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ABSTRACT  

 

SOOYEON SIM: Electron Paramagnetic Resonance Studies of Polymer Chain Dynamics  

in Solution 

(Under the direction of Malcolm D. E. Fobes) 

 

 

The temperature and side-chain structure dependencies of the time-resolved electron 

paramagnetic resonance (TREPR) spectra of acrylic polyhedral oligosilsesquioxane (POSS)-based 

copolymers and acrylic block copolymers are presented. The carbon–centered radicals within the 

main chain of an acrylic polyhedral oligosilsesquioxane (POSS)-based copolymers and acrylic 

block copolymers are produced in dilute solution at temperatures ranging from 25 °C to over 

120 °C by direct excitation (248 nm) of the ester group in the polymers leading to Norrish I α–

cleavage of the side chain ester moiety and provides a means to investigate the conformational 

energy landscape using a highly localized, minimally perturbative spin probe. 

   The observed photochemical degradation mechanism of those copolymers is quite 

similar to that previously observed in photolysis of homo poly (methacrylate)s. As expected, 

chromophores with POSS group side chains do not participate in the photodegration process, 

which suggests that POSS utilize a beneficial effect against UV light photodegradation in these 

copolymers. The resulting experimental spectra suggest since all of the investigated methacrylate-

POSS copolymers show the same photodegradation phenomena, that POSS could play an 

important roles in preventing UV degradation and improving photoresistance in such materials. 

The recent development of several controlled and free radical polymerization mechanisms have 

allowed the synthesis of many types of block copolymers, especially acrylics. Thus, the 
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photophysical and photochemical behavior of acrylic blocks in dilute solution, especially the site 

selective photochemistry was studies here by TREPR.   

It is interesting note that alternating line broadening effects due to the modulated hyperfine 

constant cause by a bulky ester side chain are observed in high temperature TREPR spectra of both 

t-butyl methacrylate-POSS block copolymer and poly t-butyl methacrylate rich block copolymers. 

The excellent fit of the simulations allow for identification of the signal carriers. The spectra show 

a strong signal from the tert-butyl radical after decarboxylation of the oxo-acyl radical. This 

process is rarely observed in high temperature fast limit TREPR spectra.  

The temperature dependence of TREPR spectra of all block copolymers presented here shows 

similar conformational dynamics to those reported in our previous papers. 

Radical-triplet pair interactions are used to investigate the dynamics of acrylic polymers in 

dilute solution. Methyl methacrylate was randomly copolymerized with a small amount of an 

amine–containing monomer to create the polymers.  The amine subunits were then oxidized to 

nitroxide moieties (stable free radicals). Using TREPR spectroscopy on the sub-microsecond time 

scale, competition is observed between two deactivation processes of the ester side chain triplet 

state: 1) Norrish I –cleavage, leading to a main chain free radical studied previously in our 

laboratory, and 2) spin polarization transfer or quenching by a nearby stable nitroxide radical. The 

two processes have TREPR spectral signatures that are easily distinguished by their widths, 

number of transitions, and chemically induced electron spin polarization (CIDEP) mechanisms. 

The main chain polymeric radical signal dominates the TREPR spectrum if the probability of 

radical-triplet pair encounters is low. These competing reactions show a strong dependence on 

nitroxide incorporation (mol %), temperature, solvent, and acrylic polymer ester side chain 

structure. A comparison of steady-state EPR and TREPR signals from inter– vs. intramolecular 
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processes clearly demonstrates the influence of polymer chain dynamics on the observed 

phenomena. 
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Figure 4.10 Inter– vs. intramolecular competition between TM and RTPM.  (Top) TREPR 

spectra of unattached TEMPO (1.5mM) and PMMA (5 wt %) in propylene 

carbonate after 248 nm laser excitation at 120°C.  (Bottom) TREPR spectrum of the 

nitroxide containing PMMA copolymer (loading level is 1 mol %) under the same 

conditions. Asterisks in the bottom spectrum indicate transitions due to the main 

chain polymeric radical of PMMA. The delay time is 500 ns and the sweep width is 

150 G in both spectra. ··················································································· 123 
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polymeric radical of PMMA. The delay time is 500 ns and the sweep width is 150 G 
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respective main chain polymeric radicals, i.e., RTPM/quenching involving the 
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Chapter 1. Introduction 

 

1.1      Study of Polymer Chain Dynamics in Solution  

Polymer chain dynamics in melts and highly concentrated solutions is a well–studied area 

of science [1, 2]. In such systems, the chain dynamics are not affected by the solvent and instead 

reflect bulk properties, where entanglement plays a major role, e.g., in the rheology of melts.  

 It can be difficult to understand their macroscopic behavior of polymer solutions due to 

the complexities of entanglement. In this regard, physical measurements of polymer 

conformational dynamics in dilute solution can be very informative as they can provide more 

information about the intrinsic polymer properties.  

The conformational dynamics of macromolecules is a topic of great interest and has been 

well-studied in polymer physics [3, 4], however most theoretical models in the field are based on 

so-called “coarse-grain” methods, i.e., balls and springs with standard potentials such as Lennard-

Jones or modifications thereof. There are very few models in the literature that use information at 

the molecular level [5a,b]; indeed there is only one published report of a molecular dynamics 

simulation of a polymer chain with solvent molecules included explicitly [5c]. Unlike a protein 

simulation, most polymer solution simulations cannot use water as their solvent, and therefore 

need to add one more term related to the interaction energies between polymer and solvent.  

In the work discussed here, molecular level parameters such as conformational energy 



 2 

potentials (well depths and activation barriers), are sought in order to assess the intrinsic properties 

of polymer chains in the absence of entanglements. By careful analysis of intrinsic polymer 

properties the role of entanglement in melt properties might be better understood (by eliminating 

them).  

In order to understand polymer behaviors at the molecular level, a polymer dilute solution 

can be used without entanglement, and with no overlapping chains. The polymer chain in solution 

can be isolated at special conditions where it is below critical concentration, and at theta (θ) 

temperature where the effective monomer and monomer interaction are weak thus polymer coil 

can consider as ideal chain.   

Nuclear magnetic resonance (NMR) has been the most widely used to study of polymer 

motions and conformation so far. 13C can be used in a NMR spin probe of polymer chain dynamic 

because of the sensitivity of 13C resonance frequencies or chemical shifts, δ13C, to polymer 

configuration and conformation [6]. Also, the measurement of segment diffusion and NMR spin-

lattice relaxation is a suitable method for studying polymer chain dynamics [7]. 

Like NMR, Electron paramagnetic resonance (EPR) spectroscopy has been used to obtain 

information about polymer motions and local chain behavior by using a spin probes, commonly 

stable nitroxide radicals. Depending on their rotational and translational motion, with correlation 

times (τc) along the polymer chain, the appearance of the EPR spectrum can be quite different [8]. 

Thus, studying their line shapes and widths as a function of the correlation times (τc) provides 

useful information about the segmental dynamics of a polymer. However, using a nitroxide spin 

probe is more suitable for investigation the bulk properties of polymer chain, not for extracting the 

molecular level parameters such as conformational energies.  

In this thesis, we investigate both short- and long-range conformational motion in  
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polymer chains in dilute solutions as a function of polymer main chain and side chain structure, 

temperature, solvent and concentration using a EPR study of localized vs. non-localized spin 

probes.  

The basic strategy for these studies is summarized in scheme 1. On the left side of the 

scheme 1 is the creation of carbon–centered radicals within the main chain of an acrylic polymer 

by photolysis (248nm) creates a highly localized, minimally perturbative spin probe, thus an EPR 

study of this localized spin probe is suitable to investigate the conformational energy landscape of 

polymer chains [9,10]. The main chain radical can only be observed in solution using the time-

resolved EPR (TREPR) technique: under steady-state conditions its rearrangement to the 

propagating radical via beta-scission is facile at room temperature and above. Because the 

electron-nuclear hyperfine interactions in the main chain radical depend on the dihedral angle 

between the p orbital containing the unpaired electron and the neighboring C-H sigma bond, the 

TREPR spectra of these main chain radicals show a strong temperature dependence for both line 

widths and line positions [11]. Changes in line width are related to the “jump time” between 

conformations, while changes in line position (at constant width) reflect changes in the populations 

of certain rotational conformers (“rotamers”). For this reason, the observed TREPR spectra are 

rich in information regarding the conformational landscape of the polymers, and this data can be 

obtained with only a minimal perturbation of the polymer chain structure. Thus, the degradation 

of acrylic polymers has been a subject of intense study in the Forbes laboratory for the past decade, 

and this thesis seeks to extend this work to create a workable “atom-specific” model for 

macromolecular chain dynamics that has so far proven elusive for these complex structures. In the 

process of creating the model, we will be using TREPR to study acrylic polymers that have not 

been investigated before but which appear to  
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Scheme  1.1 Graphical representation of Local vs. non-Local probes studied this thesis  
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show novel degradation pathways and different chain dynamics. 

The right side of Scheme 1 shows a longer-range conformational change that can also be 

probed using TREPR. In this case, the polymer is synthesized with a small percentage of stable 

nitroxide free radicals as side chains. When a photoexcited triplet states is created, it can be 

quenched by the nitroxide, or it can engage in Heisenberg spin exchange with the stable radical. 

In both cases the nitroxide radical receives additional population of its electron spin states that are 

non-Boltzmann. The magnitude of this polarization is directly proportional to the number of 

encounters made between the stable radical and the excited triplet state, and is therefore an indirect 

measure of the rate of intra-chain contact between the two sites. 

The photodegradation mechanism of several acrylate polymers and copolymers (block, 

random and hybrid) and TREPR characterization of their free radical reactive intermediates 

created after UV laser flash photolysis in dilute solution are described in Chapters 2 and 3.  In 

these chapters, the dynamic effects and conformational s of several blockcopolymers will be 

presented and discussed. Their dynamics behavior depends on polymer chain stiffness, 

temperature, block chain length and chain configuration will be discussed. Fast motion TREPR 

spectra obtained at high temperature will be used to allow for accurate simulations of their main-

chain polymer radicals. Chapter 4 describes radical-triplet pair interactions, which are used to 

detect long–range chain motion in acrylic polymers in dilute solution by incorporating a nitroxide 

into the polymer chain by means of covalent bonds, we can generate RTPM polarization via 

intramolecular encounters that depend on several structural and physical features of the 

polymer/solvent system. Additionally, Chapter 4 will present the dependence of the RTPM 

polarization in the covalently linked system as a function of nitroxide incorporation (mol%), 

temperature, solvent, and acrylic polymer ester side chain structure. 
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This chapter provides background information about the previous work in the Forbes 

laboratory on acrylic polymer degradation, the TREPR experiment itself and the relevant CIDEP 

mechanisms to the new work presented in this thesis.  

 

1.2   Characterization of Main-Chain Radicals from the Photodegradation of Acrylic Polymers 

The photodegradation mechanisms of polymers have been a subject of intense interest in 

for many years [12], and many of these reactions involve free-radical intermediates [13]. In our 

laboratory, we have used TREPR spectroscopy to investigate the degradation of acrylic polymers 

as a function of polymer structure, solvent, pH, and temperature [9, 10, 14, 15]. The generic main-

chain acrylic polymer radical (Figure 1.A, top center), obtained after 248 nm laser flash photolysis 

of the ester side chain, rapidly rearranges to the so-called propagating radical (Figure 1.B, bottom 

left) and an alkene via β-scission. For this reason, the main-chain radical is not generally 

observable with high spectral resolution in SSEPR experiments involving acrylic polymers [16]. 

However, the TREPR experiment is fast enough to observe both main-chain acrylic radicals and, 

in some cases, the corresponding oxo-acyl counter radicals (Figure 1.C, top right) on the 

microsecond timescale. Here is the brief review of our recent findings regarding the structure and 

dynamics of acrylic main-chain radicals created by 248 nm laser flash photolysis of the polymers 

shown in Figure 1.2.  

Poly(ethyl acrylate) (PEA) was the starting point for our investigation as it has the simplest 

structure. The following two polymers in this series, poly(ethyl methacrylate) (PEMA) and 

poly(ethyl cyanoacrylate) (PECA), have the same ester side chains (b-substituent –CH2CH3), as 

PEA. However, the α-substituent of the polymer backbone is different in all three of the ethyl 

acrylates. The side-chain structural differences in these polymers can have a strong influence on  
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Figure 1.1 Photochemistry and free radicals resulting from 248 nm excimer laser excitation of 
acrylic polymers in solution 
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Figure 1. 2 Structures of polymers characterized by TREPR 
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the appearance of TREPR spectra, especially the line widths. The next polymer, poly 

(methyl methacrylate) (PMMA), has been extensively studied in our previous papers because of 

the interesting nuclear spin symmetry properties of their main-chain radicals as a function of 

polymer tacticity. In addition, PMMA-d3 was also investigated to confirm the spectral assignments 

by isotopic labeling with TREPR. The last polymer structure listed in Figure 1.2 is 

Poly(fluorooctyl methacrylate) (PFOMA), where, the β-substituent is the –CH2(CF2)6CF3 bulky 

ester side chain, which has very different physical properties from other acrylate polymers [17].  

The stiffness of the main chain due to the bulky side chain produces a huge change in the TREPR 

spectral appearance of the resulting radicals.   

The TREPR spectra obtained 0.8 μs after 248 nm laser flash photolysis of six acrylic 

polymers are shown in Figure 1.2, along with simulations for some of the spectra computed using 

magnetic parameters listed in Table 1.1. All TREPR spectra shown in Figure 1.3 were recorded at 

high temperature (above 100 °C) where the “fast-motion” regime of the polymer dominated. The 

TREPR spectra of the main-chain polymeric radicals mentioned in our previous work exhibit 

alternating line widths at room temperature, a phenomenon that is highly indicative of 

conformationally modulated hyperfine interactions (slow motion). However, upon heating, most 

acrylic polymer main-chain radicals show motional narrowing with sharp line widths, allowing us 

to simulate the spectra using an average set of hyperfine coupling constants.  

Figure 1.3A shows the experimental high-temperature TREPR spectrum obtained after photolysis 

of PEA in propylene carbonate solution. This radical shows six major transitions with the doublets 

of the innermost lines attributed to two β-methylene hyperfine couplings of 23.0 and 24.7 G and 

one α-hyperfine coupling of 21.5 G, which were comparable to the reported literature values for 

radicals of similar chemical structure. The oxo-acyl radical from PEA was not   
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Figure 1.3 (A–E) Experimental TREPR spectra (left) and simulated spectra (right) for main-chain 
acrylic radicals observed at 0.8 µs after 248 nm laser flash photolysis for the polymers indicated (see 
Fig. 1.2 for polymer structures and Table 1.1 for radical structures). (A) PEA, (B) PEMA, (C) PECA, (D) 
PMMA, (E) PMMA-d3, all obtained in propylene carbonate. (F) TREPR spectrum (left, experimental; 
right, simulated) of the oxo-acyl radical from PFOMA, obtained in the high boiling fluorinated solvent 
mixture FC-70. For PMMA, the material is isotactic (91% by NMR), but all other polymer samples are 
atactic material. Simulation parameters (ref. [10]) are listed in Table 1.1. 
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  Table 1.1 Parameters Used to Simulate TREPR Spectra (Fig. 1.3) of Polymer Main-Chain 
  radicals and Oxo-Acyl Radicals, Created Using the Photochemistry Outlined in Fig. 1.1  
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observed at high temperature because the signal from this radical decays rapidly due to fast spin 

relaxation [18]. Compared to PEA, the α-substituent methyl group in PEMA has a large effect on 

the appearance of the TREPR spectrum. For example, the spectrum resulting from photolysis of 

PEMA (Figure 1.3B) consists of a 27 line spectrum associated with three separate isotropic 

hyperfine coupling constants. There is coupling to the methyl group to form a quartet (22.9 G), 

which is split further into a triplet from one set of diastereotopic β-methylene protons (15.8 G) and 

another triplet from the other set (11.2 G). Technically, the maximum expected number of 

observable transitions is 36 (a quartet of triplets of triplets) for the PEMA radical spectrum, but 

there are accidental degeneracies, leading to a smaller number of observed transitions. 

Similar to the α-substituent dependence described earlier, the spectrum from the PECA 

radical is quite different from the TREPR spectrum of the PEA radical. At a glance, there are five 

transitions (Figure 1.3C) from coupling to the β-methylene protons, but each peak is further split 

into three additional lines from the γ-nitrogen (I=1) in the nitrile group. From the simulation 

parameters in Table 1.1, a hyperfine coupling of 3.3 G is assigned to the γ-nitrogen and couplings 

of 16.3 and 14.8 G are assigned to the β-methylene protons. Figure 1.3D shows the TREPR 

spectrum of the main-chain polymeric radical from photolysis of i-PMMA along with computer-

simulated TREPR spectrum. 

We have previously studied the temperature dependence of all three tacticities (isotactic, 

syndiotactic, or atactic) of main-chain radicals from PMMA and noticed that β-methylene 

hyperfine coupling constants in the PMMA main-chain radical enjoy a symmetrical relationship 

because there are stereogenic centers on every carbon atom in the polymer. This relationship is 

expressed graphically on the right hand side of Figure 1.4 along with the possible main-chain 

radicals created by UV photolysis. After loss of the ester side chain, the polymeric main-chain  
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Figure 1.4 Symmetry relationships between the nuclear hyperfine coupling constants in acrylic 
polymers as a function of polymer tacticity  
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radicals can exist as either meso radicals or racemic radicals. The fast-motion spectrum of 

the PMMA radical from i-PMMA, which has a more flexible chain due to its slightly lower Tg 

than the other two PMMA tacticities, consists of 21 lines attributed to three separate isotropic 

hyperfine coupling constants. As noted in Fig. 1.3D, the splitting pattern for PMMA is expected 

to show 36 lines, but a smaller number of transitions are observed, while syndiotactic and atactic 

PMMA show 27-lines, due to a lifting of an accidental degeneracy. It is also possible that we have 

not completely reached true “fast motion” at these temperatures for these stiffer polymers. These 

accidental degeneracies arise because one of the β-methylene coupling constant (11.7 G)  

is almost exactly half of the value of the methyl proton coupling constant (22.9 G). 

Figure 1.3E shows the experimental and simulated TREPR spectra obtained during the photolysis 

of PMMA-d3, which was used to confirm the assignment of the experimental spectrum from 

PMMA in Figure 1.3D. 

All of the spectra from polymeric radicals shown here exhibit strong net emissive spin  

polarization from the TM, and none from the Radical pair Mechanism (RPM) or the Spin correlated 

radical pair (SCRP) mechanism. As shown in Fig. 1, both main-chain radicals and oxo-acyl 

radicals are created after photolysis, and these radicals have drastically different diffusional 

properties in solution. The oxo-acyl radical is small and will diffuse faster than the main-chain 

radical. This will lead to weak RPM polarization and will completely quench the SCRP mechanism. 

The radical-producing reaction here is predominantly from the triplet state and quite efficient, 

given the rather weak absorbance (A~0.1 for our solutions) at 248 nm. In fact, these polymer 

solutions begin to absorb at about 250 nm, which is just on the edge of the n–π* excitation of the 

ester carbonyl group. The photochemistry does not create a large amount of radicals with each 

laser flash, but the triplet polarization they carry must be extremely intense. 
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It is also of interest to consider why the oxo-acyl radicals are not observed at high 

temperatures. All of the spectra from the polymeric radicals previously presented and discussed 

(Figure 1.3A–E) show very intense main-chain radical signals, whereas the oxo-acyl radical signal 

is weak or absent from the TREPR spectrum at high temperature due to fast spin relaxation. The 

opposite relative intensities are observed for PFOMA (Figure 1.3F): In this case, the polymeric 

main-chain radical did not show a fast-motion spectrum even at very high temperatures, and only 

the oxo-acyl radical from the side chain was observed. This is understandable because of the steric 

bulk and conformational rigidity of the perfluoroalkyl ester side chains. Also, the fluorinated oxo-

acyl radical has a much longer rotational correlation time than its alkyl analog. 

 

1.3       Experimental overview of TREPR  

1.3.1    Steady-state EPR (SSEPR) vs. TREPR 

Paramagnetic species such as radicals and molecules in the excited triplet state are 

important intermediate species in photochemical reactions [19]. EPR is one of the desirable tools  

that give us direct information about their structure and dynamics, and, typically, there are two 

different techniques which are used: SSEPR and TREPR.   

EPR deals with the interaction between electromagnetic radiation and the magnetic 

moment of one or more electrons with an external magnetic field. In the absence of an external 

magnetic field, the two spin states of an unpaired electron, with symbols α and β (or with the 

numbers Ms = ± 
1

2
), are degenerate. In the presence of an applied field, the magnetic moment of 

the electron aligns itself either parallel (-
1

2
) or antiparallel (+

1

2
) to the field, with the parallel 

alignment being lower in energy. The separation in energy levels of the two states of the electron 

(ΔE) is dependent on the strength of the magnetic field and is given by:     
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                                           ∆𝐸 =  𝑔𝑒 𝛽𝑒𝐵0 = ℎ𝜈                                                           (1.1) 

where 𝛽𝑒 is the Bohr magneton, 𝐵0 is the applied magnetic field, and g is the chemical shift 

of the electron. These energies are called Zeeman energies, and Figure 1.5 shows the energy level 

diagram for one unpaired electron in a magnetic field. Transitions can occur between two energy 

levels (labeled α and β in figure 1.5) via absorption of electromagnetic radiation from a specific 

magnetic field when the frequency of the microwave (𝜈) matches the separation energy (∆𝐸).   

The EPR spectrum of a radical is sensitive to the spin state of neighboring nuclei and other 

nearby electrons [19]. The interaction between an unpaired electron and a neighboring, nuclear-

dipole moment causes splitting of the resonance (referred to as the hyperfine interaction) and the 

resulting splitting in the EPR spectrum is known as the hyperfine structure.  

Figure 1.6 shows the energy level diagram of a radical hyperfine interaction with neighboring 

nuclei for I=1. All observable EPR transitions must follow quantum mechanical selection rules, 

𝛥𝑀𝑠 = 1 and 𝛥𝑀𝐼 = 0, which results in possible transitions for three transitions when I=1. The 

EPR spectrum of a radical is sensitive to the spin state of neighboring nuclei and other nearby 

electrons [19]. The interaction between an unpaired electron and a neighboring, nuclear-dipole 

moment causes splitting of the resonance (referred to as the hyperfine interaction) and the resulting 

splitting in the EPR spectrum is known as the hyperfine structure.  

TREPR is a direct detection technique, and the time response of TREPR (50 ns) is about 3 

orders of magnitude faster than is that of the SSEPR (40 μs). For all experiments described in this 

thesis, a fixed frequency of electromagnetic radiation at 9.5 GHz (X-band) was applied and 
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Figure 1.5 Energy level diagram depicting a single spin system in a external magnetic field. When 
the resonance condition is met, a single observable transition can occur between the two spin 
states, as shown by the double arrow in the figure 
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Figure 1.6 Energy level diagram demonstrating the hyperfine interaction and observable transitions 
of a radical coupled to a neighboring nucleus with I=1  
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the strength of the magnetic field was gradually increased. TREPR uses continuous wave 

excitation in the same way as a SSEPR spectrometer. A standard “out of the box” commercial 

instrument operating at X-band will typically use a cylindrical microwave resonator tuned to its 

resonant frequency with a capillary sample in the center. The EPR transitions are detected by 

sweeping an external magnetic field B0 (provided by an electromagnetic with a range of 0 to ~ 6 

kG) through each resonance at a constant microwave frequency ω0 [19]. 

A key feature that separates the SSEPR experiment from any others is that the external 

field is modulated as it is swept, usually at a frequency of 100 kHz, so that phase-sensitive 

detection can be used to increase the signal-to-noise (S/N) ratio. The resulting spectra have first-

derivative line shapes, which often help to improve spectral resolution (Figure 1.7). Care is taken 

to keep the amplitude of the field modulation smaller than the line widths of the signals to avoid 

line shape distortions. A consequence of the use of 100-kHz field modulation is that the time 

response of the spectrometer becomes limited to, at best, the inverse of the modulation frequency. 

Practically, for good S/N, three or four cycles of modulation are necessary, which means that 

species with chemical lifetimes less than about 40μs become difficult to detect. Since most organic 

radicals have lifetimes in solution on the order of 10–100μs, their detection can be problematic 

when using SSEPR at room temperature.  

The “direct detection EPR” or Time-resolved (CW) EPR is distinguished from SSEPR 

methods. The term “direct detection” arises from the fact that the 100-KHz field modulation 

employed in SSEPR is bypassed and instead the EPR signal coming directly from the 

spectrometer’s microwave bridge preamplifier circuit is sampled electronically on short timescale 

after its creation. The method finds a balance between sensitivity (about the same as SSEPR in 

terms of radical concentrations in liquids) and time response (about 50 ns at X-band  
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Figure 1.7 Steady-state EPR detection using 100 kHz field modulation and the 
resulting first derivative line shape 
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and 10 ns at Q-band, three orders of magnitude faster than SSEPR). The time response at X-band 

is generally limited by the resonator quality factor (more on this later). The TREPR method is most 

useful for obtaining high-resolution EPR spectra of organic free radicals in the sub-microsecond 

time domain without the restriction on spectral width associated with pulsed methods.  

In addition, a major advantage of the direct detection TREPR technique is the observation, 

on the timescale of typical free-radical electron spin relaxation times (0.1–10 μs), of several 

chemically induced spin polarization processes that give insight into the mechanism of the reaction 

that generated the radicals, their motional dynamics (both intra- and intermolecular), and other 

characteristics regarding the photochemical precursors such as their spin multiplicity.  

 

1.3.2    Experimental considerations for TREPR 

Figure 1.8 shows how the components for TREPR experiments are arranged and connected to the 

commercial instrument [20].  

In addition to an operational EPR spectrometer (commercial or home-built), the TREPR 

experiment requires the following instrumentation: a pulsed laser to initiate radical reactions along 

with any required optics to guide the beam into the resonator, a boxcar signal averager or transient 

digitizer for trapping the EPR signal on the sub-microsecond timescale, a computer interface to 

the spectrometer to collect field-swept EPR data, a fast photodiode for observation of the laser 

pulse, an oscilloscope to monitor the timing of the experiment, and a pulse delay generator to 

control the timing of the laser pulses and fast signal detection. Other useful additions include a 

micro pump for flowing samples, a source of dry nitrogen gas for purging the samples as they are 

circulated, and a quartz flat cell to maximize the sample volume exposed to the laser    
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Figure 1.8 Block diagram of the TREPR experiment using a boxcar signal averager 
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beam (the flat cell also allows for the experiment to be conducted with high dielectric solvents 

such as water). A mechanism for heating or cooling the sample as it enters or exits the EPR 

resonator can be desirable.  

It is instructive to outline the timing sequence for the various electronic components and 

discuss how they affect the overall performance of a TREPR experiment. Such a sequence is shown 

in Figure 1.9. For the TREPR experiment, the external magnetic field sweep, which is controlled 

either internally by clock pulses in the spectrometer or externally by a computer-generated ramp. 

In either case, the field sweep is divided up into a certain number of data points (in our instrument 

1000 points) that can be saved, along with the TREPR signal intensity at that point, as an x–γ array 

in the computer.  

The timing sequence originates from a pulse generator (in our case, a Stanford DG535 

digital delay generator providing TTL output pulses), from which the laser and boxcar (or digitizer) 

are triggered. The repetition rate of the experiment is 60–100 Hz for an excimer laser and 10–30 

Hz for a Nd:YAG laser, with the actual rate depending on the laser model in each case. Typical 

sweep times are 2 or 4 min with the laser repetition rate set at 60 Hz. This means that in a 4-min 

scan, there are 60 s-1 ~ 240 s/1000 ~14 laser flashes per magnetic field data point. The sampling 

gates are 100–300 ns wide, with one positioned in front of the laser flash to collect the dark EPR 

signal and one after the flash to collect the light+dark signal. Subtraction of the two gate voltages 

gives the light induced TREPR signal. The fast photodiode allows the laser flash to be observed 

on the oscilloscope so that the boxcar gates can be properly positioned.  

It is important to note here two disadvantages of the TREPR technique. It is not generally  

possible to observe a Boltzmann (equilibrium) population of spin states using the boxcar method, 

because of the 1/f noise. Also, lifetime broadening effects are observed when the second boxcar 
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Figure 1.9  Timing sequence for the TREPR experiment using a boxcar signal averager 
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gate is placed close in time to the laser flash. This is a consequence of having the microwave 

excitation running continuously in TREPR. Near the laser flash, and during the photochemical 

events that produce radicals, the apparatus is attempting to excite spin states that are still in the 

process of forming. As stated earlier, small interactions such as hyperfine couplings take time to 

evolve and may not be visible in the TREPR spectrum for several hundreds of nanoseconds after 

the laser flash. When structural information about an unknown radical is desired, it is important to 

collect spectra at multiple delay times to make sure maximum spectral resolution has been 

achieved.  

 

1.4       Chemically Induced Electron Spin Polarization (CIDEP) Mechanisms  

In spectroscopy, it is common for transitions to be observed as absorptive lines because the 

Boltzmann distribution, at equilibrium, ensures a higher population of the lower state than the 

upper state (Figure 1.10 A). Examples where emission is observed, which are by definition non- 

equilibrium situations, are usually cases where an excess population is created in a higher energy 

level by adding energy to the system from an external source such as photolysis. CIDEP 

phenomena in EPR spectroscopy can show both enhanced absorption (greater absorptive signal 

intensity than predicted by the Boltzmann factors) and emission in the observed spectra. (Figure 

1.10 B) What makes the non-Boltzmann populations observed in TREPR experiments so unusual 

is that, in some cases, electron- and/or nuclear spin dependent chemical reactions (homolytic bond 

breaking or forming) are responsible for the process. While it requires energy to break a chemical 

bond, once it is broken, the mixing of spin wave functions in the resulting radical pair (RP) is all 

that is necessary to make some NMR and EPR transitions appear with the so-called spin 

polarization.    
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Figure 1.10  (A) Energy level diagram of a single electron in the magnetic field with population 
distribution in these two level (B) Spin polarization: Enhanced absorption and emission observe 
because excess population is created in a higher energy level by putting energy into the system from 
an external source such as photolysis 
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The idea that the nuclear spin state energy-level differences (which are much smaller than 

kT at room temperature) could be responsible for different chemical reaction rates was 

revolutionary and somewhat controversial, especially with the observation of the nuclear spin 

polarization phenomenon (CIDNP) in NMR spectroscopy. As more and more experiments were 

performed to investigate this phenomenon, the idea rapidly gained acceptance and in fact helped 

connect solution dynamics of small molecules to spin quantum mechanics in a very natural and 

informative way. Later on in the development of CIDEP theories, the requirement for chemical 

reaction to take place was lifted - many of these cases will be presented in this work.  

CIDEP phenomena are observed in most TREPR-detected photochemical reactions that 

produce radicals, radical ions, or biradicals. Indeed, it is from CIDEP that some of the sensitivity 

is regained that was lost in bypassing the phase-sensitive detection unit (100 kHz field modulation) 

is regained.  

An additional improvement in TREPR sensitivity comes from the use of the boxcar to 

signal average. In all of the TREPR spectra shown in this dissertation, transitions below the 

baseline are in emission (E), while those above the baseline are in enhanced absorption (A). This 

is different from conventional SSEPR spectra, which, as noted in Figure 1.7, are displayed as first-

derivative curves representing the change in detected intensity with the external field.  

There are four well-known CIDEP mechanisms: the Triplet Mechanism (TM), the Radical 

Triplet Pair Mechanism (RTPM), Radical Pair Mechanism (RPM), Spin Correlated Radical Pair 

Mechanism (SCRP). The spectra presented in this dissertation exhibit polarization from the TM 

and RTPM, and the following two sections of this chapter will briefly outline the basic 

phenomenon of these two types of CIDEP mechanisms and provide an example of each 

mechanism that highlights the specific spectral features.  
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1.4.1    The Triplet Mechanism (TM) 

The TM is often considered to be the simplest CIDEP mechanism [21]. Qualitatively, the 

mechanism is outlined in Figure 1.11, which suggests that the intersystem crossing (ISC) process, 

usually by spin-orbit coupling, from excited singlet state (S1) to excited triplet state (T) in the 

organic molecules will populate the triplet spin states TX, TY, and TZ differently even in the absence 

of a magnetic field.  

The labels TX, TY, and TZ represent the triplet state energy levels in the molecular coordinate system 

(frame of reference); these are known as the zero-field basis functions. Because spin orbit coupling 

is anisotropic in this frame, the TZ spin state is overpopulated in Figure 1.11 (thicker bars represent 

higher populations) during ISC process, and this excess population is then transferred to the spin 

state T+ (=|𝛼𝛼⟩) of the laboratory frame of reference (in which the Z-axis is directed along the 

applied magnetic field of the spectrometer). The net polarization of the electron spins in the triplet, 

created during the spin–orbit coupling (SOC) process from S1 to T, is transferred to the radicals 

resulting from photochemical reactions of the triplet. Over time, the  

populations of the spin states of the triplet relax to their Boltzmann equilibrium values. 

Experimentally, it is observed that all of the resonance lines of both radicals in the TREPR 

spectrum of such systems are polarized equally and either are polarized positively (enhanced 

absorption, A) or polarized negatively (emission, E). Several examples of TM will be discussed in 

chapters 2 and 3. Most TREPR spectrum of polymer main chain radicals discussed in those two 

chapters show net emissive polarization.  
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Figure 1.11 The TM of CIDEP. (A) Photoexcitation of an organic molecule from its ground state to the 
first excited singlet state, ISC by spin–orbit coupling to the first excited triplet state (a spin-selective 
process) in the molecular frame, transformation to the laboratory frame, and reaction of the spin-
polarized triplet state to create free radicals, in this case with net emission.  A change in the sign of 
the zero-field splitting parameters can lead to a change in the phase of the TM to net absorption 
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1.4.2    The Radical-Triplet Pair Mechanism (RTPM)  

The quenching of excited states by molecules has been extensively investigated on 

photochemical and physical processes, such as energy transfer, triplet-triplet annihilation, and 

quenching by radicals.  In particular, the system which includes excited triplet state quenching by 

free radicals, shows CIDEP effects which are observable by TREPR.  

Two mechanisms have been proposed to explain the polarization associated with triplet-

doublet (T-D) systems; one is a radical triplet pair mechanism (RTPM), and the other is an electron 

spin polarization transfer (ESPT) mechanism.       

The radical-triplet pair mechanism (RTPM) of CIDEP, as its name implies, for its 

polarization requires an interaction between an excited molecular triplet state and a free radical, 

usually a stable nitroxide structure. The participation of a stable radical is not a requirement for 

the appearance of the RTPM, nor is the phenomenon restricted to liquid solution. In some 

photochemical reactions, a large concentration of excited triplet states are produced, leading to 

spin–spin interactions between the excess triplets and the unstable free radicals produced from 

previous reactions. The polarization mechanism itself is explained as follows: In free solution, 

encounters between molecules (M) in their electronically excited singlet (1M*) or triplet (3M*) 

states with radicals (R) in their ground doublet state (2R) result in either enhanced intersystem 

crossing (EISC) or deactivation of the electronic excitation. The quenching reaction of an 

electronically excited triplet state with free radicals splits the quartet (Q) and doublet (D) spin 

states of a “radical-triplet (RT) encounter complex” with exchange interaction, J:  

 

                     4[3M* ⋅⋅⋅ 2R] → 3M* + 2R                                                                                   (1.2) 
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                     3M* + 2R →   4[3M* ⋅⋅⋅ 2R] → 1M  + 4R*                                                                                           (1.3) 

                     2[3M* ⋅⋅⋅ 2R] → 1M  + 2R*                                                                                                                            (1.4) 

                     2[3M* ⋅⋅⋅ 2R] → 1M  + 2R                                                                                    (1.5) 

                                                                

In the non-adiabatic potential surface, where free radicals have no electron spin 

polarization because four quartet spin states are equally populated after dissociation, but Reaction 

(1.2) is possible has never been conclusively observed. Relying on numerous transient optical 

absorption spectroscopy experiments [22–27], it was concluded that quenching reactions (1.3) and 

(1.4) occur at diffusion-controlled rates if the electronic energy of the excited molecular triplet 

state is higher than the energy of the doublet excited state of the radical. In other words, quenching 

is effective when it is followed by energy transfer (reaction 1.4) and is ineffective when energy 

transfer is impossible (reaction 1.5). Reactions (1.3)–(1.5) are collectively called the EISC 

processes shown in figure 1.12 and 1.13.  

Imamura et al. [28] discovered that stable nitroxide radicals that encounter excited 

molecular triplet states can develop ESP (electron spin polarization). This phenomenon has been 

confirmed in numerous other experimental studies [29–33] and is now included in the CIDEP 

family with two separate abbreviations: RTPM and ESPT (electron spin polarization transfer). 

These are used to differentiate between two possible mechanisms for the generation of ESP.  

The RTPM polarization is determined by the multiplicity of an excited state (S1 or T1) and 

the sign of an exchange parameter, J, between the triplet and the radical. On the other hand, in the 

case of ESPT, the spin polarization of the excited T1 state via a spin-selective ISC is transferred to 

a stable radical via an energy transfer or a spin exchange interaction, and the overpopulation of the 

higher energy spin level of the stable radical (for TEMPO, spin level),  
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Figure 1.12 Energy levels of a radical–triplet pair as a function of their separation. Schematic 
explanation of net emission CIDEP created by excited triplet quenching by stable free radical.  The red 
circles show the mixing region where RTPM polarization is generated. The black dots represent the 
population. 1. Encounter, 2. Quenching and 3. Separation steps. The quartet (4RT0) and doublet (2RT0) 
spin states are energetically separated by intermolecular exchange interaction, J. After the separation 
of the residual 4RT0 -spin is enriched on stable radical.  
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Figure 1.13 Energy levels of a radical–triplet pair as a function of their separation. Schematic 
explanation of net absorption CIDEP created by excited singlet quenching by stable free radical. The 
black dots represent the population.1. Encounter, 2. Quenching and 3. During the separation of the 
2RT0 -spin is enriched on stable 
radical 
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and the overpopulation of the this level results in the observation of emission in the observed 

TREPR spectrum.  

As shown in the figure 1.12, neglecting the Boltzmann spin polarization, we can assume that when 

a molecular triplet collides with a stable nitroxide radical, the resulting Radical-Triplet (R-T) (or 

collision complex) pair creates six equally populated electron spin states a molecular triplet 

collides with a stable nitroxide radical, the resulting Radical-Triplet (R-T) (or collision complex) 

pair creates six equally populated electron spin states {|𝑇+𝛼⟩, |𝑇+𝛽⟩, |𝑇0𝛼⟩, |𝑇0𝛽⟩, |𝑇−𝛼⟩, |𝑇−𝛽⟩. At 

the distance of closest approach (R) between the radical and the triplet state, the exchange 

interaction dominates all of the magnetic interactions in  the R-T pair. The electronic spin levels 

of the system can be labeled according to the total spin F=T+ D, resulting in four quartet spin 

states: |𝑄+3 2⁄ ⟩, |𝑄+1 2⁄ ⟩, |𝑄−1 2⁄ ⟩, |𝑄−3 2⁄ ⟩ and two doublet spin states |𝐷+1 2⁄ ⟩  and |𝐷−1 2⁄ ⟩ , the 

latter two being lower in energy than the former four if the J is negative (Fig. 1.12). The doublet 

states are depopulated because of quenching reaction (1.4) earlier. If the exchange interaction is 

the only interparticle interaction, the |𝐷+1 2⁄ ⟩ spin state of the R-T complex correlates with the 

|𝑇+𝛽⟩ state of the separated R-T pair, and the |𝐷−1 2⁄ ⟩ correlates with the |𝑇−𝛼⟩ state. For this 

reason, spin-selective quenching does not lead to ESP. However, the spin–spin dipolar interaction 

between the electron spins located in the triplet (ZFS) does not commute with the Hamiltonian of 

the R-T pair, the elements of which are coupled by the exchange interaction. This creates mixing 

of the spin states in the vicinity of the avoided crossings of the spin states, which are the circled 

points in Fig. 1.12. 

As a consequence, the spin states |𝑄−1 2⁄ ⟩ and |𝑄−3 2⁄ ⟩ become involved in depopulation 

because of quenching through mixing with the spin states |𝐷+1 2⁄ ⟩ and |𝐷−1 2⁄ ⟩, and the remaining 

two quartet states |𝑄+3 2⁄ ⟩  and |𝑄+1 2⁄ ⟩ , which correlate with the |𝑇+𝛼⟩ and |𝑇0𝛼⟩ spin states, 
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remain passive. 

This increases the population of the|𝑇+𝛼⟩ and |𝑇0𝛼⟩ spin states of the separate R-T pair, 

creating an excess of the |𝛼⟩ spins located in the radicals. In the TREPR experiment, this 

depopulation process manifests itself as emissive polarization in the three-line nitroxide radical 

signal. It should be noted that a corresponding correlation diagram for a positive exchange 

interaction (quartets with lower energy than the doublet spin states) could be constructed in a 

similar fashion and leads to radicals that have escaped from the R-T encounter with positive 

polarization (enhanced absorption) as shown in figure 1.13.  

Evans [34] was the first to discover that strongly forbidden singlet–triplet UV optical 

absorptions in aromatic molecules can be induced by paramagnetic substances, particularly oxygen. 

Later, Hoijtink [35] and Murrell [36] proved that the intermolecular exchange interaction was a 

driving force for this 1M* → 3M* EISC in electronically excited molecules. 

There are five general spin-allowed reactions of 2R with electronically excited singlet 

molecules 1M*:  

i. EISC: 1M*  + 2R ⟶ 2[1M* ⋅⋅⋅ 2R] ⟶ 3M* + 2R                                                (1.6)         

ii. Quenching: 1M*  + 2R ⟶ 1M  + 2R                                                                 (1.7) 

iii. Energy transfer: 1M* + 2R ⟶ 2[1M* ⋅⋅⋅ 2R] ⟶ 1M  + 2R*                                               (1.8) 

iv. Charge transfer: 1M* + 2R ⟶ 2[2M± ⋅⋅⋅2R∓] ⟶ 3M* + 2R                              (1.9)            

                           1M* + 2R ⟶ 2[2M± ⋅⋅⋅2R∓] ⟶ 1M  + 2R                                           (1.10)          

                   

Among these possible processes, EISC 1M* → 3M* (reactions 1.7 and 1.9) are the most 

effective [37,38]. Reaction (1.7) is followed by the generation of ESP [39,40]. The ESP generated 

in processes (1.6) and (1.7), they are called QP RTPM and DP RTPM, respectively. For a negative 
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exchange interaction, QP RTPM always results in emissive net polarization of radicals, and the 

DP RTPM mechanism results in positive polarization. The notable examples of RTPM will be 

discussed in Chapter 4. The radical-triplet pair interactions can be used to investigate the dynamics 

of acrylic polymers in dilute solution. By incorporating a nitroxide into the polymer chain via 

covalent bonds, we can generate RTPM polarization via intramolecular encounters that depend on 

several structural and physical features of the polymer/solvent system. The magnitude of this 

polarization is directly proportional to the number of encounters made between the stable radical 

and the excited triplet state, and is therefore an indirect measure of the rate of intra-chain contact 

between the two sites. 

 

 
 
 
 



 

 

 

 

Chapter 2. Photochemistry of acrylate-POSS block copolymers and dynamic effects in 

copolymer radicals  

 

2.1       Introduction  

            As discussed in Chapter 1.4.1, the degradation of acrylic polymers has been a subject of 

intense study in our laboratory for the past decade, and our TREPR techniques are powerful enough 

to investigate the photochemical and photophysical properties of acrylic homopolymers. The 

creation of carbon–centered radicals within the main chain of an acrylic homopolymer provides a 

means to investigate the conformational energy landscape using a highly localized, minimally 

perturbative spin probe.  

Because the electron-nuclear hyperfine interactions in the main chain radical depend on 

the dihedral angle between the p orbital containing the unpaired electron and the neighboring C-H 

sigma bond, the TREPR spectra of these main chain radicals show a strong temperature 

dependence on both line widths and line positions. Changes in line width are related to the “jump 

time” between conformations, while changes in line position (at constant width) reflect changes in 

the populations of certain rotational conformers (“rotamers”). Additionally, alternating hyperfine 

line width effect is shown in lower temperature spectra of acrylate polymers because system 

involves dynamic effects due to conformational motion. As mentioned in chapter 1.4.1, polymer 

tacticity plays a strong role in both the overall spectral appearance and in the temperature-

dependent line broadening processes.  

For this reason, the observed TREPR spectra are rich in information regarding the 
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conformational landscape of the polymers. Furthermore, because the photochemistry involved in 

these studies is destructive, characterization of the observed free radicals can offer insight into the 

degradation mechanism of acrylates in solution with high spectral resolution and unambiguous 

assignment of the reactive intermediates involved. However, the photodegradation mechanisms of 

block copolymers are not yet fully understood because the dynamics of block copolymer chains 

are expected to be much more complicated than that of the homopolymer.  

The polyhedral oligosilsesquioxane (POSS)-based polymers, one of the most studied 

inorganic-ogranic hybrid copolymers, are of significant interest, with diverse potential applications 

such as biomaterial [41], molecular optics [42], electronics [43], and coatings and films [44]. This 

is because they show unique physical properties such as a high modulus, a high resistance to 

oxidation and an increased stability to UV light compared to other acrylic structures.  

In this chapter, we will discuss the photochemistry of several acrylate-POSS block 

copolymers that have not been investigated before and we will show novel degradation pathways, 

the relationship between degradation stability and microstructure, and interesting chain dynamics. 

Before going into detail regarding the TREPR results of these POSS-based copolymers, it is useful 

to present some background on previous studies on acrylate-POSS polymer degradation, including 

the structure of both POSS and POSS based polymers. 

 

2.1.1    POSS and POSS based Polymers  

The properties of these hybrid polymers rely on the quality and nature of inorganic filters 

(nm or μm) embedded in the polymer matrix and in order to minimize the total surface energy, 

these nano-scale inorganic particles tend to aggregate in the polymer matrix.  Several studies have 

been conducted to create well-dispersed hybrid polymers and solutions [42,45], e. g.:  
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1) By modifying and incorporating inorganic filters into organic groups via covalent 

bonds; or, 

2) By using melt-mixing or in-situ polymerization to improve compatibility between 

the inorganic and the polymer matrix   

By using the former method, POSS can be produced and the inorganic filters naturally 

disperse into the matrix.  

POSS is one of many kinds of silsesquioxane molecules. The term silsesquioxane refers to 

the chemical structures following the basic composition of (RSiO1.5)n, n is typically 8, 10, 12, 16, 

17. Here, the R-group, also called the vertex group for polyhedral molecules, may be hydrogen, 

alkyl, alkylene, and aryl arylene among others6.  

The molecular architecture of silsesquioxanes can be classified into two categories: (a) 

non-caged structure and (b) caged structure (the most prevalent structure shown in Figure 2.1). 

Only caged silsesquioxanes are usually called POSS and these are well-defined, highly symmetric 

molecules.  POSS molecules with an inorganic core composed of silicon-oxygen (R8 Si8 O12) are 

the most common structures used in studies of physical and photochemical properties.  

The overall performance of POSS base polymers relies on how POSS moieties are 

incorporated into the polymer chains, and this in turn affects the local molecular interaction and 

chain mobility. Highly symmetric POSS molecules are tethered to eight organic groups including 

methyl, isobutyl and phenyl, which surround and are bonded to the silicon vertices [46].  

One or more corner groups can be substituted by functional groups, such as methacrylate, 

butyl methacrylate, acrylate, or styrene to produce POSS based polymers with the structure 

shown in Figure 2.2 [47,48].   
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Figure 2.1 Chemical structures of silsesquioxanes.  non-caged (left) vs. caged (right) 
silsesquioxanes 
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In 1946, Scott successfully synthesized well-defined POSS structures, after which the Air 

Force Research Lab developed a series of linear random and block POSS structures containing 

copolymers [49]. So far, research on POSS-based polymer and copolymers has continued in 

several research labs, but especially at the Air Force Research Lab due to an interest in their 

development as aerospace coatings [50-52].  

 

2.1.2    Degradation studies of POSS-based Polymer   

            Common polymers such as acrylate polymers can be easily degraded by interactions with 

UV-light [53] and under high temperature [54], so it can be undesirable to use these polymers in 

outdoor applications such as architectural coatings or packaging materials that may be exposed to 

light. Several studies have been undertaken to understand the mechanism of degradation so that 

the degradation of such polymers can be controlled by means of additives and/or modifications to 

the structure of polymer. One attempt incorporated inorganic nanofillers in a polymer chain similar 

to the POSS-based polymer. This approach makes the polymer thermally and chemically robust, 

to such an extent that one of the promising applications of POSS-based polymers is for use in the 

highly oxidizing environment of orbiting space vehicles [55,56]. Accordingly, the photo-stability 

of polyolefin-based nanocomposites including POSS polymers is a very important and desirable 

asset that may positively contribute to the resolution of a wide range of industrial challenges.   

The study of the degradation mechanism in POSS based polymers has been carried out 

mainly on thin films or solid state under a variety of experimental conditions mostly, focusing on  
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Figure 2.2 Schematic drawing of chemical structures of POSS-based polymeric nanocomposites: 
(left) norbornyl-POSS copolymers; (middle) methacrylate-POSS copolymers and (right) styryl-POSS 
copolymers.  
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the thermal degradation of these polymers.  

Bolln et al. [57] found that increasing the substitutes of alkyl (from C2 to C10) improved 

the thermal properties of POSS when the polymers were subjected to thermogravimetric analysis 

(TGA). Fina et al. [58] reported the mechanism of thermal degradations of octa-isobutyl POSS, 

hydrogen POSS, methyl POSS, phenyl POSS and vinyl POSS. The thermal degradation of octyl 

trisilanol POSS under conditions where heat was applied and isothermal conditions was studied 

by Zeng et al. Blanco at al. [59] conducted a thermal study on phenyl, hepta isobutyl-polyhedral 

oligomeric silsesquioxane/polystyrene nanocomposites by varying POSS concentration (3, 5, and 

10%) under both inert (flowing nitrogen) and oxidative (air) atmospheres.  

However, there is only one published report of the effect of POSS on the photo-induced 

oxidation and aging of POSS-containing organic polymeric matrices. In this study, Schwab at al. 

[60] investigated the photo-oxidation behavior of polystyrene (PS) incorporating several structures 

of POSS and PS-POSS copolymer and proved that POSS molecules in contact with polystyrene 

confer the advantages of UV resistance (indeed there is no published report on the 

photodegradation mechanisms of POSS-base polymers especially, acrylate–POSS copolymers).  

In this chapter, results will be presented on the photodegradation of acrylate-POSS 

copolymers at 248 nm as a function of temperature, side chain structure and POSS concentrations. 

The dynamic effect that makes the spectra complex and unusual in appearance at high temperature 

will be presented and discussed. Finally, simulating the spectra will be necessary to complete 

characterization of the radicals.  

 

2.2       Results and discussion   

Figure 2.3 shows the structure of the different POSS-based acrylate copolymers and  
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Figure 2.3 Structures of polymers characterized by TREPR: (1) [(propylmethacryl-heptaisobutyl-
POSS)-co-(t-butyl methacrylate)]; (2) [(propylmethacryl-heptaisobutyl-POSS)-co-(n-butyl 
methacrylate)]; (3)[(propylmethacryl-heptaisobutyl-POSS)-co-(methyl methacrylate)]; (4) Poly (t-
butyl methacrylate); (5) Poly (methyl methacrylate) and (6) Poly (n-butyl methacrylate)] 
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acrylate polymers studied in this work.  The first three polymers in this series are all POSS-based 

acrylate copolymers - while the block (A) of copolymers is different in all three structures, tert-

butyl methacrylate (1), methyl methacrylate (2), and n-butyl methacrylate (3), the block (B) is the 

same for all of the POSS acrylate block copolymers. The three different methacrylates shown here 

for comparison are poly tert-butyl methacrylate P(t-BMA) (4), poly methyl methacrylate (PMMA) 

(5), and poly n-butyl methacrylate P(n-BMA) (6).  

As described in detail in the Chapter 1.2, a special flow apparatus was used to obtain high-

temperature TREPR spectra with flowing samples. The choice of solvent is critical for the success 

of high-temperature experiments; specifically, diethyl glycol dimethyl ether (diglyme) and 

propylene carbonate (PC), shown in Figure 2.4, is an excellent choices as it is transparent at 248 

nm and has a high enough boiling point to withstand the reservoir temperature without evaporating 

or decomposing.  

As discussed in a previous chapter, the several acrylate polymer solutions begin to absorb 

in the UV light at about 250 nm, and we are exciting them at 248 nm. However, polymers do not 

absorb very much light and the quantum yield for degradation of acrylic polymers in solution is 

quite low (about 0.1) [61]. We are therefore just on the edge of the n-π* excitation of the ester 

carbonyl group thus the photochemistry does not produce very many radicals with each laser flash, 

but the spectral all show extremely intense chemically induced dynamic spin polarization (CIDEP). 

Figure 2.5 shows the TREPR spectra taken in diglyme during 248 nm laser flash photolysis 

for three different polymers at high temperature, P(t-BMA) (Fig. 2.5C) and Poly 

[(propylmethacryl-heptaisobutyl-POSS)-co-(t-butyl methacrylate)], with POSS 25% (Fig. 2.5A) 

and 45% (Fig. 2.5B). 
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Figure 2.4 Two solvents for TREPR expetiments at high Temperature 
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Figure 2.5 Experimental High-temperature TREPR spectra for the main-chain radical from 248 nm 
irradiation of the following polymers: (A) PSS 25 wt % of Poly [(propylmethacryl-heptaisobutyl-
POSS)-co-(t-butyl methacrylate)], (B) PSS 45 wt % of Poly [(propylmethacryl-heptaisobutyl-POSS)-
co-(t-butyl methacrylate)], (C) P(t-butyl methacrylate) in diethyl glycol dimethyl ether at 125  °C, 
shown for comparison 
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All of the spectra from polymeric radicals shown here exhibit strong net emissive spin polarization 

from the TM but none from the RPM or the SCRP mechanism. However, the appearance of the 

TREPR spectra shown in Figure 2.5 has an interesting feature in its line shape and width although 

all the TREPR spectra show very intense emission that is similar to the TREPR spectra of acrylate 

polymers, alternating broad and sharp lines were observed in the spectra. As mentioned in chapter 

1.4.1, this is indicative of conformationally induced modulation of hyperfine coupling constants, 

which is expected for β-hyperfine couplings in polymeric radicals with such bulky substituents on 

the main chain [62].  

At a glance, the TREPR spectra in Figure 2.5 of both Poly [(propylmethacryl-

heptaisobutyl-POSS)-co-(t-butyl methacrylate)] (Fig. 2.5 A and B ) and homo P(t-BMA) (Fig. 

2.5C) in diglyme are quite similar. All appears to have a similar sharp line signal carrier with a 

single coupling constant (~23 G)—at least eight lines are observed and indicated with asterisks in 

Fig. 2.6. It is suspected that these are actually the innermost eight lines of the 10-line tert-butyl 

radical spectrum from decarboxylation of the oxo–acyl radical, in accordance with the possible 

mechanism in Figure 2.7, making this the first observation of side-chain radical chemistry in these 

acrylic polymer photodegradation studies. The evidence of 10-line tert-butyl radical spectrum is 

shown in Figure 2.6. Furthermore, we should consider the fact that a group of broad lines is present 

in Figure 2.5, which is most likely the (unusual) appearance of the main-chain acrylic polymer 

radical at high temperature with perhaps an intermediate or even slow motion TREPR spectrum.  

The unexpected alternating lines and line width effect in the P(t-BMA) spectra could be 

caused by a number of factors, including the presence of main-chain radicals or propagating 

radicals as broad lines superimposed on spectra from tert-butyl radicals (side chain radical  
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Figure 2.6 The 10-line t-butyl radical spectrum from decarboxylation of poly (t-butyl methacrylate) 
oxo–acyl radical in diethylene glycol dimethyl ether at 125 °C with following total sweep width: (top) 
300 G, 100 G, 50 G, and (bottom) 30 G and delay time: 500 ns   
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Figure 2.7 Photochemistry and free radicals resulting from 248nm excimer laser excitation of Poly 
(t-butyl methacrylate) in solution 
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chemistry), and the influence of polymer conformational changes on the spectra due to the 

extremely bulky t-butyl side-chain.   

The oxo-acyl radicals are not generally observed in high temperature TREPR  

experiments due to fast spin relaxation (below 10ns in solution) [63], which has two unimolecular 

decomposition pathways: loss of CO and loss of CO2. The decarboxylation rate of an oxo-acyl 

radical from acrylate polymers is about 2.1x 106 s-1 at 373K, as reported by Griller et al [64]. This 

means the oxo-acyl radical can be observed in our time scale (500ns) of TREPR, but only at room 

temperature. However, there is a major exception to this trend in oxo-acyl radical behaviors as 

observed by TREPR, namely for PFOMA as shown in Figure 2.8. In this case, the polymeric main-

chain radical did not show a fast-motion spectrum even at very high temperatures and only the 

oxo-acyl radical from the side chain was observed. This is understandable because of the steric 

bulk and conformational rigidity of the perfluoroalkyl ester side chains as well as the much longer 

rotational correlation time of fluorinated oxo-acyl radical has a than its alkyl analog [10].  

 TREPR results of poly tert-butyl methacrylate and their copolymer shown in Figure 2.6 

has shown a trend similar to that of PFOMA such that it is suspected that the electron spin 

rotational correlation time of the tert-butyl radical is much slower than the other oxo-radicals so 

that it can remain long enough to be observed as shown intense and sharp signal carriers by TREPR. 

However, tert-butyl ester side chains decarboxylation in P(t-BMA) is faster than oxo-acyl radical 

decarboxylation in PFOMA due to tertiary radical forming so that tert-butyl radical can observe in 

TREPR spectrum of P(t-BMA) 

   Also, main-chain radicals or propagating radicals may be present in system with 

relatively slower conformational motion than the fast motion of tert-butyl radical thus they might  
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Figure 2.8 (Top) The photochemistry of PFOMA. (Bottom left) experimental and (Bottom right) 
simulated high temperature TREPR spectra of the oxo-acyl radical from PFOMA in perfluorinated 
solvent FC-70 at 110 °C and delay time 0.5 μs. Simualation parameters: aF(CF2) = 3.2 G, aF(CF2) = 0.8 
G from McCaffrey, V. P.; Forbes, M. D. E. Macromolecules 2005, 38, 3334. 
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Figure 2.9 Two proposed simulated high temperature TREPR spectra of poly (t-butyl methacrylate) 
after photolysis at 120°C and delay time of 500ns by using following simulation parameters (Top) 
aH(CH3) = 22.8 G, aH(CH2) = 11.4 G, aH(CH2) = 14.1 G LW = 3 (R1) and  aH((CH3)3) = 22.8 G (R2); (middle)  
aH(CH3) = 21.7 G, aH(CH) = 11.4 G, aH(CH) = 14 G LW = 3 (R1) and aH((CH3)3) = 22.8 G (R2) (bottom) 
experimental high temperature TREPR spectrum of poly (t-butyl methacrylate) (1g of polymer in 
25ml of diglyme) shown for comparison 
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be present as broad lines, superimposed with a spectrum from tert-butyl radical in the TREPR 

spectrum. The alternating line width effect observed in the P(t-BMA) and POSS-P(t-BMA) 

copolymer TREPR spectra makes it difficult to simulate the experimental data. The two possible  

simulations of the P(t-BMA) fast motion TREPR spectra are shown in Figure 2.9 along with the 

corresponding experimental spectrum. The coupling constants used for each simulation are listed 

in the respective figure captions. At the top of Figure 2.9, two radicals were used for the simulation. 

For the broad line, which is suspected to indicate the main-chain radical from P(t-BMA) after 

photolysis, a value of 22.8 Gauss was used for the hyperfine coupling constant for the three β-

protons of the methyl group, and values of 14.1 Gauss and 11.4 Gauss were used for the two sets 

of methylene protons with a huge line width. To create sharp peaks corresponding to the 10-line t-

butyl radical spectrum from decarboxylation of the oxo–acyl radical in Figure 2.9 top, a single 

coupling constant 22.8 Gauss for the protons of tert-butyl was used along with a line width 1.3 

Gauss.  

The spectrum shown in the middle of figure 2.9 is simulated using hyperfine coupling 

constants of 14 Gauss for one proton, 11.4 Gauss for one proton, and 21.7 Gauss for three protons 

of the methyl group from propagating radicals of P(t-BMA) along with a single coupling constant 

22.8 Gauss for the protons of tert-butyl radicals.  

We concluded from the resulting two simulation spectra that main-chain radicals are 

present as broad lines, superimposed with a spectrum from tert-butyl radicals. An interesting 

observation is that the poly [(propylmethacryl-heptaisobutyl-POSS)-co-(t-butyl methacrylate)] 

spectrum shows only photodegration of P(t-BMA) and, as expected, that  another block containing 

POSS along with their chains does not participate in the photodegradation process because the 

resistance to photolysis is improved when polymer composites with POSS. 
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Figure 2.10 shows the temperature dependence of the TREPR signal for poly[(propylmethacryl-

heptaisobutyl-POSS)-co-(n-butyl methacrylate)] upon 248 nm photolysis in diglyme along with 

TREPR spectrum of Poly (n-BMA) taken at high temperature  

 (115 °C). As expected, the appearance of POSS-P(n-BMA) is similar to that of P(n-BMA), which 

indicates that the photodegradation process of POSS acrylate copolymer only relies on polymer 

(A block), which has no POSS. At room temperature, alternating linewidth pattern is observed, as 

usual for acrylate polymer as mentioned previously, the presence of the oxo acyl radical is common 

to the acrylate polymer spectra at room temperature. However, in the POSS-P(n-BMA) and P(n-

BMA) high temperature TREPR spectra, the strong signal for the oxo-acyl radical is observed near 

the center, while in the high temperature TEPPR spectrum of POSS-PMMA is shown in figure 

2.11, there is no oxo-acyl radical at high temperature (115 °C) due to fast spin relaxation. The 

larger and bulkier n-butyl side chain in P(n-BMA) makes the spin rotational relaxation process of 

side chain slower compared to smaller methyl group in PMMA so that the strong oxo-acyl radical 

shows in the fast motion TREPR spectra of P(n-BMA). The lower temperature spectra show the 

same alternation linewidth effect at low temperature as observed with POSS-P(n-BMA). 

Furthermore, the appearance of high temperature TREPR spectra for POSS-PMMA and PMMA 

shows as almost identical to other POSS-acrylate copolymers.  

 

2.3 Summary and Implications 

 The photodegradation mechanism of several methacrylate-POSS block copolymers in 

solution was investigated by TREPR. The observed photochemical degradation mechanism is 

quite similar to that previously observed in photolysis of homo poly (methacrylate)s.  

 



 56 

 

 

   

Figure 2.10 The temperature dependence of TREPR spectra for the main-chain radical from 248 nm 
irradiation of Poly [(propylmethacryl-heptaisobutyl-POSS)-co-(n-butyl methacrylate)] in propylene 
carbonate ( 1g of polymer in 25 ml of solvent) at delay time of 500 ns, and (bottom) P (n-butyl 
methacrylate) main chain radical TREPR spectrum in diglyme at 115 °C shown for comparison 
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Figure 2.11 The temperature dependence of TREPR spectra for the main-chain radical from 248 nm 
irradiation of Poly [(propylmethacryl-heptaisobutyl-POSS)-co-(nethyl methacrylate)] in diglyme (1g 
of polymer in 25 ml of solvent) at delay time of 500 ns, and (bottom) P(methyl methacrylate) main 
chain radical TREPR spectrum in propylene carbonate at 115 °C shown for comparison 
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As expected, chromophores with POSS group side chain do not participate in the photodegration 

process, which suggests that POSS utilize a beneficial effect against UV light photodegradation in 

these copolymers. The resulting experimental spectra suggest since all of the investigated 

methacrylate-POSS copolymers show the same photodegradation phenomena, that POSS could 

play an important roles in preventing UV degradation and improving photoresistance in such 

materials. Also of note is that the degradation process does not follow the concentration of POSS 

within the chain. It is interesting note that alternating line broadening effects due to the modulated 

hyoperfine constant cause by a bulky ester side chain are observed in high temperature TREPR 

spectra of both POSS-P(t-BMA) block copolymer and P(t-BMA). The excellent fit of the 

simulations allow for identification of the signal carriers. The spectra show a strong signal from 

the tert-butyl radical after decarboxylation rate of the oxo-acyl radical. This process is rarely 

observed in our time scale, which is really rare in high temperature fast limit TPEPR spectra.  

The temperature dependence of TREPR spectra of all block copolymers presented here 

shows similar conformational dynamics to those reported in our previous papers.  

 

2.4 Experimental  

Commercial compounds. Poly [(propylmethacryl-heptaisobutyl-POSS)-co-(t-butyl 

methacrylate)], Poly [(propylmethacryl-heptaisobutyl-POSS)-co-(methyl methacrylate)], Poly 

[(propylmethacryl-heptaisobutyl-POSS)-co-(iso-butyl methacrylate)], Poly(t-butyl methacrylate), 

Poly (iso-butyl methacrylate), and poly (methyl methacrylate) were obtained from Aldrich and 

used as received. Propylene carbonate and diethylene glycol dimethyl ether were used as a solvent 

for TREPR experiments.  
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TREPR experiments. Continuous wave TREPR experiments were performed as previously 

described [10]. All experiments were performed on a JEOL USA Inc. JES-RE1X X–band EPR 

spectrometer equipped with a wide bandwidth preamplifier and a low-noise GaAsFET microwave 

amplifier. Samples were typically prepared as solutions of polymer (1 g) in propylene carbonate 

or diethylene glycol dimethyl ether (diglyme) (25 ml) and circulated through a quartz flat cell (0.4 

mm path length) positioned in the center of a Varian TE103 optical transmission cavity. The 

solutions were photolyzed using a Lambda Physik Compex 120 excimer laser (248 nm, KrF) 

running at 60 Hz with a pulse energy of 100 mJ (~20 mJ per pulse hitting the sample) and a pulse 

width of 17 ns. Spectra were collected in the absence of field modulation at a fixed delay time after 

the laser flash using a two-gate boxcar integrator (Stanford, 100 ns gates), while the external 

magnetic field was swept with a scan time of 4 min.  

For high-temperature TREPR experiments, the deoxygenated sample solution under N2 

was circulated using a micropump through Teflon PFA 1/8 in. tubing insulated with polyurethane 

foam tape. From the pump, the sample tubing passed through a copper coil wrapped with heating 

tape (Omega Inc.), which was controlled using a feedback circuit between a variable power 

temperature controller and thermocouples placed at the entrance and exit of the quartz flow cell. 

The sample was recirculated between the flat cell and the reservoir. Reported temperatures are the 

average of three measurements from the top and bottom of the flat cell and the reservoir. The 

maximum temperature gradient at the highest temperatures was 10 °C; therefore, all temperature 

are reported as ± 5 °C.  

 

 

 



 

 

 

 

Chapter 3. Photodegradation of Acrylic Block Copolymers 

 

 

3.1     Introduction 

The recent development of several controlled and free radical polymerization mechanisms 

have allowed the synthesis of many types of block copolymers, especially acrylics.  

Of interest to the Forbes laboratory is the photophysical and photochemical behavior of acrylic 

blocks in dilute solution, in particular if site selective photochemistry might be observed.  The 

discovery of such behavior could lead to the design novel materials that degrade in a specified 

place along the polymer chain.  Alternatively, such studies might also suggest ways to make 

materials that are thermally robust in one section and photochemically sensitive in another (or vice 

versa). Understanding of a complex correlation between polymer conformational chain dynamics 

and polymer bulk properties is the key to the polymer design ready to meet new technological 

requirements such as electro-optical materials, artificial organs, antioxidant surface coatings, 

membranes and drug delivery devices [65]. As we discussed earlier, the conformational chain 

dynamics of each acrylates polymers is quite different depending on their structures thus in this 

chapter will focus on the spin selective and conformational chain dynamics of several acrylate 

block copolymers as a function of temperature, ester side chain stiffness, and variation of chain 

length of block chains.  
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3.1.1    Structure of Block Copolymers  

The structure of a block copolymer can be investigated as a melt, a solid, in solution or as 

a blend.  In the case of a melts, if the individual blocks are immiscible, they attempt to separate. 

Because of the connectivity of each segment, the length scale along with phase separation can 

occur is restricted. The homogeneity and phase separability of block polymer melts are strongly 

influenced by temperature [66]. At high temperatures, exceeding the microphase separation 

temperature (MST), both block chains can mix, but the blocks will separate upon lowering the 

temperature, resulting in microphase separation.   

Before discussing the features of block copolymers in dilute solution, it is useful to present 

one background information regarding the dilute regime for a polymer solution. The phase diagram 

for a polymer solution is shown in Figure 3.1. The interaction parameter 𝜒 =
1

2
, and the excluded 

volume is zero at a special temperature, called the θ temperature. At very low concentrations, the 

polymer chains in solution are considered to be isolated. When 𝜙 <  𝜙∗ , the polymer solution is 

defined as dilute. With increasing 𝜙, the polymer solution can be in the semi-dilute region or in 

the concentrated region.  

This is the overlap concentration 𝜙∗ , expressed as in eq. 2:  

𝜙∗  ≅  𝑎3𝑁 𝑅𝐹 
3⁄ =  𝑁1−

3

𝜈                                                         (3.1)    

where N is degree of polymerization, RF is the end-to-end distance of the chain, a is the polymer 

segment length and ν is the Flory exponent. (ν = 0.558 in a good solvent and ν = 0.5 in a theta 

solvent where the effective monomer and monomer interaction are weak thus polymer coil can 

consider as ideal chain.) [67] 

Above the critical overlap concentration, the chains in the solution become aggregated and 

densely packed, which can lead to micellization of a block copolymer solution. The phase  
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Figure 3.1 Phase diagram for polymer solution. The solid curve denotes the binodal and phase 
separation occurs for polymer solutions with T and below the binodal. The dashed curve is the low 
temperature boundary of the semidilute good solvent regime from Polymer physics by M. Rubinstein 
and R. H. Colby.  
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behavior of a block copolymer in solution is therefore quite different from those of melts and  they 

typically form spherical micelles in dilution solution in a selective solvent when the core of  the 

micelle is composed by an insoluble or a selectively soluble block [68]. Also, the shape of the 

block copolymer micelle (e.g., sphere, ellipse, rod) strongly depends on the concentration.  

So far, much of the literature in the field has focused on the self-assembly of block 

copolymers and microphase separation of block copolymer melts and solutions [68-71]. For block 

copolymer solutions, the experimental and theoretical study of micellization of an ionic block 

copolymer is most important in this field because of their industrial applications such as bio-

friendly drug delivery systems and membranes. Additionally, most theoretical models and 

computer simulation studies of block copolymer have used melts and micelle forms. For this 

reason, much of the literature in this field has focused on the thermodynamics, bulk properties and 

formation of micelles. However, the theoretical understanding of macromolecular level dynamic 

in block copolymer melts and solutions has not been well established. There are a few published 

reports regarding non-ionic block copolymers, which often contain poly(styrene) (PS), using a 

selective solvent for PS to form a micelle [72]. However, local chain dynamics of non-ionic and 

non-micelle structures of block copolymers in a dilute “good” solvent for both block chains have 

not been studied well. A notable example is the work of Tsunashima and Kawamata, who 

investigated the dynamic modes of motion in a PS-PMMA diblock copolymer in dilute solution 

using dynamic light scattering (DLS) [73]. A high molecular weight diblock copolymer was used 

to easily detect the internal motions in the subchain. Benzene was used as a solvent since it is a 

good solvent for both PS and PMMA. Indeed, understanding of a complex correlation between 

conformational chain dynamics of block copolymers and their structures in solution is still 

ambiguous. To the best of our knowledge, there are no publications that detail the macromolecular 
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level properties of an A-B block copolymer both experimentally and theoretically. The “ spin 

reporter” methodologies developed in this thesis are an excellent way to probe their behavior. 

 

3.1.2 Photochemistry of Acrylic Polymers  

Over the past decade, our laboratory has been studied the photodegradation and 

photochemistry of acrylic homopolymers in dilute solution using time-resolved electron 

paramagnetic resonance (TREPR) spectroscopy [74-77]. In this chapter, we have extended this 

work to investigate the chain dynamics of several acrylate block copolymers and create a workable 

“atom-specific” model for macromolecular chain dynamics that has so far proven elusive for these 

complex structures.   

The conformational properties of copolymers are related to both the structures of their 

individual chemical unit and their chemical sequence distribution. It is well understood that a block 

copolymer retains the properties of each of the homopolymers. This often results in improvement 

to the physical and bulk properties of the copolymers. For example, the mechanical and physical 

properties of the polymers such as the glass transition temperature (Tg), melting temperature (Tm) 

and modulus, strongly correspond with the structural arrangement of the molecular units 

comprising the copolymer structure [78]. The composition and architecture of block copolymers 

play an important role in the enhancement of their bulk properties. However, there are only few 

published reports on degradation mechanisms, thermal or photochemical, of acrylic block 

copolymers [78].  

The photodegradation mechanism and chain dynamics of several acrylic homopolymers 

has been reported [79-82]. In spite of the close structural similarities among several 

poly(methacrylates) and poly(acrylates), the degradation rates and the chain dynamics of the 
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ensuing radicals are quite different from each other, especially at high temperature spectrums, as 

a function of a solvent, nuclear symmetry, rigidity of chain moieties, and molecular weight.  

Before going into detail regarding the photochemistry of acrylic block copolymers in dilute 

solution, it is helpful to have background information about previous work in the Forbes laboratory 

on acrylic polymer degradation, dynamic effects, and the possible theoretical models available to 

assist in spectral analysis of both slow and fast motion TREPR spectra [76]. 

After absorption of UV light by the n-π* state of the ester chromophore in these polymers, 

side chain cleavage from the first excited triplet state via the Norrish I process takes place. This 

leads to a main chain acrylic polymer radical and an oxo-acyl radical from the ester side chain, 

followed by formation of the propagating radical and a terminal alkene via unimolecular 

decomposition, specifically β-scission, on a time scale of about 20 μs [63]. It has been determined 

and well studied by both SSEPR and TREPR techniques; however, the TREPR experiment is 

unique in its ability to detect these main-chain macromolecular radicals cleanly with high 

resolution on the sub-microsecond time scale well before any rearrangements take place.  

In our recent series of papers, the photodegradation mechanism for PMMA and related 

polymers with ester side chains have conclusively demonstrated and established the following 

general principles:  

(1) The carbon–centered main chain radical of an acrylic polymer is a highly localized, minimally 

perturbative spin probe, allowing investigation the conformational energy landscape near the 

radical center.  

(2) The temperature dependence of the TREPR spectra of these polymers provides rich in 

information of the conformational motion of polymers. The lower temperature spectra shows 

dynamic effects such as an alternating hyperfine line width effect due to conformational 
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modulation of the hyperfine coupling. Interestingly, this dynamic effect has been only shown in 

SSEPR spectra of propagating radicals so far, however, in our TREPR spectra at lower temperature 

show this modulation effects where restricted motion between the Cα – Cβ bond within polymer 

main chain radicals due to bulky substituents leading to conformationally slow motion in our 

system. In contrast, at high temperature, the fast conformational motion alters the hyperfine 

coupling constants leading to clearer and shaper appearance of spectrum of main-chain radicals. 

Because the electron-nuclear hyperfine interactions in the main chain radical depend on the 

dihedral angle between the p orbital containing the unpaired electron and the neighboring C-H 

sigma bond, the TREPR spectra of these main chain radicals show a strong temperature 

dependence on both line widths and line positions. Changes in line width are related to the “jump 

time” between conformations, while changes in line position (at constant width) reflect changes in 

the populations of certain rotational conformers (rotamers). 

As shown in Chapter 1.2, an interesting observation is that β-hyperfine coupling constants 

between acrylate and methacrylate exhibit quite different values at high temperature. In case of 

acrylates, the β–hyperfine interaction is quite similar in the spectra at all temperatures due to their 

conformational flexibility on their chain moieties. On the other hand, methacrylates, especially 

PMMA, show large differences in their spectrum appearance due to not only conformational 

motion but also polymer tacticity. Stereochemistry plays a strong role in both the overall spectral 

appearance (as determined by fast motion hyperfine coupling constants) and in the temperature-

dependent line broadening processes [10].  

(3) The oxo-acyl radical from the ester group is rarely observed due to fast spin relaxation and 

extremely different diffusional properties between main-chain radical and acyl radical although 

they often appear at room temperature, and exhibit a single emissive peak near the center of 
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spectrum (g-factor for acyl radical is 2.009) [10].  

(4) The TM polarization is created within the laser flash and arise from the anisotropic nature of 

the spin-orbit coupling process from the first excited singlet state to the lowest excited molecular 

triplet state of the ester side chain. Most likely, the fast rotation of the side chain along one axis 

and the much slower conformational motion along the polymer chain provide this high degree of 

anisotropy resulting in very large magnitude of the observed TM polarization in these systems. 

Several factors can maximize the TM [74,75], including the intersystem crossing rate, the chemical 

decay rate, and the magnitude of the zero-field splitting parameters of the triplet, but the most 

important parameter is the rotational anisotropy of the triplet as it tumbles in the applied magnetic 

field of the EPR spectrometer.  The ester side chains have significantly greater freedom of motion 

along an axis perpendicular to the polymer backbone, but very poor rotational mobility along the 

backbone axis itself.  This difference in rotational mobility allows for greater spin state selectivity 

in the molecular frame during inter-sytem crossing and will amplify the TM. 

(5) The TREPR spectra show a shows strong side chain dependence. For example, in the case of 

PFOMA, which has fluorinated alkyl groups on the ester side chain, the observed TREPR spectrum 

is quite different to other acrylate polymers (Figure 3.2). The oxo-acyl radical exhibits a very 

intense signal and the main chain radical is broad and weak. This broad signal of main-chain radial 

is most likely due to the slow dynamics of the PFOMA main chain radical. The reason for these 

abnormal phenomena is that bulky ester side chains make polymer chain more rigid, restring the 

internal motion of the polymer; thus, the spin relaxation time of the PFOMA  
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Figure 3.2 (Top) The photochemistry of PFOMA. (Bottom left) experimental and (Bottom right) 
simulated high temperature TREPR spectra of the oxo-acyl radical from PFOMA in perfluorinated 
solvent FC-70 at 110 °C and delay time 0.5 μs. Simualation parameters: aF(CF2) = 3.2 G, aF(CF2) = 0.8 
G from McCaffrey, V. P.; Forbes, M. D. E. Macromolecules 2005, 38, 3334. 
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oxo-acyl radical is longer than usual for an acyl radical. Below we will see this phenomenon in 

some block copolymers as well.  

To model our experimental results using hyperfine modulation, we have applied selective 

broadening of the lines in the spectrum (in the condition of fast exchange), which occurs according 

to the equation [83]  

                                               𝑇2
−1 =  𝛾𝑒

2𝜏⟨𝛿𝑎2⟩ (𝑀𝑎 −  𝑀𝑏)2  +  𝑇2,0
−1                                             (3.2) 

where T2

–1 is the line width after broadening, γe is the gyromagnetic ratio of the electron, Ma and 

Mb are the nuclear spin quantum numbers of the transitions, and T2,0

–1 is the contribution to the 

line width from other mechanisms. The term τ is the correlation time for the exchange process and 

can be calculated from where τ1 and τ2 are the inverse of the rate constants for jumping the barrier 

to rotation. The mean-square deviation in the hyperfine splitting is where (a1 - a2) is the difference 

between the fast-motion hyperfine coupling constants. An important note is that this model only 

works in a system in which the sum of the hyperfine coupling constant always remains constant, 

like as our carbon-centered main chain radicals with sterically hindered, but still flexible. Because 

the electron-nuclear hyperfine interactions in the main chain radical depend on the dihedral angle 

between the p orbital containing the unpaired electron and the neighboring C-H sigma bond, the 

TREPR spectra of these main chain radicals show a strong temperature dependence on both line 

widths and line positions.  

 

3.2 Result and Discussion  

The structures of the copolymers studied in this chapter are shown in Table 3.1 along with 

experimental values for their molecular weights, polydispersities (Mw/Mn) and composition 
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(block and random copolymers). The synthesis, sample preparation, polymer characterization, and 

spectroscopic methods are all described in experimental section.  By using the anionic 

polymerization, all block copolymers have relatively narrow PDIs, and their degree of 

polymerization (N) is about 250 ~ 500.   

There are three different types of block copolymer with PMMA as the A block for all three 

structures. For the B block, Poly (ethyl acrylate) (PEA), Poly (n-butyl methacrylate) (P(n-BMA)), 

and Poly (tert-butyl methacrylate) (P(t-BMA)) are used. However, the synthesis of the PMMA–b–

PEA fails to synthesis because the resulting polymer was gel and hard to precipitate in any organic 

solvents.   

The irradiation wavelength in all of the experiments reported here is 248nm, which is a 

good wavelength with which acrylate polymers. The critical concentration (𝑐∗ ), same as overlap 

concentration discussed above of our several acrylate block copolymer solutions can be calculated 

using the following equation: 

   𝑐∗ ≅  
1 

𝑁𝐴
 (

3𝑀

4𝜋𝑅𝑔
3)                                                     (3.3) 

where, M is the Molecular weight of the polymer, 𝑁𝐴 is Avogadro’s number, 𝑅𝑔 is the radius of 

gyration. The radius of gyration of a polymer in a good solvent varies as follows:  

𝑅𝑔 
3 ∝  𝑀3𝜐                                                            (3.4) 

where ν is the excluded volume index. The literature value of the calculated critical 

concentration, 𝐶𝑐𝑎𝑙𝑐
∗  of PMMA (Mw: 56,000 ~ 110,000) in good dilute solvent is about 0.025 [84]. 

The concentration of our samples is about 0.03, which is quite close to the critical  
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Polymer Structure  Ratio (A: B) 
Molecular 

weight (Mw)  

Poly (methyl methacrylate)-b-
poly(tert-butyl methacrylate) 

1:9

  1:1(Random and Block) 

9:1  

50,000 ~ 70,000 
(PDI : 1.2) 

Poly methyl methacrylate-b-
poly(n-butyl methacrylate) 

1:9

  1:1(Random and Block) 

9:1  

50,000~100,000 
(PDI: 1.1) 
For Random : 

PDI: 1.45) 

Poly methyl methacrylate-b-
poly(ethyl acrylate) 

1:1

9:1  

	

50,000~100,000 
(PDI: 1.3) 

	

Block (A-B) copolymer  

(A Block) (B Block ) 

x y

Random (A-B) copolymer  

n

Table 3.1 The structure and molecular weight of block copolymers studied in this chapter    
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concentration; however, our polymer chains almost start to overlap between macromolecular 

chains. Also, it is important to note that where polymer in good solvent, the overlap concentration 

decreases with increasing temperature. For this reason, our polymers are considered to be dissolved 

in a good solvent when TREPR spectra are acquired at high temperatures, and we therefore assume 

that our investigations of the polymer chain dynamics takes place without overlapping chains. The 

choice of solvent is critical for studying the block copolymer solutions. In the case of PMMA- and 

PEA- rich block copolymers, propylene carbonate, shown in Figure 3.3, is the favored solvent 

because of its high boiling temperature and because it is optically transparent at 248nm. Diglyme, 

shown in Figure 3.3, is a good solvent for the n-BAM, t-BMA rich block copolymers. Before 

discussing the photochemistry of acrylate block copolymers, it is useful to review the 

photochemistry of acrylic homopolymers composed of either the A and the B block monomers. In 

the case of PMMA, the general principles are discussed in introduction. High temperature TREPR 

spectra acquired during 248 nm photolysis of PEA, P(n-BMA), and P(t-BMA) in diglyme are 

described below. 

Figure 3.4 shows experimental TREPR spectra for the four types of acrylate polymers, and 

the corresponding computer simulated spectra are shown in Figure 3.5. There are several 

noteworthy features of these spectra. At first glance, the spectra in Figure 3.4 appear entirely in 

net emission, due to the Triplet Mechanism (TM) of CIDEP, but the other spectral features such 

as line shapes and widths are very different from each other. In particular, the P(t-BMA) spectrum 

shows an TREPR spectra acquired during 248 nm photolysis of PEA, P(n-BMA), and P(t-BMA) 

in diglyme are described below. Figure 3.4 shows experimental TREPR spectra for the four types 

of acrylate polymers, and the corresponding computer simulated spectra are shown in Figure 3.5.  
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Figure 3.3 Two solvents for TREPR expetiments at high Temperature 
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Figure 3.4 Experimental high temperature TREPR spectra for radicals observed after 248 nm laser 
flash photolysis of the following polymers and their structures: (Top) poly (n-butyl methacrylate), 
poly (t-butyl methacrylate), poly (methyl methacrylate), and (bottom) poly (ethyl acrylate). The 
delay time is 500 ns. The PEA spectrum is from McCaffrey, V. P.; Forbes, M. D. E. Macromolecules 2005, 
38, 3334.  
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Figure 3.5 Simulated high temperature TREPR spectra for radicals observed after 248 nm laser flash 
photolysis of the following polymers and their structures: (Top) poly (n-butyl methacrylate), poly (t-
butyl methacrylate), poly (methyl methacrylate), and (bottom) poly (ethyl acrylate). The delay time 
is 500 ns. Except for the spectrum obtained from poly (t-butyl methacrylate), the simulation assigns 
the signal carrier to main-chain polymer radical. In the case of poly (t-butyl methacrylate), tert-butyl 
radical after decarboxylation is the dominant signal carrier.  Hyperfine value for each simulation are 
the following: 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.3 G for P(nBMA); aH(CH3) = 22.8 
G, aH(CH2) = 11.4 G, aH(CH2) = 14.1 G LW = 3 (main-chain radical) and  aH((CH3)3) = 22.8 G (tert-butyl 
radcial) for P(tBMA); 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.7 G for PMMA;  aH(H) = 21.7 
G, 2aH(CH2) = 23.5 G, 2aH(CH2) = 23.8 G for PEA.  
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There are several noteworthy features of these spectra. At first glance, the spectra in Figure 3.4 

appear entirely in net emission, due to the Triplet Mechanism (TM) of CIDEP, but the other 

spectral features such as line shapes and widths are very different from each other. In particular, 

the P(t-BMA) spectrum shows an alternating line width effect and line broadening at high 

temperatures, which is an unusual behavior in the high temperature TREPR spectrum. As 

mentioned earlier, this is indicative of conformationally induced modulation of hyperfine coupling 

constants, which is expected for β-hyperfine couplings in polymeric radicals with such bulky 

substituents on the main chain [10]. A similar sharp line signal carrier with a single coupling 

constant (~ 23 G) at least eight lines is also observed. These are actually the innermost eight lines 

of the 10-line t-butyl radical spectrum from decarboxylation of the oxo–acyl radical. This marks 

the first observation of side chain radical chemistry in acrylic polymer degradation. 

In order to simulate the TREPR spectrum of P(t-BMA) in Figure 3.4, values of 22.8 Gauss 

for the protons for tert-butyl radical with narrow line width along with 22.9 Gauss for the protons 

of the methyl group, and 15.8 Gauss and 11.2 Gauss were used for the each of the two sets of 

methylene protons with broad line width. However, The simulation spectrum is not perfectly 

matched to the experimental date because the alternating line width effect observed in the P(t-

BMA) TREPR spectrum. As we discussed in the previous chapter, the presence of the slow 

conformational motion makes main-chain radicals as broad lines, superimposed with a spectrum 

from tert-butyl radical in the TREPR spectrum.  

It is interesting that the tert-butyl radical created by decarboxylation show high temperature 

spectrum because even oxo-acyl radical is rarely seen at high temperature because of fast spin 

relaxation [85]. Furthermore, we should consider the fact that a group of broad lines is present in 

P(t-BMA) spectrum, which is most likely the (unusual) appearance of the main-chain acrylic 
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polymer radical at high temperature with perhaps an intermediate or even slow motion TREPR 

spectrum. 

Comparing the main chain radicals of PEA and P(n-BMA), the spectrum of the radical 

from PEA shows the six lines in Figure 3.4, and can be simulated using values of 21.5 Gauss for 

the α-proton, 23.5 gauss for two of the β-protons and 24.2 Gauss for the other two β-protons shown 

in Figure 3.5. On the other hands, the presence of a methyl group in the α-position of P(n-BMA) 

led to the far more complicated spectrum. The addition of a methyl group on the polymer backbone 

changes the conformational energies and barriers of the polymer chain. The strong central line, 

which is an oxo-acyl radical is observed in high TREPR spectrum. 

 

3.2.1    TREPR spectra of Block Copolymers  

3.2.1.1 Poly (methyl methacrylate)–b–Poly (tert-butyl methacrylate) Copolymers 

One of the hypotheses driving these experiments is that the photophysics, photochemistry, 

or radical chain dynamics would be site-selective, i.e., one might see different TREPR intensities 

or line shapes and widths depending on the point of excitation in a block copolymer. Figure 3.6 

shows TREPR spectra taken in either propylene carbonate or diglyme during 248 nm laser flash 

photolysis for three PMMA–b–P(t-BMA) copolymers with different PMMA/PtBMA chain length 

ratios. In this section, we discuss the following PMMA–b–P(t-MBA) copolymers: (PMMA)9–b–

(P(t-BMA))1, (PMMA)1–b–(P(t-BMA))1 and (PMMA)1–b–(P(t-BMA))9 copolymer.  Their average 

molecular weights and PDIs are shown in Table 3.1.  

As similar to TREPR spectra of acrylate polymers, the spectra in Figure 3.6 show strong 

emission from the TM of CIDEP. As discussed in the previous section, the polymer rotational 

motion along the main axis occurs on a slower time scale than rotation of the individual ester  
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Figure 3.6 Block chain length ratio dependence of Poly (methyl methacrylate)–b–poly (t-butyl 
methacrylate) copolymer TREPR spectra in diglyme at 500 ns at 125 °C.  (Top) 1:9, (middle) 1:1, and 
(bottom) 1:9. The magnetic field sweep width for all spectra is 200 G. Tert-butyl radical is marked 
with an asterisk 
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side chain groups, this asymmetric motion leads to higher selectivity in the intersystem crossing 

process, a somewhat slower relaxation time of both the excited triplet state and the ensuing 

polymeric radical exists for the same reasons, and the overall effect leads to an optimal situation 

for the creation of strong TM polarization. 

In Figure 3.6A, the TREPR spectrum is shown for the main chain radical from photolysis 

of (PMMA)9–b–P(t-BMA)1 at high temperature, at a first glance, the spectrum looks very similar 

to PMMA main chain radicals in terms of the spectral widths and line positions, but the subtle 

differences become apparent on closer examination, exists. The fast motion TREPR spectrum no 

longer consists of 21 lines and there are unknown 2 more unknown lines in the spectrum (see red 

asterisks) whose intensity ratio increase with the increasing ratio of P(t-BMA) chain length within 

the three block copolymers (compare to Figures 3.6B, and 3.6C).  These new lines are assumed to 

arise from the side chain radical of P(t-BMA). Additionally, the TREPR spectrum of (PMMA)9–

b–P(t-BMA)1 mostly arises from the main chain radical of PMMA because of its longer chain 

length. However, when both block chain lengths are same, the signal intensity of PMMA main-

chain radical is stronger than that from P(t-BMA). Although, some peaks from P(t-BMA) are 

overlapping with those of PMMA main chain radicals, two more new lines can be clearly seen in 

Figure 6.B, which is tentatively attribute to the outmost peak of tert-butyl radical from P(t-BMA).  

Figure 3.6C shows the TRERP spectrum from photolysis of (PMMA)1–b–P(t-BMA)9  in 

diglyme at 120 °C. The main feature of this spectrum is the similar large emissive sharp line signal 

carrier with a single coupling constant (~ 23 G) at least eight lines on a broad emissive background. 

The sharp lines are actually the innermost eight lines of the 10-line t-butyl radical spectrum from 

decarboxylation of the oxo–acyl radical shown in Figure 3.7. The broad emissive  
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Figure 3.7 The 10-line t-butyl radical spectrum from decarboxylation of poly (t-butyl methacrylate) 
oxo–acyl radical in diethylene glycol dimethyl ether at 125 °C with following total sweep width: (top) 
300 G, 100 G, 50 G, and (bottom) 30 G and delay time: 500 ns   
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signal in the background is from the main radical from P(t-BMA). The opposite relative intensities 

were observed for (PMMA)1–b–P(t-BMA)9  photolysis. The peak signal of tert-butyl  

radical is stronger and sharper, broad signal that has similar features to the room temperature 

spectra was collected for the PMMA main-chain radicals. To make sure of the origin of alternating 

line width spectrum, we simulated spectrum by using tert-butyl radical with main-chain radical of 

P(t-BMA), and propagating radical of P(t-BMA). As indicated earlier, conformationally induced 

modulation of hyperfine coupling constants is usually shown in propagating radicals of polymer 

after photolysis. The simulated EPR spectra of propagating radical of P(t-MBA) at 150 °C in 

Figure 3.8, the value of hyperfine coupling constants used here was reported by Kaiwara at al [86]. 

However, the spectrum is quite different suggesting that the TREPR spectrum of (PMMA)1–P(t-

BMA)9  mainly from tert-butyl radical not propagating radical. It is also important to note that rich 

P(t-BMA) on block copolymer will make the polymer chain more rigid which leads to slow 

conformational dynamics of P(t-BMA) main chain radical.   

Figure 3.9 shows the temperature dependence of the TRPER spectra obtained upon 

photodegradation of all three PMMA-b-P(t-BMA) block copolymers in PC or diglyme. Clearly, 

all three block copolymers show large changes in both line width and shape upon heating. As we 

discussed before, the large changes are related to the conformational dynamic motion of 

hyperfine coupling because the mechanism of this interaction is dependent on the dihedral angle 

between the unpaired p orbital of carbon centered radical and the C–H σ bond adjacent to it. At 

the highest temperature (~120 °C), all three samples show motionally narrowed spectra with very 

sharp line widths representing an average of the hyperfine coupling constant via fast chain 

dynamics. In addition, the alternating line width effect appears in the lower temperature  
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Figure 3.8 Structure of propagating radical of poly (t-butyl methacrylate) and simulated EPR spectra 
of the propagating radical of poly (t-butyl methacrylate) (left) direct detection and (right) 1’st 
derivative at 150 °C. The magnetic field sweep width for all spectra is 200 G.  Simulation parameters: 
3 aH(CH3) =21.7 G , aH(CH) = 14 G, and aH(CH) = 11.6 G from Kajiwara, A.; Maeda, K.; Kubo, N.; Kamachi, 
M. Macromolecules 2003, 36, 526–528.  
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Figure 3.9 The temperature dependence of TREPR spectra for the main-chain radical from 248 nm 
irradiation of all three Poly (methyl methacrylate)-b–poly (t-butyl methacrylate) copolymer in 
either diglyme or propylene carbonate (1g of polymer in 25 ml of solvent) at delay time of 500 ns. 
The temperature for spectra is shown in °C and the magnetic sweep width is 200 G for all spectra. 
Tert-butyl radical is marked with an asterisk 
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spectra because of slow motion conformational motion in polymer chain [87]. Restricted and slow 

chain dynamic allows detection of all possible conformations resulting in broad line width of 

spectra similar to lower temperature and even frozen EPR spectra of the propagating radical of the 

polymer [88].   

In order to compare chain dynamics between PMMA-b-P(t-BMA) block copolymers and 

random copolymers, a random copolymer is synthesized, However the random copolymer did not 

dissolved either PC or diglyme and show phase separation even at high temperature. Therefore the 

TREPR spectrum of PMMA-P(t-BMA) random copolymer was not obtained.  

It is interesting to note that TREPR spectra of main-chain radical of both (PMMA)9–b–P(t-

BMA)1  and (PMMA)1–b–P(t-BMA)1 looks similar to the i-PMMA main chain radical which has 

shown faster chain dynamics than those two other PMMA polymers. (a- and s- PMMA)  

 

3.2.1.2 Poly (methyl methacrylate)–b–Poly (n-butyl methacrylate) Copolymers  

In Figure 3.10, experimental TREPR spectra and the simulations are shown from the 

photolysis of  (PMMA)9–b–P(n-BMA)1, (PMMA)1–b–P(n-BMA)9  and random PMMA-co-P(n-

BMA) (1:1 wt%) at 120 °C.  Molecular weight and PDI of these copolymers report in Table 3.1.  

All spectra in Figure 3.10 looks almost identical with regard to the number of transition, line 

position and spectral width, however on a closer view (box), it is suspected that central line in 

(PMMA)1–b–P(n-BMA)9  spectrum has split into doublet. It is interesting note that the observed 

P(n-BMA) TREPR spectrum also shows a large central line, which is distinguishable from TREPR 

spectrum of PMMA. The simulation of n-butyl radical using literature values supports this feature 

because the simulated n-butyl spectrum also has a large central line [89].  

Additionally, the doublets observed in both TREPR spectrum of P(n-BMA) at high   
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Figure 3.10 Block chain length ratio dependence of Poly (methyl methacrylate)-b–poly (n-butyl 
methacrylate) copolymer TREPR spectra in diglyme at 500 ns at 115 °C.  (Top) 1:9, (middle) 9:1, and  
(bottom) random 1:1. The magnetic field sweep width for all spectra is 200 G. Computer simulation 
of the fully converged, high temperature limit spectra are shown side by side with the experimental 
data, and hyperfine values for each copolymer are following: 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.1 G, 
2aH(CH2) = 10.9 G for (PMMA)9–b–(PnBMA)1 and random PMMA-b–P(nBMA); 3aH(CH3) = 22.9 G, 
2aH(CH2) = 16.4 G, 2aH(CH2) = 11.3 G for (PMMA)1–co–(PnBMA)1 
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temperature and simulated n- butyl radical would be positioned in the middle of lines spectrum.  

Similar to  (PMMA)1–b–P(t-BMA)9 copolymer (Figure 3.6), this might be the first observation of 

side chain radical in high temperature TREPR spectrum.  Although for the (PMMA)1–b–P(t-

BMA)9 , the signal from the t-butyl radical dominates the spectrum due to its high intensity packed 

into just a few transitions. The n-butyl radical shows a similar intensity to main-chain radical from 

P(n-BMA). Thus it is likely that both radical is superimposed.  

 In contrast to TREPR spectrum of (PMMA)1–b–P(n-BMA)9 and, (PMMA)9–b–P(n-

BMA)1, the spectrum from random PMMA–co–P(n-BMA) (1:1 wt%) does not show any special 

features, and showing only the main-chain radical from PMMA.  

Computer simulations of the fully converged, high temperature limit spectra are shown 

side by side with the experimental data in Figure 3.10. The hyperfine coupling constants used for 

each simulations are listed in the figure caption. The simulation of three samples is straightforward. 

A value of 22.9 G, standard values for free rotating methyl group, [90-92] was used for the 

hyperfine coupling constant for the proton of the methyl group, which is identical to all three 

spectrum.  For the two sets of methylene group, 16.1 G and 10.9 G were used for  (PMMA)9–b–

P(n-BMA)1, and random PMMA–co–P(n-BMA) (1:1 wt%).  However, In order to simulate the 

experimental TREPR spectrum of (PMMA)1–b–P(n-BMA)9, the values of 16.4 G and 11.3 G were 

used for the each of β–protons of the two methylene group. The additional splitting in the TREPR 

spectrum was simulated by modifying the hyperfine coupling constants for the methylene protons. 

As we discussed our early papers, changing side ester chain methyl to ethyl leads to change the 

relative energies of the conformation and the barrier heights thus resulting in hyperfine constants. 

In the same manner, when the P(n-BMA) is rich in block copolymer, hyperfine coupling constants 

are more related with P(n-BMA) conformation and their barrier thus the appearance of TRERP 
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between  (PMMA)1–b–P(n-BMA)9 and (PMMA)9–b–P(n-BMA)1.   

Figure 3.11 shows the temperature dependence of the TREPR spectra of (PMMA)1–b–P(n-

BMA)9  and (PMMA)9–b–P(n-BMA)1 at a variety of temperature. As the temperature was 

increased form 28 °C to 115 °C, the alternating sharp and broad lines become sharper and show 

motional narrowing. The lower temperature spectra showed the same alternating line width effect 

as observed with PMMA at low temperature. However, in the case of (PMMA)1–b–P(n-BMA)9  at 

higher temperature, the center line become a strong singlet unlike the spectrum at lower 

temperature.  

It is a rather unexpected result in that the lines in the (PMMA)1–b–P(n-BMA)9  spectrum 

at 28 °C was not broader than (PMMA)9–b–P(n-BMA)1.  From our previous study [10], the 

dynamics of the ester group (β-relaxation) can couple to the motion of the polymer backbone (-

relaxation) and influence the R-relaxation rates. Additionally, relaxation is related with Tg of 

polymer. For example, the PEMA polymer chain backbone is much more rigid than PMMA due 

to bulkier ester side chain thus TREPR spectrum of PEMA shows broader line at lower temperature 

than in PMMA because the larger ethyl group in PEMA makes the β-relaxation processes of the 

side chains slower by an order of magnitude. Although the structure of P(n-BMA) looks more 

complicated than PMMA, the Tg of P(n-MBA) (25 °C) is much lower than PMMA (115 °C). 

Therefore, TREPR spectrum P(n-BMA) rich block copolymer at lower temperature do not show 

broader lines compared to that of (PMMA)9–b–(P(n-BMA))1.   

 

3.2.1.3 Poly (methyl methacrylate)–b–Poly (ethyl acrylate) Copolymers  

So far, we have discussed only methacrylate types of A-B block copolymer. In this  
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Figure 3.11 The temperature dependence of TREPR spectra for the main-chain radical from 248 nm 
irradiation of all two Poly (methyl methacrylate)-b–poly (t-butyl methacrylate) copolymer in either 
diglyme or propylene carbonate (1g of polymer in 25 ml of solvent) at delay time of 500 ns. The 
temperature for each spectrum is shown in °C and the magnetic sweep width is 200 G for all spectra. 
(Bottom) The simulated high-temperature TREPR spectra for each copolymer. Hyperfine values for 
each copolymer are the following : 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.3 G  for 
(PMMA)1–b–(PnBMA)9  and 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.1 G, 2aH(CH2) = 10.9 G  for (PMMA)9–
b–(PnBMA)1 
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section we present result on A-block is methacrylate polymer with B-block is acrylate copolymer. 

TREPR spectrum of PEA and PMMA are quite different in terms of number of line, line 

position and line width as shown in Figure 3.12. In the case of PEA, main chain radical shows six 

major transitions with the doublets of the innermost lines attributed to two - methylene hyperfine 

couplings of 23.0 and 24.7 G and one -hyperfine coupling of 21.5 G, which were comparable to 

the reported literature values for radicals of similar chemical structure. The oxo-acyl radical from 

PEA was not observed at high temperature because the signal from this radical decays rapidly due 

to fast spin relaxation. As we discussed earlier chapter, the different symmetry relationships 

between PEA and PMMA main chain radical resulted in the large difference between PEA and 

PMMA spectra. In addition, methacrylate polymers show a strong tacticity dependence unlike in 

PEA.  

Figure 3.12 shows the experimental spectra and the corresponding simulation of the 

TREPR spectra form photolysis of (PMMA)9–b–(PEA)1, (PMMA)1–b–(PEA)1,  PEA and PMMA 

in propylene carbonate solution. PEA and PMMA spectrum is also shown here for comparison.  

Similar to other PMMA rich block copolymers, the TREPR spectrum shows intense emission from 

the TM of CIDEP. Also the appearance of TREPR spectra is identical in each case. Even the 

(PMMA)1–b–(PEA)1 block copolymer has same features as PMMA main chain radical after 

photolysis.  The temperature dependence of the TREPR spectra from the (PMMA)9–b–(PEA)1 and 

(PMMA)1–b–(PEA)1  main chain radicals are shown in Figure 3.13. The same alternating line 

width effect at lower temperature are observed for both (PMMA)9–b–(PEA)1 and (PMMA)1–b–

(PEA)1. With increasing temperature, a large transformation takes place in both figure and full 

convergence motionally narrowed spectrum is clearly observed. 
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Figure 3.12 (Left) Experimental high temperature TREPR spectra and (Right) simulated spectra for 
main-chain radicals observed at 500 ns after 248 nm laser flash photolysis of the following polymers:  
Poly (methyl methacrylate)-b–poly ethyl acrylate) copolymer (Top) n:m = 9:1 , 1:1 , poly 
methacrylate , and (bottom) poly ethyl acrylate for comparison in propylene carbonate (1g polymer 
in 25 ml solvent). The magnetic sweep for all spectra is 150 G. The simulated high-temperature 
TREPR spectra for each copolymer. Hyperfine values for each copolymer are the following: 3aH(CH3) 
= 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.7 G for PMMA and (PMMA)9–b–(PEA)1; 3aH(CH3) = 22.9 G, 
2aH(CH2) = 16.4 G, 2aH(CH2) = 11.0 G for  (PMMA)1–b–(PEA)1; aH(H) = 21.7 G, 2aH(CH2) = 23.5 G, 
2aH(CH2) = 23.8 G for PEA.  
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Figure 3.13 The temperature dependence of TREPR spectra for the main-chain radical from 248 
nm irradiation of all two Poly (methyl methacrylate)-b–poly (ethyl acrylate) copolymer in 
propylene carbonate (1g of polymer in 25 ml of solvent) at delay time of 500 ns. The temperature 
for each spectrum is shown in °C and the magnetic sweep width is 150 G for all spectra. (Bottom) 
The simulated high-temperature TREPR spectra for each copolymer. Hyperfine values for each 
copolymer are the following: 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.7 G for (PMMA)9–
b–(PEA)1; 3aH(CH3) = 22.9 G, 2aH(CH2) = 16.4 G, 2aH(CH2) = 11.0 G for  (PMMA)1–b–(PEA)1 
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3.3       Summary and Outlook   

The TREPR spectra presented in this chapter are rich in information about the spin 

selective and conformational chain dynamics of several acrylate block copolymers as a function 

of temperature, ester side chain stiffness, and variation of chain length of block chains. The 

excellent visual fit of the simulations at high temperature TREPR spectra of several block 

copolymers lead us to the unambiguous identification of the photochemical and photophysical 

events of these acrylates copolymers. As we expected that the conformational dynamics e.g., fast 

or slow conformational of the each blocks plays important role on line shapes and appearances of 

spectrum. In particular, the P(t-BMA) rich block copolymer spectrum shows an alternating line 

width effect and line broadening at high temperatures, which is an unusual behavior in the high 

temperature TREPR spectrum. This is indicative of conformationally induced modulation of 

hyperfine coupling constants, which is expected for β-hyperfine couplings in polymeric radicals 

with such bulky substituents on the main chain. The simulations of all block copolymers at higher 

temperature are well matched to the experimental date except for P(t-BMA) rich block copolymer 

spectrum. Because the anisotropic motion between t-butyl radicals (fast motion) and main-chain 

radicals (slow motion), it is hard to produce the perfect fit simulated spectrum.  

Future work to produce the better fit of the simulation of P(t-BMA) rich copolymers at 

high temperature. In order to better understand of dynamics of these block copolymers in terms of 

variation of block chain lengths, we will measure the spin-lattice relaxation rates by kinetic profiles 

at a constant magnetic field.  By using the triplet quenchers such as a sorbic acid, we can be 

measured of the life times of the ester side chains.  The Ea  can be calculated to measure the 

rotational correlation times of these block copolymers by using spin-probe methods or two-jump 

model.  
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3.4       Experimental 

3.4.1    Materials  

MMA, t-BMA, n-BMA and EA (Aldrich) were passed through columns of activated basic 

alumina and stored at -20  °C prior to use. Extra dried, and stabilized THF (99.5%) was purchase 

from Aldrich.  n-Butyllithium (n-BuLi) ( Aldrich, 2.5M solution in cyclohexane),1,1-

diphenylethylene (DPE, Aldrich, 97%), α-methylstyrene (α–MeSt, Aldrich,99%), and Cyclo- 

hexane were used as received. 2,2-Azoisobutyronitrile (AIBN, Aldrich 98%) was doubly 

recrystallized from methanol. LiCl (99.9%, Aldrich) was dried under vacuum overnight at 130 °C.  

 

3.4.2    Synthesis  

3.4.2.1 Anionic Polymerization  

The block copolymers used in this paper were synthesized by the anionic polymerization 

[93]. At the beginning, LiCl was first introduced into a flamed Schlenk Flask and purged with N2. 

THF and DPE or α–MeSt were transferred into the Flask by using glass syringes and needles, then 

the initiator solution (n-BuLi) was added dropwise. (dark red) Finally, the solution was cooled 

down to -78 °C and added with the required amount of MMA. The polymerization was conducted 

at -78 °C for 6h. Once MMA was added to the mixture solution, the deep red color of the initiator 

immediately disappeared due to start initiation. Sequential addition and polymerization of the 

desired amount of t-BMA, n-BMA and EA were carried out under the same experimental 

conditions. The copolymerization product was quenched by degassed methanol and the final 

solution was concentrated before being precipitated into an excess of 90:10 (v/v) methanol–water 

mixture under stirring. The copolymer was dried under vacuum at 70°C overnight.  
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                                                          1.  MMA and t-BMA (Mole ratio 9:1, 1:1 and 1.9)   

LiCl/DPE or α–MeSt / n-BuLi    +   2 . MMA and n-BMA (Mole ratio 9:1 and 1.9)   

          (-78 °C, N2)                             3.  MMA and EA (Mole ratio 9:1 and 1:1)  

 

3.4.2.2  Free radical Polymerization  

To compare photo degradation mechanism between linear block copolymer and random 

block copolymer, the random block copolymers were also prepared by the free solution radical 

polymerization.  First, cyclohexane was introduced into a flamed glass round bottom flask with 

magnetic stirrer and purged with N2, then added inhibitor free MMA and t-BMA, n-BMA or EA 

by using syringe. While stirring, AIBN as initiator was transferred into solution. The solution 

degassed with N2 for 30 min before immersed in an oil bath at 65 °C. After 24h, copolymer was 

diluted by methylene chloride and precipitated in cold methanol. The crude polymer was dried 

under vaccum at 70 °C overnight.  

 

3.4.3    Analysis of polymer samples  

3.4.3.1 Gel Permeation Chromatography (GPC)  

Molecular weights, relative to narrow poly methyl methacrylate standards, were measured 

using a Waters GPC system consisting of a Waters 510 pump, a Waters 717 autosampler, a Wyatt 

Optilab DSP refractometer, and a Wyatt Dawn EOS light scattering detector. THF was used as the 

mobile phase at a flow rate of 1 mL/min with a sample injection volume of 100 μL. The 

concentration of sample 5mg/ml. The molecular weights and molecular weight distributions were 

determined by GPC.  



 95 

 

3.4.3.2 High temperature TREPR set-up  

Continuous wave TREPR experiments were performed as previously described [10]. All 

experiments were performed on a JEOL USA Inc. JES-RE1X X–band EPR spectrometer equipped 

with a wide bandwidth preamplifier and a low-noise GaAsFET microwave amplifier. Samples 

were typically prepared as solutions of block copolymer (1g) in propylene carbonate or dimethyl 

ethyl ether (diglyme) (30 ml) and circulated through a quartz flat cell (0.4 mm path length) 

positioned in the center of a Varian TE103 optical transmission cavity. The solutions were 

photolyzed using a Lambda Physik Compex 120 excimer laser (248 nm, KrF) running at 60 Hz 

with a pulse energy of 100 mJ (~20 mJ per pulse hitting the sample) and a pulse width of 17 ns. 

Spectra were collected in the absence of field modulation at a fixed delay time after the laser flash 

using a two-gate boxcar integrator (Stanford, 100 ns gates), while the external magnetic field was 

swept with a scan time of 4 min.  

To obtain high-temperature TREPR spectra with flowing samples, a special flow apparatus 

insulated with polyurethane foam can provide stable laminar flow of liquids through the EPR 

resonator at temperatures up to 150 °C. From the pump, the sample tubing passes through a copper 

coil wrapped with heating tape (Omega, Inc.), which is controlled using a feedback circuit between 

a variable power temperature controller and two thermocouples, one placed at the entrance and the 

other at the exit of the quartz flow cell. Reported temperatures are the average of measurements 

taken from these thermocouples. The maximum temperature gradient at the highest temperature is 

about 10 °C but can be as little as 2 °C if the flow rate is fast enough. Very often, the micropump 

head gets very hot and its internal thermal interlock can switch it off. We have found that wrapping 

the pump motor casing with copper tubing and circulating cold water through it, using a 
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submersible pump and ice water bath, is sufficient to avoid this problem. 

The choice of solvent is critical for the success of high-temperature experiments. The solvent must 

(1) dissolve the sample to a concentration that achieves the desired absorbance at the flat cell path 

length, (2) have a high enough boiling point so that it can withstand the reservoir temperature 

without evaporating or decomposing, and (3) be optically transparent at the laser excitation 

wavelength being used. For very high temperatures, diglyme and propylene carbonate are excellent 

choices as they are transparent at 248 nm and high boiling. If temperatures above100 °C are desired 

for aqueous samples, small amounts of ethylene glycol can be added to the solution to raise the 

boiling point. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 4. Radical-Triplet Pair Interactions as Probes of 

Long-Range Polymer Motion in Solution 

 

4.1 Introduction 

The molecular dynamics of polymer chains is a topic of great interest in many areas of 

chemistry and materials science [94-97]. Polymer solutions can be classified as dilute, semi-dilute 

and concentrated, and of course polymer melts in the absence of solvent can form a bulk liquid 

state. Above the glass transition temperature and melting point, the viscoelastic (mechanical) 

properties of polymer melts (neat polymeric liquids), are of interest, but a particular challenge in 

understanding macromolecular motions is to separate intrinsic polymer properties (e.g., 

conformational energies) from interchain interactions (entanglements) in the bulk polymer melt 

state [98,99]. In this regard, physical measurements of polymer conformational dynamics in dilute 

solution can be very informative.  Conformational motion of molecules has been studied by many 

techniques. The study of Steady-State electron paramagnetic resonance (SSEPR) spin-labeled 

polymers provides useful information about the molecular dynamics of polymers [100]. The 

mobility of covalently jointed spin labels, such as nitroxide is sensitive to the flexibility or rigidity 

of the polymer chain backbone, and its mobility can be quantified by the rotational correlation 

times in polymer systems. Over the past decade, our laboratory has been studying local chain 

dynamics in acrylic polymers in dilute solutions using time-resolved electron paramagnetic 

resonance (TREPR) spectroscopy [101,102].   
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Figure 4.1 Norrish I α–cleavage reaction of poly(methyl methacrylate) (PMMA) and graphical 
representation of the fast rotation of the side chain along one axis and the much slower 
conformational motion along the polymer chain. 
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For example, Figure -cleavage reaction of poly(methyl 

methacrylate) (PMMA) [103], leading to a main chain polymeric radical. The radical center 

functions as a very small spectroscopic probe of the internal polymer chain dynamics, and the 

TREPR spectra from such radicals have been shown to be sensitive to solvent, temperature, ester 

side chain structure, and the stereochemistry of the neighboring carbon atoms.   

An often informative feature of TREPR spectra is chemically induced dynamic electron 

spin polarization (CIDEP), which produces non-Boltzmann electron spin state populations in the 

radicals9 and gives information regarding the spin state of the excited state precursor, diffusive 

encounters between paramagnetic species, and other dynamic effects such as conformational 

motion.  

In this chapter, by using SSEPR, we characterize the rotational mobility of nitroxide 

attached PMMA copolymer in dilute solution. The Microscopic Order–Macroscopic Disorder 

Model model and simulated rotational correlation times allow us to study the local segmental 

dynamics in our nitroxide attached polymer sample. Also, we examine the RTPM in acrylic 

polymer/nitroxide systems under different conditions of nitroxide mobility. By comparing TREPR 

spectra when the nitroxide radical is free to move in solution to those obtained when it is tethered 

via covalent bonds to the polymer backbone, the influence of intramolecular chain dynamics can 

be qualitatively assessed. Additionally, the dependence of the RTPM polarization in the covalently 

linked system as a function of nitroxide incorporation (mol%), temperature, solvent, and acrylic 

polymer ester side chain structure will be presented.   

 

4.2. The Microscopic Order–Macroscopic Disorder Model (MOMD)  

Spectral fitting of nitroxides exhibiting slow rotational motion or ordering are regularly 
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Spectral fitting of nitroxides exhibiting slow rotational motion or ordering are regularly carried out 

using a fitting program described extensively by Budil et al. [104] Commonly referred to as the 

Freed program, it is based on least-squares fitting of experimental spectra using the stochastic 

Liouville equation. Model parameters for the calculation of slow motion spectra include the 

magnetic and structural parameters of the radical, dynamic parameters including rates of rotational 

diffusion, and ordering potentials that describe the influence of anisotropic fluids like liquid 

crystals or frozen polymer solutions. On the whole, this makes the program useful for examining 

the dynamic motion of nitroxide radicals in macromolecular structures. However, because a large 

number of parameters can contribute to the observed line shape of a slow motion EPR spectrum 

and least-squares fitting is particularly sensitive to over fitting, it is common practice to obtain the 

magnetic parameters for a spin probe from a rigid limit spectrum and fit only the dynamic 

parameters and ordering potential. 

There are several important coordinate systems to model nitroxide diffusional motion in 

supramolecular aggregates. These include the magnetic tensor frame of the molecule (xM, yM, zM), 

the rotational diffusion tensor frame (xR, yR, zR), the director frame (xD, yD, zD), and the laboratory 

frame of reference (xL, yL, zL). The relationship between these frames of reference is illustrated in 

Figure 4.2. The first two coordinate systems are based on the molecular frame of reference, and 

describe the orientation of the magnetic tensor and the rotational diffusion tensor of the molecule 

relative to the molecular geometry. In the case of a nitroxide molecule like those studied here, the 

magnetic frame and rotational diffusion frame are identical, and axially symmetric spin probes like 

DSA. However, if necessary, the two frames of reference can be related to each other through a 

set of Euler angles, ΩD = (αD βD γD). In some cases, the magnetic frame and rotational frame of 

DSA spin probes are offset, and the inclusion of a value of βD is   
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Figure 4.2 (a) Different coordinate systems (laboratory: L, director: D, and magnetic: m) used to 
define motion parameters for a nitroxide spin label. (b) Diffusion rotation angles used to define the 
magnetic axes relative to the diffusion axes. Note that the reference system for these angles is the is 
diffusion frame. (c) Structure of spin-labeled PMMA with 2,2,6,6,-tetra-methyl-4-hydroxypiperidinyl-
1-oxy and the assumed conformation of spin label bounded at the end of the side chain (ref. 104, 105) 

. 
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necessary to relate the two frames of reference and more accurately fit the experimental data. This 

angle has been related to the presences of gauche bonds in the alkyl chain of the spin probe [106], 

which alters the rotational diffusion of the molecule and the orientation of the nitroxide moiety 

relative to the axis of molecular symmetry. A value of βD = 65 °C has been regularly used 

simulations of SSEPR spectra of nitroxides covalently attached to polymers [107].  

The final two frames of reference are both related to the laboratory axis system [104]. The 

director frame describes the orientation of the molecule in anisotropic fluids, and the laboratory 

frame describes the direction of the applied magnetic field, which lies along the zL axis. The 

director frame is related to the laboratory frame by a series of angles Ψ=(0,ψ,0). Only one angle is 

required to relate the two reference frames because the orienting potential is axially symmetric. 

This angle ψ is referred to as the director tilt angle, and represents the angle between the director 

imposing the ordering in an anisotropic fluid and magnetic field.  

In terms of simulating experimental spectra in vesicle or lamellar phases, the director tilt 

angle is particularly important because they exhibit microscopic order with macroscopic disorder 

(MOMD). In certain supramolecular and macromolecular systems where there are domains of 

local ordering of the spin probes, but these ordered domains are distributed randomly and 

isotropically with respect to the laboratory frame, special care must be taken in simulating the 

SSEPR spectra. Because the EPR experiment is sensitive to the ordering of a spin probe, it is 

necessary to account for this local ordering to accurately reproduce the experimental spectrum. 

This is accomplished by integrating the spectral line shapes over the director tilt angle ψ. This 

MOMD model has been extensively and successfully applied to numerous polymeric systems that 

exhibit impose a preferential orientation on the spin label. In this chapter, the MOMD model is 

used to simulate SSEPR spectra of spin labeled copolymers, but an isotropic rotation model  
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was used for spectra of TEPMPO dissolved in solutions of unlabeled polymer. 

 

4.3 Studies of Segmental Rotational Dynamics of Spin-labeled PMMA in Dilute Solution   

The mobility of spin-labels depends on the flexibility of the tether connecting it to the 

backbone, and on tumbling of the macromolecules. Therefore, the calculated rotational correlation 

time, τc of spin-labels provides useful information about the local segmental motions of spin-

labeled polymer. When τc < 10 ps, the nitroxide spectrum shows three lines with equal widths and 

amplitudes (fast motion) and τc < 4 ns exhibit a liquid-type spectrum and considered mobile [108].  

The structure of the polymer system of interest is outlined in Figure 4.3. Random 

copolymers with molecular weight, Mw ~ 120,000 (PDI ~ 2) were synthesized as predominantly 

atactic PMMA with 0, 0.5, 1.0, or 2.0 mole% of the nitroxide moiety incorporated into them.  This 

small amount of added monomer is initially incorporated as an amine (the monomer side chain 

contains the tetramethylpiperidine skeleton), which is then oxidized, post–polymerization, to the 

nitroxide using the peroxyacid meta-chloroperbenzoic acid (m-CPBA) [109].   

Figure 4.4 shows the (dark) steady-state EPR (SSEPR) spectrum of the synthesized 

polymer (Figure 4.3) at room temperature in three different solvents, along with computer 

simulations based on the Freed model. These solvents are generally described as “good” or “bad” 

for a particular polymer based on the balanced of attractive vs. repulsive van der Waals forces 

between the solvent molecules and the polymer chain. Based on this balance of forces, a “good” 

solvent generally provides for more extended chains in solution and a “bad” solvent leads to more 

coiled conformations. This will manifest itself in the EPR spectrum through changes in spectral 

features such as line broadening and intensity difference. 
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Figure 4.3 The structure of nitroxide containing random PMMA copolymer studied in this 
chapter    
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Figure 4.4 Top: X-band SSEPR (dark) spectra of the nitroxide-doped copolymer from Figure 4.3, 
acquired at room temperature in the solvents indicated. Bottom: Computer simulations using the 
Freed model REF with rotational correlation times of (left to right) 0.18 ns, 0.45 ns, and 0.72ns 
respectively 
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In Figure 4.4, the three line spectrum of the stable nitroxide free radical is evident in all 

three solvents, arising from a single electron-nuclear hyperfine coupling constant of about 15 

Gauss from the 14N nucleus (total spin I = 1).  The SSEPR spectrum is collected using 100 kHz 

field modulation, which means the observed signals are detected with a first derivative line shape.  

The slightly lower intensity and larger line width of the high field line in the spectrum taken in 

methylene chloride indicates that the nitroxide is experiencing some (mild) constraint in its 

rotational motion, which is expected if it is covalently bound to the polymer chain. Overall this is 

still considered to be a “ fast motion” specrum. In the other two solvents, where the polymer chain 

is more coiled than extended [110,111] the anisotropic motion of the spin label is amplified. The 

line widths increase and all three lines in the SSEPR spectrum acquired in 1–butanol and propylene 

carbonate have different intensities. These changes are supported quantitatively by the increased 

rotational correlation time required the best fit of the spectra in figure 4.4 from the worst solvent 

(n-butanol, 0.72 ns) to the much better solvent (methylene chloride, 0.18 ns). In fact, Nitroxide 

radicals with τc < 4 ns exhibit a liquid-type spectrum and considered mobile from the simulated 

nitroxide spectrum [108].  

In the absence of an NMR spectrum, the SSEPR spectra in Figure 4.4 provide strong 

evidence that both steps in the synthesis (polymerization and oxidation) of the polymer were 

successful, and that the nitroxide radical line shape is sensitive to polymer chain conformation, 

mobility, and solvent structure.  

Next we monitored the effect of nitroxide rotational dynamics on EPR line shape as a 

function of temperature and inter- and intramolecular system. Figure 4.5 shows the temperature 

dependence of the SSEPR spectra for the 1 mol % nitroxide copolymer sample in propylene 

carbonate (on the left side) and with the same mol % nitroxide (TEMPO) and PMMA in the   
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Figure 4.5 (Left )X-band SSEPR spectra of the nitroxide-doped copolymer  and (Right) the same 
mol % nitroxide (TEMPO) and PMMA in PC at the given temperature  
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same solvent, but the radicals were not covalently linked to the polymer. The SSEPR spectrum of 

both the spin-labeled polymer and TEMPO mixed with PMMA in PC is clearly resolvable 

couplings from both the 14N nucleus (I = 1). 

Although some inhomogeneous broadening (about 3 Gauss) indicates in SSEPR spectrum 

of TEMPO mixed with PMMA in PC at lower temperature, the SSEPR spectrum exhibit fast 

motion and three lines are almost identical in terms of line widths and amplitude in Figure 4.5 

(right). According to the simulated τc (0.2 ns) for TEMPO mixed with PMMA in PC at various 

temperatures is identical as well. We do not figure out the origin of the inhomogeneous broadening 

yet, but we assume that there are intermolecular processes due to restricted chain mobility below 

Tg of PMMA leading to change the rotational motion of nitroxide.  

In Figure 4.5 left, at the room temperature, both fast and slow components are present in 

the SSEPR spectrum of the 1mol % nitroxide copolymer sample in PC, however slow motional 

effects should not be large.  As the temperature increases the SSEPR spectra of the 1mol % 

nitroxide in copolymer sample, the motionally broad spectrum at R.T undergoes motionally 

narrowed spectrum eventually at higher temperature.  However even at 120 °C, the nitroxide 

motion is not isotropic for this structure.   

The rotational correlation times determined by the fitting process of experimental spectra 

of 1mol % nitroxide in copolymer sample in PC at all temperatures are listed in Table 4.1. These 

correlation times were used to determine an activation energy of the conformational changes in 

this copolymer in PC using the Arrhenius equation with the rate constant k equal to 1/τc. The slope 

of a plot of ln(τc) vs. 1/T will be positive and give the activation energy (Ea) directly. Figure 4.6 

shows the Arrhenius plot of the correlation times found for the 1mol % nitroxide in copolymer 

sample at different temperature in PC. 
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Table 4.1 Parameters used in the simulation Temperature Dependence of the SSEPR spectra 1 mol% 
nitroxide copolymer sample in PC shown in Figure 4.5 (Left) 

 

Temp (°C) Azz (G) An (G) 

order 

parameter 

τc (s) 

25 34.52 16.04 0.21 4.55 x 10-9 

65 33.11 15.57 0.17 1.22 x 10-9 

90 32.90 15.50 0.19 6.61 x 10-10 

120 32.77 15.46 0.14 4.64 x 10-10 
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Figure 4.6 Arrhenius plot for rotational correlation time data from nitroxide-
doped polymer (Figure 4.5). Squares are the simulated data, and the solid line is 
the linear fit with Ea = 23 KJ/mol 
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The Ea determined from the slope of this plot is 23 kJ/mol. This value is very close to those 

measured for d3-PMMMA main chain radical in PC using a two-site jump model for hyperfine 

modulation (22.2 kJ/mol) [102].  

 

4.4 TREPR Studies of Chain Dynamics of Spin-labeled Polymers in Dilute Solutions  

The top right of Figure 4.7 shows a typical high temperature (~100°C) TREPR spectrum 

of the main chain polymeric radical from isotatic PMMA in propylene carbonate solution, 

exhibiting net emissive electron spin polarization from the triplet mechanism [112,113] (TM) of 

CIDEP. The 21-line spectrum, acquired in dilute propylene carbonate solution, is assigned to 3 

sets of electron-nuclear hyperfine coupling constants from a total of 7 β–protons.  Simulation and 

extensive interpretation of such spectra are given in several previous publications [102,114,115]. 

Because hyperfine coupling constants in the main chain radical depend on the dihedral angles 

between the p-orbital containing the unpaired electron and the C–H σ 

carbon, they are very sensitive to local conformational motion and the stereochemistry near the 

radical center. The coupling constants for the fast motion (high temperature) TREPR spectra are 

therefore both temperature and tacticity dependent. The other member of the radical pair produced 

in this reaction is an oxo–acyl radical that is not normally observed in our experiments at high 

temperatures due to fast spin relaxation. The TM polarization is created within the laser flash and 

arised from the anisotropic nature of the spin-orbit coupling process from the first excited singlet 

state to the lowest excited molecular triplet state of the ester side chain. Most likely, the fast 

rotation of the side chain along one axis and the much slower conformational motion along the 

polymer chain provide this high degree of anisotropy. (Figure 4.1)   

If a stable free radical such as a nitroxide is present either in the solution or covalently 
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linked to the polymer and makes contact with the photoexcited triplet state of the ester, net 

polarization in the 3-line nitroxide spectrum will result. At the bottom right of Figure 4.7, this is 

shown as net emissive polarization and is called Radical-Triplet Pair Mechanism (RTPM). There 

is no TREPR signal observed after excitation of the nitroxide by itself (a Boltzmann population 

cannot be detected), i.e., contact with an excited triplet state is required for this net polarization to 

be detected. Also, the ester triplet state is not detectable in this experiment due to its fast spin 

relaxation and broad transitions in solution. The 3-line emissive TREPR spectrum on the bottom 

right of Figure 4.7 arises from physical encounters (on the order of 5-20 Å  separation) and 

electronic spin state mixing between the nitroxide radical and the triplet state during the first few 

nanoseconds (perhaps as long as 10 ns) after the creation of the triplet state by the laser flash.  The 

RTPM polarization can be thought of as the "spin memory" of those encounters, and the 

polarization survives for about 1 µs, which is the normal electron spin relaxation time of the 

monoradical. On the other hands, direct electron spin polarization transfer (ESPT) from the spin 

polarized triplet state of ester onto the neighboring radical.  These and other important reactions 

are outlined in Scheme 4.1 (here the RTPM is reaction 2 and ESPT is reaction 3). In either case, 

these events manifest themselves as net polarization in the 3-line nitroxide spectrum (in the bottom 

right of Figure 4.7 this is shown as net emissive polarization).  

Scheme 4.1 

TM:   3Ester* = 2Radical              (1) 

RTPM:  3Ester* + TEMPO = 1Ester + 2TEMPO            (2) 

ESPT:   3Ester*+ TEMPO = 3Ester* + 2TEMPO           (3) 

Energy Transfer: 3Ester*+ TEMPO = 1Ester+4TEMPO*           (4)  

Polarization Transfer: 2Radical+TEMPO = Radical + 2TEMPO           (5) 

Scavenging:  Radical + TEMPO = Products             (6) 
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Figure 4.7 Graphical representation of spin polarization created by TM, RTPM and ESPT  
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 The RTPM and ESPT mechanisms are well-established both experimentally [116] and 

theoretically [117]. Both processes require close contact (~ 6–8 Å ) to provide overlap of the 

HOMO of the electronically excited triplet ester and the SOMO of the radical in its ground double 

state. While the RTPM is followed by quenching of the electronic triplet excitation (reaction 2) 

and can, therefore, compete with the dissociative route of the energy dissipation (reaction 1), the 

appearance of polarization via ESPT does not necessarily imply that the electronically excited state 

has been quenched (reaction 3).  Therefore, ESPT does not compete with the dissociation reaction. 

However, the ESPT process creates triplet states that no longer provide electron spin polarization 

in the resulting radicals. In this sense the ESPT quenches the TM polarization in radicals in a 

similar fashion to the RTPM.  

 There are two other important processes in these systems that should be noted. At small 

distances between radical and electronically excited molecule there is a possibility that electronic 

excitation can be transferred to the radical due to exchange or by the Förster mechanism of energy 

transfer (reaction 4) which can be effective at much longer distances (~15 – 20 Å ) between the 

radical and the triplet state if the electron dipolar spin-spin interaction is effective. This energy 

transfer event may or may not be followed by the creation of polarized TEMPO radicals. At the 

same time, the radicals created due to dissociation of the polymer can transfer (reaction 5) their 

TM polarization to the nitroxide radicals. In other words, the electron spin polarization observed 

in the TEMPO molecules nay not necessarily arise competition between dissociation and 

quenching. Consumption of TEMPO during photolysis would be evidence in favor of either 

reaction (4) or reaction (6), which is the scavenging of radicals by TEMPO. The latter suggests 

contribution of reaction (5), which demands contact of radicals (polarized and non–polarized) with 

TEMPO. 
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 We will refer the emissive TREPR signal of the electron spin polarized TEMPO as “RTPM” 

with the understanding that the mechanism of generation of polarization can involve several 

processes. It should be noted that net emission is characteristic for this particular ester triplet state, 

but the electron spin polarization might be opposite in phase for an excited stated created in a 

different polymer structures.  

The competitive nature of the TM and RTPM processes outlined in Figure 4.7 suggests an 

experimental strategy for expanding our previous polymer chain dynamics studies to a different 

range of polymer motions. By incorporating a nitroxide into the polymer chain via covalent bonds, 

as outlined in Figure 4.3, we can generate RTPM polarization via intramolecular encounters that 

depend on several structural and physical features of the polymer/solvent system.  

The ester side chain can be photoexcited at a random point along the polymer chain, and the 

TREPR signal is then detected at a fixed delay time after the laser flash.  Because of the much 

larger concentration of the ester side chain groups, and the known fast relaxation of excited doublet 

states, the dominant photophysical process leading to electron spin polarization will be the creation 

of isolated ester triplet excited states on the macromolecule. The absorbance of the nitroxide at 

248 nm is somewhat reduced when attached to the polymer chain. However, it should be noted 

that even if the nitroxide moiety absorbs more light at 248 nm, its molecular excited state will relax 

very quickly to the ground state and no chemical reactions from nitroxide excited states are known, 

so it is unlikely to interfere with TM/RTMP competition, except perhaps for reducing overall 

signal intensity. In order to determine the life times of exited triplet of ester side chain in PMMA, 

we monitored the quenching of the exited triplet state of ester side chain in PMMA by the sorbic 

acid (Quencher) in THF as a function of increasing concentration of the sorbic acid then the results 

were interpreted in terms of the Stern-Volmer model [118].   
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I0/I = 1 + Ksv[Q] = 1 + kqτ0[Q]                                            (4.1) 

The integral emission intensities of I0 and I in the absence and in the presence of quencher are 

related to the quencher concentration [Q] by eq 4.1, where Ksv is the Stern-Volmer constant, kq is 

the bimolecular quenching constant, and τ0 is the lifetime of the chromophore in the absence of 

quencher. The measured value of τ0 was found to be about 32 ns using the kq of 5x 109  m-1s-1. 

The TREPR signal from the system will arise from either the two competing processes 

described in Figure 4.7.  The partitioning of the two spectral signatures will depend on the ability 

of the attached stable nitroxide to engage in encounters with the excited triplet. A particular 

advantage of measuring RTPM/TM competition is that the nitroxide is the only radical species 

detected in a "pure" RTPM experiment (Figure 4.7, bottom center), and its spectral signature is 

very different from the main chain radical. Polymer chain motion in the dilute condition can also 

be studied using fluorescence quenching techniques [119], but these probes tend to be large organic 

molecules with large rotational anisotropies.  While the sensitivity and time response of optical 

methods are favorable for such investigations, the degree of influence of the probe molecules on 

the macromolecular motion is often quite substantial, and difficult to untangle from the intrinsic 

properties of the polymer itself. 

Figure 4.8 shows X-band TREPR spectra acquired at the same delay time (500 ns) after 

the laser flash, at the same temperature (120°C) and in the same solvent (propylene carbonate) for 

polymers with mol% nitroxide values of 2, 1, 0.5 and 0.1 incorporated into the polymer chain.  An 

emissive RTPM pattern is observed for the highest mole fraction (2 mol %), and it is the only 

signal present (at all delay times) studied. The line shapes are no longer first derivatives because 

field modulation is bypassed in TREPR (direct detection).  Similar to Figure 1, the TREPR signal 

of the nitroxide shows a small amount of anisotropy in its line shape, with the  
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Figure 4.8 TREPR spectra of the nitroxide–containing copolymer shown in figure 4.3, 
acquired in propylene carbonate solution at 120°C, as a function of nitroxide 
incorporation  (in mol %) the indicated to the left. Asterisks in the 1.0 mole % spectrum 
indicate transitions from the main chain polymeric radical of PMMA that is dominant 
in the 0.5 and 0.1 mol % spectra 
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high field line slightly less intense and broader than the other two.  When the amount of 

incorporated nitroxide is lowered to 1 mol %, the three line nitroxide RTPM spectrum is much 

more intense (note the higher S/N ratio), and there is evidence for the presence of another signal 

underneath it, which we assign to the main chain polymeric radical (marked by asterisks in the 1 

mol % spectrum). This spectrum also appears to be slightly sharper than the 2 mol % spectrum, 

(and also note the more equal intensities of the two lower field lines), which suggests that the mole 

fraction of the nitroxide incorporated into the polymer chain affects the dynamics. The increase in 

RTPM intensity with the lower nitroxide incorporation is interesting and most likely reflects a 

change in the amount of direct quenching of the ester triplet state by energy transfer at the lower 

concentrations. 

At 0.5 mol % there is almost no trace of the nitroxide RTPM spectrum and instead the 

TREPR spectrum shows the main chain radical with TM polarization, albeit very weakly.  Thus 

the crossover between the competition for RTPM generation by radical-triplet pair interactions 

and the Norrish I -cleavage reaction of the excited molecular triplet state of the ester side chain 

is quite sensitive to the loading level of the nitroxide in the polymer. At even less loading (0.1 

mol %), the TREPR spectrum is completely dominated by the TM polarized main chain polymeric 

radical.  Figure 4.8 shows that even in a random copolymer arrangement at very small loadings of 

nitroxide, large changes in the quenching pathways are observed.  It should be noted also that we 

cannot select the position along the chain where the light is absorbed, so the precise location of the 

excited triplet state is unknown.  The spectrum is not identical to that shown at the Top right in 

Figure 4.7 because the two spectra arise from polymers with different tacticities – there are more 

lines in the main chain polymer radical spectrum acquired here because of fewer accidental 

degeneracies in the hyperfine splitting pattern.  
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The time scale for the encounters needed to create the RTPM polarization must be on the 

order of the bond cleavage rate in order to compete with it.  The triplet lifetime of the ester in the 

polymer has not been determined, and a thorough search of the literature reveals that triplet 

lifetimes for small aliphatic esters have not been reported. Presumably this is due to difficulties 

involved in measuring deep UV absorbances in transient optical experiments. However, the 

-cleavage reaction is known to be facile in aliphatic esters [120], and similar radicals 

(alkyl and oxo–acyl) have been detected in high concentrations by SSEPR [121], suggesting a fast 

cleavage rate at least comparable to aliphatic ketones (5 x 108 s–1 at room temperature) [122].  In 

spite of a lack of detail regarding the specific time scale of the radical–triplet encounter events, the 

results in Figure 4.8 are intriguing with regard to polymer chain dynamics, and so other parameters 

that can affect the polymer chain mobility were also investigated.  

The ester side chain excited molecular triplet state is itself EPR silent in liquid solution due 

to fast spin relaxation caused by modulation of its electron dipole-dipole interaction. The stable 

nitroxide radical has a Boltzmann population of spin states in the dark, but this is not observed in 

the TREPR experiment (the experiment is not, except in rare cases of very high radical 

concentrations, sensitive to Boltzmann levels – CIDEP is essentially required for observation of 

direct detection TREPR signals) [123]. If nitroxide radicals and photoexcited triplet states are the 

only paramagnetic species that exist in a particular solution, and the triplet state does not react to 

make radicals, no TREPR signal is observed unless they make collisional encounters within the 

excited triplet state lifetime. 

The magnitude of the observed TM polarization in these systems is very large and its origin 

is worthy of further discussion. Although we cannot quantitatively correlate TREPR signal 

intensities to radical concentrations, we note the following: very little degradation of the polymer 
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chains is observed even after many scans and thousands of laser shots.  This implies that the 

number of free radicals produced per laser shot is low (~10–6 M).  However, the signal intensities 

are some of the largest we have ever encountered in experiments with samples having similar 

absorbances.  Therefore, the TM polarization, created during the intersystem crossing process that 

creates the excited triplet state, must very large indeed.  Several factors can maximize the TM 

[112,113], including the intersystem crossing rate, the chemical decay rate, and the magnitude of 

the zero-field splitting parameters of the triplet, but the most important parameter is the rotational 

anisotropy of the triplet as it tumbles in the applied magnetic field of the EPR spectrometer.  The 

ester side chains have significantly greater freedom of motion along an axis perpendicular to the 

polymer backbone, but very poor rotational mobility along the backbone axis itself.  This 

difference in rotational mobility allows for greater spin state selectivity in the molecular frame 

during inter-sytem crossing and will amplify the TM. 

Figure 4.9 shows the temperature dependence of the RTPM spectrum for the 1 mol % 

nitroxide copolymer sample in propylene carbonate, acquired at a delay time of 500 ns.  The 

highest temperature spectrum (Figure 4.9, bottom) is the same as the one shown for 1 mol % in 

Figure 4.8.  There are only minor changes in the spectra as the temperature is lowered from 120°C 

to 90°C (bottom three spectra in Figure 4.9) but it is interesting that the magnitude of the RTPM 

polarization remains about the same but the signal from the main chain radical (TM polarized, just 

left of center) decreases by almost a factor of two over this small temperature range, without 

significant broadening.  This trend continues (data not shown) until the much broader spectrum at 

room temperature is obtained (Figure 4.9, top).  This spectrum is essentially an emissive direct 

detection analog of the steady-state spectrum shown in Figure 1.  The width and anisotropy 

exhibited by the spectrum at the top of Figure 4.9 suggests that propylene   
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Figure 4.9 TREPR spectra of the nitroxide–containing polymer shown in 
Figure 4.3 (1 mol % nitroxide) in propylene carbonate solution at the 
temperatures indicated.  Asterisks in the 120°C spectrum indicate transitions 
from the main chain polymeric radical of PMMA, which is very broad but still 
observable in the 25 °C spectrum (top). The delay time is 500 ns and the 
sweep width is 150 G in each spectrum 
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carbonate may not be a "good" solvent for these copolymers at room temperature, but it becomes 

a better solvent (as evidenced by the fast motion spectrum) at higher temperatures.  Also, it is clear 

that the room temperature spectrum still contains a contribution from a substantially broadened 

main chain polymer radical, indicating that both pathways are affected by temperature, although 

the nitroxide RTPM polarization seems to have decreased in intensity much faster with decreasing 

temperature than the main chain radical from the Norrish I reaction.  At room temperature, there 

may also be a small contribution from the oxo-acyl radical, just to the high field side of the center 

of the spectrum. 

Figure 4.10 shows a comparison between inter– and intramolecular RTPM pathways.  The 

"benchmark" spectrum, taken again from the 1 mol % nitroxide copolymer at 120 °C, is presented 

in the bottom spectrum in the Figure to show the intramolecular RTPM for comparison.  The top 

spectrum in Figure 4.10 was acquired with the same mol % nitroxide (TEMPO) and PMMA in the 

same solvent and at the same temperature, but the radicals were not covalently linked to the 

polymer.  When the nitroxide is free to move in solution, two things are immediately apparent: the 

TREPR signal is much more isotropic (sharp line widths, with almost equal intensities), and the 

RTPM polarization is much more intense (the vertical scale is 5x for 

the bottom spectrum).  Figure 4.10 demonstrates that the polymer chain dynamics of the copolymer 

limit the contact between the ester side chain triplet states and the stable radicals.  On the other 

hand, The RTPM is so intense in the intermolecular case that the main chain radical is barely 

visible. 

 Figure 4.11 shows the TREPR experiment for the 1 mol% copolymer at different 

concentrations.  This experiment was run to see if intra-chain interactions (entanglements) exert 

any influence on the spectra. Somewhat surprisingly, there is very little change in the TREPR  
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Figure 4.10 Inter– vs. intramolecular competition between TM and RTPM.  (Top) TREPR spectra 
of unattached TEMPO (1.5mM) and PMMA (5 wt %) in propylene carbonate after 248 nm laser 
excitation at 120°C.  (Bottom) TREPR spectrum of the nitroxide containing PMMA copolymer 
(loading level is 1 mol %) under the same conditions. Asterisks in the bottom spectrum indicate 
transitions due to the main chain polymeric radical of PMMA. The delay time is 500 ns and the 
sweep width is 150 G in both spectra. 
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Figure 4.11 TREPR spectra of the 1 mol% of nitroxide–containing PMMA 
polymer as a function of concentration. The spectra were acquired in propylene 
carbonate solution at 120 °C. Asterisks in the bottom spectrum indicate 
transitions due to the main chain polymeric radical of PMMA. The delay time is 
500 ns and the sweep width is 150 G in both spectra 
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spectra of the copolymer as the concentration is increased.  The ratio of the main chain radical 

signal to the nitroxide signal remains about the same, while the overall signal intensity increases.  

There are slight increases in the line widths of both radicals, but little change in the anisotropic 

shape of the nitroxide signal.  This control experiment demonstrates that generation of the RTPM  

polarization in the copolymers is dominated by intramolecular polymer chain dynamics and does 

not arise from chain entanglements, intermolecular quenching, or poor solvation of the polymer. 

The ester side chain structure can be varied, although it should be noted that the 

photochemistry and photophysics of the side chain might change in addition to the copolymer 

chain dynamics.  We selected two methacrylic polymers whose structures should provide different 

conformational energies in dilute solution with only minimal perturbations of the triplet excited 

state of the ester side chain.  Figure 4.12 shows high temperature TREPR spectra obtained for two 

copolymers containing 1 mol % nitroxide: n-butyl ester side chains (P(n-BMA), top of Figure 

4.12)) and tert-butyl ester side chains (P(t-BMA), bottom of Figure 4.12).  In both cases the RTPM 

is completely absent.  It seems that with larger side chains the polymer chain dynamics are slower 

and so the Norrish I pathway always dominates (too few collisions between the excited esters and 

the nitroxides).  Unfortunately, we cannot increase the mol% of nitroxide incorporation much 

further without getting weaker signals (recall Figure 4.8, top) and or observing direct excitation 

and degradation of the nitroxide. 

The side chain dependence was investigated further by returning to the intermolecular 

RTPM experiment described in Figure 4.10, but using a polymer with larger side chains (Pn-BMA).  

The results are shown in Figure 4.13.  At elevated temperatures at 1 mol % TEMPO in diglyme, 

no intermolecular RTPM is produced in this mixture (top and middle spectra in Figure 4.11).  

However, if the concentration of TEMPO in the solution is increased to 2 mol %, strong  
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Figure 4.12 TREPR spectra of nitroxide–containing poly(n-butyl methacrylate) at 70°C (top) and 
poly(tert-butyl methacrylate) at 130°C (bottom) in diglyme. The sweep width is 200 G and the delay 
time is 500 ns in both spectra.  The degree of nitroxide incorporation is 1 mol % for both polymers.  
Both signals are attributed to the respective main chain polymeric radicals, i.e., RTPM/quenching 
involving the nitroxide is not taking place 
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RTPM is observed even at room temperature (Figure 4.13, bottom).  This suggests that the side 

chains of these polymers exert control of our observation of RTPM polarization in two ways: First, 

larger side chains can influence the polymer chain dynamics such that intramolecular collisions 

are significantly reduced (Figure 4.13), and second, the bulkier side chains can "shield" the more 

mobile nitroxide in solution from making sufficient contact with the ester functionality to 

carry out effective quenching of the excited state. 

 

4.5 Conclusions 

We have presented here a "proof-of-principle" series of experiments demonstrating that 

-cleavage (TM) processes can be observed competing in the copolymers shown in 

Schemes 2.  Furthermore, with this minimally invasive probe method, we have found that the 

partitioning of these processes is strongly affected by polymer side chain structure, nitroxide 

concentration, temperature, and intramolecular vs. intermolecular encounters. The time 

dependence of the signals is somewhat unremarkable, suggesting that the time scale for the 

formation of the RTPM polarization is fast, on the order of a few tens of nanoseconds.  A striking 

feature of the data presented here is the sensitivity to loading level: somewhere between 0.5 and 

1.0 mol% loading, there appears to be a crossover in competition between the cleavage and 

quenching mechanisms.  The TREPR experiment provides a very sensitive measurement device 

for the encounter processes necessary to probe the long–range motions. We are now seeking a 

suitable model to help us simulate the polymer motion to correlate with the observed results.  

Future synthetic efforts are focused on studying block copolymers, trying to place the nitroxide at 

specific sites on the polymer chain, and trying to excite the ester side chains more at specific sites, 

in particular closer to the ends or the center of the polymer backbone.  
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4.6 Experimental 

Materials. Methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and tert-butyl 

methacrylate  (tBMA), (Sigma Aldrich) were passed through activated aluminum oxide to remove 

inhibitors. 4-hydroxy-2,2,6,6-tetramethylpiperidine, methacrylic acid anhydride, 4-

dimethylaminopyridine (DMAP) and pyridine from Sigma-Aldrich were used as received. 

Azobisisobutyronitrile (AIBN) and meta-Chloroperoxybenzoic acid (m-CPBA) as obtained from 

Sigma-Aldrich were recrystallized before use. Acetonitrile, methylene chloride and methanol 

(Fisher) were used without further purification. PMMA (Mw = 50,000) and (2,2,6,6-

Tetramethylpiperidin-1-yl)oxyl (TEMPO) were purchased from Sigma-Aldrich and used as 

received.  

Monomer Synthesis. 4-Methacryloyloxy-2,2,6,6-tetramethylpiperidine was synthesized 

according to a procedure described by Shea et al.[109]. Briefly, this compound is prepared by 

adding 4-hydroxy-2,2,6,6-tetramethylpiperidine, methacrylic acid anhydride, DMAP and pyridine 

to dry methylene chloride (30 mL). The solution is stirred at ambient temperature for 12 h, and the 

product shown in Scheme 3 is purified by flash chromatography (silica, 20:80 ethyl 

acetate:hexane).  Copolymer Synthesis. The free radical copolymerization of 4-methacryloyloxy-

2,2,6,6-tetramethylpiperidine with either MMA, n-BMA, or t-BMA was dissolved in acetonitrile, 

then transferred in a flamed-dried 3–neck round bottom flask. For nitroxide concentration studies, 

different mole ratios (0.1, 0.5, 1 and 2 mol %) of 5 were used during the polymerization. While 

stirring, the initiator AIBN was transferred into the solution with syringe. The solution was 

degassed with argon for 20 min before immersion in an oil bath at 65°C.  After 24 h, the copolymer 

was diluted with methylene chloride and precipitated into methanol. The crude copolymer was 

dried under vacuum at 80°C for 24 h. 
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Spin-Labeling. To synthesize spin-labeled copolymers, side chains of 4-methacryloyloxy-

2,2,6,6 tetramethylpiperidine on the copolymer is converted to 2,2,6,6-tetramethylpiperidine-loxyl 

stable free Radical via oxidation. The precursor copolymer was dissolved in CH2Cl2 and excess 

MCPBA was added. The suspension was stirred for 24 h and then filtered and washed with MeOH. 

After drying under high pressure, the nitroxide–containing polymer was a light pink powder.  

 

4.6.1 Analysis of polymer samples 

Gel Permeation Chromatography (GPC). Molecular weights, relative to narrow poly 

methyl methacrylate standards, were measured using a Waters GPC system consisting of a 

Waters 510 pump, a Waters 717 autosampler, a Wyatt Optilab DSP refractometer, and a Wyatt 

Dawn EOS light scattering detector. THF was used as the mobile phase at a flow rate of 1 

mL/min with a sample injection volume of 100 μL. The concentration of sample 5mg/ml. The 

molecular weights and molecular weight distributions were determined by GPC.  

SSEPR. Steady-state EPR spectroscopy was performed on a JEOL USA Inc. FA-100 X-band (9.5 

GHz) spectrometer with a cylindrical TE011 resonator and quartz capillary sample tubes.  Field 

modulation of 0.5 Gauss was applied for a scan time of 4 minutes and an output time constant of 

0.3 s. 

TREPR. Continuous wave TREPR experiments were performed as previously described 

[123]. All experiments were performed on a JEOL USA Inc. JES-RE1X X–band EPR spectrometer 

equipped with a wide bandwidth preamplifier and a low-noise GaAsFET microwave amplifier. 

Samples were typically prepared as solutions of nitroxide–containing polymer (0.5–1.2 g) in 

propylene carbonate or dimethyl ethyl ether (diglyme) (20–35 ml) and circulated through a quartz 

flat cell (0.4 mm path length) positioned in the center of a Varian TE103 optical transmission cavity. 
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The solutions were photolyzed using a Lambda Physik Compex 120 excimer laser (248 nm, KrF) 

running at 60 Hz with a pulse energy of 100 mJ (~20 mJ per pulse hitting the sample) and a pulse 

width of 17 ns. Spectra were collected in the absence of field modulation at a fixed delay time after 

the laser flash using a two-gate boxcar integrator (Stanford, 100 ns gates), while the external 

magnetic field was swept with a scan time of 4 min.  

For high-temperature TREPR experiments, the deoxygenated sample solution was 

circulated using a micropump through Teflon PFA 1/8 in. tubing insulated with polyurethane foam 

tape. From the pump, the sample tubing passed through a copper coil wrapped with heating tape 

(Omega Inc.), which was controlled using a feedback circuit between a variable power temperature 

controller and thermocouples placed at the entrance and exit of the quartz flow cell. The sample 

was recirculated between the flat cell and the reservoir. Reported temperatures are the average of 

three measurements from the top and bottom of the flat cell and the reservoir. The maximum 

temperature gradient at the highest temperatures was 10 °C; therefore, all temperature are reported 

as ± 5 °C. Both propylene carbonate and diglyme were used as solvents due to their transparency 

at 248 nm and their high boiling points. 
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