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ABSTRACT 

 
MARK A. LEVER: Anaerobic Carbon Cycling Pathways in the Subseafloor Investigated via 

Functional Genes, Chemical Gradients, Stable Carbon Isotopes, and Thermodynamic 
Calculations 

(Under the direction of Andreas Teske, Marc Alperin, Carol Arnosti, Barbara MacGregor 
and William Whitman) 

 

 Deep subseafloor environments are the largest carbon sink on Earth, and play a vital role 

in global climate control.  The activity of microorganisms inhabiting these environments is a 

key determinant in the long-term storage of organic carbon, and yet poorly understood.  

Microbes performing the terminal oxidation step in organic carbon remineralization play a 

key ecological role, as they facilitate other carbon degradation pathways, such as 

fermentation, by consuming and hence preventing accumulation of their metabolic waste 

products to inhibitory concentrations.  In this doctoral thesis, I examined patterns in the 

distributions of terminal carbon-oxidizing microbes that produce methane (methanogens), 

oxidize methane (methanotrophs), or synthesize acetate (acetogens) in the context of thermal, 

lithological, and geochemical gradients at three deep sea sites located on the Juan de Fuca 

Ridge Flank, the Peru Trench, and the Guaymas Basin.  Newly-designed PCR primers made 

the widespread detection of marker genes possible and enabled me to construct the first 

detailed community profiles of methanogens, methanotrophs, and acetogens in the 

subseafloor.  Known groups occur in addition to unknown groups and both appear zonated 

along sulfate concentration gradients.  Stable carbon isotopic signatures of methane and 

acetate indicate in situ methanogenic, methanotrophic, and acetogenic activity.  Possible 

reactions of methanogenesis, methanotrophy, and acetogenesis are discussed taking into 

consideration stable carbon isotopic signatures, calculated free energy yields, and substrate 

use by closest known relatives. 
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CHAPTER I 

 

INTRODUCTION 

 

i.  A Traditional View of Methanogenesis, Anaerobic Methane Oxidation, and 
Acetogenesis in Marine Sediments 

 
 In the presence of their respective electron acceptors, denitrifying, metal- and sulfate-

reducing microbes are believed to outcompete acetogens and methanogens for common 

substrates due to higher energy yields (Lovley and Goodwin 1988).  High water-column 

sulfate concentrations (~28 mM) in marine systems result in a high flux of sulfate into 

sediments that frequently exceeds the supply of readily bioavailable electron donors.  In 

sediments where sulfate concentrations remain high, methanogens are limited to the 

utilization of non-competitive substrates, whereas acetogens are believed to gain energy from 

other processes, such as fermentation, or in some cases even sulfate, metal and nitrate 

reduction (Drake and Daniel 2004, Drake et al. 2006).   

 Methanogenesis becomes the dominant terminal remineralization pathway in sediments 

with high rates of organic matter deposition, i.e. coastal, shelf and continental slope 

sediments, below upwelling areas, at methane seeps, or in deep-sea basins with high rates of 

organic matter sedimentation, where supplies of bioavailable electron donors exceed those of 

O2, nitrate, metal oxides, and sulfate, and result in their depletion.  It is generally believed 

that methanogens over time outcompete acetogens for the same substrates (e.g. H2/CO2, 
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formate, methanol) due to higher energy yields from competitive substrates (Cord-Ruwisch 

and Ollivier 1986, Hoehler et al. 1999).   

 Methanogenesis and its main competing process, sulfate reduction, are coupled via the 

process of anaerobic oxidation of methane (AOM; e.g. Boetius et al. 2000).  In AOM, close 

relatives of methanogens oxidize methane to an unknown product, which is subsequently 

taken up by sulfate reducers (Orphan et al. 2001, Nauhaus et al. 2002).  The energy yield of 

AOM is typically poor; hence, AOM is only sufficiently exergonic to support life, if it is 

tightly coupled to sulfate reduction, which prevents build-up of metabolic products and hence 

its thermodynamic inhibition.   

 

ii.  Methanogens, Anaerobic Methanotrophs, and the Marine Environment 

 Known pathways of methanogenesis fall into three groups: (1) CO2 or CO fixation using 

H2, formate, or certain alcohols (e.g. methanol, ethanol, 2-propanol, 2-butanol) as electron 

donors, (2) methylotrophic; methyl groups of C1 compounds (e.g. methanol, mono-, di- and 

trimethylamine, dimethylsulfide, methylmercaptan) are cleaved and reduced to methane, and 

(3) aceticlastic; acetate is fermented to methane and CO2 (Whitman et al. 2006).  Due to the 

inability of methanogens to utilize more complex compounds, organic matter degradation via 

biotic processes such as fermentation or high-temperature abiotic processes are necessary to 

provide suitable substrates.  H2 and acetate, often referred to as central intermediates in 

organic matter breakdown, are typically the most available and quantitatively most important 

methanogenic substrates (e.g. Valentine 2006).  The products of AOM are yet to be 

established.  Methyl sulfides were proposed in a recent study (Moran et al. 2008); yet it is 

unclear if AOM always proceeds to the same products; similar to methanogenesis, which can 
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rely on different substrates, the reversal of methanogenesis, AOM, may not always proceed 

to the same products. 

 Stable carbon isotopic signatures of cultured methanogens grown on different substrates 

suggest substrate-dependent differences in δ13C-CH4 values.  Based on fractionations 

determined in cultured methanogen strains, δ13C-CH4 in marine sediments suggest  biogenic 

methane production predominantlyfrom H2/CO2 (Whiticar et al. 1986).  The kinetic isotope 

effect, εCO2/CH4, associated with hydrogenotrophic methanogenesis was found to exceed 95‰, 

while that associated with methanogenesis from methylated substrates ranged from 40-60‰ 

(Whiticar 1999).  The inference of methanogenic pathway from εCH4 is disputable, however: 

(1) at high temperature, abiotic processes, e.g. Fischer-Tropsch-type synthesis, can yield 

δ13C-CH4 signatures in the range otherwise attributed to biological methanogenesis 

(McCollom and Seewald 2006, 2007) (2) while numerous hydrogenotrophic 

Methanococcales, Methanomicrobiales and Methanosarcinales have been isolated from the 

marine environment (Ferry and Lessner 2008), only two marine aceticlasts have been 

cultivated, Methanosarcina acetivorans (Elberson and Sowers 1997) and Methanosarcina 

siciliae (Sowers et al. 1984).  In neither were isotopic fractionations associated with 

aceticlastic growth determined.  To date there has been no marine isolate of the obligately 

aceticlastic genus Methanosaeta (Liu and Whitman 2008), even though Methanosaeta occur 

widely in the marine environment (Dhillon et al. 2005, Inagaki et al. 2006, Parkes et al. 

2007). Inferences based on comparisons with the related aceticlastic genus Methanosarcina 

are of limited value, since Methanosaeta uses a different aceticlastic pathway than 

Methanosarcina (Smith and Ingram-Smith 2007).  (3) So far, stable carbon isotopic 

fractionations have been determined only for few cultured marine methanogens, mostly 
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thermo- and hyperthermophilic hydrogenotrophs (Whiticar et al. 1986, Valentine et al. 2004), 

and it remains unclear if the same fractionations occur at lower temperatures.  (4) Growing 

methanogens under in situ conditions, especially the high pressures and low substrate 

concentrations typical of the deep subsurface, can be difficult; yet, both pressure and 

substrate concentrations affect the free energy yield of methanogenic reactions, which in turn 

partially control isotopic fractionation (Penning et al. 2005, Takai et al. 2008).  (5) Tracer 

and enrichment studies in the marine environment suggest that acetate is a major substrate of 

methanogenesis (Crill and Martens 1986, Parkes et al. 2005, Parkes et al. 2007), and that 

aceticlastic methanogenesis rates can exceed those of hydrogenotrophic methanogenesis (e.g. 

Orcutt et al. 2005).  (6) Only in a few cases have the in situ composition and activity of 

methanogen communities been investigated in parallel, by complementing determinations of 

natural or tracer C-isotopes with sequencing of phylogenetically and functionally conserved 

marker genes (e.g. Orcutt et al. 2005, Parkes et al. 2005, Parkes et al. 2007).  

 There have been few studies focused on methanogen and anaerobic methanotroph 

distribution in marine sediments.  The “traditional” molecular approach, targeting 16S rRNA 

genes of Archaea using general PCR probes, has led to detection (e.g. Reed et al. 2002, 

Teske et al. 2002, Mills et al. 2005, Parkes et al. 2005), but typically not in a sufficient 

number of samples to infer a relationship between methanogen and methanotroph 

distribution and habitat characteristics.  PCR assays of functional genes carry promise.  By 

focusing on a phylogenetically informative gene unique to methanogens and anaerobic 

methanotrophs, it is possible to sort minority populations of methanogens and methanotrophs 

from the plethora of non-methanogenic and non-methanotrophic Archaea.  The gene for the 

alpha subunit of methyl coenzyme M reductase (mcrA) is a suitable target gene, as it is found 
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in all known methanogens and anaerobic methanotrophs, has never been found in any other 

metabolic groups, and is phylogenetically conserved (Reeve et al. 1997, Hallam et al. 2003).  

To date, mcrA gene profiles have been generated for coastal sediments (Parkes et al. 2007; 

Lloyd et al., unpublished), and for surface environments from the deep sea, such as 

hydrothermal sediments (Dhillon et al. 2005) and methane seeps (Lloyd et al. 2006, Orcutt et 

al. 2008).  PCR assays of mcrA genes have also been conducted with deep-subsurface 

sediments, but detection succeeded in too few depth horizons to establish a relationship 

between mcrA distribution and habitat (Newberry et al. 2004, Parkes et al. 2005, Inagaki et 

al. 2006).  Phylotypes detected belonged to Methanosarcinales and Methanobacteriales.  No 

anaerobic methanotrophs, and no members of the Methanomicrobiales, Methanococcales, or 

Methanopyrales groups were detected (Teske and Biddle 2008).  And no methanogens or 

anaerobic methanotrophs have been detected in the deep subseafloor oceanic crust. 

 

iii. Acetogens and the Deep Seafloor 

 Acetogens are organisms capable of acetate synthesis as an energy-conserving process.  

They are distinguished from other acetate producers, e.g. fermenters and sulfate reducers, by 

their ability to synthesize acetate de novo via the reduction of CO2 (Drake 2006).  In 

anaerobic marine sediments, nitrate, metal oxide, and sulfate reducers, as well as 

methanogens, are believed to drive H2 concentrations below the thermodynamic threshold for 

acetogenesis, due to the higher energy yields from competitive substrates. 

 Autotrophic acetogenesis (2 HCO3
- + 4 H2 + H+ --> CH3COO- + 4 H2O) can be detected 

in stable carbon isotopes of acetate.  There are three key determinants of the δ13C-signature 

of acetate: (1) δ13C of the molecule(s) metabolized, (2) fractionation during production, and 
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(3) fractionation during consumption (Abelson and Hoering 1961, Gelwicks et al. 1989, Blair 

and Carter 1992, Heuer et al. 2006). The best-studied acetogenic model system is 

Acetobacterium woodii, where autotrophic acetogenesis results in a strongly depleted δ13C-

acetate relative to CO2 (-39.7 to -58.6‰; Gelwicks et al. 1989, Preuss et al. 1989).  

Additional carbon isotopic studies are required to test whether the isotopic depletion of 

autotrophic acetogenesis found in A. woodii is representative of those found in other cultured 

strains or natural communities.  

 Besides autotrophic acetogenesis, there are mixo- and methylotrophic pathways of 

acetogenesis (Drake et al. 2006 and references therein).  All have in common that acetate is 

directly synthesized via reduction of CO2, not from cleavage of organic matter via 

disproportionation reactions or hydrolysis as in other pathways.  In mixotrophic acetogenesis, 

acetate is produced by the combination of methyl groups from organic compounds, e. g. 

methoxylated aromatic compounds, lactate, methanol, ethanol, or methyl chloride, with 

carboxyl moieties from CO2 (e.g. Bache and Pfennig 1981, Eichler and Schink 1984, 

Traunecker et al. 1991, Liu and Suflita 1993, Drake and Daniel 2004, Peters et al. 1998, 

Drake et al. 2006).  In methylotrophic pathways, methyl groups from organic substrates, e.g. 

formate, formate + methanol, or lactate, are oxidized to produce CO2; the CO2 is 

subsequently reduced and combined with a methyl group that directly derives form organic 

matter to produce acetate.  The widespread availability of mixo- and methylotrophic 

substrates (Finke et al. 2007 and references therein, Prahl et al. 1994, Baldock et al. 2004) 

suggests a vast potential for these reactions in marine sediments.  While autotrophic reactions 

might be oucompeted by metabolic reactions with higher energy yields, acetogenesis might 

nonetheless take place via mixo- and methylotrophic reactions. δ13C-signatures of acetate 
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produced mixo- or methylotrophically can be expected to be mixed: lighter than bulk organic 

matter, due to the fractionation step during CO2 reduction; but heavier than if produced 

autotrophically, since the methyl group in acetate preserves the isotopic signature of the 

organic source material. 

 Molecular biological identification of acetogens using 16S rRNA gene probes is not 

possible: known acetogenic species frequently have non-acetogenic sister groups (Drake et 

al. 2002).  Hence, functional genes have been targeted.  All known acetogens have the 

capacity to utilize the acetyl-CoA pathway in carbon metabolism.  The fhs gene encodes 

formyl tetrahydrofolate synthetase (FTHFS), which catalyzes the ATP-dependent activation 

of formate.  It is conserved (Lovell et al. 1990, Ragsdale 1991), and has been used in 

phylogenetic studies (e.g. Lovell and Hui 1991, Leaphart and Lovell 2001, Pester and Brune 

2006); due to its occurrence in other metabolic groups, e.g. methanogens (Zhao et al. 1989), 

sulfate reducers (e.g. Tebo et al. 1998), aerobic heterotrophs (e.g. Greenberg et al. 2006) 

 Prior to a study by Heuer et al. (2006), there had been no determination of δ13C-acetate in 

deep-sea sediments.  Signatures suggested acetogenic contributions to acetate at some deep-

sea sites (Black Sea, Juan de Fuca Ridge Flank).  To date there has been no published 

functional gene survey of acetogens in deep-sea sediments or underlying crust, and the 

thermodynamic potential for mixo- and heterotrophic acetogenesis has not been shown.  The 

existence and occupation of an ecological niche for acetogens in these environments is yet to 

be demonstrated. 

 

iv.  Goals of this study 
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 The main aim of this dissertation is to examine distribution patterns of methanogens, 

anaerobic methanotrophs, and acetogens in the context of thermal, lithological, and 

geochemical (substrate and sulfate concentration) gradients in deep-sea sediments.  A basic 

knowledge of the variables that determine the occurrence of these organisms and structure 

their communities is necessary to ask ecologically relevant questions.  The approach differs 

from the traditional “top-down” or “black box” approach used by geochemists and ecosystem 

ecologists, who have traditionally focused on bulk measures, such as net rates of reactions, in 

situ energy yields of reactions, or isotopic compositions of metabolic substrates, metabolic 

products and biomass.  The approach also differs from that of traditional environmental 

microbiology and molecular biology, where the focus has been on descriptive measures, such 

as assessment of microbial or genetic diversity, or isolation and characterization of individual 

strains, which provide valuable information about metabolic potential, but not necessarily in 

situ metabolism.  I would like to combine tools from molecular biology (PCR/RT-PCR) with 

those from geochemistry (stable carbon isotopes, calculated in situ energy yields, inference of 

process rates from geochemical gradients), thereby helping to bridge the gap between the two 

approaches, and improving our understanding of methanogenesis, anaerobic methanotrophy, 

and acetogenesis in the marine (deep (subsurface)) realm. 

 My three study sites are the Juan de Fuca Ridge Flank (47°45.2’N, 127°45.8’W), the 

Peru Trench (9°6.7’S, 80°35.0’W) and the Guaymas Basin (27°00.8’N, 111°24.6’W), the 

former two located in the east Pacific, and the latter in the Sea of Cortez.  While the former 

two were drilled to depths of several hundred meters below seafloor to obtain sediment (Peru 

Trench) or sediment and basalt samples (Juan de Fuca), only surface sediments in the 

hydrothermally active Guaymas Basin were sampled, since the temperature rises to >100ºC 
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within 20 cm below seafloor.  Energy is probably strongly limiting to diversity and activity at 

the first two sites, while the Guaymas site is rich in labile organic matter and microbial 

metabolism is probably more limited by physical disturbance and temperature range than 

energy shortage.  The Juan de Fuca Ridge Flank is in a way an intermediate between the 

cold, energy-poor Peru Trench sediment and the hydrothermally active Guaymas sediment, 

in that it combines low energy availability with hydrothermal activity and a consequently 

large temperature change with depth.  Physicochemical characteristics of the three sites 

relevant to this study are summarized in Table 1.1. 

 In Chapter II, I will use three independent lines of evidence (stable carbon isotopes, free 

energy yields, fhs gene composition) to examine the likelihood of acetogenesis at IODP Site 

1301 sediments.  In Chapters III and IV, I will examine the community profiles of mcrA 

genes at IODP Site 1301 and ODP Site 1230, respectively, in the context of in situ 

temperature, geochemical gradients (sulfate, acetate, formate), lithostratigraphy, and 

calculated in situ energy yields.  In Chapter V, I will characterize the mcrA community 

profile in the context of temperature at Everest Mound, and compare potential primer biases 

and differences in detection limit between a plethora of general and group-specific mcrA 

primers.  In Chapter VI, I will examine general trends and differences observed between the 

three study sites, and postulate explanations to be tested in future studies. 
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TABLE 1.1:  Overview of relevant characteristics of the three study sites. 

 Peru Trencha Juan de Fuca Ridge 
Flankc 

Guaymas Basin, Everest 
Mounde 

Water depth (m) 5,086 3,500 2,000 
Coring depth (mbsf) 268 583 0.3 
Temperature (°C) 2 - 12 2 - 65  2 – 160e 
TOC (weight%) 0.21 - 4.45 0.07 - 0.91 >2% 
SMTZ Depth (mbsf) 8 – 12  60 - 65 tbd (<0.1)   
Methane (mM) 0 - >76b 0 - >6 unknown 
Acetate (µM)  6.2 - 219.8  0 – 53d      tbd (probably 0 - >1,000)f 
Formate (µM)  2.7 - 14.8 0 – 59d tbd 
Dihydrogen (nM) 0.09 - 1.64 unknown Unknown 

 
a) From ODP Leg 201 Shipboard Scientific Party (2003) , except where indicated. 
b) Value calculated in Chapter IV, using 2-phase model by Sun and Duan (2007). 
c) From Fisher et al. (2005), except where indicated. 
d) From Chapter II, quantified by Verena Heuer, MARUM, Bremen, Germany. 
e) From Weber and Jørgensen (2002). 
f) Based on values in Martens (1990) and Dhillon et al. (2005). 
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CHAPTER II 

 

EVIDENCE FOR ACETOGENESIS IN THE DEEP SUBSEAFLOOR 

 

ABSTRACT 

 Isotopically light acetate in deep subsurface sediments of the Juan de Fuca Ridge Flank 

indicates an acetogenic component to total acetate production.  Thermodynamic calculations 

indicate acetogenesis from common fermentation products or lignin monomers to be a likely 

source.  Autotrophic acetogenesis is also possible provided that dihydrogen (H2) 

concentrations are not drawn down to the thermodynamic thresholds of the competing 

processes of sulfate reduction and methanogenesis.  A high diversity of novel formyl 

tetrahydrofolate synthetase (fhs) genes throughout the upper half of the sediment column 

indicates the genetic potential for acetogenesis.  Our results diverge from the widespread 

view that under steady-state conditions acetate production in marine sediments is only from 

fermentation and sulfate reduction. 

 

INTRODUCTION 

 Next to H2, acetate is the key intermediate in microbial carbon cycling in anoxic 

environments (Valentine 2001).  Like H2, it is both a degradation product and substrate in the 

terminal step of organic matter remineralization (Cappenberg 1974, Sørensen et al. 1981).  In 

addition, certain microbes, e.g. several lithoautotrophic methanogens and sulfate reducers, 
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assimilate acetate into biomass and require it for growth rather than metabolism (Brysch et 

al. 1987, Whitman et al. 2001). While concentration profiles and consumption rates have 

been examined in numerous studies (Sansone and Martens 1982, Crill and Martens 1986, 

Wellsbury et al. 1997, Wellsbury et al. 2002, ODP Leg 201 Shipboard Scientific Party 2003), 

little remains known about acetate production in anoxic marine sediments.  Fermentation and 

sulfate reduction reactions are often invoked as sources.  In deep subseafloor sediments, 

acetate concentrations have been shown to increase with temperature at depth, possibly due 

to enhanced bio- or thermogenic acetate generation from organic matter at high temperatures 

(Wellsbury et al. 1997, Egeberg and Barth 1998).   

 Terminal oxidation of organic matter in marine sediments is carried out by the microbial 

processes of (1) oxygen (O2), (2) nitrate (NO3
-), (3) metal (Mn4+, Fe3+), (4) sulfate (SO4

2-), 

and (5) carbon dioxide (CO2) reduction, with their vertical distribution influenced by in situ 

energy yields (Froelich et al. 1979, Canfield et al. 1993).  Two dissimilatory pathways for 

CO2 reduction are known: methanogenesis and acetogenesis.  Under steady-state conditions, 

methane producers (methanogens) are believed to drive H2 concentrations below the 

thermodynamic threshold of acetate synthesizers (acetogens) due to the higher energy yield 

of hydrogenotrophic methanogenesis compared to autotrophic acetogenesis (Lovley and 

Goodwin 1988, Hoehler et al. 1998).   

 Acetogens are nonetheless able to thrive due to their ability to use a wide range of 

substrates and alternate electron-accepting processes, including fermentation, sulfate or 

nitrate reduction (Drake et al. 2002, Drake et al. 2004, Drake et al. 2006).  Moreover, 

exceptions appear possible if H2 concentrations are non-limiting, as under non-steady-state 

conditions resulting from fluctuating depositional regime, temperature, or redox conditions 
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(Zeikus and Winfrey 1976, Hoehler et al. 1999); when populations are under predatory or 

viral control; or when high methane concentrations inhibit methanogenesis.   

 Acetogenesis differs from other pathways of acetate production, such as hydrolysis, 

fermentation or sulfate reduction, in that acetate is synthesized de novo via the reduction of 

CO2 (Müller 2003).  Synthesis is auto-, mixo- or methylotrophic (Table 2.1).  In mixotrophic 

reactions, methyl groups from organic compounds are combined with carboxyl moieties from 

CO2 (Drake et al. 2002, Drake et al. 2004, Bache and Pfennig 1981, Eichler and Schink 1984, 

Liu and Suflita 1993; Table 2.1).  In methylotrophic acetogenesis, organic substrates are used  

(e.g., methanol, lactate), but at least one catabolic step involves CO2 reduction and acetate 

 
 
TABLE 2.1:  Overview of auto-, mixo-, and methylotrophic substrates, reactions, and ratios 
of carbon of organic to carbon of inorganic origin in the product acetate (N/A = not 
applicable). 

 

 Substrate Reaction Corg:Cinorg  
Autotrophy H2/CO2 2 HCO3

- + 4 H2 + H+ → CH3COO- + 4 H2O N/A 
 CO 4 CO + 4 H2O → CH3COO- + 2 HCO3

- + 3 H+ N/A 
 CO-H2 2 H2 + 2 CO → CH3COO- + H+ N/A 
Mixotrophy ethanol + CO2 2 CH3CH2OH + 2 HCO3

- → 3 CH3COO- + 2 H2O + H+ 2:1 
 lactate + H2/CO2 CH3CHOHCOO- + 6 H2 + 3 HCO3

- + H+ →  
3 CH3COO- + 6 H2O 1:1 

 methanol + CO2 4 CH3OH + 2 HCO3
- → 3 CH3COO- + 4 H2O + H+ 2:1 

 methanol + 
H2/CO2 

CH3OH + H2 + HCO3
- → CH3COO- + 2 H2O 

1:1 
 syringate + CO2 2 syringate[-OCH3]2 + 2 HCO3

- → 2 gallate[-OH]2 + 3 
CH3COO- + H+ 2:1 

 syringate + 
H2/CO2 

syringate[-OCH3]2 + 2 HCO3
- + 2 H2 → gallate[-OH]2 + 

2 CH3COO- + 2 H2O 1:1 
 vanillate + CO2 4 vanillate[-OCH3] + 2 HCO3

- → 4 protocatechuate[-
OH] + 3 CH3COO- + H+ 2:1 

Methylotrophy formate 4 HCOO- + H+ → CH3COO- + 2 HCO3
- N/A 

 formate/H2 2 HCOO- + 2 H2 + H+ → CH3COO- + 2 H2O N/A 
 lactate 2 CH3CHOHCOO- → 3 CH3COO- + H+ N/A 
 methanol + 

formate 
CH3OH + HCOO- → CH3COO- + H2O 

N/A 
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acetogenic substrates (Prahl et al. 1994, Finke et al. 2007) suggests a vast potential for mixo- 

and methylotrophic acetogenesis in marine sediments.  

 Acetogenesis can be inferred from the carbon isotopic composition (δ13C) of acetate.  The 

δ13C value of a metabolite is driven by the 13C/12C ratio of its precursor and the kinetic 

isotope effects associated with its production and consumption (Abelson and Hoering, 

Gelwicks et al. 1989, Blair and Carter 1992, Heuer et al. 2006).  Strong discrimination 

against 13C is the norm in autotrophic pathways and, though the database is small, has been 

observed in methanogenic and acetogenic CO2 reduction.  The best-studied acetogenic model 

organism is Acetobacterium woodii, which, grown on H2/CO2, produces a strong 13C 

depletion relative to CO2 (-39.7 to -58.6‰; Gelwicks et al. 1989, Preuß et al. 1989).   

 Molecular biological detection of acetogens using 16S rRNA gene probes is complicated 

by the fact that acetogens are distributed over 19 bacterial (20) and 2 archaeal (Rother and 

Metcalf 2004, Henstra et al. 2007) genera, and frequently have close non-acetogenic relatives 

(Drake et al. 2006).  Hence, functional genes of acetogenesis have been targeted.  All known 

acetogens utilize the acetyl-CoA pathway.  The fhs gene, which encodes 

formyltetrahydrofolate synthetase (FTHFS), an enzyme that catalyzes the ATP-dependent 

activation of formate, is fairly well conserved (Lovell et al. 1990, Ragsdale 1991), and has 

been the subject of environmental surveys (Lovell and Hui 1991, Leaphart and Lovell 2001, 

Pester and Brune 2006).  

 In this study, we measured concentrations and carbon isotopic compositions of porewater 

acetate in a 265-m thick sediment column on the Juan de Fuca ridge flank (Fisher et al. 2005) 

with a ~60°C increase in in situ temperature with depth. We used multiple approaches 

including (1) a δ13C-acetate profile, (2) porewater geochemical profiles, (3) calculation of 
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energy yields, (4) consideration of geologic and geothermal characteristics, and (5) an fhs 

gene profile, to examine the potential contribution of acetogenesis to acetate production in 

deep subsurface marine sediments.  

 

METHODS 

Field Site   

 The sediment and underlying basalt column of IODP Site U1301 were sampled during 

IODP Expedition 301 in the summer of 2004 (Fisher et al. 2005).  IODP Site U1301 is on the 

eastern flank of the Juan de Fuca Ridge in the northwestern part of Cascadia Basin at latitude 

47°45N, longitude 127°45W, and water depth ~2,656 m (Appendix Fig. 1A, Fisher et al. 

2005).  The sediment column is ~265m thick and covers a basaltic ridge (Second Ridge 1; 

Appendix Fig. 1B).  The lithostratigraphy, temperature gradient, and porewater chemistry of 

the sediment column are very similar to those 1-2 km north at ODP Site 1026 during Ocean 

Drilling Program (ODP) Leg 168 (Shipboard Scientific Party 1997, Fisher et al. 2005).  The 

basaltic basement dates back to 3.5 Ma.  Overlying sediments were deposited during the 

Miocene (265-215 mbsf), and Pleistocene to present (215-0 mbsf). 

 The sediment column is heterogeneous with interbeds of diatomaceous hemipelagic clay, 

and turbidite deposits of various grain sizes, including clay, silt, sand, gravel and mixtures 

thereof (Appendix Fig. 1C; Fisher et al. 2005).  Turbidites derive from a polymictic 

assemblage of igneous, metamorphic, metasedimentary, and sedimentary rocks and probably 

originate from Vancouver Island, the Olympic Peninsula, the northern Cascades, and western 

British Columbia (Underwood et al. 2005).  Transport from the continental shelf to the 
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abyssal plain occurs via submarine canyons from Vancouver Island, and the larger Barkley, 

Nitinate, and Juan de Fuca canyons further south (Underwood et al. 2005).   

 Due to the hydrothermally active basement below, the temperature increases from ~2°C 

at the seafloor to ~64°C at the sediment-basement interface.  Heat transfer through the 

sediment column is conductive; hence temperature increases linearly with depth (Shipboard 

Scientific Party 1997).  

 The porewater geochemical profile has two sulfate reduction zones (~0-70 and 120-265 

mbsf), separated by a zone of methanogenesis (~70-120 mbsf; Fig. 2.1; Fisher et al. 2005). In 

the SMTZs (~60-70 and 120-130 mbsf), virtually all methane produced in the 

methanogenesis zone is consumed by AOM. 

 

Sampling 

 Sediment cores were sampled with an Advanced Piston Corer (APC), by which a drill is 

“advanced” to the desired sediment depth, and a 9.5-m piston core then hydraulically thrust 

into underlying sediments (Graber et al. 2002).  Contamination, monitored by addition of 

chemical tracer to drilling fluid, was minute (≤0.09 µL g-1) in the core interior (Lever et al. 

2006).  The one sample with higher contamination was excluded from the analyses. 

 Porewater samples for geochemical analyses were obtained from 20-40 cm long whole-

round intervals using a hydraulic press as described previously (Fisher et al. 2005).  For 

carbon isotope analyses, 5-mL subsamples were frozen in precombusted glass vials.   

 For molecular biological analyses, 5-cm whole-round intervals of cores were frozen at -

80°C.  Only sediment from the nearly contamination-free interior was used (Ludwig et al. 

2004). 
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Acetate concentrations and δ13C   

 Concentrations and carbon isotope compositions of volatile fatty acids (VFAs) were 

analyzed by isotope ratio monitoring-liquid chromatography/mass spectrometry (irm-

LC/MS) using a modification of a previously published protocol (Heuer et al. 2006).  We 

used an optimization of the original method consisting of a VA 300/7.8 Nucleogel Sugar 

810H column (300 mm length; 7.8 mm i.d.; Macherey-Nagel) equipped with a guard column 

(CC30/4 Nucleogel Sugar 810H; 30 mm length; Macherey-Nagel), and 5 mM phosphoric 

acid as mobile phase with a flow rate of 300 µL min-1.  The column was kept at room 

temperature.  Primary standardization on the Delta Plus XP was based on three to six 

injections of reference CO2 (δ13C=-28.0±0.1‰ vs. Vienna Pee Dee Belemnite (VPDB), 

4.5±0.5 V at m/z 44) before and after each sample.  13C/12C ratios and δ13C-values were 

calculated according to Ricci et al. (1994) and Santrock et al. (1985).  Our quantitative 

analysis is based on the linear correlation between signal area recorded by irm-LC/MS and 

injected amount of carbon (Heuer et al. 2006).  We assessed precision and accuracy as 

described previously (Heuer et al. 2006); aqueous standard solutions were prepared from 

sodium salts of VFAs (Aldrich).  Analyses of standards were performed regularly during 

analyses of samples, and δ13C-values obtained by irm-LC/MS compared to corresponding 

salts determined via irm-elemental analyzer-MS (irm-EA/MS).  The precision was 0.6‰ (1 

σ, n=4). Mean δ13C-values of dissolved VFAs deviated by <1.4‰ from those determined by 

irm-EA/MS.  The precision of quantitative analyses was 6% (1 σ).  The detection limits were 

2 µM for concentrations and 10 µM for carbon isotopic analyses. 
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 The carbon isotopic composition of DIC was analyzed using a GasBench coupled to a 

Finnigan MAT irm-MS.  0.7- to 1.0-mL samples of interstitial water were acidified with 100 

µL of phosphoric acid in glass tubes that had been sealed with butyl septa and plastic caps 

and purged 5× with helium.  Samples were allowed to degas CO2 for 5+ hrs, before gas 

phases were analyzed for δ13C-CO2.  The analytical precision was 0.1‰ (1 σ). 

 

DNA Extraction  

 Samples were thawed until soft enough to obtain 6-g aliquots, which were transferred to 

50-mL Falcon tubes, homogenized in 10 mL of artificial seawater (3% NaCl, 0.3% MgSO4, 

0.2% KCl + 0.312 g NaH2PO4•2H2O (20 mM)) and kept at room temperature for 2 hrs. To 

remove extracellular DNA, tubes were then centrifuged for 20 min at 4,000×g.  Sediment 

pellets, presumably containing intact cells, were kept. 

 A modification of the ISOIL Large for Beads kit (Nippon Gene, Tokyo, Japan) was used 

to extract DNA.  Beads, 9.5 mL Lysis Solution BB, and 0.5 mL Lysis Solution 20 S were 

added to pellets, slurried by vortexing, and shaken to break cells for 30s at room temperature, 

using a SPEX 6850 freezer/mill (SPEX SamplePrep, Metuchen, New Jersey).  PCR-

inhibitory proteins were removed via proteinase K addition (500 µg mL-1).  Samples were 

incubated while gently being rotated on a shaker table at 50°C for 2 hrs.  Temperature was 

raised to 65°C and samples incubated for one more hour to denature the proteinase.  For the 

rest of the extraction, we followed the manufacturer’s protocol. 

 DNA was purified and concentrated using the Amicon Ultra-15 10K followed by the 

Montage PCR Cleanup kit (both Millipore Corporation, Billerica, USA).  A final DNA 
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purification was performed using the Mag Extractor – PCR & Gel Clean Up kit (Toyobo, 

Tokyo, Japan). 

 

PCR Amplification   

 We amplified fhs genes with the FTHFS (Lovell and Leaphart 2005) and fhs 49F/574R 

(see below) primer pairs.  DNA was PCR-amplified with the Takara SpeedStar Polymerase 

Kit (Takara Bio Inc., Shiga, Japan) with Taq concentrations twice those in the manual, and 

bovine serum albumin added to 4 µg µL-1 of reaction mix.  The PCR protocol with the 

FTHFS primer pair was as outlined previously (Lovell and Leaphart 2005). 

 The FTHFS primer pair yields a ~1.1 kb fragment and is highly degenerate.  Successful 

fhs amplifications were limited to three samples.  To improve amplification efficiency, and 

hence lower the detection limit, we designed a primer pair with fewer degneracies that 

targeted fhs genes detected with FTHFS primers at Site 1301.  This new primer pair (fhs 49F:  

5’- GATGATCGACAACCACRTCTA, fhs 574R:  5’- GGCACTTGATGTCGAAGAA) was 

designed using a gene database and sequence alignment created with the ARB phylogenetic 

analysis software (Ludwig et al. 2004).  DNA fragments are nested within ones targeted by 

the FTHFS primer pair.  In designing this primer pair, we aimed to maximize diversity 

covered while keeping number of degeneracies to a minimum.  The PCR protocol used was 

(1) 1 × 2 min denaturation (98°C), (2) 40 × 30s denaturation (95°C), 30s annealing (60°C), 1 

min extension (72°C), and (3) 1×5 min extension (72°C).  PCR was performed using Veriti 

model thermal cyclers (Applied Biosystems, California, USA).  

 

Cloning and Sequencing   
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 PCR products were purified with the Montage PCR Cleanup kit (Millipore Corp., 

Billerica, USA), cloned using the Topo TA Kit (Invitrogen, Carlsbad, USA), and inserted 

into chemically competent E. coli as outlined in the Topo TA Kit Manual (Invitrogen, 

Carlsbad, USA). 

 

Phylogenetic analysis of fhs sequences   

 We imported fhs sequences from GenBank into ARB, and created an alignment.  

Sequences from published articles (Lovell and Leaphart 2005), and BLAST hits of sequences 

closely related to our environmental sequences were imported.  Sequences from IODP Site 

U1301 were incorporated.  Phylogenetic trees were created with ARB neighbor-joining and 

Jukes Cantor correction.  Nucleotides were used since bootstrap calculations yielded higher 

confidence in branching patterns with these than with amino acids.   

 

Meta-analysis of acetogen substrates   

 We compiled all literature we could find by February 2008, on known acetogens, their 

substrate use, and habitat (Appendix, Table 1). 

 

Thermodynamic calculations   

 We calculated H2 concentrations and energy yields of likely mixo- and methylotrophic 

acetogenesis reactions (formate, lactate, methanol, syringate, vanillate) as well as competing 

fermentation and methanogenesis reactions where relevant (formate, lactate, methanol).  

Standard Gibbs free energies (∆Grº), entropies (∆Hrº), and molar volumes (∆Vrº) of 

biochemical reactions were calculated from standard free Gibbs energies of formation (∆Gfº), 
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standard entropies (∆Hfº), and standard molar volumes (∆Vfº) of reactants and products 

(Thauer et al. 1977; Table 2.2).  Corrections for temperature and pressure were made using 

the Nernst and Van’t Hoff equations, respectively (Stumm and Morgan 1981).  

 

TABLE 2.2:  Standard values of Gibbs free energy of formation (∆Gf°), partial molar 
enthalpy (∆Hf°), and partial molal volume (∆Vf°) used in thermodynamic calculations. 
 

Thermodynamic 
Data at Standard 
Conditions: 

∆Gf° (kJ 
mol-1) 

∆Hf° (kJ 
mol-1) 

∆Vf° ( 
mol-1) Reference 

acetate -369.41 -486.42 40.5 Shock and Helgeson (1990) 
bicarbonate -586.85 -691.99 24.6 Wagman et al. (1968) 
ethanol -181.75 -287.42 55.08 Shock and Helgeson (1990) 
formate -351.04 -425.71 26.16 Shock and Helgeson (1990) 
gallate -706.00   Kaiser and Hanselmann (1982) 
H+ 0.00 0.00 0.00 Shock et al. (1997) 
hydrogen (H2) 17.57 -4.16 25.2 Shock and Helgeson (1990) 
lactate -513.01 -686.93 56.25 from Shock (1995) 
methane -34.47 -87.96 37.30 Shock and Helgeson (1990) 
methanol -175.39 -246.48 38.17 Shock and Helgeson (1990) 
protocatechuate -551   Kaiser and Hanselmann (1982) 
sulfate -744.96 -910.21 13.88 Shock et al. (1997) 
sulfide (HS-) 11.97 -16.12 20.65 Shock et al. (1997) 
syringate -564.00   Kaiser and Hanselmann (1982) 
vanillate -480.00   Kaiser and Hanselmann (1982) 
water  -237.18 -285.83 18.02 Amend and Shock (2001) 

 

 

 Due to the absence of H2 concentration data, we calculated H2 concentrations in both 

sulfate reduction zones (~0-70 and ~120-265 mbsf) and the methanogenesis zone (~70-120 

mbsf; Fig. 2.2) assuming that H2 concentrations were under thermodynamic control by 

hydrogenotrophic sulfate reducers and methanogens.  We assumed in situ energy yields to be 

constant and at the biological energy quantum (BEQ; Hoehler 2005) and used an estimated 

BEQ of 10 kJ mol-1 (Hoehler 2005) in all calculations.   
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 Concentrations of formate were measured, whereas those of lactate and methanol were 

estimated due to lack of measurement data.  We used a 0.2 µM lactate concentration in all 

calculations, which is lower than measured literature values for marine sediments (0.8-32 

µM; Finke et al. 2007).  Methanol concentrations in marine sediments have, to our 

knowledge, never been measured.  We used a concentration of 1 nM in all calculations, a 

value we consider likely to be an underestimate of in situ concentrations.  Calculated energy 

yields for reactions involving lactate and methanol are therefore probably underestimates of 

in situ energy yields. 

 We compared energy yields of mixo- and methylotrophic acetogenesis reactions to those 

of competing methanogenesis and fermentation reactions.  Sulfate reducers are also likely to 

compete with acetogens for formate and lactate, but due to lack of concentration data for 

sulfide, we omitted these calculations; in situ energy yields of sulfate reduction reactions 

from formate and lactate are, however, likely to exceed those of mixo- and methylotrophic 

acetogenesis. 

 For lignin monomers (syringate, vanillate), no published ∆Hrº or ∆Vrº values were 

available.  We therefore calculated energy yields at standard temperature and pressure, over a 

range of concentrations (10-20-100 M) that we considered likely to include in situ 

concentrations.  

 We used measured activity coefficients, γ, of 1.24 for CH4, and 0.532 for HCO3
- (Millero 

and Schreiber 1982) and {H2O} = 1.0.  Activity coefficients of methanol and H2 were 

approximated with the one for methane.  Similarly, activity coefficient for the anions 

formate, acetate, lactate, syringate, vanillate, gallate, and protocatechuate were approximated 

with the measured value for bicarbonate.  We performed sensitivity analyses by varying 
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activity coefficients of compounds with no published values by ± 20% and found calculated 

energy yields, even under the most extreme scenarios, to change by <2 kJ mol-1. 

 

RESULTS AND DISCUSSION 

Geochemical Profile   

 Concentrations of porewater acetate fluctuate with depth, with peaks near the sediment 

surface, at 20, 82, 190, and 260 mbsf (Fig. 2.1).  These peaks are clear evidence for in situ 

acetate production.  There is a steady increase from ~35 mbsf to the highest concentrations 

measured, at 82 mbsf, followed by a steep decrease to ~110 mbsf. 

 There is no apparent relationship between acetate concentrations and temperature (Fig. 

2.1).  Furthermore, there is no evidence for (1) enhanced bio- or thermogenic acetate 

production with increasing temperature, or (2) an underlying thermogenic source of acetate, 

as suggested for other sites (Wellsbury et al. 1997, Egeberg and Barth 1998).  Increased 

acetate production should be reflected in increased sulfate reduction rates in the lower sulfate 

reduction zone; however, the almost linear sulfate concentration profile between the basaltic 

basement and lower sulfate-methane-transition-zone (SMTZ) virtually no sulfate reduction in 

most of the lower sulfate reduction zone.  The nearly linear gradient indicates diffusive 

mixing between the two end members, sulfate-rich basalt fluid, and (nearly) sulfate-free 

sediment porewater in the methanogenesis zone.  Deviations from linearity in the sulfate 

concentration profile from 130-265 mbsf are probably caused by sulfide reoxidation during  
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FIGURE 2.1:  Depth profiles of (A) temperature, (B) sulfate and methane concentrations, (C) 
acetate concentrations, (D) δ13C of acetate, TOC, and DIC.  Data shown in (A) and (B) from 
Fisher et al. (2005). 
 

 

retrieval, not in situ activity of sulfate reducers.  By contrast, the lower SMTZ (~120-130 

mbsf), where anaerobic oxidation of methane (AOM) takes place, is a deep hotspot of 

microbial activity, and the main sink of basalt-derived sulfate in the sediment column. 

 With δ13C-values averaging around -29.5 ± 1.7‰, acetate is depleted in 13C compared to 

total organic carbon (TOC) and dissolved inorganic carbon (DIC) throughout the entire 

sediment column.  Relative to TOC, acetate is lighter by 9‰ at the surface, by 3-6‰ down to 



                                                                         25 

~82 mbsf, and by 1-5‰ below that.  Relative to DIC, the 13C-depletion ranges from 9-24‰. 

Since δ13C-values of lipids are typically ~2-6‰ lighter than bulk organic matter (Abelson 

and Hoering 1961), hydrolysis or fermentation of lipids can explain the values in all but the 

surface horizon, while fermentation of carbohydrates or amino acids is an unlikely source as 

both tend to be similar or enriched in δ13C relative to TOC (e.g. Abelson and Hoering 1961, 

Dauwe and Middelburg 1998, Keil and Fogel 2001, Wang and Druffel 2001).  While lipid 

degradation is likely to account for a portion of the acetate produced, lipids are probably not 

the predominant source of acetate: organic matter is progressively depleted in lipids as it 

sinks through the water column; consequently, lipids only represent a small portion (0.1-1%) 

of total organic matter deposited to the seafloor (Wakeham et al. 1997).  Instead, most of the 

acetate likely derives from hydrolysis and fermentation of complex carbohydrates (Brüchert 

and Arnosti 2003).  Without an acetogenic contribution to acetate production, we would 

therefore expect δ13C values of acetate to be close to or enriched relative to TOC.  

 Regardless of whether acetogenesis is auto-, mixo- or methylotrophic, it involves a CO2 

reduction step via the acetyl CoA-pathway.  Hence, the end product of acetogenesis, acetate, 

is likely to in all cases be isotopically depleted relative to the bulk δ13C of its carbon sources.  

Maximal fractionations can be expected for autotrophic acetogenesis, since both carbon 

atoms of acetate derive from CO2 reduction.  Part of the carbon in mixo- and 

methylotrophically produced acetate derives from organic matter directly, and is therefore 

unlikely to undergo significant, if any, fractionation.  We thus expect mixo- and 

methylotrophically produced acetate to have δ13C-signatures that are intermediate, i.e. 

heavier than autotrophically produced acetate, and lighter than acetate that is the product of 

heterotrophic microbial processes with no CO2 reduction steps, such as hydrolysis or 
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fermentation.  Support for our postulate comes from studies of δ13C-fractionations in the 

Calvin-Benson-Bassham cycle: δ13C-values of mixotrophically produced phytoplankton 

biomass are intermediate, that is lighter than δ13C of suspended particulate organic matter 

and heavier than δ13C of autotrophically produced phytoplankton biomass (Bentaleb et al. 

1996, Bentaleb et al. 1998). 

 

Potential Acetogen Substrates   

 If H2 concentrations at IODP Site U1301 are under thermodynamic control (Fig. 2.2), as 

in coastal and freshwater sediments (Lovley and Goodwin 1988, Hoehler et al. 1998), sulfate 

reducers and methanogens will preclude autotrophic acetogenesis (Lovley and Goodwin 

1988, Hoehler et al. 1998, Cord-Ruwisch et al. 1988) by driving H2 concentrations below 

threshold concentrations required for autotrophic acetogenesis to meet the biological energy 

quantum (BEQ) of ~10 kJ mol-1 (Hoehler 2005).  Due to the lack of reliable H2 profiles, it 

remains to be demonstrated that deep subseafloor H2 concentrations are under 

thermodynamic control, however.  A recent study has revealed the cooccurrence of the 

competing processes of microbial metal reduction, sulfate reduction, and methanogenesis in 

deep subsurface sediments of the eastern equatorial Pacific (Wang et al. 2008).  Hence, we 

cannot rule out the possibility of autotrophic acetogenesis contributing at least in part to the 

light δ13C of acetate at IODP Site U1301. 

 A compilation of literature data on substrates utilized by acetogens demonstrates the 

ability to perform mixo- and methylotrophic reactions to be essentially as widespread as the 

ability to perform the classic autotrophic reaction (Table 2.3, Appendix Table 1).  Mixo- or  

methylotrophic acetogenesis therefore provides an alternative explanation for isotopically  
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FIGURE 2.2:  H2 concentrations required for ∆Gr = -10 kJ mol-1 for sulfate reduction (SR), 
methanogenesis (MG), and acetogenesis (AG) from H2-CO2 under in situ conditions.  The 
dashed line indicates the in situ H2-concentration profile if H2 concentrations are controlled 
thermodynamically, i.e. by the most energetically favorable metabolic reactions.  Note: for 
calculations of SR, we used [HS-] = 0.1 mM. 
 
 

light acetate at IODP Site U1301.  We examined the energetic feasibility of some of these 

mixo- and methylotrophic reactions (involving formate, lactate, methanol, syringate, 

vanillate) via calculations of energy yields.  Where relevant, we compared these energy 

yields to those of competing methanogenesis and fermentation reactions. 

 The BEQ for methylotrophic acetogenesis from formate +H2 is exceeded in the depth 

intervals from ~30-85 mbsf and near the basement, suggesting the potential for acetogenesis  
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TABLE 2.3:  Summary of published information on substrate use by auto- and mixotrophic 
acetogens.  ‘Total # tested’ = total number of strains for which use of a substrate was tested;  
‘Total # positive’ = number of strains which tested positive for use of a substrate;  ‘% 
positive’ = percentage of total number of strains that tested positive for use of a substrate.  
Abbreviations: MeOH = methanol; EtOH = ethanol; Aliphatic = aliphatic compounds other 
than EtOH (most notably lactate); O-CH3 = methoxylated aromatic compounds (all 
references and strains examined are in Appendix Table 1). 
 

Substrates  
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reactions from formate in certain depth horizons (Fig. 2.3a).  By comparison,  methylotrophic 

acetogenesis from formate is not feasible at any depth.  Acetogenesis from lactate (Table 2.1) 

at conservatively estimated concentrations (see Methods) is energetically favorable 

throughout the sediment column, while mixotrophic reactions from lactate +H2/CO2 are only 

favorable in the methanogenesis zone (Fig. 2.3b).  Mixotrophic reactions of methanol as sole 

substrate, and methylotrophic reactions of methanol +formate are thermodynamically  

favorable throughout (Fig. 2.3c), whereas reactions of methanol +H2/CO2 are only favorable 

in the upper half of the sediment column. 

 Thermodynamic calculations suggest that mixo- and methylotrophic acetogenesis 

reactions from three common fermentation products are likely to be thermodynamically 

favorable under in situ conditions.  In situ energy yields for lactate and methanol are 

probably higher than our calculated values, since the lactate and methanol concentration 

values used in our calculations are likely to be underestimates of in situ concentrations. 
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FIGURE 2.3:  Calculated in situ energy yields of (A) acetogenesis (AG) and methanogenesis 
(MG) from formate, (B) acetogenesis and fermentation (FMT) from lactate, and (C) 
acetogenesis and methanogenesis from methanol.  We assumed [lactate] = 0.2 µM, 
[methanol] = 1 nM, and thermodynamically controlled [H2]. 
 
 

Reactions performed by methanogens and fermenters provide more energy (Fig. 2.3a-c), and 

one might expect these organisms to outcompete acetogens over time.  Acetogens have the 

advantage of higher metabolic versatility, however.  The ability to pool energy from a greater 

number of substrates and pathways may be a successful alternative survival strategy in 

environments where energy sources are scarce, such as deep subsurface sediments.   

 Near the sediment surface, δ13C-TOC suggests predominantly water column-derived 

organic matter (~ -22‰; Fig. 2.1), while δ13C-TOC in deeper layers is isotopically lighter (-

25 to -27‰), in a range typical of terrestrial C3 plants (Fry and Sherr 1984).  The lighter δ3C-

TOC below the surface is consistent with the occurrence of coarse sand layers of terrestrial 

origin (Underwood et al. 2005), transferred to the Cascadia Basin via turbidity currents from 

the nearby continental shelf (Prahl et al. 1994). A major contributor to the TOC pool in 

terrestrially-derived marine sediments is lignin, a structural component of cell walls in 
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vascular plants (Gelwicks et al. 1989). δ13C-signatures of lignin are in the range typical of 

terrestrial plants (Benner et al. 1987, Goñi and Eglinton 1996).  Lignin molecules consist of 

methoxylated aromatic monomers (Sarkanen and Ludwig 1971).  Among anaerobic organic 

carbon degraders, the ability to O-demethylate lignin monomers, an initial step in the 

degradation of these highly refractory compounds (DeWeerd et al. 1988), is widespread 

among acetogens.  Of 58 acetogen strains tested, 88% were able to O-demethylate aromatic 

compounds (Table 2.3).  Mixotrophic acetogenesis from lignin monomers (Table 3) provides 

high energy yields, even at lignin concentrations far below the likely environmentally 

relevant range (Fig. 2.4).  A substantial increase in the proportion of genes associated with 

aromatic compound metabolism with depth was recently documented for a subsurface 

sediment column (Biddle et al. 2007).  Since lignin monomers are non-competitive substrates 

for acetogens, acetogens may be essential to the degradation of these monomers in the deep 

subsurface.  The significance of the contribution of mixotrophic acetogenesis from lignin 

monomers to total acetogenesis, total acetate production, and hence δ13C-acetate remains to 

be determined, but its investigation has the potential to provide valuable insights into the 

diagenesis of highly recalcitrant organic matter, as well as the continued persistence of 

actively metabolizing microorganisms, in ancient sediments.  

 

Fhs Phylogeny   

 We performed PCR assays with 16 samples from throughout the sediment column (Table 

2.2, include these in Fig. 1).   We detected a high diversity of mostly novel fhs genes (Fig. 

2.5).  The distribution of acetogens has been investigated in many anoxic environments, 
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FIGURE 2.4:  Calculated energy yields from mixotrophic reactions involving a wide range of 
lignin monomer concentrations.  We used uniform pH = 8, [HCO3

-] = 5 mM, [CH3COO-] = 
20 µM, [H2] = 1 nM, [gallate/protocatechuate] = 1 µM, T = 298.15 K, and P = 1 atm. 
 
 
including termite guts (Pester and Brune 2006), mammalian intestines (Miller and Wolin 

1995), sewage sludge (Frings et al. 1994), rice field soil (Chin and Conrad 1995), tundra soil 

(Simankova et al. 2000), plant roots (Leaphart and Lovell 2001, Küsel et al. 1999), and 

freshwater sediment (Wieringa 1940).  To our knowledge the community composition in 

marine sediments has never been studied.  Three major sequence groups have good bootstrap 

support: (1) a proteobacterial group consisting of several clusters, that has the largest and 

most diversified number of sequences; (2) a Desulfotomaculum cluster with close relatives of 
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known sulfate-reducing Bacteria; and (3) a deeply branching novel cluster that we call JdF 

Deeply-Branching Cluster.  

 Using the published FTHFS primer pair (Lovell and Leaphart 2005) we were able to 

amplify fhs genes from two samples of the upper sulfate reduction zone, and one in the lower 

AOM zone (Table 2.4).  We also obtained a weak PCR band of the correct length from one 

depth in the methanogenesis zone (11H-1, 91.7 mbsf).  Sequences had fhs sequences as their 

closest BLAST hits, but had too many misreads for reliable phylogenetic placement.  With 

the newly designed fhs 49F/574R primer pair, we amplified fhs genes from 4 additional 

horizons, all located in deeper horizons of the upper sulfate reduction zone, with one in the 

AOM zone (Table 2.4).  Diversity detected with the new primer pair was higher: we detected 

11 clusters in total, 4 with the FTHFS, and 10 with the fhs 49F/574R primer pair.  This could 

be due to the greater number of sequences and horizons from which sequences were obtained 

with the new primer pair.  The example of 1H-2, where more sequences were obtained with 

the FTHFS primer pair, and yet diversity was higher with fhs 49F/574R does not support this 

conclusion, however (Table 2.4).  Higher diversity with fhs 49F/574R could also be due to 

the lower number of PCR cycles necessary for successful amplification, as phylogenetic 

diversity correlates negatively with number of PCR cycles (von Wintzingerode 1997).  It 

remains open whether the new primer pair performs well elsewhere.  The importance of high 

primer specificity in low biomass environments is, nonetheless, apparent.  In the 

methanogenesis zone and below the lower AOM zone, fhs genes were below detection, 

although our thermodynamic calculations suggest high in situ energy yields for several 

acetogenic reactions, at least in the methanogenesis zone (Fig. 2.3).  Possible explanations 
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range from PCR detection issues to absence of fhs genes to insufficient availability of 

substrates for acetogens to meet maintenance energy requirements. 

 The fhs gene profile is stratified, with the highest diversity in the surface sediment: 7 of 

the 11 clusters detected were found in this sample (Table 2.4; Fig. 2.5).  The 

Desulfotomaculum reducens Cluster was detected only in surface and sulfate-rich sediments, 

consistent with the metabolism of Desulfotomaculum reducens, a known metal and sulfate 

reducer.  The JdF Deeply-Branching Cluster was found only in lower horizons of the upper 

sulfate reduction and the upper AOM zone.  The Corynebacterium-affiliated Cluster was 

found in one horizon in the upper sulfate reduction zone.  Clusters within the Proteobacterial 

Group vary in distribution: phylotypes related to sulfate reducers (Desulfovibrio 

desulfuricans Cluster, Desulfomicrobium baculatum Cluster), as well as three other clusters 

(Sphingomonas Cluster, Granulibacter-affiliated Cluster, JdF Proteobacterial Cluster) were 

found only in the upper sulfate reduction zone.  The phylogenetically most diverse cluster, 

named after Granulibacter bethesdensis, and the cluster named after Methylobacter, both  

does the Mixed Proteobacterial Cluster.  We did not detect any phylotypes that fall into 

Cluster A, the only fhs sequence cluster known to consist almost entirely of known 

acetogenic bacterial species (Fig. 2.5).  

 The fact that all three clusters named after sulfate reducers are restricted to the sulfate 

reduction zone suggests that sequences may belong to sulfate-reducing microbes.  A number 

of sulfate-reducing bacteria utilize the acetyl CoA pathway in reverse during acetate- 

oxidizing sulfate reduction (Lee and Zinder 1988, Schauder et al. 1989).  However, neither 

aerobic heterotrophs, do not follow the sulfate or methane profile in distribution, and neither 

Desulfovibrio desulfuricans nor Desulfomicrobium baculatum are capable of acetogenesis or 
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FIGURE 2.5:  Phylogenetic tree of fhs genes with bootstrap values.  Sequences obtained in 
this study were labeled the following way: ‘JdF’ for Juan de Fuca, ‘N’ or ‘P’ for New or 
Published primer respectively, ‘C’ or ‘D’ for borehole C or D, number for core number in 
borehole C or D, and A-? for the cluster obtained from that core number and borehole. 
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acetate oxidation, even though both have a key gene of the acetyl CoA pathway (Postgate 

and Campbell 1966, Rabus et al. 2006).  Similarly, neither Desulfovibrio salexigens nor 

Desulfovibrio piger, both in the Mixed Proteobacterial Cluster, are known to oxidize acetate 

or perform acetogenesis.  Desulfotomaculum reducens is not acetogenic, but its close 

relatives Desulfotomaculum thermobenzoicum and D. gibsoniae are (Tasaki et al. 1992, 

Kuever et al. 1993).  Another member of the genus, Desulfotomaculum acetoxidans, is 

known to oxidize acetate via the acetyl CoA pathway (Spormann and Thauer 1988).  

Whether fhs genes of acetogenic and acetate-oxidizing Desulfotomaculum species cluster 

with Desulfotomaculum reducens is uncertain.  Other sulfate reducers known to perform 

acetogenesis are Desulfoarculus baarsii (Jansen et al. 1984), Desulfosporosinus orientis 

(Hanselmann et al. 1995), and Desulfosporomusa polytropa (Sass et al. 2004; Appendix 

Table 1), but their fhs genes have not been sequenced .  To our knowledge all fhs sequences 

that have so far been obtained from sulfate reducers are included in the phylogenetic tree 

(Fig. 2.5).   

 The interpretation of fhs phylogeny is constrained by the fact that of the ~100 known 

acetogen strains, sequences have only been obtained for one fifth, of which most belong to 

the ‘classic’ acetogen genera Acetobacterium, Clostridium, and Sporomusa.  Sulfate-reducing 

acetogens and genera with fewer cultured strains are underrepresented.  While certain genera, 

relatedness is not always a good indicator of metabolism, as Treponema primitia and T. 

azotonutricium and T. primitia demonstrate, where the former is acetogenic and the latter not 

(Appendix Table 2).  The fact that many sequences detected at IODP Site belong to unknown 

clusters or ones with few cultured representatives highlights the importance of cultivation 

and continued fhs gene sequencing from pure cultures. 
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TABLE 2.4.  Borehole, core identity, depth, likely terminal metabolism, and number of 
sequences from a given fhs cluster from depths analyzed.  In parentheses, first the number of 
sequences obtained with the FTHFS, secondly the number obtained with the fhs 49F/574R 
primer pair.  ‘?’ indictates that fhs was detected, but there were too many misreads in gene 
sequences obtained to identify phylogenetic affiliation. 
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 Acetogenesis has so far been documented in ~100 bacterial strains, and only one archaeal 

strain.  However, fhs has been found in three non-acetogenic Archaea, the methanogen 

Methanocorpusculum labreanum and two facultative organoheterotrophs (Thermoplasma 

acidophilum and Haloarcula marismortui; Fig. 2.5; Appendix Table 2).  The acetyl CoA 

pathway is found in all methanogens (4), as well as the archaeal sulfate reducer 

Archaeoglobus fulgidus (Möller-Zinkhan et al. 1989).  The archaeal proportion of the active 

community in the subsurface is often high, sometimes exceeding that of Bacteria (Biddle et 

al. 2006).  Given the lack of information on subsurface acetogens, widespread distribution of 

the acetyl CoA pathway, and high biomass of Archaea in the subsurface, the existence of 

more archaeal acetogens appears likely.  Two clusters detected at IODP Site U1301 (JdF and 

Marinomonas) form deep branches along with archaeal fhs gene clusters.  

 

CONCLUSIONS 

 Isotopically light acetate throughout the sediment column at IODP Site U1301 is most 

easily explained by an acetogenic contribution to acetate production.  Under 

thermodynamically controlled H2 concentrations, mixo- and methylotrophic acetogenesis 

reactions are the most plausible sources of light acetate.  If H2 concentrations are not 

thermodynamically controlled, autotrophic acetogenesis is likely to contribute to light acetate 

as well.   

 An overwhelming majority of cultured acetogens can grow mixo- and methylotrophically 

(Table 2.3), utilizing a wide range of substrates (Liu and Suflita 1993, Prahl et al. 1994, 

Finke et al. 2007).  Calculations suggest that mixo- and methylotrophic acetogenesis 

reactions from common fermentation products, such as formate, lactate, and methanol, or 
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from lignin monomers, are energetically favorable in subsurface sediments at IODP Site 

1301 (Fig. 2.3, 2.4), even if H2 concentrations are under thermodynamic control by sulfate 

reducers or methanogens. With the lignin-derived monomer syringate, in situ energy yields 

may even exceed those of hydrogenotrophic methanogenesis or sulfate reduction, and allow 

acetogens to successfully compete with methanogens and sulfate reducers for H2.  

  Given the probably highly refractory nature of most organic matter in subsurface 

sediments thousands to millions of years old, extreme energy limitation is likely. Under 

extreme energy limitation substrate generalists, such as many acetogens, may have an 

advantage over substrate specialists like methanogens or many sulfate reducers.  The ability 

to pool energy from a wide range of substrates and metabolic pathways may allow acetogens 

to meet minimum energy requirements, where substrate specialists, like methanogens and 

many sulfate reducers, are unable despite higher energy yields from certain substrates.  

Acetogens would not be the first group of organisms to demonstrate the success of the “jack 

of all trades, master of none” strategy under conditions of extreme resource limitation, as 

there are similar examples in macroecology (Emlen 1966, Pianka 1994). 

 We detected mostly novel fhs phylotypes that were related to a wide range of aerobic and 

anaerobic (sulfate-reducing) Proteobacteria, Gram-positive sulfate-reducing Bacteria, and 

uncultured branches of Bacteria or Archaea.  The vertical stratification of fhs phylotypes 

suggests environmental controls on acetogen community composition.  The fhs sequences 

from the Juan de Fuca Ridge flank provide molecular evidence for acetogenic organisms and 

pathways in the subsurface that are more phylogenetically diverse than cultured model 

strains.  In general, the ability to perform acetogenesis may be much more widespread than 

previously thought: the recently discovered capacity of Methanosarcina acetivorans and 
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Archaeoglobus fulgidus to perform acetogenesis (Rother and Metcalf 2004, Henstra et al. 

2007) demonstrates that even among cultured organisms this metabolism has been 

overlooked. 

 Our study showcases a new and promising direction in deep subsurface microbiology: 

functional genes, coding for key reactions of the subsurface carbon cycle, provide a basis to 

infer microbial community structure and activity in the context of physicochemical habitat 

characteristics. With a targeted effort to improve existing functional gene assays and to 

develop new assays, it should become possible to infer microbial processes and community 

composition in the deep subsurface on a more specific and informative basis than previously 

possible based on 16S rRNA genes.  The combination of functional gene assays, stable 

isotope signatures, and thermodynamic modeling will significantly advance our knowledge 

of subsurface microbial ecosystems. 
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CHAPTER III 

 

DEEP SUBSEAFLOOR METHANE-CYCLING ARCHAEA IN RIDGE FLANK 
SEDIMENT AND BASALT 

 

 

ABSTRACT 

 Ridge flanks cover most of Earth’s ocean basins and harbor a microbial subsurface 

ecosystem of great importance in the global carbon cycle.  Yet not much is known about the 

in situ microbial communities involved in carbon cycling and the physicochemical controls 

structuring these communities.  Here, we examine the vertical distribution of methane-

cycling microbes at a deep subsurface drilling site located on the eastern flank of the Juan de 

Fuca Ridge.  Methane-producing and anaerobic methane-oxidizing Archaea occur throughout 

the sediment column and >200 m into the underlying Earth’s crust with peak abundances in 

sulfate-reducing sediments.  Sulfate concentrations are a key determinant of community 

composition, appearing more important than other variables, such as temperature or 

lithology.  The widespread occurrence of methane-metabolizing Archaea suggests an active 

subseafloor methane cycle that extends throughout sediments and into the Earth’s crust. 

 

INTRODUCTION 

 Though subseafloor sediments and the underlying Earth’s Crust are the largest biosphere 

on Earth, with sediments alone hosting up to one third of living biomass (Whitman et al. 

1998), the processes within are poorly understood.  Intact cells, 16S rRNA gene sequences 
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(Roussel et al. 2008), intact membrane lipids (Lipp et al. 2008), and geochemical profiles 

(ODP Leg 201 Shipboard Scientific Party 2003) of samples obtained by the Ocean Drilling 

Program (ODP) and Integrated Ocean Drilling Program (IODP) have revealed that microbial 

life persists even in the deepest sediment columns.  Known metabolic groups, e.g. sulfate 

(SO4
2-) reducing Bacteria or methane (CH4) producing Archaea (methanogens) occur in 

addition to many novel groups with unknown physiologies (Biddle et al. 2006, Inagaki et al. 

2006).  A definite confirmation of life in subseafloor basalt is still missing (Bach and 

Edwards 2003, Lever et al. 2006), but multiple lines of evidence, such as textural alterations 

of basalt (Fisk et al. 1998), δ13C of carbonate, cell counts, and DNA sequences from volcanic 

glass (Thorseth et al. 2001), and deep boreholes (Cowen et al. 2003, Nakagawa et al. 2006), 

point towards its widespread occurrence.   

 Past studies of subseafloor communities have focused mostly on microbial community 

composition (16S rRNA genes) or microbially driven processes.  Links between community 

composition and microbially driven processes have hardly been established.  For instance, 

even though biological methanogenesis is a widespread process (D’Hondt et al. 2002, 

Haveman and Pedersen 2002), the organisms involved are largely unknown, as are the 

factors controlling their community composition.  With well-characterized thermal, 

geochemical, and lithological regimes (ODP Leg 168 Shipboard Scientific Party 1997, Fisher 

et al. 2005), the eastern flank of the Juan de Fuca Ridge is ideal for the study of controls on 

the subseafloor CH4 cycling community.  In this study, we obtain an integrated view of the 

CH4 cycle at IODP Site U1301 on the Juan de Fuca Ridge Flank by linking functional gene 

zonation to depth gradients of temperature, lithology, and SO4
2-.   
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METHODS 

Site Description 

 In summer 2004, Integrated Ocean Drilling Program Expedition 301 drilled the sediment 

column and upper basement of IODP Site U1301 (Fisher et al. 2005; Appendix Fig. 1).  The 

265-m thick sediment column is dominated by interbeds of hemipelagic clay and coarser 

grained sand and silt turbidites, while underlying basalts are primarily composed of pillow 

and massive lavas that are fractured by veins (Fisher et al. 2005).  The temperature increases 

linearly from the seafloor (2°C) to the basaltic basement (64°C; Fig. 3.1A) and is uniform in 

the upper basement (Fisher et al. 2005).  The occurrence of pyrite at various basement depths 

indicates the presence of SO4
2- from seawater-derived crustal fluids (~16 mM) in veins 

throughout (ODP Leg 168 Shipboard Scientific Party 1997).   SO4
2- enters the sediment 

column from overlying seawater and underlying basalt (Fig. 3.1B).  Thus, IODP Site U1301 

exemplifies the bimodal distribution of seawater-derived oxidants that is a widespread 

characteristic of the marine deep subsurface4; in addition to or combined with geothermal 

heating, basalt-derived oxidants may foster life in deep sediment layers (Roussel et al. 2008, 

ODP Leg 201 Shipboard Scientific Party 2003).  IODP Site U1301 also illustrates the 

profound impact of SO4
2- concentrations and SO4

2- reduction on other processes: the zone of 

net methanogenesis is confined to a SO4
2--depleted depth interval (~70-115 mbsf; Fig 3.1C) 

that is demarcated by SO4
2--CH4-transition zones, where CH4 is presumably consumed via 

anaerobic oxidation of CH4 (AOM) coupled to SO4
2- reduction (Fig. 3.1C).  Outside the net 

methanogenesis and AOM zones (0-60 and 135-265 mbsf), CH4 concentrations are 2-3 orders 

of magnitude lower (immediately measured: 0.8-4.1 µM, after 5-week incubation: 1-30 µM; 

Fig. 3.1C insert). 
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FIGURE 3.1:  Depth profiles at IODP Site U1301: (A) temperature (°C), (B) measured SO4
2- 

concentrations (SR = SO4
2- reduction), (C) measured porewater CH4 concentrations (MG = 

methanogenesis); insert: concentrations of CH4 in SO4
2- reduction zones (Method 1 = 

measured immediately, Method 2 = measured after 5-week incubation), (D) depth profile of 
mcrA copy numbers based on PCR with dilution series of DNA extracts using the mcrIRD 
and ANME-1-mcrA primer pairs, (E) δ13C of total organic carbon (TOC), dissolved inorganic 
carbon (DIC), and CH4. 
 
 

Sample collection   

 Sediment cores were obtained by Advanced Piston Corer, whereas basalt cores were 

sampled using a Rotary Core Barrel (RCB; Fisher et al. 2005).  Samples for onboard and 

shore-based gas analyses were taken on the catwalk immediately after core retrieval.  

Interstitial water samples for analyses of δ13C-DIC were obtained as described previously 

(Fisher et al. 2005).  Sediment cores used for molecular biological analyses were 

immediately sectioned and frozen at -80°C.  Basalt cores used for molecular biological 
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analyses were decontaminated (Lever et al. 2006), cracked, and shards from the interior 

frozen at -80°C. 

 

Quantification of [CH4] and δ13C-CH4 in Sediment   

 On-board analyses of dissolved CH4 concentrations were performed as described 

previously (Fisher et al. 2005).  For shorebased δ13C-analyses of dissolved CH4, 3-mL 

subcores were placed into 20-mL glass serum vials containing 5 mL of 1 N NaOH, sealed 

with rubber stoppers and crimped immediately, shaken for 20 min to form a homogenous 

slurry, and frozen for shore-based analyses.  After δ13C-CH4 analyses, headspaces of these 

vials were flushed completely, and slurries incubated at room temperature for 5 weeks to 

release and quantify remaining CH4 (Hinrichs et al. 2006).  We do not know if CH4 released 

during incubation was dissolved but trapped in fine porespaces or sorbed under in situ 

conditions.  Hence, we do know which measured concentration is more relevant to 

methanogenesis and AOM.  See Supplementary Methods for more details on the 

quantification of [CH4] and δ13C-CH4. 

 

Determination of δ13C-DIC and –TOC in Sediment   

 The δ13C-DIC was analyzed using a gasbench coupled to a Finnigan MAT irm-MS.  0.7- 

to 1.0-mL samples of interstitial water were acidified with 100 µL of phosphoric acid in glass 

tubes that had been sealed with butyl septa and plastic caps and purged 5 times with helium.  

Samples were allowed to degas CO2 for 5+ hours, before gas phases were analyzed for δ13C-

CO2.  The analytical precision was 0.1‰ (1 σ). 
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 For δ13C-TOC analyses, 5-mL aliquots were freeze-dried on board and stored at room 

temperature.  The freeze-dried sediment was ground and homogenized in a mortar.  

Subsamples (1.5 g) were decalcified with 6N HCl, dried at 60°C overnight, and δ13C-TOC 

analyses performed on 100-mg subsamples using a dual-inlet mass spectrometer (Finnigan 

MAT Delta E) with a precision of 0.1‰ (1 σ).  Accuracy was checked with an internal lab 

standard.   

 

DNA Extraction   

 Aliquots from core centers (6 g) were homogenized in 50-mL Falcon tubes with artificial 

seawater (10 mL; 3% NaCl, 0.3% MgSO4, 0.2% KCl + 0.312 g NaPh (20 mM)), incubated 

(room temperature, 2 hrs), and extracellular DNA removed by centrifugation (20 min, 

4,000×g).  Sediment pellets, containing intact cells, were kept.  A modification of the ISOIL 

Large for Beads kit (Nippon Gene, Tokyo, Japan) was used to extract DNA.  Beads, 9.5 mL 

Lysis Solution BB, and 0.5 mL Lysis Solution 20 S were added to pellets, slurried by 

vortexing, and shaken to break cells (30s, room temperature), using a SPEX 6850 

freezer/mill (SPEX SamplePrep, Metuchen, New Jersey).  PCR-inhibitory proteins were 

removed by proteinase K addition (500 µg mL-1) and gentle rotation on a shaker table (50°C, 

2 hrs).  Proteinase was denatured (65°C, 1 hr) and the manufacturer’s protocol followed 

afterwards.  DNA was purified and concentrated with the (1) Amicon Ultra-15 10K, (2) 

Montage PCR Cleanup kits (both Millipore Corporation, Billerica, USA), and (3) Mag 

Extractor – PCR & Gel Clean Up kit (Toyobo, Tokyo, Japan). 

 

PCR Amplification   
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 McrA genes were below detection with published mcrI (Springer et al. 1995) and 

ME1/ME2 (Hales et al. 1996) primers, but amplified successfully with the mcrIRD primer 

pair (F: 5’-TWYGACCARATMTGGYT; R: 5’-ACRTTCATBGCRTARTT), a revision of 

the mcrI primer pair (Springer et al. 1995) with fewer degeneracies but the same phylogenetic 

breadth.  Since neither the mcrIRD nor the mcrI primer pairs target ANME-1 mcrA 

sequences well, we designed the group-specific ANME-1-mcrI primer pair (F: 5’- 

GACCAGTTGTGGTTCGGAAC; R: 5’- ATCTCGAATGGCATTCCCTC).  Primers were 

designed using a newly constructed mcrA alignment (Lever, unpubl.) in the phylogenetic 

software program ARB (Ludwig et al. 2004).  The PCR protocol consisted of  (1) 1 × 2 min 

denaturation (98°C), (2) 40 × (a) 30s denaturation (95°C), (b) 30s annealing (mcrIRD: 55°C; 

ANME-1-mcrI: 63°C), (c) 1 min extension (72°C), and (3) 1×5 min extension (72°C).  PCRs 

were performed using Veriti model thermal cyclers (Applied Biosystems, Foster City, USA). 

 

Cloning and Sequencing  

 PCR products were purified with the Montage PCR Cleanup kit (Millipore Corp., 

Billerica, USA), and cloned and inserted into chemically competent E. coli using the Topo 

TA Kit (Invitrogen, Carlsbad, USA). 

 

RESULTS AND DISCUSSION 

 We extracted DNA and PCR-amplified the gene for the alpha subunit of methyl 

coenzyme M reductase (mcrA), a highly conserved, phylogenetically informative gene 

unique to methanogens and anaerobic methanotrophs (Friedrich et al. 2005), using samples 

that had been monitored for drilling fluid (surface seawater) contamination (Lever et al. 
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2006).  Since PCR assays using published mcrA primers (Springer et al. 1995, Hales et al. 

2006) yielded negative results, we attempted amplification with two newly designed primer 

pairs with enhanced specificity.  The new primer pairs allowed detection of mcrA genes in 

both sediment and basalt.  In sediment, PCR with serially diluted DNA extracts demonstrated 

two peaks in mcrA copy number, one near the sediment surface (9.4-31.3 mbsf) and one in 

the lower AOM zone (121.5 msf; Fig. 3.1D).  McrA genes occurred in low copy numbers in 

(1) deeper layers of the upper SO4
2- reduction zone (50.6-54.1 mbsf), (2) the upper AOM 

zone (61.6-63.6 mbsf), and (3) throughout the lower SO4
2- reduction zone (141.8-261.8 mbsf; 

Fig. 3.1D).  A minor increase in copy numbers occurred in the methanogenesis zone (78.7-

111.1 mbsf; Fig. 3.1D).  The molecular record of mcrA genes at U1301 is by no means 

limited to sediments, but extends into the underlying basement, where we detected mcrA 

genes in the upper 100-210m (Table 3.1).   

 Overall diversity is highest among the Methanosarcinales-Methanomicrobiales, with 6 

out of 8 mcrA clusters falling into this order (Fig. 3.2).  Out of the 8 clusters detected, 2, the  

uncultivated Unidentified Rice Field Soil McrA (URFS) group and the anaerobic 

methanotroph ANME-1, are found throughout the sediment column, independent of 

temperature, presence of SO4
2-, or lithology (Table 3.1).  The URFS and ANME-1 lineages 

are not only found in sediment, but also at several depths in SO4
2- rich veins in basement 

basalt.  The remaining 6 clusters only occur in the methanogenesis and AOM zones, i.e. 

in the sediment column in horizons with very low SO4
2- concentrations.  Relatives of 

obligately aceticlastic Methanosaeta are found in a single depth horizon in the 
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FIGURE 3.2:  McrA gene phylogeny at IODP Site 1301.  Phylotypes from IODP Site U1301 
are in bold type face. Constructed in ARB Neighbor Joining using Jukes-Cantor correction49.  
Bootstrap support (in %, 1,000 replications) is indicated at each branching point. 
 
 
 
methanogenesis zone (Table 3.1).  An uncharacterized monophyletic group, which we call 

Deeply-Branching Methanogen Group (DBM), is found at only one depth in the upper AOM 

zone.  The lower AOM zone at 121.5 mbsf has the highest overall mcrA diversity of all depth 

horizons sampled, with 6 out of 8 lineages (Table 3.1).  Four groups, the obligately 

hydrogenotrophic Rice Cluster I (RCI), the anaerobic methanotrophs ANME-2 and ANME-

3, and Fen Cluster (Fen), a group related to hydrogenotrophic Methanomicrobiaceae (Fig. 

3.2, Table 3.1), only occur here.  The mcrA community profile therefore highlights the 

importance of SO4
2--CH4-transition zones as population density and diversity hot spots in the 

deep subsurface (Parkes et al. 2005).  The presence/absence of certain methanogen groups in 

the presence of SO4
2- is likely to result from the ability of SO4

2- reducers to outcompete 

methanogens for the same substrates.    
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TABLE 3.1:  Overview of origins, depths, calculated in situ temperatures, lithologies, zones 
of  terminal metabolism, phylogenetic groups , number of clones, and minimum mcrA copy 
numbers per gram sample. 
 

clone library composition (# 
of clones) 

B
orehole 

C
ore ID

1 

D
epth 

(m
bsf) 

T (°C
) 

Lithology
2 

Term
inal 

m
etabolism

 

mcrIRD3 ANME-1-
mcrI4 

mcrA 
copy # 
g-1 5 

C 1H-2 1.5 2.2 clay SR URFS (4) 43 44 
C 2H-3 9.4 4.1 clay SR URFS (37) bd 333 
C 4H-5 31.3 9.3 fine 

sand 
SR URFS (40) 45 337 

C 6H-3 47.2 13.1 sand SR URFS (44) bd 3 
C 6H-6 50.6 13.9 clay SR bd bd 0 
C 7H-2 54.1 14.7 clay SR URFS (73) bd 11 
C 7H-7 61.6 16.5 fine 

sand 
AOM bd bd 0 

C 8H-2 63.6 17.0 fine 
sand 

AOM URFS (44)   45 37 

C 9H-5 78.7 20.5 clay MG URFS (14) bd 11 
C 10H-1 82.2 21.4 sand MG bd 29 (+2 

URFS) 
0 

C 11H-1 91.7 23.6 fine 
sand 

MG URFS (48); 
M.saeta (36) 

bd 33 

C 13H-2 111.1 28.2 clay MG URFS (44) bd 33 
D 1H-2 121.5 30.7 

 
clay AOM URFS (6); 

ANME-2 (13); 
ANME-3 (14); 
Fen (9); RCI (3) 

43 367 

D 3H-2 141.8 35.5 silty 
clay 

SR bd bd 0 

D 5H-4 162.5 40.4 fine 
sand 

SR bd bd 11 

C 16H-2 190.2 47.0 clay SR bd DBM 7 
C 18H-3 249.3 61.0 clay SR URFS (38) bd 3 
C 19H-3 258.8 63.3 clay SR bd bd 0 
C 19H-5 262.9 64.3 clay SR URFS (33) bd 11 
B 1R-1 351.2 ~65 breccia, 

glass 
SR URFS (47) 44 nd 

B 2R-2 358.8 ~65 pillow 
basalt 

SR URFS (45) bd nd 

B 4R-3 369.4 ~65 pillow 
basalt 

SR bd bd nd 

B 5R-2 378.1 ~65 pillow SR bd bd nd 
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basalt 
B 6R-2 386.3 ~65 pillow 

basalt 
SR URFS (44) bd nd 

B 14R-1 434.3 ~65 massive 
basalt 

SR bd 37 nd 

B 17R-1 461.7 ~65 pillow 
basalt 

SR URFS (46) 47 nd 

B 20R-1 480.8 ~65 pillow 
basalt 

SR bd bd nd 

B 23R-1 500.2 ~65 pillow 
basalt 

SR bd bd nd 

B 26R-1 515.9 ~65 pillow 
basalt 

SR bd bd nd 

 
1 the code is as follows: 1H-2 = core 1, section 2, sampled by Advanced Piston Core (H);  
  1R-1 = core 1, section 1, sampled by Rotary Core Barrel (R) 
2 sediment data from Lever et al. (2006)8, basalt data from Fisher et al. (2005)16 
3 generated with mcrIRD primer pair 
4 generated with ANME-1-mcrI primer pair 
5 minimum numbers; could only be calculated for sediments. 
 

 URFS dominate the methanogenesis zone, where they occur in all 4 horizons examined 

(Table 3.1).  Isotopically light δ13C-CH4 (-80 to -93.5‰) suggests that URFS might be 

producing CH4 from H2/HCO3
- (Fig. 3.1E; Whiticar et al. 1986).  On the other hand, the 

URFS group also occurs in the presence of high SO4
2--concentrations.  The ability to utilize 

non-competitive substrates, i.e. compounds not used by most SO4
2- reducers, such as 

methanol, methyl amines or methyl sulfides, is a plausible explanation.  Precedents for such 

metabolic diversity in methanogens exist: methylated substrates and H2/HCO3
- are both used 

as methanogenic carbon sources by members of the genus Methanosarcina (Whitman et al. 

2006). 

 ANME-1 is not only present in the lower AOM zone, but also in both SO4
2- reduction 

zones, including SO4
2--rich basalt veins, and in the methanogenesis zone (Table 3.1).  

Though unexpected, their occurrence in both SO4
2- reduction zones is consistent with high 
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SO4
2- (Fig. 3.1B) and micromolar CH4 concentrations (Fig. 3.1C insert), conditions that may 

favor AOM outside SO4
2--CH4-transition zones. The finding of methanotrophic ANME-1 at 

one depth in the methanogenesis zone is consistent with the recent suggestion that ANME-1 

can survive as facultative methanogens (Orcutt et al. 2005). 

 Members of known hydrogenotrophic methanogens (Rice Cluster I) and putatively 

methanogenic clusters with no cultured representatives (Fen Cluster, DBM) occur in the 

lower AOM zone.  These microbes could be (1) (facultatively) methanotrophic, (2) 

methanogenic, using a substrate different from the product(s) of AOM, (3) performing a 

metabolism not involving CH4 (e.g. anaerobic acetate oxidation), or (4) surviving cells from 

a time when the methanogenesis zone extended deeper and included sediment horizons 

within the present AOM zone. 

 An unexpected outcome of this investigation is the wide temperature range (2-64°C) at 

which URFS and ANME-1 mcrA genes occur.  This temperature range surpasses that of any 

cultured microorganism, the current record holder being a Methanothermobacter 

thermoautotrophicus-like strain with a growth temperature range of 55°C (Wagner and 

Wiegel 2008).  Similarly, ANME-2 and ANME-3 Archaea were recently detected in hot, 

deep sediments with a temperature range of 50-70°C2, in contrast to the cold surficial and 

CH4 seep sediments where they were previously found (Orphan et al. 2001, Lösekann et al. 

2007). A recent study has shown maximum growth temperature of the methanogen 

Methanopyrus kandleri to increase under high pressure, from 110 to 122°C (Takai et al. 

2008).  Hence, tolerance to the wide temperature range at which URFS and ANME-1 occur 

at IODP Site U1301 might be facilitated by high pressure.   
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 The habitat of URFS and ANME-1 spans across a wide range of lithologies, from clay 

and sand to basaltic breccia, pillow and massive lava (Table 3.1), suggesting versatility in 

surface attachment or unattached growth.  The depth distribution raises more general 

questions about origins and mechanisms of dispersal of subsurface methanogens.  Advective 

transport is possible through basalt, but does not occur vertically through sediment at Site 

U1301 (Fisher et al. 2005).  Cells may have first reached and colonized exposed basement 

basalt via seawater transport, and expanded their range into sediment, once sediment started 

accumulating at IODP Site U1301, roughly 1.7 mya (ODP Leg 168 Shipboard Scientific 

Party 1997).  Alternatively, cells, e.g. from anaerobic Metazoan intestines or deposited via 

turbidites, may have colonized sediment from the surface down.  Dispersal into deeply buried 

sediments could be slowed or hindered by small pore space resulting from sediment 

compaction, in which case early colonization by URFS and ANME-1, before or soon after 

sediment started accumulating, would be more likely than a more recent invasion. 

 

CONCLUSIONS 

 Ridge flank environments may extend over >50% of global ocean basin area (Walker et 

al. 2008).   Biogeochemical cycles in ridge flank sediments and underlying basalt are of 

global significance and a thorough grasp thereof is required to understand the global C cycle.  

The vast potential for redox reactions between seawater and basalt to support microbial 

metabolism (Bach and Edwards 2003) is backed by cell abundances on exposed seafloor 

basalt that exceed those in overlying seawater by 3-4 orders of magnitude (Santelli et al. 

2008).  The detection of mcrA genes deep into 3.6-million-year-old subseafloor basalt 

underscores the vast spatial and temporal scale over which these reactions may occur.  
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Seawater-derived compounds not only stimulate life in the basaltic aquifer, however: electron 

acceptors from basement fluids control microbial community zonation in deep sediments in a 

manner similar to surface sediments. 
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CHAPTER IV 

 

ZONATION OF THE ACTIVE METHANE-CYCLING COMMUNITY IN DEEP 
SUBSURFACE SEDIMENTS OF THE PERU TRENCH 

 

 

ABSTRACT 

 In past surveys of Archaea in subsurface sediments of the Peru Margin, few, if any, 

methane producers or oxidizers were detected, even in sediment with biologically produced 

methane hydrate.  Here we show that non-detection of 16S rRNA and methyl coenzyme M 

reductase genes was related to deficiencies in primers used in polymerase chain reactions 

(PCR).  Novel primers with enhanced specificity demonstrate that anaerobic methanotrophs 

occur throughout the upper 20 m in hydrate-bearing sediment of the Peru Trench and that 

methanogens occur throughout the underlying methanogenesis zone.  The distribution of 

methanogens and anaerobic methanotrophs reflects the δ13C profile of dissolved inorganic 

carbon, but not the concentration profiles of methane and sulfate.  Differences of -80‰ 

between δ13C of dissolved inorganic carbon and methane suggest methanogenesis 

predominantly from H2/CO2.  Calculated free energy yields of methanogenesis from H2/CO2, 

formate, and acetate suggest extreme energy limitation, and illustrate the importance of 

accurate determination of in situ concentrations of substrates and products for a reliable 

interpretation of microbial ecosystem functioning in the deep subsurface. 
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INTRODUCTION 

 The Peru-Chile Margin has been the subject of numerous studies on the interplay of plate 

tectonics and global oceanic circulation (Shipboard Scientific Party 1988).  Subduction of the 

Nazca Plate under the South American Plate produces an accretionary wedge close to a 

coastal upwelling region with high rates of primary production and sedimentation.  The 

tectonic history of the edge of the subducted plate is recorded in the sediment column, as are 

past variations in the upwelling regime resulting from changes in wind patterns, ocean 

circulation, and sea level (von Huene et al. 1986 and references within).  The Peru 

Continental Margin therefore provides an excellent study area for the examination of plate 

movements and climate change since the Miocene (e.g. Walsh 1975, Suess et al. 1981, von 

Huene et al. 1985). 

 First investigations of the microbiota in sediments of the Peru Continental Margin were 

performed as part of Ocean Drilling Program (ODP) Leg 112 (Cragg et al. 1990).  This study 

documented active microbial populations in sediment layers to 80 meters below seafloor 

(mbsf), and was the first demonstration of a marine deep subsurface biosphere.  Multiple 

lines of evidence, including intact cells (Parkes et al. 2008), 16S ribosomal RNA (rRNA) 

sequences (Inagaki et al. 2006), intact membrane lipids (Lipp et al. 2008), and porewater 

geochemical profiles (D’Hondt et al. 2004), have since shown that metabolically active 

microbes persist to at least 1,500 mbsf (Parkes et al. 2008).  In addition to groups with 

cultured representatives, evidence for a large number of uncharacterized groups has been 

found in the marine deep subsurface (e.g., Li et al. 1999, Reed et al. 2002, Inagaki et al. 

2006), many with close relatives in surficial marine sediments (e.g. Vetriani et al. 1999, 

Takai and Horikoshi 1999).  



                                                                         56 

 The first ODP expedition to focus on microbiology, ODP Leg 201, took place in 2002 

(D’Hondt et al. 2003).  The main destination, with five of the seven sampling sites, was the 

Peru Continental Margin.  A key cruise objective was the study of controls on microbial 

communities in deeply buried sediments.  Since then, the microbial community composition 

of several sites has been characterized via PCR assays of 16S rRNA genes (Sørensen et al. 

2004, Parkes et al. 2005, Inagaki et al. 2006, Webster et al. 2006) and 16S rRNA (Sørensen 

and Teske 2005, Biddle et al. 2006), fluorescence-in-situ-hybridization (Mauclaire et al. 

2004, Schippers et al. 2004), and metagenomic signatures of whole-genome amplified DNA 

(Biddle et al. 2008).  In addition, genes diagnostic of microbial metabolisms have been 

targeted at two sites (Parkes et al. 2005, Webster et al. 2006): the gene for dissimilatory 

sulfite reductase (dsrAB), a key enzyme of dissimilatory sulfate reduction (Wagner et al. 

2005), and the gene for the α subunit of methyl coenzyme M reductase (mcrA), an enzyme 

that catalyzes the terminal step of biological methanogenesis and is also present in anaerobic 

methanotrophs (Friedrich et al. 2005, Hallam et al. 2003).  These functional genes reveal 

metabolic capacity in addition to identity and can provide insights on activities of microbes 

that lack close cultured relatives.  Moreover, minority populations within a given functional 

group may be more easily detected. 

 In the following study, we examine the in situ community of methanogens and anaerobic 

methanotrophs in the sediment column of Ocean Drilling Program (ODP) Site 1230 in the 

Peru Trench via PCR assays of mcrA.  We investigate the relationship between community 

zonation and environmental gradients (temperature, sulfate and substrate concentration, 

lithostratigraphy).  To identify members of the methanogen and anaerobic methanotroph 

community most likely to be living and active, we complement PCR assays of mcrA with 
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reverse transcription-PCR (RT-PCR) of 16S rRNA and mcrA mRNA.  Using δ13C-CH4 and 

calculated in situ energy yields of several common methanogenesis and methanotrophy 

reactions we constrain the likelihood of these reactions and link them to the members of the 

methanogen and methanotroph community that we detect in situ. 

 

METHODS 

Field Site  

 The Peru Trench is part of the larger Atacama Trench that is located between the 

continental South American Plate and the accretionary wedge of the oceanic Nazca Plate. It 

stretches parallel to the west coast of South America for 5,900 km.  It is unique for a deep sea 

trench in that it combines slope deposits of mostly diatomaceous mud mixed with sediments 

from an accretionary wedge, high sedimentation rates, high organic carbon content in the 

sediment (up to 8%; Suess et al. 1988), and exceptionally high microbial activity in the 

sediment column (D’Hondt et al. 2004).  ODP Site 1230 is located on the lower slope of the 

Peru Trench at a water depth of 5,086 m (D’Hondt et al. 2004, Appendix Fig. 2).  Its 

sediment column was drilled to ~270 mbsf during ODP Leg 201 in 2002 (D’Hondt et al. 

2003).  Sediments can be divided into two intervals that are separated by a lithostratigraphic 

break of 4.5 million years (~200 mbsf): Unit I consisting of clay-rich diatomaceous mud 

from the Pleistocene to Holocene (0-200 mbsf), and Unit II below the break (~200+ mbsf) 

consisting of Miocene diatomaceous ooze (Suess et al. 1988, D’Hondt et al. 2003).  

Sediments are uniformly cold, increasing slightly in temperature from ~2°C at the seafloor to 

12°C at 270 mbsf.  The geological and geophysical properties of the location were 

documented in detail at nearby ODP Site 685 during ODP Leg 112 (Suess et al. 1988).  
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 The sediment organic carbon content is high, averaging over 2% even in deep sediment 

horizons (Meister et al. 2005).  The highest alkalinity value ever measured in deep-sea 

sediments (160 mM), a sulfate-methane-transition-zone (SMTZ) from ~6 to 11 mbsf, and 

sulfate depletion at ~11 mbsf indicate unusually high biological activity for a deep-sea site 

(Fig. 2). CH4 concentrations reach saturation by 28 mbsf (Spivack et al. 2005).  Hydrates 

begin to form at ≤50 mbsf, and are present to at least 200 mbsf (D’Hondt et al. 2003). 

 

Sampling 

 The upper ~210 m were sampled with an Advanced Piston Corer (APC; D’Hondt et al. 

2003), by which a drill is “advanced” to directly above the depth interval of interest, and then 

a 9.5-m piston core hydraulically thrust into underlying sediments (Graber 2002).  Below 210 

m, the sediment was too firm for piston coring and was obtained by drilling with an Extended 

Core Barrel (XCB; Graber et al. 2002).  APC sampling is preferable for microbiological 

analyses due to on average lower contamination of core interiors with drilling fluid; the 

interior of XCB samples from ODP Site 1230 showed remarkably low levels of 

contamination, however, and were suitable for microbiological studies (House et al. 2003).  

Three boreholes were drilled within close proximity to another (~20 m; D’Hondt et al. 2003). 

 Porewater samples for geochemical analyses were obtained from 20-40 cm long whole-

round intervals using a hydraulic press as described previously (Fisher et al. 2005).  For 

carbon isotope analyses, 5-mL subsamples were frozen in precombusted glass vials.   

 For molecular biological analyses, 5-cm whole-round intervals of cores were frozen at -

80°C.  Only sediment from the nearly contamination-free interior was used (House et al. 

2003, Lever et al. 2006). 
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Porewater geochemical gradients 

 Depth profiles of alkalinity, sulfate, CH4, H2, formate and acetate (Fig. 4.1A-E) were 

measured as described previously (D’Hondt et al. 2003).  Due to outgassing during core  

retrieval, CH4 concentrations measured in porewater from sediments below 15-20 mbsf are 

underestimates of in situ concentrations.  Since CH4 concentrations were near saturation by 

 

 

FIGURE 4.1:  Relevant porewater concentration profiles at ODP Site 1230: (A) alkalinity, 
(B) sulfate, (C) measured methane concentrations, modeled methane saturation 
concentration, and extent of the hydrate stability (D’Hondt et al. 2003) and methane 
saturation (Spivack et al. 2005) zones, (D) dihydrogen, and (E) formate and acetate.  All data 
except modeled methane concentrations from D’Hondt et al. (2003). 
 

28 mbsf (Spivack et al. 2005), we calculated saturating CH4 concentrations under in situ 

temperature, pressure, salinity, and pore size using the model for CH4-seawater-porous media 

at H-L-equilibrium of Sun and Duan (2007), and used these concentrations in all 
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thermodynamic calculations.  Due to the absence of published data, we used a uniform pore 

size of 1.0 µM, a value likely to overestimate in situ pore size in the highly compacted clay 

sediments at ODP Site 1230.  Since a smaller pore size would require higher CH4 

concentrations for saturation to occur, our model calculations are probably slight 

overestimates of in situ CH4 concentrations. 

 

δ13C-C1 and DIC 

 All 13C-C1 (~99% 13C-CH4, ~1% other hydrocarbon gases, mostly ethane and propane) 

and -DIC were measured as described in D’Hondt et al. (2003). 

 

DNA/RNA Extraction 

 RNA was extracted as in Biddle et al. (2006), except that the extraction buffer was 

supplemented with 120 mM sodium phosphate, in addition to 250 mM sodium acetate and 50 

mM ethylenediaminetetraacetic acid.  DNA was extracted following the same protocol as for 

RNA, except that the pH of the extraction buffer and phenol was raised to 8.0, the bead 

beating time reduced to 15s, and the bead beating speed reduced to 4.0 (Qbiogene, Carlsbad,  

CA).  Moreover, the DNase incubation was omitted, and DNA purified with the PowerClean 

DNA Clean-Up Kit (MOBIO laboratories, Carlsbad, CA) instead of the RNeasy Mini Kit 

(Qiagen, Valencia, CA). 

 

PCR Amplification 

 To target all mcrA genes we used previously designed mcrIRD and ANME-1-mcrI primer 

pairs (Lever et al., in prep).  Two previously published general mcrA primer pairs yielded no 
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amplification (ME1/ME2; Hales et al. 1996), or amplification at only one depth interval (44.3 

mbsf; mcrI; Springer et al. 1995). Several new group-specific mcrA and 16S rRNA primers 

were designed using gene alignments (Lever, unpubl.) constructed in the phylogenetic 

software program ARB (Ludwig et al. 2003; Table 4.1).  PCR assays were performed using 

the Takara SpeedSTAR HS DNA polymerase kit (TaKaRa Bio USA, Madison, WI) using the 

following PCR protocol: (1) 1 × 2 min denaturation (98°C), (2) 40 × (a) 10s denaturation 

(98°C), (b) 30s annealing (Table 8 for temperatures), (c) 1 min extension (72°C), and (3) 1 × 

5 min extension (72°C).   

 To examine the distribution of the active and living methanogen community, we also 

attempted RT-PCR of mcrA-mRNA and 16S rRNA in several depth horizons using new 

group-specific primers for maximum amplification efficiency and hence sensitivity (mRNA: 

ODP1230, ANME-1; 16S rRNA: Msaeta 268F/927R, ANME-1 42F/898R; ANMG-1 

35F/1038R).  RT-PCR assays were carried out using TaKaRa RNA PCR Kits (AMV) 

Version 3.0 (TaKaRa Bio USA, Madison, WI).  The following RT-PCR protocol was used: 

(1) 1 × 15 min reverse transcription, (2) 5 min denaturation (98°C), (2) 40 × (a) 30s  

denaturation (98°C), (b) 30s annealing (Table 7 for temperatures), (c) 1 min extension 

(72°C), and (3) 1×5 min extension (72°C). 

 Negative controls for mRNA and rRNA transcription, cDNA-PCR, and DNA-PCR were 

included, in addition to reaction blanks.  All negative controls were negative. 
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Gene Primer pair Nucleotide sequences Ref.  
 

Target 
organisms 

Annealing 
T (°C) 

mcrA mcrI F: 5’  TAYGAYCARATHTGGYT; 
R: 5’  ACRTTCATNGCRTARTT 

Springer et 
al. (1995) 

All mcrA 51.0 

mcrA ME1/ME2 F: 5’  GCMATGCARATHGGWATGTC;  
R: 5’  TCATKGCRTAGTTDGGRTAGT 

Hales et al. 
(1996) 

All mcrA 58.0 

mcrA mcrIRD F: 5’  TWYGACCARATMTGGYT;  
R: 5’  ACRTTCATBGCRTARTT 

Lever et al., 
in prep 

All mcrA except 
ANME-1 

55.0 

mcrA ANME-1-
mcrI 

F: 5’  GACCAGTTGTGGTTCGGAAC; 
R: 5’  ATCTCGAATGGCATTCCCTC 

Lever et al., 
in prep 

ANME-1 and 
ANMG-1  

63.0 

mcrA ODP1230-
mcrI 

F: 5’  GCTACATGTCCGGTGG; 
R: 5’  CGGATAGTTGGGTCCTCT 

This study ODP 1230 M. 
saeta 

59.0 

16S M.saeta 
268F/927R 

F: 5’  CCTACTAGCCTACGACGGGT; 
R: 5’  CCCGCCAATTCCTTTAAGTTT 

This study All 
Methanosaeta 

63.0 

16S ANME-1 
42F/898R 

F: 5’  GAGTTCGATTAAGCCATGTTAGT; 
R: 5’  CGACCGTACTCCCCAGAT 

This study ANME-1 61.0 

16S ANMG-1 
35F/1038R 

F: 5’  GCTATCAGCGTCCGACTAAGC;  
R: 5’  TAATCCGGCAGGGTCTTCA 

This study ANMG-1 65.0 

 
TABLE 4.1:  Overview of PCR primer pairs used with ODP Site 1230 DNA extracts.  
 
 

Cloning and Sequencing 

 PCR products were purified in a 2.5 % low-melting point agarose gel using 1 × Tris 

acetate - EDTA buffer (TAE).  Gel slices containing PCR fragments of the correct length 

were excised and purified using a S.N.A.P. Mini Kit (Invitrogen, Carlsbad, USA). Purified 

PCR products were cloned using the Topo TA Kit (Invitrogen, Carlsbad, USA) and 

transformed into TOP10 electrocompetent cells following the manufacturer’s instructions.  

Plasmid extraction, purification and cycle sequencing were performed at the Josephine Bay 

Paul Center at MBL (Woods Hole, MA).  Sequences were BLAST analyzed using the 

nucleotide collection in GenBank (www.ncbi.nlm.nih.gov/blast).  Phylogenetic trees were 

created and bootstrap analyses (1,000 replicates) performed in ARB. 

  

Thermodynamic calculations   
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 Energy yields of methanogenesis reactions from H2/CO2, formate, and acetate were 

calculated from standard free Gibbs energies of formation (∆Gfº), standard entropies (∆Hfº), 

and standard molar volumes (∆Vfº) of reactants and products (Table 2.2).  With H2/CO2, we 

also performed calculations in which we assumed fixed free energy yields (-10 kJ mol-1), and 

calculated the H2 concentrations necessary for this free energy yield.  Corrections for 

temperature and pressure were made using the Nernst and Van’t Hoff equations, respectively. 

 We used measured activity coefficients for dissolved gasses and anions in seawater, γ, of 

1.24 for CH4, and 0.532 for HCO3
- (Millero and Schreiber 1982), and {H2O} = 1.0 (ref).  

Due to the absence of published values, the activity coefficient of H2 was approximated with 

that of CH4, and the activity coefficients of formate and acetate approximated with that of 

HCO3
-.  We performed sensitivity analyses by varying activity coefficients of H2, formate, 

and acetate by ± 20% and found that, even under the most extreme scenarios, calculated in 

situ energy yields changed by <2 kJ mol-1. 

 

RESULTS 

Carbon isotope geochemistry  

 δ13C-CH4 was ~65‰ in the upper 8 mbsf, fluctuated between -50 and -76‰ from 8 to 35 

mbsf, stabilized at ~70‰ from 35 to 40 mbsf, and gradually declined to -65‰ at 246 mbsf 

(Fig. 4.2A).  δ13C-DIC decreased from -10‰ at the seafloor to -13‰ by 7 mbsf, increased 

sharply to 6‰ from 8 to 20 mbsf, continued to increase gradually to reach a maximum of 

~20‰ at 123 mbsf, and gradually fell off in deeper layers, reaching 15‰ at 246 mbsf (Fig. 

4.2A).  The isotopic depletion of 13C-CH4 relative to 13C-DIC ranges around -53‰ in the 

upper 6 mbsf, then fluctuates, probably as an artefact of differential outgassing rates during 
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core retrieval, overall increases to reach its maximum of -86‰ at 40 mbsf, and gradually 

decreases downward to reach -80‰ at 246 mbsf (Fig. 4.2B).  The difference of ~80‰ 

between 13C-CH4 and -DIC indicates H2/CO2 as the main substrate of methanogenesis 

(Whiticar et al. 1986). The increasing δ13C-DIC gradient from 19 mbsf upwards indicates an  

increase in CO2-reduction rates.  The highest CO2 reduction rates are between 8-9  

mbsf, as indicated by the maximum gradient in δ13C-DIC (also see Fig. 4.4). 

 

 

FIGURE 4.2:  (A) Depth profile of δ13C-CH4 and δ13C-DIC.  (B) Depth profile of difference 
between δ13C-CH4 and δ13C-DIC. 
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Molecular diversity  

 We detected mcrA sequences from three phylogenetic groups (Fig. 4.3): (1) a sister group 

of the known aceticlast Methanosaeta harundinacea that lacks cultured representatives, (2) 

close relatives of [suspected] anaerobic methanotrophic ANME-1, and (3) a sister group of 

ANME-1, which we refer to here as ANMG-1 (Fig. 4.3). There is a clear distribution to the 

three detected groups. ANME-1-like mcrA sequences were found in one horizon within the 

SMTZ, and five horizons in the upper methanogenesis zone (Table 4.2, Fig. 4.4). Sequences 

from the ANMG-1 group overlap with ANME-1 sequences in one sample in the upper 

methanogenesis zone (~20 mbsf) and were detected in three more horizons down to 189 mbsf 

(Table 4.2; Fig. 4.4).  Methanosaeta-like mcrA sequences show a distribution similar to 

ANMG-1, but were detected in more depth horizons and to 227 mbsf (Table 4.2, Fig. 4.4). 

 We detected mcrA-mRNA of ANMG-1 in one of three horizons examined, 44 mbsf 

(Table 4.2). We did not detect mcrA-mRNA of ANME-1 or the Methanosaeta sister group 

(Table 4.2).  In 16S rRNA analyses, we detected Methanosaeta sequences in all three 

horizons examined (tree not shown), but did not detect 16S rRNA of ANME-1 or ANMG-1. 

 

Thermodynamic calculations  

 Our thermodynamic calculations are at odds with the inferred pathway of methanogenesis 

based on isotopes as they suggest that hydrogenotrophic methanogenesis is  

not exergonic in the methanogenesis zone (Fig. 4.5).  The only depth horizons where ∆Gr’ 

are negative are in the sulfate reduction zone, the SMTZ, and a single horizon in the upper 

methanogenesis zone.  Even in the upper sediment horizons, calculated in situ energy yields  
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FIGURE 4.3:  Bootstrap phylogenetic tree based on mcrA nucleotide sequences at ODP Site 
1230.  Created using Jukes-Cantor correction in ARB neighbor-joining (Ludwig et al. 2004). 
 
 

remain low and below the critical free energy requirement reported for hydrogenotrophic 

methanogens in marine sediments (-11.3 to -9.5 kJ mol-1; Hoehler et al. 1994, Hoehler et al. 

2001). 
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TABLE 4.2:  Samples analyzed, dominant terminal organic carbon remineralization pathway, 
depths with positive PCR and RT-PCR amplification, and number of clones obtained per 
depth (in parentheses); bd = below detection, nd = not determined]. 
 

Hole Core, 
section, 
interval 
(cm) 

Depth 
(mbsf) 

terminal Corg 
remineralizati
on pathway 

mcrIRD-
DNA (# 
of clones) 

ODP1230-
mcrA-
DNA (# of 
clones) 

ANME-1-
mcrI-DNA (# 
of clones) 

ANME-1-
mcrI-mRNA 
(# of clones) 

Msaeta-
16S-rRNA-
268F/927R 

A 1H-1, 25-30 0.25 SZ bd nd bd nd nd 

A 1H-3, 25-30 3.25 SZ bd nd bd nd nd 
 

B 2H-2, 120-
125 

5.70 SZ/AOM bd nd bd bd nd 
 

B 2H-3, 30-40 6.30 SZ/AOM bd nd bd bd nd 
 

B 2H-4, 30-40 7.80 AOM bd nd ANME-1  bd nd 
 

B 2H-5, 70-80  9.70 MG bd nd ANME-1 bd nd 
 

B 2H-5, 120-
125 

10.20 MG bd nd ANME-1 bd nd 
 

C 2H-5, 25-30 10.75 MG bd nd ANME-1 bd nd 
 

A 3H-2, 25-30 16.05 MG bd nd ANME-1 (45) nd nd 
 

A 3H-5, 25-30 20.55 MG Msaeta 
(17) 

nd ANME-1 (1), 
ANMG-1 (40) 

nd nd 

A 4H-5, 35-40 30.15 MG Msaeta 
(28) 

nd bd nd nd 
 

A 6H-2, 25-30 44.55 MG Msaeta 
(9) 

nd ANMG-1 (40) ANMG-1 (1) Msaeta (7) 

A 9H-5, 23-28 65.68 MG bd bd bd nd nd 

A 13H-3, 20-
25 

102.00 MG Msaeta 
(30) 

nd bd nd nd 

A 15H-6, 25-
30 

124.37 MG bd Msaeta 
(19) 

ANMG-1 (47) bd Msaeta (12) 

A 18H-3, 35-
40 

142.15 MG bd Msaeta 
(20) 

bd nd nd 

A 21H-3, 25-
30 

160.53 MG bd nd bd nd nd 
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A 24H-2, 24-
29 

189.04 MG Msaeta 
(25) 

nd ANMG-1 (44) nd nd 

A 30X-1, 108-
115 

227.38 MG Msaeta 
(30) 

nd bd bd bd 

A 38X-1, 130-
135 

268.50 MG bd bd nd nd nd 

 

 Calculated in situ energy yields of methanogenesis from acetate and formate suggest that 

both reactions are exergonic.  With the exception of the surface core, where they exceed 

 

 

FIGURE 4.4:  Distribution of mcrA groups along depth and geochemical gradients of sulfate, 
methane, and δ13C-DIC.  Panel on right side of each graph indicates detection/absence of 
detection of (1) ANME-1, (2) ANMG-1, and (3) Methanosaeta sequences.  Solid black 
symbols indicate detection, empty symbols indicate lack of detection (example:  
indicates presence of ANME-1, and absence of ANMG-1 and Methanosaeta). 
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the previously documented critical free energy requirement of aceticlastic methanogens in 

marine sediments (-12.8 to -9.1; Hoehler et al. 1994, Hoehler et al. 2001), they range from -

0.7 to -5.9 kJ mol-1 for formate, and from -0.3 to -8.0 kJ mol-1 for acetate (Fig. 4.5). 

 

 

 

 
FIGURE 4.5:  Calculated in situ energy yields of methane production from H2/CO2, formate, 
and acetate.  The arrow indicates a depth range in which calculated energy yields are likely to 
be overestimates of in situ energy yields, as measured dissolved methane concentrations were 
used due to the absence of other data. 
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DISCUSSION 

 The apparent paradox of hydrate-rich sediments at ODP Site 1230 being mostly devoid of 

known, PCR-detectable methanogens in the methanogenesis zone (Inagaki et al. 2006), and 

completely devoid of anaerobic methanotrophs in the SMTZ (Biddle et al. 2006), led to the 

hypotheses that (1) methanogens and methanotrophs represent a small, patchily distributed 

minority of the total archaeal population, or (2) CH4 production and oxidation are carried out 

by organisms different from known methanogens and methanotrophs.  We provide evidence 

that the lack of PCR detection in previous studies was to a large extent PCR primer-related: 

newly designed mcrA primers allow us to detect what in fact amounts to a spatially extended 

CH4-cycling community, with mcrA detected in the upper sulfate reduction zone above the 

SMTZ, throughout the SMTZ, and in most depth horizons of the methanogenesis zone.  

Similarly, newly designed methanogen- and methanotroph-specific 16S rRNA primers 

resulted in detection of methanogen and methanotroph phylotypes, where past surveys with 

general archaeal primers had yielded exclusively other phylum-level groups, such as Marine 

Benthic Group B (Deep Sea Archaeal Group; Biddle et al. 2006, Inagaki et al. 2006).  We 

provide a high-resolution depth profile for mcrA that enables us to examine distribution 

patterns of methanogens and anaerobic methanotrophs along porewater chemical gradients.   

 With novel group-specific mcrA and 16S rRNA gene primers, we were able to detect 

methanogen mRNA and rRNA, in addition to DNA.  The detection of mcrA-mRNA suggests 

that ANMG-1 at 44.3 mbsf may be performing methanogenesis under in situ conditions, and 

is part of the active CH4-cycling community.  Amplification of reverse-transcribed 16S 

rRNA detected sequences  Methanosaeta-related methanogen in several sediment horizons 
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(Table 4.2) that also yielded Methanosaeta-related mcrA genes; thus, Methanosaeta-related 

phylotypes are likely alive throughout the sediment column. 

 

Community zonation 

 The distribution of mcrA genes only partially reflects the traditional model, according to 

which sulfate reducers will outcompete methanogens for H2/CO2 (formate) and acetate in the 

presence of sulfate (Phelps et al. 1985, Lovley and Goodwin 1988, Hoehler et al. 1998, 

Hedderich and Whitman 2006), and AOM is restricted to the SMTZ: as expected, mcrA of 

putative methanogens (ANMG-1 and Methanosaeta-relatives) was only found in the 

methanogenesis zone; however, mcrA of putatively methanotrophic ANME-1 was not only 

found in the SMTZ, but also in the upper ~12 m of the methanogenesis zone.  Non-

competitive substrates that may allow coexistence at other subsurface sites (Lever et al., in 

prep), do not sustain detectable methanogen populations in the sulfate reduction zone at ODP 

Site 1230.  

 The two phylotypes found at 20 mbsf and below, ANMG-1 and Methanosaeta relatives, 

were detected down to 190 and 230 mbsf, respectively (Fig. 4.3, 4.4). ANMG-1 comprises a 

sister group of ANME-1 according to mcrA phylogeny (Fig. 4.3); its occurrence deep in the 

methanogenesis zone suggests that ANMG-1 is a methanogenic group. The consistently high 

13C-isotopic fractionation, εCH4, of CH4 relative to DIC (-80‰; Fig. 4.2B) in the 

methanogenesis zone suggests H2/CO2 as the main methanogenic substrate (Whiticar 1999), 

and it is hence possible that ANMG-1 are hydrogenotrophic methanogens.  The widespread 

occurrence of sequences in the  Methanosaeta group in the methanogenesis zone contrasts 
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with the measured isotopic difference between δ13C-CH4 and -DIC values, since all 

Methanosaeta strains isolated to date are obligate aceticlasts (Whitman et al. 2006).   

 

Thermodynamic modeling 

 Calculated in situ energy yields based on measured H2 concentrations suggest that 

hydrogenotrophic methanogenesis is endergonic in most deep sediment layers, which 

contradicts interpretations based on the difference in carbon isotopic signatures between CH4 

and DIC (Fig. 4.2).  Our calculations show that in situ H2 concentrations would need to be 1-

2 nM higher for hydrogenotrophic methanogens to meet a critical free energy requirement of 

-10 kJ mol-1 (Fig. 4.6). This discrepancy suggests that measured H2 concentrations were  

 

FIGURE 4.6:  Measured H2 concentrations and H2 concentrations required for ∆G’ = -10 kJ 
mol-1. 
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subject to artifacts: changes in temperature and pressure over long retrieval periods affect the 

sensitive microbial turnover of H2 (Hoehler et al. 1999), and may have offset the balance of 

H2 production and consumption, causing measured concentrations to be underestimates of in 

situ concentrations. Moreover, no metabolic pathway is known that would be 

thermodynamically favorable over methanogenesis in the methanogenesis zone at ODP Site 

1230 and could drive H2 below threshold concentrations for methanogenesis.  Autotrophic 

acetogenesis coupled to aceticlastic methanogenesis could result in the observed difference in 

carbon isotopic signatures between CH4 and DIC, but our calculations indicate that in situ 

energy yields for autotrophic acetogenesis are lower than for hydrogenotrophic 

methanogenesis.  Even if autotrophic acetogenesis and aceticlastic methanogenesis reactions 

were both favorable, the cumulative energy yield of the two reactions would equal that of 

hydrogenotrophic methanogenesis, which would consequently have higher energy free 

energy yields than autotrophic acetogens or aceticlastic methanogens. 

 A plausible explanation for the measured εCH4 is that the Methanosaeta relatives detected 

use enzymatic pathways different from those of isolates in which fractionations were 

previously measured.  A recently isolated marine Methanosarcina strain used a different 

enzymatic pathway than previously isolated Methanosarcina (Ferry 2008). Some 

Methanosaeta spp. harbor genes used by Methanosarcina in hydrogenotrophic metabolism, 

suggesting that certain Methanosaeta strains might grow as facultative hydrogenotrophs 

(Smith and Ingram-Smith 2007). 

 Methanogenesis reactions from formate and acetate are consistently exergonic (Fig. 4.5), 

but energy yields remain below published critical free energy values of aceticlastic 

methanogens in coastal marine sediments (Hoehler et al. 1994, 2001).  It is possible that 
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critical free energy requirements in methanogenesis from formate or acetate are lower under 

extreme energy limitation, as in deep ODP Site 1230 sediments, or that concentrations of 

reactants and products used in our calculations do not reflect concentrations that 

methanogens are exposed to in situ.  While microniches are probably uncommon in deep 

subsurface sediments, due to dissipation of substrate gradients under the low substrate 

turnover rates, it is possible that part of the bioavailable acetate and formate remains 

undetected in the quantification method used during Leg 201 (D’Hondt et al. 2003).  We also 

cannot rule out the possibility that saturating CH4 concentrations are lower than calculated 

using the model of Sun and Duan (2007).  

 Based on extant concentration data, none of the reverse reactions of methanogenesis from 

H2/CO2, formate, or acetate yield energy in the SMTZ or adjacent sediment layers.  Yet, the 

concentration profile of CH4 combined with the marked changes in δ13C-DIC suggest the 

occurrence of AOM between ~6 to ≥8 mbsf, and CO2 reduction between ~≤9-20 mbsf (Fig. 

4.4).  

 

CONCLUSIONS 

 Deep subsurface microorganisms are metabolically active and express the key genes 

necessary for their metabolism. By detecting mcrA-mRNA at 44 mbsf, we have identified a 

novel archaeal lineage (ANMG-1) that is likely to be metabolically active in the deep 

subsurface. Recovery of highly unstable mRNA is clearly possible despite the short half-life 

of mRNA (Rauhut and Klug 1999) and lengthy retrieval periods in ocean drilling (up to 

several hours; House et al. 2005, Lever et al. 2006).  Though we could not detect mRNA in 
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the deepest horizons examined, 16S rRNA was detected and indicates that even below 200 

mbsf the identity of living cells can be determined.  

 Previous molecular surveys of deep subsurface sediments on the Peru Margin (e.g. Parkes 

et al. 2005, Biddle et al. 2006, Inagaki et al. 2006) yielded few presumptive methanogenic 

sequences, no methanotrophic ones, and predominantly uncultured lineages of Archaea with 

unknown metabolisms.  Methanogens and anaerobic methanotrophs probably represent a 

small portion of the archaeal community at ODP Site 1230.  Although we have not 

performed DNA quantifications, low abundance of methanogens and anaerobic 

methanotrophs is likely since in most depth horizons the equivalent of 1 g of sediment was 

required for PCR detection of mcrA genes.  Small populations of active methanogens may 

suffice to produce saturating CH4 concentrations and hydrates over geologic time periods.  

Similarly, small populations of active methanotrophs distributed over the upper ~6 to ≥8 

mbsf may be sufficient to remove all methane produced below. 

 The co-dominance of the methanogenic community of the deep sediment column by two 

phylotypes indicates little room for niche differentiation.  Examples from macroecology 

suggest that under extreme resource limitation species diversity is low and biological 

communities dominated by generalists (Emlen 1966, Pianka 1994).  In homogeneous 

environments with low rates of disturbance diversity also tends to be low, as specialists that 

are adapted best to the suite of conditions exclude competitors over time (Emlen 1966, 

Pianka 1994).    The deep subsurface sediments at ODP Site 1230 combine high resource 

(energy) limitation with high habitat homogeneity and stability.  In accordance with 

macroecological examples, we might expect organisms with wide substrate ranges and high 

degree of adaptation to the environmental conditions to prevail.  The widespread occurrence 
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of a relative of known substrate specialists (Methanosaeta) suggests otherwise, however.  A 

fundamental distinction between microbes and macrobiota under energy limitation is that 

microbes may not only struggle to meet maintenance energy requirements, but also to acquire 

the critical free energy of a metabolic reaction.  Methanogens will compete among 

themselves and with other metabolic groups for H2 until the strain with the lowest critical 

free energy requirement has driven H2 concentrations below the critical threshold of all 

others.  This form of thermodynamic exclusion, which only occurs in microbes, provides a 

gateway for substrate specialists, provided they can meet maintenance energy requirements.  

Accordingly, we would expect to see obligately aceticlastic Methanosaeta in the deep 

subsurface, not the more generalistic Methanosarcina, which require higher acetate 

concentrations to meet critical free energy requirements than Methanosaeta.  Following the 

same logic, ANMG-1 would be able to drive concentrations of a different methanogen 

substrate, most likely H2 (and formate), below the threshold of other methanogen strains.  An 

alternative explanation is that ANMG-1 and Methanosaeta are substrate generalists, which 

coexist sympatrically in different micro-habitats.   

 In addition to variables such as temperature, substratum, nutrients/growth factors, and 

energy source, whose importance is known from cultivation studies, maintenance and critical 

free energy requirements are likely to shape microbial community composition in energy-

limited deep subsurface sediments.  The extent to which communities are the outcome of 

competition for substrates or differential ability to survive starvation requires further 

investigation and will depend on the metabolic substrate(s) consumed by the organism and 

whether their concentrations are under thermodynamic control.  Deep sedimentary microbial 

ecosystems may provide good model systems for microbial community analysis integrated 
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with geochemical habitat study, since they allow the examination of how a limited set of 

geochemical and physiological variables over time determines microbial ecosystem 

functioning and diversity. 
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CHAPTER V 

 

MCRA GENE DIVERSITY IN HYDROTHERMAL SURFACE SEDIMENTS FROM 
THE GUAYMAS BASIN INVESTIGATED BY GENERAL AND GROUP-SPECIFIC 

PCR PRIMERS 
 
 

 

ABSTRACT 

 We examined detection sensitivity and phylogenetic breadth of three previously designed 

mcrA primer pairs (mcrI, ME1/ME2, mcrIRD) and 27 mostly newly designed mcrA group-

specific primer pairs in hydrothermally active sediments from Everest Mound in the 

Guaymas Basin.  The diversity obtained with the mcrI and mcrIRD primer pairs was similar, 

and higher than that obtained with the ME1/ME2 primer pair. The detection limit was 

significantly lower with the mcrIRD primer pair, suggesting higher mcrA PCR-amplification 

rates than with the other two general mcrA primer pairs.  ANME-1-like sequences were the 

only mcrA cluster solely detected with group-specific primers, whereas the remaining 26 

group-specific primer pairs yielded no new phylotypes.  This suggests that mcrA diversity in 

Guaymas sediments can be covered using the general mcrIRD and group-specific ANME-1 

primer pairs.   

 The mcrA genes detected belong to relatives of known hydrogenotrophs, methylotrophs 

and anaerobic methanotrophs.  No sequences grouping with those of known aceticlasts were 

detected. Five mcrA clusters without cultured members were detected, four of which 
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possessed no previously detected close relatives.  There was no apparent zonation along the 

temperature gradient, except that all but two groups were absent below 6 cm into the 

seafloor. 

 

INTRODUCTION 

 The nucleotide sequence diversity observed in natural samples via PCR assays is largely 

a function of the organisms present and the PCR probes specificity.  Many PCR primer pairs 

appear to generate clone libraries biased towards certain phylotypes within their ostensible 

target groups, as has been illustrated recently for the case of the Archaea and “general” 

archaeal 16S rRNA gene primers (Teske and Sørensen 2007, Hwang et al. 2008).  Primer 

mismatches are a main cause of phylogenetic biases (Diallo et al. 2008) and are often due to 

the absence of certain sequences in the database when primers were first designed.  As 

sequence data bases of genes continue to grow due to the addition of new genes and 

genomes, reexamination and, if necessary redesign, of PCR primers is crucial. 

 Multiple strategies exist to compensate for primer biases.  Use of several primer pairs in 

separate PCR assays is one (Piceno et al. 1999, Rösch et al. 2002, Bürgmann et al. 2004), the 

underlying argument being that if each individual group is targeted separately, or each primer 

pair is biased towards a different target group, all phylotypes will be detected eventually.  A 

pitfall of this method is its labor-intensity.  Incorporation of degeneracies into PCR primers is 

an alternative strategy (Zehr and McReynolds 1989, Widmer et al. 1999), but can 

compromise PCR amplification efficiency and result in a high detection limit (Bürgmann et 

al. 2004, Juottonen et al. 2006).  Which strategy works best is likely to depend on factors 
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such as template concentration, diversity, and richness, and primer coverage of target genes 

in a given sample.   

 Here we examine the performance of several general primer pairs designed to target the 

alpha subunit of the gene for methyl coenzyme M reductase (mcrA).  The mcrA gene is 

considered unique to methane-producing Archaea (methanogens) and anaerobic methane-

oxidizing Archaea (methanotrophs; Reeve et al. 1997, Hallam et al. 2003), phylogenetically 

conserved (Friedrich et al. 2005), and hence a suitable marker gene for the study of natural 

populations of methanogens and anaerobic methanotrophs.  We compare the detection limits 

and diversity detected with three previously designed general mcrA primer pairs: mcrI 

(Springer et al. 1995), ME1/ME2 (Hales et al. 1996), and mcrIRD (Lever et al. in prep, 

Chapter III).  In addition, we use 27 group-specific mcrA primer combinations to test the 

performance and examine phylogenetic biases of the three general primer pairs.  As a study 

site, we examine surficial sediments of the Everest Mound area in the Guaymas Basin, which 

was previously shown to host an exceptionally high diversity of methanogens and 

methanotrophs (Teske et al. 2002, Dhillon et al. 2005), and is hence well-suited for the study 

of PCR primer sensitivity and biases.  We then (1) examine the zonation of mcrA genes in 

the context of the steep thermal and geochemical gradients (sulfate) of the site, (2) 

investigate possible metabolic pathways of phylotypes detected based on closest relatives 

with known metabolisms, and (3) compare overall diversity and community structure to that 

detected previously detected at a nearby station at Everest Mound (Dhillon et al. 2005). 

 

METHODS 

Sampling and Site Characteristics 
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 A 20-cm core of surface sediment was obtained via the manned research submersible 

Alvin (Woods Hole Oceanographic Institution) during a cruise to the Guaymas Basin in April 

and May 1998.  The core came from a site where the temperature increases steeply with 

depth, from ~2°C at the seafloor to ~160°C at 30 centimeters –below seafloor (cmbsf; Weber 

and Jørgensen, unpubl.).  High productivity of overlying waters results in diatomaceous 

sediment that accumulates at a rate of >1 mm yr-1 (Curray et al. 1979) and total organic 

carbon contents of 2-4% by weight (Simoneit and Bode 1982).  Due to the steep increase in 

temperature within decimeters of the seafloor, biological activity is believed to be limited to 

surface sediments.  A large portion of the energy utilized by microbial communities at this 

site derives from relict carbon (Pearson et al. 2005): hydrocarbons (methane, petroleum) and 

VFAs are produced by magmatic heating of organic matter deeper in the sediment column 

(Bazylinski et al. 1988, Martens 1990, Pearson et al. 2005), and supplied to the seafloor via 

upward flow of hydrothermal fluids. Concentrations of sulfate and volatile fatty acids have 

yet to be determined at this site, but profiles from other, nearby sites suggest high sulfate 

reduction rates in the uppermost centimeters (Weber and Jørgensen, 2005), and high 

concentrations of volatile fatty acids that increase with depth (Martens 1990, Dhillon et al. 

2005).  The coexistence of diverse sulfate reducer and methanogen assemblages in the 

uppermost centimeters (Dhillon et al. 2003, 2005) suggests that availability of electron 

donors is not limiting to either group.  The detection of putative anaerobic methanotrophs 

and diverse methanogens suggests co-occurrence of anaerobic oxidation of methane (AOM) 

and methanogenesis, and the possible presence of microenvironments with highly discrepant 

porewater chemistry. 
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DNA Extraction 

 DNA was extracted following the same protocol as outlined for RNA extraction in Biddle 

et al. (2006), except that the pH of the extraction buffer and phenol were raised to 8.0, the 

bead beating time reduced to 15s, and the bead beating speed reduced to 4.0 (Qbiogene, 

Carlsbad, CA).  Moreover, the DNase incubation was omitted, and DNA purified with the 

PowerClean DNA Clean-Up Kit (MOBIO laboratories, Carlsbad, CA) rather than the 

RNeasy Mini Kit (Qiagen, Valencia, CA). 

 

PCR Amplification 

 To target all mcrA genes we used previously designed mcrI (Springer et al. 1995), 

ME1/ME2 (Hales et al. 1996), mcrIRD and ANME-1-mcrI primer pairs (Chapter III) using 

the annealing temperatures outlined in Chapter IV.  In addition, we designed 26 new group-

specific mcrA primer combinations using gene alignments (Lever, unpubl.) constructed in the 

phylogenetic software program ARB (Ludwig et al. 2004; Table 5.1).  Annealing 

temperatures were calculated using the DNA calculator function on the Sigma-Aldrich 

webpage (Sigma-Aldrich, St. Louis, MO; http://www.sigmaaldrich.com/calc/DNACalc.asp). 

 PCR assays were performed using the Takara SpeedSTAR HS DNA polymerase kit 

(TaKaRa Bio USA, Madison, WI) using the following PCR protocol: (1) 1 × 2 min 

denaturation (98°C), (2) 40 × (a) 10s denaturation (98°C), (b) 30s annealing (see Table 1 for 

temperatures), (c) 1 min extension (72°C), and (3) 1 × 5 min extension (72°C).  DNA bands 
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TABLE 5.1:  Overview of mcrA primer pairs designed in this study, their target groups, 
primer sequences, the # of nucleotides of individual primers, annealing temperatures, 
amplification of the correct band length (+ = amplification, - = no amplification), and 
specificity (+ = high, i.e. only target group, - = low, no target group & no mcrA,  -/+ = 
amplified mcrA, but not target group, (-/+) = amplified mcrA, but not only target group). 

Name Target Groups Primer sequences # of nucleotides 
(F; R

)  

Length of 
fragm

ent (bp) 

A
nnealing 

tem
perature 

(°C
) 

A
m

plification
1 

Specificity
2 

mcrMS M. sarcina F: 5’ GACCAGATCTGGCTCGGATC;   
R: 5’ TCGCCCTGGTAGGACAGAAC 

20; 
20 

425 66.0 + - 

mcrAM-2 ANME-2 F: 5’ GGATTCACGCAGTACGCAAC;   
R: 5’ CAAGAAGCGTTGGGTAGTCC 

20; 
20 

155 64.0 + + 

mcrMsaeta M. saeta F: 5’ TACACCAACGATGTCCTGGA;   
R: 5’ CACTGATCCTGCAGGTCGTA 

20; 
20 

305 64.0 + - 

mcrMc M. coccaceae F: 5’AAGAAGAGCAAGAGGTCCAAA;   
R: 5’ TCGTATCCGTAGAATCCTAATCT  

21; 
23 

490 61.0 + -/+ 

mcrURFS Unid. Rice Field 
Soil McrA 

F: 5’ GTATGCAACACCAGCATACACC  
      / GTATGCCACAGCAGCATACAC;   
R: 5’ CACCGCACTGATCCTGC 

22/ 
21; 
17 

385 64.0 + - 

mcrAM-3 I ANME-3 F: 5’ GATATCATTCAGACAAGCCG;   
R: 5’ AGTTCAAGAGGCTCTCCTTC 

20; 
20 

525 60.0 - n/a 

mcrAM-3 
II 

ANME-3 F: 5’ CCTTGAGGTAGTCGGTGCAG;   
R: 5’ AGTTCAAGAGGCTCTCCTTCGT 

20; 
22 

480 64.5 - n/a 

mcrAM-
3etal 

ANME-3, 
M.coccoides, -
methylovorans, -
lobus, -halophilus 

F: 5’ GATATCATTCAGACAAGCCGT;   
R: 5’ CACCACACTGGTCCTGC 

21; 
17 

480 60.0 + - 

mcrRCI/FC Rice Cl. I, Fen Cl. F: 5’ TACAAGATGTGCGCCGGT;   
R: 5’ CATGCTTCCTTGTGCAGGTA 

18; 
20 

560 64.0 - n/a 

mcrFCI Fen Cl. F: 5’ AGCCAGGTGGCATCAAGTT;   
R: 5’ ACTGGTCCTGCAGGTCGTAG 

19; 
20 

510 64.0 - n/a 

mcrFCII Fen Cl. F: 5’ AGCCAGGTGGCATCAAGTT;   
R: 5’ GACAGGTACCAGCCGTTCA 

19; 
19 

445 64.0 + - 

mcrMcorp M. corpusculum F: 5’ TGTCATCAACATGGCCCAC;   
R: 5’ TCGTAGCCGAAGAAACCAAG 

19; 
20 

550 64.0 + - 

mcrMspir M. spirillum F: 5’ GATGAGTTCACCTACTATGGTAT;  
R: 5’ CTGACAGAGAGTGAGTTGGT 

23; 
20 

335 56.0 + - 

mcrMcul M. culleus & close 
relatives 

F: 5’ GGTATGGACTACATCAAGGACAA; 
R: 5’ ACTGGTCCTGGAGGTCGTA 

23; 
19 

290 62.0 + - 

mcrMgen M. genium F: 5’ CACCTACTACGGTATGGACTATAC  
R: 5’ GAGTTTGCTGAACCACACTG 

24; 
20 

310 61.0 + (-/+) 

mcrGMmC Guaymas M. 
microbiales Cluster 

F: 5’ CACCTACTACGGTATGGACTATAC 
R: 5’ AGCTCTCCGAGCAGACCT 

24; 
18 

355 61.0 + + 

mcrMbacA  M. bacterium 
aarhusense group 

F: 5’ GCAAAACACGCAGAAGTTGT;  
R: 5’ GTCTGGAGTGCTGTTCTTTGTG 

20; 
22 

515 63.0 + - 

mcrMbac M. bacteriales 
except aarhusense 
and M. 
thermobacter 

F: 5’GGTTAGGTTCTTACATGTCTGGTG;  
R: 5’ GCACCACATTGATCTTGTAAATC 
      / TGCTCCACACTGGTCCTG 
      / CACCACACTGGTCCTGGA 

24; 
23 

365 63.0 + - 
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Cloning and Sequencing 

 PCR products were purified in a 2.5 % low-melting point agarose gel using 1X Tris 

acetate- EDTA buffer (40 mM Tris-HCl, 40 mM Na-acetate, 4 mM Na- EDTA).  Gel slices 

containing PCR products of the expected PCR length were excised and purified using 

S.N.A.P. Mini Kits (Invitrogen, Carlsbad, USA). Purified PCR products were cloned and 

inserted into TOP10 electrocompetent E. coli using the Topo TA Kit following the 

manufacturer’s instructions (Invitrogen, Carlsbad, USA).  Plasmid extraction, purification 

and cycle sequencing were performed at the Josephine Bay Paul Center at MBL (Woods 

Hole, MA).  Sequences were BLAST analyzed using the nucleotide collection in GenBank 

(www.ncbi.nlm.nih.gov/blast).  Phylogenetic trees were created in ARB, using neighbor-

joining with Jukes Cantor correction and bootstrap analyses with 1,000 replicates. 

 

RESULTS 

 We detected a diverse assemblage of 18 different mcrA phylotypes belonging to 13 mcrA 

clusters, of which 8 fell into known orders (Methanomicrobiaceae, Methanococcaceae, 

mcrMtb M. thermobacter F: 5’ AGCCTACACAGACAACATCCTC; 
R: 5’ CACCACACTGGTCCTGGA 

22; 
18 

315 63.0 + - 

mcrMp M. pyrus F: 5’ CTAGGATCCTACATGTCAGGAGG / 
R: 5’ CCTCACGCTCAGCGAGTT 

23; 
18 

385 64.0 + + 

mcrDBGrI Deeply-branching 
Guaymas Group I 

F: 5’ CGGAGTAGGATTCACGCAGTA;  
R: 5’ GATAGTTTGGACCACGCAGTTC 

21; 
22 

410 64.0 + + 

mcrMlas Clone mlas, clone 
DEBITS & relatives 

F: 5’ ACGACTTCTGCTACTACGGTGC / 
R: 5’ CCTGCCCATCTCCTCCTT 

22; 
18 

255 64.0 + - 

mcrDBM Deeply-branching 
Methanogen group 
from JdF 

F: 5’ GATGACTTCTGCTACTACGGCAT; 
R: 5’ GCCTACCAGCAGACTCCCT 

23; 
19 

245 64.0 + - 

mcrDBGrII Deeply-branching 
Guaymas Group II 

F: 5’ GCAGTATGCAACCGCTGTT;  
R: 5’ GTCTGCACCTCTGAGCTCAAG 

18; 
19 

395 64.0 + + 

mcrDBGrII
I&IV 

Deeply-branching 
Guaymas Groups III 
& IV 

F: 5’ GTGTACACGGACAACATCCTGG; 
R: 5’ ACGCTCAGCGAGTTGGC 

22; 
17 

330 64.0 + - 
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Methanopyraceae; Fig. 5.1).  mcrA sequences were detected only in the upper 10 cmbsf (Fig. 

5.2, Table 5.2).  Closest known cultivated relatives based on mcrA sequence similarity  

 

 

FIGURE 5.1:  McrA gene phylogeny.  Only a small number of representative phylotypes 
from this study is included.  The depth intervals they are from, and the primers used to 
amplify their mcrA sequence are included in the name (GB = Guaymas Basin; EvMd = 
Everest Mound).  Constructed in ARB Neighbor Joining using Jukes-Cantor correction 
(Ludwig et al. 2003).  Bootstrap support (in %, 1,000 replications) is indicated at each 
branching point, except where bootstrap support was 100%. 
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TABLE 5.2:  Substrate use by closest relatives of the 13 mcrA clusters detected, depth 
intervals and temperature ranges detected in, and number of depths detected in.  Includes data 
obtained with all primer used in this study.  [MeOH = methanol, DMS = dimethyl sulfide, 
TMA = trimethyl amine, + = detected; - = not detected]. 
 

  Substrate used by closest relatives 
  H2/HCO3

-, 
formate 

MeOH, 
DMS, 
TMA 

methane unknown  

D
epth (cm

bsf) 

Tem
perature (°C

) 

M
ethanogenium

1  

M
ethanoculleus 1 

M
ethanococcus 1 

M
ethanopyrus 1 

M
.halophilus 1 

M
etherm

icoccus 1 

A
N

M
E-1

2 

A
N

M
E-2

2 

U
nid. R

ice Field Soil 

D
B

 G
uaym

as G
r. I 

D
B

 G
uaym

as G
r. II 

D
B

 G
uaym

as G
r. III 

D
B

 G
uaym

as G
r. IV

 

# of phylotypes (of 13) 

0-1 2-8 + + - + + + + + + + + - - 10 
1-2 8-14 + + + + + + + + - + + - + 11 
2-3 14-20 - + - + + + - + - + + - - 7 
3-4 20-25 - + - + - + - - - + + - - 5 
4-5 25-31 - + - + + - - + - + + + - 7 
5-6 31-37 + + + + - + - + - + + + - 9 
7-8 43-49 - - - + - - - - - + - - - 2 
9-10 54-60 - - - - - - - - - + - - - 1 
12-13 72-78 - - - - - - - - - - - - - 0 
15-16 89-95 - - - - - - - - - - - - - 0 
19-20 113-118 - - - - - - - - - - - - - 0 
# of 
depths 

N/A 3 6 2 7 4 5 2 5 1 8 6 2 1 
 

 

 

belonged to hydrogenotrophs (Methanogenium, -culleus, -caldococcus, -pyrus), 

methylotrophs (Methanohalophilus, Methermicoccus), and anaerobic methanotrophs 

(ANME-1, -2).  Five clusters without cultured representatives (Unidentified Rice Field Soil 

mcrA, Deeply-branching Guaymas mcrA Groups I-IV), and no phylotypes of known 

aceticlastic genera (Methanosaeta, -sarcina) were detected.  Diversity was highest at the 
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surface (0-2 cmbsf), and lowest in the lowest two horizons (7-8 and 9-10 cmbsf).  There is no 

clear vertical zonation of phylotypes along the thermal gradients, except that all but two 

(Deeply-branching Guaymas Group I, Methanopyrus) were below detection below 6 cmbsf, 

certain phylotypes were only detected in surface layers (ANME-1, Unidentified Rice Field 

Soil mcrA, Deeply-branching Guaymas Group IV), and one only at mid-sediment intervals 

(Deeply-branching Guaymas Group III).  Even though we detected relatives of known 

hyperthermophiles (Methanopyrus kandleri, Methanocaldococcus jannaschii and infernus), 

their phylotypes were below detection in sediment horizons with temperatures higher than 

60°C. 

 For each of the three general mcrA primer pairs, a decrease in mcrA diversity occurred 

with depth (Fig. 5.2).  The detection limit and/or phylogenetic composition of clone libraries 

generated with the three general mcrA primer pairs varies greatly; with the ME1/ME2 and 

mcrI primer pairs, we detect mcrA genes in four of the uppermost 8 depth horizons 

examined, though not in the same depth horizons (Fig. 5.2).  Overall mcrA richness is higher 

in clone libraries generated with the mcrI primer pair, which allows detection of all 6 groups 

amplified with the ME1/ME2 primer pair in addition to three further phylotypes (Table 5.3).  

The mcrIRD primer pair amplified mcrA genes in the 8 uppermost sediment intervals 

examined and yielded the highest diversity of mcrA genes (Fig. 5.2).  McrA composition of 

clone libraries obtained with mcrI and mcrIRD primer pairs is similar, with an overlap in 8 

phylotypes.   

 We detected only one novel phylotype (ANME-1) using the 27 group-specific primer 

combinations (Table 5.3).  Certain phylotypes were detected in depth intervals, where they  
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FIGURE 5.2:  Depth layers in which mcrA genes were detected, as well as mcrA clusters 
detected within each of these depth layers, using the three general mcrA primer pairs 
(ME1/ME2, mcrI, mcrIRD). 
 

 

had not been detected with general primer pairs, e.g. Methanopyrus at 1-2 cmbsf (Table 5.3).  

Primer combinations designed to specifically target groups that had previously not been 

detected, e.g. mcrMsaeta for Methanosaeta or mcrMbac for Methanobacteriales, did not 

result in detection of these groups (Table 5.1, 5.3).  Instead they amplified mcrA genes of 

non-target groups (mcrMbac), or non-mcrA genes (mcrMsaeta).  Certain groups detected  
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TABLE 5.3:  McrA clusters detected with primers that successfully amplified mcrA genes, 
depth intervals in which they successfully amplified mcrA genes, and total number of mcrA 
clusters detected with each primer pair. 
 

 Primer Coverage 

D
epth (cm

bsf) 

M
ethanogenium

1  

M
ethanoculleus 1 

M
ethanococcus 1 

M
ethanopyrus 1 

M
.halophilus 1 

M
etherm

icoccus 1 

A
N

M
E-1

2 

A
N

M
E-2

2 

U
nid. R

ice Field Soil 

D
B

 G
uaym

as G
r. I 

D
B

 G
uaym

as G
r. II 

D
B

 G
uaym

as G
r. III 

D
B

 G
uaym

as G
r. IV

 

# m
crA clusters (of 13) 

ME1/ME2 0-1, 
5-6 

0-1, 
4-5 

- 4-5 0-2, 
4-5 

5-6 - 0-2, 
4-6 

- - - - - 6 

mcrI 0-1 0-1, 
2-3, 
4-5 

5-6 2-3, 
4-6 

0-1 0-1, 
2-3 

- 0-1 - 0-1, 
2-3 

2-3 - - 9 

mcrIRD 1-2 0-3 1-2 0-1, 
2-8 

0-3 0-4 - 0-1 0-1 0-10 - 4-6 1-2 11 

mcrANME-
1 

- - - - - - 0-2 - - - - - - 1 

mcrANME-
2 

- - - - - - - 0-3 - - - - - 1 

mcrMcul - - - - - 2-3 - - - - - - - 1 
mcrFC - 1-2 - - - - - - - - - - - 1 
mcrMgen - 0-4 - - - - - - - - - - - 1 
mcrMm - 0-3, 

5-6 
- - - - - - - - - - - 1 

mcrMbac 0-1 - - - 0-2 0-1 - - - - - - - 3 
mcrMcoc - - - - - - - - - 1-2, 

3-4 
2-4 - - 1 

mcrDBGrI - - - - - - - - - 0-10 - - - 1 
mcrDBGrI
I 

- - - - - - - - - - 0-2, 
3-6 

- - 2 

mcrMp - - - 0-8 - - - - - - - - - 1 
 

 

 

 



                                                                         90 

with general primers, e.g. Methanogenium, or Methanohalophilus, were not detected at all 

using group-specific primers (Table 5.1, 5.3).   

 

DISCUSSION 

 We found no clear zonation along the thermal gradient, except that (1) certain groups 

occur deeper than others (Methanopyrus, Deeply-branching Guaymas mcrA Group I), and (2) 

diversity was highest near the sediment surface (0-2 cmbsf), and lowest in deeper horizons 

(7-8 and 9-10 cmbsf; Table 5.2, Fig. 5.2).  A gradual depth-related decrease in diversity is 

suggested by individual diversity profiles generated with general primers (Fig. 5.2), but this 

decrease is only partially reflected in the pooled depth-related diversity (Table 5.2).  The fact 

that several phylotypes, e.g. Methanogenium, Methanocaldococcus, ANME-2, appear absent 

from one of the middle layers (2-4 cmbsf), but present above (0-2 cmbsf) and below (4-6 

cmbsf) suggests temperature-unrelated changes with depth.  Perhaps the sulfate and volatile 

fatty acid concentration profiles will provide an explanation (to be performed by Dan Albert). 

 McrA genes were not detected below 10 cmbsf.  Given the presence of relatives of 

hyperthermophiles such as Methanopyrus kandleri (temperature maximum: 122˚C; Takai et 

al. 2008) and Methanocaldococcus jannaschii (temperature maximum: 85˚C; Jones et al. 

1983), the lack of mcrA detection below 10 cmbsf, at temperatures >60°C is curious, and we 

can only speculate about possible reasons.  One possible explanation is that concentrations of 

volatile fatty acids become toxic below. Very high concentrations of thermogenic acetate (>1 

mM) were documented in deeper sediment horizons at a nearby site at Everest Mound 

(Dhillon et al. 2005).  High concentrations of acetate are known to be toxic to methanogens 

in sewage digestors (Zeikus 1980).  Alternatively, thermocatalysis of organic matter in 



                                                                         91 

deeper layers may drive the pH below levels tolerated by methanogens, as has been 

documented before (Phelps and Zeikus 1984).  Upward flow of hydrothermal fluid may, 

furthermore, cause a constant flux of high concentrations of volatile fatty acids or protons to 

upper layers of sediment.  Methanogens and methanotrophs may be confined to the 

uppermost 10 cm where diffusive mixing with overlying seawater keeps VFA concentrations 

and/or pH tolerable.  The occurrence of Methanopyrus and Deeply-branching Guaymas 

mcrA Group I in deeper sediment layers may reflect their ability to cope with high VFA 

concentrations or low pH better than the other groups, and not indicate ability to tolerate 

higher temperatures.  Alternatively, it is possible that there is no zonation at all, and that 

overall mcrA template concentrations decrease with depth into sediments. Accordingly, all 

but the two most abundant phylotypes, Methanopyrus and Deeply-branching Guyamas mcrA 

Group, would be diluted to extinction in the lowermost layers.  This scenario would require 

all three general primer pairs tested to be biased against Methanopyrus, since Methanopyrus 

does not dominate clone libraries in the shallower layers (0-4 cmbsf).  We examined this 

possibility using the ARB phylogenetic software program and found that neither the mcrI nor 

the mcrIRD primer pairs had any mismatches with published Methanopyrus mcrA sequences, 

while the ME1/ME2 had a total of 5 mismatches (3 forward, 2 reverse).  Therefore, at least in 

the case of Methanopyrus mcrA genes, a change in frequency relative to other mcrA 

phylotypes with depth, i.e. an mcrA gene zonation, appears likely.  Numbers of mismatches 

as a source of PCR bias can currently not be examined for the Deeply-branching Guaymas 

McrA Group, due to the absence of mcrA sequences that are inclusive to general and group-

specific primer sequences (note: the ME1/ME2 primer pair did not amplify this group). 
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 We detected relatives of known methylotrophic and hydrogenotrophic methanogens, but 

not of aceticlastic methanogens.  Possibly acetate is being utilized by other organisms, e.g. 

sulfate reducers.  Alternatively, acetate may be consumed by one or several of the unknown 

clusters.  Of the latter, the Unidentified Rice Field Soil mcrA group (Chin et al. 2004), also 

termed Cluster M-C (Nercessian et al. 2005) or wrongly grouped with, despite not being 

monophyletic with ANME-2 (Nunoura et al. 2006) is a genus within the Methanosarcinales 

(Fig. 5.1) that has previously been found at methane seeps, methane hydrates, hydrothermal 

vents, deep subsurface sediments and subseafloor basalt (Bidle et al. 1999, Hallam et al. 

2003, Nercessian et al. 2005, Nunoura et al. 2006, Lever et al., in prep)., in addition to 

freshwater environments (Chin et al. 2004).  Deeply-branching Guaymas mcrA Groups I-IV 

unanimously lack similar environmental sequences:  the Deeply-branching Guaymas mcrA 

Group I has a maximum sequence similarity of 73% to its closest relative in GenBank, and 

the Deeply-branching Guaymas mcrA Group II has a maximum sequence similarity of 70% 

to its closest relative.  The Deeply-branching Guaymas mcrA Group III had 89% sequence 

similarity to its closest environmental sequence and 85% to its closest cultured relative 

(Methanopyrus kandleri), whereas the Deeply-branching Guaymas mcrA Group IV had 94% 

similarity to its closest relative among environmental sequences (Mcr-A, hydrothermal vent, 

AY354023; Fig. 5.1) and 88% sequence similarity to its closest cultured relative 

(Methanopyrus kandleri).  Due to the lack of knowledge about these 5 groups, the 

presence/absence of aceticlastic methanogens can currently not be determined. 

 Of the three general mcrA primer pairs tested, the mcrIRD primer had the lowest 

detection limit, as indicated by successful mcrA gene amplifications from 8 compared to 4 

depth intervals in the case of the mcrI and ME1/ME2 primer pairs.  Diversity detected was 
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also higher in the mcrIRD primer pair, which may have been partially a result of the greater 

number of depth intervals with successful amplifications.  The ME1/ME2 and mcrI primer 

pairs were comparable in sensitivity of mcrA detection, but differed in diversity detected, the 

main difference being that the ME1/ME2 primer pair did not detect any of the groups without 

cultured representatives.  None of the general primer pairs detected ANME-1 mcrA.  The 

most likely explanation is the high number of mismatches with ANME-1 mcrA sequences 

(Lever, unpubl.), which are the reason phylogenetic studies using the mcrIRD primer pair 

have been complemented by the use of the ANME-1-mcrA primer pair (Chapters III and IV, 

Ertefai et al. unpubl., Lin et al. unpubl.). 

 No new phylotypes were detected with the 26 new group-specific primer pairs designed 

in this study.  In fact, the mcrIRD and mcrI primer pairs resulted in detection of groups not 

detected with specifically designed group-specific primers (e.g. Methanogenium).  This could 

be explained with (1) the higher DNA extract volumes used in PCR assays with general 

primers (10 µL) compared to group-specific primers (1 µL), and (2) stochastic variation in 

template occurrence in aliquots of DNA extract used in PCR assays, as discussed previously 

(von Wintzingerode et al. 1997).  Use of the same template volumes in all PCR reactions 

combined with increased PCR replication may resolve this mystery.   

 Group-specific primer pairs did, however, lower the detection limit for certain groups: 

using the mcrIRD primer pair 10 µL were required for PCR detection of mcrA genes in the 

lowermost sediment intervals (7-8 and 9-10 cmbsf), whereas the Methanopyrus-specific 

mcrMp and the Deeply-branching Guaymas mcrA Group I-specific mcrDBGrI primer pairs 

yielded PCR detection with 1 µL.  Moreover, using group-specific primer pairs we were able 

to detect Methanopyrus and Deeply-branching Guaymas mcrA Group I in shallow layers 
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where they had not been detected using the mcrIRD primer pair.  These examples suggest 

that, unsurprisingly, amplification efficiency is higher with low-degeneracy group-specific 

primers.  Moreover, amplification biases with the mcrIRD primer pair cannot be precluded, 

despite it targeting a wide phylogenetic breadth of mcrA genes as shown in this study.  The 

solution to this problem may be as simple as generating larger clone libraries, e.g. with 96 

instead of 48 clones per depth horizon.  

 Our results suggest that the mcrIRD primer pair, when combined with the ANME-1-

mcrA primer pair, covers a wide diversity of mcrA genes of not only previously cultured 

groups, but also novel, highly-divergent groups.  The group-specific primer pairs were 

designed to target all known mcrA phylogenetic clusters and a variety of regions within the 

mcrA gene.  Yet, with the exception of ANME-1, group-specific primer pairs did not amplify 

new phylotypes, i.e. phylotypes that had not already been amplified with the mcrIRD primer 

pair. Though we cannot preclude that certain highly divergent mcrA sequences were missed 

by the mcrIRD or group-specific primer pairs, our results show that the combined use of the 

mcrIRD and ANME-1-mcrA primer pairs covers known mcrA sequence diversity in addition 

to yielding novel phylotypes.  The mcrIRD primer pair, therefore, unlike the mcrI or 

ME1/ME2 primer pairs, combines wide phylogenetic breadth with a relatively low detection 

limit, and illustrates how reduced primer degeneracy, and hence higher amplification 

efficiency, does not necessarily compromise the breadth of phylotypes targeted. 
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CHAPTER VI 

 

CONCLUSIONS  

 

i.  MAJOR FINDINGS 

 Design of new PCR probes allowed construction of the first detailed depth profiles of 

functional genes in the deep subseafloor.  Lack of detection of mcrA genes in all but one or a 

few sediment horizons in previous studies (e.g. Parkes et al. 2005) was probably caused by 

poor detection sensitivity resulting from high degree of primer degeneracy (Springer et al. 

2005) or limited phylogenetic coverage (Hales et al. 2006) of previously published mcrA 

primer pairs.  With the aid of previously conducted contamination tests (Lever et al. 2006), 

we were able to show that mcrA genes persist deep into the basaltic basement underlying a 

265-m thick layer of sediment.  Fhs distributions had not been examined previously in 

marine sediments.  We detect a high diversity of vertically zonated fhs phylotypes in several 

depth horizons of a deep sediment column.   

 Depth distributions of mcrA roughly follow sulfate concentration gradients at the two 

sites where sulfate concentrations were measured (Juan de Fuca Ridge Flank, Peru Trench).  

The phylogenetic composition of the methanogen- and methanotroph- assemblages changes 

is different in methnogenesis zones and SMTZs compared to sulfate reduction zones. We 

detect mcrA in sediments with in situ temperatures of  2 to 65°C, and lithologies as diverse as 

diatomaceous clay, silty clay, sand, breccia, and pillow lava, and observe no related change 
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in phylogenetic composition.  These findings suggest a low degree of adaptation towards 

temperature or lithology among the methanogens and methanotrophs detected.  Fhs 

phylotypes are detected in multiple samples in sulfate reduction zones, including SMTZs, but 

below detection in the methanogenesis zone at IODP Site 1301.  Whether this zonation is 

indeed related to sulfate concentrations, or other environmental variables, such as lithology 

or temperature, cannot be determined from our limited data set.   

 Based on studies of pure cultures of methanogens (compiled in Whiticar et al. 1986 and 

Whiticar 1999), the high stable carbon isotopic fractionations of methane relative to DIC 

suggest predominantly methane production from H2/HCO3
- in the methanogenesis zones at 

ODP Site 1230 and IODP Site 1301.  Due to the absence of pure culture studies of isotopic 

fractionations produced by aceticlastic methanogens in marine sediments, the δ13C-CH4 

relative to DIC does not provide conclusive evidence for a predominantly hydrogenotrophic 

origin of methane, however.  The mcrA phylotypes detected, with the exception of those 

from the SMTZ at IODP Site 1301, provide no evidence for hydrogenotrophic 

methanogenesis.  Thermodynamic calculations argue against hydrogenotrophic 

methanogenesis at ODP Site 1230, but need to be treated with extreme caution: the H2 

concentrations measured are unlikely to reflect in situ concentrations due to the high turnover 

rates of H2, and artifacts caused by lengthy core retrieval periods.  The detection and even 

dominance of phylotypes most closely related to obligately aceticlastic methanogens in the 

methanogenesis zones of IODP Site 1301 and ODP Site 1230 suggests at least a partial 

contribution of aceticlastic methanogenesis.  The potential for methanogenesis reactions from 

acetate is indicated by calculated in situ energy yields of aceticlastic methanogenesis.  We 

detected no close relatives of known methylotrophic methanogens in the deep 
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methanogenesis zones.  This does not mean that methylotrophic methanogens were absent; 

the metabolisms of the Unidentified Rice Field Soil McrA and ANMG-1 groups, each 

dominant members of mcrA clone libraries from IODP Site 1301 and ODP Site 1230, 

respectively, are unknown.  Moreover, the high variability and in some cases high kinetic 

isotope effects associated with methylotrophic methanogenesis, that in some cases render the 

δ13C-CH4 produced methylotrophically indistinguishable from hydrogenotrophically 

produced methane (Summons et al. 1998, Whiticar 1999), may contribute to the high stable 

carbon isotopic depletion of methane relative to DIC. 

 Surface sediments at Everest Mound differ from subsurface horizons at ODP Site 1230 

and IODP Site 1301 in that methanogen substrate availability is unlikely to be limiting, as 

indicated by the occurrence of diverse methanogen assemblages, with close relatives of 

known hydrogenotrophs, in the presence of high sulfate concentrations (Teske et al. 2002, 

Dhillon et al. 2005).  Thermal degradation of organic matter in deep sediment horizons 

(Martens 1990), and biological degradation of water column-derived organic matter near the 

surface, are likely sources of methanogen substrates.  High substrate supplies are not the only 

reason for non-limiting substrate availability, however.  Under stable conditions, i.e. in the 

absence of biological disturbance (e.g. viral predation or microbial consumption), chemical 

disturbance (e.g. fluctuating pH or redox conditions), or physical disturbance (e.g. 

temperature fluctuation), one would expect a stable, high-biomass microbial community to 

establish itself over time, and result in competitive exclusion of hydrogenotrophic 

methanogens, e.g. by sulfate reducers.  Disturbance is hence likely to play a significant role 

in Guaymas sediments, and facilitate the coexistence of methanogens and sulfate reducers 

consuming the same substrates.  Ecological theory (r/K selection; MacArthur and Wilson 
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1967, Pianka 1994, Weinbauer and Höfle 1998) predicts that under fluctuating environmental 

conditions with density-independent mortality, i.e. under high rates of disturbance, fast-

growing, opportunistic, i.e. r-selected, species will dominate over slow-growing, 

competitively superior, K-selected species.  The latter we would expect to dominate in stable, 

i.e. low-disturbance, environments.  Indeed we see little overlap in the community 

composition between the Guaymas site and the deep sediment columns at ODP Site 1230 and 

IODP Site 1301 (Table 6.1).  By comparison, ODP Site 1230 and IODP Site 1301 have in 

common the detection of ANME-1, and the presence of mcrA genes of Methanosaeta, a 

genus comprised of classic K-strategists (Smith and Ingram-Smith 2007).  ANME-1 were 

detected only in the top two centimeters at Guaymas, and hence less dominant members of 

mcrA clone libraries than in the two deep sediment columns, and Methanosaeta were below 

detection.  The higher mcrA gene diversity in Guaymas sediments might be a further 

indicator of decreased competition due to non-limiting substrate concentrations caused by 

disturbance.  Yet, without a better understanding of the source of disturbance in Guaymas 

sediments, and without experimental evidence, our interpretation of the observed 

compositional and diversity trends remains speculative.   

 Our results show that ANME-1 Archaeal sequences are not restricted to SMTZs, but can 

instead be found in methanogenesis (ODP Site 1230, IODP Site 1301; Tables 3.1 and 4.2) 

and sulfate reduction zones (IODP Site 1301, probably Everest Mound; Table 3.1).  The 

occurrence in SMTZs is consistent with the widely held notion that ANME-1 are 

methanotrophic.  The co-occurrence with putative methanogens (Unidentified Rice Field Soil 

McrA) in the sulfate-reduction zone of IODP Site 1301 could be explained by the presence of 

a cryptic methane cycle, where methanogenic Unidentified Rice Field Soil McrA produce 
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TABLE 6.1:  Overview of mcrA phylotypes and metabolisms of their closest studied relatives 
at the three sites. 
 
Substrate IODP Site 1301 ODP Site 1230 Everest Mound # of  

phylotypes 
H2/HCO3

-, 
formate 

Rice Cluster I - Methanogenium, -
culleus, -coccus, -
pyrus 

5 

Acetate Methanosaeta Methanosaeta - 1 
MeOH, 
DMS, TMA 

- - Methanohalophilus, 
Methermicoccus 

2 

Methane ANME-1, -2, -3 ANME-1 ANME-1, -2 3 
Unknown Deeply-branching 

Methanogen Group, 
Fen Cluster, 
Unidentified Rice 
Field Soil McrA 

ANMG-1 Deeply-branching 
Guaymas Groups I-
IV, Unidentified 
Rice Field Soil 
McrA 

9 

# of 
phylotypes 

8 3 13 20 

 

methane from one substrate, and methanotrophic ANME-1 oxidize the methane produced to 

a compound different from the substrate of methanogenesis.  Our thermodynamic 

calculations suggest that AOM to H2/HCO3
- is thermodynamically favorable in the sulfate 

reduction zone of IODP Site 1301 if it is assumed that H2-concentrations are 

thermodynamically controlled by sulfate reducers.  The occurrence of ANME-1 mcrA meters 

below the SMTZ at ODP Site 1230, and tens of meters into the methanogenesis zone at 

IODP Site 1301, is more difficult to reconcile with methanotrophic activity. It is more easily 

explained if ANME-1 are facultative methanogens.  A similar distribution was recently 

detected in the sediment column of the Black Sea using the same ANME-1 specific mcrA 

primer pair (Ertefai et al., in prep.).  Past failure to detect mcrA of ANME-1 in methanogenic 

zones may be explained by our observation that none of the three general mcrA primer pairs 

examined in this study amplified mcrA genes of ANME-1, probably due to a high number of 

mismatches (Lever, unpubl.).  It is likely that mcrA of ANME-1 are typically only targeted 
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successfully with general mcrA primers in environments where ANME-1 dominate the mcrA 

community, and ANME-1 mcrA copy numbers are high enough for PCR detection despite 

low PCR amplification rates.  These environments, e.g. SMTZs or methane seep 

environments, may often have measurable sulfate concentrations, which might have led to 

the notion that ANME-1 are obligately methanotrophic. 

 Depletions of δ13C-acetate by up to 9‰ relative to TOC suggest an acetogenic 

contribution to the acetate pool at IODP Site 1301.  This depletion could also be explained if 

fermenters or sulfate reducers were selectively metabolizing lipid-derived organic carbon or 

other isotopically light compounds of the organic carbon pool; however, this interpretation 

appears less likely, as lipids have been shown to represent a small portion (0.1-1%) of total 

organic matter deposited to the seafloor (Wakeham et al. 1997), and the bulk amino acid and 

carbohydrate pool in sediments is typically similar to or enriched in δ13C compared to bulk 

TOC (Dauwe and Middelburg 1998, Keil and Fogel 2001, Wang and Druffel 2001).  The 

widespread detection of fhs sequences indicates a genetic potential for acetogenesis.  

Thermodynamic calculations suggest that mixo- and methylotrophic acetogenesis reactions 

are energetically favorable and might be the source of isotopically light acetate.  Autotrophic 

acetogenesis is also possible, but would require H2 concentrations to not be 

thermodynamically controlled by sulfate reducers, as has been shown elsewhere in marine 

sediments (Hoehler et al. 1998).  Our data set is insufficient to attribute with certainty a 

significant contribution of acetogenesis to total acetate production.  However, it is the first 

data set to indicate a potential niche for acetogenesis, a possibility which deserves further 

inquiry in the future. 

 



                                                                         101 

ii.  FINAL PERSPECTIVE 

 Combined knowledge from functional gene profiles, geochemical gradients, stable 

isotopic signatures, and calculated in situ free energy yields provides us with several lines of 

evidence for methanogenic, methanotrophic, and acetogenic activity in subseafloor 

environments.  The detection of functional genes (mcrA, fhs) indicates the genetic potential 

for these processes.  The presence of RNA suggests which organisms are alive and active, 

though it is no proof that they are indeed performing methanogenesis, methanotrophy, or 

acetogenesis.  Concentration gradients and stable carbon isotopic depletions of methane and 

acetate relative to source compounds are, however, strong evidence for the presence of active 

methanogenic, methanotrophic, and acetogenic populations.  Calculated in situ energy yields 

suggest the thermodynamic potential of certain reactions to serve as energy sources.  Yet, 

there is a discrepancy between calculated in situ energy yields, metabolism inferred from 

stable carbon isotopic signatures and biogeochemical zone of origin, and metabolism of 

closest known relatives to phylotypes detected.  This discrepancy is evidence for the 

difficulty of determining in situ substrate and product concentrations, and our currently 

insufficient knowledge of the substrates used and the substrate-dependent fractionations 

associated with methanogenic, methanotrophic and acetogenic reactions.  This conundrum is 

most easily resolved experimentally, and will be a main objective of my postdoctoral studies. 
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APPENDIX A   

 

OVERVIEW OF SUBSTRATE USE, GENES SEQUENCED (16S, FHS), HABITAT 
ISOLATED FROM, AND REFERENCES USED TO CONSTRUCT TABLE 2.3 [‘ND’ 

= NOT DETERMINED]. 
 

 
Scientific name Substrates Reference Habitat isolated from 

aliphatic  
 

H
2/C

O
2 

C
O

 
H

C
O

O
-  

M
eO H

 
Et

O
H

 
O

th
er

 
o-

C
H

3 

 

16
S 

 
fh

s 

 

Acetitomaculum 
ruminis 

+ + + ? ? ? + Greening and Leedle + - Steer rumen 

Acetoanaerobium 
noterae 

+ ? - - ? - ? Sleat et al. (1985) - - Swamp sediment 

“Acetoanaerobium 
romashkovii” 

+ ? + + ? + ? Davydova-Charakhch’yan et 
al. (1992) 

- - Oil field formation 
water 

Acetobacterium bakii + + + + - + + Kotsyurbenko et al. (1995) + - Paper-mill waste water 
Acetobacterium 
carbinolicum 

+ ? + + + + + Eichler and Schink (1984) + + Freshwater sediment, 
sludge 

A. carbinolicum 
kysingense 

+ + + + + + + Paarup et al. (2006) + + Anoxic, fjord sediment 

Acetobacterium 
dehalogenans 

+ + + + ? + + Traunecker et al. (1991) - - Sewage digester 

Acetobacterium 
fimetarium 

+ + + - - + + Kotsyurbenko et al. (1995) + - Digested cattle manure 

Acetobacterium 
malicum 

+ ? + - - + + Tanaka and Pfennig (1988) + - Freshwater sediment 

Acetobacterium 
paludosum 

+ + + + - + - Kotsyurbenko et al. (1995) + - Anaerobic fen sediment 

Acetobacterium 
psammolithicum 

+ ? + + + + + Krumholz et al. (1999) + + Subsurface sandstone 

“Acetobacterium 
submarinus” 

+ ? ? ? ? ? ? Toffin et al. (2004)    ? 

Acetobacterium 
tundrae 

+ + + + - + + Simankova et al. (2000) + - Tundra soil 

Acetobacterium 
wieringae 

+ ? + - - + ? Braun and Gottschalk (1982) + - Sewage 

Acetobacterium 
woodii 

+ ? + + - + + Balch et al. (1977), Tschech 
and Pfennig (1984) 

+ + Estuarine sediment 

Acetobacterium sp. 
AmMan1 

+ ? ? ? ? ? + Dörner and Schink (1991) - - Freshwater sediment 

Acetobacterium sp. 
B10 

+ ? ? + ? ? + Sembiring and Winter (1989, 
1990) 

- - Waste water pond 
sediment 

Acetobacterium sp. 
HA1 

+ ? + - - + - Schramm and Schink (1991) - - Anoxic sewage sludge 

Acetobacterium sp. + ? + + ? ? + Conrad et al. (1989) - - Lake sediment 
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HP4 
Acetobacterium sp. 
KoB58 

+ ? + ? ? + ? Wagener and Schink (1988) - - Anoxic sewage sludge 

Acetobacterium sp. 
LS1 & LS2 

+ ? + + + ? + Sattley and Madigan (2007) + - Cold Antarctic sediment 

Acetobacterium sp. 
LuPhet1 

+ ? - - - + + Frings and Schink (1994) - - Sewage sludge 

Acetobacterium sp. 
LuTria3 

+ ? + ? ? + + Frings et al. (1994) - - Digested sewage 

Acetobacterium sp. 
MrTac1 

+ ? + + + + + Emde and Schink (1987) - - Freshwater sediment 

Acetobacterium sp. 
OyTac1 

+ + + + + + + Emde and Schink (1987) - - Marine sediment 

Acetobacterium sp. 
RMMac1 

+ ? + + ? + + Schuppert and Schink (1990) - - Marine sediment 

Acetobacterium sp. 
69 

+ ? ? + + ? ? Inoue et al. (1992), Bainotti 
and Nishio (2000) 

- - Marine sediment 

Acetobacterium sp.  + ? ? ? ? ? ? Kotsyurbenko et al. (1996) - - Tundra wetland soil 
Acetohalobium 
arabaticum 

+ + + - ? - ? Zhilina and Zavarzin (1990) + - Cyanobacterial mat 

Acetonema longum + ? - - - + + Kane and Breznak (1991) + - Termite gut 
Archaeoglobus 
fulgidus 

? + ? ? ? ? ? Henstra et al. (2007)   Hydrothermal vent 

Butyribacterium 
methylotrophicum 

+ ? - + ? ? ? Zeikus et al. (1980) + - Sewage 

Clostridium aceticum + + + - + ? + Wieringa (1936, 1940), 
Braun et al. (1981), Lux and 
Drake (1992), Gößner et al. 
(1994) 

+ + Ditch mud 

Clostridium 
autoethanogenum 

+ + - ? ? ? ? Abrini et al. (1994) + - Rabbit feces 

Clostridium 
coccoides 

- ? + ? ? + + Kaneuchi et al. (1976), 
Kamlage et al. (1997) 

+ - Mouse feces, human 
feces 

Clostridium difficile 
AA1 

+ ? ? ? ? ? + Rieu-Lesme et al. (1998) + + Rumen of newborn lamb 

Clostridium 
formicoaceticum* 

- + + ? ? + + Andreesen et al. (1970), Lux 
and Drake (1992), Gößner et 
al. (1994) 

+ + Mud 

Clostridium 
glycolicum 22 

+ ? ? ? ? ? ? Ohwaki and Hungale (1977) + - Sewage sludge 

Clostridium 
glycolicum CIN5 

- ? - - - ? + Chamkha et al. (2001)   ? 

Clostridium 
glycolicum RD-1 

+ ? + ? ? ? ? Küsel et al. (2001) + - Sea grass nodule 

Clostridium 
ljungdahlii 

+ + - - + - - Barik et al. (1988), Tanner et 
al. (1993) 

+ - Chicken waste 

Clostridium 
mayombei 

+ ? + - - + + Kane et al. (1991) + - Termite gut 

Clostridium metho-
xybenzovorans 

+ ? + + ? + + Mechichi et al. (1999), 
Mechichi et al. (2005) 

+ - Sewage 

Clostridium 
scatologenes 

+ + + - + - + Weinberg and Ginsbourg 
(1927), Küsel et al. (2000) 

+ - Coal, coal mine 
sediment 

Clostridium 
ultunense 

+a) - + - - ? - Schnürer et al. (1996) + - Swine manure digester 

Clostridium sp. CV- + ? ? + ? ? ? Adamse and Velzeboer - - Sludge 
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AA1 (1982) 
Clostridium sp. 
M5a3 & F5a15 

+ ? + ? + ? ? Bernalier et al. (1996b), 
Leclerc et al. (1997a, b) 

- - Human feces 

Clostridium sp. 
Ag4f2 & TLN2 

+ ? + ? + ? ? Bernalier et al. (1996b) - - Human feces 

Desulfoarculus 
baarsii 

CO2/CO-
formate 

? ? ? ? Jansen et al. (1984) + + ? 

Desulfosporomusa 
polytropa 

+ ? + + + + + Sass et al. (2004) + - Oligotrophic lake 
sediment 

Desulfosporosinus 
orientis 

+ ? + + + ? + Campbell and Postgate 
(1965), Klemps et al. (1985), 
Hanselmann et al. (1995), 
Stackebrandt et al. (1997) 

+ - soil 

Desulfotomaculum 
gibsoniae 

+ ? + ? ? ? + Kuever et al. (1993), Kuever 
et al. (1999) 

- - Freshwater mud 

Desulfotomaculum 
thermobenzoicum 

? ? ? ? ? ? + Tasaki et al. (1992)   ? 

Eubacterium 
aggregans 

+ - + + ? ? + Mechichi et al. (1998) + - Sewage 

Eubacterium 
limosum 

+ + - + - ? ? Sharak-Genthner et al. 
(1981), Chang et al. (1998) 

+ + Sheep rumen, sewage 

Holophaga foetida - - - - - - + Bak et al. (1992), Liesack et 
al. (1994) 

+ - anoxic freshwater mud 

Homoacetogen strain 
MC 

+ + + ? ? + + Traunecker et al. (1991) - - Sewage sludge 

Homoacetogenic 
Bacterium strain 
TMBS 4 

- - - - - - + Bak et al. (1992), Kreft and 
Schink (1993) 

- - ? 

Methanosarcina 
acetivorans 

- + ? ? ? ? ? Rother and Metcalf (2004)   Marine sediment 

Moorella glycerini - - - - - + ? Slobodkin et al. (1997) + - Hot spring 
Moorella mulderi + - + + ? - ? Balk et al. (2003) + - Thermophilic bioreactor 
Moorella 
thermoacetica 

+ + + + + - + Fontaine et al.  (1942), 
Kerby and Zeikus (1983), 
Drake and Daniel (2004) 

+ + Horse manure, ? 

Moorella 
thermoautotrophica 

+ ? + + - - ? Wiegel et al. (1981) + - Mud and wet soils 

Ocobacter pfennigii - + - - - ? + Krumholz and Bryant (1985) + - Steer rumen fluid 
Ruminococcus 
hydrogenotrophicus 

+ ? ? ? ? ? ? Bernalier et al. (1996c) + - Human feces 

Ruminococcus 
productus U1 

+ + - - ? + + Lorowitz and Bryant (1984), 
Lux et al. (1990), Misoph et 
al. (1996) 

+ + Sewage sludge 

Ruminococcus 
productus Marburg 

+ + - + ? ? ? Geerligs et al. (1987) + - Sewage sludge 

Ruminococcus 
schinkii 

+ ? + - - + + Rieu-Lesme et al. (1996b) + - Lamb rumen 

Ruminococcus sp. 
TLF1 

+ ? ? ? + ? ? Bernalier et al. (1996b) - - Human feces 

Sporomusa 
acidovorans 

+ ? + + - + ? Ollivier et al. (1985) + - Distillery effluent 

Sporomusa 
aerivorans 

+ ? ? ? ? ? ? Boga and Brune (2003) + - Termite guts 

Sporomusa malonica + ? + + + + + Dehning et al. (1989) + - Freshwater sediment 
Sporomusa ovata + ? + + + + ? Möller et al. (1984) + + Freshwater mud, sugar 
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beet silage 
Sporomusa 
paucivorans 

+ ? + + + + ? Hermann et al. (1987) + - Freshwater sediment 

Sporomusa 
silvacetica 

+ ? + + + + + Kuhner et al. (1997) + - Forest soil 

Sporomusa 
sphaeroides 

+ ? + + + + ? Möller et al. (1984) + - Freshwater mud, sludge, 
soil 

Sporomusa termitida + + + + + ? + Breznak et al. (1988) + + Termite gut 
Sporomusa sp. DR5, 
DR6 & DR1/8 

+ ? ? ? + + ? Rosencrantz et al. (1999) + - Anoxic flooded soil 

Thermacetogenium 
phaeum 

+ ? + + + + + Hattori et al. (2000) - - Kraft-pulp waste water 

Thermoanaerobacter 
kivui 

+ ? ? - - - ? Leigh et al. (1981) + + Lake sediment 

Treponema primitia 
ZAS-1 

+ - - - ? ? - Graber et al. (2004) + + Termite gut 

Treponema primitia 
ZAS-2 

+ - - - ? ? + Graber et al. (2004) + + Termite gut 

Unclassified:            
AOR + ? + ? ? ? ? Zinder and Koch (1984), Lee 

and Zinder (1988) 
- - Thermophilic digester 

CS1 Van - - - + ? - + Wolin and Miller (1993) - - Human feces 
CS3Glu + - - + ? - - Wolin and Miller (1993) - - Human feces 
D + ? ? + - + ? Rieu-Lesme et al. (1995) - - Deer rumen 
DMG58 + ? + + + + ? Möller et al. (1984) - - River mud 
HA + ? ? ? ? ? ? Miller and Wolin (1995) - - Horse feces 
I52 - ? +b ? ? ? ? Wolin and Miller (1994) - - Human feces 
S5a2 + ? ? ? + ? ? Bernalier et al. (1996b), 

Leclerc et al. (1997a, b) 
- - Human colon 

Ser 8 + ? ? ? ? ? ? Chaucheyras et al. (1995) - - Sheep rumen 
SS1 + ? ? ? ? ? + Liu and Suflita (1993) - - Coastal plain sediment 
TH-001 -  ? - ? ? ? + Frazer and Young (1985) - - Sewage sludge 
VK64 + ? + ? + ? ? Bernalier et al. (1996b) - - Human colon 
X-8 + ? ? ? - ? ? Samain et al. (1982) - - Digester 
ZB + - + + ? - - Nozhevnikova et al. (1994) - - Pond sediment 
ZM + + + - ? + + Nozhevnikova et al. (1994) - - Pond sediment 
ZS + + + + ? - + Nozhevnikova et al. (1994) - - Pond sediment 
ZT + + + + ? - ? Nozhevnikova et al. (1994) - - Pond sediment 
417/2 + ? + + ? ? ? Davydova-Charakhchyan et 

al. (1992) 
- - Oil field 

417/5 + ? + + ? ? ? Davydova-Charakhchyan et 
al. (1992) 

- - Oil field 

“New acetogenic 
bacterium” 

+ - ? ? ? + + Rieu-Lesme et al. (1996a) + - Ungulate rumens 

 
 

a) resting cells; no growth observed. 
b) requires CO2 in addition to formate. 
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APPENDIX B 
 
 

OVERVIEW OF GENBANK ACCESSION NUMBERS (ACC. NO.), DOCUMENTED 
SUBSTRATE USE, AND REFERENCES OF PHYLOTYPES DISPLAYED IN FIG. 

2.5.  [ABBREVIATIONS: MEOH = METHANOL; ETOH = ETHANOL; ALIPHATIC 
= ALIPHATIC COMPOUNDS OTHER THAN ETHANOL (MOST NOTABLY 

LACTATE); O-CH3 = METHOXYLATED AROMATIC COMPOUNDS.] 
 

  Substrate  
Acetogens Acc. No. 

H
2/C

O
2 

C
O

 
H

C
O

O
-  

M
eO

H
 

Et
O

H
 

al
ip

ha
tic

 
o-

C
H

3 

References 

Acetobacterium carbinolicum DQ152902 + ? + + + + + Paarup et al. 2006 
Acetobacterium woodii AF295701 + ? + + - + + Balch et al. 1977 
Clostridium aceticum AF295705 + + + - + ? + Wieringa (1936, 1940), Braun et al. (1981), 

Lux and Drake (1992), Gößner et al. (1994) 
Desulfoarculus baarsii AJ494749 CO2/CO-

formate 
- - - ? Rabus et al. (2006); Leaphart et al. (2003) 

Moorella thermoacetica J02911 + + + + + - + Fontaine et al.  (1942), Kerby and Zeikus 
(1983), Lovell et al. (1990), Drake and 
Daniel (2004) 

Ruminococcus productus AF295707 + + - + - ? ? Leaphart and Lovell (2001) 
Sporomusa ovata  AF295708 + ? + + + + ? Moller et al. (1984), Leaphart and Lovell 

(2001) 
Thermoanaerobacter kivui AF295704 + ? ? - - - ? Leigh et al. (1981), Leaphart and Lovell 

(2001) 
Treponema primitia, ZAS-1A AY162313 + - - - ? ? - Leadbetter et al. (1999), Graber et al. (2004) 
    
Non-Acetogens    
Candidatus pelagibacter 
ubique 

CP000084 Aerobic 
chemoorganotroph. 

Giovannoni et al. 2005 

Clostridium magnum AF295703 Ferments to acetate. Leaphart and Lovell (2001) 
Corynebacterium diphtheriae 
gravis 

BX248357 Chemoorganotroph; 
facultative anaerobe. 

Cerdeno-Tarraga et al. (2003) 

Corynebacterium jeikeium CR931997 Aerobic 
chemoorganotroph. 

Jackman et al. (1987), Tauch et al. (2005) 

Desulfomicrobium baculatum AJ494755 SRB that oxidizes to 
acetate. 

Leaphart et al. (2003) 

Desulfovibrio piger AJ494750 SRB that oxidizes to 
acetate. 

Moore et al. (1976), Loubinoux et al. (2002) 

Desulfotomaculum reducens CP000612 SRB and metal 
reducer. 

Tebo et al. (1998) 

Desulfovibrio desulfuricans AJ494753 SRB; oxidizes Corg to 
acetate 

Hayward et al. (1959), Postgate et al. (1966) 

Desulfovibrio salexigens AJ494751 SRB; oxidizes Corg to 
acetate. 

Postgate et al. (1966) 

Granulibacter bethesdensis CP000394 Aerobic 
chemoorganotroph. 

Greenberg et al. (2006) 

Haloarcula marismortui AY596296 Chemoorganotroph w/ Oren et al. (1990), Baliga et al. (2004) 
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O2 and NO3
- as e--

acceptors. 
Mesorhizobium loti BA000012 Ferments 

carbohydrates. 
Jarvis et al. (1982), Kaneko et al. (2000) 

Methanocorpusculum 
labreanum 

CP000559 H2-CO2 and formate 
utilizing MG. 

Zhao et al. (1989) 

Methylibium petroleiphilum CP000555 Aerobic methylotroph. Hanson et al. (1999), Kane et al. (2007) 
Methylobacterium extorquens AY279316 Aerobic facultative 

methylotroph. 
Bousfield et al. 1985, Vorholt et al. (2000), 
Kato et al. (2005) 

Proteus vulgaris AF295710 Ferments 
carbohydrates. 

Rustigian and Stuart (1943), Brenner et al. 
(1995) 

Rhodobacter sphaeroides CP000577 Anoxygenic 
phototroph. 

Imhoff et al. (1984), Choudhari et al. (2007) 

Roseovarius nubinhibens AALY010
00001 

Aerobic 
chemoorganotroph. 

Gonzalez et al. (1999), Gonzalez et al. 2003) 

Sphingomonas paucimobilis 
SYK-6 

AB186750 Aerobic 
chemoorganotroph. 

Holmes et al. (1977), Nishikawa et al. (1998) 

Thermoplasma acidophilum  AL445067 Facultatively 
anaerobic 
chemoorganotroph. 

Darland et al. (1970), Ruepp et al. (2000), 
Huber and Stetter (2006) 

Treponema azotonutricium, 
ZAS-9 

AY162316 Fermenter. Leadbetter et al. (1999), Graber et al. (2004) 

Treponema denticola  NC_00296
7 

Amino acid 
fermentation 

Chan et al. (1993), Seshadri et al. (2004) 

    
Unknowns    
clone G 61 AB353094 ? Hori et al., unpubl. 
clone JI5G AJ494763 ? Leaphart et al. (2003) 
clone JI35G AJ494772 ? Leaphart et al. (2003) 
clone JI38G AJ494773 ? Leaphart et al. (2003) 
clone T AY162309 ? Leadbetter et al. (1999) 
clone SAL11 AJ494800 ? Leaphart et al. (2003) 
Cs18  DQ278253 Presumably non-AG. Pester and Brune (2006) 
Marinomonas sp. MED 121  AANE010

00003 
Unknown; other 
Marinomonads are 
aerobic 
chemoorganotrophs 

Other Marinomonads: Solano et al. (1999), 
Romanenko et al. (2003), Ivanova et al. 
(2005), Macian et al. (2005), Prabagaran et 
al. (2005), Yoon et al. (2005), Gupta et al. 
(2006) 

Reinekea sp. MED297 AAOE010
00018 

Unknown; aerobic 
chemoorganotroph?. 

Similar species: Romanenko et al. (2004), 
Pinhassi et al. (2007) 

Rs249 DQ278204 Presumably 
autotrophic AG. 

Pester and Brune (2006) 

Sulfate-reducing bacterium 
BG14 

AJ494756 ? Leaphart et al. (2003) 

Sulfitobacter sp., NAS-14.1 AALZ010
00005 

?; cultured 
Sulfitobacter are 
aerobic 
chemoorganotrophs. 

Sorokin (1995), Pukall et al. (1999), Labrenz 
et al. (2000), Ivanova et al. (2004) 
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APPENDIX C  

 

(A) MAP OF THE IODP SITE 1301 STUDY AREA.  (B) WATER DEPTH, CRUSTAL 
AGE, SEDIMENT AND BASEMENT TOPOGRAPHY OF THE EASTERN FLANK 
OF THE JUAN DE FUCA RIDGE (FR = FIRST RIDGE, SR = SECOND RIDGE, DR 
= DEEP RIDGE).  (C) CROSS-SECTIONS OF TYPICAL SEDIMENT AND BASALT 

CORES RETRIEVED FROM IODP SITE U1301. 
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APPENDIX D  

 

MAP OF STUDY PERU MARGIN AND SITES SAMPLED DURING ODP LEG 201 
AND ODP LEG 112 (IN PARENTHESES) (ADAPTED FROM D’HONDT ET AL. 

2003). 
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