.162 0.162 0.181 0.524 1
V21 0.4 0.469 0.056 0.059 0.069 0.173 0.089 0.827 1
V22 1 1.225 0.12 0.094 0.225 0.225 0.255 0.276 0.996
T11 0.5 0.476 0.034 0.033 -0.024 -0.048 0.041 0.904 1
T21 -0.3 -0.294 0.036 0.035 0.006 -0.019 0.037 0.938 0.998
T12 -0.1 -0.085 0.037 0.035 0.015 -0.145 0.04 0.938 0.696
T22 0.6 0.57 0.043 0.037 -0.03 -0.05 0.052 0.893 1
U11 0.8 0.736 0.058 0.055 -0.064 -0.08 0.086 0.769 1
U22 0.6 0.688 0.06 0.061 0.088 0.147 0.107 0.713 1
U33 2 2.004 0.097 0.097 0.004 0.002 0.096 0.958 1
U44 1 0.934 0.114 0.061 -0.066 -0.066 0.132 0.753 1
U55 1.5 1.498 0.091 0.076 -0.002 -0.001 0.09 0.953 1
U66 0.4 0.478 0.058 0.047 0.078 0.194 0.097 0.624 0.996

Table 5.36: Stationary PFA Results: True IC: Free Parameter, Fitted IC: Large κ,
N=200, T=5
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CHAPTER 6

Appendix B

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.198 0.018 0.018 -0.002 -0.001 0.018 0.946 1
Z31 0.8 0.799 0.021 0.021 -0.001 -0.001 0.021 0.952 1
Z52 0.9 0.901 0.034 0.019 0.001 0.001 0.034 0.949 1
Z62 1.1 1.103 0.031 0.017 0.003 0.003 0.031 0.952 1
V11 0.05 0.085 0.335 0.011 0.035 0.69 0.336 0.92 1
V21 0.02 0.032 0.137 0.011 0.012 0.596 0.138 0.885 0.713
V22 0.05 0.049 0.012 0.012 -0.001 -0.022 0.012 0.924 0.987
T11 1.2 1.183 0.166 0.008 -0.017 -0.014 0.166 0.949 0.997
T21 0.6 0.595 0.046 0.012 -0.005 -0.008 0.046 0.946 0.99
T12 -0.4 -0.378 0.232 0.01 0.022 -0.055 0.233 0.946 1
T22 0.7 0.701 0.018 0.009 0.001 0.002 0.018 0.962 1
U11 0.8 0.799 0.044 0.038 -0.001 -0.001 0.044 0.939 1
U22 0.6 0.599 0.047 0.03 -0.001 -0.001 0.047 0.917 1
U33 2 1.992 0.092 0.09 -0.008 -0.004 0.092 0.943 1
U44 1 1.062 0.585 0.05 0.062 0.062 0.587 0.93 1
U55 1.5 1.542 0.522 0.071 0.042 0.028 0.523 0.917 0.997
U66 0.4 0.465 0.653 0.025 0.065 0.162 0.655 0.927 1
X01 - 0.001 0.073 0.075
X02 - 0.043 5.464 0.187
P011 - 0.065 0.368 0.034
P012 - 0.992 10.336 0.417
P022 - 0.009 0.035 0.259

Table 6.1: Nonstationary PFA Results: True IC: Null, Fitted IC: Free Parameter, N=20,
T=50, Mild Nonstationarity



θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.018 0.018 -0.001 -0.001 0.018 0.945 1
Z31 0.8 0.8 0.021 0.021 0 0 0.021 0.953 1
Z52 0.9 0.899 0.018 0.017 -0.001 -0.001 0.018 0.945 1
Z62 1.1 1.101 0.019 0.014 0.001 0.001 0.019 0.947 1
V11 0.05 0.067 0.225 0.009 0.017 0.336 0.225 0.947 0.997
V21 0.02 0.025 0.101 0.009 0.005 0.258 0.101 0.895 0.767
V22 0.05 0.051 0.042 0.011 0.001 0.028 0.042 0.925 0.994
T11 1.2 1.191 0.125 0.007 -0.009 -0.008 0.126 0.95 1
T21 0.6 0.598 0.035 0.011 -0.002 -0.004 0.035 0.947 0.994
T12 -0.4 -0.388 0.174 0.008 0.012 -0.031 0.174 0.939 1
T22 0.7 0.699 0.023 0.006 -0.001 -0.002 0.023 0.958 1
U11 0.8 0.795 0.038 0.038 -0.005 -0.007 0.038 0.945 1
U22 0.6 0.601 0.033 0.03 0.001 0.002 0.033 0.931 1
U33 2 1.994 0.091 0.09 -0.006 -0.003 0.091 0.947 1
U44 1 1.035 0.423 0.049 0.035 0.035 0.424 0.953 1
U55 1.5 1.527 0.369 0.07 0.027 0.018 0.37 0.931 1
U66 0.4 0.436 0.456 0.023 0.036 0.09 0.457 0.928 1

Table 6.2: Nonstationary PFA Results: True IC: Null, Fitted IC: Null, N=20, T=50,
Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.196 0.018 0.017 -0.004 -0.003 0.018 0.941 1
Z31 0.8 0.798 0.021 0.021 -0.002 -0.003 0.021 0.948 1
Z52 0.9 0.897 0.018 0.017 -0.003 -0.003 0.018 0.955 1
Z62 1.1 1.098 0.015 0.014 -0.002 -0.002 0.015 0.944 1
V11 0.05 0.065 0.207 0.009 0.015 0.294 0.207 0.941 1
V21 0.02 0.026 0.09 0.009 0.006 0.31 0.09 0.918 0.713
V22 0.05 0.05 0.011 0.011 0 -0.007 0.011 0.939 0.995
T11 1.2 1.191 0.115 0.007 -0.009 -0.008 0.115 0.96 1
T21 0.6 0.597 0.032 0.011 -0.003 -0.005 0.032 0.941 0.995
T12 -0.4 -0.389 0.155 0.008 0.011 -0.026 0.155 0.934 1
T22 0.7 0.7 0.009 0.006 0 0 0.009 0.958 1
U11 0.8 0.796 0.038 0.038 -0.004 -0.005 0.038 0.944 1
U22 0.6 0.601 0.034 0.031 0.001 0.001 0.034 0.92 1
U33 2 1.997 0.089 0.091 -0.003 -0.001 0.089 0.955 1
U44 1 1.024 0.374 0.049 0.024 0.024 0.375 0.948 1
U55 1.5 1.519 0.323 0.07 0.019 0.013 0.323 0.929 1
U66 0.4 0.425 0.406 0.023 0.025 0.063 0.406 0.927 1

Table 6.3: Nonstationary PFA Results: True IC: Null, Fitted IC: deJong DKF, N=20,
T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.197 0.021 0.018 -0.003 -0.002 0.022 0.926 1
Z31 0.8 0.797 0.021 0.021 -0.003 -0.003 0.022 0.947 1
Z52 0.9 0.889 0.069 0.019 -0.011 -0.012 0.069 0.937 1
Z62 1.1 1.085 0.094 0.017 -0.015 -0.014 0.095 0.937 1
V11 0.05 0.109 0.367 0.012 0.059 1.174 0.371 0.908 1
V21 0.02 0.044 0.305 0.012 0.024 1.201 0.306 0.881 0.712
V22 0.05 0.048 0.015 0.014 -0.002 -0.041 0.015 0.918 0.958
T11 1.2 1.178 0.174 0.008 -0.022 -0.019 0.175 0.921 1
T21 0.6 0.577 0.255 0.013 -0.023 -0.039 0.256 0.921 0.989
T12 -0.4 -0.37 0.236 0.009 0.03 -0.075 0.238 0.905 1
T22 0.7 0.687 0.119 0.009 -0.013 -0.019 0.119 0.931 1
U11 0.8 0.801 0.059 0.038 0.001 0.001 0.059 0.916 1
U22 0.6 0.59 0.086 0.03 -0.01 -0.017 0.087 0.894 0.995
U33 2 1.997 0.094 0.091 -0.003 -0.002 0.094 0.945 1
U44 1 1.102 0.674 0.053 0.102 0.102 0.681 0.913 1
U55 1.5 1.52 0.583 0.07 0.02 0.013 0.583 0.908 0.979
U66 0.4 0.506 0.733 0.027 0.106 0.266 0.74 0.887 0.997

Table 6.4: Nonstationary PFA Results: True IC: Null, Fitted IC: Koopman exact initial
KF, N=20, T=50, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.197 0.02 0.018 -0.003 -0.002 0.021 0.929 1
Z31 0.8 0.797 0.021 0.021 -0.003 -0.003 0.022 0.947 1
Z52 0.9 0.887 0.08 0.018 -0.013 -0.015 0.081 0.937 1
Z62 1.1 1.082 0.107 0.016 -0.018 -0.017 0.109 0.931 1
V11 0.05 0.101 0.325 0.012 0.051 1.023 0.328 0.91 1
V21 0.02 0.047 0.348 0.012 0.027 1.374 0.349 0.889 0.714
V22 0.05 0.048 0.014 0.014 -0.002 -0.038 0.014 0.926 0.96
T11 1.2 1.182 0.151 0.007 -0.018 -0.015 0.152 0.921 1
T21 0.6 0.568 0.316 0.014 -0.032 -0.054 0.317 0.921 0.992
T12 -0.4 -0.375 0.209 0.009 0.025 -0.063 0.21 0.91 1
T22 0.7 0.682 0.141 0.009 -0.018 -0.025 0.142 0.929 1
U11 0.8 0.8 0.057 0.038 0 0 0.057 0.921 1
U22 0.6 0.589 0.083 0.03 -0.011 -0.018 0.084 0.897 0.995
U33 2 1.997 0.093 0.091 -0.003 -0.002 0.093 0.947 1
U44 1 1.092 0.6 0.053 0.092 0.092 0.606 0.913 1
U55 1.5 1.506 0.519 0.07 0.006 0.004 0.518 0.91 0.979
U66 0.4 0.49 0.646 0.026 0.09 0.224 0.652 0.889 0.997

Table 6.5: Nonstationary PFA Results: True IC: Null, Fitted IC: Large κ, N=20, T=50,
Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.03 0.028 0 0 0.03 0.933 1
Z31 0.8 0.799 0.035 0.033 -0.001 -0.001 0.035 0.935 1
Z52 0.9 0.907 0.064 0.025 0.007 0.007 0.064 0.885 1
Z62 1.1 1.102 0.057 0.021 0.002 0.002 0.057 0.865 1
V11 1 1.009 0.109 0.082 0.009 0.009 0.11 0.904 1
V21 0.4 0.396 0.088 0.055 -0.004 -0.011 0.088 0.93 1
V22 1 0.997 0.132 0.077 -0.003 -0.003 0.131 0.894 0.995
T11 1.2 1.187 0.056 0.038 -0.013 -0.011 0.057 0.882 1
T21 0.6 0.594 0.043 0.039 -0.006 -0.009 0.043 0.928 1
T12 -0.4 -0.397 0.042 0.032 0.003 -0.007 0.042 0.921 0.998
T22 1 0.99 0.055 0.031 -0.01 -0.01 0.056 0.913 1
U11 0.8 0.795 0.043 0.044 -0.005 -0.007 0.043 0.942 1
U22 0.6 0.593 0.047 0.042 -0.007 -0.011 0.047 0.913 1
U33 2 1.995 0.096 0.093 -0.005 -0.003 0.096 0.93 1
U44 1 1.051 0.293 0.053 0.051 0.051 0.297 0.897 1
U55 1.5 1.489 0.142 0.072 -0.011 -0.008 0.142 0.892 0.995
U66 0.4 0.398 0.134 0.031 -0.002 -0.006 0.134 0.894 0.978
X01 - 0 0.032 0.033
X02 - 0.425 7.684
P011 - 0.029 0.111
P012 - 0.416 14.578
P022 - 0.005 0.01

Table 6.6: Nonstationary PFA Results: True IC: Null, Fitted IC: Free Parameter,
N=200, T=5, Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.198 0.03 0.029 -0.002 -0.001 0.03 0.945 1
Z31 0.8 0.8 0.035 0.034 0 -0.001 0.035 0.934 1
Z52 0.9 0.9 0.025 0.024 0 0 0.025 0.939 1
Z62 1.1 1.101 0.02 0.021 0.001 0.001 0.02 0.961 1
V11 1 0.999 0.083 0.08 -0.001 -0.001 0.083 0.932 1
V21 0.4 0.401 0.055 0.053 0.001 0.003 0.055 0.945 1
V22 1 0.996 0.076 0.075 -0.004 -0.004 0.076 0.945 1
T11 1.2 1.198 0.038 0.038 -0.002 -0.001 0.038 0.936 1
T21 0.6 0.598 0.038 0.039 -0.002 -0.004 0.038 0.957 1
T12 -0.4 -0.402 0.03 0.032 -0.002 0.006 0.03 0.961 1
T22 1 0.997 0.03 0.03 -0.003 -0.003 0.03 0.95 1
U11 0.8 0.796 0.043 0.044 -0.004 -0.005 0.043 0.961 1
U22 0.6 0.601 0.042 0.041 0.001 0.002 0.042 0.955 1
U33 2 1.995 0.094 0.094 -0.005 -0.003 0.094 0.939 1
U44 1 0.996 0.052 0.051 -0.004 -0.004 0.052 0.952 1
U55 1.5 1.497 0.073 0.072 -0.003 -0.002 0.073 0.948 1
U66 0.4 0.399 0.028 0.028 -0.001 -0.001 0.028 0.95 1

Table 6.7: Nonstationary PFA Results: True IC: Null, Fitted IC: Null, N=200, T=5,
Moderate Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.114 0.089 0.026 -0.086 -0.071 0.123 0.136 1
Z31 0.8 0.746 0.07 0.031 -0.054 -0.068 0.088 0.591 1
Z52 0.9 0.858 0.023 0.023 -0.042 -0.046 0.048 0.55 1
Z62 1.1 1.048 0.019 0.019 -0.052 -0.047 0.055 0.234 1
V11 1 1.137 0.107 0.095 0.137 0.137 0.174 0.706 0.998
V21 0.4 0.433 0.088 0.064 0.033 0.083 0.094 0.916 1
V22 1 1.092 0.092 0.087 0.092 0.092 0.13 0.836 1
T11 1.2 1.126 0.062 0.037 -0.074 -0.061 0.096 0.501 0.998
T21 0.6 0.577 0.047 0.037 -0.023 -0.038 0.052 0.926 0.998
T12 -0.4 -0.37 0.035 0.031 0.03 -0.075 0.046 0.84 0.998
T22 1 0.979 0.031 0.03 -0.021 -0.021 0.037 0.901 1
U11 0.8 0.778 0.16 0.049 -0.022 -0.027 0.161 0.897 1
U22 0.6 0.633 0.134 0.053 0.033 0.054 0.138 0.918 1
U33 2 1.999 0.11 0.095 -0.001 -0.001 0.11 0.943 1
U44 1 0.984 0.056 0.055 -0.016 -0.016 0.058 0.936 1
U55 1.5 1.497 0.075 0.074 -0.003 -0.002 0.074 0.953 1
U66 0.4 0.41 0.037 0.038 0.01 0.025 0.038 0.955 1

Table 6.8: Nonstationary PFA Results: True IC: Null, Fitted IC: deJong DKF, N=200,
T=5, Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.115 0.092 0.026 -0.085 -0.071 0.126 0.144 1
Z31 0.8 0.746 0.072 0.031 -0.054 -0.068 0.09 0.59 1
Z52 0.9 0.854 0.038 0.023 -0.046 -0.051 0.059 0.539 1
Z62 1.1 1.039 0.07 0.02 -0.061 -0.055 0.092 0.228 1
V11 1 1.147 0.138 0.096 0.147 0.147 0.201 0.694 0.998
V21 0.4 0.438 0.102 0.066 0.038 0.096 0.109 0.914 1
V22 1 1.073 0.171 0.089 0.073 0.073 0.185 0.816 0.982
T11 1.2 1.121 0.076 0.037 -0.079 -0.066 0.11 0.499 0.998
T21 0.6 0.578 0.049 0.037 -0.022 -0.037 0.054 0.922 0.998
T12 -0.4 -0.363 0.064 0.031 0.037 -0.094 0.074 0.827 0.987
T22 1 0.971 0.072 0.031 -0.029 -0.029 0.078 0.887 1
U11 0.8 0.78 0.166 0.05 -0.02 -0.025 0.167 0.894 1
U22 0.6 0.63 0.143 0.053 0.03 0.051 0.146 0.909 0.998
U33 2 1.999 0.111 0.095 -0.001 -0.001 0.11 0.945 1
U44 1 1.034 0.369 0.057 0.034 0.034 0.37 0.922 1
U55 1.5 1.471 0.211 0.073 -0.029 -0.02 0.213 0.942 0.982
U66 0.4 0.437 0.204 0.039 0.037 0.093 0.207 0.936 1

Table 6.9: Nonstationary PFA Results: True IC: Null, Fitted IC: Koopman exact initial
KF, N=200, T=5, Moderate Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.115 0.092 0.026 -0.085 -0.071 0.125 0.144 1
Z31 0.8 0.746 0.072 0.031 -0.054 -0.068 0.09 0.591 1
Z52 0.9 0.855 0.036 0.023 -0.045 -0.05 0.058 0.542 1
Z62 1.1 1.039 0.07 0.02 -0.061 -0.055 0.093 0.232 1
V11 1 1.147 0.137 0.096 0.147 0.147 0.201 0.692 0.998
V21 0.4 0.438 0.102 0.066 0.038 0.096 0.109 0.912 1
V22 1 1.072 0.171 0.089 0.072 0.072 0.185 0.819 0.982
T11 1.2 1.121 0.075 0.037 -0.079 -0.066 0.109 0.496 0.998
T21 0.6 0.578 0.048 0.037 -0.022 -0.037 0.053 0.927 0.998
T12 -0.4 -0.363 0.064 0.031 0.037 -0.094 0.074 0.827 0.987
T22 1 0.971 0.072 0.031 -0.029 -0.029 0.078 0.887 1
U11 0.8 0.78 0.166 0.05 -0.02 -0.025 0.167 0.894 1
U22 0.6 0.63 0.143 0.053 0.03 0.05 0.146 0.909 0.998
U33 2 1.999 0.111 0.095 -0.001 -0.001 0.111 0.942 1
U44 1 1.031 0.355 0.057 0.031 0.031 0.356 0.923 1
U55 1.5 1.476 0.205 0.073 -0.024 -0.016 0.206 0.942 0.985
U66 0.4 0.433 0.194 0.038 0.033 0.082 0.196 0.936 0.998

Table 6.10: Nonstationary PFA Results: True IC: Null, Fitted IC: Large κ, N=200, T=5,
Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.235 0.222 0.177 0.035 0.029 0.225 0.91 1
Z31 0.8 0.801 0.206 0.193 0.001 0.001 0.205 0.92 1
Z52 0.9 0.739 0.363 0.143 -0.161 -0.179 0.396 0.757 0.931
Z62 1.1 0.912 0.422 0.123 -0.188 -0.171 0.462 0.774 0.958
V11 0.05 0.064 0.04 0.019 0.014 0.289 0.043 0.74 0.861
V21 0.02 -0.135 0.483 0.075 -0.155 -7.756 0.507 0.833 0.465
V22 0.05 0.141 0.394 0.157 0.091 1.823 0.403 0.83 0.819
T11 1.2 1.021 0.437 0.121 -0.179 -0.149 0.471 0.681 0.972
T21 0.6 0.259 1.011 0.25 -0.341 -0.569 1.065 0.778 0.927
T12 -0.4 -0.333 0.224 0.117 0.067 -0.167 0.234 0.712 0.753
T22 0.7 0.586 0.321 0.154 -0.114 -0.163 0.34 0.823 0.875
U11 0.8 0.795 0.039 0.039 -0.005 -0.006 0.039 0.931 1
U22 0.6 0.59 0.039 0.034 -0.01 -0.016 0.04 0.924 1
U33 2 1.997 0.089 0.09 -0.003 -0.001 0.089 0.944 1
U44 1 0.962 0.361 0.07 -0.038 -0.038 0.363 0.861 0.951
U55 1.5 1.512 0.075 0.069 0.012 0.008 0.076 0.938 1
U66 0.4 0.416 0.049 0.023 0.016 0.04 0.051 0.757 1
X01 - 0 0.023 0.021 -1 -1 1 0 0.042
X02 - -0.049 0.971 0.094
P011 - 0.006 0.01 0.006
P012 - 0.083 2.383 0.075
P022 - 0.011 0.081 0.006

Table 6.11: Nonstationary PFA Results: True IC: Null, Fitted IC: Free Parameter,
N=200, T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.229 0.199 0.178 0.029 0.024 0.201 0.934 1
Z31 0.8 0.8 0.209 0.199 0 0 0.209 0.941 0.997
Z52 0.9 0.687 0.392 0.138 -0.213 -0.236 0.445 0.716 0.848
Z62 1.1 0.842 0.466 0.121 -0.258 -0.235 0.532 0.716 0.868
V11 0.05 0.067 0.033 0.021 0.017 0.34 0.037 0.848 0.997
V21 0.02 -0.28 0.567 0.251 -0.3 -15.012 0.64 0.908 0.459
V22 0.05 0.071 0.264 1.007 0.021 0.411 0.264 0.97 0.726
T11 1.2 0.951 0.465 0.152 -0.249 -0.208 0.527 0.729 0.855
T21 0.6 -0.101 1.299 0.376 -0.701 -1.168 1.474 0.71 0.901
T12 -0.4 -0.319 0.197 0.126 0.081 -0.202 0.212 0.716 0.723
T22 0.7 0.539 0.399 0.225 -0.161 -0.23 0.429 0.924 0.809
U11 0.8 0.797 0.041 0.04 -0.003 -0.003 0.041 0.931 1
U22 0.6 0.594 0.031 0.033 -0.006 -0.009 0.032 0.954 1
U33 2 1.992 0.088 0.091 -0.008 -0.004 0.089 0.947 1
U44 1 1.01 0.074 0.064 0.01 0.01 0.075 0.937 1
U55 1.5 1.514 0.072 0.07 0.014 0.01 0.073 0.954 1
U66 0.4 0.418 0.044 0.023 0.018 0.045 0.047 0.703 1

Table 6.12: Nonstationary PFA Results: True IC: Null, Fitted IC: Null, N=200, T=5,
Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.197 0.059 0.056 -1.003 -0.836 1.004 0 0.975
Z31 0.8 0.134 0.067 0.07 -0.666 -0.832 0.669 0 0.456
Z52 0.9 0.18 0.08 0.064 -0.72 -0.8 0.725 0 0.785
Z62 1.1 0.188 0.056 0.046 -0.912 -0.829 0.914 0 1
V11 0.05 0.733 0.15 0.213 0.683 13.652 0.699 0.025 0.987
V21 0.02 0.098 0.036 0.038 0.078 3.902 0.086 0.456 0.747
V22 0.05 0.797 0.197 0.232 0.747 14.942 0.772 0 1
T11 1.2 0.138 0.057 0.059 -1.062 -0.885 1.063 0 0.684
T21 0.6 0.151 0.053 0.061 -0.449 -0.748 0.452 0 0.785
T12 -0.4 0.03 0.048 0.044 0.43 -1.075 0.432 0 0.127
T22 0.7 0.161 0.073 0.062 -0.539 -0.77 0.544 0 0.684
U11 0.8 0.208 0.151 0.211 -0.592 -0.74 0.611 0.025 0.241
U22 0.6 0.732 0.034 0.035 0.132 0.22 0.137 0 1
U33 2 2.052 0.08 0.092 0.052 0.026 0.095 0.962 1
U44 1 0.342 0.2 0.228 -0.658 -0.658 0.687 0.038 0.418
U55 1.5 1.572 0.075 0.072 0.072 0.048 0.104 0.861 1
U66 0.4 0.525 0.027 0.026 0.125 0.313 0.128 0 1

Table 6.13: Nonstationary PFA Results: True IC: Null, Fitted IC: deJong DKF, N=200,
T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.16 0.041 0.049 -1.04 -0.866 1.04 0 0.993
Z31 0.8 0.107 0.054 0.061 -0.693 -0.866 0.695 0 0.368
Z52 0.9 0.125 0.061 0.056 -0.775 -0.861 0.777 0 0.599
Z62 1.1 0.145 0.045 0.042 -0.955 -0.868 0.956 0 0.971
V11 0.05 0.879 0.115 0.269 0.829 16.583 0.837 0.02 0.987
V21 0.02 0.056 0.226 0.057 0.036 1.799 0.228 0.684 0.508
V22 0.05 0.976 0.234 0.36 0.926 18.516 0.955 0.052 0.954
T11 1.2 0.098 0.046 0.051 -1.102 -0.918 1.103 0 0.456
T21 0.6 0.091 0.097 0.059 -0.509 -0.849 0.518 0.01 0.472
T12 -0.4 0.014 0.041 0.039 0.414 -1.036 0.416 0 0.065
T22 0.7 0.101 0.099 0.061 -0.599 -0.856 0.607 0.01 0.375
U11 0.8 0.054 0.111 0.267 -0.746 -0.932 0.754 0.039 0.039
U22 0.6 0.744 0.034 0.034 0.144 0.241 0.148 0 1
U33 2 2.055 0.092 0.092 0.055 0.027 0.107 0.912 1
U44 1 0.165 0.256 0.334 -0.835 -0.835 0.873 0.078 0.156
U55 1.5 1.59 0.07 0.072 0.09 0.06 0.114 0.801 1
U66 0.4 0.532 0.026 0.025 0.132 0.33 0.135 0 1

Table 6.14: Nonstationary PFA Results: True IC: Null, Fitted IC: Koopman exact
initial KF, N=200, T=5, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.161 0.042 0.049 -1.039 -0.866 1.04 0 0.994
Z31 0.8 0.108 0.056 0.061 -0.692 -0.865 0.694 0 0.368
Z52 0.9 0.123 0.064 0.056 -0.777 -0.864 0.78 0 0.568
Z62 1.1 0.143 0.046 0.043 -0.957 -0.87 0.958 0 0.946
V11 0.05 0.876 0.122 0.268 0.826 16.519 0.835 0.019 0.99
V21 0.02 0.048 0.234 0.062 0.028 1.383 0.235 0.676 0.505
V22 0.05 0.964 0.263 0.38 0.914 18.29 0.951 0.079 0.93
T11 1.2 0.098 0.047 0.051 -1.102 -0.918 1.103 0 0.454
T21 0.6 0.086 0.104 0.061 -0.514 -0.856 0.524 0.01 0.463
T12 -0.4 0.014 0.042 0.039 0.414 -1.034 0.416 0 0.063
T22 0.7 0.097 0.102 0.065 -0.603 -0.861 0.611 0.013 0.365
U11 0.8 0.057 0.119 0.266 -0.743 -0.928 0.752 0.054 0.054
U22 0.6 0.744 0.034 0.034 0.144 0.24 0.148 0 1
U33 2 2.056 0.093 0.092 0.056 0.028 0.108 0.908 1
U44 1 0.171 0.262 0.343 -0.829 -0.829 0.869 0.102 0.159
U55 1.5 1.589 0.071 0.072 0.089 0.059 0.114 0.787 1
U66 0.4 0.531 0.027 0.025 0.131 0.328 0.134 0 1

Table 6.15: Nonstationary PFA Results: True IC: Null, Fitted IC: Large κ, N=200, T=5,
Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.01 0.009 0.001 0.001 0.01 0.944 1
Z31 0.8 0.8 0.011 0.011 0 0 0.011 0.96 1
Z52 0.9 0.933 0.197 0.015 0.033 0.037 0.2 0.916 0.996
Z62 1.1 1.151 0.235 0.021 0.051 0.046 0.24 0.888 0.996
V11 0.05 0.114 0.233 0.012 0.064 1.272 0.241 0.88 1
V21 0.02 -0.006 0.208 0.011 -0.026 -1.287 0.209 0.848 0.776
V22 0.05 0.046 0.017 0.013 -0.004 -0.072 0.017 0.9 0.928
T11 1.2 1.198 0.009 0.004 -0.002 -0.001 0.009 0.88 1
T21 0.6 0.6 0.008 0.006 0 -0.001 0.008 0.916 1
T12 -0.4 -0.414 0.063 0.009 -0.014 0.035 0.065 0.912 0.996
T22 0.7 0.732 0.162 0.012 0.032 0.046 0.165 0.888 0.996
U11 0.8 0.804 0.062 0.039 0.004 0.006 0.062 0.884 1
U22 0.6 0.569 0.11 0.03 -0.031 -0.052 0.114 0.904 0.992
U33 2 2.006 0.102 0.091 0.006 0.003 0.101 0.94 1
U44 1 1.098 0.446 0.051 0.098 0.098 0.456 0.864 1
U55 1.5 1.453 0.296 0.068 -0.047 -0.031 0.299 0.868 0.964
U66 0.4 0.462 0.411 0.025 0.062 0.154 0.415 0.864 0.964
X01 1 0.996 0.247 0.244 -0.004 -0.004 0.246 0.944 0.976
X02 0.5 0.489 0.483 0.253 -0.011 -0.022 0.482 0.932 0.68
P011 1.2 1.182 0.654 0.395 -0.018 -0.015 0.653 0.812 0.996
P012 0.3 0.313 0.924 0.314 0.013 0.042 0.922 0.876 0.148
P022 0.7 0.642 0.293 0.318 -0.058 -0.083 0.298 0.824 0.952

Table 6.16: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Free Pa-
rameter, N=20, T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.203 0.042 0.01 0.003 0.002 0.042 0.936 1
Z31 0.8 0.801 0.02 0.011 0.001 0.001 0.02 0.968 1
Z52 0.9 0.896 0.054 0.008 -0.004 -0.004 0.054 0.928 1
Z62 1.1 1.095 0.065 0.007 -0.005 -0.004 0.065 0.924 1
V11 0.05 0.156 0.114 0.014 0.106 2.111 0.155 0 1
V21 0.02 0.096 0.23 0.012 0.076 3.784 0.241 0 1
V22 0.05 0.13 0.024 0.019 0.08 1.592 0.083 0.004 0.996
T11 1.2 1.2 0.01 0.004 0 0 0.01 0.98 1
T21 0.6 0.579 0.346 0.008 -0.021 -0.035 0.346 0.952 1
T12 -0.4 -0.399 0.016 0.005 0.001 -0.003 0.016 0.972 1
T22 0.7 0.697 0.032 0.004 -0.003 -0.004 0.033 0.976 1
U11 0.8 0.871 0.547 0.042 0.071 0.089 0.55 0.843 1
U22 0.6 0.679 0.268 0.035 0.079 0.132 0.279 0.594 1
U33 2 2.043 0.246 0.093 0.043 0.022 0.25 0.948 1
U44 1 1.047 0.462 0.055 0.047 0.047 0.463 0.928 1
U55 1.5 1.513 0.072 0.07 0.013 0.009 0.073 0.956 1
U66 0.4 0.431 0.026 0.024 0.031 0.077 0.04 0.763 1

Table 6.17: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Null,
N=20, T=50, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.199 0.01 0.009 -0.001 -0.001 0.01 0.946 1
Z31 0.8 0.799 0.011 0.011 -0.001 -0.001 0.011 0.953 1
Z52 0.9 0.899 0.009 0.008 -0.001 -0.001 0.009 0.941 1
Z62 1.1 1.099 0.007 0.007 -0.001 -0.001 0.007 0.928 1
V11 0.05 0.05 0.008 0.008 0 -0.008 0.008 0.946 1
V21 0.02 0.02 0.009 0.008 0 0.008 0.009 0.917 0.747
V22 0.05 0.05 0.012 0.01 0 0.007 0.012 0.928 0.99
T11 1.2 1.2 0.003 0.003 0 0 0.003 0.938 1
T21 0.6 0.6 0.006 0.005 0 0 0.006 0.943 1
T12 -0.4 -0.4 0.004 0.004 0 0 0.004 0.951 1
T22 0.7 0.7 0.003 0.003 0 -0.001 0.003 0.941 1
U11 0.8 0.799 0.038 0.038 -0.001 -0.001 0.038 0.941 1
U22 0.6 0.596 0.03 0.03 -0.004 -0.007 0.03 0.948 1
U33 2 2.005 0.096 0.091 0.005 0.002 0.096 0.943 1
U44 1 1 0.048 0.047 0 0 0.048 0.941 1
U55 1.5 1.495 0.072 0.069 -0.005 -0.004 0.072 0.946 1
U66 0.4 0.399 0.023 0.022 -0.001 -0.002 0.023 0.933 1

Table 6.18: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: deJong
DKF, N=20, T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.01 0.009 0.001 0.001 0.01 0.916 1
Z31 0.8 0.799 0.011 0.011 -0.001 -0.001 0.011 0.947 1
Z52 0.9 0.876 0.133 0.014 -0.024 -0.027 0.135 0.877 1
Z62 1.1 1.057 0.169 0.017 -0.043 -0.039 0.174 0.825 1
V11 0.05 0.175 0.314 0.016 0.125 2.492 0.338 0.818 1
V21 0.02 -0.039 0.381 0.015 -0.059 -2.952 0.385 0.789 0.796
V22 0.05 0.043 0.02 0.016 -0.007 -0.148 0.021 0.895 0.86
T11 1.2 1.196 0.011 0.004 -0.004 -0.003 0.012 0.839 1
T21 0.6 0.586 0.227 0.007 -0.014 -0.024 0.227 0.912 1
T12 -0.4 -0.386 0.052 0.007 0.014 -0.035 0.054 0.86 0.996
T22 0.7 0.667 0.143 0.01 -0.033 -0.047 0.146 0.849 1
U11 0.8 0.809 0.083 0.039 0.009 0.012 0.084 0.853 1
U22 0.6 0.545 0.143 0.03 -0.055 -0.092 0.153 0.835 0.979
U33 2 2.012 0.111 0.091 0.012 0.006 0.112 0.912 1
U44 1 1.228 0.678 0.056 0.228 0.228 0.714 0.804 1
U55 1.5 1.375 0.448 0.064 -0.125 -0.083 0.464 0.811 0.909
U66 0.4 0.578 0.63 0.03 0.178 0.444 0.654 0.804 0.954

Table 6.19: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Koopman
exact initial KF, N=20, T=50, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.011 0.009 0.001 0.001 0.011 0.91 1
Z31 0.8 0.799 0.011 0.011 -0.001 -0.001 0.011 0.95 1
Z52 0.9 0.878 0.111 0.016 -0.022 -0.024 0.113 0.878 1
Z62 1.1 1.062 0.143 0.018 -0.038 -0.035 0.148 0.839 1
V11 0.05 0.18 0.325 0.017 0.13 2.595 0.349 0.806 1
V21 0.02 -0.062 0.31 0.014 -0.082 -4.123 0.32 0.781 0.792
V22 0.05 0.042 0.02 0.015 -0.008 -0.151 0.021 0.892 0.857
T11 1.2 1.196 0.012 0.004 -0.004 -0.003 0.013 0.835 1
T21 0.6 0.599 0.011 0.007 -0.001 -0.002 0.011 0.921 1
T12 -0.4 -0.389 0.038 0.008 0.011 -0.029 0.04 0.867 1
T22 0.7 0.673 0.103 0.011 -0.027 -0.039 0.106 0.853 1
U11 0.8 0.811 0.09 0.039 0.011 0.013 0.09 0.849 1
U22 0.6 0.543 0.147 0.03 -0.057 -0.095 0.157 0.832 0.975
U33 2 2.012 0.112 0.091 0.012 0.006 0.113 0.91 1
U44 1 1.244 0.696 0.057 0.244 0.244 0.737 0.803 1
U55 1.5 1.349 0.479 0.063 -0.151 -0.101 0.501 0.814 0.892
U66 0.4 0.618 0.68 0.031 0.218 0.544 0.713 0.803 0.964

Table 6.20: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Large κ,
N=20, T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.202 0.021 0.021 0.002 0.002 0.021 0.95 1
Z31 0.8 0.8 0.025 0.024 0 0 0.025 0.95 1
Z52 0.9 0.915 0.157 0.019 0.015 0.017 0.158 0.935 1
Z62 1.1 1.114 0.149 0.016 0.014 0.013 0.15 0.916 1
V11 1 1 0.105 0.082 0 0 0.105 0.956 1
V21 0.4 0.395 0.097 0.057 -0.005 -0.012 0.097 0.95 1
V22 1 0.992 0.121 0.076 -0.008 -0.008 0.121 0.937 0.992
T11 1.2 1.197 0.032 0.025 -0.003 -0.002 0.032 0.927 1
T21 0.6 0.602 0.029 0.026 0.002 0.003 0.029 0.948 1
T12 -0.4 -0.402 0.039 0.02 -0.002 0.005 0.039 0.953 1
T22 1 1.01 0.114 0.021 0.01 0.01 0.114 0.958 1
U11 0.8 0.798 0.053 0.047 -0.002 -0.003 0.053 0.943 1
U22 0.6 0.596 0.064 0.049 -0.004 -0.007 0.064 0.94 0.997
U33 2 1.994 0.098 0.095 -0.006 -0.003 0.098 0.945 1
U44 1 1.034 0.282 0.055 0.034 0.034 0.284 0.932 1
U55 1.5 1.482 0.156 0.073 -0.018 -0.012 0.157 0.932 0.992
U66 0.4 0.415 0.164 0.035 0.015 0.036 0.165 0.943 0.997
X01 1 0.997 0.082 0.084 -0.003 -0.003 0.082 0.961 1
X02 0.5 0.426 1.655 0.131 -0.074 -0.149 1.655 0.93 0.995
P011 1.2 1.215 0.321 0.144 0.015 0.013 0.321 0.93 1
P012 0.3 0.378 8.382 0.34 0.078 0.261 8.371 0.914 0.971
P022 0.7 0.658 0.171 0.577 -0.042 -0.06 0.176 0.911 0.958

Table 6.21: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Free Pa-
rameter, N=200, T=5, Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.185 0.021 0.03 -0.015 -0.012 0.026 0.979 1
Z31 0.8 0.817 0.026 0.029 0.017 0.022 0.031 0.948 1
Z52 0.9 0.901 0.029 0.016 0.001 0.001 0.029 0.966 1
Z62 1.1 1.092 0.033 0.015 -0.008 -0.007 0.034 0.953 1
V11 1 1.604 0.125 0.123 0.604 0.604 0.617 0.003 1
V21 0.4 0.986 0.26 0.091 0.586 1.466 0.641 0 1
V22 1 1.737 0.142 0.117 0.737 0.737 0.75 0.003 0.997
T11 1.2 1.229 0.03 0.038 0.029 0.024 0.042 0.94 1
T21 0.6 0.598 0.079 0.039 -0.002 -0.004 0.079 0.99 1
T12 -0.4 -0.412 0.019 0.025 -0.012 0.031 0.022 0.977 1
T22 1 1.002 0.081 0.024 0.002 0.002 0.081 0.984 1
U11 0.8 1.363 0.079 0.07 0.563 0.703 0.568 0 1
U22 0.6 1.57 0.102 0.081 0.97 1.616 0.975 0 1
U33 2 2.248 0.116 0.108 0.248 0.124 0.274 0.369 1
U44 1 1.201 0.065 0.062 0.201 0.201 0.211 0.081 1
U55 1.5 1.629 0.085 0.08 0.129 0.086 0.154 0.673 1
U66 0.4 0.801 0.047 0.044 0.401 1.001 0.403 0 1

Table 6.22: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Null,
N=200, T=5, Moderate Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.158 0.019 0.019 -0.042 -0.035 0.046 0.43 1
Z31 0.8 0.772 0.022 0.023 -0.028 -0.035 0.036 0.777 1
Z52 0.9 0.883 0.014 0.015 -0.017 -0.019 0.022 0.799 1
Z62 1.1 1.08 0.012 0.012 -0.02 -0.018 0.023 0.634 1
V11 1 1.063 0.078 0.086 0.063 0.063 0.1 0.927 1
V21 0.4 0.417 0.056 0.059 0.017 0.042 0.058 0.955 1
V22 1 1.032 0.074 0.079 0.032 0.032 0.081 0.953 1
T11 1.2 1.168 0.025 0.024 -0.032 -0.027 0.04 0.764 1
T21 0.6 0.59 0.024 0.025 -0.01 -0.017 0.026 0.944 1
T12 -0.4 -0.389 0.018 0.018 0.011 -0.028 0.021 0.919 1
T22 1 0.996 0.018 0.017 -0.004 -0.004 0.018 0.944 1
U11 0.8 0.785 0.048 0.048 -0.015 -0.019 0.05 0.938 1
U22 0.6 0.613 0.051 0.051 0.013 0.022 0.053 0.942 1
U33 2 1.995 0.096 0.095 -0.005 -0.003 0.097 0.936 1
U44 1 0.992 0.051 0.054 -0.008 -0.008 0.052 0.955 1
U55 1.5 1.495 0.074 0.074 -0.005 -0.003 0.074 0.946 1
U66 0.4 0.403 0.037 0.037 0.003 0.007 0.037 0.931 1

Table 6.23: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: deJong
DKF, N=200, T=5, Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.16 0.022 0.019 -0.04 -0.033 0.045 0.443 1
Z31 0.8 0.772 0.023 0.023 -0.028 -0.035 0.036 0.759 1
Z52 0.9 0.876 0.045 0.015 -0.024 -0.027 0.051 0.778 1
Z62 1.1 1.066 0.076 0.013 -0.034 -0.031 0.083 0.616 1
V11 1 1.102 0.222 0.088 0.102 0.102 0.244 0.895 1
V21 0.4 0.424 0.218 0.062 0.024 0.06 0.219 0.914 0.992
V22 1 0.988 0.223 0.08 -0.012 -0.012 0.223 0.908 0.957
T11 1.2 1.16 0.045 0.025 -0.04 -0.033 0.06 0.735 1
T21 0.6 0.592 0.03 0.025 -0.008 -0.014 0.031 0.916 1
T12 -0.4 -0.378 0.055 0.019 0.022 -0.054 0.059 0.881 0.995
T22 1 0.982 0.077 0.018 -0.018 -0.018 0.079 0.911 1
U11 0.8 0.793 0.068 0.048 -0.007 -0.008 0.068 0.924 1
U22 0.6 0.599 0.099 0.051 -0.001 -0.002 0.099 0.905 0.986
U33 2 2.001 0.098 0.095 0.001 0.001 0.097 0.93 1
U44 1 1.116 0.62 0.059 0.116 0.116 0.63 0.908 1
U55 1.5 1.449 0.295 0.071 -0.051 -0.034 0.299 0.919 0.965
U66 0.4 0.468 0.345 0.038 0.068 0.171 0.351 0.9 0.997

Table 6.24: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Koopman
exact initial KF, N=200, T=5, Moderate Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.16 0.022 0.019 -0.04 -0.033 0.045 0.446 1
Z31 0.8 0.772 0.022 0.023 -0.028 -0.035 0.036 0.761 1
Z52 0.9 0.876 0.049 0.016 -0.024 -0.026 0.054 0.777 1
Z62 1.1 1.066 0.077 0.013 -0.034 -0.031 0.084 0.621 1
V11 1 1.106 0.248 0.088 0.106 0.106 0.27 0.892 1
V21 0.4 0.43 0.295 0.062 0.03 0.075 0.296 0.911 0.995
V22 1 0.986 0.229 0.081 -0.014 -0.014 0.229 0.906 0.954
T11 1.2 1.16 0.044 0.025 -0.04 -0.033 0.06 0.734 1
T21 0.6 0.591 0.031 0.026 -0.009 -0.015 0.032 0.914 1
T12 -0.4 -0.379 0.054 0.019 0.021 -0.053 0.058 0.882 0.995
T22 1 0.982 0.079 0.018 -0.018 -0.018 0.081 0.914 1
U11 0.8 0.791 0.065 0.048 -0.009 -0.011 0.065 0.927 1
U22 0.6 0.601 0.094 0.051 0.001 0.001 0.094 0.906 0.989
U33 2 2.001 0.098 0.095 0.001 0.001 0.098 0.933 1
U44 1 1.133 0.69 0.06 0.133 0.133 0.702 0.906 1
U55 1.5 1.45 0.294 0.072 -0.05 -0.034 0.298 0.917 0.965
U66 0.4 0.468 0.347 0.039 0.068 0.17 0.353 0.901 0.997

Table 6.25: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Large κ,
N=200, T=5, Moderate Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.235 0.222 0.177 0.035 0.029 0.225 0.91 1
Z31 0.8 0.801 0.206 0.193 0.001 0.001 0.205 0.92 1
Z52 0.9 0.739 0.363 0.143 -0.161 -0.179 0.396 0.757 0.931
Z62 1.1 0.912 0.422 0.123 -0.188 -0.171 0.462 0.774 0.958
V11 0.05 0.064 0.04 0.019 0.014 0.289 0.043 0.74 0.861
V21 0.02 -0.135 0.483 0.075 -0.155 -7.756 0.507 0.833 0.465
V22 0.05 0.141 0.394 0.157 0.091 1.823 0.403 0.83 0.819
T11 1.2 1.021 0.437 0.121 -0.179 -0.149 0.471 0.681 0.972
T21 0.6 0.259 1.011 0.25 -0.341 -0.569 1.065 0.778 0.927
T12 -0.4 -0.333 0.224 0.117 0.067 -0.167 0.234 0.712 0.753
T22 0.7 0.586 0.321 0.154 -0.114 -0.163 0.34 0.823 0.875
U11 0.8 0.795 0.039 0.039 -0.005 -0.006 0.039 0.931 1
U22 0.6 0.59 0.039 0.034 -0.01 -0.016 0.04 0.924 1
U33 2 1.997 0.089 0.09 -0.003 -0.001 0.089 0.944 1
U44 1 0.962 0.361 0.07 -0.038 -0.038 0.363 0.861 0.951
U55 1.5 1.512 0.075 0.069 0.012 0.008 0.076 0.938 1
U66 0.4 0.416 0.049 0.023 0.016 0.04 0.051 0.757 1
X01 1 0 0.023 0.021 -1 -1 1 0 0.042
X02 0.5 -0.049 0.971 0.094 -0.549 -1.099 1.114 0.038 0.066
P011 1.2 0.006 0.01 0.006 -1.194 -0.995 1.194 0 0.028
P012 0.3 0.083 2.383 0.075 -0.217 -0.723 2.389 0.028 0.115
P022 0.7 0.011 0.081 0.006 -0.689 -0.984 0.694 0 0.031

Table 6.26: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Free Pa-
rameter, N=200, T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.229 0.199 0.178 0.029 0.024 0.201 0.934 1
Z31 0.8 0.8 0.209 0.199 0 0 0.209 0.941 0.997
Z52 0.9 0.687 0.392 0.138 -0.213 -0.236 0.445 0.716 0.848
Z62 1.1 0.842 0.466 0.121 -0.258 -0.235 0.532 0.716 0.868
V11 0.05 0.067 0.033 0.021 0.017 0.34 0.037 0.848 0.997
V21 0.02 -0.28 0.567 0.251 -0.3 -15.012 0.64 0.908 0.459
V22 0.05 0.071 0.264 1.007 0.021 0.411 0.264 0.97 0.726
T11 1.2 0.951 0.465 0.152 -0.249 -0.208 0.527 0.729 0.855
T21 0.6 -0.101 1.299 0.376 -0.701 -1.168 1.474 0.71 0.901
T12 -0.4 -0.319 0.197 0.126 0.081 -0.202 0.212 0.716 0.723
T22 0.7 0.539 0.399 0.225 -0.161 -0.23 0.429 0.924 0.809
U11 0.8 0.797 0.041 0.04 -0.003 -0.003 0.041 0.931 1
U22 0.6 0.594 0.031 0.033 -0.006 -0.009 0.032 0.954 1
U33 2 1.992 0.088 0.091 -0.008 -0.004 0.089 0.947 1
U44 1 1.01 0.074 0.064 0.01 0.01 0.075 0.937 1
U55 1.5 1.514 0.072 0.07 0.014 0.01 0.073 0.954 1
U66 0.4 0.418 0.044 0.023 0.018 0.045 0.047 0.703 1

Table 6.27: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Null,
N=200, T=5, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.197 0.059 0.056 -1.003 -0.836 1.004 0 0.975
Z31 0.8 0.134 0.067 0.07 -0.666 -0.832 0.669 0 0.456
Z52 0.9 0.18 0.08 0.064 -0.72 -0.8 0.725 0 0.785
Z62 1.1 0.188 0.056 0.046 -0.912 -0.829 0.914 0 1
V11 0.05 0.733 0.15 0.213 0.683 13.652 0.699 0.025 0.987
V21 0.02 0.098 0.036 0.038 0.078 3.902 0.086 0.456 0.747
V22 0.05 0.797 0.197 0.232 0.747 14.942 0.772 0 1
T11 1.2 0.138 0.057 0.059 -1.062 -0.885 1.063 0 0.684
T21 0.6 0.151 0.053 0.061 -0.449 -0.748 0.452 0 0.785
T12 -0.4 0.03 0.048 0.044 0.43 -1.075 0.432 0 0.127
T22 0.7 0.161 0.073 0.062 -0.539 -0.77 0.544 0 0.684
U11 0.8 0.208 0.151 0.211 -0.592 -0.74 0.611 0.025 0.241
U22 0.6 0.732 0.034 0.035 0.132 0.22 0.137 0 1
U33 2 2.052 0.08 0.092 0.052 0.026 0.095 0.962 1
U44 1 0.342 0.2 0.228 -0.658 -0.658 0.687 0.038 0.418
U55 1.5 1.572 0.075 0.072 0.072 0.048 0.104 0.861 1
U66 0.4 0.525 0.027 0.026 0.125 0.313 0.128 0 1

Table 6.28: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: deJong
DKF, N=200, T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.16 0.041 0.049 -1.04 -0.866 1.04 0 0.993
Z31 0.8 0.107 0.054 0.061 -0.693 -0.866 0.695 0 0.368
Z52 0.9 0.125 0.061 0.056 -0.775 -0.861 0.777 0 0.599
Z62 1.1 0.145 0.045 0.042 -0.955 -0.868 0.956 0 0.971
V11 0.05 0.879 0.115 0.269 0.829 16.583 0.837 0.02 0.987
V21 0.02 0.056 0.226 0.057 0.036 1.799 0.228 0.684 0.508
V22 0.05 0.976 0.234 0.36 0.926 18.516 0.955 0.052 0.954
T11 1.2 0.098 0.046 0.051 -1.102 -0.918 1.103 0 0.456
T21 0.6 0.091 0.097 0.059 -0.509 -0.849 0.518 0.01 0.472
T12 -0.4 0.014 0.041 0.039 0.414 -1.036 0.416 0 0.065
T22 0.7 0.101 0.099 0.061 -0.599 -0.856 0.607 0.01 0.375
U11 0.8 0.054 0.111 0.267 -0.746 -0.932 0.754 0.039 0.039
U22 0.6 0.744 0.034 0.034 0.144 0.241 0.148 0 1
U33 2 2.055 0.092 0.092 0.055 0.027 0.107 0.912 1
U44 1 0.165 0.256 0.334 -0.835 -0.835 0.873 0.078 0.156
U55 1.5 1.59 0.07 0.072 0.09 0.06 0.114 0.801 1
U66 0.4 0.532 0.026 0.025 0.132 0.33 0.135 0 1

Table 6.29: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Koopman
exact initial KF, N=200, T=5, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 0.161 0.042 0.049 -1.039 -0.866 1.04 0 0.994
Z31 0.8 0.108 0.056 0.061 -0.692 -0.865 0.694 0 0.368
Z52 0.9 0.123 0.064 0.056 -0.777 -0.864 0.78 0 0.568
Z62 1.1 0.143 0.046 0.043 -0.957 -0.87 0.958 0 0.946
V11 0.05 0.876 0.122 0.268 0.826 16.519 0.835 0.019 0.99
V21 0.02 0.048 0.234 0.062 0.028 1.383 0.235 0.676 0.505
V22 0.05 0.964 0.263 0.38 0.914 18.29 0.951 0.079 0.93
T11 1.2 0.098 0.047 0.051 -1.102 -0.918 1.103 0 0.454
T21 0.6 0.086 0.104 0.061 -0.514 -0.856 0.524 0.01 0.463
T12 -0.4 0.014 0.042 0.039 0.414 -1.034 0.416 0 0.063
T22 0.7 0.097 0.102 0.065 -0.603 -0.861 0.611 0.013 0.365
U11 0.8 0.057 0.119 0.266 -0.743 -0.928 0.752 0.054 0.054
U22 0.6 0.744 0.034 0.034 0.144 0.24 0.148 0 1
U33 2 2.056 0.093 0.092 0.056 0.028 0.108 0.908 1
U44 1 0.171 0.262 0.343 -0.829 -0.829 0.869 0.102 0.159
U55 1.5 1.589 0.071 0.072 0.089 0.059 0.114 0.787 1
U66 0.4 0.531 0.027 0.025 0.131 0.328 0.134 0 1

Table 6.30: Nonstationary PFA Results: True IC: Free Parameter, Fitted IC: Large κ,
N=200, T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.006 0.006 0.001 0.001 0.007 0.953 1
Z31 0.8 0.8 0.008 0.008 0 0.001 0.008 0.953 1
Z52 0.9 0.989 0.263 0.028 0.089 0.099 0.277 0.853 1
Z62 1.1 1.206 0.302 0.033 0.106 0.096 0.32 0.816 1
V11 0.05 0.189 0.33 0.02 0.139 2.78 0.357 0.805 0.995
V21 0.02 -0.104 0.358 0.016 -0.124 -6.205 0.378 0.795 0.779
V22 0.05 0.04 0.021 0.019 -0.01 -0.193 0.023 0.905 0.837
T11 1.2 1.198 0.006 0.003 -0.002 -0.002 0.006 0.879 1
T21 0.6 0.599 0.009 0.005 -0.001 -0.002 0.009 0.921 1
T12 -0.4 -0.421 0.058 0.01 -0.021 0.051 0.061 0.837 1
T22 0.7 0.775 0.217 0.022 0.075 0.107 0.229 0.858 1
U11 0.8 0.812 0.096 0.04 0.012 0.015 0.097 0.847 1
U22 0.6 0.544 0.151 0.03 -0.056 -0.093 0.161 0.774 0.974
U33 2 2.01 0.097 0.091 0.01 0.005 0.097 0.921 1
U44 1 1.335 0.882 0.06 0.335 0.335 0.941 0.768 1
U55 1.5 1.308 0.529 0.063 -0.192 -0.128 0.562 0.795 0.863
U66 0.4 0.686 0.75 0.034 0.286 0.714 0.801 0.763 0.974
X01 - 0.013 0.43
X02 - 0.025 0.439
P011 - 3.6 0.848
P012 - 1.745 0.698
P022 - 3.17 1.076

Table 6.31: Nonstationary PFA Results: True IC: Diffuse, Fitted IC: Free Parameter,
N=20, T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.006 0.007 0 0 0.006 0.99 1
Z31 0.8 0.801 0.008 0.008 0.001 0.001 0.008 0.953 1
Z52 0.9 0.9 0.006 0.006 0 0 0.006 0.964 1
Z62 1.1 1.1 0.005 0.005 0 0 0.005 0.943 1
V11 0.05 0.209 0.025 0.018 0.159 3.184 0.161 0 1
V21 0.02 0.142 0.025 0.015 0.122 6.112 0.125 0 1
V22 0.05 0.205 0.031 0.018 0.155 3.099 0.158 0 1
T11 1.2 1.199 0.002 0.003 -0.001 -0.001 0.002 1 1
T21 0.6 0.6 0.004 0.005 0 -0.001 0.004 0.974 1
T12 -0.4 -0.4 0.003 0.004 0 -0.001 0.003 0.99 1
T22 0.7 0.7 0.002 0.003 0 0 0.002 0.99 1
U11 0.8 0.869 0.046 0.043 0.069 0.086 0.083 0.677 1
U22 0.6 0.725 0.049 0.039 0.125 0.208 0.134 0.141 1
U33 2 2.034 0.097 0.094 0.034 0.017 0.103 0.927 1
U44 1 1.071 0.053 0.052 0.071 0.071 0.089 0.745 1
U55 1.5 1.562 0.072 0.073 0.062 0.042 0.096 0.896 1
U66 0.4 0.527 0.034 0.029 0.127 0.318 0.132 0.016 1

Table 6.32: Nonstationary PFA Results: True IC: Diffuse, Fitted IC: Null, N=20, T=50,
Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.006 0.007 0 0 0.006 0.976 1
Z31 0.8 0.8 0.008 0.008 0 0 0.008 0.946 1
Z52 0.9 0.9 0.006 0.006 0 0 0.006 0.961 1
Z62 1.1 1.1 0.005 0.005 0 0 0.005 0.94 1
V11 0.05 0.049 0.008 0.008 -0.001 -0.015 0.008 0.943 1
V21 0.02 0.02 0.008 0.008 0 -0.002 0.008 0.946 0.752
V22 0.05 0.049 0.011 0.01 -0.001 -0.011 0.011 0.94 0.997
T11 1.2 1.2 0.002 0.002 0 0 0.002 0.943 1
T21 0.6 0.6 0.004 0.004 0 0 0.004 0.943 1
T12 -0.4 -0.4 0.003 0.003 0 -0.001 0.003 0.946 1
T22 0.7 0.7 0.002 0.002 0 0 0.002 0.961 1
U11 0.8 0.798 0.039 0.038 -0.002 -0.003 0.04 0.925 1
U22 0.6 0.6 0.031 0.03 0 0 0.031 0.931 1
U33 2 2.001 0.085 0.091 0.001 0 0.085 0.961 1
U44 1 0.999 0.047 0.047 -0.001 -0.001 0.046 0.943 1
U55 1.5 1.504 0.065 0.069 0.004 0.002 0.065 0.958 1
U66 0.4 0.4 0.023 0.022 0 0 0.023 0.922 1

Table 6.33: Nonstationary PFA Results: True IC: Diffuse, Fitted IC: deJong DKF,
N=20, T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.2 0.007 0.006 0 0 0.007 0.946 1
Z31 0.8 0.8 0.008 0.008 0 0 0.008 0.955 1
Z52 0.9 0.886 0.08 0.014 -0.014 -0.016 0.081 0.897 1
Z62 1.1 1.074 0.103 0.018 -0.026 -0.024 0.106 0.848 1
V11 0.05 0.211 0.35 0.019 0.161 3.211 0.385 0.781 1
V21 0.02 -0.067 0.416 0.017 -0.087 -4.34 0.424 0.772 0.795
V22 0.05 0.052 0.179 0.019 0.002 0.046 0.179 0.888 0.821
T11 1.2 1.197 0.007 0.003 -0.003 -0.002 0.007 0.862 1
T21 0.6 0.583 0.25 0.006 -0.017 -0.029 0.25 0.933 1
T12 -0.4 -0.391 0.041 0.006 0.009 -0.022 0.042 0.848 1
T22 0.7 0.678 0.116 0.011 -0.022 -0.031 0.117 0.875 1
U11 0.8 0.819 0.111 0.04 0.019 0.024 0.112 0.817 1
U22 0.6 0.529 0.165 0.03 -0.071 -0.119 0.179 0.763 0.964
U33 2 2.008 0.102 0.091 0.008 0.004 0.102 0.915 1
U44 1 1.303 0.77 0.059 0.303 0.303 0.826 0.754 1
U55 1.5 1.33 0.513 0.063 -0.17 -0.114 0.54 0.799 0.875
U66 0.4 0.65 0.724 0.033 0.25 0.624 0.765 0.741 0.951

Table 6.34: Nonstationary PFA Results: True IC: Diffuse, Fitted IC: Koopman exact
initial KF, N=20, T=50, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.007 0.007 0.001 0.001 0.007 0.951 1
Z31 0.8 0.8 0.008 0.008 0 0 0.008 0.938 1
Z52 0.9 0.885 0.08 0.015 -0.015 -0.016 0.081 0.898 1
Z62 1.1 1.06 0.207 0.02 -0.04 -0.036 0.21 0.841 1
V11 0.05 0.23 0.372 0.021 0.18 3.604 0.413 0.765 0.996
V21 0.02 -0.083 0.429 0.018 -0.103 -5.139 0.44 0.757 0.783
V22 0.05 0.039 0.027 0.019 -0.011 -0.211 0.029 0.885 0.796
T11 1.2 1.197 0.007 0.003 -0.003 -0.003 0.008 0.854 1
T21 0.6 0.582 0.25 0.006 -0.018 -0.03 0.25 0.938 1
T12 -0.4 -0.392 0.047 0.007 0.008 -0.019 0.047 0.841 1
T22 0.7 0.669 0.161 0.013 -0.031 -0.044 0.163 0.872 1
U11 0.8 0.825 0.124 0.041 0.025 0.032 0.126 0.801 1
U22 0.6 0.519 0.179 0.03 -0.081 -0.136 0.196 0.748 0.947
U33 2 2.013 0.109 0.092 0.013 0.007 0.109 0.903 1
U44 1 1.337 0.806 0.061 0.337 0.337 0.872 0.743 1
U55 1.5 1.321 0.561 0.063 -0.179 -0.119 0.587 0.779 0.863
U66 0.4 0.677 0.76 0.034 0.277 0.693 0.808 0.726 0.947

Table 6.35: Nonstationary PFA Results: True IC: Diffuse, Fitted IC: Large κ, N=20,
T=50, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.201 0.009 0.008 0.001 0.001 0.009 0.92 1
Z31 0.8 0.8 0.01 0.01 0 0 0.01 0.962 1
Z52 0.9 0.978 0.261 0.022 0.078 0.087 0.272 0.803 1
Z62 1.1 1.189 0.307 0.024 0.089 0.081 0.319 0.864 1
V11 1 1.188 0.447 0.088 0.188 0.188 0.484 0.789 1
V21 0.4 0.306 0.683 0.066 -0.094 -0.234 0.687 0.798 0.981
V22 1 0.818 0.383 0.082 -0.182 -0.182 0.424 0.742 0.826
T11 1.2 1.196 0.013 0.009 -0.004 -0.003 0.013 0.869 1
T21 0.6 0.598 0.015 0.011 -0.002 -0.004 0.015 0.911 1
T12 -0.4 -0.425 0.104 0.013 -0.025 0.063 0.107 0.854 1
T22 1 1.08 0.277 0.024 0.08 0.08 0.288 0.859 1
U11 0.8 0.83 0.096 0.049 0.03 0.038 0.101 0.911 1
U22 0.6 0.543 0.161 0.048 -0.057 -0.094 0.171 0.812 0.962
U33 2 2.008 0.109 0.095 0.008 0.004 0.109 0.939 1
U44 1 1.724 1.727 0.083 0.724 0.724 1.869 0.798 1
U55 1.5 1.313 0.538 0.066 -0.187 -0.124 0.569 0.789 0.869
U66 0.4 0.676 0.74 0.047 0.276 0.689 0.788 0.808 0.981
X01 - 0.036 0.278 0.26
X02 - 0.026 0.953 0.255
P011 - 13.31 0.913 1.354
P012 - 4.02 6.454 0.966
P022 - 12.872 3.606 1.353

Table 6.36: Simulation Results: True IC: Diffuse, Fitted IC: Free Parameter, N=200,
T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.196 0.009 0.023 -0.004 -0.003 0.009 1 1
Z31 0.8 0.81 0.01 0.017 0.01 0.012 0.014 0.994 1
Z52 0.9 0.903 0.007 0.014 0.003 0.003 0.008 1 1
Z62 1.1 1.097 0.006 0.016 -0.003 -0.003 0.006 1 1
V11 1 5.762 0.333 0.381 4.762 4.762 4.774 0 1
V21 0.4 2.461 0.282 0.293 2.061 5.154 2.081 0 1
V22 1 7.032 0.376 0.438 6.032 6.032 6.044 0 1
T11 1.2 1.219 0.009 0.025 0.019 0.015 0.021 1 1
T21 0.6 0.606 0.011 0.028 0.006 0.01 0.012 1 1
T12 -0.4 -0.407 0.008 0.019 -0.007 0.017 0.01 1 1
T22 1 1.006 0.008 0.02 0.006 0.006 0.01 1 1
U11 0.8 4.283 0.196 0.205 3.483 4.353 3.488 0 1
U22 0.6 5.827 0.252 0.278 5.227 8.712 5.233 0 1
U33 2 3.866 0.19 0.186 1.866 0.933 1.875 0 1
U44 1 4.621 0.184 0.221 3.621 3.621 3.625 0 1
U55 1.5 4.221 0.195 0.202 2.721 1.814 2.728 0 1
U66 0.4 5.075 0.194 0.241 4.675 11.687 4.679 0 1

Table 6.37: Simulation Results: True IC: Diffuse, Fitted IC: Null, N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.193 0.008 0.008 -0.007 -0.006 0.011 0.851 1
Z31 0.8 0.795 0.009 0.01 -0.005 -0.006 0.011 0.911 1
Z52 0.9 0.896 0.007 0.007 -0.004 -0.004 0.008 0.909 1
Z62 1.1 1.095 0.005 0.006 -0.005 -0.004 0.007 0.875 1
V11 1 1.004 0.079 0.079 0.004 0.004 0.079 0.962 1
V21 0.4 0.395 0.06 0.056 -0.005 -0.012 0.06 0.952 1
V22 1 1 0.093 0.075 0 0 0.093 0.933 0.998
T11 1.2 1.195 0.009 0.009 -0.005 -0.004 0.01 0.916 1
T21 0.6 0.598 0.01 0.009 -0.002 -0.004 0.01 0.928 1
T12 -0.4 -0.398 0.007 0.007 0.002 -0.004 0.007 0.947 1
T22 1 0.999 0.007 0.007 -0.001 -0.001 0.007 0.94 1
U11 0.8 0.801 0.046 0.048 0.001 0.002 0.046 0.954 1
U22 0.6 0.605 0.055 0.05 0.005 0.008 0.055 0.947 1
U33 2 1.991 0.096 0.095 -0.009 -0.004 0.097 0.952 1
U44 1 1.002 0.053 0.054 0.002 0.002 0.053 0.957 1
U55 1.5 1.502 0.074 0.074 0.002 0.001 0.074 0.962 1
U66 0.4 0.402 0.044 0.036 0.002 0.006 0.044 0.95 1

Table 6.38: Simulation Results: True IC: Diffuse, Fitted IC: deJong DKF, N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.194 0.009 0.008 -0.006 -0.005 0.011 0.848 1
Z31 0.8 0.795 0.009 0.01 -0.005 -0.007 0.011 0.924 1
Z52 0.9 0.782 0.579 0.014 -0.118 -0.131 0.59 0.777 1
Z62 1.1 0.969 0.593 0.014 -0.131 -0.119 0.605 0.711 1
V11 1 1.215 0.437 0.085 0.215 0.215 0.486 0.766 1
V21 0.4 0.219 0.578 0.064 -0.181 -0.453 0.604 0.787 0.98
V22 1 0.805 0.407 0.077 -0.195 -0.195 0.45 0.761 0.807
T11 1.2 1.191 0.012 0.009 -0.009 -0.007 0.015 0.843 1
T21 0.6 0.597 0.013 0.011 -0.003 -0.005 0.013 0.898 1
T12 -0.4 -0.359 0.188 0.01 0.041 -0.103 0.192 0.761 1
T22 1 0.879 0.555 0.015 -0.121 -0.121 0.567 0.766 1
U11 0.8 0.837 0.119 0.048 0.037 0.046 0.124 0.848 1
U22 0.6 0.526 0.187 0.047 -0.074 -0.124 0.201 0.766 0.934
U33 2 2.01 0.114 0.093 0.01 0.005 0.114 0.909 1
U44 1 1.727 1.729 0.082 0.727 0.727 1.872 0.777 1
U55 1.5 1.313 0.579 0.067 -0.187 -0.125 0.607 0.766 0.868
U66 0.4 0.709 0.775 0.046 0.309 0.771 0.832 0.756 0.964

Table 6.39: Simulation Results: True IC: Diffuse, Fitted IC: Koopman exact initial KF,
N=200, T=5

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.194 0.009 0.008 -0.006 -0.005 0.011 0.84 1
Z31 0.8 0.795 0.009 0.01 -0.005 -0.007 0.011 0.912 1
Z52 0.9 0.746 0.667 0.017 -0.154 -0.171 0.683 0.753 1
Z62 1.1 0.933 0.685 0.016 -0.167 -0.152 0.703 0.722 1
V11 1 1.227 0.455 0.087 0.227 0.227 0.507 0.763 1
V21 0.4 0.178 0.656 0.069 -0.222 -0.556 0.692 0.778 0.974
V22 1 0.8 0.408 0.08 -0.2 -0.2 0.453 0.753 0.799
T11 1.2 1.191 0.014 0.009 -0.009 -0.008 0.017 0.835 1
T21 0.6 0.593 0.045 0.012 -0.007 -0.011 0.045 0.902 0.995
T12 -0.4 -0.351 0.207 0.01 0.049 -0.124 0.213 0.753 1
T22 1 0.846 0.647 0.018 -0.154 -0.154 0.663 0.758 1
U11 0.8 0.829 0.124 0.049 0.029 0.036 0.127 0.861 0.995
U22 0.6 0.539 0.193 0.049 -0.061 -0.101 0.201 0.763 0.948
U33 2 2.011 0.122 0.093 0.011 0.006 0.122 0.897 1
U44 1 1.816 1.954 0.087 0.816 0.816 2.113 0.778 0.995
U55 1.5 1.307 0.571 0.07 -0.193 -0.129 0.602 0.789 0.871
U66 0.4 0.718 0.762 0.048 0.318 0.796 0.824 0.758 0.974

Table 6.40: Simulation Results: True IC: Diffuse, Fitted IC: Large κ, N=200, T=5
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.202 0.028 0.022 0.002 0.001 0.028 0.931 1
Z31 0.8 0.797 0.027 0.026 -0.003 -0.004 0.028 0.961 1
Z52 0.9 0.915 0.164 0.023 0.015 0.017 0.164 0.897 1
Z62 1.1 1.106 0.127 0.02 0.006 0.006 0.127 0.856 1
V11 0.05 0.084 0.15 0.02 0.034 0.67 0.154 0.867 0.842
V21 0.02 -0.058 0.477 0.022 -0.078 -3.898 0.483 0.875 0.403
V22 0.05 0.046 0.02 0.035 -0.004 -0.087 0.021 0.914 0.817
T11 1.2 1.191 0.041 0.012 -0.009 -0.008 0.042 0.878 1
T21 0.6 0.536 0.459 0.024 -0.064 -0.106 0.462 0.886 1
T12 -0.4 -0.399 0.024 0.012 0.001 -0.003 0.024 0.886 1
T22 0.7 0.674 0.247 0.016 -0.026 -0.037 0.248 0.911 1
U11 0.8 0.807 0.082 0.04 0.007 0.009 0.083 0.928 1
U22 0.6 0.587 0.107 0.034 -0.013 -0.021 0.108 0.869 0.992
U33 2 2.013 0.113 0.092 0.013 0.006 0.114 0.936 1
U44 1 1.068 0.335 0.052 0.068 0.068 0.341 0.892 1
U55 1.5 1.468 0.26 0.069 -0.032 -0.021 0.262 0.875 0.975
U66 0.4 0.444 0.28 0.027 0.044 0.111 0.283 0.914 0.986
X01 - 0.003 0.14 0.137
X02 - 0.075 0.82 0.166
P011 - 3.696 0.279 0.391
P012 - 2.518 9.308 0.565
P022 - 3.591 0.723 0.725

Table 6.41: Simulation Results: True IC: Diffuse, Fitted IC: Free Parameter, N=200,
T=5, Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.18 0.028 0.041 -0.02 -0.017 0.034 0.985 1
Z31 0.8 0.825 0.035 0.037 0.025 0.031 0.043 0.946 1
Z52 0.9 0.906 0.039 0.028 0.006 0.007 0.039 0.98 1
Z62 1.1 1.085 0.083 0.028 -0.015 -0.014 0.084 0.964 1
V11 0.05 1.291 0.126 0.107 1.241 24.829 1.248 0.005 0.995
V21 0.02 0.891 0.224 0.08 0.871 43.527 0.899 0 1
V22 0.05 1.348 0.139 0.109 1.298 25.963 1.306 0.005 0.995
T11 1.2 1.21 0.117 0.045 0.01 0.008 0.117 0.992 1
T21 0.6 0.58 0.175 0.047 -0.02 -0.033 0.176 0.992 1
T12 -0.4 -0.413 0.061 0.036 -0.013 0.033 0.062 0.997 1
T22 0.7 0.71 0.07 0.034 0.01 0.014 0.07 0.995 0.997
U11 0.8 1.728 0.163 0.086 0.928 1.16 0.942 0 1
U22 0.6 2.076 0.2 0.103 1.476 2.461 1.49 0 1
U33 2 2.455 0.147 0.118 0.455 0.228 0.478 0.015 1
U44 1 1.892 0.211 0.093 0.892 0.892 0.917 0 1
U55 1.5 2.137 0.185 0.103 0.637 0.425 0.664 0 1
U66 0.4 1.664 0.162 0.082 1.264 3.159 1.274 0 1

Table 6.42: Simulation Results: True IC: Diffuse, Fitted IC: Null, N=200, T=5, Mild
Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.152 0.02 0.02 -0.048 -0.04 0.052 0.34 1
Z31 0.8 0.766 0.025 0.025 -0.034 -0.043 0.042 0.722 1
Z52 0.9 0.871 0.019 0.019 -0.029 -0.032 0.035 0.644 1
Z62 1.1 1.065 0.016 0.016 -0.035 -0.031 0.038 0.37 1
V11 0.05 0.062 0.019 0.018 0.012 0.233 0.022 0.917 0.949
V21 0.02 0.024 0.015 0.013 0.004 0.179 0.015 0.924 0.428
V22 0.05 0.054 0.018 0.017 0.004 0.077 0.019 0.931 0.883
T11 1.2 1.17 0.011 0.011 -0.03 -0.025 0.032 0.193 1
T21 0.6 0.588 0.015 0.014 -0.012 -0.021 0.019 0.809 1
T12 -0.4 -0.385 0.011 0.011 0.015 -0.037 0.019 0.685 1
T22 0.7 0.7 0.009 0.009 0 0.001 0.009 0.947 1
U11 0.8 0.801 0.04 0.04 0.001 0.001 0.04 0.949 1
U22 0.6 0.6 0.035 0.034 0 0 0.035 0.933 1
U33 2 2.01 0.097 0.092 0.01 0.005 0.098 0.949 1
U44 1 1.001 0.049 0.049 0.001 0.001 0.049 0.947 1
U55 1.5 1.499 0.071 0.07 -0.001 -0.001 0.07 0.933 1
U66 0.4 0.403 0.024 0.025 0.003 0.007 0.024 0.963 1

Table 6.43: Simulation Results: True IC: Diffuse, Fitted IC: deJong DKF, N=200, T=5,
Mild Nonstationarity
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θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.155 0.03 0.02 -0.045 -0.037 0.054 0.36 1
Z31 0.8 0.765 0.027 0.025 -0.035 -0.043 0.044 0.715 1
Z52 0.9 0.84 0.288 0.021 -0.06 -0.067 0.294 0.627 1
Z62 1.1 1.029 0.187 0.017 -0.071 -0.064 0.199 0.345 1
V11 0.05 0.116 0.211 0.022 0.066 1.324 0.221 0.842 0.938
V21 0.02 -0.074 0.619 0.027 -0.094 -4.681 0.625 0.855 0.461
V22 0.05 0.049 0.022 0.046 -0.001 -0.021 0.022 0.92 0.813
T11 1.2 1.159 0.044 0.011 -0.041 -0.034 0.06 0.181 1
T21 0.6 0.489 0.618 0.027 -0.111 -0.186 0.627 0.782 1
T12 -0.4 -0.378 0.04 0.012 0.022 -0.055 0.045 0.648 1
T22 0.7 0.636 0.313 0.015 -0.064 -0.091 0.319 0.881 1
U11 0.8 0.809 0.072 0.041 0.009 0.012 0.073 0.917 1
U22 0.6 0.577 0.127 0.034 -0.023 -0.039 0.129 0.845 0.984
U33 2 2.011 0.102 0.092 0.011 0.006 0.103 0.93 1
U44 1 1.096 0.394 0.056 0.096 0.096 0.405 0.863 1
U55 1.5 1.481 0.306 0.07 -0.019 -0.013 0.307 0.883 0.979
U66 0.4 0.462 0.341 0.028 0.062 0.156 0.347 0.894 0.984

Table 6.44: Simulation Results: True IC: Diffuse, Fitted IC: Koopman exact initial KF,
N=200, T=5, Mild Nonstationarity

θ True Value θ̂ SEθ ŜE Bias RB RMSE cov pow
Z21 1.2 1.156 0.025 0.02 -0.044 -0.037 0.051 0.377 1
Z31 0.8 0.766 0.025 0.024 -0.034 -0.042 0.042 0.722 1
Z52 0.9 0.839 0.285 0.02 -0.061 -0.067 0.291 0.615 1
Z62 1.1 1.022 0.27 0.018 -0.078 -0.071 0.281 0.352 1
V11 0.05 0.113 0.206 0.021 0.063 1.269 0.215 0.848 0.944
V21 0.02 -0.074 0.603 0.026 -0.094 -4.69 0.609 0.863 0.451
V22 0.05 0.049 0.022 0.045 -0.001 -0.025 0.022 0.927 0.815
T11 1.2 1.159 0.043 0.011 -0.041 -0.034 0.059 0.18 1
T21 0.6 0.493 0.599 0.027 -0.107 -0.178 0.607 0.782 1
T12 -0.4 -0.378 0.038 0.012 0.022 -0.054 0.044 0.661 1
T22 0.7 0.635 0.316 0.015 -0.065 -0.093 0.322 0.881 1
U11 0.8 0.806 0.065 0.041 0.006 0.008 0.065 0.916 1
U22 0.6 0.576 0.101 0.034 -0.024 -0.04 0.104 0.861 0.985
U33 2 2.009 0.098 0.092 0.009 0.005 0.099 0.934 1
U44 1 1.091 0.384 0.055 0.091 0.091 0.394 0.873 1
U55 1.5 1.483 0.31 0.07 -0.017 -0.011 0.31 0.889 0.98
U66 0.4 0.458 0.315 0.028 0.058 0.144 0.32 0.909 0.987

Table 6.45: Simulation Results: True IC: Diffuse, Fitted IC: Large κ, N=200, T=5, Mild
Nonstationarity

196



References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6), 716–723.

Ansley, C. F., & Kohn, R. (1985). Estimation, filtering and smoothing in state space
models with incompletely specified initial conditions. Annals of Statistics, 13(4),
1286–1316.

Ayers, S. (1997). The application of chaos theory to psychology. Theory and Psychology,
7(3), 373–398.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ:
Prentice-Hall.

Bolger, N., Davis, A., Olchowski, A. E., & Rafaeli, E. (2003). Diary methods: Captur-
ing life as it is lived. Annual Review of Psychology, 54, 579–616.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (alt) models: A
synthesis of two traditions. Sociological Methods and Research, 32, 336–383.

Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspec-
tive. Hoboken, NJ: Wiley.

Bowlby, J. (1982). Attachment and loss: Vol. 1. attachment (2nd ed.). New York: Basic
Books.

Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes
with dynamic factor models: Some promising uses and extensions of arma time
series models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Advances in psycho-
metrics: A festschrift for roderick p. mcdonald (pp. 415–452). Mahwah, NJ: Erlbaum.

Browne, M. W., & Zhang, G. (2005). DyFA: Dynamic Factor Analysis of Lagged
Correlation Matrices, Version 2.03 [Computer software manual]. Available from
http://quantrm2.psy.ohio-state.edu/browne/

Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations
at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a
birth cohort. Psychological Bulletin, 53, 1033–1039.

Cattell, R. B., & Cattell, M. D. L. (1969). Jr.-sr. high school personality questionnaire.
Institute for Personality and Ability Testing.

Chatfield, C. (2004). The analysis of time series: An introduction (6th ed.). Boca Raton,
FL: Chapman & Hall/CRC.

197



Chow, S.-M., Ho., M. H. R., Hamaker, E., & Dolan, C. (2010).

Structural Equation Modeling.

Cicchetti, D., & Tucker, D. (1994). Development of self-regulatory structures of the
mind. Developmental Psychopathology, 6, 533–549.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

De Jong, P. (1988). The likelihood for a state space model. Biometrika, 75, 165–169.

De Jong, P. (1991). The diffuse kalman filter. The Annals of Statistics, 19(2), 1073–1083.

De Jong, P. (2003). Smoothing with an unknown initial condition. Journal of time series
analysis, 24(2), 141–148.

De Jong, P., & Chu-Chun Lin, S. (1994). Stationary and non-stationary state space
models. Journal of Time Series Analysis, 15, 151–166.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of Royal Statistics Society, Series B,
39, 1–38.

Diener, E., Fujita, F., & Smith, H. (1995). The personality structure of affect. Journal
of Personality and Social Psychology, 69(1), 130–141.

Dolan, C. V., & Molenaar, P. C. M. (1991). A note on the calculation of latent trajecto-
ries in the quasi markov simplex model by means of regression method and the
discrete kalman filter. Kwantitatieve Methoden, 38, 29–44.

Doornik, J. A. (2007). Object-oriented matrix programming using ox (3rd ed.). London:
Timberlake Consultants Press and Oxford.

Du Toit, S. H. C., & Browne, M. W. (2001). The covariance structure of a vector time
series. In R. Cudeck, S. H. C. D. Toit, & D. Sorbom (Eds.), Structural equation
modeling: Present and future a festschrift for karl jreskog (pp. 279–314). Chicago:
Scientific Software International Inc.

Du Toit, S. H. C., & Browne, M. W. (2007). Structural equation modeling of multi-
variate time series. Multivariate Behavioral Research, 42(1), 67–101.

Enders, C. K. (2001). A primer on the use of maximum likelihod algorithms available
for use with missing data. Structural Equation Modeling, 8, 128–141.

Francke, M. K., Koopman, S. J., & deVos, A. F. (2010). Likelihood functions for state
space models with diffuse initial conditions. Journal of Time Series Analysis, 31.

Gottschalk, A., Bauer, M. S., & Whybrow, P. C. (1995). Evidence of chaotic mood
variation in bipolar disorder. Archive of General Psychiatry, 52, 947–959.

198



Greenberg, M. T., Kusche, C. A., & Spelz, M. (1991). Emotion regularion, self-control,
and psychopathology: The role of relationships in early childhood. In D. Ci-
cchetti & S. L. Toth (Eds.), Rocheester symposium on developmental psychopathol-
ogy: Vol. 2. internalizing and externalizing expressions of dysfunction (pp. 21–55).
Rochester, NY: University of Rochester Press.

Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6,
430–450.

Hamaker, E. L. (2005). Conditions for the equivalence of the autoregressive latent tra-
jectory model and a latent growth curve model with autoregressive disturbances.
Sociological Methods and Research, 33, 404–416.

Hamaker, E. L., & Dolan, C. V. (2009). Idiographic data analysis: Quantitative meth-
ods from simple to advanced. In J. Valsiner, P. C. M. Molenaar, M. Lyra, &
N. Chaudhary (Eds.), Dynamic process methodology in the social and developmental
sciences (pp. 191–216). New York: Springer-Verlag.

Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2003). Arma-based sem when
the number of time points t exceeds the number of cases n: Raw data maximum
likelihood. Structural Equation Modeling, 10(3), 352–379.

Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

Harvey, A. C. (1991). Forecasting, structural time series models and the kalman filter.
Cambridge: Cambridge University Press.

Harvey, A. C., & Phillips, G. D. A. (1979). Maximum likelihood estimation of re-
gression models with autoregressive-moving average disturbances. Biometrika,
66, 49–58.

Jessor, R., Donovan, J. E., & Costa, F. M. (1991). Beyond adolescence: Problem behavior
and young adult development (2nd ed.). New York: Cambridge University Press.
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