CHARACTERIZING CARDIOMETABOLIC GWAS LOCI WITH REGULATORY ANNOTATION, REGULATORY ASSAYS, TRANS-ANCESTRY FINE-MAPPING, AND OPEN CHROMATIN PROFILING

Maren Ettinger Cannon

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Genetics and Molecular Biology in the School of Medicine.

Chapel Hill
2017

Approved by:
Karen Mohlke

Ian Davis

Praveen Sethupathy
Gregory Crawford
Christopher Mack
© 2017
Maren Ettinger Cannon
ALL RIGHTS RESERVED

Abstract

Maren Ettinger Cannon: Characterizing cardiometabolic GWAS loci with regulatory annotation, regulatory assays, trans-ancestry fine-mapping, and open chromatin profiling (Under the direction of Karen Mohlke)

Cardiometabolic phenotypes, including diseases such as cardiovascular disease and type 2 diabetes (T2D) and related traits such as cholesterol levels, obesity, and lipid levels cause significant public health burden in many countries. Genetic and environmental factors contribute to the etiology of these phenotypes. While genome-wide association studies (GWAS) have identified hundreds of loci associated with cardiometabolic phenotypes, progress towards elucidating causal variants and genes has been slow. Many associated variants are located in noncoding regions, suggesting a regulatory mechanism. Identifying causal GWAS variants is a time-consuming and challenging process. Challenges arise from strong linkage disequilibrium (LD) at loci requiring multiple variants to be prioritized investigated. Combining statistical finemapping, overlap with genome-wide regulatory datasets, expression quantitative trait loci associations (eQTLs) and functional assays elucidates the variant(s) and gene(s) contributing to genetic mechanisms at cardiometabolic GWAS loci. I used these approaches to identify functional variants at two cardiometabolic GWAS loci and generated open chromatin profiles in adipose tissue. At the CDC123/CAMK1D T2D locus, one variant altered binding to FOXA1 and FOXA2 and increased transcriptional activity, suggesting it contributes to the mechanism at this locus. At the ANGPTL8 high-density lipoprotein cholesterol (HDL-C) GWAS locus, seven variants showed allelic differences in functional assays, suggesting a more complex regulatory
mechanism that may include multiple variants. Finally, open chromatin profiles were generated from frozen human subcutaneous adipose samples and a preadipocyte strain to characterize the regulatory landscape of adipose tissue and a cellular model system used to test GWAS variants in functional assays. Thorough investigations of GWAS loci are necessary for the development of new therapies, full elucidation of direction of effect, and better understanding of the genetic contributions to cardiometabolic phenotypes.

ACKNOWLEDGMENTS

Words cannot adequately express my thanks to the many people who have supported me throughout my Ph.D. First, I must thank and recognize my advisor, Karen Mohlke. You are an incredible scientist, a brilliant writer, and a thorough and thoughtful mentor. You have contributed significantly to my scientific development and helped me improve my writing and communication skills. I am grateful for the experience I have gained in your lab through experimental endeavors, attempts at computational endeavors, and writing grants and papers. Thank you, Karen, for your unending support and incredible mentorship. I would also like to thank my committee: Ian Davis, Praveen Sethupathy, Chris Mack, and Greg Crawford for their helpful conversations, direction, mentorship, and advice.

Thank you to the fantastic members of the Mohlke lab, past and present, for being such amazing colleagues and friends! Thank you Marie Fogarty, Jen Kulzer, Tamara Roman, Rani Vadlamudi, Jim Davis, and Hannah Perrin for your support and advice, especially for helping to troubleshoot experiments. Thank you Martin Buchkovich, Ying Wu, Cassie Spracklen, Kevin Currin, and Raulie Raulerson for your help with countless computational analyses and questions. Thank you especially to Kevin Currin for your extensive work on the analyses in Chapter 4; this chapter would not have been possible without your expertise and work. Thank you to all of the Mohlke lab members for helping me in all aspects of graduate school.

Many thanks to our collaborators around the world who I have been privileged to work
with. Thank you for collecting and processing thousands of tissue and blood samples; my work would not be possible without your previous work. I have learned much from interacting with you on conference calls, at collaborator meetings, and at national conferences; I appreciate the collaborative environment you foster, and your genuine friendship and interest in my work. Thank you especially to those who have collected data, and performed experiments and statistical analyses in this dissertation.

Thank you to the many teachers, professors, and mentors throughout my life who cultivated my love of science, especially Mark Dickson, Keith Crandall, Heather BrackenGrissom, and Maegan Leary. Your support, knowledge, and enthusiasm pushed me to try harder than I thought possible and sparked my interest in pursuing a Ph.D.

For their unwavering support throughout this process and my life, thank you Mom, Dad, Ames, and Kyle. I could not ask for a better family and words cannot express my sincere thanks for your support and love. Thank you to the more recent additions to my family- Carlie, Kimberli, John, Brooke, Jordan, Derek, Jenn, Kelsie, Seth, Lisa- for your support and love. Thanks to my daughter Quinn for being a light in my life and my very best genetics experiment.

Finally, and most importantly, thank you to my husband and best friend, Jake. Thank you for listening to practice talks and reviewing papers you didn't understand, hearing seemingly endless complaints about experiments, being a constant source of encouragement, helping to keep my spirits up, and for simply being there everyday. I love you.

TABLE OF CONTENTS

LIST OF TABLES xi
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xvi
CHAPTER 1: INTRODUCTION 1
Overview of cardiometabolic phenotypes 1
Genetics of cardiometabolic diseases and traits. 3
Prioritizing candidate variants at GWAS loci 4
Functional assays of regulatory activity 8
Aims and overview 10
CHAPTER 2: IDENTIFICATION OF A REGULATORY
VARIANT THAT BINDS FOXA1 AND FOXA2 AT THE CDC123/CAMK1D TYPE 2 DIABETES GWAS LOCUS 13
Introduction 13
Materials and Methods 15
Selection of SNPs for functional study 15
Cell culture 16
Generation of luciferase reporter constructs, transient DNA transfection and luciferase reporter assays 16
Electrophoretic mobility shift assay (EMSA) 17
DNA affinity capture assay 18
Chromatin immunoprecipitation (ChIP) assays 19
Effect of glucose on Cdc 123 and Camk1d transcript level. 20
RNA isolation and quantitative real-time reverse-transcription PCR 21
Results 21
Prioritization of type 2 diabetes-associated SNPs with regulatory potential at the CDC123/CAMK1D locus. 21
Allele-specific enhancer activity of rs11257655 in islet and liver cells 23
Alleles of rs11257655 differentially bind FOX transcription factors 26
FOXA1 and FOXA2 occupancy at rs11257655 in human islets 28
CDC123 and CAMK1D transcript levels 29
Discussion 30
Supplemental Figures and Tables 35
CHAPTER 3: TRANS-ANCESTRY FINE MAPPING AND MOLECULAR ASSAYS IDENTIFY REGULATORY VARIANTS AT THE ANGPTL8 HDL-C GWAS LOCUS 39
Introduction 39
Materials and Methods 42
Study population and phenotypes 42
Association, conditional, and haplotype analysis 43
Expression quantitative trait association 44
MANTRA 45
CAVIAR and PAINTOR 46
Functional annotation 47
Dual luciferase transcriptional reporter assays 48
Electrophoretic mobility shift assays (EMSA) 49
Results 50
Regulation of tissue-selective expression of ANGPTL8 50
Characterization of the ANGPTL8 HDL-C GWAS locus 52
eQTL associations with HDL-C-associated variants and nearby genes 57
Selection of variants to test for allelic differences in regulatory activity 59
Functional characterization of candidate variants 60
Discussion 63
Supplemental Figures and Tables 67
CHAPTER 4: OPEN CHROMATIN PROFILING IN ADIPOSE MARKS GENOMIC REGIONS WITH FUNCTIONAL ROLES IN CARDIOMETABOLIC TRAITS 86
Introduction 86
Materials and Methods. 89
METSIM study participants 89
Sample processing and ATAC-seq library preparation 90
ATAC-seq alignment and peak calling 91
Comparison of adipose ATAC profiles 92
Chromatin state analyses. 92
Comparison of adipose tissue and SGBS specific ATAC peaks 93
Transcription factor motif scanning and footprinting 94
Enrichment of GWAS variants in ATAC peaks and Roadmap chromatin states 95
Overlap of GWAS-eQTL colocalized loci with ATAC peaks 96
Transcriptional reporter luciferase assays 96
Electrophoretic mobility shift assays (EMSA) 97
Personal genome construction and ATAC-seq allelic imbalance 97
Results 98
Chromatin accessibility in frozen adipose tissue and SGBS preadipocytes 98
Comparison of adipose tissue, adipocyte, and preadipocyte ATAC profiles 99
Open chromatin regions selective to adipose tissue or SGBS preadipocytes exhibit different regulatory signatures 102
Cardiometabolic GWAS loci annotation in ATAC peaks 105
Functional evaluation of variants at cardiometabolic GWAS with colocalized eQTLs overlapping ATAC peaks 108
Allelic imbalance in ATAC-seq reads 112
Discussion 113
Supplemental Figures and Tables 118
CHAPTER 5: DISCUSSION 154
REFERENCES 161

LIST OF TABLES

Table 1 - DNA sequences amplified for luciferase assays 38
Table 2 - PCR primers for quantitative real-time PCR in human tissues 38
Table 3 - Haplotype association analyses in the WHI and METSIM studies 56
Table 4 - Associations with ANGPTL8 and DOCK6 expression in subcutaneous adipose tissue. 58
Table 5 - Primer and probe sequences for functional assays 77
Table 6 - Association of 100 ANGPTL8 locus variants with concentration of phospholipids in medium HDL in METSIM 78
Table 7 - Association of 100 ANGPTL8 locus variants with HDL-C in WHI 80
Table 8 - Variant associations with gene expression levels in subcutaneous adipose tissue 82
Table 9 - Variants associated with HDL-C in METSIM and/or WHI 83
Table 10 - Fine-mapping analysis using MANTRA 84
Table 11 - Fine-mapping analysis using CAVIAR 84
Table 12 - Fine-mapping analysis using PAINTOR 85
Table 13 - ATAC-seq alignment metrics of human adipose tissue and SGBS preadipocytes 99
Table 14 - Characteristics of METSIM individuals 133
Table 15 - Alignment metrics of all samples and conditions 134
Table 16 - Footprinting of 35 transcription factors 135
Table 17 - Primer and probe sequences for functional assays 136
Table 18 - Comparison of ATAC-seq peak overlap between tissue samples 136
Table 19 - Comparison of ATAC-seq peaks between adipose tissue, mature adipocytes, and SGBS preadipocytes 137
Table 20 - Overlap of ATAC peaks with adipose nuclei and rank among 98 chromatin states 138
Table 21 - Roadmap Epigenome IDs 139
Table 22 - Transcription factor motifs enriched in adipose tissue- and SGBS-specific ATAC peaks 141
Table 23 - Genes with adipose tissue- or SGBS-selective ATAC peaks at TSSs 142
Table 24 - GWAS loci used in GREGOR enrichment analyses 145
Table 25 - Enrichment of GWAS loci in ATAC peaks using GREGOR 146
Table 26 - GWAS loci and variants overlapping transcription factor motifs 147
Table 27 - Variants at GWAS-eQTL colocalized loci that overlap ATAC peaks. 148
Table 28 - Allelic imbalance in ATAC peaks 152
Table 29 - Variants at GWAS-eQTL colocalized loci with allelic imbalance in ATAC-seq reads 153

LIST OF FIGURES

Figure 1 - Regulatory potential at type 2 diabetes-associated SNPs at the CDC123/CAMK1D locus 23
Figure 2 - Haplotype containing type 2 diabetes-associated SNPs display differential transcriptional activity 24
Figure 3 - rs1 1257655 drives differential transcriptional activity 25
Figure 4 - Alleles of rs 11257655 differentially bind FOXA proteins in rat 832/13 insulinoma cells, mouse MIN6 insulinoma cells and human HepG2 hepatoma cells 27
Figure 5 - rs11257655-T allele shows increased binding to FOXA1 and FOXA2 in human islets 29
Figure 6 - Regulatory potential at rs 11257655 and rs36062557 35
Figure 7 - Transcriptional activity at rs36062557. 36
Figure 8 - Chromosome 10 region not overlapping open chromatin does not show binding to FOXA1 and FOXA2 in human islets. 36
Figure $9-C D C 123$ and CAMK1D expression and response to glucose 37
Figure 10 - Thirteen variants overlap predicted regulatory regions 51
Figure 11 - Cell-type specificity of ANGPTL8 is influenced by nearby regulatory regions 52
Figure 12 - Locus plots of HDL-C and eQTL associations near ANGPTL8. 54
Figure 13 - Allelic differences in regulatory assays of rs12463177 61
Figure 14 - Summary of functional results for seven candidate variants 62
Figure 15 - HDL association and conditional analysis 67
Figure 16 - eQTL association in subcutaneous adipose from 770 individuals in the METSIM study 68
Figure 17 - RNA associations with HDL-C in METSIM 69
Figure 18 - Flow chart describing selection of variants to test in functional experiments 70
Figure 19 - Candidate variants relative to predicted regulatory regions 71
Figure 20 - Variants tested in transcriptional reporter luciferase assays 72
Figure 21 - Seven variants show differential protein binding in EMSAs 73
Figure 22 - Competition EMSAs confirm allele-specific effects 74
Figure 23 - Six variants overlapping regulatory regions did not alter protein binding 75
Figure 24 - RXR α may bind as part of a complex at rs737337 75
Figure 25 - A 5-kb haplotype did not show allelic differences in transcriptional activity 76
Figure 26 - Differences in ATAC-seq peaks and overlap with Roadmap adipose nuclei chromatin states 100
Figure 27 - ADIPOQ and FBN2 TSSs show differential ATAC-seq peaks. 104
Figure 28 - Cardiometabolic GWAS loci are enriched in ATAC-seq peaks 106
Figure 29 - A variant at the $S N X 10$ WHR GWAS locus alters transcriptional activity and protein binding 110
Figure 30 - A variant at the ATP2A1-SH2B1 BMI GWAS locus alters chromatin accessibility and PU. 1 binding 112
Figure 31 - Adipose tissue ATAC peak overlap of all chromatin states 118
Figure 32 - SGBS ATAC peak overlap of all chromatin states 119
Figure 33 - ENCODE ATAC peak overlap of chromatin states 120
Figure 34 - Mature adipocyte ATAC peak overlap of all chromatin states 121
Figure 35 - Gene ontology enrichment of adipose tissue- and SGBS- specific ATAC peaks 122
Figure $36-V W F$ and $L U M$ TSSs show differential ATAC-seq peaks 123
Figure 37 - GWAS loci are enriched in ATAC-seq peaks 124
Figure 38 - Aggregate footprint profiles for CEBPA and CREB312 in adipose tissue samples and SGBS preadipocytes 125

$$
\begin{aligned}
& \text { Figure } 39 \text { - Aggregate footprint profiles for FOXO1 and MEF2D } \\
& \text { in adipose tissue samples and SGBS preadipocytes ... } 126
\end{aligned}
$$

Figure 40 - Aggregate footprint profiles for NFIA and SPI1 in adipose tissue samples and SGBS preadipocytes127

Figure 41 - Aggregate footprint profiles for STAT3A and STAT5A::STAT5B in adipose tissue samples and SGBS preadipocytes128
Figure 42 - Aggregate footprints for TCFL7, IRF1, PBX1, and ETS1 129

Figure 43 - Aggregate footprint profiles for CEBPB, CEBPD, CTCF, and IRF1 in SGBS preadipocytes130

Figure 44 - Aggregate footprint profiles for PBX1, RREB1, RXRA::VDR, and RARA in SGBS preadipocytes131

Figure 45 - Additional regulatory assays for rs1534696... 132
Figure 46 - Additional regulatory assays for rs7187776 133

LIST OF ABBREVIATIONS

AA-ALIGNER	Allele aware aligner
ADCY5	adenylate cyclase 5
ADIPOQ	adiponectin
AFR	African ancestry
AGEN	Asian Genetic Epidemiology Network
AMR	Admixed American ancestry
ANGPTL3	angiopoiten-like protein 3
ANGPTL8	angiopoiten-like protein 8
ATAC-seq	assay for transposase-accessible chromatin
ATP2A1	ATPase sarcoplasmic/endoplasmic reticulum $\mathrm{Ca} 2+$ transporting protein 1
B2M	beta-2-microglobulin
BCA	bicinchoninic acid
BMI	body mass index
bp	base pair
CAMK1D	calcium/calmodulin-dependent protein kinase 1D
CAVIAR	Causal Variants Identication in Associated Regions
CDC123	cell division cycle protein 123
CDC42	cell division cycle protein 42
cDNA	complementary DNA
CEBPA	CCAAT/enhancer binding protein alpha
CEBPB	CCAAT/enhancer binding protein beta
$C E B P D$	CCAAT/enhancer binding protein delta

ChIP-seq	chromatin immunoprecipitation
CREB	cAMP response element binding protein
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
CTCF	CCCTC-binding factor
CVD	cardiovascular disease
DMEM	Dulbecco's modified eagle medium
DNA	deoxyribonucleic acid
DNase-seq	DNase I hypersensitivity
DOCK6	dedicator of cytokinesis 6
EDTA	ethylenediaminetetraacetic acid
EGR1	early growth response factor 1
ELISA	enzyme-linked immunosorbent assay
EMMAX	Efficient Mixed-Model Association eXpedited
EMSA	electrophoretic mobility shift assay
ENCODE	Encyclopedia of DNA elements
EPACTS	Efficient and Parallelizable Association Container Toolbox
eQTL	expression quantitative trait locus
EUR	European ancestry
FAIRE-seq	formaldehyde-assisted isolation of regulatory elements
FBS	fetal bovine serum
FBN2	fibrillin 2
FDR	false discovery rate
FIMO	Find Individual Motif Occurances

FOXA 1	forkhead box protein A1
FOXA 2	forkhead box protein A2
FTO	FTO, alpha-ketoglutarate dependent dioxygenase
GALNT2	polypeptide N -acetylgalactosaminyltransferase 2
GLGC	Global Lipids Genetics Consortium
GREGOR	Genomic Regulatory Elements and GWAS Overlap algoRithm
GSIS	glucose stimulated insulin secretion
GSNAP	Genomic Short-read Nucleotide Alignment Program
GWAS	genome-wide association study
HDL-C	high-density lipoprotein cholesterol
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HOMA	Homeostasis Model Assessment
JAZF1	JAZF zinc finger 1
kb	kilobase
LD	linkage disequilibrium
LDL-C	low-density lipoprotein cholesterol
LiCl	lithium chloride
LPL	lipoprotein lipase
MACS	Model-based Analysis for ChIP-Seq
MAF	minor allele frequency
MALDI	matrix-assisted laser desorption/ionization
MANTRA	Meta-Analysis of Transethnic Association studies
MAPQ	mapping quality

Mb	megabase
MEM-a	Minimum Essential Medium Eagle alpha
METSIM	Metabolic Syndrome in Men study
MgCl ${ }_{2}$	magnesium chloride
mM	millimolar
MMP16	matrix metallopeptidase 16
mRNA	messenger RNA
MTNR1B	melatonin receptor 1B
NaCl	sodium chloride
NaHCO_{3}	sodium bicarbonate
NCBI	National Center for Biotechnology Information
NE	nuclear extract
NIH	National Institutes of Health
NMR	nuclear magnetic resonance spectroscopy
PAGE	polyacrylamide gel electrophoresis
PAINTOR	Probabilistic Annotation INtegraTOR
PBS	Phosphate-buffered saline
PCR	polymerase chain reaction
PDX1	pancreatic and duodenal homeobox 1
PEER	probabilistic estimation of expresion residuals
PLA2G7	phospholipase A2 group VII
PNPLA2	patatin-like phopholipase domain containing 2
qPCR	quantitative PCR

RAC1	Rac family small GTPase 1
RIFL	refeeding-induced fat and liver protein
RMA	Robust multi-array average
RNA	ribonucleic acid
RPMI	Roswell Park Memorial Institute
RT-PCR	reverse transcription PCR
RXR	retinoid x receptor alpha
SD	standard deviation
SE	Simpson-Golabi-Behmel syndrome error
SGBS	SH2B adaptor protein 1
SH2B1	single nucleotide polymorphism
SNP	sorting nexin 10
SNX10	Spi-B transcription factor
UTR	transpoted region
UCSC	trimese 2 diabetes
T2D	Tris/Borate/EDTA

UV
VGAM
VWF

WHI

WHI-SHARe

WHR waist-hip ratio

CHAPTER 1: INTRODUCTION

Genome-wide association studies (GWAS) have identified hundreds of loci associated with cardiometabolic phenotypes (www.ebi.ac.uk/gwas/). Most of these loci are located in noncoding regions and the underlying functional mechanisms remain unknown. Statistical analyses and functional experiments are needed to determine the causal variant(s), which gene(s) they act on, and how the gene functions to alter cardiometabolic phenotypes. Robust genomic regulatory datasets exist to help inform and prioritize candidate variants, but some tissues, such as adipose, are under-represented. The aims of my research were to identify the functional variant(s) at the CDC123/CAMK1D type 2 diabetes (T2D) GWAS locus, identify the functional variant(s) and gene(s) at the $A N G P T L 8$ high-density lipoprotein cholesterol (HDL-C) GWAS locus, and to create a more robust regulatory map of adipose tissue by generating open chromatin profiles of human adipose tissue using the assay for transposase-accessible chromatin (ATACseq). Generating ATAC-seq open chromatin profiles from adipose tissue will enhance identification of functional variants. A thorough understanding of cardiometabolic GWAS loci is necessary to the development of therapies for the appropriate genes (1) and direction of effect (2), especially given the increasing recognition of allelic heterogeneity at GWAS loci (3-8).

Overview of cardiometabolic phenotypes

Cardiometabolic phenotypes encompass a wide range of diseases and related traits that cause significant public health burden in many countries (9-11). These phenotypes include T2D,
cardiovascular disease (CVD), cholesterol and triglyceride levels, and obesity. T2D is characterized by impaired glucose tolerance and/or impaired fasting glucose $(12,13)$. These impairments can be caused by decreased insulin secretion from the pancreatic beta cells and insulin resistance. People affected with T2D can have multiple complications including vascular and circulatory abnormalities that can lead to coronary heart disease, congestive heart failure, or stroke $(14,15)$.

CVD is a leading cause of death worldwide (16). CVD includes multiple conditions including heart failure, myocardial infarction, stroke, and high blood pressure (12). Risk factors for CVD include high levels of low-density lipoprotein cholesterol (LDL-C), high triglyceride levels, and low levels of high-density lipoprotein cholesterol (HDL-C) (17-19). LDL-C and triglycerides can contribute to the development of plaques in the bloodstream; the buildup of plaque in the bloodstream is called atherosclerosis and is a leading cause of CVD (20). HDL-C helps clear plaques by collecting LDL-C to take it away from the arteries and back to the liver for disposal, thus decreasing plaque buildup and risk for CVD.

Obesity is a significant public health burden and is extremely prevalent, especially in the United States. Approximately 35% of all adults in the U.S. are obese $(21,22)$. Central adiposity, or fat deposited around the abdomen, is associated with CVD and general obesity increases risk of other comorbid conditions, including T2D, hypertension, dyslipidemia, osteoarthritis, several cancers, and many other detrimental phenotypes $(21,23,24)$. CVD, T2D, and their related risk factors are regulated by genetic and environmental factors (25).

Genetics of cardiometabolic diseases and traits

Cardiometabolic phenotypes are multifactorial and are influenced by environmental and genetic factors. Exercise and diet are known to affect lipid and cholesterol levels and increased exercise and a healthy diet can decrease the risk of many cardiometabolic diseases. Bowes et al. (26) demonstrated that lifestyle intervention including dietician-led education sessions and weekly exercise programs led to weight loss and significant improvement in cardiovascular risk factors including lipid and triglyceride levels. Strong evidence exists for a genetic component to these phenotypes. Heritability estimates range from 30-77\% for T2D $(27,28), 40-90 \%$ for cholesterol and lipid levels (29-34), and 31-70\% for waist-to-hip ratio, a measure of obesity (31,35-37). GWAS have identified hundreds of loci associated with cardiometabolic phenotypes $(6,7,38)$. To date, at least 80 loci have been associated with CVD (39-41) and hundreds of loci (>250) have been identified for cholesterol and lipid levels and other CVD risk factors $(38,42-$ 46). At least 184 loci have been identified for T2D $(47,48)$, and at least 200 loci have been identified for obesity $(6,7)$. While mechanisms are known at a few loci, most mechanisms remain unknown. GWAS have been successful in identifying associated loci, but the next step is to move past association on to understanding the function of variant(s) and gene(s) at these loci $(49,50)$.

Much more work is needed to elucidate the mechanisms at cardiometabolic GWAS loci. Of the hundreds of loci associated with cardiometabolic traits, only a few have been targeted for functional validation. One example, near the TRIB1 gene, identified variants associated with HDL-C, LDL-C, triglyceride levels, and myocardial infarction (51). Further studies showed a connection of TRIB1 gene function and CVD risk factors; Tribl overexpression in mouse liver decreased cholesterol and lipid levels (52). A second example, near JAZF 1, identified variants
associated with T2D (53). A common variant, rs1635852 increased transcriptional activity in pancreatic beta cells by altering binding of the PDX1 transcription factor, suggesting that rs 1635852 may contribute to T2D susceptibility. A third example described multiple regulatory variants at the GALNT2 HDL-C GWAS locus (54). At least two variants, rs4846913 and rs2281721 influence GALNT2 expression by altering transcription factor binding. Several other mechanisms at cardiometabolic GWAS loci have been elucidated, but hundreds remain unsolved. Characterizing functional mechanisms at GWAS loci is challenging and timeconsuming, but is a vital step to understanding the genetics of cardiometabolic diseases and traits.

This dissertation focuses on elucidating novel genetic mechanisms of cardiometabolic diseases and related traits. As previously mentioned, GWAS are strong studies for identifying loci associated with cardiometabolic phenotypes, but they do not delineate which gene(s) and variant(s) are functioning to alter the phenotype. Many loci are located in noncoding regions, suggesting a regulatory mechanism. In most cases, multiple genes located near the association signals have plausible biological function. Similarly, any of the variants inherited together in linkage disequilibrium (LD) could be contributing to the underlying mechanism. Additional statistical analyses and functional studies are needed to determine which gene(s) and variant(s) are functional at these loci.

Prioritizing candidate variants at GWAS loci

Multiple approaches exist to prioritize candidate variants at a GWAS locus (55). As a first step, variants in LD with the most significantly associated GWAS variant, or lead variant, are considered. Variants in pairwise LD are inherited together more frequently than is expected
by chance; a statistical measure of LD is r^{2}, where $r^{2}=1.0$ means that two variant alleles are always inherited together. Traditionally, a LD r^{2} threshold of 0.8 is used to determine candidate variants at a GWAS locus; however, various studies use different, less stringent thresholds (i.e.:
$r^{2}>0.5$). All variants in strong LD with the lead variant are considered equally likely to be functional.

After determining the number of candidate variants in LD with the lead variant at a locus, statistical fine-mapping analyses and overlap with genomic datasets can be used to select variants for follow-up in functional experiments (55). Fine-mapping can have multiple definitions. For the purposes of this dissertation, I use two types of fine-mapping: to determine the number of signals present at an association locus and to statistically predict functional variants using association statistics and/or genomic annotations. For fine-mapping to be successful, the variants in LD with the lead variant need to be densely genotyped or imputed with high confidence in large enough sample sizes to differentiate between variants in strong pairwise LD. The first fine-mapping approach is to determine the number of signals present at a GWAS locus by performing conditional analysis. If other variants remain significant after conditioning on the lead variant, then there are additional signals present at the GWAS locus. Conditional analysis is important to ensure all candidate variants are considered. If multiple signals exist, there may be multiple mechanisms of action to alter the associated trait.

The second fine-mapping approach, statistical fine-mapping, predicts which variants are more likely to be functional. Statistical fine-mapping analyses fit in two broad categories: prioritizing variants based on association statistics and/or LD and Bayesian methods that assign posterior probabilities of functionality to each variant. In this dissertation, I employ three statistical fine-mapping analyses. CAVIAR (56) is a method that leverages association statistics
including p -values and effect sizes to determine which variants are most likely to be functional. PAINTOR (57) also leverages association strength to prioritize variants, but also includes functional genomic annotation data. One Bayesian method is MANTRA (58), which compares association signals across diverse populations to prioritize shared variants. CAVIAR and MANTRA generate a 'credible set' of variants most likely to contain the functional variant. PAINTOR predicts a set number of functional variants given by the user before analyzing the data. Statistical fine-mapping approaches can reach different predictions; it can be beneficial to compare variants predicted by multiple approaches to prioritize variants for functional followup.

Although some GWAS variants alter the protein coding sequence of genes, the majority of GWAS loci are located in noncoding regions. The variants underlying these association signals likely have regulatory function, by which the variant alters transcription of a gene through differential transcription factor binding or other mechanisms. Another approach for prioritizing variants for functional assays is to consider overlap with genomic regulatory regions. Large consortium efforts including the Encyclopedia of DNA Elements (ENCODE) (59) and the Roadmap Epigenomics Project (60) have created robust datasets for many cell and tissue types to describe regions characteristic of regulatory activity. These datasets include chromatin immunoprecipitation (ChIP-seq) of histone marks often observed at enhancers, promoters, and insulators, and transcription factors. Additionally, multiple datasets of open chromatin profiling using DNase hypersensitivity (DNase-seq), formaldehyde-assisted isolation of regulatory elements (FAIRE-seq), and ATAC-seq provide maps of 'open' regions of the genome. Regulatory datasets are useful for identifying regions of regulatory activity and the overlap of candidate variants with regulatory regions in the cell types of interest.

Regulatory datasets in cell and tissue types relevant to cardiometabolic diseases are needed to make the best prioritization of candidate variants because gene expression and regulatory regions can be cell-type specific (59). Many tissues, including liver, blood, adipose, pancreas, and others are involved in CVD, T2D, and obesity progression. Multiple assays have been performed in liver and blood cell types from the ENCODE (59) and the Roadmap Epigenomics Project (60), and recent studies have increased the amount of data for pancreatic islet (61). The Roadmap Epigenomics Project (60) has generated ChIP-seq data for histone marks, but open chromatin profiling in adipose tissue and adipocyte cell models is lacking. ATAC-seq is a particularly useful method to determine open chromatin profiles because it requires less tissue/cells and less time than DNase-seq and FAIRE-seq (62). In this dissertation, I create open chromatin profiles in three human adipose tissue samples and the SGBS preadipocyte cell strain. Characterization of the adipose open chromatin profile will help prioritize candidate variants at GWAS loci and contribute to a more complete understanding of gene regulation in adipose.

The gene(s) being acted on at regulatory GWAS loci also need to be identified. One method is by expression quantitative trait loci (eQTL) associations. eQTL analysis identifies variants associated with the RNA levels of nearby (cis-eQTL) or distant (trans-eQTL) genes. Further analysis can determine coincidence of a GWAS association signal with an eQTL signal. A coincident eQTL signal suggests that the same variants underlying the GWAS trait association are acting on the RNA levels of the eQTL-associated gene. In this dissertation, I use eQTL associations identified in the METabolic Syndrome in Men (METSIM) study (63). The METSIM study consists of $\sim 10,000$ Finnish men and includes dense genotyping, ~ 200 metabolic phenotypes, and eQTL associations in 770 adipose samples. The METSIM study is unique
because it includes genotypes, expression, and clinical trait data in the same samples. Combining these datasets allows us to identify gene expression associations with clinical traits; for example, increased PLA2G7 expression level is associated with increased triglyceride levels (63). In the METSIM study, we can identify variant-trait, variant-gene, and gene-trait associations in the same set of individuals. If a variant is identified as an eQTL with a specific gene, functional experiments can be performed to confirm the role of the gene and determine the mechanism of action.

Functional assays of regulatory activity

Many approaches exist to test regulatory variants in functional experiments $(64,65)$. The goal of all functional validation is to determine if variants show allelic differences in function, usually resulting in allele-specific effects on gene expression levels. Allelic differences can be identified in transcriptional reporter assays, protein binding assays, allelic imbalance in sequencing reads, genome editing experiments, physical chromatin interaction assays, and other experiments. Transcriptional reporter assays test variant alleles located in regulatory regions for differences in transcriptional activity. The regulatory region surrounding an associated variant is cloned into a vector containing a reporter gene, usually luciferase or GFP, and transfected in a cell line or transiently expressed in a model organism. Luciferase activity is measured and the variant alleles are compared to determine any allelic differences in transcriptional activity. In this dissertation, reporter assays are performed in cell lines, but they can also be performed in mouse, zebrafish, and other model organisms. For cardiometabolic disease loci and in this dissertation, I use cell lines derived from adipose, liver, and pancreatic islet. For adipose, mouse 3T3L1 preadipocytes, human SW872 adipocytes, human SGBS preadipocytes are used. I use two
human liver carcinoma cell lines: HepG2 and HUH7. Finally, mouse MIN6 and rat 832/13 insulinoma cells are used to model human pancreatic beta cells.

Protein binding assays, including electrophoretic mobility shift assays (EMSA), DNAaffinity pull downs, and ChIP experiments are used to identify variant alleles that bind transcription factors differentially. EMSAs are an in vitro approach that visualizes nuclear protein complexes that bind to $\sim 20-b p$ DNA probes surrounding the candidate variant. The DNA-protein complexes are visualized on a gel and identity of the transcription factor can be determined using antibodies to transcription factors predicted by conserved transcription factor binding motifs or identified by ChIP-seq datasets. DNA-affinity pull downs are similar to EMSA; all DNA-protein complexes are captured by a ~ 20-bp probe surrounding the candidate variant and visualized on a gel. Proteins in allele-specific bands are identified using mass spectrometry.

Sequencing data generated from ChIP-seq, DNase-seq, FAIRE-seq, or ATAC-seq can be used to identify sites of allelic imbalance. A site of allelic imbalance occurs when a sample is heterozygous for a candidate variant and has disproportionate sequencing reads for each allele. For example, DNase-seq and CEBPB ChIP-seq reads containing rs4846913-A at the GALNT2 HDL-C GWAS locus showed more reads than rs4846913-C, suggesting that the A allele increases CEBPB binding and open chromatin (54). Although not presented in this dissertation, genome editing and physical interaction experiments can be used to test candidate variants. Functional assays provide supporting evidence for candidate variants; however, it is necessary to use multiple assays and approaches to fully delineate the contribution of all variant(s), transcription factor(s), and gene(s) at a GWAS locus.

Aims and overview

The aims of this dissertation are to identify the functional variants at the T2D-associated CDC123/CAMK1D locus, the HDL-C-associated ANGPTL8 locus, and to create ATAC-seq open chromatin profiles to further characterize the regulatory map of human adipose tissue. The variants at both CDC123/CAMK1D and ANGPTL8 are located in regulatory regions. The ATACseq open chromatin profiles generated from human adipose tissue and preadipocytes are used to better characterize regulatory elements in these cell types and to prioritize variants at cardiometabolic GWAS loci.

In Chapter 2, I demonstrate the allelic effects on regulatory function of a single variant at the CDC123/CAMK1D T2D GWAS locus. To gain insight into the molecular mechanisms underlying the association signal, we used genomic regulatory overlap to identify SNPs overlapping predicted regulatory regions. Two regions containing T2D-associated variants were tested for enhancer activity using luciferase reporter assays. One SNP, rs11257655, displayed allelic differences in transcriptional enhancer activity in 832/13, MIN6, and HepG2 cells. The rs11257655 risk allele T showed greater transcriptional activity then the non-risk allele C in all cell types tested. Using EMSAs, the rs 11257655 risk allele showed allele-specific binding to FOXA1 and FOXA2. FOXA1 and FOXA2 enrichment at the rs 11257655 risk allele was validated using allele-specific ChIP in human islets. These results suggest that rs11257655 affects transcriptional activity through altered binding of a protein complex that includes FOXA1 and FOXA2, providing a potential molecular mechanism at this GWAS locus.

In Chapter 3, I investigate candidate regulatory variants at the HDL-C-associated ANGPTL8 locus. The ANGPTL8 association with HDL-C levels has been identified in multiple populations $(38,43,66)$. Given the extensive sharing of GWAS loci across populations (50), I
hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C-associated variants are coincident with eQTLs for $A N G P T L 8$ and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C. A 400-bp promoter region upstream of $A N G P T L 8$ and enhancer regions within 5 kb contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5 -fold, $P=0.004$) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and multiple potentially functional variants.

In Chapter 4, I describe the open chromatin profile of human adipose tissue using ATACseq. ATAC-seq open chromatin profiles were generated using frozen human subcutaneous adipose tissue needle biopsies from three individuals and a preadipocyte cell strain. I compared heterogeneous adipose tissue ATAC-seq to homogenous preadipocytes and observed 83 gene promoters with ATAC-seq peaks specific to adipose tissue and 437 gene promoters with peaks specific to SGBS preadipocytes. 17 transcription factors generated footprints using the ATACseq data. Finally, I identified enrichment of cardiometabolic GWAS loci in ATAC peaks, and 147 variants at 59 cardiometabolic GWAS loci that also harbor colocalized adipose expression quantitative trait loci overlapped ATAC peaks. Of the 147 variants, I further investigated
rs 1534696 at the SNX10 waist-to-hip ratio GWAS locus and rs7187776 at the ATP2A1-SH2B1
BMI GWAS locus and identified allelic differences in functional assays.
Finally, in Chapter 5 I summarize the major findings of Chapters 2, 3, and 4 and discuss the scope and future directions of functionally characterizing GWAS signals for complex cardiometabolic traits.

CHAPTER 2: IDENTIFICATION OF A REGULATORY VARIANT THAT BINDS FOXA1 AND FOXA2 AT THE CDC123/CAMK1D TYPE 2 DIABETES GWAS LOCUS ${ }^{1,2}$

Introduction

Type 2 diabetes is a complex metabolic disease with a substantial heritable component
(67). Over the past seven years, genome-wide association studies (GWAS) have successfully identified over 70 common risk variants associated with type 2 diabetes (68-71). Association signals at many of these loci localize to non-protein-coding intronic and intergenic regions and likely harbor regulatory variants altering gene transcription. In recent years great advances have facilitated identification of regulatory elements genome-wide using techniques including DNaseseq and FAIRE-seq (formaldehyde-assisted isolation of regulatory elements), which identify regions of nucleosome depleted open chromatin, and ChIP-seq (chromatin immunoprecipitation), which identify histone modifications to nucleosomes and transcription factor binding sites. Several studies have successfully integrated trait-associated variants at GWAS loci with publicly available regulatory element datasets in disease-relevant cell types to guide identification of regulatory variants underlying disease susceptibility (53,72-75).

The CDC123 (cell division cycle protein 123) / CAMK1D (calcium/calmodulin-

[^0]dependent protein kinase ID) locus on chromosome 10 contains common variants (MAF > .05) strongly associated with type 2 diabetes in Europeans (rs12779790, $P=1.2 \times 10^{-10}$) (69), East Asians (rs10906115, $P=1.5 \times 10^{-8}$) (70), and South Asians (rs11257622, $P=5.8 \times 10^{-6}$) (76). Fine-mapping using the Metabochip identified rs11257655 as the lead SNP (68). The index variant and proxies $\left(\mathrm{r}^{2}>.7\right)$ span an intergenic region of at least 45 kb between CDC123 and CAMK1D and overlap the 3^{\prime} end of CDC123 (69). None of the type 2 diabetes-associated variants at this locus are located in exons. Analysis of the beta cell function measurements HOMA-B and insulinogenic index, derived from paired glucose and insulin measures at fasting or 30 minutes after a glucose challenge, demonstrated association of the risk allele at the CDC123/CAMK1D locus with reduced beta cell function, suggesting the beta cell as a candidate affected tissue $(68,77)$. Another intronic variant (rs7068966, $\mathrm{r}^{2}=0.18 \mathrm{EUR}, 1000 \mathrm{G}$ Phase 1) located 50 kb away from rs12779790 is associated with lung function (78).

The transcript(s) targeted by risk variant activity at this locus remain unknown. CDC123 is regulated by nutrient availability in yeast and is essential to the onset of mRNA translation and protein synthesis through assembly of the eukaryotic initiation factor 2 complex $(79,80)$. Evidence from previous GWA studies suggest cell cycle dysregulation as a common mechanism in type 2 diabetes; for example, type 2 diabetes association signals are found close to the cell cycle regulator genes, CDKN2A / CDKN2B and CDKAL1 (50). CAMK1D is a member of the $\mathrm{Ca}^{2+} /$ calmodulin-dependent protein kinase family which transduces intracellular calcium signals to affect diverse cellular processes. Upon calcium influx in granulocyte cells and hippocampal neurons, CAMK1D activates CREB-dependent gene transcription $(81,82)$. Given the roles of cytosolic calcium in regulation of beta cell exocytotic machinery and of $C R E B$ in beta cell survival, CAMKID may have a role in beta cell insulin secretion. In cis-eQTL analyses, the
rs 11257655 type 2 diabetes risk allele was more strongly and directly associated with increased expression of CAMK1D than CDC123 in both blood and lung $(83,84)$.

In this study we aimed to identify the variant(s) underlying the association signal at the CDC123/CAMK1D locus using genome-wide maps of open chromatin, chromatin state and transcription factor binding in pancreatic islets, hepatocytes, adipocytes and skeletal muscle myotubes. We measured transcriptional activity of variants in putative regulatory elements using luciferase reporter assays, and identified a candidate cis-acting SNP driving allele-specific enhancer activity in two mammalian beta cell-lines as well as hepatocellular carcinoma cells. We then evaluated DNA-protein binding in sequence surrounding this variant and identified allelespecific binding to key islet and hepatic transcription factors. Thus, our study provides strong evidence of a functional variant underlying the type 2 diabetes association signal at the CDC123/CAMK1D locus acting through altered regulation in type 2 diabetes-relevant cell types.

Materials and Methods

Selection of SNPs for functional study
Variants were prioritized for functional study based on linkage disequilibrium (LD) and evidence of being in an islet or liver regulatory element based on data from the ENCODE consortium (85). Of 11 variants meeting the LD threshold ($\mathrm{r}^{2} \geq .7$, EUR, with the GWAS index SNP rs12779790, 1000G Phase 1 release), two SNPs showed evidence of open chromatin (72,74,86,87), histone modifications (88-90) or transcription factor binding and were tested for evidence of differential transcriptional activity.

Cell culture

Two insulinoma cell lines, rat-derived 832/13 (91) (C.B. Newgard, Duke University) and mouse-derived MIN6 (92) were maintained at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2} .832 / 13$ cells were cultured in RPMI 1640 (Cellgro/Corning) supplemented with 10% FBS, 1 mM sodium pyruvate, 2 mM Lglutamine, 10 mM HEPES and $0.05 \mathrm{mM} \beta$-mercaptoethanol. MIN6 cells were cultured in DMEM (Sigma), supplemented with 10% FBS, 1 mM sodium pyruvate, $0.1 \mathrm{mM} \beta$ mercaptoethanol. HepG2 hepatocellular carcinoma cells were cultured in MEM-alpha (Gibco) supplemented with 10% FBS, 1 mM sodium pyruvate and 2 mM L-glutamine.

Generation of luciferase reporter constructs, transient DNA transfection and luciferase reporter assays

Fragments surrounding each of rs11257655 (151 bp) and rs34428576 (179 bp) were PCR-amplified (Table 1) from DNA of individuals homozygous for risk and non-risk alleles. Restriction sites for KpnI and XhoI were added to primers during amplification, and the resulting PCR products were digested with KpnI and XhoI and cloned in both orientations into the multiple cloning site of the minimal promoter-containing firefly luciferase reporter vector pGL4.23 (Promega, Madison, WI). Fragments are designated as 'forward' or 'reverse' based on their orientation with respect to the genome. Two to five independent clones for each allele for each orientation were isolated, verified by sequencing, and transfected in duplicate into $832 / 13$, MIN6 and HepG2 cell lines. Missing haplotypes of rs36062557-rs11257655 constructs were created using the QuikChange site directed mutagenesis kit (Stratagene).

Approximately 1×10^{-5} cells per well were seeded in 24 -well plates. At 80% confluency, cells were co-transfected with luciferase constructs and Renilla control reporter vector (phRL-

TK, Promega) at a ratio of 10:1 using Lipofectamine 2000 (Invitrogen) for 832/13, and using FUGENE-6 for MIN6 and HepG2 cells (Roche Diagnostics, Indianapolis, IN). 48 h after transfection, cells were lysed with passive lysis buffer (Promega), and luciferase activity was measured using the Dual-luciferase assay system (Promega). To control for transfection efficiency, raw values for firefly luciferase activity were divided by raw Renilla luciferase activity values, and fold change was calculated as normalized luciferase values divided by pGL4.23 minimal promoter empty vector control values. Data are reported as the fold change in mean $(\pm \mathrm{SD})$ relative luciferase activity per allele. A two-sided t-test was used to compare luciferase activity between alleles. All experiments were carried out on a second independent day and yielded comparable allele-specific results.

Electrophoretic mobility shift assay (EMSA)

Nuclear cell extracts were prepared from 832/13, MIN6, and HepG2 cells using the NEPER nuclear and cytoplasmic extraction kit (Thermo Scientific) according to the manufacturer's instructions. Protein concentration was measured with a BCA protein assay (Thermo Scientific), and lysates were stored at $-80^{\circ} \mathrm{C}$ until use. 21 bp oligonucleotides were designed to the sequence surrounding rs11257655 risk or non-risk alleles: Sense 5' biotin-

GGGCAAGTGT[C/T]TACTGGGCAT 3', antisense 5' biotinATGCCCAGTA[G/A]ACACTTGCCC 3' (SNP allele in bold). Double-stranded oligonucleotides for the risk and non risk alleles were generated by incubating 50 pmol complementary oligonucleotides at $95^{\circ} \mathrm{C}$ for 5 minutes followed by gradual cooling to room temperature. EMSA's were carried out using the LightShift Chemiluminescent EMSA Kit (Thermo Scientific). Binding reactions were set up as follows: 1 X binding buffer, $50 \mathrm{ng} / \mu \mathrm{L}$ poly
$(\mathrm{dI} \bullet \mathrm{dC}), 3 \mu \mathrm{~g}$ nuclear extract, 200 fmol of labeled probe in a final volume of $20 \mu \mathrm{~L}$. For competition reactions, 67 -fold excess of unlabeled double-stranded oligonucleotides for either the risk or non-risk allele were included. Reactions were incubated at room temperature for 25 minutes. For supershift assays, $4 \mu \mathrm{~g}$ of polyclonal antibodies against FOXA1 (ab23738; Abcam) or FOXA2 (SC6554X; Santa Cruz Biotechnology) was added to the binding reaction and incubation proceeded for a further 25 minutes. Binding reactions were subjected to nondenaturing PAGE on DNA retardation gels in 0.5 X TBE (Lonza), transferred to Biodyne nylon membranes (Thermo Scientific) and cross-linked on a UV-light cross linker (Stratagene). Biotin labeled DNA-protein complexes were detected by chemiluminescence. EMSAs were carried out on a second independent day and yielded comparable.

DNA affinity capture assay

DNA affinity capture was carried out as previously described (53). Briefly, dialyzed nuclear extracts $(300 \mu \mathrm{~g})$ were pre-cleared with $100 \mu \mathrm{l}$ of streptavidin-agarose dynabeads (Invitrogen) coupled to biotin-labeled scrambled control oligonucleotides. For DNA-protein binding reactions, 40 pmol of biotin labeled probe for either rs 11257655 allele (same probe as for EMSA) or for a scrambled control were incubated with $300 \mu \mathrm{~g}$ nuclear extract, binding buffer (10 mM Tris, 50 mM KCL, 1 mM DTT), $0.055 \mu \mathrm{~g} / \mu \mathrm{L}$ poly $(\mathrm{dI} \bullet \mathrm{dC})$ and $\mathrm{H}_{2} 0$ to total 450 $\mu \mathrm{L}$ at room temperature for 30 minutes with rotation. $100 \mu \mathrm{~L}(1 \mathrm{mg})$ of streptavidin-agarose dynabeads were added and the reaction incubated for a further 20 minutes. Beads were washed and DNA-bound proteins were eluted in 1X reducing sample buffer (Invitrogen). Proteins were separated on NuPAGE denaturing gels and protein bands stained with SYPRO-Ruby. Protein bands displaying differential binding between rs11257655 alleles were excised from the gel and
subjected to matrix assisted laser desorption time-of-flight/time-of-flight tandem mass spectrometry (MS) and analysis at the University of North Carolina proteomics core facility. For peptide identification, all MS/MS spectra were searched against all entries, NCBI non-redundant (NR) database, using GPS Explorer TM Software Version 3.6 (ABI) and the Mascot (MatrixScience) search algorithm. Mass tolerances of 80 ppm for precursor ions and 0.6 Da for fragment ions were used. In addition, two missed cleavages were allowed and oxidation of methionine was a variable modification.

Chromatin Immunoprecipitation (ChIP) assays

Human islets from non-diabetic organ donors were provided by the National Disease Research Interchange (NDRI). Use of human tissues was approved by the University of North Carolina Institutional Review Board. Islet viability and purity were assessed by the NDRI. Islets were warmed to $37^{\circ} \mathrm{C}$ and washed with calcium- and magnesium-free Dulbecco's phosphatebuffered saline (Life Technologies) prior to crosslinking. For chromatin immunoprecipitation (ChIP) studies, approximately 2000 islet equivalents (IEQs) were crosslinked for 10 min in 1% formaldehyde (Sigma-Aldrich) at room temperature. Islets were lysed and chromatin was sheared on ice using a standard bioruptor (Diagenode; 20-22 cycles of 30 s sonication with 1 min rest between cycles) to a size of $200-1000 \mathrm{bp}$. IP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris at $\mathrm{pH} 8.1,167 \mathrm{mM} \mathrm{NaCl}$, protease inhibitors) was added, 5% of the volume was removed and used as input, and the remainder was incubated overnight at $4^{\circ} \mathrm{C}$ on a nutating platform with FOXA1 or FOXA2 antibody or a species-matched IgG as control. Antibodies used for ChIP were the same as for EMSA; FOXA1 (Abcam) and FOXA2 (Santa Cruz). Protein A agarose beads (Santa Cruz) were added and incubated for 3 h at $4^{\circ} \mathrm{C}$.

Beads were then washed for 5 minutes at $4^{\circ} \mathrm{C}$ with gentle mixing, using the following solutions: Low Salt Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, 150 mM NaCl); High Salt Buffer (0.1\% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, 500 mM NaCl); LiCl buffer (1 mM EDTA, 10 mM Tris, 250 mM LiCl, 1% NP-40, 1\% Na-Deoxycholate), twice; and TE buffer (Sigma-Aldrich), twice. Chromatin was eluted from beads with two 15-minute washes at $65^{\circ} \mathrm{C}$ using freshly prepared Elution Buffer $\left(1 \% \mathrm{SDS} / 0.1 \mathrm{M} \mathrm{NaHCO}_{3}\right)$. To reverse crosslinks, 5 M NaCl was added to each sample to a final concentration of 0.2 M , and incubated overnight at $65^{\circ} \mathrm{C}$; to remove protein, samples were incubated with 10 uL 0.5 M EDTA, 20 uL 1 M Tris (pH 6.5) and 3 uL of Proteinase $\mathrm{K}(10 \mathrm{mg} / \mathrm{mL})$ at $45^{\circ} \mathrm{C}$ for 3 hours. DNA was extracted with 25:24:1 phenol:choloform:isoamyl alcohol, precipitated with 100% ethanol with $1 \underset{1}{1}$ glycogen as a carrier, and resuspended in TE (Sigma). qPCR was performed in triplicate using SYBR Green Master Mix. Primers were designed to amplify a 99-bp region surrounding rs112576555; 5'CTACTGCTTCTCCGGACTCG '3' and 5'- TGGCCTCAAGAGG GAGATAA -3'. Primers for a 133-bp control region not overlapping open chromatin and located 27 kb away were 5^{\prime} GCACCCATGGTACTGAAACC - 3^{\prime} and 5^{\prime} - CTTTTCCCG AGGAAGGAACT - 3^{\prime}. Dissociation curves demonstrated a single PCR product in each case without primer dimers. Fold enrichment was calculated as FOXA1/FOXA2 enrichment divided by IgG control. A one-sided t-test was performed to compare enrichment based on the direction of binding observed using EMSA.

Effect of glucose on Cdc123 and Camk1d transcript level

To measure effects of glucose on expression of Cdc123 and Camkld, 832/13 cells and MIN6 cells were washed with PBS and preincubated for 2.0 h in secretion buffer (114 mm NaCl , $4.7 \mathrm{~mm} \mathrm{KCl}, 1.2 \mathrm{~mm} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.16 \mathrm{~mm} \mathrm{MgSO}_{4}, 20 \mathrm{~mm}$ HEPES, $2.5 \mathrm{~mm} \mathrm{CaCl}_{2}, 0.2 \% \mathrm{BSA}, \mathrm{pH}$
7.2. For GSIS, cells were incubated in secretion buffer for an additional 2 hours or 16 hours in the presence of 3 mM or 20 mM glucose and then harvested for RNA.

$R N A$ isolation and quantitative real-time reverse-transcription PCR

Total cytosolic RNA was isolated using the RNeasy Mini Kit (Qiagen). RNA concentrations were determined using a Nanodrop 1000 (Thermo Scientific, Wilmington, DE, USA). For real-time reverse transcription (RT)-PCR, first-strand cDNA was synthesized using 8 ul of total RNA in a $20 \mu 1$ reverse transcriptase reaction mixture (Superscript III First strand synthesis kit; Life Technologies). cDNA was diluted to contain equivalent to $20-55 \mathrm{ng} / \mu \mathrm{l}$ input RNA. To measure total human mRNA levels of CDC123, CAMK1D and B2M, gene-specific primers and fast SYBR Green Master Mix (Life Technologies) were used (Table 2). TaqMan designed gene expression assays (Life Technologies) were used to measure Cdc123, Camk1D and Rsp9 (housekeeping gene) mRNA levels of mouse and rat cells. All PCR reactions were performed in triplicate in a $10-\mu$ l volume using a STEPOne Plus real-time PCR system (Life Technologies). Serial 3-fold dilutions of cDNA from pooled human tissues, 832/13 or MIN6 cells as appropriate were used as a reference for a standard curve. Statistical significance was determined by two-tailed t-tests.

Results

Prioritization of type 2 diabetes-associated SNPs with regulatory potential at the CDC123/CAMK1D locus.

To identify potentially functional SNPs at the CDC123/CAMK1D locus, we considered variants in high LD ($r^{2} \geq .7$, EUR, 1000G Phase 1 release) with GWAS index SNP rs 12779790.

To further prioritize variants for functional follow up, we used genome wide maps of chromatin state (Figure 1) in available type 2 diabetes-relevant cell types including pancreatic islets, liver hepatocytes, skeletal muscle myotubes and adipose nuclei. Variant position was evaluated with respect to DNase- and FAIRE-seq peaks and several histone modifications, including H3K4me1 and H3K9ac. DNase and FAIRE are established methods of identification of nucleosome depleted regulatory regions (86), while H 3 K 4 me 1 and H 3 K 9 ac are post-translational chromatin marks often associated with enhancer regions $(88,89)$. We also assessed chromatin occupancy by transcription factors using available genome wide ChIP-seq data sets. Of 11 variants meeting the LD threshold, two SNPs were found to overlap chromatin signals. One SNP, rs11257655 ($\mathrm{r}^{2}=$.74 with GWAS index SNP rs12779790), located 15 kb from the 3^{\prime} end of CDC123 and 84 kb from the 5' end of CAMK1D, was a particularly plausible candidate overlapping islet, liver and HepG2 cell line DNase peaks, islet and liver FAIRE peaks, H3K4me1 and H3K9ac (data not shown) chromatin marks, and FOXA1 and FOXA2 ChIP-seq peaks in HepG2 cells (Figure 6). A second SNP, rs34428576 ($\mathrm{r}^{2}=.71$ with rs12779790), overlapped a HepG2 DNase peak and displayed occupancy by FOXA1 and FOXA2 binding in HepG2 cells (Figure 1). No SNPs overlapped with DNase peaks in skeletal muscle myotubes (data not shown).

Figure 1: Regulatory potential at type 2 diabetes-associated SNPs at the CDC123/CAMK1D locus
A) The 11 SNPs in high LD ($r^{2} \geq .7$, EUR) with GWAS index SNP rs12779790. Arrows indicate the two SNPs that overlap islet, liver, and HepG2 open chromatin and epigenomic marks and that are located near to HepG2 ChIP-seq peaks; these two SNPs were tested for allele-specific transcriptional activity. B) DNase hypersensitivity peaks identified in two pooled islet samples from the ENCODE Consortium. C) FAIRE peaks identified in one representative islet sample from the ENCODE Consortium. D) H3K4mel histone modifications from the Roadmap Epigenomics Consortium. E) FOXA1 and FOXA2 ChIP-seq peaks and signal from ENCODE. Image is taken from the UCSC genome browser, February 2009 (GRCh37/hg19) assembly (http://genome.ucsc.edu) (93). The 5^{\prime} end of CAMK1D begins after position 12,390,000.

Allele-specific enhancer activity of rs11257655 in islet and liver cells.
To evaluate transcriptional activity of the SNPs in predicted regulatory regions, 150 200 bp surrounding each SNP allele was cloned into a minimal promoter vector and luciferase activity was measured in two beta cell lines, 832/13 rat insulinoma and MIN6 mouse insulinoma cells, and in HepG2 liver hepatocellular carcinoma cells. Four to five independent clones for each allele were generated and enhancer activity was measured in duplicate for each clone. A 151-bp region including rs 11257655 (and rs36062557 due to proximity, $\mathrm{r}^{2}=.38$ with rs11257655) showed differential allelic enhancer activity in both orientations in all three cell
lines (Figure 2). The risk allele rs11257655-T showed significantly increased luciferase activity compared to the non-risk allele rs11257655-C (forward: $832 / 13 P=6.3 \times 10^{-3}, \operatorname{MIN} 6 P=1.7 \times$ 10^{-s}; HepG2 $P=8.0 \times 10^{-s}$; reverse: $832 / 13 P=2.2 \times 10^{-3}$, MIN6 $P=9.9 \times 10^{s ;}$ HepG2 $P=2.0 \times$ 10^{-3}). Enhancer activity represents greater than a 1.4-fold (HepG2, MIN6) to 2.1-fold (832/13) increase in transcriptional activity relative to the non-risk allele in both the forward and reverse orientations. Compared to an empty vector control, enhancer activity was greatest in the islet cell lines (risk allele: 832.13, 4-fold; MIN6, 10-fold; HepG2, 1.6-fold).

Figure 2: Haplotype containing type 2 diabetesassociated SNPs displays differential transcriptional activity
Enhancer activity was tested in 832/13, MIN6 and HepG2 cells for the type 2 diabetes non-risk (white bars) and risk (black bars) haplotypes in the forward and reverse orientations with respect to the genome. Risk refers to the rs11257655 variant; rs36062557 is included in the haplotype due to proximity. The haplotype containing risk allele rs 11257655-T shows greater transcriptional activity than the nonrisk allele rs $11257655-\mathrm{C}$ in both orientations with respect to a minimal promoter vector in $832 / 13$ cells (A), MIN6 cells (B) and HepG2 cells (C). Error bars represent standard deviation of 4-5 independent clones for each allele. Firefly luciferase activity was normalized to Renilla luciferase activity, and normalized results are expressed as fold change compared to empty vector control. P values were calculated by a two-sided t-test.

A 179-bp region surrounding the second candidate SNP rs34428576 showed only moderate allele-specific activity, and only in the reverse orientation, in HepG2 cells ($P=.02$) and no allele-specific activity in islet cells (Figure 7).

To verify that rs11257655 and not rs36062557 accounted for allele-specific effects, we used site-directed mutagenesis to construct the remaining haplotype combinations. The T risk allele of rs11257655 exhibited >1.8 fold increased transcriptional activity compared to the nonrisk allele C independent of rs36062557 genotype (Figure 3A, B). In contrast, altering alleles of rs36062557 on a consistent rs11257655 background showed no significant effect on transcriptional activity. Taken together, these data confirm that rs11257655 exhibits allelic differences in transcriptional enhancer activity and suggest it functions within a cis-regulatory element at the CDC123/CAMK1D type 2 diabetes-associated locus.

B

Figure 3: rs11257655 drives differential transcriptional activity
Site-directed mutagenesis was carried out to separate the effects of rs36062557 from rs11257655. Enhancer activity was tested in 832/13 and MIN6 and cells for the type 2 diabetes non-risk (white bars) and risk (black bars) haplotypes in the forward orientation. The risk allele rs11257655-T shows greater transcriptional activity than the non-risk allele rs11257655-C independent of rs36062557 genotype in 832/13 cells (A) and MIN6 cells (B). Error bars represent standard deviation of 2-4 independent clones for each allele. Results are expressed as fold change compared to empty vector control. P values were calculated by a two-sided t-test.

Alleles of rs 11257655 differentially bind FOX transcription factors.
To assess whether alleles of rs11257655 differentially affect protein-DNA binding in vitro, biotin-labeled probes surrounding the T (risk) or C (non-risk) allele were incubated with 832/13, MIN6 or HepG2 nuclear lysate and subjected to electrophoretic mobility shift assays (EMSA). Band shifts indicative of multiple DNA-protein complexes were observed for both rs 11257655 alleles (Figure 4A, 4B, 4C). In EMSAs from all three cell nuclear extracts, protein complexes were observed for the probe containing the T allele that were not present for the probe containing the C allele (832/13, arrow a; MIN6, arrows b, c, d; HepG2, arrows e, f) suggesting differential protein binding dependent on the rs11257655 allele. Competition of labeled T-allele probe with excess unlabeled T-allele probe more efficiently competed away allele-specific bands than excess unlabeled C -allele probe, demonstrating allele-specificity of the protein-DNA complexes (Figure 4A, 4B, 4C). rs1 1257655 did not show a differential protein binding pattern in EMSA using 3T3-L1 mouse adipocytes (data not shown). To examine transcription factor binding to rs11257655, we used a DNA-affinity capture assay. We observed one protein band showing allele-specific binding to the T allele (Figure 4D) that was identified as transcription factor FOXA2 using MALDI TOF/TOF mass spectrometry.

Figure 4: Alleles of rs11257655 differentially bind FOXA proteins in rat 832/13 insulinoma cells, mouse MIN6 insulinoma cells and human HepG2 hepatoma cells
EMSA using 832/13 (A), MIN6 (B) and HepG2 (C) nuclear extract shows differential proteinDNA binding of rs 11257655 alleles. The probe containing risk allele rs $11257655-\mathrm{T}$ shows allele-specific protein binding (arrows a - e) compared to the probe containing non-risk allele C. Excess unlabeled probe containing the T allele (T-comp) more efficiently competed away allelespecific bands than unlabeled probe for the C allele (C-comp). Incubation of 832/13 and HepG2, nuclear extract with FOXA1 / FOXA2 antibodies disrupt the DNA-protein complex formed with T allele-containing DNA probe (arrow a, d, e) and result in band supershifts (asterisks). Incubation of MIN6 nuclear extract with FOXA2 antibody decreases the DNA-protein complex formed with T allele-containing DNA probe (arrow b) and results in a band supershift. To enhance visualization of protein complexes, free biotin-labeled probe is not shown. (D) DNA affinity-capture identified differential binding of FOXA2 at rs11257655 alleles in 832/13 cells. (E) The T allele of rs 11257655 is predicted as a FOXA1 and FOXA2 consensus core-binding motif.

A search in the JASPAR CORE database provided further evidence that the rs11257655 SNP is located within predicted binding sites for FOXA1 and FOXA2, with only the T risk-allele predicted to contain a FOXA1 and FOXA2 consensus core-binding motif (Figure 4E) (94). To assess binding to FOXA1 and FOXA2, we performed supershift experiments incubating DNAprotein complexes with antibodies for these factors. Incubation of the T allele-protein complex with FOXA1 antibody resulted in a band supershift in $832 / 13$ and HepG2 cells (asterisk, Figure 4A, 4C) A FOXA2-mediated supershift was observed in 832/13, MIN6 and HepG2 cells (asterisk, Figure 4A, 4B, 4C). Differences in antibody species reactivity may account for the lack of a visible FOXA 1-mediated supershift in MIN6 cells. Collectively, these results suggest that rs 11257655 is located in binding sites for a transcriptional regulator complex including FOXA1 and/or FOXA2, which bind preferably to the rs11257655-T allele in beta cell and liver cell lines.

FOXA1 and FOXA 2 occupancy at rs 11257655 in human islets

To evaluate whether FOXA1 and FOXA2 bind differentially to rs11257655 in a native chromatin context, we performed allele-specific ChIP in human islets with different rs 11257655 genotypes. FOXA1 was enriched 7.2 -fold compared to IgG control in islets carrying a T allele while FOXA1 was not enriched in islets homozygous for C allele (Figure 5A). Although less robust, FOXA2 was enriched 4.2 -fold in islets carrying a T allele compared to IgG control (Figure 5B). This direction of enrichment is consistent with the EMSA data (Figure 4). A region 28 kb downstream of rs11257655 with no evidence of open chromatin (chr10 control) was used as a negative control (Figure 8). These findings strengthen the conclusion that rs11257655 is part of a bona fide cis-regulatory complex binding FOXA1 and/or FOXA2 in human islets.

A

Figure 5: rs11257655-T allele shows increased binding to FOXA1 and FOXA2 in human islets FOXA1 (A) and FOXA2 (B) ChIP in human islets shows enrichment at rs 11257655 compared to IgG control. Islets containing one copy of the rs11257655-T allele show 7.2 -fold greater FOXA1 enrichment and 4.2 -fold greater FOXA2 enrichment. rs11257655 CT heterozygotes are more significantly enriched than rs11257655 CC homozygotes for FOXA1 (one-sided t-test, $P=$.06) and FOXA2 (one-sided t-test, $P=.026$). A negative control region 28 kb downstream of rs11257655 was not enriched in FOXA1- and

B
 FOXA2- bound chromatin (Figure 8A and 8B). Error bars represent standard error of two to three islets for each represented genotype.

CDC123 and CAMK1D transcript levels
To determine whether CDC123 or CAMK1D are expressed in type 2 diabetes-relevant tissues, we measured and confirmed expression of both transcripts in human islets and hepatocytes (Figure 9A, 9B). These data are supported by RNA-seq evidence that both genes are expressed in islets (95). Based on our results showing islet beta cells as a target tissue of risk variant regulatory activity, we assessed whether glucose treatment regulated CDC123 and CAMK1D transcript level. Glucose-mediated transcriptional changes in one of these genes might point to the more plausible candidate important in beta cell biology. In MIN6 cells treated with low (3 mM) and high (20 mM) concentrations of glucose for 16 hours, CAMK1D expression increased $(\mathrm{P}=.004$; Figure 9 C) while $C D C 123$ expression remained unchanged $(\mathrm{P}=.22$; Figure 9D). In 832/13 cells, CDC123 levels were significantly higher in cells stimulated with high
glucose $\left(\mathrm{P}=1.6 \times 10^{-5} ;\right.$ Figure 9 E$)$. We could not assess the effect of glucose on CAMK1D levels in 832/13 cells because this transcript level was below detection limits. While we confirm expression of CAMK1D and CDC123 in islets and hepatocytes, future studies over-expressing the target gene(s) in these tissues would be necessary to establish the mechanisms by which increased expression leads to diabetes risk.

Discussion

Integration of genome-wide regulatory annotation maps with disease-associated variants identified through GWAS has great potential for elucidation of gene-regulatory variants underlying association signals. In this study, we expand the lexicon of disease-associated functional regulatory variation by examining the type 2 diabetes-association signal at the CDC123/CAMK1D locus. We prioritized candidate cis-regulatory variants and tested whether prioritized variants exhibited allele-specific transcriptional enhancer activity. We provide transcriptional reporter and protein-DNA binding evidence that rs11257655 is part of a cisregulatory complex differentially affecting transcriptional activity. Additionally, we validate FOXA1 and FOXA2 as components of this regulatory complex in human islets.

In recent years, progress has been made in following up mechanistic studies of GWAS type 2 diabetes-association signals (53,72,74,96-101), but challenges remain in sifting through the many associated variants at a locus to identify those influencing disease. We hypothesized that a common variant with modest effect underlies the association at the CDC123/CAMK1D locus and evaluated the location of high LD variants $\left(r^{2} \geq .7 ; n=11\right)$ at the locus relative to known transcripts and to putative DNA regulatory elements. We identified two variants that overlapped putative islet and/or liver regulatory regions and none located in exons. We did not
assess variants in lower LD ($\mathrm{r}^{2}<.7$), and additional functional SNPs may exist at this locus acting through alternate functional mechanisms untested in the current study.

Based on our observation of type 2 diabetes-associated SNPs in regions of islet and liver open chromatin, we measured transcriptional activity in two mammalian islet cell models, rat 832/13 and mouse MIN6 insulinoma cells and in one hepatocyte cell model, human HepG2 hepatocellular carcinoma cells. In agreement with our previous observations (53), we found good concordance in allelic transcriptional activity of human regulatory elements across the two rodent islet cell types. Of the two SNPs predicted to be located in predicted enhancer regions, rs11257655 but not rs36062557 demonstrated allele-specific effects in islets and liver, suggesting that rs11257655 is a lead functional candidate. The rs11257655-T allele associated with type 2 diabetes risk displayed increased enhancer activity relative to the C allele, suggesting that increased expression of one or more genes, possibly CAMK1D or CDC123, may be associated with type 2 diabetes. Our subsequent analysis of protein binding revealed complexes that favored the rs11257655-T allele in 832/13, MIN6 and HepG2 cells. Consistent with predictions that the rs11257655-C allele may disrupt binding to the FOXA1 and FOXA2 transcription factors, we demonstrated that only the T allele of rs11257655 leads to FOXA1- and FOXA2-mediated supershifts. The ChIP enrichment of FOXA1 and FOXA2 in human islets from carriers of the T allele is concordant with EMSAs using nuclear extract from mouse and rat cell lines, further demonstrating the utility of rodent islet cell models to characterize human regulatory elements. Our results suggest that a cis-regulatory element surrounding rs11257655 may act in both islet and liver cells. Although we provide evidence that rs1 1257655 alleles differentially bind FOXA1 and FOXA2 in vivo, it is important to note that this enrichment was detected in isolated human islets. Future experiments will be needed to validate effects of
rs11257655 within a whole organism environment. For example, recently zebrafish have been used to assay the regulatory potential of DNA sequences $(102,103)$.

FOXA1 and FOXA2 are members of the FOXA subclass of the forkhead box transcription factor family and are essential transcriptional activators in development of endodermally-derived tissues including liver and pancreas $(104,105)$. In mature mouse β-cells, ablation of both transcription factors compared to ablation of FoxA2 alone leads to more pronounced impaired glucose homeostasis and insulin secretion, indicating that both factors are important in maintenance of the mature beta cell phenotype (106). In addition, FoxA2 integrates the transcriptional response of mouse adult hepatocytes to a state of fasting (107). FOXA1 and FOXA2 are thought to act as pioneer transcription factors, scanning chromatin for enhancers with forkhead motifs and opening compacted chromatin through DNA demethylation and subsequent induction of H3K4 methylation, epigenetic changes that likely render enhancers transcriptionally competent by allowing subsequent recruitment of transcriptional effectors (108110). Our data demonstrate increased transcriptional activity and increased binding of FOXA1 and FOXA2 to the rs11257655-T allele, suggesting that rs11257655 may be functioning as part of a transcriptional activator complex. Recent experiments in pancreatic islets support a role for FOXA transcription factors in activation of islet enhancers (111). This same study also showed that FOXA2 binds in pancreatic islets in the T2D-associated region surrounding rs11257655. Further experiments, such as ChIP-seq of additional transcription factors, may identify other key factors present in the activator complex.

Both CAMK1D and CDC123 are candidate transcripts affected by variation at this locus. Cis-eQTLs in both blood and lung support an effect on $C A M K 1 D$ but not $C D C 123$. In blood, initial eQTL evidence for both genes were further analyzed by conditional analyses on the T2D
lead SNP or rs11257655. The conditional analyses abolished the cis-eQTL signal for CAMK1D but not for CDC123, providing evidence that the T2D GWAS signal and the CAMK1D cis-eQTL signal are coincident (83). In lung, the GTEx consortium identified an eQTL for CAMK1D with rs11257655 as a lead associated variant $\left(P=1.1 \times 10^{-7}\right)$; this and other T2D GWAS variants are the strongest cis-eQTLs for $C A M K 1 D$, while no significant eQTL is observed for CDC123 (84). For both eQTLs, the rs11257655 type 2 diabetes risk allele is associated with increased CAMK1D transcript level, consistent with the direction of transcriptional activity we observed for this allele in islet and liver cells. Many eQTLs are predicted to be shared among tissues (112), and a recent study of the beta cell transcriptome reports good concordance of eQTL direction $\left(\mathrm{R}^{2}=.74-.76\right)$ between beta cells and blood-derived lymphoblastoid cell lines, fat and skin (113), suggesting that the CAMK1D eQTL may also exist in islets. Some eQTLs differ across tissues, and evidence of a consistent eQTL in islets would be valuable. Knockout mice provide further evidence supporting CAMK1D as a target gene. In FoxA1/FoxA2 beta cellspecific knockout mice, Camkld expression was reported to be slightly reduced (1.8 fold, $P=$ 0.13) (106), consistent with our conclusion that rs11257655 is part of a transcriptional activator complex that includes FOXA1 and FOXA2. Together, these data suggest that CAMK1D is a more plausible target for differential regulation by rs 11257655 alleles.

The mechanism by which CAMK1D may act in type 2 diabetes biology is unclear. CAMK1D is a serine threonine kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade $(82,114)$. In response to calcium influx, CAMK1D activates CREB- (cAMP response element-binding protein) dependent gene transcription by phosphorylation (82). CREB is a key beta cell regulator important in glucose sensing, insulin exocytosis and gene transcription and β-cell survival (115), and FOXA2 has been shown to be necessary to mediate
recruitment of CREB in fasting-induced activation of hepatic gluconeogenesis (107). CAMK1D also has been reported to regulate glucose in primary human hepatocytes (116). It is important to note that we cannot rule out cell cycle regulator $C D C 123$ as a target for regulation by rs11257655.

In conclusion, we extend follow up studies of GWAS-identified type 2 diabetesassociated variants to the CDC123/CAMK1D locus on chromosome 10 . We identify rs11257655 as part of a cis regulatory complex in islet and liver cells that alters transcriptional activity through binding FOXA1 and FOXA2. These data demonstrate the utility of experimentally predicted chromatin state to identify regulatory variants for complex traits.

Supplemental Figures and Tables

Figure 6: Regulatory potential at rs11257655 and rs36062557. UCSC genome browser (hg18) diagram showing that rs11257655 and rs36062557 overlap regions of open chromatin, detected by DNase hypersensitivity and FAIRE, and histone modifications, including H3K4me1 and H3K9ac in islet, liver, and HepG2 cells. H3K27ac and H3K4me3 histone modifications are also shown. rs11257655 and rs36062557 are also located near to HepG2 ChIP-seq peaks for FOXA1 and FOXA2. DNA sequences amplified to evaluate transcriptional activity in dual-luciferase reporter assays and to evaluate enrichment of binding to FOXA1 and FOXA2 are indicated.

Figure 7: Transcriptional activity at $\mathbf{r s 3 4 4 2 8 5 7 6}$. Enhancer activity was measured in 832/13 cells (A) and HepG2 cells (B) for alleles of rs34428576. No difference was observed between alleles in 832/13 cells. In HepG2 cells, moderate allele-specific activity was observed only in the reverse orientation. Error bars represent standard deviation of 4-5 independent clones for each allele. Results are expressed as fold change compared to empty vector control. P values were calculated by a two-sided t-test.

A

B

Figure 8: Chromosome 10 region not overlapping open chromatin does not show binding to FOXA1 and FOXA2 in human islets.
A negative control region 28 kb downstream of rs11257655 was not substantially enriched in FOXA1- (A) and FOXA2- (B) bound chromatin. Error bars represent standard error of two to three islets for each represented genotype.

Figure 9: CDC123 and CAMK1D expression and response to glucose. (A, B) Evidence that CAMK1D and CDC123 are expressed in various human tissues. cDNA from human islets, hepatocytes, blood and adipocytes was analyzed by real-time PCR using gene-specific primers for CAMK1D (A) and CDC123 and B2M (B). mRNA level was normalized to B2M. (C, D, E) Effect of glucose stimulus on CAMK1D and CDC123 expression level. 832/13 and MIN6 insulinoma cells were treated with low $(3 \mathrm{mM})$ and high $(15 \mathrm{mM})$ glucose for $16-18$ hours. cDNA was analyzed by real-time PCR using TaqMan gene expression assays for CAMK1D (C) and CDC123 (D, E). mRNA level was normalized to RSP9. High glucose treatment resulted in a significant increase in CAMK1D mRNA level (C) but not CDC123 in MIN6 cells (D). High glucose treatment resulted in increased CDC123 mRNA level in 832/13 cells. Error bars represent the standard deviation of $4-5$ samples for each treatment. P values were calculated by a two-sided t-test.

Table 1: DNA sequences amplified for luciferase activity assays

SNP	Chromosome position (hg19)	Sequence 5'-3'
rs11257655	chr10:12,307,791-12,307,941	GGCCCAGAAATGACACAGAA
		AACTGGGTAAGGCTCACTTCC
rs34428576	chr10:12,280,974-12,281,152	GCGAGACTCTGCCTCAAAAG
		GACAGAGTGAGACCCCATCC

Restriction sites were added to primers for subcloning.

Table 2: PCR primers for quantitative real-time PCR in human tissues

Gene	Sequence 5'-3'
$C A M K 1 D$	Fwd - ATCTCCACAGAATGGGCATC
	Rvs - CAGTTCAACGGCTTTGCTGTA
$C D C 123$	Fwd - GCAGCTGGAGGATGAAGAAG
	Rvs -TCATCCCTTCCTGAAACCAC
$32 M$	Fwd -TGTCTGGGTTTCATCCATCCGACA
	Rvs -TCACACGGCAGGCATACTCATCTT

CHAPTER 3: TRANS-ANCESTRY FINE MAPPING AND MOLECULAR ASSAYS IDENTIFY REGULATORY VARIANTS AT THE ANGPTL8 HDL-C GWAS LOCUS ${ }^{5,6}$

Introduction
To date at least 157 loci have been associated with high-density lipoprotein cholesterol (HDL-C) in genome-wide association studies (GWAS) (38). Analyses of European, African American, Mexican, Pima Indian, and East Asian participants have identified four different lead variants associated with HDL-C located in or near angiopoietin-like protein 8 (ANGPTL8) $(38,43,66,117,118)$. $A N G P T L 8$ is a small protein of 198 amino acids; the gene is located on chromosome 19 within intron 14 of dedicator of cytokinesis 6 (DOCK6) and is transcribed in the opposite direction of DOCK6. European GWAS meta-analyses identified $\operatorname{rs} 737337\left(P=4.6 \times 10^{-17}\right.$, $N=185,000)(38,119)$ as the lead variant associated with HDL-C; this variant was also associated with total cholesterol $\left(P=4.1 \times 10^{-5}\right)$ but not triglycerides $(P=0.12)$ or low-density lipoprotein cholesterol (LDL-C, $P=0.26$). rs737337 is located 2.8 kb upstream of the ANGPTL8 transcription start site (RefSeq NM_018687) and is a synonymous variant in exon 19 of DOCK6 (Thr723, RefSeq NM_020812). In an African American population, the lead variant rs12979813

[^1]was only associated with HDL-C $\left(P=1.9 \times 10^{-9}, N=12,157\right)(43)$, which is located 7.5 kb upstream of ANGPTL8 and in intron 22 of DOCK6. In a joint analysis of Mexican and Pima Indian samples, the lead variant rs2278426 was associated with HDL-C $\left(P=3.4 \times 10^{-9}, N=4,361\right)$ and total cholesterol $\left(P=5.0 \times 10^{-6}\right)(66,120)$, which is a nonsynonymous variant in exon 2 of $A N G P T L 8$ (Arg59Trp) that exhibits relatively high linkage disequilibrium (LD) with the European lead rs737337 ($r^{2}=.74,1000$ G Admixed American (AMR)) and moderate LD with the African American lead rs12979813 ($r^{2}=.52$ AMR $)$. Finally, in recent lipid associations in East Asian samples, lead variant rs3760782 was the strongest HDL-C-associated variant $\left(P=8.8 \times 10^{-11}\right)$ and another variant in strong LD (rs1865063, $\left.r^{2}=0.95\right)$ is the lead variant for total cholesterol $\left(P=1.5 \times 10^{-15}\right)$ and LDL-C $\left(P=1.8 \times 10^{-8}\right)(118) . \mathrm{rs} 3760782$ is located 3.5 kb upstream of ANGPTL8 and in intron 20 of DOCK6. Given the extensive sharing of GWAS loci across populations (50), we hypothesized that at least one shared variant at the ANGPTL 8 locus affects HDL-C in all of these populations.

ANGPTL8 is a recently defined gene also called C19orf80, LOC55908, refeeding-induced fat and liver (RIFL), TD26, hepatocellular carcinoma-associated gene, lipasin, and betatrophin (121-123). Serum ANGPTL8 protein levels have been associated with many metabolic phenotypes including type 1 and type 2 diabetes (124-128), obesity $(125,129)$, and non-alcoholic fatty liver disease (129). The gene is mainly expressed in liver and adipose tissues, despite being entirely contained within one intron of the ubiquitously expressed $\operatorname{DOCK}(121,130)$. The precise mechanisms of action of ANGPTL8 remain unclear. ANGPTL8 is secreted into the plasma and is involved in triglyceride storage in adipose tissue; knockout mice gained less fat than wildtype (131) mice and Angptl8 knockdown in 3T3L1 mouse adipocytes led to decreased triglyceride content (122). ANGPTL8 expression is increased in response to stress, it up-regulates
early growth response transcription factor and down-regulates adipose triglyceride lipase, suggesting a role in lipid homeostasis (132). ANGPTL8 contains a lipoprotein lipase inhibitory motif and inhibits LPL function when co-expressed with ANGPTL3 (133). Additionally, serum ANGPTL8 protein is inversely associated with HDL-C levels (134) supporting a role of ANGPTL8 in HDL-C metabolism.

DOCK6 is a member of the dedicator of cytokinesis family of atypical guanine nucleotide exchange factors. DOCK6 is expressed in many tissues, with highest levels of expression in the lungs, thyroid, and adipose (130). DOCK6 functions as a guanine nucleotide exchange factor for RAC1 and CDC42 and has roles in cytoskeletal remodeling and neurite outgrowth (135). Mutations in DOCK6 can cause Adams-Oliver syndrome, an actin cytoskeletopathy characterized by limb and skin defects (136). DOCK6 does not have functions that obviously relate to HDL-C metabolism.

Two coding variants in ANGPTL8 have been proposed to affect HDL-C levels. A rare ANGPTL8 nonsense variant, rs 145464906 (MAF $=0.001$ in $>42,000$ individuals of European ancestry) encoding Gln 121 Ter , is associated with increased HDL-C $\left(P=5.1 \times 10^{-13}\right)$ and increased triglycerides $(P=0.003)$ in an exome array-based association analysis (137). Based on conditional analysis (137) and $\mathrm{LD}\left(r^{2}<.01\right)$, rs 145464906 is independent of the reported ANGPTL8 GWAS variants. The common Mexican and Pima Indian lead variant, rs2278426 encoding Arg59Trp, has been proposed to increase cleavage of ANGPTL3, leading to decreased LPL activity and lower HDL-C (120). Although coding variants have been identified, the variants responsible for the common HDL-C association signal at this locus remain unclear, and may include regulatory variants. While a simple mechanism involving a single variant that alters
transcription of a single gene is straightforward, multiple variants and/or multiple genes may contribute to the functional consequences of a GWAS signal $(54,138,139)$.

In this study, we describe an association between the HDL-C locus variants and subcutaneous adipose level of ANGPTL8 RNA. We show that a subset of HDL-C-associated variants overlap regions with strong evidence of regulatory activity $(59,60)$, and we use transancestry fine-mapping and functional assays to identify variants exhibiting allelic differences in regulatory activity at the ANGPTL8 HDL-C GWAS locus.

Materials and Methods

Study population and phenotypes

The METabolic Syndrome In Men (METSIM) study includes 10,197 men, aged from 45 to 73 years, randomly selected from Kuopio, Eastern Finland, and examined in 2005-2010 $(140,141)$. The Ethics Committee of the University of Eastern Finland in Kuopio and the Kuopio University Hospital approved the METSIM study and it was carried out in accordance with the Helsinki Declaration. Triglyceride and lipoprotein characteristics were measured via proton nuclear magnetic-resonance (NMR) or enzymatic assays in 10,079 METSIM participants (142). DNA samples were genotyped on the Illumina OmniExpress and HumanCoreExome arrays, and additional genotypes were imputed using the GoT2D integrated haplotypes reference panel as previously described (47).

We also analyzed a set of 8,421 self-identified African American participants from the Women's Health Initiative SNP Health Association Resource (WHI-SHARe) study. Details of the study design, cohort characteristics, written informed consent, and study approval by local Human Subjects Committees have been described previously (143). Participants who had
consented to genetic research were genotyped on the Affymetrix 6.0 array and additional genotypes were imputed using the 1000 Genomes Project data as a reference panel, as previously described (144).

Association, conditional, and haplotype analysis
For METSIM, we performed a preliminary test for association between ~ 19 million genetic variants and 72 lipid and lipoprotein subclasses (145). To better observe the relative differences between variants, we use the association of variants with the concentration of phospholipids in medium HDL because the association with this trait is stronger $\left(P=1.9 \times 10^{-7}\right)$ than with HDL-C $\left(P=7.7 \times 10^{-4}\right)$. We assumed an additive mode of inheritance and accounted for cryptic relatedness between individuals using the EMMAX mixed model (q.emmax test) implemented in EPACTS (146). After accounting for age, BMI, smoking status, and lipidlowering medication status as covariates trait value residuals were inverse normal transformed. We carried out reciprocal conditional analyses with candidate variants within the associated signal to evaluate the potential presence of a second association signal by adjusting for specific genetic variants including METSIM lead variant rs737337 and WHI lead variant rs4804154. LD in locus plots was calculated from the METSIM imputed genotypes, and all chromosome coordinates correspond to hg19.

For WHI, association analysis was performed under an additive genetic model using linear regression adjusted for covariates. The imputed allelic dosage at each variant was tested via MACH2QTL (147). Genome-wide African ancestry proportion, age, BMI and smoking history were included as covariates. Genome-wide African ancestry proportion was derived from locus-specific ancestry, which has a correlation of 0.99 with the first principal component of
population structure. Ancestry estimation has been described previously (43). To assess the potential presence of multiple, independent variants at the same locus influencing HDLcholesterol trait, we repeated regression analyses, conditioning on rs4804154. LD in locus plots was calculated from WHI imputed genotypes, and all chromosome coordinates correspond to hg 19.

We constructed haplotypes based on five variants at ANGPTL8 that were previously reported as the GWAS index variants (rs4804154, rs737337, and rs2278426) in studies of different ancestry groups $(38,43,66,119,120)$ or are proxies (rs3745683 and rs3760782) in high LD with both the European and African American lead variants. We performed haplotype analyses using the "haplo.stat" R package (148), estimated haplotypes and haplotype frequencies using the haplo.em function, and tested for association between haplotypes and the concentration of phospholipids in medium HDL (METSIM) or HDL-C (WHI) level using the haplo.glm function. We assumed an additive model in which the regression coefficient represented the expected change in inverse normalized HDL level with each additional copy of the specific haplotype compared with the reference haplotype. The same covariates used for single variant analysis were also used in the haplotype analysis model.

Expression quantitative trait association

RNA from subcutaneous adipose tissue was extracted and the expression levels of probesets were measured using Affymetrix Human Genome U219 Array in 770 METSIM participants (63). The expression quantitative trait locus (eQTL) for ANGPTL8 was not previously reported because of a gene name difference with RefSeq and Ensembl. Expression data were normalized using Robust Multi-Array Average (RMA) analysis (149). eQTL
associations were performed as previously described (63). Briefly, we applied PEER analysis (150) to account for complex non-genetic factors in the RMA-normalized gene expression levels. We adjusted for 35 inferred confounding factors and inverse normal transformed the PEERprocessed residuals. In eQTL analysis, we used genotype dosages imputed using Haplotype Reference Consortium data (151) to test for the variant association with expression levels of all genes within 1 Mb of rs737337. We assumed an additive mode of inheritance and accounted for cryptic relatedness between individuals using the EMMAX mixed model implemented in EPACTS (146). Additionally, we performed conditional analysis on the expression level of ANGPTL8 by adjusting for rs4804155 and on the expression level of DOCK6 by adjusting for rs17699089 to assess the presence of multiple, independent associations. We also performed conditional analysis using candidate functional variant rs12463177 to assess the coincidence of GWAS and eQTL signals. To examine the relationship between RMA-normalized expression levels and HDL-C, we adjusted both traits for age and BMI, inverse normal transformed the residuals, and then tested for association in regression analyses.

MANTRA

To fine-map the $A N G P T L 8$ locus, we performed trans-ancestry meta-analysis using MANTRA (58). MANTRA accounts for the shared similarity in closely related populations using Bayesian partition model assuming the same underlying allelic effect. It models the effect heterogeneity among distant populations by clustering according to the shared ancestry and allelic effects. We conducted the analysis based on the association summary statistics from GWAS in METSIM and WHI and included variants present in both METSIM and WHI. We
constructed a 99% credible set of variants by ranking all variants according to their Bayes factors.

CAVIAR and PAINTOR

To prioritize functional variants, we analyzed variants at the $A N G P T L 8$ locus using both CAVIAR (56) and PAINTOR (57). CAVIAR estimates the posterior probability of a variant being functional by jointly modeling the p-values and beta association statistics, and PAINTOR leverages functional genomic annotation data, in addition to association strength, to prioritize functional variants. Both methods allow for multiple functional variants at the risk locus. Using consistent alleles for METSIM and WHI African Americans, we calculated Z scores based on pvalues and the sign of betas from GWAS in these studies. For METSIM, the LD matrix was calculated based on European data from the 1000 Genomes Project Phase 1. For WHI African Americans, LD was calculated based on imputed data as previously described (144). In CAVIAR, we returned the credible set that contains all of the true functional variants with 95% confidence level. The annotation matrix used in PAINTOR contained data from the ENCODE project accessed from the UCSC Genome Browser using the Table Browser tool. The matrix included HepG2 H3K4me1, H3K4me2, H3K4me3, and H3K27ac histone marks, DNase hypersensitivity clusters (ENCODE v3) and transcription factor binding (ENCODE v2) from the Broad Institute. Presence or absence of overlap was determined by the UCSC Table Browser intersection with the signal tracks. In PAINTOR, analysis was performed for METSIM alone (Finns), WHI alone (African Americans), and the two data sets together. We set the number of functional variants as 2,3 , 4 or 5 based on feasible running time. PAINTOR predicted variants to
be functional based on a posterior probability greater than 0.1 , a threshold suggested previously (57).

Functional annotation

To identify regulatory overlap of HDL-C-associated variants with histone marks, transcription factor binding, and DNase hypersensitivity sites, we used data from the ENCODE and Roadmap Epigenome projects accessed through the UCSC genome browser $(59,60)$. RNAseq data were obtained from the Roadmap Epigenome Project (60)adult liver and adipose tissue) or a previous publication(152)HepG2). We evaluated previously published positive correlations of DNase hypersensitivity sites with gene expression in liver cell types (153). LD calculations for selecting candidate variants were based on 1000 Genomes Phase 1 data. The AFR dataset was used for African American LD and EUR for European LD.

Cell culture

HepG2, SW872, SGBS, 293T, 3T3L1, Huh-7, and MIN6 cell lines were maintained at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. HepG2 cells (ATCC, HB-8065) were cultured in MEM- \checkmark (Gibco) supplemented with 10% FBS and 1 mM sodium pyruvate. SW872 cells (ATCC, HTB92) were cultured in DMEM:F12 (Sigma) supplemented with 10\% FBS. SGBS cells (154) were generously provided by Dr. Martin Wabitsch (University of Ulm) and cultured in DMEM:F12 (Sigma) supplemented with $10 \% \mathrm{FBS}$ and $5 \% 3.3 \mathrm{mM}$ biotin $/ 1.7 \mathrm{mM}$ panthotenate solution. SW872 and SGBS cells were transfected in the undifferentiated, pre-adipocyte state. 293T cells (ATCC, CRL-3216) were cultured in DMEM (Sigma) supplemented with $10 \% \mathrm{FBS}$ and 200 mM L-glutamine. 3T3-L1 cells (ATCC, CL-173) were cultured and differentiated as described in the

ATCC protocol. Huh-7 cells (JCRB0403, Japanese Collection of Research Bioresources Cell Bank, National Institute of Biomedical Innovation), were cultured in DMEM with high glucose (Gibco) with 10% FBS, 1 mM sodium pyruvate, 1 mM non-essential amino acids (Sigma), and 1 mM L-glutamine. MIN6 cells(92) were cultured in DMEM (Sigma), supplemented with 10\% FBS, 1 mM sodium pyruvate, and 0.1 mM demercaptoethanol.

Dual luciferase transcriptional reporter assays

We PCR-amplified fragments surrounding each regulatory region or variant with 5 PRIME Mastermix (5 PRIME) or Phusion High-Fidelity Polymerase (New England Biosystems) with the primers listed in Table 5 from DNA of individuals homozygous for alleles associated with increased or decreased HDL-C. Gateway® ${ }^{\circledR}$ attB sites were included in primers and Gateway ${ }^{\circledR}$ cloning was used to insert fragments into a Gateway ${ }^{\circledR}$-compatible pGL4.23 (minimal promoter) or pGL4.10 (promoterless) firefly luciferase reporter vector (Promega). Fragments containing HDL-C-associated variants are designated as 'forward' or 'reverse' based on their orientation with respect to the genome and the ANGPTL8 gene. The 5-kb and promoter regions were only cloned in the forward orientation (pGL4.10) because they include the ANGPTL8 promoter. Regions were isolated based on epigenetic marks of promoter and/or enhancer regions surrounding the HDL-C-associated variants. We isolated three to five independent clones (biological replicates) for each allele for each orientation and verified by sequencing. Each clone was cotransfected with Renilla luciferase vector in duplicate (HepG2, 293T, Huh-7, SW872) or triplicate (SGBS, 3T3L1) wells (technical replicates) using FUGENE 6 (HepG2, 293T, Huh-7, SW872, 3T3L1; Promega), Lipofectamine 2000 (Min6; Life Technologies), or Lipofectamine 3000 (SGBS; Life Technologies). Twenty-four (SGBS) or forty-eight hours (all other cell types)
after transfection, we collected cell lysates and assayed for luciferase activity using the DualLuciferase Reporter Assay System (Promega). Firefly luciferase activity of the clones containing the PCR fragments was normalized to Renilla luciferase readings to control for differences in transfection efficiency. We repeated all luciferase transcriptional reporter experiments on independent days and obtained consistent results. Data are reported as fold change in activity relative to an empty pGL4.23 or pGL4. 10 vector. We used two-sided Student's t-tests to compare luciferase activity between alleles or haplotypes.

Electrophoretic mobility shift assays (EMSA)

For EMSA, we prepared nuclear cell extracts from HepG2, HuH-7, SGBS, 3T3L1, SW872, and MIN6 cells using the NE-PER nuclear and cytoplasmic extraction kit (Thermo Scientific). Protein concentration was measured with a BCA assay (Thermo Scientific), and lysates were stored at $-80^{\circ} \mathrm{C}$ until use. We designed $17-19 \mathrm{bp}$ biotin- or IR-Dye ${ }^{\circledR}{ }^{8} 700$-labeled oligos around the HDL-C-associated variants (Table 5) for both alleles. We annealed doublestranded oligos and performed binding reactions as previously described (155). We used 4-6 ug of antibody in supershift assays and 100-200 ng CEBPB purified protein for select EMSAs. Binding reactions were run on non-denaturing PAGE DNA retardation gels in 0.5 X TBE (Lonza). For biotin-labeled oligos, we transferred the reactions to Biodyne nylon membranes (Thermo Scientific), cross-linked them on a UV cross linker (Stratagene), and detected DNAprotein complexes by chemiluminescence. For IR-DYE® 700-labeled oligos, we imaged gels on a LiCor Odyssey® CLx Imaging System. We repeated all EMSA experiments on another day with consistent results.

Results

Regulation of tissue-selective expression of ANGPTL8

ANGPTL8 expression is largely restricted to liver and adipose tissues $(121,130)$. To determine drivers of ANGPTL8 tissue specificity, we tested candidate regulatory regions in human hepatocyte (HepG2, Huh-7), human pre-adipocyte (SGBS), human adipocyte (SW872), mouse adipocyte (3T3-L1), human embryonic kidney (293T), and mouse islet beta (MIN6) cell lines. We tested a region extending 400 bp upstream of the transcription start site (TSS) that spans epigenetic marks characteristic of promoters, and a regulatory region that extends 5 kb upstream of the TSS (regions shown in Figure 10). The 400 bp promoter contains no HDL-Cassociated variants; the 5-kb region contains seven HDL-C-associated variants (rs200788077, rs56322906, rs6511729, rs3760782, rs737337, rs737338, and rs3745683). We tested these candidate regions in transcriptional reporter luciferase assays. In comparison to empty vector, the promoter increased transcriptional activity 5-fold in HepG2 ($P<0.0001$) and 1.6-fold in Huh-7 ($P=0.04$), but not in any other cell type ($P>0.5$, Figure 11 A). The $5-\mathrm{kb}$ region increased transcriptional activity in HepG2 by 8-fold in HepG2 ($P=0.0007$) and 6-fold in Huh-7 $(P=0.002)$ compared to empty vector and increased transcriptional activity 2-fold in pre-adipocyte (SW872, $P=0.0007$) and adipocyte (3T3-L1, $P=0.023$) cells compared to empty vector (Figure 11B). Neither region showed transcriptional activity in MIN6 or 293T cells. These data suggest that the 400-bp region contains promoter regulatory elements contributing to tissue specificity in liver, but may be mediated by additional enhancer elements, especially in adipocytes.

Figure 10: Thirteen variants overlap predicted regulatory regions. 13 variants overlap regulatory regions defined by histone marks, chromatin accessibility, and transcription factor binding. The full set of 42 candidate variants span a $39-\mathrm{kb}$ region (Figure 18). Green rectangles denote DNase hypersensitivity peaks correlated with ANGPTL8 expression across 112 cell lines in a previous study (153). DNase hypersensitivity correlation with DOCK6 expression is not indicated because the correlated peaks do not overlap HepG2 or hepatocyte DNase peaks. Gray rectangles represent transcription factor binding; the identities of transcription factors are listed in Table 9. Data was accessed from ENCODE, the Epigenome Roadmap Atlas, and the UCSC Genome Browser. ENCODE ChromHMM: gray, heterochromatin; blue, insulator; green, transcription; yellow and orange, enhancer; red and pink, promoter. Roadmap ChromHMM: orange, enhancer; light green, genic enhancer; dark green, transcription; blue, heterochromatin; red, promoter. Black rectangles represent regions analyzed in transcriptional reporter assays.

Figure 11: Cell-type specificity of ANGPTLS is influenced by nearby regulatory regions. Candidate regulatory regions were tested in a pGL4.10 vector in six cell types to determine drivers of tissue specificity. Reporter activity was normalized to empty vector (EV) in each cell type. Data are represented as the mean \pm standard deviation of 10 biological replicates. A) $400-\mathrm{bp}$ promoter B) a $5-\mathrm{kb}$ regulatory region including the promoter. Comparison of the 400 -bp promoter vs. $5-$ kb regulatory region $P<0.05$ for cell types. Cell lines include HepG2 human hepatocellular carcinoma (liver); Huh-7 human hepatocellular carcinoma; SGBS human preadipocyte; SW872 human adipocyte; 3T3L1 mouse adipocyte; MIN6 mouse pancreatic beta cell; and 293T human embryonic kidney.

Characterization of the ANGPTL8 HDL-C GWAS locus

To characterize and determine shared variants of the ANGPTL8 association signal across populations, we analyzed the METSIM study of Finns $(N=8,380)$ and the African Americans subset ($\mathrm{N}=8,244$) from the Women's Health Initiative (WHI, (43)). In a preliminary METSIM analysis, the variants most strongly associated with HDL-C at the $A N G P T L 8$ locus were rs737337 ($P=7.7 \times 10^{-4}, \beta=-0.09$) and its LD proxies; these variants were more strongly associated with the concentration of phospholipids in medium HDL particles $\left(P=1.9 \times 10^{-7}, \beta=-0.14\right.$; Figure 12A, Table 6) than HDL-C $\left(P=7.7 \times 10^{-4}, \beta=-0.14\right)$ (145). Association analyses conditioned on rs737337 showed no evidence for any additional signals (all $P>8.0 \times 10^{-4}$, Table 6, Figure 15B). In WHI, the lead variant associated with HDL-C is rs4804154 $\left(P=8.4 \times 10^{-17}\right)$, located 13 kb from
rs737337, and we did not observe evidence of any additional signals $\left(P>4.8 \times 10^{-4}\right.$, Figure 12B, Table 7, Figure 15D). rs4804154 is in low LD with the reported African American lead variant rs $12979813\left(r^{2}=0.18 \mathrm{AFR}\right)$. rs 12979813 is the most strongly associated genotyped variant in the previously reported African American sample (43), which includes the WHI study, but rs4804154 is the strongest variant after imputation in WHI. These two lead variants, rs737337 and rs4804154, are in moderate pairwise LD in Europeans ($r^{2}=.67 \mathrm{EUR}$) and in low pairwise LD in Africans ($\left.r^{2}=.26 \mathrm{AFR}\right)$. rs 737337 was among the most strongly associated variants in WHI $\left(P=9.1 \times 10^{-10}\right)$ and the same was true of rs4804154 in $\operatorname{METSIM}\left(P=5.7 \times 10^{-5}\right)$. The rare coding variant rs 145464906 in ANGPTL8 (137) is not present in METSIM and was not significantly associated with HDL-C in WHI ($P=0.30$). Conditioning on the common coding variant rs2278426 attenuates, but does not abolish, the signal in both populations (METSIM rs737337, $P=0.03$; WHI rs4804154, $P=1.82 \times 10^{-4}$). Conditioning on the lead variant abolished the association with rs2278426 (WHI, $P=0.78$; METSIM, $P=0.86$), suggesting that the regulatory variants capture more of the association signal than rs2278426 alone. Because many GWAS loci are shared across populations, the presence of an association signal in both WHI and METSIM supports the hypothesis of at least one shared functional variant across populations.

Figure 12: Locus plots of HDL-C and eQTL associations near ANGPTLS. A) Concentration of phospholipids in medium HDL in the METSIM study of Finnish individuals $(N=8,380)$. Variants are colored according to LD $\left(r^{2}\right)$ with rs 737337 (purple), the lead variant in European meta-analyses by GLGC. B) HDL-C association in the WHI subset of African American individuals $(N=8,244)$. Variants are colored according to LD $\left(r^{2}\right)$ with rs 4804154 (purple). C) HDL-C-associated variants are also associated with ANGPTL8 expression in 770 subcutaneous adipose samples from the METSIM study. The European and African American lead variants (rs737337 and rs4804154) are among the most significant variants. Variants are colored according to LD $\left(r^{2}\right)$ with rs 4804154 (purple).

To further characterize the locus across populations, we conducted haplotype association analyses in METSIM and WHI (Table 3). By comparing variants across haplotypes and populations, we can hypothesize which variants represent the inheritance pattern of variants that have a functional effect. We included five variants in the analyses: the lead variants from European (rs737337), African American (rs4804154), Mexican/Pima Indian (rs2278426), and East Asian (rs3760782) studies and the one variant (rs3745683) in high LD ($r^{2}>.8$) with the leads in all four studies. The most common haplotype in both METSIM and WHI contained alleles individually associated with increased HDL-C (haplotype 1, Table 3). In both studies, the haplotype containing all the alleles individually associated with decreased HDL-C (haplotype 3) showed the strongest association with HDL-C $\left(\hat{\beta}=-0.044, P<1.0 \times 10^{-22}\right.$ in WHI and $\hat{\beta}=-0.146$, $P=5.3 \times 10^{-7}$ in METSIM). Haplotypes 1 and 2 differed only for rs 737337 alleles. Haplotype 2 is common in African Americans (21% frequency) and nearly absent in Finns (0.02% frequency), which explains the different extent of r^{2}-based LD in these populations. The small effect sizes of haplotype $2(\hat{\beta}=-0.01$ in WHI $), 3(\hat{\beta}=-0.044$ in WHI, $\hat{\beta}=-0.146$ in METSIM $)$, and $5(\hat{\beta}=-0.009$ in WHI, $\hat{\beta}=-0.049$ in METSIM) suggest that rs737337, rs2278426, and rs4804154 may contribute to, but are not alone responsible for, the association signal. These data are consistent with a signal shared across populations driven by one or more functional variants represented by rs3745683 and rs3760782, with potential additional contributions from rs737337, rs2278426, and/or other proxies.

Table 3: Haplotype association analyses in the WHI and METSIM studies.

WHI African American participants							Haplotype 1 reference			Haplotype 3 reference			Haplotype 4 reference		
	rs4804154	rs3760782	rs737337	rs3745683	rs2278426	Freq	Effect	SE	P	Effect	SE	P	Effect	SE	P
1	C	C	T	G	C	0.59	REF	REF	REF	0.042	0.005	8.8E-16	0.019	0.016	0.225
2	C	C	C	G	C	0.21	-0.010	0.055	0.051	0.032	0.006	1.5E-07	0.009	0.016	0.564
3	T	T	C	A	T	0.18	-0.044	0.005	<1E-22	REF	REF	REF	-0.025	0.016	0.126
4	T	T	C	A	C	0.01	-0.035	0.019	0.069	0.006	0.020	0.760	REF	REF	REF
5	T	C	T	G	C	0.01	-0.009	0.026	0.735	0.040	0.026	0.125	0.014	0.031	0.661
METSIM Finnish participants							Haplotype 1 reference			Haplotype 3 reference			Haplotype 4 reference		
	rs4804154	rs3760782	rs737337	rs3745683	rs2278426	Freq	Effect	SE	P	Effect	SE	P	Effect	SE	P
1	C	C	T	G	C	0.88	REF	REF	REF	0.147	0.029	4.4E-07	0.124	0.056	0.029
2	C	C	C	G	C	. 0002	N/A								
3	T	T	C	A	T	0.06	-0.146	0.029	5.3E-07	REF	REF	REF	-0.023	0.063	0.720
4	T	T	C	A	C	0.02	-0.120	0.056	0.034	0.027	0.063	0.660	REF	REF	REF
5	T	C	T	G	C	0.03	-0.049	0.040	0.210	0.097	0.048	0.041	0.074	0.068	0.280

Haplotype association analyses in 8,244 African Americans in WHI and 8,380 Europeans in METSIM. Alleles shown in bold differ from haplotype 1 . In both studies, alleles shown in haplotype 3 were individually associated with decreased HDL-C. Freq, haplotype frequency; SE, standard error; N/A, haplotype was too rare to be analyzed; REF, reference haplotype for interpreting association analyses
eQTL associations with HDL-C-associated variants and nearby genes
To determine which gene(s) the HDL-C-associated variants may affect, we investigated eQTL associations. We observed an eQTL association in subcutaneous adipose tissue from 770 METSIM study participants for both $A N G P T L 8\left(r s 4804154, P=1.0 \times 10^{-9}\right.$; Figure 12C, Table 4, Figure 16) and DOCK6 (rs17699089, $P=7.2 \times 10^{-7}$; Table 4, Figure 16, Table 8), but not any other gene within 1 Mb of rs737337 (Table 8). The METSIM and WHI HDL-C-associated variants were among the variants most strongly associated with both ANGPTL8 and DOCK6 mRNA levels (Figure 12, Table 8), suggesting that the same variants associated with HDL-C may act by affecting expression level of $A N G P T L 8$ and/or DOCK6. Conditional analyses were performed to confirm the coincidence of the GWAS and eQTL signals. For both genes, alleles associated with lower HDL-C levels were associated with lower mRNA levels. In addition, ANGPTL8 mRNA level was associated with HDL-C level in METSIM samples ($P=0.017$, Figure 17), whereas DOCK6 was not ($P=0.42$, Figure 17). Evidence that the variants most strongly associated with HDL-C are also most strongly associated with ANGPTL8 mRNA levels suggests that a regulatory mechanism acts at this GWAS locus.

Table 4: Associations with ANGPTL8 and DOCK6 expression in subcutaneous adipose tissue.

Variant	Alleles ${ }^{\text {a }}$	Gene	Effect ${ }^{\text {b }}$	Standard Error	\boldsymbol{P}-value	$\begin{aligned} & P_{\text {cond }}- \\ & \text { eSNP } \end{aligned}$	$\begin{gathered} P_{\text {cond }}{ }^{-} \\ \text {rs12463177 } \end{gathered}$	$\begin{aligned} & r^{2} \text { with } \\ & \text { eSNP } \\ & (E U R)^{c} \end{aligned}$	$\begin{gathered} r^{2} \text { with } \\ \text { eSNP } \\ (A F R)^{c} \end{gathered}$
rs4804155	G/C	ANGPTL8	-0.499	0.081	1.04×10^{-9}	-	0.516	-	-
rs737337	C/T	ANGPTL8	-0.526	0.098	9.74×10^{-8}	0.244	0.402	0.67	0.40
rs4804154	T/C	ANGPTL8	-0.500	0.081	1.38×10^{-9}	0.762	0.270	1.00	0.48
rs12463177	C/G	ANGPTL8	-0.479	0.080	3.84×10^{-9}	0.570	-	0.94	0.47
rs17699089	G/A	DOCK6	-0.406	0.081	7.21×10^{-1}	-	0.005	-	-
rs737337	C/T	DOCK6	-0.298	0.099	2.68×10^{-3}	0.324	0.413	0.74	0.29
rs4804154	T/C	DOCK6	-0.398	0.082	1.65×10^{-6}	0.253	0.267	0.94	0.91
rs12463177	C/G	DOCK6	-0.382	0.081	3.06×10^{-6}	0.029	-	1.00	0.98

Lead eQTL variants for ANGPTL8 (rs4804155) and DOCK6 (rs17699089), lead GWAS variants (rs4804154 and rs737337) and functional candidate variant rs 12463177 association with ANGPTL8 and DOCK6 expression in 770 primary subcutaneous adipose samples. Conditional analysis on each lead eSNP and the candidate functional variant rs 12463177 attenuated both the ANGPTL8 and DOCK6 association signals.
${ }^{a}$ The HDL-C-decreasing and eQTL effect alleles are presented first
${ }^{b}$ Effect size is shown as the inverse normal transformed expression levels $\left(\log _{2}\right.$ (fluorescence intensity)) with each additional copy of the allele.
${ }^{c} r^{2}$ is calculated from 1000 Genomes Phase 1 data

Selection of variants to test for allelic differences in regulatory activity

Prioritizing variants at GWAS loci for functional study can be challenging, especially at loci with regulatory mechanisms. To narrow variants that may have regulatory function, we considered three methods: LD with the lead GWAS variants, three fine-mapping algorithms in each of METSIM and WHI, and overlap with predicted regulatory regions (Figure 18). First, we considered variants in LD with the lead GWAS variants in European and/or African American ancestry individuals (1000 Genomes EUR and AFR). Because the variants in Europeans are of moderate allele frequency (MAF~0.07), we considered variants that meet an LD threshold $r^{2}>.5$. In total, 42 variants exhibited $r^{2}>.5$ with a lead HDL-C-associated variant in at least one study and could be considered as candidates for regulatory function (Table 9, Figure 19). As a second approach to prioritize candidate variants at this locus, we used the MANTRA, CAVIAR, and PAINTOR algorithms to interpret the HDL-C associated variants in the METSIM Finnish and WHI African American ancestry groups (Table 10, 11, 12). Finally, we identified candidate variants based on simple positional overlap with evidence of predicted regulatory regions, as variants overlapping these regions are more likely to be functional (Figure 19, Table 9) (59,60,152,153). Nine variants identified in at least one fine-mapping analysis overlapped regulatory regions (rs12463177, rs17766692, rs17699089, rs200788077, rs56322906, rs3760782, rs737337, rs737338, and rs3745683). We considered these nine variants to represent the most plausible candidate variants based both on fine-mapping and regulatory overlap and examined them for allelic differences on regulatory function. To compare the set of nine most plausible candidate variants to those that only show regulatory overlap, we also examined four additional variants in regulatory regions that were not identified by any fine-mapping analysis (rs34692794, rs 10421795 , rs10421382, and rs6511729). Thus, we examined a total of 13 variants in assays
examining allelic effects on regulatory function. All 13 variants are located within 9 kb of the ANGPTL8 transcription start site (Figure 10, Table 9).

Functional characterization of candidate variants

We examined the candidate variants for allelic differences in assays of regulatory function in human liver-derived (HepG2, Huh-7), pre-adipocyte (SGBS), and adipocyte (SW872) cells. We chose these cell types because $A N G P T L 8$ is expressed in liver and adipose, they had the highest transcriptional activity in our cell type-specificity assays, and they have roles in HDL-C metabolism. We tested variants individually or as a haplotype in luciferase transcriptional reporter assays and/or in electrophoretic mobility shift assays (EMSA, Figure 20, 21). Among the variants analyzed, rs12463177, which was identified in all three fine-mapping analyses and is a candidate at $r^{2}>.5$ in both populations $\left(r^{2}=0.74\right.$ with $\mathrm{rs} 737337 \mathrm{EUR}, r^{2}=0.93$ with rs4804154 AFR, and is 8 kb upstream from the ANGPLT8 TSS showed significant $(P<.05)$ allelic differences in two assays of regulatory function (Figure 13). In luciferase transcriptional reporter assays in HepG2, a 697-bp region containing rs12463177-G showed 1.2 to 1.4-fold increased enhancer activity ($P=0.02$ forward orientation; $P=0.004$ reverse) compared to rs 12463177-C. While modest, this allelic difference was replicated in three independent experiments. The significant effect on transcriptional activity was not replicated in Huh-7, SGBS, and SW872 cells, in which this region showed repressor activity; however, the trend between the alleles is consistent with HepG2, at least in the reverse orientation (Figure 20). In EMSAs using HepG2 and SGBS nuclear extract, the rs12463177-G allele showed increased binding (Figure 13, 21, 22). The direction of effect of rs12463177 transcriptional activity is consistent with the eQTL direction. A functional role for rs12463177 is consistent with
additional evidence that rs 12463177 overlaps a DNase hypersensitivity site that was previously correlated to $A N G P T L 8$ expression (153), green rectangle, Figure 10) and that the eQTL association signal is attenuated when conditioned on rs12463177 (Figure 16, Table 4).

Figure 13: Allelic differences in regulatory assays of rs12463177 A) 698-bp region containing either allele of rs 12463177 was cloned into the pGL4.23 vector and transfected in HepG2 cells. Data are represented as the mean \pm standard deviation of 3-5 biological replicates. Luciferase activity was normalized to empty vector (EV) and p-values were determined by t-tests. ${ }^{*} P<0.05$; **P<0.01. B) Differential protein binding was evaluated in vitro using EMSA. IR-labeled probes containing either allele of rs 12463177 were incubated with 10 ug HepG2 nuclear protein. The arrow shows stronger binding for rs12463177-G. Consistent binding was observed with SGBS nuclear protein (Figure 21). HDL-C-increasing alleles are presented first.

Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in an assay for regulatory function and two (rs17766692 and rs737338) did not (Figure 20, 21, 22, 23). rs56322906 was only tested in transcriptional reporter assays as part of the 5-kb haplotype described below (Figure 25). rs737337 showed by far the strongest enhancer activity in transcriptional reporter assays, an up to 60 -fold increase compared to empty vector in HepG2 (Figure 20), and rs737337-C shows
strong allele-specific binding in liver cell types (Figure 21). Supershift experiments using HepG2 nuclear extract identified $\mathrm{RXR} \alpha$ as binding to this probe, although not as part of the allelespecific complex (Figure 24). Interestingly, the four variants that overlap regulatory regions but were not predicted by any fine-mapping analysis (rs34692794, rs10421795, rs10421382, and rs6511729) did not show allelic differences in protein binding (Figure 23). In total, we observed evidence of functional activity for seven of the nine candidate regulatory variants in these assays
(Figure 14).

Figure 14: Summary of functional results for seven candidate variants. Summary of shared LD with lead HDL-C-associated variants reported in European (rs737337), African American (rs4804154), and East Asian (rs3760782) populations are shown; variants meeting the $r^{2}>0.5$ threshold are marked with a + . Results from transcriptional reporter luciferase assays and electrophoretic mobility shift assays (EMSA) for nine candidate variants are shown. Arrows show the direction of transcriptional activity in reporter assays. Two arrows at rs12463177-G indicate allelic differences in transcriptional activity. Black circles show allele-specific protein binding observed in EMSA experiments. The larger and smaller arrows at the ANGPTL8 promoter indicate higher and lower expression level from adipose eQTL data. Variants are located within 9 kb of the $A N G P T L 8$ transcription start site; variant distances are not drawn to scale.

To examine the effect on transcriptional activity of multiple variants together with the ANGPTL8 promoter, we tested 5-kb haplotypes located immediately upstream of the ANGPTL8 transcription start site. This region includes five of the seven variants showing allelic differences in protein binding and/or transcriptional activity when examined separately (rs200788077, rs56322906, rs3760782, rs737337, and rs3745683, Figure 20) and two variants that did not show evidence of allelic differences (rs6511729 and rs737338, Figure 23). Transcriptional reporter assays of the smaller segments containing individual variants had shown both activator (e.g. rs737337) and repressor (e.g. rs3760782 and rs3745683) activity. The 5-kb haplotype acted as an enhancer in HepG2, Huh-7, SGBS, and SW872, with intermediate activity observed between the individual segments, but did not show significant differences in transcriptional activity between the two haplotypes (Figure 25). These results suggest a complex regulatory mechanism involving enhancer and repressor regions that work in concert to regulate expression.

Discussion

In this study, we examined the tissue specificity of $A N G P T L 8$, reported the first eQTL for variants at the $A N G P T L 8$ HDL-C GWAS locus in adipose tissue, and identified variants at the GWAS locus that exhibit allelic differences in assays of regulatory function. We found that a 400-bp promoter is the main driver of tissue specificity in liver, and that expression may be mediated by additional enhancer elements within 5 kb upstream of $A N G P T L 8$, especially in adipocytes. Of 7 candidate regulatory variants that showed allelic differences in transcriptional activity and/or protein binding, rs12463177 showed the clearest allelic differences consistent with the direction of the ANGPTL8 eQTL. These data suggest that multiple regions and potentially multiple variants regulate $A N G P T L 8$ expression in liver and adipose tissue.

ANGPTL8 is a strong candidate gene at this GWAS locus. Although we observed coincident association between the GWAS variants and transcript level for both ANGPTL8 and DOCK6 in subcutaneous adipose tissue samples, $A N G P T L 8$ mRNA level was associated with HDL-C in METSIM, whereas DOCK6 mRNA level was not (Figure 17). DNase hypersensitivity sites that overlap regulatory variants are correlated to $A N G P T L 8$ expression (Figure 10), providing further support for ANGPTL8 as the target gene. ANGPTL8 protein levels have been shown to be inversely associated with HDL-C (134). This direction is opposite of the association we observed with ANGPTL8 expression and HDL-C; however, others have suggested that ELISA methods may not consistently quantify serum ANGPTL8 levels (156). Furthermore, ANGPTL8 inhibits lipoprotein lipase when co-expressed with ANGPTL3, giving a direct connection to lipid metabolism (133). While we cannot rule out a role for $D O C K 6$, these lines of evidence and a rare coding variant in ANGPTL8 associated with HDL-C (137) suggest ANGPTL8 as the most likely target gene at this HDL-C GWAS locus.

The $A N G P T L 8$ HDL-C GWAS locus exhibited unusual characteristics in fine-mapping because the associated variants defined by LD r^{2} with the lead GWAS variants span a larger chromosomal region in African Americans than in Europeans, opposite of most loci in the genome (157). Our haplotype association analyses showed that the LD differences are due to a haplotype with 20\% frequency in African Americans from WHI that is essentially not observed in Finns from METSIM (0.02\% frequency). At this locus, low-frequency haplotypes (frequency<.03, Table 3) distinguish r^{2} thresholds of .8 and .5 in Finns, and the r^{2} dependence on allele frequency suggests that a LD threshold of $r^{2}>.8$ for selecting candidate variants may be too restrictive and miss potentially functional variants. Here, we considered an initial set of candidate variants based on a more liberal threshold of $r^{2}>.5$, resulting in 42 total variants. We
then tested nine variants predicted by MANTRA, CAVIAR, and PAINTOR and that overlapped regulatory datasets in functional assays. Seven of nine variants showed evidence of allelic differences (Figure 14), but only rs 12463177 and rs 17699089 showed differences consistent with the direction of the eQTL association. Of four additional variants that overlapped regulatory regions but were not predicted to be functional in fine-mapping assays, none showed evidence of regulatory activity. Taken together, these data suggest that the joint use of fine-mapping and regulatory overlap can successfully identify variants exhibiting allelic differences in functional assays.

The mechanisms by which the variants that showed allelic differences in functional assays may work in concert remains unclear. The effect on transcriptional activity of rs12463177 was modest and only significant in one cell type (Figure 13, 20). This marginal effect observed in cell lines may not represent the physiological effect in vivo. The magnitude of effect of rs 737337 was much greater (50 -fold increased transcriptional activity), but did not show significant allelic differences, in contrast to a previous report (158). rs737337 exhibited strong liver-specific allele-specific protein binding, but the specific transcription factor(s) remain unknown. One possible mechanism is that the regulatory region containing rs737337 is a strong enhancer that drives expression of $A N G P T L 8$, but that the region containing rs12463177 is important for regulating allele-specific expression. Transcriptional regulators bound at the multiple variants may act together via chromosomal looping with the $A N G P T L 8$ promoter. Further experiments, especially in vivo, are needed to elucidate the precise roles and interactions of the seven variants that showed allelic differences in transcriptional activity and/or protein binding.

In this study, we identified $A N G P T L 8$ as the target gene at this HDL-C GWAS locus, determined regulatory drivers of tissue specificity, and combined fine-mapping approaches and regulatory overlap with experimental assays to identify variants that may contribute to the HDLC GWAS signal at ANGPTL8. Identifying variants underlying GWAS loci contributes to a growing understanding of target genes, their direction of effect, and metabolic phenotypes. Our results are consistent with previously described results at other GWAS loci where multiple common regulatory variants act together $(54,138,139)$ and continued work on the ANGPTL8 locus will further clarify the complex mechanism of these variants.

Supplemental Figures and Tables

Figure 15: HDL association and conditional analysis. A) Variant association with concentration of phospholipids in medium HDL in the METSIM study of Finnish individuals ($\mathrm{N}=8380$). rs 737337 (purple) was among the most significantly associated variants. Variants are colored according to LD $\left(r^{2}\right)$ with rs737337. B) Conditional analysis on rs 737337 attenuated the association signal. C) HDL-C association in the WHI study of African American individuals ($\mathrm{N}=8244$). Variants are colored according to LD $\left(r^{2}\right)$ with rs4804154 (purple). D) Conditional analysis on rs4804154 attenuated the signal.

Figure 16: eQTL association in subcutaneous adipose from 770 individuals in the METSIM study. A) HDL-C-GWAS variants are associated with ANGPTL8 expression. B) HDL-C GWAS variants are associated with DOCK6 expression. C) Conditional analysis on the top variant associated with $A N G P T L 8$ expression, rs4804155, attenuated the signal. D) Conditional analysis on the top variant associated with DOCK6 expression, rs17699089, revealed a secondary association signal with DOCK6 expression (rs12978266, $\mathrm{P}=7.33 \times 10-5$). E) Conditional analysis on candidate functional variant rs12463177 also attenuated the ANGPTL8 association signal and reveals the secondary association of rs12978266. F) Conditional analysis on candidate functional variant rs 12463177 also attenuated the DOCK6 association signal.

Figure 17: RNA associations with HDL-C in METSIM. $A N G P T L 8$ RNA levels (A) are associated with HDL-C level in 770 Finnish individuals from METSIM. DOCK6 RNA levels (B) are not associated with HDL-C. To examine the relationship between RMA-normalized expression levels and HDL-C, we adjusted both traits for age and BMI, inverse normal transformed the residuals, and then tested for association in regression analysis. Correlation coefficients: $\mathrm{R}=0.086$ (ANGPTL8), $\mathrm{R}=0.029$ (DOCKO).

Figure 18: Flow chart describing selection of variants to test in functional experiments.

Figure 19: Candidate variants relative to predicted regulatory regions. 27 variants exhibited $r^{2}>0.5$ with rs 737337 in METSIM (EUR variants) and 31 variants with rs 4804154 in WHI (AFR variants). These variants span a 39-kb window within DOCK6. 13 of 42 total variants overlap regulatory regions defined by histone marks, chromatin accessibility, and transcription factor binding (Figure 10). Green rectangles represent DNase hypersensitivity sites correlated with ANGPTL8 expression (153). Consistent with our tissue-specificity experiments, ANGPTL8 is highly expressed in liver and adipose RNA-seq datasets $(59,60,130)$. Data was accessed from ENCODE, the Epigenome Roadmap Atlas, and the UCSC Genome Browser. Black rectangles represent regions analyzed in transcriptional activity assays.

Figure 20: Variants tested in transcriptional reporter luciferase assays. Transcriptional activity was evaluated for six variants (rs56322906 was evaluated in a 5-kb haplotype, Figure 25) in HepG2 (A), Huh7 (B), SGBS (C), and SW872 (D) cells. Data are represented as the mean \pm standard deviation of 3-5 biological replicates. Luciferase activity was normalized to empty vector (EV). White bars represent the forward orientation with respect to the genome; black are reverse. ${ }^{*} P<0.05,{ }^{* *} P<0.01{ }^{* * *} P<0.001$ HDL-C-increasing alleles are presented first.

Figure 21: Seven variants show differential protein binding in EMSAs.
Allelic differences in protein binding were observed for all seven variants with nuclear extract from HepG2 cells (A). Six variants (except rs737337) showed allelic differences in protein binding with nuclear extract from SGBS cells (B). Arrows show allelic differences.

Figure 22: Competition EMSAs confirm allele-specific effects.
Competition EMSA experiments using HepG2 nuclear extract were conducted with unlabeled competitor probes for each allele. rs 12463177 is competed with 100x competition (lanes 2, 3, 7, 8) and 200x (lanes $4,5,9,10$) compared to labeled probe. rs 17699089 is competed with 100 x competition, rs200788077 is competed with 100 x competition, rs56322906 is competed with 100 x competition, rs 3760782 is competed with 192 x competition, rs 737337 is competed with 269 x competition, and rs3745683 is competed with 50 x (lanes $2,3,7$, and 8) and 100 x (lanes 4 , 5,9 , and 10) competition. HDL-C-increasing alleles are presented first.

Figure 23: Six variants overlapping regulatory regions did not alter protein binding. EMSAs were performed with IR-labeled probes for each allele and incubated with 10 ug of HepG2 nuclear protein. rs737338 and rs17766692 were predicted in the CAVIAR causal set. The remaining four variants were not predicted in fine-mapping analyses. The prominent band in the middle of all gels represents non-specific binding that is observed in all IR-labeled EMSAs. HDL-C-increasing alleles are presented first. No allelic differences were observed.

Figure 24: RXR α may bind as part of a complex at rs737337. Supershift EMSA assays were performed using HepG2 nuclear extract (NE). The allele-specific band (arrow) is not disrupted when RXR α antibody is added to the reaction; however, there is a supershift in both alleles (asterisks). No disruption or supershift is observed with 36 other transcription factor antibodies (data not shown; Table 9). Competitor lanes are competed with 269x unlabeled probe. HDL-Cincreasing alleles are presented first.

Figure 25: A 5-kb haplotype did not show allelic differences in transcriptional activity. Transcriptional activity was evaluated for a 5-kb haplotype containing 7 variants in HepG2, Huh7, SGBS, and SW872 cells. Data are represented as the mean \pm standard deviation of 3-5 biological replicates. Luciferase activity was normalized to empty vector (EV). $P>0.07$ The HDL-C-increasing haplotype is haplotype 1.

Table 5: Primer and probe sequences for functional assays

Primer sequences for luciferase assays	5'- 3' Sequence	Chromosome Position (hg19)
$\begin{aligned} & \text { rs737337_F } \\ & \text { rs737337_R } \end{aligned}$	gcaccagggtgaagaatttg atcagtcagggagggctga	chr19:11347220-11347605
$\begin{array}{\|l} \hline \text { rs737337_long_F } \\ \text { rs737337_long_R } \\ \hline \end{array}$	tcagcacagtgtccttgagc tgctcacacccgatgtatgt	chr19:11347169-11348145
$\begin{aligned} & \text { rs3745683_F } \\ & \text { rs3745683_R } \end{aligned}$	ctggcagctgacatggtaga tatgtagggggacacgtgag	chr19:11348359-11348719
$\begin{aligned} & \text { rs3760782_F } \\ & \text { rs3760782_R } \end{aligned}$	agtgccaggaaggcgaaag aggtgacagtgagccgagat	chr19:11346293-11346640
$\begin{aligned} & \text { rs200788077_F } \\ & \text { rs200788077_R } \end{aligned}$	ccctgagaataatgcctgaca aatgtttgcccactttgc	chr19:11345134-11345515
ANGPTL8prom_F ANGPTL8prom_R	ggaggggaacaagagcagat tctaaggtatagccacagcac	chr19:11349914-11350304
$\begin{aligned} & \hline \text { rs12463177_F } \\ & \text { rs12463177_R } \end{aligned}$	gctggtagggggtgagg tgtgcttgagttagggctga	chr19:11341542-11342239
$\begin{array}{\|l} \hline \text { rs17699089_F } \\ \text { rs17699089_R } \end{array}$	ttgttcagccacgccaag cctggcctattctcagttttc	chr19:11343636-11344234
$\begin{aligned} & 5 \mathrm{~kb} _\mathrm{F} \\ & 5 \mathrm{~kb} \text { _R } \end{aligned}$	ccctgagaataatgcctgaca tctaaggtatagccacagcac	chr19:11345134-11350304
Probe sequences for EMSA	5'- 3' Sequence	
$\begin{aligned} & \text { rs737337_T } \\ & \text { rs737337_C } \end{aligned}$	gacacggctgtgagctc gacacggccgtgagctc	
$\begin{aligned} & \hline \text { rs3760782_C } \\ & \text { rs3760782_T } \end{aligned}$	aggggtcacaaatttt aggggtcataaatttt	
$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { rs200788077_+ } \\ \text { rs200788077 } \end{array} \\ \hline \end{array}$	aggaaaaaacaggctca aggaaaaacaggctca	
$\begin{array}{\|l\|} \hline r s 3745683 _G \\ \text { rs3745683_A } \\ \hline \end{array}$	tcacctctgccatgcca tcacctctaccatgcca	
$\begin{array}{\|l\|} \hline \text { rs12463177_G } \\ \text { rs12463177_C } \\ \hline \end{array}$	tgtgcaccgtgagggcc tgtgcaccctgagggcct	
$\begin{array}{\|l\|l} \hline \text { rs56322906_G } \\ \text { rs56322906_A } \\ \hline \end{array}$	cgaactcctgacctcaaat cgaactcctaacctcaaat	
$\begin{aligned} & \text { rs6511729_A } \\ & \text { rs6511729_C } \\ & \hline \end{aligned}$	ctcgtctcacagggatt ctcgtctcccagggatt	
$\begin{aligned} & \text { rs10421382_G } \\ & \text { rs10421382_C } \end{aligned}$	tgcctggcgtatttat tgcctggcctatttat	
$\begin{array}{\|l\|} \hline \text { rs10421795_C } \\ \text { rs10421795_T } \\ \hline \end{array}$	ccagttacctggggagg ccagttacttggggagg	
	tgtttcccatgcttcat tgtttcccgtgcttcat	
$\begin{aligned} & \text { rs34692794_- } \\ & \text { rs34692794_G } \end{aligned}$	atatgcatggggggtg atatgcatgggggggtg	
$\begin{array}{\|l\|} \hline \text { rs1776669_C } \\ \text { rs17766692_T } \\ \hline \end{array}$	tggatttgcacttcgtt tggatttgtacttcgtt	
$\begin{aligned} & \hline \text { rs737338_C } \\ & \text { rs737338_T } \end{aligned}$	gtgtagcccggtctggg gtgtagcctggtctggg	

Table 6: Association of 100 ANGPTL8 locus variants with concentration of phospholipids in medium HDL in METSIM

Variant	Position	Alleles ${ }^{\text {a }}$	MAF	Unconditioned			Conditioned on rs737337		
				Effect	Std Error	P -value	Effect	Std Error	P-value
rs737337	19:11347493	T/C	0.08	-0.137	0.026	1.99E-07			-
rs112108870 ${ }^{\text {b }}$	19:11345315	G/GA	0.08	-0.138	0.026	$1.68 \mathrm{E}-07$	-0.369	0.499	0.460
rs3745683	19:11348521	G/A	0.08	-0.137	0.026	$2.39 \mathrm{E}-07$	0.359	0.576	0.533
rs3760782	19:11346550	C/T	0.08	-0.137	0.026	$2.40 \mathrm{E}-07$	0.367	0.576	0.525
rs12463177	19:11341680	G/C	0.12	-0.115	0.023	3.88E-07	-0.056	0.039	0.146
rs17699089	19:11343795	A/G	0.12	-0.114	0.023	4.39E-07	-0.055	0.039	0.156
rs3826815	19:11332505	C/T	0.12	-0.114	0.023	5.03E-07	-0.053	0.039	0.178
rs72994363	19:11333358	G/T	0.12	-0.114	0.023	5.14E-07	-0.053	0.039	0.180
rs12974173	19:11333359	A/T	0.12	-0.114	0.023	5.16E-07	-0.052	0.039	0.180
rs3810308	19:11333596	T/C	0.12	-0.114	0.023	5.19E-07	-0.052	0.039	0.181
rs4804155	19:11334295	C/G	0.12	-0.114	0.023	$5.24 \mathrm{E}-07$	-0.052	0.039	0.179
rs4804154	19:11334179	C/T	0.12	-0.114	0.023	6.61E-07	-0.049	0.040	0.222
rs4804576	19:11331354	G/T	0.06	-0.142	0.029	$1.30 \mathrm{E}-06$	-0.033	0.063	0.599
rs66466742	19:11336444	C/T	0.06	-0.141	0.029	$1.45 \mathrm{E}-06$	-0.030	0.063	0.635
rs737338	19:11347657	C/T	0.06	-0.141	0.029	1.58E-06	-0.028	0.063	0.661
rs2278426	19:11350488	C/T	0.06	-0.141	0.029	$1.58 \mathrm{E}-06$	-0.028	0.063	0.661
rs56322906	19:11346155	G/A	0.06	-0.141	0.029	$1.59 \mathrm{E}-06$	-0.027	0.063	0.662
rs8101801	19:11335477	C/A	0.07	-0.139	0.029	$1.84 \mathrm{E}-06$	-0.025	0.062	0.689
rs17766692	19:11342599	C/T	0.10	-0.112	0.024	3.52E-06	-0.049	0.033	0.138
rs1865063	19:11341029	C/T	0.10	-0.112	0.024	3.65E-06	-0.049	0.033	0.140
rs17699030	19:11330942	A/G	0.05	-0.158	0.034	3.72E-06	-0.057	0.051	0.272
rs4804575	19:11329641	G/A	0.10	-0.110	0.024	4.63E-06	-0.046	0.033	0.157
rs4804153	19:11331531	C/T	0.10	-0.111	0.024	$4.68 \mathrm{E}-06$	-0.046	0.033	0.166
rs138572354	19:11338309	C/A	0.05	-0.149	0.033	8.66E-06	-0.036	0.053	0.496
rs143466522	19:11318472	G/A	0.02	-0.213	0.056	$1.27 \mathrm{E}-04$	-0.103	0.062	0.097
rs79846490	19:11311885	G/C	0.04	-0.146	0.038	$1.38 \mathrm{E}-04$	-0.023	0.052	0.661
rs111279811	19:11298369	C/T	0.03	-0.158	0.042	$1.49 \mathrm{E}-04$	-0.046	0.052	0.375
rs56048141	19:11317744	C/T	0.02	-0.173	0.051	6.10E-04	-0.056	0.058	0.342
rs12979813	19:11342703	A/G	0.18	-0.062	0.019	8.72E-04	-0.003	0.024	0.883
rs10406522	19:11341635	T/C	0.18	-0.062	0.019	8.81E-04	-0.003	0.024	0.886
rs6511729	19:11346252	A/C	0.18	-0.062	0.019	9.28E-04	-0.003	0.024	0.891
rs3810307	19:11332570	T/A	0.18	-0.061	0.019	$1.05 \mathrm{E}-03$	-0.002	0.024	0.941
rs2043302	19:11339396	T/C	0.18	-0.061	0.019	1.16E-03	-0.001	0.024	0.972
rs10418759	19:11340242	A/G	0.18	-0.061	0.019	1.18E-03	-0.001	0.024	0.976
rs7247404	19:11268556	G/A	0.34	0.050	0.015	$1.22 \mathrm{E}-03$	0.037	0.016	0.018
rs17001244	19:11340057	A/G	0.18	-0.060	0.019	$1.23 \mathrm{E}-03$	0.000	0.024	0.989
rs11672123	19:11194823	G/A	0.09	-0.080	0.025	$1.24 \mathrm{E}-03$	-0.075	0.025	0.002
rs10421382	19:11344973	G/C	0.18	-0.060	0.019	$1.25 \mathrm{E}-03$	-0.001	0.024	0.980
rs776487142	19:11013429	C/T	0.00	-5.925	1.842	$1.31 \mathrm{E}-03$	-5.973	1.840	0.001
rs10409274	19:11273179	G/A	0.29	0.051	0.016	$1.34 \mathrm{E}-03$	0.034	0.016	0.035
rs11671937	19:11264514	C/T	0.34	0.049	0.015	$1.36 \mathrm{E}-03$	0.036	0.016	0.020
rs7408517	19:11264063	C/T	0.34	0.049	0.015	$1.39 \mathrm{E}-03$	0.036	0.016	0.020
rs10421795	19:11344406	C/T	0.18	-0.060	0.019	$1.39 \mathrm{E}-03$	0.000	0.024	0.991
rs11670169	19:11266015	T/C	0.34	0.049	0.015	$1.41 \mathrm{E}-03$	0.036	0.016	0.020
rs892115	19:11263650	G/T	0.34	0.049	0.015	1.42E-03	0.036	0.016	0.020
rs934424	19:11267613	G/A	0.34	0.049	0.015	$1.49 \mathrm{E}-03$	0.036	0.016	0.021
rs9749459	19:11270016	T/C	0.29	0.050	0.016	$1.55 \mathrm{E}-03$	0.034	0.016	0.039

rs4804148	19:11270867	C/T	0.29	0.050	0.016	$1.60 \mathrm{E}-03$	0.034	0.016	0.040
rs9749257	19:11269960	G/T	0.29	0.050	0.016	$1.61 \mathrm{E}-03$	0.033	0.016	0.040
rs17248748	19:11206040	C/T	0.02	-0.175	0.056	1.62E-03	-0.110	0.057	0.056
rs4804579	19:11358700	T/C	0.18	-0.059	0.019	1.65E-03	0.004	0.024	0.882
rs8104261	19:11272585	C/T	0.29	0.050	0.016	1.71E-03	0.033	0.016	0.042
rs9749350	19:11257299	C/G	0.18	-0.059	0.019	1.98E-03	-0.044	0.019	0.023
rs934425	19:11267503	C/T	0.29	0.050	0.016	2.02E-03	0.042	0.016	0.011
rs551841239	19:11671580	G/C	0.00	-1.435	0.465	2.05E-03	-1.371	0.465	0.003
rs150205856	19:11391990	C/T	0.02	-0.180	0.059	$2.18 \mathrm{E}-03$	-0.062	0.065	0.338
rs200600677	19:11369440	TC/T	0.23	-0.053	0.017	2.19E-03	-0.022	0.019	0.240
rs17001264	19:11348212	C/T	0.02	-0.181	0.059	$2.25 \mathrm{E}-03$	-0.062	0.065	0.340
rs6511728	19:11335597	A/G	0.15	-0.062	0.020	2.37E-03	0.026	0.029	0.361
rs8101802	19:11336182	G/C	0.15	-0.062	0.020	$2.38 \mathrm{E}-03$	0.026	0.029	0.360
rs139606057	19:11393073	C/T	0.00	-1.089	0.359	$2.40 \mathrm{E}-03$	-1.100	0.358	0.002
rs112550373	19:11071469	G/A	0.01	0.277	0.091	$2.41 \mathrm{E}-03$	0.299	0.091	0.001
rs147629608	19:11411726	C/T	0.00	0.862	0.284	$2.41 \mathrm{E}-03$	0.953	0.284	0.001
rs34098	19:11539681	A/T	0.10	0.079	0.026	$2.45 \mathrm{E}-03$	0.057	0.027	0.031
rs186292971	19:11435015	A/C	0.00	1.608	0.531	$2.47 \mathrm{E}-03$	1.598	0.530	0.003
rs187416509	19:11528292	C/T	0.00	-1.387	0.462	$2.66 \mathrm{E}-03$	-1.414	0.461	0.002
rs145277768	19:11440420	C/T	0.00	1.595	0.532	2.69E-03	1.586	0.531	0.003
rs541868466	19:11543169	C/T	0.00	-1.384	0.462	2.73E-03	-1.411	0.461	0.002
rs181565096	19:11232702	C/G	0.02	-0.163	0.054	$2.75 \mathrm{E}-03$	-0.098	0.056	0.080
rs10423399	19:11273603	T/G	0.29	0.048	0.016	$2.78 \mathrm{E}-03$	0.031	0.016	0.057
rs565352617	19:11992491	CAA/C	0.00	-1.488	0.498	$2.79 \mathrm{E}-03$	-1.445	0.497	0.004
rs570249721	19:11252163	G/A	0.00	-9.531	3.225	3.13E-03	-9.358	3.221	0.004
rs191370629	19:11569128	C/T	0.00	-1.366	0.463	3.16E-03	-1.394	0.462	0.003
rs182210127	19:11659265	G/A	0.00	-1.352	0.458	3.16E-03	-1.377	0.457	0.003
rs112541805	19:11221946	G/GA	0.03	-0.128	0.045	4.12E-03	-0.087	0.045	0.054
rs386474655	19:11026074	G/C	0.00	-0.486	0.170	4.12E-03	-0.407	0.170	0.017
rs34254024	19:11369433	TTC/T	0.24	-0.049	0.017	4.14E-03	-0.019	0.018	0.311
rs13306513	19:11218226	G/A	0.03	-0.129	0.045	4.25E-03	-0.088	0.046	0.054
rs17242899	19:11216768	T/C	0.03	-0.129	0.045	$4.25 \mathrm{E}-03$	-0.088	0.046	0.054
rs145446845	19:11299431	G/A	0.02	-0.164	0.057	4.26E-03	-0.046	0.063	0.467
rs140898392	19:11218361	G/A	0.03	-0.129	0.045	$4.28 \mathrm{E}-03$	-0.088	0.046	0.055
rs146559752	19:11264537	A/C	0.03	0.118	0.042	$4.42 \mathrm{E}-03$	0.109	0.041	0.008
rs528191740	19:11448303	T/G	0.00	2.902	1.024	$4.62 \mathrm{E}-03$	2.889	1.023	0.005
rs200345643	19:11286646	G/C	0.00	-0.619	0.219	4.79E-03	-0.499	0.221	0.024
rs72996217	19:11358966	G/A	0.16	-0.055	0.020	4.81E-03	-0.007	0.023	0.764
rs11085768	19:11370653	G/A	0.24	-0.048	0.017	4.86E-03	-0.017	0.018	0.346
rs7248924	19:11372077	T/C	0.24	-0.047	0.017	5.55E-03	-0.017	0.018	0.352
rs142159985	19:11516368	A/C	0.00	2.395	0.865	5.63E-03	2.367	0.864	0.006
rs199636757	19:11378355	CAG/C	0.24	-0.047	0.017	5.89E-03	-0.017	0.018	0.363
	19:11798665	A/G	0.00	-3.388	1.231	5.92E-03	-3.429	1.229	0.005
rs2043303	19:11368648	C/T	0.24	-0.047	0.017	5.98E-03	-0.017	0.018	0.366
rs7258016	19:11367353	A/C	0.24	-0.047	0.017	5.98E-03	-0.016	0.018	0.367
rs12462741	19:11365281	C/T	0.24	-0.047	0.017	6.02E-03	-0.016	0.018	0.369
rs2043301	19:11365650	C/A	0.24	-0.047	0.017	6.02E-03	-0.016	0.018	0.369
rs556896609	19:11444804	A/G	0.00	1.369	0.499	6.04E-03	1.358	0.498	0.006
rs322135	19:11379717	A/G	0.24	-0.047	0.017	6.08E-03	-0.016	0.018	0.368
rs7247840	19:11267678	T/C	0.26	0.046	0.017	6.09E-03	0.039	0.017	0.019
rs10422673	19:11265408	C/G	0.26	0.046	0.017	6.09E-03	0.039	0.017	0.019
rs396460	19:11374916	C/T	0.24	-0.047	0.017	6.10E-03	-0.016	0.018	0.368
rs416231	19:11374675	C/T	0.24	-0.047	0.017	$6.11 \mathrm{E}-03$	-0.016	0.018	0.369

[^2]Table 7: Association of 100 ANGPTL8 locus variants with HDL-C in WHI

					Unconditioned			Conditioned on rs48041545		
Variant	Position	NEA	EA	MAF	Effect	Std Error	P-value	Effect	Std Error	P-value
rs4804154	19:11334179	C	T	0.19	-0.042	0.005	6.15E-17	-		
rs3810308	19:11333596	T	C	0.19	-0.042	0.005	6.11E-17	0.000	0.005	0.999
rs3826815	19:11332505	C	T	0.19	-0.042	0.005	6.20E-17	0.000	0.005	0.996
rs12974173	19:11333359	A	T	0.17	-0.046	0.006	$1.14 \mathrm{E}-16$	-0.001	0.006	0.923
rs72994363	19:11333358	G	T	0.17	-0.046	0.006	1.14E-16	-0.001	0.006	0.923
rs17699089	19:11343795	A	G	0.20	-0.043	0.005	1.36E-16	0.000	0.005	0.998
rs12463177	19:11341680	G	C	0.20	-0.042	0.005	1.56E-16	0.000	0.005	0.985
rs3760782	19:11346550	C	T	0.19	-0.044	0.005	$2.01 \mathrm{E}-16$	-0.001	0.005	0.892
rs3745683	19:11348521	G	A	0.19	-0.044	0.005	5.22E-16	0.000	0.005	0.955
rs4804153	19:11331531	C	T	0.18	-0.044	0.005	5.43E-16	0.001	0.005	0.920
rs4804576	19:11331354	G	T	0.18	-0.043	0.005	6.14E-16	0.000	0.005	0.977
rs4804575	19:11329641	G	A	0.19	-0.043	0.005	7.50E-16	0.001	0.005	0.861
rs34692794	19:11343547	R	I	0.21	-0.041	0.005	$1.72 \mathrm{E}-15$	0.001	0.005	0.875
rs56322906	19:11346155	G	A	0.18	-0.043	0.005	2.76E-15	0.000	0.005	0.971
rs737338	19:11347657	C	T	0.18	-0.043	0.005	5.20E-15	0.001	0.005	0.917
rs17766692	19:11342599	C	T	0.20	-0.040	0.005	$2.24 \mathrm{E}-14$	0.002	0.005	0.736
rs2278426	19:11350488	C	T	0.19	-0.042	0.006	6.22E-14	0.002	0.006	0.780
rs66466742	19:11336444	C	T	0.17	-0.040	0.005	7.83E-14	0.002	0.005	0.640
rs4804155	19:11334295	C	G	0.31	-0.030	0.004	6.33E-13	-0.004	0.004	0.300
rs35472533	19:11324312	G	A	0.34	-0.032	0.004	1.93E-12	-0.005	0.004	0.313
rs62129150	19:11330005	G	A	0.52	0.030	0.004	2.12E-12	0.010	0.004	0.017
rs113441245	19:11328383	G	A	0.35	-0.031	0.004	$2.50 \mathrm{E}-12$	-0.004	0.004	0.356
rs11085764	19:11327227	G	C	0.35	-0.031	0.004	$2.68 \mathrm{E}-12$	-0.004	0.004	0.350
rs2304154	19:11326125	C	T	0.35	-0.031	0.004	3.22E-12	-0.004	0.004	0.357
rs2163830	19:11325417	A	G	0.35	-0.031	0.004	3.51E-12	-0.004	0.004	0.359
rs1865063	19:11341029	C	T	0.31	-0.030	0.004	4.35E-12	-0.005	0.004	0.256
rs2304155	19:11326119	G	A	0.52	0.030	0.004	4.72E-12	0.010	0.004	0.017
rs11673129	19:11325924	C	G	0.35	-0.031	0.004	5.06E-12	-0.004	0.004	0.375
rs8113156	19:11321705	T	G	0.35	-0.030	0.004	7.63E-12	-0.004	0.004	0.317
rs8101801	19:11335477	C	A	0.30	-0.029	0.004	$9.08 \mathrm{E}-12$	-0.005	0.004	0.278
rs11666686	19:11323085	T	C	0.35	-0.030	0.004	1.26E-11	-0.004	0.004	0.387
rs112108870	19:11345315	R	1	0.40	-0.029	0.004	$1.67 \mathrm{E}-11$	-0.008	0.004	0.053
rs2116873	19:11325784	A	T	0.55	0.030	0.004	4.11E-11	0.008	0.004	0.062
rs4804152	19:11327626	G	A	0.39	0.030	0.004	$4.28 \mathrm{E}-11$	0.013	0.004	0.004
rs59389322	19:11329394	G	A	0.34	-0.029	0.005	$9.54 \mathrm{E}-11$	-0.002	0.004	0.578
rs67076391	19:11328617	C	T	0.34	-0.029	0.005	$1.01 \mathrm{E}-10$	-0.002	0.004	0.582
rs2116875	19:11325764	A	G	0.30	-0.032	0.005	1.13E-10	-0.001	0.005	0.777
rs2116874	19:11325767	T	C	0.43	-0.030	0.005	$1.23 \mathrm{E}-10$	-0.011	0.005	0.017
rs200788077	19:11345320	R	1	0.37	-0.028	0.004	1.60E-10	-0.009	0.004	0.051
rs111705028	19:11320494	C	T	0.25	-0.036	0.006	3.91E-10	-0.007	0.006	0.215
rs8409	19:11319491	G	A	0.37	-0.027	0.004	5.46E-10	-0.003	0.004	0.515
rs737337	19:11347493	T	C	0.41	-0.026	0.004	9.09E-10	-0.006	0.004	0.169
rs12981155	19:11320339	G	C	0.27	-0.036	0.006	1.20E-09	-0.006	0.006	0.309
rs12979813	19:11342703	A	G	0.50	-0.022	0.004	7.01E-09	-0.006	0.004	0.102
rs7252965	19:11309160	G	C	0.53	0.024	0.004	8.49E-09	0.006	0.004	0.149
rs8101345	19:11310920	T	C	0.45	-0.023	0.004	$1.10 \mathrm{E}-08$	-0.005	0.004	0.195
rs4804151	19:11327608	C	T	0.36	0.026	0.005	$2.44 \mathrm{E}-08$	0.010	0.005	0.033
rs12609620	19:11324890	C	T	0.36	0.026	0.005	$2.58 \mathrm{E}-08$	0.010	0.005	0.031
rs10406522	19:11341635	T	C	0.51	-0.022	0.004	$2.62 \mathrm{E}-08$	-0.006	0.004	0.138
rs8110433	19:11316317	A	C	0.55	0.023	0.004	2.97E-08	0.005	0.004	0.208
rs138111115	19:11307572	R	D	0.50	0.023	0.004	4.66E-08	0.006	0.004	0.171

rs3810307	19:11332570	T	A	0.49	-0.022	0.004	8.85E-08	-0.004	0.004	0.277
rs149928810	19:11308475	R	D	0.49	0.022	0.004	$2.24 \mathrm{E}-07$	0.005	0.004	0.255
rs764304127	19:11314807	D	R	0.46	0.021	0.004	2.27E-07	0.006	0.004	0.166
rs11878417	19:11319978	A	G	0.52	0.021	0.004	3.19E-07	0.002	0.004	0.615
rs10421795	19:11344406	C	T	0.62	-0.022	0.004	3.30E-07	-0.008	0.004	0.075
rs113535966	19:11337269	G	A	0.06	-0.051	0.01	5.22E-07	-0.002	0.01	0.822
rs10421382	19:11344973	G	C	0.61	-0.021	0.004	5.61E-07	-0.007	0.004	0.100
rs6511728	19:11335597	A	G	0.61	-0.021	0.004	5.95E-07	-0.007	0.004	0.086
rs7252976	19:11315343	G	A	0.20	0.025	0.005	6.36E-07	0.014	0.005	0.005
rs17001244	19:11340057	A	G	0.54	-0.019	0.004	8.72E-07	-0.004	0.004	0.298
rs2043302	19:11339396	T	C	0.61	-0.021	0.004	$1.09 \mathrm{E}-06$	-0.006	0.004	0.162
rs35248735	19:11312238	G	A	0.42	0.019	0.004	$1.27 \mathrm{E}-06$	0.005	0.004	0.181
rs56865998	19:11354146	C	G	0.07	-0.047	0.01	$1.49 \mathrm{E}-06$	-0.002	0.01	0.872
rs59175057	19:11329534	R	D	0.44	-0.021	0.004	$1.94 \mathrm{E}-06$	-0.004	0.004	0.368
rs184781818	19:11317340	A	G	0.00	-1.927	0.413	2.99E-06	-0.492	0.411	0.231
rs114281937	19:11348208	C	T	0.02	-0.084	0.018	3.04E-06	-0.034	0.018	0.060
	19:11323240	D	R	0.38	0.020	0.004	$3.29 \mathrm{E}-06$	0.005	0.004	0.243
rs7249565	19:11302807	G	A	0.60	0.018	0.004	3.44E-06	0.004	0.004	0.300
rs12980863	19:11309871	C	T	0.41	0.018	0.004	3.52E-06	0.005	0.004	0.214
rs3745681	19:11303943	A	G	0.59	0.018	0.004	3.63E-06	0.003	0.004	0.447
rs7246614	19:11310538	C	T	0.24	0.021	0.005	3.87E-06	0.010	0.005	0.024
rs3745682	19:11313256	G	A	0.24	0.021	0.005	4.20E-06	0.010	0.004	0.025
rs4804574	19:11317482	A	G	0.35	0.019	0.004	$4.55 \mathrm{E}-06$	0.007	0.004	0.118
rs7250652	19:11302606	G	A	0.40	-0.018	0.004	4.63E-06	-0.004	0.004	0.255
rs145352947	19:11306346	R	D	0.58	0.019	0.004	4.86E-06	0.003	0.004	0.478
rs6511727	19:11315817	G	T	0.23	0.021	0.005	4.97E-06	0.011	0.005	0.021
rs10421221	19:11316547	T	C	0.32	0.019	0.004	6.41E-06	0.007	0.004	0.080
rs10418759	19:11340242	A	G	0.64	-0.019	0.004	6.54E-06	-0.005	0.004	0.196
rs8101802	19:11336182	G	C	0.62	-0.019	0.004	8.49E-06	-0.006	0.004	0.187
rs8110823	19:11316315	G	A	0.23	0.021	0.005	8.52E-06	0.011	0.005	0.019
	19:11323239	D	R	0.38	0.019	0.004	9.08E-06	0.004	0.004	0.341
rs7250778	19:11306265	G	A	0.21	0.023	0.005	$1.50 \mathrm{E}-05$	0.012	0.005	0.018
rs61045132	19:11303068	C	T	0.22	0.020	0.005	$1.73 \mathrm{E}-05$	0.013	0.005	0.005
rs58543390	19:11342434	C	T	0.00	-1.187	0.279	$2.07 \mathrm{E}-05$	-0.328	0.278	0.237
rs73506605	19:11307564	G	A	0.44	0.018	0.004	$2.10 \mathrm{E}-05$	0.003	0.004	0.442
rs34757881	19:11341462	C	T	0.07	-0.039	0.009	$2.18 \mathrm{E}-05$	0.012	0.009	0.190
rs200384092	19:11323225	R	D	0.41	-0.023	0.005	2.93E-05	-0.006	0.005	0.258
rs79846490	19:11311885	G	C	0.01	-0.115	0.028	$3.71 \mathrm{E}-05$	-0.030	0.028	0.280
rs6511729	19:11346252	A	C	0.65	-0.018	0.004	3.72E-05	-0.004	0.004	0.336
rs57681847	19:11300648	G	T	0.21	0.019	0.005	4.02E-05	0.012	0.005	0.009
rs58495388	19:11300312	G	C	0.18	0.021	0.005	6.76E-05	0.014	0.005	0.008
rs139048611	19:11321312	R	D	0.02	-0.067	0.017	7.34E-05	-0.023	0.017	0.167
rs8111456	19:11301147	A	G	0.22	0.018	0.005	$7.44 \mathrm{E}-05$	0.013	0.005	0.007
rs147045092	19:11300357	G	C	0.00	14.200	3.656	0.000103	10.115	3.641	0.005
rs34301174	19:11348098	G	A	0.11	0.034	0.009	0.000115	0.017	0.009	0.054
rs2278013	19:11305429	C	A	0.15	0.024	0.006	0.000168	0.014	0.006	0.032
rs148312284	19:11358858	G	C	0.02	-0.071	0.019	0.000191	-0.025	0.019	0.182
rs199653227	19:11317508	D	R	0.25	0.017	0.005	0.000234	0.007	0.005	0.134
rs73506665	19:11358644	C	T	0.05	-0.036	0.01	0.000263	0.000	0.01	0.970

Evidence of association with HDL-C in 8,244 individuals in the WHI study. Effect represents the change in standardnormalized residuals of phospholipids in medium HDL. Conditioning on lead variant rs4804154 attenuated the signal. NEA, non-effect allele; EA, effect allele; MAF, minor allele frequency

Table 8: Variant associations with gene expression levels in subcutaneous adipose tissue

	eQTL p-value					
Gene	rs4804155	rs17699089	rs4804154	rs737337	rs12463177	Probeset ID
ANGPTL8	$1.04 \mathrm{E}-09$	$1.84 \mathrm{E}-09$	$1.38 \mathrm{E}-09$	$9.74 \mathrm{E}-08$	$3.84 \mathrm{E}-09$	11756040_a_at
DOCK6	$2.37 \mathrm{E}-06$	$7.21 \mathrm{E}-07$	$1.65 \mathrm{E}-06$	$2.68 \mathrm{E}-03$	$3.06 \mathrm{E}-06$	11719400_a_at
CCDC159	0.071	0.066	0.085	0.092	0.054	11744239_a_at
KANK2	0.056	0.073	0.048	0.565	0.116	11726538_x_at
KRI1	0.052	0.062	0.036	0.348	0.053	11725949_x_at
LDLR	0.303	0.300	0.258	0.616	0.349	11720028_x_at
LPPR2	0.059	0.056	0.054	0.215	0.070	11722506_a_at
S1PR5	0.152	0.202	0.157	0.014	0.247	11752664_a_at
SLC44A2	0.028	0.029	0.028	0.178	0.036	11740973_s_at
TSPAN16	0.050	0.032	0.043	0.288	0.034	11761297_x_at

Gene expression was measured in 770 subcutaneous adipose samples. eQTL data are reported for genes within 1 Mb of rs737337 that have at least one variant with $\mathrm{p}<0.05$. Lead eQTL variants for $A N G P T L 8$ (rs4804155) and DOCK6 (rs17699089), lead GWAS variants (rs4804154 and rs737337) and functional candidate variant rs12463177 are shown. Data are shown for the most strongly associated probeset.

Table 9: Variants associated with HDL-C in METSIM and/or WHI

SNP ${ }^{\text {a }}$	$\begin{gathered} \text { chr19 } \\ \text { position } \end{gathered}$	$\left.\begin{gathered} r^{2} \text { with } \\ \text { rs737337 } \\ (\text { EUR })^{6} \end{gathered} \right\rvert\,$	r^{2} with rs4804154 $(\text { AFR })^{c}$	Dnased	FAIRE ${ }^{\text {d }}$	H3K4me1 ${ }^{\text {d }}$	H3K27ac ${ }^{\text {d }}$	H3K4me3 ${ }^{\text {d }}$	H3K9ac ${ }^{\text {d }}$	H3K4me2d	Transcription Factor Binding (ChIP-seq) $^{\text {d }}$	Posterior Probability MANTRA	Posterior Probability CAVIAR (Finnish) ${ }^{\circ}$	Predicted in at least one PAINTOR analysis	Antibodies tested in EMSA
rs79846490	11311884	0.58				L									
rs8409	11319491		0.66	NM											
rs8113156	11321705		0.72								B: ZEB1			Yes	
rs11666886	11323085		0.78												
rs35472533	11324312		0.81												
rs2163830	11325417		0.8												
rs2116875	11325764		0.68												
rs11673129	11325924		0.8												
rs2304154	11326125		0.82												
rs11085764	11327227		0.82											Yes	
rs113441245	11328383		0.78												
rs67076391	11328617		0.78												
rs59389322	11329394		0.79												
rs4804575	11329641	0.34	0.98									0.240	0.021		
rs17699030	11330942	0.45											0.029	Yes	
rs4804576	11331354	0.46	0.95									0.450	0.037		
rs4804153	11331531	0.3	0.95									0.240			
rs3826815	11332505	0.67	0.99					A					0.050	Yes	
rs12971537	11333358							A							
rs12974173	11333359	0.61	0.81					A					0.049		
rs3810308	11333596	0.67	0.98					A				0.290	0.049	Yes	
rs4804154	11334179	0.67	1								L: USF1		0.037		
rs4804155	11334295	0.67	0.48										0.050	Yes	
rs8101801	11335477	0.46	0.47										0.024		
rs6511728	11335597	0.48													
rs8101802	11336182	0.53					A								
rs66466742	11336444	0.46	0.92				A						0.028		
rs138572354	11338309	0.72		ONEBL									0.023		
rs12463177	11341680	0.74	0.93			AL	AL			L		0.320	0.065	Yes	
rs17766692	11342599	0.34	0.84			AL				L	B: OCT2, POU2f2		0.028		
rs34692794	11343547	0.74	0.86			AL									
rs17699089	11343795	0.74	0.91			AL	A					0.290	0.061	Yes	
rs10421795	11344406	0.47				AL									
rs10421382	11344973	0.47				1	A								
rs200788077	11345321	0.96	0.22	L		L	A				L: JUND, cJUN		0.066		SMAD4, HNF4G, RXRA
rs56322906	11346155	0.54	0.86			AL	AL	L	L	L		0.420	0.026		
rs6511729	11346252	0.48		M		AL	AL		L	L					
rs3760782	11346550	0.98	0.87			AL	AL	L	L		L:HDAC2	0.430	0.051	Yes	SP1, RXRA, HNF4A, HNF4G, SREBP1, SREBP2
rs737337	11347493	1	0.26	L		AL	AL	L	L	L	L: USF1, TAF1, RXRA, ELF1		0.058		RXRA, AP2A, HIF1A, CEBPB, LXRA, CHREBP, THR, SP1, USF1, NF1, PAX4, FOXA1, FOXA2, FOXO3, PPARG, CEBPB, YY1, PAX6, PARP1, SMAD4, HEY1, FOSL1, ELF1, TAF1, HNF4G, SREBP1, SREBP2, CEBPA, AHR, ARNT, PPARA, EGR1, CREB, HNF4A, PXR, LRH1, CAR
rs737338	11347657	0.54	0.86			AL	AL	L	L	L	L: CEBPb, TAF1, ELF1, HNF4g	0.420	0.026		
rs3745683	11348521	0.98	0.82	N		AL	AL	L	L			0.420	0.051		YY1, SREBP1, RXRA, PPARG
rs2278426	11350488	0.54	0.78	L		AL	AL	L	L	L	L: POL2		0.026		

Variants are ordered by position, hg19. Nearby genes: ANGPTL8 is located at position 11350295-11352619, DOCK6 position 11309969-11373168. The thirteen candidate variants evaluated in functional assays are bolded.
${ }^{\text {rss200788077 is also known as rs112108870 }}$
${ }^{6} r^{2}$-Haploreg v4.1 (1000 Genomes Phase I)
DNase, FAIRE, histone marks, and ChIP-seq data are from ENCODE and Roadmap Epigenomics
${ }^{\text {o }}$ Three additional variants are identified in the Finnish CAVIAR analysis and two in the African American CAVIAR analysis that are not in LD with either lead
'Nine additional variants are identified in at least one PAINTOR analysis that are not in LD with either lead.
B= Blood: ENCODE GM19240, GM19239, GM19238, GM190999, GM18951, GM18526, GM18507, GM15510, GM12892, GM12891, GM12878, GM12875, GM12874, GM12873, GM12872, GM12865, GM12864, GM12802, GM12193, GM06990 L=Liver: Roadmap Epigenomics Adult Liver; ENCODE Hepatocytes, HepG2, Huh-7
$\mathrm{E}=$ Endothelial: ENCODE HUVEC
$\mathrm{M}=$ Muscle: Roadmap Epigenomics
M=Muscle Roadmap Epigenomics Skeletal Muscle; ENCODE Myocyte, PSOAS muscle
N=Brain:
A=Aadmap
EA
genomics Srain Anterior Caudate, Brain Mid Frontal Lobe, Brain Substantia Nigra; ENCODE Astrocytes, Cerebellum, Cerebral Frontal, Frontal Cortex
A=Adipose: Roadmap Epigenomics Adipose Nuclei, Adipose Tissue

Table 10: Fine-mapping analysis using MANTRA

Variant	Position	EA	NEA	logBF	PP	Direction Bayes Factor	Cum(BF)	credible set	
rs3760782	$11,346,550$	T	C	18.9	0.43	--	$7.57 \mathrm{E}+18$	$7.57 \mathrm{E}+18$	0.331
rs3745683	$11,348,521$	A	G	18.8	0.42	--	$6.04 \mathrm{E}+18$	$1.36 \mathrm{E}+19$	0.595
rs4804153	$11,331,531$	T	C	18.6	0.24	--	$3.72 \mathrm{E}+18$	$1.73 \mathrm{E}+19$	0.757
rs17699089	$11,343,795$	G	A	18.4	0.29	--	$2.28 \mathrm{E}+18$	$1.96 \mathrm{E}+19$	0.856
rs4804576	$11,331,354$	T	G	17.9	0.45	--	$7.56 \mathrm{E}+17$	$2.04 \mathrm{E}+19$	0.889
rs56322906	$11,346,155$	A	G	17.8	0.42	--	$6.60 \mathrm{E}+17$	$2.10 \mathrm{E}+19$	0.918
rs4804575	$11,329,641$	A	G	17.8	0.24	--	$6.48 \mathrm{E}+17$	$2.17 \mathrm{E}+19$	0.947
rs737338	$11,347,657$	T	C	17.8	0.42	--	$5.95 \mathrm{E}+17$	$2.23 \mathrm{E}+19$	0.973
rs3810308	$11,333,596$	C	T	17.5	0.29	--	$3.14 \mathrm{E}+17$	$2.26 \mathrm{E}+19$	0.986
rs12463177	$11,341,680$	C	G	17.3	0.32	--	$2.00 \mathrm{E}+17$	$2.28 \mathrm{E}+19$	0.995

MANTRA analysis was conducted in 16624 individuals from METSIM and WHI. Credible set values are the cum (BF) divided by the total cumulative Bayes Factor. EA, effect allele; NEA, non-effect allele; $\log \mathrm{BF}$, \log (Bayes Factor); PP, posterior probability

Table 11: Fine-mapping analysis using CAVIAR

Finnish				African American
Posterior probability	Variant		Posterior probability	Variant

Variants shown are in the 95% causal set.

Table 12: Fine-mapping analysis using PAINTOR
METSIM Finnish

2 causal variants			3 causal variants			4 causal variants			5 causal variants		
Position	Variant	Probability									
11327571	rs4804150	0.42	11327571	rs4804150	1.00	11327571	rs4804150	1.00	11327571	rs4804150	1.00
11341680	rs12463177	0.29	11313256	rs3745682	1.00	11313256	rs3745682	0.96	11317770	rs56034303	1.00
11343795	rs17699089	0.29	11343795	rs17699089	0.66	11318375	rs116504889	0.86	11313256	rs3745682	0.97
11330942	rs17699030	0.25	11332505	rs3826815	0.34	11343795	rs17699089	0.65	11318375	rs116504889	0.88
11332505	rs3826815	0.23				11332505	rs3826815	0.30	11343795	rs17699089	0.62
11346550	rs3760782	0.20							11332505	rs3826815	0.26
									11318235	rs114277401	0.11

WHI African American											
2 causal variants			3 causal variants			4 causal variants			5 causal variants		
Position	Variant	Probability									
11330005	rs62129150	1.00	11334295	rs4804155	1.00	11350086	rs115758240	1.00	11340498	rs73506650	1.00
11321705	rs8113156	1.00	11330005	rs62129150	1.00	11334295	rs4804155	1.00	11340057	rs17001244	1.00
			11327571	rs4804150	1.00	11330005	rs62129150	1.00	11334295	rs4804155	1.00
						11327571	rs4804150	1.00	11330005	rs62129150	1.00
									11327571	rs4804150	1.00
METSIM Finnish and WHI African American											
2 causal variants			3 causal variants			4 causal variants			5 causal variants		
Position	Variant	Probability									
11330005	rs62129150	1.00	N/A	N/A	N/A	11334295	rs4804155	1.00	N/A	N/A	N/A
11321705	rs8113156	1.00				11333596	rs3810308	1.00			
						11330005	rs62129150	1.00			
						11327227	rs11085764	1.00			

PAINTOR analysis was performed in METSIM, WHI, and METSIM/WHI combined. In each dataset, 2, 3, 4, or 5 causal variants were assumed. Posterior probabilities are presented. Positions are on chromosome 19 and hg 19 . N/A, no variants are predicted.

CHAPTER 4: OPEN CHROMATIN PROFILING IN ADIPOSE MARKS GENOMIC REGIONS WITH FUNCTIONAL ROLES IN CARDIOMETABOLIC TRAITS

Introduction

Cardiometabolic diseases, including cardiovascular disease, type 2 diabetes (T2D), and obesity, are a significant health burden in many populations (9-11). Each of these diseases and related traits is regulated by genetic and environmental risk factors (25). Genome-wide association studies (GWAS) have identified hundreds of loci associated with cardiometabolic diseases and risk factors (www.ebi.ac.uk/gwas/). Many associated variants are located in noncoding regions, suggesting a regulatory mechanism of action. The causal variant(s) and target gene(s) at noncoding GWAS loci have yet to be fully delineated. A mechanistic understanding of loci is necessary to inform the development of therapies for the appropriate genes (1) and direction of effect (2), especially given the increasing recognition of allelic heterogeneity at GWAS loci (3-8).

Adipose tissue, especially in subcutaneous depots, is involved in cardiometabolic traits and diseases. Subcutaneous adipose tissue serves as a buffering system for lipid energy balance, particularly fatty acids (159-161), and may play a protective role in cardiometabolic risk (162). Accumulation of fat, particularly in the central abdomen (163), and specifically in the subcutaneous depot (164), confers an elevated risk of cardiometabolic diseases and mortality. In addition, subcutaneous adipose expression quantitative trait loci (eQTL) studies have identified genes involved in central obesity and metabolic traits (63,165-168), and specific GWAS loci for
type 2 diabetes, lipid levels, measures of obesity, and adiponectin colocalized with subcutaneous adipose eQTLs (4-7). In addition, a recent GWAS meta-analysis for waist-hip ratio, a measure of obesity, identified loci that were enriched both for putative regulatory elements in adipocyte nuclei and for genes expressed in subcutaneous adipose tissue (6), many of which are now linked to adipose function (169).

Adipose tissue is highly complex and composed of many cell types, including adipocytes, preadipocytes, nerve cells, immune cells, and vascular cells (170). Characterization of heterogeneous whole adipose tissue and its component cell types are both needed to fully delineate the role of adipose tissue in cardiometabolic disease. A benefit of using human adipose tissue samples is to identify differences in chromatin accessibility due to genotype and link them to cardiometabolic traits; however, inherent differences exist between samples due to site of tissue extraction, sample handling, tissue storage conditions, genotype, and/or environmental contributions such as obesity or T2D. Although cell models do not fully replicate cells within a complex tissue, they provide a means to characterize individual cell types and have consistent growth, storage, and environmental conditions. The Simpson Golabi-Behmel Syndrome (SGBS) human cell strain is an ideal model for studying adipocyte and preadipocyte biology because the cells are diploid, easy to grow in culture, can be differentiated to mature adipocytes (171).

Additionally, using SGBS cells rather than primary human adipocytes from multiple individuals decreases experimental variation due to genotype or sample collection differences.

Variability in chromatin accessibility is heritable and mediates the effects of gene expression (172-174). Adipose and adipocytes are poorly represented in open chromatin datasets because the high lipid content makes experimental assays challenging. For human adipose and adipocytes, three DNase-seq datasets exist: one from in vitro differentiated adipocytes
(ENCODE), one SGBS adipocytes (175), and a third from adipose-derived differentiated stem cells (176). Accessible chromatin can be assayed in small amounts of tissue or cells using the assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) (62). To date, only three ATAC-seq datasets have been generated from human adipose tissue or cells: one from adipocyte nuclei from subcutaneous adipose tissue $(61,177)$, one from subcutaneous adipose tissue (ENCODE), and one from omental fat tissue (ENCODE). In addition to chromatin accessibility, regulatory histone marks have been characterized in adipose nuclei from subcutaneous adipose tissue and differentiated adipocytes from mesenchymal stem cells in the Roadmap Epigenomics Project. The collection of histone marks were integrated into chromatin states (178), which predict regulatory function (i.e. promoter or enhancer). Previous studies have found that regions of chromatin accessibility occur preferentially in promoters and enhancers compared to transcribed and repressed regions of the corresponding cell type $(178,179)$. Adipose chromatin states based on histone marks will be strengthened by the addition of open chromatin datasets.

Robust chromatin accessibility data from adipose tissue and adipocytes can identify candidate variants at GWAS loci. Allelic differences have been found in accessible chromatin and histone marks of chromatin state (172,180-184), and these differences have provided a functional context for interpreting GWAS loci for blood and autoimmune diseases $(8,173)$. Chromatin accessibility data can also identify sites of transcription factor binding (61). Transcription factor motifs predict where a transcription factor may bind; however, only a small fraction of predicted motifs show factor binding (185). Transcription factor footprints can potentially identify the factor(s) bound at a given site. Cell models such as SGBS may provide a more pure population of cells to prioritize candidate variants and identify candidate transcription
factors because chromatin accessibility in these cells can identify preadipocyte-specific regulatory elements and may help characterize cell-type specificity within heterogeneous adipose tissue. Taken together, chromatin accessibility data in adipose tissue and adipocytes will improve annotation of candidate regulatory variants and candidate transcription factors at GWAS loci.

In this study, we use ATAC-seq data from frozen clinical subcutaneous adipose tissue needle biopsy samples and SGBS preadipocytes to identify accessible chromatin. We compare adipose tissue and preadipocyte open chromatin profiles and identify regulatory regions specific to each. We identify cardiometabolic GWAS and transcription factor enrichment within ATAC peaks. Finally, we use the ATAC-seq annotations to prioritize candidate variants at cardiometabolic GWAS loci with colocalized eQTL associations. Based on ATAC-seq overlap, we test candidate variants at two cardiometabolic GWAS loci and identify functional variants.

Materials and Methods

METSIM study participants

Subcutaneous adipose tissue needle biopsies were obtained from METabolic Syndrome in Men (METSIM) participants as previously described (63). We use three adipose tissue needle biopsy samples for ATAC-seq (Table 14). The METSIM study includes 10,197 men, aged from 45 to 73 years, randomly selected from Kuopio, Eastern Finland, and examined in 2005 - 2010 $(140,141)$. The Ethics Committee of the University of Eastern Finland in Kuopio and the Kuopio University Hospital approved the METSIM study and it was carried out in accordance with the Helsinki Declaration. DNA samples were genotyped on the Illumina OmniExpress and HumanCoreExome arrays and imputed using the Haplotype Reference Consortium as previously described (151).

Sample processing and ATAC-seq library preparation

Adipose tissue was flash frozen and stored at -80° until use. SGBS cells (154) were generously provided by Dr. Martin Wabitsch (University of Ulm) and cultured as previously described (186). For adipose tissue samples 1 and 3, we generated libraries using nuclei isolation buffers that contained detergent (1% NP-40) or did not contain detergent. For tissue sample 2, we generated libraries using $\sim 12 \mathrm{mg}$ and $\sim 36 \mathrm{mg}$ of tissue. For SGBS, we have generated profiles using as few as 50,000 cells (data not shown); however, in this study we generated profiles with 800,000 cells (SGBS 1) and 400,000 cells (SGBS 2), both with detergent (Table 15). Tissue was pulverized in liquid nitrogen using a Cell Crusher homogenizer (cellcrusher.com). For SGBS cells, cells were trypsinized and pelleted. The tissue powder or cell pellet was resuspended in nuclei isolation buffer (20 mM Tris- $\mathrm{HCl}, 50 \mathrm{mM}$ EDTA, 60 mM KCl , 40% glycerol, 5 mM spermidine, 0.15 mM spermine, 0.1% mercaptoethanol, $1 \% \mathrm{NP}-40$). Tubes were rotated at 4° for 5 minutes. The solution was completely homogenized using a tight homogenizer (Wheaton) for 10 strokes. Following homogenization, the solution was centrifuged at 1500 xg for 10 minutes at 4°. Following removal of the lipid layer from the adipose tissue and supernatant, the pellet was resuspended in resuspension buffer (10 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{NaCl}$, $3 \mathrm{mM} \mathrm{MgCl} 2_{2}$) and centrifuged at 1200 xg for 10 minutes at 4°. The supernatant was removed and the pellet was used for the transposase reaction as previously described (62). For SGBS libraries, we used 5 ul Tn5 transposase. Following library PCR amplification, we removed primer dimers using Ampure Beads (Agencourt) with a 1:1.2 ratio of library to beads. Libraries were visualized and quantified using a TapeStation or Bioanalyzer and sequenced at the Duke University Genome Sequencing Center (adipose tissue single-end sequencing) or the University of North Carolina High-Throughput Sequencing Facility (SGBS paired-end sequencing).

ATAC-seq alignment and peak calling

We obtained previously published adipose ATAC-seq datasets from subcutaneous adipose tissue (ENCODE ENCSR540BML) and mature adipocytes (177). The mature adipocyte ATAC-seq data was shared by the McGill Epigenomics Mapping Centre and is available from the European Genome-phenome Archive of the European Bioinformatics Institute (dataset EGAD00001001300). To perform alignments consistently across samples, we merged the mate pair fastq files and trimmed reads to 50 nucleotides for each paired-end SGBS, mature adipocyte, and ENCODE ATAC-seq samples. We removed sequencing adapters from raw ATAC-seq sequence reads using Tagdust (187) with a false discovery rate of 0.001 and selected high quality reads with a Phred score of at least 20 for at least 90% of bases using the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit). We aligned filtered reads to the hg19 human genome using bowtie 2 (188), penalizing ambiguous bases as mismatches. We removed any alignments with mapping quality less than 20 , mitochondrial reads, or blacklisted regions $(189,190)$ and shifted the resulting alignments by +4 on the + strand and -5 on the - strand so that the 5^{\prime} base of each alignment corresponded to the center of the binding site of the Tn 5 transposase $(62,191)$. We verified sample identity using verifyBamID (192) using genotyped variants with at least 10 ATAC-seq reads in the sample with the lowest read depth (Tissue 2; 8,683 variants), minimum minor allele frequency of 0.01 , and call rate of at least 0.5 ; we used the best-matched genotypes for each sample. We called peaks using MACS2 (193) with no background dataset, smoothing ATAC signal over a 200 bp window centered on the Tn5 binding site, allowing no duplicates, and a 0.05 false discovery rate.

Comparison of adipose ATAC profiles

We compared ATAC peak genomic positions between our ATAC-seq samples and subcutaneous adipose ATAC-seq profiles from ENCODE (ENCSR540BML), and mature adipocytes (177) using two metrics in BEDTools: the Jaccard index, which evaluates similarity between a pair of samples as the intersection divided by the union of sample set contents, and the percent of peak bases in one sample covered by another sample. When comparing peaks between library preparations, we used the top 10,000 peaks ranked by peak p value. We used two methods to compare peaks between our adipose tissue, SGBS, ENCODE, and mature adipocyte.samples. We compared the top 25,000 peaks ranked by peak p value in each individual sample and the top 50,000 peaks between the union of our tissue samples, the union of the SGBS samples, the union of the mature adipocyte samples, and the ENCODE sample. Results were similar between the individual and union comparisons. The p values of overlapping peaks were averaged when merging peaks between samples. We generated Venn diagrams showing the overlap of the union samples using the Vennerable R package (194).

Chromatin state analyses

We obtained chromatin states for the expanded 18 -state model consisting of data for 98 cell and tissue types and 6 histone marks (H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3, and H3K27ac) from the Roadmap Epigenomics Consortium (178). We generated the following combined states by merging states of similar genomic context: promoter (1_TssA, 2_TssFlnk, 3_TssFlnkU, 4_TssFlnkD, 14_TssBiv), transcribed (5_Tx, 6_TxWk), enhancer (7_EnhG1, 8_EnhG2, 9_EnhA1, 10_EnhA2, 11_EnhWk, 15_EnhBiv), and polycomb repressed (16_ReprPC, 17_ReprPCWk). Using BEDTools (46), we calculated the number of ATAC peak
bases overlapped by each chromatin state in each individual ATAC sample, the union of the adipose tissue samples, and the union of the SGBS samples. To control for differences in peak number and width, we performed overlap using two sets of normalized peaks in the union samples: the top 50 thousand peaks ranked by peak p value and the central 200 bases of the top 50 thousand peaks. We generated stacked bar plots of the percent of ATAC peak bases covered by each chromatin state in each cell type using R (195) and ranked the ATAC peak coverage of each chromatin state in adipose nuclei (Roadmap epigenome $I D=E 063$) relative to all other cell types, where a rank of 1 corresponds to higher coverage than all other cell types.

Comparison of adipose tissue and SGBS specific ATAC peaks

We classified adipose tissue- or SGBS-specific peaks as those found in at least one tissue sample and no SGBS sample, or vice versa. To correct for the greater number of peaks in SGBS, we compared the top 10,000 (of 19,757) tissue-specific peaks to the top 10,000 (of 162,414) SGBS-specific peaks ranked by peak p value. We identified TF motifs enriched in peaks specific to tissue or SGBS relative to peaks shared between tissue and SGBS using 319 vertebrate motifs in Homer (188). We classified motifs with an enrichment p value less than $2 * 10^{-4}(0.05 / 319)$ as enriched. For shared peaks, we required that at least 50% of a tissue peak was overlapped by an SGBS peak and vice versa ($\mathrm{n}=45,120$). We performed gene ontology enrichment using GREAT with default parameters (196) of METSIM and SGBS-specific peaks using the Gene Ontology Biological Process ontology (197). We identified transcription start sites (TSSs) of 78,589 unique TSSs at 43,527 genes TSSs (GENCODE 24lift37 Basic Set) specific to tissue as those overlapping one of the top 10,000 tissue-specific peaks and at least 1 kb or 5 kb from any SGBS
peak. We defined SGBS-specific TSSs as those overlapping one of the top 10,000 SGBSspecific peaks and at least 1 kb or 5 kb from any tissue peak.

Transcription factor motif scanning and footprinting

We scanned the hg 19 human genome (SGBS) or haplotypes of personalized reference genomes constructed from individual genotypes (adipose tissue samples) for 519 transcription factor binding motifs from the JASPAR core 2016 vertebrates database using FIMO $(198,199)$. If two motifs for the same factor existed at the exact same genomic coordinates and on the same strand on each haplotype, we used the motif with the highest motif score.

We performed transcription factor footprinting for 35 transcription factor motifs corresponding to 34 unique adipose-related transcription factors (Table 16). The 34 transcription factors included 21 described as adipose core transcription factors (200), six dimer motifs that contained a core transcription factor, CEBPA, CEBPB, CEBPD, ZEB1, SPI1, SPIB, and CTCF. For the resulting motifs, we generated windows containing the genomic coordinates of the motif and 100 bp flanking both motif edges. We removed motif windows where less than 90% of bases uniquely mapped and windows that overlapped blacklisted regions (47). We constructed matrices of the number of Tn 5 transpositions across the remaining motif windows and predicted which motifs were likely bound using CENTIPEDE (185). We used motif scores calculated by FIMO for CENTIPEDE priors and classified a motif with a CENTIPEDE posterior binding probability greater than 0.99 as bound and less than 0.5 as unbound.

To determine which transcription factors exhibited an aggregate footprint profile, we calculated the average transposition probability at each window position separately for bound and the top 10,000 unbound sites to obtain aggregate bound and unbound profiles. We then
calculated the transposition probability ratio (TPR) by dividing each position in the bound profiles by the corresponding position in the unbound profiles and calculated the average TPR across the motifs (mTPR) and the 100 bp flanking regions (fTPR). We considered transcription factor motifs to display an aggregate footprint profile if mTPR was less than fTPR.

Enrichment of GWAS variants in ATAC peaks and Roadmap chromatin states

We tested for enrichment of cardiometabolic GWAS loci in ATAC peaks and Roadmap chromatin states using GREGOR with an LD r^{2} threshold of 0.8 and a window size of 1 Mb (158). We used loci from 12 trait categories from the GWAS catalog (December 2016): type 2 diabetes, insulin, glucose, cardiovascular outcomes, blood pressure traits, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, total cholesterol, body mass index (BMI), waist-hip ratio adjusted for BMI (WHR), and adiponectin. Loci that were associated with multiple traits were assigned to each trait. We classified loci as enriched in a given region if the enrichment p-value was less than the Bonferroni-corrected threshold of $5 \times 10^{-4}(0.05 /(8$ regions* 12 traits $))$. To compare enrichment magnitudes between regions and traits, we calculated an enrichment z-score:
z-score $=\frac{\text { observed overlaps-expected overlaps }}{\text { standard deviation }}$
The expected overlaps and standard deviation were estimated from matched control loci using GREGOR. We visualized the enrichment results using the heatmap. 2 function in the gplots R package $(195,201)$. We computed the percent of loci and proxies for each cardiometabolic trait that overlapped adipose tissue and SGBS ATAC peaks using the LD proxies calculated by GREGOR (1000 Genomes Phase I) (57). Of the loci and proxies overlapping ATAC peaks, we calculated the fraction that overlapped transcription factor motifs from JASPAR (54).

Overlap of GWAS-eQTL colocalized loci with ATAC peaks

eQTL mapping in 770 subcutaneous adipose samples and determination of GWAScoincident eQTLs was described previously $(63,186)$. We identified overlap of ATAC peaks with any variant in LD ($r^{2}>0.8$) with the eQTL lead variant at 110 loci using BEDTools (46). LD was calculated using the 770 METSIM individuals included in the eQTL analysis. The 110 GWAS-eQTL colocalized loci contain 6,746 total LD proxies.

Transcriptional reporter luciferase assays

SGBS and SW872 liposarcoma cells were maintained and transcriptional reporter luciferase assays were performed as previously described (186). Table 17 contains primers used for amplifying ATAC peaks overlapping the variant of interest. Fragments containing potential enhancers are designated as 'forward' or 'reverse' based on their orientation with respect to the genome. Regions were designed to include the entire ATAC peak overlapping the variant of interest. Three to five independent clones were cotransfected with Renilla luciferase vector in triplicate (SGBS) or duplicate (SW872) wells using Lipofectamine 3000 (SGBS, Life Technologies) or FUGENE 6 (SW872, Promega). Firefly luciferase activity of the clones containing the PCR fragments was normalized to Renilla luciferase readings to control for differences in transfection efficiency. We repeated all luciferase transcriptional reporter experiments on independent days and obtained consistent results. Data are reported as fold change in activity relative to an empty pGL4.23 vector. We used two-sided Student's t-tests to compare luciferase activity.

Electrophoretic mobility shift assays (EMSA)

For EMSA, we prepared nuclear cell extracts from SGBS and SW872 cells using the NEPER nuclear and cytoplasmic extraction kit (Thermo Scientific) as previously described (155). Double-stranded oligos (Table 17) were incubated with SGBS or SW872 nuclear extract or 100 ng purified PU. 1 protein (Creative Biomart SPI1-172H) and DNA-protein complex visualization as previously described (155). A positive control oligo contained the PU. 1 motif from JASPAR and a negative control did not contain the motif (Table 17). We repeated all EMSA experiments on independent days and obtained consistent results.

Personal genome construction and ATAC-seq allelic imbalance

We constructed personalized reference genomes with the -create_reference option in the AA-ALIGNER pipeline (202). We aligned reads to personalized genomes using the allele-aware aligner GSNAP allowing two mismatches, no INDELs, and treating ambiguous bases (encoded as Ns) as mismatches (203). We extracted unique alignments and filtered alignments for mitochondrial alignments and blacklisted regions $(190,204)$. Using WASP (205), we removed alignments that did not uniquely map to each allele at heterozygous sites. Allele count pileup files were generated at heterozygous sites with a minimum base quality Phred score of 30 to minimize the impact of sequencing errors. We removed heterozygous loci with aligned bases other than the two genotyped alleles and selected heterozygous sites with at least 10 total counts and at least 1 count per allele. To account for residual biases, we fit allele counts to a betabinomial distribution with the probability of success (reference allele ratio) and dispersion estimated using maximum likelihood separately for each sample using the VGAM R package $(195,206)$. We performed beta-binomial tests of allelic imbalance using VGAM and multiplied
the resulting one-tailed p-values by 2 to obtain estimated two-tailed imbalance p-values. We tested the significance of overlap between variants exhibiting nominal imbalance (beta-binomial $\mathrm{p}<0.05$) with subcutaneous adipose GWAS-coincident eQTLs using the chi square test using R (53).

Results

Chromatin accessibility in frozen adipose tissue and SGBS preadipocytes

We generated ATAC-seq open chromatin profiles from three frozen subcutaneous adipose tissue needle biopsy samples (Table 14) and two preparations of SGBS preadipocytes. We generated $\sim 100-160$ million raw ATAC-seq reads for each ATAC profile and $\sim 26-70$ million high quality aligned reads (Table 13, Methods). Using MACS2 (193) and an FDR of 5\%, we identified $\sim 29,000-58,000$ peaks in the tissue samples and $\sim 180,000$ peaks in the SGBS preadipocytes (Table 13). We evaluated the use of detergent in library preparation and found that including detergent resulted in a greater number of peaks and higher peak similarity compared to no detergent (Table 14, 18). The three detergent-treated tissue profiles were similar with 64-80\% of bases overlapping a peak in another sample and a mean pairwise Jaccard index of 0.58 (Table 19). The two SGBS replicates showed strong similarity with $82-88 \%$ of bases in one replicate overlapped the other replicate and a Jaccard index of 0.73 (Table 19). Differences between adipose tissue samples may be due to individual variation in tissue collection and storage, genotype, or cellular environment. These data demonstrate that ATAC-seq open chromatin profiles can be obtained from small amounts ($12-36 \mathrm{mg}$, one-third to two-thirds of a needle biopsy) of frozen clinical subcutaneous adipose tissue samples and from SGBS preadipocytes.

Table 13: ATAC-seq alignment metrics of human adipose tissue and SGBS preadipocytes

		Aligned					
Sample	Total reads	Percent Mitochondrial Reads	Nuclear alignments	Remaining reads after blacklist filtering	Remaining reads after duplicates removed	Number of peaks	
Tissue 1	129.5	87.4	8.5	80.0	79.0	70.6	58,279
Tissue 2	131.5	83.6	12.8	72.9	71.8	60.6	36,612
Tissue 3	119.3	70.5	11.9	62.2	61.3	57.1	49,631
SGBS 1a	194.9	168.4	14.2	144.4	126.2	40.5	196,211
SGBS 2a $^{\text {a }}$	105.5	93.3	42.7	53.4	42.6	25.6	173,084

Reads are reported in millions of reads
${ }^{\text {a }}$ These samples were sequenced using paired-end reads, but processed as single-end reads

Comparison of adipose tissue, adipocyte, and preadipocyte ATAC profiles

To determine the differences in genomic distribution and regulatory overlap of our adipose tissue, SGBS preadipocyte, and previously published adipose ATAC-seq datasets (ENCODE, (177)), we compared the ATAC profiles using three methods: overlap of peak base positions, the distribution of ATAC peaks across Roadmap adipose nuclei regulatory regions, and the distribution of ATAC peaks across all Roadmap cell types. The ATAC peak bases were most similar between adipose tissue and ENCODE or mature adipocytes (mean 52% overlapped bases; Jaccard index $=0.33,0.34$ respectively; Figure 26A, Table 19). SGBS preadipocytes showed less similarity with mean $42 \%, 41 \%$, and 48% overlapped bases for adipose tissue, mature adipocytes, and ENCODE, respectively (Jaccard index $=0.24,0.24$, and 0.31, respectively, Figure 26A, Table 19)

Figure 26. Differences in ATAC-seq peaks and overlap with Roadmap adipose nuclei chromatin states. A) Venn diagram showing overlap of peak megabases between adipose tissue, SGBS preadipocytes, and mature adipocyte (177). B) Overlap of ATAC peaks with Roadmap adipose nuclei chromatin states. Adipose tissue ATAC peak bases were mostly located in adipose nuclei promoter (49% of total peak bases) and enhancer (40%) chromatin state regions. SGBS preadipocyte ATAC peak bases showed less overlap with adipose nuclei promoter (41% of total peak bases) and enhancer (25%) states. The ENCODE peaks showed strong overlap with promoter states (57%) and less with enhancer (25%) states. Mature adipocytes also showed strong overlap with regulatory regions (40% promoter, 34% enhancer).

We next compared the ATAC peak locations to chromatin states in adipose nuclei from subcutaneous adipose tissue from the Roadmap Epigenomics Consortium (178). For all four ATAC profiles, the majority of peaks were located in adipose nuclei promoter and enhancers states with minimal overlap of regions associated with closed chromatin (Figure 26B, Table 19). Our adipose tissue samples showed the strongest overlap of peaks with the promoter (49% total union bases) and enhancer (40\%) chromatin states of adipose nuclei (Figure 26B, Table 20). More promoter (57\%) and less enhancer (25\%) overlap was observed for ENCODE peaks and less overlap for mature adipocytes (40% promoter, 34% enhancer) compared to our adipose tissue. SGBS preadipocytes showed the least overlap with adipose nuclei promoters (41\%) and enhancers (25%), suggesting that SGBS preadipocyte ATAC peaks may overlap novel
preadipocyte-specific regulatory regions that are not identified in the adipose nuclei chromatin states. Multiple peak normalization strategies confirm that results are not due to differences in peak number and width between samples (Table 20). The strong overlap of our tissue, ENCODE, and mature adipocyte peaks with adipose nuclei promoters and enhancers is surprising given the modest peak base overlap between them (Figure 26A, Table 19).

Finally, we identified which cell types showed the strongest epigenomic similarity to each ATAC profile by identifying percent overlap and rank of 98 tissues and cell type chromatin states from Roadmap (178). For adipose tissue peaks, enhancers in adipose nuclei rank first of all 98 cell types and promoters rank $4^{\text {th }}$ behind stomach smooth muscle, chondrocyte cultured cells, and foreskin fibroblast cells (Figure 31, Table 20, 21). For SGBS preadipocyte peaks, adipose nuclei promoters rank $11^{\text {th }}$ and enhancers rank $25^{\text {th }} .17$ of the 24 cell types ranking above adipose nuclei in enhancer overlap correspond to cell lines or cultures (Figure 32, Table 20, 21) and include five types of fibroblast cells, which may reflect the fibroblast-like nature of preadipocytes $(207,208)$. For ENCODE adipose peaks, adipose nuclei promoters rank $8^{\text {th }}$ and enhancers rank $18^{\text {th }}$ (Figure 33, Table 20, 21), further demonstrating that differences may exist due to adipose tissue collection and processing. For mature adipocyte peaks, adipose nuclei promoters rank $7^{\text {th }}$ and enhancers rank $1^{\text {st }}$ (Figure 34, Table 20, 21). Taken together, we identify important differences between adipose ATAC profiles, which are likely due to tissue collection and storage differences, cell type heterogeneity, state of differentiation, cellular environment, and/or genotype.

Open chromatin regions selective to adipose tissue or SGBS preadipocytes exhibit different regulatory signatures

Motivated by the widespread differences in adipose tissue and SGBS peak locations and Roadmap adipose nuclei regulatory overlap, we tested if peaks specific to tissue or SGBS differed in transcription factor (TF) motif enrichment, biological process enrichment, and location near transcription start sites (TSSs). We identified 57 TF motifs enriched in tissuespecific peaks (Table 22), including TFs known to promote adipogenesis (ie: CEBP family members) and adipose core TFs RXR, FLI1, ETS1, FOXO1, and IRF1. We observed 35 motifs enriched in SGBS-specific peaks including adipogenesis inhibitors GATA2 and GATA3 (209,210). Interestingly, SGBS-specific peaks also showed enrichment for AP-1 family members, which promote adipogenesis (210). Enhancers for multiple lineages can develop in a poised state and poised enhancers are enriched for motifs involved in development of multiple endodermal tissues (211), suggesting that a subset of SGBS ATAC peaks may mark poised regulatory elements involved in adipogenesis.

We next tested if peaks specific to tissue or SGBS were enriched for different biological processes. Adipose tissue peaks showed significant enrichment for five processes, including both adipocyte (brown fat cell differentiation) and endothelial (blood vessel endothelial cell differentiation) processes (Figure 35), reflecting the heterogeneous nature of adipose tissue. SGBS peaks showed enrichment for eight processes, including processes relevant to cultured cells, such as chemotaxis and hippo signaling (Figure 35). However, hippo signaling has also been shown to regulate adipogenesis (212). These data suggest that ATAC peaks are marking nearby genes with relevant functions to the source cells or tissue.

Finally, we identified TSSs with differential chromatin accessibility. We evaluated 78,589 unique TSSs at 43,527 genes in GENCODE version 24 for overlap with ATAC peaks. We identified 346 TSSs at 248 unique genes specific to tissue (Table 23) and 338 TSSs at 247 genes specific to SGBS. Only two genes (EPS8 and $R G S 3$) with multiple TSSs have both a tissue-specific and SGBS-specific TSS. We identified tissue-specific TSSs at ADIPOQ, which encodes adiponectin, a vital metabolic hormone secreted by adipocytes. Adipose-selective ATAC peaks overlap the TSS and parts of previously described regulatory elements upstream and in intron 1 of $A D I P O Q$ that showed increased transcriptional activity in reporter assays $(213,214)$, and additional peaks may mark novel regulatory elements (Figure 27). Consistently, there is also an ATAC peak at the $A D I P O Q$ TSS in mature adipocytes (Figure 27) $(61,177)$. Interestingly, strong peaks exist in SGBS preadipocytes at the promoter of an isoform of ADIPOQ-AS1, the antisense transcript, suggesting that the antisense may be upregulated in SGBS preadipocytes. We also observed tissue-specific TSSs at von Willebrand factor (VWF), which is expressed in endothelial cells and involved in platelet formation in blood. Notably, ATAC peaks are absent in preadipocytes and mature adipocytes, suggesting that $V W F$ is functioning in vascular cells within adipose tissue (Figure 36). The presence of tissue-specific peaks at $V W F$ and $A D I P O Q$ is consistent with the heterogeneous nature of adipose tissue (25) and suggests that open chromatin profiles in heterogeneous tissue can identify regulatory regions specific to component cell types.

B

Figure 27. ADIPOQ and FBN2 TSSs show differential ATAC-seq peaks. UCSC genome browser image showing the $A D I P O Q$ (A) and $F B N 2$ (B) gene regions. Histone marks from the Roadmap Epigenomics project adipose nuclei are shown in green and blue. The three adipose tissue (purple) and two SGBS (light blue) ATAC-seq signal tracks and peaks (gray) are shown. ATAC-seq signal and peaks from the ENCODE adipose ATAC-seq (light purple, ENCODE ID: ENCSR540BML), ATAC-seq from mature adipocytes (177), and signal from SGBS adipocyte DNase (175). Chromatin states from the Roadmap Epigenomics Project are shown for adipose nuclei. Yellow, enhancer; green, transcribed; orange and red, promoter; light green, genic enhancer. Red boxes show adipose tissue-selective (A) or SGBS-selective (B) ATAC-seq peaks at TSSs. Blue boxes show intronic ATAC-seq peaks also showing specificity. Data was visualized on the hg 19 UCSC genome browser.

We identified SGBS-specific TSSs at fibrillin 2 (FBN2) and lumican (LUM) (Figure 27, 36), which are involved in the construction and maintenance of the extracellular matrix, consistent with previous findings that extracellular matrix genes are upregulated in preadipocytes (215). FBN2 is a large glycoprotein involved in creating microfibrils in connective tissues and lumican is a extracellular matrix proteoglycan. Another fibrillin family member, $F B N 1$, is involved in the transition to adipogenesis by assisting the changing extracellular matrix (216). The precise roles of $F B N 2$ and $L U M$ in preadipocytes are unknown, but our data suggests that they may be expressed in preadipocytes, perhaps working to maintain or alter the extracellular matrix. Taken together, SGBS-specific peaks show both preadipocyte and cell culture regulatory signatures, and adipose tissue-specific peaks show regulatory signatures of mature adipocytes and non-adipocyte cell types present in adipose tissue.

Cardiometabolic GWAS loci annotation in ATAC peaks

To identify cardiometabolic traits with a strong genetic link to adipocyte regulatory elements, we annotated the ATAC-seq profiles by testing for enrichment of GWAS loci for 12 cardiometabolic traits (Table 24) and identifying TF motifs and footprints within ATAC peaks at these loci. Adipose tissue peaks showed significant enrichment $\left(P<5 \times 10^{-4}\right)$ in 9 traits (WHR, T2D, insulin traits, triglycerides, HDL-C, LDL-C, total cholesterol, cardiovascular outcomes, and blood pressure traits) (Figure 28, 37, Table 25). SGBS preadipocyte peaks showed significant enrichment in 5 traits (WHR, adiponectin, T2D, HDL-C, and total cholesterol) (Figure 28, 37, Table 25). The enrichment of circulating adiponectin GWAS loci $(\mathrm{n}=21)$ in SGBS but not tissue peaks is likely due to low power; adipose tissue peaks showed a strong enrichment z score (3.99), but the p value $\left(8^{*} 10^{-4}\right)$ was slightly above the significance threshold
$\left(5^{*} 10^{-4}\right)$ (Figure 28, 37, Table 25). Although adipose tissue peaks showed enrichment for GWAS loci for more traits than SGBS peaks, SGBS peaks overlap more loci for all tested traits (Figure 28, Table 26), likely due to the presence of many more peaks in SGBS preadipocytes than adipose tissue.

Figure 28. Cardiometabolic GWAS loci are enriched in ATAC-seq peaks. Heatmap shows enrichment of ATAC-seq peaks with cardiometabolic GWAS loci by z-score. We compare all peaks in adipose tissue and SGBS preadipocytes, peaks within Roadmap adipose promoters and enhancers, and Roadmap adipose promoters and enhancers themselves. Cells with a nonsignificant p-value are labeled white. The heatmap colored by p-value is shown in Figure 37.

We next tested if enrichment of cardiometabolic GWAS loci in open chromatin varies based on chromatin context by testing for enrichment of GWAS loci in promoter and enhancer states from Roadmap adipose nuclei (35) and in ATAC peaks overlapping these promoters and enhancers. Roadmap enhancers showed enrichment for loci in 11 traits and promoters in 6 traits. Enhancers showed stronger enrichment magnitudes than promoters for all but two traits (total
cholesterol and LDL-C). In ATAC peaks overlapping adipose nuclei promoters and enhancers, we found that 4 trait loci (WHR, triglycerides, HDL-C, cardiovascular outcomes) were enriched in adipose tissue and SGBS preadipocyte enhancer peaks but not promoter peaks, whereas loci for 2 traits (total cholesterol, LDL-C) were enriched in tissue and SGBS only in promoter peaks. We observed stronger enrichment of WHR loci in tissue (z score $=10.6, \mathrm{p}=6.4^{*} 10^{-13}$) and SGBS (z score $=11.1, \mathrm{p}=1.2 * 10^{-15}$) enhancer peaks than in all peaks. Interestingly, loci for WHR and insulin and for WHR alone showed stronger enrichment in adipose tissue and SGBS enhancer peaks, respectively, compared to all Roadmap enhancers, suggesting that ATAC peaks can sometimes pinpoint disease-relevant subsets of enhancers. Taken together, integrating chromatin accessibility with chromatin states revealed that enrichment of GWAS loci in chromatin states and chromatin accessibility can vary by trait, which may provide trait-specific mechanistic insights.

We next identified transcription factor motifs and footprints within ATAC peaks at cardiometabolic GWAS loci to inform functional regulatory assays. The percent of cardiometabolic GWAS loci and variants in ATAC peaks that overlapped TF motifs varied widely between traits (Table 26). Across all traits, 242 variants at 257 loci overlapped TF motifs and ATAC peaks in adipose tissue and 631 variants at 476 loci overlapped TF motifs and ATAC peaks in SGBS. We performed transcription factor footprinting using CENTIPEDE to predict binding sites for 35 motifs (Table 16) in each of the adipose tissue samples and in one SGBS sample, due to sequence duplication (SGBS 2). Using a stringent definition (see Methods), we identified aggregate footprint profiles for 9 of 35 tested transcription factor motifs in all three adipose tissue samples: CEBPA, CREB3L2, FOXO1, MEF2D, NFIA, SPI1, STAT3, STAT5A::STAT5B, and TCF7L2 (Figure 38-44, Table 16). Aggregate footprint profiles for

IRF1 and PBX1 were identified in two adipose tissue samples and for ETS1 only in adipose tissue sample 2 (Figure 42, Table 16). We identified 17 aggregate footprint profiles in SGBS, including all 9 identified in the adipose tissue samples and CEBPB, CEBPD, CTCF, IRF1, PBX1, RARA, RREB1, and RXRA::VDR (Figure 38-44, Table 16). Identification of more aggregate footprint profiles in SGBS is likely a reflection of deeper read depth in SGBS than the adipose tissue samples. 53 cardiometabolic GWAS variants at 46 loci overlap at least one footprint (Table 16). Collectively, these results will serve as a useful resource for prioritization of variants at GWAS loci and will provide insights into molecular mechanisms of cardiometabolic disease.

Functional evaluation of variants at cardiometabolic GWAS with colocalized eQTLs overlapping ATAC peaks

We further examined ATAC-seq signals at the subset of GWAS loci that are also associated with subcutaneous adipose gene expression and tested candidate variants in functional assays. We evaluated 110 cardiometabolic GWAS loci previously described to have colocalized eQTLs (see Methods) $(63,186)$; these loci consist of 6,702 variants (LD $r^{2}>0.8$ with lead GWAS variants). For tissue peaks, 52 loci have at least one proxy variant overlapping an ATAC peak in at least one sample (Table 27); 147 of 4,538 total candidate variants overlap an ATAC peak. If we more stringently require GWAS variants to overlap an ATAC peak in all three adipose tissue samples, then we identify 81 variants at 39 loci (Table 27), of which 13 have only one variant that overlaps an ATAC peak, suggesting these variants as strong candidates for a regulatory function at these loci. For SGBS, 381 proxies at 86 loci overlap at least one SGBS peak. Importantly, 124 of the 147 proxies overlapping tissue peaks also overlap SGBS peaks. Proxies
overlapping both tissue and SGBS peaks are more likely to act through regulatory elements present in adipose and are not present simply due to tissue heterogeneity or cell culture. We identified a previously implicated functional variant at the ANGPTL8 HDL-C GWAS locus (186). Of the 147 variants overlapping ATAC peaks in at least one sample, 97 (66\%) overlap at least one TF motif, two of which overlap a TF footprint (rs7187776 and rs174538).
rs1534696, located in the second intron of $\operatorname{SNX} 10$ (encoding sorting nexin 10) is associated with waist-hip ratio ($P=2 \times 10^{-8}, \beta=0.027$, in women) (6) and exhibits a colocalized eQTL for $\operatorname{SNX10}\left(P=3.4 \times 10^{-150}, \beta=1.12\right)$ and $C B X 3\left(P=1.1 \times 10^{-13}, \beta=0.39\right)$ in adipose tissue (63). rs 1534696 is the only candidate variant for both the GWAS and eQTL associations based on LD ($r^{2}>0.8$) and overlaps a MEF2C motif. Interestingly, is not located in a predicted regulatory region as defined by any adipose-related Roadmap chromatin states. We tested a 250 -bp region containing either allele of rs1534696 and encompassing the entirety of the surrounding ATAC peak in transcriptional reporter luciferase assays in SGBS preadipocytes and SW872 liposarcoma cells (Figure 29, 45). In SGBS preadipocytes, the construct containing rs1534696-A showed higher transcriptional activity than rs153696-C $(P=0.007)$ in the reverse orientation with respect to the genome (Figure 30), and in SW872 cells, the construct containing rs1534696-A showed a similar trend $(P=.065)$ in the forward orientation (Figure 45). In EMSA, we observed increased protein binding for rs1534696-A using nuclear extract from SGBS preadipocytes but not with SW872 nuclear extract (Figure 29, 45). Taken together, these data suggest that rs1534696-A may increase transcription factor binding and transcriptional activity of SNX10 and/or $C B X 3$ and contribute to the molecular mechanism at this WHR GWAS locus.

Figure 29. A variant at the SNX10 WHR GWAS locus alters transcriptional activity and protein binding. A) rs 1534696 overlaps an ATAC-seq peak and is located in intron 2 of SNX10 but is not in a predicted regulatory region based on Roadmap chromatin states or histone marks. B) The genomic region containing rs1534696-A shows increased transcriptional activity and allelic differences in the reverse orientation $(* * P=0.007)$. Bars represent the mean \pm standard deviation of three independent clones. C) rs1534696-A shows increased protein binding in EMSA using SGBS nuclear extract. Arrow shows allelic differences in protein binding. D) Summary of the direction of effect of rs1534696-A. Additional regulatory assays are shown in Figure 45.
rs 7187776 is located in the 5^{\prime} UTR of a long isoform of SH2B1 (encoding SH2B adaptor protein 1) and is in strong LD $\left(r^{2}>0.8\right)$ with the lead variant associated with BMI (rs3888190, $\left.P=3.14 \times 10^{-23}, \beta=0.031\right)(7)$, which exhibits a colocalized eQTL for $\operatorname{SH} 2 B 1\left(P=4.7 \times 10^{-15}, \beta=-\right.$ $0.39)$ and $\operatorname{ATXN} 2 L\left(P=2.5 \times 10^{-11}, \beta=-0.34\right)$ in adipose tissue (63). rs7187776 is one of 124 candidate variants based on LD $\left(r^{2}>0.8\right)$ with the lead GWAS and eQTL variants and one of five variants that overlap adipose tissue ATAC peaks at this locus (Table 27). rs7187776 overlaps a

SPI1 (encodes PU. 1 protein) motif and footprint (Figure 30). We tested a 456-bp region containing either allele of rs7187776 and encompassing the entirety of the surrounding ATAC
peak in transcriptional reporter luciferase assays in SGBS preadipocytes and SW872 cells (Figure 30, 46). In both cell types, we observed extremely strong transcriptional activity (>200fold compared to background) but no allelic differences between rs7187776 alleles (Figure 46). Allelic differences in transcriptional activity may have been masked by the massive transcriptional effect of this region. In EMSA, we observed allele-specific binding of rs7187776G to purified PU. 1 protein and similar binding using nuclear extract from SW872 cells, consistent with the predicted motif (Figure 30, Figure 46). One additional variant that overlaps an ATAC-seq peak showed allelic differences in protein binding using nuclear extract from SW872 cells (Figure 46). These data suggest that rs7187776-G increases PU. 1 binding, and may contribute to the molecular mechanism at the ATP2A1-SH2B1 BMI GWAS locus.

Figure 30. A variant at the ATP2A1-SH2B1 BMI GWAS locus alters chromatin accessibility and PU. 1 binding. A) rs 7187776 is located in the promoter of a long SH2B1 isoform and the 5'-UTR of TUFM. We observe more ATAC-seq reads for rs7187776-A (Table 29). B) rs7187776-G creates a PU. 1 binding motif (JASPAR motif) and we identify a PU. 1 footprint in ATAC-seq reads. C) rs7187776-G shows increased protein binding to purified PU. 1 in EMSA, similar to a positive control containing the PU. 1 motif (+). A negative control (-) and rs7187776-A show no binding to PU.1. Arrows show allele-specific protein binding. Similar protein binding patterns were observed using SW872 nuclear extract (Figure 46). D) Summary of the direction of effect of rs7187776-G.

Allelic imbalance in ATAC-seq reads

Allelic imbalance in ATAC-seq reads, especially at a colocalized GWAS-eQTL locus, can suggest that a variant alters chromatin accessibility and may contribute to the underlying mechanism at the locus. To find genetic variants that exhibit allelic differences in chromatin accessibility, we identified heterozygous sites in adipose tissue samples that exhibited allelic
imbalance in ATAC-seq reads with at least 10 total reads and at least one read per allele. We identified 812 sites showing nominal allelic imbalance (beta-binomial $P<0.05$) in at least one sample (Table 28). Only 40 GWAS-eQTL variants were heterozygous in at least one tissue sample and met our threshold of 10 total reads and 1 read per allele. Of these 40 variants, 8 showed nominal evidence of ATAC allelic imbalance (Table 29), including rs7187776 at the SH2B1 locus (chi square $\mathrm{p}=0.0044$ Figure 30). We confirmed that the overlap of nominally imbalanced loci with GWAS-eQTLs is still greater than expected by chance when removing duplicated reads from the imbalance calculation (chi square $\mathrm{p}=0.043$). These results suggest that increased power through higher read depth will enable identification of many more diseaseassociated loci exhibiting allelic imbalance in chromatin accessibility. Open chromatin profiling in additional samples will also allow the identification of chromatin quantitative trait loci (cQTLs), which are not restricted to heterozygous variants. Collectively, these analyses will help identify disease-associated variants that mediate their effects on disease through chromatin accessibility.

Discussion

In this study, we generated high quality ATAC-seq open chromatin profiling from three frozen clinical adipose samples and two preparations of SGBS preadipocytes. We identified differences between adipose tissue, preadipocyte, and adipocyte open chromatin profiles, including adipose tissue-selective peaks at $A D I P O Q$ and $V W F$ and preadipocyte-selective peaks at extracellular matrix genes. Adipose tissue open chromatin profiles largely overlapped Roadmap adipose nuclei chromatin states and SGBS preadipocytes showed more overlap with fibroblast-type cells. Transcription factor motifs and footprints in ATAC peaks overlap GWAS
variants and GWAS traits are enriched in ATAC peaks within enhancers. Finally, we used the ATAC-seq profiles to annotate potential regulatory variants at GWAS-eQTL colocalized loci and provided experimental evidence of allelic differences in regulatory activity for variants at the SNX10 and ATP2A1-SH2B1 GWAS loci. Taken together, these data are the deepest characterization of chromatin accessibility in adipose tissue and preadipocytes to date.

Important differences exist between adipose tissue, preadipocyte, and mature adipocyte ATAC-seq profiles. Explanations for these differences include cell-type composition/heterogeneity, the differentiation state of adipocytes, the cultured nature of SGBS preadipocytes, and technical differences that arose when generating the ATAC-seq data, such as sequencing depth. At the TSS of $V W F$, adipose tissue-selective ATAC peaks are present at the TSS and very little signal is present in preadipocytes or mature adipocytes (Figure 32), suggesting that $V W F$ functions within vascular cells in adipose tissue. At the $A D I P O Q$ gene we observed adipose tissue-selective and mature adipocyte ATAC peaks and ATAC peaks specific to SGBS preadipocytes at the TSS of $A D I P O Q-A S 1$, the antisense transcript of $A D I P O Q$. These data led us to hypothesize that $A D I P O Q-A S 1$ may be expressed in preadipocytes to stop production of $A D I P O Q$, as antisense transcripts are traditionally thought to interfere with production of the sense transcript (217). The accessibility pattern of $A D I P O Q$ is consistent with a previous finding that the $A D I P O Q$ promoter is inaccessible until differentiation (218) and it's role in adipocyte differentiation (219-221). Among 98 Roadmap tissue and cell types, SGBS preadipocyte ATAC profiles were more similar to fibroblast-like cells and cell lines than to adipose nuclei, reflecting differences due to the cultured nature of SGBS preadipocytes. Additionally, we identified 17 transcription factor footprints in SGBS, but only 9 in adipose tissue due to more read depth in SGBS. We also observed differences between the previously
published ENCODE adipose tissue and our adipose tissue ATAC-seq profiles; these differences are likely due to technical variation such as such as biopsy location, freezing method, or storage conditions could contribute to these differences.

Adipose ATAC-seq profiles provide insight into the mechanisms of cardiometabolic GWAS loci. We found that ATAC peaks can sometimes pinpoint disease-relevant subsets of enhancers and that adipose ATAC peaks are enriched in WHR, but not BMI GWAS loci. This enrichment is consistent with recent findings that WHR loci are enriched in adipose transcriptional regulatory elements (10) and that BMI GWAS loci are enriched in pathways involved in central nervous system biology (11). We also identify enrichment of other cardiometabolic traits including insulin traits, lipids, cardiovascular outcomes, and blood pressure traits that have historically been enriched in liver, islet, and blood cell types more than adipose regulatory datasets. Identifying the transcription factor(s) bound to a regulatory variant is a challenging part of defining the molecular mechanisms underlying cardiometabolic GWAS loci; transcription factor footprints identify factors that are physically occupying the DNA at variants or loci with more accuracy than the simple overlap of binding motifs (185). We successfully generated transcription factor footprints for 17 transcription factors (Figures 38-44), which can be used to identify transcription factor that bind sites overlapping candidate variants at cardiometabolic GWAS loci.

We show two example loci where ATAC peaks helped prioritize candidate variants. At the SNX10 waist-hip ratio GWAS and adipose eQTL locus, we identified a potentially functional variant. rs 1534696 is not located in a predicted regulatory region based on existing chromatin state data. However, rs1534696 overlaps an ATAC peak in adipose tissue and shows allelic differences in transcriptional reporter and protein-binding assays. At a second example, the

ATP2A1-SH2B1 BMI GWAS and adipose eQTL locus, we identified a PU. 1 binding motif and footprint at rs7187776, as well as allelic imbalance in ATAC-seq reads, and confirmed the allelic differences in PU. 1 binding in vitro. However, further experiments are needed to confirm that PU. 1 and/or other ETS family members are binding at this locus in vivo. These data provide an excellent example of how to integrate GWAS, eQTL, and ATAC-seq data to identify functional variants at GWAS loci. Further experiments are needed to determine if these variants are the sole functional variant at each locus, and which gene(s) are contributing to obesity risk.

ATAC-seq open chromatin profiling can be further improved and future experiments are needed to fully characterize chromatin accessibility in adipose. The library preparation methods can be further optimized; we considered multiple library preparation conditions and chose detergent-treated samples to continue with analyses; however, we note that our sample size is too small to make definitive conclusions regarding these choices. The ATAC-seq method is relatively new and continues to improve, especially for frozen tissues and cells; a recent update to the original protocol, called Omni-ATAC, includes additional detergents for frozen tissues (222). Future chromatin profiles from additional individuals will enable detection chromatin quantitative trait loci (cQTL) associations, which could provide evidence that a variant allele alters chromatin accessibility and would help to prioritize variants for functional followup. Cellular environment can alter chromatin state, especially for cardiometabolic phenotypes, where both genetic and environmental factors can affect phenotypic outcome. Future work treating the cells with various metabolic stimuli and in in different cellular states (e.g. insulin or glucose treatment and stages of adipocyte differentiation) will provide needed insight to how chromatin changes with metabolic environmental triggers.

Here, we present ATAC-seq open chromatin profiles for frozen adipose tissue and cultured preadipocytes. We showed the utility of open chromatin profiles in multiple tissue samples and across cell types within heterogeneous tissue. Together, these data add to the growing understanding of gene regulation in adipose and the complex genetic mechanisms of cardiometabolic traits and diseases.

Supplemental Figures and Tables

Figure 31. Adipose tissue ATAC peak overlap of all chromatin states. ATAC-seq peak base overlap was identified in 98 tissue and cell types chromatin states from the Epigenome Roadmap Project (178). Adipose nuclei is boxed in red. Bars are ordered based on promoter and enhancer overlap. Cell type IDs are listed in Table 21.

SGBS preadipocytes

Figure 32. SGBS ATAC peak overlap of all chromatin states. ATAC-seq peak base overlap was identified in 98 tissue and cell types chromatin states from the Epigenome Roadmap Project (178). Adipose nuclei is boxed in red. Bars are ordered based on promoter and enhancer overlap. Cell type IDs are listed in Table 21.

ENCODE Adipose

Figure 33. ENCODE ATAC peak overlap of chromatin states. ATAC-seq peak base overlap was identified in 98 tissue and cell types chromatin states from the Epigenome Roadmap Project (178). Adipose nuclei is boxed in red. Bars are ordered based on promoter and enhancer overlap. Cell type IDs are listed in Table 21.

Mature adipocytes

Figure 34. Mature adipocyte ATAC peak overlap of all chromatin states. ATAC-seq peak base overlap was identified in 98 tissue and cell types chromatin states from the Epigenome Roadmap Project (178). Adipose nuclei is boxed in red. Bars are ordered based on promoter and enhancer overlap. Cell type IDs are listed in Table 21.

Adipose tissue-specific peaks

$-\log 10($ Binomial p value)

SGBS preadipocyte-specific peaks

Figure 35. Gene ontology enrichment of adipose tissue- and SGBS- specific ATAC peaks. Gene ontology enrichment of genes near adipose tissue- or preadipocyte-specific peaks was performed using GREAT with default parameters.

Figure 36. $\boldsymbol{V} \boldsymbol{W} \boldsymbol{F}$ and $\boldsymbol{L} \boldsymbol{U} M$ TSSs show differential ATAC-seq peaks. UCSC genome browser image showing the $V W F(\mathrm{~A})$ and $L U M(\mathrm{~B})$ gene regions. Histone marks from the Roadmap Epigenomics project adipose nuclei are shown in green and blue. The three adipose tissue (purple) and two SGBS (light blue) ATAC-seq signal tracks and peaks (gray) are shown. ATACseq signal and peaks from the ENCODE adipose ATAC-seq (light purple, ENCODE ID: ENCSR540BML), ATAC-seq from mature adipocytes (177), and signal from SGBS adipocyte DNase (175). Chromatin states from the Roadmap Epigenomics Project are shown for adipose nuclei. Yellow, enhancer; green, transcribed; orange and red, promoter; light green, genic enhancer. Red boxes show adipose tissue-selective (A) or SGBS-selective (B) ATAC-seq peaks at TSSs. Data was visualized on the hg 19 UCSC genome browser.

Figure 37. GWAS loci are enriched in ATAC-seq peaks. Heatmap shows enrichment of ATAC-seq peaks with cardiometabolic GWAS loci by p-value. We compare all peaks in adipose tissue and SGBS preadipocytes, peaks within Roadmap adipose promoters and enhancers, and Roadmap adipose promoters and enhancers themselves. Cells with a non-significant p-value are labeled white.

Figure 38. Aggregate footprint profiles for CEBPA and CREB312 in adipose tissue samples and SGBS preadipocytes. Footprints are shown for adipose tissue sample 1, but results were similar for the tissue Sample 2 and 3. Bound, unbound, and normalized profiles are shown for each factor.

Figure 39: Aggregate footprint profiles for FOXO1 and MEF2D in adipose tissue samples and SGBS preadipocytes. Footprints are shown for adipose tissue sample 1, but results were similar for the tissue Sample 2 and 3. Bound, unbound, and normalized profiles are shown for each factor.

Figure 40: Aggregate footprint profiles for NFIA and SPI1 in adipose tissue samples and SGBS preadipocytes. Footprints are shown for adipose tissue sample 1, but results were similar for the tissue Sample 2 and 3. Bound, unbound, and normalized profiles are shown for each factor.

Figure 41: Aggregate footprint profiles for STAT3A and STAT5A::STAT5B in adipose tissue samples and SGBS preadipocytes. Footprints are shown for adipose tissue sample 1, but results were similar for the tissue Sample 2 and 3. Bound, unbound, and normalized profiles are shown for each factor.

Figure 42: Aggregate footprints for TCFL7, IRF1, PBX1, and ETS1. Aggregate footprints for TCFL7 were observed in all three adipose tissue samples and SGBS preadipocytes. Aggregate footprint for IRF1 was observed in adipose samples 1 and 3; $P B X 1$ in adipose samples 1 and 2; and ETS1 in adipose sample 2. For footprints in more than one sample, profiles are shown for adipose sample 1. Bound, unbound, and normalized profiles are shown for each factor.

Preadipocytes

Figure 43: Aggregate footprint profiles for CEBPB, CEBPD, CTCF, and IRF1 in SGBS preadipocytes. Footprints are shown for SGBS 2. Bound, unbound, and normalized profiles are shown for each factor.

Preadipocytes

Figure 44: Aggregate footprint profiles for PBX1, RREB1, RXRA::VDR, and RARA in SGBS preadipocytes. Footprints are shown for SGBS 2. Bound, unbound, and normalized profiles are shown for each factor.

Figure 45. Additional regulatory assays for rs1534696. A) The region containing rs1534696 was tested in transcriptional reporter luciferase assays in SW872 cells. Each bar represents mean \pm standard deviation of three independent clones. Transcriptional activity is greater in SW872, and the trend of higher transcriptional activity for rs1534696-A is consistent with results in SGBS (Figure 29). B) Allelic differences in protein binding with SW872 nuclear extract are not present as with SGBS nuclear extract (Figure 29). Arrow shows where the allele-specific protein complex appears with SGBS nuclear extract.

Figure 46. Additional regulatory assays for rs7187776. A) rs7187776-G shows increased protein binding using SW872 nuclear extract in EMSA. The banding pattern of protein binding is similar to protein binding to purified PU. 1 (Figure 26). Arrows show allelic differences. B) One of four additional variants (rs7198606) overlapping ATAC-seq peaks showed allelic differences in protein binding (arrow) using SW872 nuclear extract in EMSA. The remaining three variants did not show consistent results across EMSA experiments. C-D) The region containing rs7187776 shows extremely strong transcriptional activity in reporter assays in SGBS (C) and SW872 (D) cells. Bars represent the mean \pm standard deviation of 3-5 independent clones.

Table 14: Characteristics of METSIM individuals

Sample ID	Body Mass Index	Waist (cm)	Waist-to-hip ratio	Age (yrs)	Glucose Tolerance
Tissue 1	28.4	106	1.03	62	impaired
Tissue 2	24.0	91.5	0.94	51	normal
Tissue 3	24.9	100	1.09	55	normal

Table 15: Alignment metrics of all samples and conditions

Sample	Tissue Size (ug)/Cell count	Detergent treatment (1\% NP-40)	Amount of Tn5 Transposase (ul)	Total reads	Uniquely aligned	Percent Mitochondrial Reads	Nuclear alignments	Remaining reads after blacklist filtering	Remaining reads after duplicates removed	Number of peaks
Tissue 1	36	No	2.5	160,456,871	103,884,007	4.2	99,514,873	98,503,345	87,261,270	13,073
Tissue $1^{\text {a }}$	36	Yes	2.5	129,550,842	87,423,735	8.5	80,036,369	79,034,093	70,607,644	58,279
Tissue $2^{\text {a }}$	12	Yes	2.5	131,596,088	83,656,351	12.8	72,952,105	71,836,642	60,612,852	36,612
Tissue 2	36	Yes	2.5	152,103,576	89,636,408	17.0	74,406,166	73,172,989	66,897,385	29,409
Tissue 3	36	No	2.5	156,251,262	97,752,018	10.8	87,234,180	86,077,206	76,890,324	21,016
Tissue $3^{\text {a }}$	36	Yes	2.5	119,284,302	70,587,237	11.9	62,214,172	61,339,160	57,119,081	49,631
SGBS $1^{\text {b }}$	800,000	Yes	5.0	194,938,464	168,498,157	14.2	144,425,078	126,236,487	40,598,393	196,211
SGBS $2^{\text {b }}$	400,000	Yes	5.0	105,391,646	93,389,720	42.7	53,460,836	42,620,701	25,646,124	173,084

${ }^{\text {a }}$ These samples were used in the main table and in all analyses.
${ }^{\text {b }}$ These samples were sequenced using paired-end reads, but processed as single-end reads

Table 16: Footprinting of $\mathbf{3 5}$ transcription factors

	Transcription Factor	JASPAR motif ID	Aggregate footprint in adipose tissue samples	Aggregate footprint in sGBS 2	Cardiometabolic GWAS variants overlapping aggregate footprint in adipose tissue	Cardiometabolic GWAS variants overlapping aggregate footprint in SGBS 2	Number of footprints in Tissue 1	mTPR/fTPR Tissue 1	Number of footprints in Tissue 2	mTPR/fTPR	Number of footprints in Tissue 3	mTPR/fTPR Tissue 3	Number of footprints in SGBS 2	
	CEBPA	MA0102.3	1,2,3	Yes	rs174538, rs10495712	rs1553832, rs4812488	10010	0.79	7074	0.53	9343	0.87	16165	0.51
	CEBPB	MA0466.2		Yes									7062	0.62
	CEBPD	MA0826.1		Yes									7000	0.62
	CREB312	MA0608.1	1,2,3	Yes			3972	0.90	2799	0.70	3889	0.94	8033	0.78
	CTCF	MA0139.1		Yes		rs7131882, rs11838776, rs7251881, rs79813245, rs76226186, rs6853156, rs6830765, rs1042701							54970	0.79
	EBF1	MA0154.3												
	ELK3	MA0759.1												
	ETS1	MA0098. 3	2						5535	0.99				
	FL1	MA0475.2												
	Fox01	MA0480.1	1,2,3	Yes		rs4149272	8609	0.73	5522	0.51	7622	0.86	19405	0.75
	IRF1	MA0050.2	1,3	Yes		rs12128131, rs662799, rs7104207, rs9913522, rs17242395, rs62233075, rs150111048, r555875205, rs1401419, rs1800759	65530	0.09			48881	0.09	70371	0.14
	MEF2D	MA0773.1	1,2,3	Yes		rs35581848	10321	0.35	3547	0.37	6785	0.42	14961	0.66
	NFIA	MA0670.1	1,2,3	Yes			10166	0.54	7200	0.42	9085	0.72	15851	0.46
	NR1H2::RXRA	MA0115. 1												
	NR1H3: RXRA	MA0494.1												
	NR3C1	MA0113.3												
	PBX1	MA0070. 1	1,2	Yes			1694	0.93	1112	0.95			6849	0.85
	PPARG:RXRA	MA0065. 2												
	PPARG	MA0066. 1												
	RARA: RXRA	MA0159.1												
ω	RARA_v1	MA0729.1		Yes		rs2493410, rs4722530							11344	0.89
ω	RARA_v2	MA0730.1												
\cdots	RFX2	MA0600.2												
	RREB1	MA0073.1		Yes		rs11102965, rs10750216, rs8027181, rs12051272, rs148222624,rs72838036, rs72838060, rs2795159, rs2122031, rs11064, rs1936801, rs6929846, rs1294404,							100406	0.98
	RUNX1	MA0002. 2												
	RXRA: VDR	MA0074.1		Yes		rs6129801, rs73069965							8268	0.98
	RXRA	MA0512. 1												
	SMAD2:SMAD3::SMAD4	MA0513.1												
	SMAD3	MA0795. 1												
	SP11	MA0080.4	1,2,3	Yes	rs7187776, rs1401419	rs1401419, rs1800759, rs10790517	10833	0.63	6171	0.38	7982	0.73	20323	0.69
	SPIB	MA0081.1												
	STAT3	MA0144.2	1,2,3	Yes	rs11097198		16627	0.50	13479	0.36	13079	0.70	32195	0.63
	STAT5A:STATSB	MA0519.1	1,2,3	Yes	rs11097198, rs6689393, rs7178051	rs11041999, rs6776159	11542	0.70	8490	0.47	9997	0.83	27291	0.71
	TCF7L2	MA0523.1	1,2,3	Yes		rs67248872, rs2243312	11090	0.51	5200	0.46	7300	0.65	16950	0.80

Table 17: Primer and probe sequences for functional assays

Primer sequences for luciferase assays	5'- 3' Sequence	Chromosome Position (hg19)
SNX10_F	CAGAAGGAAAGCAACATCATCA	chr7:26397159-26397408
SNX10_R	AGAAACCCAGTTCTCCTAGACC	
SH2B1_F	GGGAGCCGGGACCAGGA	chr16:28857631-28858086
SH2B1_R	GGGACTCGGGGTCTCTCT	
Probe sequences for EMSA	5'- 3' Sequence	Chromosome Position (hg19)
rs1534696_A	TATGGGCCCAGAAATAAAT	chr7:26396980-26396999
rs1534696_C	TATGGGCCCCGAAATAAAT	
rs7187776_A	CACAGAAGAAGAAGGGCGC	chr 16:28857636-28857655
rs7187776_G	CACAGAAGAGGAAGGGCGC	
rs11864750_A	TGGGGGCGCAGGGAGCGGG	chr16:28875195-28875214
rs11864750_T	TGGGGGCGCTGGGAGCGGG	
rs7198606_T	TCTATGGTCTCTTCCTTCA	chr16:28875112-28875131
rs7198606 G	TCTATGGTCGCTTCCTTCA	
rs8055138_C	TGGCCTTAGCCCTTCCCCG	chr 16:28891456-28891475
rs8055138_T	TGGCCTTAGTCCTTCCCCG	
rs148099387_-	TGGCAGCCCGTCAGCCTT	chr 16:28,851,369-28,851,387
rs148099387 CT	TGGCAGCCCCTGTCAGCCTT	
PU.1_positive control*	CAGAAAAGAGGAAGTGAAACCG	N/A
PU.1_negative control	TGAGGGGAGAAGGACAGGGTTA	N/A

*PU. 1 positive control sequence was constructed from the JASPAR motif

Table 18: Comparison of ATAC-seq peak overlap between tissue samples

Percent overlap of bases in peaks							
	Sample	Tissue 136 mg no det	Tissue 136 mg det	Tissue 236 mg det	Tissue 212 mg det	Tissue $3 \mathbf{3 6 ~ m g ~ n o ~ d e t ~}$	Tissue $3 \mathbf{3 6 ~ m g ~ d e t ~}$
Tissue 1	36 mg no det	100.0	74.3	60.4	65.6	73.5	69.7
Tissue 1	36 mg det	38.7	100.0	56.6	64.4	57.8	71.6
Tissue 2	36 mg det	43.1	77.7	100.0	77.9	61.9	77.2
Tissue 2	12 mg det	43.1	81.3	71.7	100.0	63.6	78.0
Tissue 3	36 mg no det	56.9	85.9	67.1	74.9	100.0	81.4
Tissue 3	36 mg det	42.0	82.9	65.1	71.5	63.3	100.0

Jaccard index								
		Sample	Tissue 136 mg no det	Tissue 136 mg det	Tissue 236 mg det \|	Tissue 212 mg det \|	Tissue $3 \mathbf{3 6 ~ m g ~ n o ~ d e t ~}$	Tissue $3 \mathbf{3 6 ~ m g ~ d e t ~}$
	Tissue 1	36 mg no det	1.00	0.34	0.34	0.35	0.47	0.36
	Tissue 1	36 mg det		1.00	0.49	0.56	0.53	0.63
	Tissue 2	36 mg det			1.00	0.60	0.48	0.55
	Tissue 2	12 mg det				1.00	0.52	0.59
	Tissue 3	36 mg no det					1.00	0.56
	Tissue 3	36 mg det\|						1.00

Table 19: Comparison of ATAC-seq peaks between adipose tissue, mature adipocytes, and SGBS preadipocytes

Percent overlap of bases in peaks							
Sample	Tissue 1	Tissue 2	Tissue 3	SGBS 1	SGBS 2	ENCODE	Mature adipocytes
Tissue 1	100.0	63.8	71.8	49.9	51.8	67.8	55.5
Tissue 2	80.3	100.0	77.9	48.0	50.0	63.9	60.2
Tissue 3	80.3	69.2	100.0	47.5	49.5	64.0	56.9
SGBS 1	30.3	23.2	25.8	100.0	82.0	43.9	29.5
SGBS 2	33.6	25.8	28.7	87.6	100.0	47.9	32.4
ENCODE	43.8	32.8	37.0	46.7	47.7	100.0	35.9
Mature adipocytes	57.9	49.8	53.0	50.6	52.1	58.0	100.0

Percent overlap of top Sample Sa,000 peaks of union sets	METSIM	SGBS	Allum	ENCODE
METSIM	100.0	54.0	54.7	60.0
SGBS	30.5	100.0	31.2	41.9
Allum	49.9	50.4	100.0	48.7
ENCODE	44.3	54.7	39.4	100.0

Jaccard index							
Sample	Tissue 1	Tissue 2	Tissue 3	SGBS 1	SGBS 2	ENCODE	Mature adipocytes
Tissue 1	1.00	0.55	0.61	0.23	0.26	0.36	0.40
Tissue 2		1.00	0.58	0.19	0.20	0.28	0.37
Tissue 3			1.00	0.20	0.22	0.31	0.38
SGBS 1				1.00	0.73	0.29	0.23
SGBS 2					1.00	0.31	0.25
ENCODE					1.00	0.29	
Mature adipocytes						1.00	

Jaccard index top $\mathbf{5 0 , 0 0 0}$ peaks of union sets

Sample	METSIM	SGBS	Allum	ENCODE
METSIM	1.00	0.24	0.35	0.34
SGBS		1.00	0.24	0.31
Allum			1.00	0.28
ENCODE				1.00

Percent overlap and jaccard index was determined using the top 25,000 peaks in each sample, ranked by p-value. ENCODE= subcutaneous adipose tissue ATAC-seq ENCODE ID: ENCSR540BML
Mature adipocyte ATAC-seq was previously published (33)

Table 20: Overlap of ATAC peaks with adipose nuclei and rank among 98 chromatin states

Adipose Tissue								
All peaks			Top 50,000 peaks			Top 50,000 peaks, center 200 bp		
Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues
Promoter+Enhancer	85.7	1	Promoter+Enhancer	88.9	1	Promoter+Enhancer	84.3	1
Promoter	44.5	4	Promoter	49.3	4	Promoter	38.9	4
Enhancer	41.3	1	Enhancer	39.7	1	Enhancer	45.4	1
Transcribed	3.6	98	Transcribed	2.9	98	Transcribed	4.1	98
Polycomb	2.1	92	Polycomb	1.7	92	Polycomb	2.4	91
Heterochromatin	0.3	91	Heterochromatin	0.2	96	Heterochromatin	0.2	94
ZNF repeat	0.3	51	ZNF repeat	0.2	55	ZNF repeat	0.2	52
Quiescent	8.0	98	Quiescent	6.2	98	Quiescent	8.8	98

SGBS								
All peaks			Top 50,000 peaks			Top 50,000 peaks, center 200 bp		
Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues
Promoter+Enhancer	49.4	14	Promoter+Enhancer	65.9	17	Promoter+Enhancer	58.0	17
Promoter	24.4	8	Promoter	40.8	11	Promoter	29.9	12
Enhancer	25.0	20	Enhancer	25.2	25	Enhancer	28.1	20
Transcribed	13.3	68	Transcribed	9.1	77	Transcribed	11.1	71
Polycomb	8.6	51	Polycomb	5.3	47	Polycomb	6.0	43
Heterochromatin	1.1	43	Heterochromatin	0.7	49	Heterochromatin	0.9	47
ZNF repeat	0.3	30	ZNF repeat	0.3	28	ZNF repeat	0.3	25
Quiescent	27.2	79	Quiescent	18.8	80	Quiescent	23.7	79

ENCODE								
All peaks			Top 50,000 peaks			Top 50,000 peaks, center 200 bp		
Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues
Promoter+Enhancer	73.9	4	Promoter+Enhancer	81.9	4	Promoter+Enhancer	74.1	4
Promoter	47.5	9	Promoter	57.0	9	Promoter	42.2	9
Enhancer	26.5	17	Enhancer	24.8	18	Enhancer	31.8	17
Transcribed	7.2	92	Transcribed	5.5	91	Transcribed	7.9	91
Polycomb	5.7	56	Polycomb	4.2	61	Polycomb	5.8	58
Heterochromatin	0.7	56	Heterochromatin	0.3	67	Heterochromatin	0.4	62
ZNF repeat	0.3	45	ZNF repeat	0.1	57	ZNF repeat	0.2	54
Quiescent	12.1	90	Quiescent	8.1	90	Quiescent	11.7	90

Mature adipocytes								
All peaks			Top 50,000 peaks			Top 50,000 peaks, center 200 bp		
Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues	Chromatin State	Percent covered bases in adipose nuclei	Adipose rank among all 98 tissues
Promoter+Enhancer	33.5	1	Promoter+Enhancer	73.8	1	Promoter+Enhancer	73.1	1
Promoter	15.4	5	Promoter	40.0	7	Promoter	34.4	7
Enhancer	18.1	8	Enhancer	33.8	1	Enhancer	38.7	1
Transcribed	12.4	65	Transcribed	5.1	98	Transcribed	5.9	98
Polycomb	16.1	31	Polycomb	4.8	67	Polycomb	4.9	69
Heterochromatin	6.1	35	Heterochromatin	3.0	43	Heterochromatin	2.2	50
ZNF repeat	3.3	35	ZNF repeat	1.8	41	ZNF repeat	1.6	40
Quiescent	28.6	83	Quiescent	11.5	96	Quiescent	12.4	96

Percent coverage was determined by the percent of ATAC-seq peak bases overlapped by each chromatin state.
Roadmap 18 -state chromatin states included in the above categories:
Promoter: 1_TssA, 2_TssFInk, 3_TssFInkU, 4_TssFInkD, 14_TssBiv
Enhancer: 7_EnhG1, 8_EnhG2, 9_EnhA1, 10_EnhA2, 11_EnhWk, 15_EnhBiv
Transcribed: 5_Tx, 6_TxWk
Polycomb repressed: 16_ReprPC, 17_ReprPCWk
Heterochromatin: 13_Het
ZNF repeat: 12_ZNF/Rpts
Quiescent: 18_Quies

Table 21: Roadmap Epigenome IDs

Epigenome ID Standardized Epigenome name

E001	ES-I3 Cells
E002	
ES-WA7 Cells	
E003	H1 Cells

E003 H1 Cells
E004 H1 BMP4 Derived Mesendoderm Cultured Cells
E005 H1 BMP4 Derived Trophoblast Cultured Cells
E006 H1 Derived Mesenchymal Stem Cells
E007 H1 Derived Neuronal Progenitor Cultured Cells
E008 H9 Cells
E009 H9 Derived Neuronal Progenitor Cultured Cells
E010 H9 Derived Neuron Cultured Cells
E011 hESC Derived CD184+ Endoderm Cultured Cells
E012 hESC Derived CD56+ Ectoderm Cultured Cells
E013 hESC Derived CD56+ Mesoderm Cultured Cells
E014 HUES48 Cells
E015 HUES6 Cells
E016 HUES64 Cells
E017 IMR90 fetal lung fibroblasts Cell Line
E018 iPS-15b Cells
E019 iPS-18 Cells
E020 iPS-20b Cells
E021 iPS DF 6.9 Cells
E022 iPS DF 19.11 Cells
E023 Mesenchymal Stem Cell Derived Adipocyte Cultured Cells
E024 ES-UCSF4 Cells
E025 Adipose Derived Mesenchymal Stem Cell Cultured Cells
E026 Bone Marrow Derived Cultured Mesenchymal Stem Cells
E027 Breast Myoepithelial Primary Cells
E028 Breast variant Human Mammary Epithelial Cells (vHMEC)
E029 Primary monocytes from peripheral blood
E030 Primary neutrophils from peripheral blood
E031 Primary B cells from cord blood
E032 Primary B cells from peripheral blood
E033 Primary T cells from cord blood
E034 Primary T cells from peripheral blood
E035 Primary hematopoietic stem cells
E036 Primary hematopoietic stem cells short term culture
E037 Primary T helper memory cells from peripheral blood 2
E038 Primary T helper naive cells from peripheral blood
E039 Primary T helper naive cells from peripheral blood
E040 Primary T helper memory cells from peripheral blood 1
E041 Primary T helper cells PMA-I stimulated
E042 Primary T helper 17 cells PMA-I stimulated
E043 Primary T helper cells from peripheral blood
E044 Primary T regulatory cells from peripheral blood
E045 Primary T cells effector/memory enriched from peripheral blood
E046 Primary Natural Killer cells from peripheral blood
E047 Primary T CD8+ naive cells from peripheral blood
E048 Primary T CD8+ memory cells from peripheral blood
E049 Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells
E050 Primary hematopoietic stem cells G-CSF-mobilized Female
E051 Primary hematopoietic stem cells G-CSF-mobilized Male
E052 Muscle Satellite Cultured Cells
E053 Cortex derived primary cultured neurospheres
E054 Ganglion Eminence derived primary cultured neurospheres
E055 Foreskin Fibroblast Primary Cells skin01
E056 Foreskin Fibroblast Primary Cells skin02
E057 Foreskin Keratinocyte Primary Cells skin02
E058 Foreskin Keratinocyte Primary Cells skin03
E059 Foreskin Melanocyte Primary Cells skin01
E061 Foreskin Melanocyte Primary Cells skin03
E062 Primary mononuclear cells from peripheral blood

E063	Adipose Nuclei
E065	Aorta
E066	Liver
E067	Brain Angular Gyrus
E068	Brain Anterior Caudate
E069	Brain Cingulate Gyrus
E070	Brain Germinal Matrix
E071	Brain Hippocampus Middle
E072	Brain Inferior Temporal Lobe
E073	Brain_Dorsolateral_Prefrontal_Cortex
E074	Brain Substantia Nigra
E075	Colonic Mucosa
E076	Colon Smooth Muscle
E077	Duodenum Mucosa
E078	Duodenum Smooth Muscle
E079	Esophagus
E080	Fetal Adrenal Gland
E081	Fetal Brain Male
E082	Fetal Brain Female
E083	Fetal Heart
E084	Fetal Intestine Large
E085	Fetal Intestine Small
E086	Fetal Kidney
E087	Pancreatic Islets
E088	Fetal Lung
E089	Fetal Muscle Trunk
E090	Fetal Muscle Leg
E091	Placenta
E092	Fetal Stomach
E093	Fetal Thymus
E094	Gastric
E095	Left Ventricle
E096	Lung
E097	Ovary
E098	Pancreas
E099	Placenta Amnion
E100	Psoas Muscle
E101	Rectal Mucosa Donor 29
E102	Rectal Mucosa Donor 31
E103	Rectal Smooth Muscle
E104	Right Atrium
E105	Right Ventricle
E106	Sigmoid Colon
E107	Skeletal Muscle Male
E108	Skeletal Muscle Female
E109	Small Intestine
E110	Stomach Mucosa
E111	Stomach Smooth Muscle
E112	Thymus
E113	Spleen
E114	A549 EtOH 0.02pct Lung Carcinoma Cell Line
E115	Dnd41 TCell Leukemia Cell Line
E116	GM12878 Lymphoblastoid Cells
E117	HeLa-S3 Cervical Carcinoma Cell Line
E118	HepG2 Hepatocellular Carcinoma Cell Line
E119	HMEC Mammary Epithelial Primary Cells
E120	HSMM Skeletal Muscle Myoblasts Cells
E121	HSMM cell derived Skeletal Muscle Myotubes Cells
E122	HUVEC Umbilical Vein Endothelial Primary Cells
E123	K562 Leukemia Cells
E124	Monocytes-CD14+ RO01746 Primary Cells
E125	NH-A Astrocytes Primary Cells
E126	NHDF-Ad Adult Dermal Fibroblast Primary Cells
E127	NHEK-Epidermal Keratinocyte Primary Cells
E128	NHLF Lung Fibroblast Primary Cells
E129	Osteoblast Primary Cells

Table 22：Transcription factor motifs enriched in adipose tissue－and SGBS－specific ATAC peaks

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ScBs．specific} \& \multicolumn{9}{|c|}{Adipose tisulespecific} \\
\hline Motif Name \& Consensus Sequence \& P．value \& Log p．value \& \(\underbrace{\substack{\text { qualue } \\ \text {（Benimini）}}}_{\text {a }}\) \& Target sequences （of 10000） 4993 \& Percent target
sequences with motif \& \begin{tabular}{l}
Background \\
sequences \\
（of 44753）
\end{tabular} \& \[
\begin{gathered}
\text { Percent } \\
\text { bequeruround } \\
\text { sequeswith } \\
\text { mosif }
\end{gathered}
\] \& Motif Name \& Consensus Sequence \& p．value \& \& \& Target sequences
with motif （of 10000）
\(\qquad\) \& \[
\begin{gathered}
\text { Percent } \\
\text { cerget } \\
\text { seumen } \\
\text { with motif }
\end{gathered}
\] \& \& \\
\hline At3 \& dattasticathe \& 1.000923 \& －217．0 \& 0 \& 4993 \& 499\％ \& 8505 \& 20．5\％ \& \& \& 1．00：－136 \& ． 313.2 \& \& 911 \& \({ }^{9.1 \%}\) \& 1616 \& 3．6\％ \\
\hline Fral \& nNatcastcath \& 1.1000 －904 \& －2083．0 \& － \& 4671 \& 46．7\％ \& 7624 \& 18．4\％ \& \& vagracarw croric \& 1.006 .133 \& －306．4 \& － \& \({ }_{888}\) \& 8．9\％ \& 1571 \& 3．5\％ \\
\hline bat \& datigastat \& \& －2043．0 \& \(\bigcirc\) \& \({ }^{4887}\) \& \({ }^{48.9 \%}\) \& \({ }^{8372}\) \& \({ }^{20.2 \%}\) \& GRE，，1／3 \& NREVCACABNTTTITCY \& \({ }^{1.0000 .114}\) \& －264．0 \& 0 \& \({ }_{364}^{617}\) \& \({ }_{6}^{6.2 \% \%}\) \& \({ }_{9}^{955}\) \& 2．17\％ \\
\hline \({ }_{\substack{\text { APP．} \\ \text { Fosid }}}\) \& vtaacticatc \& \& －23300 \& 0 \& 5074
3726 \& 50．7\％ \& 8989 \& \({ }_{125 \%}^{217 \%}\) \& \({ }_{\text {Prer }}^{\text {Prape }}\) \& \& （100098 \& －272．5 \& \(\bigcirc\) \& \begin{tabular}{l}
834 \\
\hline 183 \\
\hline
\end{tabular} \& \({ }^{8.3 \%}\) \& 1660
5070 \& 3．7\％\％ \\
\hline \& Natitastcicann
Gatcatcn \& 1．00e－455 \& \({ }_{\text {－}}^{\text {－1859．0 }}\) \& \(\bigcirc\) \& \({ }_{\substack{3276 \\ 2261}}\) \& \({ }_{\text {cher }}^{328.1 \%}\) \& \({ }_{4146}\) \& 120\％ \& \& \& （1．00E762 \& － 21214.0 \& \(\bigcirc\) \& 边 18838 \& \& 5070
1391 \& \({ }_{\text {cke }}^{\substack{11.3 \% \\ 30.2 \%}}\) \\
\hline Bach2 \& тостаапта \& 1．00：－206 \& 475.0 \& 。 \& 1580 \& 15．8\％ \& 2834 \& 6．8\％ \& rxx，0R1 \& таббссаАабтта \& 1.008 .75 \& －174．2 \& 。 \& 1996 \& 20．0\％ \& 5992 \& 13．3\％ \\
\hline Malk \& бстtastcasca \& \({ }^{1.000 .95}\) \& －220．4 \& － \& 932 \& 9．3\％ \& 1836 \& 4．4\％ \& \({ }^{\text {PR }}\) \& vagracarnctertic \& 1.100669 \& －159．9 \& － \& \& \& 11946 \& 26．7\％ \\
\hline TEAD4 \& ccwigaticy \& \({ }^{1.005 .92}\) \& 223.7 \& － \& 2266 \& 227\％ \& 6173 \& 14．9\％ \& \({ }_{\text {ar }}\) \& cсаGGacacag \& 1.006 .58 \& －134．8 \& 0 \& 5181 \& 51．8\％ \& 19569 \& \({ }^{23} 7.7 \%\) \\
\hline tead \& ycwgeatay \& 1.006 .87 \& －202．2 \& \(\bigcirc\) \& 2053 \& 20．5\％ \& 5513 \& 13．3\％ \& севPB \& \& \({ }^{1.000} 533\) \& \({ }^{-76.2}\) \& \(\bigcirc\) \& \({ }^{2110}\) \& \({ }^{21.1 \%}\) \& 7367 \& 16．5\％ \\
\hline tead \& ccwogatigy \& 1.006 .62 \& －144．5 \& 0 \& 1988 \& 14．9\％ \& 3968 \& 9．6\％ \& Esrrb \& ктанасттыа \& 1.100023 \& －55．1 \& － \& 907 \& \(9.1 \%\) \& 2876 \& \({ }^{6.4 \%}\) \\
\hline Runx2 \& nWaacacaonn \& 1.006 .54 \& －125．6 \& \& 1590 \& 15．9\％ \& 4455 \& 10．8\％ \& Eles \& Acraggagt \& 1.100021 \& －50．6 \& － \& 1397 \& 14．0\％ \& 4843 \& 10．8\％ \\
\hline \({ }_{\text {Runx }}\) \& \({ }^{\text {safaccacacas }}\) \& \({ }^{1} 1000554\) \& \({ }^{-124.5}\) \& \(\bigcirc\) \& \({ }^{1416}\) \& \({ }^{14.2 \%}\) \& \({ }^{3863}\) \& \({ }_{\text {9，}}^{\text {9，3\％}}\) \& \({ }_{\text {Spib }}^{\text {Spib }}\) \& \& \& － 49.4 \& \(\bigcirc\) \& 548

5471 \& 5．5\％ \& 1592
3577 \&

\hline $\substack{\text { NFFEE } \\ \text { RuNx }}$ \& ${ }_{\text {GAACCACARM }}$ \& ${ }^{1}$ \& ${ }_{\text {－121．8 }}^{\text {－12．6 }}$ \& 0 \& ${ }_{1847}^{496}$ \& 5．0\％ \& ${ }_{5390}^{951}$ \& ${ }_{\text {2 }}^{\text {23\％}}$ \& ${ }_{\text {Prea }}^{\text {Pup }}$ \& ${ }_{\text {A }}^{\text {ACAGAAAGTG }}$ \& ${ }_{\text {l }}^{1.000-21} 1$ \& ${ }_{\text {－}}^{4.85 .1}$ \& \bigcirc \& ${ }_{3036}^{1071}$ \& （10．7\％\％ \& | 3577 |
| :--- |
| 11750 | \& ${ }^{8.0 \% \%}$

\hline RunX－AML \& gctotoctw \& ${ }^{1.006-48}$ \& －111．0 \& 。 \& 1402 \& 14．0\％ \& 3914 \& 9．5\％ \& \& carbekgcaatatica \& 1.00 －19 \& －44．0 \& 。 \& 760 \& 7．6\％ \& 2430 \& 5．4\％

\hline Maf \& тостастта \& ${ }^{1.005-43}$ \& －101．0 \& － \& 1581 \& 15．8\％ \& 4626 \& 112\％ \& NPAS2 \& кксаदаттас \& 1.000 －18 \& 42.6 \& － \& 1381 \& 13．8\％ \& 4893 \& 10．9\％

\hline ${ }_{\substack{\text { N＋2 } \\ \text { Bach }}}$ \& нитgctaatraat \& ${ }^{1.0056 .43}$ \& －100．6 \& 0 \& ${ }_{488}^{412}$ \& ${ }_{4}^{4.8 \%}$ \& ${ }_{996} 995$ \& － 1.9% \& \& gatatcaagata \& 1．00：17 \& －39．2） \& \bigcirc \& ${ }_{2317}^{211}$ \& ${ }_{\substack{2.1 \% \\ 232 \%}}$ \& | 496 |
| :--- |
| 881 |
| 8. | \& ${ }_{\text {l }}^{\text {1．1\％}}$

\hline ${ }_{\substack{\text { Bach1 } \\ \text { Poxa }}}^{\text {end }}$ \& ${ }_{\text {awwntecticatcat }}^{\text {rcarraica }}$ \& \& －77．8 \& \bigcirc \& ${ }_{1663}^{478}$ \& ${ }_{\text {cher }}^{\substack{4.6 \% \%}}$ \& 996
5210 \& ${ }_{\text {2 }}^{2.4 .4 \%}$ \& $\substack{\text { Env1 } \\ \text { Etv2 }}_{\text {cen }}$ \& \& \& $\underbrace{\text {－3，3 }}_{\substack{34.3}}$ \& \bigcirc \& ${ }_{183}^{2317}$ \& \& ${ }_{\substack{8881 \\ 689}}$ \& ${ }_{\text {1．9．4\％}}^{19.9 \%}$

\hline gata $^{\text {a }}$ \& Agatast \& ${ }^{1.005}$ \& －65．7 \& \& 2162 \& 21．6\％ \& 7149 \& 173\％ \& вмаLI \& gncacigte \& 1.100014 \& ${ }^{-33.1}$ \& 0 \& 2370 \& 23，7\％ \& 9175 \& 20．5\％

\hline Gata^{1} \& Sagataagrv \& ${ }^{1.006 .22}$ \& －52．1 \& － \& ${ }^{906}$ \& ${ }^{9.1 \%}$ \& 2685 \& 6．5\％ \& Nur77 \& \& $1.1000-14$ \& －33．0 \& － \& 315 \& 3．2\％ \& 885 \& 2．0\％

\hline Cata2 \& Bbectatcts
NBWWATAGR \& ${ }^{1.006: 22}$ 1．00：19 \& － 51.8 \& 0 \& 998
1428

1 \& | 120\％\％ |
| :--- |
| 14.3% | \& ${ }_{4662}^{3016}$ \& 7.7%

11.3%
1.3% \& THRa \& GGtantratagwch \& ${ }^{1.000-14}$ \& － 32.8 \& － \& 633
2175 \& ${ }_{\text {che }}^{6.3 \%}$ \& 2067 \& ¢ $\begin{aligned} & 4.6 \% \% \\ & 18.8 \%\end{aligned}$

\hline citi \& атtcatiantica \& ${ }^{1.000519}$ \& －${ }_{\text {－25．3 }}$ \& \bigcirc \& 1428

514 \& ${ }_{\text {chen }}^{14.3 \%}$ \& ${ }_{1593}$ \& $\underset{\substack{11.3 \% \\ 3.9 \%}}{\substack{\text { a }}}$ \& ${ }_{\text {UsFf1 }}^{\text {Eff }}$ \& $\underset{\text { Scticactior }}{\text { ald }}$ \& l \& －29．5 \& \bigcirc \& ${ }_{705}^{2175}$ \& ${ }_{\substack{21.1 \% \%}}^{\text {7．8．}}$ \& | 8430 |
| :--- |
| 2394 | \& ${ }_{5}^{18.8 \%}$

\hline Antaht \& тввсасассаA \& ${ }^{1.006}$ ：99 \& －21．7 \& \& 612 \& ${ }^{6.11 \%}$ \& 1968 \& 4．8\％ \& Esi \& \& 1.000 －12 \& －28．0 \& － \& 1906 \& 19．1\％ \& 7329 \& 16．4\％

\hline \& \& \& －20．6
－12．6 \& \bigcirc \& 337
319 \& －${ }_{\text {3，}}^{3.4 \%}$ \& 994
1018
108 \& 2．5\％\％ \& $\operatorname{cmax}_{\text {GABPA }}$ \& Rccacatigivn

Raccogact \& \& －27．19 \& 0 \& \begin{tabular}{l}
930

1574

\hline 1

 \& －${ }_{\text {9，3\％}}$ \& ${ }^{3315}$ \&

7．7．4\％

\hline 13.3%
\end{tabular}

\hline $\stackrel{\text { NFAT：AP1 }}{\text { Hep }}$ \& Sartiganaanviticatcab \& ${ }_{\text {liolemes }}^{1.0005}$ \& －12．6 \& ${ }_{0} 0.0001$ \& 339
386 \& ${ }^{3.2 \%}$ \& 1018

1269 \& ${ }_{\text {2．2．}}^{2.5 \%}$ \& $\underset{\substack{\text { GABPa } \\ \text { Fil }}}{\text { den }}$ \& \& ${ }_{\text {l }}$ \& －26．9 \& \bigcirc \& | 1584 |
| :--- |
| 1886 | \& 18．9\％ \& ${ }_{7}^{5978}$ \& cinem

\hline Pit1 \& atgmatatc \& 1．00E．05 \& －12．1 \& 0.0001 \& 1302 \& 13．\％ \& 4797 \& 11．6\％ \& ust2 \& ттасgтgat \& 1.1000 .11 \& －25．5 \& 。 \& 571 \& 5．7\％ \& 1915 \& 4．3\％

\hline $\underset{\substack{\text { catal，} \\ \text { pax }}}{ }$ \& NNNEAGATaWWatcruv \& 1．006：05 \& ${ }^{-12.12}$ \& ${ }^{0.00001}$ \& ${ }^{309}$ \& ${ }^{3.1 \%}$ \& ${ }^{989}$ \& ${ }^{2.4 \%}$ \& ${ }_{\text {crg }}^{\text {Era }}$ \& ${ }_{\text {acaggatag }}$ \& 1．00：－10 \& －24．6 \& 0 \& ${ }_{201}^{2701}$ \& 27．0\％ \& 10803 \& 24．2\％

\hline ${ }_{\text {Octact }}^{\text {pats }}$ \& \& ${ }^{1}$ \& ${ }_{-9.7}^{10.2}$ \& ${ }_{0}^{0.00004} 0$ \& 130
36 \& ${ }_{\text {l }}^{\text {0．4\％}}$ \& 373
73 \& ${ }_{0}^{0.9 \%}$ \& \& \& \& －22．6 \& \bigcirc \& 893
1407 \& － \& ${ }_{5359}^{3240}$ \& （72．2\％

\hline Bm2 \& attaatatc \& 1．00E．04 \& 9.7 \& 0.0006 \& 167 \& 1．7\％ \& 506 \& 1．2\％ \& ews：ERg \& attrctoti \& 1．000：09 \& －22．0 \& 0 \& 1991 \& 14．9\％ \& 5722 \& 12．8\％

\hline pax5 \& бсасссаАссrtach \& 1．005．04 \& －9．5 \& 0.0007 \& ${ }^{364}$ \& 3．6\％ \& 1230 \& \& clock \& онсастte \& 1.000 .09 \& \& 0 \& ${ }^{733}$ \& ${ }^{7.3 \%}$ \& 2615 \& 5．8\％

\hline \& \& \& \& \& \& \& \& \& ${ }_{\text {EbFI }}^{\text {Ex }}$ \& GTrcccwog6a \& 1．00：09 \& 21．2 \& 0 \& ${ }^{1754}$ \& ${ }^{\text {17．5\％}}$ \& ${ }_{689}^{689}$ \& 12．3\％

\hline \& \& \& \& \& \& \& \& \& \& \& \& －${ }_{-19.1}$ \& \bigcirc \& | 253 |
| :---: |
| 121 | \& ${ }_{\text {2，}}^{\text {2．2\％}}$ \& ${ }_{4274}^{757}$ \& ${ }_{9.5 \%}^{1.7 \%}$

\hline \& \& \& \& \& \& \& \& \& 50x2 \& вссаптотс \& 1.00007 \& －17．9 \& 。 \& 1045 \& 10．5\％ \& 3995 \& 8．8\％

\hline \& \& \& \& \& \& \& \& \& c．ayc \& wccactige \& 1.00607 \& 17.6 \& 0 \& ${ }^{648}$ \& 6．5\％ \& 2335 \& 5．2\％

\hline \& \& \& \& \& \& \& \& \& ${ }_{\text {CEEPPPAP1 }}^{\text {Efi }}$ \& ${ }_{\text {M }}^{\text {MCACGGAAGT }}$ \& 1.00007
1.00607 \& －17．1
－17．0 \& \bigcirc \& 715
179 \& （72\％ \& ${ }_{2613}^{2615}$ \& 5．8\％

\hline \& \& \& \& \& \& \& \& \& ${ }_{\text {n Mr m }}$ \& viccactige \& ${ }^{1.000007}$ \& －16．8 \& 0 \& ${ }_{863}^{843}$ \& ${ }_{8}^{8.4 \% \%}$ \& ${ }^{3144}$ \& 7．0\％\％

\hline \& \& \& \& \& \& \& \& \& \& \& （1．00E．06 \& －14．4 \& \bigcirc \& ${ }_{1597}^{662}$ \& \& ${ }_{\substack{2437 \\ 637}}$ \&

\hline \& \& \& \& \& \& \& \& \& URE，DR4 \& rgбtactanagata \& ${ }^{1.0000505}$ \& －13．5 \& 0 \& ${ }_{121}^{101}$ \& 1．0\％\％ \& ${ }_{272}^{272}$ \& 0．6\％

\hline \& \& \& \& \& \& \& \& \& \& AVCCGGAAGT
RCactimen \& \& －13．9 \& \bigcirc \& 378
324 \& ${ }_{\text {l }}^{\text {7．2\％}}$ \& ${ }_{1116}^{2789}$ \& ${ }_{\text {2，}}{ }^{6.2 \%}$

\hline \& \& \& \& \& \& \& \& \& Ews．ful \& vacaaganat \& ${ }^{1.0000505}$ \& －12， \& － \& 1043
104
195 \& 10．4\％ \& ${ }_{4073}$ \& 9.1%

\hline \& \& \& \& \& \& \& \& \& \& \& ${ }_{\text {l }}^{\text {l }}$ \& －12．4 \& \bigcirc \& ${ }_{503}^{196}$ \& ${ }_{5.0 \%}^{2.0 \%}$ \& ${ }_{1848} 18$ \& ${ }_{4.1 \%}^{1.4 \%}$

\hline \& \& \& \& \& \& \& \& \& NF1 \& стtGcabisstrcar \& ${ }^{1.0000505}$ \& －11．7 \& 0 \& | 1039 |
| :--- |
| 108 |
| 109 | \& 10．4\％ \& 4088 \& ${ }^{9.1 \%}$

\hline \& \& \& \& \& \& \& \& \& ${ }_{\text {Atoha }}^{\text {ERE }}$ \& \& \& －11．5 \& ${ }_{0}^{0.0001}$ \& 308
1768
1 \& ${ }^{3.17 \%} \times 1.7$ \& ${ }_{7238}^{1071}$ \& 2．4．2\％

\hline \& \& \& \& \& \& \& \& \& \& vccactig

cTatrac \& ctiole \& －10．0 \& ${ }_{\text {coin }}^{\substack{0.0003 \\ 0.003}}$ \& ${ }_{2622}^{422}$ \& \& | 1556 |
| :--- |
| 11149 |
| 1 | \&

\hline \& \& \& \& \& \& \& \& \& \& ${ }_{\text {aftragata }}$ \& （1．006．04 \& $\stackrel{-9.8}{ }$ \& ${ }_{0}^{0.0003}$ \& ${ }_{221}^{2622}$ \& ${ }_{2.2 \%}^{26.6 \%}$ \& ${ }_{7}^{1159}$ \& ${ }_{1}^{24.7 \%}$

\hline
\end{tabular}

Table 23: Genes with adipose tissue- or SGBS-selective ATAC peaks at TSSs

15:67350590	Enstoooos58071.2	RP11-798	Tissue 1, Tissue 2, Tissue 3	19.50701901	Enstooooo601313.5	MYH14	Tissue 1, Tissue 2, T	12:0030469	Enstoooos547094.1	RP11-654012.3	S6BS 1, SGES2	16:1899255	ENsToo000304381.9, Enstooooos69532.5	тMC7	SGEs 1, 56
15:69221838	Enstoooou31067.3	Spesp	Tissue 1	19:58871413	Enstooooou7487.5	LAR1	Tissue 1, 1 Trsse 3	12:91504607	Enstooooze6718.4		sces 1, sges 2	16:18990608	Enstooooar21369.3	TMC7	sces 1, $\operatorname{scBs52}$
15:69221842	ENSTOOOOO557966.1	RP11.809H		19:5887471	Enstooooo348231.8	LAR1	Tissue	1:301813	Enstoooocare638.1	RP4.65	SGBES 1, SGES2	16:2367633	Enstoooos66996.	CTD-2196E14.9	SGBS 1, 56852
15:69221863	000		Tissue 1		Enstoooou391742.6		Tissue 1, Tissue 3	13:100104722							
		nox				LAR1					SGBE 1, SGEs2	16:502			
15:944053	ENST00000554530.5 ENST00000331849.8,EN	RP11-76E17.3	sue 1, Tissue		Enstooooss7055. 3	zNF83	Tissue 1, Tissue 2, Tissue 3		Ensto		SGBES 1, SGBS2	16:50295	Enstoooose		S52
16:20419855	stooooos7558.5	ACSMS	Tissue 1, Tissue 2, Tissue 3	20:3093252	ENsTooooor26659.12 ENSTOOOOO534862.5,		Tissue 1, Tissue 2, Trssue 3	13:96366031	Enstroooosi6092. 1	snR65	SGES 1, SGB82	16.50315	Enstrooooss1803.1	MR5587	Gbs
887	00575070	ACSM	Issue 1, 1Tssue 2 , Tissue 3	20:30634990		Hck	Ssue 1, Tissue 3	4:105330616			SGBS 1, SGES2	16:7145366	Enstooooos67469.1	RP11-510M2.1	SGBS 1, 5GBS2
$16: 2$	Enstooooos294	c16orf5	Tissue 1, Trsue 3	20:3063999	Enstooooo375862.6	HCK	Tissue 1, Tissue 3	14:1053306	Nstooooos5395.2	CEP17	SGES 1, SGES2	16:7155	stoo	CHS4	
16:31270310	Troooeng	itgam	Tissue 1	20:30635044	rooooob29881.2 T00000375852.2,	HCK	Tissue 1, Tissue 3	1:44513048	Enstooooca31800.1	RP5-1198020.4	SGES 1, SGES2	16.72816671	Enstooooss4072.1	ACOO9933.1	SGES 1, SGE82
16:3127031	roooos	itgam	sue 1	20:30635	T000	нсk	Tissue 1,	1:44513063	Enstoooooa37643.1	RP5-119802	SGBE 1, SGEs2	1:8799	Enstooooas3249.5	RP11-242F24.1	S668 1, 56B52
16:53566	Nstooe	${ }_{1 \times \times 6}$	2e 2	20.31		${ }^{\text {BPFFE8 }}$	Tissue	1:44855	Enstooooser2515.1	${ }^{\text {RNUG }-3699}$	Scis 1, SGB52	1:67973	Enstoooobes5092.1	${ }^{\text {RP11-242224.1 }}$	S685 1.56852
16.554226	ENsTroooos	MMP2	Tissue 1, Tissue 2 ,	20.3	Enstoooooas3914.1		Tissue 1	14:7111	ENstoooosss3682.1	${ }^{0126}$	${ }_{56 \text { cses 1, } 1 \text { Scess } 2}$	16:816	Enstooooos98800.8		${ }_{\text {Scess } 1,56882}$
16.89942611	EnsToo000268679.8	CBFA2	Tissue 1 , Tissue 3	20:5179919	Enstooooo362348.1	Rn7s	Tissue 1, Tissue 3		Enstoooos57547.1	(12283	SGBEs 1, SGEs2	1688221394	Enstoooosi6079.1		sces 1, SGB82
17:18279975	ENST00000399134.4 ENST00000254695.12,	Evplu	Tissue 1, Tissue 2	20:9661735	Enstoooooas9270.1	RP5.83984.8	Tissue 1, Tissue 2, Tis	15:101418580	Enstoooos3984.9	AldH1a3	SGBE 1, SGES2	16:3018902	Enstoooos56538. 1	CT-325312.1	SGES 1, SGB82
172	Nstooooub6401.8	Rapig	Tissue 1	2:108140942	enstooo	Ac09669. 3	Ue 1, Tissue 2, Tissue 3	15:101419043	Enstooooos57963.1	aldhias	56BE 1, 56832	16:8735081	Enstoooos51567.1	RP4.536824.3	S6Es 1, 56B52
17:3431279	Enstroon	ccl14		${ }^{21.1591}$	Enstoon	SAMSN	We 1	${ }^{\text {15:101419079 }}$	Enstooooush623.6	${ }_{\text {Reabid }}^{\text {Aldia }}$		16:9157410			S6B5 1.566822
-34313039	ENST00000614009.1 ENST00000308423.6,EN	ca	Tissue 1	21.15913	Enstooooadose	SamsN1	ve 1	1.52455	Enstooooch7655.3	RAB38	SGBES 1, SGBS2	17:1517793	Enstrooooas3339.2	Accoos	5GBS 1,56B82
17:4100220	stoooue61357.1	AоС3	Tissue 1,	21:15913680	Troooobi912		sue 1	15:29268	5531.1		5G6S 1, SGEs2		Enstoooos39001.1		566s 1, 56Bs2
17/49516013	Enstooooos88341.1	RP11-1	sue 1		roooooa333	A0069	Ue 1, Tissue 3	15:413156\%	ENSTOOOOO560178.1	RP11.54001	SGBS 1, 56B32	17770021794	Enstoooooar2655. 3	Lincol1	SGES 1, 5 GEs 22
17.53350013	enstooooos 74716.1	RP11-515017.2	Tissue 1, Trssue 2, TIssue 3	2:143881882	ENST00000295095.10 ENSTOOOOO291700.8,	ARHGAP15	Tissue 1	15:427118994	Enstooooo364207.1	RNUG-188P	SGBES 1, SGES2	1770588392	Enstoooous3722.6	Inccoss11	SGES 1, SG682
17:6982625	868.8	c10A	Tissue 1, Trssue 3	21:880201	Enstoooos367071.4	s1008	Tissue 1 ,		Ensto	M1R422A	SGBEs 1, SGEs2		Enstoooobi1590.1	,	${ }_{\text {S }}^{568581,568822}$
	Enstroooos 77295.1	HID1-AS1	Tissue 1, T	2:154		Galnti	Tissue 1,	15:7885	Enstoooooz9956	CHRN	5 scbs 1, SGES2	17:805	Ensto	snoul3	${ }_{\text {SGESS } 1,5 \mathrm{SBS52}}$
	Enstoo		Tissue 1, Trssue 2,1	2:231085	Enstoooooa20434.7				Enstoooos595	CHRNAS			Enstooooss9654.11		
18.1342647	Enstooe	LDIRADA	Tissue 1, Tissue 3	2:231085	Enstoo	140		15:7919	Enstooooob24492	RP11.	SGBE 1, SGBS2	18:61437	T00000540675.5	SERPINB7	sGes 1, 56Es22
18822566645	Enstoooosso98	RP11-958F21.1	Tissue 1, Tissue 2 ,	2:231084	Enstooooosil495.7	140	Tissue 1	16:1599	ENSTOOOOO452191.6 ENSTooooosa381.9,	C160rf	SGBES 1, SGES2	18:61437643	Enstoooos38019.6	SERPNB7	SG6S 1, SGB52
18:2	Ens	dscas	Tissue	2.23		SP140	Tissue 1	16:181	Nstoooosf9932.5	TM	${ }_{56 \text { cses } 1, \text { Scess2 }}$	18:68046826	Enstoooossi251.1.		S ${ }^{\text {sis2 }}$
18:307150	(stoo	ccocils	Tissu	2004	Enstood	c220	Tissu		ENSTOOOOO56699	ст-219	SGES 1, SGBS2	19:14	Enstooooovs4320.7	¢00	S 52
18:345059	ST00	TGIF1	Tissue 1	22:500461	Enstooooos 14287.5	C22or3		${ }^{1.64576887}$	Enstoooou	ROR1-AS1	SGBE 1, SGES2	19:1404	Enstoooou339	Poonl	S 1, SGBS2
18:5941449	Ensto		Tissue 1	2.501962	ENSTOOOOO635519.1	NRXN1	Tissue 1, Tissue 2, Tissue 3	16:50299426	ENSTTOOO	ADCC7	56851	19:3355	Enstoon	RHPN2	SBE 1, S6BS2
			Tissu			NRXN1			Ens						
	Enstoooous61757.7		Tissue 1,T		ENSTOOOO0378262.7 ENSTOOOO0415520.5	NRX	Tissu		Enst	M15587	S82	19:36159192	Ensto	UPK1	
	Enstoooouar60	стD-266					Tissue 1, Tissue	16:585	Enstooo	164	S 1, S6Es2		Ensto		Ss2
19:120	Enstooooas51691.2	стD-2666121.1	Tissue 1	${ }^{2: 9241721}$	Enstoooos55094.1	RP11-734k21.5	Tissue 1	16:585	Enstooooos68640.5 Enstooooous6772.8,8, Nstooocoos $52999.5, \mathrm{E}$ Nstoocoosbisp9.5.E	NDRG4	SGBE 1, SGES2	19:4775	Enstood	2ne233	S52
19.14550071	Enstoocoosaz21.8	PkN1	Tissue 1, Tissue 3	3:178979	Enstroooo399697.2	CNM	Tissue 1, Tissue 2, TTssue 3	66:58533046		Norg4	SGBES 1, SGBS2	19:58876740		111	SGEs 1, SGEs2
						KCNM			000360461.9	PLEKHG4	BS2				
19:173746	ENstrooooz25997.7	UsHBP1	e 3	3:1832684	Enstooooos41319.7	кHH6	Tissue 1, Tissue 2, Tissue 3	1:66819064	Enstoooooas0109.2	PDE4B	5GBE 1, SGES2	1.96203651	Enstoooobena401.1	pp1-286814.2	S 1 1, SGBs2
19:18507420	Enstooooss9840.				Enstooooos53	Satbl-A		16:7145936	Enstoooos6769.1	RP1-510	SGES 1, SGEs2		Enstroooo618098.4		
19:185074	Enstoooou39007.3	LrRCL	Tissue 1	3:40	Enstoooooal2811.1	RP11-761		16:7155	Enstoo	CHST4	56BE 1, SGEs2	19:9512730	Enstoooob34991.1	CTC-325H20.8	
19:22192720	ENST00000597040.1 ENST00000397126.8,EN	zNF208	Tissue 1	3.56995998	Enstooooo996106.5	ARHGEF3	Tissue 1, Tissue 2, Tissue 3	16:72820671	Enstooooss4072.1	ACOO94	SGBE 1, SGES2	20:1829075	Enstooooasbe88. 1	RP4.5689.3	5G68 1, SGB52
	STroooob01773,5,NST														
19:22192744	000060	zNF208			Enstoooooso2344.5	RP11	ue 2,	:678	Enstooooua32429.5	Rp11-24	SGBES 1, SGBS2		Enstooooass461.1	RP11-526117.2	SGBE 1, SGBS2
19:22192				5:1603	Enstoooos 18580.5	RP11-10		1:6783		RP11-242				1.4	sG6s 1, SGB82
19:226041	Enstood	2n+58	Tissue 1	5:23502	ENSTOOOOO296682.3	Prom9	Tiss	16:81642	Enstood	cmip	SGBE 1, SGBS2	20:963	Enstooooo371571.4	KCNG1	SGES 1, SGBS2
19:226041	Enstooooo60155	2 N	Tissue 1	5:4254314	Enstooooo618088.4	GHR	Tissue	16:81677	Enstooooc398040.8		SGBE 1, SGES2	20.5887	Enstoooob78961.8		
19:2260431	Enstoooos99122	Ac0115	Tissue 1	5:4243314	Enstooooo612382.4	GHR	Tissue 1, Tissue 3	16:82225394	Enstooooos16079.1	RNTKkP190	SGBES 1, SGES2	20.5007602	Enstoooobil819.1	RP5-827E2	sces 1, 56852
19:227141427	Tooo	Lincol2			5153356.2	28ED3-AS1	Tissue 1, Tissue 2, T	16:83022902	S6523	Cro. 3253112	56BES 1, SGEs32	2:113	Enstoooous6685.5	Pax8.-A51	S6Es 1, 5G6822
			Tissue 1		Enstoo	RP11-401	Tissue 1,		Enstoooos61567	RP4.536	SGBE 1, SGES2		Enstoooooa46401.1		
19:229	Troo		Tissue 1	6:16618	Enstooo	RP11-252	Tissue 1	16.9	Enstooo	RP1147	SGBES 1, SGES2		Enstoooobe37	1-297	S2
19:2945	Enstoooose	uncoos	Tissue 1,	6.32186	Enstoooon	Notch4	Tissue 1,	17:1518	Enstooooas3	Acoos7	SGBES 1, SGES2	2:122543019	Enstooooa38722.5	AC01873	SG68 1, SGB52
19:3177	ENs			6:32552	Enstooo	HLA.orb1		17:393	Enstoooos3900	-	SGBE 1, SGES2	2:12254	Enstooooa3s895.5	AC018737.3	SG68 1, $\mathrm{SGB52}$
1.93374	Enstoooos	29804	Tissue 3	$6: 3255222$	Enstoooous600	HLA.drb1	Tissue 3	17.52976873	Enstooooc575882.5	томı1	SGBES 1, SGES2	21:2757454	Enstooooar2171.1	AP001596.6	sces 1, SGB52
19:398	Enstoo		Tissue 1	6.326292929		HLA.DOB1	Tissue 1,	175:5277112	Enstooooas5276	том111	${ }_{5}^{\text {ScBEs 1, Scess } 2}$	21:30718	ENSTTOOOOO5042921	${ }_{\text {BACHI-T1 }}$	
3982	STOOO	GMFG	Tissue 1,	6:3262	ENSTOOOOO39907	HLA-DOB	Tissue 1 ,	17.52971/126	ENSTOOOOO3488	том111	SGBS 1, SGES2	21:35823	Enstooooa0884	SNORA	
19:3982	Tood			663262	Enstoooou3	HLA-Dab1	Tissu	17:52977194	ENstroooos72	том111		$2: 1277992464$	Enstooooses23	XiRP2-A	SGES 1, SGBS2
19:3982	Enstoo	GMFG		663262	Enstoooooa36551.6	HLA-DQB1	Tissue 1, Tissue 2, Tissue 3	17:52977196	ENSTTOOOOO572	тom111	SGBS 1, SGBS2	2:17564	Enstoon	AC0188	SGES 1, SGBS2
19:3982	Enstoo	${ }_{\text {GMFG }}$		${ }^{6} 3.326$	Enstoo	${ }^{\text {HLA}}$	Tissue 1, Tissue 2, Tissue 3	17.529772717	Enstooos	Tomil	${ }_{5}^{568851,568532}$		Enstoooobe2111	SpR1	
						RP3.365	Tissue 3			том				TxNRD2	
19,3982588	Enstoooos97595		Tissue 1 , Tis	5299313	ST00000281	KHDRE	Tissue 1, Tissue 2 ,	177702939	Enstoooourze	LiNCO112	Scis 1, SGBS2	${ }_{\text {22:23 }}^{22: 19}$	Enstooooater335	${ }_{\text {PAXX }}^{\text {TXNR }}$	
19:4205488	ENST00000407170.	ceacam	Tissue 1, Tissue 2,	65833	(0000037	LY86	Tissue 1, Tissue 3	17700334	Nstooo	Lincoos			ST000004		SB1, SGis
19:420548	sto	Aco	Tissue 1	7:1	Enstooooo259945.3	GIMAP4	Tissue	17:70587	Enstooooos53722.6	uncoos 1	G685 1, S6852	$2: 223158470$	Enstoooos50526.8	pax 3	S ${ }^{\text {S 1, SGBs2 }}$
19:453907	ENsTrooooss6020.1		Tissue 1	77.150	nsto	Gmap	Tssue 1 , msse	1777	Enstooooben1590.1		${ }_{5}^{56881,56852}$.	${ }_{\text {Pax }}^{\text {pax }}$	
19:487520	ENsToooos	CaRD8 CARD	Tissue 1, 1 , Tssue 2, Tisue 1, , Trsue 2 ,	7, 7 7.150	(enstoooosor7194.5	GIMAP1 ${ }_{\text {GIMAP1.GIMAP5 }}$	Tissu 1, Trssue 2 , Tlssue 3	${ }_{1812}^{1780}$	Enstooooas9991.1.	${ }_{\text {sneul3 }}^{\text {PRELIOBA }}$		2:2231586999	ENsToooodeas51.7	${ }_{\text {pax }}^{\substack{\text { pax }}}$	
19:48752089		Cards	Tissue 1, Tissue 2, Tissue	7:150414340	Enstooooasgi81.6	gimaps	Tissue 1, Tissue 2, Tissue 3	1883236626	Enstrooocss6954.1	RP11-138H11.1		$2: 23158774$			
19:487521	ENST00000447740.6	CARD8	Tissue 1, TTssue 2, Tissue 3	7:153104318	Enstoooous 4441.2	Uncoing	Tissue 2	18:77375215	Enstoooos92688.1	Myoss	SGB8 1, SGES2	$2: 227045086$	Enstoooocar3838.1	AC06813	Scies 1, G6es2
	00000400075	mr	Tissue 1, Tissue 2, Tissue 3	7:1576422	Enstoooooa38047.1.	Ac0118	Tissue 1, Tissue 3	18:61441608	Enstoooocs40675.5	SEPPing	56851, 56882	$2: 22873769$	Enstoooos37666.6	dawn	1,56852
19:5070	Esstroooobeni313.5		sue 2 , Tissue 3		Enstoooonat 204.5		Tissue 1 , TIssue 2 , Tissue 3		Enstoo	SERPNB	SGBE11.56B52	2:28731322	EnsToooouen9331.2		
	ENSTOOOOO391775.7				,										
	ENsToooosas77						Tisue								
19:54326647	0000391773.5	NLA		7:6336645	Enstoooosss312.1	Ac09263	Tissue 1. Tissue , .Tissue 3	911004787	Enstooooe254320.7	poonl	5 SES 1, S6822		nstooooanoso6		
19.58875413	Enstooooar748	LalR1	1, Tissue 3	7:6382213	Enstoooooss2948.1	Aco9234	ssue 1 , Tissue 2, 2 Tssue	19:19048288	Enstooooc33956.9	poonl1	SGES 1, SGES2	22:09919136	Enstoooosib315.1	Al03159	SGEs 1, S6Bs2
	Ens	Laik1			${ }_{\substack{\text { ENSTOOOOO45806.2, } \\ \text { ENSTOOOOS50760.3 }}}$		Tissue 1, Tissue 2, Tissue 3		Enstoooorsarea. 7				Enstoo		
19.5	Enstoooos	Lair1	Tissue 1, Trssue 3	77:7236019	Enstooooobi6821.4	H1P1	Tissue 1 , TIssue , , tissue 3	19:35895508	Enstooooss388	Uncois31	Sc6s 1, SGES2	3:111737	ENSTOOOOO438284.2		${ }_{\text {SGES } 1, \text { SGBS } 22}$
析	Enstoooos	Lair1	Tissue 1, Tissue 3	101310486	Enstoooos 1944		Tissue 1, Tissue 2	19:36163192	Enstrooooa4319	UPR1AAS1	SGBEs 1, SGEs2	3:113928159	Enstooooasi173.1	RP11.55316.2	sces 1, SGB82
19.57182127	Enstooooos37055	835	Ssue 1, Tissue 2, T	11238386	rooo	-110	Issue 1, TIssue 2,	19:44773332	Enstroooos9258.	zNf233	SGES 1, S6Es2	3:113928237	Enstrooooa9303	RP11-5336	sGes 1, 5 SG
19:671724	Enstoo0030	vav1	Tissue 1	112383891	Enstoooos21753.5	RP11-1101K	Tissue 1, Tissue 2, Tissue 3	19:4773075	Enstoooos91958.6	zNF233	SGEs 1, SGes2	3:115337170	Enstooooos05124.10		gess
19:6771736	ENstroooobe2142.5	vavi	Tissue 1	8:40005973	Enstooooo315792.4	C8orf	Tissue 1, Tissue 2 , Tissue 3	19.52077588	Enstoooooabs511.2	zNe175	SGBE 1, SGBS2	3:115337356	Enstoooos39780.3	GAP43	sces 1, 56852
19:6771738	Enstooooss6764	vav1	Tissue 1	8.56428535	Enstoooos52918. 1	1-628E19	Tissue 2, Tissue 3	19:55880740			SGBES 1, SGB82	3:120621918	wstooo	TxXPSL	15 1, ${ }^{\text {S }}$
					Enstoooos52556.1				Nstooooossoces.5		SGBS 1, SGES2		4.5		
20:147112	Enstoooona	SIRP82	Tissue 1, Tissue 2	8:93676115	21387.1	RP11-10012.1	Tissue 1, Tissue 2, Tissue 3	12:9627651	1	RP11-2868	SGBE 1, SGES2	3:120622135	T00000047279.5	stxpest	S 1,5
					Enstooooo333817.,				Enstooooc306708.10				Enstrooooa92541.5,		
20:17942588 20:30597252	enstooooo390930.1	SNORD17	Tissue 1, Tissue 2	9:116258706	Enstoooos39646.7	RGS3	Tissue 1, TIssue 3	19:7952389	,enstroooobi8998.4	$\stackrel{\text { LRRC8E }}{\text { CTC35 }}$	SGBS 1, SGBS2	3:120621200	EnsTooooca9729.5	STXPP5L	
	Enstooooez62659.12				ENSTO0000429533.5		Tissue 1, Trssue 2, Tissue 3		Enstooooce 34951.1	ct-325H20.8					SG6s 1, 56B2
	EN												. 6		
${ }_{20}^{2030368389999}$	Stoooros38448.5 ${ }_{\text {ENSToooos75862.6 }}$	${ }_{\text {HCK }}^{\text {HCK }}$	(tissu 1, 1, Tssue 3	${ }^{9.6665301143}$	ENSTOOOOO29661.1.	${ }_{\text {RP11-5906.3 }}^{\text {R12-2 }}$	Tissue 1	${ }^{20118294754}$	ENSTSoooos36848.1						
	ENSTOoooos2055				00000375751.8,										
20:30639044	STroooobe	Hck	TIssue 1, Tissue 3	9.93559068	Enstooooos7574.8	srk	Tissue 1	0:2794613	Trooo00380593.4	RP5.860F19	SGES 1, SGBS2	:178131910	Enstoooocilas 7.1	P11-385)	SGES 1,56
	,	нск	Tissue 1, TTssue 3			STK	Tissue 1		Enstoo		SGES 1, SGES2	3:178	7.5		
20:316	ENS	BPrfea	Tissue 1,	x:136643300	Enstoooooz87538.9	z1c3	Tissue 1 , Tissue 2, Tissue 3	20:2794566	Enstooooos80589.4	c20ori41	5GBE 1, SGES2	3:18321522	Enstooooas9676. 1	kLHL6-As1	SGEs 1, SGB52
20.34	Ens	RP3-477	Tissue 1	x.78617855	Enstooooo373298.6	1 im $^{\text {a }}$ A	Tissue 1, Tissue 2, Tissue 3	20:32604554	Enstoooous 1556.2	RPS-1125A11.4	S6BS 1, 5 G6852	3:21979057	Enstooooa48880.5	zNf3850-AS2	S6Es 1, S6B52
			Tissue 1, Tissue 2, Tissue 3		Sroooooa34	IM2A	Tissue 1, Tissue 2 , Tissue 3	20:9963	Enstooooc371571.4	kcNG1	SGBEs 1, SGES2	3:528775	Enstoooobe2422.1	RP11-89414.	sces 1, $\mathrm{SGB82} 2$
20:589909	ENST	TCF15	Tissue 1 ,						Enstoo	${ }_{\text {CHGEB }}^{\text {CNF217 }}$	SGEB1, 1 SGES25	100060266 10060431	Enstoooosiss	ADH4	

Table 24: GWAS loci used in GREGOR enrichment analyses

Trait category	Number of loci	Number of variants	Traits included
Cardiovascular outcomes	76	2049	Coronary artery disease, coronary heart disease, large artery atherosclerosis, myocardial infarction, stroke
HDL cholesterol	250	5084	HDL cholesterol, HDL cholesterol:triglycerides
Blood pressure traits	57	2184	Diastolic blood pressure, hypertension, mean arterial pressure, pulse pressure, systolic blood pressure
Body mass index	91	3188	Body mass index
Type 2 diabetes	154	3046	Type 2 diabetes
LDL cholesterol	291	3941	LDL cholesterol
Waist to hip ratio adjusted for BMI	64	1385	Waist to hip ratio adjusted for BMI
Insulin	31	735	Fasting insulin, fasting insulin adjusted for BMI
Triglycerides	159	2753	Triglycerides
Adiponectin	21	424	Adiponectin
Total cholesterol	231	3801	Total cholesterol
Glucose	63	1135	1 hour glucose, 2 hour glucose, 2 hour glucose adjusted for BMI, fasting glucose, fasting glucose adjusted for BMI

GWAS loci are from the GWAS catalog (www.ebi.ac.uk/gwas, accessed December 2016)

Table 25: Enrichment of GWAS loci in ATAC peaks using GREGOR

Trait	Sample	Overlaps	Expected overlaps	Standard Deviation	Fold change	Z score	P value	Total loci in trait category	Percent loci in ATAC peaks	Total variants	Number of variants in ATAC peaks	Percent of variants in ATAC peaks
Adiponectin	Adipose tissue all peaks	8	2.46	1.39	3.25	3.99	8.03E-04	21	38.1	424	12	2.8
Adiponectin	Adipose tissue enhancer peaks	5	0.82	0.88	6.07	4.76	8.66E-04	21	23.8	424	8	1.9
Adiponectin	Adipose tissue promoter peaks	2	1.05	0.96	1.91	0.99	2.82E-01	21	9.5	424	3	0.7
Adiponectin	Roadmap adipose enhancers	20	5.66	1.92	3.53	7.47	4.94E-12	21	95.2	424	70	16.5
Adiponectin	Roadmap adipose promoters	7	2.91	1.5	2.41	2.72	1.41E-02	21	33.3	424	18	4.2
Adiponectin	SGBS all peaks	13	5.99	1.86	2.17	3.78	4.37E-04	21	61.9	424	21	5.0
Adiponectin	SGBS enhancer peaks	9	1.28	1.07	7.06	7.22	5.78E-07	21	42.9	424	11	2.6
Adiponectin	SGBS promoter peaks	4	1.42	1.1	2.82	2.35	4.11E-02	21	19.0	424	4	0.9
Blood pressure traits	Adipose tissue all peaks	25	10.45	2.69	2.39	5.41	9.96E-07	57	43.9	2184	36	1.6
Blood pressure traits	Adipose tissue enhancer peaks	13	3.75	1.79	3.47	5.16	2.82E-05	57	22.8	2184	11	0.5
Blood pressure traits	Adipose tissue promoter peaks	16	5.16	2.03	3.1	5.34	6.45E-06	57	28.1	2184	17	0.8
Blood pressure traits	Roadmap adipose enhancers	38	19.84	3.33	1.92	5.45	1.23E-07	57	66.7	2184	162	7.4
Blood pressure traits	Roadmap adipose promoters	21	11.45	2.77	1.83	3.44	1.00E-03	57	36.8	2184	51	2.3
Blood pressure traits	SGBS all peaks	32	22.86	3.28	1.4	2.78	4.57E-03	57	56.1	2184	110	5.0
Blood pressure traits	SGBS enhancer peaks	13	5.02	2.08	2.59	3.84	7.70E-04	57	22.8	2184	23	1.1
Blood pressure traits	SGBS promoter peaks	16	6.57	2.25	2.44	4.2	1.77E-04	57	28.1	2184	19	0.9
Body mass index	Adipose tissue all peaks	19	15.31	3.16	1.24	1.17	1.56E-01	91	20.9	3188	39	1.2
Body mass index	Adipose tissue enhancer peaks	3	5.28	2.15	0.57	-1.06	9.12E-01	91	3.3	3188	4	0.1
Body mass index	Adipose tissue promoter peaks	15	7.66	2.4	1.96	3.05	$4.08 \mathrm{E}-03$	91	16.5	3188	27	0.8
Body mass index	Roadmap adipose enhancers	33	29.62	4.11	1.11	0.82	2.40E-01	91	36.3	3188	181	5.7
Body mass index	Roadmap adipose promoters	27	16.6	3.3	1.63	3.16	$2.05 \mathrm{E}-03$	91	29.7	3188	80	2.5
Body mass index	SGBS all peaks	38	32.5	4.03	1.17	1.37	1.08E-01	91	41.8	3188	97	3.0
Body mass index	SGBS enhancer peaks	9	7.58	2.51	1.19	0.56	3.42E-01	91	9.9	3188	11	0.3
Body mass index	SGBS promoter peaks	15	9.7	2.67	1.55	1.98	4.13E-02	91	16.5	3188	35	1.1
Cardiometabolic outcomes	Adipose tissue all peaks	26	12.91	2.92	2.01	4.47	3.49E-05	76	34.2	2049	40	2.0
Cardiometabolic outcomes	Adipose tissue enhancer peaks	16	4.37	1.95	3.66	5.97	1.76E-06	76	21.1	2049	19	0.9
Cardiometabolic outcomes	Adipose tissue promoter peaks	10	6.84	2.28	1.46	1.38	$1.24 \mathrm{E}-01$	76	13.2	2049	16	0.8
Cardiometabolic outcomes	Roadmap adipose enhancers	49	25.91	3.83	1.89	6.03	5.60E-09	76	64.5	2049	267	13.0
Cardiometabolic outcomes	Roadmap adipose promoters	21	15.41	3.09	1.36	1.81	5.34E-02	76	27.6	2049	67	3.3
Cardiometabolic outcomes	SGBS all peaks	39	27.49	3.65	1.42	3.15	1.54E-03	76	51.3	2049	129	6.3
Cardiometabolic outcomes	SGBS enhancer peaks	20	7	2.39	2.86	5.43	3.45E-06	76	26.3	2049	41	2.0
Cardiometabolic outcomes	SGBS promoter peaks	12	8.45	2.51	1.42	1.42	1.14E-01	76	15.8	2049	28	1.4
Glucose	Adipose tissue all peaks	15	8.98	2.6	1.67	2.31	2.14E-02	63	23.8	1135	21	1.9
Glucose	Adipose tissue enhancer peaks	5	2.97	1.65	1.68	1.23	1.71E-01	63	7.9	1135	5	0.4
Glucose	Adipose tissue promoter peaks	10	4.15	1.87	2.41	3.14	5.08E-03	63	15.9	1135	13	1.1
Glucose	Roadmap adipose enhancers	36	20.22	3.52	1.78	4.48	$1.43 \mathrm{E}-05$	250	14.0	5084	48	0.9
Glucose	Roadmap adipose promoters	22	10.38	2.78	2.12	4.17	$1.23 \mathrm{E}-04$	63	34.9	1135	40	3.5
Glucose	SGBS all peaks	29	21.33	3.43	1.36	2.24	1.97E-02	63	46.0	1135	57	5.0
Glucose	SGBS enhancer peaks	5	5.08	2.11	0.98	-0.04	5.85E-01	63	7.9	1135	7	0.6
Glucose	SGBS promoter peaks	12	5.27	2.09	2.28	3.23	3.48E-03	63	19.0	1135	19	1.7
HDL cholesterol	Adipose tissue all peaks	78	36.77	5.18	2.12	7.96	4.92E-13	250	31.2	5084	90	1.8
HDL cholesterol	Adipose tissue enhancer peaks	42	12.34	3.33	3.4	8.92	6.17E-13	250	16.8	5084	35	0.7
HDL cholesterol	Adipose tissue promoter peaks	24	17.82	3.82	1.35	1.62	7.26E-02	250	9.6	5084	36	0.7
HDL cholesterol	Roadmap adipose enhancers	167	79.42	6.88	2.1	12.72	3.62E-34	250	66.8	5084	720	14.2
HDL cholesterol	Roadmap adipose promoters	80	43.23	5.52	1.85	6.67	5.04E-10	250	32.0	5084	136	2.7
HDL cholesterol	SGBS all peaks	122	86.54	6.66	1.41	5.32	1.42E-07	250	48.8	5084	218	4.3
HDL cholesterol	SGBS enhancer peaks	35	19.21	4.07	1.82	3.88	2.73E-04	63	55.6	1135	144	12.7
HDL cholesterol	SGBS promoter peaks	38	23.45	4.32	1.62	3.37	1.09E-03	250	15.2	5084	59	1.2
Insulin	Adipose tissue all peaks	14	4.97	1.9	2.82	4.75	3.21E-05	31	45.2	735	19	2.6
Insulin	Adipose tissue enhancer peaks	9	1.65	1.23	5.47	5.99	1.32E-05	31	29.0	735	14	1.9
Insulin	Adipose tissue promoter peaks	0	NA	1.39805	NA	NA	NA	31	NA	735	0	NA
Insulin	Roadmap adipose enhancers	23	10.56	2.47	2.18	5.03	1.33E-06	31	74.2	735	142	19.3
Insulin	Roadmap adipose promoters	5	6.3	2.05	0.79	-0.63	8.08E-01	31	16.1	735	12	1.6
Insulin	SGBS all peaks	20	11.44	2.44	1.75	3.51	5.87E-04	31	64.5	735	33	4.5
Insulin	SGBS enhancer peaks	7	2.76	1.54	2.54	2.76	1.41E-02	31	22.6	735	11	1.5
Insulin	SGBS promoter peaks	1	3.2	1.59	0.31	-1.39	$9.73 \mathrm{E}-01$	31	3.2	735	1	0.1
LDL cholesterol	Adipose tissue all peaks	54	34.04	5.05	1.59	3.95	1.42E-04	291	18.6	3941	58	1.5
LDL cholesterol	Adipose tissue enhancer peaks	11	11.53	3.23	0.95	-0.16	6.10E-01	291	3.8	3941	12	0.3
LDL cholesterol	Adipose tissue promoter peaks	35	15.99	3.68	2.19	5.17	3.83E-06	291	12.0	3941	33	0.8
LDL cholesterol	Roadmap adipose enhancers	118	81.97	7.2	1.44	5	8.85E-07	291	40.2	3941	327	8.3
LDL cholesterol	Roadmap adipose promoters	76	42.41	5.58	1.79	6.02	$1.93 \mathrm{E}-08$	291	26.1	3941	138	3.5
LDL cholesterol	SGBS all peaks	98	82.31	6.85	1.19	2.29	1.42E-02	291	33.7	3941	180	4.6
LDL cholesterol	SGBS enhancer peaks	25	17.84	3.96	1.4	1.81	5.14E-02	291	8.6	3941	29	0.7
LDL cholesterol	SGBS promoter peaks	41	21.99	4.22	1.86	4.5	2.93E-05	291	14.1	3941	52	1.3
Total cholesterol	Adipose tissue all peaks	55	32.63	4.75	1.69	4.71	8.06E-06	231	23.8	3801	56	1.5
Total cholesterol	Adipose tissue enhancer peaks	10	11.07	3.14	0.9	-0.34	6.80E-01	231	4.3	3801	8	0.2
Total cholesterol	Adipose tissue promoter peaks	33	15.39	3.53	2.14	4.98	6.96E-06	231	14.3	3801	34	0.9
Total cholesterol	Roadmap adipose enhancers	101	69.46	6.51	1.45	4.84	1.84E-06	231	43.3	3801	346	9.1
Total cholesterol	Roadmap adipose promoters	68	38.71	5.17	1.76	5.67	9.71E-08	231	29.4	3801	154	4.1
Total cholesterol	SGBS all peaks	96	73.05	6.2	1.31	3.7	1.95E-04	231	41.6	3801	194	5.1
Total cholesterol	SGBS enhancer peaks	25	17.04	3.81	1.47	2.09	2.98E-02	231	10.8	3801	31	0.8
Total cholesterol	SGBS promoter peaks	40	20.65	4.03	1.94	4.81	9.12E-06	231	17.3	3801	59	1.6
Triglycerides	Adipose tissue all peaks	64	27.45	4.3	2.33	8.51	1.81E-14	159	40.3	2753	57	2.1
Triglycerides	Adipose tissue enhancer peaks	28	9.53	2.88	2.94	6.4	7.70E-08	159	17.6	2753	22	0.8
Triglycerides	Adipose tissue promoter peaks	22	13.49	3.26	1.63	2.61	$9.85 \mathrm{E}-03$	159	13.8	2753	18	0.7
Triglycerides	Roadmap adipose enhancers	115	54.22	5.58	2.12	10.9	3.70E-26	159	72.3	2753	390	14.2
Triglycerides	Roadmap adipose promoters	58	31.27	4.63	1.86	5.78	5.52E-08	159	36.5	2753	88	3.2
Triglycerides	SGBS all peaks	77	59.35	5.41	1.3	3.26	8.49E-04	159	48.4	2753	127	4.6
Triglycerides	SGBS enhancer peaks	28	13.82	3.44	2.03	4.12	1.55E-04	159	17.6	2753	35	1.3

Triglycerides	SGBS promoter peaks	25	17.4	3.66	1.44	2.08	3.01E-02	159	15.7	2753	26	0.9
Type 2 diabetes	Adipose tissue all peaks	39	22.17	3.92	1.76	4.3	$5.09 \mathrm{E}-05$	154	25.3	3046	48	1.6
Type 2 diabetes	Adipose tissue enhancer peaks	15	7.13	2.53	2.1	3.1	$4.30 \mathrm{E}-03$	154	9.7	3046	13	0.4
Type 2 diabetes	Adipose tissue promoter peaks	12	11.25	2.9	1.07	0.26	$4.51 \mathrm{E}-01$	154	7.8	3046	19	0.6
Type 2 diabetes	Roadmap adipose enhancers	72	48.74	5.37	1.48	4.33	1.93E-05	154	46.8	3046	403	13.2
Type 2 diabetes	Roadmap adipose promoters	33	26.75	4.2	1.23	1.49	$8.74 \mathrm{E}-02$	154	21.4	3046	86	2.8
Type 2 diabetes	SGBS all peaks	73	50.29	5.11	1.45	4.44	1.22E-05	154	47.4	3046	170	5.6
Type 2 diabetes	SGBS enhancer peaks	24	11.8	3.15	2.03	3.88	$3.76 \mathrm{E}-04$	154	15.6	3046	44	1.4
Type 2 diabetes	SGBS promoter peaks	18	14.9	3.28	1.21	0.95	2.10E-01	154	11.7	3046	34	1.1
Waist to hip ratio adjusted for BMI	Adipose tissue all peaks	26	7.37	2.39	3.53	7.79	1.16E-10	64	40.6	1385	45	3.2
Waist to hip ratio adjusted for BMI	Adipose tissue enhancer peaks	19	2.59	1.54	7.33	10.63	6.43E-13	64	29.7	1385	32	2.3
Waist to hip ratio adjusted for BMI	Adipose tissue promoter peaks	4	3.25	1.67	1.23	0.45	$4.11 \mathrm{E}-01$	64	6.3	1385	6	0.4
Waist to hip ratio adjusted for BMI	Roadmap adipose enhancers	44	18.03	3.38	2.44	7.69	$9.42 \mathrm{E}-13$	64	68.8	1385	294	21.2
Waist to hip ratio adjusted for BMI	Roadmap adipose promoters	22	9.2	2.58	2.39	4.96	$9.21 \mathrm{E}-06$	64	34.4	1385	65	4.7
Waist to hip ratio adjusted for BMI	SGBS all peaks	36	19.38	3.28	1.86	5.07	1.43E-06	64	56.3	1385	124	9.0
Waist to hip ratio adjusted for BMI	SGBS enhancer peaks	25	4.09	1.89	6.12	11.09	1.15E-15	64	39.1	1385	52	3.8
Waist to hip ratio adjusted for BMI	SGBS promoter peaks	9	4.49	1.93	2	2.33	$2.64 \mathrm{E}-02$	64	14.1	1385	23	1.7

Table 26: GWAS loci and variants overlapping transcription factor motifs

Sample	Trait	Total loci in trait category	Number of loci in ATAC peaks	Loci with overlapping TF motifs	Percent of loci overlapping TF motifs	Variants in ATAC peaks	Variants in ATAC peaks overlapping TF motif	Percent of variants in ATAC peaks overlapping TF motif
Adipose tissue	Waist to hip ratio adjusted for BMI	64	26	23	88.5	45	34	75.6
Adipose tissue	Body mass index	91	19	13	68.4	39	23	59.0
Adipose tissue	Adiponectin	21	8	6	75.0	12	6	50.0
Adipose tissue	Type 2 diabetes	154	39	28	71.8	48	28	58.3
Adipose tissue	Insulin	31	14	14	100.0	19	14	73.7
Adipose tissue	Glucose	63	15	13	86.7	21	15	71.4
Adipose tissue	HDL cholesterol	250	78	61	78.2	90	62	68.9
Adipose tissue	LDL cholesterol	291	54	43	79.6	58	38	65.5
Adipose tissue	Total cholesterol	231	55	46	83.6	56	38	67.9
Adipose tissue	Triglycerides	159	64	33	51.6	57	33	57.9
Adipose tissue	Cardiovascular outcomes	76	26	21	80.8	40	25	62.5
Adipose tissue	Blood pressure traits	57	25	16	64.0	36	22	61.1
Adipose tissue	All traits	1245	345	257	74.5	371	242	65.2
SGBS	Waist to hip ratio adjusted for BMI	64	36	33	91.7	124	71	57.3
SGBS	Body mass index	91	38	30	78.9	97	51	52.6
SGBS	Adiponectin	21	13	10	76.9	21	15	71.4
SGBS	Type 2 diabetes	154	73	63	86.3	170	90	52.9
SGBS	Insulin	31	20	12	60.0	33	16	48.5
SGBS	Glucose	63	29	23	79.3	57	33	57.9
SGBS	HDL cholesterol	250	122	101	82.8	218	132	60.6
SGBS	LDL cholesterol	291	98	81	82.7	180	99	55.0
SGBS	Total cholesterol	231	96	77	80.2	194	108	55.7
SGBS	Triglycerides	159	77	58	75.3	127	73	57.5
SGBS	Cardiovascular outcomes	76	39	39	100.0	129	74	57.4
SGBS	Blood pressure traits	57	32	26	81.3	110	58	52.7
SGBS	All traits	1245	575	476	82.8	1123	631	56.2

Table 27: Variants at GWAS-eQTL colocalized loci that overlap ATAC peaks

MIMIMIMI MIM	MMM	IIMIM	!	I			HMIM				11			\#	!

[^3]

[^4]

Table 28: Allelic imbalance in ATAC peaks

Sample	Number of peaks	Heterozygous Sites	Heterozygous sites overlapping ATAC signala	Imbalanced $(\boldsymbol{p}<\mathbf{0 . 0 5})$
Tissue 1	58,279	$1,894,559$	6,461	381
Tissue 2	29,409	$1,890,071$	3,631	230
Tissue 3	49,631	$1,885,394$	3,836	220
Sites in at least 2 samples	N / A	$1,451,379$	2,267	18
Sites in all 3 samples	N / A	269,858	318	1

Required at least 10 total reads and $>=1$ read per allele
p-values were generated using a two-tailed beta-binomial test

Table 29: Variants at GWAS-eQTL colocalized loci with allelic imbalance in ATAC-seq reads

ATAC variant	MAF	Alleles ${ }^{\text {a }}$	Tissue 1			Tissue 3			GWAS Trait	eQTL Gene(s)	eQTL beta ${ }^{\text {a }}$	Adipose Nuclei ChromatinState	Transcription Factor Motifs
			Allele 1 count	Allele 2 count	P value	Allele 1 count	Allele 2 count	P value					
rs11662724	0.22	C / T	20	5	0.02	homozygous		N/A	Phospholipids	ESCO1	-0.63	Promoter	EGR3, EGR4, PAX5, PAX9, TFAP2A, TFAP2B, TfAP2C
rs7187776	0.45	A/G	25	3	7.05E-04	homozygous		N/A	Obesity	SH2B1, ATXN2L	0.40, 0.34	Promoter	SP11, SPIB
r59854955	0.32	G/A	15	5	0.04	14	3	0.01	Obesity	tiparp	0.41	Enhancer	
rs13322435	0.32	6/A	18	1	3.13E-04	15	3	$3.23 \mathrm{E}-03$	Obesity	TIPARP	0. 41	Enhancer	ZEB1
rs56406311	0.30	t/C	12	3	0.04	homozygous		N/A	obesity	TIPARP	0.41	Enhancer	NFIC::TLX1, NR5A2, PLAG1, TFAP2A, TFAP2B, TFAP2C
rs9817452	0.30	t/G	14	4	0.04	homozygous		N/A	Obesity	TIPARP	0.41	Enhancer	NFIC:-TLL1, NR5A2, TfAP2A, TFAP2B, TFAP2C
rs111447985	0.06	C/A	17	5	0.04	11	6	0.33	Cardiac hypertrophy	RP11-541N10.3, OBFC1	0.49, 1.04	Promoter	ELK1, ELK3, ELK4, ERF, ETS1, ETV1, ETV4, ETV5, FEV, FL11, GABPA, TfAP2A, TFAP2B, TFAP2C
rs77397582	0.15	A/G	9	1	0.02	hom	gous	N/A	HDL cholesterol	GFOD, NUTF2	-0.34, -0.30	Flanking Bivalent TSS/Enhancer	

No significant allelic imbalances were identified in tissue sample 2
Required a
${ }^{2}$ Alleles: effect allele/non-effect allele. Effect allele for ATAC-seq is the allele with greater ATAC-seq reads.

CHAPTER 5: DISCUSSION

GWAS have identified hundreds of loci associated with cardiometabolic diseases and traits (www.ebi.ac.uk/gwas/). To date, relatively few mechanisms have been identified at these loci. GWAS are powerful studies that identify many associated loci; however, functionally characterizing these loci presents a multi-faceted challenge and can be time consuming. Challenges include the noncoding nature of many GWAS loci, multiple variants in LD at each locus, the complexity of the underlying mechanisms themselves, and the time and cost of evaluating each locus individually. Statistical fine-mapping, overlap of predicted genomic regulatory elements, and functional assays can be combined to prioritize and identify causal variants. Genome-wide approaches are needed to better characterize the regulatory landscape of cardiometabolic tissues. Identifying causal variants is a critical step in understanding the genetic mechanisms and etiology of complex cardiometabolic diseases.

The noncoding nature of many GWAS loci makes characterizing biological function challenging. The most probable mechanism is that variants act by altering gene regulation (223). Thus, understanding the regulatory landscape of cardiometabolic-relevant tissues is necessary to prioritize candidate variants. The regulatory landscape includes regions of open chromatin, sites of transcription factor binding, and histone marks; these data can be combined to create predicted chromatin states such as promoters, enhancers, and repressors. The ENCODE and Roadmap Epigenomics projects $(59,60)$ have generated a wealth of regulatory datasets in diverse cell types; however, data for some cell types is still limited, particularly for adipose tissue and
pancreatic islets. In Chapter 4, we generated ATAC-seq open chromatin profiles from human subcutaneous adipose tissue and the preadipocyte cell strain, SGBS. By interrogating the open chromatin profiles of adipose tissue and preadipocytes, we can better prioritize candidate variants for functional experiments and identify disease-relevant regulatory regions. As shown in Chapter 4, ATAC-seq open chromatin alone identified a regulatory variant at the SNX10 WHR GWAS locus, and ATAC-seq peaks were enriched in disease-relevant adipose enhancers. Cellular environment can alter chromatin state, especially for cardiometabolic phenotypes, where both genetic and environmental factors contribute to phenotype; additional experiments are needed to characterize regulatory landscapes across various cellular conditions (e.g. mature adipocytes and insulin or glucose treatment). Together, the ATAC-seq data generated from both adipose tissue and preadipocytes add to the growing understanding of gene regulation and the genetics of cardiometabolic traits and diseases.

Variants at a GWAS locus can be prioritized using statistical fine-mapping analyses such as MANTRA, CAVIAR, and PAINTOR and annotation with evidence of regulatory elements. While statistical fine-mapping analyses are informative and can help the variant prioritization process, several limitations exist. Most statistical fine-mapping analyses return a list of variants, or "credible set", that could contribute to the association signal, which requires all or a subset of variants to be tested in functional assays requiring significant time and resources. Another limitation of statistical fine-mapping are the inconsistent results that can arise by comparing existing statistical methods. Each method makes different assumptions about the contributions of underlying variants and applies different strategies incorporating genetic association, LD, and functional annotation. At the ANGPTL8 locus, we used three fine-mapping methods (MANTRA, CAVIAR, and PAINTOR) to prioritize candidate variants. MANTRA identified a credible set of
ten variants. CAVIAR identified 24 variants in the Finnish credible set and two in the African American credible set. PAINTOR identified ten, seven, and five variants in Finnish, African American, and the combined studies, respectively. Of the 39 variants identified in at least one fine-mapping analysis, only 12 were identified in at least two analyses, and only 4 in all three analyses. From my experience, current fine-mapping analyses are most informative when combined with regulatory overlap and functional testing of all probable variants.

The genetic mechanisms at GWAS loci can complicate the identification of causal variants. Identifying the target gene(s) at a GWAS locus is a fundamental part of elucidating the molecular mechanism; however, these genes remain largely unknown for most GWAS loci. GWAS loci in noncoding regions can have multiple genes that appear to be good functional candidates based on gene function and expression, rare coding variant effects, chromosome interactions, and/or literature review. To complicate matters further, multiple genes can be targeted at a single locus (224). eQTL data can be used to identify which gene(s) are most likely to be targeted at a given locus. In Chapter 3, we showed a subcutaneous adipose eQTL association for both ANGPTL8 and DOCK6. Biological roles and a stronger eQTL association suggest $A N G P T L 8$ is the target gene; however, further experiments are needed to fully delineate the role of ANGPTL8 and/or DOCK6. When we published the CDC123/CAMK1D work, eQTL associations had been identified for both $C D C 123$ and $C A M K 1 D$ in whole blood and lung tissue $(84,225)$. Since our publication, in conjunction with collaborators, we have published a large pancreatic islet eQTL study, which identified an eQTL association with GWAS variants, including rs11257655, for CAMK1D $\left(P=4.2 \times 10^{-9}\right)$ but not $C D C 123$ (61). The eQTL association in pancreatic islets provides strong evidence that CAMK1D is a target gene and that CAMK1D plays a role in T2D biology. eQTL studies in additional tissues with larger sample sizes,
especially in liver and other cardiometabolic tissues, are needed to help delineate additional target genes at these and other GWAS loci. Additionally, variants may only affect expression in a specific cellular environment (e.g. when transcriptional regulators are induced); thus, contextspecific eQTL studies may be necessary to identify the missing variant-gene connections. Understanding how associated variants act on gene expression is a vital piece to the complex genetics puzzle.

While a single functional variant is the simplest explanation of a GWAS signal, and such mechanisms exist $(53,226,227)$, many loci consist of multiple functional variants $(54,138)$. At a single locus, variants may be acting in concert in promoters, enhancers, and repressors to alter gene expression, which adds to the complexity of determining mechanisms at GWAS loci. At the CDC123/CAMK1D T2D GWAS locus, we identified a straightforward molecular mechanism with one functional variant, rs11257655, which displayed allelic differences in both transcriptional activity and binding of FOXA1 and FOXA2 (Chapter 2). At the ANGPTL8 HDLC GWAS locus, the mechanism was more complex (Chapter 3). What began as a straightforward locus with only four candidate regulatory variants ($r^{2}>0.8$ in European populations), turned into an extremely complex locus with 42 candidate regulatory variants $\left(r^{2}>0.5\right.$ in African and/or European populations), in which I identified seven variants that exhibited allelic differences in regulatory activity in cells or in vitro. Evaluating variants at individual GWAS loci allows for the most thorough and accurate identification of potentially functional variants.

The functional assays described in this dissertation (i.e. transcriptional reporter and in vitro DNA-protein binding assays) elucidate limitations to and effort involved in experimentally validating candidate variants. Transcriptional reporter luciferase assays are limited in that they do not represent the native chromatin context. The cloned plasmid does not contain nucleosomes
and cannot loop to form the proper chromatin structure present in the cell. We identified functional variants at the CDC123/CAMK1D and ANGPTL8 GWAS loci, but we may have missed potentially functional variants. In addition, regulatory regions tested may show a stronger effect if investigated within the native chromatin context. EMSA experiments determine if proteins are binding to the region of DNA containing a variant; however, they are in vitro assays and transcription factors may bind in vitro more readily than in cells. Additionally, it is often difficult to determine the identity/identities of the transcription factor(s) responsible for regulatory mechanisms. Transcription factor binding motifs and chromatin immunoprecipitation (ChIP-seq) data can be informative for identifying proteins binding to variant alleles. Moreover, transcription factor footprints identified in sequencing data can be more informative than motifs alone, as demonstrated in Chapter 4 using ATAC-seq data. Even with motifs, ChIP-seq data, and footprints, identifying the correct factor remains challenging. For example, at the ANGPTL8 locus (Chapter 3), I performed supershift assays using ~ 40 antibodies for candidate transcription factors, many of which had predicted binding motifs or previous evidence of at least indirect binding from ChIP-seq data, to attempt to determine the identity of the allele-specific protein complex binding to rs737337-C. Only one antibody (RXR α) showed a supershift; however, the supershift was observed in both alleles, suggesting $\operatorname{RXR} \alpha$ is not the allele-specific protein. The lack of supershifts may be due to poor antibody specificity, insufficient length of the probe, incorrect assay conditions, or simply not testing for binding of the correct target protein/factor. Once a transcription factor is identified using in vitro assays, allelic differences in binding can be confirmed by performing ChIP assays in cells or tissues of differing genotypes. Elucidating the effects of variants on transcriptional activity and protein binding provide strong evidence of
potentially functional variants at GWAS loci and are among the best initial experiments to examine GWAS variant function.

Additional experiments will be necessary to fully characterize the mechanism at the CDC123/CAMK1D and ANGPTL8 GWAS loci. At ANGPTL8, the transcription factors binding to variant alleles need to be identified. Additionally, at both loci, physical chromatin interaction and/or genome editing experiments would confirm the target genes, effect on transcription, and downstream phenotype effects. Physical interaction experiments are used to identify chromatin loops between promoters, enhancers, and other regulatory regions. Chromatin conformation assays would solidify the relationship of the identified regulatory regions in Chapters 2 and 3 and target gene promoters. In addition, entire regulatory regions can be deleted or specific variants mutated using CRISPR-Cas9 genome editing to evaluate the effect of altered regulatory elements in vivo (228-230). After isolating edited clones, RNA levels of nearby genes are measured and downstream metabolites or other phenotypes can be quantified to determine the effect of the variant or regulatory region. Such experiments were conducted at the $A D C Y 5$ T2D GWAS locus (227), where deletion of the regulatory region containing rs11708067 resulted in decreased $A D C Y 5$ expression levels and decreased insulin secretion in pancreatic islet beta cells. Physical chromatin interaction and genome editing experiments are robust approaches because the chromatin remains in its native context throughout the experiment. Future experiments will further solidify the mechanism at the CDC123/CAMK1D and ANGPTL8 GWAS loci.

Future experiments will increase the power of ATAC-seq; we are currently expanding to include ~ 400 clinical subcutaneous adipose samples from the METSIM study. As mentioned previously, the METSIM study contains genotypes, expression, and clinical trait data in the same samples. With ~ 400 ATAC-seq profiles, we will have reasonable statistical power to identify
chromatin quantitative trait loci associations (cQTL). Similar to allelic imbalance in open chromatin sequencing reads, these cQTL associations will delineate where in the genome a variant allele alters chromatin accessibility. Variants that alter chromatin accessibility are more likely to be functional variants (172) and cQTL associations will add to strength our ability to prioritize candidate GWAS variants.

Since the advent of GWAS, we have gained significant insight to the genetics of complex cardiometabolic traits. One model to explain the hundreds of GWAS loci suggests an "omnigenic" mode of inheritance, where gene regulatory networks are so highly interconnected that all genes expressed in relevant tissues contribute to all cardiometabolic traits (231). Regardless of whether this or other hypotheses are true, significant work is needed to understand how the thousands of noncoding variants alter gene expression and downstream phenotypes. Given the small effect sizes of most GWAS loci, significant work is needed to understand the network of genes contributing to cardiometabolic phenotypes and how these genes interact together to increase risk for cardiometabolic diseases. Although some massively-parallel regulatory assays exist $(232,233)$, fully elucidating the mechanism of each locus will require locus-specific analysis. Testing candidate variants locus-by-locus is time-consuming and expensive. However, new methods including CRISPR-Cas9 genome editing can improve the speed of regulatory element identification and allow for testing variants in the native chromatin context $(227,228)$. In this set of studies, I have tested candidate variants at two GWAS loci and generated open chromatin profiles for adipose tissue and preadipocyte cells. Together, these results contribute to a broad understanding of genetic regulation of the human genome and mechanisms of complex cardiometabolic traits.

REFERENCES

1. Claussnitzer, M., Dankel, S.N., Kim, K.H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I.S., Beaudry, J.L., Puviindran, V. et al. (2015) FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med., 373, 895-907.
2. Flannick, J., Thorleifsson, G., Beer, N.L., Jacobs, S.B., Grarup, N., Burtt, N.P., Mahajan, A., Fuchsberger, C., Atzmon, G., Benediktsson, R. et al. (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet., 46, 357-363.
3. Wu, Y., Waite, L.L., Jackson, A.U., Sheu, W.H., Buyske, S., Absher, D., Arnett, D.K., Boerwinkle, E., Bonnycastle, L.L., Carty, C.L. et al. (2013) Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained. PLoS genetics, 9, e1003379.
4. Global_Lipids_Genetics_Consortium. (2013) Discovery and refinement of loci associated with lipid levels. Nat. Genet., 45, 1274-1283.
5. DIAbetes_Genetics_Replication_Meta-analysis_Consortium, Asian_Genetic_Epidemiology_Network_Type_2_Diabetes_(AGEN-T2D)_Consortium, South_Asian_Type_2_Diabetes_(SAT2D)_Consortium, Mexican_American_Type_2_Diabetes_(MAT2D)_Consortium and Type_2_Diabetes_Genetic_Exploration_by_Next-generation_sequencing_in_multi-Ethnic_-_Samples_(T2D-GENES)_Consortium. (2014) Genome-wide trans-ancestry metaanalysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet., 46, 234-244.
6. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira, T., Locke, A.E., Magi, R., Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E. et al. (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature, 518, 187-196.
7. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J. et al. (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197-206.
8. Astle, W.J., Elding, H., Jiang, T., Allen, D., Ruklisa, D., Mann, A.L., Mead, D., Bouman, H., Riveros-Mckay, F., Kostadima, M.A. et al. (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell, 167, 14151429 e1419.
9. Balakumar, P., Maung, U.K. and Jagadeesh, G. (2016) Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res., 113, 600-609.
10. James, P.T., Rigby, N. and Leach, R. (2004) The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil, 11, 3-8.
11. Shaw, J.E., Sicree, R.A. and Zimmet, P.Z. (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 87, 4-14.
12. Writing Group, M., Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., Das, S.R., de Ferranti, S., Despres, J.P. et al. (2016) Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 133, e38-360.
13. Stumvoll, M., Goldstein, B.J. and van Haeften, T.W. (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 365, 1333-1346.
14. Casella, S., Bielli, A., Mauriello, A. and Orlandi, A. (2015) Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes. International journal of molecular sciences, 16, 24353-24368.
15. Buse, J.B., Ginsberg, H.N., Bakris, G.L., Clark, N.G., Costa, F., Eckel, R., Fonseca, V., Gerstein, H.C., Grundy, S., Nesto, R.W. et al. (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation, 115, 114-126.
16. Arena, R., Guazzi, M., Lianov, L., Whitsel, L., Berra, K., Lavie, C.J., Kaminsky, L., Williams, M., Hivert, M.F., Franklin, N.C. et al. (2015) Healthy Lifestyle Interventions to Combat Noncommunicable Disease-A Novel Nonhierarchical Connectivity Model for Key Stakeholders: A Policy Statement From the American Heart Association, European Society of Cardiology, European Association for Cardiovascular Prevention and Rehabilitation, and American College of Preventive Medicine. Mayo Clin. Proc., 90, 1082-1103.
17. Sharrett, A.R., Ballantyne, C.M., Coady, S.A., Heiss, G., Sorlie, P.D., Catellier, D., Patsch, W. and Atherosclerosis Risk in Communities Study, G. (2001) Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 104, 1108-1113.
18. Cooney, M.T., Dudina, A., De Bacquer, D., Wilhelmsen, L., Sans, S., Menotti, A., De Backer, G., Jousilahti, P., Keil, U., Thomsen, T. et al. (2009) HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis, 206, 611-616.
19. Farmer, J.A. and Liao, J. (2011) Evolving concepts of the role of high-density lipoprotein in protection from atherosclerosis. Current atherosclerosis reports, 13, 107-114.
20. Chilton, R.J. (2004) Pathophysiology of coronary heart disease: a brief review. J. Am. Osteopath. Assoc., 104, S5-8.
21. Cornier, M.A., Despres, J.P., Davis, N., Grossniklaus, D.A., Klein, S., Lamarche, B., Lopez-Jimenez, F., Rao, G., St-Onge, M.P., Towfighi, A. et al. (2011) Assessing adiposity: a scientific statement from the American Heart Association. Circulation, 124, 1996-2019.
22. Ogden, C.L., Carroll, M.D., Kit, B.K. and Flegal, K.M. (2012) Prevalence of obesity in the United States, 2009-2010. NCHS data brief, 1-8.
23. Hurt, R.T., Frazier, T.H., McClave, S.A. and Kaplan, L.M. (2011) Obesity epidemic: overview, pathophysiology, and the intensive care unit conundrum. JPEN. Journal of parenteral and enteral nutrition, 35, 4S-13S.
24. Hurt, R.T., Kulisek, C., Buchanan, L.A. and McClave, S.A. (2010) The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterology \& hepatology, 6, 780-792.
25. NCEP_Expert_Panel. (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 106, 31433421.
26. Bowes, A., Begley, J. and Kerr, D. (2017) Lifestyle change reduces cardiometabolic risk factors and glucagon-like peptide-1 levels in obese first-degree relatives of people with diabetes. J. Hum. Nutr. Diet.
27. Almgren, P., Lehtovirta, M., Isomaa, B., Sarelin, L., Taskinen, M.R., Lyssenko, V., Tuomi, T., Groop, L. and Botnia Study, G. (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia, 54, 2811-2819.
28. Willemsen, G., Ward, K.J., Bell, C.G., Christensen, K., Bowden, J., Dalgard, C., Harris, J.R., Kaprio, J., Lyle, R., Magnusson, P.K. et al. (2015) The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium. Twin research and human genetics : the official journal of the International Society for Twin Studies, 18, 762-771.
29. Iliadou, A., Snieder, H., Wang, X., Treiber, F.A. and Davis, C.L. (2005) Heritabilities of lipids in young European American and African American twins. Twin research and human genetics : the official journal of the International Society for Twin Studies, 8, 492498.
30. Middelberg, R.P., Martin, N.G. and Whitfield, J.B. (2007) A longitudinal genetic study of plasma lipids in adolescent twins. Twin research and human genetics : the official journal of the International Society for Twin Studies, 10, 127-135.
31. Souren, N.Y., Paulussen, A.D., Loos, R.J., Gielen, M., Beunen, G., Fagard, R., Derom, C., Vlietinck, R. and Zeegers, M.P. (2007) Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities. Diabetologia, 50, 2107-2116.
32. Weissglas-Volkov, D. and Pajukanta, P. (2010) Genetic causes of high and low serum HDL-cholesterol. J. Lipid Res., 51, 2032-2057.
33. Browning, S.R. and Browning, B.L. (2013) Identity-by-descent-based heritability analysis in the Northern Finland Birth Cohort. Hum. Genet., 132, 129-138.
34. van Dongen, J., Willemsen, G., Chen, W.M., de Geus, E.J. and Boomsma, D.I. (2013) Heritability of metabolic syndrome traits in a large population-based sample. J. Lipid Res., 54, 2914-2923.
35. Schleinitz, D., Bottcher, Y., Bluher, M. and Kovacs, P. (2014) The genetics of fat distribution. Diabetologia, 57, 1276-1286.
36. Selby, J.V., Newman, B., Quesenberry, C.P., Jr., Fabsitz, R.R., Carmelli, D., Meaney, F.J. and Slemenda, C. (1990) Genetic and behavioral influences on body fat distribution. Int. J. Obes., 14, 593-602.
37. Rose, K.M., Newman, B., Mayer-Davis, E.J. and Selby, J.V. (1998) Genetic and behavioral determinants of waist-hip ratio and waist circumference in women twins. Obesity research, 6, 383-392.
38. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S. et al. (2013) Discovery and refinement of loci associated with lipid levels. Nat. Genet., 45, 1274-1283.
39. Kathiresan, S., Willer, C.J., Peloso, G.M., Demissie, S., Musunuru, K., Schadt, E.E., Kaplan, L., Bennett, D., Li, Y., Tanaka, T. et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet., 41, 56-65.
40. Nikpay, M., Goel, A., Won, H.H., Hall, L.M., Willenborg, C., Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell, J.C. et al. (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet., 47, 1121-1130.
41. Schunkert, H., Konig, I.R., Kathiresan, S., Reilly, M.P., Assimes, T.L., Holm, H., Preuss, M., Stewart, A.F., Barbalic, M., Gieger, C. et al. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet., 43, 333-338.
42. Consortium, U.K., Walter, K., Min, J.L., Huang, J., Crooks, L., Memari, Y., McCarthy, S., Perry, J.R., Xu, C., Futema, M. et al. (2015) The UK10K project identifies rare variants in health and disease. Nature, 526, 82-90.
43. Coram, M.A., Duan, Q., Hoffmann, T.J., Thornton, T., Knowles, J.W., Johnson, N.A., Ochs-Balcom, H.M., Donlon, T.A., Martin, L.W., Eaton, C.B. et al. (2013) Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am. J. Hum. Genet., 92, 904-916.
44. Surakka, I., Horikoshi, M., Magi, R., Sarin, A.P., Mahajan, A., Lagou, V., Marullo, L., Ferreira, T., Miraglio, B., Timonen, S. et al. (2015) The impact of low-frequency and rare variants on lipid levels. Nat. Genet., 47, 589-597.
45. Levy, D., Ehret, G.B., Rice, K., Verwoert, G.C., Launer, L.J., Dehghan, A., Glazer, N.L., Morrison, A.C., Johnson, A.D., Aspelund, T. et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat. Genet., 41, 677-687.
46. Kato, N., Takeuchi, F., Tabara, Y., Kelly, T.N., Go, M.J., Sim, X., Tay, W.T., Chen, C.H., Zhang, Y., Yamamoto, K. et al. (2011) Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet., 43, 531-538.
47. Fuchsberger, C., Flannick, J., Teslovich, T.M., Mahajan, A., Agarwala, V., Gaulton, K.J., Ma, C., Fontanillas, P., Moutsianas, L., McCarthy, D.J. et al. (2016) The genetic architecture of type 2 diabetes. Nature, 536, 41-47.
48. Gaulton, K.J., Ferreira, T., Lee, Y., Raimondo, A., Magi, R., Reschen, M.E., Mahajan, A., Locke, A., Rayner, N.W., Robertson, N. et al. (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet., 47, 1415-1425.
49. Huang, Q. (2015) Genetic study of complex diseases in the post-GWAS era. Journal of genetics and genomics $=$ Yi chuan xue bao, 42, 87-98.
50. Visscher, P.M., Brown, M.A., McCarthy, M.I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7-24.
51. Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M. et al. (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet., 40, 161169.
52. Burkhardt, R., Toh, S.A., Lagor, W.R., Birkeland, A., Levin, M., Li, X., Robblee, M., Fedorov, V.D., Yamamoto, M., Satoh, T. et al. (2010) Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. The Journal of clinical investigation, 120, 4410-4414.
53. Fogarty, M.P., Panhuis, T.M., Vadlamudi, S., Buchkovich, M.L. and Mohlke, K.L. (2013) Allele-specific transcriptional activity at type 2 diabetes-associated single nucleotide polymorphisms in regions of pancreatic islet open chromatin at the JAZF1 locus. Diabetes, 62, 1756-1762.
54. Roman, T.S., Marvelle, A.F., Fogarty, M.P., Vadlamudi, S., Gonzalez, A.J., Buchkovich, M.L., Huyghe, J.R., Fuchsberger, C., Jackson, A.U., Wu, Y. et al. (2015) Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with HighDensity Lipoprotein Cholesterol. Am. J. Hum. Genet., 97, 801-815.
55. Spain, S.L. and Barrett, J.C. (2015) Strategies for fine-mapping complex traits. Hum. Mol. Genet., 24, R111-119.
56. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B. and Eskin, E. (2014) Identifying causal variants at loci with multiple signals of association. Genetics, 198, 497-508.
57. Kichaev, G., Yang, W.Y., Lindstrom, S., Hormozdiari, F., Eskin, E., Price, A.L., Kraft, P. and Pasaniuc, B. (2014) Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS genetics, 10, e 1004722.
58. Morris, A.P. (2011) Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol., 35, 809-822.
59. Encode_Project_Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
60. Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M.A., Beaudet, A.L., Ecker, J.R. et al. (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol., 28, 1045-1048.
61. Varshney, A., Scott, L.J., Welch, R.P., Erdos, M.R., Chines, P.S., Narisu, N., Albanus, R.D., Orchard, P., Wolford, B.N., Kursawe, R. et al. (2017) Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. U. S. A., 114, 2301-2306.
62. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. and Greenleaf, W.J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 10, 1213-1218.
63. Civelek, M., Wu, Y., Pan, C., Raulerson, C.K., Ko, A., He, A., Tilford, C., Saleem, N.K., Stancakova, A., Scott, L.J. et al. (2017) Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. Am. J. Hum. Genet., 100, 428-443.
64. Ward, L.D. and Kellis, M. (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol., 30, 1095-1106.
65. Tak, Y.G. and Farnham, P.J. (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics \& chromatin, 8, 57.
66. Weissglas-Volkov, D., Aguilar-Salinas, C.A., Nikkola, E., Deere, K.A., Cruz-Bautista, I., Arellano-Campos, O., Munoz-Hernandez, L.L., Gomez-Munguia, L., Ordonez-Sanchez, M.L., Reddy, P.M. et al. (2013) Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J. Med. Genet., 50, 298-308.
67. Poulsen, P., Kyvik, K.O., Vaag, A. and Beck-Nielsen, H. (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a populationbased twin study. Diabetologia, 42, 139-145.
68. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segre, A.V., Steinthorsdottir, V., Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A. et al. (2012) Large-scale
association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet., 44, 981-990.
69. Zeggini, E., Scott, L.J., Saxena, R., Voight, B.F., Marchini, J.L., Hu, T., de Bakker, P.I., Abecasis, G.R., Almgren, P., Andersen, G. et al. (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet., 40, 638-645.
70. Shu, X.O., Long, J., Cai, Q., Qi, L., Xiang, Y.B., Cho, Y.S., Tai, E.S., Li, X., Lin, X., Chow, W.H. et al. (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS genetics, 6, e1001127.
71. Kooner, J.S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Frossard, P., Been, L.F., Chia, K.S., Dimas, A.S., Hassanali, N. et al. (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet., 43, 984-989.
72. Stitzel, M.L., Sethupathy, P., Pearson, D.S., Chines, P.S., Song, L., Erdos, M.R., Welch, R., Parker, S.C., Boyle, A.P., Scott, L.J. et al. (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab., 12, 443-455.
73. Paul, D.S., Albers, C.A., Rendon, A., Voss, K., Stephens, J., van der Harst, P., Chambers, J.C., Soranzo, N., Ouwehand, W.H., Deloukas, P. et al. (2013) Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci. Genome Res., 23, 1130-1141.
74. Gaulton, K.J., Nammo, T., Pasquali, L., Simon, J.M., Giresi, P.G., Fogarty, M.P., Panhuis, T.M., Mieczkowski, P., Secchi, A., Bosco, D. et al. (2010) A map of open chromatin in human pancreatic islets. Nat. Genet., 42, 255-259.
75. Paul, D.S., Nisbet, J.P., Yang, T.P., Meacham, S., Rendon, A., Hautaviita, K., Tallila, J., White, J., Tijssen, M.R., Sivapalaratnam, S. et al. (2011) Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits. PLoS genetics, 7, e1002139.
76. Kooner, J.S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Frossard, P., Been, L.F., Chia, K.S., Dimas, A.S., Hassanali, N. et al. (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet., 43, 984-989.
77. Dimas, A.S., Lagou, V., Barker, A., Knowles, J.W., Magi, R., Hivert, M.F., Benazzo, A., Rybin, D., Jackson, A.U., Stringham, H.M. et al. (2013) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes.
78. Soler Artigas, M., Loth, D.W., Wain, L.V., Gharib, S.A., Obeidat, M., Tang, W., Zhai, G., Zhao, J.H., Smith, A.V., Huffman, J.E. et al. (2011) Genome-wide association and
large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet., 43, 1082-1090.
79. Bieganowski, P., Shilinski, K., Tsichlis, P.N. and Brenner, C. (2004) Cdc 123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J. Biol. Chem., 279, 44656-44666.
80. Perzlmaier, A.F., Richter, F. and Seufert, W. (2013) Translation initiation requires cell division cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). J. Biol. Chem., 288, 21537-21546.
81. Sakagami, H., Kamata, A., Nishimura, H., Kasahara, J., Owada, Y., Takeuchi, Y., Watanabe, M., Fukunaga, K. and Kondo, H. (2005) Prominent expression and activitydependent nuclear translocation of $\mathrm{Ca} 2+/$ calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur. J. Neurosci., 22, 2697-2707.
82. Verploegen, S., Lammers, J.W., Koenderman, L. and Coffer, P.J. (2000) Identification and characterization of CKLiK , a novel granulocyte $\mathrm{Ca}(++) /$ calmodulin-dependent kinase. Blood, 96, 3215-3223.
83. Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C., Welch, R.P., Zeggini, E., Huth, C., Aulchenko, Y.S., Thorleifsson, G. et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet., 42, 579-589.
84. Consortium, G.T. (2013) The Genotype-Tissue Expression (GTEx) project. Nat. Genet., 45, 580-585.
85. Consortium, E.P., Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C. and Snyder, M. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
86. Song, L., Zhang, Z., Grasfeder, L.L., Boyle, A.P., Giresi, P.G., Lee, B.K., Sheffield, N.C., Gräf, S., Huss, M., Keefe, D. et al. (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res., 21, 1757-1767.
87. ENCODE_Project_Consortium. (2011) A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol., 9, e1001046.
88. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A. et al. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U. S. A., 107, 21931-21936.
89. Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., Lee, L.K., Stuart, R.K., Ching, C.W. et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459, 108-112.
90. Zhou, X., Maricque, B., Xie, M., Li, D., Sundaram, V., Martin, E.A., Koebbe, B.C., Nielsen, C., Hirst, M., Farnham, P. et al. (2011) The Human Epigenome Browser at Washington University. Nat Methods, 8, 989-990.
91. Hohmeier, H.E., Mulder, H., Chen, G., Henkel-Rieger, R., Prentki, M. and Newgard, C.B. (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channeldependent and -independent glucose-stimulated insulin secretion. Diabetes, 49, 424-430.
92. Miyazaki, J., Araki, K., Yamato, E., Ikegami, H., Asano, T., Shibasaki, Y., Oka, Y. and Yamamura, K. (1990) Establishment of a pancreatic beta cell line that retains glucoseinducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology, 127, 126-132.
93. Fujita, P.A., Rhead, B., Zweig, A.S., Hinrichs, A.S., Karolchik, D., Cline, M.S., Goldman, M., Barber, G.P., Clawson, H., Coelho, A. et al. (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res., 39, D876-882.
94. Bryne, J.C., Valen, E., Tang, M.H., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B. and Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res., 36, D102-106.
95. Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van Bueren, K.L., Chines, P.S., Narisu, N., Program, N.C.S. et al. (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. U. S. A., 110, 17921-17926.
96. Rees, M.G., Wincovitch, S., Schultz, J., Waterstradt, R., Beer, N.L., Baltrusch, S., Collins, F.S. and Gloyn, A.L. (2012) Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia, 55, 114-122.
97. Beer, N.L., Tribble, N.D., McCulloch, L.J., Roos, C., Johnson, P.R., Orho-Melander, M. and Gloyn, A.L. (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet., 18, 4081-4088.
98. Travers, M.E., Mackay, D.J., Dekker Nitert, M., Morris, A.P., Lindgren, C.M., Berry, A., Johnson, P.R., Hanley, N., Groop, L.C., McCarthy, M.I. et al. (2013) Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes, 62, 987-992.
99. Nicolson, T.J., Bellomo, E.A., Wijesekara, N., Loder, M.K., Baldwin, J.M., Gyulkhandanyan, A.V., Koshkin, V., Tarasov, A.I., Carzaniga, R., Kronenberger, K. et al. (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter $\mathrm{ZnT8}$ and studies of the type 2 diabetes-associated variants. Diabetes, 58, 2070-2083.
100. Lecompte, S., Pasquetti, G., Hermant, X., Grenier-Boley, B., Gonzalez-Gross, M., De Henauw, S., Molnar, D., Stehle, P., Beghin, L., Moreno, L.A. et al. (2013) Genetic and molecular insights into the role of PROX1 in glucose metabolism. Diabetes, 62, 17381745.
101. Ng, H.J. and Gloyn, A.L. (2013) Bridging the gap between genetic associations and molecular mechanisms for type 2 diabetes. Current diabetes reports, 13, 778-785.
102. Camp, J.G., Jazwa, A.L., Trent, C.M. and Rawls, J.F. (2012) Intronic cis-regulatory modules mediate tissue-specific and microbial control of angpt14/fiaf transcription. PLoS genetics, 8, e1002585.
103. Ishibashi, M., Mechaly, A.S., Becker, T.S. and Rinkwitz, S. (2013) Using zebrafish transgenesis to test human genomic sequences for specific enhancer activity. Methods, 62, 216-225.
104. Lee, C.S., Friedman, J.R., Fulmer, J.T. and Kaestner, K.H. (2005) The initiation of liver development is dependent on Foxa transcription factors. Nature, 435, 944-947.
105. Gao, N., LeLay, J., Vatamaniuk, M.Z., Rieck, S., Friedman, J.R. and Kaestner, K.H. (2008) Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev., 22, 3435-3448.
106. Gao, N., Le Lay, J., Qin, W., Doliba, N., Schug, J., Fox, A.J., Smirnova, O., Matschinsky, F.M. and Kaestner, K.H. (2010) Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell. Mol. Endocrinol., 24, 1594-1604.
107. Zhang, L., Rubins, N.E., Ahima, R.S., Greenbaum, L.E. and Kaestner, K.H. (2005) Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab., 2, 141-148.
108. Serandour, A.A., Avner, S., Percevault, F., Demay, F., Bizot, M., Lucchetti-Miganeh, C., Barloy-Hubler, F., Brown, M., Lupien, M., Metivier, R. et al. (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res., 21, 555-565.
109. Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M. and Zaret, K.S. (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell, 9, 279-289.
110. Sekiya, T., Muthurajan, U.M., Luger, K., Tulin, A.V. and Zaret, K.S. (2009)

Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev., 23, 804-809.
111. Pasquali, L., Gaulton, K.J., Rodriguez-Segui, S.A., Mularoni, L., Miguel-Escalada, I., Akerman, I., Tena, J.J., Moran, I., Gomez-Marin, C., van de Bunt, M. et al. (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet., 46, 136-143.
112. Flutre, T., Wen, X., Pritchard, J. and Stephens, M. (2013) A statistical framework for joint eQTL analysis in multiple tissues. PLoS genetics, 9, e1003486.
113. Nica, A.C., Ongen, H., Irminger, J.C., Bosco, D., Berney, T., Antonarakis, S.E., Halban, P.A. and Dermitzakis, E.T. (2013) Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res., 23, 1554-1562.
114. Verploegen, S., Ulfman, L., van Deutekom, H.W., van Aalst, C., Honing, H., Lammers, J.W., Koenderman, L. and Coffer, P.J. (2005) Characterization of the role of CaMKI-like kinase (CKLiK) in human granulocyte function. Blood, 106, 1076-1083.
115. Dalle, S., Quoyer, J., Varin, E. and Costes, S. (2011) Roles and regulation of the transcription factor CREB in pancreatic β-cells. Curr Mol Pharmacol, 4, 187-195.
116. Haney, S., Zhao, J., Tiwari, S., Eng, K., Guey, L.T. and Tien, E. (2013) RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation. PloS one, 8 , e64946.
117. Nair, A.K., Piaggi, P., McLean, N.A., Kaur, M., Kobes, S., Knowler, W.C., Bogardus, C., Hanson, R.L. and Baier, L.J. (2016) Assessment of established HDL-C loci for association with HDL-C levels and type 2 diabetes in Pima Indians. Diabetologia, 59, 481-491.
118. Spracklen, C.N., Chen, P., Kim, Y.J., Wang, X., Cai, H., Li, S., Long, J., Wu, Y., Wang, Y.X., Takeuchi, F. et al. (2017) Association analyses of East Asian individuals and transancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet., 26, 1770-1784.
119. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J. et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 466, 707-713.
120. Hanson, R.L., Leti, F., Tsinajinnie, D., Kobes, S., Puppala, S., Curran, J.E., Almasy, L., Lehman, D.M., Blangero, J., Duggirala, R. et al. (2016) The Arg59Trp variant in ANGPTL8 (betatrophin) is associated with total and HDL-cholesterol in American Indians and Mexican Americans and differentially affects cleavage of ANGPTL3. Mol. Genet. Metab., 118, 128-137.
121. Quagliarini, F., Wang, Y., Kozlitina, J., Grishin, N.V., Hyde, R., Boerwinkle, E., Valenzuela, D.M., Murphy, A.J., Cohen, J.C. and Hobbs, H.H. (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. U. S. A., 109, 19751-19756.
122. Ren, G., Kim, J.Y. and Smas, C.M. (2012) Identification of RIFL, a novel adipocyteenriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab., 303, E334-351.
123. Zhang, R. (2012) Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun., 424, 786-792.
124. Espes, D., Martinell, M. and Carlsson, P.O. (2014) Increased circulating betatrophin concentrations in patients with type 2 diabetes. International journal of endocrinology, 2014, 323407.
125. Fu, Z., Berhane, F., Fite, A., Seyoum, B., Abou-Samra, A.B. and Zhang, R. (2014) Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Scientific reports, 4, 5013.
126. Hu, H., Sun, W., Yu, S., Hong, X., Qian, W., Tang, B., Wang, D., Yang, L., Wang, J., Mao, C. et al. (2014) Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes care, 37, 2718-2722.
127. Espes, D., Lau, J. and Carlsson, P.O. (2014) Increased circulating levels of betatrophin in individuals with long-standing type 1 diabetes. Diabetologia, 57, 50-53.
128. Yamada, H., Saito, T., Aoki, A., Asano, T., Yoshida, M., Ikoma, A., Kusaka, I., Toyoshima, H., Kakei, M. and Ishikawa, S.E. (2015) Circulating betatrophin is elevated in patients with type 1 and type 2 diabetes. Endocr. J., 62, 417-421.
129. Lee, Y.H., Lee, S.G., Lee, C.J., Kim, S.H., Song, Y.M., Yoon, M.R., Jeon, B.H., Lee, J.H., Lee, B.W., Kang, E.S. et al. (2016) Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Scientific reports, 6, 24013.
130. GTEx_Consortium. (2013) The Genotype-Tissue Expression (GTEx) project. Nat. Genet., 45, 580-585.
131. Wang, Y., Quagliarini, F., Gusarova, V., Gromada, J., Valenzuela, D.M., Cohen, J.C. and Hobbs, H.H. (2013) Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl. Acad. Sci. U. S. A., 110, 16109-16114.
132. Zhang, Y., Li, S., Donelan, W., Xie, C., Wang, H., Wu, Q., Purich, D.L., Reeves, W.H., Tang, D. and Yang, L.J. (2015) Angiopoietin-like protein 8 (betatrophin) is a stressresponse protein that down-regulates expression of adipocyte triglyceride lipase. Biochim. Biophys. Acta, 1861, 130-137.
133. Haller, J.F., Mintah, I.J., Shihanian, L.M., Stevis, P., Buckler, D., Alexa-Braun, C.A., Kleiner, S., Banfi, S., Cohen, J.C., Hobbs, H.H. et al. (2017) ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res.
134. Yi, M., Chen, R.P., Yang, R., Guo, X.F., Zhang, J.C. and Chen, H. (2015) Betatrophin Acts as a Diagnostic Biomarker in Type 2 Diabetes Mellitus and Is Negatively Associated with HDL-Cholesterol. International journal of endocrinology, 2015, 479157.
135. Miyamoto, Y., Yamauchi, J., Sanbe, A. and Tanoue, A. (2007) Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth. Exp. Cell Res., 313, 791-804.
136. Shaheen, R., Faqeih, E., Sunker, A., Morsy, H., Al-Sheddi, T., Shamseldin, H.E., Adly, N., Hashem, M. and Alkuraya, F.S. (2011) Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am. J. Hum. Genet., 89, 328-333.
137. Peloso, G.M., Auer, P.L., Bis, J.C., Voorman, A., Morrison, A.C., Stitziel, N.O., Brody, J.A., Khetarpal, S.A., Crosby, J.R., Fornage, M. et al. (2014) Association of lowfrequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am. J. Hum. Genet., 94, 223-232.
138. Corradin, O., Saiakhova, A., Akhtar-Zaidi, B., Myeroff, L., Willis, J., Cowper-Sal lari, R., Lupien, M., Markowitz, S. and Scacheri, P.C. (2014) Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24, 1-13.
139. He, H., Li, W., Liyanarachchi, S., Srinivas, M., Wang, Y., Akagi, K., Wang, Y., Wu, D., Wang, Q., Jin, V. et al. (2015) Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc. Natl. Acad. Sci. U. S. A., 112, 6128-6133.
140. Stancakova, A., Javorsky, M., Kuulasmaa, T., Haffner, S.M., Kuusisto, J. and Laakso, M. (2009) Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes, 58, 1212-1221.
141. Laakso, M., Kuusisto, J., Stancakova, A., Kuulasmaa, T., Pajukanta, P., Lusis, A.J., Collins, F.S., Mohlke, K.L. and Boehnke, M. (2017) The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res., 58, 481-493.
142. Inouye, M., Kettunen, J., Soininen, P., Silander, K., Ripatti, S., Kumpula, L.S., Hamalainen, E., Jousilahti, P., Kangas, A.J., Mannisto, S. et al. (2010) Metabonomic, transcriptomic, and genomic variation of a population cohort. Molecular systems biology, 6, 441 .
143. Hays, J., Hunt, J.R., Hubbell, F.A., Anderson, G.L., Limacher, M., Allen, C. and Rossouw, J.E. (2003) The Women's Health Initiative recruitment methods and results. Ann. Epidemiol., 13, S18-77.
144. Reiner, A.P., Beleza, S., Franceschini, N., Auer, P.L., Robinson, J.G., Kooperberg, C., Peters, U. and Tang, H. (2012) Genome-wide association and population genetic analysis of C-reactive protein in African American and Hispanic American women. Am. J. Hum. Genet., 91, 502-512.
145. Davis, J.P., Huyghe, J.R., Jackson, A.U., Stringham, H.M., Teslovich, T.M., Welch, R.P., Fuchsberger, C., Locke, A.E., Narisu, N., Chines, P.S. et al. Common, low-frequency and rare variants associated with lipoprotein subclasses and triglyceride measures in Finns. under review.
146. Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C. and Eskin, E. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat. Genet., 42, 348-354.
147. Li, Y., Willer, C.J., Ding, J., Scheet, P. and Abecasis, G.R. (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol., 34, 816-834.
148. Schaid, D.J., Rowland, C.M., Tines, D.E., Jacobson, R.M. and Poland, G.A. (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet., 70, 425-434.
149. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U. and Speed, T.P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249-264.
150. Stegle, O., Parts, L., Durbin, R. and Winn, J. (2010) A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS computational biology, 6, e1000770.
151. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P., Sharp, K. et al. (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet., 48, 1279-1283.
152. Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van Bueren, K.L., Chines, P.S., Narisu, N., Black, B.L. et al. (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. U. S. A., 110, 17921-17926.
153. Sheffield, N.C., Thurman, R.E., Song, L., Safi, A., Stamatoyannopoulos, J.A., Lenhard, B., Crawford, G.E. and Furey, T.S. (2013) Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res., 23, 777-788.
154. Wabitsch, M., Brenner, R.E., Melzner, I., Braun, M., Moller, P., Heinze, E., Debatin, K.M. and Hauner, H. (2001) Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 25, 8-15.
155. Kulzer, J.R., Stitzel, M.L., Morken, M.A., Huyghe, J.R., Fuchsberger, C., Kuusisto, J., Laakso, M., Boehnke, M., Collins, F.S. and Mohlke, K.L. (2014) A common functional
regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am. J. Hum. Genet., 94, 186-197.
156. Fu, Z., Abou-Samra, A.B. and Zhang, R. (2014) An explanation for recent discrepancies in levels of human circulating betatrophin. Diabetologia, 57, 2232-2234.
157. International_HapMap_Consortium. (2003) The International HapMap Project. Nature, 426, 789-796.
158. Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L., Chen, Y.E. and Willer, C.J. (2015) GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics, 31, 2601-2606.
159. Coelho, M., Oliveira, T. and Fernandes, R. (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci, 9, 191-200.
160. Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A. and Smith, U. (2015) Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab., 26, 193-200.
161. Fernandez-Veledo, S., Nieto-Vazquez, I., Vila-Bedmar, R., Garcia-Guerra, L., AlonsoChamorro, M. and Lorenzo, M. (2009) Molecular mechanisms involved in obesityassociated insulin resistance: therapeutical approach. Arch. Physiol. Biochem., 115, 227239.
162. Porter, S.A., Massaro, J.M., Hoffmann, U., Vasan, R.S., O'Donnel, C.J. and Fox, C.S. (2009) Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes care, 32, 1068-1075.
163. Pischon, T., Boeing, H., Hoffmann, K., Bergmann, M., Schulze, M.B., Overvad, K., van der Schouw, Y.T., Spencer, E., Moons, K.G., Tjonneland, A. et al. (2008) General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med., 359, 2105-2120.
164. Abraham, T.M., Pedley, A., Massaro, J.M., Hoffmann, U. and Fox, C.S. (2015) Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation, 132, 1639-1647.
165. Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S., Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters, G.B., Gunnarsdottir, S. et al. (2008) Genetics of gene expression and its effect on disease. Nature, 452, 423-428.
166. Zhong, H., Beaulaurier, J., Lum, P.Y., Molony, C., Yang, X., Macneil, D.J., Weingarth, D.T., Zhang, B., Greenawalt, D., Dobrin, R. et al. (2010) Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes. PLoS genetics, 6, e1000932.
167. Greenawalt, D.M., Dobrin, R., Chudin, E., Hatoum, I.J., Suver, C., Beaulaurier, J., Zhang, B., Castro, V., Zhu, J., Sieberts, S.K. et al. (2011) A survey of the genetics of
stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res., 21, 1008-1016.
168. Nica, A.C., Parts, L., Glass, D., Nisbet, J., Barrett, A., Sekowska, M., Travers, M., Potter, S., Grundberg, E., Small, K. et al. (2011) The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS genetics, 7, e1002003.
169. Dahlman, I., Ryden, M., Brodin, D., Grallert, H., Strawbridge, R.J. and Arner, P. (2016) Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function. Diabetes, 65, 433-437.
170. Lynes, M.D. and Tseng, Y.H. (2017) Deciphering adipose tissue heterogeneity. Ann. N. Y. Acad. Sci.
171. Fischer-Posovszky, P., Newell, F.S., Wabitsch, M. and Tornqvist, H.E. (2008) Human SGBS cells - a unique tool for studies of human fat cell biology. Obesity facts, 1, 184189.
172. Degner, J.F., Pai, A.A., Pique-Regi, R., Veyrieras, J.B., Gaffney, D.J., Pickrell, J.K., De Leon, S., Michelini, K., Lewellen, N., Crawford, G.E. et al. (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature, 482, 390-394.
173. Cheng, C.S., Gate, R.E., Aiden, A.P., Siba, A., Tabaka, M., Lituiev, D., Machol, I., Subramaniam, M., Shamim, M., L., H.K. et al. (2016) Genetic determinants of chromatin accessibility and gene regulation in T cell activation across human individuals. biorxiv preprint, http://dx.doi.org/10.1101/090241.
174. Chen, L., Ge, B., Casale, F.P., Vasquez, L., Kwan, T., Garrido-Martin, D., Watt, S., Yan, Y., Kundu, K., Ecker, S. et al. (2016) Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell, 167, 1398-1414 e1324.
175. Schmidt, S.F., Larsen, B.D., Loft, A., Nielsen, R., Madsen, J.G. and Mandrup, S. (2015) Acute TNF-induced repression of cell identity genes is mediated by NFkappaB-directed redistribution of cofactors from super-enhancers. Genome Res., 25, 1281-1294.
176. Loft, A., Forss, I., Siersbaek, M.S., Schmidt, S.F., Larsen, A.S., Madsen, J.G., Pisani, D.F., Nielsen, R., Aagaard, M.M., Mathison, A. et al. (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev., 29, 7-22.
177. Allum, F., Shao, X., Guenard, F., Simon, M.M., Busche, S., Caron, M., Lambourne, J., Lessard, J., Tandre, K., Hedman, A.K. et al. (2015) Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun, 6, 7211.
178. Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J. et al. (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317-330.
179. Scott, L.J., Erdos, M.R., Huyghe, J.R., Welch, R.P., Beck, A.T., Wolford, B.N., Chines, P.S., Didion, J.P., Narisu, N., Stringham, H.M. et al. (2016) The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Comтип, 7, 11764.
180. Kasowski, M., Kyriazopoulou-Panagiotopoulou, S., Grubert, F., Zaugg, J.B., Kundaje, A., Liu, Y., Boyle, A.P., Zhang, Q.C., Zakharia, F., Spacek, D.V. et al. (2013) Extensive variation in chromatin states across humans. Science, 342, 750-752.
181. Kilpinen, H., Waszak, S.M., Gschwind, A.R., Raghav, S.K., Witwicki, R.M., Orioli, A., Migliavacca, E., Wiederkehr, M., Gutierrez-Arcelus, M., Panousis, N.I. et al. (2013) Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science, 342, 744-747.
182. McVicker, G., van de Geijn, B., Degner, J.F., Cain, C.E., Banovich, N.E., Raj, A., Lewellen, N., Myrthil, M., Gilad, Y. and Pritchard, J.K. (2013) Identification of genetic variants that affect histone modifications in human cells. Science, 342, 747-749.
183. Leung, D., Jung, I., Rajagopal, N., Schmitt, A., Selvaraj, S., Lee, A.Y., Yen, C.A., Lin, S., Lin, Y., Qiu, Y. et al. (2015) Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 518, 350-354.
184. Kumasaka, N., Knights, A.J. and Gaffney, D.J. (2016) Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet., 48, 206-213.
185. Pique-Regi, R., Degner, J.F., Pai, A.A., Gaffney, D.J., Gilad, Y. and Pritchard, J.K. (2011) Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res., 21, 447-455.
186. Cannon, M.E., Duan, Q., Wu, Y., Zeynalzadeh, M., Xu, Z., Kangas, A.J., Soininen, P., Ala-Korpela, M., Civelek, M., Lusis, A.J. et al. (2017) Trans-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus. G3.
187. Lassmann, T., Hayashizaki, Y. and Daub, C.O. (2009) TagDust--a program to eliminate artifacts from next generation sequencing data. Bioinformatics, 25, 2839-2840.
188. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods, 9, 357-359.
189. Quinlan, A.R. (2014) BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Current protocols in bioinformatics, 47, 11 12 11-34.
190. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D. and Kent, W.J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res., 32, D493-496.
191. Adey, A., Morrison, H.G., Asan, Xun, X., Kitzman, J.O., Turner, E.H., Stackhouse, B., MacKenzie, A.P., Caruccio, N.C., Zhang, X. et al. (2010) Rapid, low-input, low-bias
construction of shotgun fragment libraries by high-density in vitro transposition. Genome biology, 11, R119.
192. Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abecasis, G.R., Boehnke, M. and Kang, H.M. (2012) Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet., 91, 839-848.
193. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W. et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome biology, 9, R137.
194. Swinton, J. (2009) Vennerable: Venn and Euler area-proportional diagrams. . R package version 2.0/r75.
195. R_Core_Team. (2016) R: A languate and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
196. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M. and Bejerano, G. (2010) GREAT improves functional interpretation of cisregulatory regions. Nat. Biotechnol., 28, 495-501.
197. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25-29.
198. Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R. et al. (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res., 44, D110-115.
199. Grant, C.E., Bailey, T.L. and Noble, W.S. (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics, 27, 1017-1018.
200. Saint-Andre, V., Federation, A.J., Lin, C.Y., Abraham, B.J., Reddy, J., Lee, T.I., Bradner, J.E. and Young, R.A. (2016) Models of human core transcriptional regulatory circuitries. Genome Res., 26, 385-396.
201. Warnes, G.R., Bolker, B., Bonebakker, L., Gentelman, R., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M. et al. (2016) gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.
202. Buchkovich, M.L., Eklund, K., Duan, Q., Li, Y., Mohlke, K.L. and Furey, T.S. (2015) Removing reference mapping biases using limited or no genotype data identifies allelic differences in protein binding at disease-associated loci. BMC medical genomics, 8, 43.
203. Wu, T.D. and Nacu, S. (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, 26, 873-881.
204. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.
205. van de Geijn, B., McVicker, G., Gilad, Y. and Pritchard, J.K. (2015) WASP: allelespecific software for robust molecular quantitative trait locus discovery. Nat Methods, 12, 1061-1063.
206. Yee, T.W. (1996) Vector Generalized Linear and Additive Models With an Implementation in R. Journal of Royal Statistical Society, Series B, 58, 481-493.
207. Gregoire, F.M. (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood), 226, 997-1002.
208. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng., 7, 211-228.
209. Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L. and MacDougald, O.A. (2000) Inhibition of adipogenesis by Wnt signaling. Science, 289, 950-953.
210. Sarjeant, K. and Stephens, J.M. (2012) Adipogenesis. Cold Spring Harbor perspectives in biology, 4, a008417.
211. Wang, A., Yue, F., Li, Y., Xie, R., Harper, T., Patel, N.A., Muth, K., Palmer, J., Qiu, Y., Wang, J. et al. (2015) Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell stem cell, 16, 386399.
212. An, Y., Kang, Q., Zhao, Y., Hu, X. and Li, N. (2013) Lats2 modulates adipocyte proliferation and differentiation via hippo signaling. PloS one, 8, e72042.
213. Segawa, K., Matsuda, M., Fukuhara, A., Morita, K., Okuno, Y., Komuro, R. and Shimomura, I. (2009) Identification of a novel distal enhancer in human adiponectin gene. J. Endocrinol., 200, 107-116.
214. Qiao, L., Maclean, P.S., Schaack, J., Orlicky, D.J., Darimont, C., Pagliassotti, M., Friedman, J.E. and Shao, J. (2005) C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes, 54, 1744-1754.
215. Urs, S., Smith, C., Campbell, B., Saxton, A.M., Taylor, J., Zhang, B., Snoddy, J., Jones Voy, B. and Moustaid-Moussa, N. (2004) Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J. Nutr., 134, 762-770.
216. Davis, M.R., Arner, E., Duffy, C.R., De Sousa, P.A., Dahlman, I., Arner, P. and Summers, K.M. (2016) Expression of FBN1 during adipogenesis: Relevance to the
lipodystrophy phenotype in Marfan syndrome and related conditions. Mol. Genet. Metab., 119, 174-185.
217. Lapidot, M. and Pilpel, Y. (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep., 7, 1216-1222.
218. Musri, M.M., Corominola, H., Casamitjana, R., Gomis, R. and Parrizas, M. (2006) Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J. Biol. Chem., 281, 17180-17188.
219. Schaffler, A., Orso, E., Palitzsch, K.D., Buchler, C., Drobnik, W., Furst, A., Scholmerich, J. and Schmitz, G. (1999) The human apM-1, an adipocyte-specific gene linked to the family of TNF's and to genes expressed in activated T cells, is mapped to chromosome 1q21.3-q23, a susceptibility locus identified for familial combined hyperlipidaemia (FCH). Biochem. Biophys. Res. Commun., 260, 416-425.
220. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K. et al. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 8, 12881295.
221. Yokota, T., Meka, C.S., Medina, K.L., Igarashi, H., Comp, P.C., Takahashi, M., Nishida, M., Oritani, K., Miyagawa, J., Funahashi, T. et al. (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. The Journal of clinical investigation, 109, 1303-1310.
222. Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong, N.A., Vesuna, S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B. et al. (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods.
223. Edwards, S.L., Beesley, J., French, J.D. and Dunning, A.M. (2013) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet., 93, 779-797.
224. Flister, M.J., Tsaih, S.W., O'Meara, C.C., Endres, B., Hoffman, M.J., Geurts, A.M., Dwinell, M.R., Lazar, J., Jacob, H.J. and Moreno, C. (2013) Identifying multiple causative genes at a single GWAS locus. Genome Res., 23, 1996-2002.
225. Voight, B.F., Kudaravalli, S., Wen, X. and Pritchard, J.K. (2006) A map of recent positive selection in the human genome. PLoS Biol., 4, e72.
226. Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N.E., Ahfeldt, T., Sachs, K.V., Li, X., Li, H., Kuperwasser, N., Ruda, V.M. et al. (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 466, 714-719.
227. Roman, T.S., Cannon, M.E., Vadlamudi, S., Buchkovich, M.L., Wolford, B.N., Welch, R.P., Morken, M.A., Kwon, G.J., Varshney, A., Kursawe, R. et al. (2017) A Type 2

Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the Adcy5 Locus. Diabetes.
228. Klann, T.S., Black, J.B., Chellappan, M., Safi, A., Song, L., Hilton, I.B., Crawford, G.E., Reddy, T.E. and Gersbach, C.A. (2017) CRISPR-Cas9 epigenome editing enables highthroughput screening for functional regulatory elements in the human genome. Nat. Biotechnol., 35, 561-568
229. Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P. et al. (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527, 192-197.
230. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C. and Shendure, J. (2014) Saturation editing of genomic regions by multiplex homology-directed repair. Nature, 513, 120-123.
231. Boyle, E.A., Li, Y.I. and Pritchard, J.K. (2017) An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell, 169, 1177-1186.
232. Arnold, C.D., Gerlach, D., Stelzer, C., Boryn, L.M., Rath, M. and Stark, A. (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 339, 1074-1077.
233. Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan, C.G., Jr., Kinney, J.B. et al. (2012) Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol., 30, 271-277.

[^0]: ${ }^{1}$ This chapter previously appeared as an article in PLoS Genetics. The citation is: Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL. 2014. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS locus. PLoS Genetics Sep 11;1-(9):e1004633.
 ${ }^{2}$ Maren Cannon performed and analyzed the transcriptional reporter and electrophoretic mobility shift assays. Co-authors designed, performed, and analyzed the DNA affinity, chromatin immunoprecipitation, and RNA experiments. Marie Fogarty wrote the manuscript. Maren Cannon edited the manuscript and contributed to response and editing in review.

[^1]: ${ }^{5}$ This chapter previously appeared as an article in G3: Genes, Genetics, Genomes. The citation is: Cannon ME, Duan Q, Wu Y, Zeynalzadeh M, Xu Z, Kangas AJ, Soininen P, Ala-Korpela M, Civelek M, Lusis AJ, Kuusisto J, Collins FS, Boehnke M, Tang H, Laakso M, Li Y, Mohlke K. 2017. Trans-ancestry fine mapping and molecular assays identify regulatory variants at the ANGPTL8 HDL-C GWAS locus. G3 7(9):3217-3227.
 ${ }^{6}$ Maren Cannon designed, performed, and analyzed transcriptional reporter luciferase and electrophoretic mobility shift assays; prioritized candidate variants based on regulatory overlap; analyzed fine-mapping assays; created all figures and wrote the manuscript. Co-authors designed, performed, and analyzed clinical trait measurements; genetic and expression association data; fine-mapping analyses; and reviewed the manuscript.

[^2]: Evidence of association with the concentration of phospholipids in medium HDL in 8,380 individuals in the METSIM study. Effect represents the change in standard-normalized residuals of phospholipids in medium HDL.
 Conditioning on variant rs 737337 attenuated the signal. MAF, minor allele frequency
 ${ }^{\text {a }}$ Non-effect allele/effect allele
 ${ }^{\mathrm{b}}$ rs112108870 is also known as rs200788077

[^3]:

[^4]:

