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ABSTRACT

Feng Chen: ADMISSION CONTROL AND ROUTING IN

MULTI-PRIORITY SYSTEMS

(Under the direction of Professor Vidyadhar G. Kulkarni)

We consider a manufacturer that offers two types of prioritized warranties for its

product. Type 1 warranty guarantees a shorter turnaround time than type 2 warranty.

Hence items covered by type 1 warranty receive higher priority in repair service. When

an item under warranty fails, the manufacturer sends it to one of several repair vendors

for repair, who are under contracts to provide repair service for the manufacturer.

The manufacturer pays each vendor a fixed fee per repair assignment. While an item

is at the vendor under or awaiting repair, a linear holding cost is incurred by the

vendor and a linear good-will cost is incurred by the manufacturer.

We first study the admission control problem for a single vendor that can either

accept or reject an incoming repair assignment in order to maximize its own profit.

We analyze the optimal control policies under three criteria: individual optimization,

class optimization, and social optimization. By exploiting two proof methods, value

iteration algorithm and sample path analysis, we prove that the optimal policy under

each criterion has switching-curve structure. We also compare the optimal policies

under the three criteria mentioned above and show that (i) the class-optimal pol-

icy accepts more high priority customers but fewer low priority customers than the

socially optimal policy, which has interesting socioeconomic connotation, (ii) the in-

dividually optimal policy accepts more high priority customers than the class-optimal
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policy, while it can accept either more or fewer low-priority customers than either of

the other two optimal policies.

We then consider the warranty repair allocation problem which the manufacturer

faces. The manufacturer’s goal is to allocate the repair work in such a way that the

total cost (including fixed cost and good-will cost) is minimized. The complexity of

the problem makes the attempt to find the optimal policy very unlikely to succeed.

Therefore, we turn our attention to heuristic routing procedures. We develop an

effective and robust index-based policy by applying a single policy improvement step

to a well-chosen static routing policy. We evaluate the index-based policy and compare

it with other heuristics via simulation.
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Chapter 1

Introduction

1.1 Overview

Warranty has been playing an increasingly important role in product sales and ser-

vices. In 2004, the 25 largest manufactures in the United States spent a total of $15

billion on warranty claims. Warranty claims processing consumed 2.5% ∼ 4.5% of

revenues across all industries (Byrne [8]). It has been shown that warranty improve-

ments can not only save cost but also boost revenues, enhance customer satisfaction

and loyalty, and even drive up the product quality.

There has been a strong trend towards outsourcing various business operations

in recent years, especially in the IT industry. According to IDC (a Framingham,

Massachusetts-based market research firm), spending on IT outsourcing reached $56

billion in 2000 and $100 billion in 2005. As a major component of the manufacturing

and retail industry, warranty repair services have experienced the rising outsourcing

tide as well. Outsourcing warranty repairs offers the original equipment manufacturer

the opportunity to reduce operating cost and capital investment, focus on their core

business, increase speed to market, and faster customer response time.

Typically a manufacturer outsources repair work to several vendors, in which case



the manufacturer faces the problem of how to distribute the workload among vendors

in a cost-effective manner. The problem becomes more complicated in the presence

of priorities. Priority issue arises when the manufacturer provides different types

of warranties that specify different turnaround times. The warranty with shorter

turnaround time is given to important customers (e.g. customers that make frequent

or large purchases from the manufacturer), or sold to customers who are willing to

pay more for a shorter repair time. To meet the specified turnaround times, products

covered by a warranty that guarantees a shorter repair time are given higher priority

in repair service. Hence, the manufacturer needs to solve a multi-priority warranty

repair allocation problem.

We study two topics motivated by the problem mentioned above. The first topic

is the admission control problem for a single vendor. We assume the failed items of

each class (i.e., covered by each warranty) arrive at the vendor according to a Poisson

process. The vendor can either accept or reject each arriving item with the objective

of maximizing its own profit. The vendor receives a class-dependent reward each

time it accepts an item and pays a holding cost at a class-dependent rate while an

item is at the vendor. There is no penalty for rejecting an item. Costs and rewards

are continuously discounted. We analyze the optimal admission control policy under

three optimization criteria: individual optimization, class-optimization, and social

optimization. Our primary interest is in showing structural properties of the optimal

policies.

We first consider the case where the reward is generated at the time of joining the

repair queue in Chapter 2. Using value iteration algorithm, we prove that the optimal

policy is of threshold-type under each of the three optimization criteria mentioned

above. We also compare the optimal policies under the three criteria and show that

(i) the class-optimal policy accepts more class 1 customers but fewer class 2 customers

than the socially optimal policy, which has interesting social connotation, (ii) the indi-
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vidually optimal policy accepts more class 1 customers than the class-optimal policy,

while it can accept either more or fewer class 2 customers than either of the other two

optimal policies. We then consider the case where the reward is generated at the time

of service completion in Chapter 3. By applying sample path analysis, we show that

the switching-curve structure property still holds for the optimal policy under each

optimization criterion. We compare policies under different criteria numerically. The

numerical results imply the same relationship between different criteria as proved for

the first case.

The second topic is the dynamic routing problem for the manufacturer. Assume

the life time of each item is exponential indepent of the warranty type. Each time

an item covered under warranty fails, the manufacturer needs to decide which vendor

to send the item for repair. The manufacturer pays a vendor-dependent fixed fee for

each repair and incurs a good-will cost while an item is undergoing or waiting for

repair. Given the complexity of the problem, trying to find the optimal solution is

unrealistic. Hence we turn our attention to heuristic allocation procedures. In Chap-

ter 4, we present four heuristics that are applicable to large problems, then evaluate

and compare them using simulation. Among the four heuristics, the Generalized Join

the Shortest Queue (GJSQ) policy is of our primary interest. The GJSQ policy is

derived by applying a single policy improvement step to a judicious chosen initial

static policy. We derive closed-form expressions for the GJSQ policy. The simulation

results suggest that the GJSQ policy is robust and performs considerably better than

the other heuristics.

1.2 Literature Review

There is an extensive literature on the subject of warranty. For a comprehensive

reference, see Blischke and Murthy [7]. They discuss a variety of warranty policies
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including standard consumer product warranties such as the free replacement and pro

rata, as well as warranties used in large volume or specialized transactions. Analytical

models dealing with cost and optimization problems from both the manufacturer’s

and the buyer’s point of view are developed. Methods of collecting and analyzing

relevant data are also addressed. A literature review until 2002 is given by Murthy

and Djamaludin [34]. For recent development, among others, see Dimitrov et al. [12],

Yeh et al. [50], and Manna et al. [31].

1.2.1 Admission Control

Admission control for single class queueing systems is a well studied area. See Stidham

[43] for a survey. The first quantitative model in this area is proposed by Naor

[36], who studies an M/M/1 system with a single class of customers. He considers

undiscounted reward and cost and the objective is to maximize the long-run average

net reward per unit time. Naor considers only critical-number policies and shows

that nS ≤ nI , where nS and nI are the critical numbers for social optimization and

individual optimization, respectively. An incoming customer is accepted if the number

of existing customer is less than the critical number and rejected otherwise. Yechiali

[48] [49] proves that for GI/M/1, GI/M/s systems the socially optimal policy has

critical-number form. Thus Naor’s restriction to critical-number policies is without

loss of generality.

Naor’s result has been generalized by many authors. Among others, Knudsen [22]

considers an M/M/s queue with state-dependent net benefit. Lippman and Stidham

[28] study a birth-death process with general departure rate, random reward, with or

without discounting and for a finite or infinite time horizon. Stidham [42] considers

a GI/M/1 queue with random reward and general holding cost, with or without

discounting. For other models of admission control problem for single-class queues,

see Adiri and Yechiali [1], Stidham and Weber [44], and Rykov [40].
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Admission control for multi-class queueing systems is another important research

area. Models in this area can be classified into two categories based on whether or not

service is prioritized based on class. In models without priorities, different classes are

distinguished by different arrival rates, service rates, rewards, holding costs, etc. For

papers in this category, among others, see Miller [33], Blanc and de Waal [6], Kulkarni

and Tedijanto [25], and Nair and Bapma [35]. Among papers that consider service

priorities, Mendelson and Whang [32] study a priority pricing problem for a multi-

class M/M/1 queueing system, where each customer decides by himself whether or

not to join the system and, if join, at what priority level. Hassin [19] studies a bidding

mechanism for determining priorities in a GI/M/1 queue without balking. Ha [18]

considers the production control problem in a make-to-stock production system with

two prioritized customer classes.

To the best of our knowledge, the admission control problem for a multi-class

queue with predetermined priorities and the objective of minimizing expected total

discounted cost has not been studied. Besides the widely used individual optimization

and social optimization, we propose a new optimization criterion: class optimization.

Using two proof methods: value iteration algorithm and sample path analysis, we

show that the optimal policies have threshold-type structure. We also compare be-

tween different optimal policies.

1.2.2 Warranty Repair Routing

We categorize warranty repair routing problems from the following four aspects.

(i) Based on the priority levels, we have either single-priority problems or multi-

priority problems. In the single-priority case, the repair service at each vendor

is provided on a first-in, first-served basis. In the multi-priority case, the repair

service is provided based on a predetermined priority policy.
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(ii) Based on the number of items under warranty, we have either fixed-population

problems, or variable-population problems. Fixed-population problem arises

when we are dealing with warranty repairs for a batch of items sold at once, in

which case no items enter or leave the warranty population of interest during

the warranty period. More often, the items are sold in a continuous fashion.

Thus the number of items under warranty increases when a new sale occurs and

decreases when the warranty expires on an existing item, in which case we have

a variable-population problem.

(iii) Based on the assignment rule, we can use either assign-at-purchase policies or

assign-at-failure policies. The former requires an item to be assigned to a vendor

at the time of purchase and sent to that vendor for repair each time it fails. This

can be done by printing the repair vendor’s phone number on the warranty card

and instructing customers to call that number for repair services. The latter

allows the items to be assigned to different vendors at the time of failure. In

this case, a routing center’s phone number is printed on the warranty card. A

repair vendor’s information is provided when the customer calls with a request

for repair.

(iv) Based on the available information, the routing policy we use can be either

state-independent, partially state-dependent, or fully state-dependent. State-

independent policies do not use any real-time information of the system, i.e.,

the same rule is applied to every assignment. Partially state-dependent policies

use only the real-time information of the warranty population, which includes

the number of items under each type of warranty and the remaining warranty

length of each item. This information can be easily collected by keeping a record

of the purchases made in the past W time, where W is the warranty length.

If the warranty periods are assumed to be i.i.d. exponential random variables,
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then only the warranty population size is necessary. Fully state-dependent poli-

cies use real-time information of both the warranty population and the vendors.

Real-time information of vendors means the number of items at each vendor at

the time of each failure. Collecting this information requires real-time commu-

nication between the manufacturer and the vendors, which may need a more

complicated information system and cost extra.

The warranty repair allocation problem has the simplest structure when consid-

ering single-priority and fixed-population. In this case, the assign-at-purchase model

reduces to a resource allocation problem with separable objective function. Note

that only state-independent policies are applicable in the assign-at-purchase model.

This problem has been extensively studied in the literature. When the objective is

convex, a simple greedy algorithm first proposed by Gross [17] can be used to solve

the problem optimally. See Ibaraki and Katoh [21] for a comprehensive reference

for the resource allocation problems. Opp et al. [37] discuss the application of the

greedy algorithm to the warranty repair allocation problem. Ding and Glazebrook

[13] consider a goodwill cost model that takes explicit account of the delays expe-

rienced by customers. They show that simple greedy approaches work well. The

assign-at-failure model for single-priority and fixed-population problem is studied by

Opp et al. [37]. They argue that optimally solving real-life size problems is numeri-

cally intractable. They develop index-based, fully state-dependent heuristic policies

to find near-optimal solutions.

When priorities are considered, the objective function is no longer separable.

Buczkowski et al. [9] study the assign-at-purchase model for multi-priority, fixed-

population problems. They formulate the problem as a minimum cost network flow

problem and provide an efficient algorithm to solve it.

We are interested in the multi-priority, variable-population problem, and the

assign-at-failure policies. Given the difficulty of the problem even without consid-
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ering priority and finite constant warranty length (see Opp et al. [37]), seeking the

optimal solution is very unlikely to be successful. Hence we focus on constructing

heuristic policies.

We first simplify the problem by assuming that the number of functioning items

under warranty of each type is a constant. Therefore, failures occur according to

Poisson processes. The original warranty repair allocation problem reduces to the

problem of routing items arriving according to independent Poisson streams to several

vendors where service is provided according to a fixed priority policy. A general model

of this situation is studied by Ansell et al. [3]. They develop an index-based dynamic

routing heuristic by applying a single policy improvement step to an initial static

policy (see also Krishnan [23] and Tijms [45] for this approach). They name the

resulting index-based heuristic “Generalized Join the Shortest Queue”(GJSQ) policy.

The simplified version of our problem is a special case of the model studied by

Ansell et al. [3] (we consider two generic classes and no dedicated classes), except that

we allow a station-dependent fixed cost per assignment, which is not considered by

Ansell et al. [3]. We adapt their approach and derive tractable closed-form expressions

for the indices, which are given as a solution to an infinite set of recursive equations

in Ansell et al. [3]. We evaluate the GJSQ policy and compare it with three other

heuristics using simulation. The simulation results show that, although the GJSQ

policy is derived based on a simplified model, it works well on the original problem

and outperforms the other heuristics.
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Chapter 2

Admission Control: Value

Iteration Approach

2.1 Problem Description

We study the admission control problem at a single vendor in this chapter. We model

the single vendor under consideration as an M/M/1 queueing system serving two

classes of customers. Class 1 customers have preemptive resume priority over class 2

customers. Within each class, the service is provided on a first-come, first-served basis.

Class i customers arrive according to a Poisson process with parameter λi, i = 1, 2.

Each customer requires an i.i.d. exp(µ) service time (same for both classes). The

system is controlled by accepting or rejecting arriving customers. There is a reward

of ri associated with accepting a class i customer. An accepted class i customer

generates a waiting cost of hi per unit time spent in the system. All rewards and

costs are continuously discounted with rate α > 0. The goal is to minimize the

expected total discounted net cost.

Priority issue arises in many other queueing systems. For example, internet traffic

protocols assign higher priority to data packages that require real-time transmission



(e.g. live audio and video) and lower priority to delay-insensitive packages (e.g. e-

mails and file transmission). Service queues may give VIP customers higher priority

over ordinary customers. In hospitals, patients in critical conditions receive higher

priority in treatment over non-critical patients. Admission control problem in these

kinds of multi-priority queues can be modeled by the framework presented here.

We analyze the optimal control policies for such a system under 3 criteria: in-

dividual optimization, class optimization, and social optimization. Under individual

optimization, each customer obtains the reward and pays the waiting cost by himself.

A customer makes decision based on the objective of minimizing his own expected to-

tal discounted net cost. Under class optimization, there is a controller for each class.

The controller of class i obtains the reward and pays the waiting cost generated by

each class i customer. He decides whether to accept an arriving class i customer or

not based on the objective of minimizing the expected total discounted net cost in-

curred by all class i customers. Under social optimization, there is a single controller

for the whole system. The system controller obtains the reward and pays the waiting

cost generated by every customer. He decides whether to accept an arriving customer

or not based on the objective of minimizing the expected total discounted net cost

incurred by all customers.

2.2 Individual Optimization

We consider individual optimization in this section. Clearly, the individually optimal

policy for an arriving customer is to join the system if and only if his expected

discounted net cost is less than or equal to zero.

Denote the system state by (i, j), where i is the number of class 1 customers in

the system and j is the number of class 2 customers in the system. We need the

following lemma to derive the main result in Theorem 1.

10



Lemma 1. Let X(t) be the number of customers in a M/M/1/k queue at time t

with arrival rate λ and service rate µ. Let T = min{t ≥ 0 : X(t) = 0} and define

φi(α) = E(e−αT |X(0) = i). Then, φi(α) is given by

φi(α) =
ui

1u
k−1
2 (u2(α + µ) − µ) − ui

2u
k−1
1 (u1(α + µ) − µ)

uk−1
2 (u2(α + µ) − µ) − uk−1

1 (u1(α + µ) − µ)
, i = 0, . . . , k, (2.1)

where

u1 = 1
2λ1

(α + λ1 + µ +
√

(α + λ1 + µ)2 − 4λ1µ),

u2 = 1
2λ1

(α + λ1 + µ −
√

(α + λ1 + µ)2 − 4λ1µ).
(2.2)

Proof. {X(t), t ≥ 0} is a birth-death process on state space S = {0, 1, . . . , k}. By

Theorem 6.21 of Kulkarni [24], {φi(α)} is the solution to

φ0(α) = 1,

µφi−1(α) − (α + λ1 + µ)φi(α) + λ1φi+1(α) = 0, i = 1, 3, . . . , k − 1,

µφk−1(α) − (α + µ)φk(α) = 0.

(2.3)

Solving the above system of equations yields (2.1).

Theorem 1. Under the individual optimization criterion, an arriving class 1 cus-

tomer who sees the system in state (i, j) joins the queue if and only if i < LI
1, where

LI
1 =











∞, if h1 ≤ αr1

blog(1 − αr1

h1

)/ log µ

µ+α
c, if h1 > αr1.

(2.4)

An arriving class 2 customer who sees the system in state (i, j) joins the queue if and

only if j < LI
2(i), where

LI
2(i) =























∞, if h2 ≤ αr2

blog h2−αr2

h2φi(α)
/ log βc, if h2 > αr2, i ≤ LI

1

b(log h2−αr2

h2φ
LI

1

(α)
+ (i − LI

1)(log µ+α

µ
))/ log βc, if h2 > αr2, i > LI

1,

(2.5)

11



where φi(α) is given in (2.1), β = µ

α+µ+λ1(1−φ1(α))
, bxc is the largest integer less than

or equal to x. Furthermore, LI
2(i) is decreasing in i.

Proof. First consider class 1 customers. Denote the sojourn time of a class 1 customer

who joins the system in state (i, j) by X(i, j). Since class 1 customers have preemptive

priority over class 2 customers, we have

X(i, j) = X1 + X2 + · · ·+ Xi+1,

where Xk, k = 1, 2, . . . , i + 1 are i.i.d. exp(µ) service times. So the class 1 customer’s

expected total discounted cost is

E(

∫ X(i,j)

0

h1e
−αtdt) =

h1

α
(1 − (

µ

µ + α
)i+1).

Therefore, he joins the queue if and only if

h1

α
(1 − (

µ

µ + α
)i+1) ≤ r1, (2.6)

which is equivalent to i < LI
1, where LI

1 is defined in (2.4).

Now consider class 2 customers. Denote the sojourn time of a class 2 customer

who joins the system in state (i, j) by Y (i, j). We can decompose Y (i, j) into 3

periods. Period 1, denoted by T1, is the time period for serving the first i−LI
1 class 1

customers, if i > LI
1. Period 1 has length 0 if i ≤ LI

1. Note that no class 1 arrivals will

be accepted during this period. Period 2, denoted by T2, is the server’s busy period

for serving the remaining class 1 customers and the class 1 customers joining the

system during this period, which ends when the first class 2 customer starts receiving

service. Period 3, denoted by T3, is the time period for serving the j + 1 class 2

customers and the class 1 customers joining the system during this period.

Consider period T1 first. If i ≤ LI
1, T1 has length 0, thus E(e−αT1) = 1. If i > LI

1,

12



T1 is the sum of i − LI
1 i.i.d. exp(µ) service times. Thus E(e−αT1) = ( µ

α+µ
)i−LI

1 .

From Lemma 1 we know the LST of T2 is given by (2.1) with k = LI
1.

Consider period T3. T3 =
∑j+1

k=1 Zk, where Zk is the time period for serving the

kth class 2 customer and the class 1 customers joining the system during this period.

Let β = E(e−αZ1). Using first-step analysis, one can show that β satisfies

β =
µ + λ1

α + µ + λ1
(

µ

µ + λ1
+

λ1

µ + λ1
φ1(α)β).

Solving for β, we have

β =
µ

α + µ + λ1(1 − φ1(α))
.

Since {Zk} are i.i.d., we have

E(e−αT3) = (E(e−αZ1))j+1 = βj+1.

Thus

E(e−αY (i,j)) = E(e−αT1)E(e−αT2)E(e−αT3) = (
µ

α + µ
)max{0,i−LI

1
}φmin{i,LI

1
}(α)βj+1.

Therefore, the expected total discounted cost for a class 2 customer joining the system

in state (i, j) is

E(

∫ Y (i,j)

0

h2e
−αtdt) =

h2

α
(1 − (

µ

α + µ
)max{0,i−LI

1
}φmin{i,LI

1
}(α)βj+1).

He will join the system if and only if

h2

α
(1 − (

µ

α + µ
)max{0,i−LI

1
}φmin{i,LI

1
}(α)βj+1) ≤ r2,

which is equivalent to j < LI
2(i), where LI

2(i) is defined in (2.5).

13



Since T is stochastically increasing in i, φi(α) is decreasing in i. Thus LI
2(i) is

decreasing in i.

2.3 Class Optimization

We consider class optimization in this section. There is a controller for each class.

The controller of class i decides whether to accept an arriving class i customer or not

based on the objective of minimizing the expected total discounted net cost incurred

by all class i customers, i = 1, 2.

Consider the optimal policy for the controller of class 1 first. This is the stan-

dard single-class admission control problem studied by many authors. Among others,

Stidham [42] considers a GI/M/1 queue with random rewards and general holding

cost and shows that the optimal policy is of critical-number form. As a special case,

we have

Theorem 2. The optimal policy for the controller of class 1 is a threshold policy,

i.e., there exists a constant LC
1 such that an arriving class 1 customer is accepted if

and only if i < LC
1 .

Now consider the optimal policy for the controller of class 2. Assume that the

controller of class 1 applies his optimal policy and the controller of class 2 knows

that. Let v(i, j) be the minimum expected total discounted cost for the controller

of class 2 with initial state (i, j). Following Lippman [27], we uniformize the process

by defining the uniform rate Λ = λ1 + λ2 + µ. Assuming, without loss of generality,

Λ + α = 1, the optimality equations can be written as

v(i, j) = Tv(i, j) = C(j) + λ1T1v(i, j) + λ2T2v(i, j) + µT3v(i, j), (2.7)
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where

C(j) = h2j, (2.8)

T1v(i, j) =











v(i + 1, j), i < LC
1

v(i, j), i ≥ LC
1 ,

(2.9)

T2v(i, j) = min{−r2 + v(i, j + 1), v(i, j)}, (2.10)

and

T3v(i, j) =























v(i − 1, j), i ≥ 1, j ≥ 0

v(0, j − 1), i = 0, j ≥ 1

v(0, 0), i = 0, j = 0.

(2.11)

Let V be the set of functions such that if v ∈ V, then

• v is monotonically increasing in i, i.e.,

v(i, j) ≤ v(i + 1, j), (2.12)

• v is monotonically increasing in j, i.e.,

v(i, j) ≤ v(i, j + 1), (2.13)

• v is supermodular, i.e.,

v(i, j + 1) + v(i + 1, j) ≤ v(i, j) + v(i + 1, j + 1), (2.14)

• v is diagonally dominant in j, i.e.,

v(i, j + 1) + v(i + 1, j + 1) ≤ v(i + 1, j) + v(i, j + 2). (2.15)
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It is worth noting that if v ∈ V, then v is convex in j, i.e.,

v(i, j + 1) − v(i, j) ≤ v(i, j + 2) − v(i, j + 1). (2.16)

This follows by adding inequalities (2.14) and (2.15).

We have the following properties of the operators T1, T2, and T3.

Lemma 2. If v ∈ V, then T1v ∈ V.

Proof.

(a) For (2.12), if i ≤ LC
1 − 2, then

T1v(i, j) = v(i + 1, j) ≤ v(i + 2, j) = T1v(i + 1, j).

If i = LC
1 − 1, then

T1v(i, j) = v(i + 1, j) = T1v(i + 1, j).

If i ≥ LC
1 , then

T1v(i, j) = v(i, j) ≤ v(i + 1, j) = T1v(i + 1, j).

(b) For (2.13), if i ≤ LC
1 − 1, then

T1v(i, j) = v(i + 1, j) ≤ v(i + 1, j + 1) = T1v(i, j + 1).

If i ≥ LC
1 , then

T1v(i, j) = v(i, j) ≤ v(i, j + 1) = T1v(i, j + 1).
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(c) For (2.14), if i ≤ LC
1 − 2, then

T1v(i, j + 1) + T1v(i + 1, j) = v(i + 1, j + 1) + v(i + 2, j)

≤ v(i + 1, j) + v(i + 2, j + 1)

= T1v(i, j) + T1v(i + 1, j + 1),

where the inequality follows from (2.14) with i replaced by i + 1.

If i = LC
1 − 1, then

T1v(i, j + 1) + T1v(i + 1, j) = v(i + 1, j + 1) + v(i + 1, j)

= T1v(i, j) + T1v(i + 1, j + 1).

If i ≥ LC
1 , then

T1v(i, j + 1) + T1v(i + 1, j) = v(i, j + 1) + v(i + 1, j)

≤ v(i, j) + v(i + 1, j + 1)

= T1v(i, j) + T1v(i + 1, j + 1).

(d) For (2.15), if i ≤ LC
1 − 2, then

T1v(i, j + 1) + T1v(i + 1, j + 1) = v(i + 1, j + 1) + v(i + 2, j + 1)

≤ v(i + 2, j) + v(i + 1, j + 2)

= T1v(i + 1, j) + T1v(i, j + 2),

where the inequality follows from (2.15) with i replaced by i + 1.
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If i = LC
1 − 1, then

T1v(i, j + 1) + T1v(i + 1, j + 1) = v(i + 1, j + 1) + v(i + 1, j + 1)

≤ v(i + 1, j) + v(i + 1, j + 2)

= T1v(i + 1, j) + T1v(i, j + 2),

where the inequality follows from (2.16) with i replaced by i + 1.

If i ≥ LC
1 , then

T1v(i, j + 1) + T1v(i + 1, j + 1) = v(i, j + 1) + v(i + 1, j + 1)

≤ v(i + 1, j) + v(i, j + 2)

= T1v(i + 1, j) + T1v(i, j + 2).

Lemma 3. If v ∈ V, then T2v ∈ V.

Proof.

(a) For (2.12), denote by a the minimizing action in T2v(i+1, j), where action 0 (1)

refers to rejecting (accepting) a customer, i.e., T2v(i + 1, j) = min{−r2 + v(i +

1, j+1), v(i+1, j)} = v(i+1, j), if a = 0, and T2v(i+1, j) = −r2+v(i+1, j+1),

if a = 1.

If a = 0, then

T2v(i, j) = min{−r2 + v(i, j + 1), v(i, j)} ≤ v(i, j) ≤ v(i + 1, j) = T2v(i + 1, j).

If a = 1, then

T2v(i, j) ≤ −r2 + v(i, j + 1) ≤ −r2 + v(i + 1, j + 1) = T2v(i + 1, j).
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(b) For (2.13), the proof is similar to (a).

(c) For (2.14), denote by a1 (a2) the minimizing action in T2v(i, j) (T2v(i+1, j+1)).

If a1 = a2 = 0, then

T2v(i, j + 1) + T2v(i + 1, j)

= min{−r2 + v(i, j + 2), v(i, j + 1)} + min{−r2 + v(i + 1, j + 1), v(i + 1, j)}

≤ v(i, j + 1) + v(i + 1, j) ≤ v(i, j) + v(i + 1, j + 1) = T2v(i, j) + T2v(i + 1, j + 1),

where the second inequality follows from (2.14).

The case where a1 = a2 = 1 can be proved similarly.

If a1 = 1, a2 = 0, then

T2v(i, j + 1) + T2v(i + 1, j) ≤ v(i, j + 1) − r2 + v(i + 1, j + 1)

= T2v(i, j) + T2v(i + 1, j + 1).

If a1 = 0, a2 = 1, following the convention that an arriving customer is accepted

when the system performance is indifferent between accepting and rejecting this

customer, we have

v(i, j) < −r2 + v(i, j + 1), −r2 + v(i + 1, j + 2) ≤ v(i + 1, j + 1).

The sum of the these two inequalities gives us

v(i, j) + v(i + 1, j + 2) < v(i, j + 1) + v(i + 1, j + 1). (2.17)
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Replacing j by j + 1 in (2.14), we get

v(i, j + 2) + v(i + 1, j + 1) ≤ v(i, j + 1) + v(i + 1, j + 2). (2.18)

Summing up (2.14), (2.15) and (2.18), we get

v(i, j + 1) + v(i + 1, j + 1) ≤ v(i, j) + v(i + 1, j + 2),

which is a contradiction to (2.17). Therefore, the case where a1 = 0, a2 = 1

does not exist.

(d) For (2.15), denote by a1 (a2) the minimizing action in T2v(i+1, j) (T2v(i, j+2)).

If a1 = a2 = 0, then

T2v(i, j + 1) + T2v(i + 1, j + 1)

= min{−r2 + v(i, j + 2), v(i, j + 1)} + min{−r2 + v(i + 1, j + 2), v(i + 1, j + 1)}

≤ v(i, j + 1) + v(i + 1, j + 1)}

≤ v(i + 1, j) + v(i, j + 2) = T2v(i + 1, j) + T2v(i, j + 2),

where the second inequality follows from (2.15).

The case where a1 = a2 = 1 can be proved similarly.

If a1 = 1, a2 = 0, then

T2v(i, j + 1) + T2v(i + 1, j + 1)

≤ −r2 + v(i, j + 2) + v(i + 1, j + 1) = T2v(i + 1, j) + T2v(i, j + 2).
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If a1 = 0, a2 = 1, then

v(i + 1, j) < −r2 + v(i + 1, j + 1), −r2 + v(i, j + 3) ≤ v(i, j + 2).

The sum of the above two inequalities gives us

v(i + 1, j) + v(i, j + 3) < v(i + 1, j + 1) + v(i, j + 2). (2.19)

Replacing j by j + 1 in (2.15), we have

v(i, j + 2) + v(i + 1, j + 2) ≤ v(i + 1, j + 1) + v(i, j + 3). (2.20)

Summing up (2.15), (2.18), and (2.20), we get

v(i + 1, j + 1) + v(i, j + 2) ≤ v(i + 1, j) + v(i, j + 3),

which is a contradiction to (2.19). Therefore the case where a1 = 0, a2 = 1 does

not exist.

Lemma 4. If v ∈ V, then T3v ∈ V.

Proof.

(a) For (2.12), if i ≥ 1, j ≥ 0, then

T3v(i, j) = v(i − 1, j) ≤ v(i, j) = T3v(i + 1, j).

If i = 0, j ≥ 1, then

T3v(0, j) = v(0, j − 1) ≤ v(0, j) = T3v(1, j).
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If i = 0, j = 0, then

T3v(0, 0) = v(0, 0) = T3v(1, 0).

(b) For (2.13), the proof is similar to (a).

(c) For (2.14), if i ≥ 1, j ≥ 0, then

T3v(i, j + 1) + T3v(i + 1, j) = v(i − 1, j + 1) + v(i, j)

≤ v(i − 1, j) + v(i, j + 1) = T3v(i, j) + T3v(i + 1, j + 1),

where the inequality follows from (2.14) with i replaced by i − 1.

If i = 0, j ≥ 1, then

T3v(0, j + 1) + T3v(1, j) = v(0, j) + v(0, j)

≤ v(0, j − 1) + v(0, j + 1) = T3v(0, j) + T3v(1, j + 1),

where the inequality follows from (2.16) with j replaced by j − 1 and i = 0.

If i = 0, j = 0, then

T3v(0, 1) + T3v(1, 0) = v(0, 0) + v(0, 0)

≤ v(0, 0) + v(0, 1) = T3v(0, 0) + T3v(1, 1).

(d) For (2.15), if i ≥ 1, j ≥ 0, then

T3v(i, j + 1) + T3v(i + 1, j + 1) = v(i − 1, j + 1) + v(i, j + 1)

≤ v(i, j) + v(i − 1, j + 2) = T3v(i + 1, j) + T3v(i, j + 2),

where the inequality follows from (2.15) with i replaced by i − 1.
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If i = 0, j ≥ 1, then

T3v(0, j + 1) + T3v(1, j + 1) = v(0, j) + v(0, j + 1) = T3v(1, j) + T3v(0, j + 2).

If i = 0, j = 0, then

T3v(0, 1) + T3v(1, 1) = v(0, 0) + v(0, 1) = T3v(1, 0) + T3v(0, 2).

The above lemmas lead to the following theorem.

Theorem 3. The optimal value function v ∈ V.

Proof. Let v0(i, j) = 0, ∀(i, j) ∈ S, and define, for n ≥ 0, vn+1(i, j) = C(j) +

λ1T1vn(i, j) + λ2T2vn(i, j) + µT3vn(i, j). Since α > 0, we know that vn → v as

n → ∞. (See Theorem 6.3.1 of Puterman [39].)

It is easy to see that C(j) ∈ V. Lemma 2, 3, 4 show that if vn ∈ V then Tivn ∈ V

for i = 1, 2, 3. Clearly v0 ∈ V and the above observation yields that if vn ∈ V then

vn+1 ∈ V. Hence, by induction, vn ∈ V for all n. Therefore, by taking limits, v ∈ V,

thus proving the theorem

Now we are ready to prove the structural properties of the class-optimal policy

for class 2 customers.

Theorem 4. The optimal policy for the controller of class 2 is characterized by a

monotonically decreasing switching curve, i.e., for each i ≥ 0, there exists a threshold

LC
2 (i), such that a class 2 arrival in state (i, j) is accepted if and only if j < LC

2 (i).

Furthermore, LC
2 (i) is monotonically decreasing in i.
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Proof. From (2.10) we can see that a class 2 arrival in state (i, j) is accepted if and

only if

v(i, j + 1) − v(i, j) ≤ r2. (2.21)

Let

LC
2 (i) = min{j : v(i, j + 1) − v(i, j) > r2}.

By using property (2.16), one can show that condition (2.21) is equivalent to j <

LC
2 (i).

For i1 ≤ i2, we have v(i2, j+1)−v(i2, j) ≥ v(i1, j+1)−v(i1, j), which follows from

property (2.14). By definition of LC
2 (i1), we have v(i1, L

C
2 (i1)+1)−v(i1, L

C
2 (i1)) > r2,

so v(i2, L
C
2 (i1) + 1) − v(i2, L

C
2 (i1)) > r2. By definition of LC

2 (i2), we have LC
2 (i1) ≥

LC
2 (i2). Thus, LC

2 (i) is decreasing in i.

2.4 Social Optimization

We consider social optimization in this section. There is a single controller for the

whole system, he earns the rewards and pays the holding costs generated by all

customers. Let v(i, j) be the minimum expected total discounted cost for the system

controller with initial state (i, j). Using uniform rate Λ = λ1 + λ2 + µ, and assuming,

without loss of generality, Λ + α = 1, the optimality equations can be written as

v(i, j) = T̄ v(i, j) = C̄(i, j) + λ1T̄1v(i, j) + λ2T2v(i, j) + µT3v(i, j), (2.22)

where

C̄(i, j) = h1i + h2j,

T̄1v(i, j) = min{−r1 + v(i + 1, j), v(i, j)}, (2.23)

T2 and T3 are as defined in (2.10) and (2.11), respectively.
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Let V̄ be the set of functions such that if v ∈ V̄, then v satisfies (2.12) - (2.15),

and

• v is diagonally dominant in i, i.e.,

v(i + 1, j) + v(i + 1, j + 1) ≤ v(i, j + 1) + v(i + 2, j), (2.24)

• v is increasing in the direction of (1,−1), i.e.,

v(i, j + 1) ≤ v(i + 1, j). (2.25)

Notice that if v ∈ V̄ , then v is convex in i, i.e.,

v(i + 1, j) − v(i, j) ≤ v(i + 2, j) − v(i + 1, j). (2.26)

This follows by adding inequalities (2.14) and (2.24).

We have the following lemmas.

Lemma 5. If v ∈ V̄, then T̄1v ∈ V̄ .

Proof.

(a) For (2.12) and (2.13), the proofs are similar to part (a) of the proof of Lemma

3.

(b) Since (2.14) is symmetric with respect to i and j, the proof of T̄1 preserving

(2.14) is the same as part (c) of the proof of Lemma 3 with r2 replaced by r1

and i, j interchanged, e.g., replace term v(i + 1, j) by v(i, j + 1).

(c) For (2.15), denote by a1 (a2) the minimizing action in T̄1v(i+1, j) (T̄1v(i, j+2)).
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If a1 = a2 = 0, then

T̄1v(i, j + 1) + T̄1v(i + 1, j + 1)

≤ v(i, j + 1) + v(i + 1, j + 1)}

≤ v(i + 1, j) + v(i, j + 2) = T̄1v(i + 1, j) + T̄1v(i, j + 2),

where the second inequality follows from (2.15).

The case where a1 = a2 = 1 can be proved similarly.

If a1 = 1, a2 = 0, then

T̄1v(i, j + 1) + T̄1v(i + 1, j + 1)

≤ −r1 + v(i + 1, j + 1) + v(i + 1, j + 1)

≤ −r1 + v(i + 2, j) + v(i, j + 2) = T̄1v(i + 1, j) + T̄1v(i, j + 2),

where the second inequality follows from the sum of (2.15) and (2.24).

If a1 = 0, a2 = 1, then

T̄1v(i, j + 1) + T̄1v(i + 1, j + 1)

≤ −r1 + v(i + 1, j + 1) + v(i + 1, j + 1)

≤ v(i + 1, j) − r1 + v(i + 1, j + 2) = T̄1v(i + 1, j) + T̄1v(i, j + 2),

where the second inequality follows from (2.16).

(d) For (2.24), the proof is the same as part (d) of the proof of Lemma 3 with r2

replaced by r1 and i, j interchanged.

(e) For (2.25), denote by a the minimizing action in T̄1v(i + 1, j).
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If a = 0, then

T̄1v(i, j + 1) ≤ v(i, j + 1) ≤ v(i + 1, j) = T̄1v(i + 1, j).

If a = 1, then

T̄1v(i, j + 1) ≤ −r1 + v(i + 1, j + 1) ≤ −r1 + v(i + 2, j) = T̄1v(i + 1, j),

where the second inequality follows from (2.25) with i replaced by i + 1.

Lemma 6. If v ∈ V̄, then T2v ∈ V̄ .

Proof. T2 preserving inequalities (2.12) - (2.15) has been proved in Lemma 3. The

proof of T2 preserving (2.24) is the same as part (c) of the proof of Lemma 5 with r1

replaced by r2 and i, j interchanged.

For (2.25), denote by a the minimizing action in T2v(i + 1, j).

If a = 0, then

T2v(i, j + 1) ≤ v(i, j + 1) ≤ v(i + 1, j) = T2v(i + 1, j).

If a = 1, then

T2v(i, j + 1) ≤ −r2 + v(i, j + 2) ≤ −r2 + v(i + 1, j + 1) = T2v(i + 1, j).

Lemma 7. If v ∈ V̄, then T3v ∈ V̄ .

Proof. T3 preserving inequalities (2.12) - (2.15) has been proved in Lemma 4.
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For (2.24), if i ≥ 1, j ≥ 0, then

T3v(i + 1, j) + T3v(i + 1, j + 1) = v(i, j) + v(i, j + 1)

≤ v(i − 1, j + 1) + v(i + 1, j) = T3v(i, j + 1) + T3v(i + 2, j),

where the inequality follows from (2.24) with i replaced by i − 1.

If i = 0, j ≥ 1, then

T3v(1, j) + T3v(1, j + 1) = v(0, j) + v(0, j + 1)

≤ v(0, j) + v(1, j) = T3v(0, j + 1) + T3v(2, j),

where the inequality follows from (2.25).

If i = 0, j = 0, then

T3v(1, 0) + T3v(1, 1) = v(0, 0) + v(0, 1)

≤ v(0, 0) + v(1, 0) = T3v(0, 1) + T3v(2, 0).

For (2.25), if i ≥ 1, then

T3v(i, j + 1) = v(i − 1, j + 1) ≤ v(i, j) = T3v(i + 1, j).

If i = 0, then

T3v(0, j + 1) = v(0, j) = T3v(1, j).

The above lemmas lead to the following theorem.

Theorem 5. If h1 ≥ h2, the optimal value function v ∈ V̄.

Proof. Since h1 ≥ h2, it can be easily shown that C̄(i, j) ∈ V̄. Lemma 5, 6, 7 show
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that inequalities (2.12) - (2.15), (2.24), (2.25) are preserved under T̄1, T2, and T3.

The theorem follows from similar arguments as in the proof of Theorem 3.

Now we are ready to prove the structural properties of the socially optimal policy.

Theorem 6. Assume h1 ≥ h2, then the socially optimal policy is characterized by

two monotonically decreasing switching curves.

(1) For each i ≥ 0, there exists a threshold LS
2 (i), such that a class 2 arrival in state

(i, j) is accepted if and only if j < LS
2 (i). Furthermore, LS

2 (i) is monotonically

decreasing in i.

(2) For each j ≥ 0, there exists a threshold LS
1 (j), such that a class 1 arrival in state

(i, j) is accepted if and only if i < LS
1 (j). Furthermore, LS

1 (j) is monotonically

decreasing in j.

Proof. Define

LS
1 (j) = min{i : v(i + 1, j) − v(i, j) > r1},

LS
2 (i) = min{j : v(i, j + 1) − v(i, j) > r2}.

The theorem follows from similar arguments as in the proof of Theorem 4.

2.5 A Special Case for Social Optimization

We consider the special case where h1 = h2 under social optimization criterion in this

section.

When h1 = h2, the order of service will not affect the social welfare. So the priority

can be ignored and the problem becomes a standard admission control problem with

two classes differentiated by different arrival rates and rewards. One can apply the

proof in Stidham [42] on both classes and show that the socially optimal policy
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depends only on the total number of customers in the system and is described by two

critical numbers.

We prove this result as a special case of Theorem 6 as follows.

Lemma 8. If h1 = h2, then Lemma 5, 6, and 7 hold with (2.25) replaced by

v(i, j + 1) = v(i + 1, j). (2.27)

Proof. We only need to show that (2.27) is preserved under T̄1, T2, and T3.

For T̄1, we have

T̄1v(i, j + 1) = min{−r1 + v(i + 1, j + 1), v(i, j + 1)}

= min{−r1 + v(i + 2, j), v(i + 1, j)} = T̄1v(i + 1, j),

where the second equality follows from the fact that v(i + 1, j + 1) = v(i + 2, j) and

v(i, j + 1) = v(i + 1, j).

T2 preserving (2.27) can be proved similarly.

For T3, if i ≥ 1, then

T3v(i, j + 1) = v(i − 1, j + 1) = v(i, j) = T3v(i + 1, j).

If i = 0, then

T3v(0, j + 1) = v(0, j) = T3v(1, j).

Since C̄(i, j) obviously satisfies (2.27), Lemma 8 implies that Theorem 5 and 6

still hold after replacing (2.25) with (2.27). Thus, we have
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Theorem 7. If h1 = h2, then there exist constants l1, l2 such that

LS
1 (j) = l1 − j, (2.28)

LS
2 (i) = l2 − i, (2.29)

where l1 ≥ l2 if and only if r1 ≥ r2.

Proof. Let l1 = LS
1 (0). In order to prove (2.28), we only need to show that LS

1 (j+1) =

LS
1 (j) − 1 for any j ≥ 0.

Let i′ = i + 1, we have

LS
1 (j + 1) = min{i : v(i + 1, j + 1) − v(i, j + 1) > r1}

= min{i : v(i + 2, j) − v(i + 1, j) > r1}

= min{i′ − 1 : v(i′ + 1, j) − v(i′, j) > r1}

= min{i′ : v(i′ + 1, j) − v(i′, j)} − 1

= LS
1 (j) − 1,

where the second equality follows from Lemma 8.

(2.29) can be proved similarly by setting l2 = LS
2 (0).

We have

l1 = LS
1 (0) = min{i : v(i + 1, 0) − v(i, 0) > r1},

and

l2 = LS
2 (0) = min{j : v(0, j + 1) − v(0, j) > r2}

= min{j : v(j + 1, 0) − v(j, 0) > r2},

where the second equality follows from Lemma 8. Therefore, l1 ≥ l2 if and only if
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r1 ≥ r2.

2.6 Comparison and Numerical Results

We compare the optimal policies under different criteria in this section. First, consider

the optimal policies for class 1 customers. Under individual optimization criterion,

the cost incurred by a class 1 customer is just his own waiting cost (the internal

effect). Under class optimization criterion, besides the internal effect, each class 1

customer also causes delay on the class 1 customers joining the system later (the

external effect). Under social optimization criterion, the internal effect is the same

and the external effect is imposed on all class 2 customers as well as later class 1

customers. Thus, intuitively, accepting a class 1 customer is the most expensive under

social optimization and the least expensive under individual optimization. Hence,

the number of class 1 customers admitted to the system is the most under individual

optimization and the least under social optimization. This intuition is shown to be

correct by the following theorem.

Theorem 8. LS
1 (j) ≤ LC

1 ≤ LI
1, ∀j ≥ 0, where the first inequality holds when h1 ≥ h2.

Proof. For a GI/M/1 single-class queue with convex, nondecreasing holding cost rate,

Stidham (1978) proves that more customers are accepted by the individually optimal

policy than by the socially optimal policy. As a special case of Stidham’s result, we

have the second inequality, i.e., LC
1 ≤ LI

1. Note that the socially optimal policy in

Stidham’s model corresponds to the class-optimal policy here.

We prove the first inequality, i.e., LS
1 (j) ≤ LC

1 , ∀j ≥ 0, in the following. Since

LS
1 (j) is decreasing in j, we just need to prove LS

1 (0) ≤ LC
1 . Denote the socially

optimal expected total discounted cost by vs(i, j). When j = 0, the optimality
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equations can be written as

vs(i, 0) = h1i + λ1 min{−r1 + vs(i + 1, 0), vs(i, 0)}

+ λ2 min{−r2 + vs(i, 1), vs(i, 0)} + µvs((i − 1)+, 0).

Then

LS
1 (0) = min{i : vs(i + 1, 0) − vs(i, 0) > r1}. (2.30)

Denote the class-optimal expected total discounted cost for controller 1 by vc(i), the

optimality equations can be written as

vc(i) = h1i + λ1 min{−r1 + vc(i + 1), vc(i)} + µvc((i − 1)+).

Then

LC
1 = min{i : vc(i + 1) − vc(i) > r1}. (2.31)

If we can prove

vc(i + 1) − vc(i) ≤ vs(i + 1, 0) − vs(i, 0), (2.32)

then the theorem follows.

Apply value iteration. Let vc
0(i) = vs

0(i, 0) = 0, ∀i, then (2.32) is satisfied at

iteration 0. Suppose (2.32) is true at iteration n, i.e., vc
n(i + 1) − vc

n(i) ≤ vs
n(i +

1, 0)− vs
n(i, 0). If we can show it is also true at iteration n + 1 then (2.32) follows by

induction and the convergence of value iteration.

vc
n+1(i + 1) − vc

n+1(i)

= h1 + λ1(min{−r1 + vc
n(i + 2), vc

n(i + 1)} − min{−r1 + vc
n(i + 1), vc

n(i)})

+ µ(vc
n(i) − vc

n((i − 1)+)), (2.33)
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and

vs
n+1(i + 1, 0) − vs

n+1(i, 0)

= h1 + λ1(min{−r1 + vs
n(i + 2, 0), vs

n(i + 1, 0)} − min{−r1 + vs
n(i + 1, 0), vs

n(i, 0)})

+ λ2(min{−r2 + vs
n(i + 1, 1), vs

n(i + 1, 0)} − min{−r2 + vs
n(i, 1), vs

n(i, 0)})

+ µ(vs
n(i, 0) − vs

n((i − 1)+, 0)). (2.34)

To simplify notation, let

Ds
1 = min{−r1 + vs

n(i + 2, 0), vs
n(i + 1, 0)} − min{−r1 + vs

n(i + 1, 0), vs
n(i, 0)},

Ds
2 = min{−r2 + vs

n(i + 1, 1), vs
n(i + 1, 0)} − min{−r2 + vs

n(i, 1), vs
n(i, 0)},

Ds
3 = vs

n(i, 0) − vs
n((i − 1)+, 0),

Dc
1 = min{−r1 + vc

n(i + 2), vc
n(i + 1)} − min{−r1 + vc

n(i + 1), vc
n(i)},

Dc
3 = vc

n(i) − vc
n((i − 1)+).

Compare Ds
1 and Dc

1 first.

Obviously vc
0 is nondecreasing and convex in i. Following similar approach as in

part (c) of the proof of Lemma 3, one can show that if vc
n is nondecreasing and convex

in i, so is vc
n+1. Therefore, if vc

n(i + 1) − vc
n(i) > r1, then vc

n(i + 2) − vc
n(i + 1) > r1.

By induction hypothesis, we also have vs
n(i + 1, 0) − vs

n(i, 0) > r1. So

Dc
1 = vc

n(i + 1) − vc
n(i) ≤ vs

n(i + 1, 0) + vs
n(i, 0) = Ds

1.

If vc
n(i+1)−vc

n(i) ≤ r1 and vc
n(i+2)−vc

n(i+1) > r1, then vs
n(i+2, 0)−vs

n(i+1, 0) >

34



r1. So

Dc
1 = vc

n(i + 1) − (−r1 + vc
n(i + 1)) = r1

≤ vs
n(i + 1, 0) − min{−r1 + vs

n(i + 1, 0), vs
n(i, 0)} = Ds

1.

If vc
n(i + 1)− vc

n(i) ≤ r1, vc
n(i + 2)− vc

n(i + 1) ≤ r1, and vs
n(i + 1, 0)− vs

n(i, 0) > r1,

then vs
n(i + 2, 0) − vs

n(i + 1, 0) > r1, which follows from (2.26). Thus

Dc
1 = vc

n(i + 2) − vc
n(i + 1)) ≤ r1 < vs

n(i + 1, 0) − vs
n(i, 0) = Ds

1.

If vc
n(i + 1)− vc

n(i) ≤ r1, vc
n(i + 2)− vc

n(i + 1) ≤ r1, vs
n(i + 1, 0)− vs

n(i, 0) ≤ r1, and

vs
n(i + 2, 0) − vs

n(i + 1, 0) > r1, then

Dc
1 = vc

n(i + 2) − vc
n(i + 1)) ≤ r1 = vs

n(i + 1, 0) − (−r1 + vs
n(i + 1, 0)) = Ds

1.

If vc
n(i + 1)− vc

n(i) ≤ r1, vc
n(i + 2)− vc

n(i + 1) ≤ r1, vs
n(i + 1, 0)− vs

n(i, 0) ≤ r1, and

vs
n(i + 2, 0) − vs

n(i + 1, 0) ≤ r1, then

Dc
1 = vc

n(i + 2) − vc
n(i + 1)) ≤ vs

n(i + 2, 0) − vs
n(i + 1, 0)

= −r1 + vs
n(i + 2, 0) − (−r1 + vs

n(i + 1, 0)) = Ds
1.

Therefore, Dc
1 ≤ Ds

1.

Now consider Ds
2.

If vs
n(i + 1, 1) − vs

n(i + 1, 0) ≤ r2, then vs
n(i, 1) − vs

n(i, 0) ≤ r2. So

Ds
2 = −r2 + vs

n(i + 1, 1) − (−r2 + vs
n(i, 1)) = vs

n(i + 1, 1) − vs
n(i, 1) ≥ 0.
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If vs
n(i + 1, 1) − vs

n(i + 1, 0) > r2 and vs
n(i, 1) − vs

n(i, 0) ≤ r2, then

Ds
2 = vs

n(i + 1, 0) − (−r2 + vs
n(i, 1)) ≥ r2 > 0,

which follows from (2.25).

If vs
n(i + 1, 1) − vs

n(i + 1, 0) > r2 and vs
n(i, 1) − vs

n(i, 0) > r2, then

Ds
2 = vs

n(i + 1, 0) − vs
n(i, 0)) ≥ 0.

Therefore, Ds
2 ≥ 0.

By induction hypothesis, Dc
3 ≤ Ds

3.

Combining the above results, we have

vc
n+1(i + 1) − vc

n+1(i) ≤ vs
n+1(i + 1, 0) − vs

n+1(i, 0),

thus the theorem follows.

Now consider the optimal policies for class 2 customers. The external effects of

a class 2 customer are the same under class optimization and social optimization.

Since the class-optimal policy accepts more class 1 customers than the socially opti-

mal policy, which causes more delay on class 2 customers, the internal effect of a class

2 customer is higher under class optimization than under social optimization. There-

fore, intuitively, the class-optimal policy accepts fewer class 2 customers than the

socially optimal policy. This intuition is proved to be true by the following theorem.

Theorem 9. Assume h1 ≥ h2, then LC
2 (i) ≤ LS

2 (i), ∀i ≥ 0.

Proof. We follow similar approach as in the proof of Theorem 8. Denote the socially
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optimal expected total discounted cost by vs(i, j). The optimality equations are

vs(i, j) = h1i + h2j + λ1 min{−r1 + vs(i + 1, j), vs(i, j)}

+ λ2 min{−r2 + vs(i, j + 1), vs(i, j)} + µ























vs(i − 1, j), if i ≥ 1

vs(0, j − 1), if i = 0, j ≥ 1

vs(0, 0), if i = j = 0.

Then

LS
2 (i) = min{j : vs(i, j + 1) − vs(i, j) > r2}. (2.35)

Denote the class-optimal expected total discounted cost for controller 2 by vc(i, j),

the optimality equations are

vc(i, j) = h2j + λ1











vc(i + 1, j), if i < LC
1

vc(i, j), if i ≥ LC
1

+ λ2 min{−r2 + vc(i, j + 1), vc(i, j)} + µ























vc(i − 1, j), if i ≥ 1

vc(0, j − 1), if i = 0, j ≥ 1

vc(0, 0), if i = j = 0.

Then

LC
2 (i) = min{j : vc(i, j + 1) − vc(i, j) > r2}. (2.36)

If we can show

vs(i, j + 1) − vs(i, j) ≤ vc(i, j + 1) − vc(i, j), ∀i, (2.37)

then the theorem follows.

Apply value iteration. Let vc
0(i, j) = vs

0(i, j) = vs(i, j), ∀i, j, then (2.37) is satisfied

at iteration 0. Suppose (2.37) is true at iteration n, i.e., vs
n(i, j + 1) − vs

n(i, j) ≤

vc
n(i, j + 1) − vc

n(i, j). If we can prove it is also true at iteration n + 1 then (2.37)
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follows by induction and the convergence of value iteration.

We have

vc
n+1(i, j + 1) − vc

n+1(i, j)

= h2 + λ1











vc
n(i + 1, j + 1) − vc

n(i + 1, j), if i < LC
1

vc
n(i, j + 1) − vc

n(i, j), if i ≥ LC
1

+ λ2(min{−r2 + vc
n(i, j + 2), vc

n(i, j + 1)} − min{−r2 + vc
n(i, j + 1), vc

n(i, j)})

+ µ























vc
n(i − 1, j + 1) − vc

n(i − 1, j), if i ≥ 1

vc
n(0, j) − vc

n(0, j − 1), if i = 0, j ≥ 1

0, if i = j = 0.

and

vs
n+1(i, j + 1) − vs

n+1(i, j)

= h2 + λ1(min{−r1 + vs
n(i + 1, j + 1), vs

n(i, j + 1)} − min{−r1 + vs
n(i + 1, j), vs

n(i, j)})

+ λ2(min{−r2 + vs
n(i, j + 2), vs

n(i, j + 1)} − min{−r2 + vs
n(i, j + 1), vs

n(i, j)})

+ µ























vs
n(i − 1, j + 1) − vs

n(i − 1, j), if i ≥ 1

vs
n(0, j) − vs

n(0, j − 1), if i = 0, j ≥ 1

0, if i = j = 0.

To simplify notation, let

Ds
1 = min{−r1 + vs

n(i + 1, j + 1), vs
n(i, j + 1)} − min{−r1 + vs

n(i + 1, j), vs
n(i, j)},

Ds
2 = min{−r2 + vs

n(i, j + 2), vs
n(i, j + 1)} − min{−r2 + vs

n(i, j + 1), vs
n(i, j)},

Ds
3 =























vs
n(i − 1, j + 1) − vs

n(i − 1, j), if i ≥ 1

vs
n(0, j) − vs

n(0, j − 1), if i = 0, j ≥ 1

0, if i = j = 0,
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Dc
1 =











vc
n(i + 1, j + 1) − vc

n(i + 1, j), if i < LC
1

vc
n(i, j + 1) − vc

n(i, j), if i ≥ LC
1 ,

Dc
2 = min{−r2 + vc

n(i, j + 2), vc
n(i, j + 1)} − min{−r2 + vc

n(i, j + 1), vc
n(i, j)},

Dc
3 =























vc
n(i − 1, j + 1) − vc

n(i − 1, j), if i ≥ 1

vc
n(0, j) − vc

n(0, j − 1), if i = 0, j ≥ 1

0, if i = j = 0.

Compare Ds
1 and Dc

1 first.

If vs
n(i + 1, j)− vs

n(i, j) > r1, then vs
n(i + 1, j + 1)− vs

n(i, j + 1) > r1, which follows

from (2.14). So

Ds
1 = vs

n(i, j + 1) − vs
n(i, j) ≤ vc

n(i, j + 1) − vc
n(i, j) ≤ Dc

1.

Since LS
1 (j) ≤ LC

1 , ∀j, class 1 arrivals in state (i, j) with i ≥ LC
1 are always

rejected by the socially optimal policy, i.e., vs(i +1, j)− vs(i, j) > r1, ∀i ≥ LC
1 . Since

vs
0(i, j) = vs(i, j), we have vs

k(i, j) = vs(i, j), ∀k ≥ 0. Hence, vs
k(i+1, j)−vs

k(i, j) > r1,

∀k ≥ 0, i ≥ LC
1 .

If vs
n(i + 1, j) − vs

n(i, j) ≤ r1 and vs
n(i + 1, j + 1) − vs

n(i, j + 1) > r1, the above

observation yields i < LC
1 . So

Ds
1 = vs

n(i, j + 1) − (−r1 + vs
n(i + 1, j))

≤ vs
n(i, j + 1) + (vs

n(i + 1, j + 1) − vs
n(i, j + 1)) − vs

n(i + 1, j)

= vs
n(i + 1, j + 1) − vs

n(i + 1, j) ≤ vc
n(i + 1, j + 1) − vc

n(i + 1, j) = Dc
1.

If vs
n(i + 1, j) − vs

n(i, j) ≤ r1, vs
n(i + 1, j + 1) − vs

n(i, j + 1) ≤ r1, then i < LC
1 . So

Ds
1 = −r1 + vs

n(i + 1, j + 1) − (−r1 + vs
n(i + 1, j))

= vs
n(i + 1, j + 1) − vs

n(i + 1, j) ≤ vc
n(i + 1, j + 1) − vc

n(i + 1, j) = Dc
1.
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Therefore, Ds
1 ≤ Dc

1.

Now consider Ds
2 and Dc

2.

If vs
n(i, j + 1) − vs

n(i, j) > r2, then vs
n(i, j + 2) − vs

n(i, j + 1) > r2, which follows

from (2.16). By induction hypothesis, we have vc
n(i, j +1)−vc

n(i, j) > r2 and vc
n(i, j +

2) − vc
n(i, j + 1) > r2. So

Ds
2 = vs

n(i, j + 1) − vs
n(i, j) ≤ vc

n(i, j + 1) − vc
n(i, j) = Dc

2.

If vs
n(i, j +1)− vs

n(i, j) ≤ r2 and vs
n(i, j +2)− vs

n(i, j +1) > r2. Then vc
n(i, j +2)−

vc
n(i, j + 1) > r2. So

Ds
2 = vs

n(i, j + 1) − (−r2 + vs
n(i, j + 1)) = r2

≤ vc
n(i, j + 1) − min{−r2 + vc

n(i, j + 1), vc
n(i, j)} = Dc

2.

If vs
n(i, j+1)−vs

n(i, j) ≤ r2, vs
n(i, j+2)−vs

n(i, j+1) ≤ r2, vc
n(i, j+1)−vc

n(i, j) > r2,

then vc
n(i, j + 2) − vc

n(i, j + 1) > r2, which follows from (2.16). So

Ds
2 = vs

n(i, j + 2) − vs
n(i, j + 1)) ≤ r2

< vc
n(i, j + 1) − vc

n(i, j) = Dc
2.

If vs
n(i, j+1)−vs

n(i, j) ≤ r2, vs
n(i, j+2)−vs

n(i, j+1) ≤ r2, vc
n(i, j+1)−vc

n(i, j) ≤ r2,

and vc
n(i, j + 2) − vc

n(i, j + 1) > r2, then

Ds
2 = vs

n(i, j + 2) − vs
n(i, j + 1)) ≤ r2

= vc
n(i, j + 1) − (−r2 + vc

n(i, j + 1)) = Dc
2.

If vs
n(i, j+1)−vs

n(i, j) ≤ r2, vs
n(i, j+2)−vs

n(i, j+1) ≤ r2, vc
n(i, j+1)−vc

n(i, j) ≤ r2,

40



and vc
n(i, j + 2) − vc

n(i, j + 1) ≤ r2, then

Ds
2 = −r2+vs

n(i, j+2)−(−r2+vs
n(i, j+1)) ≤ −r2+vc

n(i, j+2)−(−r2+vc
n(i, j+1)) = Dc

2.

Therefore, Ds
2 ≤ Dc

2.

By induction hypothesis, Ds
3 ≤ Dc

3.

Combining the above results, we have

vs
n+1(i, j + 1) − vs

n+1(i, j) ≤ vc
n+1(i, j + 1) − vc

n+1(i, j),

thus the theorem follows.

It is worth noting that the comparisons between class-optimal and socially optimal

policies give opposite results for class 1 and class 2. This contrast has the following

interesting socioeconomic connotation. Suppose the whole society can be divided

into two classes, influentials and grass roots. If we define “better” as “more people

get served”, then the influentials will prefer to optimize things within their own class,

while the grass roots will be better off if the society is centrally controlled by a decision

maker who can take their benefits into consideration. Seen in this fashion, the result

makes intuitive sense.

Now compare the individually optimal policy with the other two optimal policies.

Under individual optimization, a class 2 customer has no external effect, but it has

more internal effect than under class or social optimization, since the individually

optimal policy accepts the most class 1 customers. So the comparison results between

LI
2(i) and LC

2 (i) and between LI
2(i) and LC

2 (i) depend on which effect is dominant.

We demonstrate the above results by numerical examples below. The numerical

examples are computed by using standard value iteration algorithm. We approximate

the infinite state space by assuming that no customers arrive when the total number

of customers in the system reaches an upper bound B, which is much larger than the
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expected queue length. Thus the state space is S = {(i, j) : 0 ≤ i, j ≤ B}. The

stopping criterion is max{|vn+1(i, j) − vn(i, j)| : (i, j) ∈ S} ≤ 10−5, where vn(i, j) is

the value function at the nth iteration.

Figure 2.1 illustrates the optimal policies for class 1 customers with parameters

α = 0.05, µ = 0.5, λ1 = 0.44, λ2 = 0.01, h1 = 20, h2 = 10, r1 = 200, r2 = 190. Figure

2.2 - 2.6 illustrate the optimal policies for class 2 customers under different arrival

rates. Figure 2.2 uses the same parameters as used in Figure 2.1 and shows that

LI
2(i) ≤ LC

2 (i) ≤ LS
2 (i), ∀i. Keeping the other parameters the same, Figure 2.3 uses

λ1 = 0.39, λ2 = 0.06, and shows that LC
2 (i) ≤ LI

2(i) ≤ LS
2 (i), ∀i. Figure 2.4 uses

λ1 = 0.27, λ2 = 0.18, and shows that LC
2 (i) ≤ LS

2 (i) ≤ LI
2(i), ∀i. Figure 2.5 uses

λ1 = 0.41, λ2 = 0.04, and shows that LI
2(i) ≥ LC

2 (i) for i ≤ 4, LI
2(i) ≤ LC

2 (i) for i ≥ 5.

Figure 2.6 uses λ1 = 0.32, λ2 = 0.13, and shows that LI
2(i) ≤ LS

2 (i) for i ≤ 7, LI
2(i) ≥

LS
2 (i) for i ≥ 8. We only change the arrival rates in the above examples. However,

other numerical examples show that changing other parameters may also affect the

relative position of LI
2(i). Thus the relationship between the individually optimal

policy and either of the other two optimal policies can be arbitrary depending on the

parameters.
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Chapter 3

Admission Control: Sample Path

Approach

3.1 Problem Description

In this chapter, we study the multi-priority admission control problem as defined in

Chapter 2 with the following two differences: (i) Rewards are generated at the time

of service completion instead of the time of joining the repair queue. This shift of

reward time changes the nature of the problem in some critical ways, e.g. the optimal

value function is no longer non-decreasing in the number of customers of each type in

initial state, and the cases where every customer is accepted do not exist anymore. (ii)

We prove the structural results using sample path analysis (specifically, the coupling

method) (Lindvall [26], Wu et al. [47] ) instead of standard value iteration method

as used in Chapter 2. The sample path approach provides more concise proofs.

We analyze the optimal control policy under the 3 criteria proposed in Chapter

2, i.e., individual optimization, class optimization, and social optimization. We also

compare different policies numerically.



3.2 Individual Optimization

Following the same approach as the proof of Theorem 1, we can derive the following

results for individually optimal policies.

Theorem 10. Under the individual optimization criterion, an arriving class 1 cus-

tomer who sees the system in state (i, j) joins the queue if and only if i < LI
1, where

LI
1 = blog

h1

h1 + αr1

/ log
µ

µ + α
c. (3.1)

An arriving class 2 customer who sees the system in state (i, j) joins the queue if and

only if j < LI
2(i), where

LI
2(i) =











blog h2

(h2+αr2)φi(α)
/ log βc, if i ≤ LI

1

b(log h2

(h2+αr2)φLI
1

(α)
+ (i − LI

1)(log µ+α

µ
))/ log βc, if i > LI

1

(3.2)

where φi(α) is the LST of the busy period initiated by i class 1 customers and β =

µ

α+µ+λ1(1−φ1(α))
. bxc is the largest integer less than or equal to x. Furthermore, LI

2(i)

is decreasing in i.

Note that shifting the reward time (from the moment a customer joins the queue

to the moment a customer finishes service) not only changes the form of the threshold

functions but also eliminates the cases where everyone is accepted.

3.3 Social Optimization

We consider socially optimal policies in this section. The objective of a socially

optimal policy is to minimize the expected total discounted net cost generated by

all customers. Let v(i, j) be the expected total discounted net cost generated by a

socially optimal policy over an infinite horizon starting from state (i, j). Following
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Lippman [27], we uniformize the process by defining the uniform rate Λ = λ1 +λ2 +µ.

Rescaling time so that Λ + α = 1, we have the following optimality equations

v(i, j) = h1i + h2j + λ1 min{v(i, j), v(i + 1, j)}

+λ2 min{v(i, j), v(i, j + 1)}

+µ























v(i − 1, j) − r1, if i ≥ 1

v(0, j − 1) − r2, if i = 0, j ≥ 1

v(0, 0), if i = 0, j = 0.

(3.3)

Lemma 9. v(0, 1) − v(0, 0) + r2 ≥ 0.

Proof. Define two processes on the same probability space so that they see the same

arrivals and potential services. Process 1 starts in state (0, 1) and follows optimal

policy. Process 2 starts in state (0, 0) and follows policy φ which is described below.

Let τ be the first time Process 1 reaches state (0, 0). Let Process 2 take the same

action as Process 1 upon each arrival until time τ , then follow the optimal policy

afterwards. If a new class 2 customer is accepted while Process 1 is serving the last

class 2 customer, we resample the remaining service time of the class 2 customer

currently under service in Process 1 so that he finishes service at the same time as

the new class 2 customer in Process 2. (This resampling argument can be applied to

similar situations in the rest of this paper.) Therefore, Process 1 and 2 have identical

customers except for one extra class 2 customer in Process 1 until time τ . Two

processes become identical from then on. Thus,

v(0, 1) − v(0, 0) ≥ v(0, 1) − vφ(0, 0)

= E

∫ τ

0

e−αth2dt + Ee−ατ (−r2 + v(0, 0) − v(0, 0))

≥ −r2Ee−ατ ≥ −r2.
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Lemma 10. v is supermodular, i.e.,

v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j) ≥ 0. (3.4)

Proof. Fix i and j. Define four processes on the same probability space so that they

see the same arrivals and potential services. Process 1 and 4 follow optimal policies

and start in states (i+1, j +1) and (i, j), respectively. Process 2 and 3 start in states

(i + 1, j) and (i, j + 1), respectively, and use policies φ2 and φ3 which are described

below. Denote the state of Process k at time t by (Xk
t , Y k

t ), k = 1, 2, 3, 4.

Let τ1 be the first time Process 2 and 3 have 0 customers entirely. Note that if

Process 2 and 3 take the same action upon each arrival they will reach state (0,0) at

the same time, since service rates are the same for both classes. Let τ2 be the first

time Process 1 and 4 take different actions. Define τ = min{τ1, τ2}. Let Process 2

and 3 take the same action as Process 1 and 4 until time τ , then follow the optimal

policy afterwards. Thus

v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j)

≥ v(i + 1, j + 1) − vφ2(i + 1, j) − vφ3(i, j + 1) + v(i, j)

= E

∫ τ

0

e−αt[h(X4
t + 1, Y 4

t + 1) − h(X4
t + 1, Y 4

t ) − h(X4
t , Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4)

+Ee−ατ (v(X1
τ , Y

1
τ ) − v(X2

τ , Y
2
τ ) − v(X3

τ , Y
3
τ ) + v(X4

τ , Y 4
τ )),

where Ri is the potential reward generated in Process i at time τ . It can be easily

seen that the first term is 0 because of the linear holding cost rate.

To simplify notation, define

D = v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j) (3.5)
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A = −R1 + R2 + R3 − R4 (3.6)

B = v(X1
τ , Y 1

τ ) − v(X2
τ , Y 2

τ ) − v(X3
τ , Y 3

τ ) + v(X4
τ , Y 4

τ ). (3.7)

Case 1: τ = τ1. Then, at τ , the four processes are in states (0, 1), (0, 0), (0, 0), and

(0, 0), respectively. The two distinct paths by which this state is reached are: (i)

{(1, 2) (1, 1) (0, 2) (0, 1)} → {(0, 2) (0, 1) (0, 1) (0, 0)} → {(0, 1) (0, 0) (0, 0) (0, 0)};

(ii) {(2, 1) (2, 0) (1, 1) (1, 0)} → {(1, 1) (1, 0) (0, 1) (0, 0)} → {(0, 1) (0, 0) (0, 0) (0, 0)}.

In the former case, R1 = R2 = R3 = r2, and R4 = 0. In the latter case, R1 = R2 = r1,

R3 = r2, and R4 = 0. In both cases, we have

D ≥ Ee−ατ (r2 + v(0, 1) − v(0, 0)) ≥ 0,

where the last inequality follows from Lemma 9.

Case 2: τ = τ2. Then A = 0. We have the following possibilities.

Case 2.1: A class 1 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 accept the arrival and Process 3 reject it. Then after this event the states

in four processes are (X4
τ + 2, Y 4

τ + 1), (X4
τ + 2, Y 4

τ ), (X4
τ , Y 4

τ + 1), and (X4
τ , Y 4

τ ),

respectively. Adding and subtracting v(X4
τ + 1, Y 4

τ + 1) + v(X4
τ + 1, Y 4

τ ), we have

B = v(X4
τ + 2, Y 4

τ + 1) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ + 2, Y 4

τ ) + v(X4
τ + 1, Y 4

τ )

+v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 1) − v(X4
τ + 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms and the second four terms above are inequality (3.4)

evaluated at (X4
τ + 1, Y 4

τ ) and (X4
τ , Y 4

τ ), respectively. Thus the above argument can

be repeated until either Case 1 or Case 2.2 or Case 2.4 happens.

Case 2.2: A class 1 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 reject the arrival and Process 3 accept it. Then after this event the states

in four processes are (X4
τ +1, Y 4

τ +1), (X4
τ +1, Y 4

τ ), (X4
τ +1, Y 4

τ +1), and (X4
τ +1, Y 4

τ ),
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respectively. Note that Process 1 and 3 couple, so do Process 2 and 4. Therefore

B = 0 and (3.4) holds.

Case 2.3: A class 2 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 reject the arrival and Process 3 accept it. Then after this event the states

in four processes are (X4
τ + 1, Y 4

τ + 2), (X4
τ + 1, Y 4

τ ), (X4
τ , Y 4

τ + 2), and (X4
τ , Y 4

τ ),

respectively. Adding and subtracting v(X4
τ + 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ + 1), we have

B = v(X4
τ + 1, Y 4

τ + 2) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 2) + v(X4
τ , Y 4

τ + 1)

+v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ + 1, Y 4

τ ) − v(X4
τ , Y 4

τ + 1) + v(X4
τ , Y 4

τ ).

Note that the first four terms and the second four terms are inequality (3.4) evaluated

at (X4
τ , Y 4

τ +1) and (X4
τ , Y 4

τ ), respectively. Thus the above argument can be repeated

until either Case 1 or Case 2.2 or Case 2.4 happens.

Case 2.4: A class 2 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept the arrival and Process 3 reject it. Then after this event the states

in four processes are (X4
τ +1, Y 4

τ +1), (X4
τ +1, Y 4

τ +1), (X4
τ , Y 4

τ +1), and (X4
τ , Y 4

τ +1),

respectively. Note that Process 1 and 2 couple, so do Process 3 and 4. Therefore

B = 0 and (3.4) holds.

Lemma 11. v(i, j) is a unimodal function in i, i.e., if v(i + 1, j) − v(i, j) ≥ 0, then

v(i + 2, j) − v(i + 1, j) ≥ 0.

Proof. Define two processes on the same probability space so that they see the same

arrivals and potential services. Process 1 follows the optimal policy and starts in state

(i + 2, j). Process 2 starts in state (i + 1, j) and follows policy φ that is described

below.

Let τ be the first time Process 1 has i + 1 class 1 customers. Process 2 takes

the same action as Process 1 upon arrivals until τ then follow the optimal policy

afterwards. Thus, at time τ Process 2 has i class 1 customers and the same number
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of class 2 customers, say j ′, as in Process 1. We have j ′ ≥ j, since no class 2 customers

have started service yet. Hence

v(i + 2, j) − v(i + 1, j) ≥ v(i + 2, j) − vφ(i + 1, j)

= E

∫ τ

0

e−αth1dt + Ee−ατ (v(i + 1, j ′) − v(i, j ′)),

where j ′ ≥ j. From supermodularity, we have

v(i + 1, j ′) − v(i, j ′) ≥ v(i + 1, j) − v(i, j) ≥ 0.

Therefore v(i + 2, j) − v(i + 1, j) ≥ 0.

Theorem 11. The socially optimal policy for admitting class 1 customers is char-

acterized by a monotonically decreasing switching curve, i.e., for each j ≥ 0, there

exists a threshold Ls
1(j), such that a class 1 arrival in state (i, j) is accepted if and

only if i < Ls
1(j). Furthermore, Ls

1(j) is monotonically decreasing in j.

Proof. We follow the convention that a customer is accepted when accepting or re-

jecting that customer makes no difference in terms of cost. Then a class 1 arrival in

state (i, j) is accepted if and only if v(i + 1, j) ≤ v(i, j). For any fixed j, let

Ls
1(j) = min{i : v(i + 1, j) > v(i, j)}.

Using Lemma 11, one can easily show that a class 1 arrival is accepted if and only if

i < Ls
1(j).

For j1 ≤ j2, we have v(i+1, j2)−v(i, j2) ≥ v(i+1, j1)−v(i, j1), which follows from

supermodularity. By definition of Ls
1(j1), we have v(Ls

1(j1) + 1, j1) > v(L1(j1), j1),

so v(Ls
1(j1) + 1, j2) > v(Ls

1(j1), j2). By definition of Ls
1(j2), we have Ls

1(j1) ≥ Ls
1(j2).

Thus, Ls
1(j) is decreasing in j.
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Lemma 12. If h1 ≥ h2 and r1 ≥ r2, then v is diagonally dominant in both i and j,

i.e.,

v(i, j + 2) − v(i, j + 1) − v(i + 1, j + 1) + v(i + 1, j) ≥ 0, (3.8)

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j) ≥ 0. (3.9)

Proof. (a). Consider (3.8) first.

Define four processes on the same probability space so that they see the same

arrivals and potential services. Process 1 and 4 follow optimal policies and start in

state (i, j + 2) and (i + 1, j), respectively. Process 2 and 3 start in state (i, j + 1)

and (i + 1, j + 1), respectively, and use policies φ2 and φ3 which are described below.

Denote the state of Process k at time t by (Xk
t , Y k

t ), k = 1, 2, 3, 4.

Let τ1 be the first time Process 3 and 4 have 0 class 1 customers. Since service

rates are the same for both classes, Process 1 and 2 finish serving the first class 2

customer at τ1. Let τ2 be the first time Process 1 and 4 take different actions. Define

τ = min{τ1, τ2}. Let Process 2 and 3 take the same action as Process 1 and 4 upon

each arrival until time τ , then follow the optimal policy afterwards. Thus

v(i, j + 2) − v(i, j + 1) − v(i + 1, j + 1) + v(i + 1, j)

≥ v(i, j + 2) − vφ2(i, j + 1) − vφ3(i + 1, j + 1) + v(i + 1, j)

= E

∫ τ

0

e−αt[h(X4
t − 1, Y 4

t + 2) − h(X4
t − 1, Y 4

t + 1) − h(X4
t , Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4)

+Ee−ατ (v(X1
τ , Y 1

τ ) − v(X2
τ , Y 2

τ ) − v(X3
τ , Y 3

τ ) + v(X4
τ , Y 4

τ )),

where Ri is the potential reward generated in Process i at time τ . It can be easily

seen that the first term is 0 because of the linear holding cost rate.

Define A, B as in (3.6), (3.7).

Case a.1: τ = τ1. Then the states in four processes at time τ are (0, Y 4
τ + 1), (0, Y 4

τ ),
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(0, Y 4
τ +1), and (0, Y 4

τ ), respectively. Note that Process 1 and 3 couple, so do Process

2 and 4. Therefore B = 0. Also, R1 = R2 = r2 and R3 = R4 = r1, so A = 0. Thus

(3.8) holds.

Case a.2: τ = τ2. Then A = 0. We have the following possibilities.

Case a.2.1: A class 1 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 accept the arrival and Process 3 reject it. Then the states in four processes

at time τ are (X4
τ , Y 4

τ + 2), (X4
τ , Y 4

τ + 1), (X4
τ , Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively.

Adding and subtracting v(X4
τ + 1, Y 4

τ + 1) + v(X4
τ + 1, Y 4

τ ), we have

B = v(X4
τ , Y 4

τ + 2) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 1) + v(X4
τ + 1, Y 4

τ )

+v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 1) − v(X4
τ + 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (3.8) evaluated at (X4
τ , Y 4

τ ), so the above

argument can be repeated until Case a.1 or Case a.2.4 happens. The second four

terms are inequality (3.4) evaluated at (X4
τ , Y 4

τ ), which is non-negative by Lemma 10.

Case a.2.2: A class 1 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept the arrival and Process 3 reject it. Then the states in four processes

at time τ are (X4
τ − 2, Y 4

τ + 2), (X4
τ − 1, Y 4

τ + 1), (X4
τ − 1, Y 4

τ + 1), and (X4
τ , Y 4

τ ),

respectively. Adding and subtracting v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ ), we have

B = v(X4
τ − 2, Y 4

τ + 2) − v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ )

+v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (3.8) evaluated at (X4
τ − 2, Y 4

τ ), so the

above argument can be repeated until Case a.1 or Case a.2.4 happens. The second

four terms are inequality (3.9) evaluated at (X4
τ − 2, Y 4

τ ), so the argument in part (b)

can be repeated until Case b.1 or Case b.2.1 happens.

Case a.2.3: A class 2 arrival is accepted by Process 1 and rejected by Process 4. Let
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Process 2 accept the arrival and Process 3 reject it. Then the states in four processes

at time τ are (X4
τ −1, Y 4

τ +3), (X4
τ −1, Y 4

τ +2), (X4
τ , Y 4

τ +1), and (X4
τ , Y 4

τ ), respectively.

Adding and subtracting v(X4
τ − 1, Y 4

τ + 2) + v(X4
τ , Y 4

τ + 2) + v(X4
τ , Y 4

τ + 1), we have

B = v(X4
τ − 1, Y 4

τ + 3) − v(X4
τ − 1, Y 4

τ + 2) − v(X4
τ , Y 4

τ + 2) + v(X4
τ , Y

4
τ + 1)

+v(X4
τ − 1, Y 4

τ + 2) − v(X4
τ − 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 1) + v(X4
τ , Y 4

τ )

+v(X4
τ − 1, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ + 2) − v(X4
τ , Y 4

τ + 1) + v(X4
τ , Y 4

τ + 2).

Note that the first four terms and the second four terms are inequality (3.8) evaluated

at (X4
τ − 1, Y 4

τ + 1) and (X4
τ − 1, Y 4

τ ), respectively. So the above argument can be

repeated until Case a.1 or Case a.2.4 happens. The last four terms are inequality

(3.4) evaluated at (X4
τ − 1, Y 4

τ + 1), which is non-negative by Lemma 10.

Case a.2.4: A class 2 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept the arrival and Process 3 reject it. Then the states in four processes

at time τ are (X4
τ − 1, Y 4

τ + 1), (X4
τ − 1, Y 4

τ + 1), (X4
τ , Y 4

τ ), (X4
τ , Y 4

τ ), respectively.

Note that Process 1 and 2 couple, so do Process 3 and 4. Therefore B = 0 and hence

(3.8) holds.

(b). Consider (3.9) next.

Define four processes on the same probability space so that they see the same

arrivals and potential services. Process 1 and 4 follow optimal policies and start in

state (i, j + 1) and (i + 2, j), respectively. Process 2 and 3 start in state (i + 1, j)

and (i + 1, j + 1), respectively, and use policies φ2 and φ3 which are described below.

Denote the state of Process k at time t by (Xk
t , Y k

t ), k = 1, 2, 3, 4.

Let β be the first time Process 2 and 3 have 0 class 1 customers. Let τ1 be the

first time Process 4 has 0 class 1 customers. Since service rates are the same for both

classes, Process 1 finishes serving the first class 2 customer at β and the second class

2 customer (if any) at τ1. Process 2 and 3 finish serving the first class 2 customer
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(if any) at τ1. So between β and τ1, Process 1 and 2 have identical customers, and

Process 3 has one more class 2 customer but one less class 1 customer than Process 4.

While Process 4 is serving the last class 1 customer, the servers in Process 1 and 2 are

either serving class 2 customers or idle. In the former case, the rewards generated in

four processes at τ1 are respectively r2, r2, r2, and r1. In the latter case, the rewards

are respectively 0, 0, r2, and r1. Let τ2 be the first time Process 1 and 4 take different

actions. Define τ = min{τ1, τ2}. Let Process 2 and 3 take the same action as Process

1 and 4 upon each arrival until time τ , then follow the optimal policy afterwards.

Case b.1: τ = τ1. Then

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j)

≥ v(i, j + 1) − vφ2(i + 1, j) − vφ3(i + 1, j + 1) + v(i + 2, j)

= E

∫ β

0

e−αt[h(X4
t − 2, Y 4

t + 1) − h(X4
t − 1, Y 4

t ) − h(X4
t − 1, Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−αβ(−r2 + r1 + r1 − r1) + E

∫ τ

β

e−αt(h1 − h2)dt + Ee−ατ (r2 − r1)

+Ee−ατ























[v(0, 0) − v(0, 0) − v(0, 0) + v(0, 0)], if Y 1
τ− = Y 2

τ− = 0

[v(0, Y 4
τ − 1) − v(0, Y 4

τ − 1) − v(0, Y 4
τ ) + v(0, Y 4

τ )], o.w.

The first term is 0 because of the linear holding cost rate. Using the fact that h1 ≥ h2

and τ ≥ β, one can show that (3.9) holds.

Case b.2: τ = τ2. Then

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j)

≥ v(i, j + 1) − vφ2(i + 1, j) − vφ3(i + 1, j + 1) + v(i + 2, j)

= E

∫ τ

0

e−αt[h(X4
t − 2, Y 4

t + 1) − h(X4
t − 1, Y 4

t ) − h(X4
t − 1, Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (v(X1
τ , Y 1

τ ) − v(X2
τ , Y 2

τ ) − v(X3
τ , Y 3

τ ) + v(X4
τ , Y 4

τ )).
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We have the following possibilities.

Case b.2.1: A class 1 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 accept the arrival and Process 3 reject. Then the states in four processes

at τ are (X4
τ −1, Y 4

τ +1), (X4
τ , Y 4

τ ), (X4
τ −1, Y 4

τ +1), and (X4
τ , Y 4

τ ), respectively. Note

that Process 1 and 3 couple, so do Process 2 and 4. So (3.9) holds.

Case b.2.2: A class 1 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept the arrival and Process 3 reject. Then the states in four processes

at τ are (X4
τ − 3, Y 4

τ + 1), (X4
τ − 1, Y 4

τ ), (X4
τ − 2, Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively.

Adding and subtracting v(X4
τ − 2, Y 4

τ ) + v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ + 1), we

have

B = v(X4
τ − 3, Y 4

τ + 1) − v(X4
τ − 2, Y 4

τ ) − v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ )

+v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) − v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ )

+v(X4
τ − 2, Y 4

τ ) − v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) + v(X4
τ − 1, Y 4

τ + 1).

Note that the first four terms and the second four terms are inequality (3.9) evalu-

ated at (X4
τ − 3, Y 4

τ ) and (X4
τ − 2, Y 4

τ ), respectively, so the above argument can be

repeated until Case b.1 or Case b.2.1 happens. The last four terms are inequality

(3.4) evaluated at (X4
τ − 2, Y 4

τ ), which is non-negative by Lemma 10.

Case b.2.3: A class 2 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 accept the arrival and Process 3 reject. Then the states in four processes at

τ are (X4
τ − 2, Y 4

τ + 2), (X4
τ − 1, Y 4

τ + 1), (X4
τ − 1, Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively.

Adding and subtracting v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ ), we have

B = v(X4
τ − 2, Y 4

τ + 2) − v(X4
τ − 1, Y 4

τ + 1) − v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ )

+v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) − v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ ).
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Note that the first four terms are inequality (3.8) evaluated at (X4
τ − 2, Y 4

τ ), so the

argument in part (a) can be repeated until Case a.1 or Case a.2.4 happens. The second

four terms are inequality (3.9) evaluated at (X4
τ − 2, Y 4

τ ), so the above argument can

be repeated until Case b.1 or Case b.2.1 happens.

Case b.2.4: A class 2 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept the arrival and Process 3 reject. Then the states in four processes

at τ are (X4
τ − 2, Y 4

τ ), (X4
τ − 1, Y 4

τ ), (X4
τ − 1, Y 4

τ ), and (X4
τ , Y 4

τ ), respectively. Adding

and subtracting v(X4
τ − 2, Y 4

τ + 1) + v(X4
τ − 1, Y 4

τ + 1), we have

B = v(X4
τ − 2, Y 4

τ ) − v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) + v(X4
τ − 1, Y 4

τ + 1)

+v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ ) − v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (3.4) evaluated at (X4
τ − 2, Y 4

τ ), which

is non-negative by Lemma 10. The second four terms are inequality (3.9) evaluated

at (X4
τ − 2, Y 4

τ ), so the above argument can be repeated until Case b.1 or Case b.2.1

happens.

Corollary 1. If h1 ≥ h2 and r1 ≥ r2, then v is convex in both i and j, i.e.,

v(i + 2, j) − v(i + 1, j) ≥ v(i + 1, j) − v(i, j), (3.10)

v(i, j + 2) − v(i, j + 1) ≥ v(i, j + 1) − v(i, j). (3.11)

Proof. (3.10) is implied by (3.4) and (3.9), and (3.11) is implied by (3.4) and (3.8).

Theorem 12. The socially optimal policy for admitting class 2 customers is char-

acterized by a monotonically decreasing switching curve, i.e., for each i ≥ 0, there

exists a threshold Ls
2(i), such that a class 2 arrival in state (i, j) is accepted if and

only if j < Ls
2(i). Furthermore, Ls

2(i) is monotonically decreasing in i.

Proof. Using supermodularity and convexity in j, one can prove this theorem by
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following similar argument as in the proof for Theorem 11.

3.4 Class Optimization

We consider class-optimal policies in this section. The objective of a class-optimal

policy for class k, k = 1, 2, is to minimize the expected total discounted net cost

generated by all customers in class k.

3.4.1 Optimal Policies for Class 1

We consider optimal admission control policies for class 1 customers first. Denote

v(i) the expected total discounted net cost generated by a class-optimal policy for

class 1 over an infinite horizon starting from state i, where i is the number of class

1 customers in the system. Note that class 1 customers don’t see class 2 customers

under class optimization because of their higher priority. Thus, after uniformizing,

the optimality equation can be written as

v(i) = h1i + λ1 min{v(i), v(i + 1)} + µv((i − 1)+ − r1I{i≥1}). (3.12)

Lemma 13. v(1) − v(0) + r1 ≥ 0.

Proof. Define two processes on the same probability space so that they see the same

arrivals and potential services. Process 1 starts with 1 class 1 customer and follows

optimal policy. Process 2 starts with 0 class 1 customers and follows policy φ which

is described below. Let τ be the first time Process 1 has 0 class 1 customers. Let

Process 2 take the same action as Process 1 upon each arrival until time τ , then follow

the optimal policy afterwards. Therefore, Process 1 has one more class 1 customer
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than Process 2 until time τ . Two processes become identical from then on. Thus,

v(1) − v(0) ≥ v(1) − vφ(0)

= E

∫ τ

0

e−αth1dt + Ee−ατ (−r1 + v(0) − v(0))

≥ −r1Ee−ατ ≥ −r1.

Lemma 14. v is convex, i.e.,

v(i + 2) − v(i + 1) − v(i + 1) + v(i) ≥ 0. (3.13)

Proof. Define four processes on the same probability space so that they see the same

arrivals and potential services. Process 1 and 4 follow optimal policies and start in

state i + 2 and i, respectively. Process 2 and 3 start in state i + 1 and use policies

φ2 and φ3, respectively, which are described below. Denote the state of Process k at

time t by (Xk
t , Y k

t ), k = 1, 2, 3, 4.

Let τ1 be the first time Process 2 and 3 have 0 class 1 customers. Let τ2 be the

first time Process 1 and 4 take different actions. Define τ = min{τ1, τ2}. Let Process

2 and 3 take the same action as Process 1 and 4 upon each arrival until time τ , then

follow the optimal policy afterwards. Thus

v(i + 2) − v(i + 1) − v(i + 1) + v(i)

≥ v(i + 2) − vφ2(i + 1) − vφ3(i + 1) + v(i)

= E

∫ τ

0

e−αt[h(X4
t + 2) − h(X4

t + 1) − h(X4
t + 1) + h(X4

t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4) + Ee−ατ (v(X1
τ ) − v(X2

τ ) − v(X3
τ ) + v(X4

τ )),

where Ri is the potential reward generated in Process i at time τ . It can be easily
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seen that the first term is 0 because of the linear holding cost rate.

To simplify notation, define

D̄ = v(i + 2) − v(i + 1) − v(i + 1) + v(i), (3.14)

B̄ = v(X1
τ ) − v(X2

τ ) − v(X3
τ ) + v(X4

τ ). (3.15)

Also define A as in (3.6).

Case 1: τ = τ1. Then the states in four processes at τ are 1, 0, 0, 0, respectively.

The rewards generated at τ are R1 = R2 = R3 = r1, and R4 = 0. Therefore,

D̄ ≥ Ee−ατ (v(1) − v(0) + r1) ≥ 0,

where the last inequality follows from Lemma 13.

Case 2: τ = τ2. Then A = 0. We have the following possibilities.

Case 2.1: A class 1 arrival is accepted by Process 1 and rejected by Process 4. Let

Process 2 accept and Process 3 reject the arrival. Then the states in four processes

at τ are X4
τ +3, X4

τ +2, X4
τ +1, X4

τ , respectively. Adding and subtracting v(X4
τ +1)+

v(X4
τ + 2), we have

B̄ = v(X4
τ + 3) − v(X4

τ + 2) − v(X4
τ + 2) + v(X4

τ + 1)

+v(X4
τ + 2) − v(X4

τ + 1) − v(X4
τ + 1) + v(X4

τ ).

Note that the first four terms and the second four terms are inequality (3.13) evaluated

at X4
τ + 1 and X4

τ , respectively. So the above argument can be repeated until Case 1

or Case 2.2 happens.

Case 2.2: A class 1 arrival is rejected by Process 1 and accepted by Process 4. Let

Process 2 accept and Process 3 reject the arrival. Then the states in four processes

at τ are X4
τ + 2, X4

τ + 2, X4
τ + 1, X4

τ + 1, respectively. Notice that Process 1 and 2
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couple, so do Process 3 and 4. So B̄ = 0 and hence (3.13) holds.

Theorem 13. The class-optimal policy for admitting class 1 customers is character-

ized by a critical number, i.e., there exists a threshold Lc
1, such that a class 1 arrival

in state i is accepted if and only if i < Lc
1.

Proof. Define

Lc
1 = min{i : v(i + 1) > v(i)}.

Using Lemma 14 one can easily show that a class 1 arrival is accepted if and only if

i < Lc
1.

3.4.2 Optimal Policies for Class 2

We consider optimal admission control policies for class 2 customers next. Denote

v(i, j) the expected total discounted net cost generated by a class-optimal policy for

class 2 over an infinite horizon starting from state (i, j). Assuming class 1 customers

are admitted according to the class-optimal policy for class 1, the optimality equation

can be written as

v(i, j) = h2j + λ1











v(i + 1, j), if i < Lc
1

v(i, j), if i >= Lc
1

+ λ2 min{v(i, j + 1), v(i, j)}

+µ























v(i − 1, j), if i ≥ 1

v(0, j − 1) − r2, if i = 0, j ≥ 1

v(0, 0), if i = 0, j = 0.

(3.16)

Lemma 15. v(0, 1) − v(0, 0) + r2 ≥ 0.

Proof. Same argument as in the proof for Lemma 9 applies.

Lemma 16. v is convex in j, i.e.,

v(i, j + 2) − v(i, j + 1) − v(i, j + 1) + v(i, j) ≥ 0. (3.17)
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Proof. Same argument as in the proof for Lemma 14 applies after the following

changes. Replace class 1 by class 2. Replace v(i) by v(i, j), v(i + 1) by v(i, j + 1),

etc. Replace r1 by r2.

Lemma 17. v is supermodular, i.e.,

v(i + 1, j + 1) − v(i, j + 1) − v(i + 1, j) + v(i, j) ≥ 0. (3.18)

Proof. Same argument as in the proof for Lemma 10 applies after the following

changes. No reward is generated when a class 1 customer finishes service, i.e., r1 = 0.

Case 2.1 does not exist, since a class 1 arrival is always accepted in state (i, j) if it is

accepted in state (i + 1, j). Case 2.2 is the same as in Lemma 10 except that it only

happens when i = Lc
1 − 1.

Theorem 14. The class-optimal policy for admitting class 2 customers is character-

ized by a monotonically decreasing switching curve, i.e., for each i ≥ 0, there exists

a threshold Lc
2(i), such that a class 2 arrival in state (i, j) is accepted if and only if

j < Lc
2(i). Furthermore, Lc

2(i) is monotonically decreasing in i.

Proof. Using supermodularity and convexity in j, one can prove this theorem by

following similar argument as in the proof for Theorem 11.

3.5 Numerical Comparison

We compare policies under different criteria numerically in this section. The numer-

ical examples are computed by truncating the state space and using standard value

iteration algorithm as described in Section 2.6.

Figure 3.1 plots the cost of class-optimal policy for class 1 customers against

i, the number of class 1 customers in starting state. Figure 3.2 plots the cost of

class-optimal policy for class 2 customers against j, the number of class 2 customers

63



in starting state, for different i. Figure 3.1 and 3.2 use the following parameters

α = 0.2, µ = 0.5, λ1 = 0.15, λ2 = 0.15, h1 = 0.3, h2 = 0.2, r1 = 25, r2 = 18. Note

that the class-optimal value function is not monotone in i or j in this case, while the

monotonicities ((2.12), (2.13)) hold for the case where the reward is generated at the

time of joining the queue.

Figure 3.3 and 3.4 plot the cost of socially optimal policy against i and j for fixed

j and i, respectively. They use the same parameters as in Figure 3.1 and 3.2 except

that r1 = 15, r2 = 10. The socially optimal value function is not monotone in i or j

as contrary to the model discussed in Chapter 2. So moving the reward time changes

the nature of the problem.

Figure 3.5 and 3.6 plot the switching curves under three optimization criteria

for class 1 and class 2, respectively. Figure 3.5 uses the following parameters α =

0.1, µ = 0.5, λ1 = 0.1, λ2 = 0.3, h1 = 25, h2 = 20, r1 = 450, r2 = 300. Figure 3.6 uses

the following parameters α = 0.1, µ = 0.5, λ1 = 0.39, λ2 = 0.01, h1 = 2, h2 = 0.3, r1 =

550, r2 = 500.

Note that for class 1 (higher priority) customer, individually optimal policy accepts

the most and socially optimal policy accepts the least number of customers. For class

2 (lower priority) customer, socially optimal policy accepts more customers than

class optimal policy, which is the exact opposite to the comparison result for class

1. Depending on the parameters, individually optimal policy can accept either more

or fewer customers than either of the other two policies. The above observations

agree with the results we obtained for the previous model. The intuitive explanation

provided for the previous model also applies here.
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Figure 3.1: Class optimization for class 1: v against i
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Figure 3.2: Class optimization for class 2: v against j for fixed i
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Figure 3.3: Social optimization: v against i for fixed j
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Figure 3.4: Social optimization: v against j for fixed i
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Figure 3.5: Class 1 switching curves
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Chapter 4

Dynamic Routing

4.1 Problem Description

In this chapter, we consider the dynamic warranty repair allocation problem. Assume

sales of class k items form a Poisson process with rate λk, denoted by PP (λk), k = 1, 2.

Warranty length for either class is a constant W . The manufacturer outsources the

warranty repairs to V vendors (one of them could be the manufacturer’s facility itself).

The life times of the items are i.i.d. exp(β) random variables. When an item fails

while it is under warranty, it is sent to one of the V vendors for repair. There is

one repair person at each vendor. The repair times are i.i.d. exp(µi) at vendor i

(same for both classes). Class 1 items have preemptive resume priority over class 2

items in repair service. The manufacturer pays vendor i a fixed fee ci each time a

repair is assigned to vendor i, i = 1, · · · , V . While a class k item is awaiting or under

repair at vendor i, the manufacturer incurs a holding cost (good will cost) at rate

hki, k = 1, 2, i = 1, · · · , V . We assume items covered by higher priority warranty

generate holding cost at a higher rate, i.e., h1i ≥ h2i, i = 1, · · · , V . This situation

agrees with the way the well-known c-µ rule assigns priorities to multiple classes of

jobs at a single service station, i.e, higher priority is given to the class with larger c-µ



ratio (c is the holding cost rate in our case). Items are as good as new after repair.

The goal of the manufacturer is to assign repairs to vendors in such a way that the

expected long-run average cost is minimized.

The complexity of the problem prevents us from finding optimal policies. Hence

we turn our attention to heuristic allocation procedures. One natural way of ob-

taining an approximate solution is to simplify the problem by assuming exponential

warranty length and formulate it as an Markov decision process (MDP). The opti-

mal policy for the resulting MDP can be expected to work reasonably well for the

original problem. However, the curse of dimensionality (of the state space) makes

solving the Bellman equations of the MDP impractical even for small-size problems.

We present four heuristics that are applicable to large problems. Among the four

heuristics, the Generalized Join the Shortest Queue (GJSQ) policy is of our primary

interest. The GJSQ policy is derived by applying a single policy improvement step

to an judiciously chosen initial state-independent policy. We first develop the GJSQ

policy then evaluate and compare it with other heuristics using simulation.

4.2 Heuristics

4.2.1 Optimal State-Independent Policy (OSI)

We first consider state-independent policies, i.e., stationary policies that do not de-

pend on the real-time system state. We confine ourselves to a specific, yet natural,

type of state-independent policy, namely, a Bernoulli splitting policy. Under this pol-

icy, a type k repair is assigned to vendor i with probability pki, where
∑V

i=1 pki = 1,

k = 1, 2. Let pk = (pk1, pk2, · · · , pkV ), k = 1, 2. Then the Bernoulli splitting policy

can be denoted by (p1, p2). We aim to find an optimal Bernoulli splitting policy that

minimizes the long-run average cost. In order to compute the long-run average cost

of a Bernoulli splitting policy with splitting probabilities (p1, p2), we simplify the real
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system by assuming that failures of type k items under warranty occur according to a

PP (φk), where φk = λkWβ (or, equivalently, the number of type k functioning items

under warranty is a constant λkW ). Then type k repairs arrive at vendor i according

to a PP (φkpki). We assume
∑V

i=1 µi > φ1 + φ2, i.e., the total arrival rate of failed

items is less than the total service rate. As a result, there must exist policies (p1, p2)

such that φ1p1i + φ2p2i < µi, i = 1, ..., V . We only consider such stable policies for

the rest of the paper.

Because of their preemptive resume priority, type 1 items simply do not see type

2 items in the repair queue. So the expected number of type 1 items at vendor i is

L1i(p1i) = φ1p1i/(µi − φ1p1i). (4.1)

Obviously, the expected number of all items at vendor i is (φ1p1i+φ2p2i)/(µi−(φ1p1i+

φ2p2i)). Hence the expected number of type 2 items at vendor i is

L2i(p1i, p2i) =
φ1p1i + φ2p2i

µi − (φ1p1i + φ2p2i)
−

φ1p1i

µi − φ1p1i

. (4.2)

Let

f1i(x) =











(h1i − h2i)
x

µi−x
, if x < µi

∞, if x ≥ µi,
(4.3)

f2i(x) =











cix + h2i
x

µi−x
, if x < µi

∞, if x ≥ µi,
(4.4)

and

fi(x1, x2) = f1i(x1) + f2i(x1 + x2). (4.5)

Then the long-run average cost rate at vendor i is fi(φ1p1i, φ2p2i).

Therefore, the optimal Bernoulli splitting policy (p∗
1, p

∗
2) can be obtained by solv-
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ing the following optimization problem:

min
V

∑

i=1

fi(φ1p1i, φ2p2i)

s.t.
V

∑

i=1

pki = 1, k = 1, 2 (4.6)

pki ≥ 0, k = 1, 2, i = 1, 2, · · · , V.

Note that the objective function is separable in terms of pairs (p1i, p2i), i.e., it is

a sum of functions of two variables (p1i, p2i) each. Each single term can be further

decomposed as in (4.5). To take advantage of the structure of this problem and

apply simple and efficient algorithm, we solve the discretized version of the above

optimization problem as described in the following. Suppose λkW are integers, k =

1, 2. Otherwise, take their integer parts. Associate a pair of integers (y1i, y2i) with

each vendor, where
∑V

i=1 yki = λkW , and let pki = yki

λkW
, k = 1, 2, i = 1, 2, · · · , V .

This can be interpreted in the following way: Assume that there are λkW type k items

under warranty. Assign yki of them to vendor i and always send them to vendor i for

repair upon failure. In terms of (y1i, y2i), the long-run average cost rate at vendor i

is fi(y1iβ, y2iβ), where fi is defined in (4.5).

Therefore, the discretized version of (4.6) can be written as

min
V

∑

i=1

f1i(y1iβ) + f2i(y1iβ + y2iβ)

s.t.

V
∑

i=1

yki = λkW, k = 1, 2 (4.7)

yki ≥ 0 and integer, k = 1, 2, i = 1, 2, · · · , V.

Optimization problem (4.7) can be formulated as a minimum cost network flow

problem which can be solved by a Successive Shortest Path Algorithm with complexity

O(V +(λ1 +λ2)W log V ) (see Buczkowski et al. [9], and Ahuja et al. [2]). We provide
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Figure 4.1: Network model of two-priority problem

the formulation and algorithm here for ready reference.

Figure 4.1 shows the network model for (4.7). There are two source nodes s1, s2

with supplies of λ1W and λ2W , respectively. There is one sink node t with a demand

of (λ1 +λ2)W . All other nodes are transshipment nodes with 0 demand and 0 supply.

The arc properties are summarized in table 4.1.

Arc Capacity Flow Cost
(si, j

i) λiW yij 0
(j1, j2) λ1W y1j f1j(y1jβ)
(j2, t) (λ1 + λ2)W y1j + y2j f2j((y1j + y2j)β)

Table 4.1: Arc properties for the network representation of (4.7)

Define yk = (yk1, · · · , ykV ), k = 1, 2, y = (y1, y2) and δf(yβ) = f(yβ) − f((y −

1)β), y ≥ 1. The following algorithm can be used to solve the network problem.

Successive Shortest Path Algorithm:

Initialize y := 0;

while
∑V

i=1 y2i < λ2W do
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• compute minj=1,...,V δf2j((y2j + 1)β),

• increment y2k by 1, where k ∈ arg minj=1,...,V δf2j((y2j + 1)β);

end

while
∑V

i=1 y1i < λ1W do

• compute di = δf1i((y1i + 1)β) + δf2i((y1i + y2i + 1)β), i = 1, ..., V

and dV +1 = miny2j>0 δf1j((y1j +1)β)+minj=1,...,V δf2j((y1j +y2j +

1)β).

• let q ∈ arg minj=1,..,V +1 dj.

If q ∈ {1, ..., V }, increment y1q by 1.

If q = V + 1, let k ∈ arg miny2j>0 δf1j((y1j + 1)β) and

p ∈ arg minj=1,...,V δf2j((y1j + y2j + 1)β). Increment y1k and y2p

by 1 and decrement y2k by 1 unit.

end

Denote the optimal solution to (4.7) by (y∗
1i, y

∗
2i), then we have the following approx-

imate solution to (4.6):

p∗1i =
y∗

1i

λ1W
, p∗2i =

y∗
2i

λ2W
, i = 1, 2, · · · , V. (4.8)

Note that p∗ki is an optimal solution to (4.6) to a degree of accuracy of 1
λkW

, k = 1, 2,

i = 1, . . . , V . The expected numbers of items under warranty, λkW , are usually large

in real problems, in which case, the discretized solution is very close to the real-valued

optimal solution.

4.2.2 Generalized Join the Shortest Queue Policy (GJSQ)

We continue to assume that the number of type k functioning items under warranty

is a constant λkW and failures of type k items under warranty occur according to
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a PP (φk), where φk = λkWβ, k = 1, 2. Therefore, the original warranty repair

allocation problem reduces to the problem of routing items arriving according to two

independent Poisson streams to several vendors where service is provided according

to a predetermined priority policy.

A generalized model of this situation is studied by Ansell et al. [3]. In their

model, jobs from a number of different classes arrive according to independent Poisson

processes. Jobs are either generic or dedicated, and they are routed to a set of service

stations. Dedicated jobs can be processed only by a specified station, while generic

jobs can be processed at any station. Jobs are served according to a static priority

policy at each station. A holding cost is incurred at a class-dependent rate while a

job is in the system. The objective is to minimize the long-run average holding cost

rate. The authors develop a dynamic routing heuristic by applying a single policy

improvement step to an initial static policy (see also Krishnan [23] and Tijms [45] for

this approach). They name the resulting index-based heuristic “Generalized Join the

Shortest Queue”(GJSQ) policy. We provide their main result here for ready reference.

Denote the set of generic jobs by G and the set of dedicated jobs to station i by

Di. Denote the number of class k jobs that are currently awaiting or under service

at station i by xki, k ∈ G ∪ Di, i = 1, · · · , V . Let x
i = {xki|k ∈ G ∪ Di}. For each

class k, the GJSQ policy associates with each station i an index Iki which is a linear

function of the number of jobs of each class at station i, i.e.,

Iki(x
i) =

∑

l∈G∪Di

θi
klxli + δi

k, k ∈ G ∪ Di, i = 1, · · · , V,

where the coefficients θi
kl and δi

k are constants. The GJSQ policy routes an incoming

class k job to the station with the smallest index.

Although structurally the simplified version of our problem is a special case of that

studied by Ansell et al. [3] (we consider two generic classes and no dedicated classes),
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our approach differs from theirs in the following ways: In addition to holding cost, we

also allow a station-dependent fixed cost per assignment, which is not considered by

Ansell et al. [3]. Furthermore, we are able to give tractable closed-form expressions

for the coefficients following complicated queueing theoretic calculations, while in

Ansell et al. [3] the coefficients are given as a solution to an infinite set of recursive

equations.

We use the solution (p∗
1, p

∗
2) given in (4.8) as the initial state-independent policy.

Following Ansell et al. [3], we show that the linear structure of the indices continues

to hold in the presence of fixed costs. In particular, for our problem there exist two

indices I1j(x1j , x2j) and I2j(x1j , x2j) for each vendor j = 1, . . . , V of the following

form

I1j(x1j , x2j) = A1j + B1jx1j + C1jx2j , (4.9)

I2j(x1j , x2j) = A2j + B2jx1j + C2jx2j . (4.10)

After some lengthy algebra, we get the closed-form expressions for the coefficients

of the indices. We introduce the following notations before stating the theorem:

φkj = φkp
∗
kj, (4.11)

ηj =
1

µj − φ1j

, (4.12)

ξj =
1

µj − φ1j − φ2j

, (4.13)

where k = 1, 2, j = 1, . . . , V .

Theorem 15. Assume µj > φ1j + φ2j and let fj, φkj, ηj and ξj be as given in (4.5),

(4.11), (4.12), and (4.13), respectively. Then the coefficients of the indices defined in
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(4.9) and (4.10) are given by

A1j = cj + [cj(φ1j + φ2j) + h1j ]ηj + fj(φ1j, φ2j)ξj + (φ1jh1j +
1

2
φ2jh2j)η

2
j

+[cj(φ1j + φ2j)φ2j + φ2jh2j ]ηjξj +
1

2
(φ1j + µj)φ2jh2jη

3
j

+(φ1jφ2jh1j +
1

2
φ2

2jh2j)η
2
j ξj +

1

2
(φ1j + µj)φ

2
2jh2η

3
j ξj + φ2

2jµjh2jη
2
j ξ

2
j ,

B1j = h1jηj + φ2jh2jη
2
j + φ2

2jh2jη
2
j ξj,

C1j = h2jηj + φ2jh2jηjξj,

A2j = cj + [cj(φ1j + φ2j) + h2j + fj(φ1j, φ2j)]ξj + φ1jh1jηjξj + φ2jµjh2jηjξ
2
j ,

B2j = h2jηj + φ2jh2jηjξj,

C2j = h2jξj.

Proof. Assume that the number of type k functioning items under warranty is a

constant λkW and failures of type k items under warranty occur according to a

PP (φk), where φk = λkWβ, k = 1, 2. Denote by g∗ the long-run average cost rate

incurred by the manufacturer under policy (p∗
1, p

∗
2). Denote by ω∗(x1, x2) the bias

associated with policy (p∗
1, p

∗
2) starting from state (x1, x2). Rescaling the time scale

so that φ1 + φ2 +
∑V

i=1 µi = 1, the optimality equation can be written as

g∗ + ω∗(x1, x2)

=

V
∑

i=1

(h1ix1i + h2ix2i) +

V
∑

i=1























µiω
∗(x1 − ei, x2), if x1i ≥ 1

µiω
∗(x1, x2 − ei), if x1i = 0, x2i ≥ 1

µiω
∗(x1, x2), if x1i = 0, x2i = 0

+ φ1

V
∑

i=1

p∗1i(ci + ω∗(x1 + ei, x2)) + φ2

V
∑

i=1

p∗2i(ci + ω∗(x1, x2 + ei)) (4.14)

We improve the policy (p∗
1, p

∗
2) by applying one step of policy-improvement, which

works as follows. When a type k item fails, we send it to the vendor where the cost
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increment caused by assigning one more type k repair is the smallest assuming that

policy (p∗
1, p

∗
2) is applied forever afterwards, k = 1, 2. Therefore, if a type 1 item

fails in state (x1, x2), we find vendor index j∗ ∈ arg minj{cj + ω∗(x1 + ej, x2)}

or equivalently j∗ ∈ arg minj{cj + ω∗(x1 + ej, x2) − ω∗(x1, x2)}. If a type 2 item

fails in state (x1, x2), we find vendor index j∗ ∈ arg minj{cj + ω∗(x1, x2 + ej)} or

equivalently j∗ ∈ arg minj{cj + ω∗(x1, x2 + ej) − ω∗(x1, x2)}. Then send the repair

to vendor j∗. Next we turn to the computation of ω∗(x1 + ej, x2) − ω∗(x1, x2) and

ω∗(x1, x2 + ej) − ω∗(x1, x2).

Let vT (x1, x2) be the total expected cost of policy (p∗
1, p

∗
2) up to time T starting

in state (x1, x2) at time 0. From Puterman [39], we have

ω∗(x1 + ej, x2) − ω∗(x1, x2) = lim
T→∞

[vT (x1 + ej, x2) − vT (x1, x2)]. (4.15)

Let viT (x1i, x2i) be the total expected cost incurred at vendor i by policy (p∗
1, p

∗
2) up

to time T . Then we have vT (x1, x2) =
∑V

i=1 viT (x1i, x2i).

Denote by g∗
i the expected cost rate at vendor i in steady state under policy

(p∗
1, p

∗
2), then

g∗
i = fi(φ1p

∗
1i, φ2p

∗
2i), (4.16)

where fi is defined in (4.5). Since the system reaches steady state eventually under

any stable policy, viT (x1i, x2i) asymptotically converges to a straight line with slope

g∗
i as T → ∞, i.e.,

viT (x1i, x2i) = bi,(x1i,x2i) + g∗
i T + O(T ), (4.17)

where bi,(x1i,x2i) is the intercept of the asymptote and limT→∞ O(T ) = 0.

Let Ti(x1i, x2i) be the time it takes vendor i to reach state (0, 0) for the first time

from initial state (x1i, x2i) and let τi(x1i, x2i) = E[Ti(x1i, x2i)]. Let Ji(x1i, x2i) be the

expected cost incurred by vendor i starting from initial state (x1i, x2i) until the first

time vendor i reaches state (0, 0). Introduce notation a ∧ b = min{a, b}. As T → ∞,
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we have

viT (x1i, x2i)

= ETi(x1i,x2i)[vi(T∧Ti(x1i,x2i))(x1i, x2i)] + ETi(x1i,x2i)[vi(T−Ti(x1i,x2i))(0, 0)]

= Ji(x1i, x2i) + O(T ) + ETi(x1i,x2i)[bi,(0,0) + g∗
i (T − Ti(x1i, x2i)) + O(T − Ti(x1i, x2i))]

= Ji(x1i, x2i) + viT (0, 0) − g∗
i τi(x1i, x2i) + O(T ).

Therefore,

vT (x1 + ej, x2) − vT (x1, x2)

=
V

∑

i=1
i6=j

viT (x1i, x2i) + vjT (x1j + 1, x2j) −
V

∑

i=1

viT (x1i, x2i)

= vjT (x1j + 1, x2j) − vjT (x1j , x2j)

= Jj(x1j + 1, x2j) + vjT (0, 0) − g∗
j τj(x1j + 1, x2j) + O(T )

−(Jj(x1j , x2j) + vjT (0, 0) − g∗
j τj(x1j , x2j) + O(T ))

= Jj(x1j + 1, x2j) − Jj(x1j , x2j) − g∗
j [τj(x1j + 1, x2j) − τj(x1j , x2j)] + O(T ).

Substituting the above expression in (4.15), we have

ω∗(x1+ej, x2)−ω∗(x1, x2) = Jj(x1j+1, x2j)−Jj(x1j , x2j)−g∗
j [τj(x1j+1, x2j)−τj(x1j , x2j)].

Define the type 1 index at vendor j as

I1j(x1j , x2j) = cj + Jj(x1j + 1, x2j) − Jj(x1j , x2j) − g∗
j [τj(x1j + 1, x2j) − τj(x1j , x2j)].

(4.18)
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Similarly, the type 2 index at vendor j can be defined as

I2j(x1j , x2j) = cj + Jj(x1j , x2j + 1) − Jj(x1j , x2j) − g∗
j [τj(x1j , x2j + 1) − τj(x1j , x2j)].

(4.19)

Ikj(x1j , x2j) can be viewed as the cost increment at vendor j caused by assigning one

type k repair to vendor j in state (x1j , x2j) assuming that policy (p∗
1, p

∗
2) is applied

forever afterwards. When a type k item fails, it is sent to the vendor whose type k

index is the smallest.

Next, we derive closed-form expressions for the indices defined in (4.18) and (4.19).

Consider a fixed vendor, i.e., vendor i for a fixed i. For notational simplicity, we drop

the vendor suffix i. Thus, the single vendor can be viewed as the following queueing

system. Two types of failed items arrive at a single-server queue according to PP (φk),

k = 1, 2, respectively. Repair times are i.i.d. exp(µ) for both types of items. Type 1

items have preemptive resume priority in service over type 2 items. Each failed type

k item incurs a holding cost at rate hk throughout its sojourn time at the vendor

and a fixed cost c, k = 1, 2. We are interested in computing J(x1, x2), the expected

total cost incurred by this queueing system starting from initial state (x1, x2) until

the first time it reaches state (0, 0). We use the following notations in the rest of this

appendix:

Xk(t) = number of type k items in the system at time t, k = 1, 2;

B1 = min{t ≥ 0 : X1(t) = 0|X1(0) = 1}, i.e., the busy period for serving

type 1 items initiated by a single type 1 item;

B2 = min{t ≥ 0 : X2(t) = 0|X1(0) = 0, X2(0) = 1}, i.e., the busy period

for serving both types of items initiated by a single type 2 item;

S2 = the service completion time of a type 2 item accounting for interrup-

tions from type 1 items. Thus if a type 2 item starts service at time

0, it will complete service at time S2;
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L1 = limt→∞ E(X1(t)), i.e., the expected number of type 1 items in the

system;

L1B = E[
∫ B1

0
X1(t)dt]/E(B1), i.e., the expected number of type 1 items

in the system during B1;

L2 = limt→∞ E(X2(t)), i.e., the expected number of type 2 items in the

system;

C11 = the expected holding cost incurred by the type 1 items during B1;

C12 = the expected holding cost incurred by the type 1 items during S2;

T1(x1) = min{t ≥ 0 : X1(t) = 0|X1(0) = x1};

T (x1, x2) = min{t ≥ 0 : X1(t) = 0, X2(t) = 0|X1(0) = x1, X2(0) = x2};

τ1(x1) = E(T1(x1));

τ(x1, x2) = E(T (x1, x2));

H1(x1, x2) = the expected total holding cost incurred by the system start-

ing from initial state (x1, x2) until time T1(x1);

H2(x1, x2) = the expected total holding cost incurred by the system from

time T1(x1) until time T (x1, x2);

H(x1, x2) = the expected total holding cost incurred by the system start-

ing from initial state (x1, x2) until time T (x1, x2).

Also let ρ1 = φ1

µ
, ρ2 = φ2E(S2), η = 1

µ−φ1

, ξ = 1
µ−φ1−φ2

.

Assuming φ1 > 0 (otherwise, the problem reduces to a single-priority problem),

from Prabhu [38] (Chapter 3, Theorem 1) we have

E(B1) =
1

µ − φ1

, (4.20)

and

V ar(B1) =
φ1 + µ

(µ − φ1)3
. (4.21)
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Obviously,

H(x1, x2) = H1(x1, x2) + H2(x1, x2)

The following two lemmas compute H1(x1, x2) and H2(x1, x2), respectively.

Lemma 18.

H1(x1, x2) = [
1

2
h1η + φ1h1η

2 +
1

2
(φ1 + µ)φ2h2η

3]x1 +
1

2
(h1η + φ2h2η

2)x2
1 + h2ηx1x2.

(4.22)

Proof. Since type 1 items do not see type 2 items in the repair queue, we have

L1 =
ρ1

1 − ρ1
=

φ1

µ − φ1
. (4.23)

Note that ρ1 is the fraction of time that the server is busy serving type 1 items,

therefore

L1B =
L1

ρ1

=
µ

µ − φ1

. (4.24)

By definitions of L1B and B1, we have

C11 = h1L1BE(B1), (4.25)

where E(B1) is given by (4.20).

To simplify analysis, we assume that the vendor follows Last-Come-First-Served

(LCFS) preemptive service discipline within class 1 items. The assumption of LCFS

service discipline is valid because we are interested in total cost, which is independent

of the order of service within each class.The assumption of preemption is valid because

of the exponential service times. Then H1(x1, x2) can be written as the sum of four
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parts as follows.

H1(x1, x2) = C11x1 + h1E(B1)

x1
∑

i=1

(i − 1) + h2E(B1)x1x2 +
1

2
φ2h2E(T 2

1 (x1)). (4.26)

The first term includes the holding cost incurred by every initial type 1 item during

the busy period initiated by itself and the holding cost incurred by all type 1 items

arrive during this busy period. The second term is the holding cost incurred by the

initial type 1 items before the busy periods initiated by themselves, since the ith initial

type 1 item waits for an expected (i − 1)B1 amount of time before its service starts,

i = 1, 2, · · · , x1. The third term is the holding cost incurred by x2 initial type 2 items

during [0, T1(x1)), since the expected waiting time for each of them is x1B1. The last

term is the holding cost incurred by newly arrived type 2 items during [0, T1(x1)),

since, conditioned on T1(x1) = t, the expected number of type 2 items arrived during

[0, t) is φ2t and the expected waiting time for each of them during [0, t) is 1
2
t.

Note that T1(x1) is the busy period for serving type 1 items initiated by x1 type

1 items. Thus

E(T 2
1 (x1)) = V ar(T1(x1)) + E2(T1(x1)) = x1V ar(B1) + (x1E(B1))

2, (4.27)

where E(B1) and V ar(B1) are given by (4.20) and (4.21).

Substituting (4.20), (4.24), (4.25), and (4.27) into (4.26), after some algebra one

can show (4.22) holds.

Lemma 19.

H2(x1, x2) = [φ1φ2h1η
2ξ +

1

2
h2ξ(2φ2η + (µ + φ1)φ

2
2η

3) + φ2
2h2µη2ξ2]x1

+ (φ1h1ηξ +
1

2
h2ξ + φ2h2µηξ2)x2 +

1

2
φ2

2h2η
2ξx2

1 + φ2h2ηξx1x2 +
1

2
h2ξx

2
2.

(4.28)
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Proof. Because of its lower priority, a type 2 item’s service may be interrupted by

newly arrived type 1 items. The expected number of interruptions during one service

completion time is φ1

µ
and each interruption lasts for B1 amount of time. Hence,

C12 =
φ1

µ
h1L1BE(B1). (4.29)

Since the service of a type 2 item can only be interrupted by newly arrived type 1 items

and items of both types require the same service time, S2 has the same distribution

as B1. So

E(S2) = E(B1) = η, (4.30)

and

V ar(S2) = V ar(B1) = (φ1 + µ)η3.

Type 2 items view the system as an M/G/1 queue with PP (φ2) arrival and i.i.d.

service times with mean E(S2) and variance V ar(S2). From Kulkarni [24] (Theorem

7.11), we know

L2 = ρ2 +
ρ2

2

2(1 − ρ2)
(1 +

V ar(S2)

E2(S2)
) = φ2η + φ2

2µη2ξ. (4.31)

From Prabhu [38] (Chapter 7, Theorem 8), we have

E(B2) =
1

µ − φ1 − φ2
. (4.32)

The system state at time T1(x1) can be written as (0, x2 + K), where K is the

number of type 2 items arrive during [0, T1(x1)). For a fixed K, denote by H2K the

holding cost incurred by the queueing system starting from state (0, x2 + K) until

state (0, 0) is reached. Assuming LCFS preemptive service discipline within class 2
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items, H2K can be written as the sum of three parts as follows.

H2K = (x2 + K)
E(B2)

E(S2)
C12 + (x2 + K)h2E(B2)

L2

ρ2

+ h2E(B2)
x2+K
∑

i=1

(i − 1). (4.33)

The first term is the holding cost incurred by all type 1 items during this period,

since E(B2)
E(S2)

is the expected total number of type 2 items served during B2. The

second term includes the holding cost incurred by every existing type 2 item during

the busy period initiated by itself and the holding cost incurred by all type 2 items

arrive during this busy period, since L2

ρ2

is the average number of type 2 items in the

system during a busy period initiated by a single type 2 item. The third term is the

holding cost incurred by the x2 +K existing type 2 customers before the busy periods

initiated by themselves, since the ith existing type 2 customer waits for an expected

(i − 1)E(B2) amount of time before its service starts.

Substituting (4.29), (4.30), (4.31), and (4.32) into (4.33), after some algebra, we

get

H2K = Kφ1h1ηξ +
1

2
h2K(K + 1)ξ + Kh2φ2µηξ2

+[h1φ1ηξ +
1

2
h2(2K + 1)ξ + h2φ2µηξ2]x2 +

1

2
h2ξx

2
2 (4.34)

For K, the number of type 2 items arrive during the busy period started by x1

type 1 items, we have

E(K) = x1E(B1)φ2, (4.35)

and

E(K2) = E[E(K2|T1(x1))] = E[V ar(K|T1(x1)) + E2(K|T1(x1))]

= E(φ2T1(x1) + φ2
2T

2
1 (x1)) = φ2E(T1(x1)) + φ2

2E(T 2
1 (x1)).
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Plugging in (4.27), we get

E(K2) = [φ2η + φ2
2(φ1 + µ)η3]x1 + φ2

2η
2x2

1. (4.36)

Obviously, H2(x1, x2) = EK(H2K). Taking expectation on both sides of (4.34)

with respect to K and plugging in (4.35) and (4.36), one can show that (4.28) holds.

The above results allow us to compute J(x1, x2) as given in the following lemma.

Lemma 20.

J(x1, x2) = Ax1 + Bx2 + Cx2
1 + Dx1x2 + Ex2

2, (4.37)

where

A = [c(φ1 + φ2) +
1

2
h1]η + φ1h1η

2 + [c(φ1 + φ2)φ2 + φ2h2]ηξ +
1

2
(φ1 + µ)φ2h2η

3

+φ1φ2h1η
2ξ +

1

2
(φ1 + µ)φ2

2h2η
2ξ2 + φ2

2µh2η
2ξ2,

B = [
1

2
h2 + c(φ1 + φ2)]ξ + φ1h1ηξ + φ2h2µηξ2,

C =
1

2
(h1η + φ2h2η

2 + φ2
1h2η

2ξ),

D = h2η + φ2h2ηξ,

E =
1

2
h2ξ.

Proof. Denote by C(x1, x2) the expected total fixed cost generated by this queueing

system starting from initial state (x1, x2) until state (0, 0) is reached for the first time.

Then

C(x1, x2) = c(φ1 +φ2)[x1E(B1)+(x2 +E(K))E(B2)] = c(φ1 +φ2)[(1+φ2ξ)ηx1 +ξx2].

(4.38)
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The total cost J(x1, x2) can be written as the sum of three parts as follows

J(x1, x2) = H1(x1, x2) + H2(x1, x2) + C(x1, x2). (4.39)

Substituting (4.22), (4.28), and (4.38) into (4.39), after some algebra, one can show

(4.37) holds.

We also have

τ(x1, x2) = x1E(B1) + (x2 + E(K))E(B2).

Plugging in (4.20), (4.32), and (4.35), we get

τ(x1, x2) =
x1 + x2

µ − φ1 − φ2

. (4.40)

Substituting (4.16), (4.37), and (4.40) into (4.18) and (4.19), Theorem 15 follows

after some algebra.

4.3 Simulation Study

Although we have the optimal splitting probabilities for the OSI policy and the closed-

form expressions for the indices of the GJSQ policy, calculating the expected costs

of these policies for the original warranty repair allocation problem is analytically

intractable. Therefore, we use simulation to evaluate the performance of these two

policies and compare them with two other heuristics. All four heuristics are described

below.

• Join the Shortest Queue policy (JSQ): An incoming failed item is sent

to the vendor with the shortest repair queue (i.e., the least number of items of

both types). If more than one vendor has the shortest queue, among those the
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item is sent to the one with the smallest fixed cost. In case a tie still exists, it

is broken arbitrarily.

• Optimal State-Independent policy (OSI): Incoming failed items are routed

according to the optimal Bernoulli splitting probabilities (p∗
1, p

∗
2) as given in

(4.8).

• Tracking (T): An incoming failed type k item is sent to the vendor at which

the expected number of type k items under policy (p∗
1, p

∗
2) minus the number

of existing type k items is the largest, i.e., keep the number of failed items at

each vendor as close as possible to the expected number of failed items under

the OSI policy.

• Generalized Join the Shortest Queue policy (GJSQ): An incoming failed

type k item is sent to the vendor with the smallest type k index. The indices

are defined in (4.18) and (4.19).

Our simulation programs were written in SIMSCRIPT II.5, and we use LA-

BATCH.2 (Fishman [14]) to calculate the 95% confidence intervals of the average

cost. Each simulation collects data from 2,000 independent replications. Each repli-

cation runs for a duration of 5 years and outputs the average yearly cost.

Following Opp, Kulkarni, and Glazebrook [37], we use Gini coefficient (Gini [15])

as a measure of the uniformity of the optimal state-independent allocation, which is

connected to the performance of the GJSQ policy. The Gini coefficient is widely used

in the economic literature as a measure of income inequality. It is a number between 0

and 1, where 0 corresponds to perfect equality and 1 corresponds to perfect inequality.

We use it to measure the inequality of the distribution of repairs among vendors.

The Gini coefficient is calculated using the Lorenz curve (Lorenz [29]), which is

a graphical representation of income inequality. In the context of warranty repair

allocation, it can be explained as follows. Let x-axis correspond to the percentage
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of vendors and y-axis correspond to the percentage of repair allocation. The Lorenz

curve is a piecewise linear function that contains point (x, y) if the bottom x% of

vendors have y% of the total repairs (see Figure 4.2). In the case of perfect equality,

every vendor gets the same number of repairs and the Lorenz curve becomes the 45◦

line, which is called the perfect equality line. The Gini coefficient is the ratio between

the area enclosed by the perfect equality line and the Lorenz curve, and the total area

under the perfect equality line.

We illustrate the concepts of Lorenz curve and Gini coefficient using a small

warranty repair allocation example. Suppose three vendors provide repair services for

two types of items. Sales of type 1 items form a PP (100) and sales of type 2 items

form a PP (300). The warranty length and failure rate are the same for both types

of items. The optimal state-independent policy is (p∗
1, p

∗
2), with p

∗
1 = (0.2, 0.6, 0.2)

and p
∗
2 = (0.1, 0.5, 0.4). We measure the distribution inequality among vendors in

terms of total number of repairs (of both types) assigned. Therefore, on average the

percentage of total repairs assigned to vendor 1, 2, and 3 are 12.5%, 52.5%, and 35%,

respectively. Sorting the vendors in ascending order of repair assignment, we can

see that the lowest (33.3%) vendor gets 12.5% of the total assignment, the lowest

two (66.7%) vendors get 47.5% of the total assignment, and the lowest three (100%)

vendors get 100% of the total assignment. Therefore, the Lorenz curve is a piecewise

linear function that connects points (0, 0), (33.3, 12.5), (66.7, 47.5), and (100, 100) as

shown in Figure 4.2.

In general, suppose there are V vendors providing repair services for K classes of

items. Failures from class k items occur according to PP (φk), k = 1, 2, · · · , K, and the

optimal state-independent policy is (p∗
1, p

∗
2, · · · , p∗

K), where p
∗
k = (p∗k1, p

∗
k2, · · · , p∗kV ).

Then the Gini coefficient can be calculated using the following formula:

G =

∑V

i=j+1

∑V

j=1 |
∑K

k=1 φkp
∗
ki −

∑K

k=1 φkp
∗
kj|

V
∑K

k=1 φk

.
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Figure 4.2: Lorenz curve and perfect equality line

Next we present the simulation results as a function of the Gini coefficient of the

optimal state-independent allocation.

We simulate a system with 2 types of items and 3 vendors. Sales of each type

of items occur according to a Poisson process with rate 200 items per year. Both

types of items are covered under warranty for 1 year and have a failure rate of 1.5

failures per item per year. The holding cost rates are the same across all vendors

with h1i = 500, h2i = 300, i = 1, 2, 3. The fixed cost at each vendor is randomly

generated from distribution U [20, 150]. A total service rate is randomly generated

from distribution U [605, 1210] and is randomly distributed among 3 vendors. Note

that the total service rate is guaranteed to be larger than the expected total fail-

ure rate, therefore the system is always stable. Since there are only 3 vendors,

the Gini coefficient of the optimal state-independent allocation ranges from 0 to 2
3
.

30 random examples are generated for each of the following Gini coefficient ranges:

[0, 0.1), [0.1, 0, 2), · · · , [0.5, 0.6), and 20 random examples are generated for Gini co-

89



efficient rage [0.6, 2
3
]. Call cases with Gini coefficient < 0.5 non-extreme cases, and

those with Gini coefficient ≥ 0.5 extreme cases.

Tables 4.2, 4.3, and 4.4 summarize the cost reductions by using the GJSQ policy

instead of the other three heuristics. These tables show the minimum, maximum,

and mean percent cost reductions among all 200 cases, among the 150 non-extreme

cases, and among the 50 extreme cases. As we can see that on average the GJSQ

policy performs better than the other heuristics, and there are instances for which the

GJSQ policy provides remarkably significant savings over the other heuristics. The

cost reduction provided by the GJSQ policy is even larger (except for the maximum

and mean reductions over JSQ) when restricted to the non-extreme cases. There are

a small number of instances for which the GJSQ policy costs slightly more than the

other heuristics, most of which are extreme cases.

Figure 4.3, 4.4, and 4.5 plot the percent cost reductions against Gini coefficients of

the optimal state-independent allocations. A straight line is fitted to the data points

using the ROBUSTFIT function provided by MATLAB, which uses robust linear

regression that is less sensitive to outliers in the data as compared with ordinary least

squares regression. Plots 4.4 and 4.5 (corresponding to OSI and T, respectively) show

a downward trend in savings as Gini coefficient increases. Plot 4.3 (corresponding

to JSQ) shows a slightly upward trend. These observations are consistent with the

results summarized in the tables.

Table 4.2 shows the comparison results between the GJSQ policy and the JSQ

policy. Among all 200 cases, the GJSQ policy provides an average cost saving of

9.85% over the JSQ policy. Since the JSQ policy tends to allocate items evenly

among vendors, it is expected to perform very poorly in extreme cases. In another

word, the GJSQ policy has a greater chance to provide large cost reduction over the

JSQ policy in extreme cases. This intuition explains the fact that, when restricted

to non-extreme cases, the minimum reduction improves but the maximum and mean
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reductions reduce. Plot 4.3 shows the upward trend although it is not statistically

significant. Out of the 150 non-extreme cases, the GJSQ policy provides positive

cost reductions in 139 cases. Out of the 50 extreme cases, the GJSQ policy provides

positive cost reductions in 20 cases. The negative cost savings are all relatively small

(-2.13% in the worst case), while the positive cost savings can be very large (up to

63.5%). As a result, although the GJSQ policy gives negative savings in 60% of the

extreme cases, the average cost saving among extreme cases is still positive (14.30%).

Cases with Cases with
All cases Gini coefficient < 0.5 Gini coefficient ≥ 0.5

Min. reduction -2.15% -1.19% -2.15%
Max. reduction 63.54% 48.83% 63.50%
Mean reduction 9.85% 8.37% 14.30%

Table 4.2: Cost reduction of GJSQ over JSQ

Table 4.3 shows the comparison results between the GJSQ policy and the OSI

policy. Among all 200 cases, the GJSQ policy provides an average cost saving of

3.49% over the OSI policy. Among the 150 non-extreme cases, the average cost

saving is 4.57%. Plot 4.4 shows the downward trend which is statistically significant

at 99% level. The GJSQ policy provides positive cost reductions in all non-extreme

cases. Out of the 50 extreme cases, the GJSQ policy provides positive cost reductions

in 47 cases. One may argue that the GJSQ policy should never perform worse than

the OSI policy, since it improves on top of the optimal state-independent policy by

applying a single step of policy improvement. However, when calculating the indices,

we ignored the dynamics of the system by assuming the number of functioning items

under warranty stays constant and is always the expected number of items under

warranty in steady state. This simplifying assumption as well as the error introduced

by simulation cause the seemingly lawbreaking behavior.

Table 4.4 shows the comparison results between the GJSQ policy and the T policy.

Among all 200 cases, the GJSQ policy provides an average cost saving of 4.23% over
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Cases with Cases with
All cases Gini coefficient < 0.5 Gini coefficient ≥ 0.5

Min. reduction -3.05% 0.098% -3.05%
Max. reduction 18.24% 18.24% 7.79%
Mean reduction 3.49% 4.57% 0.24%

Table 4.3: Cost reduction of GJSQ over OSI

the T policy. Among the 150 non-extreme cases, the average cost saving is 4.87%.

Plot 4.5 shows the downward trend which is statistically significant at 99% level. The

GJSQ policy provides positive cost reductions in all non-extreme cases. Out of the

50 extreme cases, the GJSQ policy provides positive cost reductions in 33 cases.

Cases with Cases with
All cases Gini coefficient < 0.5 Gini coefficient ≥ 0.5

Min. reduction -2.16% 0.007% -2.16%
Max. reduction 21.98% 21.98% 15.65%
Mean reduction 4.23% 4.87% 2.31%

Table 4.4: Cost reduction of GJSQ over T

From the above observations we can see that the GJSQ policy is a very robust and

efficient algorithm. It beats the other heuristics on average even when considering

only the extreme cases. It can provide significant cost savings over the other heuristics

in many cases (up to 63.54% over JSQ, 18.24% over OSI, and 21.98% over T). In the

worst case among our 800 random examples, the GJSQ policy costs only 3.05% more.
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Figure 4.3: Cost reduction of GJSQ over JSQ
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Figure 4.4: Cost reduction of GJSQ over OSI
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Figure 4.5: Cost reduction of GJSQ over T
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We studied two problems motivated by the prioritized warranty repair outsourcing

problem: the admission control problem to a single vendor and the routing problem

to multiple vendors.

We considered two cases of the admission control problem. In Chapter 2, we dis-

cussed the case where the reward is generated at the time of joinning the repair queue.

Modelling the single repair vendor as a two-class M/M/1 queueing system with fixed

priorities, we analyzed the optimal policies under three criteria, i.e., individual op-

timization, class optimization, and social optimization, and showed that they are

characterized by either critical numbers or monotone switching curves. We also com-

pared different policies and showed that the class-optimal policy accepts more high

priority customers and fewer low priority customers than the socially optimal policy.

Compared with either socially optimal policy or class-optimal policy, the individually

optimal policy accepts more high priority customers, while it may accept either more

or fewer low priority customers. In Chapter 3, we considered the case where the

reward is generated at the time of service completion. Using sample path argument,



we proved that the optimal control policies have the same structural properties as

in the first case. We compared different policies numerically. The numerical results

suggest the same relationships as in the first case.

In Chapter 4, we addressed the problem of dynamically routing prioritized war-

ranty repairs to multiple vendors. We developed an index-based heuristic which is

developed by performing a single step of dynamic programming policy improvement

on an optimal state-independent policy. After deriving closed-form expressions for

the indices, we evaluated the index policy and compared it with three other heuristics

using simulation. The simulation results suggest that the index policy is a robust, ef-

ficient algorithm. It can provide a significant cost reduction over the other heuristics,

especially when the optimal state-independent allocation is relatively uniform among

vendors.

5.2 Future Work

Admission Control

(1) The structural results for the individually optimal policy and the class-optimal

policy can be extended to an M/M/s queue with class-dependent service rates

by following similar approaches. The extension of the results for the socially

optimal policy is more complicated and requires future work.

(2) We have proved the results for the socially optimal policy under assumption

h1 ≥ h2. Both intuition and numerical experiments suggest that the results are

still true when h1 < h2. However, it remains to prove them rigorously.

(3) Extend the results to M/M/1 queues with more than two priority classes.

(4) Prove the comparison results analytically using sample path argument.
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Warranty Repair Routing

(1) Extend the results to problems with n types of items. The algorithm for finding

the optimal state-independent policy can be easily extended to n types of items

(See Buczkowski et al. [9]) . Unfortunately, generalizing our method to derive

the indices requires future work.

(2) If, for some reason, the real-time state information of the vendors is not avail-

able, one has to use partially state-dependent policies, i.e., decisions are only

based on the real-time information of the warranty population (numbers of

items under warranty, and the remaining warranty period for each item). What

is a good policy in this case? We expect that an index-based partially state-

dependent policy can be developed by following a similar approach.

(3) We have been assuming the repair fees are exogenous and given. We haven’t

answered the question of how these prices are chosen. Game theoretic models

can be used to address this question. Assuming the vendors compete with each

other in setting prices and service rates, one can model the competition among

vendors as a Nash game and the contracting between the manufacturer and

the vendors as a Stackelberg game. The existence (perhaps uniqueness) of the

Stackelberg equilibria and Nash equilibria is desirable.
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Appendix

The parameters (fixed costs c1, c2, c3 and service rates µ1, µ2, µ3) for the simulation

studies in Chapter 4 are given in this appendix.
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Table 1: Simulation parameters (Trials 1-25)

Trial c1 c2 c3 µ1 µ2 µ3

1 138.70 91.99 78.09 432.33 210.43 240.53

2 84.30 73.63 57.70 549.80 223.60 290.45

3 41.13 113.79 93.61 248.33 496.70 216.22

4 116.02 129.28 23.35 313.82 419.20 217.97

5 30.74 41.11 146.88 236.29 200.16 661.62

6 112.68 147.20 105.72 169.30 229.80 222.49

7 50.40 105.09 53.99 252.60 274.23 211.22

8 140.96 25.76 140.03 349.58 227.55 273.39

9 128.51 67.67 36.69 326.78 184.57 275.45

10 122.58 66.70 48.76 432.42 259.27 204.21

11 27.74 80.75 37.72 212.42 467.34 237.25

12 101.53 109.64 39.60 268.95 356.05 254.24

13 79.32 62.83 87.97 318.45 222.77 510.01

14 101.80 79.31 107.17 194.95 213.26 254.51

15 107.19 64.26 60.27 485.51 243.74 189.92

16 40.92 96.23 68.57 291.06 283.35 302.85

17 82.82 147.84 113.85 322.43 220.63 191.33

18 86.41 118.44 32.21 196.12 559.56 181.64

19 43.54 45.92 118.52 159.19 200.01 272.56

20 85.79 36.82 39.01 551.80 360.01 167.79

21 50.91 112.02 135.14 236.32 329.31 197.79

22 128.23 125.42 39.05 321.77 199.66 242.92

23 107.42 41.52 31.89 212.59 288.96 143.27

24 30.01 49.23 122.04 217.02 290.60 376.40

25 43.63 79.93 110.91 319.07 239.52 217.06
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Table 2: Simulation parameters (Trials 26-50)

Trial c1 c2 c3 µ1 µ2 µ3

26 86.73 76.18 101.79 206.71 191.45 302.09

27 20.38 76.10 32.52 241.16 581.60 164.67

28 92.85 145.95 52.15 199.43 568.94 194.44

29 132.05 78.37 99.94 393.25 281.13 286.78

30 22.87 72.27 92.98 282.94 138.63 538.66

31 62.43 39.85 47.46 618.63 356.90 61.27

32 83.47 77.91 82.15 237.20 400.81 411.10

33 113.20 118.75 147.30 345.24 223.64 148.89

34 83.17 127.55 148.96 395.38 120.07 150.80

35 81.31 91.78 140.46 361.85 79.38 412.06

36 120.26 74.98 29.32 731.12 114.62 224.36

37 46.83 98.38 96.99 335.77 145.56 321.80

38 126.46 117.43 96.65 384.19 451.01 177.22

39 38.79 138.69 109.34 46.90 331.97 279.44

40 33.33 110.09 107.73 102.77 196.51 376.90

41 134.90 60.60 98.94 525.89 86.01 331.23

42 85.37 112.23 75.76 384.71 458.54 170.52

43 88.70 56.18 59.73 332.43 76.46 329.47

44 69.17 141.40 127.72 373.75 536.11 118.38

45 123.33 101.15 21.11 397.51 297.61 343.38

46 27.22 33.11 49.86 41.39 291.35 723.54

47 123.51 104.60 37.17 21.92 352.38 294.08

48 95.65 34.14 41.23 309.75 7.87 315.52

49 116.24 141.99 74.31 493.35 70.87 345.91

50 107.44 132.08 87.22 294.23 652.97 28.72
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Table 3: Simulation parameters (Trials 51-75)

Trial c1 c2 c3 µ1 µ2 µ3

51 108.18 87.30 70.33 406.62 3.43 357.65

52 114.05 31.49 73.05 600.08 28.43 250.91

53 34.05 116.85 109.74 357.28 157.53 338.04

54 105.47 63.16 138.65 403.57 27.90 213.96

55 81.77 118.86 30.72 411.82 172.79 209.86

56 120.00 93.57 38.61 149.38 212.10 387.22

57 93.34 138.29 57.14 446.35 353.19 204.66

58 77.20 146.70 107.38 435.00 397.67 62.60

59 149.80 147.49 75.37 7.74 772.33 273.18

60 140.82 99.12 138.39 78.72 191.58 362.58

61 125.13 58.46 88.15 389.88 464.43 17.99

62 97.90 48.61 33.43 245.14 286.59 441.04

63 120.75 127.69 138.07 124.25 449.69 42.70

64 144.73 128.13 56.03 758.27 9.33 242.27

65 25.04 59.54 123.00 491.05 97.93 432.58

66 83.45 41.09 103.22 522.32 493.99 25.02

67 92.19 45.93 62.14 325.66 51.75 527.98

68 78.49 47.09 60.77 41.63 299.09 807.02

69 138.48 106.07 129.16 552.11 442.18 12.77

70 119.13 33.62 105.18 521.09 62.60 142.78

71 136.57 115.93 29.56 982.85 94.95 108.44

72 116.61 147.54 75.70 538.62 3.03 422.76

73 111.36 91.05 77.83 410.45 219.03 478.62

74 103.41 70.14 34.38 192.33 578.70 204.75

75 21.66 140.67 40.04 519.18 218.09 308.55
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Table 4: Simulation parameters (Trials 76-100)

Trial c1 c2 c3 µ1 µ2 µ3

76 102.42 137.01 79.78 149.34 397.56 580.95

77 49.07 41.62 33.22 191.84 635.11 14.57

78 82.92 21.23 73.21 561.07 563.16 32.95

79 137.16 125.20 85.37 65.74 171.40 527.12

80 35.12 25.46 113.06 552.50 29.89 171.04

81 32.50 41.73 69.67 598.89 288.57 73.98

82 33.31 78.26 118.36 25.75 115.35 977.76

83 110.8 136.53 34.63 224.06 80.96 520.11

84 72.16 95.04 82.82 590.29 405.04 101.00

85 114.79 83.10 92.83 481.99 578.85 117.83

86 21.55 68.40 66.05 83.47 751.78 49.65

87 49.41 141.23 116.54 503.98 249.35 431.86

88 28.31 84.59 80.04 105.71 104.18 882.37

89 108.91 139.89 145.83 599.21 139.36 50.27

90 34.24 27.92 110.95 665.24 201.24 4.16

91 81.07 50.77 127.61 37.54 636.92 121.78

92 39.64 48.33 73.16 637.19 15.54 42.07

93 26.60 68.72 136.51 607.62 126.4 108.59

94 27.96 51.28 63.68 20.98 19.65 779.34

95 56.59 140.63 39.72 29.41 29.08 702.77

96 20.35 59.22 30.87 6.65 149.91 764.46

97 83.87 129.58 67.81 277.73 208.13 664.11

98 29.71 128.20 57.19 53.50 187.08 774.19

99 23.12 109.97 130.09 775.91 198.74 118.43

100 37.15 98.41 121.58 54.10 852.23 52.73
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Table 5: Simulation parameters (Trials 101-125)

Trial c1 c2 c3 µ1 µ2 µ3

101 131.80 130.98 97.16 263.17 222.24 210.12

102 26.00 59.62 125.80 228.34 197.19 668.94

103 114.04 51.17 83.68 607.03 179.16 288.71

104 115.39 98.31 27.40 420.51 290.69 204.42

105 97.67 109.08 146.60 289.62 199.91 305.51

106 39.39 105.91 50.80 253.45 248.19 165.03

107 62.46 54.43 86.34 241.51 155.06 219.12

108 23.67 99.50 88.11 235.01 170.00 211.45

109 24.43 61.52 145.02 248.15 176.84 238.78

110 36.03 86.62 32.50 208.45 269.46 195.49

111 103.61 24.87 136.31 280.88 191.04 549.23

112 54.83 125.18 73.67 253.94 687.56 227.10

113 69.56 75.14 84.67 229.10 305.50 583.73

114 52.39 145.35 65.21 255.82 513.22 254.89

115 50.18 79.91 24.60 250.17 554.16 258.16

116 92.74 71.70 142.94 323.29 228.38 395.46

117 60.62 137.48 110.36 332.40 225.44 202.03

118 104.48 20.87 21.43 184.34 234.90 308.81

119 117.55 46.75 32.32 665.92 132.39 321.64

120 24.03 33.53 27.95 185.03 353.34 320.69

121 93.01 147.68 123.83 282.25 209.88 138.95

122 21.64 94.05 80.04 259.18 625.49 191.23

123 138.98 83.84 117.29 385.59 324.66 156.60

124 148.11 75.87 134.39 367.62 112.02 301.88

125 146.96 33.67 66.61 272.84 210.26 158.89
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Table 6: Simulation parameters (Trials 126-150)

Trial c1 c2 c3 µ1 µ2 µ3

126 73.44 113.74 115.01 168.56 520.73 369.77

127 62.00 98.58 50.66 181.47 643.10 341.65

128 146.76 77.16 62.94 291.20 274.86 175.70

129 75.13 91.23 119.52 157.21 278.75 706.91

130 143.82 65.38 108.12 223.55 147.69 264.07

131 80.69 89.27 100.12 159.38 409.84 305.55

132 132.32 79.35 112.64 174.02 254.09 352.56

133 142.32 52.28 109.82 413.63 105.59 385.22

134 67.67 77.84 63.06 56.62 297.85 336.12

135 118.41 99.98 37.64 96.93 202.63 360.91

136 124.97 139.99 116.66 195.08 632.53 158.81

137 48.26 105.69 87.68 296.31 263.03 69.95

138 53.90 120.28 136.79 244.84 129.16 739.33

139 68.06 66.24 69.79 167.03 453.56 347.27

140 139.29 60.07 112.45 625.75 95.74 312.71

141 31.66 83.84 110.00 322.72 290.42 206.33

142 22.90 81.41 122.07 256.36 114.56 397.06

143 114.09 50.90 23.95 289.44 390.23 154.07

144 108.15 127.22 70.97 374.57 333.78 240.01

145 31.09 125.56 27.70 156.54 425.36 146.39

146 93.36 88.09 52.70 523.42 108.49 197.03

147 22.28 145.84 129.62 380.59 93.99 726.55

148 27.66 35.44 135.56 31.16 263.37 554.11

149 107.97 25.56 138.87 374.90 30.29 240.64

150 109.96 32.20 61.68 202.91 419.38 130.56
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Table 7: Simulation parameters (Trials 151-175)

Trial c1 c2 c3 µ1 µ2 µ3

151 106.05 141.84 146.34 459.88 281.08 348.45

152 56.36 129.62 58.57 89.24 453.24 89.22

153 100.94 146.47 146.90 279.73 624.37 253.17

154 21.07 123.24 37.08 89.92 461.63 158.50

155 84.89 78.83 101.97 344.50 450.06 242.49

156 25.08 27.99 57.36 77.30 214.69 652.39

157 121.12 76.00 64.40 386.67 464.50 98.64

158 123.86 52.97 23.82 150.33 401.00 95.90

159 92.05 130.37 32.93 378.69 83.68 378.46

160 115.27 84.44 83.84 0.67 382.55 284.76

161 45.62 147.01 136.87 222.66 111.46 543.99

162 35.05 133.98 132.30 129.86 339.69 723.83

163 57.07 32.67 141.14 177.25 4.47 480.82

164 52.54 63.48 123.85 488.04 657.17 50.91

165 60.64 120.05 121.64 182.67 816.70 68.99

166 135.92 81.23 26.23 131.26 17.41 461.42

167 123.99 79.51 37.88 72.27 485.41 504.78

168 83.59 89.08 57.38 48.64 216.72 497.02

169 86.63 102.64 117.01 484.20 138.29 42.50

170 24.92 57.24 72.32 225.76 766.39 59.98

171 82.14 22.61 89.60 78.46 505.42 576.34

172 93.81 68.96 25.73 668.37 76.24 134.25

173 119.24 52.95 135.48 97.76 53.79 465.82

174 44.51 25.04 140.74 456.00 50.51 140.33

175 94.10 146.10 110.56 540.25 279.26 360.44
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Table 8: Simulation parameters (Trials 176-200)

Trial c1 c2 c3 µ1 µ2 µ3

176 69.04 61.73 91.98 539.96 183.18 386.49

177 146.32 39.77 82.64 929.24 44.29 27.73

178 102.97 95.83 92.02 131.30 233.89 639.96

179 135.66 125.52 105.14 409.75 681.27 80.54

180 41.18 104.35 96.93 582.34 10.45 134.83

181 144.22 114.56 75.12 126.67 144.18 542.19

182 23.13 138.35 41.32 17.11 723.85 63.99

183 44.02 23.05 137.94 110.26 565.65 98.31

184 129.53 35.76 62.55 273.84 80.15 594.45

185 78.05 83.83 37.40 960.44 140.20 97.99

186 78.64 89.01 135.78 566.76 162.18 451.87

187 143.25 97.90 54.61 54.25 422.81 546.85

188 72.54 103.44 57.01 814.96 85.90 193.26

189 130.21 109.42 130.12 374.15 599.27 187.69

190 72.07 38.06 101.09 568.69 32.01 75.29

191 23.57 110.36 54.93 36.65 396.08 628.03

192 125.50 24.03 108.81 280.60 763.48 77.31

193 103.84 126.34 105.83 741.87 70.56 90.50

194 143.51 138.03 122.57 51.45 89.54 962.01

195 135.75 87.02 103.39 129.10 65.34 924.16

196 94.20 59.74 62.17 208.13 702.09 100.76

197 108.86 122.93 103.68 34.60 290.52 859.97

198 38.22 22.81 81.42 94.36 670.96 273.41

199 103.56 90.82 109.62 984.01 94.94 31.71

200 63.63 144.13 122.21 607.90 13.74 40.62
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