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ABSTRACT 
 

CRISTINE GOMES CAMPOS: The Role of Autotransporter proteins in Burkholderia 
pseudomallei Pathogenesis 

(Under the direction of Peggy A. Cotter, Ph.D.) 
 

 
Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of 

melioidosis, a disease that ranges from chronic abscesses to fulminant pneumonia and 

septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane 

proteins belonging to the Type V Secretion System family, and many have been shown to 

play crucial roles in pathogenesis in other bacterial species. The genome of B. 

pseudomallei strain 1026b encodes two putative classical ATs, and nine putative trimeric 

AT proteins. 

The open reading frame bcaA in B. pseudomallei strain 1026b is predicted to 

encode a classical autotransporter protein with a passenger domain that contains a 

subtilisin-related domain. Immediately 3ʹ′ to bcaA is bcaB, which encodes a putative 

prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-

frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux 

pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of 

Bp340ΔbcaA and Bp340ΔbcaB to wild type B. pseudomallei in vitro demonstrated 

similar adherence to A549 lung epithelial cells, but the mutant strains were defective in 

their ability to invade these cells and to form plaques. In a BALB/c mouse model of 

intranasal infection, a similar bacterial burden was observed after 48 hours in the lungs 

and liver of mice infected with Bp340ΔbcaA, Bp340ΔbcaB and wild type bacteria. 
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However, significantly fewer bacteria were recovered from the spleen of Bp340ΔbcaA-

infected mice, supporting a role for this AT in dissemination or in survival from the site 

of infection to the spleen.  

Using a bioinformatics approach, we annotated eight putative domains within 

each trimeric AT protein, excluding the well-studied BimA, and found short repeated 

sequences unique to Burkholderia species, as well as an unexpectedly high proportion of 

ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric 

ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight 

AT-encoding genes and evaluated the resulting strains for adherence, invasion, and 

plaque formation in A549 cells. Five of the ATs, BoaA, BoaB, BpaA, BpaC, and BpaD, 

contribute to adherence, and four of the ATs, BpaA, BpaC, BpaE, and BpaF, are 

necessary for efficient internalization in A549 cells. Using a BALB/c mouse model of 

infection, we then determined the contribution of each AT to bacterial burden in lungs, 

liver, and spleen. At 48 hours post-inoculation, only one strain, Bp340::pDbpaC, 

demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC 

is required for wild-type virulence in this model. 
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CHAPTER I 

      Introduction 

BURKHOLDERIA CLASSIFICATION AND EPIDEMIOLOGY 

Burkholderia pseudomallei is a Gram-negative, rod-shaped, non-spore forming, 

motile saprotrophic bacterium with a 7.24 megabase pair (Mb) genome divided into two 

chromosomes (90). The large 4.07 Mb chromosome (chromosome 1) contains a high 

proportion of coding sequences related to metabolic functions, such as macromolecule 

biosynthesis and amino acid (aa) metabolism, and the small 3.17 Mb chromosome 

(chromosome 2) contains coding sequences for accessory proteins and a vast number of 

coding sequences predicted to encode proteins of unknown function (37). B. 

pseudomallei often forms dry, wrinkly colonies on Ash-down’s agar, but colony 

morphology can vary considerably (15). Seven major colony morphotypes have been 

described, and morphology switching appears to occur in response to different 

environmental cues, including stress and interactions with epithelial cells or 

macrophages. Morphology switching has also been proposed to influence intracellular 

survival, and antibiotic resistance (79). B. pseudomallei is a hardy organism capable of 

surviving harsh environmental conditions including, but not limited to wide temperature 

changes and dehydration (18), prolonged nutritional deficiency (91), antiseptics and 

detergents (30), as well as acidic environments (23).  
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B. pseudomallei infects a wide-variety of organisms, including human and non-

human mammals (19, 72). It causes Melioidosis, a disease that can range from chronic 

abscesses to fulminant pneumonia and septic shock and which can be rapidly fatal. First 

described by Dr. Whitmore, an army pathologist working in Burma, in 1912 (88), it has 

often been called the “great mimicker”, because it can present a vast array of clinical 

signs and symptoms. The disease can vary from an acute septic illness to a chronic 

infection with the persistence of symptoms for over two months. Primary clinical 

presentation varies from pneumonia to genitourinary infection, skin infections, 

bacteremia without focus, septic arthritis, internal-organ abcesses, suppurative parotitis 

and brain stem encephalitis (89). Infections can be a result of percutaneous inoculation, 

inhalation, or ingestion. Melioidosis primarily affects people who have been exposed to 

environments containing B. pseudomallei (90); no reports of transmission between 

animals and humans have been described so far (9). Several conditions have been 

correlated with predisposition to B. pseudomallei infection in humans, including diabetes 

mellitus, impaired cellular immunity, leukemia/lymphomas, HIV infection, renal disease, 

and afflictions such as alcoholism and perenteral drug abuse (9). Melioidosis cases spike 

during the rainy season in the tropics, being highest during monsoonal rain season. 

Recurrence of disease is common, especially in the first year after the initial clinical 

presentation. Several of the reoccurrence cases are due to reinfection, while the remainder 

due to relapse from a persistent focus of infection (50). The period between exposure and 

clinical manifestation can be as long as 62 years (56).  B. pseudomallei  is resistant to 

most antibiotics, succesptible only to chloramphenicol, trimethroprim-sulfamethoxazole 

and a few others, which makes treatment of melioidosis difficult and eradication of the 
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disease without a vaccine (none has been developed to date) nearly impossible (87). 

Studies suggest that the intracellular nature of B. pseudomallei when infecting eukaryotic 

cells means that a vaccine will most likely not provide complete immunological 

protection, unless T-cell immunity could be engaged (40), which makes the task of 

developing the vaccine even more difficult. Endemic to southeast Asia, and northern 

Australia, sporadic cases and clusters have been reported in Brazil (64), the Caribbean, 

Africa, the Middle East and even in the United States (22). 

BURKHOLDERIA PATHOGENESIS 

A protein microarray containing over a thousand B. pseudomallei surface exposed 

proteins was probed with sera from several melioidosis patients, and 170 immunoreactive 

proteins were identified. Amongst these were autotransporter proteins, lipoproteins, 

flagellin, and stress response proteins (27). To date only a limited number of virulence 

regulators and factors have been characterized for B. pseudomallei including quorum 

sensing and two-component regulatory system regulators, capsular polysaccharides, Type 

III Secretion System (T3SS), Type VI Secretion System (T6SS), lipopolysaccharides 

(LPS), flagella, Type IV pilli, and one Type V Secretion System protein named BimA. 

How these proteins are involved in pathogenesis is unclear and still under investigation. 

PUTATIVE BURKHOLDERIA VIRULENCE REGULATORS 

Quorum sensing 

Quorum sensing is a form of cell to cell communication that is population density 

mediated, and depends on the release and therefore detection of signaling molecules such 

as N-decanoyl-homoserine-lactone (90). The B. pseudomallei genome encodes three 

LuxI, and five LuxR quorum-sensing homologues. Disruption of these genes in B. 
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pseudomallei led to decrease virulence in the Syrian hamster and BALB/c models of 

infection (81). Quorum sensing is known to regulate the expression of several genes. 

Metalloproteases, phospholipases, and siderophores are among a few genes that were 

affected by luxI and luxR mutations in B. pseudomallei (82). The BpeAB-OprB multidrug 

efflux system found in B. pseudomallei is also involved in quorum sensing, since it is 

responsible for the extracellular secretion of homoserine-lactones. Deletion of the system 

caused reduced levels of cell invasion, and cytotoxicity for both epithelial and 

macrophage cell lines, and the same were partially restored by addition of homoserine-

lactones (14). A second quorum sensing system using 4-hydroxy-3-methyl-2-

alkylquinolone signaling molecules has also been described (83), however its function is 

yet to be determined. 

Two-component regulatory system 

A complex two-component transcriptional regulatory system (VirAG) is found in 

B. pseudomallei, but little is known about the role this system has in this bacterium 

pathogenesis (11, 78). Two-component regulatory systems allow bacteria to sense and 

respond to changes in may different environmental conditions.  Typically, they consist of 

a membrane-bound histidine kinase that senses an environmental stimulus, and a 

corresponding response regulator that mediates expression of target genes (52). VirAG is 

encoded immediately upstream of T6SS-1 gene cluster in B. pseudomallei, and it has 

been shown to transcriptionally activate T6SS-1 genes while inside a macrophage prior to 

escape from the phagosome (11, 78). It also induces expression and export to the 

extracellular millieu of Hcp1, a protein that is an integral surface-associated component 

of the T6SS apparatus commonly found in the supernatants of bacteria that express a 
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functional T6SS (11). T6SS-1 is a virulence factor in the Syrian hamster model of 

melioidosis, however the environmental cues sensed by the VirAG system is still 

unknown, and whether transcription activation of T6SS-1 genes occurs directly or 

indirectly via VirAG is still under investigation (11).  

 

 PUTATIVE BURKHOLDERIA VIRULENCE FACTORS 

Capsular polysaccharides  

B. pseudomallei has an extracellular capsular polysaccharide, -3)-2-O-acetyl-6-

deoxy-β-D-manno-heptopyranose-(1-, that has been shown to be required for virulence in 

animal models (61). Although three other morphologically distinct variants have been 

observed by electron microscopy, little is known about these variants or their role in 

disease (58). In the presence of serum, capsule expression is increased, and the addition 

of purified B. pseudomallei capsule to serum bactericidal assays will increase the survival 

of a serum-sensitive strain (SLR5). Phagocytosis is also increased for capsule-deficient 

mutants when compared to wild type in the presence of human serum (62). Deposition of 

the complement C3b is enhanced in capsule mutants, suggesting that the persistence of B. 

psedomallei in the blood may be due to prevention of opsonization by complement in the 

blood (47). 

Type III Secretion System 

T3SS is a syringe-like secretion apparatus that when triggered by contact with 

host cells, translocates effector proteins into these host cells. Three T3SS have been 

identified in B. pseudomallei (3, 60, 77). T3SS-1 and T3SS-2 are both similar to plant 

pathogens T3SS, while T3SS-3 or T3SSBsa, is similar to the Shigella Mxi-Spa and 
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Salmonella SPI-1 T3SS, and highly conserved across Burkholderia species. T3SS can 

translocate multiple effectors into the host cell cytosol, where these effectors can subvert 

cell signaling to the benefit of the bacterium (31).  T3SSBsa has been implicated in 

invasion, escape from endosomes, intracellular survival, and evasion of autophagy (32) in 

B. pseudomallei. T3SSBsa is required for virulence in hamster and mouse infection models 

(75, 86), but the complete repertoire of Bsa effectors remain largely unknown. Recently, 

the T3SSBsa has been shown to be required for plaque formation and endosome escape, 

but dispensable for invasion (29). 

Type VI Secretion System 

Genes encoding a fairly recently discovered secretion system named T6SS have 

been identified in over one-fourth of all sequenced Gram-negative bacteria. T6SS 

function appears to be diverse and to be involved in interbacterial competition (67), 

increasing bacterial fitness in the environment, as well as being involved in pathogenesis 

(41). B. pseudomallei has six T6SSs. T6SS-1 has been shown to be necessary for 

virulence in an acute model of melioidosis and contributes to lethality in hamsters in 

Burkholderia mallei (a clonal descendent of B. pseudomallei that has undergone genome 

decay losing its capability for environmental survival) (66, 67). T6SS-1 has also recently 

been shown to be responsible for multinucleated giant cell (MNGC) formation in 

RAW264 cells (11), and wild-type levels of cell invasion and intracellular survival was 

observed in the same cell line when T6SS-1 was mutated (68). 

Lipopolysaccharides 

Lipopolysaccharides (LPS) are endotoxins found in the outer membrane of Gram-

negative bacteria that can elicit strong immune responses (59). B. pseudomallei LPS 
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differ from other LPS, for it exibits weaker murine pyrogenic activity when compared to 

enterobacterial LPS but stronger mitogenic activity in murine splenocytes (53). 

Recognition of LPS by the host is crucial for innate immune response to Gram-negative 

bacteria through activation of the pattern-recognition receptor Toll-like receptor (TLR) 4 

(8). B. pseudomallei infections have been shown to not elicit a TLR4 response, and little 

is known about how B. pseudomallei LPS plays a role in pathogenesis. B. thailandensis, a 

non-pathogenic bacterium (sometimes associated with human disease) that has a highly 

similar genome to B. pseudomallei (44), has a nearly identical LPS to B. pseudomallei. 

Both bacteria have a similar immunoblot profile against pooled sera from patients with 

melioidosis, and also similar LPS shedding profile, suggesting that LPS may not be 

involved in virulence and pathogenesis (1, 2). 

Flagella and Type IV pili 

B. pseudomallei is flagellated and motile. No difference was seen in the ability of 

wild type and aflagellate mutant B. pseudomallei to invade and replicate in human cells 

in vitro (20). In a diabetic rat and Syrian hamster infection study no difference between 

wild type and the aflagellate mutant was seen (24), however another study suggested that 

the aflagellate mutant was less virulent in a BALB/c intranasal model of infection (20).  

Type IV pili have been shown to function as adhesins, and have an important role 

in virulence in many Gram-negative bacteria. Electron microscopy has shown the 

presence of flagella and variable expression of pili on B. pseudomallei (85). 

Bioinformatic analysis has shown 13 gene clusters believed to be involved in fimbriae 

and type IV pili expression (37) in the B. pseudomallei clinical strain K96243. Currently 

there are conflicting data on the importance of flagella in virulence (24, 39), but one of 
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the eight type IV pili associated loci found in B. pseudomallei, which encodes pilA, when 

mutated was shown to cause decreased adhesion to epithelial cells, and reduced virulence 

in an intranasal route of infection BALB/c model (26). 

 

BURKHOLDERIA PUTATIVE AUTOTRANSPORTER PROTEINS 

Autotransporters (ATs) are outer membrane proteins belonging to the Type V 

Secretion System family, the largest family of extracellular proteins in Gram-negative 

bacteria (34). The AT secretion mechanism is remarkably simple, comprising a signal 

sequence, which targets the protein for secretion across the inner membrane through the 

Sec-system, a passenger domain (the secreted mature protein), and a C-terminal β-barrel 

domain that forms the pore in the outer membrane through which the passenger domain 

passes to the cell surface (33). Secretion of AT proteins have long been believed to be an 

energy independent, self- sufficient process (35). Many ATs have been shown to be 

virulence factors playing crucial roles in how bacteria cause disease (6, 10, 43).  

Classical and trimeric autotransporter protein secretion 

The AT family is divided into classical and trimeric autotransporter proteins. The 

C-terminal domain of classical ATs consist of 250 to 300 aa residues that form the β-

barrel that is inserted into the outer membrane and facilitates the translocation of the N-

terminal passenger domain to the surface (35). Once at the bacterial surface, classical 

ATs may be processed and released into the extracellular milieu (e.g. the serine protease 

EspP from Escherichia coli) (10), or cleaved but remain in contact with the bacterial 

surface through noncovalent interactions with the β-domain or cell surface (e.g. Pertactin 
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from Bordetella and the adhesin involved in diffuse adherence of E. coli (AIDA-I)) (6, 

48).  

Trimeric ATs require three proteins to form a functional unit, with the C-terminal 

67 to 76 aa of each monomer contributing one-third of the β-barrel (21). Once at the 

bacterial surface, trimeric AT passenger domains remain intact as a large protein with a 

membrane bound C-terminus, and an N-terminal domain extending into the extracellular 

millieu (e.g. the adhesin protein from Yiersinia species YadA, and the adhesin from 

Haemophilus influenzae Hia) (63, 73). Oligomerization of the passenger domains occurs 

via a coiled-coil domain believed to be ~70 to 100 residues from the C-terminal end of 

the protein (36). 

The mechanism of classical and trimeric AT translocation across the outer 

membrane has been the focus of constant intense debate. According to the initial model, 

the β-barrel domain is inserted into the outer membrane, and mediates the translocation 

of the passenger domain covalently linked to it without the aid of any other proteins (54, 

57). Recently several autotransporters (e.g. AIDA-I, and the Nisseria meningitides 

immunoglobin A1 (IgA1)) have been shown to require the Bam complex for biogenesis 

(55, 84); depletion of BamA abrogates secretion of mature AT passenger domains to the 

exterior of the cell, and BamD has also been implicated in autotransporter biogenesis 

(65). How BamA and BamD are involved in inserting the autotransporter β-barrel into 

the outer membrane is still unknown, but models involving periplasmic chaperones have 

been proposed (45). 

Once the β-barrel is inserted into the outer membrane, secretion of the passenger 

domain occurs. Several different models have been described for the mechanism of 
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passenger domain secretion, but the hairpin model holds the largest amount of supporting 

evidence currently. A hairpin structure is formed at the most C-terminal portion of the 

passenger domain, and maintained until the N-terminus of the passenger domain passes 

through the β-barrel (42, 49). 

Following passenger domain secretion, some classical autotransporters are 

cleaved and released from their β-domain. Some mechanisms of passenger domain 

proteolysis have been elucidated. For example, the autotransporter IcsA required for 

intra- and inter-cellular motility in Shigella flexneri is cleaved by an exogenous protease 

(69). AIDA-I on the other hand is processed by autoproteolysis by two acidic residues 

that are contained within the passenger domain (16). 

Classical autotransporter passenger domains 

Although the β-domains generally show aa sequence conservation, which is 

consistent with their conserved function, passenger domains can vary widely reflecting 

their many roles. The IgA1 protease from N. meningitides for example is a serine 

protease, with a trypsin-like active domain (57) that is responsible for outer membrane 

release of this classical autotransporter protein. The mature protein is then capable of 

cleaving human-IgA1, and has a role in human mucosal colonization (43). IgA1 has also 

been shown to aid in trans-epithelial trafficking in T84 (human colon epithelial cells) 

monolayers, and to cleave LAMP1 (major integral glycoprotein of lysosomes) 

contributing to intracellular reproduction of the bacteria (38, 51). 

Pertactin, an AT of a few Bordetella species, has a cleaved mature passenger 

domain that remains noncovalently associated with its β-barrel (17). Although a function 

has not been clearly defined for pertactin, it has been implicated in adhesion (48), 
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inhibition of bacterial uptake in human tracheal epithelial cells (5), and cytotoxicity in 

phagocytic cells (28). AIDA-I, an adhesin found in some diffusely adherent E. coli strains 

(7), like pertactin remains associated with its β-barrel, and electron microscopy has 

shown it to be evenly distributed around the cell surface. AIDA-I (α-domain), which 

mediates the specific attachment of bacteria to target cells, in order to be fully functional, 

needs to be post-translationally modified by heptose residues at multiple sites (46). Also 

found in E. coli is EspP, an autotransporter protein of the enterohaemorrhagic (EHEC) 

O157:H7 strain. This AT is a protease capable of cleaving pepsin A and human 

coagulation factor V, and is believed to contribute to the mucosal haemorrhage observed 

in patients with haemorrhagic colitis (10). 

Trimeric autotransporter passenger domains 

The trimeric AT Yersinia adhesin A (YadA) found in some Yersinia species was 

first described because of its capacity to promote auto-agglutination of Y. enterocolitica 

and Y. pseudotuberculosis, as well as adherence to many substrates including epithelial 

cells, extracellular matrix, collagen, cellular but not plasma fibronectin, and laminin (36). 

The main function of Yad-A is believed to lie in its ability to confer resistance to 

bactericidal activity of human serum by binding factor H (13). Non-typeable and 

encapsulated Haemophilus influenzae have Hia (H. influenzae adhesin), a trimeric 

autotransporter that has been shown to contribute to adherence to epithelial cells, and also 

to have two binding domains that interact with an as yet unknown host receptor with 

different affinities (71). 
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B. pseudomallei putative autotransporter proteins 

B. pseudomallei strain K96243 contains genes predicted to encode nine trimeric 

ATs and two classical ATs. These are conserved across other B. pseudomallei genomes 

and some homologues are found in B. mallei, B. thailandensis, and B. gladioli strains. 

BPSS0962 (bcaA) and BPSL2237 are putative classical autotransporters predicted to 

function as a putative serine protease (12) and a lipase/esterase, respectively 

(UniProtKB/TrEMBL). BPSL1631, BPSL1705 (boaB), BPSL2063, BPSS0088, 

BPSS0796 (boaA), BPSS0908, BPSS1434 (bpaA), BPSS1439 and BPSS1492 (bimA) are 

all putative trimeric autotransporters.  

The only well characterized of these genes is bimA, which encodes Burkholderia 

intracellular motility A (BimA), a trimeric autotransporter that is localized at the pole of 

the bacterium and binds monomeric actin, stimulating actin polymerization and the 

formation of actin tails (74). bimA is the last gene in an operon, and is preceded by a gene 

encoding a glycosyl-transferase, which has been proposed to post-translationally modify 

BimA, and perhaps to be required for full activity of the protein (76). Mutation of bimA 

abolishes actin-mediated motility of intracellular bacteria, as well as actin tail formation. 

BimA contains proline-rich motifs and Wiskott-Aldrich syndrome protein homology-2 

(WASP-2) domains, which are associated with actin-binding and motility (76). A 13 aa 

repeat region in BimA has been shown to be required for intracellular spread, but not for 

actin binding and polymerization. Regions of BimA necessary for for actin binding and 

actin polymerization have also been well defined, and characterized (70). To date no 

studies have shown if BimA contributes to pathogenesis in murine models of melioidosis. 
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Two trimeric ATs BoaA and BoaB have been expressed in E. coli and shown to 

be displayed on the bacterial surface and promote attachment to epithelial cell lines. B. 

pseudomallei strains with mutations in boaA and boaB exhibited reduced adherence to 

epithelial cells, but no growth defect in phagocytic cell lines (4). Although this suggests 

these genes have a role in virulence, animal studies are required to establish the role of 

BoaA and BoaB in pathogenesis. The trimeric AT BpaA head domain crystal structure 

has been resolved (25), but its function remains to be elucidated.  

Serum from 21 B. pseudomallei infected patients were used to probe a K96243 

expression library, and five autotransporter proteins (BPSL2036, BPSS0908, BoaA, 

BPSS1439 and BimA) were shown to be potentially immunogenic during human 

melioidosis (80). A protein microarray probed with pooled melioidosis patients sera 

identified BPSS0088, BoaA, BpaA and BimA as also having the ability to interact with 

melioidosis-specific antibodies (27), further suggesting that B. pseudomallei 

autotransporters play a role in pathogenesis. 

Little is known about how B. pseudomallei causes disease. The bacterium is able 

to invade and replicate in phagocytic, and non-phagocytic cells, and following T3SS-

mediated endosomal escape, replicates in the cytoplasm of eukaryotic cells and spreads 

from cell-to-cell without ever leaving the cytoplasm (29, 75). One B. pseudomallei T6SS 

has been shown to mediate MNGC formation, allowing the bacteria to freely spread form 

cell to cell using BimA for actin-mediated motility (76). The overall goal of this study 

was to determine the role of putative autotransporters encoded by B. pseudomallei in 

pathogenesis.  
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CHAPTER II 
 

 
Characterization of BcaA, a putative classical autotransporter protein, 

in Burkholderia pseudomallei1 

Introduction 

Burkholderia pseudomallei is a Gram-negative saprotroph that causes 

melioidosis, a disease that ranges from chronic abscesses to fulminant pneumonia and 

septic shock and which can be rapidly fatal. B. pseudomallei has an approximately 7.2-

megabase pair (Mb) genome divided into two chromosomes (19), affording this 

bacterium the metabolic repertoire necessary to adapt to and survive in a variety of 

different habitats, including soil, the rhizosphere of plants, and a wide variety of human 

and non-human mammals (36). Melioidosis, first reported by Dr. Whitmore, an army 

pathologist working in Burma, in 1912 (41),  emerged as an infectious disease of serious 

public health concern in the latter part of the 20th century, manifesting as a rapidly 

progressing septicemia, with or without pneumonia; a localized soft-tissue infection; or a 

sub-clinical infection with delayed evidence of clinical infection (21, 42).  B. 

pseudomallei is endemic to southeast Asia and northern Australia, however sporadic B. 

pseudomallei infections have been reported worldwide (4), including but not limited to 

the United States, Puerto Rico, El Salvador, and Brazil (10, 21, 34, 43).  B. pseudomallei 

                                                
1 Adapted for this dissertation from: Cristine G. Campos, Luke Borst, and Peggy A. 
Cotter. Characterization of BcaA, a putative autotransporter protein in Burkholderia 
pseudomallei. 2013. Infection and Immunity. 81:4 1121-1128. 
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is classified as an NIH category B priority pathogen and select agent (40), and has 

recently been reclassified as a CDC Tier 1 select agent due to its virulence in animals, 

low infectious dose, robust environment stability, and possible delay in diagnosis since 

the bacterium is not endemic to the United States (http://www.selectagents.gov).  

Autotransporters (ATs) are outer membrane proteins belonging to the Type V 

Secretion System family, the largest family of extracellular proteins in Gram-negative 

bacteria (18). These proteins have been shown to function as adhesins, degradative 

enzymes, and cytotoxins, as well as having roles in cell-to-cell spread and serum 

resistance (17). The AT family is divided into classical and trimeric proteins. The C-

terminal 250 to 300 amino acids of classical ATs form a β-barrel that is inserted into the 

outer membrane where it facilitates the translocation of the N-terminal passenger domain 

to the cell surface. Trimeric ATs require three proteins to form a functional unit, with the 

C-terminal 67 to 76 C-terminal amino acids of each monomer contributing one-third of 

the barrel (7). The β-barrel domains of AT proteins are well conserved, while the 

passenger domains can vary substantially and have distinct functions (31).  

To date, little is known about how B. pseudomallei causes disease (25). It is able 

to invade and replicate in phagocytic and non-phagocytic cells, and following Type III 

Secretion System (T3SS)-mediated endosomal escape, B. pseudomallei replicates in the 

cytoplasm of eukaryotic cells and spreads from cell-to-cell without leaving the cytoplasm 

(12, 37). One B. pseudomallei Type Six Secretion System (T6SS) has been shown to 

mediate multinucleated giant cell (MNGC) formation (3), allowing the bacteria to freely 

spread from cell to cell by actin-mediated motility, similar to Shigella flexneri and 

Listeria monocytogenes (33).  B. pseudomallei actin-dependent motility requires the 
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trimeric autotransporter BimA, which contains proline-rich motifs and WH2-like 

domains that are believed to be responsible for actin polymerization at the pole of the 

bacterial cell where BimA is localized (38). 

The genome of B. pseudomallei strain 1026b contains genes predicted to encode 

nine trimeric ATs and two classical ATs. The purpose of this study was to determine the 

role of the predicted classical AT encoded by Bp1026b_II1054 in pathogenesis.  

 

Materials and Methods 

Bacterial Strains. All manipulations of B. pseudomallei were conducted in a 

CDC/USDA-approved animal biosafety level 3 (ABSL3) facility at the University of 

North Carolina at Chapel Hill. The bacterial strains used in this study are listed in Table 

1. B. pseudomallei strains were cultured in Low Salt Lysogeny Broth (LSLB), or on Low 

Salt Lysogeny Broth Agar (LSLBA) (Sigma-Aldrich, St. Louis, MO) for 24 hours at 

37ºC. Escherichia coli strains were cultured on LB or LBA. When appropriate, culture 

media were supplemented with Kanamycin (Km, 125 µg/ml for B. pseudomallei and 50 

µg/ml for E. coli), or Zeocin (Zeo, 100 µg/ml for B. pseudomallei, and 35 µg/ml for E. 

coli).  LB agar was supplemented with 400 µg/ml of diaminopimelic acid (DAP; LL-, 

DD-, and meso-isomers; (Sigma-Aldrich, St. Louis, MO) to support growth of RHO3 

cells. Yeast extract-tryptone (YT) medium containing 10 g/l of yeast extract (Difco, 

Detroit, MI) and 10 g/l of tryptone (Fisher Scientific, Fairlawn, NJ) supplemented with 

15% sucrose and X-Gluc (GoldBio, St. Louis, MO) was used for counter-selection during 

the construction of B. pseudomallei deletion mutation strains. 
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 Construction of B. pseudomallei bcaA and bcaB mutant strains and plasmids. 

Deletion of the bcaA and bcaB genes from B. pseudomallei strain Bp340 (a derivative of 

strain1026b containing a Δ(amrRAB-oprA) mutation. Strain was shown by Dr. Herbert 

Schweizer to be as virulent as 1026b in the BALB/c acute model of infection) (14, 30) 

was carried out by allelic exchange using pEXKm5 (28) derivatives. The DNA fragments 

used to construct pCCX1 and pCCX2 (Table 1) were generated using a two-step, overlap 

polymerase chain reaction (PCR) method and cloned into pEXKm5. DNA fragments 

contained approximately 500 bp 5ʹ′ to the gene including the first three codons and 500 bp 

3ʹ′ to the gene including the last three codons. pCCX1 and pCCX2 were transformed into 

E. coli RHO3 cells, and were delivered to Bp340 by conjugation.  For Bp340ΔbcaA and 

Bp340ΔbcaB complementation strains, the gene and promoter region was cloned into 

pUC18T-mini-Tn7-Zeo and delivered as previously described (5). All plasmids were 

verified to be correct and contain no unintended nucleotide changes by DNA sequence 

analysis. 

Bacterial conjugations. Matings between B. pseudomallei and E. coli strain 

RHO3 were performed by incubating Bp340 with RHO3 cells carrying the appropriate 

allelic exchange plasmid (Table 1) on LSLB-DAP agar plates overnight. Cointegrants 

were selected on LSLB-Km. PCR-confirmed cointegrants were grown overnight in LSLB 

without selection, allowing for a second recombination event and the loss of the allelic 

exchange plasmid. Colonies were selected on YT agar supplemented with 15% sucrose 

and X-Gluc (28), as previously described. Colonies were screened by PCR for the 

deletion mutation, and the strains were confirmed by DNA sequencing. To generate the 

complementation strains, RHO3 cells harboring pCCZ1 or pCCZ2 (Table 1) were mated 
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with Bp340ΔbcaA and Bp340ΔbcaB, respectively, and cointegrants were selected on 

LSLB-Zeo (5). Integration at the correct location was confirmed by PCR. All DNA 

regions encompassing about 2 Kb across the deletion junction were PCR amplified and 

verified to be correct and to contain no unintended nucleotide changes by DNA sequence 

analysis.  DNA sequence inserted in the att Tn7 site in complementation strains were also 

PCR amplified and verified by DNA sequence analysis. 

Total RNA isolation and cDNA synthesis. Total RNA was isolated in Trizol 

(Invitrogen, Grand Island, NY) from Bp340 grown overnight in LSLB at 37ºC according 

to the manufacturer’s protocol. For the reverse transcription step, 5 ng of total RNA was 

transcribed using Super Script III reverse transcriptase (Invitrogen, Grand Island, NY) 

with oligo(dT) and random primers according to the manufacturer’s instructions. 

Transcripts were determined by PCR primers described in Table 2. 

Immunoblot analysis. Strain Bp340::pCCS12HA1 was constructed using 

pCCS12HA1, a suicide plasmid containing the constitutively active ribosomal S12 

subunit promoter (PS12) up to and including the S12 ribosomal binding site fused to the 

first 329 codons of bcaA, starting at the ATG. The hemagglutinin (HA) epitope-encoding 

sequence was introduced between codons 58 and 59. The plasmid was verified by PCR 

and sequence analysis to have integrated into the Bp340 strain 3ʹ′ to the HA epitope-

encoding sequence, yielding a chromosomal HA-tagged copy of bcaA driven by the S12 

promoter. Whole cell lysates were prepared from overnight cultures grown in LSLB-Km. 

SDS-PAGE was performed by the method of Laemmli (24) using denaturing 10% SDS 

polyacrylamide gels. Gels were transferred to a nitrocellulose membrane (Scheleicher 

and Schuell Bioscience, Dassel, Germany) and were probed with an anti-HA antibody 
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(diluted 1:5,000) followed by an IR800-conjugated secondary antibody (diluted 1:20,000) 

(Rockland, Gilbertsville, PA). Antigen-antibody complexes were visualized using the 

Odyssey infrared imaging system (Li-Cor Biosciences, Lincoln, NE).  

Plaque Assay. B. pseudomallei strains were grown overnight in LSLB at 37ºC. 

Each well of a 6-well plate was seeded with A549 human lung cells such that confluent 

monolayers contained approximately 1x106 cells per well. Cells were incubated in F12K 

(Cellgro, Circle Westwood, MA) supplemented with 10% fetal bovine serum (Gibco, 

Grand Island, NY) at 37ºC with 5% CO2. Bacterial strains were diluted to an OD600 of 0.1 

in fresh tissue culture medium, further diluted 1:10, and 25 µl of the diluted culture was 

added to each well (MOI of 0.1). Plates were incubated for 2 hours and each well was 

washed thoroughly with fresh culture medium and overlayed with a mixture containing 

1.2% low-melting agarose (Fisher Scientific, Fairlawn, NJ), F12K with 10% FBS, and 

0.01% Neutral red (Fischer Scientific, Waltham, MA). Plates were incubated for 24 hours 

at 37ºC with 5% CO2, and plaques were enumerated in each well. Experiments were 

performed three times in duplicate, and the results were combined. The combined results 

were analyzed using a one-way analysis of variance (ANOVA) with Tukey’s post-test at 

a 95% confidence interval. 

Adherence and invasion assay. Bacterial strains and A549 cells were grown as 

described above. Bacteria were diluted to an OD600 of 0.1 in fresh tissue culture medium, 

and 250µL of the diluted cultures added to each well (MOI of 100). Plates were 

incubated for 2 hours, and each well was washed thoroughly with fresh culture medium. 

For the adherence assay, cells were immediately lysed using 1% Triton X-100 (Sigma-

Aldrich, St. Louis, MO) and were diluted and plated to determine the total colony 
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forming units (CFU) in each well. For the invasion assay, cells were incubated an 

additional hour and a half with Gentamicin (90 µg/ml), washed with fresh culture 

medium, and were lysed using 1% Triton X-100. Lysates were diluted and plated to 

determine the total CFU in each well. To calculate the percentage of adherent or invading 

bacteria, the number of adherent or invading bacteria was divided by the total number of 

bacteria in the inoculum and multiplied by 100. Experiments were performed three times 

in duplicate, and the results were combined. The combined results were analyzed using a 

one-way ANOVA with Tukey’s post-test at a 95% confidence interval. 

Animal experiments. All animal experiments were approved by the Animal 

Studies Committee of the University of North Carolina at Chapel Hill (protocol 10-165). 

Six- to eight-week-old female BALB/c mice (The Jackson Laboratory, Bar Harbor, ME) 

were allowed free access to sterilized food and water. Animals were anesthetized prior to 

infection with Avertin (140mg/Kg) by intraperitoneal injection. For all infections, the 

desired inoculum of B. pseudomallei was suspended in sterile phosphate buffered saline 

(PBS). Mice were inoculated intranasally with 500 CFU (LD50 for 1026b has been 

determined to be around 900 CFU (14)), and at the indicated time points were euthanized 

by CO2 overdose. Organs were aseptically harvested, homogenized, and the bacterial 

burden of each organ was determined by plating serial dilutions of the homogenates. 

Animal experiments were performed twice, with three to four animals per strain per time 

point and the results combined. Animal experiments were terminated at 48 hours at which 

time all animals had become moribund. 

Pathology. Lungs, livers and spleens of six- to eight-week-old female BALB/c 

mice intranasally infected with 500 CFU of Bp340 or Bp340ΔbcaA were harvested, fixed 
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in 10% neutral buffered formalin for 24 hours.  Samples were stored in 70% ethanol until 

processed into paraffin using routine methods.  Paraffin embedded tissues were sectioned 

3 to 5 microns thick, captured onto glass slides and stained with hematoxylin and eosin 

(HE).  Sections of liver, spleen and lung were analyzed using light microscopy by a 

single pathologist (LB) who was blinded to group. Microscopic lesions consisting 

primarily of necrosis and acute inflammation (neutrophils, macrophages, apoptotic 

bodies, and fibrin) were quantified as follows: In the lung, the affected bronchi per 20 

bronchiolar profiles were counted starting with an affected bronchiole.  In the liver and 

spleen, inflammatory foci were enumerated in 10 consecutive fields at 20x magnification 

starting on an area of inflammation identified on low magnification.  

 

Results 

 

Bioinformatic analysis of the bcaA and bcaB genes of B. pseudomallei strain 1026b 

Bp1026b_II1054 is a 3393 base pair (bp) gene predicted to encode a classical AT 

that we named bcaA for Burkholderia classical autotransporter A. Forty base pairs 3′ to 

bcaA is Bp11026_II1055 (which we named bcaB), a 687 bp gene predicted to encode a 

hypothetical protein. There is a 480 bp gene predicted to encode a hypothetical protein 

1522 bp 5′ to bcaA, and 198 bp 3′ to bcaB is a 1593 bp gene oriented in the opposite 

direction, predicted to encode a periplasmic solute-binding protein (Fig. 1A). 

 

SignalP identified a signal peptide and a cleavage site on the predicted 1133 amino acid 

(aa) BcaA protein between aa 40 and 41 (2). Simple Modular Architecture Research Tool 
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(SMART) predicts BcaA to have a serine protease domain, from aa 64 to 380, belonging 

to the Peptidase S8 or Subtilase family, and a classical AT β-domain from aa 857 to 

1121. BcaB, is a 255 aa protein predicted to contain a prolyl 4-hydroxylase domain from 

aa 41 to 225 (Fig.1B) (27). 

BLAST indicated that homologues of bcaA are present in B. pseudomallei, B. 

mallei, B. thailandensis, and B. gladioli strains but not in Ralstonia or Cupriavidus 

species, close relatives of the Burkholderia genus. All B. pseudomallei and B. mallei 

strains for which genome sequence is available are predicted to encode proteins with 99% 

identity with BcaA, 89% identity is found in B. thailandensis and 82% identity in B. 

oklahomensis. Predicted homologues are not found in bacteria outside of the 

Burkholderia genus, suggesting this gene is unique to Burkholderia.  

To investigate the role of bcaA and bcaB in the pathogenesis of B. pseudomallei, 

we constructed strains of Bp340 containing in-frame deletion mutations in each gene 

(Fig. 1A) by allelic exchange (28). Complementation of these deletion mutations was 

accomplished by delivering a full-length copy of the gene, along with its presumed 

promoter region (the approximately 1 Kb region immediately 5′ to the bcaA translation 

start site) to Tn7 att sites in the respective deletion strain using pUC18T-mini-Tn7-Zeo 

(5). The same presumed promoter region, approximately 1 Kb preceding the translation 

start site of bcaA was fused to the full-length copy of bcaB for the construction of the 

complementation of Bp340ΔbcaB. 
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bcaA and bcaB appear to form an operon 

RT-PCR was used to determine if bcaA and bcaB are cotranscribed. cDNA was 

prepared from Bp340 grown overnight at 37°C in LSLB, and used as template for PCR 

using the primer pairs (Table 2) shown in Figure 1A. Products of expected sizes were 

obtained for each primer pair (Fig. 1C), including the pair spanning the intergenic region 

between bcaA and bcaB, suggesting that these genes are cotranscribed. No product was 

observed in the mock RT samples demonstrating the lack of DNA contamination in the 

isolated RNA samples, and consequently the cDNA samples. 

 

BcaA appears to be proteolyzed to smaller polypeptides 

To visualize the production of BcaA protein, we constructed Bp340 derivatives in 

which nucleotides encoding HA epitopes were inserted either immediately following the 

protein’s predicted signal sequence cleavage site or between codons 58 and 59. Both 

strains were grown overnight in LSLB at 37°C but no polypeptide was recognized by 

Western blotting using an anti-HA antibody. After several unsuccessful attempts to 

visualize the BcaA protein when the gene was expressed from its native promoter, we 

constructed a strain in which bcaA was expressed from a strong, constitutively active 

promoter (the promoter for the rpsL gene from Burkholderia pseudomallei 1026b). First, 

we inserted the HA epitope-encoding codons immediately following the predicted signal 

sequence cleavage site, but again were unsuccessful at visualizing BcaA. Finally, we 

inserted the HA epitope-encoding codons between codons 58 and 59 

(Bp340::pCCS12HA1) and the protein was then successfully visualized by western blot 

analysis. Polypeptides approximately 21 kDa and 28 kDa in size as well as a large smear 
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between 250 and 75 kDa were observed in whole cell lysates of Bp340::pCC12HA1, but 

not in whole cell lysates of the wild-type strain lacking the HA epitope tag (Figure 2). 

These data suggest that BcaA is proteolyzed to smaller polypeptides. The smaller 

polypeptides were not detected in western blots of concentrated supernatant fractions 

(data not shown), suggesting that they remain associated with the bacterial cell. 

 

bcaA and bcaB are required for efficient plaque formation 

B. pseudomallei can spread from cell to cell without exiting the cytoplasm and 

can form plaques in a cell monolayer (22). To determine if bcaA or bcaB contribute to 

plaque formation, A549 respiratory epithelial cell monolayers were infected at an MOI of 

0.1 and plaques were counted after 24 hours. Bp340 formed an average of 100 

plaques/well, while Bp340ΔbcaA (Fig. 3A) and Bp340ΔbcaB (Fig. 3B) each formed only 

about 50 to 60 plaques/well. Complementation of both mutations restored plaque-forming 

ability to wild type levels, indicating that both bcaA and bcaB are required for efficient 

plaque formation. 

 

bcaA and bcaB are required for efficient invasion of A549 cells 

The plaques formed by Bp340ΔbcaA and Bp340ΔbcaB strains appeared to be of 

similar sizes to those formed by wild type bacteria, suggesting that bcaA and bcaB are 

involved in the first steps of plaque formation, and therefore required for either adhesion 

or invasion. To determine if bcaA and bcaB are required for efficient adhesion or 

invasion, A549 cell monolayers were infected at an MOI of 100, and following a 2-hour 

incubation, cells were either washed, lysed, serially diluted, and plated to determine 
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percent adhesion, or were washed, incubated with 90µg/mL of Gentamicin for an 

additional hour and a half, then lysed, serially diluted, and plated to determine percent 

invasion. No difference was observed in adhesion between Bp340 and Bp340ΔbcaA or 

Bp340 and Bp340ΔbcaB (Fig. 4A). However, Bp340ΔbcaA, and Bp340ΔbcaB 

demonstrated significantly decreased invasion compared to Bp340  (Fig. 4B), suggesting 

that bcaA and bcaB are required for efficient invasion of A549 cells. Complementation of 

ΔbcaA and ΔbcaB at the Tn7 att site restored invasion to wild type levels.  C57BL/6 bone 

marrow-derived macrophages were also used in similar experiments, but no difference 

was observed between Bp340, Bp340ΔbcaA, and Bp340ΔbcaB (data not shown). bcaA 

and bcaB, therefore, are required for invasion of non-phagocytic cells, but do not appear 

to affect uptake by phagocytic cells. 

 

bcaA is required for efficient dissemination to or survival in the spleen 

To determine the contribution of bcaA and bcaB to B. pseudomallei pathogenesis 

we used an acute  intranasal (i.n.) mouse model of infection. Bp340 has been shown to 

have the same LD50 as 1026b (14) when delivered by the i.n. route, so 6- to 8-week-old 

female BALB/c mice were inoculated with 500 CFU of B. pseudomallei delivered in a 25 

µL volume to the nose. All animals showed signs of respiratory distress by 48 hours post 

inoculation, becoming moribund and marking the end point of our experiments. The 

number of CFU in the lungs, liver, and spleen was determined at 48 hours post-

inoculation. The number of CFU recovered from the lungs and livers of animals 

inoculated with Bp340 and Bp340ΔbcaA was not significantly different. The number of 

CFU recovered from the spleen of Bp340ΔbcaA-infected mice, however, was 
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significantly lower than the number recovered from mice infected with Bp340 (Fig. 5A). 

Complementation of ΔbcaA at the Tn7 att site restored bacterial numbers in the spleen to 

wild type levels, suggesting that bcaA is required for efficient dissemination to or 

survival of B. pseudomallei in the spleen in this model. The number of bacteria recovered 

from the lungs, liver and spleen of animals inoculated with Bp340ΔbcaB was not 

significantly different from those infected with Bp340 (Figure 5B). 

 

bcaA does not appear to contribute to B. pseudomallei-induced organ pathology 

To determine if bcaA contributes to tissue pathology, lungs, livers and spleens 

were harvested at 48 hours post-intranasal inoculation, Hematoxylin and Eosin (H&E)-

stained sections were prepared, coded for blind scoring, and examined for 

histopathological changes. Inflammation was observed in the lungs, livers and spleens of 

all mice infected with Bp340 and Bp340ΔbcaA, varying only in the degree of severity. 

Approximately the same number of affected bronchi per bronchiolar profile was found in 

the mice infected with both strains, and the number of inflammatory foci found in the 

livers and spleens was also similar.  

Lungs showed suppurative bronchointerstitial pneumonia, with small airways 

partially to completely filled with mostly degenerative neutrophils. Adjacent and 

randomly scattered alveolar septa were moderately expanded by degenerative neutrophils 

and fibrin (microthrombi). Livers showed multifocoal necrosuppurative hepatitis with 

random hepatocellular necrosis and inflammatory infiltrate (neutrophils), as well as fibrin 

hemorrhage. Spleens showed multifocoal necrosuppurative splenitis with scattered (red 
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pulp) areas of necrosis and inflammatory infiltrate (neutrophilic predominant, rare 

macrophages, apoptotic bodies), as well as mild fibrin hemorrhage. 

 

The overall histological picture was of bronchopneumonia followed by acute sepsis as 

evidenced by interstitial pulmonary involvement and multifocal distribution of 

inflammation and necrosis in the spleens and livers, however there was no significant 

difference in histological scoring between organs harvested from animals inoculated with 

Bp340 and Bp340ΔbcaA. 

 

Discussion 

The sequenced genome of B. pseudomallei contains eleven genes predicted to 

encode AT proteins. Only the trimeric AT BimA (38) has been well characterized and it 

has been shown to play a role in pathogenesis. This work focused on the characterization 

of bcaA, a gene predicted to encode a classical AT. Our data indicate that bcaA and bcaB 

contribute to non-phagocytic cell invasion and bcaA to dissemination to or survival of B. 

pseudomallei in the spleen in a BALB/c intranasal model of infection. 

The bcaA and bcaB genes appear to form an operon. RT-PCR supports this 

hypothesis by showing that bcaA and bcaB are cotranscribed from a common promoter 

upstream of bcaA. Our data do not rule out the presence of an additional bcaB promoter 

located within the bcaA gene. However, the DNA fragment used to complement the 

∆bcaB strain contained approximately 1 Kb preceding the translation start site of bcaA 

fused directly to the full-length copy of bcaB and this DNA fragment restored invasion of 
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the ∆bcaB strain to wild type levels, further suggesting that bcaA and bcaB are 

transcribed from a promoter 5′ to bcaA.  

BcaA is predicted to be a 113 kDa classical AT protein with an approximately 80 

kDa passenger domain containing a serine protease domain belonging to the Peptidase S8 

or Subtilase family and a 30 kDa β-domain. Subtilisins are the second largest family of 

serine proteases, characterized by a conserved catalytic triad that functions in a charge 

relay system much like trypsin family proteases (23). Subtilisins use well conserved Asp, 

Ser and His catalytic residues for their protease activity (35) and their functions include 

contributing to cellular nutrition, mediating host cell invasion, and the maturation of other 

polypeptides (39).  A few AT subtilases have been described, including Ssp from 

Serratia marcescens, a 112 kDa protein with an approximately 80 kDa passenger domain 

that is auto-proteolyzed into a 41 KDa polypeptide that is released into the medium (32), 

and AasP from Actinobacillus pleuropneumoniae, a 104 kDa protein that cleaves another 

outer membrane protein OmlA into smaller polypeptides of about 30 kDa that are 

released into the medium (1). BcaA contains the same well-conserved catalytic triad 

found in other subtilisins (Asp 90, His 124 and Ser 329). Western Blot characterization 

studies using a HA-tagged BcaA detected 21kDa and 28 kDa polypeptides that were 

present in whole cell lysates but not in supernatants. Much like Ssp from S. marcescens, 

the BcaA 80kDa passenger domain appears to be proteolyzed into smaller polypeptides, 

however, these small polypeptides do not appear to be released into the extracellular 

environment in the case of BcaA.  Further studies will include characterization of these 

polypeptides and determining if these polypeptides are generated by auto-proteolysis or if 

another protein is involved in processing. 
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We showed that bcaA and bcaB are required for invasion and plaque formation in 

epithelial cells, but did not affect uptake in phagocytic cells. B. pseudomallei  has been 

shown to  invade and replicate in both phagocytic and non-phagocytic cells, and to spread 

from cell to cell without leaving the cytoplasm (37). Although a substantial amount has 

been learned about the intracellular life cycle of B. pseudomallei, no proteins responsible 

for the initial invasion step have been identified previously. BcaA, therefore, represents 

the first identified invasin in B. pseudomallei.  

In vivo, bcaA is required for efficient dissemination to or survival of B. 

pseudomallei in the spleen in a BALB/c intranasal model of infection. Although 

histology showed no difference in the amount of inflammatory foci found in the spleens 

of animals infected with Bp340ΔbcaA and the wild-type strain, significantly fewer 

bacteria were recovered from the spleens of animals infected with Bp340ΔbcaA. How the 

invasion phenotype in vitro relates to the spleen dissemination or survival defect in vivo 

is unknown. Yersinia enterocolitica has been shown to have both invasin-dependent and 

invasin-independent routes of spleen colonization from the intestine of C57BL/6 mice; 

Handley et al. showed that a Y. enterocolitica invasin mutant was attenuated in its ability 

to disseminate from the intestine to the spleen (16). The same phenotype has also been 

described for Y. pseudotuberculosis after oral inoculation (29). It had been proposed that 

enteropathogenic Yersinia colonize the Peyer’s patch, then drain into the mesenteric 

lymph nodes, and in turn enter tissues such as the spleen.  The studies by Marra et al. and 

Handley et al., however, showed that there are several routes of spread, and how initial 

colonization of one site leads to the colonization of another appears to be more 
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complicated than initially appreciated. To date, little is known about how B. pseudomallei 

disseminates from the initial site of infection (13). Inhalation, ingestion, and via soft 

tissue abrasions or lacerations are routes of infection (4, 9), however the steps the bacteria 

follow after the inoculation are still unknown. It is possible that bcaA functions like the Y. 

enterocolitica invasin, specifically aiding dissemination to the spleen. Further studies will 

include determining the route of spleen colonization, as well as studies to determine if 

bcaA and bcaB affect survival once the bacteria have reached the spleen. 

bcaB is predicted to encode a hypothetical protein with a prolyl 4-hydroxylase 

domain. Bacterial prolyl 4-hydroxylases are believed to hydroxylate peptidyl prolines, 

and although some such hydroxylases have been identified in bacteria, their substrates 

and therefore their function remain unknown (15). Prolyl 4-hydroxylase, which catalyzes 

the most prevalent posttranslational modification in humans has as substrate collagen 

functioning by stabilizing collagen triple helix structure (20), elastin where it affects the 

formation of elastin fibrils (11) and even prion proteins although its consequence is 

unknown (15). In bacteria, a Bacillus anthracis enzyme, designated anthrax-P4H has 

been shown to hydroxylate peptidyl prolines, however although it binds to collagen-like 

peptides in vitro its physiological substrate and role remain unknown (8). Further studies 

should include determining if bcaB plays a role in hydroxylating any of the fifty-two 

prolines found in BcaA since it is possible that BcaA is the physiological substrate for 

BcaB, which would be consistent with their operon structure.   

Both bcaA and bcaB are required for invasion and plaque formation, consistent 

with the idea that they function together. However, only bcaA showed a phenotype in 

vivo. It is possible that this simply reflects the limitations of the tools we used. Although 
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the BALB/c model has been broadly used as an acute model for B. pseudomallei 

infection (26), it may not be sensitive enough to reveal phenotypes for all factors that 

contribute to disease, depending on the step and stage of disease in which they function. 

Our future experiments will include the development of additional animal models that 

will expand the repertoire of B. pseudomallei disease processes that we are able to study 

in the laboratory. 



 41 

Table 1. Strains and plasmids used in this study 
Strain or plasmid Description Reference or 

source 
RHO3 Kms; SM10(λpir)Δasd::FRTΔaphA::FRT (28) 
Bp340 1026b with Δ(amrRAB-oprA) (30) 
Bp340ΔbcaA  Bp340 with ΔbcaA This study 
Bp340ΔbcaB Bp340 with ΔbcaB This study 
Bp340ΔbcaA::attTn7bcaA Bp340 with ΔbcaA::attTn7bcaA This study 
Bp340ΔbcaB::attTn7bcaB Bp340 with ΔbcaB::attTn7bcaB This study 
Bp340::pCCS12HA1 Bp340 with pCCS12HA1::bcaA This study 
pCCX1 Kmr; pEXKm5 derivative (28) 
pCCX2 Kmr; pEXKm5 derivative (28) 
pCCZ1 Ampr, Kmr; pUC18T-mini-Tn7-Zeo derivative (6) 
pMBZ2 Ampr, Kmr; pUC18T-mini-Tn7-Zeo derivative (6) 
pTNS2  Apr; plasmid expressing tnsABCD from Plac (6) 
pCCS12HA1 Kmr; pCC derivative (pRE118 derivative), 

suicide plasmid for B. pseudomallei. 
This study 

 
 
 
 
 
 
Table 2. Primers used in this study 
CBcaART_F: TTC GACAGC TTC CAT CTC GGC 
CBcaART_R: GTT CTT CAG ATG CAC ATA CGC GAC 
CBcaBRT_F: TTT CGC AGA CGT ACT TGA CGC AGC 
CBcaBRT_R: TTG AAC ATC AGC GTG ATC CGC ATC GTC 
CBcaA/BRT_F: CTC GGC AAG AAC GGA TGG CTG 
CBcaA/BRT_R: CAG AAA CCG GTG GAT CTG CGC 
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Fig.	  1.	  bcaA	  and	  bcaB	  appear	  to	  form	  an	  operon.	  (A)	  Genetic	  organization	  of	  the	  
bcaA	  and	  bcaB	  locus	  and	  description	  of	  the	  strains	  used	  in	  this	  study.	  Visual	  
representation	  of	  the	  primer	  pairs	  used	  for	  RT-‐PCR.	  (B)	  The	  putative	  domains	  of	  
BcaA	  and	  BcaB	  proteins	  drawn	  to	  scale.	  (C)	  RT-‐PCR	  analysis	  of	  the	  operon	  structure	  
of	  bcaA	  and	  bcaB.	  Primer	  pairs	  1-‐2,	  3-‐4	  and	  5-‐6	  were	  used,	  as	  indicated	  in	  1A.	  
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Fig.	  2.	  Immunoblot	  of	  whole	  cell	  lysates	  of	  Bp340	  with	  no	  tag,	  and	  
Bp340::pCCS12HA1,	  strains	  were	  separated	  by	  SDS-‐PAGE	  and	  stained	  with	  anti-‐HA	  
antibody.	  
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Fig.	  3.	  Average	  number	  of	  plaques	  formed	  in	  an	  A549	  monolayer	  by	  Bp340,	  
Bp340ΔbcaA (A), Bp340ΔbcaB (B) and respective complementation strains. Assays were 
performed three times in duplicate, and the results were combined. Data are mean ± 
SEM. **p<0.0080 and ***p<0.0001, by one-way ANOVA with Tukey’s post-test at a 95% 
confidence interval.	  
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Fig. 4. Colony forming units (CFU) recovered after two-hour adherence and invasion 
assays with Bp340, Bp340ΔbcaA (A), Bp340ΔbcaB (B) and respective complementation 
strains. Assays were performed in three times in duplicate, and the results were 
combined. Data are mean ± SEM. ***p<0.0001, by one-way ANOVA with Tukey’s post-
test at a 95% confidence interval. 
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Fig. 5. Six- to 8-week-old female BALB/c mice were inoculated with 500 CFU of B. 
pseudomallei Bp340 (white circles), Bp340ΔbcaA (A), Bp340ΔbcaB (B) (light grey 
circles) and respective complementation strains (dark grey circles). Each circle represents 
the number of CFU recovered from a mouse. The horizontal line represents the average 
number of CFU. The dotted line represents the lower limit of detection. ***p<0.0001. 
Animal experiments were performed twice for each strain, and results combined. 
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Fig. 6. Histological analysis of B. pseudomallei-infected tissues. Representative tissue 
samples from BALB/c infected mice i.n. with Bp340, Bp340ΔbcaA and 
Bp340ΔbcaA::attTn7bcaA (~500 CFU), or PBS mock-infected control animals.  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Lung SpleenLiver

PBS

Bp340∆bcaA

Bp340∆bcaA
attTn7::bcaA

Bp340

50µm



 48 

References 
 
1.	   Ali,	  T.,	  N.	  J.	  Oldfield,	  K.	  G.	  Wooldridge,	  D.	  P.	  Turner,	  and	  D.	  A.	  Ala'Aldeen.	  

2008.	  Functional	  characterization	  of	  AasP,	  a	  maturation	  protease	  
autotransporter	  protein	  of	  Actinobacillus	  pleuropneumoniae.	  Infect	  
Immun	  76:5608-5614.	  

	  
2.	   Bendtsen,	  J.	  D.,	  H.	  Nielsen,	  G.	  von	  Heijne,	  and	  S.	  Brunak.	  2004.	  Improved	  

prediction	  of	  signal	  peptides:	  SignalP	  3.0.	  J	  Mol	  Biol	  340:783-795.	  
	  
3.	   Burtnick,	  M.	  N.,	  P.	  J.	  Brett,	  S.	  V.	  Harding,	  S.	  A.	  Ngugi,	  W.	  J.	  Ribot,	  N.	  

Chantratita,	  A.	  Scorpio,	  T.	  S.	  Milne,	  R.	  E.	  Dean,	  D.	  L.	  Fritz,	  S.	  J.	  Peacock,	  J.	  
L.	  Prior,	  T.	  P.	  Atkins,	  and	  D.	  Deshazer.	  The	  cluster	  1	  type	  VI	  secretion	  
system	  is	  a	  major	  virulence	  determinant	  in	  Burkholderia	  pseudomallei.	  
Infection	  and	  immunity	  79:1512-1525.	  

	  
4.	   Cheng,	  A.	  C.,	  and	  B.	  J.	  Currie.	  2005.	  Melioidosis:	  epidemiology,	  

pathophysiology,	  and	  management.	  Clin	  Microbiol	  Rev	  18:383-416.	  
5.	   Choi,	  K.	  H.,	  D.	  DeShazer,	  and	  H.	  P.	  Schweizer.	  2006.	  mini-Tn7	  insertion	  

in	  bacteria	  with	  multiple	  glmS-linked	  attTn7	  sites:	  example	  
Burkholderia	  mallei	  ATCC	  23344.	  Nat	  Protoc	  1:162-169.	  

	  
6.	   Choi,	  K.	  H.,	  T.	  Mima,	  Y.	  Casart,	  D.	  Rholl,	  A.	  Kumar,	  I.	  R.	  Beacham,	  and	  H.	  P.	  

Schweizer.	  2008.	  Genetic	  tools	  for	  select-agent-compliant	  manipulation	  
of	  Burkholderia	  pseudomallei.	  Appl	  Environ	  Microbiol	  74:1064-1075.	  

7.	   Cotter,	  S.	  E.,	  N.	  K.	  Surana,	  and	  J.	  W.	  St	  Geme,	  3rd.	  2005.	  Trimeric	  
autotransporters:	  a	  distinct	  subfamily	  of	  autotransporter	  proteins.	  
Trends	  Microbiol	  13:199-205.	  

	  
8.	   Culpepper,	  M.	  A.,	  E.	  E.	  Scott,	  and	  J.	  Limburg.	  Crystal	  structure	  of	  prolyl	  4-

hydroxylase	  from	  Bacillus	  anthracis.	  Biochemistry	  49:124-133.	  
9.	   Dance,	  D.	  A.	  2000.	  Ecology	  of	  Burkholderia	  pseudomallei	  and	  the	  

interactions	  between	  environmental	  Burkholderia	  spp.	  and	  human-
animal	  hosts.	  Acta	  Trop	  74:159-168.	  

	  
10.	   Dorman,	  S.	  E.,	  V.	  J.	  Gill,	  J.	  I.	  Gallin,	  and	  S.	  M.	  Holland.	  1998.	  Burkholderia	  

pseudomallei	  infection	  in	  a	  Puerto	  Rican	  patient	  with	  chronic	  
granulomatous	  disease:	  case	  report	  and	  review	  of	  occurrences	  in	  the	  
Americas.	  Clin	  Infect	  Dis	  26:889-894.	  

	  
11.	   Dunn,	  D.	  M.,	  and	  C.	  Franzblau.	  1982.	  Effects	  of	  ascorbate	  on	  insoluble	  

elastin	  accumulation	  and	  cross-link	  formation	  in	  rabbit	  pulmonary	  
artery	  smooth	  muscle	  cultures.	  Biochemistry	  21:4195-4202.	  

	  
12.	   French,	  C.	  T.,	  I.	  J.	  Toesca,	  T.	  H.	  Wu,	  T.	  Teslaa,	  S.	  M.	  Beaty,	  W.	  Wong,	  M.	  Liu,	  

I.	  Schroder,	  P.	  Y.	  Chiou,	  M.	  A.	  Teitell,	  and	  J.	  F.	  Miller.	  Dissection	  of	  the	  



 49 

Burkholderia	  intracellular	  life	  cycle	  using	  a	  photothermal	  nanoblade.	  
Proceedings	  of	  the	  National	  Academy	  of	  Sciences	  of	  the	  United	  States	  of	  
America	  108:12095-12100.	  

	  
13.	   Goodyear,	  A.,	  H.	  Bielefeldt-Ohmann,	  H.	  Schweizer,	  and	  S.	  Dow.	  

Persistent	  gastric	  colonization	  with	  Burkholderia	  pseudomallei	  and	  
dissemination	  from	  the	  gastrointestinal	  tract	  following	  mucosal	  
inoculation	  of	  mice.	  PLoS	  One	  7:e37324.	  

	  
14.	   Goodyear,	  A.,	  L.	  Kellihan,	  H.	  Bielefeldt-Ohmann,	  R.	  Troyer,	  K.	  Propst,	  

and	  S.	  Dow.	  2009.	  Protection	  from	  pneumonic	  infection	  with	  
burkholderia	  species	  by	  inhalational	  immunotherapy.	  Infection	  and	  
immunity	  77:1579-1588.	  

	  
15.	   Gorres,	  K.	  L.,	  and	  R.	  T.	  Raines.	  Prolyl	  4-hydroxylase.	  Crit	  Rev	  Biochem	  

Mol	  Biol	  45:106-124.	  
	  
16.	   Handley,	  S.	  A.,	  R.	  D.	  Newberry,	  and	  V.	  L.	  Miller.	  2005.	  Yersinia	  

enterocolitica	  invasin-dependent	  and	  invasin-independent	  mechanisms	  
of	  systemic	  dissemination.	  Infect	  Immun	  73:8453-8455.	  

	  
17.	   Henderson,	  I.	  R.,	  and	  J.	  P.	  Nataro.	  2001.	  Virulence	  functions	  of	  

autotransporter	  proteins.	  Infection	  and	  immunity	  69:1231-1243.	  
18.	   Henderson,	  I.	  R.,	  F.	  Navarro-Garcia,	  M.	  Desvaux,	  R.	  C.	  Fernandez,	  and	  D.	  

Ala'Aldeen.	  2004.	  Type	  V	  protein	  secretion	  pathway:	  the	  
autotransporter	  story.	  Microbiol	  Mol	  Biol	  Rev	  68:692-744.	  

	  
19.	   Holden,	  M.	  T.,	  R.	  W.	  Titball,	  S.	  J.	  Peacock,	  A.	  M.	  Cerdeno-Tarraga,	  T.	  

Atkins,	  L.	  C.	  Crossman,	  T.	  Pitt,	  C.	  Churcher,	  K.	  Mungall,	  S.	  D.	  Bentley,	  M.	  
Sebaihia,	  N.	  R.	  Thomson,	  N.	  Bason,	  I.	  R.	  Beacham,	  K.	  Brooks,	  K.	  A.	  Brown,	  
N.	  F.	  Brown,	  G.	  L.	  Challis,	  I.	  Cherevach,	  T.	  Chillingworth,	  A.	  Cronin,	  B.	  
Crossett,	  P.	  Davis,	  D.	  DeShazer,	  T.	  Feltwell,	  A.	  Fraser,	  Z.	  Hance,	  H.	  
Hauser,	  S.	  Holroyd,	  K.	  Jagels,	  K.	  E.	  Keith,	  M.	  Maddison,	  S.	  Moule,	  C.	  Price,	  
M.	  A.	  Quail,	  E.	  Rabbinowitsch,	  K.	  Rutherford,	  M.	  Sanders,	  M.	  Simmonds,	  
S.	  Songsivilai,	  K.	  Stevens,	  S.	  Tumapa,	  M.	  Vesaratchavest,	  S.	  Whitehead,	  C.	  
Yeats,	  B.	  G.	  Barrell,	  P.	  C.	  Oyston,	  and	  J.	  Parkhill.	  2004.	  Genomic	  plasticity	  
of	  the	  causative	  agent	  of	  melioidosis,	  Burkholderia	  pseudomallei.	  
Proceedings	  of	  the	  National	  Academy	  of	  Sciences	  of	  the	  United	  States	  of	  
America	  101:14240-14245.	  

	  
20.	   Holmgren,	  S.	  K.,	  L.	  E.	  Bretscher,	  K.	  M.	  Taylor,	  and	  R.	  T.	  Raines.	  1999.	  A	  

hyperstable	  collagen	  mimic.	  Chem	  Biol	  6:63-70.	  
	  
21.	   Inglis,	  T.	  J.,	  and	  J.	  L.	  Sagripanti.	  2006.	  Environmental	  factors	  that	  affect	  

the	  survival	  and	  persistence	  of	  Burkholderia	  pseudomallei.	  Appl	  
Environ	  Microbiol	  72:6865-6875.	  



 50 

	  
22.	   Kespichayawattana,	  W.,	  P.	  Intachote,	  P.	  Utaisincharoen,	  and	  S.	  Sirisinha.	  

2004.	  Virulent	  Burkholderia	  pseudomallei	  is	  more	  efficient	  than	  
avirulent	  Burkholderia	  thailandensis	  in	  invasion	  of	  and	  adherence	  to	  
cultured	  human	  epithelial	  cells.	  Microb	  Pathog	  36:287-292.	  

	  
23.	   Krem,	  M.	  M.,	  and	  E.	  Di	  Cera.	  2001.	  Molecular	  markers	  of	  serine	  protease	  

evolution.	  EMBO	  J	  20:3036-3045.	  
	  
24.	   Laemmli,	  U.	  K.	  1970.	  Cleavage	  of	  structural	  proteins	  during	  the	  

assembly	  of	  the	  head	  of	  bacteriophage	  T4.	  Nature	  227:680-685.	  
	  
25.	   Lazar	  Adler,	  N.	  R.,	  B.	  Govan,	  M.	  Cullinane,	  M.	  Harper,	  B.	  Adler,	  and	  J.	  D.	  

Boyce.	  2009.	  The	  molecular	  and	  cellular	  basis	  of	  pathogenesis	  in	  
melioidosis:	  how	  does	  Burkholderia	  pseudomallei	  cause	  disease?	  FEMS	  
Microbiol	  Rev	  33:1079-1099.	  

	  
26.	   Leakey,	  A.	  K.,	  G.	  C.	  Ulett,	  and	  R.	  G.	  Hirst.	  1998.	  BALB/c	  and	  C57Bl/6	  mice	  

infected	  with	  virulent	  Burkholderia	  pseudomallei	  provide	  contrasting	  
animal	  models	  for	  the	  acute	  and	  chronic	  forms	  of	  human	  melioidosis.	  
Microb	  Pathog	  24:269-275.	  

	  
27.	   Letunic,	  I.,	  T.	  Doerks,	  and	  P.	  Bork.	  SMART	  7:	  recent	  updates	  to	  the	  

protein	  domain	  annotation	  resource.	  Nucleic	  Acids	  Res	  40:D302-305.	  
28.	   Lopez,	  C.	  M.,	  D.	  A.	  Rholl,	  L.	  A.	  Trunck,	  and	  H.	  P.	  Schweizer.	  2009.	  

Versatile	  dual-technology	  system	  for	  markerless	  allele	  replacement	  in	  
Burkholderia	  pseudomallei.	  Appl	  Environ	  Microbiol	  75:6496-6503.	  

	  
29.	   Marra,	  A.,	  and	  R.	  R.	  Isberg.	  1997.	  Invasin-dependent	  and	  invasin-

independent	  pathways	  for	  translocation	  of	  Yersinia	  pseudotuberculosis	  
across	  the	  Peyer's	  patch	  intestinal	  epithelium.	  Infection	  and	  immunity	  
65:3412-3421.	  

	  
30.	   Mima,	  T.,	  and	  H.	  P.	  Schweizer.	  The	  BpeAB-OprB	  efflux	  pump	  of	  

Burkholderia	  pseudomallei	  1026b	  does	  not	  play	  a	  role	  in	  quorum	  
sensing,	  virulence	  factor	  production,	  or	  extrusion	  of	  aminoglycosides	  
but	  is	  a	  broad-spectrum	  drug	  efflux	  system.	  Antimicrob	  Agents	  
Chemother	  54:3113-3120.	  

	  
31.	   Nishimura,	  K.,	  N.	  Tajima,	  Y.	  H.	  Yoon,	  S.	  Y.	  Park,	  and	  J.	  R.	  Tame.	  

Autotransporter	  passenger	  proteins:	  virulence	  factors	  with	  common	  
structural	  themes.	  J	  Mol	  Med	  (Berl)	  88:451-458.	  

	  
32.	   Ohnishi,	  Y.,	  and	  S.	  Horinouchi.	  1996.	  Extracellular	  production	  of	  a	  

Serratia	  marcescens	  serine	  protease	  in	  Escherichia	  coli.	  Biosci	  
Biotechnol	  Biochem	  60:1551-1558.	  



 51 

	  
33.	   Pantaloni,	  D.,	  C.	  Le	  Clainche,	  and	  M.	  F.	  Carlier.	  2001.	  Mechanism	  of	  actin-

based	  motility.	  Science	  292:1502-1506.	  
	  
34.	   Rolim,	  D.	  B.,	  D.	  C.	  Vilar,	  A.	  Q.	  Sousa,	  I.	  S.	  Miralles,	  D.	  C.	  de	  Oliveira,	  G.	  

Harnett,	  L.	  O'Reilly,	  K.	  Howard,	  I.	  Sampson,	  and	  T.	  J.	  Inglis.	  2005.	  
Melioidosis,	  northeastern	  Brazil.	  Emerg	  Infect	  Dis	  11:1458-1460.	  

35.	   Siezen,	  R.	  J.,	  and	  J.	  A.	  Leunissen.	  1997.	  Subtilases:	  the	  superfamily	  of	  
subtilisin-like	  serine	  proteases.	  Protein	  Sci	  6:501-523.	  

	  
36.	   Sprague,	  L.	  D.,	  and	  H.	  Neubauer.	  2004.	  Melioidosis	  in	  animals:	  a	  review	  

on	  epizootiology,	  diagnosis	  and	  clinical	  presentation.	  J	  Vet	  Med	  B	  Infect	  
Dis	  Vet	  Public	  Health	  51:305-320.	  

	  
37.	   Stevens,	  M.	  P.,	  A.	  Haque,	  T.	  Atkins,	  J.	  Hill,	  M.	  W.	  Wood,	  A.	  Easton,	  M.	  

Nelson,	  C.	  Underwood-Fowler,	  R.	  W.	  Titball,	  G.	  J.	  Bancroft,	  and	  E.	  E.	  
Galyov.	  2004.	  Attenuated	  virulence	  and	  protective	  efficacy	  of	  a	  
Burkholderia	  pseudomallei	  bsa	  type	  III	  secretion	  mutant	  in	  murine	  
models	  of	  melioidosis.	  Microbiology	  150:2669-2676.	  

	  
38.	   Stevens,	  M.	  P.,	  J.	  M.	  Stevens,	  R.	  L.	  Jeng,	  L.	  A.	  Taylor,	  M.	  W.	  Wood,	  P.	  

Hawes,	  P.	  Monaghan,	  M.	  D.	  Welch,	  and	  E.	  E.	  Galyov.	  2005.	  Identification	  
of	  a	  bacterial	  factor	  required	  for	  actin-based	  motility	  of	  Burkholderia	  
pseudomallei.	  Mol	  Microbiol	  56:40-53.	  

	  
39.	   Tripathi,	  L.	  P.,	  and	  R.	  Sowdhamini.	  2008.	  Genome-wide	  survey	  of	  

prokaryotic	  serine	  proteases:	  analysis	  of	  distribution	  and	  domain	  
architectures	  of	  five	  serine	  protease	  families	  in	  prokaryotes.	  BMC	  
Genomics	  9:549.	  

	  
40.	   Valvano,	  M.	  A.,	  K.	  E.	  Keith,	  and	  S.	  T.	  Cardona.	  2005.	  Survival	  and	  

persistence	  of	  opportunistic	  Burkholderia	  species	  in	  host	  cells.	  Current	  
opinion	  in	  microbiology	  8:99-105.	  

	  
41.	   Whitmore,	  A.,	  and	  C.S.	  Krisnaswami.	  1912.	  An	  account	  f	  the	  discovery	  of	  

a	  hitherto	  undescribed	  infective	  disease	  occurring	  among	  the	  
population	  of	  Rangoon.	  Ind.	  Med.	  Gaz.:262-267.	  

	  
42.	   Wiersinga,	  W.	  J.,	  B.	  J.	  Currie,	  and	  S.	  J.	  Peacock.	  Melioidosis.	  N	  Engl	  J	  Med	  

367:1035-1044.	  
	  
43.	   Yabuuchi,	  E.,	  Y.	  Kosako,	  M.	  Arakawa,	  H.	  Hotta,	  and	  I.	  Yano.	  1992.	  

Identification	  of	  Oklahoma	  isolate	  as	  a	  strain	  of	  Pseudomonas	  
pseudomallei.	  Microbiol	  Immunol	  36:1239-1249.	  

	  



 
 
 
 

CHAPTER III 
 
 

Functional characterization of Burkholderia pseudomallei trimeric autotransporters2 
 

Introduction 

 Burkholderia pseudomallei is a Gram-negative soil saprotroph and the causative 

agent of melioidosis, a severe and often systemic infection that can occur in both chronic 

and acute forms (1, 2). Acute pulmonary melioidosis is characterized by high fever, 

respiratory distress, and the formation of visceral abscesses, while chronic pulmonary 

melioidosis is characterized by prolonged pneumonia and abscess formation in lungs, 

liver, and spleen (2). Overall mortality due to melioidosis is high, approaching 50% in 

Thailand and 20% in Australia (2, 3). B. pseudomallei is endemic to Southeast Asia and 

Northern Australia, but has also been identified in Africa, South and Central America, 

India, and the Middle East (4, 5). Intrinsic resistance to clinically important antibiotics, 

including beta-lactams and many macrolides and aminoglycosides (6, 7), as well as the 

ability to invade and persist in phagocytic cells (8, 9), contributes to the difficulty of 

successfully treating B. pseudomallei infections. Intense antibiotic therapy over several 

months is often required to eliminate the bacteria, but despite a robust treatment regimen, 

relapse occurs with high frequency (10).  

 B. pseudomallei is able to adhere to and invade a variety of epithelial cell lines, 

and has also been shown to invade and survive within macrophage-like cells (8, 11-14). 

                                                
1Authored by: Cristine G. Campos, Matthew Byrd, and Peggy A. Cotter. 
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Following uptake by a eukaryotic cell, B. pseudomallei is able to escape the endocytic 

compartment using one of its Type III Secretion Systems (T3SS) and enter the cytoplasm. 

Once in the cytoplasm, the bacterium polymerizes host actin using the surface protein 

BimA to move within host cells, avoiding exposure to the extracellular space (9, 15), B. 

pseudomallei can induce fusion of neighboring host cell membranes leading to the 

formation of multinucleated giant cells (MNGC) in a process that depends on one of its 

Type VI Secretion Systems (T6SS) (9, 16-18). Although several putative B. pseudomallei 

adhesins have been identified by genomic screens and protein microarrays (19, 20), only 

a few have been characterized, including Type IV pili and two putative autotransporter 

(AT) proteins BoaA and BoaB (21, 22).   

 AT proteins are secreted via the Type V Secretion System pathway, the largest 

family of secreted proteins amongst Gram-negative bacteria. AT proteins share three 

common features: an N-terminal signal sequence for Sec-dependent translocation into the 

periplasm, a central passenger region containing the functional domain(s), and a highly 

conserved, outer membrane channel-forming β-barrel domain at the C-terminus that is 

required for export of the passenger domain to the surface (23). The two subfamilies of 

AT proteins, classical and trimeric, are distinguished by the mechanism of β-barrel 

assembly and by the processing and localization of the passenger domain (24). The C-

terminal β-domains of classical ATs are sufficient to form a channel, while trimeric ATs 

require three polypeptides to form the outer membrane channel, with each β-domain 

contributing one-third of the channel (23, 25, 26). In addition, classical AT proteins 

function as monomers and cleavage of the passenger domain usually occurs at or near the 

junction of the β-barrel domain and the passenger domain. Once cleaved, classical ATs 
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remain non-covalently associated with the cell surface or are released into the 

extracellular environment (23, 24). In contrast, trimeric AT passenger domains remain 

covalently linked to the β-domain, with the N-terminus located distal to the cell surface 

(23, 25).  

AT proteins have been implicated in virulence in numerous Gram-negative 

bacterial pathogens. Two prototypical trimeric ATs, YadA (from Yersinia enterocolitica) 

and Hia (from Haemophilus influenzae), function as adhesins, and YadA also confers 

serum resistance by interfering with complement activation (27, 28). B. pseudomallei 

strain 1026b, isolated from a melioidosis patient in Thailand, encodes eleven putative AT 

proteins (two classical and nine trimeric) (29). Apart from the host actin-polymerizing 

BimA, only three B. pseudomallei trimeric AT proteins have been described. BoaA and 

BoaB have been reported to function as adhesins in vitro and contribute to B. 

pseudomallei replication inside macrophage-like cells (21). A portion of the passenger 

domain of a third AT protein, encoded by bpaA, has been crystallized, and the structure 

of its tightly woven trimeric head region resembles that of other trimeric ATs, including 

YadA, Hia, and BadA from Bartonella henselae (30).  

In this study, we investigated eight B. pseudomallei trimeric ATs and evaluated 

their role in adherence, invasion, and plaque formation in vitro. We also performed the 

first animal experiments using any B. pseudomallei strains defective for production of 

trimeric ATs and found that one trimeric AT, BpaC, is required for efficient 

dissemination of bacteria to or survival within the liver in a BALB/c respiratory infection 

model.  
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Materials and Methods 

Bacterial Strains. All manipulations of B. pseudomallei were conducted in a 

CDC/USDA-approved animal biosafety level 3 (ABSL3) facility at the University of 

North Carolina at Chapel Hill. The bacterial strains used in this study are listed in Table 

1. B. pseudomallei strains were cultured in low salt lysogeny broth (LSLB; 10 g/l 

tryptone, 5 g/l yeast extract, 2.5 g/l NaCl), or on LSLB agar (Sigma-Aldrich, St. Louis, 

MO) for 24 h at 37ºC. Escherichia coli strains were grown in LB (10 g/l tryptone, 5 g/l 

yeast extract, 10 g/l NaCl) or on LB agar. When appropriate, culture media were 

supplemented with kanamycin (Km, 125 µg/ml for B. pseudomallei and 50 µg/ml for E. 

coli). LB agar was supplemented with 400 µg/ml of diaminopimelic acid (DAP; LL-, 

DD-, and meso-isomers; Sigma-Aldrich, St. Louis, MO) to support growth of RHO3 cells 

(31). Yeast extract-tryptone (YT; 10 g/l of yeast extract and 10 g/l of tryptone) medium 

supplemented with 15% sucrose and X-Gluc (GoldBio, St. Louis, MO) was used for 

counter-selection during the construction of B. pseudomallei deletion mutation strains 

(31). 

Construction of B. pseudomallei mutant strains and plasmids. Deletion of 

boaB, bpaE, bpaF, and bpaFds1/2 genes from B. pseudomallei strain Bp340 (a derivative 

of strain 1026b containing a ΔamrRAB-oprA mutation (32)) was carried out by allelic 

exchange using pEXKm5 derivatives (31). DNA fragments containing approximately 500 

bp 5ʹ′ to the gene(s) (including the first three codons) and 500 bp 3ʹ′ to the gene (including 

the last three codons) were generated using a two-step, overlap PCR approach and were 

cloned into pEXKm5, resulting in plasmids pMBX3, pCCX3, pMBX1, and pMBX2. 

Plasmids were transformed into E. coli RHO3 cells and were delivered to Bp340 by 
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conjugation (31). Disruption strains were constructed by amplifying 300 bp from within 

each gene and ligating this fragment into the suicide vector pCC (a derivative of pRE118 

(33) created by digesting the plasmid with EcoRI, and religating the backbone without 

the sacB1 gene). Plasmids were transformed into E. coli RHO3 cells, and were delivered 

to Bp340 by conjugation.   

Bacterial conjugations. Matings between B. pseudomallei and E. coli strain 

RHO3 were performed by incubating Bp340 with RHO3 cells carrying the appropriate 

allelic exchange plasmid or disruption plasmid (Table 1) on LSLB-DAP agar plates 

overnight. Cointegrants were selected on LSLB-Km. For deletion strains, cointegrants 

confirmed for plasmid insertion by PCR were grown overnight in LSLB without 

selection, allowing for a second recombination event to occur and for the plasmid to be 

lost. An aliquot of cells were plated on YT agar supplemented with 15% sucrose and X-

Gluc, as previously described (31). Colonies arising from the counterselection were 

screened by PCR for the deletion mutation and/or disruption mutation, and all strains 

were confirmed by DNA sequencing.  

Plaque assay. B. pseudomallei strains were grown overnight in LSLB at 37ºC. 

Each well of a 6-well plate was seeded with A549 human lung epithelial cells such that 

confluent monolayers contained approximately 1 × 106 cells per well. Cells were 

incubated in F12K medium (Cellgro, Circle Westwood, MA) supplemented with 10% 

fetal bovine serum (Gibco, Grand Island, NY) at 37ºC with 5% CO2. Bacterial 

suspensions were diluted to an OD600 of 0.1 in fresh tissue culture medium, further 

diluted 1:10, and 25 µl of the diluted culture was added to each well (MOI of 0.1). Plates 

were incubated for 2 h and each well was washed thoroughly with fresh culture medium 
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and overlaid with a mixture containing 1.2% low-melting agarose (Fisher Scientific, 

Fairlawn, NJ), F12K with 10% FBS, gentamicin (Gm, 90 µg/ml), and 0.01% neutral red 

(Fischer Scientific, Waltham, MA). Plates were incubated for 24 h at 37ºC with 5% CO2, 

and plaques were enumerated in each well. 

Adherence and invasion assays. Bacterial strains and A549 cells were grown as 

described above. Bacteria were diluted to an OD600 of 0.1 in fresh tissue culture medium, 

and 250 µL of the diluted culture was added to each well of a 6-well plate (MOI of 100). 

Plates were incubated for 2 h, and each well was washed thoroughly with fresh culture 

medium. For the adherence assay, cells were immediately lysed using 1% Triton X-100 

(Sigma-Aldrich, St. Louis, MO), and lysates were diluted and plated to determine the 

total colony forming units (CFU) in each well. For the invasion assay, cells were 

incubated an additional 90 min. in the presence of gentamicin (Gm, 90 µg/ml), washed 

with fresh culture medium, and lysed using 1% Triton X-100. Lysates were diluted and 

plated to determine the total CFU in each well. To calculate the percentage of adherent or 

internalized bacteria, the number of adherent or internalized bacteria was divided by the 

total number of bacteria in the inoculum and multiplied by 100. 

Animal experiments. All animal experiments were approved by the Animal 

Studies Committee of the University of North Carolina at Chapel Hill (protocol 10-165). 

Six- to eight-week-old female BALB/c mice (The Jackson Laboratory, Bar Harbor, ME) 

were allowed free access to sterilized food and water. Animals were anesthetized with 

Avertin (140 mg/kg; Sigma-Aldrich, St. Louis, MO) by intraperitoneal injection prior to 

infection. For all infections, the desired inoculum of B. pseudomallei was suspended in 

phosphate buffered saline (PBS). Mice were inoculated intranasally with 500 CFU of B. 
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pseudomallei and were euthanized by CO2 overdose at the indicated time points. At least 

three animals per strain were infected, and some experiments were performed twice and 

the results were combined. Animal experiments were terminated at 48 h, at which time all 

animals had become moribund. Organs were aseptically harvested and homogenized, and 

the bacterial burden in each organ was determined by plating serial dilutions of the 

homogenates. 

 

Results 

Bioinformatic characterization of putative trimeric AT-encoding gene loci. 

Nine putative trimeric AT-encoding genes were identified in the genome of the B. 

pseudomallei clinical isolate 1026b based on sequences at the 3ʹ′ ends of the open reading 

frames that are predicted to encode the characteristic β-domain. The trimeric AT-

encoding gene bimA, which has been extensively characterized (15, 34), was not included 

in our analysis. Three of the remaining eight genes have been annotated previously as 

boaA, boaB (for Burkholderia oligomeric coiled-coil adhesin) (21), and bpaA (for 

Burkholderia pseudomallei autotransporter) (30). For simplicity, we have named the 

remaining five uncharacterized genes bpaB–F. The trimeric AT-encoding genes are 

distributed between the two B. pseudomallei chromosomes: boaB, bpaB, and bpaC are on 

chromosome I, while boaA, bpaA, and bpaD–F are on chromosome II (Fig. 1).  

One or more additional open reading frames (ORFs) with unknown function are 

present 3ʹ′ to and in the same orientation as four of the predicted AT genes (bpaA, bpaB, 

bpaE, and bpaF) (Fig. 1). The ORF BP1026B_II1528, 3ʹ′ to bpaA, is predicted to contain 

a consensus N-terminal lipobox sequence LAGC but lacks a Lol avoidance signal 



 59 

necessary for retention at the inner membrane, suggesting that this protein is a lipoprotein 

that is localized to the inner leaflet of the outer membrane (35, 36). The ORFs 3ʹ′ to bpaB 

and bpaE (BP1026B_I2045 or bpaBds1 and BP1026B_II0997 or bpaEds1, respectively) 

are predicted to encode OmpA family proteins and share 29% amino acid sequence 

identity. Like the BP1026B_II1528 gene product, the proteins encoded by bpaBds1 and 

bpaEds1 possess a lipobox sequence (LGAC and LTGC, respectively), and are likely 

localized to the inner leaflet of the outer membrane given the lack of a Lol avoidance 

signal. Immediately 3ʹ′ to bpaF is an ORF (BP1026B_II1531) that encodes a hypothetical 

protein containing the domain of unknown function (DUF) 2827. DUF2827 proteins are 

well conserved amongst Burkholderia species, and though a second DUF2827-encoding 

ORF (BP1026B_II1532) immediately follows the first, these two proteins share only 48% 

amino acid sequence identity. To distinguish these DUF2827-encoding genes in later 

analyses, we refer to them as bpaFds1 and bpaFds2.  

The first fully sequenced B. pseudomallei strain, K92643, was isolated from a 

patient in Thailand, and is the strain in which the eleven autotransporter-encoding genes 

were first identified (21, 37, 38). Although genes predicted to encode trimeric ATs are 

conserved amongst B. pseudomallei strains, two of the eight putative AT-encoding genes 

in our study are annotated differently in strain 1026b compared to K92643. boaA 

(BPSS0796 in K92643) is unannotated in the 1026b genome, but an alignment of the 

region expected to contain boaA with the corresponding region of the K92643 genome 

shows that boaA is indeed present in 1026b and is 91.5% identical to BPSS0796 at the 

nucleotide level. Similarly, bpaD (BPSS0088 in K92643) is annotated as a pseudogene of 
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1833 bp in 1026b; however, aligning the sequences 5ʹ′ to bpaD with BPSS0088 reveals a 

full-length bpaD gene that is 84.6% identical to BPSS0088 at the nucleotide level.  

 Bioinformatic characterization of putative trimeric AT proteins. The 

predicted proteins encoded by boaA, boaB, and bpaA–F range in size from 72.3 kDa 

(BpaD, 782 aa) to 241.5 kDa (BpaA, 2575 aa) and share features common to all trimeric 

ATs, including a 70–80 aa C-terminal β-barrel domain and a passenger domain 

containing numerous short repeated sequences (Fig. 2). Interestingly, seven of the eight 

trimeric AT proteins (all but BpaD) have a well-conserved 23-aa extended signal peptide 

region (ESPR, black region in Fig. 2) preceding a typical N-terminal signal sequence 

(dark blue region, Fig. 2); these regions begin with the sequence MN(K/R) and resemble 

the ESPRs of other trimeric AT and two-partner secretion proteins (Fig. 3). ESPRs can be 

found in ~10% of ATs and may be involved in regulating the translocation of ATs across 

the inner membrane into the periplasm (23, 39). Although, as annotated, BpaD does not 

contain an ESPR, manually translating the sequence immediately 5ʹ′ to the bpaD ORF 

reveals an MNR consensus sequence beginning 14 amino acids N-terminal to the 

predicted valine start codon. However, between the MNR and the initial valine are two 

UGA stop codons, preventing the ESPR-like region from being translated. Therefore, it 

appears that BpaD, predicted to be the smallest of the trimeric ATs in B. pseudomallei, 

may have had an ESPR earlier in its evolutionary history (Fig. 3). 

We used the domain annotation of trimeric autotransporter adhesins (daTAA) 

software to predict motifs within the passenger domain of B. pseudomallei trimeric AT 

proteins that have been previously described for other trimeric ATs (40). One particular 

repeated sequence, the YadA-like head motif (also known as the NSVAIG--S motif), is 
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present in all eight proteins, making up the majority of the passenger domains of BpaC 

and BpaD (Fig. 2). This motif has been implicated in YadA-dependent collagen binding 

in Yersinia enterocolitica, though its role in B. pseudomallei adherence and/or virulence 

has not been assessed (41).  

Five of the putative trimeric AT proteins (BoaA, BoaB, BpaA, BpaB, and BpaF) 

possess repeat regions in the passenger domain that are not common outside of 

Burkholderia species and share the N-terminal amino acid sequence SLST. These repeats 

are 11, 14, and 18 amino acids in length with consensus sequences of SLSTSTSTGTG, 

SLSTGLSTTNS(N/T/S)(V/L)(A/T), and SLSTSTSTGLSSA(N/T/Q)SS(I/V)A, 

respectively. A large portion of the passenger domains of BoaA and BoaB and nearly the 

entire passenger domains of BpaA and BpaF are composed of SLST repeats; however, 

searches for both primary amino acid sequence and secondary structure homology fail to 

suggest a structure or function for these repeats. In 1026b, BoaA and BoaB are 63.1% 

identical and share similarly annotated regions within their passenger domains, perhaps 

suggesting that BoaA and BoaB are the result of a gene duplication event.  

Construction of mutant strains. To evaluate the contribution of putative trimeric 

ATs to B. pseudomallei virulence, we constructed strains containing plasmid disruption 

and/or deletion mutations in each AT-encoding gene, as well as in the ORF(s) 3ʹ′ to two 

AT-encoding gene loci (Fig. 4). Plasmid disruptions were made such that the suicide 

plasmid pCC, carrying a 300-bp internal fragment of the AT-encoding gene (or of the 

gene 3ʹ′ to bpaE), integrated at approximately the midpoint of the coding region of each 

gene via single-crossover homologous recombination. The presence of nptII (encoding a 

Km resistance protein) on the plasmid allowed for selection of cointegrants, and plating 
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the strains on selective and non-selective media provided a means to assess plasmid loss. 

We grew the disruption mutation strains in LSLB without Km and determined the percent 

of cells that were Kmr and Kms after 48 h incubation at 37°C. There was no significant 

plasmid loss for seven out of eight AT-encoding gene disruption mutants or for 

Bp340::pDbpaEds1; however, nearly all Bp340::pDboaB cells had lost the plasmid after 

24 h, suggesting either that boaB is indispensible for growth in vitro or that the plasmid is 

simply unstable in this location (data not shown).  

As the plasmid instability observed for Bp340::pDboaB would prevent the use of 

this strain in subsequent assays, we constructed an unmarked, in-frame deletion mutation 

of boaB using the allelic exchange plasmid pEXKm5, which has been used previously in 

Burkholderia spp. (31). We also created strains with in-frame deletion mutations in bpaE, 

bpaF, and in a region encompassing both genes 3ʹ′ to bpaF (Fig. 4). We chose to delete 

the two genes 3ʹ′ to bpaF due to their unique presence in Burkholderia and their predicted 

function as glycosyltransferases, as glycosylation is a critical post-translational 

modification of certain ATs (42).  

One B. pseudomallei trimeric AT, BpaE, contributes to plaque formation in 

A549 cells. B. pseudomallei can spread from cell to cell without exiting the cytoplasm 

and can form plaques in a cell monolayer (34, 43, 44). In vitro, this process can be 

quantified by assessing the ability of B. pseudomallei to form plaques in a monolayer of 

cultured cells. We evaluated strains containing disruption mutations in seven of the eight 

putative trimeric AT-encoding genes (all but BoaB) for plaque formation compared to the 

wild-type strain Bp340 (Fig. 5A). Six of the seven disruption mutants formed plaques at a 

frequency similar to Bp340, which formed approximately 75 plaques per well. 
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Bp340::pDbpaE, however, formed significantly fewer plaques compared to Bp340 (15.5 

± 3.26 compared to 78.5 ± 4.39, p < 0.01). We likewise evaluated plaque formation by 

the boaB deletion mutant but did not observe a difference compared to Bp340 (Fig. 5B). 

Our results suggest that BpaE is required for one or more steps in the plaque formation 

process, which includes adherence, invasion, intracellular survival, and cell-cell fusion. 

BoaA, BoaB, BpaA, BpaC, and BpaD contribute to B. pseudomallei 

adherence to A549 cells. The plaques formed by Bp340::pDbpaE appeared to be of 

similar size to those formed by Bp340, suggesting that bpaE might be involved in plaque 

formation at a step prior to cell-cell fusion. We evaluated all seven disruption mutants 

and Bp340ΔboaB for adherence to A549 cells as described in Materials and Methods, and 

we observed a significant decrease in CFU recovered for four of the seven disruption 

mutants when lysates were plated on LSLB agar, and for six of the seven disruption 

mutants when lysates were plated on LSLB agar containing Km (Fig. 6A). Bp340ΔboaB 

likewise displayed a significant decrease in recovered CFU compared to Bp340 (Fig. 6B). 

Bp340::pDbpaE did not show a decrease in CFU recovered when plated on LSLB, and 

the decrease in CFU recovered when plated on LSLB with Km was only weakly 

significant compared to Bp340. Interestingly, for mutants with bpaC, bpaE, or bpaF 

disrupted, there were significantly fewer bacteria recovered when plated on LSLB 

containing Km compared to LSLB alone, suggesting that these strains had undergone 

substantial plasmid loss during the two-hour incubation period. In the most extreme case, 

97% of Bp340::pDbpaC bacteria had lost the disruption plasmid during the experiment, 

indicating that there is strong selective pressure for maintaining an intact bpaC gene in 

the context of the adherence assay. 
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 BpaA, BpaC, BpaE, and BpaF are required for efficient internalization in 

A549 cells. Some trimeric AT proteins are known to be multi-functional, including P. 

mirabilis AipA and Y. pseudotuberculosis YadA, both of which function as adhesins and 

mediate entry into eukaryotic cells (45-47). To address the contribution of B. 

pseudomallei 1026b trimeric ATs to A549 cell internalization, we performed invasion 

assays with the seven disruption mutants and the boaB deletion mutant. We observed a 

significant decrease in the number of CFU recovered compared to the inoculum for four 

of the disruption mutation strains when plated on LSLB, and for all seven strains when 

plated on LSLB containing Km (Fig. 6C). Two of the strains with fewer CFU recovered 

when plated without selection, Bp340::pDbpaA and Bp340::pDbpaC, also exhibited a 

decrease in CFU recovered in the adherence assay, which could influence internalization 

by decreasing the ability of the bacteria to associate with the A549 cell monolayer. The 

other two strains deficient in internalization, Bp340::pDbpaE, and Bp340::pDbpaF, were 

not deficient for adherence, suggesting that the observed phenotype is due to BpaE and 

BpaF promoting internalization and not simply preventing intimate association with the 

A549 monolayer. Three disruption strains, Bp340::pDboaA, Bp340::pDbpaB, and 

Bp340::pDbpaD, exhibited significant plasmid loss during the internalization assay, 

though these three strains were not those that had lost the plasmid in the adherence assay. 

The one deletion strain, Bp340ΔboaB, was recovered at a level similar to Bp340 (Fig. 

5D). 

 Evaluation of B. pseudomallei trimeric ATs in a mouse model of acute 

infection. The B. pseudomallei trimeric AT proteins BoaA and BoaB have been 

implicated in adherence and invasion of host cells ((21) and Fig. 6), but there has been no 
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characterization of BoaA, BoaB, or BpaA-F in an animal model of B. pseudomallei 

infection. We hypothesized that one or more trimeric ATs would be required for B. 

pseudomallei virulence, consistent with the role of other trimeric ATs in virulence in a 

variety of Gram-negative pathogens (47-51). We infected BALB/c mice intranasally with 

500 CFU of Bp340 or one of the trimeric AT-encoding gene disruption or deletion 

strains, and sacrificed the mice at 48 h post-inoculation and determined bacterial burden 

in the lungs, liver, and spleen. Mutants with plasmid disruptions of trimeric AT genes 

were plated on both LSLB and LSLB with 125 µg/ml Km to assess plasmid loss in vivo.  

At 48 h, the lungs of mice infected with Bp340 contained approximately 106–108 

CFU, while the liver and spleen contained approximately 105–106 CFU of B. 

pseudomallei (Fig. 7). There was no significant difference in the bacterial burden in any 

of the three organs for Bp340::pDboaA and Bp340ΔboaB compared to Bp340 (Fig. 7A 

and B). Likewise, the burden of Bp340::pDbpaA, Bp340::pDbpaB, and Bp340::pDbpaD 

was not different from Bp340 in any of the organs (Fig. 7C, D, and F). Although the 

burden of Bp340::pDbpaC was not different from Bp340 when plated on LSLB in the 

absence of selection, there was significant plasmid loss in the liver, suggesting that this 

strain was defective in its ability to disseminate to or survive in this organ (Fig. 7). We 

did not observe any plasmid loss in the other disruption mutation strains, suggesting that 

the lack of single trimeric AT genes, other than bpaC, was not detrimental to bacterial 

survival in the host.  

To account for possible polar effects on the gene(s) 3ʹ′ to bpaE and bpaF due to 

plasmid disruption of the trimeric AT-encoding genes, we constructed in-frame deletion 

mutations in bpaE and bpaF in anticipation that one or both ATs would contribute to B. 



 66 

pseudomallei pathogenesis. We also constructed a strain with a disruption mutation in the 

gene 3ʹ′ to bpaE (bpaEds1), and a strain with an in-frame deletion in the genes 3ʹ′ to bpaF 

(bpaFds1 and bpaFds2). Both Bp340ΔbpaE and Bp340ΔbpaF were able to establish an 

infection in the lung and disseminate to the liver and spleen similar to Bp340 (Fig. 7G 

and H). Additionally, neither Bp340::pDbpaEds1 nor Bp340ΔbpaFds1/2 had a virulence 

defect (Fig. 7I and data not shown), suggesting that these highly conserved genes 3ʹ′ to 

bpaE and bpaF are not required in the BALB/c  intranasal model of infection. 

 

Discussion  

In this study, we identified nine putative trimeric AT-encoding gene loci in the 

genome of B. pseudomallei clinical isolate 1026b, and described the predicted domains of 

eight out of the nine corresponding proteins (BimA excluded). We constructed strains 

containing disruption and/or deletion mutations in each of the AT-encoding genes, and in 

genes immediately 3ʹ′ to certain AT-encoding genes, and compared them with wild-type 

B. pseudomallei for plaque formation, adherence, and internalization in respiratory 

epithelial cells. Our characterization of eight trimeric ATs revealed a diverse set of 

phenotypes in vitro, with BpaA and BpaC contributing to both adherence and 

internalization in A549 cells, while BoaA, BoaB, and BpaD appeared to function solely 

in adhesion and BpaE and BpaF in invasion. Surprisingly, perhaps, only BpaC played a 

role in virulence in the BALB/c mouse model of B. pseudomallei respiratory infection. 

Nearly all AT proteins characterized so far have been shown to play roles in 

pathogenesis in vivo or in virulence-associated assays (24, 28, 47, 49, 52-54). Protein 

microarray and expression library studies have provided evidence that the majority of B. 
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pseudomallei trimeric ATs are produced during human melioidosis (37, 55). A B. 

pseudomallei phage library expressed in E. coli revealed five AT proteins, BoaA, BpaB, 

BpaE, BpaF, and BimA, that reacted with convalescent melioidosis patient sera, 

indicating that these proteins were expressed at a level high enough to elicit an antibody 

response during infection (37). However, the occurrence of clones harboring trimeric AT-

encoding genes was relatively low compared to the total number of sera-reactive clones, 

suggesting that these five genes may not be expressed in all instances of melioidosis, or 

that the overall expression of the genes is low. Additionally, a protein microarray study of 

potential antigens serodiagnostic for B. pseudomallei infection found that BpaA, BpaE, 

and BimA were significantly more reactive with melioidosis-positive patient sera 

compared to melioidosis-negative controls (55). These studies, along with the data 

presented here, suggest that the expression of trimeric AT-encoding genes in B. 

pseudomallei may be more complex and conditional than we had hypothesized. 

The bpaBds1 and bpaEds1 genes are located 3ʹ′ to two of the AT-encoding genes 

characterized in this study, bpaB and bpaE, and are predicted to encode OmpA family 

proteins, while the bpaAds1 gene is located 3ʹ′ to bpaA and encodes a protein of unknown 

function. Interestingly, all three of these proteins are predicted to be lipidated and 

localized to the outer membrane, suggesting that they may function as accessory proteins 

for their corresponding ATs (and potentially for other ATs as well). The requirement of 

accessory proteins for translocation of ATs across the periplasm and insertion into the 

outer membrane has recently been established as a general feature of AT biology (39, 

56). The Bam complex, comprising the integral β-barrel protein BamA and the associated 

lipoproteins BamBCDE, is necessary for trimeric AT insertion in the outer membrane 
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through an unknown mechanism, while various periplasmic chaperones, such as SurA, 

Skp, and DegP, are required for AT passage through the periplasm (39). Further 

characterization of the putative accessory proteins identified in our study will be 

necessary to determine their role, if any, in trimeric AT production and function. 

 Seven of the eight trimeric ATs included in our study possess ESPRs (Fig. 3). 

ESPRs were initially thought to function in cotranslational targeting of large Type V 

family proteins to the periplasm; however, recent studies suggest that the region serves a 

more subtle function by regulating the rate of translocation across the inner membrane to 

avoid an accumulation of misfolded proteins in the periplasm (39, 57, 58). Bioinformatic 

analyses have revealed that ESPRs appear to be restricted to Type V proteins greater than 

approximately 100 kDa in Beta- and Gammaproteobacteria, and that they are present in 

approximately 10% of AT proteins (23, 24, 39, 59). In B. pseudomallei 1026b, an 

uncharacteristically high 78% (seven out of nine) of the trimeric ATs possess ESPRs, and 

the only two that lack such a feature are the two smallest trimeric ATs: BpaD and BimA. 

However, the fact that BpaD has what appears to be an ESPR remnant (Fig. 3) leads us to 

speculate that the ESPR is not necessary to regulate the secretion of proteins of this size 

and has thus been lost as BpaD evolved. 

 In addition to the presence of ESPRs in the majority of trimeric ATs in B. 

pseudomallei 1026b, five of these proteins contain “SLST” repeats of 11, 14, or 18 aa 

that are unique to Burkholderia species and have no predicted structure or function. Not 

surprisingly, variation in the length of BoaA, BoaB, BpaA, BpaB, and BpaF homologs 

amongst B. pseudomallei strains is largely due to different numbers of SLST repeats in 

the passenger domain. It is possible, therefore, that within 1026b, the addition or loss of 
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these repeats is used by the cell to regulate the length of the passenger domain and is 

perhaps related to AT function. Another possibility is that the serine- and threonine-rich 

repeats are glycosylation sites. Though initially thought to be a post-translational 

modification restricted to eukaryotes, protein glycosylation in prokaryotes has been 

extensively documented and is important for the function of several virulence factors, 

including the classical ATs Ag43 and AIDA-I in pathogenic E. coli (24, 42, 60, 61). For 

Ag43, it has been shown that serine- and threonine-rich regions of the passenger domain 

are multiply glycosylated with heptose residues, and that the addition of these sugars is 

essential for binding human-derived HEp-2 cells (61). In 1026b, the proteins encoded by 

bpaFds1 and bpaFds2, which are located immediately 3ʹ′ to bpaF, have no predicted 

function based on homology searches of primary aa sequence, but structural homology 

searches reveal the greatest similarity to an N-acetylglucosamine transferase from the 

plant pathogen Xanthomonas campestris. Although we did not observe a phenotype in 

vivo for the mutant lacking both bpaFds1 and bpaFds2, we are currently investigating the 

glycosylation state of BpaF and other AT proteins containing SLST repeats, as these 

genes may be important for AT function in other models.  

 In our study, we observed a significant decrease in the number of plaques formed 

in an A549 cell monolayer for only one trimeric AT-encoding gene disruption strain, 

Bp340::pDbpaE,  compared to the wild-type strain. Though fewer in number, plaques 

formed by Bp340::pDbpaE were the same size as those formed by Bp340, indicating that, 

once inside the host cell, movement between cells was not hindered by loss of bpaE. The 

fact that six of the seven disruption mutants did not show a plaque formation defect 

suggests that either these genes are not important for any step in plaque formation 
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(adherence, invasion, intracellular survival, and cell-cell fusion), or that the disruption 

plasmid was lost due to selective pressure to maintain an intact trimeric AT-encoding 

gene. Plasmid loss could occur in the plaque assay, as it was performed in the absence of 

Km (Gm was added to the medium to kill extracellular bacteria, and once inside the A549 

cells, Km would be ineffective because it does not cross the cell membrane). It is difficult 

to recover bacteria from plaques (especially in a BSL3 laboratory) to determine the 

amount of plasmid loss—therefore, we performed adherence and invasion assays both to 

assess the contribution of trimeric ATs to individual steps in the plaque formation process 

and to evaluate plasmid loss.   

When we evaluated adherence and internalization of trimeric AT-encoding gene 

disruption or deletion mutants, we found that the eight trimeric ATs fell into one of four 

categories: having a phenotype in adherence only (BoaA, BoaB, and BpaD), in 

internalization only (BpaE and BpaF), in both adherence and internalization (BpaA and 

BpaC), or in neither adherence nor invasion (BpaB). In addition, the three strains that 

underwent significant plasmid loss in the adherence assay (Bp340::pDbpaC, 

Bp340::pDbpaE, and Bp340::pDbpaF) were not the same strains as those that showed 

significant plasmid loss in the internalization assay (Bp340::pDboaA, Bp340::pDbpaB, 

and Bp340::pDbpaD). The distinct contribution of each trimeric AT to adherence and/or 

internalization, as well as the variability in plasmid loss, indicates that these proteins have 

disparate functions and that the selective pressure to maintain certain trimeric AT-

encoding genes intact is different in the context of internalization compared to adherence. 

Future studies will include the construction of strains containing in-frame deletion 

mutations to determine definitively the role of these genes in virulence 
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Given the array of phenotypes in the plaque, adherence, and invasion assays, we 

expected to observe a role in pathogenesis for more than one trimeric AT using a 

BALB/c mouse model of infection. Neither BoaA nor BoaB, which are reported to 

function in adherence by us and others (21), were required for growth or dissemination 

within the mouse. Similarly, the bpaD disruption mutant was deficient in adherence yet 

did not have a phenotype in the mouse model. Though defective for both adherence and 

internalization, Bp340::pDbpaA achieved the same burden in the lungs, liver, and spleen 

as Bp340. One disruption mutation strain, Bp340::pDbpaB, was not deficient in any 

assay in vitro or in vivo. Finally, neither Bp340ΔbpaE nor Bp340ΔbpaF generated a 

phenotype in the mouse, despite being significantly defective in internalization. However, 

Bp340::pDbpaC was deficient in adherence and subsequent internalization, and 

demonstrated significant plasmid loss in the liver, suggesting that BpaC is a general 

virulence factor that may function as an adhesin and/or invasin in vivo. Although our 

results do not demonstrate a correlation between in vitro and in vivo assays, the fact that 

six of the trimeric ATs are produced during human B. pseudomallei infections suggests 

that they do play a role in pathogenesis (37, 55), but additional animal models will be 

required to fully evaluate the contribution of trimeric ATs to disease.  

 The use of different model systems has proven to yield substantially different 

results with regard to flagella, one of the few B. pseudomallei virulence factors that has 

been examined in detail. DeShazer et al. initially characterized the fliC gene, encoding 

the flagellum structural protein, in B. pseudomallei 1026b and reported no difference in 

virulence for a fliC transposon mutant compared to the wild-type strain in either diabetic 

rat or Syrian hamster models (29). However, the authors were careful to note that their 
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results only applied to the two models they tested. In a more recent study, a ΔfliC mutant 

strain was evaluated in BALB/c mice inoculated by the intranasal route, and the mutant 

strain was dramatically attenuated for virulence compared to the wild-type strain, though 

it did not show a phenotype in an in vitro cell invasion assay or in the Caenorhabditis 

elegans model (62). Even within the same species, the choice of host strain can have 

profound consequences on the course of infection with B. pseudomallei. A study 

analyzing B. pseudomallei virulence in two mouse backgrounds, BALB/c and C57Bl/6, 

found the difference in the ten-day LD50 values between the backgrounds to be nearly 

four orders of magnitude (63). When infected at the same dose, all BALB/c mice had to 

be sacrificed after five days, whereas all C57Bl/6 mice survived until the experiment was 

terminated at four weeks (63). With these data in mind, repeating our animal experiments 

with C57Bl/6 mice may reveal a phenotype for AT proteins that we were not able to 

observe in BALB/c mice due to their extreme sensitivity to B. pseudomallei. 

 Our study is the first to systematically evaluate a class of genes (those encoding 

trimeric ATs) in B. pseudomallei both in vitro and in vivo. While we demonstrated that 

nearly all ATs tested have a function in adherence and/or invasion and that BpaC is 

important for efficient dissemination to or survival in the liver, we only evaluated strains 

containing a single trimeric AT-encoding gene disrupted or deleted, and our analysis in 

vivo was limited to a single animal model and route of infection. It is probable that the 

deletion or disruption of two, three, or more AT-encoding genes will result in reduced 

virulence, and performing such studies would likely reveal redundant or synergistic 

functions for some ATs in infection. As B. pseudomallei infects not only animals, but can 

be found in the rhizosphere and even within the roots and foliage of several plant species 
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(64), fully understanding the role of trimeric ATs may require the use of diverse model 

systems. 
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Table 1. Strains and plasmids used in this study. 

Strain or Plasmid Description Source or 
reference 

Strains   
E. coli   

DH5α Molecular cloning strain (65) 
RHO3 Conjugation strain; Kms, Δasd, ΔaphA (31) 

B. pseudomallei   
Bp340 ΔamrRAB-oprA derivative of B. pseudomallei 1026b (32) 
Bp340::pDboaA Bp340 with boaA disrupted by pCC1; Kmr This study 
Bp340::pDboaB Bp340 with boaB disrupted by pCC2; Kmr This study 
Bp340::pDbpaA Bp340 with bpaA disrupted by pCC3; Kmr This study 
Bp340::pDbpaB Bp340 with bpaB disrupted by pCC4; Kmr This study 
Bp340::pDbpaC Bp340 with bpaC disrupted by pCC5; Kmr This study 
Bp340::pDbpaD Bp340 with bpaD disrupted by pCC6; Kmr This study 
Bp340::pDbpaE Bp340 with bpaE disrupted by pCC7; Kmr This study 
Bp340::pDbpaEds1 Bp340 with bpaEds1 disrupted by pCC7; Kmr This study 
Bp340::pDbpaF Bp340 with bpaE disrupted by pCC8; Kmr This study 
Bp340ΔboaB Bp340 with an in-frame, nonpolar boaB deletion This study 
Bp340ΔbpaE Bp340 with an in-frame, nonpolar bpaE deletion This study 
Bp340ΔbpaF Bp340 with an in-frame, nonpolar bpaF deletion This study 
Bp340ΔbpaFds1/2  Bp340 with an in-frame, nonpolar bpaFds1/2 deletion This study 

Plasmids   
pEXKm5 Allelic exchange vector; Apr, Kmr, sacB+, gusA+  (31) 
pCC1 pCC with an ~300 bp internal fragment of boaA; Kmr This study 
pCC2 pCC with an ~300 bp internal fragment of boaB; Kmr This study 
pCC3 pCC with an ~300 bp internal fragment of bpaA; Kmr This study 
pCC4 pCC with an ~300 bp internal fragment of bpaB; Kmr This study 
pCC5 pCC with an ~300 bp internal fragment of bpaC; Kmr This study 
pCC6 pCC with an ~300 bp internal fragment of bpaD; Kmr This study 
pCC7 pCC with an ~300 bp internal fragment of bpaE; Kmr This study 
pCCbpaEds1 pCC with an ~300 bp internal fragment of bpaEds1; Kmr This study 
pCC8 pCC with an ~300 bp internal fragment of bpaF; Kmr This study 
pCCX3 pEXKm5 with bpaE flanking sequences; Apr, Kmr This study 
pMBX1 pEXKm5 with bpaF flanking sequences; Apr, Kmr This study 
pMBX2 pEXKm5 with bpaFds1/2 flanking sequences; Apr, Kmr This study 
pMBX3 pEXKm5 with boaB flanking sequences; Apr, Kmr This study 
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Fig. 1. B. pseudomallei 1026b putative trimeric AT gene loci. Genomic context of each 

putative trimeric AT gene drawn to scale, with the predicted function of immediate 3ʹ′ 

genes indicated, if present. The chromosome on which each trimeric AT gene is present 

is indicated by (I) or (II).  
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Fig. 2. B. pseudomallei 1026b putative trimeric AT protein domains. Domains predicted 

by daTAA (domain annotation of trimeric autotransporter adhesins) are indicated in the 

legend. The characteristic C-terminal β-barrel domain is shown in yellow, and predicted 

coiled-coil regions are underlined. White regions are sequences with limited homology to 

known AT proteins, and in BoaA, BoaB, BpaA, BpaB, and BpaF, contain repeats of 11 

(SLSTSTSTGTG), 14 (SLSTGLSTTNS(N/T/S)(V/L)(A/T)), and 18 

(SLSTSTSTGLSSA(N/T/Q)SS(I/V)A) amino acids. 
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Fig. 3. ESPRs of putative B. pseudomallei 1026b trimeric AT proteins. Extended signal 

peptide and conventional signal peptide are indicated. N1, N-terminal charged region of 

the ESPR; H1, C-terminal hydrophobic region of the ESPR; N2, N-terminal charged 

region of the conventional signal peptide; H2, central hydrophobic region of the 

conventional signal peptide; C, signal peptidase recognition site with putative cleavage 

sites indicated with a hyphen. N1, H1, N2, H2, and C regions are defined according to 

(39). For BpaD, V indicates the predicted start codon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

BpaB  MNKTYRVS       WSASRGAWMVAPETA RRKGK           GHSLTIVCAIASGLLLAAP                             AWA-DT
BpaC  MNRIFKSI       WCEQTRTWVAASEHA VARGGR          ASSVVASAGGLEKVLKLSILGAASLIAMGVVGPFAEE           AMA-AN 

BoaB  MNKIFRVI       WCRVKAACVVVSEEA CLRGGK          SHSCRQGSRAAGEESVRFALSSIALAACILIGSLGSTLP         AVA-GT

BpaD  MNRF*RIGKLKD*I VRYGINRRGRGAENH LGRQESSRFNMTPR  AALVTLLLAAWSAPSV                                AQA-LH

BoaA  MNKIYRKV       WNKARGQLVVASELA SSRSSVGEASVDAGR SGDRTASAAFASEERNPGSGRMIPLAMGAMLMFSTP            AWA-AL

BpaE  MNKIYNVV       WSRVRGQLIAVSEFS RSNGK           CSTTQVVTAAPGVAGRTAASGRSRPSWTKLGLMSLAVSAAMGCMATD AAA-QI

BpaA  MNRSYRSI       WNEALGAWVAASEIS SARGKPNK        SAVAKVVTAAVLAVVVQA                              AHA-ST

BpaF  MNKIYKTI       WCETTRSWVAVSEHA NGKR            GGATAAATTSARPIWTRLRGISLAALAAFGLGLFASPA          AFA-QS
Hia   MNKIFNVI       WNVVTQTWVVVSELT RTHTK           CASATVAVAVLATLLSAT                              VEA-NN
BcpA  MNKNHYRL       VFSRVHGMLVAVEET ASSAGK          ASAGETRRTLDRSGVHVVTRFALRFAAFAALIAAGAMPMW        VHA-QI
FhaB  MNTNLYRL       VFSHVRGMLVPVSEH CTVGNTFCGRTR    GQARSGARATSLSVAPNALAWALMLACTGLPLV               THA-QG

Extended Signal Peptide Signal Peptide

N1 H1 N2 H2 C
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Fig. 4. Schematic of deletion and disruption mutations used in this study. 
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Fig. 5. Plaque formation by B. pseudomallei 1026b trimeric AT disruption mutants. A549 

cells (approximately 1 × 106 cells per well in a 6-well plate) were inoculated with B. 

pseudomallei trimeric AT disruption mutants at an MOI of 0.1, and plates were incubated 

for 2 h at 37ºC. Plates were washed thoroughly with fresh medium and were overlaid 

with a mixture containing F12K medium, low-melting agarose, gentamicin and neutral 

red. Plates were incubated for 24 h at 37ºC with 5% CO2, and plaques were enumerated 

in each well. Data are mean ± SEM for two experiments performed in triplicate. 

Significance is compared to Bp340. **, p < 0.01 by Tukey’s multiple comparison test 

following a one-way ANOVA. 
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Fig. 6. Contribution of trimeric AT proteins to adherence and invasion. A549 cells were 

grown as described for plaque formation experiments and were inoculated with the 

indicated strains at an MOI of 100. Plates were incubated for 2 h, and each well was 

washed thoroughly with fresh culture medium. For adherence of the trimeric AT 

disruption mutants (A) and Bp340ΔboaB (B), cells were immediately lysed using 1% 

Triton X-100 and lysates were diluted and plated to determine the total CFU. For 

invasion of the trimeric AT disruption mutants (C) and Bp340ΔboaB (D), cells were 

0

1

2

3

4

5

6

Bp
34
0:
:p
Db
oa
A

Bp
34
0:
:p
Db
pa
A

Bp
34
0:
:p
Db
pa
B

Bp
34
0:
:p
Db
pa
C

Bp
34
0:
:p
Db
pa
D

Bp
34
0:
:p
Db
pa
E

Bp
34
0:
:p
Db
pa
F

Bp
34
0

LSLB
LSLB/Km125

*
***

***

***

**

***

**
*

***
***Pe

rc
en

t A
dh

es
io

n

0

1

2

3

4

5

6

Bp
34
0�
bo
aB

Bp
34
0

***

LSLB

Pe
rc

en
t A

dh
es

io
n

A B

0.000

0.002

0.004

0.006

0.008

0.010

Bp
34
0

LSLB
LSLB/Km125

** **

*

****
****

**
**

**

*

Bp
34
0:
:p
Db
oa
A

Bp
34
0:
:p
Db
pa
A

Bp
34
0:
:p
Db
pa
B

Bp
34
0:
:p
Db
pa
C

Bp
34
0:
:p
Db
pa
D

Bp
34
0:
:p
Db
pa
E

Bp
34
0:
:p
Db
pa
F

Pe
rc

en
t I

nt
er

na
liz

at
io

n

0.000

0.002

0.004

0.006

0.008

0.010

Bp
34
0�
bo
aB

Bp
34
0

LSLB

Pe
rc

en
t I

nt
er

na
liz

at
io

n

C D



 81 

incubated an additional 90 min. in the presence of gentamicin, washed with fresh culture 

medium, and lysed using 1% Triton X-100. Lysates were diluted and plated to determine 

the total CFU. For both assays, lysates were plated on LSLB and LSLB containing Km to 

assess plasmid loss. Data are the mean ± SEM of the percentage of adherent or 

internalized bacteria compared to the inoculum and represent two experiments performed 

in triplicate. Significance is compared to Bp340. *, p < 0.05; **, p < 0.01; ***, p < 0.001 

by Tukey’s multiple comparison test following a one-way ANOVA. 
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Fig. 7. Contribution of B. pseudomallei 1026b trimeric ATs to virulence in vivo. Six- to 

eight-week-old female BALB/c mice were anesthetized with Avertin by intraperitoneal 

injection and were inoculated intranasally with 500 CFU of B. pseudomallei trimeric AT 

disruption (A, C, D–F) and deletion (B, G–I) mutation strains. Mice were euthanized by 

CO2 overdose at the indicated time points and the lungs, liver, and spleen were 

aseptically harvested and homogenized. For each organ, the bacterial burden was 

determined by plating serial dilutions of the homogenates. For disruption mutants (A), 

(C), and (D–F), homogenates were plated on both LSLB and LSLB containing Km to 

assess plasmid loss. Significance is compared to Bp340. **, p < 0.01; ***, p < 0.001 by 

Tukey’s multiple comparison test following a one-way ANOVA. 
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CHAPTER IV 
 

Discussion and Future Directions 
 

B. pseudomallei has one of the most complex bacterial genomes sequenced to 

date; 7.24 Mb pairs of highly dynamic DNA that can show up to 14% of variability 

across isolates (21). Variable regions that contain multiple genomic islands with DNA 

acquired from other bacteria that could be associated with virulence are often found, and 

the connection of these acquired genes with clinical outcome is still unknown (23). 

Genotyping of B. pseudomallei colonies from several tissues of a single patient with 

melioidosis can show significant genetic diversity, showing that while within the host, 

this organism can rapidly evolve (14).  However, very little is known about how B. 

pseudomallei causes disease.   

B. pseudomallei can invade, and spread from cell to cell without exiting the 

cytoplasm. Unknown invasins facilitate actin-dependent internalization of B. 

pseudomallei into eukaryotic cells primary endosomes. The activity of T3SSBsa (7, 8) is 

required for escape from these primary endosomes, and subsequent entry into the 

eukaryotic cell cytoplasm. Once in the cytoplasm the trimeric autotransporter BimA 

allows for actin based motility, which is required for efficient cell to cell spread, and 

T6SS-1 (4) facilitates intracellular spread and MNGC formation, possibly through fusion 

of host cell membranes. T6SS-1, one of the six T6SS found in B. pseudomallei, is 

believed to be a major virulence factor in the Syrian hamster, and BALB/c model of 

melioidosis (4). A few other potential virulence factors such as capsular polysaccharides 
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(15), LPS and flagella (1, 10) have been described, however their role in pathogenesis is 

still unknown.  

Autotransporter proteins are part of the largest family of extracellular proteins 

found in Gram-negative bacteria and many have been shown to be virulence factors, 

playing crucial roles in how bacteria cause disease (9). B. pseudomallei contains genes 

predicted to encode two classical ATs and nine trimeric ATs, however only the trimeric 

AT encoded by bimA has been well characterized.  bimA has been shown to have an 

important role in the formation of actin tails, which allows the bacteria to spread from 

cell to cell through actin-mediated motility (18). Our goal was to determine if any of the 

remaining putative autotransporters played a role in B. pseudomallei pathogenesis. 

In chapter 2, our data show that the classical AT protein encoded by bcaA 

contributes to non-phagocytic cell invasion, and to dissemination to or survival of B. 

pseudomallei in the spleen in a BALB/c intranasal model of infection. bcaA and bcaB (a 

gene found immediately 3ʹ′ of bcaA) appear to form an operon, and although bcaB also 

plays a role in cell invasion, no phenotype for bcaB in vivo was observed using the 

BALB/c intranasal model of infection.  

BcaA is predicted to have an approximately 80 KDa passanger domain containing 

a serine protease domain belonging to the Peptidase S8 or Subtilase family. Subtilisins 

are characterized by having a well conserved Asp, Ser and His catalytic triad and they 

have been shown to play a role in cellular nutrition, mediating host cell invasion and 

maturation of other polypeptides (20). BcaA contains the same well conserved catalytic 

triad found in other subtilisins, and appears to be proteolyzed into smaller polypeptides of 

approximately 21KDa and 28 kDa present in whole cell lysates, but not in supernatants. 
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The smaller polypeptides were not detected in western blots of concentrated supernatant 

fractions, suggesting that they remain associated with the bacterial cell. Further studies 

will include characterization of these polypeptides, and determining if they are generated 

by auto-proteolysis or if another protein is involved in processing. After such studies, 

further analysis of BcaA function should be conducted to determine its role, as well as its 

active domains and whether it interacts with other proteins, such as BcaB. 

BcaB is predicted to have a prolyl 4-hydroxylase domain. In bacteria, these 

domains are believed to hydroxylate peptidyl prolines, but although some of these 

hydroxylases have been identified in bacteria, their functions and substrates remain 

unknown. Further studies should include determining if BcaB has a role in hydroxylating 

any of the fifty-two prolines found in BcaA, since it is possible that BcaA is the 

physiological substrate for BcaB, which would be consistent with their operon structure.  

Although bcaA and bcaB are each required for cell invasion and plaque 

formation, only bcaA had a phenotype in vivo. There is a possibility that the lack of 

phenotype for bcaB in vivo, reflects the limitations of the tools we used in our study. 

Although the BALB/c model has been broadly used as an acute model for B. 

pseudomallei infection (12), it may not be sensitive enough to reveal phenotypes for all 

factors that contribute to disease, depending on the step and stage of disease in which 

they function. Future experiments will include development of additional animal models 

that will expand the repertoire of B. pseudomallei disease stages and processes that we 

are able to study in our laboratory. 

Chapter 3 outlines the extensive work we performed characterizing eight of the 

nine trimeric AT found in B. pseudomallei, we did not include the previously 
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characterized trimeric AT protein BimA (18). Our study included bioinformatic gene 

synteny analysis, N-terminal extension characterization, protein domain annotation, as 

well as in vitro studies designed to determine the role of these genes in adherence, 

invasion and plaque formation. We also performed the first animal experiments using any 

B. pseudomallei strains defective for the production of trimeric ATs and found that one 

trimeric AT, BpaC (BPSL1631), is required for efficient dissemination or survival of 

bacteria to the liver in a BALB/c intranasal model of infection. 

We determined that three of the trimeric ATs (bpaB, bpaA, and bpaE) have genes 

3ʹ′ that are predicted to be lipidated, and localized to the outer membrane suggesting they 

may function as accessory proteins for their corresponding ATs.  Accessory proteins have 

recently been shown to be required for AT biogenesis (13, 16). The Bam complex has 

been suggested to be necessary for trimeric AT insertion in the outer membrane through 

an unknown mechanism, while periplasmic chaperones have been shown to be required 

for AT passage through the periplasm (13).  However, further characterization of these 

putative accessory proteins will be necessary to determine their role, if any, in the 

production and function of B. pseudomallei trimeric ATs. 

Seven of the eight trimeric AT-encoding genes in our study had an extended 

signal peptide region (ESPR), which has been suggested to regulate the rate of 

translocation across the inner membrane to avoid accumulation of misfolded proteins in 

the periplasm (5, 13, 19). In addition to ESPRs in the majority of B. pseudomallei 

trimeric ATs, five of these proteins (BoaA, BoaB, BpaA, BpaB and BpaF) contain 

“SLST” repeat regions that are unique to the Burkholderia species. Although these 

repeats have no predicted structure or function, there is a possibility that these serine- and 
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threonine-rich repeats are glycosylation sites and therefore may be important for AT 

function. Protein glycosylation is prokaryotes has been extensively documented and 

shown to be important for the function of several virulence factors (2, 3, 9, 17).  

Adhesion and internalization studies in A549 cell monolayers, showed that the 

eight trimeric ATs fell into one of four categories: having a phenotype in adherence only 

(BoaA, BoaB, and BpaD), in internalization only (BpaE and BpaF), in both adherence 

and internalization (BpaA and BpaC), or in neither adherence nor invasion (BpaB). 

However, when using a BALB/c mouse model of infection we only observed a phenotype 

for bapC, which had a dissemination or survival defect in the liver. 

Our study was the first study to systematically evaluate a class of genes (those 

encoding trimeric ATs) in B. pseudomallei both in vivo and in vitro. While we 

demonstrated that nearly all tested ATs have a function in adherence or invasion of non-

phagocytic cells, and that BapC is important for efficient dissemination or survival to the 

liver in a BALB/c model of infection, we only evaluated strains containing a single 

trimeric AT-encoding gene disrupted or delete, and our analysis was limited to a single 

animal model and route of infection. It is possible that multiple genes must be deleted for 

a reduction in virulence to be observed. These genes may have redundant or synergistic 

functions during infection, and since B. pseudomallei infects not only animals but a 

variety of other organisms, including plants (11), the use of diverse model systems will 

most likely be required for fully understanding the role of trimeric ATs. 
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APPENDICES 
This session highlights collaborative work that led to scientific publications 

performed by our laboratory with Dr. Edward A. Miao of the Department of 
Microbiology and Immunology at UNC, Chapel Hill; and Dr. Timothy J. Hagen of the 

Department of Chemistry and Biochemistry at Northern Illinois University. In both cases 
our contributions included, but were not limited to, in vitro and in vivo ABSL-3 work 

with virulent Burkholderia pseudomallei strains. 
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Caspase-11 protects against bacteria that escape the vacuole1 

 

Introduction 

Canonical inflammasomes, such as NLRP3, NLRC4, and AIM2, are cytosolic 

sensors that detect pathogens or danger signals and activate Caspase-1, leading to 

secretion of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis, 

a form of programmed cell death (1). Pyrin domain-containing inflammasomes, including 

NLRP3, signal through the ASC adaptor protein to recruit Caspase-1 (Fig. S1). Many 

diverse agonists cause cytosolic perturbations that are detected through NLRP3; however 

the underlying mechanisms remain obscure (2). In contrast, the CARD domain-

containing inflammasome NLRC4 can signal directly to Caspase-1 resulting in 

pyroptosis, as well as indirectly through ASC to promote IL-1β and IL-18 secretion (Fig. 

S1) (1, 3).  NLRC4 detects bacterial flagellin and type III secretion system (T3SS) rod or 

needle components within the macrophage cytosol (4-6). Together, NLRC4 and the ASC 

dependent inflammasomes account for all known canonical Caspase-1 activation 

pathways. 

Burkholderia pseudomallei is a Gram-negative bacterium endemic to Southeast 

Asia that causes mellioidosis and is a potential biologic weapon (7). B. pseudomallei uses 

                                                
1 Adapted for this dissertation from: Youssef Aachoui, Irina A. Leaf, Jon A. Hagar, Mary 
F. Fontana, Cristine G. Campos, Daniel E. Zak, Michael H. Tan, Peggy A. Cotter, Russell 
E. Vance, Alan Aderem, and Edward A. Miao. Caspase-11 protects against bacteria that 
escape the vacuole. 2013. Science. 339 (6122):975-978. 
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a T3SS to escape the phagosome and replicate in the cytosol. NLRC4 and NLRP3 both 

detect B. pseudomallei, promoting IL-1β secretion from murine bone marrow-derived 

macrophages (BMM) ((8) and Fig. 1A). Despite encoding many of the same virulence 

factors as B. pseudomallei, including T3SS and T6SS, the closely related B. thailandensis 

is far less virulent (9). We therefore hypothesized that NLPR3 and NLRC4 also detect B. 

thailandensis, and indeed, NLRP3 and NLRC4 accounted for all IL-1β secretion in 

response to B. thailandensis (Fig. 1B). We next determined whether inflammasome 

activation is critical to survival following B. thailandensis challenge using Caspase-1 

deficient mice. Kayagaki et al. recently showed that all existing Caspase-1 deficient mice 

also lack Caspase-11 due to the backcrossing of a mutant Casp11 allele from 129 into 

C57BL/6 mice (10). Inflammasome detection was critical for resistance to B. 

thailandensis, as Casp1–/–Casp11–/– animals succumbed to the infection (Fig. 1C, S2A). 

In contrast, wild type C57BL/6 mice survived high dose intraperitoneal or intranasal 

challenge (Fig. 1C, S2A). Surprisingly, Nlrc4–/–Asc–/– mice that are deficient in all known 

canonical inflammasomes were also resistant (Fig. 1D, S2B).  This indicated that an 

unknown signaling pathway provides protection via either Caspase-1 or -11 (see pathway 

schematic Fig. S1).  Resistance to B. thailandensis was at least partially independent of 

IL-1β and IL-18, depending on the route of infection (Fig. 1E, S2C), suggesting that both 

cytokines and pyroptosis can contribute to protection.  We therefore examined pyroptosis 

in vitro, and found that cytotoxicity in response B. thailandensis was impaired in Casp1–/–

Casp11–/– BMM (Fig. 1F).  Consistent with our in vivo data, pyroptosis in vitro did not 

require Nlrc4 or Asc (Fig. 1F).  B. pseudomallei similarly triggered pyroptosis in Nlrc4–/–

Asc–/– macrophages (Fig. 1G).  These results indicate that a pyroptosis-inducing pathway 
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distinct from all known canonical inflammasomes detects B. thailandensis and protects 

against lethal infection. 

Inflammasomes discriminate pathogens from non-pathogens by detecting 

contamination or perturbation of the cytosolic compartment (11).  The B. thailandensis 

T3SS facilitates bacterial access to the cytosol, and was required for induction of 

pyroptosis, whereas the virulence-associated T6SS was dispensable (Fig. 2A).  We 

therefore hypothesized that macrophages detect vacuolar lysis or release of bacteria into 

the cytosol.  

In order to establish their intracellular vacuolar growth niche, Salmonella 

typhimurium and Legionella pneumophila use T3SS and T4SS, respectively, to 

translocate effector proteins that work in concert to maintain the stability of these altered 

bacteria-containing vacuoles (12-14).  Loss of the S. typhimurium SifA or L. 

pneumophila SdhA effectors causes rupture of the vacuole and release of bacteria into the 

cytosol (15-17). S. typhimurium uses two distinct T3SS encoded by the Salmonella 

pathogenicity island 1 (SPI1) and SPI2; these two T3SS translocate distinct batteries of 

effectors, such as SifA by SPI2 (18).  While S. typhimurium-expressing SPI1 and 

flagellin are readily detected by NLRC4 (19, 20), bacteria grown under conditions that 

mimic the vacuolar environment express SPI2 and repress flagellin, minimizing 

canonical inflammasome detection (1, 11, 21). Infection of BMMs with S. typhimurium 

that lacked sifA, however, significantly increased IL-1β secretion and pyroptosis (Fig. 

2B-C).  IL-1β secretion was dependent on canonical inflammasomes (Fig. 2B), whereas 

pyroptosis was still observed in Nlrc4–/–Asc–/– and Nlrp3–/–Nlrc4–/– macrophages (Fig. 

2C).  Furthermore, the NLRC4 inflammasome agonist flagellin was not required for these 
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responses (Fig. 2D, 2E). Thus, macrophages detect S. typhimurium when it aberrantly 

enters the cytosol, activating pyroptosis independent of all known canonical 

inflammasomes.   

L. pneumophila also translocates flagellin through its T4SS. Thus, L. pneumophila 

mutants lacking flagellin (∆flaA) evaded NLRC4 detection (Fig. 2F) (2). In contrast, L. 

pneumophila ∆flaA ∆sdhA mutants induce Caspase-1 activation (16, 17), IL-1β secretion 

(17), and pyroptosis (Fig. 2F; (17)). The AIM2-ASC canonical inflammasome has been 

implicated in L. pneumophila ∆flaA ∆sdhA-induced IL-1β secretion, likely by detecting 

DNA released from bacteria lysing in the cytosol; however, the role of AIM2-ASC in 

pyroptosis was not examined (17). Analogous to S. typhimurium ∆sifA, L. pneumophila 

∆flaA ∆sdhA induced pyroptosis in the absence of flagellin and ASC (Fig. 2G), ruling out 

all canonical inflammasomes in triggering pyroptosis under these infection conditions. 

These data demonstrate that diverse bacteria are detected in the cytosol.   

Because IL-1β secretion required the canonical inflammasomes whereas 

pyroptosis did not, we hypothesized that cell death is triggered by a distinct mechanism 

mediated by Caspase-11.  Like Caspase-1, Caspase-11 is an inflammatory caspase that 

can directly trigger pyroptosis (Fig. S1).  Caspase-11 can also promote IL-1β secretion 

dependent upon NLRP3, ASC, and Caspase-1 (10, 22-24). Because Caspase-1 is 

activated by recruitment to an oligomerized platform known as the inflammasome, 

Kayagaki et al. hypothesized that a similar oligomeric structure would activate Caspase-

11, which they termed the non-canonical inflammasome (10).  Although the cholera toxin 

B subunit and many different Gram-negative bacteria can trigger Caspase-11 activation 
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in vitro (10, 22-24), the nature of the physiologic stimulus that activates Caspase-11 

during infection remains uncertain. 

Caspase-11 activation requires priming through a Toll like receptor 4 (TLR4)-

TRIF-STAT1 pathway (10, 22-24).  Consistent with this, Tlr4–/– and Trif–/– macrophages 

did not undergo pyroptosis after S. typhimurium ∆sifA infection, whereas cell death was 

observed in macrophages deficient in the other TLR4 adaptor, Myd88 (Fig. 3A).  This 

dependence could be overcome by priming the macrophages with interferon (IFN)-γ (Fig. 

3A), which signals through STAT1.  Interestingly, IFN-γ or LPS priming significantly 

increased the sensitivity of macrophages to S. typhimurium ∆sifA (Fig. 3A, S3A).  These 

priming effects correlated with increased Caspase-11 expression (Fig. S3B-C), but could 

also be mediated by enhancing aberrant vacuolar rupture.  We used retroviruses to 

complement Casp1–/–Casp11–/– macrophages with either Casp1 or Casp11 in order to 

determine which was involved.  Caspase-11 alone promoted pyroptosis without IL-1β 

secretion after B. thailandensis infection, whereas Caspase-1 enabled both responses 

(Fig. 3B).  This is consistent with B. thailandensis detection through NLRC4 and/or 

NLRP3 activating Caspase-1 (8) and an additional pathway activating Caspase-11.  In 

contrast, the responses to S. typhimurium ∆sifA or L. pneumophila ∆flaA ∆sdhA acted 

through Caspase-11, and not Caspase-1 (Fig. 3C-D).  We further confirmed that Caspase-

11 was responsible for the cell death observed in Nlrc4–/–Asc–/– macrophages using short 

hairpin (sh)RNAmir (Fig. 3E-F, S3E).  Finally, Casp11–/– BMM revealed that Caspase-11 

was required for pyroptosis after B. thailandensis, S. typhimurium ∆sifA, and L. 

pneumophila ∆flaA ∆sdhA (Fig. 3G-I). Although a previous report suggested that NLRC4 

signals through Caspase-11 to alter phagosomal trafficking (25), we saw no evidence that 
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NLRC4 contributes to Caspase-11 dependent cell death (Fig. 1F, 2D, S4). Pyroptosis 

initiated by Caspase-11 was morphologically similar to pyroptosis triggered by Caspase-1 

(Fig. S5A-B). Therefore, macrophages activate Caspase-11 in response to cytosolic B. 

thailandensis, S. typhimurium, or L. pneumophila (Fig. S1).   

S. typhimurium ∆sifA is attenuated (15), attributed to the role of SifA in 

coordinating intracellular trafficking of the Salmonella-containing vacuole.  We 

hypothesized that this attenuation was actually due to innate immune detection though 

Caspase-11. Indeed, S. typhimurium ∆sifA was mildly attenuated in C57BL/6 mice as 

expected, but this was not replicated in Casp1–/–Casp11–/– mice (Fig. 4A-B). We next 

determined the relative clearance of S. typhimurium ∆sifA during co-infection with wild 

type S. typhimurium, a more quantitative measure of virulence than lethal challenge. 16-

fold fewer S. typhimurium ∆sifA were recovered from C57BL/6 mice 48h post infection. 

However, only a 4-fold reduction was seen in Casp11–/– mice (Fig. 4C), indicating that 

Caspase-11 clears S. typhimurium ∆sifA in vivo; in contrast, wild type S. typhimurium 

effectively evades Caspase-11 (23) by remaining within the vacuole.  The remaining S. 

typhimurium ∆sifA attenuation likely reflects the role of sifA as a virulence factor 

promoting intracellular replication. Moreover, all known canonical inflammasomes were 

dispensable for S. typhimurium ∆sifA clearance, as were IL-1β and IL-18 (Fig. 4D), 

implicating pyroptosis as the mechanism of clearance.  Clearance of bacteria after 

pyroptosis is mediated by neutrophils through generation of reactive oxygen (21).  

Consistent with this, NADPH oxidase deficient p47phox–/– mice were also defective for 

clearance of S. typhimurium ∆sifA (Fig. 4D).  Interestingly, TLR4 and IFN-γ were not 

required (Fig. 4E), suggesting that there is redundant priming of Caspase-11 pathways in 
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vivo.  Therefore, Caspase-11 protects mice from S. typhimurium ∆sifA, and because IL-1β 

and IL-18 are not required, pyroptosis is likely to be the mechanism of bacterial clearance 

in this case.   

We next examined the susceptibility of Casp11–/– mice to the naturally cytosolic 

pathogens B. thailandensis and B. pseudomallei. While C57BL/6 mice are resistant to B. 

thailandensis infection, Casp11–/– mice succumbed (Fig. 4F). Likewise, Casp11–/– 

succumbed to B. pseudomallei infection, whereas C57BL/6 mice survived (Fig. 4G). 

Since Nlrc4–/– mice are also susceptible to B. pseudomallei infection (8), we conclude 

that both Caspase-1 and Caspase-11 play critical roles in limiting B. pseudomallei 

infection. 

Collectively, these data demonstrate, for the first time, that Caspase-11 protects 

animals from lethal infection by bacteria that have the ability to invade the cytosol. This 

could be critical for defense against ubiquitous environmental bacteria such as B. 

thailandensis that encode virulence factors, but have not evolved to evade Caspase-11 

detection. It will be interesting to determine whether Caspase-11 is activated in response 

to the process of vacuolar rupture or the presence of bacteria within the cytosol. Caspase-

11 also responds to vacuolar bacteria under delayed kinetics, but such responses have not 

been shown to provide protection from infection in vivo (10, 22-24).  LPS-induced septic 

shock is mediated by Caspase-11 (10), suggesting that Caspase-11 can be activated by 

other mechanisms besides cytosol-localized bacteria.  Thus, we propose that Caspase-11 

provides protection against pathogens, but is dysregulated during overwhelming 

infection, contributing to septic shock and mortality.  It will be interesting to determine if 

Caspase-11 triggers eicosanoid secretion as is seen for Caspase-1, and whether these 
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mediators contribute to septic shock (26).  The identity of the hypothesized non-canonical 

inflammasome(s) that activate Caspase-11 and the precise nature of the activating signal 

will shed more light on the mechanisms by which Caspase-11 can both promote innate 

immunity and exacerbate immunopathology.  These insights may lead to novel therapies 

to treat infection and sepsis.  
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Fig. 1. Burkholderia detection and protection conferred by Casp1/11 is
independent of all known canonical inflammasomes. Lipopolysaccharide
(LPS) primed BMMs were infected with B. pseudomallei (A, G) or B. thailandensis
(B, F) for 4h. (A, B) IL-1 secretion was determined by ELISA or (F, G) cytotoxicity
was determined by LDH release assay. (C, D, E) Survival curves of wild type
C57BL/6 or the indicated knockout mice infected i.p. with B. thailandensis . Data
are representative of at least 3 (A, B, F, G) or 2 (D, E) experiments. (C) Data are
pooled from 3 experiments. For number of mice in each panel see Table S2. Sta-
tistically significant differences with respect to controls are indicated (Student’s T-
test or log rank test for survival; * = p < 0.05, n.s. = p > 0.05).
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Fig. 2. Diverse cytosolic bacteria activate pyroptosis independent of
NLRC4, NLRP3 and ASC. (A) LPS-primed BMMs were infected for 4h with either
B. thailandensis or the indicated mutants and cytotoxicity was determined. BMMs
were infected for 8h with (B) S. typhimurium or S. typhimurium "sifA, (D) S.
typhimurium "sifA or S. typhimurium "sifA "flgB (D) and cytotoxicity was deter-
mined. LPS-primed BMM were infected for 8h with S. typhimurium or S.
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cant differences with respect to controls are indicated (Student’s T-test; * = p <
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Supplementary Materials and Methods 

 

Mice and in vivo infections 

Wild-type C57BL/6 (Jackson Laboratory), Asc–/–(27), Nlrp3−/− (28), Nlrc4−/− (27), 

Nlrp3–/–Nlrc4–/–, Nlrc4–/–Asc–/–,  Il1b–/–Il18–/– (29, 30), Casp1–/–Casp11129mt/129mt referred 

to as Casp1–/–Casp11–/– (31), Casp11−/− (10), Ifng−/− (Jackson # 002287) (32), Tlr4lps-

del/lps-del referred to as Tlr4–/– (Jackson # 007227), Trif Lps2/Lps2 referred to as Trif–/– 

(Jackson # 005037), Myd88−/− (Jackson # 009088), and Ncf1m1J/m1J referred to as 

p47phox–/– (Jackson # 004742) (33) mice were used in this study.  Mice were housed in a 

specific pathogen–free facility. All protocols were approved by the Institutional Animal 

Care and Use Committee at the University of North Carolina at Chapel Hill, the Institute 

for Systems Biology, Seattle Biomedical Research Institute, or The University of 

California at Berkeley and met guidelines of the US National Institutes of Health for the 

humane care of animals. 

For study of lethal B. thailandensis challenge, mice were infected via 

intraperitoneal (i.p.) injection with 2 × 107 cfu (except Fig. 1D at 2 x 106 cfu) or 

intranasal (i.n.) inoculation with 1x104 cfu. For Figure 4F, mice were infected with 2 x 
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107 cfu i.p. of B. thailandensis that was passaged through as Casp1–/–Casp11–/– mouse 

(strain E264-1); this strain displays more synchronized infection kinetics than the 

parental E264.  For B. pseudomallei infection studies, mice were infected with 100 cfu 

i.n.  For monotypic S. typhimurium and S. typhimurium ∆sifA challenges, C57BL/6 mice 

were infected via i.p. injection with 1000 cfu.  Because Casp1–/–Casp11–/– mice have a 

mild innate susceptibility to S. typhimurium infection, a lower dose of 250 cfu was used, 

which yielded more comparable infection kinetics in comparison to C57BL/6 mice. For 

numbers of mice used in lethal challenges see Table S3.  For studies of coinfection with 

S. typhimurium and S. typhimurium ∆sifA, 4 or 5 mice were infected with 5x104 cfu each 

of S. typhimurium pWSK29 (ampicillin resistant) and S. typhimurium ∆sifA pWSK129 

(kanamycin resistant). Spleens were harvested 2 days post infection and homogenized in 

sterile PBS. Viable cfu in homogenates were enumerated by plating serial dilutions on 

agar containing ampicillin (100µg/mL) or kanamycin (40µg/mL). Bacterial competitive 

indices were calculated as the log of (S. typhimurium ∆sifA cfu / S. typhimurium cfu). 

 

Bacterial growth conditions 

Burkholderia strains were grown in Luria-Bertani medium (LB) overnight at 

37°C. For in vitro infections, bacteria were pelleted from 1mL of culture were opsonized 

with 50µL of mouse sera for 30 min at 37°C and then suspended in 1 ml of DMEM.  

Salmonella strains were grown in LB overnight at 37°C. For induction of SPI2 

expression, bacteria were cultured as previously described (34). Briefly, freshly streaked 

bacterial colonies were used to inoculate LB. After 16-20h growth at 37°C, bacteria were 

pelleted, washed with PBS 3X, and then back-diluted to an OD600 of 0.026 in SPI2 media 
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and grown 16-18h at 37°C.  SPI2 media: 0.1% w/v casamino acids, 38mM glycerol, 

5mM KCl, 7.5mM (NH4)2SO4, 0.5mM K2SO4, 1mM KH2PO4, 100mM Tris, 100mM 

BisTris, 200uM MgCl2, 100mM Hepes; pH to 6.5. Legionella strains were grown 

overnight at 37°C in buffered yeast extract supplemented with FeNO3, thymidine, and 

cysteine (35). 

 

Macrophage culture, infection, and analysis of inflammasome activation  

BMMs were prepared as described (20). For infections, macrophages were seeded 

into 96-well tissue culture treated plates at a density of 5x104 cells/well (B. thailandensis, 

B. pseudomallei, S. typhimurium) or 1x105 cells/well (L. pneumophila). When indicated, 

macrophages were primed with lipopolysaccharide (50 ng/ml) or IFN-γ (8 ng/ml ) 

overnight. Bacteria were added to BMMs at MOI 50 (B. thailandensis, B. pseudomallei, 

S. typhimurium) or MOI 1 (L. pneumophila), centrifuged for 5 min at 200 xg (B. 

thailandensis, B. pseudomallei, S. typhimurium) or 10 min at 400 xg (L. pneumophila), 

and then incubated at 37°C for 1hr. After 1 hour extracellular bacterial growth was 

stopped by addition of 15 µg/ml gentamicin (S. typhimurium) or 300 µg/ml kanamycin 

(B. thailandensis). Supernatant samples were collected at the indicated time points. 

Cytotoxicity was defined as the percentage of total lactate dehydrogenase released into 

the supernatant and was determined as described (36) or using the CytoTox 96 assay kit 

(Promega). IL-1β secretion was determined by enzyme-linked immunosorbent assay 

(ELISA) (R&D Systems). 
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Complementation and knockdown of Casp1 and Casp11 

Bone marrow derived macrophages were immortalized (iBMM) as described (37). 

For complementation of Casp1 and Casp11 in Casp1–/–Casp11–/– iBMMs, macrophages 

were transduced with pMXsIP (38) derived retrovirus carrying Casp1 or Casp11; for 

complementation of primary BMMs, macrophages were transduced with MSCV derived 

retroviruses (39). For knockdown of Casp11 expression in immortalized Nlrc4–/–Asc–/– 

iBMMs, macrophages were transduced with LMP retrovirus carrying shRNAmir seed 

sequences targeting Casp11 transcripts or scrambled control sequence (Open Biosystems, 

UNC Lenti-shRNA Core Facility). 

 

Caspase-11 mRNA and protein expression 

Total RNA was extracted using TRIzol solution (Invitrogen) and overall RNA 

quality was analyzed with an Agilent 2100 Bioanalyzer. Sample mRNA was amplified, 

labeled and hybridized to GeneChip Mouse Genome 430 2.0 arrays according to the array 

manufacturer’s instructions (Affymetrix). Probe intensities were measured and then 

processed with Affymetrix GeneChip operating software into image analysis (.CEL) files. 

The Affymetrix CEL files were normalized with robust multi-array average expression 

measure (40) and baseline scaling using the software Bioconductor (41).  Plotted are 

average log2 normalized expression intensities, computed from 2-3 biological 

replicates/condition. 

Caspase-11 protein expression in macrophages was determined after incubation 

with LPS (50ng/mL) or IFN-γ (8ng/mL) overnight. Protein from 1x105 cells was 

analyzed by Western blot using anti-Caspase-11 antibody (17D9, Novus) diluted 1:500. 
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Blots were stripped and equivalent loading of protein was ensured by Western blot using 

anti-β-actin HRP antibody (Cat. # 20272, AbCam) diluted 1:20,000. 

 

Fluorescence Microscopy 

Nlrc4–/–Asc–/– and Casp11–/– BMMs were seeded onto glass cover slips in 24-well 

plates at a density of 2.78x105 cells/well. Macrophage were primed with IFN-γ (8 ng/ml) 

overnight then infected with S. typhimurium ∆sifA. At 8 hours post infection, cells were 

washed with PBS and then incubated for 15 min on ice with Hoechst (0.12 µg/ml) and 

Propidium Iodide (PI) (1 µg/ml).  Images were acquired using an EVOS florescent 

microscope. 

 

Statistical analysis 

Error bars indicate the standard deviation of technical replicates. For mouse 

survival experiments, statistically significant differences between samples were 

determined using log rank (Mantel Cox). For all other experiments, statistically 

significant differences between samples were determined using a two-tailed, unpaired 

Student’s T-test. * = p ≤0.05, n.s. = p >0.05. 
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Supplementary Tables:  
 
Table S1.  Strain and plasmid list 
 
Name of Strain Designation Notes Reference 
S. typhimurium ATCC 14028s  wild type www.atcc.org 
S. typhimurium CS401 14028s strepR, 

phoN::Tn10dCm 
Samuel I Miller 

S. typhimurium 
∆sifA 

JAF57   CS401 ∆sifA (42) 

S. typhimurium 
∆sifA flgB 

JAF57 flgB CS401 ∆sifA 
flgB44::Tn10 

S. Yamaguchi 

B. thailandensis  E264 wild type www.atcc.org 
B. thailandensis  E264-1 mouse passaged wild 

type 
this study 

B. thailandensis 
T3SS mutant 

  Joseph Mougous 

B. thailandensis 
T6SS mutant 

  Joseph Mougous 

B. pseudomallei  Bp340 1026b amrRAB-
oprA 

(43) 

B. pseudomallei 
∆purM 
 

Bp82 purine auxotroph (44) 
 

L. pneumophila LP02 wild type; 
Philadelphia-1 
rpslL hsdR thyA- 

(46) 
 

L. pneumophila 
∆flaA 

 flagellin mutant (47) 

L. pneumophila 
∆flaA ∆sdhA 

 flagellin, sdhA 
mutant 

(48) 

    
Plasmids Resistance Notes  
pWSK29 Amp Low copy vector (45) 
pWSK129 Kan Low copy vector (45) 
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Table S2.  Numbers of mice used in survival experiments 
 
Figure Mice genotype Number 

of mice 
Fig.1C C57Bl/6 21 
 Nlrc4−/− 15 
 Casp1−/−Casp11−/− 21 
Fig.1d Nlrc4−/−Asc−/− 10 
 Casp1−/−Casp11−/− 5 
Fig.1E C57Bl/6 10 
 Il1b−/−Il18−/− 10 
 Casp1−/−Casp11−/− 10 
Fig.4A C57Bl/6 – S. typhimurium 10 
 C57Bl/6 – S. typhimurium ∆sifA 9 
Fig.4B Casp1−/−Casp11−/− – S. typhimurium  9 
 Casp1−/−Casp11−/− – S. typhimurium ∆sifA 9 
Fig.4F C57Bl/6 7 
 Casp1−/−Casp11−/− 16 
 Casp11−/− 17 
Fig.4G C57Bl/6 8 
 Casp1−/−Casp11−/− 10 
 Casp11−/− 11 
Fig. S2A C57Bl/6 5 
 Casp1−/−Casp11−/− 5 
Fig. S2B C57Bl/6 5 
 Casp1−/−Casp11−/− 8 
 Nlrc4 10 
 Asc−/− 7 
 Nlrp3−/− 9 
 Nlrc4−/−Asc−/− 9 
Fig. S2C Il1b−/−Il18−/− 19 
 Casp1−/−Casp11−/− 10 
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Figure S1. Schematic of inflammasome detection pathways. Canonical inflammasomes
including NLRP3, AIM2, and NLRC4 activate caspase-1. NLRC4 contains a CARD domain that
can bind to the CARD of caspase-1 directly through homotypic interaction, triggering pyroptosis.
The NLRC4 also binds ASC through CARD homotypic interactions, resulting in recruitment of
the entire complement of cellular ASC into a single ASC focus. The Pyrin domain of NLRP3 or
AIM2 cannot bind directly to caspase-1, but triggers formation of the ASC focus via Pyrin-Pyrin
homotypic interactions. The ASC focus recruits and activates caspase-1, resulting in its prote-
olytic maturation to the p10 and p20 fragments, and subsequent IL-1 and IL-18 cleavage and
secretion. Therefore, cells that are deficient in both Nlrc4 and Asc cannot signal through any
known canonical inflammasome. The activating platform for caspase-11 remains unknown; nev-
ertheless, the hypothetical activator was named the non-canonical inflammasome. Our data indi-
cate that cytosolic bacteria are detected through this hypothetical non-canonical inflammasome,
resulting in caspase-11-dependent pyroptosis. Caspase-11 activation also triggers NLRP3 acti-
vation via an unknown mechanism (denoted by an arrow through tunnels).
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* * *

Fig. S2. Burkholderia protection conferred by Casp1/11 is independent of
all known canonical inflammasomes (A-C) Wild type C57BL/6 or the indicated
knockout mice were infected i.n. with B. thailandensis and survival was monitored.
Data are representative of 4 (A), 1 (B) or pooled from 2 (C) experiments. For
number of mice in each panel see Table S2. Statistically significant differences
with respect to controls are indicated (log rank test for survival; * = p < 0.05).
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Fig. S3. TLR ligands and IFN-! enhance Casp11 expression and Caspase-11-
dependent cell death. (A) Untreated, LPS-primed, or IFN-!-primed BMMs were
infected with S. typhimurium "sifA and cytotoxicity was determined. (B) Transcriptional
upregulation of Casp11 in C57BL/6 BMMs after priming with the indicated molecules was
determined using Affymetrix GeneChip technology. (C) Caspase-11 expression in untreat-
ed, LPS-primed, and IFN-!-primed C57BL/6 BMMs was determined by immunoblot. Blots
were stripped and #-actin expression was determined as a loading control. (D) Caspase-
11 expression in untreated, LPS-primed, and IFN-!-primed control or Casp11 shRNA-
expressing Nlrc4-Asc iBMMs was determined by immunoblot. Loading controls were per-
formed as in (C). Results are representative of more than 3 (A, B), 2 (C), or 1 (D) experi-
ments. Statistically significant differences with respect to controls are indicated (Student‘s
T-test; * = p < 0.05).
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Figure S4

Fig. S4. Caspase-11 is not required for pyroptosis induced by flagellin
expressing wild type L. pneumophila. Wild type L. pneumophila inadvertently
translocate flagellin into the macrophage cytosol, resulting in detection through
NLRC4, which activates Caspase-1. We investigated whether this response was
altered in the absence of Caspase-11. C57BL/6, Casp1!/!Casp11!/!, and
Casp11!/!BMM infected with L. pneumophila at an MOI of 1 and cytotoxicity was
determined 4 hours later; C57BL/6 and Casp11!/! BMMs showed similar
cytotoxicity, indicating that Caspase-11 is not required for NLRC4-induced
pyroptosis. Data are representative of at least 3 independent experiments. Statis-
tically significant differences with respect to controls are indicated (Student’s T-
test; * = p < 0.05).
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Fig. 5S. Morphology of S. typhimurium !!sifA-induced pyroptosis. IFN-#-primed Nlrc4"/"
Asc"/" or Casp11"/" BMMs were infected for 8h with S. typhimurium !sifA (MOI 50) (A) Repre-
sentative fluorescence microscopy images of BMM stained with membrane permeant Hoechst
and membrane impermeant propidium iodide (PI) 8 hours post infection as a measure of cell
death in addition to LDH release. Although Hoechst is a membrane permeant dye, its staining
intensity significantly increased in pyroptotic cell due afer membrane rupture; in order to visualize
both intact and pyroptotic cells the image is over-exposed for lysed cells, making their nucleus
appear larger in the Hoechst channel. (B) Caspase-1-dependent pyroptotic cell death is known to
be inhibited by addition of glycine to the media. In order to determine if Caspase-11-dependent
cell death was occurring through a morphologically similar pathway, we added 20mM glycine at 4h
post S. typhimurium !sifA infection. LDH release was determined 4h later (total of 8h infection).
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Discovery of Inhibitors of Burkholderia pseudomallei  methionine aminopeptidase 

with Antibacterial Activity1 

  

Burkholderia pseudomallei is the causative agent of melioidosis, a severe and 

often fatal infection that manifests as pneumonia or septicemia.1 Melioidosis is endemic 

to Southeast Asia and Northern Australia, where it is a significant cause of morbidity and 

mortality, and can also be found in other tropical regions.2 The Centers for Disease 

Control and Prevention consider B. pseudomallei to be a bioterrorism risk and have thus 

listed the organism as a Category B priority agent that could potentially cause a large-

scale public health crisis if used in an attack.3 Although it is critical to identify 

antimicrobial agents active against B. pseudomallei, the process of drug discovery has 

been challenging. The current standard treatment for melioidosis is intensive 

administration of the third-generation cephalosporin antibiotic ceftazidime followed by a 

regimen of trimethoprim-sulfamethoxazole or amoxicillin-clavulanic acid for 3–6 

months.2 Ceftazidime is highly active in vitro and was shown to be safe for clinical use; 

                                                
1 Authored by: Phumvadee Wangtrakuldee, Matthew S. Byrd, Cristine G. Campos, 

Michael W. Henderson, Zheng Zhang, Ali Masoudi,  Peter J. Myler,  James R. Horn, 

Peggy A. Cotter,  Timothy J. Hagen 
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however, resistance to this drug is possible, and the long treatment duration in 

combination with other antibiotics results in substantial patient non-compliance.2,4 In 

addition, B. pseudomallei is intrinsically resistant to several classes of antibiotics, 

including aminoglycosides and macrolides, due to a multi-drug efflux pump that 

transports drugs out of the cell.5 This intrinsic resistance creates an even greater challenge 

for the scientific community to find alternative treatments that act via novel mechanisms.  

Methionine Aminopeptidase (MetAP) is a dinuclear metalloprotease that removes 

the N-terminal methionine from nascent proteins.6 MetAP is conserved in all life forms 

from bacteria to humans. Genetic studies have shown that deleting the MetAP-encoding 

gene in numerous prokaryotes results in either a slow-growth or lethal phenotype.6 These 

studies reveal the critical role of MetAPs in prokaryote survival and suggest these 

enzymes are promising targets for the discovery of new antibiotics.  

Early studies by Lu et al. targeting M. tuberculosis MetAP enzymes demonstrated 

that potent inhibitors of MtMe tAP1a and MtMetAP1c inhibited the growth of 

mycobacteria in culture.7 Similarly, potent inhibitors of Human MetAP2 were also shown 

to exhibit activities against HMVEC proliferation.8 While possessing only limited 

sequential identity and similarity to MtMetAP1 (37% identity /46% similarity) and 

human MetAP2 (12% identity /18% similarity), the MetAP of B. pseudomallei contains 

key amino acid residues at the active sites (Asp 131, Asp 142, His 205, Glu 238, and Glu 

269) identical to those in M. tuberculosis MetAP1 and Human MetAP2 (Figure 1). This 

observation suggests that the various types of inhibitors effective against MetAP1 from 

both M. tuberculosis and humans might also be effective inhibitors of B. pseudomallei 

MetAP1.  
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Figure 1. Alignment of the amino acid sequences of B. pseudomallei MetAP1, human 

(Homo sapiens) MetAP2 and M. tuberculosis MetAP1. There are five conserved metal-

ligating residues (highlighted in yellow). Other identical residues among all three 

MetAPs are highlighted.  

Several inhibitors of methionine aminopeptidase have been reported over the past 

several years. Triazole compounds were reported to be potent MetAP inhibitors, 

demonstrating activity in many organisms through the interaction of each of the triazole 

nitrogen atoms in positions 1 and 2 with divalent cobalt ions.9 Furan-type compounds 

displayed sub-micromolar inhibitory activity against Escherichia coli methionine 

aminopeptidase.10 The carboxyl group in these compounds coordinates with the metal 

ions at the enzyme active site pocket. Derivatives of anthranilic acid sulfonamide were 

reported to have potent MetAP inhibition activities against human MetAP2, with the 

shape of the backbone allowing both aromatic rings to reside in a hydrophobic pocket.8 
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Moreover, the chlorosubstitution at the para-position on the sulfonyl phenyl contributes 

to a tight binding due to a narrow hydrophobic region within the enzyme. 

Nitroxoline(NIT), or 5-nitro-8-hydroxyquinoline, exhibited activity against human 

MetAP2 in vitro in the nanomolar range.11 The phenolic group at the 8-position 

dissociates to O- at physiological pH. The O- and the nitrogen atom at the 1 position 

participate in binding to the metal ion.12 Here, representative compounds from each 

chemical series of MetAP inhibitor were selected for evaluation of their inhibition 

potencies against BpMetAP1 (Table 1). 

Compounds 1, 5, and 6 were purchased from Sigma-Aldrich. Compound 2 was 

synthesized from alkylation of 3-amino-5-thio-1,2,4-triazole to 1-(bromomethyl)-4-

methylbenzene. The synthesis of compound 2 is shown in Scheme 1. The final compound 

after recrystallization resulted in an approximately 67% yield. Compounds 3 and 4 were 

synthesized in a similar procedure using 4-flurobenzyl bromide and 1-(bromomethyl)-

2,4-dichlorobenzene as the starting materials, likewise resulting in relatively considerate 

yields. Compound 7 was synthesized from 2-amino-5-bromobenzoic acid and 4-

methylbenzene-1-sulfonyl chloride, providing a product with a 76% yield. Following a 

similar procedure, compound 8 was synthesized using 4-chlorobenzene-1-sulfonyl 

chloride as a starting material with a yield of 92%. 
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Scheme 1. Syntheses of Compounds 2-4 and 7-8a 

 

 

The four chemical series of compounds (1-8) were profiled for in vitro 

BpMetAP1 activity using an established activity inhibition assay (Table 1).13 This assay 

used the fluorescent substrate, H-Met-Gly-Pro-AMC, along with a coupled secondary 

enzyme, rhDPPIV. The hydrolysis of H-Met-Gly-Pro-AMC (MetAP1), followed by Gly-

Pro-AMC hydrolysis (rhDPPIV) can be conveniently monitored by the fluorescence of 

the aminomethylcoumarin product. Overall, these compounds exhibited a wide range of 

inhibition potencies. Nitroxoline (1) was found to significantly inhibit BpMetAP1 

activity compared to other compounds, with an IC50 value of 60 nM respectively (Table 

1). The triazole-type compounds 2, 3, and 4 demonstrated inhibition of BPMetAp1 in the 

low micromolar range. Different substituents at the C2 and C4 position on the phenyl 

 

Figure 1. Alignment of the amino acid sequences of B. pseudomallei 
MetAP1, human (Homo sapiens) MetAP2 and M. tuberculosis MetAP1. 
There are five conserved metal-ligating residues (highlighted in yel-
low). Other identical residues among all three MetAPs are highlighted.  

Several inhibitors of methionine aminopeptidase have been report-
ed over the past several years. Triazole compounds were reported 
to be potent MetAP inhibitors, demonstrating activity in many 
organisms through the interaction of each of the triazole nitrogen 
atoms in positions 1 and 2 with divalent cobalt ions.9 Furan-type 
compounds displayed sub-micromolar inhibitory activity against 
Escherichia coli methionine aminopeptidase.10 The carboxyl group 
in these compounds coordinates with the metal ions at the enzyme 
active site pocket. Derivatives of anthranilic acid sulfonamide were 
reported to have potent MetAP inhibition activities against human 
MetAP2, with the shape of the backbone allowing both aromatic 
rings to reside in a hydrophobic pocket.8 Moreover, the chlorosub-
stitution at the para-position on the sulfonyl phenyl contributes to a 
tight binding due to a narrow hydrophobic region within the en-
zyme. Nitroxoline(NIT), or 5-nitro-8-hydroxyquinoline, exhibited 
activity against human MetAP2 in vitro in the nanomolar range.11 
The phenolic group at the 8-position dissociates to O- at physiolog-
ical pH. The O- and the nitrogen atom at the 1 position participate 
in binding to the metal ion.12 Here, representative compounds from 
each chemical series of MetAP inhibitor were selected for evalua-
tion of their inhibition potencies against BpMetAP1 (Table 1). 

Compounds 1, 5, and 6 were purchased from Sigma-Aldrich. 
Compound 2 was synthesized from alkylation of 3-amino-5-thio-
1,2,4-triazole to 1-(bromomethyl)-4-methylbenzene. The synthesis 
of compound 2 is shown in Scheme 1. The final compound after 
recrystallization resulted in an approximately 67% yield. Com-
pounds 3 and 4 were synthesized in a similar procedure using 4-
flurobenzyl bromide and 1-(bromomethyl)-2,4-dichlorobenzene as 
the starting materials, likewise resulting in relatively considerate 
yields. Compound 7 was synthesized from 2-amino-5-
bromobenzoic acid and 4-methylbenzene-1-sulfonyl chloride, 
providing a product with a 76% yield. Following a similar proce-
dure, compound 8 was synthesized using 4-chlorobenzene-1-
sulfonyl chloride as a starting material with a yield of 92%. 

Scheme 1. Syntheses of Compounds 2-4 and 7-8a 

 

Compound  R  Yield     

2  C7H8  67% 

3  C6H5F  47% 

4  C6H4Cl2  92% 

 

Compound  R  Yield 

7  CH3  76% 

8  Cl  92% 

aReagents and conditions: (a) NaOH, EtOH, 70 °C, 20 min (b) 
1 M Na2CO3, pH 8. 

The four chemical series of compounds (1-8) were profiled for in vitro 
BpMetAP1 activity using an established activity inhibition assay (Table 
1).13 This assay used the fluorescent substrate, H-Met-Gly-Pro-AMC, 
along with a coupled secondary enzyme, rhDPPIV. The hydrolysis of 
H-Met-Gly-Pro-AMC (MetAP1), followed by Gly-Pro-AMC hydroly-
sis (rhDPPIV) can be conveniently monitored by the fluorescence of 
the aminomethylcoumarin product. Overall, these compounds exhibit-
ed a wide range of inhibition potencies. Nitroxoline (1) was found to 
significantly inhibit BpMetAP1 activity compared to other compounds, 
with an IC50 value of 60 nM respectively (Table 1). The triazole-type 
compounds 2, 3, and 4 demonstrated inhibition of BPMetAp1 in the 
low micromolar range. Different substituents at the C2 and C4 position 
on the phenyl ring did not alter the inhibitory effect of these com-
pounds. Furan type compounds 5 and 6 displayed IC50 values of more 
than 250 µM, indicating that they are not potent inhibitors of 
BpMetAP1. Sulfonamide compound 7 was shown to exhibit partial 
inhibition profile. The IC50 value was determined to be in the mi-
cromolar range. The substitution of a chlorine group from a methyl 
group reduces the inhibition potency of the sulfonamide compounds 
against BPMetAP1. 

Table 1. Inhibition of Enzymatic Activity of Purified 
BpMetAp1 by various types of MetAP Inhibitors 
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ring did not alter the inhibitory effect of these compounds. Furan type compounds 5 and 6 

displayed IC50 values of more than 250 µM, indicating that they are not potent inhibitors 

of BpMetAP1. Sulfonamide compound 7 was shown to exhibit partial inhibition profile. 

The IC50 value was determined to be in the micromolar range. The substitution of a 

chlorine group from a methyl group reduces the inhibition potency of the sulfonamide 

compounds against BPMetAP1. 

 

Table 1. Inhibition of Enzymatic Activity of Purified BpMetAp1 by various types of 

MetAP Inhibitors 

 

Docking experiments were performed to examine the binding modes of the two 

compounds with the most potent inhibition of BpMetAP1 activity. Initially, a homology 

model of the BpMetAP1 was constructed from MtMetAP1 (PDB code: 3IU9). Using the 

 

 

Compound Type of compound IC50(µM)a 

1 Nitroxoline  0.06 + 0.03 

2 1,2,4 triazole  3.1 + 0.26  

3 1,2,4 triazole  7.0 + 3 

4 1,2,4 triazole  1.0 + 0.1 

5 furan   >250b 

6 furan   >250 

7 sulfonamide  44 + 9c 

 8 sulfonamide  >250 

aAssay details are in the Supporting information.b250 µM is the 
highest limit regarding solubility of most of the compounds in 
DMSO. dPartial Inhibition observed. 

Docking experiments were performed to examine the binding modes of 
the two compounds with the most potent inhibition of BpMetAP1 
activity. Initially, a homology model of the BpMetAP1 was constructed 
from MtMetAP1 (PDB code: 3IU9). Using the Sybyl docking suite 
compounds 1 and 4 were docked into the active site of BpMeAP1 by 
constraining to the position of 8-quinolinol binding to the chelated 
metal of Aeromonas proteolytica aminopeptidase (PDB code: 3VH9). 
Compound 1 contains a phenolic group that donates its proton at 
physiological pH. This process consequently assigned a full negative 
charge to the oxygen. Docking results showed that this compound 
chelates the metal ions by forming a complex with the negative charge 
from the oxygen and the nitrogen atom at the 1 position (Figure 2). 
Analysis of triazole-type compound 4 suggested that its inhibitory 
effect is dependent upon the presence of nitrogen atoms at positions 1 
and 2. These nitrogen atoms coordinate with the metal ions in a man-
ner similar to other triazole-type compounds that bind at the active site 
of MetAP.9 The phenyl group of compound 4 fits in the hydrophobic 
pocket, thus enhancing its inhibitory effect.  

  

 

Figure 2. Proposed binding modes for 1 (left, magenta) and 4 (right, 
cyan) in the BpMetAp1 binding site.  

Compounds 1-8 were subsequently evaluated for the ability to inhibit 
the growth of Burkholderia thailandensis. B. thailandensis is closely re-
lated to B. pseudomallei, displaying 98% sequence identity at the nucle-
otide level. However, B. thailandensis is not select agent pathogen, 
which allows for its use as a model without the requirement of a BSL-3 
facility.14 Cells were grown in the presence of 1 mM inhibitor, 0.5 mM 
kanamycin (Km), or DMSO alone for approximately 24 h. Km was 
used as a positive control for growth inhibition because previous stud-
ies have demonstrated its efficacy against both B. thailandensis and B. 
pseudomallei, and it is one of only four antibiotics approved for use in 
the BSL-3 laboratory.5,15,16 Growth was monitored by reading the ab-
sorbance at 600 nm every 15 min, and the area under the curve was 
calculated for cells grown in each condition (Supplemental Table 1). 
Treatment with compound 1 resulted in complete growth inhibition, 
similar to the Km control, while compounds 2, 3, 4, 7, and 8 showed 
partial inhibition of bacterial growth (approximately 15–30%; Figure 
3). Compounds 5 and 6 exhibited essentially no cell growth inhibition, 
consistent with the high IC50 values observed in the activity inhibition 
assay. It was previously reported that triazole-derived compounds do 
not exhibit antibacterial activity.8 While treatment with compounds 2, 
3, and 4 did result in a modest reduction in growth over 24 h, the inhi-
bition was not complete; our results, therefore, are consistent with 
earlier findings.  
 
The in vitro and in vivo inhibition results for the tested compounds are 
largely in agreement. Compound 1 was the most potent inhibitor of 
both purified BpMetAp1 and of B. thailandensis growth, while com-
pound 4 was the second most potent inhibitor in both assays. In vitro, 
compound 2 displayed greater inhibition than compound 8, but in vivo, 
the inhibitory effects of these two compounds were nearly indistin-
guishable.  

Figure 3. B. thailandensis growth inhibition assay. 
 

Following this initial assessment of potential inhibitors 
against B. thailandensis, we evaluated compound 1 at different concen-
trations in an attempt to establish the minimum inhibitory concentra-
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Sybyl docking suite compounds 1 and 4 were docked into the active site of BpMeAP1 by 

constraining to the position of 8-quinolinol binding to the chelated metal of Aeromonas 

proteolytica aminopeptidase (PDB code: 3VH9). Compound 1 contains a phenolic group 

that donates its proton at physiological pH. This process consequently assigned a full 

negative charge to the oxygen. Docking results showed that this compound chelates the 

metal ions by forming a complex with the negative charge from the oxygen and the 

nitrogen atom at the 1 position (Figure 2). Analysis of triazole-type compound 4 

suggested that its inhibitory effect is dependent upon the presence of nitrogen atoms at 

positions 1 and 2. These nitrogen atoms coordinate with the metal ions in a manner 

similar to other triazole-type compounds that bind at the active site of MetAP.9 The 

phenyl group of compound 4 fits in the hydrophobic pocket, thus enhancing its inhibitory 

effect.  

  

 

Figure 2. Proposed binding modes for 1 (left, magenta) and 4 (right, cyan) in the 

BpMetAp1 binding site.  

Compounds 1-8 were subsequently evaluated for the ability to inhibit the growth 

of Burkholderia thailandensis. B. thailandensis is closely related to B. pseudomallei, 

displaying 98% sequence identity at the nucleotide level. However, B. thailandensis is 

not select agent pathogen, which allows for its use as a model without the requirement of 
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a BSL-3 facility.14 Cells were grown in the presence of 1 mM inhibitor, 0.5 mM 

kanamycin (Km), or DMSO alone for approximately 24 h. Km was used as a positive 

control for growth inhibition because previous studies have demonstrated its efficacy 

against both B. thailandensis and B. pseudomallei, and it is one of only four antibiotics 

approved for use in the BSL-3 laboratory.5,15,16 Growth was monitored by reading the 

absorbance at 600 nm every 15 min, and the area under the curve was calculated for cells 

grown in each condition (Supplemental Table 1). Treatment with compound 1 resulted in 

complete growth inhibition, similar to the Km control, while compounds 2, 3, 4, 7, and 8 

showed partial inhibition of bacterial growth (approximately 15–30%; Figure 3). 

Compounds 5 and 6 exhibited essentially no cell growth inhibition, consistent with the 

high IC50 values observed in the activity inhibition assay. It was previously reported that 

triazole-derived compounds do not exhibit antibacterial activity.8 While treatment with 

compounds 2, 3, and 4 did result in a modest reduction in growth over 24 h, the inhibition 

was not complete; our results, therefore, are consistent with earlier findings.  

The in vitro and in vivo inhibition results for the tested compounds are largely in 

agreement. Compound 1 was the most potent inhibitor of both purified BpMetAp1 and of 

B. thailandensis growth, while compound 4 was the second most potent inhibitor in both 

assays. In vitro, compound 2 displayed greater inhibition than compound 8, but in vivo, 

the inhibitory effects of these two compounds were nearly indistinguishable.  
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Figure 3. B. thailandensis growth inhibition assay. 

Following this initial assessment of potential inhibitors against B. thailandensis, 

we evaluated compound 1 at different concentrations in an attempt to establish the 

minimum inhibitory concentration (MIC) that would prevent growth. We observed 

complete growth inhibition at the lowest concentration tested (62.5 µM), indicating that 

we had likely not reached the MIC (Figure 4A). Although testing these compounds in B. 

thailandensis is a simple and effective process, it is possible that B. pseudomallei-specific 

resistance mechanisms may reduce or eliminate the effectiveness of compound 1 in the 

growth inhibition assay. Therefore, we tested compound 1 against the virulent B. 

pseudomallei strain Bp340, a derivative of the clinical melioidosis isolate 1026b that 

lacks an aminoglycoside/macrolide-specific multidrug efflux pump (to facilitate 

antibiotic selection in the laboratory).5 As with B. thailandensis, treatment with 

compound 1 resulted in the complete growth inhibition of B. pseudomallei Bp340 at the 

lowest tested concentration (31.25 µM; Figure 4B). A subsequent test of compound 1 

against 1026b revealed no difference in inhibition compared to Bp340, suggesting that 

the lack of the multidrug efflux pump does not affect the activity of this compound (data 

not shown).   
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Figure 4. B. thailandensis (a) and B. pseudomallei (b) growth inhibition by compound 1. 

In conclusion, we evaluated a set of small molecule inhibitors of B. pseudomallei 

MetAP1 in an enzyme activity assay. A homology model of the BpMetAP1 was 

generated from MtMetAP1, and the proposed binding mechanisms of two of the most 

potent compounds in the in vitro assay were illustrated through molecular docking. These 

compounds showed a range of MetAP1 inhibition.  Assessment of the antibacterial cell-

growth inhibition reveal that five of the compounds had modest to high cell growth 

inhibitory effects, while others had minimal effects.  Compound 1 is the most potent 

inhibitor in the enzyme activity assay and shows nearly complete cell growth inhibition 

in vivo. The efficiency of this molecule in inhibiting BpMetAP1 activity and in arresting 

cell growth suggests that nitroxoline-derived compounds may be useful candidates for 

potential melioidosis therapeutics. 

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 DMSO
0.5 mM Km
Blank
1 mM
500 µM
250 µM
125 µM
62.5 µM

Time (h)

Ab
so

rb
an

ce
 (O

D
60

0)

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

1 mM
500 µM
250 µM
125 µM
62.5 µM
31.25 µM

Blank

DMSO
0.5 mM Km

Time (h)

Ab
so

rb
an

ce
 (O

D
60

0)

a

b



 139 

 

ASSOCIATED CONTENT  

Supporting Information. Experimental procedures for the synthesis and 

characterization of the compounds, the in vitro activity assay, the in vivo antibacterial 

assay, and the 1H NMR and 13C NMR spectra of the reported compounds. This material 

is available free of charge via the Internet at http://pubs.acs.org. 
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ABBREVIATIONS 

BpMetAP, Burkholderia pseudomallei methionine aminopeptidase; DMSO, 

dimethyl sulfoxide; HMVEC, human microvascular endothelial cell; Km, kanamycin; 

MetAP, methionine aminopeptidase; Met-Gly-Pro-AMC, methionine-glycine-proline-7-

amino-4-methylcoumarin; rhDPPIV, human DPPIV/CD26.  
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