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ABSTRACT

David C. Lax: Combinatorial Structures in the Coordinate Rings
of Schubert Varieties

(Under the direction of Robert A. Proctor)

Given an increasing sequence of dimensions, a flag in a vector space is an increasing sequence of

subspaces with those dimensions. The set of all such flags (the flag manifold) can be projectively

coordinatized using products of minors of a matrix. These products are indexed by tableaux on a

Young diagram. A basis of “standard monomials” for the vector space generated by such projective

coordinates over the entire flag manifold has long been known. A Schubert variety is a subset of

flags specified by a permutation. Lakshmibai, Musili, and Seshadri gave a standard monomial basis

for the smaller vector space generated by the projective coordinates restricted to a Schubert variety.

Reiner and Shimozono made this theory more explicit by giving a straightening algorithm for the

products of the minors in terms of the right key of a Young tableau. This dissertation uses the

recently introduced notion of scanning tableaux to give more-direct proofs of the spanning and

the linear independence of the standard monomials. This basis is a weight basis for the dual of a

Demazure module for a Borel subgroup of the general linear group.

The most famous of the above flag manifolds are the Grassmann manifolds of flags that consist

of a single subspace. The Plücker relations which define the Grassmann manifolds as projective

varieties are well known. Grassmann manifolds are examples of minuscule flag manifolds. We study

the generalized Plücker relations for minuscule flag manifolds independent of Lie type. To do this

we combinatorially model the Plücker coordinates based on Wildberger’s construction of minuscule

Lie algebra representations; it uses the colored partially ordered sets known as minuscule posets.

We obtain, uniformly across Lie type, descriptions of the Plücker relations of “extreme weight”. We

show that these are “supported” by “double-tailed diamond” sublattices of minuscule lattices. From

this, we obtain a complete set of Plücker relations for the exceptional minuscule flag manifolds.

These Plücker relations are straightening laws for their coordinate rings.

iii



ACKNOWLEDGEMENTS

I wish to acknowledge the UNC Department of Mathematics for providing a supportive environ-

ment for studying mathematics. Special thanks to my advisor Bob Proctor. He was extraordinarily

involved in my education. He made several notational and expositional suggestions for this disserta-

tion and alerted me to several places where more detailed proofs would be helpful. Credit for the

clarity of exposition in this document belongs to him. More special thanks to Shrawan Kumar for

sharing his immense expertise, to Matt Willis for introducing me to algebraic combinatorics, and to

Joe Seaborn for many helpful discussions. Thanks also to Michael Malahe and Ryo Moore for help

with LATEX.

I benefited from the financial support of the Tom Brylawski Memorial Fellowship and the

Dissertation Completion Fellowship from the University of North Carolina Graduate School for

which I am thankful.

Finally I wish to gratefully acknowledge the invaluable personal support I received from my

friends and family; their love and encouragement made this work possible.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PART I: Standard Monomial Basis for Coordinates of Schubert Varieties . . . . 3

CHAPTER 2: COORDINATES OF SCHUBERT VARIETIES . . . . . . . . . . . 3

2.1 Introduction to Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Combinatorial tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Flags of subspaces and tabloid monomials . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 3: SPANNING THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Tableau monomials span Γλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Demazure monomials span the Demazure quotient . . . . . . . . . . . . . . . . . . . 21

CHAPTER 4: A LINEAR INDEPENDENCE THEOREM . . . . . . . . . . . . . 26

4.1 Preferred bases and Bruhat cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Tabloid monomials, Bruhat cells, and Schubert varieties . . . . . . . . . . . . . . . . 29

4.3 Linear independence of the Demazure monomials . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 5: CHARACTER FORMULAS . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Summation formula for Demazure polynomials . . . . . . . . . . . . . . . . . . . . . 37

5.2 Contemporary terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

PART II: Order Filter Model for Minuscule Plücker Relations . . . . . . . . . . 43

CHAPTER 6: MINUSCULE FLAG MANIFOLDS . . . . . . . . . . . . . . . . . . 42

6.1 Introduction to Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Minuscule representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 7: A MODEL FAMILY OF MINUSCULE FLAG MANIFOLDS . . 48

7.1 Classical geometry approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Representation theory approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



7.3 Concrete Lie algebra actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 8: MINUSCULE POSETS . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.1 Introduction to minuscule posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Wildberger’s construction of minuscule representations . . . . . . . . . . . . . . . . . 58

CHAPTER 9: EXTREME WEIGHT PLÜCKER RELATIONS . . . . . . . . . . 62

9.1 Representation theory setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2 Highest weight relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.3 Rotation by Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.4 Exceptional cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.5 Non-simply laced cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.6 Extreme relations in type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.7 Geometry appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



LIST OF FIGURES

7.2 The double-tailed diamond lattice Lθ. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 The matrix representing our bilinear form. . . . . . . . . . . . . . . . . . . . . . . . . 49

7.6 A labeling of the type Dr Dynkin diagram. . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 The Hasse diagrams of the minuscule posets. . . . . . . . . . . . . . . . . . . . . . . 57

9.18 The colored Hasse diagrams for e7(7) and e6(1) ∼= e6(6). . . . . . . . . . . . . . . . . 83

9.19 The 27 straightening laws for the complex Cayley plane on its Plücker coordinates. . 91

9.20 The zero weight straightening laws for the Freudenthal variety on its Plücker coordinates. 92

9.21 The standard coordinates of the incomparable products for the Freudenthal variety. 93

9.22 The type Bn−1 and type Dn Dynkin diagrams. . . . . . . . . . . . . . . . . . . . . . 93

vii



CHAPTER 1

Introduction

Flag manifolds and their Schubert subvarieties are fundamental geometric objects that have

algebraic realizations. In these realizations, one can study the flag manifolds through their coordinate

rings. Although we are motivated by geometry, no geometric knowledge is required of the reader.

This dissertation contains two parts, each of which concerns the coordinate rings of certain kinds of

flag manifolds or their Schubert subvarieties. Each part addresses a different question about the

coordinate rings for its special kind of manifolds. We briefly describe these two parts here: each

part contains its own more detailed introduction (Sections 2.1 and 6.1 respectively).

To specify a flag manifold, one chooses a Dynkin diagram and a subset of its nodes. To specify

an algebraic realization of this flag manifold, one then additionally chooses a dominant integral

weight whose “support” in the Dynkin diagram is the chosen subset of nodes.

Part I of this dissertation works with flag manifolds of Lie type A. Here we consider every

algebraic realization of the manifold, which arise from all appropriate dominant integral weights. In

this classical case, the flag manifolds truly consist of flags in a vector space. Their coordinate rings

can be studied using determinants of matrices. No knowledge of Lie theory is needed for Part I.

The coordinate rings of these flag manifolds have been well understood since the 1950s, but the

more complicated coordinate rings of their Schubert subvarieties were not described until the 1980s.

For a fixed flag manifold, the set of its Schubert subvarieties forms a commonly studied filtration

of the flag manifold. We seek a “standard” basis for the coordinate ring of each of these Schubert

varieties. Here the “Plücker” relations among the coordinate generators of the ring are well known.

We use these well-known Plücker relations to obtain our basis. A certain spanning set of the ring

is commonly indexed by Young tableaux. Previous descriptions of a basis have used the notion

of “right keys” to specify a subset of this spanning set that forms a basis. We show how to use

the recently introduced notion of “scanning tableau” to do the same. Our description of a basis is

combinatorially simpler than the older right key version. Moreover, we show more explicitly how to
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express each of the vectors in the spanning set in terms of this basis.

Part II of this dissertation works with flag manifolds uniformly across Lie type that are specified

by the singleton subsets of “minuscule” nodes in the Dynkin diagram. These flag manifolds are

called minuscule flag manifolds. For each of these, we consider its algebraic realization specified by

the corresponding minuscule weight. All but three Lie types have at least one minuscule weight. The

techniques used in this case require the background knowledge of simple complex Lie algebras. We

seek a description of the coordinate rings of the minuscule flag manifolds that is based solely on the

combinatorics of minuscule weights, independent of the particular Lie type. Here our understanding

of the coordinate rings is essentially inverted from our understanding in Part I: A standard basis of

the coordinate ring for any of these minuscule flag manifolds is known independent of its Lie type.

However, there is no description of the Plücker relations that is uniform across Lie types. For some

types, the Plücker relations have only been presented as recently as 2013, and for the “exceptional”

minuscule flag manifolds the Plücker relations have apparently never been fully presented. We

uniformly describe a subset of the Plücker relations in all minuscule flag manifold coordinate rings:

These “extreme” Plücker relations are expressed as alternating sums over a certain lattice structure.

In particular we present all of the Plücker relations in the exceptional type cases, apparently for

the first time. The coordinate rings for minuscule flag varieties are known to have the structure of

algebras with straightening laws. The Plücker relations which we present are explicit straightening

laws for that structure.
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CHAPTER 2

Coordinates of Schubert varieties1

2.1 Introduction to Part I

The main results of this paper are accessible to anyone who knows basic linear algebra: the

Laplace expansion of a determinant is the most advanced linear algebra technique used. Otherwise,

the most sophisticated fact needed is that the application of a multivariate polynomial may be

moved inside a limit. Readers may replace our field C with any field of characteristic zero, such as

R.

Let n ≥ 2 and 1 ≤ k ≤ n − 1. Fix 0 < q1 < q2 < · · · < qk < n and let Q denote the set

{q1, . . . , qk}. A Q-flag of Cn is a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Cn such that dim(Vj)

= qj for 1 ≤ j ≤ k. The set F`Q of Q-flags has long been studied by geometers. It is known as a

flag manifold (for GLn). Given a fixed sequence of integers ζ1 ≥ ζ2 ≥ · · · ≥ ζm with ζi ∈ Q for

1 ≤ i ≤ m, one can form projective coordinates for F`Q as follows: First, any flag can be represented

with a sequence of n column vectors of length n. The juxtaposition of these vectors forms an n× n

matrix f . For each 1 ≤ i ≤ m, form a left-initial ζi × ζi minor of f by selecting ζi of its n rows.

We refer to a product of such minors as a “monomial” for the given ζj ’s. Let N be the number

of such possible monomials. One can inefficiently coordinatize F`Q in P(CN ) by evaluating all of

these monomials over the flag manifold. The sequence ζ1, . . . , ζm can be viewed as the lengths of

the columns of a Young diagram λ. Hodge and Pedoe [1] used a basis theorem of Young [2] to index

an efficient subset of these coordinates with the semistandard Young tableaux on the diagram λ.

This subset is a basis of “standard” monomials for the vector space spanned by all monomials over

the flag manifold. One can group flags into subsets known as Schubert varieties using a form of

1Chapters 2-5 originally appeared in the journal Linear Algebra and its Applications. The original citation is:
D. C. Lax, “Accessible Proof of Standard Monomial Basis for Coordinatization of Schubert Sets of Flags,"
Linear Algebra Appl., vol. 494, pp. 105-137, 2016. DOI: 10.1016/j.laa.2016.01.003
c©2016. This manuscript version is made available under the Creative Commons BY-NC-ND license.
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Gaussian elimination on their matrix representatives; these can be indexed by n-permutations. For

a given Schubert variety, the coordinatization by the set of monomials indexed by semistandard

tableaux is inefficient. Utilizing recent developments in tableau combinatorics, this paper gives a

new derivation of a basis of standard monomials for the vector space generated by all monomials

restricted to a Schubert variety.

The most famous flag manifolds are the sets of d-dimensional subspaces of Cn. These are the

cases k := 1 and q1 := d above and are known as the Grassmannians. Here the basis result for

Schubert varieties may be readily deduced once it is known for the entire Grassmannian. The

next-most studied flag manifold is the “complete” flag manifold, which is the case k := n− 1 above.

It was not until the late 1970s that Lakshmibai, Musili, and Seshadri first gave [3] a standard

monomial basis for any Schubert variety of a general flag manifold (for GLn). Their solution used

sophisticated geometric methods and was expressed in the language of the representation theory

of semisimple Lie groups. In 1990, Lascoux and Schützenberger defined [4] the “right key” of a

semistandard tableau. In 1997, Reiner and Shimozono used the notion of right key to give [5] a new

derivation of the standard monomial basis for any Schubert variety of the complete flag manifold.

They provided a “straightening algorithm” for products of minors that expressed the monomial

specified by a given tableau as a linear combination in the standard monomial basis. In 2013, Willis

defined [6] the “scanning tableau” of a semistandard tableau and showed that it is the right key of

Lascoux and Schützenberger. The scanning tableau appears to be the simplest description of the

right key.

We show how scanning tableaux can be used to improve the proofs of [5] for the spanning

and the linear independence of the standard monomials. All aspects of our presentation consider

all Schubert varieties of all flag manifolds for GLn, i.e. for any 1 ≤ k ≤ n − 1. The statements

of our basis theorem, Theorem 2.18, and both its spanning and linear independence parts differ

from the analogous statements in [5]: We do not limit ourselves to the k = n − 1 complete flag

case. Here we use the scanning tableau to determine whether the monomial of a given tableau

is a member of our standard basis for a given Schubert variety. In that article, membership is

determined by using a “jeu de taquin” procedure to compute the right key of a tableau. The use of

scanning tableaux allows for a direct and widely accessible proof of this theorem which is entirely

self-contained. As a consequence of our basis theorem, we obtain a weighted tableaux summation
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expression, Corollary 5.1, that is associated to the vector space at hand. It is the “Demazure

polynomial” of [7], or the “key polynomial” of [8] (which is given in terms of right keys). The

derivation of this character expression is also self-contained: In particular, the original notion of

right key is not needed.

Our spanning proof uses scanning tableaux to give a straightening algorithm in the spirit of

[5]. The determinantal identity from [9] used there is also used here; more details are given for

its application to the projective coordinates of a Schubert variety. Combinatorialists’ interest in

straightening algorithms goes back at least to [10, 11]. Apart from motivation, the spanning proof

does not need any mention of Q-flags or Schubert varieties. All of the necessary definitions for the

spanning theorem, Theorem 3.12, make sense for matrices with entries from any commutative ring

R. The theorem statement itself makes sense over R when “spans” is replaced by “generates as an

R-module.” The proof presented in this paper is valid at that level of generality.

Our linear independence proof follows the general inductive strategy used in [3] and [5]. However,

the simpler combinatorics of scanning tableaux allow those proofs to be simplified. One simpler

aspect is that now only single Schubert varieties need be considered in the induction, rather than

the unions of Schubert varieties that arose in the earlier papers. The statement of the linear

independence theorem, Theorem 4.15, makes sense over any field. The proof presented here is valid

for any field of characteristic zero; we make this assumption to obtain a self-contained development.

The related proof in [5] does not need characteristic zero since it refers to a standard fact concerning

the closure of a “Bruhat cell.” There it is assumed the base field is algebraically closed, but given

[12], they actually do not need that assumption for this fact. Hence the basis results in [5] and here

hold over any field. See the appendix for details.

We need a number of well-known facts about Schubert varieties for our linear independence

proof. There are references for these facts at varying levels of sophistication for the Grassmannians

[13, 14] or the complete flag manifold [15]. However, we have not found a comprehensive source

at any level of sophistication. Nor have we found a combination of sources that are accessible to

readers without advanced educations in pure mathematics. So we have included elementary proofs

of these standard facts for all flag manifolds for GLn: Sections 2.2, 2.3, 4.1, and 4.2 of this paper

can serve as an accessible introduction to the subject. The appendix provides an interface with

the modern literature on flag manifolds and Schubert varieties. Using this appendix, the reader
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can transition from this paper to the reductive Lie group and representation theory contexts of

references such as [13, 14]. There we describe how the standard monomial basis provides a basis of

global sections for a certain line bundle on a homogeneous space of GLn. This is a weight basis for

the dual of a Demazure module for a Borel subgroup of GLn. For coordinatizing Schubert varieties,

it is sufficient to consider Young diagrams with columns of length less than n. Such diagrams

would also suffice if one were interested only in realizing representations of SLn. But we allow our

Young diagrams to have columns of length n so that we can realize all of the irreducible polynomial

representations of GLn in the appendix.

Combinatorial tools are introduced in Section 2.2. Section 2.3 presents the definitions of flag

varieties, Schubert varieties, and their projective coordinates. Our main theorem, Theorem 2.18, is

motivated and stated there. Sections 3.1 and 3.2 prove the spanning parts of Theorems 2.16 and

2.18. Sections 4.1 and 4.2 present the facts needed to projectively coordinatize Schubert varieties.

Section 4.3 proves the linear independence parts of Theorems 2.16 and 2.18. Section 5.1 presents

the Demazure polynomial summation. Section 5.2 is the appendix of contemporary terminology.

2.2 Combinatorial tools

The needed combinatorial tools are “Q-chains”, which we use to index Schubert varieties, and

“tabloids”, which we use to index some projective coordinates for flag manifolds.

Fix n ≥ 2 and a nonempty subset Q ⊆ {1, 2, . . . , n − 1} throughout the paper. Set k := |Q|

and index the elements of Q in increasing order: 1 ≤ q1 < q2 < · · · < qk < n =: qk+1. Define

[n] := {1, 2, . . . , n}. A Q-chain is a sequence of subsets P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊆ [n] such that |Pj | = qj

for 1 ≤ j ≤ k.

An n-partition is an n-tuple λ = (λ1, λ2, . . . , λn) satisfying λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 := λn+1. Fix

an n-partition λ. The shape of λ, also denoted λ, is an array of n rows of boxes that has λr boxes

in row r. The column lengths of the shape λ are denoted n ≥ ζ1 ≥ · · · ≥ ζλ1 . Denote the set of

distinct column lengths of λ that are less than n by Q(λ). Refer to a location in λ with column

index 1 ≤ c ≤ λ1 and row index 1 ≤ r ≤ ζc by (r, c). Sets of locations in λ are called regions. A

tabloid T of shape λ is a filling of the shape λ with values from [n] such that the values strictly

increase down each column. The value of T at location (r, c) is denoted T (r, c). Partially order the

tabloids of shape λ by defining T � U if T (r, c) ≤ U(r, c) for all locations (r, c) ∈ λ. We use the
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term column tabloid to refer to a tabloid of shape 1d for some length d ≤ n. Given a subset P ⊆ [n],

define Y (P ) to be the column tabloid of length |P | filled with the values of P in increasing order.

There is a unique column tabloid of length n, namely Y ([n]). A (semistandard Young) tableau is a

tabloid whose values weakly increase across each row. In Theorem 2.16 we use tableaux to index

the standard monomial basis for a flag manifold.

Given a Q-chain π = (P1, . . . , Pk), its key Y (π) is the tabloid whose shape has one column each of

the lengths qk, qk−1, . . . , q1 and which is obtained by juxtaposing the columns Y (Pk), Y (Pk−1), . . . , Y (P1)

as in Example 2.1 below. It can be seen that Y (π) is a tableau. The Bruhat order on Q-chains

is the following partial order: For two Q-chains ρ and π, define ρ � π if Y (ρ) � Y (π). The

Q-carrels for an n-tuple are the following k + 1 sets of positions: the first q1 positions, the next

q2 − q1 positions, and so on through the last n− qk positions. To each Q-chain π, we associate the

permutation π of [n]: In n-tuple form, the Q-carrels of π respectively display the elements of the

k+ 1 sets P1, P2 \ P1, . . . , Pk \ Pk−1, [n] \ Pk, with the elements of each set listed in increasing order.

A Q-permutation is a permutation of [n] in n-tuple form such that the values within each Q-carrel

increase from left to right. It is easy to see that the creation of π describes a bijection from the set

of Q-chains to the set of Q-permutations.

For 1 ≤ i < j ≤ n, define the reflection σij to be the following operator on Q-chains: Let

π = (P1, . . . , Pk) be a Q-chain. For 1 ≤ ` ≤ k, form the following sets: If i ∈ P` and j 6∈ P`, set

P ′` := (P` \ {i}) ∪ {j}. If j ∈ P` and i 6∈ P`, set P ′` := (P` \ {j}) ∪ {i}. Otherwise, set P ′` := P`. It

can be seen that P ′1 ⊂ · · · ⊂ P ′k; this is the Q-chain σijπ. If there exists 1 ≤ ` ≤ k such that j ∈ P`

and i 6∈ P`, then Y (σijπ) is produced from Y (π) by decreasing some values from j to i (and sorting

the resulting columns), so σijπ ≺ π.

Example 2.1. Set n := 7 and Q := {1, 2, 4}. The chain of sets π := {5} ⊂ {3, 5} ⊂ {1, 3, 4, 5} ⊂ [7]

is a Q-chain. Its Q-permutation is π = (5; 3; 1, 4; 2, 6, 7), where the semicolons separate the Q-carrels

of π. The result of the reflection σ1,5 on π is the Q-chain σ1,5π = {1} ⊂ {1, 3} ⊂ {1, 3, 4, 5} ⊂ [7].

The keys of π and σ1,3π are depicted below. One can see that σ1,5π ≺ π.

Y (π) = 1 3 5
3 5
4
5

Y (σ1,5π) = 1 1 1
3 3
4
5

7



The following lemma says that we can find a reflection to step down in the Bruhat order between

two Q-chains:

Lemma 2.2. Let ρ, π be Q-chains. If ρ ≺ π, then there exists 1 ≤ i < j ≤ n such that ρ � σijπ ≺ π.

Proof. Write ρ = (R1, . . . , Rk) and π = (P1, . . . , Pk). Find the rightmost column where the keys

Y (ρ) and Y (π) differ: these columns are Y (Rh) and Y (Ph) respectively for some 1 ≤ h ≤ k. Find

the minimal i ∈ Rh \ Ph and the minimal j ∈ Ph \Rh. Since Y (Rh) ≺ Y (Ph), we have i < j. Form

the Q-chain σijπ = (P ′1, . . . , P ′k). By the above remark σijπ ≺ π.

We verify that ρ � σijπ: For the values of 1 ≤ ` ≤ k such that P ′` = P`, we have Y (R`) �

Y (P`) = Y (P ′`). For the other values of `, we have P ′` = (P` \ {j}) ∪ {i}. Let 1 ≤ p ≤ q` denote the

row index of the value j in Y (P`). In the rows below row p the value in Y (P ′`) is the same as the

value in Y (P`) since these are the values of P ′` and P` which are greater than j. So here the value

in Y (R`) is at most the value in Y (P ′`). For rows at and above row p, the value in Y (R`) is at most

the value in Y (P ′`) since R` contains all of the p values of P ′` which are less than j.

Fix an n-partition λ with Q(λ) ⊆ Q. For 1 ≤ ` ≤ k, the number of columns of length q` in λ

is λq`
− λq`+1 . The number of columns of length n in λ is λn. Given a Q-chain π = (P1, . . . , Pk),

its λ-key is the tableau Yλ(π) of shape λ obtained by juxtaposing λn copies of the column Y ([n]),

λqk
−λqk+1 copies of the column Y (Pk), λqk−1 −λqk

copies of the column Y (Pk−1), . . . and λq1 −λq2

copies of the column Y (P1).

Lemma 2.3. Let ρ, π be Q-chains. If ρ � π , then Yλ(ρ) � Yλ(π). When Q(λ) = Q the converse

holds: if Yλ(ρ) � Yλ(π), then ρ � π.

Proof. Every column of length n is Y ([n]), and every column of Yλ(π) of length less than n appears

in Y (π). When Q(λ) = Q, every column of Y (π) also appears in Yλ(π).

We now describe the scanning algorithm of [6]. Fix a sequence (b1, b2, b3, . . . ). Define its earliest

weakly increasing subsequence (EWIS) to be the subsequence (bi1 , bi2 , bi3 , . . . ), where i1 = 1 and for

j > 1 the index ij is the smallest index such that bij ≥ bij−1 . The EWIS of the sequence (6, 6, 4, 3, 5)

which arises in Example 2.4 below is (6, 6). For any tableau T of shape λ, construct its scanning

tableau S(T ) as follows: Begin with an empty shape λ. Form the sequence of the bottom-most values

of the columns of T from left to right. Find the EWIS of this sequence. When a value is added to
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the EWIS, mark its location in T . The sequence of locations just marked is called a scanning path.

Fill the lowest available location of the leftmost available column of S(T ) with the last member

of the EWIS. Iterate this process as if the marked locations are no longer part of T . Using the

row condition on the filling of T , it can be seen that at each stage the unmarked locations form

the shape of some n-partition. This implies that every location in T is marked once the leftmost

column of S(T ) has been filled. To find the values of the next column of S(T ):

1. Ignore the leftmost column of T and λ.

2. Remove the marks from the remaining locations.

3. Repeat the above process.

Continue until the shape has been completely filled with values: this is the scanning tableau S(T )

of T . For a location (r, c) ∈ λ, let P (T ; r, c) denote the scanning path found to fill location (r, c) of

S(T ).

Example 2.4. Set n := 6, Q := {1, 2, 4, 5}, and λ := (5, 3, 2, 2, 1, 0). Below are shown a tableau T ,

its scanning tableau S(T ), and a figure using different symbols to depict the scanning paths found

while filling the leftmost column of S(T ).

T = 1 1 2 3 5
2 3 4
3 4
5 6
6

S(T ) = 2 2 3 5 5
3 3 5
4 5
5 6
6

• • • ♦ ♥
♦ ♦ ♠
♠ ♠
♥ ♣
♣

We need four lemmas concerning the scanning tableau S(T ) of a tableau T of shape λ. Only

the first is needed to prove Theorem 3.12, the main spanning theorem. The other three along with

Lemmas 2.2 and 2.3 are used in Sections 4.2 and 4.3.

Lemma 2.5. Let 1 ≤ c ≤ λ1 and 1 ≤ r ≤ ζc − 1. For any location (p, b) in the scanning path

P (T ; r, c), there exists a location (u, v) in the previous scanning path P (T ; r + 1, c) such that v ≤ b

and T (u, v) > T (p, b).

Proof. Since the scanning algorithm is defined recursively for column bottoms, we may reduce to

the case that (r + 1, c) is a column bottom of T .
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First, suppose (p, b) is a column bottom of T . The location (p, b) is not in P (T ; r + 1, c), but it

does belong to the sequence of column bottoms of T which is scanned to form P (T ; r + 1, c). Hence

its value T (p, b) was not in that previous earliest weakly increasing subsequence. Therefore there is

a column bottom (u, v) of T in the scanning path P (T ; r + 1, c) strictly to the left of (p, b) such

that T (u, v) > T (p, b).

Now suppose (p, b) is not a column bottom of T . Since (p, b) is scanned in the formation of

P (T ; r, c), the location (p+ 1, b) was marked as part of the previous scanning path P (T ; r + 1, c).

By the column strict condition on tabloids, its value satisfies T (p+ 1, b) > T (p, b). Take u := p+ 1

and v := b.

Lemma 2.6. Every value in the rightmost column of T appears in every column of S(T ). In

particular, the rightmost column of S(T ) is the rightmost column of T .

Proof. Fix a column index 1 ≤ c ≤ λ1. As was noted above, every location in T to the right of

column c is marked in the construction of column c of S(T ). So every location in the rightmost

column of T belongs to a scanning path P (T ; r, c) for some 1 ≤ r ≤ ζc. These locations must be the

end of their respective scanning paths.

Let λ′ denote the partition obtained from λ by omitting the rightmost column of its shape. Given

a tableau T of shape λ, let T ′ denote the tabloid of shape λ′ obtained by omitting the rightmost

column of T .

Lemma 2.7. Deleting the rightmost column both before and after forming the scanning tableau, we

find that S(T ′) � [S(T )]′.

Proof. Let (r, c) ∈ λ′. In the two applications of the scanning algorithm, the same locations are

marked and removed from within the region λ′ ⊂ λ of T as are from T ′. So the scanning path

P (T ; r, c) is the path P (T ′; r, c) with at most one location appended from the rightmost column of

T . Since the values within a scanning path weakly increase, the value at the end of P (T ′; r, c) is less

than or equal to the value at the end of P (T ; r, c). The value at location (r, c) in S(T ′) is the value

at the end of P (T ′; r, c), and the value at (r, c) in S(T ) is the value at the end of P (T ; r, c).

Now we fix a Q-chain π. Form its λ-key Yλ(π). In this π-specific environment, the notion of

tableau is more complicated:
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Definition 2.8. A tableau T of shape λ is π-Demazure if its scanning tableau satisfies S(T ) � Yλ(π).

In Theorem 2.18 we use π-Demazure tableaux to index the standard monomial basis for the

Schubert variety indexed by π.

Lemma 2.9. If a tableau T of shape λ is π-Demazure, then the tableau T ′ of shape λ′ is π-Demazure.

Proof. By the previous lemma, we have S(T ′) � [S(T )]′ � [Yλ(π)]′ = Yλ′(π).

2.3 Flags of subspaces and tabloid monomials

We now introduce the main objects of the paper: flags of subspaces, Bruhat cells, Schubert

varieties, and tabloid monomials. For Sections 3.1 and 3.2, only the definitions concerning tabloid

monomials are needed. Along the way we mention five facts about these structures for motivation

which are formally stated and proved in Sections 4.1 and 4.2. Our main result, Theorem 2.18, is

stated at the end of this section.

Definition 2.10. A Q-flag of Cn is a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Cn such that

dim(Vj) = qj for 1 ≤ j ≤ k.

We denote the set of Q-flags in Cn by F`Q. An ordered basis (v1, v2, . . . , vn) of column vectors

for Cn is presented in this paper as the n× n invertible matrix [v1, v2, . . . , vn] whose columns from

left to right are v1, . . . , vn. Define a map ΦQ from the ordered bases for Cn to F`Q by sending an

ordered basis f := [v1, . . . , vn] to the Q-flag ΦQ(f) of subspaces Vj =span({vi|i ≤ qj}) for 1 ≤ j ≤ k.

Any Q-flag can be represented in this way by many ordered bases. Special Q-flags can be made

using the axis basis vectors e1, . . . , en for Cn: For each Q-chain π = (P1, P2, · · · , Pk), construct the

Q-chain flag ϕ(π) of subspaces Vj :=span({ei|i ∈ Pj}) for 1 ≤ j ≤ k. Given a Q-chain π, form the

Q-permutation π as in Section 2.2. Define the n× n matrix sπ to be the permutation matrix whose

(πj , j) entry is 1 for 1 ≤ j ≤ n. It is clear that ϕ(π) = ΦQ(sπ), when sπ is viewed as an ordered

basis.

Let B denote the subgroup of upper triangular matrices within GLn, the group of invertible

matrices.

Definition 2.11. Let π be a Q-chain. The Bruhat cell C(π) is the set {ΦQ(bsπ)|b ∈ B} of Q-flags

which can be produced from the ordered basis sπ for the Q-chain flag ϕ(π) with the action of the

upper triangular matrices.
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We will see (Fact 4.8) that every Q-flag belongs to a unique Bruhat cell. The following disjoint

unions of Bruhat cells are important subsets of F`Q:

Definition 2.12. Let π be a Q-chain. We define the Schubert variety X(π) to be the union of cells⊔
ρ�π

C(ρ).

Our goal is to develop a coordinatization of F`Q. Recall that projective space P(Cn) is the set of

lines through the origin in Cn; hence it is the set F`{1} of {1}-flags. The set P(Cn) does not have global

coordinates in the usual (affine) sense. But it can be coordinatized by projective coordinates: A point

L ∈ P(Cn) is indexed by an equivalence class [(p1, p2, . . . , pn)] of n-tuples, where (p1, p2, . . . , pn) ∈ Cn

is a nonzero point on the line L and two n-tuples (p1, p2, . . . , pn) and (p′1, p′2, . . . , p′n) are equivalent

if there is a nonzero α ∈ C such that (p1, p2, . . . , pn) = (αp′1, αp′2, . . . , αp′n).

From now on, fix an n-partition λ such that Q(λ) ⊆ Q. Now we begin to form projective

coordinates for F`Q from tabloids of shape λ. Let C[xij ] denote the ring of polynomials in the n2

coordinates of a sequence of n vectors from Cn. Fix 1 ≤ p ≤ n. Let f be an n× n matrix. For any

1 ≤ q ≤ n, define the q-initial submatrix of f with rows r1, . . . , rp to be the p× q matrix whose ith

row consists of the first q entries of the rthi row of f . When p = q, in C[xij ] we form for f its q-initial

minor with rows r1, . . . , rq: this is the determinant of its q-initial submatrix with rows r1, . . . , rq.

Definition 2.13. Let T be a tabloid of shape λ. For each column index 1 ≤ c ≤ λ1, form in

C[xij ] the ζc-initial minor with indices T (1, c), . . . , T (ζc, c). The monomial of T , denoted by the

corresponding Greek letter τ , is the product of these minors. Let π be a Q-chain. In particular, the

monomial of the λ-key Yλ(π) is denoted ψλ(π).

Example 2.14. Set n := 4 and Q := {1, 2, 3} and λ := (5, 2, 1, 0). Form the tableau

T := 1 1 1 2 4
2 3
4

.

As we begin a recurring example, set xj1 =: xj, xj2 =: yj, and xj3 =: zj. Then the monomial τ of T
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is the following product:

τ = det




x1 y1 z1

x2 y2 z2

x4 y4 z4



 det

x1 y1

x3 y3


 det([x1])det([x2])det([x4]).

Let F be a Q-flag. We will see (Lemma 4.9) that the sequence of the valuations of all tabloid

monomials of shape λ on the ordered bases for F is projectively well defined: Varying the choice of

basis f such that ΦQ(f) = F will scale all these values equally. We will also see (Fact 4.14) that

when Q(λ) = Q, this sequence of monomials give a faithful projective coordinatization of the set

F`Q of Q-flags.

Definition 2.15. Let Γλ denote the vector subspace of polynomials in C[xij ] that are linear

combinations of the tabloid monomials of shape λ.

While it is useful to consider the set of all tabloid monomials, the following long-known result

shows that that set is much larger than is needed to span Γλ:

Theorem 2.16. Let λ be an n-partition. The monomials of the semistandard tableaux of shape λ

form a basis of the vector space Γλ.

Such monomials are called tableau monomials. The spanning and linear independence parts of

this basis theorem are reproved here as Theorem 3.8 and Corollary 4.16. This theorem implies that

when Q(λ) = Q, the sequence of tableau monomials gives an efficient coordinatization of F`Q.

Now we return to having a Q-chain π fixed, as at the end of Section 2.2. Again form its λ-key

Yλ(π). Define the subspace Zλ(π) ⊆ Γλ to be the span of the monomials of tabloids T such that

T 6� Yλ(π).

Definition 2.17. Let π be a Q-chain. The Demazure quotient for π is the vector space Γλ(π) :=

Γλ/Zλ(π).

We will see (Lemma 4.11) that all tabloid monomials in Zλ(π) are zero on the Schubert variety

X(π). If moreover Q(λ) = Q , then X(π) is the zero set in F`Q of Zλ(π) (Fact 4.13). Hence we

consider Γλ(π) to be the span of the restrictions of the tabloid monomials to X(π). We simply write
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“monomial” to refer to the residue of a monomial in Γλ(π). Since the set of tableau monomials is now

much larger than is needed to span Γλ(π), we need an analog of Theorem 2.16 for the space Γλ(π).

Our main result is a new proof of the following theorem that is based on the scanning tableaux

S(T ):

Theorem 2.18. Fix a nonempty Q ⊆ [n− 1]. Let λ be an n-partition such that Q(λ) ⊆ Q and let

π be a Q-chain. The monomials of the π-Demazure tableaux of shape λ form a basis of the vector

space Γλ(π).

Such monomials are called π-Demazure monomials. The spanning and linear independence

parts of this basis theorem are Theorem 3.12 and Theorem 4.15. This theorem implies that when

Q(λ) = Q, the sequence of π-Demazure monomials gives an efficient coordinatization of the Schubert

variety X(π) of F`Q.
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CHAPTER 3

Spanning Theorems

3.1 Tableau monomials span Γλ
Before we prove the spanning part of our main result, Theorem 2.18, in the next section, we

must first prove the spanning of Γλ by tableau monomials in Theorem 2.16. We begin by presenting

a translation of a classical determinantal identity into the language of tabloid monomials. This is a

“master” identity that we use in two ways to prove the two spanning results by establishing relations

amongst certain monomials. The idea of both proofs is the same: Using a total order on the set

of tabloids, we provide straightening algorithms for applying the master identity. Each use of the

identity progresses in the same direction under this order. The control afforded by the total order

implies the termination of the algorithm. This is a common strategy; it was also used in [5].

Fix an n-partition λ; the sets Q and Q(λ) play no role in this section. Fix a tabloid T of shape

λ and a region µ ⊆ λ. The region µ selects which locations are “active” in the master identity. The

multiset of values of T within µ is denoted T (µ). For 1 ≤ j ≤ λ1, let Tj denote column j of T and

let µj denote the intersection of µ with column j of λ. Let µ̄ denote the region of λ complementary

to µ.

Definition 3.1. A µ-shuffle of T is a permutation of the values of T that can be obtained by the

composition of two permutations as follows: First permute the values within the region µ such

that the values within a given column are distinct. Then sort the values within each column into

ascending order to obtain a tabloid.

Given a µ-shuffle σ of T , the resulting tabloid is denoted Tσ and its monomial is denoted τσ.

Let ε(σ) denote the sign of σ as a permutation. For a tabloid T with repeated values, it is possible

that for µ-shuffles σ1 6= σ2 of T we have Tσ1 = Tσ2 .

We prepare to construct a square compound matrix Mµ(T ) based on T and µ. Let g be the

n× n matrix (xij) of n2 indeterminants. First we split each of the initial square submatrices whose
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minors in g form the monomial τ of T into two rectangular parts. The next two definitions are

illustrated at j = 1 in the example below. For each 1 ≤ j ≤ λ1 form the ζj × |µj | “active” matrix

Aj by transposing the ζj-initial submatrix of g whose rows are specified by the values of Tj(µ).

Also form the ζj × |µ̄j | “inactive” matrix Nj by transposing the ζj-initial submatrix of g similarly

specified by the values of Tj(µ̄). The total number of columns in Aj and Nj is |µj |+ |µ̄j | = ζj . Let

Aj tNj denote the ζj × ζj concatenation of the matrices Aj and Nj . Except for the order of its

columns, the matrix Aj tNj is the transpose of the ζj-initial submatrix specified by the column Tj .

So its determinant is the monomial τj of Tj , up to a sign. These ζj × ζj matrices form the main

diagonal blocks of the compound matrix Mµ(T ).

Now in addition let 1 ≤ i ≤ λ1. Form the rectangular matrix A<i>j by transposing the ζi-initial

submatrix of g whose rows are specified by the values of Tj(µ). Then let A<i>j t 0 denote the ζi× ζj

concatenation of the matrix A<i>j with a ζi × |µ̄j | zero matrix. These ζi × ζj matrices form the

off-diagonal blocks of the compound matrix Mµ(T ).

Define the matrix Mµ(T ) to be the (ζ1 + · · ·+ ζλ1)-square compound matrix whose jth diagonal

block is A<j>j tNj and whose non-diagonal block in the (i, j) block position is A<i>j t 0:

Mµ(T ) :=



A<1>
1 tN1 A<1>

2 t 0 · · · A<1>
λ1
t 0

A<2>
1 t 0 A<2>

2 tN2 · · · A<2>
λ1
t 0

...
...

...
...

A<λ1>
1 t 0 A<λ1>

2 t 0 · · · A<λ1>
λ1

tNλ1


Example 3.2. Set n := 4 and λ := (5, 2, 1, 0). Use the tableau T and the notation of Example 2.14,

and let µ ⊂ λ be the region indicated by dots in the second figure:

T := 1 1 1 2 4
2 3
4

•
•

•

In the first column of T the value 4 lies in the region µ, while the values 1 and 2 do not. Hence the

first “active” matrix is A1 =


x4

y4

z4

, and the first “inactive” matrix is N1 =


x1 x2

y1 y2

z1 z2

. The compound

16



matrix Mµ(T ) is: 

x4 x1 x2 x3 0 0 x2 0

y4 y1 y2 y3 0 0 y2 0

z4 z1 z2 z3 0 0 z2 0

x4 0 0 x3 x1 0 x2 0

y4 0 0 y3 y1 0 y2 0

x4 0 0 x3 0 x1 x2 0

x4 0 0 x3 0 0 x2 0

x4 0 0 x3 0 0 x2 x4


The following lemma is our master identity. It says that |Mµ(T )| is a polynomial in Γλ. It is

the translation hinted at by Reiner and Shimozono of the left side of the determinantal identity

(III.11) in [9] that they use as the left side of equation (5.3) in [5] . Note that the product of the

determinants of the diagonal blocks of Mµ(T ) is the monomial τ , up to a sign. This sign is the sign

ambiguity in the statement of the lemma. This ambiguity vanishes in our applications.

Lemma 3.3. Let T be a tabloid of shape λ and let µ ⊆ λ. The determinant |Mµ(T )| is, up to sign,

the signed sum of monomials
∑
ε(σ)τσ, where the sum runs over all µ-shuffles σ of T .

Proof. We calculate |Mµ(T )| by an iterated Laplace expansion process. We then show that the

nonzero terms in this expansion correspond to the µ-shuffles of T . Begin to calculate |Mµ(T )|

by Laplace expansion on the first ζ1 rows, which form the first row of blocks. This expresses the

determinant as the sum of the products of ζ1 × ζ1 “primary” minors and (ζ2 + · · · + ζλ1)-square

“complementary” minors.

Most of the products in this sum vanish because one of the two minors has a zero column or

because the primary minor has repeated columns. Fix a summand that does not vanish for either

of these reasons. (We allow the complementary minor to have repeated columns; the vanishing

of such a minor appears as cancellation in the summation in the lemma statement.) Since the

complementary minor at hand cannot have a zero column, its primary minor must include all of

the columns of N1. The primary minor’s other columns come from various A<1>
j blocks. Recall

that the columns of N1 are the initial segments of the rows of g indexed by the values of T1(µ̄)

and that the columns of A<1>
j are the initial segments of the rows of g indexed by the values of

Tj(µ). Because the primary minor does not have repeated columns, the values of T1(µ̄) and those of
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T (µ) that correspond to the columns of the A<1>
j blocks that contribute to the primary minor are

distinct. Therefore we may define a column tabloid U1 of length ζ1 that is filled with all the values

of T1(µ̄) together with these values from T (µ). Except for the order of its columns, the primary

minor is the determinant of the ζ1-initial submatrix specified by the column U1. So this primary

minor is the monomial υ1 of U1, up to a sign.

Now consider the complementary minor of our fixed summand. Begin the next iteration by

computing this determinant by Laplace expansion on its first ζ2 rows, which form its first row of

blocks. Fix a summand as above, if possible; otherwise the minor on hand is zero. Analogously

define a column tabloid U2 of length ζ2 filled with all the values of T2(µ̄) and the values of T (µ)

corresponding to this new primary minor. Again this primary minor is the monomial υ2 of U2, up

to a sign. Note that the values of T (µ) used here come from different locations within µ than those

in the first iteration.

Continue iterating this Laplace expansion process. If our fixed term is nonzero, then it is the

product υ1 · · · υλ1 , up to a sign. This is the monomial υ of the tabloid U of shape λ that is formed

by the juxtaposition of the column tabloids U1, . . . , Uλ1 . The value from each location of T was

used exactly once to construct U . Hence, the tabloid U was formed by a permutation σ of the

values of T . Express σ as a composition of the following two permutations: First permute the values

within µ so that the values used from T (µ) for Ui appear in the ith column. As noted earlier, the

values within each column are distinct. Then sort each column to obtain the tabloid U . Hence the

permutation σ is actually a µ-shuffle of T . Therefore each nonzero term of this iterated Laplace

expansion is the monomial τσ for a µ-shuffle σ of T , up to a sign. The sign is the product of the

signs from the Laplace expansion process and the signs from presenting each ζi × ζi minor as the

monomial of a column tabloid. If the sign of the diagonal term |A<1>
1 tN1| · · · |A<λ1>

λ1
tNλ1 | of

this expansion agrees with the sign of the monomial τ of the identity µ-shuffle of T , then for each

µ-shuffle σ of T the sign of the τσ term is ε(σ). Otherwise the diagonal term is −τ ; then the sign of

each τσ term is −ε(σ).

It is clear that the µ-shuffles of T associated to any two nonzero terms are distinct. It is also

true that every µ-shuffle of T is associated to one of these terms: Fix a µ-shuffle σ of T . At step i in

the iterated Laplace expansion, choose the primary minor to consist of the block Ni together with

the columns from the A<i>j blocks that correspond to the values of T (µ) that σ moves to column i

18



of T .

We will choose regions µ based on the tabloid T such that we can show |Mµ(T )| = 0. Here the

sign ambiguity vanishes, and Lemma 3.3 produces relations among the tabloid monomials. The

choice of µ below yields a well-known relation. The presentation of this rederivation prepares the

reader for the proof of the new Proposition 3.10.

Proposition 3.4. Let T be a tabloid of shape λ. Let 1 ≤ c ≤ λ1 − 1 and 1 ≤ r ≤ ζc+1. Let µ ⊆ λ

be the region {(i, c)|r ≤ i ≤ ζc} ∪ {(j, c + 1)|1 ≤ j ≤ r}. Then
∑
ε(σ)τσ = 0, where the sum runs

over the µ-shuffles σ of T .

Example 3.5. For n = 5,the n-partition λ = (4, 2, 2, 2, 1), and (r, c) = (3, 1), the region µ of

Proposition 3.4 is the dotted region in the following figure:

•
•

• •
•
•

Proof. Construct the matrixMµ(T ) as above. By Lemma 3.3, it is sufficient to show that |Mµ(T )| =

0. Since µ only has two columns, indexed c and c+ 1, the blocks A<i>j within Mµ(T ) are empty for

j 6= c or c+ 1. Hence the determinant |Mµ(T )| simplifies to τ1 . . . τc−1det(∗)τc+2 . . . τλ1 , where ∗ is

the (ζc + ζc+1)-square matrix

A<c>
c tNc A<c>

c+1 t 0

A<c+1>
c t 0 A<c+1>

c+1 tNc+1

 .
Note that ζc ≥ ζc+1. Subtract the first ζc+1 rows of the matrix ∗ from its last ζc+1 rows to get

the matrix

 A<c>
c tNc A<c>

c+1 t 0

0 t −N<c+1>
c 0 tNc+1

, where N<c+1>
c is the submatrix of Nc formed by its first ζc+1

rows. The determinant is unchanged. The |µ| = ζc + 1 columns

A<c>
c A<c>

c+1

0 0

have only ζc nonzero

rows.

Let U and T be column tabloids of the same length. If the string of values of U read from top to

bottom precedes the string of values of T in lexicographic order, then we define U ≤ T . Let U and

T be two tabloids of shape λ. If the string of columns of U read left to right precedes the string of

columns of T in lexicographic order, then we define U ≤ T . This is a total order; it extends the

partial order � of Section 2.2.
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Our goal is to re-express the monomial of any tabloid T which is not a tableau in terms of

monomials of tabloids U < T . The following easy lemma is the first step.

Lemma 3.6. Let T be a tabloid of shape λ. Let U be the tabloid obtained by sorting the columns

of T of a given length in ascending order according to the total order ≤. Then U ≤ T , and these

tabloids have the same monomial.

The relations given by Proposition 3.4 are sufficient for the following:

Proposition 3.7. Let T be a tabloid of shape λ which is not a tableau. Then there exist coefficients

aU = ±1 such that τ =
∑
aUυ, where the sum is over some tabloids U such that U < T .

Proof. If T does not already have its columns sorted by the total order, apply Lemma 3.6 to get

τ = υ where υ is the monomial of a tabloid U < T .

Now suppose T has sorted columns. Since T is not a tableau, there exists a location (r, c) ∈ λ

such that T (r, c) > T (r, c+ 1). With this c and r, take µ as in Proposition 3.4. Then the relation∑
ε(σ)τσ = 0 holds, where the sum runs over all µ-shuffles of T . We can solve for τ = τid to obtain

τ = −
∑
ε(σ)τσ, where the sum now runs over all non-identity µ-shuffles of T .

Consider a non-identity µ-shuffle σ of T . We show Tσ < T . By the column filling property of

tabloids and our choice of µ, every value in Tc(µ) is larger than every value in Tc+1(µ). Since σ 6= id,

it replaces some value in Tc(µ) with a value from Tc+1(µ) and then sorts column c. Then in the

highest location of column c in which T and Tσ differ, the smaller value is in Tσ. Therefore column

c of Tσ precedes Tc in the total order, while all columns to its left are unchanged. Thus Tσ < T .

Since µ does not have repeated values, each tabloid Tσ is distinct. Therefore when we sum over

tabloids instead of µ-shuffles of T , the coefficients of the monomials remain ±1.

We are ready to prove the spanning part of Theorem 2.16. Elements of this proof reappear in

the spanning proof for Theorem 2.18.

Theorem 3.8. Let λ be an n-partition. The monomials of the semistandard tableaux of shape λ

span the vector space Γλ.

Proof. The space Γλ was defined to be the span of all tabloid monomials. Given a tabloid U , we

show that its monomial υ is in the span of the tableau monomials. Suppose that U is not already a

tableau.
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Apply Proposition 3.7 to express υ as a linear combination of monomials of tabloids preceding U .

If any of these tabloids is not a tableau, apply Proposition 3.7 to the largest among them according

to the total order ≤ and iterate this step. After each iteration, the largest tabloid which is not a

tableau that appears precedes that of the previous iteration. Since there are finitely many tabloids

of shape λ, this process must terminate. When the process terminates, we have an expression for υ

as a linear combination of tableau monomials.

3.2 Demazure monomials span the Demazure quotient

This section is a continuation of Section 3.1. Returning to the context at the end of Section 2.3,

again fix an n-partition λ with Q(λ) ⊆ Q and a Q-chain π. By Theorem 3.8, the space Γλ(π) :=

Γλ/Zλ(π) is spanned by the residues of tableau monomials. Here we re-express the (residue)

monomial in Γλ(π) of any tableau which is not π-Demazure by choosing an appropriate region µ for

an application of Lemma 3.3. We write a bar over a polynomial of Γλ to indicate its residue in Γλ(π).

Proposition 3.10, Proposition 3.11, and Theorem 3.12 are respectively analogous to Proposition 3.4,

Proposition 3.7, and Theorem 3.8.

If a tableau T is not π-Demazure, then there exists a location (r, c) ∈ λ such that S(T )[r, c] >

Yλ(π)[r, c]. Our region µ will consist of locations that are associated to each of the locations

(r, c), (r+1, c), . . . , (ζc, c) in column c: These ζc−r+1 other locations will be indexed by r, r+1, . . . , ζc.

The last value of the scanning path P (T ; r, c) is S(T )[r, c]. Define (pr, br) to be the location of

the first value in the path P (T ; r, c) which is larger than Yλ(π)[r, c]. If (r, c) is a column bottom,

then take µ to be the region {(pr, br)}. Otherwise do the following: By Lemma 2.5, there exists

at least one location (u, v) in P (T ; r + 1, c) such that v ≤ br and T (u, v) > T (pr, br). Define

(pr+1, br+1) to be the first such location in P (T ; r + 1, c). Continue in this fashion until (pζc , bζc)

in P (T ; ζc, c) has been defined: we have found locations (pr, br), (pr+1, br+1), . . . , (pζc , bζc) with

br ≥ br+1 ≥ · · · ≥ bζc ≥ c and Yλ(π)[r, c] < T (pr, br) < T (pr+1, br+1) < · · · < T (pζc , bζc). Take µ to

be the region {(pr, br), . . . , (pζc , bζc)}.

Example 3.9. Set n := 4, Q := {1, 2, 3}, λ := (5, 2, 1, 0), and re-use the tableau T from Example 3.2.

Let π be the Q-chain {4} ⊂ {3, 4} ⊂ {1, 3, 4}. The scanning tableau S(T ) is not dominated by the
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key Yλ(π) in location (1, 1).

T := 1 1 1 2 4
2 3
4

S(T ) = 2 2 4 4 4
3 4
4

Yλ(π) = 1 3 4 4 4
3 4
4

For (r, c) = (1, 1), the region µ constructed above is the same as the region µ from Example 3.2.

Proposition 3.10. Let π be a Q-chain. Let T be a tableau of shape λ which is not π-Demazure.

Let µ ⊆ λ be the region just defined. Then
∑
ε(σ)τσ = 0 in Γλ(π), where the sum runs over the

µ-shuffles σ of T .

Proof. Construct the matrixMµ(T ) as in Section 3.1. By Lemma 3.3, it is sufficient show |Mµ(T )| = 0

in Γλ(π). We refer to the definitions above pertaining to the region µ. Since the leftmost column

of µ is column bζc ≥ c, the determinant |Mµ(T )| simplifies to τ1 . . . τc−1det(∗) where ∗ is the lower

right (ζc + · · ·+ ζλ1)-square submatrix:



A<c>c tNc A<c>c+1 t 0 · · · A<c>λ1
t 0

A<c+1>
c t 0 A<c+1>

c+1 tNc+1 · · · A<c+1>
λ1

t 0
...

...
...

A<λ1>
c t 0 A<λ1>

c+1 t 0 · · · A<λ1>
λ1

tNλ1


.

Because S(T ) fails to be dominated by Yλ(π) in column c, the index c is emphasized over the index

bζc .

For 1 ≤ j ≤ i ≤ λ1, let N<i>
j denote the submatrix of Nj formed by its first ζi rows. For each

c+ 1 ≤ i ≤ λ1, the first ζi rows of ∗ are contained in its first row of blocks. Subtract these rows

from its (i+ 1− c)th row of blocks to get the matrix

∗′ :=



A<c>c tNc A<c>c+1 t 0 · · · A<c>λ1
t 0

0 t −N<c+1>
c 0 tNc+1 · · · 0 t 0
...

...
...

0 t −N<λ1>
c 0 t 0 · · · 0 tNλ1


.

We calculate det(∗′) = det(∗) by Laplace expansion on the first ζc rows, which form its first row of

blocks.
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Most terms in the expansion vanish. Fix a term such that neither the primary nor complementary

minor has a zero column and the primary minor has no repeated columns, if possible; otherwise

det(∗′) = 0 and we are done. Since the complementary minor cannot have a zero column, the

ζc × ζc primary minor must use all of the columns of the blocks A<c>c , . . . , A<c>λ1
: These blocks

A<c>c , . . . , A<c>λ1
have a total of only |µ| = ζc−r+1 columns. Since the primary minor does not have

repeated columns, the values of Tc(µ̄) that correspond to the r− 1 columns of Nc that contribute to

the primary minor are distinct from the values of T (µ). Therefore we may define a column tabloid

Uc of size ζc containing all the values of T (µ) and these values from Tc(µ̄). Except for the order of

its columns, the primary minor is the determinant of the ζc-initial submatrix of g specified by the

column taboid Uc. So this primary minor is the monomial υc of Uc, up to a sign. By the choice of

µ, the ζc − r + 1 values of T (µ) are all larger than Yλ(π)[r, c]. Hence at most r − 1 values in Uc are

less than or equal to Yλ(π)[r, c]. In particular Uc(r) > Yλ(π)[r, c].

Now consider the complementary minor of our fixed summand. We compute this minor by an

iterated Laplace expansion analogous to the one in the proof of Lemma 3.3. Begin the iteration by

computing this determinant by Laplace expansion on its first ζc+1 rows, which form its first row

of blocks. Fix a summand as above, if possible; otherwise the minor on hand is zero. Since the

current complementary minor cannot have a zero column, this primary minor must include all of

the columns of Nc+1. The primary minor’s other columns come from the −N<c+1>
c block. Define a

column tabloid Uc+1 of length ζc+1 filled with all the values of Tc+1(µ̄) and the values of Tc(µ̄) that

correspond to the columns of −N<c+1>
c that contribute to the primary minor. Again the primary

minor is the monomial υc+1 of Uc+1, up to a sign.

Iterate this process. If our fixed term is nonzero, then we end up with column tabloids

Uc, Uc+1, . . . , Uλ1 of respective lengths ζc, ζc+1, . . . , ζλ1 . We find that our fixed nonzero term is

the product τ1 · · · τc−1υc · · · υλ1 , up to a sign. This is the monomial υ of the tabloid U that is

formed by the juxtaposition of the column tabloids T1, . . . , Tc−1, Uc, . . . , Uλ1 . But U 6� Yλ(π), by

the observation about U(r, c) = Uc(r) above. Hence its monomial υ belongs to the subspace Zλ(π)

of Γλ. Therefore υ = 0 in Γλ(π). So all of the terms in the iterated Laplace expansion that are not

zero in Γλ are in Zλ(π). Hence |Mµ(T )| = 0.

We now show that this result can be used to re-express the monomial of a tableau T which is
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not π-Demazure in terms of monomials of tabloids U < T .

Proposition 3.11. Let π be a Q-chain. Let T be a tableau of shape λ which is not π-Demazure. If

τ 6= 0 in Γλ(π), then there exist coefficients aU = ±1 such that τ =
∑
aUυ, where the sum is over

some tabloids U such that U < T .

Proof. Since T is not π-Demazure, there exists a region µ as for Proposition 3.10. Then the relation∑
ε(σ)τσ = 0 holds in Γλ(π), where the sum runs over all µ-shuffles of T .

If the identity permutation is the only µ-shuffle of T , then this equation states that τ = 0 in

Γλ(π). Otherwise, solve for τ = τ id. Consider a non-identity µ-shuffle σ of T . We show Tσ < T . Let

b be the index of the leftmost column of λ such that σ replaces some of the values of Tb(µ). The

replacement values must arrive from later columns of µ. By our choice of µ, each value in Tb(µ)

is strictly larger than all of the values in the later columns of µ. Then in the highest location of

column b in which T and Tσ differ, the smaller value is in Tσ. Therefore column b of Tσ precedes Tb,

while all columns to its left are unchanged. Thus Tσ < T . Since µ does not have repeated values,

each tabloid Tσ is distinct. Therefore when we sum over tabloids instead of µ-shuffles of T , the

coefficients of the monomials remain ±1.

Now we are ready to prove the spanning part of Theorem 2.18.

Theorem 3.12. Fix a nonempty Q ⊆ [n− 1]. Let λ be an n-partition with Q(λ) ⊆ Q and let π be

a Q-chain. The monomials of the π-Demazure tableaux of shape λ span the vector space Γλ(π).

Proof. By Theorem 3.8, the space Γλ(π) is spanned by the tableau monomials. Given a tableau

U , we show its monomial υ is in the span of the π-Demazure monomials. Suppose that U is not

already π-Demazure.

Apply Proposition 3.11 to express υ as a linear combination of monomials for tabloids preceding

U . If any of these tabloids is not a tableau, apply Proposition 3.7 to the largest among them

according to the total order ≤ and iterate this step. As in Theorem 3.8, this process terminates. We

have now expressed υ as a linear combination of monomials of tableaux preceding U . If any of the

tableaux is not π-Demazure, apply Proposition 3.11 to the largest among them and then repeatedly

apply Proposition 3.7 to the resulting tabloids. After each iteration of Propositions 3.11 and 3.7, the

largest tabloid which is not a π-Demazure tableau precedes that appearing in the previous iteration.
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Since there are finitely many tabloids of shape λ, this process must terminate. When the process

terminates, we have an expression for υ as a linear combination of π-Demazure monomials.
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CHAPTER 4

A Linear Independence Theorem

4.1 Preferred bases and Bruhat cells

The linear independence of tableau monomials for Theorem 2.16 is shown directly in [15] by

organizing the leading terms of tableau monomials with respect to an order on the indeterminants

xij for C[xij ]. No similarly direct proof for the linear independence part of Theorem 2.18 is known.

Instead we assume that our field has characteristic zero and, following [3, 5], we evaluate a linear

combination of monomials at some ordered basis to verify that it is nonzero. We analyze these

evaluations based on the membership of the corresponding Q-flag in a Bruhat cell or a Schubert

variety. So here and in the next section we return to the context of Section 2.3 and present the

standard facts concerning tabloid monomials, Bruhat cells, and Schubert varieties. A statement

in these sections is displayed as a “Lemma” if it is needed for Section 4.3 and as a “Fact” if it is

included only for motivation. The n-partition λ plays no role in this section.

Recall that the Q-carrels for an n-tuple are the following k + 1 sets of positions: the first q1

positions, the next q2 − q1 positions, and so on through the last n− qk positions. Given an ordered

basis f = [v1, v2, . . . , vn] of Cn in matrix form, the formation of the Q-flag ΦQ(f) = (V1, . . . , Vk) can

be viewed using these Q-carrels: The vectors from the first Q-carrel of f span V1, and for 2 ≤ j ≤ k

the vectors from the jth Q-carrel of f extend Vj−1 to the space Vj . The pivot of a nonzero column

vector is its last nonzero coordinate.

Definition 4.1. An ordered basis f is Q-preferred if:

1. Within a Q-carrel, the pivots descend from left to right.

2. Each vector v ∈ f has a value of 1 in its pivot coordinate.

3. All of the coordinate values to the right of a pivot are 0.
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Example 4.2. Let n = 6 and let Q = {1, 4}. The ordered basis f below is Q-preferred, while the

ordered basis h is not. The vertical bars separate the Q-carrels of the basis.

f :=



1 4 1 −1 1 0

−2 1 0 0 0 0

−3 0 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 1

0 0 0 1 0 0


h :=



2 5 −3 −1 0 4

−4 1 −1 0 2 1

−6 1 1 0 3 0

2 0 0 0 −1 0

0 0 0 1 0 1

0 0 0 1 0 0


In the following lemma, the Q-permutation corresponding to f is ρ = (4; 2, 3, 6; 1, 5). The two

Q-flags ΦQ(f) and ΦQ(h) are equal, as seen in the proof of Lemma 4.5 below.

The pivots of a Q-preferred basis give information concerning its Q-flag:

Lemma 4.3. Let f = [v1, . . . , vn] be a Q-preferred basis with pivot coordinates ρ1, . . . , ρn. For

each 1 ≤ j ≤ k, define Rj := {ρ1, . . . , ρqj}. Then ρ = (R1, . . . , Rk) is a Q-chain. The list

(ρ1, . . . , ρn) is the Q-permutation ρ. The set Rj is the set of possible pivot coordinates for vectors in

Vj :=span(v1, . . . , vqj ).

Proof. By the third property of Q-preferred bases, the ρ1, . . . , ρn are distinct. The first conclusion

follows immediately. The condition on the values within the Q-carrels of a Q-permutation follows for

(ρ1, . . . , ρn) from the first property of Q-preferred bases; it is clearly ρ. No nonzero linear combination

of vectors with distinct pivot coordinates produces a vector with a new pivot coordinate.

A Q-preferred basis f is a distinctive representative for ΦQ(f) in the following way:

Lemma 4.4. Let f = [v1, . . . , vn] be a Q-preferred basis with pivot coordinates ρ1, . . . , ρn. Fix

1 ≤ m ≤ n, and let 1 ≤ j ≤ k + 1 be minimal such that m ≤ qj. Then vm is the unique vector in

Vj :=span(v1, . . . , vqj ) that has a value of 1 at its pivot coordinate ρm and a value of 0 at coordinates

ρ1, ρ2, . . . , ρm−1.

Proof. Let w be any such vector. Set u := w − vm. Since the pivots within a Q-carrel of f descend

from left to right, we have that ρm < ρm+1 < · · · < ρqj . Since w and vm both have pivot coordinate
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ρm, the vector u has a value of 0 at the coordinates ρm+1, . . . , ρqj . Since w and vm both have a

value of 1 at coordinate ρm, the vector u has a value of 0 at coordinate ρm. Then u is a vector in

Vj with a value of 0 at the coordinates ρ1, ρ2, . . . , ρqj . By the preceding lemma, this vector cannot

have any other pivot coordinate. Therefore u = 0, and so w = vm.

Each Q-flag has a unique Q-preferred representative:

Lemma 4.5. The restriction of the map ΦQ to the set of Q-preferred bases is a bijection to the set

F`Q of Q-flags. Hence Lemma 4.3 associates to each Q-flag a unique Q-chain.

Proof. We begin by showing that the restriction of the map ΦQ is injective. Suppose there are

at least two Q-preferred bases. Then Q 6= {n}, since here the identity matrix depicts the only

Q-preferred basis. Let f1 = [v1, v2, . . . , vn] and f2 = [w1, w2, . . . , wn] be distinct Q-preferred bases.

Suppose that for some 1 ≤ j ≤ k, the sets of pivot coordinates of the first qj vectors of f1 and of

f2 are different. Let Vj :=span(v1, . . . , vqj ) and Wj :=span(w1, . . . , wqj ). Let 1 ≤ m ≤ qj be such

that vm has a pivot coordinate different from those of w1, . . . , wqj . By Lemma 4.3, no vector in

Wj has the same pivot coordinate as vm. Hence vm 6∈ Wj , and so Vj 6= Wj . Otherwise the pivot

coordinates ρ1, . . . , ρn for f1 and f2 are the same. Let 1 ≤ m ≤ n be such that vm 6= wm and let

1 ≤ j ≤ k + 1 be minimal such that m ≤ qj . The vectors vm and wm both have a value of 1 in

their pivot coordinate ρm and a value of 0 in the coordinates ρ1, . . . , ρm−1. By the preceding lemma

applied to wm, we see that vm 6∈Wj . So again Vj 6= Wj . Hence ΦQ(f1) 6= ΦQ(f2).

We now provide the inverse map: Fix a Q-flag F and choose any ordered basis h such that

ΦQ(h) = F . The following elementary column operations on h preserve its Q-flag:

1. Swap two columns within the same Q-carrel of h.

2. Multiply a column of h by a nonzero scalar.

3. Add a multiple of a column of h to a column to its right.

Using these column operations, a Gaussian elimination algorithm can be performed on h so

that its output f is a Q-preferred basis with ΦQ(f) = F . In Example 4.2 above, six of these

operations can be used to convert the ordered basis h into the Q-preferred basis f . We verify

that the output is independent of the choice of the basis used to represent F : Suppose two
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Q-preferred bases f1 and f2 can be produced from two representatives h1 and h2 for F . Then

ΦQ(f1) = ΦQ(h1) = ΦQ(h2) = ΦQ(f2). Since the restriction of ΦQ to the set of Q-preferred bases is

injective, we have f1 = f2. So this process is a well-defined pre-inverse of the restriction of ΦQ. If

the input to the process is Q-preferred, no action is taken. Hence this function is also a post-inverse

of the restriction of ΦQ to the set of Q-preferred bases.

Now we present some facts about Bruhat cells. In Section 2.3 we associated to each Q-chain π

the n× n permutation matrix sπ. It is easy to see that sπ is Q-preferred when viewed as an ordered

basis.

Fact 4.6. The set of Q-flags can be expressed as the union of Bruhat cells over all Q-chains:

F`Q =
⋃
ρ
C(ρ).

Proof. Fix any Q-flag F ; find its Q-preferred basis f as in the proof of Lemma 4.5. Let ρ =

(R1, . . . , Rk) be the Q-chain for f from Lemma 4.3: The Q-chain ρ records the pivots of f . It also

records the pivots of the permutation matrix sρ. Since the pivots of both descend within each

Q-carrel, the pivots of f are the locations of the 1s in sρ. It can be seen that b := fs−1
ρ is the matrix

obtained by sorting the columns of f so that all of its pivots descend from left to right. So the

matrix b is upper triangular. Then F = ΦQ(f) = ΦQ(bsρ) ∈ C(ρ).

Fact 4.7. Let π, ρ be Q-chains. If π 6= ρ, then the intersection of Bruhat cells C(π)∩C(ρ) is empty.

So for each Q-flag F , the Q-chain π such that F ∈ C(π) is unique.

Proof. The action of B preserves the pivots of an ordered basis. So the Q-preferred basis for a

Q-flag F ∈ C(π) ∩ C(ρ) would have the pivots listed in both π and ρ. But π 6= ρ.

Together, these two facts show:

Fact 4.8. The Bruhat cells C(π) for all Q-chains π partition F`Q.

4.2 Tabloid monomials, Bruhat cells, and Schubert varieties

Here we present some facts concerning tabloid monomials, Bruhat cells, and Schubert varieties.

As in Section 3.2, fix an n-partition λ such that Q(λ) ⊆ Q.

Lemma 4.9. Let g and h be ordered bases with ΦQ(g) = ΦQ(h). There exists one α 6= 0 such that

for all tabloid monomials τ ∈ Γλ, the equation τ(g) = ατ(h) holds.
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Proof. Recall that column c of any tabloid of shape λ specifies a ζc-initial minor of h. Since

Q(λ) ⊆ Q, the sequence of elementary column operations in the proof of Lemma 4.5 that produces

the Q-preferred basis f from h is also a sequence of elementary column operations when restricted

to any ζc-initial submatrix of h. Hence any ζc-initial minor of h is a nonzero multiple, say κc(h), of

the same ζc-initial minor of f . Then τ(h) =
(∏λ1

c=1 κc(h)
)
τ(f). The valuation τ(g) also differs by

some uniform nonzero scalar multiple from τ(f) for all tabloid monomials τ .

Fix a Q-flag F . We can evaluate the sequence of all tabloid monomials of shape λ at any

ordered basis representative for F . By the above lemma, the projective equivalence class of this

sequence of valuations does not depend on the choice of representative. In this way we define a map

Ωλ : F`Q → P(CN ), where N is the number of tabloids of shape λ.

Now fix aQ-chain π = (P1, . . . , Pk). The next four results consider whether the tabloid monomials

vanish or not at an ordered basis h when ΦQ(h) is in the Bruhat cell C(π) or the Schubert variety

X(π).

Lemma 4.10. At any ordered basis h with ΦQ(h) ∈ C(π), the monomial ψλ(π) of the λ-key Yλ(π)

does not vanish.

Proof. By Lemma 4.5 there is a Q-preferred basis f such that ΦQ(f) = ΦQ(h). There is a b ∈ B

such that f = bsπ. When the columns of f are sorted so that their pivots are in descending order,

we produce an upper triangular matrix with 1s on the diagonal. Since the minor specified by any

column of length n is the determinant of f , we see that such a minor is ±1. For any 1 ≤ j ≤ k, the

minor of f specified by a column of Yλ(π) of length qj is the determinant of the qj-initial submatrix

of h with rows given by Pj . The pivot coordinates in the first qj columns of f = bsπ are also given

by Pj . Hence when the columns of this qj-initial submatrix of f are sorted so that these pivots are

in descending order, we produce an upper triangular matrix with 1s on the diagonal. Multiplying

these minors, we see that the value of ψλ(π) is ±1 at f . By Lemma 4.9, the value is also nonzero at

h.

Lemma 4.11. At any ordered basis h with ΦQ(h) ∈ X(π), any tabloid monomial τ ∈ Zλ(π)

vanishes.
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Proof. Let f be the Q-preferred basis such that ΦQ(f) = ΦQ(h). Then ΦQ(f) ∈ C(ρ) for some

ρ � π. By Lemma 2.3, we have Yλ(ρ) � Yλ(π). There is a b ∈ B such that f = bsρ. Since

τ ∈ Zλ(π), it is the monomial of a tabloid T such that T 6� Yλ(π). Find a location (r, c) ∈ λ

such that T (r, c) > Yλ(π)[(r, c)]. The r highest pivots of the first ζc columns of f = bsρ are the

coordinates Yλ(ρ)[(1, c)], Yλ(ρ)[(2, c)], . . . , Yλ(ρ)[(r, c)]. These coordinates are at or above the

coordinate Yλ(π)[(r, c)] since Yλ(ρ)[(r, c)] ≤ Yλ(π)[(r, c)]. On the other hand, the minor in τ specified

by column c of T is the determinant of a ζc-initial submatrix m of f whose final ζc − r + 1 rows are

the rows T (r, c), T (r + 1, c), . . . , T (ζc, c) of f . Since T (r, c) > Yλ(π)[(r, c)], the r columns of f = bsρ

with the pivots listed above have zeros in the last ζc − r + 1 rows used for τ . This leaves at most

ζc − r columns of m which can be nonzero in their last ζc − r + 1 rows. Hence det(m) = 0, and so

τ(f) = 0. By Lemma 4.9, we also have τ(h) = 0.

Fact 4.12. Suppose Q(λ) = Q. At any ordered basis h with ΦQ(h) 6∈ X(π), there exists a tabloid

monomial τ ∈ Zλ(π) that does not vanish.

Proof. By Fact 4.8, there is a unique Q-chain ρ such that ΦQ(h) ∈ C(ρ). Since ΦQ(h) 6∈ X(π),

we have ρ 6� π. Since Q(λ) = Q, Lemma 2.3 concludes Yλ(ρ) 6� Yλ(π). Hence ψλ(ρ) ∈ Zλ(π). By

Lemma 4.10, the value of ψλ(ρ) at h is nonzero.

The preceding three statements actually depended only on the Q-flag of an ordered basis,

since the vanishing and nonvanishing of tabloid monomials is preserved under the scaling found

in Lemma 4.9. So these statements are useful when the tabloid monomials are used as projective

coordinates for F`Q. The last two statements show:

Fact 4.13. If Q(λ) = Q, then the Schubert variety X(π) is the zero set in F`Q of Zλ(π).

Using the above facts, we can finally show:

Fact 4.14. If Q(λ) = Q, then the sequence of all tabloid monomials of shape λ distinguishes Q-flags.

That is, the map Ωλ is injective and faithfully parameterizes F`Q.

Proof. Let F,G be Q-flags. Find the Q-preferred bases f, g of F,G. Let π, ρ be the Q-chains

such that F ∈ C(π) and G ∈ C(ρ) . Suppose π 6� ρ. Since Q(λ) = Q, Lemma 2.3 concludes

Yλ(π) 6� Yλ(ρ). So the monomial ψλ(π) is in Zλ(ρ). By Lemmas 4.10 and 4.11, the monomial ψλ(π)

is nonzero at f and zero at g. If π ≺ ρ, apply the argument above to ρ 6� π.

31



Otherwise π = ρ, and so f and g have the same list of pivots π = (π1, . . . , πn). From the proof of

Lemma 4.10, the monomial ψλ(π) is either 1 at both f and g or −1 at both. Write π = (P1, . . . , Pk).

If Pj = {1, 2, . . . , qj} for all 1 ≤ j ≤ k, then π is the identity permutation. Here the identity

matrix depicts the only Q-preferred basis, and so there is only one Q-flag. So suppose there is some

1 ≤ j ≤ k such that Pj 6= {1, 2, . . . , qj}. Then in a Q-preferred basis, there exists a matrix entry

unconstrained by the three Q-preferred properties. Now suppose F 6= G. Then f 6= g. Find an entry

(r, c) where f 6= g. It must lie above the pivot in column c, so r < πc. Let 1 ≤ ` ≤ k be minimal

such that πc ∈ P`. One of f or g is nonzero at entry (r, c). By the third property of Q-preferred

bases, the column with pivot coordinate r lies in a later Q-carrel than does column c. Hence r 6∈ P`.

Let T be the tabloid obtained from Yλ(π) by replacing one of its columns Y (P`) with the column

Y (P` \ {πc} ∪ {r}) ≺ Y (P`). Following a proof similar to that of Lemma 4.10, it can be seen that

the evaluation of its monomial τ at f and g gives (up to sign) their (r, c) entries. Therefore the two

valuations of the pair of monomials (ψλ(π), τ) at f and at g are not multiples of each other.

4.3 Linear independence of the Demazure monomials

The n-partition λ such that Q(λ) ⊆ Q remains fixed. The objective of this section is to prove:

Theorem 4.15. Fix a nonempty Q ⊆ [n− 1]. Let λ be an n-partition such that Q(λ) ⊆ Q and let

π be a Q-chain. The monomials of the π-Demazure tableaux of shape λ are linearly independent in

the vector space Γλ(π).

A particular application of Theorem 4.15 gives the linear independence of the tableau monomials

for Theorem 2.16:

Corollary 4.16. Let λ be an n-partition. The monomials of the semistandard tableaux of shape λ

form a basis of the vector space Γλ.

Proof. Take Q := Q(λ). Let π0 be the maximal Q-chain of subsets Pj := {n−qj+1, n−qj+2, . . . , n}

for 1 ≤ j ≤ k. It can be seen that every tabloid of shape λ is dominated by the λ-key Yλ(π0) in the

partial order �. So every tableau is π0-Demazure. Here, the subspace Zλ(π0) of Γλ is {0}. So we

have Γλ(π0) = Γλ/Zλ(π0) = Γλ.

Fix a Q-chain π from now on. Let ξ be any polynomial in Γλ. Suppose we can find an ordered

basis f such that its Q-flag ΦQ(f) lies in the Schubert variety X(π) and ξ(f) 6= 0. By Lemma 4.11,
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the latter property implies that ξ 6∈ Zλ(π). Then the residue ξ in Γλ(π) = Γλ/Zλ(π) is nonzero.

Since C(π) ⊆ X(π), this observation implies that the theorem follows from:

Proposition 4.17. Let π be a Q-chain. Let T1, . . . , T` be π-Demazure tableaux of shape λ. For

any nonzero coefficients a1, . . . , a`, there is some ordered basis f with ΦQ(f) in the Bruhat cell C(π)

such that
∑̀
i=1

aiτi(f) 6= 0.

We will prove this proposition using induction on the number of columns of λ.

Before proving this proposition, we now elaborate on the “efficiency” claim from Section 2.3.

Let N denote the number of tabloids of shape λ. Consider the map from the set GLn to CN

given by the evaluation of the sequence of all tabloid monomials of shape λ. The coordinatization

Ωλ : F`Q → P(CN ) of Section 4.2 was given by observing that the set of matrix representatives

for a given flag maps to a unique projective equivalence class in CN . This coordinatization is

inefficient: By the spanning Theorem 3.8, the coordinatization of F`Q in CN up to scalar multiples

is contained in a subspace V that is parameterized by the coordinates corresponding to the tableau

monomials. By Proposition 4.17 applied to π := π0 as in the proof of Corollary 4.16, this subspace

V is the minimal subspace that contains the image of F`Q. So we can actually coordinatize F`Q

with P(V ) ⊂ P(CN ). Let M denote the number of tableau monomials of shape λ. Then V ∼= CM

and one may more efficiently coordinatize F`Q in P(CM ) by evaluating only the sequence of tableau

monomials.

But this new coordinatization is inefficient for a proper Schubert variety X(π). By Theorem 3.12,

the coordinatization of X(π) in CM up to scalar multiples is contained in a subspace V (π) that is

parameterized by the coordinates corresponding to the π-Demazure monomials. By Proposition 4.17,

this subspace V (π) is the minimal subspace that contains the image of X(π). So we can actually

coordinatize X(π) with P(V (π)) ⊂ P(CM ). Let M(π) denote the number of π-Demazure monomials

of shape λ. Then V (π) ∼= CM(π), and one may more efficiently coordinatize X(π) in P(CM(π)) by

evaluating only the sequence of π-Demazure monomials.

Now we assume our field has characteristic zero. The corollary to the following proposition is

used as the last step in the proof of Proposition 4.17. Recall the reflection operator σij defined in

Section 2.2 which acts on Q-chains by swapping the elements i and j. Here the limit in the set of

ordered bases of Cn is found with respect to the usual metric on the n2 entries of ordered bases
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when they are viewed as n× n complex matrices.

Proposition 4.18. Let π be a Q-chain. Let 1 ≤ i < j ≤ n and use the reflection σij to define

ρ := σijπ. Let F be a Q-flag in the Bruhat cell C(ρ). If ρ ≺ π, then there is a path β(t) in the set

of ordered bases of Cn with ΦQ(β(t)) ∈ C(π) for 0 < t < 1
2 such that F = ΦQ

(
lim
t→0

β(t)
)
.

Proof. Let sπ be the n× n permutation matrix associated to π as in Section 2.3. Construct a path

γ(t) in the space of n×n matrices by altering sπ as follows: Let ci and cj be the column indices such

that entries (i, ci) and (j, cj) of sπ are 1. Since ρ 6= π, columns ci and cj are in different Q-carrels of

sπ. And since ρ ≺ π, we have cj < ci. The submatrix at rows (i, j) and columns (cj , ci) of sπ is0 1

1 0

. Change these entries to

1− t t

t 1− t

.
For 0 < t < 1

2 , compute the Q-preferred basis of γ(t) by subtracting 1−t
t times column cj from

column ci and re-scaling. Then we see that ΦQ (γ(t)) is still in C(π). However, the limit lim
t→0

γ(t)

is the permutation matrix formed from sπ by switching columns ci and cj . Up to a reordering of

columns within the affected Q-carrels, this is the permutation matrix sρ for the Q-chain ρ. So the

Q-flag for this limit is ΦQ(sρ). Let b ∈ B be such that F = ΦQ(bsρ). Here F is also ΦQ

(
b lim
t→0

γ(t)
)
.

Define β(t) := bγ(t). Then we have ΦQ(β(t)) ∈ C(π) for 0 < t < 1
2 . Note that lim

t→0
bγ(t) = b lim

t→0
γ(t),

since the entries in this product by b are linear combinations of the original matrix entries. Finally

we have ΦQ

(
lim
t→0

β(t)
)

= ΦQ

(
b lim
t→0

γ(t)
)

= F .

The following corollary relates the vanishing of a polynomial in Γλ on the Bruhat cell C(π) to its

vanishing on the Schubert variety X(π). Its proof uses the fact that the application of a polynomial

from C[xij ] commutes with forming a limit in the n× n complex matrices.

Corollary 4.19. Let π be a Q-chain. Let f be an ordered basis with ΦQ(f) ∈ X(π) and fix a

polynomial ξ ∈ Γλ. If ξ(h) = 0 for every ordered basis h with ΦQ(h) ∈ C(π), then ξ(f) = 0.

Proof. Since ΦQ(f) ∈ X(π), we have ΦQ(f) ∈ C(ρ) for some Q-chain ρ � π. The conclusion is

trivial if ρ = π, so suppose that ρ ≺ π. By Lemma 2.2, there exist 1 ≤ i < j ≤ n such that π1 := σijπ

satisfies ρ � π1 ≺ π. Since there are finitely many Q-chains, we can iterate Lemma 2.2 until we have

a sequence of reflected Q-chains ρ = πm ≺ πm−1 ≺ · · · ≺ π1 ≺ π =: π0 for some m > 0. Let ` run

from 0 to m− 1 and iterate the following: Let h`+1 be any ordered basis with ΦQ(h`+1) ∈ C(π`+1).

Denote this Q-flag by F . Here the proposition constructed a path β(t) with ΦQ(β(t)) ∈ C(π`)
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for 0 < t < 1
2 such that F = ΦQ

(
lim
t→0

β(t)
)
. By induction: For every ordered basis h` with

ΦQ(h`) ∈ C(π`), we had ξ(h`) = 0. Since ξ ∈ C[xij ], we have ξ
(

lim
t→0

β(t)
)

= lim
t→0

ξ(β(t)) = lim
t→0

0 = 0.

By Lemma 4.9 applied to the ordered bases lim
t→0

β(t) and h`+1 for F , we have ξ(h`+1) = 0. When

beginning the ` = m− 1 iteration, take h`+1 := f .

Now we are prepared to prove Proposition 4.17:

Proof of Proposition 4.17. The base case for our induction on the number of columns of λ is when

every column of λ has length n, perhaps vacuously. Here the only tableau consists of the columns

Y ([n]). It is π-Demazure. Its monomial is a nonnegative power of the determinant, which is nonzero.

So in this case the proposition holds.

Suppose λ has at least one column of length less than n. As for Lemma 2.7, let λ′ denote the

partition obtained from λ by deleting the rightmost column of its shape. Note that Q(λ′) ⊆ Q.

Suppose by induction that for any Q-chain ρ and linear combination ξ of ρ-Demazure monomials of

shape λ′, there is some ordered basis f with ΦQ(f) ∈ C(ρ) such that ξ(f) 6= 0.

Write π = (P1, P2, . . . , Pk). Let 1 ≤ h ≤ k be minimal such that qh ∈ Q(λ). Examine the

rightmost columns of the tableaux T1, . . . , T` and identify a minimal column among these with

respect to the order �. Suppose m of the tableaux share this minimal column, which has length

qh. Reindex the tableaux so that T1, . . . , Tm have this rightmost column. We now form a Q-chain

(R1, . . . , Rk) =: ρ from this minimal column and π in such a way that ρ is small enough to have

ρ � π and large enough to have Yλ(ρ) � S(Ti) for 1 ≤ i ≤ m. For 1 ≤ j ≤ h, take Rj to be the set

of the qj smallest tableau values in this minimal column. So this minimal column is Y (Rh). By

Lemma 2.6 this column is also the rightmost column of S(Ti) for 1 ≤ i ≤ m. Since S(Ti) � Yλ(π),

we have Y (Rh) � Y (Ph). This implies that Y (Rj) � Y (Pj) for any 1 ≤ j ≤ h.

For h+ 1 ≤ j ≤ k, form Rj by evolving Pj using Rh as follows: List the elements r1 < · · · < rqh

of Rh in increasing order. As t runs from 1 to qh, successively replace the smallest element of Pj

that is larger than or equal to rt with the element rt. Such an element exists since Pj ⊃ Ph and

Y (Ph) � Y (Rh). Visualize this replacement using the column Y (Pj): by our replacement rule,

replacing this value in Y (Pj) by rt in the same position preserves the property that the filling

increases down the column. Define Rj to be the set resulting from the qh iteration. Then the

column Y (Rj) is produced from Y (Pj) by decreasing some of its values to values from Rh without
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reordering. So we have Y (Rj) � Y (Pj). For h+ 1 ≤ j ≤ qk, we can see that Rj−1 ⊂ Rj as follows:

Let r ∈ Rj−1. If r ∈ Rh, then r ∈ Rj . On the other hand if r 6∈ Rh, then r ∈ Pj−1 ⊂ Pj . Both

Rj−1 and Rj were formed by replacing elements of Pj−1 and Pj respectively with elements of the

same set Rh. The element r was not replaced when Rj−1 was formed from Pj−1, so it also was not

replaced when Rj was formed from Pj . Then ρ := (R1, R2, . . . , Rk) is a Q-chain, and ρ � π.

Fix m + 1 ≤ i ≤ `. The rightmost column of Yλ(ρ) is Y (Rh), which was minimal among the

rightmost columns of T1, . . . , T`. Since Ti does not share this minimal rightmost column, we can

see that Ti 6� Yλ(ρ). So by definition we have τm+1, . . . , τ` ∈ Zλ(ρ). Then by Lemma 4.11, at any

ordered basis f with ΦQ(f) ∈ X(ρ) we have
∑`
i=1 aiτi(f) =

∑m
i=1 aiτi(f).

We want to show that each of T1, . . . , Tm is ρ-Demazure. Fix 1 ≤ i ≤ m. We know that

S(Ti) � Yλ(π). Fix a location (b, c) ∈ λ. From the construction of ρ, the value Yλ(ρ)[b, c] is

Yλ(π)[b, c] or else a value from Rh. Suppose Yλ(ρ)[b, c] = Yλ(π)[b, c]. Since S(Ti) � Yλ(π), we have

S(Ti)[b, c] ≤ Yλ(ρ)[b, c]. Now suppose Yλ(ρ)[b, c] is some value r ∈ Rh. By Lemma 2.6, the value r

appears in column c of S(Ti). Let 1 ≤ d ≤ ζc denote the row index such that r = S(Ti)[d, c]. Since

S(Ti) � Yλ(π), we have Yλ(π)[d, c] ≥ r. But from the construction of ρ, the value Yλ(π)[b, c] is the

smallest value in its column larger than or equal to r. Since the filling Yλ(π) increases down each

column, we have b ≤ d. Hence S(Ti)[b, c] ≤ S(Ti)[d, c] = r = Yλ(ρ)[b, c]. Therefore S(Ti) � Yλ(ρ) in

both cases. So the tableaux T1, . . . , Tm are ρ-Demazure. Then by Lemma 2.9 the corresponding

tableaux T ′1, . . . , T ′m of shape λ′ are ρ-Demazure. By the inductive hypothesis, there is an ordered

basis f with ΦQ(f) ∈ C(ρ) such that
∑m
i=1 aiτ

′
i(f) 6= 0.

The rightmost column of Yλ(ρ) is Y (Rh). Hence the minor specified by Y (Rh) is a factor of the

monomial ψλ(ρ). By Lemma 4.10, the value of ψλ(ρ) at f is nonzero. Hence the minor specified

by Y (Rh) has some value α 6= 0 at f . Therefore the valuation
∑`
i=1 aiτi(f) =

∑m
i=1 aiτi(f) =

α
∑m
i=1 aiτ

′
i(f). Thus we have

∑`
i=1 aiτi(f) 6= 0, where ΦQ(f) ∈ C(ρ).

For the sake of contradiction, suppose that for every ordered basis h with ΦQ(h) ∈ C(π) we

have
∑`
i=1 aiτi(h) = 0. By design we have ρ � π, and so ΦQ(f) ∈ X(π). Then by Corollary 4.19 we

also have
∑`
i=1 aiτi(f) = 0, a contradiction.
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CHAPTER 5

Character Formulas

5.1 Summation formula for Demazure polynomials

Let H be the abelian subgroup of B consisting of its diagonal matrices diag(y−1
1 , . . . , y−1

n ). The

group H acts on ordered bases from the left. This induces an action on our polynomial subspace Γλ

of C[xij ]: For a monomial τ ∈ Γλ, an element h ∈ H, and an ordered basis f of Cn in matrix form,

one has h.τ(f) := τ(h−1f). Since τ is a product of minors and the multiplication here by h−1 scales

the rows of f , we see that Cτ is H-invariant. Given a tableau T , let ci be the number of values in

T equal to i. Then the character of H acting on Cτ is yT :=
∏n
i=1 y

ci
i .

Now fix a Q-chain π. The subspace Zλ(π) is H-invariant. The character of the induced

representation on Γλ(π) := Γλ/Zλ(π) follows from Theorem 2.18:

Corollary 5.1. The character of H on Γλ(π) is
∑
yT , where the sum runs over all π-Demazure

tableaux of shape λ.

This polynomial is the Demazure polynomial of [7]. This terminology will be justified in the

appendix, where we note that Γλ(π)∗ is a Demazure module for B. Given that the scanning tableau

of a tableau T is the right key of T , this polynomial is also the “key polynomial” of Lascoux and

Schützenberger [8, Theorem 1].

5.2 Contemporary terminology

Here we provide a dictionary for relating the objects of this paper to the contemporary algebraic

geometry literature. We also identify the character from Section 5.1 using the representation theory

of GLn. Continue to use the definitions from Section 5.1. Here we require an algebraically closed

field of characteristic zero; we use C.

Our subgroup H of diagonal matrices in GLn is called the torus, and our subgroup B of upper

triangular matrices in GLn is called the Borel subgroup. Fix a nonempty Q ⊆ {1, 2, . . . , n − 1}

and set k := |Q|. Let E be the Q-flag of subspaces Vj =span({ei|i ≤ qj}) for 1 ≤ j ≤ k. The
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action of GLn on ordered bases of Cn induces an action on the set F`Q of Q-flags. Let P be the

“parabolic” subgroup of GLn that stabilizes E. Note that B stabilizes E, so B ⊆ P . Let (v1, . . . , vn)

be an ordered basis and let f := [v1, . . . , vn] ∈ GLn be the corresponding invertible matrix. Let

F be any Q-flag. If ΦQ(f) = F , then f.E = F . So Lemma 4.5 implies that the action of GLn

on F`Q is transitive. From the definition of P , we see that F`Q is isomorphic to the coset space

GLn/P as a GLn-set. The three operations from the proof of Lemma 4.5 generate the right action

of P on GLn when GLn is considered as the set of all ordered bases for Cn. That lemma found a

preferred representative in GLn for each coset in GLn/P . So the map ΦQ can be used to describe

an isomorphism from GLn/P to F`Q.

Let g, h, b, and p denote the Lie algebras of GLn, H,B, and P respectively. The Lie algebra

g is reductive. Let φ1, . . . , φn denote the basis of h∗ such that φi(h) is the entry of h in position

(i, i) for any h ∈ h. Equip h∗ with the inner product for which φ1, . . . , φn is an orthonormal basis.

For each 1 ≤ j ≤ n− 1 set αj := φj − φj+1 and ωj :=
∑j
i=1 φi. For the semisimple part of g, the

α1, . . . , αn−1 depict the positive simple roots and the ω1, . . . , ωn−1 depict the fundamental weights.

Set ωn :=
∑n
i=1 φi. This weight is orthogonal to α1, . . . , αn−1; it corresponds to the center of g.

Set J := [n − 1] \Q. It can be seen that p is the direct sum of b and the root subspaces for the

negative roots in the span of {αj |j ∈ J}. For each weight µ ∈ h∗, there is a corresponding character

exp(µ) of the torus H. For 1 ≤ i ≤ n set xi := exp(φi). Let λ be an n-partition. For 1 ≤ i ≤ n,

set ai := λi − λi+1; this is the number of columns of length i in the shape of λ. Then we have

Q(λ) = {1 ≤ i ≤ n − 1|ai 6= 0}. Use λ to also denote the weight
∑n
i=1 λiφi =

∑n
i=1 aiωi. Let Vλ

denote an irreducible representation of GLn with highest weight λ.

The contragredient representation of H on Γλ defined in Section 5.1 extends to a representation

of GLn: Since a monomial τ of a tableau T is a product of minors, it can be seen that g.τ is again

a polynomial in Γλ. Here τ is a weight vector of Γλ of weight
∑n
i=1−ciφi.

Now fix an n-partition λ such that Q(λ) ⊆ Q. Let ε be the minimal Q-chain of subsets

Ej := {1, . . . , qj} for 1 ≤ j ≤ k. Notate the λ-key monomial ψλ(ε) with ψ. It can be seen that for

all ordered bases f and any p ∈ P , we have ψ(fp) = θλ(p)ψ(f) for a certain scalar θλ(p). Since the

function θλ on P is multiplicative, it defines a character of P that is realized in GL(Cψ). Define an

equivalence relation ∼ on GLn × Cψ by setting (g, z) ∼ (gp, θλ(p)zψ) for any g ∈ GLn and p ∈ P

and z ∈ C. Define a line bundle Lλ on GLn/P to be (GLn × Cψ)/ ∼. There is a contragredient
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representation of GLn on its space of global sections Γ(GLn/P,Lλ): For ξ ∈ Γ(GLn/P,Lλ), a

matrix g ∈ GLn, and coset f ∈ GLn/P , we define g.ξ(f) := ξ(g−1f). The Borel-Weil theorem says

[16, Section 4] that this representation is irreducible with lowest weight −λ.

For the monomial τ of any tabloid T , we more generally have τ(fp) = θλ(p)τ(f) for any f ∈ GLn

and p ∈ P . This is because the right multiplication of ordered bases by p is generated by the column

operations of Lemma 4.5, while the filling of T specifies the rows used to form minors for τ . So τ

can be used to define a section of Lλ that sends the coset fP of GLn/P to the equivalence class

[f, τ(f)ψ] of (GLn × Cψ)/ ∼. Hence Γλ can be viewed as a submodule of the global section space

Γ(GLn/P,Lλ) of this bundle. Since Γ(GLn/P,Lλ) is irreducible, this entire space is realized by Γλ.

It can be seen that the section defined by ψ is a lowest weight vector of Γ(GLn/P,Lλ) for the lowest

weight −λ. Here Theorem 2.16 says that the (semistandard) tableau monomials describe a basis for

Γ(GLn/P,Lλ). Moreover, this basis is a weight basis. Since the lowest weight of Γ(GLn/P,Lλ) is

−λ, the highest weight of Γ(GLn/P,Lλ)∗ is λ. Hence Γ∗λ ∼= Vλ. Since we have allowed λ to have

columns of length n, we can have positive powers of the determinant in our characters. Hence

each of the irreducible polynomial representations of GLn can be realized with some Γ∗λ (for all

Q). If suitable notation were introduced, our treatment could also handle negative powers of the

determinant. Then each of the irreducible rational representations of GLn could be realized with

some Γ∗λ.

The Weyl group W of the semisimple part of g is generated by the simple reflections s1, . . . , sn−1

corresponding to the simple roots. Using the depiction of the simple roots in h∗ above, we can depict

the action of a simple reflection on the φ basis as follows: For 1 ≤ i ≤ n−1 we have si.φi = φi+1 and

si.φi+1 = φi, with si.φj = φj for all other j. By considering only the subscripts here, we can model

the action of W with the group Sn of permutations of [n]. Corresponding to the simple reflection si,

the transposition (i, i+ 1) swaps the values i and i+ 1 in an n-sequence of values from [n]. Given a

permutation π ∈ Sn, write the result of π.(1, 2, . . . , n) in one-row form as (π1, π2, . . . , πn). Then π

models the element w ∈W such that w.φi = φπi for 1 ≤ i ≤ n.

The length of an element w ∈W is the smallest number of simple reflections needed to express

w. Let WJ denote the subgroup of W generated by the reflections sj for j ∈ J . Since Q(λ) ⊆ Q,

it can be seen that the group WJ stabilizes λ. Each coset of W/WJ has a unique minimal length

representative. Let W J ⊆ W denote the set of such representatives. It can be seen that each
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Q-permutation (Section 2.2) models some w ∈W J and any w ∈W J is correspondingly modeled by

some Q-permutation. So the map sending a Q-chain π to the Q-permutation π can be viewed as a

bijection from the set of Q-chains to W J . Under this bijection, our partial order � on Q-chains

agrees [17, Theorem 2.6.3] with the Bruhat order on W restricted to W J . The Weyl group can also

be depicted in GLn relative to H as the group of n× n permutation matrices. Here the Q-chain π

is represented by the matrix sπ from Section 2.3.

Given w ∈W , let vwλ be a weight vector in Vλ of weight wλ. Let Dλ(w) denote the Demazure

B-module C[B].vwλ. Since WJ stabilizes λ, the module Dλ(w) only depends on the coset of w in

W/WJ . So we can name this Demazure module Dλ(π), where π is the Q-chain corresponding to

the representative of this coset in W J .

Using Q-preferred bases, it is can be seen that the flags ϕ(π) for Q-chains π are exactly the H-

invariant Q-flags. The Bruhat cells are the B-orbits of GLn/P . Corollary 4.19 can be strengthened

as follows: Given a Q-chain π, the Schubert variety X(π) is the closure of the Bruhat cell C(π)

in the Zariski topology on GLn/P . This is proved over any algebraically closed field in e.g. [13,

Section 10.6], but since GLn is “split” that proof works here over any field [12]. If one accepts this

substitute for Corollary 4.19, then every result in this paper other than Proposition 4.18 is valid

over any field.

Now fix a Q-chain π. Let Lλ(π) denote the restriction of Lλ to the Schubert variety X(π).

The global section space Γ(X(π),Lλ(π)) of this bundle is not a GLn-module since X(π) is not

GLn-invariant in GLn/P . But X(π) is B-invariant, and so the restriction of the GLn representation

on Γ(GLn/P,Lλ) to the subgroup B induces a representation of B on Γ(X(π),Lλ(π)). It is known

[18] that its dual is isomorphic to the Demazure module defined above: Γ(X(π),Lλ(π))∗ ∼= Dλ(π).

The section defined by the monomial ψλ(ε) is again a lowest weight vector of Γ(X(π),Lλ(π)) for

the lowest weight −λ. The section defined by the monomial ψλ(π) is a highest weight vector

of Γ(X(π),Lλ(π)) for the highest weight −wλ, where w ∈ W is modeled by the Q-permutation

π. Analagously, the vector space Γλ(π) := Γλ/Zλ(π) is not a GLn-module since Zλ(π) is not

GLn-invariant in Γλ. But one can see that the action of B on a tabloid monomial produces a

combination of monomials for tabloids with larger values. Then Zλ(π) is B-invariant, and so the

restriction of the GLn representation on Γλ to the subgroup B induces a representation of B on

Γλ(π). Fact 4.13 and the isomorphism Γλ ∼= Γ(GLn/P,Lλ) above imply that these B-modules
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Γλ(π) and Γ(X(π),Lλ(π)) are isomorphic. Here Theorem 2.18 says that the π-Demazure monomials

describe a basis for Γ(X(π),Lλ(π)). Moreover, this basis is a weight basis. By this isomorphism, we

have Γλ(π)∗ ∼= Dλ(π). Corollary 5.1 gives the character of Dλ(π) as the Demazure polynomial
∑
xT ,

where the sum runs over all π-Demazure tableaux of shape λ. This implies that the dimension of

Dλ(π) is the number of π-Demazure tableaux of shape λ. See the appendix of [7] for more information

concerning the concrete description of the coordinatized Demazure modules of B ⊂ GLn.
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CHAPTER 6

Minuscule Flag Manifolds

6.1 Introduction to Part II

The Grassmann manifold Gr(d, n) is the complex manifold which consists of the d-dimensional

complex subspaces of the vector space Cn. The algebraic study of this manifold dates back to

Julius Plücker in the 1800s. It is the manifold of Q-flags from Section 2.3 where |Q| = 1 and

q1 = d. Embed the Grassmann manifold in projective space using the embedding defined there for

the one-column partition λ = 1d. The homogeneous coordinates for this embedding are called the

Plücker coordinates. Plücker coordinates are usually indexed by d-element subsets of {1, 2, . . . , n},

which we arranged into column tableaux and ordered in Chapter 2. We studied the Plücker

coordinates combinatorially using this index set. In particular, the linear relations we studied among

the monomials for partitions λ = rd for some r ≥ 2 are algebraic relations among the Plücker

coordinates. For r = 2 these quadratic relations are called Plücker relations, and they have a nice

combinatorial formulation.

Grassmann manifolds are examples of generalized flag manifolds, which are constructed as

quotients of semisimple complex Lie groups. The special “minuscule” flag manifolds share many

properties with the Grassmann manifolds. The minuscule flag manifolds are the Grassmann manifolds

(Lie type A), the maximal orthogonal Grassmannians (types B and D), the even quadrics (also type

D), and two “exceptional” manifolds: the complex Cayley plane (type E6) and the Freudenthal

variety (type E7). All flag manifolds can be embedded in projective space. One property that a

minuscule flag manifold shares with the Grassmann manifolds is that its homogeneous coordinates

under its foremost embedding are indexed by a natural partially ordered set (that is a distributive

lattice). Such ordered coordinates are also called Plücker coordinates; the minuscule Plücker relations

are the quadratic relations among them.

We seek a uniform combinatorial description of the quadratic Plücker relations for the minuscule

flag manifolds that is independent of Lie type. We can uniformly describe a certain kind of Plücker
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relation for all minuscule flag manifolds. For the two exceptional cases this leads to a complete

description of all of the Plücker relations, apparently for the first time. The vector space spanned by

the Plücker coordinates is a Lie algebra module. Our approach uses a combinatorial model for these

“minuscule” representations due to Wildberger. For the simply laced Lie algebras, he constructed

these representations with the order filters of the corresponding “minuscule posets.” These are

colored posets whose filters encode the weights of a minuscule representation. Uncolored minuscule

posets and their associated minuscule lattices were introduced by Proctor in the 1980s.

The simplest nontrivial minuscule lattices correspond to the natural representations of the

even orthogonal algebras o(2n) for n ≥ 3. Here the Hasse diagram of the minuscule lattice is a

“double-tailed diamond.” The structure of the relations found in these model cases is also possessed

by the most accessible of the Plücker relations for the other minuscule cases. Our main results can

be summarized as follows:

Theorem 6.1. The “extreme weight” minuscule Plücker relations are “standard straightening laws”

on “double-tailed diamond sublattices” of the Plücker coordinates. These are all of the Plücker

relations for the complex Cayley plane (type E6). For the Freudenthal variety (type E7) we obtain a

complete set of Plücker relations by supplementing the extreme weight relations with seven “zero

weight” relations.

We can explain this statement in more detail once we have the context provided by Section 6.2.

In this chapter we review past results and the necessary representation theory of Lie algebras.

Chapter 7 derives in detail the Plücker relations for a model family of minuscule flag manifolds.

Chapter 8 presents Wildberger’s construction of minuscule representations from minuscule posets.

Chapter 9 develops our main results.

6.2 Known Results

The minuscule flag manifolds in type An are the Grassmann manifolds of d-planes in Cn. In this

case the Plücker coordinates are specified by the one-column tableaux. The relevant n-partitions

from Section 2.3 are the rectangles λ = rd of column length d. Hence every column of a tabloid of

this shape is drawn from the same partially ordered set of column tableaux of length d. In fact,

this order is a distributive lattice. Then a (semistandard) tableau of shape λ is nothing more than

a length r chain in this lattice. Therefore, a standard monomial of degree r for the Grassmann
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manifold is a product of the Plücker coordinates specified by the elements in an r-chain in the

lattice of column tableaux. The relations given in Proposition 3.4 are Plücker relations: A close

inspection reveals that each of these relations re-expresses a product of two Plücker coordinates that

are indexed by an incomparable pair of column tableaux as a signed sum. In Theorem 3.8, we used

such relations to express a nonstandard monomial as a linear combination of standard monomials

that preceded it in a lexicographic order.

These remarkable properties led Eisenbud to introduce the concept of an “algebra with straight-

ening law” in [19]. We recall the definition here. Suppose R is a ring, A an R-algebra, and H a

finite poset contained in A whose elements generate A as an R-algebra. A standard monomial of A

is the product of a chain in H, i.e. an element of the form a1a2 . . . ak with ai ∈ H for each 1 ≤ i ≤ k

and a1 � a2 � · · · � ak.

Definition 6.2. The R-algebra A is an algebra with straightening law on H if:

1. The algebra A is a free R-module whose basis is the set of standard monomials.

2. For each incomparable pair a, b ∈ H, it is required that: If ab =
∑s
i=1 rihi1hi2 . . . hiki

is the

unique expression for ab as a linear combination of standard monomials, then it must be the

case that hi1 � a and hi1 � b for every 1 ≤ i ≤ s. Such a relation is called the straightening

law for the incomparable pair a and b.

In the context of property (1), the straightening laws of property (2) can be shown to algebraically

generate all of the relations in A on the set of generators H: Eisenbud showed that any monomial

M on H can be written as a linear combination of standard monomials through the repeated

application of straightening laws which involve incomparable pairs of factors of M .

Given an R-algebra generated on a poset H, one wants to know explicitly the straightening laws

for as many incomparable pairs in H as possible. For the coordinate ring of a Grassmann manifold,

the relations of Proposition 3.4 for the two column “rectangular” partitions are not themselves

straightening laws. However, the algorithm in Theorem 3.8 uses them to obtain straightening laws in

a finite number of steps. Such a process is called a “straightening algorithm”. Hence the coordinate

ring of the Grassmann manifold under the one-column embedding from Section 2.3 is an algebra

with straightening law on the lattice of column tableaux.

44



As noted above, each minuscule flag manifold has a projective embedding such that its homoge-

neous Plücker coordinates are indexed by a certain natural partially ordered set. We call this its

standard embedding. Seshadri launched the “Standard Monomial Theory” program in [20]; its main

result can be reformulated as follows:

Theorem 6.3 (Seshadri). The coordinate ring of a minuscule flag manifold under its standard

embedding is an algebra with straightening law on its Plücker coordinates.

Seshadri’s proof does not explicitly present the straightening laws. He proved that standard

monomials form a basis without indicating how to express each monomial in the standard monomial

basis. The second condition above follows without explicitly presenting the straightening laws, by

considering the weight properties of a Lie algebra action on the coordinate ring. The straightening

laws themselves are quadratic Plücker relations. We refine our goal to now seek a uniform description

of straightening laws for these coordinate rings. The minuscule Plücker relations we obtain in

Chapter 9 are explicit presentations of some of these straightening laws.

The fact that any monomial in an algebra with straightening law can be written as a linear

combination of standard monomials through the repeated application of its straightening laws is

generally proved by induction on the “indiscreteness” of the algebra. However the coordinate ring

of a flag manifold is special in that it is graded and its Plücker coordinates all have degree one.

Here, given the existence of straightening laws (2) this proof could be approached by implementing

an algorithm similar to the one in the proof of Theorem 3.8. This strategy does not require the a

priori knowledge that the standard monomials span the coordinate ring. Hence the spanning part

of property (1) is deduced from property (2).

The poset of standard minuscule Plücker coordinates is actually a lattice, meaning it has a meet

(∧) and a join (∨) operation. Lakshmibai and Gonciulea used the lattice structure in [21] to study

minuscule flag manifolds. However, they were only able to give the relations that define a certain

flat degeneration of the manifold. Let H be the set of Plücker coordinates for a minuscule flag

manifold X under its standard embedding.

Theorem 6.4 (Gonciulea and Lakshmibai). The minuscule flag variety X degenerates flatly to the

toric variety defined by the relations {ab = (a ∧ b)(a ∨ b)}a,b∈H .
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We will use the lattice structure in Chapter 9 to describe the Plücker relations we obtain. The

“leading term” of one of our relations is indeed the product of the meet and join of the incomparable

pair. Hence the flat degeneration above truncates our straightening laws after one term. We give a

description of all of the terms for our Plücker relations: the standard monomials which appear are

products of “sister” elements in a “double-tailed diamond” sublattice structure.

We know of two type-specific studies of minuscule Plücker relations beyond the Grassmann

manifolds. In 2013, Chirivì and Maffei studied [22] the Plücker relations for the maximal orthogonal

Grassmannians by using Pfaffians to model the Plücker coordinates. They were able to give a

straightening algorithm for the coordinate ring using relations among these Pfaffians. This parallels

the straightening algorithm presented here in Theorem 3.8 for the Grassmann manifolds. Since our

type-independent results only give “extreme weight” Plücker relations, in general those straightening

algorithms produce many more relations for their respective manifolds. Chirivì, Littelmann, and

Maffei briefly considered the Plücker relations of the Freudenthal variety in [23]. There they gave

a single relation which can in principle be used to generate all of the Plücker relations with a Lie

algebra action. Our results for this variety and for the complex Cayley plane go much further: We

explicitly state all of the relations for the complex Cayley plane and the seven zero weight relations

for the Freudenthal variety. Our method of generating relations can be applied to produce the other

(extreme) 126 relations for the Freudenthal variety.

Within the context established above, we can now explain Theorem 6.1 in more detail. Our goal

is:

Problem 6.5. Describe as many of the straightening laws for the coordinate rings of the standard

embeddings of minuscule flag manifolds as possible.

We describe the most accessible of these straightening laws. They are all of the same form as the

single straightening law for a model o(2n) example. This straightening law is “supported” by a

double-tailed diamond lattice. In particular, the “first” term in the straightening law is the product

of the meet and join of the incomparable pair. In general the set of straightening laws we describe

is not the entire set of straightening laws. But in the cases where we obtain all of the straightening

laws, including the complex Cayley plane and the Freudenthal variety, these laws can be used to

give constructive algorithmic proofs that the standard monomials span the coordinate rings.
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6.3 Minuscule representations

Fix a simple complex Lie algebra g of rank n with Borel subalgebra b and Cartan subalgebra h.

Let Φ ⊂ h∗ denote the set of roots. Let S denote the nodes of the Dynkin diagram. In this section

we index these nodes as in [24]. We normalize the Killing form on g so that in the induced inner

product (· , ·) on h∗R, every long root α satisfies (α, α) = 2. Let {hα}α∈Φ denote the coroots in h,

and let 〈λ, α〉 := λ(hα) = 2(λ,α)
(α,α) to be the application of a weight λ to the coroot for α. Let {αi}i∈S

in Φ and {ωi}i∈S in h∗ denote the simple roots and the fundamental weights. The Weyl vector ρ is

the sum of fundamental weights or, equivalently, the half sum of positive roots. Let W be the Weyl

group of Φ, which acts on h∗R by reflection over the root hyperplanes. The Weyl group is generated

by the simple reflections {si}i∈S over the simple root hyperplanes. There is a standard partial order

on the set of weights: For weights λ, µ ∈ h∗ we write µ � λ if λ− µ is a nonnegative integral sum of

the simple roots. A weight λ is said to be dominant integral if 〈λ, α〉 is a nonnegative integer for

every positive root α. Given a dominant integral weight λ, let Vλ denote the irreducible g-module

of highest weight λ as constructed in [24, Section 20]. Every finite dimensional irreducible g-module

is isomorphic to Vλ for some dominant integral weight λ.

Definition 6.6. A dominant integral weight λ ∈ h∗ is minuscule if every weight of the irreducible

g-module Vλ lies in the Weyl group orbit of λ. The following is the complete list of minuscule

weights by Lie type:

Type An: ω1, . . . , ωr; Type Bn: ωn; Type Cn: ω1; Type Dn: ω1, ωn−1, ωn;

Type E6: ω1, ω6; Type E7: ω7.

Given a minuscule weight λ, a module isomorphic to Vλ is called a minuscule representation

of g. It is small in the following sense: Every finite dimensional highest weight module has a

non-empty weight space for each weight in the Weyl group orbit of its highest weight. In a minuscule

representation, there are no other weights.

The weights of any finite-dimensional g-module form an interval in the integral weight lattice

under the order �. Hence they form a finite distributive lattice. We call this lattice a minuscule

lattice and denote it Lλ. Any weight basis of a minuscule g-module is in bijection with the lattice

of its weights. Hence, we focus our study of minuscule representations on the minuscule lattice Lλ.
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CHAPTER 7

A model family of minuscule flag manifolds

7.1 Classical geometry approach

In this chapter we find the sole Plücker relation for each flag manifold in a family of model exam-

ples, the even quadrics. These minuscule flag manifolds correspond to the natural representations

of the type Dr Lie algebras o(2r). We will work through these fundamental examples from two

viewpoints. We begin in this section with the classical geometric approach, written to be accessible

to everyone. We then proceed in the next section with a method based on representation theory.

The representation theoretic approach is later reused in the general case.

Let V be a 2r-dimensional complex vector space equipped with a nondegenerate bilinear form

〈·, ·〉. All such spaces are isomorphic, so we have the freedom to take a basis of V such that the

form’s matrix is any nonsingular symmetric matrix we choose. Our choice of matrix will be informed

by the following:

Definition 7.1. A vector v ∈ V is isotropic if it satisfies 〈v, v〉 = 0. A line L ⊂ V is istropic if any

vector which spans L is an isotropic vector.

The set of isotropic lines of V is a subset of the projective space P(V ), the set of all lines of V . We

want to show that this subset is a variety by finding its defining equations.

Now we choose the matrix of our bilinear form. Since we are interested in isotropic lines, we

choose a basis of isotropic vectors. Now we take advantage of the foreknowledge that the minuscule

lattice Lθ associated to this example is the double-tailed diamond lattice pictured in Figure 7.2. For

r = 1, the double-tailed diamond consists of two unordered elements. There is an intuitive way to

pair the elements of the lattice according to its rank symmetry. Since there is no natural order to

the two middle rank elements, we denote this incomparable pair 0] and 0[. We name the elements

in the upper tail 1, 2, . . . , r − 1 going up from the incomparable pair and their paired elements

in the lower tail 1, 2, . . . , r − 1 going down. We index our basis of V with these lattice elements
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Figure 7.2: The double-tailed diamond lattice Lθ.

vr−1, . . . , vr−1, resisting the urge to unnaturally order the elements 0] and 0[. We want the only

nonzero pairings of basis vectors in our bilinear form to be 〈v0] , v0[〉 and 〈vi, vi〉 for 1 ≤ i ≤ r − 1.

To obtain a “clean” action of the Lie algebra o(V ) which stabilizes our form (as will be evident

later), we alternate the values of these pairings between +1 and −1. The incomparable pair 0] and

0[ is taken as the starting point; hence we have 〈v0] , v0[〉 = 1, 〈v1, v1〉 = −1, 〈v2, v2〉 = 1, and so

on. The matrix B of our bilinear form is displayed in Figure 7.3, where the middle two rows and

columns corresponding to 0] and 0[ can be taken in either order.

Figure 7.3: The matrix representing our bilinear form.

We use the bilinear form to create the dual basis vr−1 := 〈vr−1, ·〉, . . . , vr−1 := 〈vr−1, ·〉 of the

vector space V ∗. Using these as coordinate functions, a vector x ∈ V can be written as the 2r-tuple

(vr−1(x), . . . , vr−1(x)) of its valuations by the dual basis vectors. Let L be a line in V , which is an

element of the projective space P(V ). The line L is specified by its projective coordinates, which is an
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equivalence class of 2r-tuples where two 2r-tuples are equivalent if they differ by a nonzero scaling.

Here if x ∈ V spans the line L, then L = [(vr−1(x), . . . , vr−1(x))]. The following characterization of

isotropic lines is the coordinatized expression of the quadratic form associated to our bilinear form:

Proposition 7.4. The subset of isotropic lines in P(V ) is the zero set of the single quadratic

equation

v0]
v0[ − v1v1 + · · ·+ (−1)r−1vr−1vr−1 = 0.

Hence the set of isotropic lines of V is a projective variety. We can solve for the product v0]
v0[ to

obtain the following relation:

v0]
v0[ = v1v1 − · · ·+ (−1)rvr−1vr−1.

For this example the coordinates vr−1, . . . , vr−1 were our Plücker coordinates, and the relation

above is a Plücker relation. We have written it in the form of a straightening law on the double-tailed

diamond lattice Lθ. This proposition verifies Seshadri’s theorem for the even quadrics. Also notice

that 0] ∧ 0[ = 1 and 0] ∨ 0[ = 1, and so the leading term on the right hand side of the straightening

law is the product of the meet and join of the incomparable pair. Lastly, note that the last sign in

the above relation depends on the parity of r. This is a common phenomenon for type Dr objects.

7.2 Representation theory approach

In this section, we want to derive the relation of Proposition 7.4 in a representation theory

context. This approach uses more sophisticated machinery, but it has the advantage of generalizing

to other minuscule flag manifolds. We continue to refer to the terminology from Section 7.1.

Let o(V ) be the orthogonal Lie algebra for V , i.e. the algebra of matrices M such that

BM +MTB = 0 that is equipped with the commutator bracket. The following is a well-known fact:

Fact 7.5. For r ≥ 3, the Lie algebra o(V ) is simple with root system of type Dr. The representation

of o(V ) over V is irreducible. Its highest weight is the fundamental weight associated to the top node

of the type D Dynkin diagram in Figure 7.6.

We denote this fundamental weight θ. From now on, assume r ≥ 3. Note that we have labelled

our Dynkin diagram with indices that are related to the indices for our basis of V . This is because
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Figure 7.6: A labeling of the type Dr Dynkin diagram.

the simple roots correspond to the transitions between “adjacent” basis vectors. We defer the full

description of the representation of o(V ) to the next section. For now we only need the following:

Fact 7.7. With respect to the conventions of Section 7.3, the vector vr−1 is a highest weight vector

of V .

The ring generated by the coordinates of V is denoted Sym(V ∗). There is a natural representation

of o(V ) on Sym(V ∗). The o(V )-module Sym2(V ∗) decomposes into a direct sum U(o(V )).(vr−1)2⊕I

of o(V )-submodules for a unique submodule I. A result of Kostant relates this representation to

the coordinate ring of the variety of isotropic lines:

Proposition 7.8. The quotient of Sym(V ∗) by the ideal generated by the submodule I ⊂ Sym2(V ∗)

is the homogeneous coordinate ring of the variety of isotropic lines in P(V ).

Hence the study of the Plücker relations for the variety of isotropic lines in P(V ) has been

converted to the study of a submodule I ⊂ Sym2(V ∗). The following lemma corresponds to the

fact that Proposition 7.4 used only a single equation to define the variety of isotropic lines.

Lemma 7.9. The submodule I ⊂ Sym2(V ∗) has dimension 1.

Proof. From Proposition 7.8, we have dim(I) = dim[Sym2(V ∗)]−dim[U(g).(vr−1)2]. Since dim(V ) =

2r, we have dim[Sym2(V ∗)] =
(2r+1

2
)
.

Since vr−1 spans the highest weight space of V , we have that (vr−1)2 spans the highest weight

space of Sym2(V ∗) of weight 2θ. We can compute the dimension of the module U(g).(vr−1)2 ∼= V2θ

by using the Weyl dimension formula. Rather than evaulate the full formula, we compare it to the

formula for dim(Vθ):

dim(V2θ) =
∏
α�0

〈2θ + ρ, α〉
〈ρ, α〉

=
∏
α�0

〈2θ + ρ, α〉
〈θ + ρ, α〉

〈θ + ρ, α〉
〈ρ, α〉

= dim(Vθ)
∏
α�0

〈2θ + ρ, α〉
〈θ + ρ, α〉

= 2r
∏
α�0

〈2θ + ρ, α〉
〈θ + ρ, α〉

.
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Index the simple roots of the type Dr root system as in Figure 7.6. The weight θ is the

fundamental weight ωr−2. When the positive roots are written in the simple root basis, we see that

for roots α with no αr−2 component we have 〈2θ + ρ, α〉 = 〈θ + ρ, α〉 and the corresponding factor

in the formula above is 1. The positive roots with nonzero αr−2 component are:

αr−2

αr−3 + αr−2
...

α1 + α2 + · · ·+ αr−2

α] + α1 + α2 + · · ·+ αr−2

α[ + α1 + α2 + · · ·+ αr−2

α] + α[ + α1 + α2 + · · ·+ αr−2

α] + α[ + 2α1 + α2 + · · ·+ αr−2
...

α] + α[ + 2α1 + 2α2 + · · ·+ 2αr−3 + αr−2.

Denote this set Φr−2. Then one can compute
∏
α�0

〈2θ+ρ,α〉
〈θ+ρ,α〉 as:

∏
α∈Φr−2

〈2θ + ρ, α〉
〈θ + ρ, α〉

= 3 · 4 · · · r(r + 1)(r + 1)(r + 2)(r + 3) · · · (2r − 1)
2 · 3 · · · (r − 1)r · r(r + 1)(r + 2) · · · (2r − 2) = (r + 1)(2r − 1)

2r .

Finally we have obtained dim(V2θ) = (r+1)(2r−1)
2r 2r = 2r2 + r − 1 = (2r + 1)r − 1 =

(2r+1
2
)
− 1.

To find a vector that spans I, we make use of the following lemma:

Lemma 7.10. Let Ω ∈ U(o(V )) denote the universal Casimir operator for o(V ). The image of the

operator Ω− 4r on Sym2(V ∗) is contained in the submodule I.

Proof. The universal Casimir operator acts by a scalar on each irreducible component of Sym2(V ∗).

The component U(g).(vr−1)2 is irreducible with highest weight 2θ. Hence by [24, Section 22.3], the

Casimir operator acts on it by the scalar (2θ+ρ, 2θ+ρ)−(ρ, ρ) = 4[(θ, θ)+(θ, ρ)] = 4[1+(r−1)] = 4r.

Any vector of Sym2(V ∗) can be written as u+ w with u ∈ U(g).(vr−1)2 and w ∈ I. Then we find

that (Ω− 4r).(u+ w) = Ω.u− 4r.u+ (Ω− 4r).w = 4r.u− 4r.u+ (Ω− 4r).w = (Ω− 4r).w.

The following is the main proposition of this section. Its proof requires a detailed description of

the action of the Casimir operator Ω on Sym2(V ∗) and is postponed to the next section.
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Proposition 7.11. The submodule I ⊂ Sym2(V ∗) is spanned by the alternating sum:

v0]
v0[ − v1v1 + v2v2 − · · ·+ (−1)r−1vr−1vr−1.

Hence the following relation has been re-obtained in the quotient Sym2(V ∗)/I:

v0]
v0[ = v1v1 − v2v2 + · · ·+ (−1)rvr−1vr−1.

7.3 Concrete Lie algebra actions

Here we explicitly describe the actions of a basis of o(V ) on our basis of V , using the labelling

of the Dynkin diagram in Figure 7.6. Then we prove Proposition 7.11.

For elements i, j of the double-tailed diamond lattice Lθ which indexes our basis of V , let Eij

denote the linear transformation which sends vj to vi and all other basis vectors to zero. Recall

that a matrix M belongs to o(V ) if BM +MTB = 0, where B is the matrix of our bilinear form. It

is straightforward to check that the following r diagonal matrices form a basis for the subspace of

o(V ) consisting of diagonal matrices:

h] = (E1,1 − E0],0])− (E1,1 − E0[,0[) h[ = (E1,1 − E0[,0[)− (E1,1 − E0],0])

h1 = (E2,2 − E1,1)− (E2,2 − E1,1)
...

hr−2 = (Er−1,r−1 − Er−2,r−2)− (Er−1,r−1 − Er−2,r−2)

Here we can take the subalgebra of diagonal matrices as our Cartan subalgebra, for which these

vectors form a basis. We also take the subalgebra of upper triangular matrices as our Borel

subalgebra. The fact that the indices 0] and 0[ are unordered causes no confusion here: it can be

seen that for a matrix M to satisfy BM + MTB = 0, both the (0], 0[) and (0[, 0]) entries of M

must be zero. With these conventions, the above basis of our Cartan subalgebra is the usual simple

coroot basis as indexed by Figure 7.6. Define the coroots {hα} for the non-simple roots α as sums

of the above, according the simple root expansions of the corresponding roots. One can check that

the following are simple root vectors:

e] := E1,] + E[,1 e[ := E1,[ + E],1
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e1 := E2,1 + E1,2
...

er−2 := Er−1,r−2 + Er−2,r−1

Note that each of these simple root vectors is formed from a pair of transitions between basis vectors

of V . These transitions follow covering relations in the lattice Lθ. The nonnegative action of these

simple root vectors on our basis is our reward for choosing the alternating ±1s in the matrix B for

our bilinear form.

When expressed as a sum of simple roots, there are three types of positive roots in a type D root

system: those with no ]/[ component, those with either a ] or a [ component, and those with both a

] and [ component. The first type is of the form α := αi+αi+1 + · · ·+αj for some 1 ≤ i ≤ j ≤ r− 2.

Our preferred root vector for such a root is eα := Ej+1,i + (−1)j−iEi,j+1. The second type is of the

form α := α? +α1 + · · ·+αi for some 0 ≤ i ≤ r− 2 and ? ∈ {], [}. Take ? to be the opposite of ? in

{], [}. Our preferred root vector for such a root is eα := Ei+1,0? + (−1)iE0?,i+1. Finally, the last

type of root is of the form α := α] +α[ + 2α1 + · · ·+ 2αi +αi+1 + · · ·+αj for some 0 ≤ i < j ≤ r− 2.

Our preferred root vector for such a root with i = 0 is eα := Ej+1,i + (−1)j+1Ei,j+1. Our preferred

vector for such a root with i > 0 is eα := Ej+1,i + (−1)j−iEi,j+1. These choices correspond to a

specific realization of a construction of Wildberger that appears in Section 8.2. For each root α we

use the matrix fα := eTα as our negative root vector. The triple {eα, fα, hα} is a standard sl2 triple.

Fact 7.7 is now evident. To prove Proposition 7.11, we must recall the mechanics of a dual

representation. For an element g ∈ o(V ) and functional φ ∈ V ∗, the action of g on φ is the

functional defined by (g.φ)(v) = φ(−g.v) for all v ∈ V . Now we take advantage of the presentation

of V ∗ afforded by our bilinear form. We wish to find the action of the element g ∈ o(V ) on one

of our basis vectors vj = 〈vj , ·〉 for V ∗. The resulting functional pairs with a vector vi ∈ V by

g.vj(vi) = vj(−g.vi) = 〈vj ,−g.vi〉 = 〈g.vj , vi〉, where the last equation uses the defining property of

o(V ). Hence g.vj(vi) = vi(g.vj). This implies that if we use our dual sets of coordinates to write

matrices for endomorphisms of V and of V ∗, then the (i, j) entries of the matrices for the dual

representations of g are equal. Therefore to describe the dual representation we can use the same

matrices as for the original representation.

Proof of Proposition 7.11. By Lemmas 7.9 and 7.10, any nonzero element in the image of Ω− 4r
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on V ∗ spans the submodule I. We compute (Ω− 4r).(v0]
v0[) and check that it is nonzero.

Let S denote the set of nodes of the Dynkin diagram of g, and let {hi}i∈S be the basis of the

Cartan subalgebra that is dual in our normalized Killing form to the simple coroot basis {hi}i∈S

defined above. Since g is simply laced, every root α satisfies (α, α) = 2. Hence the coroot hα

produces the root α via the Killing form by α = (hα, ·). Then in our normalized Killing form we

have (eα, fα) = 1. Therefore the universal Casimir operator Ω ∈ U(g) can be expressed as in [25] by

the following sum of three terms:
∑
α∈Φ+ hα +

∑
i∈S h

ihi + 2
∑
α∈Φ+ fαeα.

The first term
∑
α∈Φ+ hα acts on a weight space of weight µ by the scalar µ(

∑
α∈Φ+ hα). Since

the vector v0]
v0[ has weight 0, the result of this part of the action is the zero vector. By [24, Section

22.3], the second term
∑
i∈S h

ihi acts on a weight space of weight µ by the scalar (µ, µ). Again, the

result of this part of the action on v0]
v0[ is the zero vector. We compute the action of the final

term 2
∑
α∈Φ+ fαeα by using the Leibniz rule twice:

2
∑
α∈Φ+

fαeα(v0]
v0[) = 2

∑
α∈Φ+

[
(fαeαv0])v0[ + (eαv0])(fαv0[) + (fαv0])(eαv0[) + v0](fαeαv0[)

]
.

When α is not of our second type, all four summands are 0. For ? ∈ {], [}, denote by Φ? the

set of r − 1 roots {α?, α? + α1, . . . , α? + α1 + · · · + αr−2} of our second type. Again take ? to

be the opposite of ? in {], [}. Fix a root α = α? + · · · + αi ∈ Φ?. For this root the first and

last summand are (fαeαv0?)v0? = (E0?,i+1Ei+1,0?v0?)v0? = v0?
v0? and v0?(fαeαv0?) = 0. We have

obtained v0]
v0[ once for each of the 2(r − 1) roots of Φ] ∪ Φ[. For the second and third summands

we have (eαv0?)(fαv0?) = (Ei+1,0?v0?)((−1)iEi+1,0?v0?) = (−1)ivi+1vi+1 and (fαv0?)(eαv0?) = 0.

We can see that we have obtained each of the vi+1vi+1 terms for 0 ≤ i ≤ r − 2 twice across the

roots Φ] ∪ Φ[.

Collecting like terms of Ω.(v0]
v0[) we find:

Ω.(v0]
v0[) = 4(r − 1)v0]

v0[ + 4v1v1 − 4v2v2 + · · ·+ (−1)r4vr−1vr−1.

Hence the desired vector is:

(Ω− 4r).(v0]
v0[) = −4v0]

v0[ + 4v1v1 − 4v2v2 + · · ·+ (−1)r4vr−1vr−1.
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CHAPTER 8

Minuscule posets

8.1 Introduction to minuscule posets

For a simply laced Lie algebra g, Wildberger constructed its minuscule representations using

minuscule posets. We want to use this realization of the minuscule representations to produce some

minuscule Plücker relations. Recall that the weights of a minuscule representation form a finite

distributive lattice. It is well known that every finite distributive lattice is isomorphic to the lattice

of “order filters” on its subposet of “meet irreducible” elements, as we recall below. In this fashion,

a minuscule poset distills the lattice of weights of a minuscule representation into a smaller poset.

These smaller posets are “d-complete” and are colored by the nodes of the Dynkin diagram so that

they become “colored d-complete” posets [26].

An element of a lattice is meet irreducible if it is covered by exactly one other element of the

lattice. Let L be a finite distributive lattice, and let P be its sub-poset of meet irreducible elements.

An order filter of the poset P is a subset J ⊆ P such that if x ∈ J and x � y, then y ∈ J . The

lattice L is isomorphic to the lattice J(P ) of order filters of P ordered by reverse inclusion. The

meet (∧) and join (∨) operations on the lattice of order filters are the union and intersection

operations on filters respectively. (Our order dualizations of the usual conventions have been chosen

for Lie-theoretic considerations.)

Definition 8.1. A minuscule poset Pλ is the subposet of the meet irreducible elements in the

distributive lattice Lλ of weights which occur in a minuscule representation Vλ.

The above definition of minuscule poset is the most appropriate for this dissertation. However,

they can also be naturally defined as a certain subset of the poset of coroots [27, Theorem 11]. That

alternative definition is more direct in that it does not use the above correspondence between a

finite distributive lattice and its poset of meet irreducible elements.

The following notation was established in [27]. Let g be a simple Lie algebra of Lie type Xr.
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Let ωj be a minuscule weight as in Definition 6.6. The minuscule poset arising from the g-module

Vωj is denoted xr(j). See Figure 8.2 for the Hasse diagrams of the minuscule posets. When Xr

is simply laced, the “top tree” of each poset is the corresponding Dynkin diagram and then the

maximal element is the node of the minuscule weight in that diagram.

Figure 8.2: The Hasse diagrams of the minuscule posets. Clockwise from
top left: an(j), dn(1), e7(7), e6(1) ∼= e6(6), bn(n) ∼= dn(n− 1) ∼= dn(n).

For the remainder of the chapter fix a simple Lie algebra g and a minuscule weight λ. Let Lλ

denote the lattice of weights in Vλ, and simply use P to denote the minuscule poset Pλ ⊆ Lλ. The

properties of minuscule posets used in this section were established by Proctor for the simply laced

cases [27, 28, 26] and (under the name “minuscule heaps”) by Stembridge [29]. Let S be the set

of nodes of the Dynkin diagram of g. The minuscule poset P is naturally colored by the function

κ : P → S as follows: Let µ ∈ Lλ be a meet irreducible weight of Vλ. Then µ is covered by exactly

one weight ν ∈ Lλ. The difference ν − µ is a simple root. The color κ(µ) is the index of this root.

The elements of a given color in a minuscule poset form a chain. No element is covered by another

element of the same color. The interval between consecutive elements of the same color contains

every element covered in P by the maximal element of the interval. If an element x ∈ P covers an
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element y ∈ P , then their colors κ(x) and κ(y) are adjacent. Elements whose colors are adjacent in

the Dynkin diagram are comparable.

The Weyl group acts naturally on the lattice Lλ of weights in Vλ. This action can be described

combinatorially with the lattice J(P ) of order filters in P . We first need some definitions: Fix a

filter J ⊆ P and a color i. Since the elements of color i form a chain, there is at most one element

x ∈ J with κ(x) = i such that J \ {x} is a filter. We say that such an element x (which must

be minimal in J) and its color i are removable from J . Similarly, there is at most one element

y ∈ P \ J with κ(y) = i such that J ∪ {y} is a filter. We say that such an the element y (which

must be maximal in P \ J) and its color i are available to J . Since no element in a minuscule poset

is covered by another element of the same color, no color is both removable from and available to a

given filter.

Proposition 8.3. Let P ⊂ Lλ denote the colored minuscule poset of meet irreducible weights of the

minuscule representation Vλ. The action of a simple reflection si ∈W on the weight in Lλ ∼= J(P )

specified by an order filter J ⊆ P is given by the following:

si.J =



J \ {x} if there exists x removable from J with κ(x) = i

J ∪ {y} if there exists y available to J with κ(y) = i

J otherwise.

8.2 Wildberger’s construction of minuscule representations

Recall that a weight basis for the minuscule representation Vλ is indexed by the elements of its

finite distributive lattice Lλ of weights. This lattice in turn is realized by the lattice J(P ) of order

filters in the corresponding minuscule poset. Hence each vector in a weight basis of Vλ corresponds

to a filter in J(P ). Wildberger constructed the minuscule representations for simply laced Lie

algebras combinatorially from minuscule posets [30]. We detail his construction below.

Assume that our simple Lie algebra g is simply laced. Let S be the set of nodes of the Dynkin

diagram of g, and let {hi}i∈S denote the simple coroot basis of the Cartan subalgebra. For each

i ∈ S, choose any positive simple root vector ei ∈ gαi . Let fi ∈ g−αi be the negative simple root

vector such that [ei, fi] = hi. The collection of root vectors {ei, fi}i∈S generates g. Here we realize
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the minuscule representation on the vector space VJ(P ), which is spanned by linearly independent

vectors {J |J ⊆ P an order filter}: We are labeling a basis vector by writing the name of its order

filter in calligraphic font. It is understood that when we invoke a filter operation on a vector J

associated to the order filter J , we are indicating the vector associated to the result of the filter

operation on J .

Proposition 8.4. For each basis vector J ∈ VJ(P ) define the following actions:

ei.J :=


J \ {x} if there exists x removable in J with κ(x) = i

0 otherwise

fi.J :=


J ∪ {y} if there exists y available to J with κ(y) = i

0 otherwise.

These actions generate an irreducible representation of g on VJ(P ) that is isomorphic to Vλ. Moreover,

the vectors hi act by

hi.J =



J if color i is available to J

−J if color i is removable in J

0 otherwise.

Hence each vector J is a weight vector of VJ(P ).

There are two special order filters in every poset: the empty filter and the full poset. The vectors

in VJ(P ) for these filters are denoted ℵ and ℵ respectively. It is easy to see that ℵ is a highest weight

vector for g with weight λ. The weight of a vector J is λ−
∑
x∈J

ακ(x); this follows from the action of

the vectors fi.

With respect to the simple root vectors chosen above and our fixed minuscule weight λ, Wildberger

chose a special basis of non-simple root vectors in g. The definition of this basis relies on a notion

generalizing that of the color of a single element of P . Recall the following property of subposets: A

convex subset R ⊂ P is a subset such that x, y ∈ R and x � z � y implies z ∈ R. Equivalently, R is

convex if it can be written as the difference of two filters of P .

Definition 8.5. For a positive root α, an α-layer is a convex subset R ⊆ P such that its color
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census satisfies
∑
x∈R

ακ(x) = α.

Consider the following partial order on the set of α-layers: For two α-layers R1, R2 we say that

R1 � R2 if R1 is contained in the filter generated by R2. Wildberger showed that for each α ∈ Φ+

there is a unique α-layer Rα in P that is minimal with respect to this order. Extend the definitions

of removable and available elements for a filter to convex sets. Now orient the Dynkin diagram

outwards from the node corresponding to the fundamental weight λ. For each edge x→ y of the

Hasse diagram of the minuscule poset P , the colors κ(x) and κ(y) are adjacent in the Dynkin

diagram. Orient this edge of the Hasse diagram of P to agree with the orientation of the Dynkin

diagram.

For a positive root α ∈ Φ+, Wildberger’s choice of root vector eα ∈ gα acts by

eα.J :=


ε(R)J \ R if there exists an α-layer R removable from J

0 otherwise,

where ε(R) is the parity of the α-layer R as defined in [30]. Wildberger defined the parity in terms

of a “heap” defining the α-layer. There the parity ε(R) is defined to be (−1)c where c counts the

number of “X-switches” needed to transform the heap for R into the heap for Rα. In terms of

the oriented Hasse diagram, the exponent c counts the edges in R oriented differently than the

corresponding edge in Rα. In particular if the simple root expansion of α has coordinates only 0

or 1, then all edges of the minimal layer Rα are oriented downwards. In this case, the exponent c

counts the number of upward oriented edges in R. The corresponding root vector fα ∈ g−α where

[eα, fα] = hα acts by

fα.J :=


ε(R)J ∪R if there exists an α-layer R available to J

0 otherwise.

The case where the minuscule poset P is the double-tailed diamond dr(1) (of cardinality 2r − 2)

corresponds to the representation of o(V ) from Section 7.2 on the space V . The double-tailed

diamond lattice (of cardinality 2r) in that section can be viewed as the lattice J(P ). We develop new

notation for this realization of that important family of model cases. First, label the incomparable
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pair of elements in dr(1) as z] and z[. Then from the middle rank outward, label its tail elements

y+/−, x+/−, . . . , a+/− using + for elements on the upper tail and − for elements on the lower

tail. Let Z]/[ denote the principal filters 〈z]/[〉. Let Y +, X+, . . . , A+ denote the r − 2 principal

filters 〈y+〉, 〈x+〉, . . . , 〈a+〉 contained in the upper tail. Let Y −, X−, . . . , A− denote the r − 2 filters

〈y−〉 \ y−, 〈x−〉 \ x−, . . . , 〈a−〉 \ a−. The remaining two filters are ∅ and P = dr(1) itself. Define

a map φ : V → Vdr(1) by linearly extending the map v0]/[ 7→ Z]/[, v1 7→ Y+, . . . , vr−2 7→ A+,

vr−1 7→ ℵ; v1 7→ Y−, . . . , vr−2 7→ A−, vr−1 7→ ℵ. The map φ is an isomorphism of o(2r)-modules.

Moreover, one can check that the respective actions of the root vectors chosen here and in Section 7.2

agree under this map.
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CHAPTER 9

Extreme weight Plücker relations

9.1 Representation theory setting

By a theorem of Kostant, the Plücker relation problem for flag varieties can be translated entirely

into the language of representation theory. This is the language we use in this chapter. A guide on

how to interface the results of this chapter with the geometry of flag varieties is given in Section 9.7.

In particular, there we address the need to use dual modules for the geometric structure of interest.

Fix any simply-laced simple Lie algebra g of rank n and minuscule weight λ. Let P := Pλ denote

the minuscule poset within the corresponding lattice Lλ of weights. Using the filters of P , construct

Wildberger’s realization VJ(P ) of the minuscule representation Vλ of g. Recall that ℵ denotes a

highest weight vector of VJ(P ). The following is the representation theoretic formulation of the

Plücker relation problem for the associated minuscule flag manifold:

Problem 9.1. The g-module Sym2(VJ(P )) decomposes into a direct sum U(g).(ℵ)2⊕ I of g-modules

for a unique submodule I. The Plücker relations for the flag manifold are depicted by the nonzero

vectors of I. Find a spanning set (or basis) for I.

By setting one of these nonzero vectors to 0, we produce a corresponding quadratic relation for

the coordinate ring of the flag manifold. So henceforth we refer to a nonzero vector of I itself as a

Plücker relation. If the Plücker relation has only one product of incomparable elements of Lλ when

it is written in the usual basis for Sym2(VJ(P )), then the remaining terms are standard monomials.

Therefore such a Plücker relation provides a straightening law for the coordinate ring. The Plücker

relations that we find will give straightening laws; this is how we choose to display them (compare

to Proposition 7.11).

Before we begin, we use Seshadri’s theorem to make some expository comments. (Seshadri’s

theorem is not used for any of the theorems proved here.) First note that a basis for Sym2(VJ(P ))

is given by unordered pairs of basis vectors of VJ(P ). We indexed our basis of VJ(P ) with the filters
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J(P ). These filters also model the weights Lλ. Hence dim[Sym2(VJ(P ))] is the number of unordered

pairs of elements in Lλ. By Seshadri’s theorem (and the geometric content of Section 9.7) the

quadratic standard monomials on Lλ, which are products of two comparable elements, form a

basis of Sym2(VJ(P ))/I. Hence dim[U(g).(ℵ)2] is the number of comparable pairs of elements in Lλ,

and dim(I) is the number of incomparable pairs. In particular, the straightening laws for these

incomparable pairs form a basis for I. We want to produce the straightening law for as many of the

incomparable pairs in Lλ as possible.

It can be seen directly that if the poset P (or equivalently the lattice Lλ) is a chain, then

U(g).(ℵ)2 = Sym2(VJ(P )). Hence in this case I = 0 and there are no Plücker relations. So we will

assume that P is not a chain.

As in Section 7.2, we use the Casimir operator to study the submodule I. First, we obtain a

highest weight vector of I for g. In the model cases P = dn(1), this vector alone forms a basis for

I. (When n = 3 we have a3(2) ∼= d3(1), and when n = 4 we have d4(3) ∼= d4(4) ∼= d4(1). Hence we

also already have a basis for I in these small cases.) The highest weight vector we find will give a

straightening law in the corresponding coordinate ring. (So in these cases we also have an explicit

presentation of the only straightening law.) Let η denote this highest weight of I. We will see how

to use Seshadri’s theorem to see that every highest weight of I is dominated by η. Hence we will

know that η is in fact the unique maximal weight of I. The weights in the Weyl group orbit of η

are also weights of I. We call these extreme weights.

Definition 9.2. An extreme weight Plücker relation is a nonzero weight vector of I that has weight

w.η for some w ∈W .

We will see that there is a unique Plücker relation of weight η, up to scalar multiple. By the

W -symmetry of weight space dimensions, we know that up to scalar multiple there is a unique

extreme weight Plücker relation for each weight in the W -orbit of η. These extreme weight Plücker

relations all belong to the same foremost irreducible g-submodule of I. We describe each of these

|W.η| extreme weight vectors for I in terms of the order structure of the elements of its “support”

in Lλ. In particular, we will see directly that these extreme weight relations are straightening laws.

Moreover, we will show that these straightening laws have the same double-tailed diamond form as

the single straightening law for the model variety of isotropic lines that was obtained in Chapter 7.
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If I itself happens to also be a minuscule g-module, then every weight of I is an extreme weight.

In this case, the extreme weight Plücker relations form a basis of all of the Plücker relations. Here

we are presenting the straightening law for every incomparable pair in Lλ. For P = e6(1) and

P = e6(6), we will see that I is minuscule. It can be seen that I is also minuscule for P = an(2) and

P = an(n− 1). A “quasiminuscule” representation is an irreducible representation in which every

nonzero weight lies in the Weyl group orbit of its highest weight. If I is quasiminuscule, then the

extreme weight Plücker relations give the straightening law for all but the zero weight incomparable

pairs in Lλ. For the remaining exceptional case P = e7(7), we will see that I is quasiminuscule. The

zero weight space of I in this case is seven dimensional. So seven straightening laws are not given

by the extreme weight Plücker relations. We compute these seven remaining straightening laws

by hand to fill out a basis of Plücker relations. So in these cases we solve Problem 9.1 completely.

As mentioned in Section 6.2, we could use these complete lists of straightening laws to prove that

standard monomials span the coordinate rings in these cases. A counting argument proves their

linear independence. So we can also verify Seshadri’s theorem in these cases. We do not obtain a

full spanning set for the submodule I for the remaining minuscule posets.

In type A we will find that these extreme weight straightening laws express the product of an

extreme incomparable pair as the product of their meet and join minus only one other term. We

have found a description for this last term that uses a method of specifying the two needed filters of

the minuscule poset an(j) with certain Young diagrams. We state this result in Section 9.6 without

proof. A proof will be included in a future paper based upon Part II of this dissertation.

9.2 Highest weight relation

Let P := Pλ ⊂ Lλ be a simply laced minuscule poset that is not a chain. Let S denote the

set of nodes of the Dynkin diagram of g. Recall that the top tree of P is this Dynkin diagram, so

its elements correspond to simple roots of g. Notice that at the top of P there is a double-tailed

diamond subposet, i.e. an order filter that is isomorphic to the minuscule poset dr(1) for some

r ≤ n. Let D ⊆ S denote the intersection of the top tree of P with this top double-tailed diamond.

Then D is the Dynkin diagram for a type Dr root system. For the type D model case of P = dn(1),

we have r = n and this top double-tailed diamond is all of P . This case was already handled in

Section 7.2. For type A we have r = 3, for the type D spin representations we have r = 4, for
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type E6 we have r = 5, and for type E7 we have r = 6. Following the indexing of type D roots

from Chapter 7, use α] and α[ to denote the simple roots of Φ which correspond to the colors

of the incomparable pair of D ⊂ P . Also use α1, . . . , αr−2 to denote the simple roots of Φ which

correspond to the colors of the tail of D ⊂ P , numbering upward from the incomparable pair. It is

straightforward to check that in these cases where g is simply laced, the roots α], α[, α1, . . . , αr−2

are distinct. This also follows from the simply-colored property for these posets proved in [26].

Let ΦD ⊂ Φ be the subset of roots in the span of α], α[, α1, . . . , αr−2. Let gD ⊆ g be the

subalgebra generated by the root subspaces {gα}α∈ΦD
. The subalgebra hD := h ∩ gD is a Cartan

subalgebra of gD. We have a map h∗ → h∗D that is induced by the inclusion hD ⊆ h, which is given

by restriction of the domain. A weight vector for h with weight µ ∈ h∗ is a weight vector for hD

with weight µ|hD
. In particular, the roots of gD are the restrictions ΦD|hD

. For a root α ∈ ΦD, the

coroot of g is hα = [eα, fα], which lies in gD. In fact, we can see that it is the coroot of gD for its

root α|hD
. Let Φ+

D be the subset of positive roots of g in ΦD. Then its restriction Φ+
D|hD

is the

subset of positive roots of ΦD for the Borel subalgebra b ∩ gD. Its simple roots are the restrictions

α]|hD
, α[|hD

, α1|hD
, . . . , αr−2|hD

It is clear that gD is simple of type Dr.

Any g-module is naturally a gD-module, which can be decomposed into gD-irreducible com-

ponents. Let VD denote the gD-irreducible component of VJ(P ) given by U(gD).ℵ. It has highest

weight λ|hD
. It is clear from comparing the actions given by Wildberger that VD is isomorphic to

VJ(dr(1)) as gD-modules. Use the notation established in Section 8.2 for VJ(dr(1)) here for VD, but

use ℵ−D to denote the full double-tailed diamond filter. Problem 9.1 for the gD-submodule VD was

solved in Proposition 7.11; there is a single Plücker relation for gD in Sym2(VD):

Z]Z[ = Y+Y− −X+X− + · · ·+ (−1)r−1A+A− + (−1)rℵℵ−D.

The inclusion VD ⊆ VJ(P ) induces a natural inclusion Sym2(VD) ↪→ Sym2(VJ(P )). Under this

inclusion the model relation above is the foremost of the Plücker relations we seek:

Proposition 9.3. The inclusion of the above Plücker relation for gD under Sym2(VD) ↪→ Sym2(VJ(P ))

is a Plücker relation for g. Moreover, this relation is a highest weight vector for g.

We make some remarks and definitions before presenting the proof. Recall that the universal

Casimir element Ω ∈ U(g) acts on each irreducible g-module by a scalar multiplication that
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depends only on the module’s highest weight. On a module of highest weight 2λ this scalar is

ε := (2λ+ ρ, 2λ+ ρ)− (ρ, ρ) = 4 [(λ, λ) + (λ, ρ)] by [24, Section 22.3]. The submodule U(g).(ℵ)2 ⊂

Sym2(VJ(P )) is g-irreducible of highest weight 2λ. So the image of the operator (Ω − ε) on

Sym2(VJ(P )) is contained in the submodule I. As in Proposition 7.11, we will compute the image

of the vector Z]Z[ ∈ Sym2(VJ(P )) to find that the quadratic relation above also holds as a Plücker

relation for g. Note that this relation is again a straightening law and the leading term on the right

hand side is again the product of the meet and join of the incomparable pair.

The computation below is performed by decomposing both the Casimir operator Ω and the

scalar ε into two pieces: one each associated to the roots ΦD and one each associated to the

roots Φ \ ΦD. Since the root system Φ is simply laced, the standard sl2 pairs {fα, eα} for each

α ∈ Φ have the pairing (fα, eα) = 1 in the normalized Killing form for g. Let {hi}i∈S be the

basis of the Cartan subalgebra h dual in the normalized Killing form for g to the simple coroot

basis {hi}i∈S . Then as in Section 7.3 the Casimir operator Ω ∈ U(g) can be expressed by the

following sum:
∑
α∈Φ+ hα +

∑
i∈S h

ihi + 2
∑
α∈Φ+ fαeα. Similarly since gD is simply laced, the

standard sl2 pairs {fα, eα} for each α ∈ ΦD have the pairing (fα, eα) = 1 in the normalized Killing

form for gD. Let {kj}j∈D be the basis of hD dual in the normalized Killing form for gD to the

simple coroot basis {hj}j∈D. Then the Casimir operator Ω′D ∈ U(gD) can be expressed as the sum∑
α∈Φ+

D
hα +

∑
j∈D k

jhj + 2
∑
α∈Φ+

D
fαeα. Let ΩD ∈ U(g) be the image of Ω′D under the inclusion

U(gD) ↪→ U(g).

Proof. The minuscule weight λ is the fundamental weight in h∗R that corresponds to the simple root

αr−2 ∈ Φ. Define the weight θ := 1
2α] + 1

2α[ + α1 + · · · + αr−2 of g. We can see that (θ, θ) = 1.

Its restriction to hD is θ|hD
= 1

2α]|hD
+ 1

2α[|hD
+ α1|hD

+ · · · + αr−2|hD
, which we recognize as

the fundamental weight in h∗D that corresponds to αr−2|hD
. For simple roots α ∈ ΦD, we have

〈λ, α〉 = λ(hα). Since λ is fundamental, this evaluates to 1 for α = αr−2 and to 0 otherwise. We

also have 〈θ, α〉 = θ(hα) = θ|hD
(hα), since hα ∈ hD. Since θ|hD

is fundamental in h∗D, this evaluates

to 1 for α = αr−2 and to 0 otherwise. Since these {hα} span hD, we have λ|hD
= θ|hD

. Since Φ is

simply laced we have (λ, α) = 〈λ, α〉 = λ(hα) for any root α ∈ ΦD. Similarly for α ∈ ΦD, and since

hα ∈ hD, we have (θ, α) = θ(hα) = λ(hα) = (λ, α).

Let η denote the weight of the vector Z]Z[ ∈ Sym2(VJ(P )) for h. From the expression of this
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weight using the color censuses of the filters Z] and Z[, one obtains η = 2λ− 2θ. Then the weight

of Z]Z[ for hD is η|hD
= 2λ|hD − 2θ|hD

= 0. Since Φ is simply laced, we have (η, α) = 〈η, α〉 for any

root α ∈ Φ. For any root α ∈ ΦD, we have 〈η, α〉 = 2[〈λ, α〉 − 〈θ, α〉] = 0. Then by linearity, we

have (η, θ) = 1
2(η, α]) + 1

2(η, α[) + (η, α1) + · · ·+ (η, αr−2) = 0 + · · ·+ 0 = 0.

Define the weight ρD = 1
2
∑
α∈Φ+

D
α of g. Then by linearity, we have that (λ, ρD) = (θ, ρD).

Note that ρD|hD
= 1

2
∑
α∈Φ+

D
α|hD

is the Weyl vector of h∗D. Then for simple roots α ∈ ΦD, we

have 〈ρD, α〉 = ρD(hα) = ρD|hD
(hα) = 1. For the Weyl vector ρ of h∗, we also have 〈ρ, α〉 = 1

for all simple roots. Since Φ is simply laced we have for simple α ∈ ΦD that ([ρ − ρD], α) =

(ρ, α)− (ρD, α) = 〈ρ, α〉 − 〈ρD, α〉 = 0. Then by linearity we have ([ρ− ρD], θ) = 1
2([ρ− ρD], α]) +

1
2([ρ− ρD], α[) + ([ρ− ρD], α1) + · · ·+ ([ρ− ρD], αr−2) = 0 + · · ·+ 0 = 0. Solving for λ in η = 2λ− 2θ

we obtain λ = θ+ 1
2η. Again by linearity, we have (λ, ρ− ρD) = 1

2(η, ρ− ρD). By the root definition

of θ and since Φ is simply laced, we see that (ρ, θ) = r − 1. Hence we also have that (ρD, θ) = r − 1.

We are prepared to decompose the scalar ε and the Casimir operator:

ε = 4[(λ, λ) + (λ, ρ)]

= 4[(θ + 1
2η, θ + 1

2η) + (λ, ρ− ρD + ρD)]

= 4[(θ, θ) + 1
4(η, η) + (λ, ρD) + (λ, ρ− ρD)]

= 4[(θ, θ) + (θ, ρD)] + (η, η) + 2(η, ρ− ρD)

= 4r + (η, η) + 2(η, ρ− ρD).

The summations which appear first in their brackets below combine to form a copy of ΩD:

Ω =
∑
α∈Φ+

hα +
∑
i∈S

hihi + 2
∑
α∈Φ+

fαeα

=

 ∑
α∈Φ+

D

hα +
∑

α∈Φ+\Φ+
D

hα

+

∑
j∈D

kjhj −
∑
j∈D

kjhj +
∑
i∈S

hihi



+ 2

 ∑
α∈Φ+

D

fαeα +
∑

α∈Φ+\Φ+
D

fαeα


= ΩD +

∑
α∈Φ+\Φ+

D

hα +
∑
i∈S

hihi −
∑
j∈D

kjhj + 2
∑

α∈Φ+\Φ+
D

fαeα.
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Now we want to show that (Ω− ε).(Z]Z[) = (ΩD − 4r).Z]Z[: The term
∑
α∈Φ+\Φ+

D
hα of Ω acts

on the η-weight space as multiplication by the scalar
∑
α∈Φ+\Φ+

D
〈η, α〉. Since Φ is simply laced, this

scalar is
(
η,
∑
α∈Φ+\Φ+

D
α
)

= (η, 2[ρ− ρD]). This is canceled by the last part of our decomposition

of the scalar ε. As we saw in the proof of Proposition 7.11, the part
∑
i∈S h

ihi of Ω acts on the

η-weight space for h as multiplication by the scalar (η, η). This is canceled by the second part of

our decomposition of the scalar ε. Similarly, we have that
∑
j∈D k

jhj acts on an η|hD
-weight space

for hD as multiplication by the scalar (η|hD
, η|hD

)D, where this bilinear form (·, ·)D is the form on

h∗D induced by the normalized Killing form on gD. Since η|hD
= 0, this scalar is 0. For the final

part, note that each term in the expansion of
∑
α∈Φ+\Φ+

D
fαeα.(Z]Z[) involves acting on one of the

vectors Z] or Z[ with a raising operator eα. It is easy to see that for α ∈ Φ+ \ Φ+
D all of these

terms are zero. Therefore (Ω− ε).(Z]Z[) = (ΩD− 4r).(Z]Z[). Since ΩD is the image of the Casimir

operator Ω′D, the calculation of (ΩD − 4r).(Z]Z[) was carried out in Proposition 7.11. We can use

that result to obtain the claimed Plücker relation.

The raising operators eα for roots α ∈ Φ+ act on our basis of VJ(P ) by removing α-layers from

the corresponding filters. The filters involved in our Plücker relation are contained in the top

double-tailed diamond, and their elements are colored from the subset D ⊆ S. It is clear that for

α ∈ Φ+ \Φ+
D, the operator eα annihilates the relation. The relation is also a highest weight vector of

gD since it is a basis for the Plücker submodule of Sym2(VD). Hence (ΩD − 4r).(Z]Z[) is a highest

weight vector of g.

A quick examination of the minuscule posets reveals that every vector of Sym2(VJ(P )) of the

same weight η as Z]Z[ lies in the image of Sym2(VD). In fact, it can be seen that the Plücker

relation we obtained is the unique Plücker relation of weight η (up to a scalar multiple). We now

indicate how to use Seshadri’s theorem to see that every weight of the Plücker submodule I is

dominated by η. This will confirm that the Plücker relation above is truly the most prominent

relation. To see this, recall that Seshadri’s theorem implies that the straightening laws give a basis

of I. It is easy to see that a straightening law on Lλ is given by a weight vector of I for g. Each

straightening law involves one incomparable pair of filters in P . The sum of their corresponding

weights is the weight of the straightening law. It is also easy to see that for any incomparable pair

of filters in P , one filter must contain Z] and the other must contain Z[. Hence the weight of the
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straightening law is dominated by η, which is the sum of the weights corresponding to the pair Z]

and Z[.

9.3 Rotation by Weyl group

When combined with the action of the Weyl group, the technique used in Proposition 9.3 to

find a highest weight Plücker relation can be used to produce more Plücker relations. Recall that η

denotes the weight of the vector Z]Z[ ∈ Sym2(VJ(P )) for Proposition 9.3; it is a highest weight for

the Plücker submodule I. Recall that an extreme weight Plücker relation is a nonzero vector in

Sym2(VJ(P )) of weight w.η for some w ∈W . Here we describe these |W.η| extreme weight Plücker

relations.

Definition 9.4. Let P be any poset. A double-tailed diamond subposet of P is a subset PD ⊆ P

with the following properties:

• There are exactly two incomparable elements of PD,

• half of the other elements of PD form a chain that lies above the incomparable pair, and

• the remaining elements form a chain that lies below the incomparable pair.

Let L be any lattice. A double-tailed diamond sublattice of L is a double-tailed diamond subposet

LD ⊆ L with the following properties:

• The join of its incomparable pair in L is the minimal element in the upper chain of LD, and

• the meet of its incomparable pair in L is the maximal element in the lower chain of LD.

Suppose that L generates a ring over C. A double-tailed diamond sublattice LD ⊆ L is order

isomorphic to one of the model lattices studied in Chapter 7. In this ring, we call a relation of the

alternating sum form obtained in Proposition 7.11 the standard straightening law on LD.

The following theorem is the foremost result of Part II of this dissertation:

Theorem 9.5. Let λ be a minuscule weight of a simple Lie algebra g. Each extreme weight Plücker

relation is the standard straightening law on a double-tailed diamond sublattice of Lλ.

So an extreme weight Plücker relation is a straightening law for an “extreme” incomparable pair of

Lλ, i.e. one whose weights sum to an extreme weight. The standard monomial expression for such
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a pair begins with the product of their meet and join, and continues with an alternating sum of

standard monomials in a double-tailed diamond. These double-tailed diamonds will all be the same

size as the one found in Section 9.2. Hence there will be r terms in the straightening law (including

the incomparable pair), where r is the rank of the subalgebra gD from the previous section. In

addition, Corollary 9.10 below indicates that the difference between the filters for two adjacent

elements of this sublattice will be a root layer. For now we continue to assume that g is simply

laced. Here this theorem is obtained by combining Propositions 9.7, 9.9, 9.12, and 9.14 below. It

will be extended to non-simply laced algebras in Section 9.4.

Let Wη ⊆W be the parabolic subgroup which stabilizes the weight η. Each coset in W/Wη is

known to have a shortest length representative. Let W η be the set of such representatives. The set

of extreme weights is in bijection with W η. Since W η is defined in terms of coset representatives, it

is a subset of the Weyl group. We will apply elements of W η in settings where η is not a highest

weight. We need some facts about W η; they follow from [17, Theorem 2.5.5] and [31, Proposition 3]:

Lemma 9.6. Let η be a dominant integral weight and let w ∈W η.

1. Let ` denote the length of w. There exists a reduced decomposition w = si` . . . si2si1 such that

for each 1 ≤ k ≤ ` the element wk := sik . . . si2si1 of W belongs to W η.

2. In such a reduced decomposition, we have w.η ≺ w`−1.η and 〈w.η, αi`〉 < 0.

3. Let si ∈W be a simple reflection. If siw.η ≺ w.η, then siw ∈W η.

Fix an element w ∈W η. We now “rotate” the entire setup for Proposition 9.3 using w (which is

actually a rotation/reflection of h∗R). Recall that the setup began by defining the root subsystem

ΦD ⊆ Φ. Now analogously create the root subsystem w.ΦD. All of the “sub-D” objects are

analogously created by first applying w to the corresponding roots: Let gD,w ⊆ g be the subalgebra

generated by the root subspaces {gα}α∈w.ΦD
. Then gD,w is simple of type Dr, its coroots are

{hw.α = [ew.α, fw.α]}α∈w.Φ, and so on. Again, any g-module is naturally a gD,w-module which can be

decomposed into gD,w-irreducible components. Let VD,w denote the gD,w-irreducible component of

VJ(P ) given by U(gD,w).(w.ℵ). Again we have that VD,w is isomorphic as a gD,w-module to VJ(dr(1)).

However, our basis vectors for VD,w are not exactly the same as Wildberger’s preferred basis vectors

for VJ(dr(1)). The preferred basis of VD,w which is analogous to Wildberger’s basis for VJ(dr(1)) is
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generated from a highest weight vector (say w.ℵ) with the nonnegative actions of the simple root

vectors of gD,w, which are not necessarily simple root vectors of g. We will later see that some of

our basis vectors are preferred basis vectors, while the rest are the negatives of the preferred basis

vectors. It is nonetheless straightforward to apply the techniques of Proposition 9.3 to VD,w ⊆ VJ(P ),

even though the signs in our expression for the resulting relation could potentially change:

Proposition 9.7. Let w ∈W η. The inclusion of the Plücker relation for gD,w under Sym2(VD,w) ↪→

Sym2(VJ(P )) is an extreme weight Plücker relation for g of weight w.η.

Proof. The Casimir operator can be similarly decomposed using the choice of positive roots w.Φ+,

and the inner product on h∗R is invariant under the action of w. Hence the proof of Proposition 9.3

also applies here, by replacing gD and VD with gD,w and VD,w.

From this proposition we obtain an extreme weight relation which is a signed sum of r products

of pairs of filters as in Proposition 9.3. We will later see that this signed sum is in fact still an

alternating sum. We want to understand the order structure of these filters to prove that this

relation produces a standard straightening law on a double-tailed diamond sublattice of Lλ. Let

LD denote the lattice of weights of VD. The lattice LD is a sublattice of Lλ. The corresponding

extreme Plücker relation at w = id of Proposition 9.3 was then the standard straightening law on

this sublattice. Let LD,w denote the poset of weights of VD,w; again we have LD,w ⊆ Lλ. For an

arbitrary w ∈W η there is cause for concern that the rotation by w changes the order structure of

LD,w. Fortunately, it can be shown that the order structure of LD,w in the rotated setup is also a

double-tailed diamond sublattice of Lλ. To begin our analysis of LD,w, we need:

Lemma 9.8. Let J,K be filters of the minuscule poset P in the subposet LD ⊆ Lλ ∼= J(P ) such

that JK has weight η. Let w = si` . . . si2si1 ∈ W η be a reduced decomposition as in Lemma 9.6.

Then si` either adds an element to each of the filters w`−1.J and w`−1.K, or it adds an element to

one and stabilizes the other.

Proof. Let µ denote the weight of J and let ν denote the weight of K, so that µ + ν = η.

By Lemma 9.6 we have w.η ≺ w`−1.η. Recall from Proposition 8.3 that the simple reflection

si` ∈ W acts on a filter of P by adding or removing a single element or doing nothing. All

other possible actions of si` on these filters result in a contradiction: Suppose si` removes an
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element from one of the filters, say w`−1.J . Then w.µ = si`w`−1.µ = w`−1.µ+ αi` . We would have

w.(µ+ ν) ≺ w`−1.(ν + µ) = w`−1.ν + (w.µ− αi`). By cancelling w.µ we obtain w.ν ≺ w`−1.ν − αi` .

This is impossible, since by the three possible actions of si` on w.K we have w`−1.ν � w.ν + αi` .

On the other hand if si` stabilized both filters, we would have the contradiction w.η = w`−1.η.

We now show that LD,w is a double-tailed diamond subposet:

Proposition 9.9. Let µ, ν ∈ LD, and let w ∈ W η. Then w.µ � w.ν if and only if µ � w. Hence

LD,w = w.LD is order isomorphic to LD and so is a double-tailed diamond subposet of Lλ.

Therefore the Plücker relation obtained in Proposition 9.7 is again a straightening law on Lλ. This

proposition comes with a caveat: Rotation by the Weyl group does not preserve covering relations

in Lλ.

Proof. We first show that if µ � ν, then we have w.µ � w.ν. Since the weights of VD form an

interval of Lλ, we may reduce to the case where ν covers µ. The difference ν − µ is a simple

root α ∈ Φ+
D. Since Φ is W -invariant, the difference w.ν − w.µ = w.α is a root. We must show

that the root w.α lies in Φ+. Let si` . . . si2si1 be a reduced decomposition for w ∈ W η as in

Lemma 9.6. We use induction on the length ` of w. The base case of ` = 0 where w = id is

trivial. Note that w`−1 ∈ W η has length ` − 1. By Lemma 9.6 we have 〈w.η, αi`〉 < 0, so that

〈w`−1.η, αi`〉 = 〈si`w.η, αi`〉 = 〈w.η,−αi`〉 > 0. Note that 〈w`−1.η, w`−1.α〉 = 〈η, α〉 = 0, since η|hD

is zero. Hence w`−1.α 6= αi` . Recall that the simple reflection si` permutes the roots Φ+ \ {αi`}. By

induction we have w`−1.α ∈ Φ+. Hence si`(w`−1).α = w.α ∈ Φ+.

For the converse, suppose that µ and ν are incomparable. The only incomparable pair of weights

µ and ν in VD are the weights in Lλ that correspond to the filters Z] and Z[ of the minuscule poset

P . Recall that µ+ ν = η. We once again use induction on the length ` of w by taking a reduced

decomposition si` . . . si1 for w ∈ W η as in Lemma 9.6. The base case of ` = 0 where w = id is

again trivial. Again we have w`−1 ∈ W η has length ` − 1. Our inductive hypothesis is that the

filters w`−1.Z
] and w`−1.Z

[ are incomparable, so there is at least one element x ∈ P in w`−1.Z
]

but not in w`−1.Z
[. Suppose x is available to w`−1.Z

[ and has color i`. Suppose further that x is

the only element of w`−1.Z
] \ w`−1.Z

[. Then x must be minimal in w`−1.Z
]. Hence the reflection

si` removes x from w`−1.Z
]; this contradicts the result of Lemma 9.8 applied to the filters Z], Z[
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and our decomposition of w ∈W η. If instead there is another element y ∈ w`−1.Z
] \ w`−1.Z

[, then

we will still have y ∈ w.Z] while y 6∈ w.Z[. Hence in this case we have w.Z[ 6� w.Z]. Otherwise,

we have that either x is not available to w`−1.Z
[ or its color is not i`. In this case we will still

have x ∈ w.Z] and x 6∈ w.Z[. Hence in all cases we have w.Z[ 6� w.Z]. By symmetry we also have

w.Z] 6� w.Z[. Therefore w.µ and w.ν are incomparable weights.

As a corollary to this proof, we can describe the covering relations in LD,w using the language

of filters:

Corollary 9.10. Let w ∈W η. Let J,K be filters of the minuscule poset P such that J covers K

in the subposet LD,w ⊆ Lλ ∼= J(P ). Then the subset K − J is an α-layer for the following root

α ∈ w.Φ+
D ⊆ Φ+: If one of J or K is one of the incomparable pair of elements of LD,w, we have

α = w.α] or α = w.α[. Otherwise, moving outward along the tails from the incomparable pair we

have α = w.α1, . . . , α = w.αr−2.

Proof. As a difference of filters, the subset K − J of P is a convex subset. The weights in LD,w

that correspond to J and K differ by
∑
p∈K−J κ(p), the sum of simple roots coloring the elements

of K − J . From the previous proof, these weights also differ by w.ν − w.µ where ν covers µ in

LD. In particular, ν − µ = αi for the claimed index i ∈ D. Therefore we have the color census∑
p∈K−J κ(p) = w.αi.

In order to prove that the straightening law given by Proposition 9.7 is the standard straightening

law on LD,w, we need more information about these root layers:

Lemma 9.11. Let w ∈ W η. Let J1, J2 be filters of the minuscule poset P such that J1 covers J2

in the subposet LD,w ⊆ Lλ ∼= J(P ). Let K1,K2 be the filters in LD,w such that the vectors J1K1

and J2K2 have weight w.η. Then K2 covers K1, and the two root layers J2 − J1 and K1 −K2 are

isomorphic as colored posets.

Proof. Proposition 9.9 implies that K2 covers K1 in LD,w. We prove that the root layers J2 − J1

and K1 −K2 are isomorphic by induction on the length of w. When the length of w is zero and

w = id, each of the root layers is a single element of the same color from D.

Let w = si` . . . si2si1 be a reduced decomposition for w as in Lemma 9.6. By the proof of

Proposition 9.9, the filters A1 := si`J1, A2 := si`J2, B1 := si`K1, and B2 := si`K2 satisfy our
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hypotheses for w`−1 ∈W η of length `− 1. By induction, we have that the root layers A2 −A1 and

B1 −B2 are isomorphic as colored posets. Denote this isomorphism φ : A2 −A1 → B1 −B2. Begin

to construct a map φ′ : J2−J1 → K1−K2 by defining φ′(p) = φ(p) for all p ∈ (J2−J1)∩ (A2−A1).

We will finish constructing φ′ and see that it is a colored poset isomorphism by showing that A2−A1

deforms into J2− J1 in the same fashion that B1−B2 deforms into K1−K2. Both J1K1 and J2K2

have weight w.η, and both A1B1 and A2B2 have weight w`−1.η. So we have the cardinality fact

|(J1 −A1) ∪ (K1 −B1)| = |(J2 −A2) ∪ (K2 −B2)|. By Lemma 9.8, the only possible change from

each of the filters A1, A2, B1, B2 to its corresponding filter J1, J2,K1,K2 is the addition of a single

element of color i`. Such are the only elements that will appear or disappear from the set differences

A2 −A1 and B1 −B2 to the set differences J2 − J1 and K1 −K2.

Suppose there was an element x ∈ A2 − A1 that is no longer in J2 − J1. By Lemma 9.8, we

must have that x ∈ J1 −A1. Since x was i`-available to A1, it was maximal in A2 −A1. Since φ is

an isomorphism, the corresponding element φ(x) ∈ B1 −B2 was also maximal of color i`. So φ(x)

was i`-available to B2 and hence is no longer in K1 −K2. A similar argument shows that if there

exists an element x ∈ B1 −B2 that is no longer in K1 −K2, then φ−1(x) ∈ A2 −A1 is no longer in

J2 − J1. Either way an element in the domain of φ is no longer in the domain for φ′, and its image

under φ is no longer in the codomain for φ′.

Suppose there exists an element y ∈ J2 − J1 that was not in A2 − A1. By Lemma 9.8, we

must have that y ∈ J2 −A2. We claim that K1 −B1 is nonempty and that its single element is in

K1 −K2. First suppose that J1 − A1 is nonempty. Since J1 ⊂ J2, this set J1 − A1 consists of an

element x ∈ J2. The only element of J2 −A2 is y, which by hypothesis is not in J1 and hence not

in J1 −A1. So the element x is actually in A2. In this case, the element x was in A2 −A1 but is no

longer in J2 − J1. We have seen above that φ(x) ∈ B1 −B2 is no longer in K1 −K2, and hence it

is in K2 − B2. Here both J2 − A2 and K2 − B2 are nonempty. By the cardinality fact above, we

must have that K1 −B1 is nonempty as well. In this case, K2 = B2 ∪ {φ(x)} where φ(x) ∈ B1. We

can conclude that K1 −B1 is contained in K1 −K2. Otherwise J1 −A1 is empty. But J2 −A2 is

nonempty. By the cardinality fact above, we must also have that K1−B1 is nonempty and K2−B2

is empty. Then in this case too, we have that K1 − B1 is nonempty and contained in K1 −K2,

proving the claim.

We continue to construct φ′ by defining φ′(y) to be the single element of K1 −B1. It remains
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show that φ′ : J2 − J1 → K1 − K2 preserves the poset structure. The element y is minimal in

J2 − J1, and φ′(y) is minimal in K1 −K2. We now must show that φ′ maps the elements that cover

y in J2 − J1 to the elements that cover φ′(y) in K1 −K2. Since y 6∈ J1 was not also i`-available

to A1, there was at least one element z1 ∈ A2 − A1 that covers y in P . In the layer A2 − A1,

there was no element of color i` that was less than the element z1, since such an element would

be comparable to y. Since φ was an isomorphism, there was no element of color i` in the layer

B1 − B2 that was less than the element φ′(z1) = φ(z1). Recall that every element covered by z1

(including y) must lie in the interval between z1 and the next smallest element of color κ(z1) in P ,

if such an element exists. Hence z1 was the minimal element of color κ(z1) in A2 − A1. Since φ

was an isomorphism, the element φ′(z1) was the minimal element of color κ(φ′(z1)) in the layer

B1 − B2. Since z1 covers y in P , the color κ(z1) is adjacent in the Dynkin diagram to the color

κ(y) = i`. Recall that elements of a minuscule poset with adjacent colors are comparable. Since

κ(φ′(z1)) = κ(z1) and κ(φ′(y)) = i`, the element φ′(y) is comparable to φ′(z1). And since φ′(y) was

not in the filter B1, we have φ′(y) ≺ φ′(z1). To see that φ′(z1) must cover φ′(y): Recall that all

covering relations in P involve two elements of adjacent colors. Since the Dynkin diagram is acyclic,

there is a covering relation somewhere in the interval between φ′(y) and φ′(z1) involving elements

of the colors i` and κ(φ′(z1)). But there was no element of color i` in the layer B1 −B2 that was

less than φ′(z1), and φ′(z1) was the minimal element of the layer B1 − B2 of color κ(φ′(z1)). So

φ′(z1) must now cover φ′(y) in K1 −K2. By the properties of minuscule posets, there was at most

one other element z2 ∈ A2 −A1 that covers y in P . If such an element exists, the arguments above

can also be applied to z2 and φ′(z2). Conversely if there exists another element z′ ∈ B1 −B2 which

covers φ′(y), then an analogous argument shows that φ−1(z′) covers y in J2 − J1.

Finally, suppose there exists an element y′ ∈ K1 −K2 that was not in B1 −B2. By arguments

similar to those above, it can be seen that there exists an element y of color i` in J2 − J1 that

was not in A2 −A1. After defining φ′(y) = y′, the argument above that showed that φ′ maps the

elements that cover y in J2 − J1 to the elements that cover y′ in K1 −K2 can be repeated.

We can now show that the extreme weight Plücker relations give standard straightening laws:

Proposition 9.12. Let w ∈W η. The extreme weight Plücker relation of weight w.η produced by

Proposition 9.7 gives the standard straightening law on LD,w.
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Proof. The preferred basis of VD,w is generated from w.ℵ by the actions of simple root vectors

of gD,w. The simple roots for gD,w are the restrictions of the roots {w.αi}i∈D ⊆ Φ to its Cartan

subalgebra hD,w. By Proposition 9.9 these roots {w.αi}i∈D are positive roots. Then we can take

the nonsimple root vectors {ew.αi , fw.αi}i∈D for g as the simple root vectors for gD,w. These vectors

transition within our LD,w basis with a sign given by the parity of corresponding root layers in the

minuscule poset P . So our LD,w basis vectors for VD,w are each either a preferred basis vector, or

the negative of the preferred basis vector of its weight. The Plücker relation is an alternating sum

in the preferred basis as in Proposition 9.3. Hence this alternating sum in the preferred basis is a

signed sum when expressed in our LD,w basis.

First suppose that w.Z] and w.Z[ are either both preferred basis vectors, or both are negatives

of preferred basis vectors. We claim that any two of our LD,w basis vectors of VD,w that are

paired in the signed sum are either both preferred basis vectors of VD,w, or both are negatives

of preferred basis vectors. Then the signed sum in our LD,w basis is an alternating sum, giving

the standard straightening law on LD,w. To see this, we work outward from the middle: By the

definition of the preferred basis, the vectors ew.α]
(w.Z]) and fw.α]

(w.Z[) obtained by the action of

simple root vectors for gD,w are either both preferred basis vectors or both negatives of preferred

basis vectors. These simple root vectors for gD,w are nothing more than root vectors for g whose

actions on our Lλ basis were defined in Section 8.2. By Corollary 9.10 we have that w.Z] − w.Y +

and w.Y − − w.Z[ are α]-layers. Then we have that ew.α]
(w.Z]) = ε(w.Z] − w.Y +)w.Y+ and

fw.α]
(w.Z[) = ε(w.Y −−Z[)w.Y−. By Lemma 9.11, the parities ε(w.Z]−w.Y +) and ε(w.Y −−w.Z[)

are equal. Hence w.Y+ and w.Y− are either both the preferred basis vectors ew.α]
(w.Z]) and

fw.α]
(w.Z[) or both negatives of these preferred basis vectors. By the same reasoning applied to

ew.α1(w.Y+) = ε(w.Y + − w.X+)w.X+ and fw.α1(w.Y−) = ε(w.X− − w.Y −)w.X−, we have that

w.X+ and w.X− are either both preferred vectors or both negatives of preferred vectors. Iterate

this process outward along the tails to finish the proof of the claim.

Otherwise, exactly one of w.Z] and w.Z[ is a preferred basis vector. The argument above can

be applied to show that given any two of our LD,w basis vectors of VD,w that are paired in the

signed sum, exactly one is a preferred basis vector. In this case, we again have that the signed sum

in our LD,w basis is an alternating sum giving the standard straightening law on LD,w.
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We have demonstrated that LD,w is a double-tailed diamond subposet of Lλ. The next proposition

states that it is a double-tailed diamond sublattice as well. We first need:

Lemma 9.13. Let J and K be filters of a minuscule poset P , and let si ∈W be a simple reflection

such that si.J 6= J or si.K 6= K. Suppose that there is no element in P of this color i that is both

removable from J and available to K or vice versa. Then we have si.(J ∨K) = si.J ∨ si.K and

si.(J ∧K) = si.J ∧ si.K.

Proof. There are three possibilities for the action of si on J and three possibilities for its action

on K. By symmetry, we only need to consider five of the eight cases that satisfy our hypotheses.

We may assume that si.J 6= J . For three of these cases, first suppose that the reflection si adds an

available element x to the filter J . We consider the possibilities for the action of si on K:

Suppose that si also adds an available element y to the filter K. If x = y, then si adds x to

the four filters J,K, J ∨K,J ∧K. Here si.(J ∨K) = si.J ∨ si.K and similarly for ∧. Otherwise

since κ(x) = κ(y), the elements x and y are comparable. By symmetry, we may assume y ≺ x.

We have x ∈ K, while y 6∈ J and hence y 6∈ J ∨K. Then x is i-available to the intersection filter

J ∨K and y is i-available to the union filter J ∧K. Here si.(J ∨K) = (J ∨ [K ∪ {y}]) ∪ {x} =

(J ∪ {x})∨ (K ∪ {y}) = si.J ∨ si.K and si.(J ∧K) = ([J ∪ {x}]∧K)∪ {y} = (J ∪ {x})∧ (K ∪ {y}).

Suppose that si.K = K. Consider the case that x ∈ K. Then the intersection si.J ∨ si.K =

(J ∨K)∪{x}. Hence x is i-available to J ∨K, and we have si.(J ∨K) = (J ∨K)∪{x} = si.J ∨si.K.

We have the union siJ ∧ siK = J ∧ K. We would like to show that no element y of color i is

available to the union filter J ∧K. Indeed, such an element would satisfy y � x. Since x ∈ J ∧K

already, this order is strict. But an element of a minuscule poset cannot be covered by another

element of the same color. Hence x is strictly greater than the elements which cover y. These

covering elements do not belong to J , and therefore belong to K. We conclude that the element y

is i-available to K, contradicting the assumption si.K = K. There is also no element y of color i

which is removable from the union filter J ∧K, since y would be removable from J or K. Therefore

si.(J ∧K) = J ∧K = si.J ∧ si.K. If instead x 6∈ K, switch the arguments for J ∨K and J ∧K

by dualizing ∨,∧, “intersection”, and “union” above, as well as the availability/removability of the

hypothetical element y and its order with respect to x.

Suppose that si removes an element y from the filterK. By hypothesis y 6= x. The elements x and
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y are comparable. If x ≺ y, then x 6∈ K and y ∈ J . We have that x is i-available to the union J ∧K

and that y is i-removable from the intersection J ∨K. Then we have si.(J ∨K) = (J ∨K) \ {y} =

J ∨ (K \{y}) = si.J ∨si.K and si.(J ∧K) = (J ∧K)∪{x} = (J ∪{x})∧K = si.J ∧si.K. Otherwise

y ≺ x. Hence x ∈ K, and y 6∈ J . It is clear that x is i-available to the intersection J∨K and that y is i-

removable from the union J∧K. Then we have si.(J∨K) = (J∨K)∪{x} = (J∪{x})∨K = si.J∨si.K

and si.(J ∧K) = (J ∧K) \ {y} = J ∧ (K \ {y}) = si.J ∧ si.K.

For the last two cases, suppose that si instead removes an element x from J . Consider the order

dual P ′ of P . The poset P ′ is again a colored minuscule poset. The filters J and K of P become order

ideals of P ′. Let J,K denote their complementary filters of P ′. We have that si adds the element x

to J . Since the first two cases above did not use the simultaneous removable/available hypothesis,

those arguments apply to J and K. Therefore si.(J ∧K) = si.J ∧ si.K and si.(J ∨K) = si.J ∨ si.K.

This in turn implies si.(J ∨K) = si.J ∨ si.K and si.(J ∧K) = si.J ∧ si.K.

Proposition 9.14. Let w ∈W η, and let Z] and Z[ be the incomparable filters defined for Proposi-

tion 9.3. Then w.Z] ∨w.Z[ = w.(Z] ∨ Z[) and w.Z] ∧w.Z[ = w.(Z] ∧ Z[). Hence the double-tailed

diamond subposet LD,w ⊆ Lλ is a double-tailed diamond sublattice.

Proof. Let w = si` . . . si2si1 be a reduced decomposition for w ∈ W η as in Lemma 9.6. We use

induction on the length ` of w. The base case of ` = 0 where w = id is trivial. We have that

w`−1 ∈W η has length `− 1 and w.η ≺ w`−1.η. By Lemma 9.8, the simple reflection si` either adds

an element to each of the filters w`−1.Z
] and w`−1.Z

[, or it adds an element to one and stabilizes

the other. Hence no element is both removable from w`−1.Z
] and available to w`−1.Z

[ or vice versa.

Using Lemma 9.13 followed by the inductive hypothesis, we have si` .(w`−1.Z
]) ∨ si` .(w`−1.Z

[) =

si` .(w`−1.Z
] ∨ w`−1.Z

[) = si`w`−1.(Z] ∨ Z[) and similarly w.Z] ∧ w.Z[ = w.(Z] ∧ Z[).

The proof of Theorem 9.5 is now complete for simply laced algebras g. We have a collection of

|W η| straightening laws. We can now show that there are no other incomparable pairs of filters

that have the layer property of Corollary 9.10; this characterizes the incomparable pairs of elements

of Lλ for which we have obtained a straightening law in terms of filters:

Proposition 9.15. Let J,K be incomparable filters of a minuscule poset P . If there exist roots

α, β ∈ Φ+ such that the subset J − (J ∨K) is an α-layer and K − (J ∨K) is a β-layer, then there
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exists a w ∈W η such that the vector JK has weight w.η and the relation obtained by Proposition 9.7

with this w gives the straightening law for J and K.

Proof. Let µ denote the weight of the vector JK ∈ Sym2(VJ(P )). Suppose there exist roots

α, β ∈ Φ+ as in the proposition statement. As mentioned at the conclusion of Section 9.2 it is easy

to see that for incomparable pair of filters J,K in P , one filter must contain Z] and the other must

contain Z[. Hence µ � η. We proceed by induction on the weight µ, increasing in the order � to

the base case weight η. The base case is only attained by the incomparable pair {J,K} = {Z], Z[}.

Here the conclusion is true with w = id.

Now we further assume that α and β are simple roots, say α = αj and β = αk. Then J − (J ∨K)

is a single element x of color j and K − (J ∨K) is a single element y of color k. Choose a minimal

element p in the intersection filter J ∨K, and let i denote the color κ(p). Of the elements in J

or K, only x and y can be covered by p. We proceed based on the order relationship between

p and the elements x and y. If p covers neither x nor y, then p is minimal in both filters J

and K. The simple reflection si ∈ W will remove p from both filters and their intersection.

Then we have µ ≺ si.µ. We also have si.J − (si.J ∨ si.K) = J − (J ∨ K) is an αj-layer and

si.K− (si.J ∨si.K) = K− (J ∨K) is a αk-layer. Then by induction there exists an element w′ ∈W η

such that si.J si.K has weight w′.η. This vector si.J si.K has weight si.µ, and so si.µ = w′.η.

Therefore siw′.η = si(si.µ) = µ ≺ si.µ = w′.η. Hence by Lemma 9.6 we have siw′ ∈ W η, and so

we may take w := siw
′: Here w.η = µ is the weight of si.(si.J si.K) = JK. Next suppose p covers

only x. No element of a minuscule poset can be covered by an element of the same color, so the

colors i and j are distinct. The reflection si will remove p from the filter K. The element p is not

removable from J since it covers x. Suppose for the sake of contradiction that an element z of color

i were available to J . Then we have z ≺ p, and x is the only element between them. But by a result

of Proctor in [26], between any two elements of the same color in a minuscule poset there are at

least two other elements. Therefore si indeed leaves J unaffected. We again have that µ ≺ si.µ.

We also have that si.K − (si.J ∨ si.K) = K − (J ∨ K) is a αk-layer. By Lemma 9.13 we have

si.J−(si.J ∨si.K) = si.J−si.(J ∨K). By taking color censuses and using the linearity of the simple

reflections on h∗R, we obtain si.(λ−
∑
z∈J ακ(z))− si.(λ−

∑
z∈J∨K ακ(z)) = si.(

∑
z∈J−J∨K ακ(z)) =

si.αj . Hence si.J − si.(J ∨ K) is an si.αj-layer. By induction as above there exists an element
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w′ ∈ W η such that JK has weight w.η where w := siw
′ ∈ W η. By symmetry, the case where p

covers only y also holds. Suppose on the other hand that all minimal elements p ∈ J ∨K cover

both x and y. By another result in [26], no two elements of a minuscule poset can cover each of

two other elements such as x and y. We conclude that there is a unique minimal p ∈ J ∨K. By

inspection of the minuscule posets, we see that this is the base case {J,K} = {Z], Z[} above.

Otherwise, at least one of the roots α or β is not simple. Suppose that α is not a simple

root. Choose a minimal element x of the α-layer J − (J ∨ K), and let i denote the color κ(x).

Act on both filters by si; we have si.J = J \ {x} while si.K is unknown. We claim that x is not

available to K. Since α is not simple, we have that x is not the only element in J − (J ∨K). It

is known that the simple root expansion of any root (such as α) has connected support in the

Dynkin diagram. Hence J − (J ∨K) has at least one element z of a color j adjacent to i in the

Dynkin diagram. Recall that color adjacent elements such as z and x are comparable. Since x is

minimal, we must have x ≺ z. Then x is not maximal in P −K, and so is not available to K. By

Lemma 9.13 we have si.J − (si.J ∨ si.K) = si.J − si.(J ∨K). By taking color censuses we obtain

si.(λ−
∑
z∈J ακ(z))− si.(λ−

∑
z∈J∨K ακ(z)) = si.(

∑
z∈J−J∨K ακ(z)) = si.α. Hence si.J − si.(J ∨K)

is an si.α-layer. The root β has no αi component, since x ∈ J − (J ∨K) has color i and elements

of color i are comparable. Then similarly we have si.K − (si.J ∨ si.K) = si.K − si.(J ∨ K)) is

a si.β-layer. Suppose further that µ ≺ si.µ. Then by induction as above there exists an element

w′ ∈ W η such that JK has weight w.η where w := siw
′ ∈ W η. Otherwise, we have µ = si.µ and

the reflection si added an i-available element y 6= x to the filter K. The elements of color i form

a chain and we have that y 6� x. Hence we have that x ≺ y and so y ∈ J . Then we have that

si.J − (si.J ∨ si.K) ( J − (J ∨K) and that si.K − (si.J ∨ si.K) = K − (J ∨K). We can continue

this process to reduce to the case where |J − (J ∨K)| = 1, i.e. where α is simple. By symmetry we

can also reduce to the case where β is simple, where we have already proved the existence of the

desired w ∈W η.

9.4 Exceptional cases

There are only three minuscule weights for the exceptional root systems. In this section we

provide all of the straightening laws for the coordinate rings of the corresponding minuscule flag

manifolds.

80



Let us determine how close Theorem 9.5 is to solving Problem 9.1 for the three exceptional

minuscule weights. We give the dimensions of the Plücker submodule I ⊂ Sym2(VJ(P )) in these

cases. The dimensions of irreducible modules cited in this section can be found in [32].

Lemma 9.16. For both minuscule weights in type E6, the dimension of the Plücker submodule

I ⊂ Sym2(VJ(P )) is 27. For the minuscule weight in type E7, the dimension of I is 133.

Proof. For the minuscule posets P := e6(1) and P := e6(6), we have that dim(VJ(P )) = 27 and hence

that dim(Sym2(VJ(P ))) =
(28

2
)

= 378. The submodule U(g).(ℵ)2 ⊆ Sym2(VJ(P )) is irreducible with

highest weight 2λ; it has dimension 351. Hence, the complementary submodule I ⊂ Sym2(VJ(P ))

has dimension 27. For the poset P := e7(7), we have that dim(VJ(P )) = 56 and hence that

dim(Sym2(VJ(P ))) =
(57

2
)

= 1596. The submodule U(g).(ℵ)2 ⊆ Sym2(VJ(P )) has dimension 1463.

Hence, the submodule I has dimension 133.

In the E6 cases, the weight η of the Plücker relation from Proposition 9.3 is the minuscule weight

opposite from the fixed minuscule λ. In the E7 case, the weight η is the adjoint weight which is

quasiminuscule. The irreducible modules with these highest weights have dimensions 27 and 133

respectively. So by Lemma 9.16, the Plücker submodule I is irreducible and either minuscule or

quasiminuscule in these three cases. Theorem 9.5 describes the extreme weight vectors of I. Since

we now know the isomorphism class of I in the exceptional cases, we can deduce:

Theorem 9.17. For the two type E6 cases, the Plücker relations described by Theorem 9.5 form a

basis of Plücker relations. For the type E7 case, they combine with the seven relations of zero weight

in Figure 9.20 to form a basis of Plücker relations.

Proof. In the E6 cases, the 27 dimensional minuscule g-module generated from the weight η Plücker

relation forms all of I. Since every weight of a minuscule representation is an extreme weight, the

relations from Theorem 9.5 form a basis. In the E7 case, the 133 dimensional adjoint g-module

generated from the weight η Plücker relation forms all of I. In the adjoint representation, there

are 126 extreme weights. Only the 7-dimensional zero weight space does not have extreme weight.

It is not difficult to generate a spanning set for this zero weight space by hand: For each of the

seven simple roots αi, use Theorem 9.5 to write down a Plücker relation whose weight is αi. Then,

act on each of these with the corresponding negative simple root vector fαi . One can check that
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the resulting seven vectors are linearly independent. We then formed linear combinations of these

vectors to obtain the relations presented in Figure 9.20.

As mentioned in Section 9.1, using Seshadri’s theorem we can see for all minuscule cases that

the straightening laws for the coordinate ring give a basis for I. In fact, for the E6 cases we can

also see that this is true using our results. There are exactly 27 incomparable pairs of elements

in Lλ and we have obtained all of their straightening laws. We list these 27 straightening laws in

Figure 9.4. Similarly in the type E7 case, there are exactly 133 incomparable pairs of elements in

Lλ. Theorem 9.5 described the straightening laws for 126 of these. There are 7 incomparable pairs

remaining; by process of elimination each of these has total weight zero. We list straightening laws

for them in Figure 9.20. Unlike our extreme weight relations, these seven straightening laws were

not obtained immediately. Instead, we generated enough weight zero Plücker relations (which were

not straightening laws) so that we could solve for the straightening laws with Gaussian elimination.

(The ability to do so was guaranteed in advance by Seshadri’s theorem.) One nice feature of these

weight zero straightening laws is that they are integral. However none of these seven straightening

laws are supported on double-tailed diamond subposets of Lλ. In summary, we have obtained for

all exceptional cases the straightening law for every incomparable pair of elements in Lλ. Moreover,

our bases for I in these cases show that the standard monomials are linearly independent. So we

have verified Seshadri’s theorem in these cases.

Before we present the straightening laws, we establish some notation. First, we label the Dynkin

diagram of E6 with letters {a, b, c, d, e, o} and the diagram of E7 with letters {a, b, c, d, e, f, o}. This

leads to the coloring of the minuscule posets shown in Figure 9.18. Recall that elements of a

minuscule poset with a given color form a chain. We will name an element with its color and

a subscript that indicates its position in this chain, counting from the top. We name a filter by

the capitalized string of its minimal elements. For example, in both posets, the filter A2 is the

top double-tailed diamond. In e7(7), the filter A2E2 also includes the elements f1 and e2. We

keep our usual convention of naming a basis vector of Wildberger’s g-module VJ(P ) by writing the

corresponding filter in calligraphic font. Since we are using strings of letters to name filters, we

place a dot between two vectors of VJ(P ) to indicate their product in Sym2(VJ(P )).

Since we are listing only the zero weight relations in the E7 case, every filter will appear paired
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Figure 9.18: The colored Hasse diagrams for e7(7) and e6(1) ∼= e6(6).

with its “complementary” filter corresponding to the negative of its weight. So we use our usual

naming convention for a filter that is contained in the top “half” of the poset e7(7), that is to say in

its top nine ranks. For each filter which is not contained in the top half of e7(7), we take advantage

of the symmetry of the poset. Flip the Hasse diagram upside-down. The set of elements which

formed our filter now form an order ideal. The complement of this ideal is an order filter which is

contained in the top half of the Hasse diagram. Name the original filter by placing a bar over the

name of this filter. For example the principal filter genereated by f2 is named A2. This way, the

weight of the vector A2 · A2 is zero. There are 28 zero weight pairs of filters. Seven of these are

the incomparable pairs, while the other 21 are the standard monomials. To display the relations

in matrix form, we must fix some total ordering of the monomials. We use the following arbitrary

order for the incomparable pairs of monomials:

A2 · F2, E3 · A2F1, D4 · A2E2, A2D3 · C3O2, B2O2 · A2C3, B3 · O2, C3 · A2O2

We order the standard monomials by the following reverse lexicographic order of a certain total
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order extension on P :

B2D3 · B2D3, B2E2 · B2E2, B2F1 · B2F1, B2 · B2, D3 · D3, C2E2 · C2E2, C2F1 · C2F1,

C2 · C2, E2 · E2, D2F1 · D2F1, D2 · D2, F1O1 · F1O1, E1O1 · E1O1, O1 · O1,

F1 · F1, E1 · E1, D1 · D1, C1 · C1, B1 · B1, A1 · A1, ℵ · ℵ

After presenting the 7 zero weight straightening laws in Figure 9.20, we display in Figure 9.21 a

matrix which lists the 21 standard monomial cooordinates for each of the 7 products of incomparable

pairs, with respect to the two total orders above. For legibility, negative coordinates are presented

with bars.

9.5 Non-simply laced cases

Beginning with Section 9.2, we assumed that our algebra g was simply laced. However, there are

minuscule weights in the non-simply laced type B and C root systems. There is a single minuscule

weight for each type C system. There a dimension calculation shows that the corresponding Plücker

module I = 0, and so there are no Plücker relations for its flag variety. There is also a single

minuscule weight for each type B system. For this case we deduce results about its Plücker relations

from our results for a simply-laced type D case through the strategy of “diagram folding.” This

uses an embedding of a type Bn−1 Lie algebra into one of type Dn. This strategy has been used for

example in [33, 34].

We describe this embedding concretely. Fix n ≥ 3. Let V be the 2n-dimensional complex vector

space with nondegenerate symmetric bilinear form 〈·, ·〉 defined in Section 7.1, and consider the

orthogonal Lie algebra g := o(V ) which is simple of type Dn. Let L ⊂ V be the line spanned by

the vector v0] − v0[ and let g′ ⊂ g be the subalgebra of endomorphisms that annihilate L. Then

g′ stabilizes the orthogonal complement W := L⊥; it is the hyperplane spanned by the vectors

{vn, . . . , v1, v0] + v0[ , v1, . . . , vn}. It is simple to check that the restriction 〈·, ·〉W of the bilinear form

to W is again nondegenerate. Every endomorphism of W that fixes 〈·, ·〉W is faithfully represented

in the restriction of the endomorphisms in g′ to W . Hence g′ is isomorphic to an orthogonal Lie

algebra for a 2n−1 dimensional vector space with nondegenerate symmetric bilinear form. Therefore

the subalgebra g′ ⊂ g is simple of type Bn−1, and so we rename it gB. Label the type Bn−1 and

type Dn Dynkin diagrams as in Figure 9.22. The subalgebra hB := h ∩ gB is a Cartan subalgebra

for gB. We have a map h∗ → h∗B induced by the inclusion hB ⊂ h given by restriction of the domain.
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In particular, the minuscule weight ω0 of h∗B is the restriction ω]|hB
(or ω[|hB

) of a spin minuscule

weight of h∗.

Let λ be one of the two spin weights ω] or ω[ of g. Let P := Pλ be the corresponding minuscule

poset, and construct Wildberger’s representation VJ(P ) of g. Define the unique g-submodule

I ⊂ Sym2(VJ(P )) as for Problem 9.1. The subalgebra gB ⊂ g acts naturally on VJ(P ). Then the

gB submodule VB := U(gB).ℵ of VJ(P ) is an irreducible representation of gB whose highest weight

λB := ω0 is its unique minuscule weight. Now one can pose Problem 9.1 for the gB-module VB:

The gB-module Sym2(VB) decomposes into a direct sum U(gB).(ℵ)2 ⊕ IB of gB-submodules for a

unique submodule IB. Find a spanning set (or basis) for IB.

Proposition 9.23. The gB-modules VB and VJ(P ) are equal. Moreover, the subspaces I and IB of

Sym2(VJ(P )) = Sym2(VB) are equal.

Proof. We have that VB ⊆ VJ(P ). The first assertion follows from the standard dimension fact

dim(VB) = 2n−1 = dim(VJ(P )). We have U(gB).(ℵ)2 ⊆ U(g).(ℵ)2. Since g-modules are naturally

gB-modules, the g-module decomposition Sym2(VJ(P )) = U(g).(ℵ)2 ⊕ I is also a gB-module de-

composition. Since the complementary gB-module IB and g-module I are each unique, we have

I ⊆ IB.

We now show that dim(U(gB).(ℵ)2) = dim(U(g).(ℵ)2). We use the usual notation for the root

system of g. Let ΦB ⊂ h∗B denote the root system of gB. Let ρB ∈ h∗B denote the Weyl vector for

the root system ΦB. By the Weyl dimension formula, we have that dim(VB) =
∏
α∈Φ+

B

〈2λB + ρB, α〉
〈ρB, α〉

and dim(VJ(P )) =
∏
α∈Φ+

〈2λ+ ρ, α〉
〈ρ, α〉

. We take λ = ω]. For roots α ∈ ΦB (resp. α ∈ Φ) with no

α0 (resp. α]) component, we have that 〈2λB + ρB, α〉 = 〈ρB, α〉 (resp. without the subscript

B) and so the corresponding factor in the Weyl dimension formula above is 1. The remaining

roots in ΦB are the short roots {α0 + α1 + · · · + αi} for 0 ≤ i ≤ n − 2 and the long roots

{2α0 + 2α1 + · · ·+ 2αi + αi+1 + · · ·+ αj} for 0 ≤ i < j ≤ n− 2. The remaining roots in Φ are the

roots {α] + α1 + · · ·+ αi} for 0 ≤ i ≤ n− 2 and {α] + α[ + 2α1 + · · ·+ 2αi + αi+1 + · · ·+ αj} for

0 ≤ i < j ≤ n − 2. These two sets of roots match up in the obvious fashion from Φ to ΦB when

restricting the domain to hB. By considering short and long roots of ΦB separately, it is easy to see

that for matching roots α ∈ ΦB and β ∈ Φ as above we have 〈ρB, α〉 = 〈ρ, β〉. For both the short

and long roots α ∈ ΦB above, we have that 〈2λB, α〉 = 2. Similarly for the roots β ∈ Φ above, we
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have that 〈2λ, β〉 = 2. Hence, all of the corresponding factors in the Weyl dimension formulae are

equal.

From dim(U(gB).(ℵ)2) = dim(U(g).(ℵ)2), it follows that dim(IB) = dim(I). Therefore IB = I

as vector spaces.

This proposition allows us to obtain some Plücker relations for gB by first applying Section 9.3

with the simply laced algebra g to obtain extreme weight relations in I, and then recognizing those

as Plücker relations in IB. From this we obtain the final ingredient for Theorem 9.5:

Corollary 9.24. Each extreme weight Plücker relation for gB is the standard straightening law on

a double-tailed diamond sublattice of LλB
. Moreover, Corollary 9.10 also holds here.

Proof. We claim that the lattices Lλ and LλB
are equal. We use � to denote the usual order on

h∗R and �B to denote the usual order on (hB)∗R. The weights of LλB
are merely the weights of Lλ

when restricted to hB. We claim that µ � ν in Lλ if and only if µ|gB �B ν|gB in LλB
. Indeed, the

restriction of the simple roots of Φ to gB are again simple roots of ΦB: α] 7→ α0, α[ 7→ α0, α1 7→

α1, . . . , αn−2 7→ αn−2. It is then straightforward to see that any positive root of Φ+ restricts to

a positive root of Φ+
B, and that every root of Φ+

B is the restriction of some root of Φ+. Since the

orders �,�B are defined in terms of positive roots, we have Lλ ∼= LλB
as lattices.

Then the Plücker relations for gB obtained by Proposition 9.23 retain in LλB
whatever order

structure they may have in Lλ. In particular, each extreme weight Plücker relation is again the

standard straightening law on a double-tailed diamond sublattice of LλB
.

Note that since the restriction of weights gives Lλ ∼= LλB
as lattices it also gives an order

isomorphism of the uncolored minuscule posets of meet irreducible weights Pλ ∼= PλB
. However the

coloring functions κ and κB on Pλ and PλB
are not the same: elements x ∈ Pλ with either κ(x) = ]

or κ(x) = [ now have the B-color κB(x) = 0. The coloring κB of PλB
was not used in the proof of

the proposition or its corollary.

9.6 Extreme relations in type A

This section is an informal discussion of the extreme relations in type A without formal proofs.

We relate the combinatorial notions for minuscule posets in this case to established combinatorial

notions for Young diagrams. Interestingly, these combinatorial notions of “content” and “rim hooks”
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usually arise from the representation theory of the symmetric group. Use the labelling of type An−1

roots and weights from Section 5.2. Fix a minuscule weight λ = ωj .

Rotate the Hasse diagram for the poset P := an−1(j) as pictured in Figure 8.2 clockwise by

45◦ to obtain a rectangular array of dots with j rows and n − j columns. A rotated filter of the

poset is a left justified subarray of dots such that the number of dots in each of its rows is weakly

decreasing. Fix a filter J ⊂ P . Let µ1, µ2, . . . , µj be the number of dots in the 1st, 2nd, . . . , jth

rows of the rotated depiction of J . Then µ := (µ1, µ2, . . . , µn−j) is a partition. The dots in the

rotated depiction of J is the Ferrer’s diagram of µ. If we replace each dot with a box, then we

obtain the Young diagram of µ. This rotation process is a bijection from the filters of P (and hence

a basis of the g-module VJ(P )) to the Young diagrams fitting inside a j × n− j rectangle.

In this depiction of filters, the boxes represent elements of P . It is not difficult to verify the

following description of the coloring function κ on P . Each diagonal of a Young diagram is assigned

a distinct color. The diagonal consisting of the location (j, 1) at the southwest corner of the j×n− j

rectangle is assigned color 1. The diagonal of locations (j − 1, 1) and (j, 2) is assigned color 2,

and so on. In particular, the main diagonal of locations (1, 1), (2, 2), . . . , (j, j) is assigned color j.

This coloring of the locations is similar to the usual notion of the content of a location in a Young

diagram, except that contents on such diagrams range from 1− j to n− 1− j instead of 1 to n− 1.

We now show that α-layers for roots α ∈ Φ+ are simply “rim hooks” in this formulation.

Definition 9.25. A rim hook is a connected subset of boxes in the j × n− j array that does not

have two boxes on the same diagonal.

It is possible to show that α-layers must be connected. In type An−1, the simple root expansion of a

root α ∈ Φ+ is α = αi+αi+1 + · · ·+αj for some 1 ≤ i ≤ j ≤ n− 1. Fix such an α, and suppose that

R ⊂ P is an α-layer. Then R has a single element of each of the colors i, i+ 1, . . . , j. Hence when

rotated, the subset R does not have two boxes on the same diagonal. Therefore the rotated depiction

of R is a rim hook. On the other hand, suppose that H is a rim hook in the j×n− j array. It clearly

corresponds to a convex subset of P . Let i denote the color of its southwesternmost box, and let j

denote the color of its northeasternmost box. Since H is connected, it must have a box in each of

the diagonals of color i+ 1, . . . , j − 1. Since H does not have two boxes on the same diagonal, it has

exactly one box of each of these colors. Therefore we have
∑
x∈H κ(x) = αi + αi+1 + · · ·+ αj =: α
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and that H is an α-layer.

According to Theorem 9.5, the extreme weight Plücker relations are standard straightening laws

on double-tailed diamond sublattices of Lλ. As we saw in Section 9.2, in type A these double-tailed

diamond lattices are isomorphic to the one that appears in the model D3 case. Hence there are

only three terms in these straightening laws: the product of the incomparable pair, the product of

their meet and join, and one other standard monomial. It is simple to describe this last standard

monomial in type A without using the determinantal Plücker relations from Section 3.1. First we

need some preliminary definitions:

Definition 9.26. Let α, β ∈ Φ+ and write α = αi+αi+1 + · · ·+αj and β = αk +αk+1 + · · ·+α`. If

j < k− 1 or ` < i− 1, then α and β are said to be separated. In that case, without loss of generality

suppose j < k and define their bridge root γ(α, β) to be γ(α, β) := αj+1 + αj+2 + · · ·+ αk−1.

Recall that for any root α ∈ Φ+, we defined the actions of root vectors eα, fα of g on VJ(P ) in

Section 8.2.

Proposition 9.27. Let J,K ∈ J(P ) be incomparable filters such that J − (J ∨K) and K − (J ∨K)

are rim hooks. Then these rim hooks are root layers for separated roots α, β ∈ Φ+ and we have the

type A straightening law:

JK = (J ∨ K)(J ∧ K)− (eγ(α,β).[J ∨ K])(fγ(α,β).[J ∧ K]).

The filters of the two vectors in the final standard monomial are obtained from the meet and join by

transferring a rim hook of color γ(α, β) from the join filter to the meet filter.

In Section 9.1, we claimed that the Plücker module I is minuscule in type An−1 for the minuscule

weights ω2 and ωn−2. In these cases, the extreme weight Plücker relations given by Theorem 9.5

and described in detail by Proposition 9.27 above form a basis of I. We now confirm that claim.

First define ω0 and ωn to be the trivial weight 0. For λ = ωj we can see from the diagrams of the

top incomparable pair Z], Z[ that the highest weight η of the submodule I is ωj−2 + ωj+2. So when

j = 2, this weight is ω4. And when j = n− 2, this weight is ωn−4. In both cases, a dimension count

shows that dim(I) = dim(Vη). Hence I is irreducible and isomorphic to Vη.
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9.7 Geometry appendix

We give the geometric motivation behind Problem 9.1. This section outlines the general geometric

construction of minuscule flag varieties, and the connection to decompositions of representations. In

order to match the modules in the rest of Chapter 9 with the geometrically motivated modules here,

one must dualize those modules. More details on the following constructions are available in [13,

Chapter 10, Section 6.6].

Fix a minuscule weight λ of g. Let G be the connected simply-connected Lie group with Lie

algebra g. The representation of g on Vλ determines a representation of G on Vλ. Let v be a highest

weight vector of Vλ.

Definition 9.28. Let P ⊂ G denote the parabolic subgroup that leaves the highest weight line

Cv ⊂ Vλ invariant. The homogeneous space G/P is called a minuscule flag manifold.

The Plücker embedding of G/P is the G-equivariant map G/P ↪→ P(Vλ) from the coset space

G/P to the projective space of Vλ given by gP 7→ CgP.v. The Plücker embedding realizes G/P as

a projective variety. The homogeneous coordinate ring of the ambient space P(Vλ) is defined to

be Sym(V ∗λ ). A weight basis of V ∗λ is called a set of Plücker coordinates. Let v ∈ V ∗λ be dual to

the highest weight vector v ∈ Vλ. Since the Plücker embedding is G-equivariant, the coordinate

ring of G/P is a g-module. The degree two submodule Sym2(V ∗λ ) decomposes into a direct sum

U(g).(v)2 ⊕ I of g-submodules for a unique submodule I. The flag manifold G/P ⊆ P(Vλ) is the

zero set of an ideal of Sym(V ∗λ ) called its vanishing ideal. Kostant proved the following result:

Proposition 9.29. The quotient of Sym(V ∗λ ) by the ideal generated by I is the homogeneous

coordinate ring of G/P ⊂ P(V ). Hence, the vanishing ideal of G/P ⊂ P(V ) is generated by quadratic

relations.

Kostant’s result motivates the following definition:

Definition 9.30. A Plücker relation for the Plücker embedding of G/P is a a nonzero element of I.

Setting these elements of I to 0 produces the homogeneous coordinate ring Sym(V ∗λ )/I for G/P .

Note that the dual module V ∗λ of Vλ is minuscule if and only if Vλ is minuscule. So to apply our

results of this chapter to this geometric setting, one needs to re-label the indexing minuscule weight

λ with its dual minuscule weight −w0.λ, where w0 is the longest element of W . However we have
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that −w0.λ = λ for the type Bn minuscule weight, the type Dn natural weight, the type Dn spin

weights when the rank n is even, and the type E7 minuscule weight. In these cases, no relabeling is

necessary.
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Inc. Pair Meet · Join

D1 · O1 = C1 · D1O1 - B1 · C2 + A1 · B2 - ℵ · A2

E1 · O1 = C1 · E1O1 - B1 · C2E1 + A1 · B2E1 - ℵ · A2E1

E1 · D1O1 = D1 · E1O1 - B1 · D2 + A1 · B2D2 - ℵ · A2D2

C2 · E1 = D1 · C2E1 - C1 · D2 + A1 · C3 - ℵ · A2C3

C2 · E1O1 = D1O1 · C2E1 - O1 · D2 + A1 · O2 - ℵ · A2O2

B2 · E1 = D1 · B2E1 - C1 · B2D2 + B1 · C3 - ℵ · B3

B2 · E1O1 = D1O1 · B2E1 - O1 · B2D2 + B1 · O2 - ℵ · B3O2

A2 · E1 = D1 · A2E1 - C1 · A2D2 + B1 · A2C3 - A1 · B3

B2 · C2E1 = C2 · B2E1 - O1 · C3 + C1 · O2 - ℵ · C4

A2 · E1O1 = D1O1 · A2E1 - O1 · A2D2 + B1 · A2O2 - A1 · B3O2

B2 · D2 = C2 · B2D2 - O1D1 · C3 + D1 · O2 - ℵ · D3

A2 · C2E1 = C2 · A2E1 - O1 · A2C3 + C1 · A2O2 - A1 · C4

A2 · B2E1 = B2 · A2E1 - O1 · B3 + C1 · B3O2 - B1 · C4

B2E1 · D2 = C2E1 · B2D2 - O1E1 · C3 + E1 · O2 - ℵ · E2

A2 · D2 = C2 · A2D2 - O1D1 · A2C3 + D1 · A2O2 - A1 · D3

A2 · B2D2 = B2 · A2D2 - O1D1 · B3 + D1 · B3O2 - B1 · D3

A2E1 · D2 = C2E1 · A2D2 - O1E1 · A2C3 + E1 · A2O2 - A1 · E2

A2E1 · B2D2 = B2E1 · A2D2 - O1E1 · B3 + E1 · B3O2 - B1 · E2

A2 · C3 = B2 · A2C3 - C2 · B3 + D1 · C4 - C1 · D3

A2E1 · C3 = B2E1 · A2C3 - C2E1 · B3 + E1 · C4 - C1 · E2

A2 · O2 = B2 · A2O2 - C2 · B3O2 + D1O1 · C4 - O1 · D3

A2D2 · C3 = B2D2 · A2C3 - D2 · B3 + E1 · D3 - D1 · E2

A2E1 · O2 = B2E1 · A2O2 - C2E1 · B3O2 + E1O1 · C4 - O1 · E2

A2D2 · O2 = B2D2 · A2O2 - D2 · B3O2 + E1O1 · D3 - D1O1 · E2

A2C3 · O2 = C3 · A2O2 - D2 · C4 + C2E1 · D3 - C2 · E2

B3 · O2 = C3 · B3O2 - B2D2 · C4 + B2E1 · D3 - B2 · E2

B3 · A2O2 = A2C3 · B3O2 - A2D2 · C4 + A2E1 · D3 - A2 · E2

Figure 9.19: The 27 straightening laws for the complex Cayley plane on its Plücker coordinates.
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A2 · F2 =B2 · B2 − C2 · C2 +D2 · D2 − E1O1 · E1O1 +O1 · O1

+ E1 · E1 −D1 · D1 + C1 · C1 − B1 · B1 +A1 · A1 − ℵ · ℵ
(9.1)

E3 · A2F1 =B2F1 · B2F1 − C2F1 · C2F1 +D2F1 · D2F1 −F1O1 · F1O1 −O1 · O1

+ F1 · F1 +D1 · D1 − C1 · C1 + B1 · B1 −A1 · A1 + ℵ · ℵ
(9.2)

D4 · A2E2 =B2E2 · B2E2 − C2E2 · C2E2 + E2 · E2 + F1O1 · F1O1 − E1O1 · E1O1

−F1 · F1 + E1 · E1 + C1 · C1 − B1 · B1 +A1 · A1 − ℵ · ℵ
(9.3)

A2D3 · C3O2 =B2D3 · B2D3 −D3 · D3 − E2 · E2 +D2F1 · D2F1 −D2 · D2

+ F1 · F1 − E1 · E1 +D1 · D1 + B1 · B1 −A1 · A1 + ℵ · ℵ
(9.4)

A2C3 · B2O2 =B2D3 · B2D3 − B2E2 · B2E2 + B2F1 · B2F1 − B2 · B2 − E2 · E2

+D2F1 · D2F1 −D2 · D2 −F1O1 · F1O1 + E1O1 · E1O1 −O1 · O1

+ F1 · F1 − E1 · E1 +D1 · D1 − C1 · C1 + 2B1 · B1 −A1 · A1 + 2ℵ · ℵ

(9.5)

B3 · O2 =D3 · D3 − C2E2 · C2E2 + C2F1 · C2F1 − C2 · C2 + E2 · E2

−D2F1 · D2F1 +D2 · D2 + F1O1 · F1O1 − E1O1 · E1O1 +O1 · O1

−F1 · F1 + E1 · E1 −D1 · D1 + C1 · C1 − B1 · B1 + 2A1 · A1 − 2ℵ · ℵ

(9.6)

C3 · A2O2 =B2D3 · B2D3 − B2E2 · B2E2 + B2F1 · B2F1 − B2 · B2 −D3 · D3

+ C2E2 · C2E2 − C2F1 · C2F1 + C2 · C2 − E2 · E2 +D2F1 · D2F1

−D2 · D2 −F1O1 · F1O1 + E1O1 · E1O1 −O1 · O1

+ 2F1 · F1 − 2E1 · E1 + 2D1 · D1 − 2C1 · C1 + 2B1 · B1 − 2A1 · A1 + 3ℵ · ℵ

(9.7)

Figure 9.20: The zero weight straightening laws for the Freudenthal variety on its Plücker coordinates.

92





0 0 0 1 0 0 0 1̄ 0 0 1 0 1̄ 1 0 1 1̄ 1 1̄ 1 1̄
0 0 1 0 0 0 1̄ 0 0 1 0 1̄ 0 1̄ 1 0 1 1̄ 1 1̄ 1
0 1 0 0 0 1̄ 0 0 1 0 0 1 1̄ 0 1̄ 1 0 1 1̄ 1 1̄
1 0 0 0 1̄ 0 0 0 1̄ 1 1̄ 0 0 0 1 1̄ 1 0 1 1̄ 1
0 0 0 0 1 1̄ 1 1̄ 1 1̄ 1 1 1̄ 1 1̄ 1 1̄ 1 1̄ 2 2̄
1 1̄ 1 1̄ 0 0 0 0 1̄ 1 1̄ 1̄ 1 1̄ 1 1̄ 1 1̄ 2 1̄ 2
1 1̄ 1 1̄ 1̄ 1 1̄ 1 1̄ 1 1̄ 1̄ 1 1̄ 2 2̄ 2 2̄ 2 2̄ 3


Figure 9.21: The matrix which lists the 21 standard monomial coordinates of the 7 products of
weight zero incomparable pairs of Plücker coordinates for the Freudenthal variety, in the total order
of Section 9.4.

Figure 9.22: The type Bn−1 and type Dn Dynkin diagrams. The ] and [ type D nodes
are “folded” together into the short type B node 0 upon restriction
to the subalgebra gB ⊂ g.
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