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ABSTRACT

Wei Cheng: Toward Robust Group-Wise eQTL Mapping via Integrating Multi-Domain
Heterogeneous Data

(Under the direction of Wei Wang)

As a promising tool for dissecting the genetic basis of common diseases, expression

quantitative trait loci (eQTL) study has attracted increasing research interest. Traditional eQTL

methods focus on testing the associations between individual single-nucleotide polymorphisms

(SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the

joint effect of a set of SNPs on a set of genes, which may correspond to biological pathways. This

thesis studies the problem of identifying group-wise associations in eQTL mapping. Based on the

intuition of group-wise association, we examine how the integration of heterogeneous prior

knowledge on the correlation structures between SNPs, and between genes can improve the

robustness and the interpretability of eQTL mapping. To obtain a more accurate knowledgebase

on the interactions among SNPs and genes, we developed a robust and flexible approach that can

incorporate multiple data sources and automatically identify noisy sources. Extensive

experiments demonstrate the effectiveness of the proposed algorithms.
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CHAPTER 1: INTRODUCTION

The most abundant sources of genetic variations in modern organisms are single

nucleotide polymorphisms (SNPs). A SNP is a DNA sequence variation occurring when a single

nucleotide (A, T, G, or C) in the genome differs between individuals of a species. For inbred

diploid organisms, such as inbred mice, a SNP usually shows variation between only two of the

four possible nucleotide types (Ideraabdullah et al., 2004), which allows us to represent it by a

binary variable. The binary representation of a SNP is also referred to as the genotype of the SNP.

The genotype of an organism is the genetic code in its cells. This genetic constitution of an

individual influences, but is not solely responsible for, many of its traits. A phenotype is an

observable trait or characteristic of an individual. The phenotype is the visible, or expressed trait,

such as hair color. The phenotype depends upon the genotype but can also be influenced by

environmental factors. Phenotypes can be either quantitative or binary.

Driven by the advancement of cost-effective and high-throughput genotyping

technologies, genome-wide association studies (GWAS) have revolutionized the field of genetics

by providing new ways to identify genetic factors that influence phenotypic traits. Typically,

GWAS focus on associations between SNPs and traits like major diseases. As an important

subsequent analysis, quantitative trait locus (QTL) analysis is aiming at to detect the associations

between two types of information–quantitative phenotypic data (trait measurements) and

genotypic data (usually SNPs)–in an attempt to explain the genetic basis of variation in complex

traits. QTL analysis allows researchers in fields as diverse as agriculture, evolution, and medicine

to link certain complex phenotypes to specific regions of chromosomes.

Gene expression is the process by which information from a gene is used in the synthesis

of a functional gene product, such as proteins. It is the most fundamental level at which the

genotype gives rise to the phenotype. Gene expression profile is the quantitative measurement of
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Figure 1.1: An example dataset in eQTL mapping

the activity of thousands of genes at once. The gene expression levels can be represented by

continuous variables. Figure 1.1 shows an example dataset consisting of 1000 SNPs

{x1, x2, · · · , x1000} and a gene expression level z1 for 12 individuals.

1.1 eQTL Mapping

For a QTL analysis, if the phenotype to be analyzed is the gene expression level data, then

the analysis is referred to as the expression quantitative trait loci (eQTL) mapping. It aims to

identify SNPs that influence the expression level of genes. It has been widely applied to dissect

the genetic basis of gene expression and molecular mechanisms underlying complex traits

(Bochner, 2003; Rockman and Kruglyak, 2006; Michaelson et al., 2009a). More formally, let

X = {xd|1 ≤ d ≤ D} ∈ RK×D be the SNP matrix denoting genotypes of K SNPs of D

individuals and Z = {zd|1 ≤ d ≤ D} ∈ RN×D be the gene expression matrix denoting

phenotypes of N gene expression levels of the same set of D individuals. Each column of X and

Z stands for one individual. The goal of eQTL mapping is to find SNPs in X, that are highly

associated with genes in Z.

Various statistics, such as the ANOVA (analysis of variance) test and the chi-square test,

can be applied to measure the association between SNPs and the gene expression level of interest.

Sparse feature selection methods, e.g., Lasso (Tibshirani, 1996), are also widely used for eQTL

mapping problems. Here, we take Lasso as an example. Lasso is a method for estimating the
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regression coefficients W using ℓ1 penalty. The objective function of Lasso is

min
W

1

2
||Z−WX||2F + η||W||1 (1.1)

where || · ||F denotes the Frobenius norm, || · ||1 is the ℓ1-norm. η is the empirical parameter for

the ℓ1 penalty. W is the parameter (also called weight) matrix setting the limits for the space of

linear functions mapping from X to Z. Each element of W is the effect size of corresponding

SNP and expression level. Lasso uses the least squares method with ℓ1 penalty. ℓ1-norm sets

many non-significant elements of W to be exactly zero, since many SNPs have no associations to

a given gene. Lasso works even when the number of SNPs is significantly larger than the sample

size (K ≫ D) under the sparsity assumption.

(a) Strong association (b) No association

Figure 1.2: Examples of associations between a gene expression level and two different SNPs

Using the dataset shown in Figure 1.1, Figure 1.2 (a) shows an example of strong

association between gene expression z1 and SNP x1. 0 and 1 on the y-axis represent the binary

SNP genotype and the x-axis represents the gene expression level. Each point in the figure

represents an individual. It is clear from the figure that the gene expression level values are

partitioned into two groups with distinct means, hence indicating a strong association between the

gene expression and the SNP. On the other hand, if the genotype of a SNP partitions the gene

expression level values into groups as shown in Figure 1.2 (b), the gene expression and the SNP

are not associated with each other. An illustration result of Lasso is shown in Figure 1.3. Wij = 0

means no association between j-th SNP and i-th gene expression. Wij ̸= 0 means there exists an

association between the j-th SNP and the i-th gene expression.
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Figure 1.3: Association weights estimated by Lasso on the example data

1.2 Group-Wise eQTL Mapping and Challenges

In a typical eQTL study, the association between each expression trait and each SNP is

assessed separately (Cheung et al., 2005; Zhu et al., 2008; Tibshirani, 1996). This approach does

not consider the interactions among SNPs and among genes. However, multiple SNPs may jointly

influence the phenotypes (Lander, 2011), and genes in the same biological pathway are often

co-regulated and may share a common genetic basis (Musani et al., 2007b; Pujana et al., 2007).

To better elucidate the genetic basis of gene expression, it is highly desirable to develop

efficient methods that can automatically infer associations between a group of SNPs and a group

of genes. We refer to the process of identifying such associations as group-wise eQTL mapping.

In contrast, we refer to those associations between individual SNPs and individual genes as

individual eQTL mapping. An example is shown in Figure 1.4. Note that an ideal model should

allow overlaps between SNP sets and between gene sets; that is, a SNP or gene may participate in

multiple individual and group-wise associations. This is because genes and the SNPs influencing

them may play different roles in multiple biological pathways (Lander, 2011).

Besides, advanced bio-techniques are generating a large volume of heterogeneous

datasets, such as protein-protein interaction (PPI) networks (Asur et al., 2007), and genetic

interaction networks (Cordell, 2009). These datasets describe the partial relationships between

SNPs and relationships between genes. Because SNPs and genes are not independent of each

other, and there exist group-wise associations, the integration of these multi-domain

heterogeneous data sets is able to improve the accuracy of eQTL mapping since more domain
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Figure 1.4: An illustration of individual and group-wise associations.

knowledge can be integrated. In literature, several methods based on Lasso have been proposed

(Biganzoli et al., 2006; Kim and Xing, 2012; Lee and Xing, 2012; Lee et al., 2010) to leverage

the network prior knowledge (Biganzoli et al., 2006; Kim and Xing, 2012; Lee et al., 2010;

Lee and Xing, 2012; Jenatton et al., 2011). However, these methods suffer from poor quality or

incompleteness of this prior knowledge.

In summary, there are several issues that greatly limit the applicability of current eQTL

mapping approaches.

1. It is a crucial challenge to understand how multiple, modestly-associated SNPs interact

to influence the phenotypes (Lander, 2011). However, little prior work has studied the

group-wise eQTL mapping problem.

2. The prior knowledge about the relationships between SNPs and between genes is often

partial and usually includes noise.

3. Confounding factors such as expression heterogeneity may result in spurious

associations and mask real signals (Michaelson et al., 2009b; Stegle et al., 2008;

Gilad et al., 2008).

1.3 Thesis Statement

This thesis systematically studies the group-wise eQTL mapping problem and determines

that effective algorithms can be designed for group-wise eQTL mapping. Extensive experimental

results demonstrate that the algorithms proposed in this dissertation are able to integrate
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multi-domain heterogeneous data and can effectively detect group-wise associations for eQTL

mapping.

1.4 Overview of the Developed Algorithms

This thesis proposes and studies the problem of group-wise eQTL mapping. We can

decouple the problem into the following sub-problems.

• How can we detect group-wise eQTL associations with eQTL data only, i.e., with SNPs

and gene expression profile data?

• How can we prepare more accurate prior knowledge about the relationships between

SNPs and between genes by integrating multi-domain heterogeneous data?

• How can we incorporate the prior interaction structures between SNPs and between

genes into eQTL mapping to improve the robustness of the model and the

interpretability of the results?

To address the first sub-problem, the thesis proposes three approaches based on sparse

linear-Gaussian graphical models to infer novel associations between SNP sets and gene sets. In

literature, many efforts have focused on single-locus eQTL mapping. However, a multi-locus

study dramatically increases the computation burden. The existing algorithms cannot be applied

on a genome-wide scale. In order to accurately capture possible interactions between multiple

genetic factors and their joint contribution to a group of phenotypic variations, we propose three

algorithms. The first algorithm, SET-eQTL, makes use of a three-layer sparse linear-Gaussian

model. The upper layer nodes correspond to the set of SNPs in the study. The middle layer

consists of a set of hidden variables. The hidden variables are used to model both the joint effect

of a set of SNPs and the effect of confounding factors. The lower layer nodes correspond to the

genes in the study. The nodes in different layers are connected via arcs. SET-eQTL can help

unravel true functional components in existing pathways. The results could provide new insights

on how genes act and coordinate with each other to achieve certain biological functions. We

further extend the approach to be able to consider confounding factors and decouple individual

associations and group-wise associations for eQTL mapping.
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For the second sub-problem, this thesis presents a flexible and robust algorithm, CGC, to

integrate heterogeneous graph data for clustering. Graphs (also called networks, but for the

purpose of this thesis, we will maintain consistency by using the term “graphs”.) are widely used

in representing relationships between instances, in which each node corresponds to an instance

and each edge depicts the relationship between a pair of instances. Much prior knowledge about

the relationships between SNPs and relationships between genes can be modeled as graphs.

Biologists believe that a set of SNPs may play joint roles in a disease. Such interactions between

SNPs can be modeled by a SNP interaction network. Even though the underlying biological

processes are complex and only partially understood, it is well established that SNPs may alter

the expression levels of related genes which may in turn have a cascading effect on other genes,

e.g., in the same biological pathways (Michaelson et al., 2009c). The interactions between genes

can be measured by correlations of gene expressions and represented by a gene interaction

network. These two networks are heavily related because of the complicated relationships

between SNPs and genes, as demonstrated in many expression quantitative trait loci (eQTL)

studies (Lee and Xing, 2012). It is evident that a joint analysis becomes essential in these related

domains. Multiple domain data, such as SNP-SNP interaction network, PPI network, and gene

co-expression network, are able to provide more accurate prior knowledge about the grouping

information of SNPs and genes. Data collected from different sources provide complimentary

predictive powers, and combining their information can resolve ambiguity, thus helping to obtain

a more accurate knowledge base. This thesis investigates the problem of clustering multiple

heterogeneous data sets, where the cross-domain instance relationship is “many-to-many”. This

problem has a wide range of applications and poses new technical challenges that cannot be

directly tackled by traditional “multi-view” graph clustering methods (Kumar et al., 2011;

Chaudhuri et al., 2009; Kumar and III, 2011). Based on the clustering consensus for different

domains, we developed a robust and flexible approach that can incorporate multiple sources to

enhance graph clustering performance. The proposed approach is robust even when the

cross-domain relationships based on prior knowledge are noisy. Besides, the model provides
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users with the extent to which the cross-domain instance relationship violates the in-domain

clustering structure, and thus enables users to re-evaluate the consistency of the relationship. The

thesis further studies the trustworthiness of multi-source data, and extends the approach to enable

it to automatically identify noisy domains and assign smaller weights to them for integration.

To address the third sub-problem, this thesis presents an algorithm, Graph-regularized

Dual Lasso (GDL), to simultaneously learn the association between SNPs and genes and refine

the prior networks. Traditional sparse regression problems in data mining and machine learning

consider both predictor variables and response variables individually, such as sparse feature

selection using Lasso. In the eQTL mapping application, both predictor variables and response

variables are not independent of each other, and we may be interested in the joint effects of

multiple predictors to a group of response variables. In some cases, we may have partial prior

knowledge, such as the correlation structures between predictors, and correlation structures

between response variables. This thesis shows how prior graph information would help improve

eQTL mapping accuracy and how refinement of prior knowledge would further improve the

mapping accuracy. In addition, other different types of prior knowledge, e.g., location information

of SNPs and genes, as well as pathway information, can also be integrated for the graph

refinement.

1.5 Thesis Outline

The thesis is organized as follows:

• The algorithms to detect group-wise eQTL associations with eQTL data only

(SET-eQTL, etc.) are presented in Chapter 2.

• The algorithm (CGC) to integrate heterogenous graph data for clustering is presented in

Chapter 3.

• The algorithm (GDL) to incorporate the prior interaction structures or grouping

information of SNPs or genes into eQTL mapping is presented in Chapter 4.

• Chapter 5 concludes the thesis work.
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CHAPTER 2: GROUP-WISE EQTL MAPPING

2.1 Introduction

A biological pathway is a series of actions among molecules in a cell that leads to a

certain product or a change in a cell. For example, a pathway can trigger the assembly of new

molecules, such as a fat or protein. Pathways play a key role in advanced studies of Genomics. In

genetics, genes in the same biological pathway are often co-regulated and may share a common

genetic basis (Musani et al., 2007b; Pujana et al., 2007). Consequently, it is crucial to understand

how multiple modestly associated SNPs interact to influence the phenotypes (Lander, 2011). To

address this issue, several approaches have been proposed to study the joint effect of multiple

SNPs by testing the association between a set of SNPs and a gene expression trait. A

straightforward approach is to follow the gene set enrichment analysis (GESA) (Holden et al.,

2008). Wu et al. proposed variance component models for SNP set testing (Wu et al., 2011).

Aggregation-based approaches such as collapsing SNPs are investigated (Braun and Buetow,

2011). Listgarten et al. took confounding factors into consideration (Listgarten et al., 2013).

Despite their successes, these methods have two common limitations. First, they only

study the association between a set of SNPs and a single expression trait, thus overlooking the

joint effect of a set of SNPs on the activities of a set of genes, which may act and interact with

each other to achieve certain biological function. Second, the SNP sets used in these methods are

usually taken from known pathways. However, the existing knowledge on biological pathways is

far from being complete. These methods cannot identify unknown associations between SNP sets

or gene sets.

To address these limitations, a method is developed to identify cliques in a bipartite graph

derived from the eQTL data (Huang et al., 2009b). Cliques are used to model the hidden
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correlations between SNP sets and gene sets. However, this method needs the progeny strain

information, which is used as a bridge for modeling the eQTL association graphs. A

two-graph-guided multi-task Lasso approach was developed in (Chen et al., 2012). This method

needs to calculate gene co-expression network and SNP correlation network first. Errors and

noises in these two networks may introduce bias in the final results. Note that all these methods

do not consider confounding factors.

To better elucidate the genetic basis of gene expression and understand the underlying

biology pathways, it is desirable to develop methods that can automatically infer associations

between a group of SNPs and a group of genes. We refer to the process of identifying such

associations as group-wise eQTL mapping. In contrast, we refer to the process of identifying

associations between individual SNPs and genes as individual eQTL mapping. In this chapter, we

propose several algorithms to detect group-wise associations. The first algorithm, SET-eQTL,

makes use of a three-layer sparse linear-Gaussian model. It is able to identify novel associations

between sets of SNPs and sets of genes. The results could provide new insights on how genes act

and coordinate with each other to achieve certain biological functions. We further propose a fast

and robust approach that is able to consider confounding factors and decouple individual

associations and group-wise associations for eQTL mapping. The model is a multi-layer

linear-Gaussian model and uses two different types of hidden variables: one capturing group-wise

associations and the other capturing confounding factors (Gao et al., 2013; Leek and Storey,

2007; Joo et al., 2014; Fusi et al., 2012; Listgarten et al., 2013; Carlos M. Carvalhoa and West,

2008). We apply an ℓ1-norm on the parameters (Lee et al., 2009; Tibshirani, 1996), which yields a

sparse network with a large number of association weights being zero (Ng, 2004). We develop an

efficient optimization procedure that makes this approach suitable for large-scale studies.

Extensive experimental evaluations using both simulated and real datasets demonstrate that the

proposed methods can effectively capture both group-wise and individual associations and

significantly outperforms the state-of-the-art eQTL mapping methods.
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2.2 Related Work

Recently, various analytic methods have been developed to address the limitations of the

traditional single-locus approach. Epistasis detection methods aim to find the interaction between

SNP-pairs (Hoh and Ott, 2003; Hirschhorn and Daly, 2005; Balding, 2006; Musani et al., 2007a).

The computational burden of epistasis detection is usually very high due to the large number of

interactions that need to be examined (Nelson et al., 2001; Ritchie et al., 2001). Filtering-based

approaches (Evans et al., 2006; Hoh et al., 2000; Yang et al., 2009), which reduce the search

space by selecting a small subset of SNPs for interaction study, may miss important interactions

in the SNPs that have been filtered out.

Statistical graphical models and Lasso-based methods (Tibshirani, 1996) have been

applied to eQTL study. A tree-guided group lasso has been proposed in (Kim and Xing, 2012).

This method directly combines statistical strength across multiple related genes in gene

expression data to identify SNPs with pleiotropic effects by leveraging the hierarchical clustering

tree over genes. Bayesian methods have also been developed (Leopold Parts1, 2011; Stegle et al.,

2010). Confounding factors may greatly affect the results of the eQTL study. To model

confounders, a two-step approach can be applied (Stegle et al., 2010; Jeffrey T. Leek, 2007).

These methods first learn the confounders that may exhibit broad effects to the gene expression

traits. The learned confounders are then used as covariates in the subsequent analysis. Statistical

models that incorporate confounders have been proposed (Nicolo Fusi and Lawrence, 2012).

However, none of these methods are specifically designed to find novel associations between SNP

sets and gene sets.

Pathway analysis methods have been developed to aggregate the association signals by

considering a set of SNPs together (Cantor et al., 2010; Elbers et al., 2009; Torkamani et al.,

2008; Perry et al., 2009). A pathway consists of a set of genes that coordinate to achieve a

specific cell function. This approach studies a set of known pathways to find the ones that are

highly associated with the phenotype (Wang et al., 2010). Although appealing, this approach is
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limited to the priori knowledge on the predefined gene sets/pathways. On the other hand, the

current knowledgebase on the biological pathways is still far from being complete.

A method is proposed to identify eQTL association cliques that expose the hidden

structure of genotype and expression data (Huang et al., 2009b). By using the cliques identified,

this method can filter out SNP-gene pairs that are unlikely to have significant associations. It

models the SNP, progeny and gene expression data as an eQTL association graph, and thus

depends on the availability of the progeny strain data as a bridge for modeling the eQTL

association graph.

2.3 The Problem

Symbols Description
K number of SNPs
N number of genes
D number of samples
M number of group-wise associations
H number of confounding factors
x random variables of K SNPs
z random variables of N genes
y latent variables to model group-wise associaiton

X ∈ RK×H SNP matrix data
Z ∈ RN×H gene expression matrix data
A ∈ RM×K group-wise association coefficient matrix between x and y
B ∈ RN×M group-wise association coefficient matrix between y and z
C ∈ RN×K individual association coefficient matrix between x and y
P ∈ RN×H coefficient matrix of confounding factors

λ, γ regularization parameters

Table 2.1: Summary of Notations

Important notations used in this chapter are listed in Table 2.1. Throughout the chapter,

we assume that, for each sample, the SNPs and genes are represented by column vectors. Let

x = [x1, x2, . . . , xK ]
T represent the K SNPs in the study, where xi ∈ {0, 1, 2} is a random

variable corresponding to the i-th SNP. For example, 0, 1, 2 may encode the homozygous major

allele, heterozygous allele, and homozygous minor allele, respectively. Let z = [z1, z2, . . . , zN ]
T

represent the N genes in the study, where zj is a continuous random variable corresponding to the

j-th gene.
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The traditional linear regression model for association mapping between x and z is

z = Wx+ µ+ ϵ, (2.1)

where z is a linear function of x with coefficient matrix W. µ is an N × 1 translation factor

vector. ϵ is the additive noise of Gaussian distribution with zero-mean and variance ψI, where ψ

is a scalar. That is, ϵ ∼ N(0, ψI).

The question now is how to define an appropriate objective function to decompose W

which (1) can effectively detect both individual and group-wise eQTL associations, and (2) is

efficient to compute so that it is suitable for large-scale studies. In the next, we will propose a

group-wise eQTL detection method first, and then improve it to capture both individual and

group-wise associations. Finally, we will discuss how to boost the computational efficiency.

2.4 Detecting Group-Wise Associations

2.4.1 SET-eQTL Model

To infer associations between SNP sets and gene sets, we propose a graphical model as

shown in Figure 2.3, which is able to capture any potential confounding factors in a natural way.

This model is a two-layer linear Gaussian model. The hidden variables in the middle layer are

used to capture the group-wise association between SNP sets and gene sets. These latent variables

are presented as y = [y1, y2, . . . , yM ]T, where M is the total number of latent variables bridging

SNP sets and gene sets. Each hidden variable may represent a latent factor regulating a set of

genes, and its associated genes may correspond to a set of genes in the same pathway or

participating in certain biological function. Note that this model allows a SNP or gene to

participate in multiple (SNP set, gene set) pairs. This is reasonable because SNPs and genes may

play different roles in multiple biology pathways. Since the model bridges SNP sets and gene sets,

we refer this method as SET-eQTL.

The exact role of these latent factors can be inferred from the network topology of the

resulting sparse graphical model learned from the data (by imposing ℓ1-norm on the likelihood

function, which will be discussed later in this section). Figure 2.2 shows an example of the
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Figure 2.1: The proposed graphical model with hidden variables

Figure 2.2: An example of the inferred sparse graphical model

resulting graphical model. There are two types of hidden variables. One type consists of hidden

variables with zero in-degree (i.e., no connections with the SNPs). These hidden variables

correspond to the confounding factors. Other types of hidden variables serve as bridges

connecting SNP sets and gene sets. In Figure 2.2, yk is a hidden variable modeling confounding

effects. yi and yj are bridge nodes connecting the SNPs and genes associated with them. Note

that this model allows overlaps between different (SNP set, gene set) pairs. It is reasonable

because SNPs and genes may play multiple roles in different biology pathways.

2.4.2 Objective Function

From the probability theory, we have that the joint probability of x and z is

p(x, z) =

∫
y

p(x,y, z)dy. (2.2)
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From the factorization properties of the joint distribution for a directed graphical model, we have

p(x,y, z) = p(y|x)p(z|y)p(x). (2.3)

Thus, we have

p(z|x) = p(x, z)

p(x)
=

∫
y

p(y|x)p(z|y)dy. (2.4)

We assume that the two conditional probabilities follow normal distributions:

y|x ∼ N (y|Ax+ µA, σ
2
1IM),

and

z|y ∼ N (z|By + µB, σ
2
2IN),

where A ∈ RM×K is the coefficient matrix between x and y, B ∈ RN×M is the coefficient matrix

between y and z. µA ∈ RM×1 and µB ∈ RN×1 are the translation factor vectors, of which σ2
1IM

and σ2
2IN are their variances respectively (σ1 and σ2 are constant scalars and IM and IN are

identity matrices).

To impose sparsity, we assume that entries of A and B follow Laplace distributions:

A ∼ Laplace(0, 1/λ),

and

B ∼ Laplace(0, 1/γ).

λ and γ are parameters of the ℓ1-regularization penalty on the objective function. This model is a

two-layer linear model and p(y|x) serves as the conjugate prior of p(z|y). Thus we have

15



β · N (y|µy,Σy) = N (y|Ax+ µA, σ
2
1IM) · N (z|By + µB, σ

2
2IN) (2.5)

where β is a scalar, µy and Σy are the mean and variance of a new normal distribution

respectively.

From Equations 2.4 and 2.5, we have that

p(z|x) =
∫
y

β · N (y|µy,Σy)dy = β (2.6)

Thus, maximizing p(z|x) is equivalent to maximizing β. Next, we show the derivation of β. We

first derive the value of µy and Σ−1
y by comparing the exponential terms on both sides of

Equation 2.5.

N (y|Ax+ µA, σ
2
1IM) · N (z|By + µB, σ

2
2IN)

= 1

(2π)
M+N

2 σM
1 σN

2

exp{−1
2
[ 1
σ2
1
(y − Ax− µA)

T(y − Ax− µA)

+ 1
σ2
2
(z− By − µB)

T(z− By − µB)]}

(2.7)

The exponential term in Equation 2.7 can be expanded as

Ψ = −1
2
[ 1
σ2
1
(y − Ax− µA)

T(y − Ax)

+σ2
2(z− By − µB)

T(z− By)]

= −1
2
[ 1
σ2
1
(yTy − yTAx− yTµA − xTATy + xTATAx

+xTATµA − µT
Ay + µT

AAX + µT
AµA) +

1
σ2
2
(zTz− zTBy

−zTµB − yTBTz+ yTBTBy + yTBTµB − µT
Bz+ µT

B By

+µT
BµB)]

= −1
2
[yT( 1

σ2
1
IM + 1

σ2
2
BTB)y − 2

σ2
1
(xTATy + µT

Ay)

− 2
σ2
2
(zTBy − µT

B By) + 1
σ2
1
(xTATAx+ 2µT

AAx+ µT
AµA)

+ 1
σ2
2
(zTz− 2µT

Bz+ µT
BµB)]

(2.8)
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Thus, by comparing the exponential terms on both sides of Equation 2.5, we get

Σ−1
y =

1

σ2
1

IM +
1

σ2
2

BTB, (2.9)

µT
yΣ

−1
y =

1

σ2
1

(xTAT + µT
A) +

1

σ2
2

(zTB− µT
B B). (2.10)

Further, we have

µy = Σy[
1

σ2
1

(Ax+ µA) +
1

σ2
2

(BTz− BTµB)]. (2.11)

With Σ−1
y and µy, we can derive the explicit form of β easily by setting y = 0, which

leads to the equation below:

β · 1

(2π)
M
2 |Σy|

1
2
exp{−1

2
µT

yΣ
−1
y µy}

= 1

(2π)
M+N

2 σM
1 σN

2

exp{Ψy=0},
(2.12)

where Ψy=0 is the value of Ψ when y = 0, and thereby

Ψy=0 = −1
2
[ 1
σ2
1
(xTATAx+ 2µT

AAx+ µT
AµA)

+ 1
σ2
2
(zTz− 2µT

Bz+ µT
BµB)]

(2.13)

Thus, we get the explicit form of β as

β = |Σy|
1
2

(2π)
N
2 σM

1 σN
2

exp{Ψy=0 +
1
2
(µT

yΣ
−1
y µy)}. (2.14)

Here, β = p(z|x,A,B,µA,µB, σ1, σ2) is the likelihood function for one data point x. Let

X = {xd} and Z = {zd} be the sets of D observed data points (genotype and the gene expression

profiles for the samples in the study). To maximize βd, we can minimize the negative
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log-likelihood of βd. Thus, our loss function is

J = − log
∏D

d=1 p(zd|xd)

= −
∑D

d=1 log p(zd|xd)

= −
∑D

d=1 logβd

(2.15)

Substituting Equation 2.14 into Equation 2.15, the expanded form of the loss function is

J (A,B,µA,µB, σ1, σ2)

= D·N
2

ln(2π) +D ·M ln(σ1) +D ·N ln(σ2) +
D
2
ln |Σ−1

y |

+1
2

∑D
d=1{

1
σ2
1
(xT

d ATAxd + 2µT
AAxd + µT

AµA)

+ 1
σ2
2
(zTd zd − 2µT

Bzd + µT
BµB)− [ 1

σ2
1
(xT

d AT + µT
A)

+ 1
σ2
2
(zTd B− µT

B B)]Σy[
1
σ2
1
(Axd + µA) +

1
σ2
2
(BTzd − BTµB)]}

(2.16)

Taking into account the prior distributions of A and B, we have that

p(z,A,B|x,µA,µB, σ1, σ2)

= β · Laplace(A|0, 1/λ) · Laplace(B|0, 1/γ)
(2.17)

Thus, we can have the ℓ1-regularized objective function

max
A,B,µA,µB,σ1,σ2

log
D∏

d=1

p(zd,A,B|xd,µA,µB, σ1, σ2),

which is identical to

min
A,B,µA,µB,σ1,σ2

[J +D · (λ||A||1 + γ||B||1)], (2.18)

where || · ||1 is the ℓ1-norm. λ and γ are the precision of the prior Laplace distributions of A and B

respectively, serving as the regularization parameters which can be determined by cross or

holdout validation.
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The gradient of the loss function J with respect to A, B, µA, µB, σ1, and σ2 are:

∇AJ =
∑D

d=1(
1
σ2
1
Axdx

T
d − 1

σ4
1
ΣyAxdx

T
d − 1

σ2
1σ

2
2
ΣyBTzdx

T
d

+ 1
σ2
1
µAx

T
d − 1

σ4
1
ΣyµAx

T
d + 1

σ2
1σ

2
2
ΣyBTµBx

T
d )

(2.19)

∇BJ = D
σ2
2
BΣy +

1
σ4
2
( 1
σ2
2
BΣyBT − IN)

∑D
d=1[(zd − µB)

·(zd − µB)
T]BΣy +

1
σ2
1σ

4
2

∑D
d=1{BΣy[(Axd + µA)(zd − µB)

TB

+BT(zd − µB)(Axd + µA)
T]Σy − σ2

2(zd − µB)(Axd + µA)
TΣy}

+ 1
σ4
1σ

2
2
BΣy

∑D
d=1[(Axd + µA)(x

T
d AT + µT

A)]Σy

(2.20)

∇µAJ = 1
2

∑D
d=1[

2
σ2
1
(Axd + µA)− 2

σ4
1
Σy(µA + Axd)− 2

σ2
1σ

2
2
Σy(BTzd − BTµB)] (2.21)

∇µBJ = 1
2

∑D
d=1[

2
σ2
1
(−zd + µB) +

2
σ4
1
BΣyBT(zd − µB) +

2
σ2
1σ

2
2
BΣy(Axd + µA)] (2.22)

∇σ1J = D·M
σ1
− D·tr(Σy)

σ3
1

+
∑D

d=1[−
xT
d ATAxd+2µT

A Axd+µT
A µA

σ3
1

+
2(xT

d AT+µT
A )Σy(Axd+µA)

σ5
1

− (xT
d AT+µT

A )Σ2
y(Axd+µA)

σ7
1

+
2(xT

d AT+µT
A )Σy(BTzd−BTµB)

σ3
1σ

2
2

− 2(xT
d AT+µT

A )Σ2
y(BTzd−BTµB)

σ5
1σ

2
2

− (zTd B−µT
B B)Σ2

y(BTzd−BTµB)

σ3
1σ

4
2

]

(2.23)

∇σ2J = D·N
σ2
− D·tr(ΣyBTB)

σ3
2

+
∑D

d=1[−
zTd zd−2µT

B zd+µT
B µB

σ3
2

+
2(zTd B−µT

B B)Σy(BTzd−BTµB)

σ5
2

− (zTd B−µT
B B)ΣyBTBΣy(BTzd−BTµB)

σ7
2

+
2(zTd B−µT

B B)Σy(Axd+µA)

σ2
1σ

3
2

− 2(zTd B−µT
B B)ΣyBTBΣy(Axd+µA)

σ2
1σ

5
2

− (xT
d AT+µT

A )ΣyBTBΣy(Axd+µA)

σ4
1σ

3
2

]

(2.24)
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2.5 Considering Confounding Factors

To infer associations between SNP sets and gene sets while taking into consideration

confounding factors, we further propose a graphical model as shown in Figure 2.3. Different from

the previous model, a new type of hidden variable, s = [s1, s2, . . . , sH ]
T, is used to model

confounding factors. For simplicity, we refer to this model as Model 1. The objective function of

this model can be derivated using similar strategy as SET-eQTL.

Figure 2.3: Graphical model with two types of hidden variables

2.6 Incorporating Individual Effect

In the graphical model shown in Figure 2.3, we use a hidden variable y as a bridge

between a SNP set and a gene set to capture the group-wise effect. In addition, individual effects

may exist as well (Listgarten et al., 2013). An example is shown in Figure 1.4. Note that an ideal

model should allow overlaps between SNP sets and between gene sets; that is, a SNP or gene may

participate in multiple individual and group-wise associations. To incorporate both individual and

group-wise effects, we extend the model in Figure 2.3 and add one edge between x and z to

capture individual associations as shown in Figure 2.4. We will show that this refinement will

significantly improve the accuracy of model and enhance its computational efficiency. For

simplicity, we refer to the new model that considers both individual and group-wise associations

as Model 2.
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Figure 2.4: Refined graphical model to capture both individual and group-wise associations.

2.6.1 Objective Function

Next, we give the derivation of the objective function for the model in Figure 2.4. We

assume that the two conditional probabilities follow normal distributions:

y|x ∼ N(y|Ax+ µA, σ
2
1IM), (2.25)

and

z|y,x ∼ N(z|By +Cx+Ps+ µB, σ
2
2IN), (2.26)

where A ∈ RM×K is the coefficient matrix between x and y, B ∈ RN×M is the coefficient matrix

between y and z, C ∈ RN×K is the coefficient matrix between x and z to capture the individual

associations, P ∈ RN×H is the coefficient matrix of confounding factors. µA ∈ RM×1 and

µB ∈ RN×1 are the translation factor vectors, σ2
1IM and σ2

2IN are the variances of the two

conditional probabilities respectively (σ1 and σ2 are constant scalars and IM and IN are identity

matrices).

Since the expression level of a gene is usually affected by a small fraction of SNPs, we

impose sparsity on A, B and C. We assume that the entries of these matrices follow Laplace

distributions: Ai,j ∼ Laplace(0, 1/λ), Bi,j ∼ Laplace(0, 1/γ), and Ci,j ∼ Laplace(0, 1/α). λ, γ

and α will be used as parameters in the objective function. The probability density function of

Laplace(µ, b) distribution is f(x|µ, b) = 1
2b
exp(− |x−µ|

b
).
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Thus, we have

y = Ax+ µA + ϵ1, (2.27)

z = By +Cx+Ps+ µB + ϵ2, (2.28)

where ϵ1 ∼ N(0, σ2
1IM),ϵ2 ∼ N(0, σ2

2IN). From Eq. (2.25) we have

By|x ∼ N(BAx+BµA, σ
2
1BBT), (2.29)

Assuming that the confounding factors follow normal distribution (Listgarten et al., 2013),

s ∼ N(0, IH), then we have

Ps ∼ N(0,PPT). (2.30)

We substitute Eq. (2.29), (2.30) into Eq. (2.28), and get

z|x ∼ N(BAx+BµA +Cx+ µB, σ
2
1BBT +PPT + σ2

2IN).

From the formula above, we observe that the summand BµA can also be integrated in µB.

Thus to simplify the model, we set µA = 0 and obtain

z|x ∼ N(BAx+Cx+ µB, σ
2
1BBT +PPT + σ2

2IN).

To learn the parameters, we can use MLE (Maximize Likelihood Estimation) or MAP

(Maximum a posteriori). Then, we get the likelihood function as p(z|x) =
∏D

d=1 p(zd|xd).

Maximizing the likelihood function is identical to minimizing the negative log-likelihood. Here,
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the negative log-likelihood (loss function) is

J =

D∑
d=1

Jd

=− 1 · log
D∏

d=1

p(zd|xd)

=
D∑

d=1

(−1) · log p(zd|xd)

=
D ·N
2

log(2π) +
D

2
log |Σ|+ 1

2

D∑
d=1

[(zd − µd)
TΣ−1(zd − µd)],

(2.31)

where

µd = BAxd +Cxd + µB,

Σ = σ2
1BBT +WWT + σ2

2IN .

Moreover, taking into account the prior distributions of A, B and C, we have

p(zd,A,B,C|xd,P, σ1, σ2) =

exp(−Jd) · λ2
∏

i,j exp(−λ|Ai,j |) · γ2
∏

i,j exp(−γ|Bi,j |) · α2
∏

i,j exp(−α|Ci,j |).
(2.32)

Thus, we have the ℓ1-regularized objective function

max
A,B,C,P,σ1,σ2

log
D∏

d=1

p(zd,A,B,C|xd,P, σ1, σ2),

which is identical to

min
A,B,C,P,σ1,σ2

[J +D · (λ||A||1 + γ||B||1 + α||C||1)], (2.33)

where || · ||1 is the ℓ1-norm. λ, γ and α are the precision of the prior Laplace distributions of A, B,

and C respectively. They serve as the regularization parameters and can be determined by cross or

holdout validation.

The explicit expression of µB can be derived as follows. When A, B, and C are fixed, we

have

J = D·N
2

log(2π)+D
2
log |Σ|+ 1

2

∑D
d=1[(zd−BAxd−Cxd−µB)

TΣ−1(zd−BAxd−Cxd−µB)].

When D = 1, this is a classic maximum likelihood estimation problem, and we have
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µB = zd −BAxd −Cxd. When D > 1, leveraging the fact that Σ−1 is symmetric, we convert

the problem into a least-square problem, which leads to

µB =
1

D

D∑
d=1

(zd −BAxd −Cxd).

Substituting it into Eq. (2.31), we have

J = D·N
2 log(2π) + D

2 log |Σ|+ 1
2

∑D
d=1{[(zd − z̄)

−(BA+C)(xd − x̄)]TΣ−1[(zd − z̄)− (BA+C)(xd − x̄)]},
(2.34)

where

x̄ =
1

D

D∑
d=1

xd, z̄ =
1

D

D∑
d=1

zd.

The gradient of the loss function, which (without detailed derivation) is given in the below.

1). Derivative with respect to σ1

∇σ1O = 2σ1

D∑
d=1

{tr[Ψd]BBT}. (2.35)

2). Derivative with respect to σ2

∇σ2O = 2σ2

D∑
d=1

{tr[Ψd]}. (2.36)

3). Derivative with respect to A

∇AO = −
D∑

d=1

[BTΣ−1td(xd − x̄)T]. (2.37)

4). Derivative with respect to B

∇BO = Ξ1 +Ξ2, (2.38)

where

Ξ1 = −
D∑

d=1

[Σ−1td(xd − x̄)TAT], (2.39)

(Ξ2)ij = σ2
1

D∑
d=1

{tr[Ψd(EijB
T +BEji)]}. (2.40)

(tr[·] stands for trace; Eij is the single-entry matrix: 1 at (i, j) and 0 elsewhere.)
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We speed up this calculation by exploiting sparsity of Eij and tr[·]. (The following

equation uses Einstein summation convention to better illustrate the idea.)

(Ξ2)ij = σ2
1

D∑
d=1

{tr[Ψd(EijB
T +BEji)]}

= σ2
1

D∑
d=1

{tr[ΨdEijB
T +ΨdBEji]}

= σ2
1

D∑
d=1

{tr[(Ψd)
k
l (Eij)

l
m(BT )mn + (Ψd)

k
l (B)lm(Eji)

m
n ]}

= σ2
1

D∑
d=1

{(Ψd)
k
l (Eij)

l
m(BT )mk + (Ψd)

k
l (B)lm(Eji)

m
k }

= σ2
1

D∑
d=1

{(Ψd)
k
i (B

T )jk + (Ψd)
i
l(B)lj}

= σ2
1

D∑
d=1

{
N∑

k=1

[(Ψd)k,i(B
T )j,k] +

N∑
l=1

[(Ψd)i,l(B)l,j ]}

= σ2
1

D∑
d=1

{
N∑

k=1

[(BT )j,k(Ψd)k,i] +
N∑
l=1

[(Ψd)i,l(B)l,j ]}.

(2.41)

Therefore,

Ξ2 = σ2
1

D∑
d=1

[(BTΨd)
T +ΨdB]

= σ2
1

D∑
d=1

[ΨT
d B +ΨdB]

= 2σ2
1

D∑
d=1

ΨdB.

(2.42)

5). Derivative with respect to C

∇CO = −
D∑

d=1

[Σ−1td(xd − x̄)T]. (2.43)

6). Derivative with respect to P

∇PO =
D∑

d=1

{tr[Ψd(EijP
T +PEji)]} = 2

D∑
d=1

ΨdP. (2.44)

2.6.2 Increasing Computational Speed

In this section, we discuss how to increase the speed of the optimization process for the

proposed model. In the previous section, we have shown that A, B, C, P, σ1, and σ2 are the

parameters to be solved. Here, we first derive an updating scheme for σ2 when other parameters
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are fixed by following a similar technique as discussed in (Kang et al., 2008). For other

parameters, we develop an efficient method for calculating the inverse of the covariance matrix

which is the main bottleneck of the optimization process.

2.6.2.1 Updating σ2

When all other parameters are fixed, using spectral decomposition on (σ2
1BBT +WWT),

we have
Σ = (σ2

1BBT +WWT) + σ2
2IN

= [U,V] diag(λ1 + σ2
2 , ..., λN−q + σ2

2 , 0, ..., 0)[U,V]T

= U diag(λ1 + σ2
2 , ..., λN−q + σ2

2)U
T,

(2.45)

where U is an N × (N − q) eigenvector matrix corresponding to the nonzero eigenvalues; V is an

N × q eigenvector matrix corresponding to the zero eigenvalues. A reasonable solution should

have no zero eigenvalues in Σ, otherwise the loss function would be infinitely big. Therefore,

q = 0.

Thus

Σ−1 = U diag(
1

λ1 + σ2
2

, ...,
1

λN + σ2
2

)UT.

Let UT(zd −BAxd −Cxd − µB) =: [ηd,1, ηd,2, ..., ηd,N ]
T. Then solving σ2 is equivalent

to minimizing

l(σ2
2) =

D ·N
2

log(2π) +
D

2

N∑
s=1

log(λs + σ2
2) +

1

2

D∑
d=1

N∑
s=1

η2d,s
λs + σ2

2

, (2.46)

whose derivative is

l′(σ2
2) =

D

2

N∑
s=1

1

λs + σ2
2

− 1

2

D∑
d=1

N∑
s=1

η2d,s
(λs + σ2

2)
2
.

This is a 1-dimensional optimization problem that can be solved very efficiently.

2.6.2.2 Efficiently Inverting the Covariance Matrix

From objective function Eq. 2.34 and the gradient of the parameters, the time complexity

of each iteration in the optimization procedure is O(DN2M +DN2H +DN3 +DNMK).

Since M ≪ N and H ≪ N , the third term of the time complexity (O(DN3)) is the bottleneck of
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the overall performance. This is for computing the inverse of the covariance matrix

Σ = σ2
1BBT +PPT + σ2

2IN ,

which is much more time-consuming than other matrix multiplication operations.

We devise an acceleration strategy that calculates Σ−1 using formula (2.47) in the

following theorem. The complexity of computing the inverse reduces to O(M3 +H3).

Theorem 1. Given B ∈ RN×M , P ∈ RN×H , and

Σ = σ2
2IN + σ2

1BBT +PPT.

Then

Σ−1 = T−TPS−1PTT, (2.47)

where

S = IH +PTTP, (2.48)

T = σ−2
2 (IN − σ2

1B(σ2
2IM + σ2

1B
TB)−1BT). (2.49)

The proof of Theorem 1 is provided in the following.

2.6.2.3 Preparation for Derivatives of O for Model 2

For notational simplicity, we denote

td = (zd − z̄)− (BA+C)(xd − x̄),

Ψd =
1

2
(Σ−1 −Σ−1tdtd

TΣ−1).
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2.6.2.4 Proof of Theorem 1

Before giving the formal proof for Theorem 1, we first introduce Lemma 1, which follows

from the definition of matrix inverse.

Lemma 1. For all U ∈ RN×M , if IM +UTU is invertible, then

(IN +UUT)−1 = IN −U(IM +UTU)−1UT.

Here we provide a more general proof, which can be modified to derive more involved

cases.

Proof. We denote

Q = σ2
2IN + σ2

1BBT, (2.50)

that is,

Σ = σ2
2IN + σ2

1BBT +PPT = Q+PPT. (2.51)

By Lemma 1, we have

Q−1 = T = σ−2
2 (IN − σ2

1B(σ2
2IM + σ2

1B
TB)−1BT).

Q is symmetric positive definite, hence its inverse, T, is symmetric positive definite.

Since every symmetric positive definite matrix has exactly one symmetric positive definite square

root, we can write

T = RR,

where R is an N ×N symmetric positive definite matrix.

It is clear that, Q = T−1 = (RR)−1 = R−1R−1, which leads to

RQR = RR−1R−1R = IN , and therefore

RΣR = IN +RPPTR = IN +RPPTRT.
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Note that the above and the following formulas follow the fact that R is symmetric.

Once again, by Lemma 1, we have

(RΣR)−1 = IN −RPS−1PTRT,

where

S = IH +PTRTRP = IH +PTTP.

Therefore,

Σ−1 = R(RΣR)−1R = RR−RRPS−1PTRTR,

and thus

Σ−1 = T−TPS−1PTT

2.7 Optimization

To optimize the objective function, there are many off-the-shelf ℓ1-penalized optimization

tools. We use the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) algorithm described

in (Andrew and Gao, 2007). The OWL-QN algorithm minimizes functions of the form

f(w) = loss(w) + c||w||1,

where loss(·) is an arbitrary differentiable loss function, and ||w||1 is the ℓ1-norm of the parameter

vector. It is based on the L-BFGS Quasi-Newton algorithm (Nocedal and Wright, 2006), with

modifications to deal with the fact that the ℓ1-norm is not differentiable. The algorithm is proven

to converge to a local optimum of the parameter vector. The algorithm is very fast, and capable of

scaling efficiently to problems with millions of parameters. Thus it is a good option for our

problem where the parameter space is large when dealing with large scale eQTL data.

29



2.8 Experimental Results

We apply our methods (SET-eQTL, Model1, and Model2) to both simulation datasets

and yeast eQTL datasets (Rachel B. Brem and Kruglyak, 2005) to evaluate its performance. For

comparison, we select several recent eQTL methods, including LORS (Yang et al., 2013),

MTLasso2G (Chen et al., 2012), FaST-LMM (Listgarten et al., 2013) and Lasso (Tibshirani,

1996). The tuning parameters in the selected methods are learned using cross-validation. All

experiments are performed on a PC with 2.20 GHz Intel i7 eight-core CPU and 8 GB memory.

2.8.1 Simulation Study

We first evaluate whether Model 2 can identify both individual and group-wise

associations. We adopt a similar setup for simulation study to that in (Lee and Xing, 2012;

Yang et al., 2013) and generate synthetic datasets as follows. 100 SNPs are randomly selected

from the yeast eQTL dataset (Rachel B. Brem and Kruglyak, 2005). N gene expression profiles

are generated by Zj∗ = βj∗X+Ξj∗ +Ej∗ (1 ≤ j ≤ N ), where Ej∗ ∼ N(0, ηI) (η = 0.1) denotes

Gaussian noise. Ξj∗ is used to model non-genetic effects, which is drawn from N(0, ρΛ), where

ρ = 0.1. Λ is generated by FFT, where F ∈ RD×U and Fij ∼ N(0, 1). U is the number of hidden

factors and is set to 10 by default. The association matrix β is shown in the top-left plot in Figure

2.5. The association strength is 1 for all selected SNPs. There are four group-wise associations of

different scales in total. The associations on the diagonal are used to represent individual

association signals in cis-regulation.

The remaining three plots in Figure 2.5 show associations estimated by Model2. From the

figure, we can see that Model2 well captures both individual and group-wise signals. For

comparison, Figure 2.6 visualizes the association weights estimated by Model1 and Model2

when varying the number of hidden variables (M ). We observe that for Model1, when M = 20,

most of the individual association signals on the diagonal are not captured. As M increases, more

individual association signals are detected by Model1. In contrast, Model2 recovers both

individual and group-wise linkage signals with small M .
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Figure 2.5: Ground truth of β and linkage weights estimated by Model2 on simulated data.
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Figure 2.6: Association weights estimated by Model1 and Model2.

Next, we generate 50 simulated datasets with different signal-to-noise ratios (defined as

SNR =
√

V ar(βX)
V ar(Ξ+E)

) in the eQTL datasets (Yang et al., 2013) to compare the performance of the

selected methods. Here, we fix H = 10, ρ = 0.1, and use different η’s to control SNR. For each

setting, we report the average result from the 50 datasets. For the proposed methods, we use

BA+C as the overall associations. Since FaST-LMM needs extra information (e.g., the genetic

similarities between individuals) and uses PLINK format, we do not list it here and will compare

it on the real data set.

Figure 2.7 shows the ROC curves of TPR-FPR for performance comparison. The

corresponding areas under the TPR-FPR curve and the areas under the precision-recall curve
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(c) ROC curve(SNR=0.08)

Figure 2.7: The ROC curve of FPR-TPR on simulated data.
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Figure 2.8: The areas under the precision-recall/FPR-TPR curve (AUCs).

(AUCs) (Chen et al., 2012) are shown in Figure 2.8. It can be seen that Model2 outperforms all

alternative methods by a large margin. Model2 outperforms Model1 because it considers both

group-wise and individual associations. Model1 outperforms SET-eQTL because it considers

confounding factors that is not considered by SET-eQTL. SET-eQTL considers all associations as

group-wise, thus it may miss some individual associations. MTLasso2G is comparable to LORS

because MTLasso2G considers the group-wise associations while neglecting confounding factors.

LORS considers the confounding factors, but does not distinguish individual and group-wise

associations. LORS outperforms Lasso since confounding factors are not considered in Lasso.

2.8.1.1 Shrinkage of C and B×A

As discussed in the previous section, the group-wise associations are encoded in B×A

and individual associations are encoded in C. To enforce sparsity on A, B and C, we use Laplace
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Figure 2.9: Model 2 shrinkage of coefficients for B×A and C respectively.

prior on the elements of these matrices. Thus, it is interesting to study the overall shrinkage of

B×A and C. We randomly generate 7 predictors ({x1,x2, ...,x7}) and 1 response (z) with

sample size 100. xi ∼ N(0, 0.6 · I)(i ∈ [1, 7]). The response vector was generated with the

formula: z = 5 · (x1 + x2)− 3 · (x3 + x4) + 2 · x5 + ϵ̃ and ϵ̃ ∈ N(0, I). Thus, there are two

groups of predictors ({x1,x2} and {x3,x4}) and one individual predictor x5. Figure 2.9 shows

the Model 2 shrinkage of coefficients for B×A and C respectively. Each curve represents a

coefficient as a function of the scaled parameter s = |B×A|
max |B×A| or s = |C|

max |C| . We can see that the

two groups of predictors can be identified by B×A as the most important variables, and the

individual predictor can be identified by C.

2.8.1.2 Computational Efficiency Evaluation

Scalability is an important issue for eQTL study. To evaluate the techniques for speeding

up the computational efficiency, we compare the running time with/without these techniques.

Figure 2.10 shows the running time when varying the number of hidden variables (M ) and

number of traits (N ). The results are consistent with the theoretical analysis in previous part that

the time complexity is reduced to O(M3 +H3) from O(N3) when using the improved method

for inverting the covariance matrix. We also observe that Model2 uses slightly more time than

Model1, since it has more parameters to optimize. However, to get similar performance, Model1

needs a significantly larger number of hidden variables M . As shown in Figure 2.10 (b), a larger
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Figure 2.10: Running time performance on simulated data when varying N and M .

M results in a longer running time. In some cases, Model2 is actually faster than Model1. As an

example, to obtain the same performance (i.e., AUC), Model1 needs 60 hidden variables (M ),

while Model2 only needs M = 20. In this case, from Figure 2.10 (a), we can observe that

Model2 needs less time than Model1 to obtain the same results.

2.8.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL dataset of

112 yeast segregants generated from a cross of two inbred strains (Rachel B. Brem and Kruglyak,

2005). The dataset originally includes expression profiles of 6229 gene expression traits and

genotype profiles of 2956 SNP markers. After removing SNPs with more than 10% missing

values and merging consecutive SNPS with high linkage disequilibrium, we obtain 1017 SNPs

with distinct genotypes (Huang et al., 2009a). In total, 4474 expression profiles are selected after

removing the ones with missing values. It takes about 5 hours for Model1, and 3 hours for

Model2 to run to completion. The regularization parameters are set by grid search in {0.1, 1, 10,

50, 100, 500, 1000, 2000}. Specifically, grid search trains the model with each combination of

three regularization parameters in the grid and evaluates their performance (by measuring

out-of-sample loss function value) for a two-fold cross validation. Finally, the grid search

algorithm outputs the settings that achieved the smallest loss in the validation procedure.
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Figure 2.11: Parameter tuning for M and H (Model2)

We use hold-out validation to find the optimal number of hidden variables M and H for

each model. Specifically, we partition the samples into 2 subsets of equal size. We use one subset

as training data and test the learned model using the other subset of samples. By measuring

out-of-sample predictions, we can find optimal combination of M and H that avoids over-fitting.

For each combination, optimal values for regularization parameters were determined with

two-fold cross validation. The loss function values for different {M , H} combinations of Model2

are shown in Figure 2.11. We find that M=30 and H=10 for Model2 delivers the best overall

performance. Similarly, we find that the optimal M and H values for Model1 are 150 and 10

respectively. The significant associations given by Model1, Model2, LORS, MTLasso2G and

Lasso are shown in Figure 2.12. For Model2, we can clearly see that the estimated matrices C

and B×A well capture the non group-wise and group-wise signals respectively. C+B×A and

C of Model2 have stronger cis-regulatory signals and weaker trans-regulatory bands than that of

Model1, LORS, and Lasso. C of Model2 has the weakest trans-regulatory bands. LORS has

weaker trans-regulatory bands than Lasso since it considers confounding factors. With more

hidden variables (larger M ), Model1 obtains stronger cis-regulatory signals.
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(a) Model 2 C+B×A(M=30, top

4500)
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(b) Model 2 C(M=30, top 3000)
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(c) Model 2 B × A(M=30, top

1500)
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(d) Model 1 B×A(M=120)
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(e) Model 1 B×A(M=150)
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(f) Model 1 B×A(M=200)
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Figure 2.12: Significant associations discovered by different methods in yeast.

2.8.2.1 cis- and trans- Enrichment Analysis

In total, the proposed two methods detect about 6000 associations with non-zero weight

values (B×A for Model1 and C+B×A for Model2). We estimate their FDR values by

following the method proposed in (Yang et al., 2013). With FDR ≤ 0.01, both models obtain

about 4500 associations. The visualization of significant associations detected by different

methods is provided in Figure 2.12.
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We apply cis- and trans-enrichment analysis on the discovered associations. In particular,

we follow the standard cis-enrichment analysis (Listgarten et al., 2010; McClurg et al., 2007) to

compare the performance of two competing models. The intuition behind cis-enrichment analysis

is that more cis-acting SNPs are expected than trans-acting SNPs. A two-step procedure is used

in the cis-enrichment analysis (Listgarten et al., 2010): (1) for each model, we apply a one-tailed

Mann-Whitney test on each SNP to test the null hypothesis that the model ranks its cis hypotheses

(we use <500bp for yeast) no better than its trans hypotheses, (2) for each pair of models

compared, we perform a two-tailed paired Wilcoxon sign-rank test on the p-values obtained from

the previous step. The null hypothesis is that the median difference of the p-values in the

Mann-Whitney test for each SNP is zero. The trans-enrichment is implemented using a similar

strategy as in (Yvert et al., 2003), in which genes regulated by transcription factors are used as

trans-acting signals.

The results of pairwise comparison of selected models are shown in Table 2.2. A p-value

shows how significant a method on the left column outperforms a method in the top row in terms

of cis-enrichment or trans-enrichment. We observe that the proposed Model2 has significantly

better cis-enrichment scores than other methods. For trans-enrichment, Model2 is the best, and

FaST-LMM comes in second. This is because both Model2 and FaST-LMM consider

confounding factors (FaST-LMM considers confounders from population structure) and joint

effects of SNPs, but only Model2 considers grouping of genes. Model1 has poor performance

because a larger M may be needed for Model1 to capture those individual associations.

cis-enrichment

FaST-LMM C of Model2 SET-eQTL MTLasso2G
B × A

of Model1 LORS Lasso
C + B × A of Model2 0.4351 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

FaST-LMM - 0.2351 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
C of Model2 - - 0.0253 0.0221 < 0.0001 < 0.0001 < 0.0001

SET-eQTL - - - 0.0117 < 0.0001 < 0.0001 < 0.0001
MTLasso2G - - - - < 0.0001 < 0.0001 < 0.0001

B × A of Model1 - - - - - < 0.0001 < 0.0001
LORS - - - - - - 0.0052

trans-enrichment

B × A

of Model2 FaST-LMM MTLasso2G LORS
B × A

of Model1 SET-eQTL Lasso
C + B × A of Model2 0.4245 0.3123 0.0034 0.0029 0.0027 0.0025 0.0023

B × A of Model2 - 0.3213 0.0132 0.0031 0.0028 0.0027 0.0026
FaST-LMM - - 0.0148 0.0033 0.0031 0.003 0.0029
MTLasso2G - - - 0.0038 0.0037 0.0036 0.0032

LORS - - - - 0.0974 0.0387 0.0151
B × A of Model1 - - - - - 0.0411 0.0563

SET-eQTL - - - - - - 0.0578

Table 2.2: Pairwise comparison of different models using cis- and trans- enrichment.
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2.8.2.2 Reproducibility of trans Regulatory Hotspots between Studies

We also evaluate the consistency of calling eQTL hotspots between two independent

glucose yeast datasets (Smith and Kruglyak, 2008). The glucose environment from Smith et al.

(Smith and Kruglyak, 2008) shares a common set of segregants. It includes 5493 probes

measured in 109 segregates. Since our algorithm aims at finding group-wise associations, we

focus on the consistency of regulatory hotspots.

We examine the reproducibility of trans regulatory hotspots based on the following

criteria (Fusi et al., 2012; Yang et al., 2013; Joo et al., 2014). For each SNP, we count the number

of associated genes from the detected SNP-gene associations. We use this number as the

regulatory degree of each SNP. For Model2, LORS, and Lasso, all SNP-Gene pairs with non-zero

association weights are defined as associations. Note that Model2 uses BA+C as the overall

associations. For FaST-LMM, SNP-Gene pairs with a q-value < 0.001 are defined as associations.

Note that we also tried different cutoffs for FaST-LMM (from 0.01 to 0.001), the results are

similar. SNPs with large regulatory degrees are often referred to as hotspots. We sort SNPs by the

extent of trans regulation (regulatory degrees) in a descending order. We denote the sorted SNPs

lists as S1 and S2 for the two yeast datasets. Let ST
1 and ST

2 be the top T SNPs in the sorted SNP

lists. The trans calling consistency of detected hotspots is defined as |ST
1

∩
ST
2 |

T
. Figure 2.13
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Figure 2.13: Consistency of detected eQTL hotspots

compares the reproducibility of trans regulatory hotspots given by different studies. It can be seen
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that the proposed Model2 gives much higher consistency than any other competitors do. In

particular, the consistency of trans hotspots suggests the superiority of Model2 in identifying

hotspots that are likely to have a true genetic underpinning.

2.8.2.3 Gene Ontology Enrichment Analysis

As discussed in previous section, hidden variables y in the middle layer may model the

joint effect of SNPs that have influence on a group of genes. To better understand the learned

model, we look for correlations between a set of genes associated with a hidden variable and GO

categories (Biological Process Ontology) (The Gene Ontology Consortium, 2000). In particular,

for each gene set G, we identify the GO category whose set of genes is most correlated with G.

We measure the correlation by a p-value determined by the Fisher’s exact test. Since multiple gene

sets G need to be examined, the raw p-values need to be calibrated because of the multiple testing

problem (Westfall and Young, 1993). To compute the calibrated p-values for each gene set G, we

perform a randomization test, wherein we apply the same test to randomly created gene sets that

have the same number of genes as G. Specifically, the enrichment test is performed using DAVID

(Huang et al., 2009a). And gene sets with calibrated p-values less than 0.01 are considered as

significantly enriched. The results from Model2 are reported in Table 2.3. Each row of Table 2.3

represents the gene set associated with a hidden variable. All of these detected gene sets are

significantly enriched in certain GO categories. The significantly enriched gene sets of Model1

and SET-eQTL are included in Table 2.4, Table 2.5, and Table 2.7, respectively. In total, 77 out of

90 gene sets detected by SET-eQTL are significant. For SET-eQTL, Figure 2.14 shows the

number of genes and SNPs within each group-wise association and the corresponding calibrated

p-value (Fisher’s exact test) of each discovered gene set. The hidden variable IDs are used as the

cluster IDs. We can observe that for SET-eQTL, the gene sets with large calibrated p-values tend

to have a very small SNP set associated with them. Those clusters are labeled in both figures.

This is a strong indicator that these hidden variables may correspond to confounding factors.

For comparison, we visualize the number of SNPs and genes in each group-wise

association in Figure 2.15. We observe that 90 out of 150 gene sets reported by Model1 are
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Figure 2.15: Number of SNPs and genes in each group-wise association.
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aGroup ID bSNPs set size cgene set size dGO category
1 63 294 oxidation-reduction process∗
2 78 153 thiamine biosynthetic process∗
3 94 871 rRNA processing∗∗∗
4 64 204 nucleosome assembly∗∗
5 70 288 ATP synthesis coupled proton transport∗∗∗
6 43 151 branched chain family amino acid biosynthetic...∗∗
7 76 479 mitochondrial translation∗∗∗
8 47 349 transmembrane transport∗∗
9 64 253 cytoplasmic translation∗∗∗
10 72 415 response to stress∗∗
11 64 225 mitochondrial translation∗
12 62 301 oxidation-reduction process∗∗
13 83 661 oxidation-reduction process∗
14 69 326 cytoplasmic translation∗
15 71 216 oxidation-reduction process∗
16 66 364 methionine metabolic process∗
17 74 243 cellular amino acid biosynthetic process∗∗∗
18 63 224 transmembrane transport∗∗
19 23 50 de novo’ pyrimidine base biosynthetic process∗
20 66 205 cellular amino acid biosynthetic process∗∗∗
21 81 372 oxidation-reduction process∗∗
22 33 126 oxidation-reduction process∗∗∗
23 81 288 pheromone-dependent signal transduction...∗∗
24 53 190 pheromone-dependent signal transduction...∗∗
25 91 572 oxidation-reduction process∗∗∗
26 66 46 cellular cell wall organization∗
27 111 1091 translation∗∗∗
28 89 362 cellular amino acid biosynthetic process∗∗
29 62 217 transmembrane transport∗∗
30 71 151 cellular aldehyde metabolic process∗∗

Table 2.3: Summary of all detected groups of genes from Model2 on yeast data.

significantly enriched, and all 30 gene sets reported by Model2 are significantly enriched. This

indicates that Model2 is able to detect group-wise linkages more precisely than Model1. We also

study the hotspots detected by LORS, which affect > 10 gene traits (Lee and Xing, 2012).

Specifically, we delve into the top 15 hotspots detected by LORS (ranking by number of

associated genes for each SNP), as listed in Table 2.6. We can see that only 9 out of 15 top ranked

hotspots are significantly enriched.

2.9 Conclusion

A crucial challenge in eQTL study is to understand how multiple SNPs interact with each

other to jointly affect the expression level of genes. In this chapter, we propose three sparse

graphical model based approaches to identify novel group-wise eQTL associations.

ℓ1-regularization is applied to learn the sparse structure of the graphical model. The three models

incrementally take into consideration more aspects, such as group-wise association, potential

confounding factors and the existence of individual associations. We illustrate how each aspect

would benefit the eQTL mapping. We also introduce computational techniques to make this
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aGroup ID bSNPs set size cgene set size dGO category
1 8 134 branched chain family amino acid biosynthetic process∗∗
3 6 189 oxidation-reduction process∗∗∗
4 43 710 cytoplasmic translation∗∗∗
5 6 144 ion transport∗
6 2 69 arginine biosynthetic process∗
8 6 197 cellular amino acid biosynthetic process∗∗
9 4 185 transmembrane transport∗

10 2 66 cellular response to nitrogen starvation∗
11 2 73 cellular response to nitrogen starvation∗
12 9 191 pheromone-dependent signal transduction involved in conjugation with cellular fusion∗
13 154 712 cytoplasmic translation∗∗∗
14 3 151 amino acid catabolic process to alcohol via Ehrlich pathway∗
15 8 185 oxidation-reduction process∗∗
16 3 130 arginine biosynthetic process∗
18 3 70 arginine biosynthetic process∗
19 5 173 cellular amino acid biosynthetic process∗
21 3 81 cellular aldehyde metabolic process∗
22 4 93 cellular amino acid biosynthetic process∗∗
24 5 101 iron ion homeostasis∗
25 2 67 cellular amino acid metabolic process∗∗
26 7 112 oxidation-reduction process∗
28 6 141 oxidation-reduction process∗
32 19 265 cellular amino acid biosynthetic process∗
33 3 102 glycogen biosynthetic process∗
34 6 166 oxidation-reduction process∗
38 15 305 cellular amino acid biosynthetic process∗∗∗
39 4 131 telomere maintenance via recombination∗∗
41 2 75 cellular response to nitrogen starvation∗
43 3 94 cellular response to nitrogen starvation∗
45 9 205 cellular amino acid biosynthetic process∗
48 3 104 telomere maintenance via recombination∗
49 10 210 oxidation-reduction process∗
51 2 86 cellular aldehyde metabolic process∗
55 6 132 cytogamy∗
56 4 66 cellular cell wall organization∗
59 21 425 methionine biosynthetic process∗
60 46 551 cellular amino acid biosynthetic process∗∗
62 2 124 ion transport∗∗
63 6 143 iron ion homeostasis∗
65 2 84 cellular response to nitrogen starvation∗
66 5 117 transposition, RNA-mediated∗
69 2 88 one-carbon metabolic process∗
70 4 68 cellular response to nitrogen starvation∗
71 5 164 oxidation-reduction process∗
73 8 240 cellular amino acid biosynthetic process∗∗
76 5 101 cellular response to nitrogen starvation∗
77 12 181 mitochondrial electron transport, ubiquinol to cytochrome c∗∗∗
79 4 153 cellular amino acid biosynthetic process∗∗
80 2 85 hexose transport∗
81 7 166 oxidation-reduction process∗∗
83 2 137 cellular amino acid biosynthetic process∗
85 12 228 cellular amino acid biosynthetic process∗∗∗
86 22 342 cellular amino acid biosynthetic process∗
87 3 116 cellular amino acid biosynthetic process∗
90 6 146 hexose transport∗

Table 2.4: Summary of detected significantly enriched gene groups from Model1 (Part I).

approach suitable for large scale studies. Extensive experimental evaluations using both simulated

and real datasets demonstrate that the proposed methods can effectively capture both individual

and group-wise signals and significantly outperform the state-of-the-art eQTL mapping methods.
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aGroup ID bSNPs set size cgene set size dGO category
93 28 391 ATP synthesis coupled proton transport∗∗
94 2 76 oxidation-reduction process∗∗
95 20 414 nucleosome assembly∗

96 6 87 cellular response to nitrogen starvation∗

97 11 260 oxidation-reduction process∗
98 11 236 mitochondrial electron transport, ubiquinol to cytochrome c∗
99 2 73 cellular response to nitrogen starvation∗

102 3 95 cellular aldehyde metabolic process∗∗
105 24 296 cellular amino acid biosynthetic process∗∗
106 37 651 oxidation-reduction process∗∗∗
108 6 138 oxidation-reduction process∗
109 2 72 siderophore transport∗
114 2 90 amino acid transmembrane transport∗
115 4 108 arginine biosynthetic process∗
118 30 467 cellular amino acid biosynthetic process∗∗∗
119 4 166 methionine biosynthetic process∗∗
121 3 77 iron ion homeostasis∗
122 31 364 cellular amino acid biosynthetic process∗∗∗
123 29 395 cellular amino acid biosynthetic process∗∗∗
125 3 145 cellular amino acid biosynthetic process∗∗
126 14 244 cellular response to nitrogen starvation∗

127 2 126 cellular amino acid biosynthetic process∗
128 3 108 telomere maintenance via recombination∗

130 2 118 oxidation-reduction process∗
133 2 139 cell adhesion∗

134 2 84 cell adhesion∗

135 6 204 oxidation-reduction process∗∗
136 3 111 arginine biosynthetic process∗
137 2 129 response to pheromone∗∗
138 2 115 transmembrane transport∗
139 2 95 cellular aldehyde metabolic process∗
143 5 116 cellular amino acid biosynthetic process∗
147 4 152 mitochondrial electron transport, ubiquinol to cytochrome c∗∗
148 2 76 cellular aldehyde metabolic process∗∗
150 5 154 fermentation∗

Table 2.5: Summary of detected significantly enriched gene groups from Model1 (Part II).

chr start end size GO category adjusted p-value
XII 659357 662627 36 sterol biosynthetic process 7.18E-05
XII 1056097 1056097 31 telomere maintenance via recombination 4.72E-08
XV 154177 154309 29 amino acid catabolic process to alcohol via Ehrlich pathway 0.052947053
III 201166 201167 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002
XV 143597 150651 23 response to stress 0.672327672
III 81832 92391 22 pheromone-dependent signal transduction involved in conjugation with cellular fusion 1.76E-03

VIII 111682 111690 22 cell adhesion 0.002947528
IX 139462 139512 21 cellular response to nitrogen starvation 0.00106592
XV 170945 180961 20 cell adhesion 0.053946054
III 105042 105042 19 branched chain family amino acid biosynthetic process 5.51357E-08

XIII 46070 46084 19 cell adhesion 0.050949051
XV 563943 563943 19 transport 0.003996004

I 41483 42639 18 cellular response to nitrogen starvation 0.016983017
III 175799 177850 18 pheromone-dependent signal transduction involved in conjugation with cellular fusion 7.47E-03
I 36900 37068 17 signal transduction 0.547452547

Table 2.6: Summary of the top 15 detected hotspots by LORS.
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aGroup ID bSNPs set size cgene set size dGO category
75 84 272 cellular amino acid biosynthetic process∗∗∗

74 94 246 cellular amino acid biosynthetic process∗∗∗

62 124 193 cellular amino acid biosynthetic process∗∗∗

17 155 303 oxidation-reduction process∗∗∗

78 40 175 sterol biosynthetic process∗∗∗

81 139 245 oxidation-reduction process∗∗∗

88 36 394 cellular amino acid biosynthetic process∗∗∗

18 101 358 oxidation-reduction process∗∗∗

1 2 202 cellular amino acid biosynthetic process∗∗∗

2 61 203 cellular amino acid biosynthetic process∗∗∗

76 79 238 oxidation-reduction process∗∗∗

10 74 217 cellular aldehyde metabolic process∗∗∗

51 41 233 transmembrane transport∗∗∗

19 11 185 oxidation-reduction process∗∗∗

37 98 174 cellular amino acid biosynthetic process∗∗∗

77 67 239 arginine biosynthetic process∗∗∗

20 67 156 transmembrane transport∗∗∗

71 25 284 oxidation-reduction process∗∗∗

58 130 195 oxidation-reduction process∗∗∗

61 95 273 oxidation-reduction process∗∗∗

6 61 213 oxidation-reduction process∗∗∗

32 71 202 oxidation-reduction process∗∗∗

30 119 178 arginine biosynthetic process∗∗∗

67 31 229 response to stress∗∗∗

43 130 183 arginine biosynthetic process∗∗∗

22 122 234 lysine biosynthetic process∗∗∗

7 113 263 cellular amino acid biosynthetic process∗∗∗

57 116 203 transmembrane transport∗∗∗

14 18 228 oxidation-reduction process∗∗∗

54 21 231 oxidation-reduction process∗∗∗

72 54 382 cellular aldehyde metabolic process∗∗∗

59 96 169 cellular amino acid biosynthetic process∗∗∗

44 59 177 pentose-phosphate shunt∗∗∗

73 85 171 transmembrane transport∗∗∗

15 25 597 cytoplasmic translation∗∗∗

12 42 267 cellular amino acid biosynthetic process∗∗∗

28 60 209 cellular amino acid biosynthetic process∗∗∗

82 125 372 mitochondrial translation∗∗∗

60 124 183 cellular amino acid biosynthetic process∗∗∗

63 130 224 oxidation-reduction process∗∗∗

84 191 226 cellular amino acid biosynthetic process∗∗∗

5 87 231 arginine biosynthetic process∗∗∗

23 121 210 oxidation-reduction process∗∗∗

86 109 234 telomere maintenance via recombination∗∗∗

16 65 152 arginine biosynthetic process∗∗

52 115 208 lysine biosynthetic process∗∗

46 52 154 cellular response to nitrogen starvation∗∗

87 116 197 response to stress∗∗

56 72 337 mitochondrial electron transport, ubiquinol to cytochrome c∗∗

25 81 187 telomere maintenance via recombination∗∗

35 58 227 transmembrane transport∗∗

49 73 209 pyrimidine nucleotide biosynthetic process∗∗∗

3 255 284 telomere maintenance via recombination∗∗

83 87 179 iron ion homeostasis∗∗

33 130 540 translation∗∗

80 87 278 telomere maintenance via recombination∗∗

90 10 352 ion transport∗∗

79 95 195 cellular response to nitrogen starvation∗∗

31 48 231 arginine biosynthetic process∗∗∗

45 111 189 oxidation-reduction process∗∗

65 4 524 lysine biosynthetic process∗∗

89 11 257 cellular response to nitrogen starvation∗∗

13 112 232 cellular amino acid biosynthetic process∗∗

42 87 241 cellular response to nitrogen starvation∗∗

11 91 257 oxidation-reduction process∗∗

34 5 462 cellular amino acid biosynthetic process∗∗

69 59 246 cellular amino acid biosynthetic process∗∗

39 12 262 response to stress∗∗

26 132 245 cellular amino acid biosynthetic process∗∗

41 16 250 cellular response to nitrogen starvation∗∗

53 52 466 cytoplasmic translation∗∗

48 68 173 cellular aldehyde metabolic process∗

36 69 186 oxidation-reduction process∗

38 22 523 pheromone-dependent signal transduction involved in conjugation with cellular fusion∗

40 56 405 cellular amino acid metabolic process∗

21 3 196 arginine biosynthetic process∗

64 5 252 one-carbon metabolic process∗

Table 2.7: Summary of detected significantly enriched gene groups from SET-eQTL.
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CHAPTER 3: REFINING PRIOR GROUPING INFORMATION

3.1 Introduction

Much prior knowledge about the relationships between SNPs and relationships between

genes can be modeled as networks (or graphs). Biologists believe that a set of SNPs may play

joint roles in a disease. Such interactions between SNPs can be modeled by a SNP interaction

network. Even though the underlying biological processes are complex and only partially solved,

it is well established that SNPs may alter the expression levels of related genes which may in turn

have a cascading effect to other genes, e.g., in the same biological pathways (Michaelson et al.,

2009c). The interactions between genes can be measured by correlations of gene expressions and

represented by a gene interaction network. These two networks are heavily related because of the

complicated relationships between SNPs and genes, as demonstrated in many expression

quantitative trait loci (eQTL) studies. It is evident that a joint analysis becomes essential in these

related domains. Conducting graph clustering jointly on the multiple networks, e.g., SNP-SNP

interaction network, PPI network, and gene co-expression network, provides more accurate prior

knowledge about the grouping information of SNPs and genes. Data collected from different

sources provides complimentary predictive powers, and combining expertise from these different

sources can resolve ambiguity, thus helping to obtain more accurate and robust decisions for

establishing knowledge bases.

In literature, the integration of multiple networks for clustering has been well studied.

This task is usually referred as multi-view graph clustering. By exploiting multi-domain

information to refine clustering and resolve ambiguity, multi-view graph clustering methods have

the potential to dramatically increase the accuracy of the final results (Bickel and Scheffer, 2004;

Kumar et al., 2011; Chaudhuri et al., 2009). The key assumption of these methods is that the
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Figure 3.1: Multi-view graph clustering vs co-regularized multi-domain graph clustering (CGC)

same set of data instances may have multiple representations, and different views are generated

from the same underlying distribution (Chaudhuri et al., 2009). These views should agree on a

consensus partition of the instances that reflects the hidden ground truth (Long et al., 2008). The

learning objective is thus to find the most consensus clustering structure across different domains.

Existing multi-view graph clustering methods usually assume that information collected

in different domains is for the same set of instances. Thus, the cross-domain instance

relationships are strictly one-to-one. This also implies that different views are of the same size.

For example, Figure 3.1 (a) shows a typical scenario of multi-view graph clustering, where the

same set of 12 data instances has 3 different views. Each view gives a different graph

representation of the instances.

However, for the eQTL mapping application, it is common to have cross-domain

relationships as shown in Figure 3.1 (b). This example illustrates several key properties that are

different from the traditional multi-view graph clustering scenario.

• An instance in one domain may be mapped to multiple instances in another domain. For

example, in Figure 3.1 (b), instance A⃝ in domain 1 is mapped to two instances 1⃝ and

2⃝ in domain 2. The cross-domain relationship is many-to-many rather than one-to-one.

For example, if we want to integrate protein-protein interaction (PPI) networks
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(Asur et al., 2007), multiple proteins may be synthesized from one gene and one gene

may contain many genetic variants.

• Mapping between cross-domain instances may be associated with weights, which is a

generalization of a binary relationship. As shown in Figure 3.1 (b), each cross-domain

mapping is coupled with a weight. Users may specify these weights based on their prior

knowledge.

• The cross-domain instance relationship may be a partial mapping. Graphs in different

domains may have different sizes. Some instance in one domain may not have

corresponding instance in another. As shown in Figure 3.1 (b), mapping between

instances in different domains is not complete.

In this chapter, we propose CGC (Co-regularized Graph Clustering), a flexible and robust

approach that is able to incorporate multiple sources to enhance graph clustering performance.

The proposed approach is robust even when the cross-domain relationships based on prior

knowledge are noisy. Besides, the model provides users with the extent to which the

cross-domain instance relationship violates the in-domain clustering structure, and thus enables

users to re-evaluate the consistency of the relationship. The chapter further studies the

trustworthiness of multi-source data, and extended the approach to enable it to automatically

identify noisy domains and assign smaller weights to them for integration.

3.2 The Problem

Suppose that we have d graphs, each from a domain in {D1,D2,...,Dd}. We use nπ to

denote the number of instances (nodes) in the graph from domain Dπ (1 ≤ π ≤ d). Each graph is

represented by an affinity (similarity) matrix. The affinity matrix of the graph in domain Dπ is

denoted as A(π) ∈ Rnπ×nπ
+ . In this chapter, we follow the convention and assume that A(π) is a

symmetric and non-negative matrix (Ng et al., 2001; Kuang et al., 2012). We denote the set of

pairwise cross-domain relationships as I = {(i, j)} where i and j are domain indices. For

example, I = {(1, 3), (2, 5)} contains two cross-domain relationships (mappings): the

relationship between instances in D1 and D3, and the relationship between instances in D2 and D5.
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Symbols Description
d The number of domains
Dπ The π-th domain
nπ The number of instances in the graph from Dπ

kπ The number of clusters in Dπ

A(π) The affinity matrix of graph in Dπ

I The set of cross-domain relationships
S(i,j) The relationship matrix between instances in Di and Dj

W(i,j) The confidence matrix of relationship matrix S(i,j)

H(π) The clustering indicator matrix of Dπ

α Confidence threshold of finding the global
cϕ Termination threshold for tabu search
λ Weights vector on the R regularizers for related domains
µ Clustering inconsistency vector

Table 3.1: Summary of symbols and their meanings

Each relationship (i, j) ∈ I is coupled with a matrix S(i,j) ∈ Rnj×ni

+ , indicating the (weighted)

mapping between instances in Di and Dj , where ni and nj represent the number of instances in

Di and Dj respectively. We use S
(i,j)
a,b to denote the weight between the a-th instance in Dj and the

b-th instance in Di, which can be either binary (0 or 1) or quantitative (any value between [0,1]).

Important notations are listed in Table 3.1.

Our goal is to partition each A(π) into kπ clusters while considering the co-regularizing

constraints implicitly represented by the cross-domain relationships in I.

3.3 Co-Regularized Multi-Domain Graph Clustering

In this section, we present the Co-regularized Graph Clustering (CGC) method. We model

cross-domain graph clustering as a joint matrix optimization problem. The proposed CGC

method simultaneously optimizes the empirical likelihood in multiple domains and take into

account the cross-domain relationships.

3.3.1 Objective Function

3.3.1.1 Single-Domain Clustering

Graph clustering in a single domain has been extensively studied. We adopt the widely

used non-negative matrix factorization (NMF) approach (Lee and Seung, 2000). In particular, we

use the symmetric version of NMF (Kuang et al., 2012; Ding et al., 2006) to formulate the

48



objective of clustering on A(π) as minimizing the objective function:

L(π) = ||A(π) −H(π)(H(π))T||2F (3.1)

where || · ||F denotes the Frobenius norm, H(π) is a non-negative matrix of size nπ × kπ, and kπ is

the number of clusters requested. We have H(π) = [h
(π)
1∗ ,h

(π)
2∗ , ...,h

(π)
nπ∗]

T ∈ Rnπ×kπ
+ , where each

h
(π)
a∗ (1 ≤ a ≤ nπ) represents the cluster assignment (distribution) of the a-th instance in domain

Dπ. For hard clustering, argmaxj h
(π)
aj is often used as the cluster assignment.

3.3.1.2 Cross-Domain Co-Regularization

To incorporate the cross-domain relationship, the key idea is to add pairwise

co-regularizers to the single-domain clustering objective function. We develop two loss functions

to regularize the cross-domain clustering structure. Both loss functions are designed to penalize

cluster assignment inconsistency with the given cross-domain relationships. The residual sum of

squares (RSS) loss requires that graphs in different domains are partitioned into the same number

of clusters. The clustering disagreement loss has no such restriction.

A). Residual sum of squares (RSS) loss function

We first consider the case where the number of clusters is the same in different domains,

i.e. k1 = k2 = ... = kd = k. For simplicity, we denote the instances in domain Dπ as

{x(π)1 , x
(π)
2 , ..., x

(π)
nπ }. If an instance x(i)a in Di is mapped to an instance x(j)b in Dj , then the

clustering assignments h(i)
a∗ and h

(j)
b∗ should be similar. We now generalize the relationship to

many-to-many. We use N (i,j)(x
(j)
b ) to denote the set of indices of instances in Di that are mapped

to x(j)b with positive weights, and |N (i,j)(x
(j)
b )| represents its cardinality. To penalize the

inconsistency of cross-domain cluster partitions, for the l-th cluster in Di, the loss function

(residual) for the b-th instance is

J (i,j)
b,l = (M(i,j)(x

(j)
b , l)− h

(j)
b,l )

2 (3.2)

where

M(i,j)(x
(j)
b , l) =

1

|N (i,j)(x
(j)
b )|

∑
a∈N (i,j)(x

(j)
b )

S
(i,j)
b,a h

(i)
a,l (3.3)

is the weighted mean of cluster assignment of instances mapped to x(j)b , for the l-th cluster.
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We assume every non-zero row of S(i,j) is normalized. By summing up Eq. (3.2) over all

instances in Dj and k clusters, we have the following residual of sum of squares loss function

J (i,j)
RSS =

k∑
l=1

nj∑
b=1

J (i,j)
b,l = ||S(i,j)H(i) −H(j)||2F (3.4)

B). Clustering disagreement (CD) loss function

When the number of clusters in different domains varies, we can no longer use the RSS

loss to quantify the inconsistency of cross-domain partitions. From the previous discussion, we

observe that S(i,j)H(i) in fact serves as a weighted projection of instances in domain Di to

instances in domain Dj . For simplicity, we denote the matrix H̃(i→j) = S(i,j)H(i). Recall that h(j)
a∗

represents a cluster assignment over kj clusters for the a-th instance in Dj . Then H̃
(i→j)
a∗

corresponds to H
(j)
a∗ for the a-th instance in domain Dj . The previous RSS loss compares them

directly to measure the clustering inconsistency. However, it is inapplicable to the case where

different domains have different numbers of clusters. To tackle this problem, we first measure the

similarity between H̃
(i→j)
a∗ and H̃

(i→j)
b∗ , and the similarity between H

(j)
a∗ and H

(j)
b∗ . Then we

measure the difference between these two similarity values. Taking Figure 3.1 (b) as an example.

Note that A⃝ and B⃝ in domain 1 are mapped to 2⃝ in domain 2, and C⃝ is mapped to 4⃝.

Intuitively, if the similarity between clustering assignments for 2⃝ and 4⃝ is small, the similarity

of clustering assignments between A⃝ and C⃝ and the similarity between B⃝ and C⃝ should also be

small. Note that symmetric NMF can handle both linearity and nonlinearity (Kuang et al., 2012).

Thus in this chapter, we choose a linear kernel to measure the in-domain cluster assignment

similarity, i.e., K(h
(j)
a∗ ,h

(j)
b∗ ) = h

(j)
a∗ (h

(j)
b∗ )

T. The cross-domain clustering disagreement loss

function is thus defined as

J (i,j)
CD =

nj∑
a=1

nj∑
b=1

(
K(H̃

(i→j)
a∗ , H̃

(i→j)
b∗ )−K(h

(j)
a∗ ,h

(j)
b∗ )
)2

= ||S(i,j)H(i)(S(i,j)H(i))T −H(j)(H(j))T||2F

(3.5)
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3.3.1.3 Joint Matrix Optimization

We can integrate the domain-specific objective and the loss function quantifying the

inconsistency of cross-domain partitions into a unified objective function

min
H(π)≥0(1≤π≤d)

O =
d∑

i=1

L(i) +
∑

(i,j)∈I

λ(i,j)J (i,j) (3.6)

where J (i,j) can be either J (i,j)
RSS or J (i,j)

CD . λ(i,j) ≥ 0 is a tuning parameter balancing between

in-domain clustering objective and cross-domain regularizer. When all λ(i,j)= 0, Eq. (3.6)

degenerates to d independent graph clusterings. Intuitively, the more reliable the prior

cross-domain relationship, the larger the value of λ(i,j).

3.3.2 Learning Algorithm

In this section, we present an alternating scheme to optimize the objective function in Eq.

(3.6); that is, we optimize the objective with respect to one variable while fixing others. This

procedure continues until convergence. The objective function is invariant under these updates if

and only if H(π)’s are at a stationary point (Lee and Seung, 2000). Specifically, the solution to the

optimization problem in Eq. (3.6) is based on the following two theorems, which are derived from

the Karush-Kuhn-Tucker (KKT) complementarity condition (Boyd and Vandenberghe, 2004).

Detailed theoretical analysis of the optimization procedure will be presented in the next section.

Theorem 2. For RSS loss, updating H(π) according to Eq. (3.7) will monotonically decrease the

objective function in Eq. (3.6) until convergence.

H(π) ← H(π) ◦
(
Ψ′(H(π))

Ξ′(H(π))

) 1
4

(3.7)

where
Ψ′(H(π)) = A(π)H(π) +

∑
(i,π)∈I

λ(i,π)

2
S(i,π)H(i)

+
∑

(π,j)∈I

λ(π,j)

2
(S(π,j))TH(j)

(3.8)

and
Ξ′(H(π)) = H(π)(H(π))TH(π) +

∑
(i,π)∈I

λ(i,π)

2
H(π)

+
∑

(π,j)∈I

λ(π,j)

2
(S(π,j))TS(π,j)H(π)

(3.9)
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Theorem 3. For CD loss, updating H(π) according to Eq. (3.10) will monotonically decrease the

objective function in Eq. (3.6) until convergence.

H(π) ← H(π) ◦
(
Ψ(H(π))

Ξ(H(π))

) 1
4

(3.10)

where
Ψ(H(π)) = A(π)H(π)

+
∑

(i,π)∈I

λ(i,π)S(i,π)H(i)(H(i))T(S(i,π))TH(π)

+
∑

(π,j)∈I

λ(π,j)(S(π,j))TH(j)(H(j))TS(π,j)H(π)

(3.11)

and

Ξ(H(π)) = H(π)(H(π))TH(π)

+
∑

(i,π)∈I

λ(i,π)H(π)(H(π))TH(π)

+
∑

(π,j)∈I

λ(π,j)(S(π,j))TS(π,j)H(π)(H(π))T(S(π,j))TS(π,j)H(π)

(3.12)

where ◦, [·]
[·] and (·) 1

4 are element-wise operators.

Based on Theorem 2 and Theorem 3, we develop the iterative multiplicative updating

algorithm for optimization and summarize it in Algorithm 1.

3.3.3 Theoretical Analysis

3.3.3.1 Derivation

We derive the solution to Eq. (3.6) following the constrained optimization theory

(Boyd and Vandenberghe, 2004). Since the objective function is not jointly convex, we adopt an

effective alternating minimization algorithm to find a locally optimal solution. We prove Theorem

3 in the following. The proof of Theorem 2 is similar and hence omitted.

We formulate the Lagrange function for optimization

L(H(1),H(2), ...,H(d))

=
d∑

i=1

||A(i) −H(i)(H(i))T||2F

+
∑

(i,j)∈I

λ(i,j)||S(i,j)H(i)(S(i,j)H(i))T −H(j)(H(j))T||2F

(3.13)
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Algorithm 1: Co-regularized Graph Clustering (CGC)
Input: graphs from d domains, each of which is represented by an affinity matrix A(π),

kπ(number of clusters in domain Dπ), a set of pairwise relationships I and the
corresponding matrices {S(i,j)}, parameters {λ(i,j)}

Output: clustering results for each domain (inferred from H(π))

1 begin
2 Normalize all graph affinity matrices by Frobenius norm;
3 foreach (i, j) ∈ I do
4 Normalize non-zero rows of S(i,j);
5 end
6 for π ← 1 to d do
7 Initialize H(π) with random values between (0,1];
8 end
9 repeat

10 for π ← 1 to d do
11 Update H(π) by Eq. (3.7) or (3.10);
12 end
13 until convergence;
14 end

Without loss of generality, we only show the derivation of the updating rule for one domain π

(π ∈ [1, d]). The partial derivative of Lagrange function with respect to H(π) is:

∇H(π)L =

−A(π)H(π) +H(π)(H(π))TH(π)

+
∑

(π,j)∈I

λ(π,j)(S(π,j))TS(π,j)H(π)(H(π))T(S(π,j))TS(π,j)H(π)

−
∑

(π,j)∈I

λ(π,j)(S(π,j))TH(j)(H(j))TS(π,j)H(π)

−
∑

(i,π)∈I

λ(i,π)S(i,π)H(i)(H(i))T(S(i,π))TH(π)

+
∑

(i,π)∈I

λ(i,π)H(π)(H(π))TH(π)

(3.14)

Using the Karush-Kuhn-Tucker (KKT) complementarity condition (Boyd and Vandenberghe,

2004) for the non-negative constraint on H(π), we have

∇H(π)L ◦H(π) = 0 (3.15)

The above formula leads to the updating rule for H(π) in Eq. (3.10).
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3.3.3.2 Convergence

We use the auxiliary function approach (Lee and Seung, 2000) to prove the convergence

of Eq. (3.10) in Theorem 3. We first introduce the definition of auxiliary function as follows:

Definition 3.3.1. Z(h, h̃) is an auxiliary function for L(h) if the conditions

Z(h, h̃) ≥ L(h) and Z(h, h) = L(h), (3.16)

are satisfied for any given h, h̃ (Lee and Seung, 2000).

Lemma 2. If Z is an auxiliary function for L, then L is non-increasing under the update

(Lee and Seung, 2000).

h(t+1) = argmin
h

Z(h, h(t)) (3.17)

Theorem 4. Let L(H(π)) denote the sum of all terms in L containing H(π). The following

function
Z(H(π), H̃(π)) = −2

∑
klm

A
(π)
ml P (k, l,m)

+ (1 +
∑

(i,π)∈I

λ(i,π))
∑
kl

(
H̃(π)(H̃(π))TH̃(π)

)
kl
·
(H

(π)
kl )4

(H̃
(π)
kl )3

− 2
∑

(i,π)∈I

λ(i,π)
∑
klm

(
S(i,π)H(i)(H(i))T(S(i,π))T

)
lm

P (k, l,m)

+
∑

(π,j)∈I

λ(π,j)
∑
kl

(Q(j))kl ·
(H

(π)
lk )4

(H̃
(π)
lk )3

− 2
∑

(π,j)∈I

λ(π,j)
∑
klm

(
(S(π,j))TH(j)(H(j))TS(π,j)

)
lm

P (k, l,m)

(3.18)

is an auxiliary function for L(H(π)), where P (k, l,m) = H̃
(π)
lk H̃

(π)
mk

(
1 + log

H
(π)
lk H

(π)
mk

H̃
(π)
lk H̃

(π)
mk

)
and

Q(j) = (H̃(π))T(S(π,j))TS(π,j)H̃(π)(H̃(π))T(S(π,j))TS(π,j). Furthermore, it is a convex function in

H(π) and has a global minimum.

Theorem 4.3 can be proved using a similar idea to that in (Ding et al., 2006) by validating

Z(H(π), H̃(π)) ≥ L(H(π)), Z(H(π),H(π)) = L(H(π)), and the Hessian matrix

∇∇H(π)Z(H(π), H̃(π)) ≽ 0. Due to space limitation, we omit the details.

54



Based on Theorem 4.3, we can minimize Z(H(π), H̃(π)) with respect to H(π) with H̃(π)

fixed. We set ∇H(π)Z(H(π), H̃(π)) = 0, and get the following updating formula

H(π) ← H̃(π) ◦

(
Ψ(H̃(π))

Ξ(H̃(π))

) 1
4

,

which is consistent with the updating formula derived from the aforementioned KKT condition.

From Lemma 4.2 and Theorem 4.3, for each subsequent iteration of updating H(π), we

have L((H(π))0) = Z((H(π))0, (H(π))0) ≥ Z((H(π))1, (H(π))0) ≥ Z((H(π))1, (H(π))1) =

L((H(π))1) ≥ ... ≥ L((H(π))Iter). Thus L(H(π)) monotonically decreases. This is also true for the

other variables. Since the objective function Eq. (3.6) is lower bounded by 0, the correctness of

Theorem 3 is proved. Theorem 2 can be proven with a similar strategy.

3.3.3.3 Complexity Analysis

The time complexity of Algorithm 1 (for both loss functions) is O(Iter · d|I|(ñ3 + ñ2k̃)),

where ñ is the largest nπ (1 ≤ π ≤ d), k̃ is the largest kπ and Iter is the number of iterations

needed before convergence. In practice, |I| and d are usually small constants. Moreover, from Eq.

(3.10) and Eq. (3.7), we observe that the ñ3 term is from the matrix multiplication (S(π,j))TS(π,j).

Since S(π,j) is the input matrix and often very sparse, we can compute (S(π,j))TS(π,j) in advance

in sparse form. In this way, the complexity of Algorithm 1 is reduced to O(Iter · ñ2k̃).

3.3.4 Finding Global Optimum

The objective function Eq. (3.6) is a fourth-order non-convex function with respect to

H(π). The achieved stationary points (satisfying KKT condition in Eq. (3.15)) may not be the

global optimum. Many methods have been proposed in the literature to avoid local optima, such

as Tabu search (Glover and McMillan, 1986), particle swarm optimization (PSO) (Dorigo et al.,

2008), and estimation of distribution algorithm (EDA) (Larraanaga and Lozano, 2001). Since our

objective function is continuously differentiable over the entire parameter space, we develop a

learning algorithm for global optimization by population-based Tabu Search. We further develop

a parallelized version of the learning algorithm.
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3.3.4.1 Tabu Search Based Algorithm for Finding Global Optimum

In Algorithm 1, we find a local optima for H(π)(0 ≤ π ≤ d) from the starting point

initialized in lines 6 to 8. Here, we treat all H(π)’s as one point H (for example, converting them

into one vector). Then, the iterations for finding global optimum are summarized below.

1. Given the probability ϕ that a random point converges to the global minimum and a

confidence level α, set termination threshold cϕ according to equation (3.23). Initialize

counter c := 0, and randomly chose one initial point; then use Algorithm 1 to find the

corresponding local optima.

2. Mark this local optima point as a Tabu point Tc, and keep track of the “global optimum”

found so far in H∗, set counter c := c+ 1.

3. If c ≥ cϕ, return;

4. Randomly choose another point far from the Tabu points, and use Algorithm 1 to find

the corresponding local optima, go to Step 2.

In the above steps, we try to avoid converging to any known local minimums by applying

the dropping and re-selecting scheme. The nearer a point lies to a Tabu point, the less likely it is

to get selected as a new initial state. As more iterations are taken, the risk that all iterations

converge to local optima drops substantially. Our method not only keeps track of local

information (KKT points), but also does global search so that the probability of finding the

optimal minima significantly increases. Such Markov chain process ensures that the algorithm

converges to the global minimum with probability 1 when cϕ is large enough.

3.3.4.2 Lower Bound of Termination Threshold cϕ

To find the global optimum with confidence at least α, the probability of all searched cϕ

points in local minimum should be less than 1− α, i.e.,

cϕ∏
i=1

p(point i converge to local minima) ≤ 1− α. (3.19)
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ϕ 0.5 0.1 0.01 0.001 0.5 0.1 0.01 0.001 0.0001
α 0.99 0.99 0.99 0.99 0.999 0.999 0.999 0.999 0.999
cϕ 4 9 30 96 4 11 37 118 372

Table 3.2: Population size and termination threshold for the Tabu search algorithm

Given ϕ, the probability of a random point that converges to global minimum, we know

that the first point has probability 1− ϕ to converge to a local one. If the system lacks memory

and never keeps records of existing points, all points would have the same converging probability

to the global minimum. However, we mark each local optima point as a Tabu point, and try to

locate further chosen ones far from existing local minima. Such operation decreases the

probability of getting into the same local minimum. It results in an increasing of the global

converging probability by a factor of 1− ϕ in each step, i.e.,

p(point i converges to local minima) = (1− ϕ)p(point i− 1 converges to local minima).

Substituting this and p(first point converges to local minima) = 1− ϕ into equation (3.19),

we have

cϕ∏
i=1

(1− ϕ)i ≤ 1− α. (3.20)

Thus we have

cϕ ≥
√
2 log1−ϕ(1− α) +

1

4
− 1

2
. (3.21)

Table 3.2 shows the value of cϕ for some typical choices of ϕ and α. We can see that the

proposed CGC algorithm converges to the global optimum with a small number of steps.

3.3.4.3 Parallelizing the Global Optimum Search Process

Assume that we have N processors (which may not be identical) that can run in parallel.

A simple version is to randomly choose N (N >1) points in each step (that are all far from Tabu

points), and to find N local optima in parallel using Algorithm 1 (i.e., population size = N ). The

termination threshold can be derived in a similar way. Initially, the probability of all N nodes

converging to local minima is (1−ϕ)N , and such probability is decreasing by a factor of (1−ϕ)N

for each step. Thus, the termination threshold cϕ should agree with the following equation:
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cϕ∏
i=1

(1− ϕ)iN ≤ 1− α. (3.22)

This results in the following expression of the threshold:

cϕ ≥
√

2

N
log1−ϕ(1− α) +

1

4
− 1

2
. (3.23)

This algorithm can speed up by a factor of
√
N (with N being the number of processors).

3.3.5 Re-Evaluating Cross-Domain Relationship

In real applications, the cross-domain instance relationship based on prior knowledge may

contain noise. Thus, it is crucial to allow users to evaluate whether the provided relationships

violate any single-domain clustering structures. In this section, we develop a principled way to

achieve this goal. In fact, we only need to slightly modify the co-regularization loss functions in

Section 3.3.1.2 by multiplying a confidence matrix W(i,j) to each S(i,j). Each element in the

confidence matrix W(i,j) is initialized to 1. For RSS loss, we give the modified loss function

below (the case for CD loss is similar).

J (i,j)
W = ||(W(i,j) ◦ S(i,j))H(i) −H(j)||2F (3.24)

Here, ◦ is element-wise product. By optimizing the following objective function, we can learn the

optimal confidence matrix

min
W≥0,H(π)≥0(1≤π≤d)

O =
d∑

i=1

L(i) +
∑

(i,j)∈I

λ(i,j)J (i,j)
W (3.25)

Eq. (3.25) can be optimized by iteratively implementing following two steps until convergence: 1)

replace S(π,j) and S(i,π) in Eq. (3.7) with (W(π,j) ◦ S(π,j)) and (W(i,π) ◦ S(i,π)) respectively, and

use the replaced formula to update each H(π); 2) use the following formula to update each W(i,j)

W(i,j) ←W(i,j) ◦

√
(H(j)(H(i))T) ◦ S(i,j)

((W(i,j) ◦ S(i,j))H(i)(H(i))T) ◦ S(i,j)
(3.26)

Here,
√
· is element-wise square root. Note that many elements in S(i,j) are 0. We only

update the elements in W(i,j) whose corresponding elements in S(i,j) are positive. In the

following, we only focus on such elements. The learned confidence matrix minimizes the
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Figure 3.2: Focused domain π and 5 domains related to it

inconsistency between the original single-domain clustering structure and the prior cross-domain

relationship. Thus for any element W(i,j)
a,b , the smaller the value, the stronger the inconsistency

between S
(i,j)
a,b and single-domain clustering structures in Di and Dj . Therefore, we can sort the

values of W(i,j) and report to users the smallest elements and their corresponding cross-domain

relationships. Accurate relationship can help to improve the overall results. On the other hand, an

inaccurate relationship may provide wrong guidance of the clustering process. Our method allows

the users to examine these critical relationships and improve the accuracy of the results.

3.3.6 Assigning Optimal Weights Associated with Focused Domain

In Section 3.3.1.3, we use parameter λ(i,j) ≥ 0 to balance between in-domain clustering

objective and cross-domain regularizer. Typically, the parameter is given based on the prior

knowledge of the cross-domain relationship. Therefore, the more reliable the prior cross-domain

relationship, the larger the value of λ(i,j). In real applications, such prior knowledge may not be

available. In this case, we need an effective approach to automatically balance different

cross-domain regularizers. This problem, however, is hard to solve due to the arbitrary topologies

of relationships among domains. To make it feasible, we simplify the problem to the case where

the user focuses on the clustering accuracy of only one domain at a time.

As illustrated in Figure 3.2, domain π is the focused domain. There are 5 other domains

related to it. These related domains serve as side information. As such, we can do a single domain

clustering for all related domains to obtain each H(i), (1 ≤ i ≤ 5), then use these auxiliary

domains to improve the accuracy of graph partition for domain π. We make a reasonable
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assumption that the associated weights add up to 1, i.e.,
∑5

j=1 λ
(π,j) = 1. Formally, if domain π is

the focused domain, then the following objective function can be used to automatically assign

optimal weights
min

H(π),λ
O = L(π) +

∑
(π, kj) ∈ I

1 ≤ j ≤ R

λ(π,tj)J (π,tj) + γ||λ||22

s.t. H(π) ≥ 0,λ ≥ 0,λT1 = 1

(3.27)

where λ = [λ(π,t1), λ(π,t2), ..., λ(π,tR)]T are the weights on the R regularizers for related domains,

1 ∈ RR×1 is a vector of all ones, γ > 0 is used to control the complexity of λ. By adding the

ℓ2-norm, Eq. 3.27 avoids the trivial solution. Eq. 3.27 can selectively integrate auxiliary domains

and assign smaller weights to noisy domains. This will be beneficial to the graph partition

performance of the focused domain π.

Eq. 3.27 can be solved using an alternating scheme similar as Algorithm 1, in which H(π)

and λ are iteratively considered as constants. Specifically, in the first step, we fix λ and update

H(π) using similar strategy as in Algorithm 1, then we fix H(π) and optimize λ. For simplicity, we

denote µ = [µt1 , µt2 , ..., µtR ]
T, where µr = J (π,tr). Since we fix H(π) at this step, the first term in

Eq. 3.27 is a constant and can be ignored, then we can rewrite 3.27 as follows:

min
λ
Õ = λTµ+ γλTλ

s.t. λ ≥ 0,λT1 = 1.

(3.28)

Eq. 3.28 is a quadratic optimization problem with respect to λ, and can be formulated as a

minimization problem

Ô(λ,β, θ) = λTµ+ γλTλ− λTβ − θ(λT1− 1) (3.29)

where β = [β1, β2, ..., βR]
T ≥ 0 and θ ≥ 0 are the Karush-Kuhn-Tucker (KKT) multipliers

(Boyd and Vandenberghe, 2004). The optimal λ∗ should satisfy the following four conditions:

1. Stationary condition: ∇λ∗Ô(λ∗,β, θ) = µ+ 2γλ∗ − β − θ1 = 0

2. Feasible condition: λ∗r ≥ 0,
∑R

r=1 λ
∗
r − 1 = 0

3. Dual feasibility: βr ≥ 0, 1 ≤ r ≤ R

4. Complementary slackness: βrλ∗r = 0, 1 ≤ r ≤ R

60



From the stationary condition, λr can be computed as

λr =
βr + θ − µr

2γ
(3.30)

We observed that λr depends on the specification of βr and γ, similar as in (Yu et al., 2013), we

can divide the problem into three cases:

1. When θ − µr > 0, since βr ≥ 0, we get λr > 0. From the complementary slackness, we

know that βrλr = 0, then we have βr = 0, and therefore, λr = θ−λr

2γ
.

2. When θ − µr < 0, since λr ≥ 0, then we have βr > 0. Since βrλr = 0, we have λr = 0.

3. When θ − µr = 0, since βrλr = 0 and λr = βr

2γ
, then we have βr = 0 and λr = 0.

Therefore, if we sort µr by ascending order, µ1 ≤ µ2 ≤ ... ≤ µR, then there exists θ̃ > 0 such that

θ̃ − µp > 0 and θ̃ − µp+1 ≤ 0. Then λr can be calculated with following formula:

λr =


θ−µr

2γ
, if r ≤ p

0. else

(3.31)

Eq. 3.31 implies the intuition of the optimal weights assignment. That is when µr is large, which

means the clustering inconsistency is high between domain π and tr. The inconsistency may

come from either the noisy data in domain kr or noise in cross-domain relationship matrix S(π,tr).

At this time, Eq. 3.31 will assign a small weight λr so that the model is less likely to suffer from

those noisy domains and instead get the most applicable clustering result.

Considering that
∑p

r=1 = 1, we can calculate θ as follows

θ =
2γ +

∑p
r=1 µr

p
(3.32)

Thus, we can search the value of p from R to 1 decreasingly (Yu et al., 2013). Once θ − µp > 0,

then we find the value of p. After we obtain the value of p, we can assign values for each

λr(1 ≤ r ≤ R) according to Eq. 3.31. We observe that when γ is very large, θ will be large, and
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Algorithm 2: Assigning Optimal Weights Associated with Focused Domain π
Input: graphs from R domains that are associated with the focused domain π, each of

which is represented by an affinity matrix A(tr), (1 ≤ r ≤ R), kr(number of clusters
in domain Dr), a set of pairwise relationships I and the corresponding matrices
{S(π,kr)}, γ.

Output: clustering result for domain π(inferred from H(π)), optimal weights λr,
(1 ≤ r ≤ R).

1 begin
2 Do single domain clustering for all associated domains tr to get H(tr), (1 ≤ r ≤ R);
3 for r ← 1 to R do
4 λr ← 1/R;
5 end
6 repeat
7 Use Algorithm 1 to infer H(π);
8 for r ← 1 to R do
9 µr ← J (π,tr);

10 end
11 Sort µr(1 ≤ r ≤ R) in increasing order;
12 p← R + 1;
13 do
14 p← p− 1;

15 θ ← 2γ+
∑p

r=1 µr

p
;

16 while θ − µp ≤ 0;
17 for r ← 1 to p do
18 λr ← θ−µr

2γ
;

19 end
20 for r ← p+ 1 to R do
21 λr ← 0;
22 end
23 until convergence;
24 end

all domains will be selected, i.e., each λr will be a small but non-zero value. In contrast, when γ

is very small, at least one domain (domain t1) will be selected, and other λr’s (r ̸= 1) will be 0.

Hence, we can use γ to control how many auxiliary domains will be integrated for graph partition

for domain π. Specifically, the detailed algorithm for assigning optimal weights associated with

focused domain π is shown in Algorithm 2.
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Identifier #Instances #Attributes
Iris 100 4

Wine 119 13
Ionosphere 351 34

WDBC 569 30

Table 3.3: The UCI benchmarks

Algorithm 2 alternatively optimizes Hπ (line 7) and λ (line 8–22). Since both steps

decrease the value of the objective function (3.27) and the objective function is lower bounded by

0, the convergence of the algorithm is guaranteed.

3.4 Experimental Results

In this section, we present extensive experimental results on evaluating the performance of

our method.

3.4.1 Effectiveness Evaluation

We evaluate the proposed method by clustering benchmark data sets from the UCI

Archive (Asuncion and Newman., 2007). We use four data sets with class label information,

namely Iris, Wine, Ionosphere and Breast Cancer Wisconsin (Diagnostic) data sets. They are

from four different domains. To make each data set contain the same number of clusters, we

follow the preprocessing step in (Wang and Davidson, 2010) to remove the SETOSA class from

the Iris data set and Class 1 from the Wine data set. The statistics of the resulting data sets are

shown in Table 3.3.

For each data set, we compute the affinity matrix using the RBF kernel

(Boyd and Vandenberghe, 2004). Our goal is to examine whether cross-domain relationships can

help to enhance the accuracy of the clustering results. We construct two cross-domain

relationships: Wine-Iris and Ionosphere-WDBC. The relationships are generated based on the

class labels, i.e., positive (negative) instances in one domain can only be mapped to positive

(negative) instances in another domain. We employ the widely used Clustering Accuracy

(Xu et al., 2003) to measure the quality of the clustering results. Parameter λ is set to 1

throughout the experiments. Since no existing method can handle the multi-domain
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Figure 3.3: Clustering results on UCI datasets(Wine v.s. Iris, Ionosphere v.s. WDBC)

co-regularized graph clustering problem, we compare our CGC method with three representative

single-domain methods: symmetric NMF (Kuang et al., 2012), K-means (Späth, 1985) and

spectral clustering (Ng et al., 2001). We report the accuracy when varying the available

cross-domain instance relationships (from 0 to 1 with 10% increment). The accuracy shown in

Figure 3.3 is averaged over 100 sets of randomly generated relationships.

We have several key observations from Figure 3.3. First, CGC significantly outperforms

all single-domain graph clustering methods, even though single-domain methods may perform

differently on different data sets. For example, symmetric NMF works better on Wine and Iris

data sets, while K-means works better on Ionosphere and WDBC data sets. Note that when the

percentage of available relationships is 0, CGC degrades to symmetric NMF. CGC outperforms

all alternative methods when cross-domain relationships are available. This demonstrates the

effectiveness of the cross-domain relationship co-regularized method. We also notice that the

performance of CGC dramatically improves when the available relationships increase from 0 to

30%, suggesting that our method can effectively improve the clustering result even with limited

information on cross-domain relationship. This is crucial for many real-life applications. Finally,

we can see that RSS loss is more effective than CD loss. This is because RSS loss directly

measures the weights of clustering assignment, while the CD loss does this indirectly by using
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Figure 3.4: Clustering with inconsistent cross-domain relationship

linear kernel similarity first (see Section 3.3.1). Thus, for a given percentage of cross-domain

relationships, the method using RSS loss gains more improvements over the single-domain

clustering than that using CD loss.

3.4.2 Robustness Evaluation

In real-life applications, both graph data and cross-domain instance relationship may

contain noise. In this section, we 1) evaluate whether CGC is sensitive to the inconsistent

relationships, and 2) study the effectiveness of the relationship re-evaluation strategy proposed in

Section 3.3.5. Due to space limitations, we only report the results on Wine-Iris data set used in

the previous section. Similar results can be observed in other data sets.

We add inconsistency into matrix S with ratio r. The results are shown in Figure 3.4. The

percentage of available cross-domain relationships is fixed at 20%. Single-domain symmetric

NMF is used as a reference method. We observe that, even when the inconsistency ratio r is close

to 50%, CGC still outperforms the single-domain symmetric NMF method. This indicates that

our method is robust to noisy relationships. We also observe that, when r is very large, CD loss

works better than RSS loss, although when r is small, RSS loss outperforms the CD loss (as

discussed in Section 3.4.1). When r reaches 1, the relationship is full of noise. From the figure,

we can see that CD loss is immune to noise.

In Section 3.3.5, we provide a method to report the cross-domain relationships that violate

the single-domain clustering structure. We still use the Wine-Iris data set to evaluate its

65



0 20 40 60 80 100 119
0

20

40

60

80

100

Domain 1

D
o
m

a
in

 2

C
lu

s
te

r1
  
  
  
  
  
  
  
 C

lu
s
te

r2

0

0.2

0.4

0.6

0.8

1
Cluster1 Cluster2

(a) S

0 20 40 60 80 100 119
0

20

40

60

80

100

Domain 1

D
o
m

a
in

 2

C
lu

s
te

r1
  
  
  
  
  
  
  
 C

lu
s
te

r2

0

0.2

0.4

0.6

0.8

1
Cluster1 Cluster2

(b) W

Figure 3.5: Relationship matrix S and confidence matrix W on Wine-Iris data set

Group Id Label
3 comp.os.ms-windows.misc
4 comp.sys.ibm.pc.hardware
5 comp.sys.mac.hardware
9 rec.motorcycles

10 rec.sport.baseball
11 rec.sport.hockey

Table 3.4: The newsgroup data

effectiveness. As shown in Figure 3.5, in the relationship matrix S, each black point represents a

cross-domain relationship (all with value 1) mapping classes between the two domains. We leave

the bottom right part of the matrix blank intentionally so that the inconsistent relationships only

appear between instances in cluster 1 of domain 1 and cluster 2 of domain 2. The learned

confidence matrix W is shown in the figure (entries normalized to [0,1]). The smaller the value is,

the stronger the evidence that the cross-domain relationship violates the original single-domain

clustering structure. Reporting these suspicious relationships to users will allow them to examine

the cross-domain relationships that are likely resulting from inaccurate prior knowledge.

3.4.3 Binary v.s. Weighted Relationship

In this section, we demonstrate that CGC can effectively incorporate weighted

cross-domain relationship, which may carry richer information than binary relationship. The 20

Newsgroup data set contains documents organized by a hierarchy of topic classes. We choose 6

groups as shown in Table 3.4. For example, at the top level, the 6 groups belong to two topics,
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computer (groups {3,4,5}) or recreation (groups {9,10,11}). The computer related data sets can

be further partitioned into two subcategories, os (group 3) and sys (groups {4, 5}). Similarly, the

recreation related data sets consist of subcategories motocycles (group 9) and sport (groups 10

and 11).

We generate two domains; each contains 300 documents randomly sampled from the 6

groups (50 documents from each group). To generate binary relationships, two articles are related

if they are from the same high-level topic, i.e., computer or recreation, as shown in Figure 3.6(a).

Weighted relationships are generated based on the topic hierarchy. Given two group labels, we

compute the longest common prefix. The weight is assigned to be the ratio of the length of the

common prefix over the length of the shorter of the two labels. The weighted relationship matrix

is shown in Figure 3.6(b). For example, if two documents come from the same group, we set the

corresponding entry to 1; if one document is from rec.sport.baseball and the other from

rec.sport.hockey, we set the corresponding entry to 0.67; if they do not share any label term at all,

we set the entry to 0.
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Figure 3.6: Binary and weighted relationship matrices

We perform experiments using binary and weighted relationships respectively. The

affinity matrix of documents is computed based on cosine similarity. We cluster the data set into

either 2 or 6 clusters and results are shown in Figure 3.7. We observe that when each domain is

partitioned into 2 clusters, the binary relationship outperforms the weighted one. This is because

the binary relationship better represents the top-level topics, computer and recreation. On the
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other hand, for the domain partitioned into 6 clusters, the weighted relationship performs

significantly better than the binary one. This is because weights provide more detailed

information on cross-domain relationships than the binary relationships.
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Figure 3.7: Clustering results on the newsgroup data set with binary or weighted relationships

3.4.4 Evaluation of Assigning Optimal λ’s Associated with Focused Domain

In this section, we evaluate the effectiveness of the algorithm proposed in Section 3.3.6 to

automatically balance different cross-domain regularizers. We perform evaluation using the same

setting as in Figure 3.2. We have 6 different domains; each contains 300 documents randomly

sampled from the 6 groups (50 documents from each group). Domain π is the one on which the

user focuses. There are 5 other domains related to it. Each has randomly selected 20% available

cross-domain instance relationships.

Figure 3.8 shows the clustering accuracy of the 5 auxiliary domains and the focused

domain π using different methods (γ = 0.05). We observed that for the focused domain π, the

CGC algorithm with equal weights (λr=1/5) for regularizers outperforms the single domain

clustering (NMF). The CGC algorithm with optimal weights inferred by the algorithm in Section

3.3.6 outperforms the equal weights setting. This demonstrates the effectiveness of the proposed
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Figure 3.8: Clustering accuracy of the auxiliary(1–5) and the focused domains (γ = 0.05)

algorithm. In Figure 3.10, we show the clustering accuracy of the case that γ = 0.1. Similar

observation can be made.

Figure 3.9 reports the optimal weights (λr) and the corresponding clustering inconsistency

µr of each auxiliary domain when γ = 0.05. Clearly, the higher clustering inconsistency between

domains r and π, the smaller weight will be assigned to r. These auxiliary domains with large µr

are treated as noisy domains. In Figure 3.9, only domain 1 and 4 are left when γ is 0.05.

We can further use γ to control how many auxiliary domains will be integrated for graph

partition for domain π. Figure 3.11 shows the optimal weights assignments when γ = 0.1 and

γ = 0.15 respectively. We observed that when γ is large, all domains will be selected, i.e., each

λr will be a small but non-zero value. In contrast, when γ is small, fewer domains will be selected

such as shown in Figure 3.9. This is consistent with what has been discussed in Section 3.3.6.

3.4.5 Protein Module Detection by Integrating Multi-Domain Heterogenous Data

In this section, we apply the proposed method to detect protein functional modules

(Hub and de Groot, 2009). The goal is to identify clusters of proteins that have strong

interconnection with each other. A common approach is to cluster the protein-protein interaction

(PPI) networks (Asur et al., 2007). We show that, by integrating multi-domain heterogeneous

information, such as gene co-expression network (Horvath and Dong, 2008) and genetic
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Figure 3.9: Optimal weights (λr) and the corresponding µr (γ = 0.05)
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Figure 3.10: Clustering accuracy of auxiliary domains 1–5 and the focused domain (γ = 0.1)
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Figure 3.11: Optimal weights (λr) of auxiliary domains 1–5 with different γ
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Figure 3.12: PPI network, gene co-expression network, genetic interaction network.

interaction network (Cordell, 2009), the performance of the detection algorithm can be

dramatically improved.

We download the widely used human PPI network from BioGrid

(http://thebiogrid.org/download.php). Three Hypertension related gene expression data sets are

downloaded from Gene Expression Ominbus (http://www.ncbi.nlm.nih.gov/gds) with ids

GSE2559, GSE703, and GSE4737. In total, 5412 genes are included in all three data sets used to

construct gene co-expression network. Pearson correlation coefficients(normalized between [0 1])

are used as the weights on edges between genes. The genetic interaction network is constructed

using a large-scale Hypertension genetic data (Feng and Zhu, 2010), which contains 490032

genetic markers across 4890 (1952 disease and 2938 healthy) samples. We use 1 million

top-ranked genetic marker-pairs to construct the network, and the test statistics are used as the

weights on the edges between markers (Zhang et al., 2010). The constructed heterogenous

networks are shown in Figure 3.12. The relationship between genes and genetic markers is

many-to-many, since multiple genetic markers may be covered by a gene, and each marker may

be covered by multiple genes due to the overlapping between genes. The relationship between

proteins and genes is one-to-one.

71



31 

2

Genetic 

interaction 

network 

Gene co-

expression 

network 1 

Gene co-

expression 

network 2 

Gene co-

expression 

network 3 

(a) star network 1

54 

6

PPI 

network 

Gene co-

expression 

network 1 

Gene co-

expression 

network 2 

Gene co-

expression 

network 3 

(b) star network 2

Figure 3.13: Two star networks for inferring optimal weights

We apply CGC (with RSS loss) to cluster the generated multi-domain graphs with two

different settings: (1) equal weights for each cross-domain regularizer; (2) optimal weights for

each cross-domain relationship. For the first setting, we simply set weights for each cross-domain

regularizer to 1. For the second setting, we consider Figure 3.12 as the combination of the two

star networks. They have been shown in Figure 3.13. In the first star network, genetic interaction

network is the focused domain. In the second star network, PPI network is the focused domain.

Then, we execute the algorithm proposed in Section 3.3.6 on the two star networks respectively to

assign optimal λ’s. Finally, we use these optimal λ’s for clustering.

We use the standard Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003) to

evaluate the significance of the inferred clusters. In particular, for each inferred cluster

(protein/gene set) T , we identify the most significantly enriched Gene Ontology categories

(The Gene Ontology Consortium, 2000; Cheng et al., 2012). The significance, or p-value, is

determined by the Fisher’s exact test. The raw p-values are further calibrated to correct for the

multiple testing problem (Westfall and Young, 1993). To compute calibrated p-values for each T ,

we perform a randomization test, wherein we apply the same test to 1000 randomly created gene

sets that have the same number of genes as T .

The calibrated p-values of the gene sets learned by CGC and single-domain graph

clustering methods, symmetric NMF (Kuang et al., 2012), Markov clustering (van Dongen, 2000)

and spectral clustering, when applied on PPI network, are shown in Figure 3.14. The clusters are
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Method Number of significant modules
Markov Clustering 21
Spectral Clustering 44
Symmetric NMF 77

CGC(equal weights) 84
CGC(optimal weights) 87

Table 3.5: GO enrichment analysis of the gene sets identified by different methods

Method Number of significant modules
LMF (Tang et al., 2009) 13

CSC (Kumar et al., 2011) 15
MO-Pareto (Davidson et al., 2013) 19

Table 3.6: Number of identified protein modules by different methods.

arranged in ascending order of their p-values. As can be seen from the figure, by integrating three

types of heterogeneous networks, CGC achieves better performance than the single-domain

methods. Table 3.5 shows the number of significant (calibrated p-value ≤ 0.05) modules

identified by different methods. We find that CGC reports more significant functional modules

than the single-domain methods. The CGC model using optimal weights reports more significant

functional modules than those using equal weights. We also apply existing state-of-the-art

multi-view graph clustering methods (Kumar et al., 2011; Tang et al., 2009; Davidson et al.,

2013) on the gene co-expression networks and PPI network. Since these four networks are of the

same size, multi-view method can be applied. LMF (Tang et al., 2009) used a linked matrix

factorization model to do multi-view graph clustering. CSC (Kumar et al., 2011) used a

centroid-based co-regularized model to do multi-view spectral clustering. MO-Pareto

(Davidson et al., 2013) designed a multi-objective optimization model to do multi-view spectral

clustering and solve it using Pareto optimization. In total, fewer than 20 significant modules are

identified by multi-view graph clustering algorithms on gene co-expression networks and PPI

network. This is because the gene expression data are very noisy on this data set. Multi-view

graph clustering methods are forced to find one common clustering assignment over different data

sets and thus are more sensitive to noise.
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Figure 3.16: Objective function values of 100 runs with random initializations (newsgroup data)
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Figure 3.17: Number of runs used for finding global optima

3.4.6 Performance Evaluation

In this section, we study the performance of the proposed methods: the number of

iterations before converging to a local optima and the number of runs needed to find the global

optima.

Figure 3.15 shows the value of the objective function with respect to the number of

iterations on different data sets. We observe that the objective function value decreases steadily

with more iterations. Usually, fewer than 100 iterations are needed before convergence. Next, we

study the proposed population-based Tabu search algorithm for finding global optima using the

newsgroup data sets. Figure 3.16 shows the objective function values (arranged in ascending

order) of 100 runs with randomly selected starting points. It can be seen that most runs converge

to a global minimum. This observation is consistent with Table 3.2. For example, according to

Table 3.2, only 4 runs are needed to find the global optima with confidence 0.999. Thus, the

possibility ϕ that a random point converge to a global minimum is very high. Figure 3.17 shows

the number of runs used for finding global optima on various data sets. We find that only a few

runs are needed to find the global optima.

To further validate the scalability and efficiency of the proposed approach, we report the

running time of CGC on each data set in Table 3.7. All experiments are performed (with matlab)

on a PC with 2.80 GHz AMD Opteron(tm) 16-core CPU and 32 GB memory. We can observe
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Data set #networks Largest #nodes #processors Time cost
Wine-Iris 2 119 1 0.1 ms

Ionosphere-WDBC 2 569 1 2.1 ms
Newsgroup (4 clusters) 2 300 1 1.3 ms

Protein 5 490032 1 10 hours
Protein(Parallel) 5 490032 4 6 hours
Protein(Parallel) 5 490032 16 3 hours

Table 3.7: Running time on different data sets

that even the largest number of nodes in the graph reaches 490032, the time cost of the algorithm

is still reasonable.

3.5 Conclusion

Integrating multiple data sources for graph clustering is an important problem in data

mining research. Robust and flexible approaches that can incorporate multiple sources to enhance

graph clustering performance are highly desirable. We develop CGC, which utilizes cross-domain

relationship as co-regularizing penalty to guide the search of consensus clustering structure. By

using a population-based Tabu Search, CGC can be optimized efficiently with guarantee of

finding the global optimum with given confidence requirement. CGC is robust even when the

cross-domain relationships based on prior knowledge are noisy. Moreover, it is able to

automatically identify noisy domains. By assigning smaller weights to noisy domains, the CGC

algorithm is able to obtain optimal graph partition performance for the focused domain. Using

various benchmark and real-life data sets, we show that the proposed CGC method can

dramatically improve the graph clustering performance compared with single-domain methods.
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CHAPTER 4: INCORPORATING PRIOR GROUPING KNOWLEDGE

4.1 Introduction

eQTL mapping aims to identify SNPs that influence the expression level of genes. It has

been widely applied to dissect the genetic basis of complex traits (Bochner, 2003;

Michaelson et al., 2009a). Several important issues need to be considered in eQTL mapping.

First, the number of SNPs is usually much larger than the number of samples (Tibshirani, 1996).

Second, the existence of confounding factors, such as expression heterogeneity, may result in

spurious associations (Listgarten et al., 2010). Third, SNPs (and genes) usually work together to

cause variation in complex traits (Michaelson et al., 2009a). The interplay among SNPs and the

interplay among genes can be represented as networks and used as prior knowledge

(Musani et al., 2007b; Pujana et al., 2007). However, such prior knowledge is far from being

complete and may contain a lot of noise. Developing effective models to address these issues in

eQTL studies has recently attracted increasing research interests (Biganzoli et al., 2006;

Kim and Xing, 2012; Lee et al., 2010; Lee and Xing, 2012).

In eQTL studies, two types of networks can be utilized. One is the genetic interaction

network (Charles Boone and Andrews, 2007). Modeling genetic interaction (e.g., epistatic effect

between SNPs) is essential to understanding the genetic basis of common diseases, since many

diseases are complex traits (Lander, 2011). Another type of network is the network among traits,

such as the PPI network or the gene co-expression network. Interacting proteins or genes in a PPI

network are likely to be functionally related, i.e., part of a protein complex or in the same

biological pathway (von Mering et al., 2002). Effectively utilizing such prior network information

can significantly improve the performance of eQTL mapping (Lee and Xing, 2012; Lee et al.,

2010).
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Figure 4.1 shows an example of eQTL mapping with prior network knowledge. The

interactions among SNPs and genes are represented by matrices S and G respectively. The goal

of eQTL mapping is to infer associations between SNPs and genes represented by the coefficient

matrix W. Suppose that SNP 2⃝ is strongly associated with gene C⃝. Using the network prior, the

moderate association between SNP 1⃝ and gene A⃝ may be identified since 1⃝ and 2⃝, A⃝ and C⃝

have interactions.

To leverage the network prior knowledge, several methods based on Lasso have been

proposed (Biganzoli et al., 2006; Kim and Xing, 2012; Lee and Xing, 2012; Lee et al., 2010). The

group-lasso penalty is applied to model the genetic interaction network (Biganzoli et al., 2006).

Xing et al. consider groupings of genes and apply a multi-task lasso penalty (Kim and Xing,

2012; Lee et al., 2010). They further extend the model to consider grouping information of both

SNPs and genes (Lee and Xing, 2012). These methods apply a “hard” clustering of SNPs (genes)

so that a SNP (gene) cannot belong to multiple groups. However, a SNP may affect multiple

genes and a gene may function in multiple pathways. To address this limitation, Jenatton et al.

develop a model allowing overlap between different groups (Jenatton et al., 2011).

Despite their success, there are three common limitations of these group penalty based

approaches. First, a clustering step is usually needed to obtain the grouping information. To

address this limitation, Xing et al. introduce a network-based fusion penalty on the genes

(Kim and Xing, 2009; Li and Li, 2008). However, this method does not consider the genetic

interaction network. A two-graph-guided multi-task Lasso approach is developed by Chen et al.

(Chen et al., 2012) to make use of gene co-expression network and SNP correlation network.

However, this method does not consider the network prior knowledge. The second limitation of

the existing methods is that they do not take into consideration the incompleteness of the

networks and the noise in them (von Mering et al., 2002). For example, PPI networks may

contain false interactions and miss true interactions (von Mering et al., 2002). Directly using the

grouping penalty inferred from the noisy and partial prior networks may introduce new bias and

thus impair the performance. Third, in addition to the network information, other prior
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Figure 4.1: Examples of prior knowledge on S and G.

knowledge, such as location of genetic markers and gene pathway information, are also available.

The existing methods cannot incorporate such information.

To address the limitations of the existing methods, this chapter proposes a novel approach,

Graph-regularized Dual Lasso (GDL), which simultaneously learns the association between SNPs

and genes and refines the prior networks. To support “soft” clustering (allowing genes and SNPs

to be members of multiple clusters), we adopt the graph regularizer to encode structured penalties

from the prior networks. The penalties encourage the connected nodes (SNPs/genes) to have

similar coefficients. This enables us to find multiple-correlated genetic markers with pleiotropic

effects that affect multiple-correlated genes jointly. To tackle the problem of noisy and

incomplete prior networks, we exploit the duality between learning the associations and refining

the prior networks to achieve smoother regularization. That is, learning regression coefficients

can help to refine the prior networks, and vice versa. For example, in Figure 4.1, if SNPs 3⃝ and

4⃝ have strong associations with the same group of genes, they are likely to have interaction,

which is not captured in the prior network. An ideal model should allow an update to the prior

network according to the learned regression coefficients. GDL can also incorporate other

available prior knowledge such as the physical location of SNPs and biology pathways to which

the genes belong. The resultant optimization problem is convex and can be efficiently solved by
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Symbols Description
K Number of SNPs
N Number of genes
D Number of samples

X ∈ RK×D The SNP matrix data
Z ∈ RN×D The gene matrix data
L ∈ RN×D A low-rank matrix
S0 ∈ RK×K The input affinity matrices of the genetic interaction network
G0 ∈ RN×N The input affinity matrices of the network of traits
S ∈ RK×K The refined affinity matrices of the genetic interaction network
G ∈ RN×N The refined affinity matrices of the network of traits
W ∈ RN×K The coefficient matrix to be inferred
R(S) The graph regularizer from the genetic interaction network
R(G) The graph regularizer from the PPI network
D(·, ·) A nonnegative distance measure

Table 4.1: Summary of Notations

using an alternating minimization procedure. We perform extensive empirical evaluation of the

proposed method using both simulated and real eQTL datasets. The results demonstrate that GDL

is robust to the incomplete and noisy prior knowledge and can significantly improve the accuracy

of eQTL mapping compared to the state-of-the-art methods.

4.2 Background: Linear Regression with Graph Regularizer

Throughout the chapter, we assume that, for each sample, the SNPs and genes are

represented by column vectors. Important notations are listed in Table 4.1. Let

x = [x1, x2, . . . , xK ]
T represent the K SNPs in the study, where xi ∈ {0, 1, 2} is a random

variable corresponding to the i-th SNP. For example, 0, 1, 2 may encode the homozygous major

allele, heterozygous allele, and homozygous minor allele, respectively. Let z = [z1, z2, . . . , zN ]
T

represent expression levels of the N genes in the study, where zj is a continuous random variable

corresponding to the j-th gene. The traditional linear regression model for association mapping

between x and z is

z = Wx+ µ+ ϵ, (4.1)

where z is a linear function of x with coefficient matrix W. µ is an N × 1 translation factor

vector. ϵ is the additive noise of Gaussian distribution with zero-mean and variance γI, where γ is

a scalar. That is, ϵ ∼ N (0, γI).
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The question now is how to define an appropriate objective function over W that 1) can

effectively incorporate the prior network knowledge, and 2) is robust to the noise and

incompleteness in the prior knowledge. Next, we first briefly review Lasso and its variations and

then introduce the proposed GD-Lasso method.

4.2.1 Lasso and LORS

Lasso (Tibshirani, 1996) is a method for estimating the regression coefficients W using ℓ1

penalty for sparsity. It has been widely used for association mapping problems. Let

X = {xd|1 ≤ d ≤ D} ∈ RK×D be the SNP matrix and Z = {zd|1 ≤ d ≤ D} ∈ RN×D be the

gene expression matrix. Each column of X and Z stands for one sample. The objective function

of Lasso is

min
W

1

2
||Z−WX− µ1||2F + η||W||1 (4.2)

where || · ||F denotes the Frobenius norm, || · ||1 is the ℓ1-norm. 1 is an 1×D vector of all 1’s. η

is the empirical parameter for the ℓ1 penalty. W is the parameter (also called weight) matrix

parameterizing the space of linear functions mapping from X to Z.

Confounding factors, such as unobserved covariates, experimental artifacts, and unknown

environmental perturbations, may mask real signals and lead to spurious findings. LORS

(Yang et al., 2013) uses a low-rank matrix L ∈ RN×D to account for the variations caused by

hidden factors. The objective function of LORS is

min
W,µ,L

1

2
||Z−WX− µ1− L||2F + η||W||1 + λ||L||∗ (4.3)

where || · ||∗ is the nuclear norm. η is the empirical parameter for the ℓ1 penalty to control the

sparsity of W, and λ is the regularization parameter to control the rank of L. L is a low-rank

matrix assuming that there are only a small number of hidden factors influencing the gene

expression levels.

4.2.2 Graph-regularized Lasso

To incorporate the network prior knowledge, group sparse Lasso (Biganzoli et al., 2006),

multi-task Lasso (Obozinski and Taskar, 2006) and SIOL (Lee and Xing, 2012) have been
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proposed. Group sparse Lasso makes use of grouping information of SNPs; multi-task Lasso

makes use of grouping information of genes, while SIOL uses information from both networks. A

common drawback of these methods is that the number of groups (SNP and gene clusters) has to

be predetermined. To overcome this drawback, we propose to use two graph regularizers to

encode the prior network information. Compared with the previous group penalty based methods,

our method does not need to pre-cluster the networks and thus may obtain smoother

regularization. Moreover, these methods do not consider confounding factors that may mask real

signals and lead to spurious findings. In this chapter, we further incorporate the idea in LORS

(Yang et al., 2013) to tackle the confounding factors simultaneously.

Let S0 ∈ RK×K and G0 ∈ RN×N be the affinity matrices of the genetic interaction

network (e.g., epistatic effect between SNPs) and network of traits (e.g., PPI network or gene

co-expression network), and DS0 and DG0 be their degree matrices. Given the two networks, we

can employ a pairwise comparison between w∗i and w∗j (1 ≤ i < j ≤ K): if SNPs i and j are

closely related, ||w∗i −w∗j||22 is small. The pairwise comparison can be naturally encoded in the

weighted fusion penalty
∑

ij ||w∗i −w∗j||22(S0)i,j . This penalty will enforce ||w∗i −w∗j||22 = 0

for closely related SNP pairs (with large (S0)i,j value). Then, the graph regularizer from the

genetic interaction network takes the following form

R(S) =
1

2

∑
ij

||w∗i −w∗j ||22(S0)i,j

= tr(W(DS0 − S0)W
T)

(4.4)

Similarly, the graph regularizer for the network of traits is

R(G) = tr(WT(DG0 −G0)W) (4.5)

These two regularizers encourage the connected nodes in a graph to have similar coefficients. A

heavy penalty occurs if the learned regression coefficients for neighboring SNPs (genes) are

disparate. (DS0 − S0) and (DG0 −G0) are known as the combinatorial graph Laplacian, which

are positive semi-definite (Chung, 1997). Graph-regularized Lasso (G-Lasso) solves the following
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optimization problem
min

W,µ,L

1

2
||Z−WX− µ1− L||2F

+ η||W||1 + λ||L||∗ + αR(S) + βR(G)

(4.6)

where α, β > 0 are regularization parameters.

4.3 Graph-regularized Dual Lasso

In eQTL studies, the prior knowledge is usually incomplete and contains noise. It is

desirable to refine the prior networks according to the learned regression coefficients. There is a

duality between the prior networks and the regression coefficients: learning coefficients can help

to refine the prior networks, and vice versa. This leads to mutual reinforcement when learning the

two parts simultaneously.

Next, we introduce the Graph-regularized Dual Lasso (GD-Lasso). We further relax the

constraints from the prior networks (two graph regularizers) introduced in Section 4.2.2, and

integrate the graph-regularized Lasso and the dual refinement of graphs into a unified objective

function
min

W,µ,L,S≥0,G≥0

1

2
||Z−WX− µ1− L||2F + η||W||1 + λ||L||∗

+ αtr(W(DS − S)WT) + βtr(WT(DG −G)W)

+ γ||S− S0||2F + ρ||G−G0||2F

(4.7)

where γ, ρ > 0 are positive parameters controlling the extent to which the refined networks

should be consistent with the original prior networks. DS and DG are the degree matrices of S

and G. Note that the objective function considers the non-negativity of S and G. As an extension,

the model can be extended easily to incorporate prior knowledge from multiple sources. We only

need to revise the last two terms in Eq. 4.7 to γ
∑f

i=1 ||S− Si||2F + ρ
∑e

i=1 ||G−Gi||2F , where f

and e are the number of sources for genetic interaction networks and gene trait networks

respectively.

4.3.1 Optimization: An Alternating Minimization Approach

In this section, we present an alternating scheme to optimize the objective function in Eq.

(4.7) based on block coordinate techniques. We divide the variables into three sets: {L},{S,G},
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and {W,µ}. We iteratively update one set of variables while fixing the other two sets. This

procedure continues until convergence. Since the objective function is convex, the algorithm will

converge to a global optima. The optimization process is as follows. The detailed algorithm is

included in Algorithm 3.

Algorithm 3: Graph-regularized Dual Lasso (GD-Lasso)
Input: X = {xd} ∈ RK×D, Z = {zd} ∈ RN×D, S0 ∈ RK×K , G0 ∈ RN×N , η,α,β,γ,ρ
Output: W,µ,S,G,L

1 begin
2 Initialize W using Eq. (4.2), µ← 0, S← rand(K,K), G← rand(N,N);
3 repeat
4 Update L by Eq. (4.9);
5 repeat
6 Update S by Eq. (4.10);
7 Update G by Eq. (4.11);
8 until convergence;
9 Update W by the coordinate descent algorithm (4.15);

10 Update µ by Eq. (4.17);
11 until convergence;
12 end

(1). While fixing {W,µ}, {S,G}, optimize {L} using singular value decomposition

(SVD).

Lemma 4.1. (Mazumder et al., 2010) Suppose that matrix A has rank r. The solution to the

optimization problem

min
B

1

2
||A−B||2F + λ||B||∗ (4.8)

is given by B̂ = Hλ(A), where Hλ(A) = UDλV
T with Dλ = diag[(d1 − λ)+, ..., (dr − λ)+], UDVTis the

Singular Value Decomposition (SVD) of A, D = diag[d1, ..., dr], and

(di − λ)+ = max((di − λ), 0), (1 ≤ i ≤ r).

Thus, for fixed W,µ,S,G, the formula for updating L is

L← Hλ(Z−WX− µ1) (4.9)

(2). While fixing {W,µ}, {L}, optimize {S,G} using semi-nonnegative matrix

factorization (semi-NMF) multiplicative updating on S and G iteratively (Ding et al., 2010). For
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the optimization with non-negative constraints, our updating rule is based on the following two

theorems. The proofs of the theorems are given in Section 4.3.2.

Theorem 4.1. For fixed L,µ, W, and G, updating S according to Eq. (4.10) monotonically

decreases the value of the objective function in Eq. (4.7) until convergence.

S← S ◦ α(WTW)+ + 2γS0

2γS+ α(WTW)− + α diag(WTW)JK
(4.10)

where JK is a K ×K matrix of all 1’s. ◦, [·]
[·] are element-wise operators. Since WTW may take

mixed signs, we denote WTW = (WTW)+ − (WTW)−, where

(WTW)+i,j = (|(WTW)i,j |+ (WTW)i,j)/2 and (WTW)−i,j = (|(WTW)i,j | − (WTW)i,j)/2.

Theorem 4.2. For fixed L,µ, W, and S, updating G according to Eq. (4.11) monotonically

decreases the value of the objective function in Eq. (4.7) until convergence.

G← G ◦ β(WWT)+ + 2ρG0

2ρG+ β(WWT)− + β diag(WWT)JN
(4.11)

where JN is an N ×N matrix of all 1’s.

The above two theorems are derived from the KKT complementarity condition

(Boyd and Vandenberghe, 2004). We show the updating rule for S below. The analysis for G is

similar and omitted. We first formulate the Lagrange function of S for optimization

L(S) = αtr(W(DS − S)WT) + γ||S− S0||2F (4.12)

The partial derivative of the Lagrange function with respect to S is

∇SL = −αWTW − 2γS0 + 2γS+ α diag(WTW)JK (4.13)

Using the KKT complementarity condition for the non-negative constraint on S, we have

∇SL ◦ S = 0 (4.14)

The above formula leads to the updating rule for S in Eq. (4.10). It has been shown that the

multiplicative updating algorithm has first order convergence rate (Ding et al., 2010).

(3). While fixing {L}, {S,G}, optimize {W,µ} using the coordinate descent algorithm.

Because we use the ℓ1 penalty on W, we can use the coordinate descent algorithm for the

optimization of W, which gives the following updating formula:

Wi,j =
F (m(i, j), η)

(XXT)j,j + 2α(DS − S)j,j + 2β(DG −G)i,i
(4.15)
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where F (m(i, j), η) = sign(m(i, j))max(|m(i, j)| − η, 0), and

m(i, j) = (ZXT)i,j −
K∑

k=1
k ̸=j

Wi,k(XXT)k,j

− 2α
K∑

k=1
k ̸=j

Wi,k(DS − S)k,j − 2β
N∑

k=1
k ̸=i

(DG −G)i,kWk,j

(4.16)

The solution of updating µ can be derived by setting ▽µL(µ) = 0, which gives

µ =
(Z−WX)1T

D
(4.17)

4.3.2 Convergence Analysis

In the following, we investigate the convergence of the algorithm. First, we study the

convergence for the second step. We use the auxiliary function approach (Lee and Seung, 2000)

to analyze the convergence of the multiplicative updating formulas. Here we first introduce the

definition of auxiliary function.

Definition 4.1. Given a function L(h) of any parameter h, a function Z(h, h̃) is an auxiliary

function for L(h) if the conditions

Z(h, h̃) ≥ L(h) and Z(h, h) = L(h), (4.18)

are satisfied for any given h, h̃ (Lee and Seung, 2000).

Lemma 4.2. If Z is an auxiliary function for function L(h), then L(h) is non-increasing under

the update (Lee and Seung, 2000).

h(t+1) = argmin
h

Z(h, h(t)) (4.19)

Theorem 4.3. Let L(S) denote the Lagrange function of S for optimization. The following

function

Z(S, S̃) = α
∑
ijk

W2
i,j

S2
j,k + S̃2

j,k

2S̃j,k

+ α
∑
ijk

(Wi,jWi,k)
−S2

j,k + S̃2
j,k

2S̃j,k

− α
∑
ijk

(Wi,jWi,k)
+S̃j,k(1 + log

Sj,k

S̃j,k

) + γ
∑
jk

S2
j,k

− 2γ
∑
jk

(S0)j,kS̃j,k(1 + log
Sj,k

S̃j,k

) + γ
∑
jk

(S0)
2
j,k.

(4.20)
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is an auxiliary function for L(S). Furthermore, it is a convex function in S and its global

minimum is

S = S̃ ◦ α(WTW)+ + 2γS0

2γS̃+ α(WTW)− + α diag(WTW)JK

. (4.21)

Theorem 4.3 can be proved using a similar idea to that in (Ding et al., 2006) by validating

three Properties: 1) L(S) ≤ Z(S, S̃); 2) L(S) = Z(S,S); 3) Z(S, S̃) is convex with respect to S.

The formal proof is provided below.

Proof: We will prove the three properties respectively. The Lagrange function of S for

optimization is

L(S) = αtr(W(DS − S)WT ) + γ||S− S0||2F . (4.22)

To prove Properties 1 and 2, we first deduce the following identities:

tr(WDSW
T ) =

∑
ijk

W2
i,jSj,k. (4.23)

Similarly,

tr(WSWT) =
∑
ijk

Wi,jWi,kSj,k. (4.24)

And,
||S− S0||2F =tr(SST)− 2tr(S0S

T) + tr(S0S
T
0 )

=
∑
jk

S2
j,k − 2

∑
jk

(S0)j,kSj,k +
∑
jk

(S0)
2
j,k.

(4.25)

Using identities (4.23), (4.24), and (4.25), and substituting S̃ with S in function (4.20), we

get the identity for Property 2.

Further, note that a ≤ a2+b2

2b
and a ≥ b(1 + log a

b
) for all positive a and b, and we have:

• for (4.23), ∑
ijk

W2
i,jSj,k ≤

∑
ijk

W2
i,j

S2
j,k + S̃2

j,k

2S̃j,k

;

• for (4.24), ∑
ijk

Wi,jWi,kSj,k

=
∑
ijk

(Wi,jWi,k)
+Sj,k −

∑
ijk

(Wi,jWi,k)
−Sj,k

≥
∑
ijk

(Wi,jWi,k)
+S̃j,k(1 + log

Sj,k

S̃j,k

)

−
∑
ijk

(Wi,jWi,k)
−S2

j,k + S̃2
j,k

2S̃j,k

;

(4.26)
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• for the second term in (4.25),

∑
jk

(S0)j,kSj,k ≥ 2
∑
jk

(S0)j,kS̃j,k(1 + log
Sj,k

S̃j,k

)

These inequalities together prove Property 1.

For Property 3, we instead prove the Hessian matrix ∇∇SZ(S, S̃) ≽ 0

∂Z(S, S̃)

∂Sm,n

=α
∑
i

W2
i,m

Sm,n

S̃m,n

+ α
∑
i

(Wi,mWi,n)
−Sm,n

S̃m,n

− α
∑
i

(Wi,mWi,n)
+ S̃m,n

Sm,n
+ 2γSm,n − 2γ(S0)m,n

S̃m,n

Sm,n
.

(4.27)

Hence,
∂2Z(S, S̃)

∂Ss,t∂Sm,n

=α
∑
i

δmsδntW
2
i,m

1

S̃m,n

+ α
∑
i

δmsδnt(Wi,mWi,n)
− 1

S̃m,n

+ α
∑
i

δmsδnt(Wi,mWi,n)
+ S̃m,n

S2
m,n

+ 2γδmsδnt + 2γδmsδnt(S0)m,n
S̃m,n

S2
m,n

≥0.

(4.28)

Therefore,∇2
SZ(S, S̃) is diagonal with positive entries. Thus ∇2

SZ(S, S̃) is positively defined,

namely, Z(S, S̃) is convex, which concludes Property 3.

To solve for S, we set ∇SZ(S, S̃) = 0, and get the following formula for all m and n.
∂

∂Sm,n
Z(S, S̃)

= α
∑
i

W2
i,m

Sm,n

S̃m,n

+ α
∑
i

(Wi,mWi,n)
−Sm,n

S̃m,n

− α
∑
i

(Wi,mWi,n)
+ S̃m,n

Sm,n
+ 2γSm,n − 2γ(S0)m,n

S̃m,n

Sm,n

= 0.

(4.29)

After sorting the equation, we have

Sm,n = S̃m,n ·
α
∑

i(Wi,mWi,n)
+ + 2γ(S0)m,n

2γS̃m,n + α
∑

i(Wi,mWi,n)− + α
∑

i W
2
i,m

. (4.30)

That is equivalent to the formula (4.21), which is consistent with the updating formula

derived from the KKT condition aforementioned.
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Theorem 4.4. Updating S using Eq. (4.10) will monotonically decrease the value of the

objective in Eq. (4.7), the objective is invariant if and only if S is at a stationary point.

Proof: By Lemma 4.2 and Theorem 4.3, for each subsequent iteration of updating S, we have

L((S)0) = Z((S)0, (S)0) ≥ Z((S)1, (S)0) ≥ Z((S)1, (S)1) = L((S)1) ≥ ... ≥ L((S)Iter). Thus L(S)

monotonically decreases. Since the objective function Eq. (4.7) is obviously bounded below, the

correctness of Theorem 4.1 is proved. Theorem 4.2 can be proved similarly.

In addition to Theorem 4.4, since the computation of L in the first step decreases the value

of the objective in Eq. (4.7), and the coordinate descent algorithm for updating W in the third step

also monotonically decreases the value of the objective, the algorithm is guaranteed to converge.

4.4 Generalized Graph-regularized Dual Lasso

In this section, we extend our model to incorporate additional prior knowledge such as

SNP locations and biological pathways. If the physical locations of two SNPs are close or two

genes belong to the same pathway, they are likely to have interactions. Such information can be

integrated to help refine the prior networks.

Continue with our example in Figure 4.1. If SNPs 3⃝ and 4⃝ affect the same set of genes

( B⃝ and D⃝ ), and at the same time, they are close to each other, then it is likely there exists

interaction between 3⃝ and 4⃝.

Formally, we would like to solve the following optimization problem

min
W,µ,L,S≥0,G≥0

1

2
||WX− Z− µ1− L||2F + η||W||1 + λ||L||∗

+ α
∑
i,j

D(w∗i,w∗j)Si,j + β
∑
i,j

D(wi∗,wj∗)Gi,j

(4.31)

Here D(·, ·) is a non-negative distance measure. Note that the Euclidean distance is used

in previous sections. S and G are initially given by inputs S0 and G0. We refer to this generalized

model as the Generalized Graph-regularized Dual Lasso (GGD-Lasso). GGD-Lasso executes the

following two steps iteratively until the termination condition is met: 1) update W while fixing S

and G; 2) update S and G according to W, while guarantee that both
∑

i,j D(w∗i,w∗j)Si,j and∑
i,j D(wi∗,wj∗)Gi,j decrease.
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Algorithm 4: Generalized Graph-regularized Dual Lasso (GGD-Lasso)
Input: X = {xd} ∈ RK×D, Z = {zd} ∈ RN×D, S0 ∈ RK×K , G0 ∈ RN×N , Pathway

information, SNPs location information, η,α,β,κ1,κ2
Output: W,µ,S,G,L

1 begin
2 S← S0,G← G0;
3 updateS ← 0, updateG← 0;
4 repeat
5 Update W, µ and L that minimize the objective function (4.6) using S and G ;
6 Put all pairs (i, j) of columns of W in order of distance;
7 P0 ← ∅;
8 P1 ← ∅;
9 Select κ1 pairs (iS, jS) with smallest D(W∗iS ,W∗jS) to the set P0;

10 P0 ← pairs in P0 that satisfy SiS ,jS = 0 and the distance between the iS-th SNP and
jS-th SNP is less than 500bp;

11 Select κ1 pairs (i′S, j
′
S) with largest D(W∗i′S ,W∗j′S) to the set P1;

12 P1 ← pairs in P1 that satisfy Si′S ,j
′
S
= 1 and the distance between the i′S-th SNP and

j′S-th SNP is larger than 500bp;
13 updateS ← min(|P0|, |P1|);
14 Choose updateS pairs (iS, jS) in P0 and set SiS ,jS to 1;
15 Choose updateS pairs (i′S, j

′
S) in P1 and set Si′S ,j

′
S

to 0;
16 Put all pairs (i, j) of rows of W in order of distance;
17 Q1 ← ∅;
18 Q2 ← ∅;
19 Select κ2 pairs (iG, jG) with smallest D(WiG∗,WjG∗) to the set Q0;
20 Q0 ← pairs in Q0 that satisfy GiG,jG = 0 and the iG-th gene and jG-th gene belong

to the same pathway;
21 Select κ2 pairs (i′G, j

′
G) with largest D(Wi′G∗,Wj′G∗) to the set Q1;

22 Q1 ← pairs in Q1 that satisfy Gi′G,j′G
= 1 and the i′G-th gene and j′G-th gene do not

belong to the same pathway;
23 updateG← min(|Q0|, |Q1|);
24 Choose updateG pairs (iG, jG) in Q0 and set GiG,jG to 1;
25 Choose updateG pairs (i′G, j

′
G) in Q1 and set Gi′G,j′G

to 0;
26 until updateS = 0 and updateG = 0;
27 end

These two steps are based on the aforementioned duality between learning W and

refining S and G. The detailed algorithm is provided in Algorithm 4. Next, we illustrate the

updating process assuming that S and G are unweighted graphs. It can be easily extended to

weighted graphs.
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Step 1 can be done by using the coordinate descent algorithm. In Step 2, to guarantee that

both
∑

i,j D(w∗i,w∗j)Si,j and
∑

i,j D(wi∗,wj∗)Gi,j decrease, we can maintain a fixed number of

1’s in S and G. Taking G as an example, once Gi,j is selected to change from 0 to 1, another

element Gi′,j′ with D(wi∗,wj∗) < D(wi′∗,wj′∗) should be changed from 1 to 0.

The selection of (i, j) and (i′, j′) is based on the ranking of D(wi∗,wj∗) (1 ≤ i < j ≤ N ).

Specifically, we examine κ pairs with the smallest distances. Among them, we pick those having

no edges in G. Let P0 be this set of pairs. Accordingly, we examine κ pairs with the largest

distances. Among these pairs, we pick up only those having an edge in G. Let P1 be this set of

pairs. The elements of G corresponding to pairs in P0 are candidates for updating from 0 to 1,

since these pairs of genes are associated with similar SNPs. Similarly, elements of G

corresponding to pairs in P1 are candidates for updating from 1 to 0.

In this process, the prior knowledge of gene pathways can be easily incorporated to better

refine G. For instance, we can further require that only the gene pairs in P0 belonging to the same

pathway are eligible for updating, and only the gene pairs in P1 belonging to different pathways

are eligible for updating. We denote the set of gene pairs eligible for updating by P ′
0 and P ′

1

respectively. Then, we choose min(|P ′
0|, |P ′

1|) pairs in set P ′
0 with smallest D(wi∗,wj∗)

((i, j) ∈ P ′
0) and update Gi,j from 0 to 1. Similarly, we choose min(|P ′

0|, |P ′
1|) pairs in set P ′

1

with largest D(wi′∗,wj′∗) ((i′, j′) ∈ P ′
1) and update Gi′,j′ from 1 to 0.

Obviously, all D(wi∗,wj∗)’s are smaller than D(wi′∗,wj′∗) if κ < N(N−1)
4

. Therefore,∑
i,j D(wi∗,wj∗)Gi,j is guaranteed to decrease. The updating process for S is similar except that

we compare columns rather than rows of W and use SNP locations rather than pathway

information for evaluating the eligibility for updating. The updating process ends when no such

pairs can be found so that switching their values will result in a decrease of the objective function.

The convergence of GGD-Lasso can be observed as follows. The decrease of the objective

function value in the first step is straightforward since we minimize it using coordinate descent.

In the second step, the change of the objective function value is given by

−αD(w∗iS ,w∗jS ) + αD(w∗i′S ,w∗j′S )− βD(wiG∗,wjG∗) + βD(wi′G∗,wj′G∗) (4.32)
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Figure 4.2: Ground truth of W and that estimated by different methods.

which is always negative. Thus, in each iteration, the objective function value decreases. Since

the objective function is non-negative, the process eventually converges.

Theorem 4.5. GGD-Lasso converges to the global optimum if both
∑

i,j D(wi∗,wj∗) and∑
i,j D(w∗i,w∗j) are convex to W.

Proof: The last two terms in Eq. (4.31) are linear with respect to S and G, and convex to W

according to the conditions listed. Thus the objective function is convex over all variables. A

convergent result to the global optimum can be guaranteed.

4.5 Experimental Results

In this section, we perform extensive experiments to evaluate the performance of the

proposed methods. We use both simulated datasets and real yeast eQTL dataset

(Rachel B. Brem and Kruglyak, 2005). For comparison, we select several state-of-the-art

methods, including SIOL (Lee and Xing, 2012), two graph guided multi-task lasso (mtlasso2G)

(Chen et al., 2012), sparse group Lasso (Biganzoli et al., 2006), sparse multi-task Lasso

(Biganzoli et al., 2006), LORS (Yang et al., 2013) and Lasso (Tibshirani, 1996). For all the

methods, the tuning parameters were learned using cross validation.

4.5.1 Simulation Study

We first evaluate the performance of the selected methods using simulation study. Note

that GGD-Lasso requires additional prior knowledge and will be evaluated using real dataset.
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Figure 4.3: The ground truth networks, prior partial networks, and the refined networks

We adopt the same setup for the simulation study as that in (Lee and Xing, 2012;

Yang et al., 2013) and generate synthetic datasets as follows. 100 SNPs are randomly selected

from the yeast eQTL dataset (112 samples) (Rachel B. Brem and Kruglyak, 2005). 10 gene

expression profiles are generated by Zj∗ = Wj∗X+ Ξj∗ + Ej∗ (1 ≤ j ≤ 10), where

Ej∗ ∼ N (0, σ2I) (σ = 1) denotes Gaussian noise. Ξj∗ is used to model non-genetic effects,

which are drawn from N (0, τΣ), where τ = 0.1. Σ is generated by MMT, where M ∈ RD×C

and Mij ∼ N (0, 1). C is the number of hidden factors and is set to 10 by default. The association

matrix W is generated as follows. Three sets of randomly selected four SNPs are associated with

three gene clusters (1-3), (4-6), (7-10) respectively. In addition, one SNP is associated with two

gene clusters (1-3) and (4-6), and one SNP is associated with all genes. The association strength

is set to 1 for all selected SNPs. The clustering structures among SNPs and genes serve as the

ground truth of the prior network knowledge. Only two of the three SNP (gene) clusters are used

in W to simulate incomplete prior knowledge.

Figure 4.2 shows the estimated W matrix by various methods. The x-axis represents traits

(1-10) and y-axis represents SNPs (1-100). From the figure, we can see that GD-Lasso is more

effective than G-Lasso. This is because the dual refinement enables a more robust model.
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G-Lasso outperforms SIOL and mtlasso2G, indicating that the graph regularizer provides a

smoother regularization than the hard clustering based penalty. In addition, SIOL and mtlasso2G

do not consider confounding factors. SIOL and mtlasso2G outperform multi-task Lasso and

sparse group Lasso since it uses both SNP and gene grouping information, while multi-task Lasso

and sparse group Lasso only use one of them. We also observe that all methods utilizing prior

grouping knowledge outperform LORS and Lasso which cannot incorporate prior knowledge.

LORS outperforms Lasso since it considers the confounding factors.

The ground truth networks, prior networks, and GD-Lasso refined networks are shown in

Figure 4.3. Note that only a portion of the ground truth networks are used as prior networks. In

particular, the information related to gene cluster (7-10) is missing in the prior networks. We

observe that the refined matrix G well captures the missing grouping information of gene cluster

(7-10). Similarly, many missing pairwise relationships in S are recovered in the refined matrix

(points in red ellipses).

Using 50 simulated datasets with different gaussian noise (σ2 = 1 and σ2 = 5), we

compare the proposed methods with alternative state-of-the-art approaches. For each setting, we

use 30 samples for test and 82 samples for training. We report the average result from 50

realizations. Figure 4.4 shows the ROC curves of TPR-FPR for performance comparison,

together with the areas under the precision-recall curve (AUCs) (Chen et al., 2012). The

association strengths between SNPs and genes are set to be 0.1, 1 and 3 respectively. It is clear

that GD-Lasso outperforms all alternative methods by effectively using and refining the prior

network knowledge. We also computed test errors. On average, GD-Lasso achieved the best test

error rate of 0.9122, and the order of the other methods in terms of the test errors is: G-Lasso

(0.9276), SIOL (0.9485), Mtlasso2G (0.9521), Multi-task Lasso (0.9723), Sparse group Lasso

(0.9814), LORS (1.0429) and Lasso (1.2153).

To evaluate the effectiveness of dual refinement, we compare GD-Lasso and G-Lasso

since the only difference between these two methods is whether the prior networks are refined

during the optimization process. We add noises to the prior networks by randomly shuffling the
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Figure 4.4: The ROC curve and AUCs of different methods.
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elements in them. Furthermore, we use the signal-to-noise ratio defined as SNR =
√

V ar(WX)
V ar(Ξ+E)

(Yang et al., 2013) to measure the noise ratio in the eQTL datasets. Here, we fix C = 10, τ = 0.1,

and use different σ’s to control SNR.

Figure 4.5 shows the results for different SNRs. For a fixed SNR, we vary the percentage

of noises in the prior networks and compare the performance of selected methods. From the

results, we can see that G-Lasso is more sensitive to noises in the prior networks than GD-Lasso

is. Moreover, when the SNR is low, the advantage of GD-Lasso is more prominent. These results

indicate using dual refinement can dramatically improve the accuracy of the identified

associations.

4.5.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL dataset of

112 yeast segregants generated from a cross of two inbred strains (Rachel B. Brem and Kruglyak,

2005). The dataset originally includes expression profiles of 6229 gene expression traits and

genotype profiles of 2956 SNPs. After removing SNPs with more than 10% missing values and

merging consecutive SNPs high linkage disequilibrium, we get 1017 SNPs with unique genotypes

(Huang et al., 2009a). 4474 expression profiles are selected after removing the ones with missing

values. The genetic interaction network is generated as in (Lee and Xing, 2012). We use the PPI

network downloaded from BioGRID (http://thebiogrid.org/) to represent the prior network among

genes. It takes around 1 day for GGD-Lasso, and around 10 hours for GD-Lasso to run into

completion.

4.5.2.1 cis and trans Enrichment Analysis

We follow the standard cis-enrichment analysis (Listgarten et al., 2010) to compare the

performance of two competing models. The intuition behind cis-enrichment analysis is that more

cis-acting SNPs are expected than trans-acting SNPs. A two-step procedure is used in the

cis-enrichment analysis (Listgarten et al., 2010): (1) for each model, we apply a one-tailed

Mann-Whitney test on each SNP to test the null hypothesis that the model ranks its cis hypotheses
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Figure 4.5: The AUCs of the TPR-FPR curve of different methods.

GD-Lasso G-Lasso SIOL Mtlasso2G Multi-task Sparse group LORS Lasso

cis-enrichment

GGD-Lasso 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
GD-Lasso - 0.0009 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
G-Lasso - - < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SIOL - - - 0.1213 0.0331 0.0173 < 0.0001 < 0.0001
Mtlasso2G - - - - 0.0487 0.0132 < 0.0001 < 0.0001
Multi-task - - - - - 0.4563 0.4132 < 0.0001

Sparse group - - - - - - 0.4375 < 0.0001
LORS - - - - - - - < 0.0001

trans-enrichment

GGD-Lasso 0.0881 0.0119 0.0102 0.0063 0.0006 0.0003 < 0.0001 < 0.0001

GD-Lasso - 0.0481 0.0253 0.0211 0.0176 0.0004 < 0.0001 < 0.0001
G-Lasso - - 0.0312 0.0253 0.0183 0.0007 < 0.0001 < 0.0001

SIOL - - - 0.1976 0.1053 0.0044 0.0005 < 0.0001
Mtlasso2G - - - - 0.1785 0.0061 0.0009 < 0.0001
Multi-task - - - - - 0.0235 0.0042 0.0011

Sparse group - - - - - - 0.0075 0.0041
LORS - - - - - - - 0.2059

Table 4.2: Pairwise comparison of different models using cis- and trans- enrichment.

no better than its trans hypotheses, (2) for each pair of models compared, we perform a two-tailed

paired Wilcoxon sign-rank test on the p-values obtained from the previous step. The null

hypothesis is that the median difference of the p-values in the Mann-Whitney test for each SNP is

zero. The trans-enrichment is implemented using a similar strategy (Yvert et al., 2003), in which

genes regulated by transcription factors (obtained from http://www.yeastract.com/download.php)

are used as trans-acting signals.

In addition to the methods evaluated in the simulation study, GGD-Lasso is also evaluated

here (with κ = 100000,η = 5, λ = 8, α = 15, β = 1). For GD-Lasso,

η = 5, λ = 8, α = 15, β = 1, γ = 15, ρ = 1. The Euclidean distance is used as the distance

metric. We rank pairs of SNPs and genes according to the learned W. S is refined if the locations

of the two SNPs are less than 500 bp. G is refined if the two genes are in the same pathway. The
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pathway information is downloaded from Saccharomyces Genome Database (SGD

(http://www.yeastgenome.org/)).

The results of pairwise comparison of selected models are shown in Table 4.2. In this

table, a p-value shows how significant a method on the left column outperforms a method in the

top row in terms of cis and trans enrichments. We observe that the proposed GGD-Lasso and

GD-Lasso have significantly better enrichment scores than the other models. By incorporating

genomic location and pathway information, GGD-Lasso performs better than GD-Lasso with

p-value less than 0.0001. The effectiveness of the dual refinement on prior graphs is demonstrated

by GD-Lasso’s better performance over G-Lasso. Note that the performance ranking of these

models is consistent with that in the simulation study.

The top-1000 significant associations given by GGD-Lasso, GD-Lasso and G-Lasso are

shown in Figure 4.7. We can see that GGD-Lasso and GD-Lasso have stronger cis-regulatory

signals than G-Lasso does. In total, these methods each detected about 6000 associations

according to non-zero W values. We estimate FDR using 50 permutations as proposed in

(Yang et al., 2013). With FDR ≤ 0.01, GGD-Lasso obtains about 4500 significant associations.

The plots of all identified significant associations for different methods are given in Figure 4.6.

4.5.2.2 Refinement of the Prior Networks

To investigate to what extent GGD-Lasso is able to refine the prior networks and study the

effect of different parameter settings on κ, we intentionally change 75% of the elements in the

original prior PPI network and genetic interaction network to random noises. We feed the new

networks to GGD-Lasso and evaluate the refined networks. The results are shown in Figure 4.8.

We can see that for both PPI and genetic interaction networks, many elements are recovered by

GGD-Lasso. This demonstrates the effectiveness of GGD-Lasso. Moreover, when the number of

SNP (gene) pairs (κ) examined for updating reaches 100,000, both PPI and genetic iteration

networks are well refined.
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Figure 4.6: The plot of linkage peaks in the study by different methods.

ID sizea Locib GOc Hitsd
GD-Lasso

(all)e
GD-Lasso

(hits)f
G-Lasso

(all)g
G-Lasso
(hits)h

SIOL
(all)i

SIOL
(hits)j

LORS
(all)k

LORS
(hits)l

1 31 XII:1056097 (1)∗∗∗ 7 31 7 32 7 8 6 31 7
2 28 III:81832..92391 (2)∗∗ 5 29 5 28 5 58 5 22 4
3 28 XII:1056103 (1)∗∗∗ 7 29 6 28 6 1 1 2 0

4 27 III:79091 (2)∗∗∗ 6 29 6 28 6 28 7 10 2
5 27 III:175799..177850 (3)∗ 3 26 3 23 3 9 2 18 4
6 27 XII:1059925..1059930 (1)∗∗∗ 7 27 7 27 7 0 0 5 1
7 25 III:105042 (2)∗∗∗ 6 23 6 25 6 5 3 19 4
8 23 III:201166..201167 (3)∗∗∗ 3 23 3 22 3 13 2 23 3
9 22 XII:1054278..1054302 (1)∗∗∗ 7 26 7 24 7 24 5 12 4

10 21 III:100213 (2)∗∗ 5 23 5 23 5 5 3 5 1
11 20 III:209932 (3)∗ 3 21 3 19 3 16 4 15 4
12 20 XII:659357..662627 (4)∗ 4 19 4 3 0 37 9 36 6
13 19 III:210748..210748 (5)∗ 4 24 4 18 4 2 3 11 4
14 19 VIII:111679..111680 (6)∗ 3 20 3 19 3 3 3 12 2
15 19 VIII:111682..111690 (7)∗∗ 5 21 5 20 5 57 6 22 3

Total hits 75 74 70 59 49

Table 4.3: Summary of the top-15 hotspots detected by GGD-Lasso.

GGD-Lasso GD-Lasso G-Lasso SIOL LORS
#hotspots significantly enriched 15 14 13 10 9(top 15 hotposts)

#total reported hotspots (size > 10) 65 82 96 89 64
#hotspots significantly enriched 45 56 61 53 41

ratio of significantly enriched hotspots 70% 68% 64% 60% 56%

Table 4.4: Hotspots detected by different methods
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Figure 4.7: The top-1000 significant associations identified by different methods.
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Figure 4.8: Ratio of correct interactions refined when varying κ.

4.5.2.3 Hotspots Analysis

In this subsection, we study whether GGD-Lasso can help detect more biologically

relevant associations than the alternatives. Specifically, we examine the hotspots which affect

more than 10 gene traits (Lee and Xing, 2012). The top 15 hotspots detected by GGD-Lasso are

listed in Table 4.3. The top-15 hotspots detected by other methods are included in Table 4.5,

tab:hotspotscompareGL, tab:hotspotscompareSIOL, and tab:hotspotscompareLORS. From Table

4.3, we observe that for all hotspots, the associated genes are enriched with at least one GO

category. Note that GGD-Lasso and GD-Lasso detect one hotspot (12), which cannot be detected

by G-Lasso. They also detect one hotspot (6), which cannot be detected by SIOL. The number of

hotspots that are significant enriched is listed in Table 4.4. From the table, we can see that
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chr start end size GO category adjusted p-value
XII 1056097 1056097 31 telomere maintenance via recombination 4.72498E-9
III 79091 79091 29 branched chain family amino acid biosynthetic process 1.59139E-8
III 81832 92391 29 branched chain family amino acid biosynthetic process 2.62475E-05
XII 1056103 1056103 29 telomere maintenance via recombination 1.90447E-4
XII 1059925 1059930 27 telomere maintenance via recombination 2.6379E-8
III 175799 177850 26 regulation of mating-type specific transcription, DNA-dependent 2.07885E-03
XII 1054278 1054302 26 telomere maintenance via recombination 2.30417E-9
III 210748 210748 24 regulation of mating-type specific transcription, DNA-dependent 1.61983E-04
III 100213 100213 23 branched chain family amino acid biosynthetic process 7.4936E-3
III 105042 105042 23 branched chain family amino acid biosynthetic process 3.8412E-8
III 201166 201167 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002
III 209932 209932 21 regulation of mating-type specific transcription, DNA-dependent 1.06592E-03

VIII 111682 111690 21 response to pheromone 7.04262E-04
V 395442 395442 20 SRP-dependent cotranslational protein targeting to membrane, translocation 0.100899101

VIII 111679 111680 20 cytogamy 0.001998002

Table 4.5: Summary of the top 15 detected hotspots by GD-Lasso

chr start end size GO category adjusted p-value
XII 1056097 1056097 32 telomere maintenance via recombination 5.52E-08
III 79091 79091 28 branched chain family amino acid biosynthetic process 1.28E-07
III 81832 92391 28 branched chain family amino acid biosynthetic process 2.17E-05
XII 1056103 1056103 28 telomere maintenance via recombination 1.52E-06
XII 1059925 1059930 27 telomere maintenance via recombination 2.64E-08
III 105042 105042 25 branched chain family amino acid biosynthetic process 6.35E-08
XII 1054278 1054302 24 telomere maintenance via recombination 1.78E-08
III 100213 100213 23 branched chain family amino acid biosynthetic process 7.49E-06
III 175799 177850 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002
XII 674651 674651 23 sterol biosynthetic process 3.56E-04
III 201166 201167 22 regulation of mating-type specific transcription, DNA-dependent 1.23E-03
V 395442 395442 21 SRP-dependent cotranslational protein targeting to membrane, translocation 0.086913087
I 51324 52943 20 fatty acid metabolic process 0.281718282

VIII 111682 111690 20 response to pheromone 5.39E-04
III 209932 209932 19 regulation of mating-type specific transcription, DNA-dependent 7.77E-03

Table 4.6: Summary of the top 15 detected hotspots by G-Lasso

chr start end size GO category adjust p-value
XIV 449639 449639 339 mitochondrial translation 2.92E-07

V 109310 117705 240 translation 2.39E-08
V 350744 350744 183 translation 1.32E-07

XV 154177 154309 94 replicative cell aging 0.264735265
XII 899898 927421 81 translation 1.45E-06
XIV 486861 486861 81 mitochondrial translation 1.49E-06
II 548401 548401 78 endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA 0.030969031
III 75021 75021 78 cellular amino acid biosynthetic process 1.35E-06

XIV 502316 502496 76 mitochondrial genome maintenance 0.824175824
XII 674651 674651 73 electron transport chain 8.52E-04
III 81832 92391 58 branched chain family amino acid biosynthetic process 9.78E-05

VIII 111682 111690 57 response to pheromone 5.15E-03
XV 202370 210839 49 vesicle-mediated transport 0.592407592
XIII 27644 28334 45 dephosphorylation 0.007992008
XV 170945 180961 44 (1->6)-beta-D-glucan biosynthetic process 0.132867133

Table 4.7: Summary of the top 15 detected hotspots by SIOL

GGD-Lasso slightly outperforms GD-Lasso since it incorporates the location of SNPs and gene

pathway information.
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4.6 Conclusion

As a promising tool for dissecting the genetic basis of common diseases, eQTL study has

attracted increasing research interest. The traditional eQTL methods focus on testing the

associations between individual SNPs and gene expression traits. A major drawback of this

approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may

correspond to biological pathways.

Recent advancement in high-throughput biology has made a variety of biological

interaction networks available. Effectively integrating such prior knowledge is essential for

accurate and robust eQTL mapping. However, the prior networks are often noisy and incomplete.

In this chapter, we propose novel graph regularized regression models to take into account the

prior networks of SNPs and genes simultaneously. Exploiting the duality between the learned

coefficients and incomplete prior networks enables more robust model. We also generalize our

model to integrate other types of information, such as SNP locations and gene pathways. The

experimental results on both simulated and real eQTL datasets demonstrate that our models

outperform alternative methods. In particular, the proposed dual refinement regularization can

significantly improve the performance of eQTL mapping.

102



CHAPTER 5: DISCUSSION

Driven by the advancement of cost-effective and high-throughput genotyping

technologies, eQTL mapping has revolutionized the field of genetics by providing new ways to

identify genetic factors that influence gene expression. Traditional eQTL mapping approaches

consider both SNPs and genes individually, such as sparse feature selection using Lasso and

single-locus statistical tests using t-test or ANOVA test. However, it is commonly believed that

many complex traits are caused by the joint effect of multiple genetic factors, and genes in the

same biological pathway are often co-regulated and may share a common genetic basis. Thus, it

is a crucial challenge to understand how multiple, modestly-associated SNPs interact to influence

the phenotypes. However, little prior work has studied the grow-wise eQTL mapping problem.

Moreover, many prior correlation structures in the form of either physical or inferred molecular

networks in the genome and phenome are available in many knowledge bases, such as PPI

network, and genetic interaction network. Developing effective models to incorporate prior

knowledge on the relationships between SNPs and relationships between genes for more robust

eQTL mapping has recently attracted increasing research interests. However, the structures of

prior networks are often highly noisy and far from complete. More robust models that are less

sensitive to noise and incompleteness of prior knowledge are required to integrate these prior

networks for eQTL mapping.

This thesis presents a series of algorithms that take advantage of multiple domain

knowledge to help with the eQTL mapping and systematically study the problem of group-wise

eQTL mapping. In this chapter, we come to the conclusions of this thesis and discuss the future

directions of inferring group-wise associations for eQTL mapping.
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5.1 Summary

In this thesis, we presented our solutions for group-wise eQTL mapping. In general, we

made the following contributions.

• Algorithm to Detect Group-wise eQTL Associations with eQTL Data Only

To the best of our knowledge, this is the first work to address the group-wise eQTL

mapping problem. Three algorithms (Chapter 2) are proposed to address this problem.

The three approaches incrementally take into consideration more aspects, such as

group-wise association, potential confounding factors and the existence of individual

associations. Besides, we illustrate how each aspect could benefit the eQTL mapping.

Specifically, in order to accurately capture possible interactions between multiple

genetic factors and their joint contribution to a group of phenotypic variations, a sparse

linear-Gaussian model (SET-eQTL) is proposed to infer novel associations between

multiple SNPs and genes. The proposed method can help unravel true functional

components in existing pathways. The results could provide new insights on how genes

act and coordinate with each other to achieve certain biological functions. The thesis

further extends the approach to consider the confounding factors and also be able to

decouple individual associations and group-wise associations. The results show the

superiority over those eQTL mapping algorithms that do not consider the group-wise

associations.

• Algorithm to Integrate Heterogenous Graph Data to Refine Prior Knowledge

Bases

Based on the intuition of group-wise eQTL mapping, it is natural to integrate

multi-domain knowledge about the relationships between SNPs and relationships

between genes. Since the prior knowledge is usually heterogeneous, incomplete, and

noisy, the thesis proposes the CGC algorithm (Chapter 3) that is robust and flexible to

incorporate multiple sources graph data to enhance graph clustering performance. The

CGC algorithm is able to automatically identify noisy domains. By assigning smaller
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weights to noisy domains, the CGC algorithm is able to obtain optimal graph partition

performance for the focused domain.

• Robust Algorithm to Incorporate Prior Interaction Structures into eQTL Mapping

To incorporate the prior SNP-SNP interaction structure and grouping information of

genes into eQTL mapping, the proposed algorithm, GDL (Chapter 4), significantly

improve the robustness and the interpretability of eQTL mapping. We study how prior

graph information would help improve eQTL mapping accuracy and how refinement of

prior knowledge would further improve the mapping accuracy. In addition, other

different types of prior knowledge, e.g., location information of SNPs and genes, and

pathway information, can also be integrated for the graph refinement.

5.2 Future Directions

We envision that the integration of multi-domain knowledge will be the center of interests

for eQTL mapping in the future. In the past decade, many efforts have been devoted to developing

methods for eQTL mapping. In this thesis, we present approaches that address the group-wise

eQTL mapping problem. To further advance the field, there are several important research issues

that should be explored.

1. Disagreement across Diverse Information Sources

Although the idea of integrating multiple noisy heterogeneous data sources to establish

accurate knowledge bases is straightforward, the development of such models is still

very limited. Most existing integrative approaches use multiple data sources evenly

without considering possible disagreement across diverse information sources. This

might require an in-depth investigation. Effective data mining techniques that can

simultaneously do trustworthy analysis are desirably required.

2. Large Scale Data Sets

Scalability is another important issue in eQTL mapping. Especially, for human genetics,

the whole genome eQTL mapping includes analysis of millions of SNPs and tens of

thousands of genes. Traditional eQTL mapping approaches detect associated SNPs for
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each gene separately. Thus, mapping algorithm can be deployed in parallel for each

gene expression. For each run, many approaches were proposed to speed up the

mapping, such as screening method (Wang et al., 2013). However, these approaches do

not work for the group-wise eQTL mapping since the SNPs and genes need to be

considered jointly. In our algorithm (Chapter 2), we have developed an effective

approach to speed up the computing. However, it is still not able to tackle the whole

genome eQTL mapping for human data set. Thus, it is desirable to design new

algorithms that are capable of scaling genetic association studies across the

whole-genome and support identification of multi-way interactions.

3. Mining Biological and Medical Data Using Heterogeneous Models

Biological and medical research have been facing big data challenges for a long time.

With the burst of many new technologies, the data are becoming larger and more

complex. Our ability to identify and characterize the effects of genetic factors that

contribute to complex traits depends crucially on the development of new computational

approaches to integrate, analyze, and interpret these data. It is desirable to develop

integrative and scalable methods to study how genetic factors interact with each other to

cause common diseases. The developed techniques will dissect the relationships among

different components and automatically discover most relevant patterns from the data.
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