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ABSTRACT 
 

Evan M. Hetrick:  Antimicrobial and Wound Healing Properties of Nitric Oxide-Releasing 
Xerogels and Silica Nanoparticles 

(Under the direction of Professor Mark H. Schoenfisch) 

  

 Indwelling medical devices continue to be plagued by the body’s response to foreign 

materials and the ever-present threat of microbial infection.  Endogenously-produced nitric 

oxide (NO) has been shown to play beneficial roles in both wound healing and the body’s 

defense against infection.  To exploit NO’s favorable properties for biomaterials applications, 

previous studies have detailed the synthesis of xerogel polymers and silica nanoparticles 

capable of storing and releasing NO via diazeniumdiolate NO-donors.  Here, the ability of 

NO-releasing materials to reduce bacterial adhesion under flow conditions, modulate the 

foreign body response, and kill microbial pathogens is described. 

To more thoroughly characterize the antibacterial properties of NO-releasing 

xerogels, studies were conducted with Pseudomonas aeruginosa in a parallel plate flow cell.  

Xerogels modified to release NO reduced bacterial adhesion in a flux-dependent manner, 

with a NO flux of ~21 pmol·cm-2·s-1 inhibiting P. aeruginosa adhesion by 65% compared to 

controls.  Fluorescent viability probes indicated that bacteria adhered to NO-releasing 

xerogels were killed within 7 h of adhesion.  In terms of tissue biocompatibility, the foreign 

body response was studied in an animal model at the site of subcutaneous implants coated 

with NO-releasing xerogels.  Implant-derived NO reduced capsule thickness and the chronic 

inflammatory response by 50 and 30%, respectively, compared to controls.  Additionally, 
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77% more blood vessels were observed in proximity to NO-releasing implants after 1 week 

compared to controls. 

 Along with their ability to reduce bacterial adhesion and mitigate the foreign body 

response, NO-releasing materials may prove useful for treating infections due to the broad-

spectrum antimicrobial properties of NO.  Recently, silica nanoparticles have been developed 

that release micromolar quantities of NO, and here the efficacy of such nanoparticles was 

examined against both planktonic and biofilm-based pathogens.  Comparison of the 

antibacterial activity of NO-releasing 45 mol% AHAP3/TEOS nanoparticles to the small 

molecule NO donor PROLI/NO demonstrated greater bactericidal efficacy of nanoparticle-

derived NO and reduced cytotoxicity to mammalian fibroblasts.  Treatment of gram-

negative, gram-positive, and fungal biofilms with 70 mol% MAP3/TEOS silica nanoparticles 

killed ≥99% of biofilm-based cells for each species tested, with the greatest efficacy 

(≥99.999% killing) against gram-negative biofilms. 
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Chapter 1: 

Recent Advances in the Design of More Biocompatible and Antimicrobial Biomaterials 

 

1.1  Biomedical implants and associated biocompatibility issues 

 Modern perspectives relating to biomaterials and biocompatibility can be traced to 

World War II, when ophthalmologists observed that fragments of windshields composed of 

poly(methyl methacrylate) (PMMA) healed without permanent adverse reactions in the eyes 

of pilots.1  Since that observation, scientists have attempted to design biomaterials that 

integrate into healthy tissue upon implantation without an unfavorable host response (e.g., 

chronic inflammation).  Examples of biomaterials in use today that are designed to interact 

with human tissue include catheters, stents, pacemakers, sensors, prostheses, and orthopedic 

and dental implants.1  Despite the efforts of countless chemists, engineers, biologists, and 

physicians, the utility and efficacy of almost all indwelling medical devices continue to be 

plagued by the body’s response to foreign materials and the threat of microbial infection.  

 1.1.1  Foreign body response.  The foreign body response (FBR) is the manner in 

which the wound-healing cascade proceeds in the presence of a foreign body such as a 

medical implant or device.  The physiological processes associated with the FBR have been 

extensively reviewed1-3 and are best understood in the context of the wound healing cascade.  

In the absence of a foreign material, the chronological process of wound healing consists of: 

1) cessation of bleeding; 2) acute inflammation; 3) formation of granulation tissue; and, 4) 

tissue remodeling.4  Implantation of a foreign material creates injury to tissue and initiates 
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the wound-healing sequence, which is altered from the process described above due to the 

presence of the foreign material.  As shown in Figure 1.1, plasma proteins rapidly adsorb to 

the surface of the implant1 and the inflammatory response begins with neutrophils and 

monocytes accumulating at the site of implantation to clear the wound of microbes and other 

microscopic materials via phagocytosis.  After recognizing the implanted biomaterial as 

“foreign”, neutrophils attempt to digest it.  However, biomaterial clearance by phagocytes is 

most often unsuccessful due to the size disparity between the microscopic neutrophils and 

macroscopic implant. 

 For “normal” wounds (i.e., not created due to biomaterial implantation), the 

associated inflammation effectively eliminates microbial cells and other foreign material, 

allowing tissue remodeling to proceed and with time, the acute inflammatory response 

subsides.4  In contrast, the foreign body remains for biomaterial-induced wounds and rather 

than subsiding, the acute inflammatory response evolves into a chronic inflammatory 

response.  The chronic inflammatory response is characterized by an abundance of 

inflammatory cells, particularly macrophages, that are recruited to the site of implantation 

over the course of several days.3  Like neutrophils during the acute inflammatory response, 

macrophages attempt to digest or otherwise destroy the implant, but are unsuccessful due to 

size disparities.  In response, the macrophages undergo frustrated phagocytosis, whereby 

individual macrophages fuse together to form multinucleated foreign body giant cells 

(FBGC) that may remain at the tissue/material interface for the lifetime of the implant.1  Still 

unsuccessful in their attempts to digest the implant, FBGCs secrete cytokines that trigger 

fibroblasts to deposit a dense layer of collagen around the implant.  This foreign body 

collagen capsule, also known as scar tissue, is typically devoid of blood capillaries and serves 
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Figure 1.1.  The progression of the foreign body response from device implantation to 
collagen capsule formation.  Following protein adsorption to the implant, macrophages 
interrogate the foreign material, leading to frustrated phagocytosis and foreign body giant 
cell formation.  Finally, fibroblasts form a collagen capsule around the implant, sequestering 
the foreign material from surrounding tissue.  Adapted from Ratner, B.D., J. Controlled 
Release, 2002, 78, 211-218. 
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to sequester the implant from the surrounding tissue for the lifetime of the implant.  The 

collagen capsule, coupled with the lack of proximal blood vessels and the persistent 

inflammatory response, is the root cause of many of the issues that plague implantable 

medical devices today.  For example, chronic inflammation and scar tissue formation often 

lead to pain and discomfort for patients who receive artificial prostheses or cosmetic 

implants.  More specifically, the dense collagen capsule prevents implantable drug delivery 

devices from functioning properly.5  Likewise, the collagen capsule and the lack of blood 

vessels reduce the utility of implantable biosensors by decreasing the diffusion of blood 

analytes (e.g., glucose) to the sensor surface (Fig. 1.2).6-8  

1.1.2  Device-associated infection.  In addition to the deleterious effect of the foreign 

body response, medical devices and implants are highly susceptible to infection.  Indeed, the 

presence of a foreign body drastically reduces the threshold of bacterial cells necessary to 

cause infection.  Zimmerli et al. reported a 100% infection rate at subcutaneous implant sites 

inoculated with Staphylococcus aureus at a cell concentration of 1.0 x 103 colony forming 

units (CFUs).  Without the subcutaneous implant, infections were not observed even up to 

1.0 x 108 CFU S. aureus inoculations,9 demonstrating that the threshold number of bacterial 

cells necessary to induce infection was decreased by 5 orders of magnitude in the presence of 

a foreign material.   In a similar study, Wei and coworkers found that the threshold of 

bacterial cells necessary to induce pneumococcal meningitis was significantly lower in rats 

that had a cochlear implant than in those without an implant.10  The authors concluded that 

the presence of a foreign body was an independent risk factor for bacterial infection. 

Medical devices increase the likelihood of infection because they provide a substrate 

on which microbial cells can adhere and proliferate.11  At the cellular level, device-associated 
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Figure 1.2.  The foreign body response as it relates to the utility of implantable subcutaneous 
sensors.  In the ideal scenario, the sensor heals within healthy vascularized tissue, ensuring 
sufficient mass transport of analytes from the blood to the sensor surface and adequate 
sensitivity.  The typical foreign body response, however, sequesters the sensor within a dense 
capsule of avascular collagen, drastically reducing analyte diffusion to the sensor and 
severely limiting sensor performance. 
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infections are the result of bacterial adhesion to a biomaterial surface.12  Upon implantation, a 

competition exists between integration of the material into the surrounding tissue and 

adhesion of bacteria to the implant surface.13  For a successful implant, tissue integration 

occurs prior to appreciable bacterial adhesion, thereby inhibiting any colonization of the 

implant.  Host defenses are often not capable of preventing further colonization if bacterial 

adhesion occurs before tissue integration.13  A 6-h post-implantation “decisive period” has 

been identified during which prevention of bacterial adhesion is critical to the long-term 

success of an implant.14  Over this period, the implant is particularly susceptible to surface 

colonization.  At extended periods, certain species of adhered bacteria are capable of forming 

a biofilm at the implant-tissue interface.  Biofilms are remarkably resistant to both the host 

immune response and systemic antibiotic intervention, resulting in life-threatening device-

associated infection.  Since the formation of a pathogenic biofilm ensues from the initial 

adhesion of bacteria to an implant surface, inhibiting bacterial adhesion is often regarded as 

the most critical step for preventing device-associated infection. 

Infectious bacteria can be traced to several sources including the ambient atmosphere 

of the operating room, surgical equipment, clothing worn by medical professionals, the 

patient’s skin, and bacteria already in the body.15  Although sterilization and the use of 

aseptic techniques greatly reduces the levels of bacteria found in hospital settings, pathogenic 

microorganisms are still found at the site of approximately 90% of all implants.16  The most 

common pathogens that cause implant infections include gram-positive S. aureus and 

Staphylococcus epidermidis, two species responsible for up to 60% of all prosthetic hip 

implant infections since 1980.15  S. aureus infections proceed rapidly and are generally more 

severe than S. epidermidis infections.  However, S. epidermidis has more accessibility as an 
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opportunistic pathogen since it is found ubiquitously on the skin.  Other bacteria that have 

been implicated in device-associated infections include gram-negative Escherichia coli, 

Pseudomonas aeruginosa, and those from the Proteus group (e.g., P. mirabilis and P. 

vulgaris).15 

Due to its fundamental role in the development of implant infections, the process of 

bacterial adhesion has been well-studied.12  The adhesion of bacteria is preceded by the 

surface adsorption of a conditioning film of small organic compounds and macromolecules 

including proteins.  Subsequently, the physicochemical forces that mediate bacterial adhesion 

can be divided into two time-dependent phases (Fig. 1.3).  Phase I involves reversible 

cellular association with the surface over the first 1–2 h post-implantation.  This non-specific 

association is mediated through long (e.g., gravitational, van der Waals, and electrostatic 

interactions) and short (e.g., hydrogen bonding, dipole-dipole, ionic, and hydrophobic 

interactions) range forces.  Phase II begins approximately 2–3 h later and is characterized by 

stronger adhesion between the bacterial cells and the foreign material.  Specific chemical 

interactions between compounds on the cell and substrate surfaces result in irreversible 

molecular bridging.11  Both polysaccharides on and adhesin proteins within the bacterial 

membrane facilitate attachment to substrate surfaces.  Beyond Phase II, certain bacterial 

strains are capable of forming a biofilm by self-secreting an exopolysaccharide matrix that 

retains nutrients and protects the microorganisms from the immune response.12  With the 

protective polysaccharide coating and sequestered nutrients, bacteria in biofilms exhibit 

extreme resistance to antibiotics.  In some cases, it has been found that killing bacteria in a 

biofilm requires approximately 1000 times the antibiotic dose necessary to achieve the same 

results in a suspension of cells.17 
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Figure 1.3.  Representation of bacterial adhesion to a biomaterial substrate.  Phase I adhesion 
involves reversible cellular association with the surface.  During Phase II, bacteria undergo 
irreversible molecular bridging with the substrate through cell surface adhesin compounds.  
After approximately 1 d, certain bacterial species are capable of secreting a protective 
exopolysaccharide matrix (biofilm) that protects the adhered bacteria from host defenses and 
systemically-administered antibiotics. 
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1.2  Overview of current methods to mitigate the foreign body response 

 Since protein adsorption is one of the first events to occur when a biomaterial is 

placed in the body,3 some researchers have hypothesized that changing the surface chemistry 

of the implant to limit or alter protein adsorption may reduce the ensuing foreign body 

response.  For example, implants coated with tetraglyme (tetraethylene glycol dimethyl 

ether) were found to reduce fibrinogen adsorption to the implant surface.  Unfortunately, in 

vivo studies demonstrated little difference in capsule formation between tetraglyme-coated 

implants and controls.18  In fact, in a seminal in vivo study using ten different biomaterials, 

the thickness of the foreign body capsule formed at each implant proved invariant of the 

surface hydrophobicity or protein adsorption profile of each implant (Fig. 1.1).18  Thus, it is 

evident that strategies to alter the foreign body response cannot rely solely on manipulating 

the surface chemistry of the implant.  As a result, researchers have adopted approaches that 

include controlling the microarchitecture of the implant surface and/or engineering implants 

to elute compounds that play critical roles in the foreign body response.  

 1.2.1  Control over implant surface microarchitecture.  Manipulation of the 

microarchitecture of the implant has proven useful for reducing the effects of the foreign 

body response.19-23  For example, Picha and Drake19 modified the surface of silicone rubber 

implants to include “pillar” microstructures with well-defined dimensions (100 µm diameter, 

500 µm height, 100 µm inter-pillar distance).  In vivo tissue compatibility studies showed a 

drastic decrease in the foreign body response and an increase in vascularization at implants 

with pillar microstructures versus control implants with smooth surfaces.  Histology analysis 

indicated that smooth surface control implants resulted in the formation of 140 µm thick 

avascular collagen capsules.   In contrast, the microstructure/pillar-modified substrates had 
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much thinner capsules (~10 µm thick) with higher degrees of vascularization.  Indeed, blood 

vessels were found much closer to the microstructured implants than to the corresponding 

smooth control implants.  For substrates implanted into the right posterior section of rats, the 

nearest blood vessel to control implants was on average 85 µm from the implant surface.  

Conversely, the nearest blood vessel to microstructured implants was only 5 µm from the 

implant surface.  The foreign body response was thus shown to be drastically reduced at 

microstructured implants compared to smooth surface controls.   

In a separate study, DeFife et al. used a templating approach to generate model 

biomaterial implants with controlled pore size.21  As the pore size was increased from 66 to 

157 µm, both the inflammatory response and foreign body giant cell index decreased by 56 

and 21%, respectively.  Collectively, the results suggest that capsule formation may be 

reduced by modulating the pore size of an implant.  Instead of using pores, Sahlin et al. 

micropatterned TiO2 dots with dimensions of 5, 10, 30, and 100 µm on polished quartz 

substrates.22  In vitro studies performed with neutrophils and macrophages showed a 

significant reduction in the inflammatory response at micropatterned surfaces compared to 

non-patterned (i.e., smooth) surfaces. 

 The exact mechanism by which micropatterned surfaces enhance implant 

biocompatibility is not clearly understood.24  As shown in Figure 1.4, it is generally accepted 

that the physical constraints imposed on inflammatory cells by the surface microarchitecture 

plays an important role.24, 25  At smooth implants, macrophages fuse together to create 

multinucleated foreign body giant cells.  This change in inflammatory cell phenotype alters 

the wound healing response, prompting the body to sequester the implant with a foreign body 

collagen capsule.  Upon interrogating a micropatterned implant, however, macrophages are
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Figure 1.4.  A) At smooth implant surfaces, macrophage attack is followed by the formation 
of foreign body giant cells and eventual collagen capsule formation.  B) At micropatterned 
implants, it has been proposed that macrophages become spatially confined within the 
microstructures and are unable to fuse together to form foreign body giant cells.  As a result, 
foreign body capsule formation at the micropatterned implant is significantly reduced. 
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physically constrained either within the microstructures or by the surface microarchitecture.  

As such, they are unable to fuse together into foreign body giant cells and do not change 

phenotype or trigger capsule formation.25  A similar cell-confinement explanation has been 

provided for the reduced inflammatory response observed at micropatterned TiO2 dots.22  

Picha and Drake suggest that the difference may be due to differential tissue formation within 

the microporous structures.19  They propose that adipose tissue initially occupies the 

microstructures, thereby preventing inflammatory cells from entering the area.  The 

intervening layer of adipose tissue reduces the shear forces between the implant and 

surrounding subcutaneous tissue, thereby moderating the fibrotic response that generally 

arises due to shear forces.  While different rationalizations exist, the above studies clearly 

demonstrate the impact of micropatterned surfaces on the inflammatory and foreign body 

responses. 

 1.2.2  Implants engineered to elute anti-inflammatory and pro-angiogenic 

compounds.  A more aggressive approach for mitigating the foreign body response involves 

modifying implants to release compounds that reduce inflammation and/or promote blood 

vessel growth (e.g., pharmaceutical agents and/or growth factors).  The advantage of local 

active release of such compounds is that high doses may be delivered directly to the desired 

site of action while avoiding systemic toxicity concerns.26, 27  Systemic administration also 

suffers from rapid clearance from the body, while elution directly from the implant allows 

sustained delivery over days or weeks.26    

Since the formation of a fibrous tissue capsule is linked to the presence of 

neutrophils, macrophages, and foreign body giant cells (i.e., inflammation) at the 

tissue/implant interface, compounds that reduce the inflammatory response may also 
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decrease capsule thickness.  For example, dexamethasone, a potent anti-inflammtory 

glucocorticoid that functions by reducing the migration of inflammatory cells and blocking 

the release of pro-inflammatory chemokines,26, 28 limits fibroblast proliferation,28 making it 

an attractive release compound for reducing collagen capsule formation at the site of 

implants.  Due to its anti-inflammatory activity and ability to limit fibrosis, several groups 

have exploited dexamethasone to reduce the foreign body response at biomedical implants.   

Hickey et al. incorporated dexamethasone into poly(lactide-co-glycolide) (PLGA) 

microspheres via an oil-in-water emulsion/solvent evaporation technique.29  The release of 

dexamethasone from the PLGA microspheres, monitored via reverse-phase HPLC with UV 

detection, was continuous for >30 d, with a total of approximately 10 µg of dexamethsone 

released per mg of microspheres.  Both control and dexamethasone-loaded microspheres 

were injected subcutaneously into the backs of rats adjacent to a cotton thread (included to 

simulate an implantable glucose sensor).  The tissue inflammatory response was monitored 

via histological staining.  As observed from tissue sections stained with hematoxylin & eosin 

(H&E), the inflammatory response at the site of dexamethasone-releasing microspheres was 

significantly reduced compared to control microspheres after both one week and one 

month.29  After one month, thick fibrotic tissue was observed at the control microspheres, 

while the dexamethasone-releasing microspheres were characterized by significantly reduced 

fibrotic deposits.29  The authors concluded that dexamethasone release may prove useful for 

improving the function of implantable subcutaneous glucose sensors. 

 Blanco et al. examined the ability of dexamethasone to improve the functionality of 

an implantable drug-delivery device.26  Specifically, the ability of dexamethasone-releasing 

PLGA millirods to reduce collagen capsule formation at the tissue/implant interface of 
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radiofrequency-ablated liver tissue was investigated.  Dexamethasone-modified millirods 

were synthesized via a compression-heat molding procedure.30  The millirod composition 

with optimal release profile eluted 80% of the loaded dexamethasone after soaking in 

phosphate buffered saline for 6 h (as monitored via UV absorption spectroscopy).  Roughly 

95% of the drug was released after 4 d.26  The investigators then implanted control and 

dexamethasone-releasing millirods into radiofrequency-ablated rat livers.  To determine the 

effect of sustained dexamethasone release from the millirods, one set of control millirods 

received a bolus injection of dexamethasone in saline.  After 4 d, the collagen capsules 

observed at control millirods both with and without injected dexamethasone were 0.13 ± 0.01 

mm thick, while the capsules that formed at the dexamethasone-releasing millirods were only 

0.02 ± 0.01 mm thick.  These results indicate that sustained delivery of dexamethasone is 

required to reduce capsule thickness, as simply injecting an equivalent amount of 

dexamethasone adjacent to the millirods did not reduce capsule thickness.  After 8 d, the 

collagen capsules that formed at control millirods, control millirods with injected aqueous 

dexamethasone, and dexamethasone-releasing millirods were 0.29 ± 0.08, 0.26 ± 0.07, and 

0.04 ± 0.01 mm thick, respectively.  The inflammatory response observed at the 

dexamethosone-releasing implants was also reduced compared to the control implants after 8 

d.  Blanco et al. suggest that by reducing collagen capsule thickness, the dexamethaxone 

release may be beneficial for improving the efficacy of other drug-delivery devices designed 

to release chemotherapeutic agents at the site of tumors.26  Despite the success of 

dexamethasone release, concerns exist regarding the potentially serious side-effects of 

glucocorticoids,31 including diabetes, hypertension, osteoporosis, and perhaps most 

alarmingly, infection and the inhibition of wound repair.31, 32  Indeed, active-release implant 
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coatings designed to alter the inflammatory response may increase the likelihood of wound 

infection by limiting the body’s natural defense mechanisms, thereby delaying wound 

healing, a potentially serious drawback of anti-inflammatory implant coatings.32  

 In addition to polymeric dexamethasone release, other strategies have focused on the 

controlled release of pro-angiogenic cytokines to increase vascularization in the tissue 

surrounding implants.  This approach is employed most often in the context of implantable 

tissue-based biosensors, whose utility is severely limited by the formation of a hypovascular 

foreign body collagen capsule.33, 34  The goal of pro-angiogenic cytokine release is to 

increase vascularization within the collagen capsule and decrease the distance between the 

indwelling sensor and blood vessels, thereby increasing analyte mass transfer from the blood 

to the sensor.  The most commonly-employed pro-angiogenic cytokine to date is vascular 

endothelial growth factor (VEGF), which acts by initiating endothelial capillary formation.35 

 Multiple studies have demonstrated that controlled VEGF release from subcutaneous 

implants enhances vascularization in the tissue surrounding the implant.35-37  Recent reports 

have focused on combination approaches to further boost angiogenesis, as well as 

fundamental studies to determine the spatial efficacy of controlled VEGF release.37, 38  For 

example, Riley and coworkers loaded hyaluronic acid (HA) hydrogels with both VEGF and 

angiopoietin-1 (Ang-1) and tested their ability to promote blood vessel formation in a mouse 

ear angiogenesis model.37  The authors predicted that VEGF, which initially stimulates new 

blood vessel formation, coupled with Ang-1, which aids in later blood vessel maturation,37, 39 

would lead to long-term vascularization at the implant site.  Significantly more microvessels 

were observed at implants loaded with both cytokines compared to control sites.  It was also 

found that VEGF and Ang-1 slowly released from a HA hydrogel elicited a significantly 
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greater angiogenic response than equivalent concentrations of cytokines delivered as aqueous 

solutions, the latter not resulting in increased blood vessel formation compared to controls.  

The data suggest that sustained release from a biomaterial is likely necessary to sustain 

angiogenesis.37  A similar study by the same group demonstrated that HA hydrogels loaded 

with both VEGF and keratinocyte growth factor (KGF) also enhanced angiogenesis 

compared to blank HA hydrogels and hydrogels loaded with only VEGF or KGF.39   

In another example of dual growth factor-loaded biomaterials, Richardson et al. 

created PLGA scaffolds that released both VEGF and platelet-derived growth factor (PDGF) 

for >30 days.40  When implanted into the hindlimbs of mice, PLGA implants loaded with 

only VEGF resulted in a significant increase in angiogenesis after two weeks, but the vessels 

observed were small with little evidence of stabilization within the extracellular matrix.  

Delivery of PDGF alone did not increase the density of blood vessels observed near the 

implant, but did lead to larger vessels than control implants.  When both VEGF and PDGF 

were released simultaneously, significantly more blood vessels were observed after both 2 

and 4 weeks (approximately 110 and 115 vessels/mm2 at 2 and 4 weeks, respectively), and 

were both larger and more mature than vessels formed at controls.  Biomaterials designed to 

release dual growth factors simultaneously may represent the best approach for promoting 

the formation of large, stable blood vessels in the surrounding tissue. 

Ward et al. reported on the spatial efficacy of VEGF release from a model biosensor 

implant.41  Using a rat model, infusion of VEGF at 0.45 µm/day led to a 2- to 3-fold increase 

in blood vessel density at a distance of 1 mm from the infusion site compared to saline-

releasing controls.  A non-significant increase in blood vessel density was observed at 13 mm 

from the point of infusion, while at 25 mm no difference was observed between VEGF and 
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saline infusion.  Systemic administration of VEGF influenced neither the capsule thickness 

nor the extent of inflammation at the implant site.  Using an enzyme-linked immunosorbent 

assay (ELISA), the authors found that subcutaneous VEGF infusion also did not lead to 

elevated levels of VEGF in serum compared to saline-infused rats (71 ± 48 vs. 57 ± 52 

pg/mL at 1 week for VEGF- and saline-treated rats, respectively).  The data suggest that local 

delivery of VEGF likely does not provoke systemic secondary reactions.41  Despite these 

findings, concerns remain regarding possible side-effects of VEGF administration.41  For 

example, VEGF has been implicated in diabetic retinopathy,42-44 rheumatoid arthritis,45 and 

certain skin diseases,46 and may play a role in the promotion or metastasis of select 

cancers.47, 48  

 

1.3  Overview of current methods to prevent device-associated infections 

 Due to the critical role that bacterial adhesion plays in the pathogenesis of medical 

device-associated infections and wound healing, much effort has focused on developing 

polymeric device coatings that resist bacterial adhesion.49  For in vivo applications, a 

competition exists between bacterial adhesion to the device surface and integration of the 

device into surrounding tissue.13  If bacterial cells adhere to the device prior to tissue 

integration, the body’s natural defense mechanisms may not be capable of preventing 

bacterial colonization and device infection.  If, however, bacterial adhesion can be prevented 

for a certain period after device insertion (the typical goal is 6 h14), effective tissue 

integration may ensue and thus prevent colonization of the device surface.  This competition 

between bacterial adhesion and tissue integration has been described as a “race for the 

surface”.13, 50  Several strategies have been developed in an attempt to reduce bacterial 
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adhesion and tip the balance in favor of effective tissue integration.   Strategies to inhibit or 

reduce bacterial adhesion may be divided into three general approaches: 1) altering the 

surface physicochemical properties of the device; 2) incorporating or anchoring antimicrobial 

agents into/on a polymeric device coating; and, 3) engineering polymeric coatings to actively 

release antimicrobial agents. 

 1.3.1  Passive  strategies for polymeric device coatings.  One of the most 

straightforward methods for reducing bacterial adhesion involves altering the 

physicochemical properties of the device surface such that bacteria-substrate interactions are 

unfavorable.  Several polymer coatings have been developed in this manner to passively 

reduce bacterial adhesion.51  In general, increasing surface hydrophilicity correlates with 

reduced bacterial adhesion,51 possibly by interrupting the hydrophobic effect between 

proteins on the surface of bacterial cells and hydrophobic substrates.50  Approaches that have 

involved modifying polymers with hydrophilic functional groups have shown promise at 

reducing bacterial adhesion.  For example, surfaces modified with poly(ethylene glycol),52 

poly(ethylene oxide) brushes,53 and hydrophilic polyurethanes54 have demonstrated reduced 

bacterial adhesion in vitro.  Other approaches have exploited the negative surface charge of 

bacterial cell membranes at neutral pH.51  For example, Harkes and coworkers demonstrated 

the influence of surface charge by testing the adhesion of three different strains of E. coli to 

polymers with varying zeta potentials.55 The authors observed an increase in bacterial 

adhesion of each bacterial strain that corresponded directly with an increase in polymeric 

surface charge.  Building on that observation, Kohnen et al. modified polyurethane with 

acrylic acid to generate a negatively-charged surface and observed decreased S. epidermidis 

adhesion compared to unmodified polyurethane.51   
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Yet another passive approach involves altering the surface free energy of the substrate 

to make bacterial adhesion unfavorable.56  In situations where the surface tension of the 

medium in which bacterial cells are suspended is less than the surface free energy of the 

bacterial cells themselves, bacterial adhesion trends with the free energy of the substrate 

surface, i.e., lower surface free energy is expected to result in bacterial adhesion becoming 

more unfavorable.57  As such, research efforts have focused on developing polymer coatings 

with low surface free energy.  For antibacterial applications, the most commonly-employed 

low surface energy coatings are fluoropolymers,56 which exhibit very low surface free 

energies due to the electronegativity of fluorine atoms.56, 58  Indeed, the surface free energies 

(γ) of the –CH2–, –CH3, –CF2–, and –CF3 constituent groups are 36, 30, 23, and 15 mJ·m-2, 

respectively.56, 59  Tsibouklis et al. developed poly(methylpropenoxyfluoroalkylsiloxane) and 

poly(perfluoroacrylate) coatings with surface free energies as low as 12.2 and 5.6 mJ·m-2, 

respectively, depending on the number of fluorine atoms in the polymer side-chains (with 

greater fluorine substitution resulting in lower surface energies).60  The fluoropolymer 

coatings were compared to glass controls with respect to bacterial adhesion (γglass = 42.9 

mJ·m-2).61  Adhesion of S. aureus was reduced >95% compared to the glass controls.60  In a 

separate study, Pereni et al. found that fluoropolymers (e.g., perfluoroalkoxy alkane [PFA, 

γPFA = 17.18 mJ·m-2] and polytetrafluoroethylene [PTFE, γPTFE = 21.35 mJ·m-2]) resulted in 

significantly lower P. aeruginosa adhesion than higher surface energy stainless steel (SS, γSS 

= 43.30 mJ·m-2) commonly used for orthopedic devices.62   

Despite the success of passive device coatings at reducing bacterial adhesion in vitro, 

the formation of protein conditioning layers limits their effectiveness at reducing bacterial 

adhesion and related infection in vivo.49, 63  Likewise, modulating the free energy of a 
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substrate surface is not always effective for reducing bacterial adhesion.  Bacterial cells with 

low surface free energy are expected to adhere more readily to low free energy surfaces.56  

Indeed, studies have shown that hydrophobic bacteria adhere more preferentially to 

hydrophobic substrates, despite the low surface energy of those substrates.64  Clearly, passive 

strategies alone are not sufficient to reduce bacterial adhesion and prevent device infection in 

vivo. 

 1.3.2  Antimicrobial agents covalently anchored to polymers.  A further level of 

sophistication involving anti-infective device coatings involves modifying the surface of 

polymers with antimicrobial agents.65, 66  Examples include adding biocides to polymers 

either during or after synthesis, constructing polymerizable monomers with antimicrobial 

activity, or grafting antimicrobial agents onto naturally-occurring polymers.66  A primary 

advantage of these types of polymer coatings is that their efficacy is independent of 

traditional antibiotics, whose use continues to be questioned due to the ongoing threat of 

antibiotic-resistant bacteria.67  Of all covalently-bound antimicrobial polymer systems, 

polymeric quaternary alkylammonium salts have received the most attention due to their 

broad-spectrum bactericidal activity and the relatively straightforward approaches for 

incorporating them into polymers.66  For example, Ola et al.68 have created antimicrobial 

polymers by employing a quaternary ammonium compound with both a long 18-carbon 

hydrophobic tail and a trimethoxysilyl group (3-(trimethoxysilyl)-propyldimethyloctadecyl 

ammonium chloride; Fig. 1.5) amenable to polymerization via the sol-gel process.69  The 

polymer demonstrated >99.5% killing of planktonic E. coli within 1 h.68  The mechanism by 

which quaternary alkylammonium salts kill bacterial cells involves insertion of the lipophilic
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Figure 1.5.  Structure of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride. 
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 alkyl chain into the cell membrane followed by membrane disruption via the charged 

quaternary ammonium group.70   

 A polymer that has received a great deal of attention recently in the field of anti-

infective coatings is chitosan.66  Derived from chitin obtained from the shells of crustaceans, 

chitin is known for both its antimicrobial activity and wound-healing properties.71  An 

advantage of chitosan polymers is that each monomer contains a free primary amine group 

amenable to modification with electrophilic reagents (Fig. 1.6).  In a recent study, Kenawy et 

al.71 covalently grafted chitosan polymers with vanillin, p-hydroxybenzaldehyde, p-

chlorobenzaldehyde, anisaldehyde, methyl 4-hydroxybenzoate, methyl 2,4-

dihydroxybenzoate, propyl 3,4,5-trihydroxybenzoate, and methyl 2-hydroxylbenzoate.  The 

authors used a standard Kirby-Bauer disk-diffusion assay to measure the zone of inhibition 

(ZI) of microbial growth around each polymer, with greater antimicrobial activity resulting in 

a larger ZI.  The p-hydroxy benzaldehyde-modified chitosan was found to be most effective 

against the pathogenic fungus Candida albicans (ZI = 45.0 mm), while vanillin-modified 

chitosan demonstrated the greatest antibacterial efficacy against E. coli (ZI = 26.0 mm) and 

S. aureus (ZI = 18.0 mm).  Despite the promise of covalently-grafted antimicrobial polymers 

such as quaternary alkylammonium salts and chitosan, such coatings suffer similar decreased 

efficacy in vivo as passive coatings due to the potential masking properties of protein-

conditioning films.49, 63 

1.3.3  Silver-releasing device coatings.  Yet a further level of sophistication in 

creating antimicrobial device coatings involves engineering polymers to slowly elute 

antibiotics and other antimicrobial agents.  Perhaps the most widespread of such polymers 

are those designed to release silver ions.  Many antibiotics operate specifically against certain 
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Figure 1.6.  Structure of unmodified chitosan. 
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species of bacteria and show limited efficacy against others.  In contrast, the antimicrobial 

properties of silver have been known for centuries,72 and while nontoxic to mammalian cells 

and tissue,73 the chemical nature of silver ions affords antibacterial activity via multiple 

mechanisms.  Biomolecules such as proteins, enzymes, and cell-membrane components 

generally contain nucleophilic sulfhydryl, hydroxyl, and amine functionalities that are 

capable of coordinating ionic silver (Ag+).  As a result, Ag+ reacts with and disrupts the 

function of bacterial cell membranes and crucial metabolic proteins and enzymes, ultimately 

leading to cell death.  Silver cations also displace other metal ions that are essential to cell 

survival, including Zn+ and Ca2+.  The bactericidal activity of Ag+ is thus general and, to 

date, Ag+ has demonstrated antibacterial efficacy against a broad spectrum of pathogens 

found at implant sites including P. aeruginosa, E. coli, S. aureus, and S. epidermidis. 

Studies have already evolved to coating catheters73 and orthopedic fixation pins74 

with metallic silver.  While colonization was significantly reduced for silver-coated catheters 

in vitro,73 in vivo studies with silver-coated fixation pins failed to demonstrate decreased 

bacterial adhesion.74  Likewise, Sheehan et al. reported that silver coatings applied to model 

orthopedic implants did not result in decreased adhesion of S. epidermidis or S. aureus.75  An 

explanation for the limited antibacterial efficacy of such silver coatings is that they do not 

actively release silver ions.  Indeed, the antibacterial properties of silver have been attributed 

to its oxidized form (i.e., Ag+), a form of silver that is not necessarily present at high 

concentrations at surfaces simply coated with metallic silver.  Polymers that actively release 

silver in the oxidized state, however, have exhibited strong antibacterial activity.  Such 

coatings act as reservoirs of silver and are capable of releasing bactericidal levels of Ag+ for 

extended periods (>3 months).76 
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Recently, Furno and coworkers created antibacterial polymer coatings doped with 

silver particles ranging from 10-100 nm in diameter.63  Organic silver complexes were 

dissolved in supercritical carbon dioxide and permeated into medical grade silicone rubber at 

high pressure.  The release of Ag+, measured by inductively coupled plasma mass 

spectrometry, was greatest over the first three days, with lower levels of release over the next 

two days.  The initial burst of Ag+ was found to be critical with respect to the antibacterial 

properties of the coatings.  To explore if such release originated from silver particles existing 

at or near the polymer surface, sample coatings were washed after doping to remove surface-

bound silver.  Indeed, the washed coatings showed no inhibitory zones against S. 

epidermidis, analogous to control polymers that did not contain silver nanoparticles.  The 

antibacterial activity of these coatings was also tested in the presence of a human plasma-

derived protein conditioning film at the substrate surface to better mimic in vivo conditions.  

Although Ag+ generally reacts rapidly with proteins, the bactericidal activity of the coatings 

was not eliminated in the presence of the in vitro protein coating, suggesting that such 

materials would maintain their antibacterial activity upon protein adsorption in vivo.63  

Indeed, this finding (i.e., reduced bacterial adhesion in the presence of a protein conditioning 

film) represents a primary advantage of active release coatings, as passive coatings have 

shown reduced efficacy in the presence of protein conditioning films.49, 63 

Dowling and coworkers focused on methods to increase the level of Ag+ delivered 

from silver surface coatings by incorporating platinum into the coating.77  Since platinum is 

more cathodic than silver in the galvanic series, silver oxidation is enhanced when the two 

metals are in contact.  The authors demonstrated that the addition of 3 wt% Pt to a metallic 

silver coating increased Ag+ formation by a factor of two compared to standard silver 
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coatings.  As expected, the Pt-doped silver coatings resulted in enhanced antibacterial 

efficacy due to increased Ag+ release.  In vitro experiments demonstrated that inclusion of 1 

wt% Pt in a silver coating on polyurethane reduced S. epidermidis adhesion by almost two 

orders of magnitude compared to similar silver coatings without Pt.  As well, the toxicity of 

such coatings to healthy fibroblast cells was not altered by the inclusion of platinum.  Despite 

the proven in vitro antibacterial efficacy of Ag+-releasing coatings, concerns about the 

development of Ag+-resistant bacteria remain.78, 79  Indeed, Ag+-resistant mutants of E. coli 

have been identified that have active Ag+ efflux systems and accumulate four times less Ag+ 

than their Ag+-susceptible counterparts.79  

 1.3.4  Antibiotic-releasing device coatings.  Perhaps the most direct approach for 

improving the efficacy of conventional antibiotics against implant-associated infections is to 

deliver the antibiotics in a controlled manner at the implant from a surface coating.  The topic 

of controlled drug release from implanted medical devices has been reviewed by Wu and 

Grainger.27  The primary advantage of delivering antibiotics directly at the site of 

implantation is that high local doses may be administered without exceeding the systemic 

toxicity level of the drug.  Localized administration also allows for the tailored selection of 

antibiotics toward specific pathogens associated with implant infections.  As an example of 

antibiotic-releasing device coatings, Price and coworkers reported the synthesis of a 

biodegradable PLGA coating that actively released gentamicin.80  Gentamicin sulfate and 

PLGA were dissolved in methylene chloride.  The resulting solution was deposited onto 

stainless steel fracture plates by a standard coating/evaporation procedure.  Gentamicin 

release, monitored via a fluorescence polarization immunoassay, was evaluated in vitro for 

coatings loaded with 10, 20, and 30 wt% gentamicin.  The 20 and 30% coatings were both 
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characterized by an initial burst of antibiotic release (~250 and 2000 µg/mL, respectively) 

over the first 9–12 days.  Burst release was not observed for the 10% formulation.  The 

average daily release was dictated by initial antibiotic loading levels (10, 20, and 30% 

mixtures exhibited average daily release of 21, 133, and 374 µg/mL, respectively, over 20 d).  

For each coating, antibiotic release remained above the minimum inhibitory concentration (1-

4 µg/mL) for pathogens commonly found to infect orthopedic devices (e.g., S. aureus and S. 

epidermidis) up to 20 d.  An in vitro assay demonstrated that coatings with 20 wt% 

gentamicin reduced S. aureus viability by >99% over 24 d compared to uncoated control 

surfaces.80  Despite the promising in vitro efficacy of antibiotic-releasing implant coatings, 

reluctance regarding their clinical application remains due to the fear that such coatings may 

foster antibiotic-resistant bacteria.81  

 1.3.5  Antibody-eluting device coatings.  Immunotherapy (i.e., clinical delivery of 

externally-derived antibodies) has been an effective treatment for many diseases since the 

1800s, exploiting the high specificity of antibody-antigen interactions to achieve therapeutic 

efficacy for patients with various medical conditions, including AIDS and other immune 

deficiency disorders.82  Of the five major classes of human antibodies, IgG antibodies have 

proven to be the most useful as immunotherapeutics.  IgG is directly involved in the natural 

immune response to infection through opsonization and phagocytosis.  Pooled IgG antibodies 

possess specificity for a wide variety of epitopes expressed on bacterial cell surfaces.  

Through opsonization (i.e., antibody recognition of and binding to bacterial cell-surface 

antigens), IgG binds to invading bacterial cells, targeting them for phagocytic destruction by 

immune system components including neutrophils, monocytes, and macrophages (Fig. 1.7).  

IgG opsonization inhibits bacterial adhesion by blocking cell-surface attachment factors and 
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Figure 1.7.  A) Opsonization of a bacterial cell via IgG binding to specific cell-surface 
epitopes, thereby blocking adhesin compounds.  B) Opsonized bacteria are targeted to 
phagocytes for destruction. 
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altering the surface hydrophobicity of the cell.  The motility of flagellar bacteria such as E. 

coli is also reduced upon opsonization, thereby inhibiting their mechanism of transport.83  

Due to these characteristics, treatment with exogenously-supplied IgG has been shown to 

diminish the severity of infections and reduce bacterial adhesion to model surfaces.82 

 To exploit the antimicrobial properties of IgG for possible application to medical 

devices, Rojas et al. developed a polyurethane coating that controllably released bioactive 

IgG for up to 25 h.83  Lyophilized-pooled human IgG was homogenously dispersed in 

biomedical grade polyurethane solution and applied to latex tubing substrates through a dip-

coating process.  Following curing at 40 °C, antibody release from the coatings was 

measured in PBS via an enzyme-linked immunosorbent assay (ELISA).  As with other 

controlled release coatings,84 IgG was released in an initial burst over the first 7 h, with lower 

levels of release through 25 h.  The total antibody flux was largely dependent on the initial 

loading levels.  For example, IgG loaded at 15% (w/w in polyurethane) released roughly 50 

µg/cm2, while coatings loaded with 10% IgG released only ~17 µg/cm2.83  The anti-bacterial 

adhesion efficacy of the IgG release coatings was then evaluated in vitro.  E. coli adhesion to 

IgG-releasing polyurethane coatings was reduced by two orders of magnitude compared to 

blanks after incubation in a bacterial suspension for 4, 8, and 24 h.  The authors attributed the 

reduction in adhesion to steric blockage of bacterial attachment factors and decreased 

flagellar motility as a result of IgG opsonization.  Of note, coatings that released IgG had 

lower levels of bacterial colonization than blank polyurethane coatings exposed to 

suspension of E. coli pre-treated with IgG.  Polymer-released IgG also maintained its ability 

to direct phagocytic killing of bacteria.  An in vitro assay with blood neutrophils showed that 

IgG released from polyurethane coatings killed 70-90% of E. coli cells, compared to <10% 
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for control surfaces.  These results were attributed to the IgG-initiated targeting of bacteria to 

neutrophils (via opsonization) for destruction.  Antibody released from the polyurethane 

coatings resulted in greater bacterial killing than aqueous phase IgG added to a bacterial 

suspension with blank polyurethane.  Such data further substantiates the suggestion that IgG 

released from a polymer coating is more successful at mitigating implant-associated infection 

than exogenously-administered antibody treatments.83  The same research group extended 

these findings to an in vivo study demonstrating that the controlled release of IgG from a 

hydrogel matrix reduced P. aeruginosa and S. aureus implant infection in a mouse model.85  

Despite the promise that controlled antibody release holds as a strategy for preventing 

implant-associated infection, clinical application may be limited due to possible 

overselectivity of antibodies for specific antigens and the high costs associated with 

immunotherapy.86 

 

1.4  Nitric oxide 

 Despite the advances that have been made recently toward the development of more 

biocompatible and anti-infective device coatings, successes are tempered by potential side 

effects, drawbacks, or limited efficacy as discussed above.  Moreover, most strategies are 

designed to address only one issue associated with biocompatibility (e.g., capsule thickness, 

the inflammatory response, angiogenesis, or infection).  Indeed, relatively few strategies 

follow a multi-faceted approach towards improving biocompatibility.87   

A more recent strategy that has proven effective at battling bacterial infection 

involves the release of nitric oxide (NO), a physiological signaling molecule endogenously 

produced by mammals.88  One of the main advantages of NO-based therapies is that NO is 
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already synthesized within humans at picomolar to micromolar levels,88 depending on the 

source and mode of action.   Nitric oxide is a potent antimicrobial agent,89-92 and has been 

shown to participate in all aspects of the foreign body response including inflammation,72, 93 

collagen deposition,94, 95 and angiogenesis.96, 97  In addition, NO plays an important role in 

the processes of wound-healing.93, 98  For these reasons, studies focused on elucidating the 

ability of NO-releasing materials to fight infection and promote implant biocompatibility 

have generated great interest. 

 1.4.1  Physiological sources of NO.  Nitric oxide is produced by a class of heme-

containing enzymes known as nitric oxide synthases (NOSs).88, 99  Three forms of NOS exist, 

the first two named for the cell type in which they were first discovered: neuronal NOS 

(nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS).  In contrast to iNOS, whose 

expression is induced by endotoxins and cytokines,99 nNOS and eNOS are considered 

constitutive and thus always expressed.88  Inducible NOS is found in neutrophils, 

macrophages, and other cells involved in the inflammatory response,94 and is capable of 

producing high (µM) quantities of NO.92  Unlike iNOS, constitutive NOSs operate in a Ca2+-

dependent manner and produce lower (pM) quantities of NO.88  Despite the differences 

between inducible and constitutive NOSs, each enzyme produces NO in a remarkably similar 

manner via the oxidation of L-arginine to L-citrulline as shown in Figure 1.8. 

 1.4.2 Physiological roles of NO.  The first physiological role of NO to be discovered 

was as the long-elusive endothelium-derived relaxing factor (EDRF), responsible for 

vasodilation and blood pressure regulation.100, 101  This finding explained the efficacy of 

nitrovasodillatory drugs such as nitroglycerin and sodium nitroprusside.88  Briefly, the 

mechanism of NO-induced vasodilation involves NO reacting with iron in the heme 
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Figure 1.8.  Reaction for the nitric oxide synthase-catalyzed conversion of L-arginine to  
L-hydroxyarginine, which is then oxidized to yield L-citrulline and nitric oxide. 
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prosthetic group of soluble guanylate cyclase, thus activating the enzyme which then 

catalyzes the production of cyclic guanosine monophosphate (cGMP), the compound 

ultimately responsible for vascular relaxation.88  As a corollary, NOS inhibitors such as N-

nitro-L-arginine methyl ester (L-NAME), an arginine mimic, are potent vasoconstrictors.  

Another important role of NO in the cardiovascular system is its ability to inhibit platelet 

aggregation, which also occurs via a cGMP-dependent mechanism.88 

 The discovery of a neuronal NOS isoform,99 coupled with the detection of NO in all 

areas of animal and human brains99, 102, 103 has highlighted NO’s action in the central and 

peripheral nervous systems.  Nitric oxide has been shown to play a role in the formation of 

memory,104, 105 and inhibiting nNOS impairs learning behavior.106  Nitric oxide is also 

involved in other sensory pathways including vision and olfaction.88  In the peripheral 

nervous system, NO facilitates sensory transmission and helps regulate multiple digestive 

processes.88 

 In contrast to the roles that NO plays in the vascular and nervous systems (at pM 

concentrations generated by constitutive NOSs), antibacterial concentrations of NO (µM) are 

generated by the inducible isoform of NOS in inflammatory cells such as neutrophils and 

macrophages, which act as the body’s first line of defense against microbial infection.88, 92  

Microbial infection and the presence of cytokines stimulate macrophages to produce NO, 

which acts as a strong oxidizing agent at such concentrations inducing oxidative stress both 

directly and indirectly through multiple reactive intermediates.  The most lethal of these 

reactive species is peroxynitrite (ONOO-), formed via the reaction between NO and 

superoxide (O2
-), a species also produced by macrophages.  Peroxynitrite has been implicated 

in cell membrane damage through lipid peroxidation.107  Nitric oxide is also capable of 
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targeting important structures within bacterial cells, including DNA and proteins, upon 

diffusion across their cell membranes.  Oxidation of DNA by NO either directly or via 

reactive intermediates is capable of irreparable damage by breaking the DNA strand.  Nitric 

oxide can also nitrosate tyrosine and cysteine residues of proteins, primarily through its 

reaction products (e.g., N2O3 and N2O4).  Nitrosation of even one amino acid residue is 

capable of altering protein function.92  Indeed, macrophage-derived NO is so important in 

fighting infection that mice lacking iNOS are significantly more susceptible to bacterial 

infection than those with full NO-production capabilities.90, 91 

 1.4.3  Nitric oxide, infection, and the foreign body response.  Due to the many roles 

that NO plays in physiology, research has focused on understanding the potential of NO-

based therapies.  While these efforts are multifaceted and span a range of potential clinical 

applications, a limited extent of research has centered on antimicrobial applications as well as 

those related to the foreign body response.  For example, Raulli et al. have reported on the 

antibacterial properties of a small molecule NO donor, diazeniumdiolate-modified 

diethylenetriamine (DETA/NO), against several bacterial species.11  The authors determined 

the minimum inhibitory concentration (MIC) of DETA/NO against both gram-negative and 

gram-positive pathogens, and found MICs ranging from 0.2 mg/mL for S. epidermidis to 

12.0 mg/mL for Enterococcus faecalis and Serratia maloescens.  In related work, Ghaffari et 

al. tested gaseous NO (200 ppm) against gram-negative and gram-positive bacteria (including 

methicillin-resistant S. aurues [MRSA]) and found NO to be effective against all species 

tested.108  Moreover, the broad-spectrum antimicrobial properties of NO have been further 

established by McElhaney-Feser et al., who determined the MIC of DETA/NO against 

pathogenic fungal species including Candida albicans (MIC = 2.00 mg/mL), Candida krusei 
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(MIC = 1.20 mg/mL), and Candida tropicalis (MIC = 2.20 mg/mL).11  Clearly, the 

therapeutic potential of NO release holds great promise as a strategy for battling microbial 

infections. 

 In addition to its antimicrobial properties, the influence of NO on multiple aspects of 

the foreign body response has been established.  Most notably, NO has been shown to play a 

role in angiogenesis, inflammation, and collagen deposition.  With respect to angiogenesis, 

NO promotes new blood vessel formation by modulating VEGF production.96, 97  Related to 

inflammation, Amadeu et al. observed decreased recruitment of inflammatory cells with the 

administration of an exogenous NO donor to a cutaneous wound in a rat model.93  The exact 

mechanism by which NO reduces inflammation is unclear, however, it may involve 

regulation of key inflammatory cytokines such as macrophage chemoattractant protein-1 

(MCP-1) and interleukin-6 (IL-6),94 or the formation of nitrosated proteins.109  Nitric oxide 

also plays a critical role in collagen deposition by fibroblasts, and studies have demonstrated 

that collagen synthesis at a wound site was decreased in a dose-dependent manner with the 

application of an exogenous NO donor.95  Studies have shown that NO’s modulation of a key 

collagen-regulating cytokine, transforming growth factor-β (TGF-β), may be responsible for 

the observed decrease in collagen deposition.94, 110, 111  Due to the ability of NO to influence 

angiogenesis, inflammation, and collagen deposition, it is apparent that NO applied at the site 

of subcutaneous implants may help mitigate the foreign body response.  However, a thorough 

study of NO’s effects on the foreign body response has yet to be conducted due to the lack of 

NO-releasing materials capable of delivering sustained NO release at the site of a 

subcutaneous implant. 
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1.5  Nitric oxide-releasing materials for enhanced biocompatibility and antimicrobial 

applications  

 Due to the diversity of its physiological roles in vivo and particularly those that may 

influence wound healing, compounds and materials capable of controlled NO release are 

warranted to design more biocompatible and anti-infective implant materials.  Application of 

NO, whether in vitro or in vivo, requires stable NO donors that store biologically-relevant 

doses of NO and release it under physiological conditions.  As a result, a wide variety of NO 

donors have been synthesized and their NO release characterized.112, 113  Major classes of NO 

donors include metal-NO complexes, nitrosamines, nitrosothiols, and 

diazeniumdiolates.112,113  Of all classes of NO donors, those that have found the most 

widespread application are diazeniumdiolates, due to their stability, ability to generate NO 

spontaneously under physiological conditions, and widely varying NO release kinetics (based 

on the structure of the NO donor precursor).113  First described by Drago and Paulik in 

1960,114 N-diazeniumdiolates are formed via the reaction of polyamines with NO at high 

pressure (Figure 1.9).  When exposed to a proton source such as buffer or water, the 

diazeniumdiolate decomposes to generate 2 molecules of NO and the parent amine.  The 

kinetics of diazeniumdiolate decomposition are accelerated at low pH and high temperature, 

illustrating the two major pathways for NO generation from diazeniumdiolates (i.e., proton-

initiated and thermal decomposition).113  As such, diazeniumdiolates are stable in the absence 

of a proton source at low temperature.  Diazeniumdiolates have been formed on small 

molecules such as proline (PROLI/NO)115 and diethylenetriamine (DETA/NO),113 and larger 

macromolecular scaffolds such as dendrimers116 and proteins such as bovine serum albumin 

(BSA).117 
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Figure 1.9.  A) Reaction of NO with amines to produce diazeniumdiolate NO-donors; and B) 
diazeniumdiolate decomposition and NO release in the presence of a proton source such as 
water or buffer. 
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 1.5.1 Nitric oxide-releasing polymers for blood-contacting devices.  Due to the 

versatility of diazeniumdiolates as NO donors and NO’s anti-thrombotic properties,118 

several diazeniumdiolate-based NO-releasing polymers have been designed to improve the 

thromboresistivity of blood-contacting biomaterials.119  Mowery et al. synthesized NO-

releasing polymers (e.g., polyurethane and poly(vinyl) chloride)) by three different methods: 

1) dispersion of a small molecule diazeniumdiolate NO donor throughout the polymer 

matrix; 2) covalent attachment of the NO donor to the polymer backbone; and, 3) blending 

organic-soluble diazeniumdiolated heparin into the polymer.120  The resulting polymers 

released NO for periods ranging from 10–72 h depending on the NO donor and polymer 

composition.  To test blood compatibility, the NO-releasing polymers were exposed to 

platelet-rich plasma (PRP) obtained from sheep blood and the extent of platelet adhesion to 

each polymer system was analyzed via scanning electron microscopy (SEM) analysis.  

Compared to control (i.e., non-NO-releasing) samples, polymers doped with small molecule 

NO donor (diazeniumdiolate-modified N,N′-dimethyl-1,6-hexanediamine; MAHMA/NO), 

and those covalently modified with diazeniumdiolates were characterized by significantly 

less platelet adhesion.  In contrast to control samples, the few platelets that adhered to the NO 

releasing samples were not activated, thereby demonstrating the thromboresistivity conferred 

to polymers modified to release NO.  The polymer containing diazeniumdiolated heparin did 

not reduce platelet adhesion or activation, possibly due to polymer roughness or heparin’s 

ability to induce platelet adhesion.120  In related work, Schoenfisch et al. tested the analytical 

performance of NO-releasing oxygen sensors in a canine model.121  The oxygen sensors 

modified to release NO demonstrated better analytical accuracy than control sensors, and less 

thrombus formation compared to controls, further demonstrating that the thromboresistivity 
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of NO release coatings is maintained in vivo.  Despite these promising findings, the NO 

donor (MAHMA/NO) was found to leach from the polymer films, presenting potential 

toxicity concerns for clinical application.120, 122    

 1.5.2  Xerogel films.  To improve on the strategies that employed small molecule NO 

donors simply doped into sensor membranes, Marxer et al. synthesized xerogel polymers 

whereby the NO donor precursor was covalently attached to the backbone of sol-gel derived 

(i.e., xerogel) polymers.122  In this respect, leaching of amine decomposition byproducts was 

minimized.  Briefly, the NO-releasing xerogel coatings were synthesized by reacting 

alkylalkoxysilanes (e.g. iso-butyltrimethoxysilane [BTMOS]) with aminoalkoxysilanes (e.g., 

(3-trimethoxysilylpropyl)-ethylenetriamine [DET3] and N-(6-aminohexyl)-aminopropyltri-

methoxysilane [AHAP3]) through the sol-gel process (Fig. 1.10), creating a crosslinked 

glass-like polymer with covalently-linked NO donor precursors (amines) throughout the 

matrix.  Subsequent exposure to high pressures of NO (~5 atm) facilitated the formation of 

diazeniumdiolate NO-donors at amines throughout the xerogel.  In the presence of a proton 

source such as water or buffer, the xerogel released NO with a highly tunable NO flux (1-60 

pmol cm-2 s-1) based on the identity (structure) and amount of aminosilane precursor in the 

xerogel formulation.  The NO release profiles for most formulations exhibited trends similar 

to other controlled-release coatings,83, 84 with the maximal flux occurring soon after solution 

immersion, followed by a gradual decrease in NO release over time.  Of note, the NO release 

from certain xerogel formulations was maintained at relatively consistent levels through 24 h.  

For example, a 40 v/v% DET3/BTMOS coating initially released ~60 pmol cm-2 s-1, a flux 

that diminished to only ~50 pmol cm-2 s-1 after 24 h.  The duration of NO release was also 

found to be dependent on the identity and amount of the aminosilane: 40% AHAP3/BTMOS 
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Figure 1.10.  A) Hydrolysis of silane precursors; and B) subsequent condensation to form a 
xerogel polymer where R is typically a methyl or ethyl group and R′ is the amine-containing 
NO-donor precursor. 
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coatings released measurable quantities of NO up to 20 d.122  Unfortunately, the maximum 

aminosilane concentration for the xerogels was limited by xerogel stability.  As measured by 

direct current plasma optical emission spectroscopy (DCP-OES), aminosilane concentrations 

above 40% (v/v) led to polymer fragmentation at extended soak periods.122 

 The effectiveness of NO release from xerogel films at preventing bacterial adhesion 

was also investigated.123-125  Nitric oxide-releasing xerogels were cast onto glass microscope 

slides and immersed in concentrated suspensions (108 CFU/mL) of P. aeruginosa.123  Phase-

contrast optical microscopy analysis revealed extensive bacterial adhesion at control surfaces 

(i.e., those that did not release NO) after only a 30 min incubation period.  In some instances, 

clusters of bacterial cells were observed, representing possible nucleation sites for biofilm 

formation.  In contrast, NO-releasing surfaces (1-20 pmol cm-2 s-1) exhibited significantly 

reduced levels of P. aeruginosa adhesion (up to 93% reduction in bacterial adhesion at NO-

releasing surfaces compared to controls).  Bacteria present at the surface of NO release 

coatings were generally dispersed with minimal indication of biofilm nucleation sites.123 

 Nablo et al. modified stainless-steel substrates with xerogels to assess their efficacy 

as antibacterial coatings for orthopedic implant applications.124  Nitric oxide-releasing 

xerogel-coated stainless steel was shown to significantly reduce P. aeruginosa adhesion 

compared to control (xerogel) and blank (bare steel) surfaces.  A similar significant NO-

mediated reduction was observed for S. aureus and S. epidermidis, although both adhered to 

controls at lower levels than P. aeruginosa.  

 To understand the flux of NO necessary to reduce bacterial adhesion, Nablo et al. 

synthesized xerogels of variable aminosilane compositions and NO release characteristics.125  

Poly(vinyl chloride) coatings were applied over the xerogels to ensure consistent surface 
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properties across samples.  P. aeruginosa adhesion was reduced in a linear manner with 

increasing NO release up to ~20 pmol·cm-2·s-1 (75% adhesion reduction).  At fluxes >20 

pmol cm-2 s-1, NO had diminished effectiveness at further reducing adhesion.125  The authors 

thus concluded that xerogels releasing NO at fluxes >20 pmol cm-2 s-1 exhibited the greatest 

anti-adhesion efficacy against P. aeruginosa.  The collective results from these studies 

suggest that NO-release polymers may represent a new strategy for reducing the surface 

adhesion of medically-relevant gram-negative and gram-positive opportunistic pathogens.  

Moreover, control xerogel surfaces not modified to release NO have shown reduced bacterial 

and platelet adhesion compared to both glass and other biomaterial substrates,122 

demonstrating the inherent biocompatibility of xerogels themselves. 

The in vivo efficacy of NO-releasing coatings against implant-associated infection 

was subsequently studied.16  Xerogel coatings (40% AHAP3/BTMOS) were applied to 

medical-grade silicone elastomer via a dip coating process.  Following sterilization, control 

and NO-releasing implants were placed in the subcutaneous tissue of adult male rats.  Prior to 

wound closure, the implant sites were challenged with S. aureus (10 µL of a 108 CFU/mL 

suspension in PBS).  After 8 d, the tissue surrounding each implant was analyzed for 

infection.  Bacteria were present in 11 of the 15 tissue samples surrounding control implants.  

In contrast, bacteria were found in only 2 of the 15 samples surrounding the NO-releasing 

implants, indicating that sustained NO release may aid natural defense mechanisms to help 

clear bacteria and prevent implant-associated infection.  Indeed, histological analysis 

revealed the formation of S. aureus biofilms at the sites of uncoated control implants.  Such 

biofilms were not observed at any of the NO-releasing implants.  The tissue surrounding NO-

releasing implants appeared similar to that adjacent to uninfected controls.16 
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 The in vitro and in vivo antibacterial studies outlined above demonstrate the promise 

that NO-releasing polymers hold as a strategy to prevent implant-associated infections.  

Certain questions remain, however, regarding the efficacy and mechanism of antibacterial 

activity.  For example, the bacterial adhesion assays were conducted under “static” 

conditions, which require passing the substrate with adhered bacteria through an air/liquid 

interface.  Previous studies have demonstrated that passage through an air/liquid interface 

presents sufficient shear force to remove loosely adhered bacteria,126, 127 raising the question 

of whether NO release actually prevents bacterial adhesion or if it simply prevents bacterial 

retention.128  A more recent innovation in bacterial adhesion testing involves the use of 

parallel plate flow cells, which prevent the passage of an air-liquid interface and allow real-

time imaging of bacterial adhesion and biofilm formation.14, 53, 129-131  Moreover, it is still 

uncertain as to if a low surface flux of NO can kill adhered bacterial cells in addition to 

preventing their adhesion.  Killing adhered bacteria represents a more important step than 

merely preventing bacterial adhesion with respect to reducing biofilm formation.132  Equally 

important is understanding the effect of NO release on tissue integration.  As discussed 

above, NO plays multiple roles in the foreign body response.72, 93-97, 110, 111  However, the 

influence of sustained NO delivery from an implant coating on the foreign body response in 

an animal model has yet to be studied.  

 1.5.3  Silica nanoparticles.  While initial studies have focused on small molecule NO 

donors, one of the most recent advances in the field of NO-releasing materials is the 

development of nanoparticles that store and release large payloads of NO.116, 133-137  Indeed, 

nitric oxide-releasing gold,133 dendrimer,116, 135 and silica136, 137 nanoparticles have recently 

been synthesized.  Building off the sol-gel approach used to create NO-releasing xerogels,122 
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the synthesis of NO-releasing silica particles represents one of the most versatile advances in 

the field of NO-based nanomaterials.136, 137  Initially conceived of as an improvement over 

previously-developed fumed silica microparticles onto which NO donor precursors were 

grafted,138 Shin et al. synthesized silica nanoparticles capable of storing extraordinarily large 

amounts of NO per mg.137  Formed via the co-condensation of aminoalkoxysilanes with 

either tetramethoxy- or tetraethoxysilane, multiple types of silica nanoparticles have been 

prepared with varying sizes, NO release kinetics, and total NO storage capacity.136, 137  

One of the most prominent areas of research receiving a great deal of current attention 

is the field of nanoparticle-based drug delivery.139, 140  Indeed, the promising potential of 

silica nanoparticles as drug delivery agents is based on the chemical and physical versatility 

of silica, and the ability to tailor surface properties of the particles via functionalization.136  

While NO-releasing macromolecules have been proposed for anticoagulation,135 restinosis,17 

and inhalation141 therapies, one of the most pressing areas that NO-releasing nanoparticles 

are poised to influence is the field of antimicrobial therapy.  At a time when antibiotic-

resistant infections are becoming more prevalent, fewer new drugs for treating bacterial 

infections are being developed by the pharmaceutical industry and achieving FDA 

approval.81  This alarming predicament has resulted in bacterial infections becoming the most 

common cause of infectious disease-related death in the U.S..81, 142  Of the 2 million hospital-

acquired infections that occur each year in the U.S., approximately 90,000 cases result in 

death.81   

To address the shortage of effective antimicrobial agents, basic research has focused 

on engineering nanoparticles capable of killing pathogenic microbes.  Examples of 

nanoparticle-based antimicrobial strategies include vancomycin-capped gold,143 silver,144-146 
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and ionic liquid-releasing mesoporous silica147 nanoparticles.  While such particles have 

shown great promise at killing pathogenic bacteria, the use of conventional antibiotics (e.g., 

vancomycin) or classical antibacterial agents (e.g., Ag+) continues to raise concern over the 

potential development of resistant bacteria.78, 79, 81  As such, novel antibacterial nanoparticles 

that do not employ conventional antibiotics or classical antibacterial agents are highly 

desirable.  Nitric oxide-releasing silica nanoparticles fit these criteria, and the rapid diffusion 

of NO through solution, tissue, and lipid membranes makes NO-releasing nanoparticles 

attractive for study as antimicrobial agents.89, 148  Recent reports also suggest that the 

mechanisms of NO’s antimicrobial properties are such that development of bacterial 

resistance to NO may be limited.149   Although the antimicrobial properties of NO itself have 

been documented,89-92, 150 the effectiveness of NO-releasing silica nanoparticles as 

bactericidal agents remains unknown.  It is in this context that fundamental studies regarding 

the antibacterial efficacy of NO-releasing nanoparticles are urgently warranted.  

 

1.6  Summary of dissertation research 

 Broadly, the goals of my dissertation research were to study the antimicrobial and 

wound-healing properties of NO-releasing materials.  Specifically, the antibacterial and anti-

biofilm properties of NO-releasing xerogel polymers and silica nanoparticles were 

characterized in vitro, and the influence of implant-derived NO on the foreign body response 

was examined in vivo.  To determine the ability of NO-releasing xerogels to prevent bacterial 

adhesion under flowing conditions without the passage of an air-liquid interface, studies were 

conducted in a parallel plate flow cell.  A secondary advantage of using the flow cell was the 

ability to monitor bacterial adhesion in real-time, providing important information regarding 



46 

the temporal aspects of the antibacterial efficacy of NO-releasing xerogels.  Two separate 

methods were employed to determine the viability of bacterial cells adhered to the NO-

releasing surfaces.  Next, the foreign body response at implants modified to release NO was 

characterized in vivo.  Although NO has been shown to influence multiple aspects of the 

foreign body response individually (e.g., inflammation, angiogenesis, and collagen 

deposition), limitations in NO-releasing materials have prevented a thorough study of the 

effect of sustained NO release on the entire foreign body response.  Here, NO-releasing 

xerogel coatings were applied to model implants, which were then implanted into the 

subcutaneous tissue of rats.  Following explantation, the foreign body response at control and 

NO-releasing implants was characterized in terms of capsule formation, collagen density, 

angiogenesis, and inflammation.  Due to the great demand for novel antibacterial 

therapeutics, the ability of NO-releasing silica nanoparticles to kill both planktonic and 

biofilm-based pathogenic microbes was also studied.  A portion of these studies was 

dedicated to understanding the antibacterial efficacy of NO-releasing nanoparticles in 

comparison to a previously-developed small molecule NO-donor.  The efficacy of NO 

delivery to bacterial cells from both nanoparticles and a small molecule NO donor was 

studied, along with the toxicity of both systems to mammalian fibroblasts. 

 To summarize, the specific aims of my research included determining: 

1) the ability of NO-releasing xerogels to prevent bacterial adhesion under flow 

conditions; 

2) the viability of bacterial cells adhered to NO-releasing xerogels; 
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3) the influence of implant-derived NO on the foreign body response at 

subcutaneous implants in a rat model, with a focus on collagen capsule formation, 

angiogenesis, and the inflammatory response; 

4) the ability of NO-releasing silica nanoparticles to kill planktonic bacterial cells, 

with a comparison of both the bactericidal activity and NO-delivery efficacy of 

silica nanoparticles with a small molecule NO donor; 

5) the influence of surface-derived NO on bacterial proliferation and surface 

colonization; and, 

6) the ability of NO-releasing silica nanoparticles to kill a broad spectrum of 

biofilm-based pathogens. 

The goal of this introduction chapter was to provide an overview of the current 

strategies employed to mitigate the foreign body response, prevent bacterial adhesion and 

infection at indwelling medical devices, and to address the issue of antibiotic resistance and 

bacterial infections.  In Chapter 2, the ability of NO-releasing xerogels to prevent bacterial 

adhesion under flowing conditions and kill bacterial cells that manage to adhere to the 

surface is presented.    Chapter 3 presents the results of an in vivo study designed to examine 

the foreign body response at NO-releasing subcutaneous implants.  The efficacy of NO-

releasing silica nanoparticles against pathogenic microbial cells in their planktonic and 

biofilm states is presented in Chapters 4 and 5, respectively.  Finally, Chapter 6 summarizes 

my work collectively and provides several avenues of future studies required to develop a 

more complete understanding of the potential of NO-based therapies for wound healing, 

tissue integration, and anti-infective applications. 
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Chapter 2:   

Antibacterial Nitric Oxide-Releasing Xerogels: Cell Viability and Parallel Plate Flow 

Cell Adhesion Studies 

 

2.1 Introduction 

 Roughly half of the ~2,000,000 hospital-acquired infections per year in the United 

States occur at the site of indwelling medical devices.1  Despite sterilization, annual cases of 

orthopedic implant infections exceed 110,000 while the number associated with central 

venous catheters has been estimated to be 250,000.1, 2  Of the latter, the mortality rate 

approaches 25%.2  Device-associated infections are particularly resistant to systemic 

antibiotics, and persistent infections often require device removal.  The direct medical costs 

associated with bacterial infections at the site of implanted devices exceed $3 billion 

annually in the U.S. alone.1  Due to an aging worldwide population and advances in medical 

technology, cases of device-associated infections and their related burdens are expected to 

continue to rise. 

 Medical device infections are the direct result of bacterial adhesion to a material 

surface.3  Initially, bacterial adhesion is mediated by reversible bacteria-substrate 

interactions, while at longer times irreversible molecular bridging occurs.4  Once adhered, 

certain bacteria are capable of forming a protective biofilm by self-secreting an 

exopolysaccharide matrix that retains nutrients and protects the bacteria from components of 
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the natural immune response.  Biofilms are an important defense mechanism for bacteria and 

provide remarkable resistance to traditional antibiotic therapies.5 

 Since the formation of a pathogenic biofilm is attributed to the initial adhesion of 

bacteria to a biomaterial surface, a great deal of research has focused on methods to prevent 

bacterial adhesion.  To date, research has focused on both passive coatings that alter the 

physiochemical properties of the substrate as well as coatings that actively release 

antibacterial agents.6  While passive coatings such as hydrophilic polyurethanes7 have been 

shown to reduce bacterial adhesion, they provide no mechanism by which to kill bacteria that 

manage to adhere.  Since even low levels of adhered bacteria, if viable, present the threat of 

eventual implant infection, it is desirable to develop coatings that are also capable of killing 

adhered bacteria.8  The active release of antibiotics,9 silver ions,10 bioactive antibodies,11 and 

nitric oxide12 have all been shown to reduce bacterial adhesion.  In addition, active-release 

coatings also provide an avenue toward killing bacteria that manage to adhere, an important 

characteristic for preventing biofilm formation.   

 Nitric oxide (NO), a diatomic free radical produced by macrophages as part of the 

natural immune response to bacterial infection,13, 14 has several properties that make it an 

attractive agent for use in antibacterial coatings.  With a short half life in physiological milieu 

(on the order of seconds), NO exhibits broad reactivity and rapid diffusion properties through 

solution and lipid membranes.15 In the presence of oxygen, NO forms reactive intermediates 

(e.g., N2O3 and N2O4) that are capable of nitrosating nucleophilic amino acid residues, 

thereby altering normal protein function.16  Likewise, the reaction of NO with superoxide 

(O2
-) forms peroxynitrite (ONOO-), a potent oxidizing agent whose downstream reaction 

products (OH and NO2 radicals) cause lipid peroxidation that can disrupt the structural 
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integrity of bacterial cell membranes.17  The wide-ranging antibacterial properties of NO 

have been demonstrated by Raulli and co-workers in a series of solution-based in vitro assays 

that show NO-mediated inhibition of a wide variety of gram-negative and gram-positive 

bacterial species.18 

Based on NO’s potential to reduce bacterial adhesion, our lab has focused on the 

synthesis of xerogel polymers modified to contain diazeniumdiolate NO donors as NO 

release scaffolds.19  These polymers have shown promise as coatings for biomedical devices 

such as orthopedic implants20 and subcutaneous sensors,21 both of which are negatively 

impacted by bacterial adhesion.  The influence of NO on Pseudomonas aeruginosa, Proteus 

mirabilis, Staphylococcus aureus, and Staphylococcus epidermidis adhesion has been 

reported.12, 20, 22, 23  While a reduction in adhesion has been observed at NO-releasing 

surfaces, the viability of bacteria adhered to such polymers has not been investigated.  

Additionally, the in vitro adhesion studies conducted thus far have been performed under 

conditions of mild agitation (“static”) requiring the substrate and adhered bacteria to be 

passed through an air-liquid interface.  Other work has shown that passage through an air-

liquid interface presents sufficient shear force to remove adhered bacteria from the 

substrate.24, 25  Such experiments therefore measure bacterial retention rather than bacterial 

adhesion.24 

A common strategy to avoid the inconsistencies generated by the passage of an air-

liquid interface is the use of a parallel plate flow cell.26-29 Flow experiments also allow for 

reproducible mass transport of bacteria to the substrate surface, controlled wall shear rates, 

real-time image-acquisition capabilities, and the ability to achieve reproducible surface 

coverage values of adhered bacteria.30 Herein, a parallel plate flow cell was employed to 
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study P. aeruginosa adhesion as a function of NO release.  As well, the viability of P. 

aeruginosa cells adhered to NO-releasing xerogels was assessed with fluorescent viability 

probes and by cell removal via sonication and determination of the number of colony 

forming units in the resulting suspension. 

 

2.2 Methods and materials 

 Isobutyltrimethoxysilane (BTMOS) and N-(6-aminohexyl)aminopropyl-

trimethoxysilane (AHAP3) were purchased from Gelest (Morrisville, PA) and stored under 

nitrogen.  Ethanol (absolute), hydrochloric acid, and tetrahydrofuran were purchased from 

Fisher Scientific (Pittsburgh, PA) and used as received.  Low molecular weight poly(vinyl 

chloride) (PVC) was purchased from Aldrich.  Nitric oxide and argon were purchased from 

National Welders (Raleigh, NC).  P. aeruginosa (ATCC #19143) was purchased from 

American Type Culture Collection (Manassas, VA).  BacLight LIVE/DEAD fluorescent 

viability probes were purchased from Molecular Probes (Eugene, OR).   

 2.2.1 Synthesis of AHAP3/BTMOS xerogel films.  Nitric oxide-releasing 

AHAP3/BTMOS xerogel films were synthesized as described by Marxer et al.19  Briefly, 

H2O (60 µL), ethanol (200 µL), 0.5 M HCl (10 µL) and BTMOS (120 – 180 µL) were mixed 

for 1 h, followed by addition of AHAP3 (20 – 80 µL) with additional mixing for 1 h.  The 

volume percentage of aminosilane (i.e., AHAP3) relative to the total silane volume was 

varied from 10 – 40% (v/v).  Glass microscope slides were cut to approximately 2.6 x 0.8 

cm2, sonicated in ethanol (20 min), dried under nitrogen, and UV-cleaned in a BioForce 

TipCleaner (Ames, IA) for 20 min.  Sol-gel solution (30 µL) was deposited onto the clean 

glass slides via a spread-cast method.  Xerogel films were allowed to solidify at room 



 65

temperature for 30 min then transferred to a 70 ºC oven for 3 d.  After removal from the 

oven, xerogel-coated glass slides were stored in a desiccator at room temperature. 

 2.2.2 Diazeniumdiolate formation.  Diazeniumdiolate NO-donors were synthesized 

within the xerogel network by exposing the films to high pressures of NO.  Xerogel-coated 

glass slides were placed in a 500 mL hydrogenation bomb, which was subsequently flushed 

with Ar to remove O2.  The chamber was then pressurized to 5 atm of NO.  After 3 d, 

unreacted NO was flushed from the chamber with Ar.  Diazeniumdiolate-modified xerogel 

films were stored under N2 at -20 ºC to prevent NO-donor decomposition. 

 2.2.3 Poly(vinyl chloride)-coated xerogels.  Poly(vinyl chloride)-coated xerogels 

were prepared following procedures described previously by Nablo et al.23  Briefly, low 

molecular weight PVC (500 mg) was dissolved in tetrahydrofuran (10 mL).  Exactly 500 µL 

of the polymer solution was cast onto both control and diazeniumdiolate-modified xerogels at 

3000 rpm for 10 s using a CHEMAT Technology KW-4A Precision Spin-Coater 

(Northridge, CA).  The PVC-coated xerogels were stored at -20 °C until further use. 

2.2.4 Nitric oxide release measurements.  Real-time NO release data were obtained 

using a Sievers 280 chemiluminescent NO analyzer (Boulder, CO).  The instrument was 

calibrated with an atmospheric sample that had been passed through a NO zero filter and a 

24.1 ppm NO gas standard (balance N2).  Xerogel-coated glass slides were immersed in 

deoxygenated phosphate buffered saline (PBS; pH 7.4) at 25 °C, and NO was carried from 

the buffer to the analyzer with a stream of N2 bubbled into the solution at a flow rate of 80 

mL/min.  In the instrument, NO was detected via its chemiluminescent reaction with ozone.31 

 2.2.5 Bacterial adhesion in a parallel plate flow chamber.  P. aeruginosa was 

cultured at 37 ºC in tryptic soy broth (TSB), pelleted by centrifugation, resuspended in 15% 
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glycerol (v/v in PBS), and stored at -80 ºC.  Cultures for bacterial adhesion studies were 

grown from a -80 ºC stock at 37 ºC in TSB overnight.  A 1 mL aliquot of overnight culture 

was inoculated into 100 mL fresh TSB, incubated at 37 ºC with rotation, and grown to a 

concentration of ~108 colony forming units (CFU)/mL (verified by serial 10-fold dilutions in 

PBS, plating on tryptic soy agar nutrient plates, and subsequent CFU enumeration).  The 

bacteria were pelleted by centrifugation, rinsed with ultrapure water, and resuspended in 

sterile PBS.  Glass slides coated with xerogel films (NO-releasing and control) were affixed 

in custom-machined polycarbonate flow cells (chamber dimensions = 2.1 x 0.6 x 0.08 cm3).  

Each flow cell apparatus consisted of three individual chambers for replicate analyses (see 

Fig. 2.1 for schematic of flow cell design and setup).  Two flow cells were connected in 

series with PVC tubing and a three-channel peristaltic pump was used to pass the suspension 

of P. aeruginosa through the flow chambers (i.e., over the xerogel films) at a controlled rate 

of 0.2 mL/min.  Adhesion to 40% AHAP3 xerogels was also evaluated at a flow rate of 0.6 

mL/min.  Each flow cell was placed on the stage of a Zeiss Axiovert 200 inverted 

microscope (Chester, VA).  Bacterial adhesion was monitored in real time by capturing 

phase-contrast optical micrographs (20x magnification) of the xerogel surface with a Zeiss 

Axiocam digital camera (Chester, VA).  Images were taken at discrete intervals of 5, 20, 40, 

60, 90, and 120 min.  To determine the percent surface coverage of bacteria, each image was 

digitally processed by applying a threshold value to differentiate the adhered cells from the 

background.  In this manner, bacterial adhesion to each xerogel surface was determined as a 

function of time. 

 2.2.6 Bacterial adhesion under static conditions.  P. aeruginosa was cultured as 

described above to a concentration of ~108 CFU/mL.  Aliquots (5 mL) of the bacterial 
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Figure 2.1.  Schematic representation of flow cell design used to study P. aeruginosa 
adhesion to xerogel polymer coatings.  A peristaltic pump was used to flow a suspension of 
P. aeruginosa (108 colony forming units per mL) through custom-machined flow cells that 
were placed on the stage of an inverted optical microscope.  The suspension was exposed to 
control xerogel films prior to NO-releasing xerogels. 
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suspension in PBS were distributed to 15 mL polypropylene test tubes.  Control and NO-

releasing xerogels were placed in the test tubes and gently agitated at 25 °C for either 1 or 2 

h.  The xerogel slides were then removed, rinsed gently with ultrapure water to remove 

loosely adhered cells, and dried under a stream of N2.  Quantification of bacterial adhesion 

was performed via phase contrast optical microscopy and digital thresholding as described 

above. 

2.2.7 Fluorescent viability staining of adhered bacteria.  The viability of adhered 

bacteria was qualitatively determined using BacLight fluorescence probes.  Bacterial 

viability was studied both immediately after the adhesion event and at discrete time intervals 

after adhesion (time-based studies).  The latter experiments allowed viability information to 

be obtained after the adhered bacteria were exposed to a flux of NO from the xerogel coating 

for an extended period.  P. aeruginosa was cultured in TSB as described above to a 

concentration of ~108 CFU/mL.  The bacteria were pelleted by centrifugation and 

resuspended in sterile PBS.  Glass microscope slides coated on one side with 40% AHAP3 

(balance BTMOS) xerogel were placed in 5 mL of the bacterial suspension and incubated for 

2 h to achieve thorough bacterial adhesion to the xerogel surface.  The slides with adhered 

bacteria were removed from the bacterial suspension and transferred to either sterile PBS (to 

maintain NO release for time-based studies) or into 50 mL of suspended BacLight 

fluorescent probes (propidium iodide and Syto 9) in PBS.  After 30 min incubation with the 

fluorescent probes, the slides were removed and rinsed gently with DI water.  Bright field 

and fluorescence micrographs (20x magnification) of the slides were obtained using a Zeiss 

Axiovert 200 inverted microscope equipped with propidium iodide and Syto 9 filter sets from 

Chroma (Battleboro, VT).  For time-based studies, xerogel-coated slides with adhered P. 
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aeruginosa were allowed to incubate in sterile PBS for fixed periods (1 – 15 h).  After 

incubation, the adhered bacteria were fluorescently labeled and images were acquired as 

described above. 

 2.2.8 Quantification of viable adhered bacteria.  Flow cell bacterial adhesion data 

were used to facilitate quantitative determination of adhered bacterial viability.  Glass 

microscope slides coated with NO-releasing AHAP3 xerogels (10 – 40% v/v) were placed in 

the parallel plate flow chambers as described above.  A ~108 CFU/mL suspension of P. 

aeruginosa in PBS was passed through the chambers at a flow rate of 0.2 mL/min.  Each 

xerogel composition was exposed to the bacterial suspension for the time required to achieve 

20% surface coverage (i.e., 12, 38, 60, and 180 min for 10, 20, 30, and 40% AHAP3 

xerogels, respectively).  Upon obtaining 20% surface coverage (verified by threshold 

analysis of optical micrographs), the bacterial suspension was exchanged with sterile PBS 

without the passage of an air-liquid interface.  The xerogel films with adhered bacteria were 

left undisturbed at ambient temperature for 15 h.  The sterile PBS was subsequently removed 

from the flow chambers, and the xerogel-coated slides were removed and imaged at 20x 

magnification.  Each slide was then placed in 5 mL of sterile PBS and adhered bacteria were 

removed from the substrate surface via sonication (40 kHz, 15 min).11  The resulting bacterial 

suspensions were subjected to serial 10-fold dilutions in sterile PBS, and 100 µL aliquots of 

each dilution were plated on tryptic soy agar (TSA) nutrient plates.  The plates were 

incubated at 37 ºC and the number of live bacteria was determined by counting the number of 

colonies that grew on each plate overnight. 
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2.3 Results and discussion 

2.3.1 Nitric oxide release.  Nitric oxide-releasing AHAP3/BTMOS xerogels were 

selected as NO release surfaces for these studies because they have been well-characterized 

in terms of material properties19 and bacterial adhesion.20, 22, 23  As shown in Figure 2.2, the 

flux of NO from diazeniumdiolate-modified AHAP3/BTMOS xerogel films is tunable based 

on the amount of aminoalkoxysilane (i.e., AHAP3) in the xerogel.  Indeed, the initial flux of 

NO varied between 1 and 24 pmol·cm-2·s-1 as a function of aminoalkoxysilane concentration.   

The initial rapid release of NO upon immersion in PBS is attributed to decomposition 

of diazeniumdiolates at or near the xerogel surface.  Continued NO release at lower levels is 

the result of extended water diffusion that decomposes NO-donors within the xerogel matrix.  

These NO-release properties are ideal for preventing bacterial adhesion to an implant surface.  

The high NO flux at early time points (< 6 h) may reduce initial adhesion of bacteria 

throughout the critical period where immune and other cells interrogate the implant 

preceding tissue integration.32  The prolonged release of low levels of NO may serve to kill 

bacteria that manage to adhere to the implant surface, and potentially augment the host’s 

natural defense mechanisms.  Of note, the NO-release data presented herein were collected at 

25 ºC to correspond with the conditions present in the subsequent parallel plate flow cell 

experiments.  Previous studies have shown that at physiological temperature (i.e., 37 ºC), NO 

release from 40% AHAP3 xerogels is higher initially and decays more rapidly than the flux 

of NO from the same xerogel system at 25 ºC.20 

 2.3.2 Nitric oxide-mediated reduction in bacterial adhesion under flowing conditions.  

Figure 2.3 shows phase contrast optical micrographs (20x magnification) of P. aeruginosa 

adhered to control and NO-releasing xerogel polymers after 1 h exposure to a flowing 
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Figure 2.2.  Nitric oxide release in PBS (pH 7.4) at 25 °C from 40 (A), 30 (B), 20 (C) and 
10% (D) AHAP3 (v/v) xerogel polymers (balance BTMOS). 
 

 

0 2 4 6 8 10 12 14 16 18
0
2
4
6
8

10
12
14
16
18
20
22
24
26

D
C

B

A

N
O

 F
lu

x 
(p

m
ol

• c
m

-2
• s

-1
)

Time (h)



 72

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3.  Phase contrast optical micrographs of P. aeruginosa adhesion to control (A), and 
NO-releasing 10 (B), 20 (C), 30 (D), and 40% (E) AHAP3 (v/v) xerogels (balance BTMOS) 
after 1 h exposure to a flowing suspension of P. aeruginosa.  Flow rate = 0.2 mL/min.  
Control is non-NO-releasing 40% AHAP3/BTMOS. 
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suspension (108 CFU/mL) of P. aeruginosa.  As observed in previous static experiments, the 

NO-releasing xerogels were characterized by reduced bacterial adhesion at a flow rate of 0.2 

mL/min in an NO flux-dependent fashion.   

Phase contrast optical microscopy and black/white threshold image analysis were 

used to quantify the extent of bacterial adhesion to control and NO-releasing xerogels in the 

parallel plate flow chamber.33  Real-time image acquisition was facilitated by placing the 

flow cell apparatus with optically-transparent xerogel films directly on the imaging stage of 

an inverted optical microscope.  In this manner, the temporal dynamics of bacterial adhesion 

to control and NO-releasing xerogel surfaces was determined.  As shown in Figure 2.4, 

bacterial adhesion to control surfaces proceeded rapidly, with ~23% of the surface covered 

with P. aeruginosa cells within 5 min of exposure to the bacterial suspension.  In contrast, 

surfaces that released NO were characterized by significantly lower levels of bacterial 

adhesion over the initial 5 min.  Bacterial surface coverage at 10% AHAP3 NO-releasing 

xerogels was only 14%, while NO-releasing 20, 30, and 40% AHAP3 xerogels had 

significantly lower levels of adhered P. aeruginosa (7, 6, and 4%, respectively).  After 5 min, 

the surface coverage of P. aeruginosa to NO-releasing 40% AHAP3 was reduced by >84% 

compared to control surfaces.  Reducing bacterial adhesion during the first several minutes of 

exposure to the bacterial suspension proved important in preventing further bacterial 

adhesion because the initial reduction of adhered cells diminished potential nucleation sites 

for further bacterial adhesion.32  While the low levels of NO released from 10% AHAP3 

xerogels resulted in significantly reduced bacterial adhesion over the first 1 h, P. aeruginosa 

adhesion increased quickly thereafter, and by 1.5 h was statistically indistinguishable from 

that at controls.  In contrast, the NO flux from 20, 30, and 40% AHAP3 NO-releasing 
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Figure 2.4.  P. aeruginosa adhesion under flowing conditions (0.2 mL/min) to xerogel films 
with average 2 h NO flux values of 0 (■), 0.42 (●), 1.9 (▲), 10.8 (▼), and 21.3 ( ) pmol·cm-

2·s-1.  Nitric oxide release was achieved with 10 (●), 20 (▲), 30 (▼), and 40% ( ) AHAP3 
(v/v) xerogel films (balance BTMOS).  For clarity, the data presented for controls (■) 
represent the average of all control samples at each time point (surface coverage values for 
all controls were identical (within error) at each time point). 
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xerogels mediated a significant reduction in P. aeruginosa adhesion over the entire 

experiment, indicating that fluxes in excess of ~1.5 pmol·cm-2·s-1 are required to maintain a 

significant reduction in bacterial adhesion over 2 h.  After 2 h, NO-releasing 40% AHAP3 

xerogels were characterized by <14% P. aeruginosa surface coverage, while adhesion to 

controls reached 40% coverage, representing a 65% decrease in bacterial adhesion for 

interfaces releasing NO.  Clinically, the NO-based reduction in bacterial adhesion during the 

acute phase following implantation of a coated device may allow for more effective tissue 

integration and hinder biofilm formation at the implant-tissue interface.32 

An NO-mediated reduction in P. aeruginosa adhesion was also observed at higher 

flow rates, albeit to a lesser extent (Fig. 2.5).  The bacterial surface coverage of control 40% 

AHAP3 xerogels at a flow rate of 0.6 mL/min after 2 h was approximately half that observed 

at a flow rate of 0.2 mL/min.  This reduction in cell adhesion is attributed to greater wall 

shear rates. In contrast, P. aeruginosa adhesion to NO-releasing 40% AHAP3 xerogels was 

greater at 0.6 mL/min after 1 h (surface coverage of 16 vs. 9% at flow rates of 0.6 and 0.2 

mL/min, respectively), indicating that the anti-bacterial adhesion effect of NO-releasing 

xerogels was diminished. This reduction in antibacterial efficacy is attributed to faster 

removal of interfacial NO and other reactive nitrogen oxide (rNOx) species at higher flow 

rates. In turn, the effective concentrations of NO and rNOx species at the xerogel surface-

solution interface are reduced.  Nevertheless, P. aeruginosa adhesion at the NO-releasing 

xerogel remained less than controls (by ~65 and 29% at 0.2 and 0.6 mL/min, respectively).   

 2.3.3 Bacterial adhesion under static conditions.  Bacterial adhesion studies were 

performed at 25 °C under static conditions for comparison with experiments carried out 

under the controlled flow conditions using the parallel plate flow chamber.  After 1 and 2 h 
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Figure 2.5.  P. aeruginosa adhesion to control (■ and ▲) and NO-releasing (▼ and ●) 40% 
AHAP3 (v/v) xerogel films (balance BTMOS).  Adhesion was studied at controlled flow 
rates of 0.2 mL/min (■ and ●) and 0.6 mL/min (▲ and ▼). 
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exposure to the concentrated suspension of P. aeruginosa, control xerogels were 

characterized by identical (within error) percent bacterial surface coverage (Table 2.1), 

indicating that the extent of bacterial adhesion to control xerogels is invariant of the amount 

of aminosilane included in the xerogel synthesis.  The levels of P. aeruginosa adhesion to 

NO-releasing 10, 20, and 30% AHAP3 xerogels were significantly lower in the static 

experiment at 1 and 2 h relative to the same samples in the parallel plate flow chamber 

(Table 2.2).  A potential factor for this behavior may be the build-up of high concentrations 

of NO and reactive nitrogen species over time in the bacterial suspension in the static 

experiments.  In contrast, the continuous passage of fresh buffer through the flow cell carries 

away NO and reactive byproducts, effectively lowering the concentration immediately at the 

xerogel surface.  Further evidence for this explanation is the fact that in the static 

experiments, bacterial adhesion to NO-releasing 10% AHAP3 xerogels was significantly 

reduced compared to controls after 2 h (Table 2.1), while adhesion to the same xerogel 

composition in the parallel plate flow chamber was not significantly different from controls 

after 2 h (Table 2.2).  These differences may also be the result of passing samples from the 

static experiment through an air-liquid interface.  The forces exerted during this step of the 

static experiments may dislodge more loosely adhered bacteria, thereby lowering surface 

coverage values. 

 2.3.4 Adhered bacterial viability.  While reducing initial bacterial adhesion represents 

an important step toward preventing biofilm formation, bacteria that do adhere still present 

the threat of implant infection.  Fu et al. emphasized that the ideal coating to prevent implant 

infection both reduces bacterial adhesion and kills bacteria that adhere.8  To study the 

bactericidal effects of NO release on adhered P. aeruginosa, a BacLight LIVE/DEAD 
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Table 2.1.  P. aeruginosa adhesion (percent surface coverage) under static conditions. 

av/v, balance BTMOS. 
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10 
 

35 ± 10 
 

23 ± 7 
 

4.42 x 10-5   

41 ± 5 
 

33 ± 6 
 

9.64 x 10-5 

20 34 ± 9 19 ± 4 2.95 x 10-6  42 ± 7 25 ± 9 3.66 x 10-7 

30 35 ± 8 13 ± 4 2.17 x 10-12  39 ± 6 18 ± 6 1.12 x 10-13 

40 
 

34 ± 4 9 ± 3 1.16 x 10-20  43 ± 7 9 ± 3 1.28 x 10-18 
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Table 2.2.  P. aeruginosa adhesion (percent surface coverage) in parallel plate flow 
chamber.a 

aFlow rate = 0.2 mL/min. 
bVolume percentage of AHAP3 (balance BTMOS). 
cControl xerogels consist of the same silane compositions without NO-release capabilities.  
Adhesion to controls at both time points was invariant of composition.  For clarity, these 
values represent the average of adhesion to all controls. 
 

 

 

Xerogel 
Compositionb 

 

 

 
1 h 

 

ANOVA P-Value 
With Control 

 

 
2 h 

 

ANOVA P-Value 
With Control 

 

Controlc 
 

40 ± 7 
 

-- 
 

40 ± 6 
 

-- 
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9 ± 1 1.56 x 10-17 14 ± 4 4.40 x 10-17 
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fluorescent viability kit was used to distinguish live and dead cells.  After exposure to the 

fluorescent nucleic acid stains, live bacteria fluoresce green (Syto 9, λmax ≈ 533 nm) while 

red fluorescence (propidium iodide, λmax ≈ 622 nm) indicates dead cells.  Bright field and 

fluorescent (Syto 9 and propidium iodide) images of bacteria adhered to control 40% AHAP3 

xerogels are shown in Figure 2.6.  Separate samples were stained either immediately after the 

2 h adhesion procedure (Fig. 2.6 A, B, C) or after additional incubation of the surface-

adhered bacteria for 7 h in PBS (Fig. 2.6 D, E, F).  The Syto 9 fluorescent images (Fig. 2.6 B, 

E) indicate that at each time point, the vast majority of bacteria adhered to control surfaces 

were alive.  Propidium iodide fluorescent images of the same fields (Fig. 2.6 C, F) were dark 

(i.e., no fluorescence), indicating that none of the adhered bacteria were dead either 

immediately after adhesion or after 7 h incubation.  Thus, control xerogel surfaces were not 

bactericidal to adhered P. aeruginosa. 

 Similar experiments were conducted with NO-releasing 40% AHAP3 xerogels (Fig. 

2.7).  Syto 9 fluorescent images (Fig. 2.7 B) of adhered bacteria after the 2 h adhesion 

procedure indicate that the majority of bacteria were viable.  In contrast, Syto 9 fluorescence 

was not observed for adhered cells at 7 h (Fig. 2.7 E).  Images of the same field using the 

propidium iodide filter (Fig. 2.7 F) showed strong fluorescence, indicating that the adhered 

bacteria were killed by 7 h.  Similar fluorescence viability studies indicated that after 5 h 

incubation, the adhered bacteria were still viable (data not shown), suggesting that the dose 

of NO necessary to kill adhered P. aeruginosa is between 375 nmol·cm-2 and 425 nmol·cm-2 

(the total amount of NO released from 40% AHAP3 xerogels after 5 h and 7 h, respectively).  

Further examination revealed that only those bacteria cells adhered directly to the NO-

releasing xerogel were killed by the NO.  P. aeruginosa cells adhered to the bare glass side 
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Figure 2.6.  Bright field (A, D), Syto 9 fluorescent (B, E), and propidium iodide fluorescent 
(C, F) micrographs (20x magnification) of P. aeruginosa adhered to control (non-NO-
releasing) 40% AHAP3 (v/v) xerogels (balance BTMOS).  Images were acquired 
immediately (A, B, C) and 7 h after (D, E, F) initial bacterial adhesion. 
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Figure 2.7.  Bright field (A, D), Syto 9 fluorescent (B, E), and propidium iodide fluorescent 
(C, F) micrographs (20x magnification) of P. aeruginosa adhered to NO-releasing 40% 
AHAP3 (v/v) xerogels (balance BTMOS).  Images were acquired immediately (A, B, C) and 
7 h after (D, E, F) initial bacterial adhesion. 
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opposite the NO-releasing xerogel-coated side remained viable at 7 h (Fig. 2.8).  Cells 

adhered directly to the glass substrate exhibited strong Syto 9 fluorescence, while no 

fluorescence was observed from propidium iodide.  Thus, only bacterial cells in direct 

contact with the surface that released the NO were killed at 7 h, while cells adhered farther 

from the source of NO remained viable.  Collectively, these results suggest that NO-releasing 

xerogels may mitigate biofilm formation even when bacteria manage to adhere. 

Previous studies have shown that NO-releasing xerogels coated with a PVC overlayer 

maintained their ability to reduce bacterial adhesion despite a ~20% reduction in the 24 h NO 

flux.23  As such, the antibacterial efficacy of such materials was attributed solely to NO and 

not the xerogel matrix, for example.  To further isolate the effect of NO on bacteria, we 

evaluated the viability of bacteria adhered to PVC-coated xerogels.  Of note, the thickness of 

the PVC overlayer used for these studies was ~10 µm.  As expected, a significant reduction 

in bacterial adhesion was observed after only 1 h at PVC-coated NO-releasing xerogels 

compared to PVC-coated controls (8 ± 3% vs. 25 ±4% surface coverage, respectively; 

ANOVA P-value = 3.9 x 10-6).  Moreover, the NO release was cytotoxic to adhered P. 

aeruginosa.  The propidium iodide fluorescence observed from P. aeruginosa cells adhered 

to PVC-coated NO-releasing xerogels for 7 h was intense, indicating cell death (data not 

shown).  In contrast, bacteria adhered to PVC-coated controls remained viable through 7 h as 

evidenced by Syto 9 fluorescence.  In addition to further corroborating NO’s role as an 

antibacterial agent, the data indicate that NO release may prove effective at rendering a range 

of polymers antibacterial. 

To further characterize the antibacterial properties of NO-releasing xerogels, the 

viability of adhered P. aeruginosa was examined as a function of the total amount of NO 
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Figure 2.8.  Bright field (A, D), Syto 9 fluorescent (B, E), and propidium iodide fluorescent 
(C, F) images of P. aeruginosa adhered to the xerogel-coated side (A, B, C) and the glass 
side (D, E, F) of a glass microscope slide (20x magnification).  Images were acquired after 7 
h incubation in PBS.  The cells adhered to the glass remain viable, while those adhered to the 
NO-releasing xerogel were killed after 7 h.  Xerogel coating is 40% AHAP3 (v/v, balance 
BTMOS). 
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released.  Due to both blurring during the exposure times required to obtain fluorescent 

images of adhered bacteria and the widely variable fluorescent intensities of Syto 9 and 

propidium iodide, the threshold/image analysis procedure used to determine percent bacterial 

surface coverage was not a valid method for obtaining quantitative viability information as a 

function of total NO release.  Such information was instead obtained by removing adhered 

bacteria from the xerogel surfaces via sonication, and determining the extent of bacterial 

survival with a reproductive viability assay.11  Identical surface coverage values were 

obtained with the parallel plate flow cells by exposing each xerogel to the flowing bacterial 

suspension for the time required to achieve 20% coverage (verified by optical microscopy).  

The flowing bacterial suspension was then replaced with sterile PBS to facilitate the 

continued release of NO from the xerogels for 15 h.  Over this period, the total NO release 

from 10, 20, 30, and 40% AHAP3 xerogels was 25, 53, 170, and 750 nmol·cm-2, respectively.  

After the 15 h incubation, the bacteria were removed from the substrate surface by 

sonication, serially diluted (10-fold dilutions), and plated on nutrient agar plates.  The 

number of colonies counted on each plate after overnight incubation were then used to 

calculate the number of viable cells removed from the xerogel surface.  As shown in Figure 

2.9, a dramatic decrease in viability was observed with increasing total NO release.  The 

number of viable P. aeruginosa cells removed from the surface of 10% AHAP3 xerogels was 

6.9 x 106 while only 2.7 x 105 viable cells were removed from the 40% AHAP3 xerogels, 

representing a 96% decrease in viability upon increasing the total amount of NO released 

from 25 nmol·cm-2 to 750 nmol·cm-2 over 15 h. 
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Figure 2.9.  Viable P. aeruginosa adhered to AHAP3 xerogels with varying NO release 
capabilities removed by sonication after 15 h incubation in sterile PBS.  Initial levels of P. 
aeruginosa adhered to each substrate were identical (20% surface coverage).  Values 
represent average ± standard error of the mean. 
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2.4 Conclusions 

 Herein, NO-releasing xerogels were shown to reduce the initial adhesion of P. 

aeruginosa under dynamic flow conditions.  After 2 h exposure to a flowing bacterial 

suspension (0.2 mL/min), NO-releasing 40% AHAP3 xerogels reduced P. aeruginosa 

adhesion by ~65% compared to controls.  Nitric oxide release was also shown to kill adhered 

bacteria in a dose-dependent fashion over extended periods (> 7h).  By initially reducing 

bacterial adhesion and killing bacteria that manage to adhere to the surface, NO-releasing 

xerogels applied as coatings to implantable medical devices may drastically reduce the 

possibility of biofilm formation and subsequent device infection.  Notably, recent studies 

have shown that NO plays a key role in wound healing,34 partly due to its antibacterial 

properties.  Thus, the continued release of antibacterial levels of NO from a polymer coating 

may play a defining role in the healing process at the site of coated implants. 

Experiments to elucidate the mechanism by which NO prevents bacterial adhesion are 

currently underway.  We hypothesize that NO, through reactive intermediate species such as 

N2O3 and N2O4, destroys the function of bacterial adhesin proteins that mediate surface 

adhesion.  A similar effect could be achieved by the NO reaction product peroxynitrite 

(ONOO-), which has been implicated in cell membrane destruction via the mechanism of 

lipid peroxidation13.  Destruction of the bacterial membrane may compromise cell attachment 

and thereby contribute to lower levels of bacterial adhesion.  In addition, studies are 

underway to explore the effect of NO release on protein-mediated bacterial adhesion to better 

mimic the in vivo pathways that lead to implant infections and biofouling. 
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Chapter 3: 

Reduced Foreign Body Response at Nitric Oxide-Releasing Subcutaneous Implants 

 

3.1 Introduction 

While a great deal of research has focused on the design of more biocompatible 

tissue-based sensors, their utility and function continue to be impaired by the body’s response 

to foreign materials.1-4  The foreign body response is a physiological cascade triggered upon 

implantation that begins with protein adsorption to the implant surface and the recruitment of 

inflammatory cells.5, 6  Neutrophils modulate the host response initially (minutes to hours) 

whereas macrophages respond over a longer period (days).6, 7  While macrophages efficiently 

rid the wound site of microscopic matter such as bacteria and dead cells, they are unable to 

digest macroscopic implants, leading to chronic inflammation and macrophage fusion into 

foreign body giant cells (FBGC) that can perpetually remain at the tissue/implant interface.6, 7  

Still unsuccessful in their attempt to digest the implant, FBGC secrete cytokines that trigger 

fibroblasts to deposit a dense avascular layer of collagen (termed a ‘capsule’) around the 

implant to permanently sequester it from the surrounding tissue.5, 6 

All aspects of the foreign body response conspire to impede the performance of 

implanted sensors.  For example, macrophages and other inflammatory cells recruited to the 

implant are known to consume oxygen and glucose and produce reactive oxygen species, all 

of which may influence sensor response.1  Both adsorbed proteins and the hypovascular 

collagen capsule isolate the implant and act as substantial barriers to analyte diffusion from 
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blood capillaries to the sensor.  To circumvent such problems, a great deal of research has 

focused on mitigating the body’s response to foreign materials.  Strategies to reduce the 

inflammatory response include altering the microarchitecture of the implant surface8-10 and 

applying compounds such as osteopontin that are known to inhibit FBGC formation.11  

Likewise, administering pro-angiogenic cytokines such as vascular endothelial growth factor 

(VEGF)12, 13 and inhibitors of type I collagen synthesis such as halofuginone14 have been 

proposed as methods to increase angiogenesis and diminish capsule formation, respectively.  

While several treatments have shown promise at addressing certain facets of the foreign body 

response, few approaches deal collectively with the entire cascade. 

 Recently, polymers that slowly release the biological mediator nitric oxide (NO), an 

endogenously-produced free radical, have proven useful in the design of more biocompatible 

sensors.3, 15, 16  For example, NO-releasing polymer coatings have been shown to drastically 

improve the function of intravascular gas sensors17 and prevent implant-associated infection 

in vivo18 by reducing both platelet and bacterial adhesion to surfaces.19,20  Nitric oxide also 

plays a vital role in multiple processes of the wound healing cascade,21 and promotes 

angiogenesis by modulating VEGF production.22, 23  Amadeu et al. reported that exogenous 

application of a NO donor to a wound site decreased recruitment of inflammatory cells and 

accelerated re-epithelialization.24  In related work, Gifford et al. reported that the 

inflammatory response to implanted NO-releasing sensors was reduced compared controls.25  

Nitric oxide also plays a critical role in collagen deposition by fibroblasts,26 and studies have 

demonstrated that collagen synthesis at a wound site was decreased in a dose-dependent 

manner with the application of an exogenous NO donor.27  Taken together, these studies 

suggest that NO administration at the site of a subcutaneous implant may limit the foreign 
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body response by promoting angiogenesis, diminishing the inflammatory response, and 

reducing collagen capsule formation.   

Herein, we report the effect of NO on the foreign body response to subcutaneous 

implants in a rat model.  Nitric oxide release was conferred to medical-grade silicone 

elastomer implants via coating with a well-characterized NO-releasing xerogel polymer.18, 28  

Capsule formation, angiogenesis, and the inflammatory response were monitored at 1, 3, and 

6 weeks via histological examination of explanted tissue samples.  The results indicate that 

NO release is an attractive strategy to promote wound healing and improve the tissue 

integration properties of subcutaneous implants. 

 

3.2 Methods and materials 

 N-(6-Aminohexyl)aminopropyltrimethoxysilane (AHAP3) and isobutyltrimethoxy-

silane (BTMOS) were purchased from Gelest (Morrisville, PA) and stored under nitrogen.  

Ethanol (absolute) and hydrochloric acid were purchased from Fisher Scientific (Pittsburgh, 

PA) and used as received.  Distilled water was purified with a Millipore Milli-Q Gradient A-

10 water purification system (Bedford, MA) to a final resistivity of 18.2 MΩ•cm and a total 

organic content of <6 ppb.  Nitric oxide and argon were purchased from National Welders 

(Raleigh, NC).  Class VI medical-grade silicone elastomer was purchased from McMaster-

Carr (Atlanta, GA). 

3.2.1 NO-releasing xerogel-coated implants.  Nitric oxide-releasing xerogel coatings 

were applied to medical-grade silicone elastomer as described by Nablo et al.18  Briefly, 

xerogel solutions were prepared by mixing ethanol (1.2 mL), water (640 µL), and 0.5 M HCl 

(110 µL) followed by dropwise addition of BTMOS (1.28 mL).  The solution was mixed for 
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18 h followed by addition of AHAP3 (860 µL) and additional mixing for 30 h.  Class VI 

medical grade silicone elastomer was cut into square sections 8 x 8 x 2 mm3 and cleaned by 

sonicating in ethanol, water, and ethanol again for 30 min each.  The silicone squares were 

sterilized in a steam autoclave at 121 ºC for 25 min, and then coated with sol via a dip-

coating procedure.  The initial sol coating was allowed to solidify into a xerogel prior to the 

application of a second coating of sol.  To ensure even coating, the squares were spun at ~1 

rev/s for 3 d while drying.  The xerogel-coated silicone squares (i.e., implants) were then 

placed in a 55 ºC oven for 1 d followed by storage in a desiccator. 

 Half of the xerogel-coated implants were modified with diazeniumdiolate NO-donors, 

while the others were left unmodified to serve as controls.  To facilitate diazeniumdiolate 

synthesis, xerogel-coated implants were placed in an in-house NO reaction vessel that was 

subsequently sealed and flushed with Ar to remove atmospheric O2.  The vessel was then 

pressurized to 5 atm NO for 2.5 d, and then flushed copiously with Ar.18  The 

diazeniumdiolate-modified implants were removed and stored at -20 ºC until use. 

3.2.2 Nitric oxide release measurements.  Nitric oxide release from implants coated 

with diazeniumdiolate-modified xerogel was monitored with a Sievers 280 chemiluminescent 

NO analyzer (Boulder, CO).  The instrument was calibrated with an atmospheric sample that 

had been passed through a NO zero filter and a 24.1 ppm NO gas standard (balance N2).  

Xerogel-coated implants were immersed in deoxygenated phosphate buffered saline (PBS; 10 

mM, pH 7.4) at 37 ºC.  The NO released was carried from the buffer to the analyzer by a 

stream of N2 bubbled into the solution at a flow rate of 80 mL/min.  In the instrument, NO 

was detected via its formation of a chemiluminescent byproduct upon reaction with ozone.  
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Discrete NO-release measurements were taken over 6 weeks.  Between measurements, 

implants were stored in sealed vials of PBS at 37 ºC. 

3.2.3 In vivo studies to examine the foreign body response.   The effect of NO release 

on the foreign body response was evaluated in adult male Sprague-Dawley rats (250 – 300 g; 

Charles River Laboratories, Raleigh, NC).  The animal protocol was approved by the 

Institutional Animal Care and Use Committee at Duke University.  Prior to implantation, all 

implants were sterilized by exposure to germicidal UV light in a sterile biosafety cabinet.18  

After sterilization, all implants were stored in sterile petri dishes on dry ice. 

 Rats were anesthetized with 2.5% isoflurane (v/v in O2), administered a subcutaneous 

injection of flunixin (2.5 mg/kg), and their backs were shaved.  Betadine was applied to the 

shaved region and the rats were placed on a heating pad in a sterile operating field.  Six 

transverse 1 cm incisions were made approximately 1 cm from the dorsal midline along both 

sides of the animal.  Using blunt dissection, subcutaneous pockets were created at the site of 

each incision.  Each subcutaneous pocket received one of the following implants: NO-

releasing xerogel-coated silicone, xerogel-coated silicone not capable of NO release 

(control), or uncoated bare silicone (blank).  Each rat received two of each type of implant, 

and position was controlled for with 72 implants over 12 total rats.  The wounds were closed 

with non-absorbable sutures and cleaned with hydrogen peroxide.  Care was taken to ensure 

that each rat recovered, flunixin was administered every 12 h for 2 d (2.5 mg/kg), and each 

rat was given ad libitum access to food and water. 

 At 1, 3, and 6 weeks, 4 of the rats were anesthetized with 2.5% isoflurane (v/v in O2) 

and shaved, and the implants were removed with surrounding tissue.  Tissue samples were 

placed in 10% buffered formalin for 24 h, embedded in paraffin, and sectioned into 5 µm-
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thick slices.  Tissue samples for histological analysis were stained with Gomori’s trichrome, 

hematoxylin & eosin (H&E), and CD-31 immunohistochemical stain.  Images of the 

trichrome and H&E samples were collected using 10x and 20x objectives with an Olympus 

optical microscope (Melville, NY) equipped with a SPOT RT KE Slider digital color camera 

(Diagnostic Instruments; Sterling Heights, MI).  Tissue samples treated with the CD-31 

immunohistochemical stain were examined with a Zeiss Axiovert 200 inverted microscope 

equipped with a Syto 9 filter set.  Images were captured with a 20x objective with a Zeiss 

Axiocam digital camera (Chester, VA). 

3.2.4 Histological evaluation and data analysis.  Capsule thickness data were 

obtained from trichrome-stained tissue samples.  The foreign body capsule was defined as the 

region of dense collagen oriented parallel to the implant.  Regardless of implant type, 

characteristic foreign body capsules were not observed at 1 week.  Tissue samples collected 

at 3 and 6 weeks exhibited developed capsules in contrast to the loosely-deposited randomly-

oriented collagen farther away from the implant.  Capsule thickness was determined by direct 

comparison with the scale bar on each image.  For all implant types, 3 images were analyzed 

from each of 4 rats with 3 capsule thickness measurements per image (36 total 

measurements).  Collagen density was calculated by applying a digital threshold with 

Photoshop (Adobe Software; San Jose, CA) to images of tissue in regions within 100 µm or 

200 µm of the implant surface.  The threshold was applied such that all pixels resulting from 

tissue were converted to black pixels to allow differentiation from the white background.  

The number of black pixels was then normalized to the total number of pixels in the image 

and reported as the collagen density index (CDI).  At each time point, the CDI was calculated 

from 3 images analyzed from each of 4 rats (12 total measurements). The number of blood 
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vessels in proximity to each implant was determined by capturing images of the CD-31-

stained samples at pre-determined locations around each implant.  Each image was situated 

such that tissue/implant interface comprised one edge of the field and the tissue section 

imaged extended one visual field (~330 µm) into the tissue away from the implant.  A 

blinded observer counted the number of CD-31-stained blood vessels per field for each 

image.  The average number of blood vessels was calculated from 6 images collected from 4 

rats at each time point (24 total measurements per implant type per time point). The 

inflammatory response was analyzed from the H&E-stained tissue samples.  Images were 

cropped to display tissue within 50 µm of the implant surface.  By applying a digital filter 

with Photoshop, pixels corresponding to the nuclei of inflammatory cells were selected based 

on their unique purple color imparted by the H&E stain.  The number of pixels corresponding 

to inflammatory cells was then digitally counted and normalized to the total number of pixels 

in the image, and reported as the inflammatory response factor (IRF).  Average IRF values 

were calculated from a minimum of 16 images taken from 4 rats.  Data are expressed as 

mean values ± standard error of the mean, and were analyzed for significance (p < 0.05) with 

a nonparametric Kruskal-Wallis H-test.29 

 

3.3 Results and discussion 

3.3.1 Nitric oxide releasing xerogel coatings.  Diazeniumdiolate-modified xerogels 

have been studied previously as coatings to reduce both platelet and bacterial adhesion via 

NO release.28  Herein, the tissue and wound healing properties of NO-releasing xerogel 

coatings were evaluated in a subcutaneous implant rat model. Nitric oxide release from an 

optimized 40% AHAP3 (v/v balance BTMOS) xerogel coating is shown in Figure 3.1.  In 
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Figure 3.1.  Nitric oxide release from silicone elastomer implants coated with 
diazeniumdiolate-modified 40% AHAP3/BTMOS (v/v) xerogels.  Inset: Total NO release. 
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total, approximately 1.35 µmol of NO was delivered per cm2 of surface area from the 

xerogel-coated silicone implants.  The release of NO from diazeniumdiolate-modified 

xerogels is initiated upon immersion in aqueous solution and continues as water diffuses 

deeper within the xerogel matrix to further decompose diazeniumdiolates.28  Notably, ~50% 

of the total NO was released within the first 5 h for the materials used in these studies and 

>99% of the release was complete after 72 h.  Small fluxes of NO (< 1 pmol cm-2 s-1) were 

detectable up to 1 week (data not shown), after which no signal was observed above the 

baseline response of the chemiluminescent NO analyzer.   This NO release profile is similar 

to that of other controlled release systems including polymers designed to elute antibiotics30 

or therapeutic antibodies,31 where the majority of the active compound is released within 

several hours of immersion in aqueous solution.  The flux of NO from diazeniumdiolate-

modified xerogels is tunable based on the amount of aminosilane NO-donor precursor (i.e., 

AHAP3) used to prepare the coatings.28  While it may be possible to achieve higher NO 

fluxes and longer sustained release by further increasing the volume percentage of AHAP3, 

stability testing has shown that inclusion of aminosilanes at concentrations greater than 40% 

(v/v with alkylsilane) results in poor material stability.28  

3.3.2 Effect of NO release on foreign body capsule formation and collagen 

deposition.  The decrease in sensitivity of subcutaneous sensors has been attributed to both 

biofouling (i.e., surface-adsorbed proteins) and tissue encapsulation.4, 32  While both 

responses (i.e., biofouling and encapsulation) are detrimental to sensor performance, the 

primary impediment to analyte transport through implanted sensor membranes has been 

shown to be due to tissue and not the adsorbed biofouling layer.32  Indeed, tissue effects were 

found to contribute 3-5 times more resistance to analyte transport than protein biofouling.  
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Wisniewski and coworkers suggest that efforts to develop more biocompatible sensor 

membranes should focus on altering the tissue response as opposed to protein biofouling.32  

In light of these findings, we examined both capsule thickness and collagen density over a 

period of 6 weeks at NO-releasing, control, and blank (uncoated silicone elastomer) implants.  

The foreign body capsule was identified by its characteristic densely-packed collagen 

oriented parallel to the implant surface (Fig. 3.2).  Since capsule formation generally begins 

2-3 weeks after implantation,6 it was not observed for any implants until the 3 week time 

point.  Qualitatively, the capsules surrounding NO-releasing implants (Fig. 3.2 C) appeared 

thinner than those surrounding blank and control implants (Fig. 3.2 A, B).  These 

observations were confirmed by calculating the average capsule thickness from 12 images 

taken across 4 rats for each implant type at each time point.  As shown in Figure 3.3, capsule 

thickness at NO-releasing implants was significantly less (p < 0.05) than at xerogel-coated 

controls and bare silicone elastomer implants at both 3 and 6 weeks.  The reduced capsule 

thickness observed between xerogel-coated controls (i.e., xerogel-coated implants not 

capable of NO release) and NO-releasing samples indicates that the decrease in capsule 

thickness is attributable to NO release.  The reason that capsule thickness at xerogel-coated 

controls was reduced compared to bare silicone elastomer implants is not entirely 

understood.  However, it is likely due to differences in surface chemistry such as charge and 

hydrophobicity.  Previous studies have shown that protein adsorption is greatly influenced by 

surface properties,33, 34 and that initial protein adsorption to an implanted biomaterial may 

partially dictate the ensuing foreign body response.5, 6  Thus, altered protein adsorption may 

account for the observed reduction in capsule thickness between xerogel-coated controls and 
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Figure 3.2.  Optical micrographs showing foreign body capsule formation after 6 weeks at 
(A) bare silicone elastomer; (B) xerogel-coated control; and, (C) NO-releasing xerogel-
coated subcutaneous implants.  Xerogel polymer coating was 40% AHAP3/BTMOS (v/v).  
Scale is the same in each image and arrows denote the foreign body capsule.  The implant 
was located in the upper white region of each image. 
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Figure 3.3.  Foreign body capsule thickness at uncoated blank, xerogel-coated control, and 
NO-releasing xerogel-coated subcutaneous implants.  Xerogel polymer coating was 40% 
AHAP3/BTMOS (v/v).  Significant differences (p < 0.05) between NO-release implants and 
blanks (#), and NO-release and controls (*) are indicated. 
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bare silicone elastomer implants.  Previous work from our laboratory has shown reduced 

bacterial and platelet adhesion at control xerogel surfaces.28 

Figure 3.3 shows that the capsule thickness at bare silicone elastomer implants did not 

change significantly between 3 and 6 weeks (67 ± 3 µm vs. 63 ± 4 µm, respectively).  As 

such, capsule formation at uncoated implants was essentially complete after 3 weeks.  In 

contrast, the capsules at xerogel-coated control and NO-releasing implants continued to 

develop between 3 and 6 weeks, indicating that capsule formation at those implants was 

delayed compared to bare silicone elastomer implants.  Future experiments will be conducted 

to determine if the decrease in capsule thickness at NO-releasing implants is temporary (i.e., 

observed only at time points ≤ 6 weeks) or if short-term NO-release permanently reduces 

capsule thickness. 

 In addition to directly measuring capsule thickness, the density of collagen near the 

implant surfaces was also evaluated.  To obtain quantitative data, a method of digital 

thresholding was used to differentiate tissue from the image background.  The number of 

pixels resulting from tissue (versus background) was normalized to the total number of pixels 

in the image.  Since the primary tissue component within the analysis area was collagen, the 

resulting quotient was reported as the “collagen density index” (CDI), with a CDI value of 

100 indicating that every pixel within the selected image area represented tissue.  As shown 

in Figure 3.4, NO-releasing implants were characterized by significantly reduced collagen 

density at distances up to both 100 and 200 µm from the implant surface at 1 week compared 

to bare silicone elastomer and xerogel-coated control implants.  The CDI within 100 µm 

remained significantly lower compared to bare silicone elastomer implants at both 3 and 6 

weeks, due in part to the reduction in capsule thickness as noted above.   
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Figure 3.4.  Collagen density indexes observed at (A) 1 week; (B) 3 weeks; and, (C) 6 weeks 
at uncoated blank, xerogel-coated control, and NO-releasing xerogel-coated subcutaneous 
implants.  Xerogel polymer coating was 40% AHAP3/BTMOS (v/v).  Significant differences 
(p < 0.05) between NO-release implants and blanks (#), and NO-release and controls (*) are 
indicated. 
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The exact mechanism by which NO-release decreases capsule thickness and collagen 

density at the tissue interface remains unclear.  Previous work has shown that NO’s 

modulation of cytokines involved in the wound healing response alters collagen deposition.26  

The cytokine most often associated with collagen production is transforming growth factor-β 

(TGF-β).26  TGF-β has been shown to upregulate collagen production by both human dermal 

fibroblasts35 and rat mesangial cells.36  In the same studies, application of exogenous NO 

donors decreased TGF-β secretion and collagen deposition.35, 36  Other studies have also 

shown that inhibitors of TGF-β signaling decrease collagen content in foreign body capsules 

in vivo.14  Thus, NO may act directly to modulate cytokines such as TGF-β to decrease 

collagen deposition.  

3.3.3 Effect of NO release on angiogenesis.  Over the course of the foreign body 

response, an implanted biomaterial becomes sequestered within a dense foreign body capsule 

that is void of blood capillaries.6  Analogous to the dense collagen layer, the lack of 

capillaries also presents negative consequences for tissue-based sensors, which require 

constant transport of analytes from the blood to ensure accurate and consistent function.1  

Sufficient vascularization is also critical for effective wound healing37, 38 and tissue 

regeneration39 to sustain cellular proliferation and vitality.  Thus, polymers that enhance new 

blood vessel formation (i.e., angiogenesis) are desirable as coatings for indwelling medical 

devices.  Notably, NO has been shown to play a key role in angiogenesis by promoting the 

expression of vascular endothelial growth factor (VEGF), a potent pro-angiogenic cytokine.23  

In the present study, angiogenesis was monitored by treating explanted tissue samples with a 

CD-31 immunohistochemical staining technique, where blood vessels are fluorescently 

labeled.  Representative images of tissue samples explanted after 1 week and treated with 
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CD-31 are shown in Figure 3.5.  Tissue adjacent to bare silicone elastomer and xerogel-

coated controls (Fig. 3.5 A, B) exhibited reduced vascularization compared to tissue adjacent 

to NO-releasing implants (Fig. 3.5 C).  Evaluation of 24 images per implant type per time 

point allowed for quantitative determination of the number of blood vessels in tissue adjacent 

to each implant.  As shown in Figure 3.6, ~77% more blood vessels were observed within 

~330 µm of the NO-releasing implants compared to xerogel-coated control implants after 1 

week.  Likewise, NO release resulted in significantly greater angiogenesis compared to 

controls after 3 weeks as well.    

While a greater number of blood vessels were also observed at NO-releasing implants 

at 6 weeks compared to both control and bare silicone elastomer implants, the difference in 

blood vessel density was not significant due to variability across samples.  Significantly 

enhanced angiogenesis was thus observed at early time points (i.e., 1 and 3 weeks) for NO-

releasing implants but not at later periods.  Such data is consistent with the temporal efficacy 

of other angiogenic therapies.40  Silva and Mooney have reported that VEGF delivered as an 

injected bolus was quickly cleared from the site of administration and led to lower levels of 

angiogenesis at 6 weeks than VEGF slowly released from an implanted hydrogel.41  The 

xerogel implant coatings described in our study deliver NO as a bolus (Fig. 3.1), with the 

vast majority of NO released over the initial 10 h post-implantation.  Such delivery 

stimulates angiogenesis at early time points (i.e., 1 and 3 weeks).  By 6 weeks, however, the 

NO release is complete and the coatings no longer promote angiogenesis.  Methods to deliver 

NO for longer periods are currently being explored in our laboratory to evaluate the effect of 

extended NO release on angiogenesis. 
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Figure 3.5.  Fluorescence micrographs of CD-31-stained tissue samples adjacent to (A) bare 
silicone elastomer; (B) xerogel-coated control; and, (C) NO-releasing xerogel-coated 
subcutaneous implants after 1 week.  Xerogel polymer coating was 40% AHAP3/BTMOS 
(v/v).  The green fluorescence represents blood vessel presence via positive labeling of 
endothelial cells with CD-31 immunohistochemical stain.  Scale is the same in each image.  
Each image shows tissue within approximately 340 µm of the implant, which was located at 
the bottom of each image. 
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Figure 3.6.  Blood vessels observed per 20x field at (A) 1 week; (B) 3 weeks; and, (C) 6 
weeks at uncoated blank, xerogel-coated control, and NO-releasing xerogel-coated 
subcutaneous implants.  Xerogel polymer coating was 40% AHAP3/BTMOS (v/v).  
Significant differences (p < 0.05) between NO-release implants and controls (*) are 
indicated. 
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3.3.4 Effect of NO release on the inflammatory response.  Implantation of a 

subcutaneous biomaterial creates a wound that inevitably triggers the host inflammatory 

response and recruitment of phagocytic cells such as monocytes, neutrophils, and 

macrophages.6  While such a response is necessary for effective wound healing, the presence 

of phagocytic cells negatively impacts implanted sensors via their surface adhesion and the 

release of interfering species.  To improve the analytical performance of such devices, it is 

desirable to mitigate the inflammatory response in tissue adjacent to the sensor.  Gifford et al. 

have reported that a needle-type glucose sensor capable of releasing NO reduced the 

recruitment of inflammatory cells after 24 h in subcutaneous tissue,25 thereby demonstrating 

the feasibility of NO release as a means to control the inflammatory response.  However, 

implanted sensors would ideally function accurately for periods beyond 24 h and we thus 

monitored the inflammatory response at NO-releasing subcutaneous implants over 6 weeks.  

Representative H&E-stained tissue samples are shown in Figure 3.7, with inflammatory cells 

clearly identifiable by the characteristic purple color imparted to their nuclei by the H&E 

stain.  The tissue/implant interface of bare silicone elastomer and xerogel-coated control 

implants was characterized by an abundance of inflammatory cells.  In contrast, the tissue 

adjacent to the NO-releasing implants exhibited a markedly lower inflammatory response as 

evidenced by fewer cells.  To quantitatively assess the progression of the inflammatory 

response at each type of implant, an inflammatory response factor (IRF) was determined at 

each time point.  Figure 3.8 shows that while NO-releasing implants did not significantly 

reduce the inflammatory response at 1 week (Fig. 3.8 A), a significant decrease was observed 

at both 3 and 6 weeks compared to both bare silicone elastomer and xerogel-coated control 

implants (Fig. 3.8 B and C).  Indeed, the IRF at NO-releasing implants was reduced by
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Figure 3.7.  Optical micrographs of hematoxylin & eosin (H&E)-stained tissue samples 
showing the inflammatory response after 3 weeks at (A) bare silicone elastomer; (B) xerogel-
coated control; and, (C) NO-releasing xerogel-coated subcutaneous implants.  Xerogel 
polymer coating was 40% AHAP3/BTMOS (v/v).  Nuclei stain purple while collagen 
appears pink with H&E stain.  Scale is the same in each image.  The implants were located in 
the white region at the left (A, B) or bottom (C) of each image. 
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Figure 3.8.  Inflammatory response factors observed at (A) 1 week; (B) 3 weeks; and, (C) 6 
weeks at uncoated blank, xerogel-coated control, and NO-releasing xerogel-coated 
subcutaneous implants.  Xerogel polymer coating was 40% AHAP3/BTMOS (v/v).  
Significant differences (p < 0.05) between NO-release implants and blanks (#) and NO-
release implants and controls (*) are indicated. 
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>30% relative to bare and control implants at both 3 and 6 weeks.  The IRF for each implant 

type did not change significantly between 3 and 6 weeks, indicating that a reduced chronic 

inflammatory response due to NO release may be long-lasting.  Of note, the analgesic 

provided to the rats during the experiment (flunixin) belongs to a class of compounds known 

as non-steroidal anti-inflammatory drugs (NSAIDs) that derive their efficacy by modulating 

the inflammatory response.42, 43  All rats were treated with the same dose of flunixin 

throughout the experiment.  As such, differences in the IRF can be attributed solely to 

differences in implant chemistry and not the analgesic itself.  Similar experiments conducted 

with non-NSAID analgesics may result in different inflammatory responses to the 

subcutaneous implants. 

A further question that remains is understanding the mechanism by which short-term 

(≤ 1 week) NO release modulates the chronic inflammatory response at extended periods 

(i.e., 3 and 6 weeks) after NO release has subsided.  The fact that the inflammatory response 

at all three implant types was not statistically different at 1 week may be expected since it has 

been suggested that the initial inflammatory response to implanted materials is primarily the 

result of surgical trauma and not the implant itself.10  The significant decrease in 

inflammatory response at 3 and 6 weeks at NO-releasing implants may be due to NO’s 

ability to downregulate pro-inflammatory cytokines such as macrophage chemoattractant 

protein-1 (MCP-1) and interleukin-6 (IL-6).26  It has also been suggested that a reduction in 

the inflammatory response may be mediated by nitrosated proteins.44  Such modified proteins 

may form near the implant during the early period of high NO release.  The ability of NO to 

regulate other inflammatory modulators may translate short-term NO release into longer-term 

anti-inflammatory activity.  Studies to determine the effect of xerogel-derived NO on 
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cytokine regulation and protein nitrosation are currently planned.  Also of interest is the fact 

that some inflammatory cells such as macrophages and neutrophils are capable of generating 

NO themselves to battle microbial infection and orchestrate wound healing.26  Previous 

studies have shown that NO production by macrophages may be a self-regulating pathway.44  

The application of an exogenous NO donor to murine macrophages exerted biphasic 

regulation of the expression of inducible nitric oxide synthase (iNOS), the enzyme 

responsible for high-output NO production.45  Likewise, it has been suggested that NO may 

also regulate iNOS expression in neutrophils via modulation of the cytokine IL-8.26  While it 

is clear that NO production by inflammatory cells is regulated in part by NO itself, it is not 

yet certain what dose of NO and timing of administration are necessary for optimal tissue 

integration for subcutaneous implants.  Such studies are currently planned in our laboratory. 

 

3.4 Conclusions 

 Nitric oxide-releasing polymer coatings applied to subcutaneous implants were 

shown to influence multiple aspects of the foreign body response in a rat model.  Delivery of 

~1.35 µmol NO per cm2 of implant surface area resulted in a drastic reduction in both capsule 

thickness and collagen density at the tissue/implant interface.  The NO release was also 

shown to increase angiogenesis and reduce the chronic inflammatory response.  Decreased 

tissue resistance and enhanced angiogenesis may lead to improved transport of analytes to an 

implanted sensor, while a reduced inflammatory response would likely enhance sensor 

function.  Thus, NO-releasing sensor membranes may represent a new paradigm for 

improving the analytical performance of implantable subcutaneous sensors.  The potential 

application of NO-releasing coatings extends well beyond sensors to include other 
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biomedical implants that would benefit from improved tissue integration.  For example, drug 

delivery devices may function more reliably when encapsulation by dense collagen is 

avoided, while pain and unsightly scarring may be minimized by reducing inflammation and 

undesirable collagen deposition at artificial prostheses and cosmetic implants. 

 The mechanisms by which short-term NO release influences the longer-term course 

of the foreign body response are not entirely understood.  It is likely that in addition to any 

direct physiological effects, NO’s role as a key signaling molecule in the wound-healing 

process may facilitate its long-term effects.  The initial modulation of inflammatory and 

wound-healing cytokines by implant-released NO may lead to the observed differences in the 

inflammatory and foreign body responses at 3 and 6 weeks.  It is possible that in addition to 

directly participating in certain aspects of the foreign body response (e.g., collagen 

deposition), NO’s influence on one facet may indirectly influence others.  For example, the 

reduced inflammatory response observed at NO-releasing implants may play a critical role in 

altering capsule formation since fewer macrophages may lead to lower levels of cytokines 

that trigger collagen deposition.  Likewise, thinner capsules may allow blood vessels to form 

closer to the implants, thereby leading to enhanced vascularization in tissue proximal to the 

implant.  Studies are planned to evaluate the effect of NO on cytokine production, as well as 

to understand the effect of extended NO release durations on the foreign body response.   
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Chapter 4: 

Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles 

 

4.1 Introduction 

Antibiotic resistance has resulted in bacterial infections becoming the most common 

cause of infectious disease-related death.1, 2  In the United States alone, nearly 2 million 

people per year acquire infections during a hospital stay, of which approximately 90,000 

die.2  The primary culprits behind such deadly infections are antibiotic-resistant pathogens, 

which are responsible for approximately 70% of all lethal nosocomial infections.  The 

growing danger of life-threatening infections and the rising economic burden of resistant 

bacteria have created a demand for new antibacterial therapeutics. 

The use of nanoparticles as delivery vehicles for bactericidal agents represents a new 

paradigm in the design of antibacterial therapeutics.  To date, most antibacterial 

nanoparticles have been engineered using traditional antibiotics that are either incorporated 

within the particle scaffold or attached to the exterior of the particle.  In many cases, such 

particles have exhibited greater efficacy than their constituent antibiotics alone.  For 

example, Gu et al. reported that vancomycin-capped gold nanoparticles exhibited a 64-fold 

improvement in efficacy over vancomycin alone.3  Similarly, silver nanoparticles have 

shown greater antibacterial activity than silver ion (Ag+) in solution due to the direct toxicity 

of the particles and tunable release of Ag+ based on nanocomposite size.4-6  Mesoporous 

silica has also been used to deliver antibacterial agents. For example, Lin and co-workers 



 120

employed mesoporous silica nanoparticles to controllably release ionic liquids with proven 

bactericidal efficacy.7 

While antibacterial nanoparticles have shown great promise, the use of conventional 

antibiotics (e.g., vancomycin) or classical antibacterial agents (e.g., Ag+) does not address 

bacterial resistance concerns.2, 8, 9  Nitric oxide (NO), a diatomic free radical that plays a key 

role in the natural immune system response to infection,10 may represent an alternative 

approach in the design of antibacterial nanoparticles.  Macrophages and other inflammatory 

cells produce NO to battle infection11 and mice lacking the ability to endogenously produce 

NO have been found to be more susceptible to microbial infection than mice with full NO-

production capabilities.12  Nitric oxide has been shown to possess broad spectrum 

antibacterial activity, primarily due to its reactive byproducts such as peroxynitrite (ONOO-) 

and dinitrogen trioxide (N2O3).13  Both gram-positive and gram-negative bacteria have been 

found to be susceptible to gaseous NO, including methicillin-resistant Staphylococcus aureus 

(MRSA).14  The doses of NO required to kill bacteria proved non-toxic to human dermal 

fibroblasts.  Using diazeniumdiolate small molecule NO donors, Raulli et al. reported the 

minimum inhibitory concentrations against several bacterial species.15  These initial studies 

illustrate NO’s tremendous potential as an antibacterial agent with broad spectrum activity. 

Unfortunately, the utility of NO as an antibacterial agent is hindered by the lack of 

suitable vehicles for NO storage and delivery.  Indeed, NO is an extremely reactive gas and 

difficult to administer as a therapeutic. To address delivery issues, Schoenfisch and 

coworkers have synthesized nanoparticle-based scaffolds capable of storing large payloads of 

NO.16-18  The nanoparticles spontaneously release tunable levels of NO under aqueous 

conditions at physiological temperature and pH, and thus represent attractive vehicles for 

delivering NO.  Nanoparticle delivery of NO has two main advantages over previously-
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developed small molecule NO donor systems  (e.g., diazeniumdiolates, nitrosothiols, and 

metal-NO complexes19, 20).  First, the rate of NO release is easily modulated as a function of 

nanoparticle size, composition, and/or surface hydrophobicity, thereby allowing for control 

over the duration of NO release.  Second, the versatility of the chemistry used to synthesize 

the nanoparticles allows for specific tailoring of particles with functional groups to minimize 

their toxicity and enable imaging and/or cell-specific targeting, while retaining the ability to 

deliver therapeutic levels of NO.  Herein, we report the efficacy of NO-releasing silica 

nanoparticles against Pseudomonas aeruginosa, an opportunistic pathogen problematic in 

burn and chronic wound infections.21-23  Both the bactericidal efficacy and cytotoxicity of 

nanoparticle-derived NO is compared to NO release from a small molecule NO donor to 

illustrate the advantage of delivering NO from silica nanoparticles.  

 

4.2 Methods and materials 

Tetraethoxysilane (TEOS) and sodium methoxide (NaOCH3) were purchased from 

Fluka (Buchs, Switzerland).  N-(6-Aminohexyl)aminopropyltrimethoxysilane (AHAP3) and 

3-aminopropyltrimethoxysilane (APTMS) were purchased from Gelest (Tullytown, PA).  

Methanol (MeOH), ethanol (EtOH), and ammonia solution (NH4OH, 30 wt% in water) were 

purchased from Fisher Scientific (Fair Lawn, NJ).  Tryptic soy broth (TSB, soybean-casein 

digest) was purchased from Becton, Dickinson and Company (Sparks, MD).  Nitric oxide 

(NO, 99.5%) was obtained from Linde (Raleigh, NC), and argon (Ar) and nitrogen (N2) 

gases were purchased from National Welders (Raleigh, NC).  P. aeruginosa (ATCC #19143) 

and L929 mouse fibroblast cells were purchased from American Type Culture Collection 

(Manassas, VA).  4,5-Diaminofluorescein diacetate (DAF-2 DA) was purchased from 

Calbiochem (San Diego, CA).  Fluorescein isothiocyanate (FITC), proline and reagents for 
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the propidium iodide and lactate dehydrogenase cytotoxicity assays were purchased from 

Sigma (St. Louis, MO).  Other solvents and chemicals were analytical-reagent grade and 

used as received.  A Millipore Milli-Q UV Gradient A-10 System (Bedford, MA) was used 

to purify distilled water to a final resistivity of 18.2 MΩ·cm and a total organic content of ≤6 

ppb. 

4.2.1 Synthesis of NO-releasing silica nanoparticles.  The synthesis and 

characterization of NO-releasing silica nanoparticles has been described previously.18  

Briefly, an aminoalkoxysilane solution was prepared by dissolving AHAP3 (2.3 mmol) in 20 

mL of EtOH and 4 mL of MeOH in the presence of NaOCH3 (2.3 mmol).  The solution was 

then placed into 10 mL vials equipped with stir bars.  The vials were placed in a Parr bottle, 

connected to an in-house NO reactor, and flushed with Ar six times to remove O2 in the 

solution.  The reaction bottle was pressurized to 5 atm NO for 3 d with continuous stirring of 

the silane solution.  Prior to removing the diazeniumdiolate-modified AHAP3 silane sample 

(AHAP3/NO), unreacted NO was purged from the chamber with Ar.  Silane solutions were 

prepared by mixing TEOS (2.8 mmol) and AHAP3/NO (2.3 mmol; corresponding to 45 

mol%, balance TEOS) in the EtOH/MeOH solution for 2 min (Scheme 4.1).  The silane 

solution was then added into 22 mL of EtOH and 6 mL ammonia catalyst (30 wt% in water), 

and mixed vigorously for 30 min at 4 ºC.  The precipitated nanoparticles were collected by 

centrifugation (5000 rpm, 5 min), washed with EtOH several times, dried under ambient 

conditions for 1 h, and stored in a sealed container at -20 ºC until used.  Diazeniumdiolate 

incorporation into the nanoparticle scaffold was confirmed by UV absorbance spectroscopy.  

The UV absorbance spectra of nanoparticles (both NO-releasing and controls depleted of 

diazeniumdiolates) suspended in phosphate buffered saline (PBS) at 160 µg·mL-1 were 

recorded on a Perkin-Elmer Lambda 40 UV/Vis Spectrometer. 
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Scheme 4.1.  Synthesis of AHAP3 NO donor and co-condensation with TEOS to form NO-
releasing silica nanoparticles.  R = –(CH2)3Si≡ and R’ = H2N(CH2)6–. 
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4.2.2 Characterization of diazeniumdiolate-modified silane (AHAP3/NO).  1H NMR 

(CD3OD, δ): 0.61 (br, SiCH2), 1.32 (qt, NRCH2CH2CH2CH2CH2CH2NH2), 1.43 (m, 

SiCH2CH2CH2, NRCH2CH2), 1.56 (m, CH2CH2NH2), 2.56 (m, CH2CH2NH2), 2.84 

(br,CH2NRCH2), 4.88 (s, Si(OCH3)3) where R = NONO-Na+. UV-Vis (EtOH): λmax = 253 

nm.  29Si nuclear magnetic resonance (NMR) spectroscopy was also employed to 

characterize AHAP3/NO.  Cross-polarization/magic angle spinning (CP/MAS) 29Si NMR 

spectra of the AHAP3/NO were obtained at 20 ºC on a Bruker 360 MHz DMX spectrometer 

(Billerica, MA) equipped with wide-bore magnets (triple-axis pulsed field gradient double-

resonance probes).  The alcoholic solution of diazeniumdiolate-modified silane (i.e., 

AHAP3/NO) was loaded into 4 mm rotors (double-resonance frequency of 71.548 MHz) and 

spun at a speed of 8.0 kHz.  The chemical shifts were determined in ppm relative to a TMS 

external standard.  

4.2.3 Synthesis of fluorescently-labeled NO-releasing silica nanoparticles. The 

synthesis of fluorescently-labeled NO-releasing silica nanoparticles was adapted from a 

previously reported literature procedure.24  Briefly, FITC (10 µmol) was reacted with neat 

APTMS (200 µmol) overnight in the dark to yield the FITC-modified silane.  1H NMR 

(CD3OD, δ): 0.32 (br, SiCH2), 1.52 (qt, SiCH2CH2CH2NH-FITC), 2.73 (t, 

SiCH2CH2CH2NH-FITC), 3.69 (m, SiCH2CH2CH2NH-FITC), 4.81 (s, Si(OCH3)3), 6.46 (m, 

aromatic), 7.01 (m, aromatic) 7.11 (d, aromatic) 7.45 (d, aromatic) 7.57 (d, aromatic). UV-

Vis (EtOH): λmax = 493 nm.   

Next, 100 µL of the FITC-modified silane solution was co-condensed with 

AHAP3/NO (2.3 mmol) and TEOS (2.8 mmol) in the EtOH/ammonia solution as described 

above to yield FITC-labeled NO-releasing silica nanoparticles (Scheme 4.2).  Incorporation 
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Scheme 4.2.  Synthesis of FITC-modified NO-releasing 45 mol% AHAP3 silica 
nanoparticles (balance TEOS).  Abbreviations: AHAP3 = N-(6-
aminohexyl)aminopropyltrimethoxysilane; APTMS = 3-aminopropyltrimethoxysilane;  
FITC = fluorescein isothiocyanate; TEOS = tetraethoxysilane. 
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of FITC was confirmed by exciting the particles at 488 nm and observing the characteristic 

fluorescence due to FITC at 500 – 530 nm.  

4.2.4 Size characterization of silica nanoparticles.  The size of control, NO-releasing, 

and FITC-modified silica nanoparticles was characterized via atomic force microscopy 

(AFM).  Prior to analysis, the particles were suspended in toluene, deposited on a freshly 

cleaved mica surface (SPI; West Chester, PA), and dried under ambient conditions for 3 h.  

Contact mode AFM images were obtained in air using a Molecular Force Probe 3D AFM 

(Asylum Research; Santa Barbara, CA) controlled with MFP-3D software running under Igor 

Pro (Wavemetrics; Lake Oswego, OR).  Triangular silicon nitride cantilevers with a nominal 

spring constant of 0.12 N·m-1 and resonance frequency of 20 kHz (Veeco; Santa Barbara, 

CA) were used to acquire height/topography images at a scan rate of 1.0 Hz. 

4.2.5 Synthesis of 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate 

(PROLI/NO) (adapted from a previously reported procedure25).  Proline (300 mg, 2.6 mmol) 

was dissolved in a 50:50 mixture of methanol:ether and treated with 281 mg (5.2 mmol) of 

NaOCH3.  The basic solution was placed in a glass hydrogenation bomb and stirred.  The 

bomb was copiously flushed with Ar to remove atmospheric O2, followed by introduction of 

NO gas at 5 atm.  After 3 d, the glass vial was removed from the vessel after thorough 

flushing with Ar.  The solution was treated with cold ether to precipitate the product 

(PROLI/NO).  The NO donor precipitate was then filtered, and dried under vacuum at -70 ºC 

(dry ice/acetone bath) to yield 299 mg PROLI/NO. 

4.2.6 Nitric oxide release measurements.  Nitric oxide release from both the 

diazeniumdiolate-modified silica nanoparticles and PROLI/NO was measured in 

deoxygenated phosphate-buffered saline (PBS, 0.01 M; 37 ºC) at pH 7.4 using a Sievers 

NOA 280i chemiluminescence NO analyzer (Boulder, CO).  Nitric oxide released from the 
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donors was transported to the analyzer by a stream of N2 (70 mL·min-1) passed through the 

reaction cell.  The instrument was calibrated with air passed through a NO zero filter (0 ppm 

NO) and a 24.1 ppm NO standard gas (balance N2). 

4.2.7 Bactericidal assays under static conditions.  To test the bactericidal properties 

of PROLI/NO and NO-releasing 45 mol% AHAP3/TEOS silica nanoparticles under non-

growth (“static”) conditions, P. aeruginosa was cultured to a concentration of 108 colony-

forming-units (CFUs) per mL in tryptic soy broth (TSB), resuspended in sterile PBS, and 

adjusted to a concentration of 103 CFU·mL-1.  Silica nanoparticles (NO-releasing and 

control), PROLI/NO, and proline were added to separate aliquots of the bacterial suspension 

over a concentration range optimized for each system.  After 1 h incubation at 37 ºC with 

gentle agitation, 100-µL aliquots from each suspension were plated on tryptic soy agar.  

After overnight incubation at 37 ºC, the colonies on each plate were counted, allowing for 

calculation of the number of viable P. aeruginosa cells in each vial at the time of plating. 

4.2.8 Time-based bactericidal assays under nutrient growth conditions.  To test the 

temporal efficacy of the NO-releasing silica nanoparticles, time-based antibacterial assays 

were conducted in TSB nutrient media.  P. aeruginosa was cultured in TSB to a 

concentration of 108 CFU·mL-1 and diluted to 104 CFU·mL-1 in additional TSB.  Silica 

nanoparticles (control and NO-releasing), PROLI/NO, and proline were added to separate 

aliquots of the 104 bacterial suspension over concentration ranges optimized for each system.  

Every 30 min for 2 h, 100-µL aliquots of each suspension were removed, diluted 10-fold in 

PBS, and plated on tryptic soy agar.  Bacterial viability was determined as described above 

after incubating the plates overnight at 37 ºC. 

4.2.9 Interaction between nanoparticles and bacterial cells.  P. aeruginosa was 

cultured in TSB to 108 CFU·mL-1, pelleted by centrifugation, resuspended in PBS, and 
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adjusted to a concentration of 106 CFU·mL-1 in PBS.  The bacterial suspension was seeded 

onto a glass microscope slide where the bacteria were allowed to adhere to the slide for 30 

min.  The microscope slide was placed on the stage of a Zeiss LSM 510 confocal 

fluorescence microscope (Chester, VA) and bright-field and fluorescence images of the 

bacteria were acquired with a 63x N.A. 1.4 planapochromat oil immersion lens.  Next, an 

aliquot of FITC-modified NO-releasing silica nanoparticles (final concentration = 100 

µg·mL-1) was added and bright-field and fluorescence images of the same field were captured 

after 0, 10, 20, 30, and 60 min.  The FITC fluorophores were excited with the 488 nm line of 

an Ar laser and the fluorescence was collected using a BP 500-530 nm bandpass filter. 

4.2.10 Confocal fluorescence microscopy for detection of intracellular NO and cell 

killing.  Confocal microscopy experiments were conducted to simultaneously monitor 

intracellular concentrations of NO within P. aeruginosa cells and the kinetics of cell killing 

using 4,5-diaminofluorescein diacetate (DAF-2 DA, a NO-sensitive fluorescence probe), and 

propidium iodide (PI, a fluorescence viability dye that enters only cells with compromised 

membranes and emits bright red fluorescence after binding to DNA26).  An aliquot of P. 

aeruginosa, cultured as described above, was resuspended at 106 CFU·mL-1 in PBS 

supplemented with DAF-2 DA (10 µM) and incubated at 37 °C for 30 min.  500 µL of the 

cells loaded with DAF-2 were transferred onto a glass microscope slide affixed in a circular 

microscope cell to allow capture of initial images.  500 µL of PBS containing 10 µM DAF-2 

DA, 60 µM PI and either NO-releasing silica nanoparticles (200 µg·mL-1) or PROLI/NO 

(388 µg·mL-1) was then introduced.  Images were immediately collected with a 63x objective 

every minute for 2.5 h.  The fluorescent reaction product of NO and DAF-2 (excitation λmax 

= 495 nm, emission λmax = 515 nm)27 was excited with the 488 line of an argon laser.  

Fluorescence was collected using a BP 500-530 nm bandpass filter.  PI fluorescence was 
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excited with the 543 nm line of a HeNe laser and collected with a long-pass (LP 560) filter.  

All confocal microscopy experiments were performed at 25 °C.  At 25 °C, the half life of NO 

release from 45 mol% AHAP3 silica nanoparticles increased to >1 h.  Thus, the initial level 

of NO release was reduced, extending the duration of NO release. 

4.2.11 Propidium iodide cytotoxicity assay.  L929 mouse fibroblasts were plated on 

24-well tissue culture treated dishes (BD Bioscience #353047) at a density of 3.0 x 105 

cells·mL-1 (150 x 103 cells per well) and incubated overnight at 37 ºC in 5% CO2/95% air.  

For the PI assay, the incubation buffer (Minimum Essential Medium) was aspirated from 

each of the wells and replaced with 500 µL of Krebs-Ringer-HEPES (KRH) buffer 

containing 115 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM KH2PO4, 1.2 mM MgSO4, 25 mM 

HEPES, pH 7.4, supplemented with 30 µM PI.28  Control or NO-releasing silica 

nanoparticles were added to the wells at 0, 50, 200, 400, 600, 800, or 1000 µg·mL-1, or 

PROLI/NO was added at 0, 4, 8, or 12 mg·mL-1.  The fluorescence resulting from PI 

complexation with intracellular nucleic acid material26 in cells with compromised 

membranes was acquired for a total of 120 min.  Upon completion of these measurements, 

the cells were incubated with digitonin (40 µM) for 20 min to completely permeabilize the 

plasma membranes and achieve a maximum PI fluorescence.  Cell viability is presented as 

the increase in PI fluorescence from each well expressed as the percentage of maximal 

fluorescence obtained from cells treated with digitonin (100% cell death). 

4.2.12 Lactate dehydrogenase cytotoxicity assay.  The lactate dehydrogenase (LDH) 

cytotoxicity assay was performed concomitantly with the same cells used for the PI assay 

described above.  Every 15 min, 20-µL aliquots of KRH buffer were removed from the plate 

used for the PI assay and stored at -20 ºC in black 96-well plates (Greiner; Monroe, NC) for 

subsequent LDH analysis.  The 96-well plates containing aliquots of incubation buffer were 
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warmed to 37 ºC.  Lactate dehydrogenase activity was measured from the rate of NADH 

production after adding 180 µL of KRH buffer containing 0.22 mM NAD+, 11.1 mM sodium 

lactate and 11.1 mM hydrazine, pH 8.0 into each well.29  The NADH fluorescence was 

monitored with a FluoStar Galaxy plate reader using 340 nm excitation and 460 nm emission 

filters.  The LDH activity is expressed as the change in relative fluorescence per min per 

well.  The data are normalized to maximal LDH activity in each well obtained from samples 

treated with 40 µM digitonin for 20 min. 

4.2.13 Statistics.  For the bactericidal assays conducted in PBS, n = 3 and data are 

expressed as mean values ± standard deviation.  Data from both the PI and LDH cytotoxicity 

assays are presented as mean values ± standard error of the mean. 

 

4.3 Results and discussion 

4.3.1 Characterization of NO-releasing silica nanoparticles and PROLI/NO.  Shin et 

al. previously reported the synthesis and characterization of NO-releasing silica 

nanoparticles.30  Briefly, diazeniumdiolate NO donors were synthesized on 

aminoalkoxysilane precursors prior to nanoparticle construction (Scheme 4.1), enabling the 

formation of particles with superior NO release ability.  By synthesizing diazeniumdiolate-

modified aminoalkoxysilanes prior to nanoparticle synthesis, particle aggregation was 

reduced due to decreased hydrogen bonding interactions between amines.  The synthesis 

resulted in ~99% amine-to-diazeniumdiolate conversion efficiency and greater yields of NO 

per mol of aminoalkoxysilane precursor compared to previous synthetic procedures used to 

generate NO-releasing silica nanoparticles.18  29Si NMR spectroscopy of the AHAP3/NO 

product was used to determine whether the presence of sodium methoxide would lead to self-

condensation of the AHAP3/NO precursors during the diazeniumdiolate formation step (Step 
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1 of Scheme 4.1).  Notably, no significant Tn peaks characteristic of organosilane 

polymerization were observed,18 indicating that the AHAP3/NO molecules did not pre-

condense under such reaction conditions.  1H NMR of AHAP3/NO revealed that the protons 

adjacent to the secondary amine where diazeniumdiolate formation occurs became 

deshielded in the presence of the zwitterionic NO donor, shifting downfield from 2.45 ppm 

to 2.84 ppm.  The presence of the diazeniumdiolate on AHAP3/NO was also confirmed via 

UV-Vis spectroscopy (λmax = 253 nm, characteristic of the diazeniumdiolate absorption 

maximum17, 31) and direct observation of the released NO via chemiluminescence.32 

The presence of the diazeniumdiolate functional group in the nanoparticle scaffold 

was confirmed via UV absorbance spectroscopy and the direct measurement of NO release.  

As shown in Figure 4.1, diazeniumdiolate-modified 45 mol% AHAP3/TEOS silica 

nanoparticles (Nanoparticle/NO) exhibited a similar λmax of 257 nm.  Nitric oxide release due 

to diazeniumdiolate decomposition33 was monitored in phosphate buffered saline (PBS; 10 

mM, pH 7.4) at 37 °C using a chemiluminescence NO analyzer.32  As shown in Figure 4.2 A, 

the total amount of NO released (t[NO]) and maximum NO flux ([NO]m) from the AHAP3 

nanoparticle system were ~3.8 µmol·mg-1 and ~21700 ppb·mg-1, respectively.  The NO 

release kinetics from the AHAP3 silica nanoparticles were relatively rapid compared to other 

NO-releasing silica nanoparticle systems,18 with a NO release half life (t1/2) of 18 min.  As a 

result of the rapid NO release from the 45 mol% AHAP3 nanoparticles, the time required to 

reach the maximum NO flux (tm) of ~21700 ppb·mg-1 was only 8 min after immersion in 

buffer solution.  The initial burst of NO allows for the relatively rapid delivery of micromolar 

quantities of NO that produce the reactive nitrogen and oxygen species that mediate NO’s 
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Figure 4.1.  UV absorbance of control and diazeniumdiolate-modified (Nanoparticle/NO) 45 
mol% AHAP3/TEOS silica nanoparticles (concentration = 160 µg·mL-1 in phosphate 
buffered saline). 
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Figure 4.2.  Nitric oxide release profiles of (A) 45 mol% AHAP3 silica nanoparticles and 
(B) PROLI/NO in PBS, pH 7.4, 37 °C.  Inset of (A) represents total NO release.  [NO]m = 
maximum NO flux; tm = time to reach maximum NO flux; t[NO] = total NO released; t1/2 = 
half life of NO release. 
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bactericidal actions.34  As characterized by atomic force microscopy (AFM), the size and 

homogeneity of the 45 mol% AHAP3 nanoparticles were 136 ± 15 nm (Fig. 4.3).  Both the 

size and NO-release properties of diazeniumdiolate-modified silica nanoparticles proved 

tunable based on the amount and identity of aminoalkoxysilane precursor employed in the 

synthesis (data not shown).  A full systematic characterization of such properties as a 

function of NO donor is reported elsewhere.30   

To facilitate comparison of the bactericidal efficacy of nanoparticle-derived NO with 

small molecule-derived NO, the amino acid proline was functionalized with 

diazeniumdiolate NO-donors as described by Saavedra et al.25  As shown in Figure 4.2 B, the 

release of NO from PROLI/NO was also extremely rapid, with a t1/2 of approximately 1.7 

min.  On a per mg basis, PROLI/NO released less than half as much total NO as the AHAP3 

nanoparticles, with a t[NO] value of 1.8 µmol NO·mg-1.  Due to its rapid NO release 

characteristics, however, the [NO]m for PROLI/NO (>145000 ppb·mg-1) was more than 6 

times greater than the [NO]m generated by the nanoparticles per mg, with tm approximately 1 

min after addition to buffer.  Despite the large bolus of NO released by PROLI/NO, the 

extended duration of NO release from the AHAP3/TEOS nanoparticle system is more 

beneficial for antibacterial applications because its NO release capabilities are not 

immediately lost upon exposure to aqueous conditions.  Indeed, effective NO-based 

antibacterial agents require NO release durations long enough to allow the NO donor vehicle 

to reach the intended site of action without becoming depleted of NO during transit, while 

still releasing bactericidal quantities of NO. 

4.3.2 Bactericidal efficacy under static conditions.  The bactericidal efficacy of the 

45 mol% AHAP3 NO-releasing silica nanoparticles was evaluated against P. aeruginosa, an 

opportunistic gram-negative pathogen.  Due to a multitude of virulence factors, P. 
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Figure 4.3.  AC mode AFM height image of 45 mol% AHAP3 silica nanoparticles (balance 
TEOS) on a mica surface. 
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aeruginosa is a common cause of burn wound infections leading to significant morbidity and 

mortality in burn wound victims.21,22  Additionally, P. aeruginosa plagues >30% of all leg 

and foot ulcers resulting in chronic wounds with impaired healing.23  Perhaps most alarming, 

however, is the emergence of multidrug-resistant P. aeruginosa that has been isolated from 

nosocomial burn wound patients.22, 35  P. aeruginosa clones resistant to both β-lactams and 

aminoglycosides, two classes of antibiotics that are commonly used to treat P. aeruginosa 

infections are documented.35  Thus, novel treatments for combating infections resulting from 

antibiotic-resistant pathogens are urgently needed.  We hypothesized that the AHAP3/TEOS 

silica nanoparticle system, capable of storing multiple NO donors within each delivery 

vehicle, may represent an attractive new method for killing pathogenic bacteria due to its 

ability to release high localized doses of NO.  To determine the influence of the nanodelivery 

vehicle on the antibacterial properties of NO, the bactericidal efficacy of 45 mol% AHAP3 

nanoparticles was compared to that of PROLI/NO.  Although a previous study evaluated the 

antibacterial properties of the small molecule NO-donor DETA/NO (diazeniumdiolate-

modified diethylenetriamine),15 we observed that the diethylenetriamine backbone alone 

demonstrated considerable toxicity to P. aeruginosa (data not shown), which is consistent 

with the observations of others.36  Conversely, the backbone of PROLI/NO (the amino acid 

proline) exhibited no toxicity to P. aeruginosa up to 20 mg·mL-1, the highest concentrations 

tested. 

To facilitate direct comparison of the amount of NO necessary to kill P. aeruginosa, 

initial studies were conducted in PBS.  The bacterial killing assays conducted in aqueous 

buffer demonstrate the bactericidal activity of NO under nutrient-free (“static”) conditions in 

which the bacteria were unable to replicate.  In this manner, the data collected were not 

convoluted by the ability of the bacterial culture to proliferate in the medium during the 
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experiment.  Bacterial killing assays were performed instead of the more conventional 

minimum inhibitory concentration (MIC) assays in order to assess the extent to which NO 

actually kills P. aeruginosa as opposed to simply inhibiting its growth.  An understanding of 

these parameters is important because it has been suggested that bactericidal agents are less 

likely to foster resistance among pathogens than those that are simply bacteriostatic.37  As 

shown in Figure 4.4, the concentrations of PROLI/NO and NO-releasing nanoparticles that 

proved completely bactericidal (3 logs of killing) to P. aeruginosa were 2.5 mg·mL-1 and 70 

µg·mL-1, respectively.  Thus, by mass, approximately 35 times more PROLI/NO was 

required than silica nanoparticles to completely kill all P. aeruginosa cells in the bacterial 

suspension.  Both the proline and 45 mol% AHAP3 silica controls depleted of NO exhibited 

no killing of P. aeruginosa over the concentration ranges tested, indicating that the toxicity 

observed from the NO-releasing analogues was due entirely to NO.  Real-time 

chemiluminescent detection of NO released from the two NO-donor systems (Fig. 4.2) 

allowed for a direct comparison of the amount of NO released into solution over the 1 h time 

course of the bactericidal assays.  Of note, the amount of NO required per mL to elicit a 3 log 

reduction in bacterial viability was markedly less from the nanoparticle scaffold than from 

PROLI/NO (0.22 versus 4.5 µmol NO from nanoparticles and PROLI/NO, respectively).  

The amount of NO delivered is expressed as total µmol NO released instead of a 

concentration (e.g., mM) because the NO quickly reacts to form other reactive nitrogen and 

oxygen species.  As such, the exact molar concentration of NO and the byproducts in 

solution are not known. 

 4.3.3 Time-based bactericidal assays under nutrient growth conditions.  While the 

PBS-based bactericidal assays allow an uncomplicated comparison of the dose of NO from 

both systems required to kill P. aeruginosa, they do not demonstrate the temporal efficacy of 
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Figure 4.4.  Bactericidal efficacy of (A) praline and PROLI/NO and (B) control and NO-
releasing 45 mol% AHAP3 silica nanoparticles (balance TEOS) against P. aeruginosa in 
phosphate buffered saline. 
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each system, or accurately mimic a situation where the bacteria have the ability to replicate.  

To better understand such parameters, time-based killing assays were performed in tryptic 

soy broth (TSB) to test the bactericidal efficacy of NO-releasing silica nanoparticles in a 

culture medium where the bacteria had the capacity to proliferate and present a competition 

between the rate of bacterial cell killing and replication.  Such time-kill studies offer valuable 

information regarding the temporal efficacy of antimicrobial agents.38  Conventional 

antibacterial susceptibility tests such as the MIC and minimum bactericidal concentration 

(MBC) assays do not allow for acute temporal studies.  In the TSB nutrient medium, P. 

aeruginosa exposed to blank and control (proline and silica) solutions proliferated over the 2 

h experiment (Fig. 4.5).  As expected, the concentration of both NO-releasing silica 

nanoparticles and PROLI/NO necessary to completely kill P. aeruginosa in TSB was greater 

than the dose necessary to achieve the same result in PBS.  This increase is attributed to both 

the ability of P. aeruginosa to proliferate in TSB and the NO scavenging properties of the 

protein digest that comprises TSB.  Indeed, chemiluminescent NO release measurements 

performed in TSB revealed that a significant amount of NO was scavenged by the TSB 

media itself (Fig. 4.6), effectively lowering the amount of NO able to act on the P. 

aeruginosa cells. 

Despite the scavenging of NO and bacterial proliferation in TSB, complete bacterial 

killing was still achieved, albeit at higher concentrations of both nanoparticles and 

PROLI/NO.  Similar to the experiments performed in PBS, the amount (by mass) of 

PROLI/NO necessary to kill all P. aeruginosa was greater than that of NO-releasing 

nanoparticles.  Figure 4.5 illustrates the dose- and time-dependent bactericidal activity of 

both PROLI/NO and NO-releasing silica nanoparticles.  At a nanoparticle concentration of 

400 µg·mL-1, ~90% bactericidal efficacy was achieved after 2 h (one log reduction in viable
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Figure 4.5.  Time- and concentration-based bactericidal efficacy of (A) proline (control) and 
PROLI/NO and (B) control (Nanoparticle) and NO-releasing 45 mol% AHAP3 silica 
nanoparticles (Nanoparticle/NO). 
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Figure 4.6.  Real-time NO release of the small molecule diazeniumdiolate NO-donor 
DETA/NO before, during, and after injection of 1% tryptic soy broth (TSB), as measured 
using a chemiluminescent nitric oxide analyzer. 
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 P. aeruginosa; Fig. 4.5 B).  Doubling the particle concentration to 800 µg·mL-1 resulted in 

100% bacterial killing over the same period (4 log reduction in viable P. aeruginosa).  

Complete bactericidal activity was achieved in a shorter period (90 min) using significantly 

greater concentrations of silica nanoparticles (3200 µg·mL-1).  However, particle 

concentrations >3200 µg·mL-1 did not reduce the time necessary for 100% bacterial killing 

below 90 min (data not shown).  In contrast, PROLI/NO achieved more rapid bacterial 

killing than the 45 mol% AHAP3 nanoparticles, but at significantly greater concentrations.  

For example, a concentration of 12 mg·mL-1 PROLI/NO resulted in complete killing after 

only 30 min.  The difference in the rate of bacterial killing is attributed to the NO-release 

kinetics of each NO donor.  The NO release from PROLI/NO is rapid with a half life (t1/2) of 

1.7 min, resulting in rapid (≤30 min) bacterial killing at 12 and 20 mg·mL-1.  In contrast, the 

NO release kinetics from 45 mol% AHAP3 silica nanoparticles, which were unchanged in 

the presence of TSB, are significantly longer (t1/2 = 18 min), thereby requiring longer 

incubation periods at 800 and 3200 µg·mL-1 to achieve complete bactericidal activity.  

Analogous to the results obtained in PBS, complete bacterial killing required a markedly 

greater amount of NO per mL from PROLI/NO (21.6 µmol) than from the NO-releasing 

silica nanoparticles (2.8 µmol). 

A direct comparison of the amount of NO required from each vehicle to achieve 

100% bactericidal efficacy in both PBS and TSB is shown in Figure 4.7.  Greater amounts of 

NO were necessary in TSB to achieve complete bactericidal activity than from the same 

vehicles in PBS due to both the ability of P. aeruginosa to proliferate in TSB and the NO-

scavenging properties of TSB as noted above.  Regardless of the media, NO delivered from 

the nanoparticles exhibited significantly greater bactericidal efficacy than NO delivered from 

the small molecule diazeniumdiolate (i.e., PROLI/NO).  Indeed, the amount of NO required
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Figure 4.7.  Comparison of the NO doses necessary from silica nanoparticles (dark blue) and 
PROLI/NO (grey) to achieve 100% bactericidal efficacy against P. aeruginosa in (A) PBS 
and (B) TSB. 
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from PROLI/NO to completely kill P. aeruginosa was approximately one order of magnitude 

greater than that required from the 45 mol% AHAP3 nanoparticles.  Since the reactivity of 

NO is largely dependent on its localized concentration and diffusion properties,39 NO derived 

from a small molecule dispersed throughout solution is expected to possess slower diffusion 

into bacterial cells and correspondingly lessened antibacterial activity compared to the high 

localized concentrations of NO delivered by silica nanoparticles. 

4.3.4 Confocal microscopy studies.  To understand the enhanced bactericidal efficacy 

of NO delivered from nanoparticles compared to PROLI/NO, fluorescein isothiocyanate 

(FITC)-modified silica nanoparticles were synthesized to visually determine if any 

nanoparticle interaction with P. aeruginosa cells existed.  After synthesis of the 

nanoparticles, characteristic FITC fluorescence was observed at 500 – 530 nm when the 

particles were excited at 488 nm.  Incorporation of FITC into the silica nanoparticle scaffold 

did not significantly alter the NO-release properties of the nanoparticles (data not shown) or 

the particle diameter (124 ± 13 nm vs. 136 ± 15 nm with and without FITC, respectively).  

Using the FITC-modified silica nanoparticles, confocal fluorescence microscopy studies 

were conducted to determine if the enhanced bactericidal efficacy of the nanoparticles was 

due to nanoparticle interaction with P. aeruginosa cells.  As shown in Figure 4.8, 

nanoparticles began to associate with the P. aeruginosa cells as early as 10 min post-

injection.  The possible mechanism by which this association occurs is not entirely 

understood, but most likely is attributed to electrostatic40 and/or hydrophobic41 interactions 

between the particles and bacterial membrane. 

A NO-sensitive fluorescence probe, 4,5-diaminofluorescein diacetate (DAF-2 DA),27 

was employed to determine if the association between NO-releasing silica nanoparticles and 

P. aeruginosa cells resulted in high local concentrations of NO and more efficient delivery of 
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Figure 4.8.  Scanning confocal microscopy images of FITC-modified NO-releasing silica 
nanoparticle association with P. aeruginosa cells.  Images were acquired in bright-field mode 
(A-E) and on the FITC fluorescence channel (A′-E′) before injection (A, A′) of 100 µg·mL-1 
NO-releasing FITC-modified AHAP3 silica nanoparticles, and 10 (B, B′), 20 (C, C′), 30 (D, 
D′) and 60 (E, E′) minutes post-injection. 
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NO to the bacterial cells. Once DAF-2 DA permeates the bacterial cell membrane, 

intracellular esterases hydrolyze the acetate groups to generate the membrane-impermeable 

DAF-2.27  In the presence of NO, DAF-2 is nitrosated by reactive nitrogen species (e.g., 

N2O3) and exhibits bright green intracellular fluorescence.27  Cells loaded with DAF-2 were 

imaged in the presence of propidium iodide (PI), a nucleic acid viability dye that only enters 

cells with compromised membranes.  Inside the cell, PI exhibits strong red fluorescence upon 

interaction with nucleic acid material.  Red fluorescence due to PI entering cells with 

disrupted plasma membranes thus indicates cell death.26  Prior to introduction of NO-

releasing silica nanoparticles, no autofluorescence was observed from either DAF-2 DA or 

DAF-2.  However, P. aeruginosa cells loaded with DAF-2 exposed to 100 µg·mL-1 NO-

releasing nanoparticles exhibited strong DAF-2 fluorescence (Fig. 4.9 B-E), indicative of a 

high localized concentration of NO in close proximity to the bacterial cells.  As more NO 

was released from the nanoparticles, the DAF-2 green fluorescence in each cell increased 

progressively, indicating that the NO level inside each cell was increasing.  After reaching a 

peak intracellular intensity of DAF-2 fluorescence, PI then rapidly entered the bacterial cells 

due to membrane disruption and cell death.  The increase in PI fluorescence coincided with a 

decrease in DAF-2 fluorescence (Fig. 4.9 C-F), suggesting that the DAF-2 fluorophore 

leaked from the cytosol through the damaged cell membrane that allowed PI to enter the 

cells. 

In contrast to the strong intracellular green fluorescence observed from DAF-2 in the 

presence of 100 µg·mL-1 NO-releasing silica nanoparticles, DAF-2 fluorescence was not 

observed when an equal amount of NO was delivered with PROLI/NO (data not shown).  As 

indicated by the absence of any PI fluorescence from the bacterial cells over the same period, 

P. aeruginosa cell death was not observed with this dose of NO from PROLI/NO, thus
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Figure 4.9.  Intracellular DAF-2 (green) and propidium iodide (red) fluorescence from P. 
aeruginosa bacterial cells incubated with 100 µg·mL-1 45 mol% AHAP3/TEOS NO-
releasing silica nanoparticles.  DAF-2 fluorescence indicates the presence of NO and reactive 
nitrogen species, while propidium iodide fluorescence indicates membrane destruction and 
cell death.  Images were acquired (A) 30 min, (B) 83 min, (C) 113 min, (D) 124 min, (E) 132 
min, and (F) 140 min after nanoparticle additio 
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reaffirming that doses of NO delivered from nanoparticle delivery vehicles were more 

efficient at killing P. aeruginosa cells compared to similar doses from small molecule NO 

donors.  When the amount of PROLI/NO was increased to bactericidal levels (5 mg·mL-1), 

rapid cell death was observed as evidenced by bright red intracellular PI fluorescence in the 

confocal microscopy images (Fig. 4.10).  However, intracellular DAF-2 fluorescence was 

still not observed prior to cell death (in contrast to the nanoparticles), indicating that the NO 

concentration surrounding the cells was not high enough to induce intracellular DAF-2 

fluorescence.  These data reveal that the delivery of NO to P. aeruginosa is significantly 

more efficient from silica nanoparticles than from PROLI/NO.  As such, lower doses of NO 

delivered from silica nanoparticles effectively kill the bacteria.  

As shown in Figure 4.11, the ability of the nanoparticles to deliver appreciable NO 

payloads in close proximity to the bacterial cells allows the NO to more efficiently target 

cellular components (e.g., cell membrane, DNA, proteins, etc.) critical to cell function, 

circumventing the need for NO to diffuse across large distances in solution to reach the cell.  

As a lipophilic molecule, NO is capable of rapidly crossing cell membranes.13  The release of 

high levels of NO at or near the cell membrane would be expected to lead to high 

intracellular concentrations of NO.  The antibacterial properties of NO and its reactive 

byproducts have been thoroughly reviewed,13, 34, 42-44 and are typically ascribed to either 

nitrosative or oxidative stress.  In addition to causing DNA deamination, nitrosative species 

such as N2O3 may nitrosate thiols (S-nitrosation) on proteins and initiate disulfide bridging 

with other thiols on the protein,45 thereby directly altering protein function.13  Due to their 

lipophilic nature, NO and O2 tend to concentrate in cell membranes, accelerating NO’s 

oxidation to N2O3 and creating greater nitrosative stress within and near the bacterial 

membrane.44  Nitrosation of both cell surface proteins and intracellular proteins (including
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Figure 4.10.  Bright field and fluorescence images of P. aeruginosa cells treated with 5 
mg·mL-1 PROLI/NO.  Propidium iodide (PI) fluorescence indicates cell death.  Images were 
acquired (A) 0 min, (B) 10.5 min, (C) 21min, and (D) 31 min after addition of 5 mg·mL-1 
PROLI/NO. 
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Figure 4.11.  Proposed mechanisms by which NO acts as an antibacterial agent (adapted 
from references 13, 34, 42-44; not to scale).  NO’s antibacterial properties are attributed to 
both nitrosative and oxidative stress exerted by reactive byproducts such as N2O3 and 
ONOO- (peroxynitrite).  Nitrosative stress leads in part to nitrosation of thiols on proteins as 
well as DNA deamination, while oxidative stress is responsible for membrane destruction via 
lipid peroxidation.  Notably, increased NO and O2 concentrations in lipid membranes leads 
to enhanced production of both nitrosative and oxidative species such as N2O3 and NO2 in 
the membrane. 
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enzymes) has been shown to cause bacterial cell death.13   Oxidative stress is driven 

primarily by peroxynitrite (ONOO-), which forms via the reaction of NO with superoxide 

endogenously derived from the bacterial cellular respiration process.13, 46-49  Thus, oxidative 

damage is expected to occur predominantly inside the cell, since superoxide does not readily 

cross cell membranes.50  A significant antibacterial process related to oxidative stress is 

peroxynitrite-dependent lipid peroxidation, which stems from OH and NO2 radicals derived 

from peroxynitrous acid (HOONO; Fig. 4.11).51  The production of NO2 radical from NO 

and O2 is also accelerated in membranes, leading to even greater NO-mediated oxidative 

stress within bacterial cell membranes.44  Membrane destruction via lipid peroxidation has 

been proposed as one of the major mechanisms of NO-mediated bactericidal activity.  As a 

peroxynitrite-dependent process requiring superoxide, NO released in close proximity to a 

bacterial cell would be expected to exert greater bactericidal effects than NO released 

diffusely throughout solution by generating a larger intracellular NO concentration.13  

Indeed, we observed direct evidence of membrane destruction during the confocal 

microscopy experiments by the rapid appearance of intracellular PI fluorescence (Fig. 4.9) in 

cells treated with NO-releasing silica nanoparticles.  By virtue of the extended NO-release 

half-life of the silica nanoparticles relative to PROLI/NO, a significant portion of the NO is 

retained until after particle association with the P. aeruginosa cells.  Such high localized NO 

release in close proximity to the bacterial cells may then facilitate delivery of greater 

concentrations of NO and other reactive species to the cell membrane and into the cell itself, 

leading to enhanced bactericidal efficacy of NO delivered from nanoparticles. 

4.3.5 Cytotoxicity of AHAP3 nanoparticles and PROLI/NO against L929 mouse 

fibroblasts.  The significant toxicity that NO-releasing 45 mol% AHAP3 silica nanoparticles 

exhibited against P. aeruginosa cells demands study of their effect on healthy mammalian 
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cells as well.  Although Ghaffari et al. have demonstrated that NO gas (200 ppm for 4 h) was 

not toxic to human dermal fibroblasts,14 similar studies were conducted to determine the 

combined effects of NO and the silica nanoparticle scaffold on L929 mouse fibroblast cells.  

Such cells represent the standard for cytotoxicity testing of novel therapeutic agents.52, 53  

Survival of the L929 cells in the presence of control and NO-releasing silica nanoparticles 

was monitored via both propidium iodide (PI) and lactate dehydrogenase (LDH) viability 

assays over 2 h to mimic the time-based bactericidal assays described above.  As discussed 

above, healthy cells with uncompromised membranes exclude PI in the buffer solution, while 

disrupted plasma membranes allow PI to diffuse into the cell and emit characteristic 

fluorescence after complexation with intracellular nucleic acids.26  Positive detection of LDH 

in the culture medium also indicates compromised cellular membranes that allow larger 

proteins to leak out of the cell, further indicating membrane disruption and cell death.  Both 

assays thus monitor membrane permeability to assess cell viability, a suitable method to 

assay for the destructive properties of reactive NO byproducts that are known to form in 

greater quantities at lipid membranes.44  A range of nanoparticle concentrations was tested to 

encompass the bactericidal concentrations of 45 mol% AHAP3 silica in the PBS and TSB 

assays (70 µg·mL-1 and 800 µg·mL-1, respectively).  As shown in Figure 4.12, both control 

and NO-releasing 45 mol% AHAP3 silica nanoparticles were found to present minimal 

toxicity to the L929 fibroblasts.  Remarkably, when exposed to the same concentration of 

NO-releasing silica nanoparticles required to induce 4 logs of bacterial killing (800 µg·mL-1; 

Fig. 4.5 B), L929 cells maintained 92% viability as measured by the PI assay.  Thus, P. 

aeruginosa appears to be extremely susceptible to NO-releasing silica nanoparticles, while 

such delivery vehicles pose minimal threat to healthy mammalian fibroblasts. 
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Figure 4.12.  Toxicity of 45 mol% AHAP3 control (dark gray) and NO-releasing (light gray) 
silica nanoparticles to L929 mouse fibroblasts as measured by (A) membrane permeability to 
propidium iodide and (B) lactate dehydrogenase leaching. 
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In contrast, PROLI/NO proved toxic to L929 fibroblasts when administered at 

concentrations required to kill P. aeruginosa.  When L929 cells were exposed to the dose of 

PROLI/NO required to induce 4 logs of bacterial killing in TSB within 2 h (12 mg·mL-1; Fig. 

4.5 A), 100% cell death (i.e., 0% viability) was observed within 45 min (Fig. 4.13).  While 

proline, (the precursor of PROLI/NO) exhibited no toxicity to L929 fibroblasts at 

concentrations up to 16 mg·mL-1 (data not shown), 100% fibroblast cell death was observed 

within 90 min at a PROLI/NO concentration of 8 mg·mL-1.  Upon reducing the PROLI/NO 

concentration to 4 mg·mL-1, 100% fibroblast viability was maintained through 2 h, but at the 

expense of bactericidal efficacy (Fig. 4.5 A).    These results reinforce the advantages of 

delivering NO via nanoparticle scaffolds, as both the amount of NO necessary to kill bacteria 

and toxicity to healthy mammalian cells are reduced. 

 

4.4 Conclusions 

Nitric oxide delivered from silica nanoparticles was shown to be significantly more 

effective at killing pathogenic P. aeruginosa than NO derived from the small molecule NO 

donor PROLI/NO.  Indeed, significantly less NO was required from the nanoparticles to kill 

P. aeruginosa than from PROLI/NO, even though the initial NO release from PROLI/NO 

was 6-fold greater than from 45 mol% AHAP3 silica nanoparticles.  In vitro cytotoxicity 

experiments conducted with L929 mouse fibroblasts confirmed that NO-releasing silica 

nanoparticles are largely non-toxic to mammalian fibroblast cells at concentrations capable 

of killing P. aeruginosa, while PROLI/NO presents significant toxicity to such cells when 

administered at bactericidal concentrations.  Such results demonstrate the promise that NO 

holds as a new strategy for battling bacterial infection.  Confirmation of particle association 

with P. aeruginosa cells and the measurement of intracellular NO levels helped elucidate the 
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Figure 4.13.  Cytotoxicity of PROLI/NO against L929 fibroblast cells as measured by 
propidium iodide viability assay.  The backbone of PROLI/NO (the amino acid proline) 
demonstrated no toxicity to L929 cells at concentrations up to 16 mg/mL. 
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differential toxicity observed between macromolecular and small molecule NO donors.  The 

versatility in the synthesis of NO-releasing silica scaffolds allows for both tuning of size and 

exterior functionality that may further enhance their use as antibacterial agents.  Future 

studies are aimed at identifying the intracellular location of the reactive radical species 

formed upon NO release and establishing a mechanistic understanding of the interactions 

between NO-releasing nanoparticles and bacterial cell membranes.  As well, experiments are 

underway to evaluate the antibacterial properties of NO-releasing silica nanoparticles against 

other species of pathogenic bacteria including gram-positive strains and those that exhibit 

resistance to conventional antibiotics. 
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Chapter 5: 

Anti-Biofilm Efficacy of Nitric Oxide-Releasing Materials: Inhibition of Microbial 

Surface Proliferation and Activity against Established Microbial Biofilms 

 

5.1  Introduction 

 A most dangerous threat to patients with indwelling medical devices or chronic 

wounds is infection due to microbial biofilm formation.1, 2  Of the 2 million patients suffering 

from hospital-acquired infections in the U.S. each year, over half are due to biofilms at the 

site of indwelling medical devices.  The most threatening of all device-associated infections 

are those associated with central venous catheters (CVCs).3  Approximately 250,000 CVC-

associated infections are reported each year, and up to 25% (62,500) of such infections are 

fatal.4  Likewise, the wounds most susceptible to infection are those associated with burns, 

with roughly 50,000 burn injuries requiring hospitalization each year.5  Alarmingly, 10,000 

patients die each year of burn-related infections in the U.S.5  While current antimicrobial 

strategies have shown some success at treating infections, novel approaches to both prevent 

biofilm formation and eradicate established biofilms are urgently needed. 

 Microbial biofilms are the common cause of both medical device and wound 

infections.  Biofilms are complex communities that form when microorganisms self-secrete a 

polysaccharide matrix that retains nutrients for the constituent cells and protects them from 

both the immune response and antimicrobial agents.6  Biofilms are remarkably resistant to 

both host defenses and systemic antibiotics.  Indeed, in some cases it has been found that 
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killing bacteria in a biofilm requires up to 1000 times the antibiotic dose necessary to achieve 

the same results in a suspension of cells.7  Biofilm-embedded microbial cells communicate 

with each other via quorum sensing, and phenotypic variations occur that may exacerbate 

virulence to the host.6  Water channels throughout the biofilm matrix allow nutrient transport 

and facilitate signaling between cells.2  Development of resistance to antibiotics is a greater 

threat for biofilm-based bacteria, where the close proximity of cells allows facile transfer of 

resistance-encoding DNA.8, 9 

5.1.1 Device-associated biofilms: formation and prevention.  Indwelling medical 

devices are particularly susceptible to infection because they provide a substrate on which 

microbial cells adhere and proliferate to form a biofilm.1  As detailed in Chapter 1, device-

associated infection is the direct result of bacterial adhesion and surface proliferation, 

eventually resulting in biofilm formation at the device/tissue interface.   Strategies to reduce 

bacterial adhesion have involved modifying devices with passive hydrophilic coatings such 

as poly(ethylene glycol),10 poly(ethylene oxide) brushes,11 and hydrophilic polyurethanes,12 

for example.  Unfortunately, such coatings do not always prevent microbial adhesion in 

vivo,1 and they possess no mechanism by which to kill pathogens adhered to the surface or in 

surrounding tissue.13-15  Thus, new methods for preventing bacterial colonization and biofilm 

formation at medical devices are needed.  

 5.1.2 Biofilm-based wound infections.  For several years, debate has existed as to 

whether biofilm formation occurs in infected wounds.16  However, recent research has 

presented unequivocal evidence of microbial biofilm formation in chronic wounds.17-20    

Similar to device-associated infections, the presence of foreign materials in a wound 

promotes bacterial colonization21 lowering the threshold of bacterial cells necessary to cause 
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infection.  However, wounds can become infected even in the absence of foreign materials.21  

The goal of clinical intervention for promoting wound healing is to reduce the bacterial 

density within the wound to a host-manageable bioburden.  Although no universally-accepted 

level for a host-manageable bioburden exists, the threshold is generally accepted to be 

roughly 105 bacterial cells per gram of tissue.2 

 In terms of treating biofilm-based wound infections, antiseptic wound dressings are 

the most common clinical strategy employed.21  Although systemic antibiotic administration 

has shown limited efficacy against wound infections,22-24 application of antibiotics directly to 

wounds is unacceptable due to the threat of promoting antibiotic resistance.21  Current 

clinical protocols call for applying creams, solutions, or wound dressings that contain 

antiseptics such as silver ions (Ag+), iodine, or chlorhexidine.21  Each has demonstrated 

broad-spectrum activity against both gram-positive and gram-negative bacterial species; 

however, their efficacy has most often been tested against planktonic bacteria, not biofilms.20  

The silver compounds most commonly employed include silver nitrate (AgNO3) and silver 

sulfadiazine (SSD), while povidone iodine (polyvinylpyrrolidone iodine complex [PVP-I]) is 

the most commonly-employed source of biocidal iodine.21   

Despite some success, antiseptic treatments have distinct drawbacks.  In some cases 

application of Ag+ has resulted in permanent skin discoloration (argyria).25  More 

problematic, bacteria have begun to develop resistance to Ag+.26-28  Povidone iodine has been 

shown to be toxic to fibroblasts in vitro29 and its efficacy as a safe antimicrobial agent for 

wound healing has been questioned.30-35  Furthermore, both PVP-I and chlorhexidine have 

been shown to be ineffective at treating biofilms of Pseudomonas aeruginosa and 

Enterococcus faecalis,36, 37 both common pathogens found to cause wound infections.  
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Alarmingly, a growing number of reports document life-threatening anaphylactic shock in 

response to chlorhexidine treatment.38-41  New strategies for battling established biofilms are 

clearly warranted. 

 5.1.3  Antimicrobial properties of nitric oxide.  Recent research has highlighted the 

antimicrobial properties of nitric oxide (NO),42-44  a highly reactive free radical that is 

synthesized by inflammatory cells (e.g., neutrophils and macrophages) to fight infection.  

Raulli et al. demonstrated that NO possesses broad-spectrum antibacterial properties against 

both gram-positive and gram-negative bacteria.45   Ghaffari et al. reported that NO is 

effective at killing methicillin-resistant Staphylococcus aureus (MRSA).46  In terms of 

biomaterial-associated infections, surfaces modified with NO-releasing xerogel polymers 

have been shown to both reduce bacterial adhesion and kill bacterial cells that manage to 

adhere, two important steps toward preventing biofilm formation.47  However, the ability of 

surface-derived NO to inhibit bacterial proliferation at a substrate surface, another critical 

step in biofilm formation,48 has not yet been characterized.  Other recent work has 

demonstrated the potent antibacterial properties of NO-releasing silica nanoparticles (e.g., 

enhanced antibacterial efficacy against planktonic P. aeruginosa cells compared to a small 

molecule NO donor).49  However, the antimicrobial activity of such nanoparticles has not yet 

been tested against established biofilms.  The rapid diffusion of NO may result in increased 

efficacy against biofilm-embedded bacteria.50   Indeed, NO’s ability to diffuse through the 

dense polysaccharide matrix known to inhibit penetration of other antibiotics may prove to 

be the ultimate solution to biofilm resistance.8  Herein, the first studies aimed at 

understanding the ability of NO to both prevent bacterial surface proliferation and eradicate 

established microbial biofilms are presented. 
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5.2  Methods and materials 

 N-Methylaminopropyltrimethoxysilane (MAP3), N-(6-aminohexyl)aminopropyl-

trimethoxysilane (AHAP3), and isobutyltrimethoxysilane (BTMOS) were obtained from 

Gelest (Morrisville, PA) and stored under nitrogen or in a desiccator.  Tetraethyl orthosilicate 

(TEOS) was purchased from Fluka (Buchs, Switzerland) and stored in a desiccator.  Ethanol 

(EtOH; absolute), methanol (MeOH), hydrochloric acid (HCl), and ammonia solution 

(NH4OH, 30 wt% in water) were purchased from Fisher Scientific (Fair Lawn, NJ).  Tryptic 

soy broth (TSB), tryptic soy agar (TSA), yeast peptone dextrose broth (YPD), and yeast 

peptone dextrose agar were purchased from Becton, Dickinson and Company (Sparks, MD).  

Nitrogen (N2) and argon (Ar) were purchased from National Welders (Raleigh, NC).  Nitric 

oxide (NO, 99.5%) was obtained from Linde (Raleigh, NC).  Other solvents and chemicals 

were analytical-reagent grade and used as received.  Pseudomonas aeruginosa (ATCC 

#19143), Escherichia coli (ATCC #53323), Staphylococcus aureus (ATCC #29213), 

Staphylococcus epidermidis (ATCC #35983 ), and Candida albicans (ATCC #90028 ) were 

purchased from American Type Culture Collection (Manassas, VA).  Class VI medical-grade 

silicone rubber (SiR) was purchased from McMaster-Carr (Atlanta, GA).  Distilled water was 

purified with a Millipore Milli-Q Gradient A-10 water purification system (Bedford, MA) to 

a final resistivity of 18.2 MΩ·cm and a total organic content of <6 ppb.  The following 

standard cell-culture products were obtained from Invitrogen (Carlsbad, CA): Eagles 

minimal essential medium (MEM), fetal bovine serum (FBS), penicillin/streptomycin (P/S), 

trypsin and and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT).  L929 

mouse fibroblasts (ATCC #CCL-1) were purchased from the University of North Carolina 

Tissue Culture Facility (Chapel Hill, NC). 
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 5.2.1  Xerogel synthesis.  Nitric oxide-releasing AHAP3/BTMOS xerogel films were 

synthesized as described by Marxer et al.51  Briefly, H2O (60 mL), ethanol (200 mL), 0.5 M 

HCl (10 mL), and BTMOS (120 mL) were mixed for 1 h.  Next, AHAP3 (80 mL) was added 

with additional mixing for 1 h.  Glass microscope slides were cut to approximately 2.6 x 0.8 

cm2, sonicated in ethanol, dried under nitrogen, and UV-cleaned in a BioForce TipCleaner 

(Ames, IA) for 20 min prior to use.  Sol–gel solution (30 mL) was deposited onto clean glass 

slides via a spread-cast method. Xerogel films were allowed to solidify at room temperature 

for 30 min then transferred to a 70 °C oven for 3 d.  After removal from the oven, xerogel-

coated glass slides were stored in a desiccator at room temperature. 

 5.2.2  Diazeniumdiolate formation.  Diazeniumdiolate NO-donors were synthesized 

within the xerogel network by exposing the films to high pressures of NO. Xerogel-coated 

glass slides were placed in a 500 mL hydrogenation bomb, which was subsequently flushed 

with Ar to remove O2. The chamber was then pressurized to 5 atm of NO. After 3 d, 

unreacted NO was flushed from the chamber with Ar.  Diazeniumdiolate-modified xerogel 

films were stored under N2 at -20 °C to prevent NO-donor decomposition. 

 5.2.3 Synthesis of NO-releasing silica nanoparticles.  The synthesis and 

characterization of NO-releasing silica nanoparticles have been described previously.52, 53  

Briefly, an aminoalkoxysilane solution was prepared by dissolving either AHAP3 (2.3 mmol)  

or MAP 3 (6.8 mmol) in 16 mL of EtOH and 4 mL of MeOH in the presence of NaOCH3 

(equimolar with either AHAP3 or MAP3).  The solution was then placed into 10 mL vials 

equipped with stir bars.  The vials were placed in a Parr bottle, connected to an in-house NO 

reactor, and flushed with Ar six times to remove O2 in the solution.  The reaction bottle was 

pressurized to 5 atm NO for 3 days with continuous stirring of the silane solution.  Prior to 
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removing the diazeniumdiolate-modified silane sample (AHAP3/NO or MAP3/NO), 

unreacted NO was purged from the chamber with Ar.  Silane solutions were prepared by 

mixing TEOS (2.8 mmol) and AHAP3/NO (2.3 mmol; corresponding to 45 mol%, balance 

TEOS) or MAP3/NO (6.5 mmol; corresponding to 70 mol%, balance TEOS) in the 

EtOH/MeOH solution for 2 min.  The silane solution was then added into EtOH (22 mL) and 

ammonia catalyst (6 mL, 30 wt % in water) and mixed vigorously for 30 min at 4 °C.  The 

precipitated nanoparticles were collected by centrifugation (5000 rpm, 5 min), washed with 

EtOH several times, dried under ambient conditions for 1 h, and stored in a sealed container 

at -20 °C. 

 5.2.4  Nitric oxide release measurements. Real-time NO release data were obtained 

using a Sievers 280 chemiluminescent NO analyzer (Boulder, CO). The instrument was 

calibrated with an atmospheric sample that had been passed through a NO zero filter and a 

24.1 ppm NO gas standard (balance N2).  Xerogel-coated glass slides or a known mass of 

diazeniumdiolate-modified silica nanoparticles were immersed in deoxygenated PBS (pH 

7.4) at 37 °C.  The released NO was carried from the buffer to the analyzer with a stream of 

N2 bubbled into the solution at a flow rate of 80 mL/min. In the instrument, NO was detected 

via its chemiluminescent reaction with ozone.54  

 5.2.5  Bacterial surface proliferation and doubling-time experiments.  P. aeruginosa 

was cultured at 37 °C in tryptic soy broth (TSB), pelleted by centrifugation, resuspended in 

15% glycerol (v/v in PBS), and stored at -80 °C.  Cultures for biofilm studies were grown 

from a -80 °C stock at 37 °C in TSB overnight.  A 1 mL aliquot of overnight culture was 

inoculated into 100 mL fresh TSB, incubated at 37 °C with rotation, and grown to an optical 

density (ODλ=650 nm) of 0.1 (corresponding to ~108 colony forming units [CFU] per mL, as 
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verified by serial 10-fold dilutions and plating on tryptic soy agar nutrient plates).  The 

bacteria were pelleted by centrifugation, rinsed with ultrapure water, and resuspended in 

sterile phosphate buffered saline (PBS; 10 mM, pH 7.4).  Xerogel substrates (control and 

NO-releasing 40% AHAP3/BTMOS) were affixed in a custom-machined polycarbonate 

parallel plate flow cell.47  The 108 CFU/mL suspension of P. aeruginosa cells was then 

introduced into the flow cell (i.e., over the xerogel surfaces) at a controlled flow rate of 0.2 

mL/min.  After 5 min exposure to the bacterial suspension, the flow was stopped, the tube 

leading from the flow cell to waste was clamped, and the tubing was detached from the front 

end of the flow cell.  New sterile tubing was then connected to the flow cell and immersed in 

a sterile vial of TSB.  The clamp on the waste line was removed, the peristaltic pump was 

restarted, and the flow cell was immersed in a 37 °C water bath.  Every 2 h, the flow of TSB 

was stopped and the flow cell was removed from the water bath and placed on the stage of a 

Zeiss Axiovert 200 inverted optical microscope (Chester, VA).  Phase-contrast micrographs 

were captured with a 20x objective with a Zeiss Axiocam digital camera (Chester, VA) at 5 

pre-determined locations.  The flow cell was then returned to the water bath for 2 h until the 

next imaging session.  After the experiment, the images were analyzed by applying a 

threshold value to differentiate the adhered cells from the background.47  The number of 

pixels associated with adhered bacterial cells was normalized to the total number of pixels in 

the image to obtain a percent surface coverage of adhered bacterial cells.  In this manner, 

bacterial proliferation at the xerogel surface was determined as a function of time.  The time 

required for the number of cells to double on the xerogel surface was calculated from the 

following equation:55 
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where nt is the percent surface coverage of bacterial cells at time t, n0 is the percent surface 

coverage of bacterial cells at t = 0, t is the time between measurements, and td is the doubling 

time (i.e., the amount of time required for the number of bacterial cells to double).  The 

doubling time of P. aeruginosa was determined for both control and NO-releasing 40% 

AHAP3/BTMOS xerogel substrates as a measure of the rate of bacterial proliferation at each 

substrate. 

 5.2.6  Treatment of established biofilms with NO-releasing silica nanoparticles.  P. 

aeruginosa, E. coli, S. aureus, S. epidermidis, and C. albicans were cultured at 37 °C in 

either tryptic soy broth (TSB; bacteria) or yeast-peptone-dextrose broth (YPD; fungi), 

pelleted by centrifugation, resuspended in 15% glycerol (v/v in PBS), and stored at -80 °C.  

Cultures for biofilm studies were grown from a -80 °C stock at 37 °C in TSB overnight.  A 1 

mL aliquot of overnight culture was inoculated into 100 mL fresh TSB, incubated at 37 °C 

with rotation, and grown to an optical density (ODλ=650 nm) required to achieve ~108 colony 

forming units [CFU] per mL, as verified by serial 10-fold dilutions and plating on nutrient 

agar plates.  The bacteria or fungi were pelleted by centrifugation, rinsed with ultrapure 

water, and resuspended in sterile phosphate buffered saline (PBS; 10 mM, pH 7.4). 

Class VI medical-grade silicone rubber (SiR) was sectioned into squares measuring  

8 x 6 x 2 mm2.  The SiR squares were cleaned with ethanol, dried, and sterilized in an 

autoclave at 121 °C for 25 min.  Under aseptic conditions, the SiR squares were then 

immobilized on the end of sterile syringe needles and submerged in 5 mL sterile TSB or 

YPD in a sterile 10-mL glass vial.  Next, the 108 CFU/mL microbial suspension was diluted 

to 106 CFU/mL, and 50 µL of the diluted suspension was added to the nutrient broth in each 

vial containing the SiR squares (final microbial concentration = 104 CFU/mL).  The vials 
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were placed in a 37 °C incubator with gentle agitation.  After 24 h, the SiR squares were 

removed from the nutrient broth, rinsed twice in sterile PBS, and individually transferred into 

new 10-mL glass vials containing a suspension of either 45 mol% AHAP3/TEOS 

nanoparticles or 70 mol% MAP3/TEOS nanoparticles in PBS.  The SiR squares were 

returned to the 37 °C incubator and gently agitated.  After 24 h, the SiR squares were rinsed 

twice in sterile PBS and aseptically transferred into polypropylene test tubes containing 2 mL 

of sterile PBS.  To remove the biofilm cells from the substrates, each test tube was vortexed 

for 10 s, sonicated in a 125 W ultrasonic cleaner for 30 min, then vortexed for an additional 

10 s.  The resulting bacterial suspension was subjected to serial 10-fold dilutions, and 100 µL 

of appropriate dilutions were plated on either TSA (bacteria) or yeast peptone dextrose agar 

(fungi).  The nutrient agar plates were then incubated at 37 °C.  The following day, the 

colonies that grew on each plate were counted and the number of viable biofilm bacteria 

removed from each substrate was determined. 

5.2.7  In vitro toxicity testing of NO-releasing nanoparticles.  L929 mouse fibroblasts 

were grown to subconfluency in MEM with 10% FBS supplemented with 0.2% P/S at 37 °C 

and 5% CO2.  Cells were then trypsinized and resuspended in media at a concentration of 2 x 

104 cells/mL and plated onto tissue culture treated polystyrene 96-well plates.  After 

incubation for 24 h, the media from each well was discarded and control and NO-releasing 

70 mol% MAP3/TEOS nanoparticles were added at concentrations of 1, 2, 4, and 8 mg/mL 

(200 µL).  After incubation with the nanoparticles for 24 h, an MTT viability assay was 

performed.56  Briefly, 40 µL of a 1 mg/mL MTT solution in sterile PBS was added to each 

well and incubated for 3 h, after which all solution was removed from the well and 100 µL 

DMSO was added to solubilize the crystals.  The absorbance measured at 570 nm was 
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proportional to the concentration of viable cells in each well.  Fibroblast viability in the 

presence of control and NO-releasing silica nanoparticles is reported relative to the viability 

of fibroblasts not exposed to silica nanoparticles. 

 

5.3  Results and discussion 

 5.3.1  NO release for preventing biofilm formation.  The motivation for studying 

bacterial proliferation at NO-releasing surfaces stems from previous results demonstrating 

the antibacterial properties of NO-releasing xerogels.  Nablo et al. thoroughly documented 

the ability of NO-releasing xerogels to reduce bacterial adhesion.57-60  More recent results 

show that surface-derived NO kills bacterial cells that adhere to the substrate.47  Taken 

together, reduced adhesion and decreased bacterial viability may lead to a decrease in 

bacterial surface proliferation and biofilm formation at NO-releasing surfaces.13  To 

investigate this hypothesis, a parallel plate flow cell was employed with the well-

characterized 40% AHAP3 (v/v, balance BTMOS) NO-releasing xerogel system.47, 51  The 

parallel plate flow cell allows real-time imaging of bacterial adhesion and proliferation on the 

substrate surface, and also is amenable to switching between different solutions (e.g., buffer 

and growth media) without introducing an air-liquid interface.47  The 40% AHAP3 xerogel 

system has been well-characterized with respect to NO release, stability, and bacterial 

adhesion.51  As shown in Figure 5.1, upon immersion in phosphate buffered saline (PBS; 37 

°C, pH 7.4), 40% AHAP3 xerogels rapidly reached their maximum NO flux of ~300 pmol 

cm-2 s-1, after which the NO flux decreased exponentially.  Approximately 50% of the total 

NO was released within ~2.5 h after immersion in buffer.  Small fluxes of NO (<1 pmol cm-2 

s-1) were detectable for up to 1 week.61 
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Figure 5.1.  Nitric oxide release in phosphate buffered saline (pH 7.4) at 37 °C from 40% 
AHAP3 (v/v) xerogel polymer (balance BTMOS).  Inset: total NO released. 
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 To determine the ability of NO-releasing xerogels to inhibit bacterial surface 

proliferation, a suspension of P. aeruginosa in PBS was introduced to the flow cell for 5 min.  

Next, sterile nutrient media (i.e., tryptic soy broth) at 37 °C was introduced to allow adhered 

cells the chance to proliferate.  To monitor proliferation, images of the surface were captured 

at discrete pre-determined locations with a 20x objective.  As shown in Figure 5.2, bacterial 

proliferation at the control xerogel surface proceeded rapidly, while proliferation was not 

observed at NO-releasing surfaces.  Indeed, while the average surface coverage at control 

xerogels increased from 10 ± 5% to 46 ± 14% from 0.5 to 4 h (Fig. 5.3), no significant 

increase in surface coverage was observed at the NO-releasing surfaces over a similar period 

(1.8 ± 0.7% to 1.3 ± 0.4% from 0.5 to 4.8 h).  These data indicate that the surface-derived 

NO either killed the bacterial cells or inhibited the cellular mechanisms necessary for 

proliferation.  Applying Equation 5.1, the doubling time for P. aeruginosa on control and 

NO-releasing xerogel surfaces was ~94 and ~890 min, respectively.  Thus, the NO-releasing 

40% AHAP3 xerogel surface increased the doubling time of P. aeruginosa by approximately 

one order of magnitude. 

 Next, experiments were conducted to determine the total time that the NO-releasing 

xerogels were able to inhibit P. aeruginosa proliferation in vitro.  The flow cell apparatus 

was employed as described above, and images of the surface were obtained every 2 h for 24 

h.  As shown in Figure 5.4, P. aeruginosa proliferation was not observed until the 12 h time 

point at the NO-releasing substrates.  Comparison of this finding to the real-time 

chemiluminescent NO release data from 40% AHAP3 xerogels (Fig. 5.1) reveals that over 

the initial 12 h period the NO flux was greater than ~15 pmol cm-2 s-1, indicating that NO 
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Figure 5.2.  Optical micrographs (20x magnification) of P. aeruginosa proliferation at 
control (left column) and NO-releasing (right column) 40% AHAP3 xerogel substrates.   
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Figure 5.3.  Surface colonization of control and NO-releasing 40% AHAP3 xerogel 
substrates (v/v, balance BTMOS) by P. aeruginosa in a parallel plate flow cell maintained at 
37 °C.  Percent surface coverage was determined via threshold analysis of phase-contrast 
optical micrographs. 
 

0

10

20

30

40

50

60

0 1 2 3 4 5

C
ol

on
iz

at
io

n 
(%

 s
ur

fa
ce

 c
ov

er
ag

e)

Time (h)

Control

NO-releasing
0

10

20

30

40

50

60

0 1 2 3 4 5

C
ol

on
iz

at
io

n 
(%

 s
ur

fa
ce

 c
ov

er
ag

e)

Time (h)

Control

NO-releasing



 177

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4.  Optical micrographs (20x magnification) of P. aeruginosa proliferation at NO-
releasing 40% AHAP3 xerogel substrates at two different locations on the same substrate 
over 24 h.  Bacterial proliferation is indicated by the white asterisk(s) in each image.   
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fluxes in excess of this value are necessary to prevent surface proliferation by adhered P. 

aeruginosa cells.  

 While the mechanism of NO’s ability to inhibit surface proliferation is unclear, its 

bactericidal properties are well-documented.42, 43, 62, 63  It is likely that the surface flux of NO 

kills the majority of adhered P. aeruginosa cells,47 leading to an overall decrease in the rate 

of surface proliferation.  It is also possible that sufficient fluxes of NO may directly or 

indirectly inactivate/alter DNA, enzymes, and/or other components critical to bacterial 

replication,62 thus inhibiting proliferation until the NO flux drops below the ~15 pmol cm-2  

s-1 threshold.  As shown in Figure 5.4, proliferation ensued from discrete points on the 

surface as opposed to developing an even bacterial lawn covering the entire surface as seen at 

controls (Fig. 5.2).  It is hypothesized that this may be the result of a limited number of 

adhered cells beginning to replicate once the NO flux had dropped below ~15 pmol cm-2 s-1.  

It is expected that this would lead to proliferation “islands” as opposed to the complete 

“lawn” coverage observed at controls.  Experiments are planned to confirm this hypothesis 

with fluorescent viability probes.47   

Regardless of the mechanism, the anti-proliferation results are encouraging from the 

standpoint of antimicrobial coatings for medical devices.  Bacterial adhesion and device 

infection have been described as a “race for the surface”,64 with the process of tissue 

integration competing with bacterial adhesion to the substrate.  To avoid infection, tissue 

integration must occur prior to appreciable bacterial adhesion and colonization at the device 

surface.  If bacterial colonization occurs prior to tissue integration, host defenses may not be 

capable of preventing infection.64  A 6-h post-implantation “decisive period” has been 

identified,65 where preventing bacterial adhesion and surface proliferation is critical for 
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effective tissue integration.  The finding that NO-releasing xerogels inhibit surface 

proliferation for up to 12 h (well in excess of the 6-h “critical window”) demonstrates the 

promise that NO release holds as an anti-infective strategy for medical devices. 

 5.3.2  NO-releasing nanoparticles for treating established biofilms.  In addition to 

causing infections at indwelling medical devices, biofilms are also problematic for wounds, 

where their presence delays healing and can threaten the life of the patient.2, 17-20  While 

useful for treating internal infections, antibiotic administration directly to wounds is 

clinically unacceptable due to the danger of fostering antibiotic resistance.21  Indeed, the 

threat of antibiotic resistance is heightened with biofilm-based infections where microbial 

cells can easily transfer plasmids that encode for resistance to antimicrobial agents.8, 9  While 

antiseptics such as silver ions (Ag+) and povidone-iodine enhance wound healing by killing 

wound-based bacteria, concerns over resistance and toxicity to healthy cells remain.29-35  The 

concept of using NO to treat wound infections has been proposed by Ghaffari et al., who 

demonstrated that gaseous NO kills bacteria and enhances wound healing.46, 66, 67  Barraud et 

al. also noted that NO-releasing small molecules promote dispersal of P. aeruginosa 

biofilms.68 As an alternative approach to avoid the use of cumbersome NO gas tanks and 

extend studies to other species of biofilm-forming pathogens, Chapter 4 described 

bactericidal NO-releasing silica nanoparticles.  Silica nanoparticles modified to release NO 

killed planktonic P. aeruginosa cells more effectively than a small molecule NO donor.49  To 

extend these studies to understand the efficacy of NO against established biofilms, biofilms 

were first formed on medical-grade silicone rubber squares.  The biofilms were then exposed 

to NO-releasing silica nanoparticles suspended in PBS.  In this manner, the experimental 
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protocol mimics the established Minimum Biofilm Eradication Concentration (MBEC) 

assay.69 

 The NO-releasing silica nanoparticles employed have been characterized and 

described previously.52, 53, 70  As shown in Figure 5.5 A, the total amount of NO (t[NO]) 

released by 45 mol% AHAP3 silica nanoparticles was approximately 3.8 µmol mg-1, with a 

maximum NO flux ([NO]m) of 21700 ppb mg-1 and a NO release half life (t1/2) of 18 min.  In 

contrast, NO release from 70 mol% MAP3 nanoparticles was more rapid, with a t1/2 of ~6 

min.  The amount of NO released from the MAP3 nanoparticles was greater than from the 

AHAP3 nanoparticles, with t[NO] and [NO]m values of 7.6 µmol mg-1 and 190000 ppb mg-1, 

respectively, for MAP3 (Fig. 5.5 B).  As characterized by atomic force microscopy (AFM), 

the AHAP3 and MAP3 nanoparticles were 136 ± 15 and 90 ± 10 nm in diameter, 

respectively (data not shown).49, 70 

 To test the influence of the delivery vehicle (i.e., AHAP3 vs. MAP3 silica 

nanoparticles) on NO’s ability to kill biofilm-embedded bacterial cells, P. aeruginosa 

biofilms were grown on silicone rubber substrates and exposed to a range of concentrations 

of both AHAP3 and MAP3 nanoparticles (0 – 8 mg/mL).  After exposure to the NO-releasing 

nanoparticles, the biofilm cells were removed from the substrates via sonication.69, 71, 72  The 

resulting cell suspensions were diluted and plated on nutrient agar to quantitatively determine 

the number of viable cells recovered from each biofilm.  As shown in Figure 5.6, AHAP3 

nanoparticles administered at a dose of 8 mg/mL exhibited approximately 2 logs of biofilm 

eradication (i.e., the number of viable cells was reduced from ~2 x 107 to ~3 x 105 CFU).  A 

2-log reduction represents killing 99% of the cells within the biofilm.  When administered at 

an equivalent dose (i.e., 8 mg/mL), MAP3 nanoparticles resulted in >5 logs of eradication,
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Figure 5.5.  Nitric oxide release profiles of (A) 45 mol% AHAP3 and (B) 70 mol% MAP3 
silica nanoparticles (balance TEOS).  Insets represent total NO release.  [NO]m = maximum 
NO flux; tm = time to reach maximum NO flux; t[NO] = total NO released; t1/2 = half life of 
NO release. 
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Figure 5.6.  Anti-biofilm efficacy of 45 mol% AHAP3 silica nanoparticles (control and NO-
releasing) and NO-releasing 70 mol% MAP3 silica nanoparticles against established P. 
aeruginosa biofilms on medical-grade silicone rubber substrates. 
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 reducing the number of viable biofilm bacteria from ~7 x 107 to ~3 x 102, effectively killing 

>99.999% of biofilm bacterial cells.  Both AHAP3 and MAP3 control nanoparticles (i.e., 

depleted of NO) exhibited no significant anti-biofilm efficacy, suggesting that the NO itself 

accounts for the killing.   

At equivalent doses (i.e., 8 mg/mL), the MAP3 silica nanoparticles demonstrated 

~1000-fold greater efficacy against P. aeruginosa biofilms than AHAP3 nanoparticles.  

While MAP3 nanoparticles release more total NO than AHAP3 nanoparticles per mg (7.6 vs. 

3.8 µmol mg-1, respectively), the 1000-fold increase in killing cannot be accounted for by the 

2-fold increase in t[NO] alone.    It is hypothesized that in addition to the greater amount of 

NO released by MAP3 nanoparticles, the more rapid delivery, as indicated by shorter t1/2, 

leads to a greater instantaneous concentration of NO in solution.  The greater concentration 

of NO in solution may result in enhanced diffusion of NO into the biofilm matrix, where NO-

induced cell death occurs.  Other explanations for the improved anti-biofilm efficacy of 

MAP3 nanoparticles may include their smaller size potentially allowing them to permeate the 

biofilm matrix more effectively, and/or a possible difference in the surface charge of the 

particles due to the different identity and amount of synthetic precursors (i.e., AHAP3 vs 

MAP3) employed.  Studies to determine the influence of particle size and surface charge on 

anti-biofilm efficacy are currently planned.  Due to their enhanced efficacy over AHAP3 

nanoparticles, MAP3 nanoparticles were used as the NO delivery vehicle for the remainder 

of the studies. 

 The anti-biofilm properties of MAP3 nanoparticles were tested against a broad 

spectrum of biofilm-forming pathogens, including gram-negative (P. aeruginosa and E. coli), 

gram-positive (S. aureus and S. epidermidis), and fungal (C. albicans) species.  As shown in 
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Figure 5.7, nanoparticle-derived NO was effective against all species tested.  Anti-biofilm 

efficacy was greatest against the gram-negative species, with >5 logs of killing at the highest 

dose tested (8 mg/mL) for both P. aeruginosa and E. coli.  Intermediate efficacy was 

observed for C. albicans, with 8 mg/mL MAP3 nanoparticles achieving 3 logs of biofilm 

killing.  The least susceptible biofilms were those formed using gram-positive species (S. 

aureus and S. epidermidis), with the highest dose of nanoparticles killing ~2 logs of biofilm 

bacteria.  Nevertheless, a 2-log reduction represents 99% killing of biofilm-embedded cells, a 

significant decrease that may reduce the bacterial bioburden in an infected wound and help 

enhance wound healing.2  The efficacy of the nanoparticles against biofilms of all species 

tested is summarized in Table 5.1.  As shown in Figure 5.8, control MAP3 silica 

nanoparticles (i.e., depleted of NO) at 8 mg/mL demonstrated no significant anti-biofilm 

activity against any species, indicating that the NO itself, and not the particle scaffold, is 

responsible for the observed anti-biofilm properties. 

Several aspects of NO-releasing silica nanoparticles show promise with respect to 

treating wound-based biofilms.  Healing is impaired when the bacterial bioburden within a 

wound is greater than 105 bacterial cells per gram of tissue.2  In all cases, the NO-releasing 

silica nanoparticles were shown to reduce the number of viable biofilm cells by ≥2 orders of 

magnitude (i.e., ≥99% killing), a desirable characteristic that may lower the bioburden to 

levels below the infection threshold, allowing normal healing to progress.  A second 

promising finding is that the anti-biofilm activity of the nanoparticles is broad-spectrum.  

While NO-releasing nanoparticles were found to be most effective against gram-negative 

species, the ability to kill multiple pathogens, including gram-positive and fungal-based 

biofilms, is promising for wound infections that are most often polymicrobial (i.e., caused by
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Figure 5.7.  Broad spectrum anti-biofilm properties of 70 mol% MAP3 silica nanoparticles 
(balance TEOS) against (A) P. aeruginosa and (B) E. coli (gram-negative); (C) S. aureus and 
(D) S. epidermidis (gram-positive); and (D) C. albicans (pathogenic fungus) biofilms. 
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Table 5.1.  Log-based and percent reductions in biofilm viability at the highest dose of NO-
releasing MAP3 silica nanoparticles tested (8 mg/mL) compared to controls (0 mg/mL 
nanoparticles). 
  

 

Species 
 

 

Classification 
 

 

Log reduction 
 

 

Percent reduction 
 

 

P. aeruginosa 
 

gram (-) 
 

5 
 

99.999% 
E. coli gram (-)  5 99.999% 

S. aureus gram (+) 2 99% 
S. epidermidis gram (+) 2 99% 

C. albicans 
 

pathogenic fungus 
 

3 
 

99.9% 
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Figure 5.8.  Viable cells recovered from biofilms of (A) P. aeruginosa, (B) E. coli, (C) S. 
aureus, (D) S. epidermidis, and (E) C. albicans after no treatment (Blank) and exposure to 8 
mg/mL control 70 mol% MAP3 (balance TEOS) silica nanoparticles depleted of NO 
(Control). 
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 more than one species).73  Finally, the extreme efficacy against both P. aeruginosa and E. 

coli (>99.999% biofilm killing for both species) is promising for the treatment of infections 

due to gram-negative bacteria.  Such species are more invasive than gram-positive infections, 

and thus more difficult to treat.73  Gram-negative pathogens also exhibit other virulence 

factors including toxins, proteolytic enzymes, and extracellular polysaccharides73 that 

coupled with the increasing antibiotic resistance of gram-negative species74-76 present a 

significant threat to implant recipients. 

 5.3.3 Cytotoxicity of MAP3 nanoparticles to mammalian fibroblasts.  In addition to 

testing the anti-biofilm properties of NO-releasing silica nanoparticles, their toxicity to 

healthy mammalian cells was also studied.  Due to their potential utility as a therapeutic for 

wound-based infections, the toxicity of the particles was tested against fibroblast cells.  Such 

cells are important to wound healing, helping maintain the extracellular matrix.77, 78  Previous 

studies have shown that NO-releasing 45 mol% AHAP3 silica nanoparticles exhibited 

minimal (<10%) acute toxicity to fibroblasts at concentrations up to 1 mg/mL.49  In the 

present study the concentration range was expanded to 8 mg/mL to include the highest dose 

tested against microbial biofilms.  As shown in Figure 5.9, both control and NO-releasing 

silica nanoparticles reduced the proliferation of L929 fibroblasts at particle concentrations 

beyond 1 mg/mL.  At 8 mg/mL, control and NO-releasing nanoparticles inhibited fibroblast 

proliferation by approximately 50 and 70%, respectively.  Surprisingly, greater amounts of 

NO did not result in greater toxicity to the fibroblasts.  In fact, increasing the NO delivery by 

increasing the silica nanoparticle concentration from 1 to 8 mg/mL improved the fibroblast 

viability.  Of note, the observed toxicity is minimal compared to other commonly-applied 

topical antiseptics.29, 79  For example, Pyo et al. found that administering clinical 
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Figure 5.9.  Viability of L929 mouse fibroblasts exposed to control and NO-releasing 70 
mol% MAP3 silica nanoparticles (balance TEOS) at various concentrations.  Viability was 
measured via MTT reduction by metabolically-active (viable) fibroblast cells and is 
expressed normalized to untreated fibroblasts. 
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concentrations of povidone iodine and chlorhexidine to human fibroblasts reduced cell 

viability by 89 ± 4% and 100 ± 4%, respectively.79  Despite considerable in vitro toxicity to 

fibroblasts, clinical application of both povidone iodine and chlorhexidine has been 

demonstrated to enhance wound healing by killing wound-based microbes.21  Thus, the in 

vitro toxicity observed for the NO-releasing silica nanoparticles should not undermine their 

potential as a treatment for wound-based biofilms. 

 

5.4  Conclusions 

 Xerogel polymers modified to release NO were shown to reduce surface proliferation 

of a pathogenic bacterial species (P. aeruginosa).  A threshold NO flux of ~15 pmol cm-2 s-1 

was identified as necessary to inhibit P. aeruginosa proliferation.  The 40% AHAP3 xerogel 

polymers examined herein are capable of maintaining NO fluxes above this threshold for 

approximately 12 h, well in excess of the 6-h “critical window” necessary for effective tissue 

integration.  Thus, it is expected that applying a NO-releasing coating to an indwelling 

medical device may prevent bacterial adhesion and surface colonization for periods long 

enough to allow for effective tissue integration, thus greatly reducing the possibility of 

device-associated infection.  Future work must focus on other biofilm-forming pathogens 

(e.g., S. aureus and S. epidermidis) for which different NO-release thresholds may be 

required to limit proliferation.  Indeed, it has been shown that different bacterial/fungal 

species exhibit varying susceptibilities to NO as an antimicrobial agent.  It will become 

important to design surfaces capable of inhibiting adhesion and proliferation of all pathogens 

common to device-associated infections as such infections are commonly polymicrobial (i.e., 

caused by more than one species). 
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Additionally, NO-releasing silica nanoparticles proved to be effective against gram-

negative, gram-positive, and fungal biofilms.  When compared to AHAP3 nanoparticles, 

MAP3 nanoparticles exhibited a 1000-fold improvement in efficacy, suggesting that rapid 

delivery of NO is more effective at biofilm eradication than slow/prolonged NO delivery.  

The MAP3 silica nanoparticles demonstrated anti-biofilm activity against a range of 

pathogens with the greatest efficacy (≥99.999% killing) against the species most problematic 

for wound infections (i.e., gram-negative bacteria).  The toxicity of the nanoparticles to 

fibroblasts was also examined and found to be comparable to or less than currently-applied 

antiseptics with proven wound-healing benefits.  Experiments are currently underway to 

examine possible synergistic enhancement of NO treatment with other antibacterial agents, 

including silver ion and traditional antibiotics.  It will become important to understand the 

role of nanoparticle size on anti-biofilm efficacy.  This and other parameters (i.e., surface 

charge, hydrophobicity, etc.) are easily tuned during synthesis by varying the solvent and/or 

precursor types and concentrations.  Nanoparticle size may also influence cytotoxicity to 

healthy cells.  A primary advantage of nanoparticle-based drug delivery involves the ability 

to graft different ligands to the nanoparticle surface to target the particles to particular cells.  

Ligands useful for promoting the antimicrobial efficacy of NO-releasing silica nanoparticles 

may include antibodies and/or sugars, both of which may promote nanoparticle association 

with and/or uptake by bacterial cells.  Modifications to nanoparticle synthesis to alter the 

charge of the nanoparticles will also be examined to possibly exploit the difference in 

electrostatic properties between gram-negative and gram-positive biofilms.  In terms of its 

application to wounds, NO release is expected to exert beneficial secondary effects on the 

healing process.  Nitric oxide has been shown to modulate both inflammation and 
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angiogenesis, as well as participate in matrix remodeling and re-epithelialization.  In general, 

chronic wounds have been shown to be deficient in NO.  Application of NO-releasing silica 

nanoparticles may speed healing by both killing bacteria and overcoming the general NO 

deficiency.  To understand the dose of NO necessary to promote wound healing and aid the 

host response to infection, in vivo wound-healing experiments (both with and without 

bacterial challenge) will be necessary. 
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Chapter 6: 

Summary and Future Research Directions 

 

6.1  Summary 

 The ability of NO-releasing materials (i.e., xerogel films and silica nanoparticles) to 

both mitigate the foreign body response and act as antimicrobial surfaces/vehicles has been 

described.  Chapter 2 described both the study of bacterial adhesion to xerogel substrates in a 

parallel plate flow cell and the viability of bacterial cells adhered to NO-releasing surfaces.  

The flow cell avoids the passage of an air-liquid interface and allows real-time tracking of 

bacterial adhesion.  At a controlled bacterial suspension flow rate of 0.2 mL/min, the NO-

releasing xerogels reduced bacterial adhesion in a flux-dependent fashion with a NO flux of 

~21 pmol cm-2 s-1 reducing P. aeruginosa adhesion by ~65% compared to controls.  When 

the flow rate was increased to 0.6 mL/min, the anti-adhesion properties of NO release were 

diminished, likely due to more rapid removal of interfacial NO.  However, a significant 

decrease in bacterial adhesion was still observed at the higher flow rate compared to control 

surfaces. Fluorescent staining with SYTO-9 and propidium iodide viability probes indicated 

that bacterial cells adhered to NO-releasing xerogels were killed within 7 h.  Quantitative 

cell-plating viability studies showed that the extent of bactericidal activity was dependent on 

the total amount of NO released, with 750 nmol cm-2 killing >90% more adhered bacteria 

than xerogels that released 25 nmol cm-2. Thus, NO-releasing xerogels were shown to both 
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inhibit P. aeruginosa adhesion and kill adhered bacterial cells, two important steps toward 

designing anti-infective biomaterial coatings. 

As discussed in Chapter 3, model silicone elastomer implants were employed to study 

the foreign body response in a rat model.  One-third of the implants were coated with NO-

releasing 40% AHAP3/BTMOS xerogel, one-third were coated with control xerogel (not 

modified to release NO), and one-third were left uncoated to serve as blanks.  The implants 

were surgically inserted into the subcutaneous tissue of adult male Sprague-Dawley rats 

where they remained for one, three or six weeks.  At each time point, implants and 

surrounding tissue were removed from the rats, fixed in formalin, and stained with either 

Gomori’s trichrome, hematoxylin & eosin (H&E), or CD-31 immunohistochemical stain 

which is selective for an antigen on endothelial cells.  Characteristic measures of the 

progression of the foreign body response at each type of implant were observed from optical 

micrographs of the stained tissue samples.  Collagen capsule thickness at each type of 

implant was calculated from trichrome-stained samples.  Nitric oxide-releasing samples were 

characterized by significantly (p < 0.05) thinner capsules than those observed at both blank 

and control implants.  Angiogenesis, monitored from the CD-31-stained tissue samples, was 

significantly enhanced at the site of NO-releasing implants at the 1-week time point.  The 

inflammatory response factor (IRF), monitored from H&E-stained tissue samples, was found 

to be significantly reduced after both three and six weeks compared to both blank and control 

implants.  Collectively, the data indicate that delivery of NO (a total of ~1.35 µmol cm-2 of 

implant surface area over 3 d) was shown to significantly mitigate the foreign body response. 

 A study of the antibacterial efficacy of NO-releasing silica nanoparticles was 

presented in Chapter 4.  Nitric oxide-releasing nanoparticles were prepared via co-
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condensation of a tetraalkoxysilane (i.e., TEOS) with an aminoalkoxysilane (i.e., AHAP3) 

modified with diazeniumdiolate NO donors, allowing for the storage of large NO payloads.1,2 

Comparison of the bactericidal efficacy of the NO-releasing nanoparticles to PROLI/NO 

(i.e., diazeniumdiolate-modified proline), a small molecule NO donor, revealed enhanced 

bactericidal efficacy for the nanoparticle-derived NO.  At bactericidal doses, PROLI/NO 

demonstrated 100% cytotoxicity to mammalian cells (L929 mouse fibroblasts), while >90% 

fibroblast viability was maintained in the presence of silica nanoparticles.  Confocal 

microscopy revealed that fluorescently labeled NO-releasing nanoparticles associated with 

the bacterial cells, providing rationale for the enhanced bactericidal efficacy of the 

nanoparticles.  Employing the NO-sensitive fluorescent probe DAF-2, intracellular NO 

delivery was observed when the NO was delivered from nanoparticles.  In contrast, 

intracellular NO levels remained below the detection threshold when PROLI/NO was 

administered.  Collectively, these results demonstrate the advantage of delivering NO via 

nanoparticles for antimicrobial applications. 

 Studies investigating the anti-biofilm properties of NO were described in Chapter 5.  

The first aspect of the study aimed at demonstrating the ability of surface-derived NO to 

prevent bacterial surface colonization, a critical step in the formation biofilms.3  A second 

aspect focused on establishing the broad-spectrum anti-biofilm properties of NO-releasing 

silica nanoparticles.  A surface flux of NO from a xerogel coating (40% AHAP3/BTMOS) 

proved capable of preventing proliferation of P. aeruginosa cells adhered to the substrate 

surface for 12 – 14 h.   This period is well in excess of the 6-h “critical window” over which 

preventing bacterial colonization is most important for ensuring the long-term success of a 

medical implant.4  The doubling time of P. aeruginosa cells adhered to control and NO-
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releasing xerogel surfaces was 94 and 890 min, respectively.  The anti-biofilm properties of 

NO-releasing silica nanoparticles were tested against biofilms of two gram-negative species 

(P. aeruginosa and E. coli), two gram-positive species (S. aureus and S. epidermidis), and a 

pathogenic fungus (C. albicans).  At the highest concentration tested (8 mg/mL), the silica 

nanoparticles were most effective at eradicating gram-negative biofilms (>5 logs of killing) 

and least effective against gram-positive biofilms (2 logs of killing), with intermediate 

efficacy against C. albicans biofilms (3 logs of killing).  Cytotoxicity testing against L929 

mouse fibroblasts revealed that roughly 25% of cells remained viable compared to controls 

when treated with silica nanoparticles at 8 mg/mL.  Such viability exceeded that observed 

when fibroblasts and keratinocytes were treated with clinically-relevant doses of other 

currently-employed wound antiseptics (e.g., povidone iodine and chlorhexidine).5, 6  

 

6.2 Future research directions 

 The ability of NO-releasing xerogels to reduce bacterial adhesion under flowing 

conditions was presented in Chapter 2.  Future research in this area should focus on testing 

the antimicrobial properties of NO-releasing xerogels against a broader library of pathogenic 

organisms.  Of note, this process has been initiated by Charville et al., who reported on the 

ability of NO-releasing xerogels to reduce adhesion of E. coli, S. aureus, and S. epidermidis.7  

In that work, a mediating layer of the plasma protein fibrinogen was first adhered to the 

xerogel surface to more accurately mimic in vivo conditions.  Future work should also seek 

to expand such protein-mediated bacterial adhesion studies to other plasma proteins known to 

influence bacterial adhesion in vivo, including fibronectin and vitronectin.8, 9   
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Another avenue of future study should involve new xerogel compositions currently in 

development.  For example, Privett et al. have created a new class of xerogels capable of 

storing and releasing much greater levels of NO via pre-forming diazeniumdiolates on 

aminoalkoxysilanes prior to condensation with alkylalkoxysilanes.10  In addition to bacterial 

adhesion assays, the efficacy of these new xerogel constructs at killing planktonic microbial 

cells should also be examined.  Such studies would provide useful information about the 

ability of NO-releasing materials to kill bacteria that are not necessarily adhered to the 

substrate surface but which may reside in and infect tissue surrounding an implanted 

material.11-13  In vivo studies should also be conducted to determine the efficacy of NO-

release coatings at killing bacteria that infect the peri-implant tissue, as that region has been 

found to harbor bacteria when the associated implant becomes infected.11-13  Finally, a 

primary advantage of the flow cell apparatus described in Chapter 2 is that it allows access to 

a range of physiologically-relevant shear forces, such as those present in arterial and venous 

regions of the cardiovascular system.14  This attribute, coupled with the ability to introduce 

both individual plasma proteins and/or whole plasma to the immobilized substrate, makes the 

flow cell an attractive method for modeling bacterial adhesion at central venous catheters, 

which suffer from exceedingly high infection rates.15, 16 

 The results presented in Chapter 3 demonstrate the ability of implant-derived NO to 

mitigate the foreign body response.  While these results show promise as a strategy for 

improving the biocompatibility of subcutaneous implants, other studies are required to more 

fully elucidate the mechanism of NO’s activity as it relates to capsule formation, 

angiogenesis, and the inflammatory response.  The xerogel system employed (40% 

AHAP3/BTMOS), released ~1.35 µmol of NO per cm2 of implant surface area over 3 d.  It 
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remains to be determined what threshold “dose” of NO must be released to observe 

reductions in the foreign body response, or if different kinetics of NO release may further 

alter the foreign body response.  For example, NO release from the AHAP3 xerogel system 

occurs rapidly, with 50% of the total NO released within the first 5 h after immersion in 

buffer and >99% of the total NO release complete within 72 h.  However, the tissue response 

at the implants was examined at 1, 3, and 6 weeks – periods after which the NO release had 

long been exhausted.  Future efforts should focus on developing materials with extended NO 

release durations and determining the influence of NO flux on the foreign body response.  

Other research related to this work should focus on determining the cytokine profile elicited 

in tissue adjacent to control and NO-releasing implants.  Cytokines important in the foreign 

body response that are known to be influenced by NO include transforming growth factor-β 

(TGF-β), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), 

macrophage chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6).17-22  Studies to 

profile the expression of such cytokines may be accomplished by in vivo microdialysis 

experiments,23-26 or by profiling whole explanted tissue samples with MALDI-TOF mass 

spectrometry.27-29  Alternatively, in vitro experiments such as those developed by Reichert et 

al. may be conducted to determine the cytokine response of macrophages to NO-releasing 

xerogel materials.30  Examination of the cytokine response should also be extended to other 

cell types, including fibroblasts, keratinocytes, and endothelial cells. 

Future studies in the area of NO-releasing silica nanoparticles should focus on the 

antimicrobial activity of such particles against other species of pathogenic bacteria and fungi, 

including gram-positive species such as S. aureus, S. epidermidis, and Enterococcus faecalis.  

In addition to testing the AHAP3/TEOS nanoparticle system against other species of 
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pathogens, it will become important to determine the planktonic antimicrobial efficacy of 

different nanoparticle compositions with altered NO release kinetics.  One of the main 

advantages of macromolecular drug delivery includes the ability to multi-functionalize the 

particle surface with targeting agents.31, 32  Compounds that may prove useful for targeting 

NO-releasing nanoparticles to bacterial cells include antibodies (e.g., IgG)33, 34 and peptides 

that include the RGD binding motif.35  Further studies should focus on the antimicrobial 

efficacy of NO-releasing nanoparticles in combination with other antimicrobial agents such 

as Ag+ and conventional antibiotics.  Studies by McElhaney-Feser et al. have demonstrated 

synergy between small molecule NO-donors and azoles against fungal species.36  Preliminary 

results from Johnson et al.37 and Deupree et al.38 have shown similar synergistic activity 

between NO and Ag+ against bacteria.  Additionally, the ability of bacteria to develop 

resistance to antimicrobial NO donors has not yet been determined.39, 40  Such studies should 

include exposing bacterial cultures to sub-lethal doses of NO, growing colonies of the 

surviving cells, repeating the process through several iterations, and testing the susceptibility 

of the resulting cells to NO treatment. 

 Chapter 5 detailed the anti-biofilm properties of NO from the standpoint of both 

preventing biofilm formation and treating established biofilms.  In terms of preventing 

biofilm formation, future studies should focus on understanding the efficacy of surface-

derived NO in the presence of a protein mediating layer, which may scavenge a portion of 

the NO thus reducing the efficacy of the coating.  The proliferation of other species of 

biofilm-forming pathogens should also be investigated in the presence of NO.  Although 

Nablo et al. reported the in vivo anti-infective efficacy of NO-releasing xerogels,41 further in 

vivo studies focusing on biofilm formation at implants are warranted.  For example, xerogel 
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coatings can be applied to medical devices ranging from central venous catheters to fracture 

fixation devices, both of which are susceptible to infection.42  After removing control and 

NO-releasing devices from an animal model that had been challenged with biofilm-forming 

bacteria, imaging the surface with SEM would provide direct evidence of the extent of 

biofilm formation.  In terms of treating established biofilms, it will be important to study the 

anti-biofilm synergy between NO and other antimicrobial agents, as discussed above.  Due to 

the prevalence of biofilms in chronic wounds,43 future studies should focus on the ability of 

NO-releasing nanoparticles to eradicate wound-based biofilms in an animal model.  Of note, 

enhanced wound healing may be observed due to NO’s known influence in multiple 

processes of the wound healing cascade.44  The influence of certain physicochemical 

properties of the nanoparticles, such as charge, should be investigated as they relate to anti-

biofilm efficacy.  For example, the matrix of P. aeruginosa biofilms is known to be highly 

anionic while that of S. epidermidis biofilms is cationic,45 suggesting that the charge of NO-

releasing nanoparticles may greatly influence their efficacy against biofilms of different 

microbial species.   

Additionally, the cytotoxicity testing presented in Chapter 5 should be expanded to 

more fully elucidate the influence of NO on fibroblast cells.  More specifically, it should be 

determined if the reduced proliferation of fibroblasts is due to NO-induced cell killing, or if 

NO is acting as a signaling molecule that influences the proliferation of fibroblasts without 

actually killing the cells.46  It may be possible to distinguish between cell killing and reduced 

proliferation due to signaling via the use of cytotoxicity tests other than the MTT assay, 

including either propidium iodide and/or lactate dehydrogenase viability assays.47, 48  Both 

the propidium iodide and lactate dehydrogenase assays directly measure cell death due to the 
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destruction of the cell membrane, as opposed to the MTT assay, which measures cellular 

metabolism. 

 

6.3  Conclusions 

 The results presented herein have demonstrated the antimicrobial and wound healing 

properties of NO-releasing materials.  As the physiological roles of NO in vivo become 

clearer, the demand for NO-based therapies will grow, and will in turn create a demand for 

strategies to chemically store NO in a manner such that it can be administered in a controlled 

fashion at the intended site of action.  Nitric oxide-releasing xerogel-based materials, from 

polymeric implant coatings to NO-releasing silica nanoparticles, represent an important step 

in the field of NO delivery for therapeutic applications.  Polymeric NO release was shown to 

reduce the inflammatory response, limit collagen deposition, and promote angiogenesis at the 

site of a subcutaneous implant.  These finding may prove important in the development of 

indwelling medical devices, which are constantly plagued by issues associated with poor 

biocompability and the foreign body response.  Equally problematic for indwelling medical 

devices is the ever-present threat of microbial infection.  Polymeric NO release has been 

shown to confer desirable antimicrobial properties to substrates by reducing bacterial 

adhesion under both static and flow conditions, killing bacterial cells that adhere to the 

substrate surface, and preventing bacterial colonization/biofilm formation at the substrate 

surface.  The use of NO-based therapies for antimicrobial applications, such as treating 

wound-based biofilm infections, will undoubtedly benefit from the positive impact that NO 

exerts on wound healing and may represent a new paradigm in the search for better 

antimicrobial treatments. 
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